1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/pci.h> 37 #include <linux/libata.h> 38 #include <linux/highmem.h> 39 40 #include "libata.h" 41 42 const struct ata_port_operations ata_sff_port_ops = { 43 .inherits = &ata_base_port_ops, 44 45 .qc_prep = ata_sff_qc_prep, 46 .qc_issue = ata_sff_qc_issue, 47 .qc_fill_rtf = ata_sff_qc_fill_rtf, 48 49 .freeze = ata_sff_freeze, 50 .thaw = ata_sff_thaw, 51 .prereset = ata_sff_prereset, 52 .softreset = ata_sff_softreset, 53 .hardreset = sata_sff_hardreset, 54 .postreset = ata_sff_postreset, 55 .drain_fifo = ata_sff_drain_fifo, 56 .error_handler = ata_sff_error_handler, 57 .post_internal_cmd = ata_sff_post_internal_cmd, 58 59 .sff_dev_select = ata_sff_dev_select, 60 .sff_check_status = ata_sff_check_status, 61 .sff_tf_load = ata_sff_tf_load, 62 .sff_tf_read = ata_sff_tf_read, 63 .sff_exec_command = ata_sff_exec_command, 64 .sff_data_xfer = ata_sff_data_xfer, 65 .sff_irq_on = ata_sff_irq_on, 66 .sff_irq_clear = ata_sff_irq_clear, 67 68 .lost_interrupt = ata_sff_lost_interrupt, 69 70 .port_start = ata_sff_port_start, 71 }; 72 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 73 74 const struct ata_port_operations ata_bmdma_port_ops = { 75 .inherits = &ata_sff_port_ops, 76 77 .mode_filter = ata_bmdma_mode_filter, 78 79 .bmdma_setup = ata_bmdma_setup, 80 .bmdma_start = ata_bmdma_start, 81 .bmdma_stop = ata_bmdma_stop, 82 .bmdma_status = ata_bmdma_status, 83 }; 84 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 85 86 const struct ata_port_operations ata_bmdma32_port_ops = { 87 .inherits = &ata_bmdma_port_ops, 88 89 .sff_data_xfer = ata_sff_data_xfer32, 90 .port_start = ata_sff_port_start32, 91 }; 92 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 93 94 /** 95 * ata_fill_sg - Fill PCI IDE PRD table 96 * @qc: Metadata associated with taskfile to be transferred 97 * 98 * Fill PCI IDE PRD (scatter-gather) table with segments 99 * associated with the current disk command. 100 * 101 * LOCKING: 102 * spin_lock_irqsave(host lock) 103 * 104 */ 105 static void ata_fill_sg(struct ata_queued_cmd *qc) 106 { 107 struct ata_port *ap = qc->ap; 108 struct scatterlist *sg; 109 unsigned int si, pi; 110 111 pi = 0; 112 for_each_sg(qc->sg, sg, qc->n_elem, si) { 113 u32 addr, offset; 114 u32 sg_len, len; 115 116 /* determine if physical DMA addr spans 64K boundary. 117 * Note h/w doesn't support 64-bit, so we unconditionally 118 * truncate dma_addr_t to u32. 119 */ 120 addr = (u32) sg_dma_address(sg); 121 sg_len = sg_dma_len(sg); 122 123 while (sg_len) { 124 offset = addr & 0xffff; 125 len = sg_len; 126 if ((offset + sg_len) > 0x10000) 127 len = 0x10000 - offset; 128 129 ap->prd[pi].addr = cpu_to_le32(addr); 130 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff); 131 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 132 133 pi++; 134 sg_len -= len; 135 addr += len; 136 } 137 } 138 139 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 140 } 141 142 /** 143 * ata_fill_sg_dumb - Fill PCI IDE PRD table 144 * @qc: Metadata associated with taskfile to be transferred 145 * 146 * Fill PCI IDE PRD (scatter-gather) table with segments 147 * associated with the current disk command. Perform the fill 148 * so that we avoid writing any length 64K records for 149 * controllers that don't follow the spec. 150 * 151 * LOCKING: 152 * spin_lock_irqsave(host lock) 153 * 154 */ 155 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc) 156 { 157 struct ata_port *ap = qc->ap; 158 struct scatterlist *sg; 159 unsigned int si, pi; 160 161 pi = 0; 162 for_each_sg(qc->sg, sg, qc->n_elem, si) { 163 u32 addr, offset; 164 u32 sg_len, len, blen; 165 166 /* determine if physical DMA addr spans 64K boundary. 167 * Note h/w doesn't support 64-bit, so we unconditionally 168 * truncate dma_addr_t to u32. 169 */ 170 addr = (u32) sg_dma_address(sg); 171 sg_len = sg_dma_len(sg); 172 173 while (sg_len) { 174 offset = addr & 0xffff; 175 len = sg_len; 176 if ((offset + sg_len) > 0x10000) 177 len = 0x10000 - offset; 178 179 blen = len & 0xffff; 180 ap->prd[pi].addr = cpu_to_le32(addr); 181 if (blen == 0) { 182 /* Some PATA chipsets like the CS5530 can't 183 cope with 0x0000 meaning 64K as the spec 184 says */ 185 ap->prd[pi].flags_len = cpu_to_le32(0x8000); 186 blen = 0x8000; 187 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000); 188 } 189 ap->prd[pi].flags_len = cpu_to_le32(blen); 190 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 191 192 pi++; 193 sg_len -= len; 194 addr += len; 195 } 196 } 197 198 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 199 } 200 201 /** 202 * ata_sff_qc_prep - Prepare taskfile for submission 203 * @qc: Metadata associated with taskfile to be prepared 204 * 205 * Prepare ATA taskfile for submission. 206 * 207 * LOCKING: 208 * spin_lock_irqsave(host lock) 209 */ 210 void ata_sff_qc_prep(struct ata_queued_cmd *qc) 211 { 212 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 213 return; 214 215 ata_fill_sg(qc); 216 } 217 EXPORT_SYMBOL_GPL(ata_sff_qc_prep); 218 219 /** 220 * ata_sff_dumb_qc_prep - Prepare taskfile for submission 221 * @qc: Metadata associated with taskfile to be prepared 222 * 223 * Prepare ATA taskfile for submission. 224 * 225 * LOCKING: 226 * spin_lock_irqsave(host lock) 227 */ 228 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc) 229 { 230 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 231 return; 232 233 ata_fill_sg_dumb(qc); 234 } 235 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep); 236 237 /** 238 * ata_sff_check_status - Read device status reg & clear interrupt 239 * @ap: port where the device is 240 * 241 * Reads ATA taskfile status register for currently-selected device 242 * and return its value. This also clears pending interrupts 243 * from this device 244 * 245 * LOCKING: 246 * Inherited from caller. 247 */ 248 u8 ata_sff_check_status(struct ata_port *ap) 249 { 250 return ioread8(ap->ioaddr.status_addr); 251 } 252 EXPORT_SYMBOL_GPL(ata_sff_check_status); 253 254 /** 255 * ata_sff_altstatus - Read device alternate status reg 256 * @ap: port where the device is 257 * 258 * Reads ATA taskfile alternate status register for 259 * currently-selected device and return its value. 260 * 261 * Note: may NOT be used as the check_altstatus() entry in 262 * ata_port_operations. 263 * 264 * LOCKING: 265 * Inherited from caller. 266 */ 267 static u8 ata_sff_altstatus(struct ata_port *ap) 268 { 269 if (ap->ops->sff_check_altstatus) 270 return ap->ops->sff_check_altstatus(ap); 271 272 return ioread8(ap->ioaddr.altstatus_addr); 273 } 274 275 /** 276 * ata_sff_irq_status - Check if the device is busy 277 * @ap: port where the device is 278 * 279 * Determine if the port is currently busy. Uses altstatus 280 * if available in order to avoid clearing shared IRQ status 281 * when finding an IRQ source. Non ctl capable devices don't 282 * share interrupt lines fortunately for us. 283 * 284 * LOCKING: 285 * Inherited from caller. 286 */ 287 static u8 ata_sff_irq_status(struct ata_port *ap) 288 { 289 u8 status; 290 291 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 292 status = ata_sff_altstatus(ap); 293 /* Not us: We are busy */ 294 if (status & ATA_BUSY) 295 return status; 296 } 297 /* Clear INTRQ latch */ 298 status = ap->ops->sff_check_status(ap); 299 return status; 300 } 301 302 /** 303 * ata_sff_sync - Flush writes 304 * @ap: Port to wait for. 305 * 306 * CAUTION: 307 * If we have an mmio device with no ctl and no altstatus 308 * method this will fail. No such devices are known to exist. 309 * 310 * LOCKING: 311 * Inherited from caller. 312 */ 313 314 static void ata_sff_sync(struct ata_port *ap) 315 { 316 if (ap->ops->sff_check_altstatus) 317 ap->ops->sff_check_altstatus(ap); 318 else if (ap->ioaddr.altstatus_addr) 319 ioread8(ap->ioaddr.altstatus_addr); 320 } 321 322 /** 323 * ata_sff_pause - Flush writes and wait 400nS 324 * @ap: Port to pause for. 325 * 326 * CAUTION: 327 * If we have an mmio device with no ctl and no altstatus 328 * method this will fail. No such devices are known to exist. 329 * 330 * LOCKING: 331 * Inherited from caller. 332 */ 333 334 void ata_sff_pause(struct ata_port *ap) 335 { 336 ata_sff_sync(ap); 337 ndelay(400); 338 } 339 EXPORT_SYMBOL_GPL(ata_sff_pause); 340 341 /** 342 * ata_sff_dma_pause - Pause before commencing DMA 343 * @ap: Port to pause for. 344 * 345 * Perform I/O fencing and ensure sufficient cycle delays occur 346 * for the HDMA1:0 transition 347 */ 348 349 void ata_sff_dma_pause(struct ata_port *ap) 350 { 351 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 352 /* An altstatus read will cause the needed delay without 353 messing up the IRQ status */ 354 ata_sff_altstatus(ap); 355 return; 356 } 357 /* There are no DMA controllers without ctl. BUG here to ensure 358 we never violate the HDMA1:0 transition timing and risk 359 corruption. */ 360 BUG(); 361 } 362 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 363 364 /** 365 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 366 * @ap: port containing status register to be polled 367 * @tmout_pat: impatience timeout in msecs 368 * @tmout: overall timeout in msecs 369 * 370 * Sleep until ATA Status register bit BSY clears, 371 * or a timeout occurs. 372 * 373 * LOCKING: 374 * Kernel thread context (may sleep). 375 * 376 * RETURNS: 377 * 0 on success, -errno otherwise. 378 */ 379 int ata_sff_busy_sleep(struct ata_port *ap, 380 unsigned long tmout_pat, unsigned long tmout) 381 { 382 unsigned long timer_start, timeout; 383 u8 status; 384 385 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 386 timer_start = jiffies; 387 timeout = ata_deadline(timer_start, tmout_pat); 388 while (status != 0xff && (status & ATA_BUSY) && 389 time_before(jiffies, timeout)) { 390 msleep(50); 391 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 392 } 393 394 if (status != 0xff && (status & ATA_BUSY)) 395 ata_port_printk(ap, KERN_WARNING, 396 "port is slow to respond, please be patient " 397 "(Status 0x%x)\n", status); 398 399 timeout = ata_deadline(timer_start, tmout); 400 while (status != 0xff && (status & ATA_BUSY) && 401 time_before(jiffies, timeout)) { 402 msleep(50); 403 status = ap->ops->sff_check_status(ap); 404 } 405 406 if (status == 0xff) 407 return -ENODEV; 408 409 if (status & ATA_BUSY) { 410 ata_port_printk(ap, KERN_ERR, "port failed to respond " 411 "(%lu secs, Status 0x%x)\n", 412 DIV_ROUND_UP(tmout, 1000), status); 413 return -EBUSY; 414 } 415 416 return 0; 417 } 418 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 419 420 static int ata_sff_check_ready(struct ata_link *link) 421 { 422 u8 status = link->ap->ops->sff_check_status(link->ap); 423 424 return ata_check_ready(status); 425 } 426 427 /** 428 * ata_sff_wait_ready - sleep until BSY clears, or timeout 429 * @link: SFF link to wait ready status for 430 * @deadline: deadline jiffies for the operation 431 * 432 * Sleep until ATA Status register bit BSY clears, or timeout 433 * occurs. 434 * 435 * LOCKING: 436 * Kernel thread context (may sleep). 437 * 438 * RETURNS: 439 * 0 on success, -errno otherwise. 440 */ 441 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 442 { 443 return ata_wait_ready(link, deadline, ata_sff_check_ready); 444 } 445 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 446 447 /** 448 * ata_sff_dev_select - Select device 0/1 on ATA bus 449 * @ap: ATA channel to manipulate 450 * @device: ATA device (numbered from zero) to select 451 * 452 * Use the method defined in the ATA specification to 453 * make either device 0, or device 1, active on the 454 * ATA channel. Works with both PIO and MMIO. 455 * 456 * May be used as the dev_select() entry in ata_port_operations. 457 * 458 * LOCKING: 459 * caller. 460 */ 461 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 462 { 463 u8 tmp; 464 465 if (device == 0) 466 tmp = ATA_DEVICE_OBS; 467 else 468 tmp = ATA_DEVICE_OBS | ATA_DEV1; 469 470 iowrite8(tmp, ap->ioaddr.device_addr); 471 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 472 } 473 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 474 475 /** 476 * ata_dev_select - Select device 0/1 on ATA bus 477 * @ap: ATA channel to manipulate 478 * @device: ATA device (numbered from zero) to select 479 * @wait: non-zero to wait for Status register BSY bit to clear 480 * @can_sleep: non-zero if context allows sleeping 481 * 482 * Use the method defined in the ATA specification to 483 * make either device 0, or device 1, active on the 484 * ATA channel. 485 * 486 * This is a high-level version of ata_sff_dev_select(), which 487 * additionally provides the services of inserting the proper 488 * pauses and status polling, where needed. 489 * 490 * LOCKING: 491 * caller. 492 */ 493 void ata_dev_select(struct ata_port *ap, unsigned int device, 494 unsigned int wait, unsigned int can_sleep) 495 { 496 if (ata_msg_probe(ap)) 497 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 498 "device %u, wait %u\n", device, wait); 499 500 if (wait) 501 ata_wait_idle(ap); 502 503 ap->ops->sff_dev_select(ap, device); 504 505 if (wait) { 506 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 507 msleep(150); 508 ata_wait_idle(ap); 509 } 510 } 511 512 /** 513 * ata_sff_irq_on - Enable interrupts on a port. 514 * @ap: Port on which interrupts are enabled. 515 * 516 * Enable interrupts on a legacy IDE device using MMIO or PIO, 517 * wait for idle, clear any pending interrupts. 518 * 519 * LOCKING: 520 * Inherited from caller. 521 */ 522 u8 ata_sff_irq_on(struct ata_port *ap) 523 { 524 struct ata_ioports *ioaddr = &ap->ioaddr; 525 u8 tmp; 526 527 ap->ctl &= ~ATA_NIEN; 528 ap->last_ctl = ap->ctl; 529 530 if (ioaddr->ctl_addr) 531 iowrite8(ap->ctl, ioaddr->ctl_addr); 532 tmp = ata_wait_idle(ap); 533 534 ap->ops->sff_irq_clear(ap); 535 536 return tmp; 537 } 538 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 539 540 /** 541 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt. 542 * @ap: Port associated with this ATA transaction. 543 * 544 * Clear interrupt and error flags in DMA status register. 545 * 546 * May be used as the irq_clear() entry in ata_port_operations. 547 * 548 * LOCKING: 549 * spin_lock_irqsave(host lock) 550 */ 551 void ata_sff_irq_clear(struct ata_port *ap) 552 { 553 void __iomem *mmio = ap->ioaddr.bmdma_addr; 554 555 if (!mmio) 556 return; 557 558 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 559 } 560 EXPORT_SYMBOL_GPL(ata_sff_irq_clear); 561 562 /** 563 * ata_sff_tf_load - send taskfile registers to host controller 564 * @ap: Port to which output is sent 565 * @tf: ATA taskfile register set 566 * 567 * Outputs ATA taskfile to standard ATA host controller. 568 * 569 * LOCKING: 570 * Inherited from caller. 571 */ 572 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 573 { 574 struct ata_ioports *ioaddr = &ap->ioaddr; 575 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 576 577 if (tf->ctl != ap->last_ctl) { 578 if (ioaddr->ctl_addr) 579 iowrite8(tf->ctl, ioaddr->ctl_addr); 580 ap->last_ctl = tf->ctl; 581 ata_wait_idle(ap); 582 } 583 584 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 585 WARN_ON_ONCE(!ioaddr->ctl_addr); 586 iowrite8(tf->hob_feature, ioaddr->feature_addr); 587 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 588 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 589 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 590 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 591 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 592 tf->hob_feature, 593 tf->hob_nsect, 594 tf->hob_lbal, 595 tf->hob_lbam, 596 tf->hob_lbah); 597 } 598 599 if (is_addr) { 600 iowrite8(tf->feature, ioaddr->feature_addr); 601 iowrite8(tf->nsect, ioaddr->nsect_addr); 602 iowrite8(tf->lbal, ioaddr->lbal_addr); 603 iowrite8(tf->lbam, ioaddr->lbam_addr); 604 iowrite8(tf->lbah, ioaddr->lbah_addr); 605 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 606 tf->feature, 607 tf->nsect, 608 tf->lbal, 609 tf->lbam, 610 tf->lbah); 611 } 612 613 if (tf->flags & ATA_TFLAG_DEVICE) { 614 iowrite8(tf->device, ioaddr->device_addr); 615 VPRINTK("device 0x%X\n", tf->device); 616 } 617 618 ata_wait_idle(ap); 619 } 620 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 621 622 /** 623 * ata_sff_tf_read - input device's ATA taskfile shadow registers 624 * @ap: Port from which input is read 625 * @tf: ATA taskfile register set for storing input 626 * 627 * Reads ATA taskfile registers for currently-selected device 628 * into @tf. Assumes the device has a fully SFF compliant task file 629 * layout and behaviour. If you device does not (eg has a different 630 * status method) then you will need to provide a replacement tf_read 631 * 632 * LOCKING: 633 * Inherited from caller. 634 */ 635 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 636 { 637 struct ata_ioports *ioaddr = &ap->ioaddr; 638 639 tf->command = ata_sff_check_status(ap); 640 tf->feature = ioread8(ioaddr->error_addr); 641 tf->nsect = ioread8(ioaddr->nsect_addr); 642 tf->lbal = ioread8(ioaddr->lbal_addr); 643 tf->lbam = ioread8(ioaddr->lbam_addr); 644 tf->lbah = ioread8(ioaddr->lbah_addr); 645 tf->device = ioread8(ioaddr->device_addr); 646 647 if (tf->flags & ATA_TFLAG_LBA48) { 648 if (likely(ioaddr->ctl_addr)) { 649 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 650 tf->hob_feature = ioread8(ioaddr->error_addr); 651 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 652 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 653 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 654 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 655 iowrite8(tf->ctl, ioaddr->ctl_addr); 656 ap->last_ctl = tf->ctl; 657 } else 658 WARN_ON_ONCE(1); 659 } 660 } 661 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 662 663 /** 664 * ata_sff_exec_command - issue ATA command to host controller 665 * @ap: port to which command is being issued 666 * @tf: ATA taskfile register set 667 * 668 * Issues ATA command, with proper synchronization with interrupt 669 * handler / other threads. 670 * 671 * LOCKING: 672 * spin_lock_irqsave(host lock) 673 */ 674 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 675 { 676 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 677 678 iowrite8(tf->command, ap->ioaddr.command_addr); 679 ata_sff_pause(ap); 680 } 681 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 682 683 /** 684 * ata_tf_to_host - issue ATA taskfile to host controller 685 * @ap: port to which command is being issued 686 * @tf: ATA taskfile register set 687 * 688 * Issues ATA taskfile register set to ATA host controller, 689 * with proper synchronization with interrupt handler and 690 * other threads. 691 * 692 * LOCKING: 693 * spin_lock_irqsave(host lock) 694 */ 695 static inline void ata_tf_to_host(struct ata_port *ap, 696 const struct ata_taskfile *tf) 697 { 698 ap->ops->sff_tf_load(ap, tf); 699 ap->ops->sff_exec_command(ap, tf); 700 } 701 702 /** 703 * ata_sff_data_xfer - Transfer data by PIO 704 * @dev: device to target 705 * @buf: data buffer 706 * @buflen: buffer length 707 * @rw: read/write 708 * 709 * Transfer data from/to the device data register by PIO. 710 * 711 * LOCKING: 712 * Inherited from caller. 713 * 714 * RETURNS: 715 * Bytes consumed. 716 */ 717 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 718 unsigned int buflen, int rw) 719 { 720 struct ata_port *ap = dev->link->ap; 721 void __iomem *data_addr = ap->ioaddr.data_addr; 722 unsigned int words = buflen >> 1; 723 724 /* Transfer multiple of 2 bytes */ 725 if (rw == READ) 726 ioread16_rep(data_addr, buf, words); 727 else 728 iowrite16_rep(data_addr, buf, words); 729 730 /* Transfer trailing byte, if any. */ 731 if (unlikely(buflen & 0x01)) { 732 unsigned char pad[2]; 733 734 /* Point buf to the tail of buffer */ 735 buf += buflen - 1; 736 737 /* 738 * Use io*16_rep() accessors here as well to avoid pointlessly 739 * swapping bytes to and fro on the big endian machines... 740 */ 741 if (rw == READ) { 742 ioread16_rep(data_addr, pad, 1); 743 *buf = pad[0]; 744 } else { 745 pad[0] = *buf; 746 iowrite16_rep(data_addr, pad, 1); 747 } 748 words++; 749 } 750 751 return words << 1; 752 } 753 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 754 755 /** 756 * ata_sff_data_xfer32 - Transfer data by PIO 757 * @dev: device to target 758 * @buf: data buffer 759 * @buflen: buffer length 760 * @rw: read/write 761 * 762 * Transfer data from/to the device data register by PIO using 32bit 763 * I/O operations. 764 * 765 * LOCKING: 766 * Inherited from caller. 767 * 768 * RETURNS: 769 * Bytes consumed. 770 */ 771 772 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, 773 unsigned int buflen, int rw) 774 { 775 struct ata_port *ap = dev->link->ap; 776 void __iomem *data_addr = ap->ioaddr.data_addr; 777 unsigned int words = buflen >> 2; 778 int slop = buflen & 3; 779 780 if (!(ap->pflags & ATA_PFLAG_PIO32)) 781 return ata_sff_data_xfer(dev, buf, buflen, rw); 782 783 /* Transfer multiple of 4 bytes */ 784 if (rw == READ) 785 ioread32_rep(data_addr, buf, words); 786 else 787 iowrite32_rep(data_addr, buf, words); 788 789 /* Transfer trailing bytes, if any */ 790 if (unlikely(slop)) { 791 unsigned char pad[4]; 792 793 /* Point buf to the tail of buffer */ 794 buf += buflen - slop; 795 796 /* 797 * Use io*_rep() accessors here as well to avoid pointlessly 798 * swapping bytes to and fro on the big endian machines... 799 */ 800 if (rw == READ) { 801 if (slop < 3) 802 ioread16_rep(data_addr, pad, 1); 803 else 804 ioread32_rep(data_addr, pad, 1); 805 memcpy(buf, pad, slop); 806 } else { 807 memcpy(pad, buf, slop); 808 if (slop < 3) 809 iowrite16_rep(data_addr, pad, 1); 810 else 811 iowrite32_rep(data_addr, pad, 1); 812 } 813 } 814 return (buflen + 1) & ~1; 815 } 816 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 817 818 /** 819 * ata_sff_data_xfer_noirq - Transfer data by PIO 820 * @dev: device to target 821 * @buf: data buffer 822 * @buflen: buffer length 823 * @rw: read/write 824 * 825 * Transfer data from/to the device data register by PIO. Do the 826 * transfer with interrupts disabled. 827 * 828 * LOCKING: 829 * Inherited from caller. 830 * 831 * RETURNS: 832 * Bytes consumed. 833 */ 834 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 835 unsigned int buflen, int rw) 836 { 837 unsigned long flags; 838 unsigned int consumed; 839 840 local_irq_save(flags); 841 consumed = ata_sff_data_xfer(dev, buf, buflen, rw); 842 local_irq_restore(flags); 843 844 return consumed; 845 } 846 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 847 848 /** 849 * ata_pio_sector - Transfer a sector of data. 850 * @qc: Command on going 851 * 852 * Transfer qc->sect_size bytes of data from/to the ATA device. 853 * 854 * LOCKING: 855 * Inherited from caller. 856 */ 857 static void ata_pio_sector(struct ata_queued_cmd *qc) 858 { 859 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 860 struct ata_port *ap = qc->ap; 861 struct page *page; 862 unsigned int offset; 863 unsigned char *buf; 864 865 if (qc->curbytes == qc->nbytes - qc->sect_size) 866 ap->hsm_task_state = HSM_ST_LAST; 867 868 page = sg_page(qc->cursg); 869 offset = qc->cursg->offset + qc->cursg_ofs; 870 871 /* get the current page and offset */ 872 page = nth_page(page, (offset >> PAGE_SHIFT)); 873 offset %= PAGE_SIZE; 874 875 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 876 877 if (PageHighMem(page)) { 878 unsigned long flags; 879 880 /* FIXME: use a bounce buffer */ 881 local_irq_save(flags); 882 buf = kmap_atomic(page, KM_IRQ0); 883 884 /* do the actual data transfer */ 885 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 886 do_write); 887 888 kunmap_atomic(buf, KM_IRQ0); 889 local_irq_restore(flags); 890 } else { 891 buf = page_address(page); 892 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 893 do_write); 894 } 895 896 qc->curbytes += qc->sect_size; 897 qc->cursg_ofs += qc->sect_size; 898 899 if (qc->cursg_ofs == qc->cursg->length) { 900 qc->cursg = sg_next(qc->cursg); 901 qc->cursg_ofs = 0; 902 } 903 } 904 905 /** 906 * ata_pio_sectors - Transfer one or many sectors. 907 * @qc: Command on going 908 * 909 * Transfer one or many sectors of data from/to the 910 * ATA device for the DRQ request. 911 * 912 * LOCKING: 913 * Inherited from caller. 914 */ 915 static void ata_pio_sectors(struct ata_queued_cmd *qc) 916 { 917 if (is_multi_taskfile(&qc->tf)) { 918 /* READ/WRITE MULTIPLE */ 919 unsigned int nsect; 920 921 WARN_ON_ONCE(qc->dev->multi_count == 0); 922 923 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 924 qc->dev->multi_count); 925 while (nsect--) 926 ata_pio_sector(qc); 927 } else 928 ata_pio_sector(qc); 929 930 ata_sff_sync(qc->ap); /* flush */ 931 } 932 933 /** 934 * atapi_send_cdb - Write CDB bytes to hardware 935 * @ap: Port to which ATAPI device is attached. 936 * @qc: Taskfile currently active 937 * 938 * When device has indicated its readiness to accept 939 * a CDB, this function is called. Send the CDB. 940 * 941 * LOCKING: 942 * caller. 943 */ 944 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 945 { 946 /* send SCSI cdb */ 947 DPRINTK("send cdb\n"); 948 WARN_ON_ONCE(qc->dev->cdb_len < 12); 949 950 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 951 ata_sff_sync(ap); 952 /* FIXME: If the CDB is for DMA do we need to do the transition delay 953 or is bmdma_start guaranteed to do it ? */ 954 switch (qc->tf.protocol) { 955 case ATAPI_PROT_PIO: 956 ap->hsm_task_state = HSM_ST; 957 break; 958 case ATAPI_PROT_NODATA: 959 ap->hsm_task_state = HSM_ST_LAST; 960 break; 961 case ATAPI_PROT_DMA: 962 ap->hsm_task_state = HSM_ST_LAST; 963 /* initiate bmdma */ 964 ap->ops->bmdma_start(qc); 965 break; 966 } 967 } 968 969 /** 970 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 971 * @qc: Command on going 972 * @bytes: number of bytes 973 * 974 * Transfer Transfer data from/to the ATAPI device. 975 * 976 * LOCKING: 977 * Inherited from caller. 978 * 979 */ 980 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 981 { 982 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 983 struct ata_port *ap = qc->ap; 984 struct ata_device *dev = qc->dev; 985 struct ata_eh_info *ehi = &dev->link->eh_info; 986 struct scatterlist *sg; 987 struct page *page; 988 unsigned char *buf; 989 unsigned int offset, count, consumed; 990 991 next_sg: 992 sg = qc->cursg; 993 if (unlikely(!sg)) { 994 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 995 "buf=%u cur=%u bytes=%u", 996 qc->nbytes, qc->curbytes, bytes); 997 return -1; 998 } 999 1000 page = sg_page(sg); 1001 offset = sg->offset + qc->cursg_ofs; 1002 1003 /* get the current page and offset */ 1004 page = nth_page(page, (offset >> PAGE_SHIFT)); 1005 offset %= PAGE_SIZE; 1006 1007 /* don't overrun current sg */ 1008 count = min(sg->length - qc->cursg_ofs, bytes); 1009 1010 /* don't cross page boundaries */ 1011 count = min(count, (unsigned int)PAGE_SIZE - offset); 1012 1013 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 1014 1015 if (PageHighMem(page)) { 1016 unsigned long flags; 1017 1018 /* FIXME: use bounce buffer */ 1019 local_irq_save(flags); 1020 buf = kmap_atomic(page, KM_IRQ0); 1021 1022 /* do the actual data transfer */ 1023 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 1024 count, rw); 1025 1026 kunmap_atomic(buf, KM_IRQ0); 1027 local_irq_restore(flags); 1028 } else { 1029 buf = page_address(page); 1030 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 1031 count, rw); 1032 } 1033 1034 bytes -= min(bytes, consumed); 1035 qc->curbytes += count; 1036 qc->cursg_ofs += count; 1037 1038 if (qc->cursg_ofs == sg->length) { 1039 qc->cursg = sg_next(qc->cursg); 1040 qc->cursg_ofs = 0; 1041 } 1042 1043 /* 1044 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 1045 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 1046 * check correctly as it doesn't know if it is the last request being 1047 * made. Somebody should implement a proper sanity check. 1048 */ 1049 if (bytes) 1050 goto next_sg; 1051 return 0; 1052 } 1053 1054 /** 1055 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 1056 * @qc: Command on going 1057 * 1058 * Transfer Transfer data from/to the ATAPI device. 1059 * 1060 * LOCKING: 1061 * Inherited from caller. 1062 */ 1063 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 1064 { 1065 struct ata_port *ap = qc->ap; 1066 struct ata_device *dev = qc->dev; 1067 struct ata_eh_info *ehi = &dev->link->eh_info; 1068 unsigned int ireason, bc_lo, bc_hi, bytes; 1069 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 1070 1071 /* Abuse qc->result_tf for temp storage of intermediate TF 1072 * here to save some kernel stack usage. 1073 * For normal completion, qc->result_tf is not relevant. For 1074 * error, qc->result_tf is later overwritten by ata_qc_complete(). 1075 * So, the correctness of qc->result_tf is not affected. 1076 */ 1077 ap->ops->sff_tf_read(ap, &qc->result_tf); 1078 ireason = qc->result_tf.nsect; 1079 bc_lo = qc->result_tf.lbam; 1080 bc_hi = qc->result_tf.lbah; 1081 bytes = (bc_hi << 8) | bc_lo; 1082 1083 /* shall be cleared to zero, indicating xfer of data */ 1084 if (unlikely(ireason & (1 << 0))) 1085 goto atapi_check; 1086 1087 /* make sure transfer direction matches expected */ 1088 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 1089 if (unlikely(do_write != i_write)) 1090 goto atapi_check; 1091 1092 if (unlikely(!bytes)) 1093 goto atapi_check; 1094 1095 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 1096 1097 if (unlikely(__atapi_pio_bytes(qc, bytes))) 1098 goto err_out; 1099 ata_sff_sync(ap); /* flush */ 1100 1101 return; 1102 1103 atapi_check: 1104 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 1105 ireason, bytes); 1106 err_out: 1107 qc->err_mask |= AC_ERR_HSM; 1108 ap->hsm_task_state = HSM_ST_ERR; 1109 } 1110 1111 /** 1112 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 1113 * @ap: the target ata_port 1114 * @qc: qc on going 1115 * 1116 * RETURNS: 1117 * 1 if ok in workqueue, 0 otherwise. 1118 */ 1119 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 1120 struct ata_queued_cmd *qc) 1121 { 1122 if (qc->tf.flags & ATA_TFLAG_POLLING) 1123 return 1; 1124 1125 if (ap->hsm_task_state == HSM_ST_FIRST) { 1126 if (qc->tf.protocol == ATA_PROT_PIO && 1127 (qc->tf.flags & ATA_TFLAG_WRITE)) 1128 return 1; 1129 1130 if (ata_is_atapi(qc->tf.protocol) && 1131 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1132 return 1; 1133 } 1134 1135 return 0; 1136 } 1137 1138 /** 1139 * ata_hsm_qc_complete - finish a qc running on standard HSM 1140 * @qc: Command to complete 1141 * @in_wq: 1 if called from workqueue, 0 otherwise 1142 * 1143 * Finish @qc which is running on standard HSM. 1144 * 1145 * LOCKING: 1146 * If @in_wq is zero, spin_lock_irqsave(host lock). 1147 * Otherwise, none on entry and grabs host lock. 1148 */ 1149 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 1150 { 1151 struct ata_port *ap = qc->ap; 1152 unsigned long flags; 1153 1154 if (ap->ops->error_handler) { 1155 if (in_wq) { 1156 spin_lock_irqsave(ap->lock, flags); 1157 1158 /* EH might have kicked in while host lock is 1159 * released. 1160 */ 1161 qc = ata_qc_from_tag(ap, qc->tag); 1162 if (qc) { 1163 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1164 ap->ops->sff_irq_on(ap); 1165 ata_qc_complete(qc); 1166 } else 1167 ata_port_freeze(ap); 1168 } 1169 1170 spin_unlock_irqrestore(ap->lock, flags); 1171 } else { 1172 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1173 ata_qc_complete(qc); 1174 else 1175 ata_port_freeze(ap); 1176 } 1177 } else { 1178 if (in_wq) { 1179 spin_lock_irqsave(ap->lock, flags); 1180 ap->ops->sff_irq_on(ap); 1181 ata_qc_complete(qc); 1182 spin_unlock_irqrestore(ap->lock, flags); 1183 } else 1184 ata_qc_complete(qc); 1185 } 1186 } 1187 1188 /** 1189 * ata_sff_hsm_move - move the HSM to the next state. 1190 * @ap: the target ata_port 1191 * @qc: qc on going 1192 * @status: current device status 1193 * @in_wq: 1 if called from workqueue, 0 otherwise 1194 * 1195 * RETURNS: 1196 * 1 when poll next status needed, 0 otherwise. 1197 */ 1198 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1199 u8 status, int in_wq) 1200 { 1201 struct ata_eh_info *ehi = &ap->link.eh_info; 1202 unsigned long flags = 0; 1203 int poll_next; 1204 1205 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1206 1207 /* Make sure ata_sff_qc_issue() does not throw things 1208 * like DMA polling into the workqueue. Notice that 1209 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1210 */ 1211 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1212 1213 fsm_start: 1214 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1215 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1216 1217 switch (ap->hsm_task_state) { 1218 case HSM_ST_FIRST: 1219 /* Send first data block or PACKET CDB */ 1220 1221 /* If polling, we will stay in the work queue after 1222 * sending the data. Otherwise, interrupt handler 1223 * takes over after sending the data. 1224 */ 1225 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1226 1227 /* check device status */ 1228 if (unlikely((status & ATA_DRQ) == 0)) { 1229 /* handle BSY=0, DRQ=0 as error */ 1230 if (likely(status & (ATA_ERR | ATA_DF))) 1231 /* device stops HSM for abort/error */ 1232 qc->err_mask |= AC_ERR_DEV; 1233 else { 1234 /* HSM violation. Let EH handle this */ 1235 ata_ehi_push_desc(ehi, 1236 "ST_FIRST: !(DRQ|ERR|DF)"); 1237 qc->err_mask |= AC_ERR_HSM; 1238 } 1239 1240 ap->hsm_task_state = HSM_ST_ERR; 1241 goto fsm_start; 1242 } 1243 1244 /* Device should not ask for data transfer (DRQ=1) 1245 * when it finds something wrong. 1246 * We ignore DRQ here and stop the HSM by 1247 * changing hsm_task_state to HSM_ST_ERR and 1248 * let the EH abort the command or reset the device. 1249 */ 1250 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1251 /* Some ATAPI tape drives forget to clear the ERR bit 1252 * when doing the next command (mostly request sense). 1253 * We ignore ERR here to workaround and proceed sending 1254 * the CDB. 1255 */ 1256 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1257 ata_ehi_push_desc(ehi, "ST_FIRST: " 1258 "DRQ=1 with device error, " 1259 "dev_stat 0x%X", status); 1260 qc->err_mask |= AC_ERR_HSM; 1261 ap->hsm_task_state = HSM_ST_ERR; 1262 goto fsm_start; 1263 } 1264 } 1265 1266 /* Send the CDB (atapi) or the first data block (ata pio out). 1267 * During the state transition, interrupt handler shouldn't 1268 * be invoked before the data transfer is complete and 1269 * hsm_task_state is changed. Hence, the following locking. 1270 */ 1271 if (in_wq) 1272 spin_lock_irqsave(ap->lock, flags); 1273 1274 if (qc->tf.protocol == ATA_PROT_PIO) { 1275 /* PIO data out protocol. 1276 * send first data block. 1277 */ 1278 1279 /* ata_pio_sectors() might change the state 1280 * to HSM_ST_LAST. so, the state is changed here 1281 * before ata_pio_sectors(). 1282 */ 1283 ap->hsm_task_state = HSM_ST; 1284 ata_pio_sectors(qc); 1285 } else 1286 /* send CDB */ 1287 atapi_send_cdb(ap, qc); 1288 1289 if (in_wq) 1290 spin_unlock_irqrestore(ap->lock, flags); 1291 1292 /* if polling, ata_pio_task() handles the rest. 1293 * otherwise, interrupt handler takes over from here. 1294 */ 1295 break; 1296 1297 case HSM_ST: 1298 /* complete command or read/write the data register */ 1299 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1300 /* ATAPI PIO protocol */ 1301 if ((status & ATA_DRQ) == 0) { 1302 /* No more data to transfer or device error. 1303 * Device error will be tagged in HSM_ST_LAST. 1304 */ 1305 ap->hsm_task_state = HSM_ST_LAST; 1306 goto fsm_start; 1307 } 1308 1309 /* Device should not ask for data transfer (DRQ=1) 1310 * when it finds something wrong. 1311 * We ignore DRQ here and stop the HSM by 1312 * changing hsm_task_state to HSM_ST_ERR and 1313 * let the EH abort the command or reset the device. 1314 */ 1315 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1316 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1317 "DRQ=1 with device error, " 1318 "dev_stat 0x%X", status); 1319 qc->err_mask |= AC_ERR_HSM; 1320 ap->hsm_task_state = HSM_ST_ERR; 1321 goto fsm_start; 1322 } 1323 1324 atapi_pio_bytes(qc); 1325 1326 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1327 /* bad ireason reported by device */ 1328 goto fsm_start; 1329 1330 } else { 1331 /* ATA PIO protocol */ 1332 if (unlikely((status & ATA_DRQ) == 0)) { 1333 /* handle BSY=0, DRQ=0 as error */ 1334 if (likely(status & (ATA_ERR | ATA_DF))) { 1335 /* device stops HSM for abort/error */ 1336 qc->err_mask |= AC_ERR_DEV; 1337 1338 /* If diagnostic failed and this is 1339 * IDENTIFY, it's likely a phantom 1340 * device. Mark hint. 1341 */ 1342 if (qc->dev->horkage & 1343 ATA_HORKAGE_DIAGNOSTIC) 1344 qc->err_mask |= 1345 AC_ERR_NODEV_HINT; 1346 } else { 1347 /* HSM violation. Let EH handle this. 1348 * Phantom devices also trigger this 1349 * condition. Mark hint. 1350 */ 1351 ata_ehi_push_desc(ehi, "ST-ATA: " 1352 "DRQ=0 without device error, " 1353 "dev_stat 0x%X", status); 1354 qc->err_mask |= AC_ERR_HSM | 1355 AC_ERR_NODEV_HINT; 1356 } 1357 1358 ap->hsm_task_state = HSM_ST_ERR; 1359 goto fsm_start; 1360 } 1361 1362 /* For PIO reads, some devices may ask for 1363 * data transfer (DRQ=1) alone with ERR=1. 1364 * We respect DRQ here and transfer one 1365 * block of junk data before changing the 1366 * hsm_task_state to HSM_ST_ERR. 1367 * 1368 * For PIO writes, ERR=1 DRQ=1 doesn't make 1369 * sense since the data block has been 1370 * transferred to the device. 1371 */ 1372 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1373 /* data might be corrputed */ 1374 qc->err_mask |= AC_ERR_DEV; 1375 1376 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1377 ata_pio_sectors(qc); 1378 status = ata_wait_idle(ap); 1379 } 1380 1381 if (status & (ATA_BUSY | ATA_DRQ)) { 1382 ata_ehi_push_desc(ehi, "ST-ATA: " 1383 "BUSY|DRQ persists on ERR|DF, " 1384 "dev_stat 0x%X", status); 1385 qc->err_mask |= AC_ERR_HSM; 1386 } 1387 1388 /* There are oddball controllers with 1389 * status register stuck at 0x7f and 1390 * lbal/m/h at zero which makes it 1391 * pass all other presence detection 1392 * mechanisms we have. Set NODEV_HINT 1393 * for it. Kernel bz#7241. 1394 */ 1395 if (status == 0x7f) 1396 qc->err_mask |= AC_ERR_NODEV_HINT; 1397 1398 /* ata_pio_sectors() might change the 1399 * state to HSM_ST_LAST. so, the state 1400 * is changed after ata_pio_sectors(). 1401 */ 1402 ap->hsm_task_state = HSM_ST_ERR; 1403 goto fsm_start; 1404 } 1405 1406 ata_pio_sectors(qc); 1407 1408 if (ap->hsm_task_state == HSM_ST_LAST && 1409 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1410 /* all data read */ 1411 status = ata_wait_idle(ap); 1412 goto fsm_start; 1413 } 1414 } 1415 1416 poll_next = 1; 1417 break; 1418 1419 case HSM_ST_LAST: 1420 if (unlikely(!ata_ok(status))) { 1421 qc->err_mask |= __ac_err_mask(status); 1422 ap->hsm_task_state = HSM_ST_ERR; 1423 goto fsm_start; 1424 } 1425 1426 /* no more data to transfer */ 1427 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1428 ap->print_id, qc->dev->devno, status); 1429 1430 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1431 1432 ap->hsm_task_state = HSM_ST_IDLE; 1433 1434 /* complete taskfile transaction */ 1435 ata_hsm_qc_complete(qc, in_wq); 1436 1437 poll_next = 0; 1438 break; 1439 1440 case HSM_ST_ERR: 1441 ap->hsm_task_state = HSM_ST_IDLE; 1442 1443 /* complete taskfile transaction */ 1444 ata_hsm_qc_complete(qc, in_wq); 1445 1446 poll_next = 0; 1447 break; 1448 default: 1449 poll_next = 0; 1450 BUG(); 1451 } 1452 1453 return poll_next; 1454 } 1455 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1456 1457 void ata_pio_task(struct work_struct *work) 1458 { 1459 struct ata_port *ap = 1460 container_of(work, struct ata_port, port_task.work); 1461 struct ata_queued_cmd *qc = ap->port_task_data; 1462 u8 status; 1463 int poll_next; 1464 1465 fsm_start: 1466 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1467 1468 /* 1469 * This is purely heuristic. This is a fast path. 1470 * Sometimes when we enter, BSY will be cleared in 1471 * a chk-status or two. If not, the drive is probably seeking 1472 * or something. Snooze for a couple msecs, then 1473 * chk-status again. If still busy, queue delayed work. 1474 */ 1475 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1476 if (status & ATA_BUSY) { 1477 msleep(2); 1478 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1479 if (status & ATA_BUSY) { 1480 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE); 1481 return; 1482 } 1483 } 1484 1485 /* move the HSM */ 1486 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1487 1488 /* another command or interrupt handler 1489 * may be running at this point. 1490 */ 1491 if (poll_next) 1492 goto fsm_start; 1493 } 1494 1495 /** 1496 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner 1497 * @qc: command to issue to device 1498 * 1499 * Using various libata functions and hooks, this function 1500 * starts an ATA command. ATA commands are grouped into 1501 * classes called "protocols", and issuing each type of protocol 1502 * is slightly different. 1503 * 1504 * May be used as the qc_issue() entry in ata_port_operations. 1505 * 1506 * LOCKING: 1507 * spin_lock_irqsave(host lock) 1508 * 1509 * RETURNS: 1510 * Zero on success, AC_ERR_* mask on failure 1511 */ 1512 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1513 { 1514 struct ata_port *ap = qc->ap; 1515 1516 /* Use polling pio if the LLD doesn't handle 1517 * interrupt driven pio and atapi CDB interrupt. 1518 */ 1519 if (ap->flags & ATA_FLAG_PIO_POLLING) { 1520 switch (qc->tf.protocol) { 1521 case ATA_PROT_PIO: 1522 case ATA_PROT_NODATA: 1523 case ATAPI_PROT_PIO: 1524 case ATAPI_PROT_NODATA: 1525 qc->tf.flags |= ATA_TFLAG_POLLING; 1526 break; 1527 case ATAPI_PROT_DMA: 1528 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 1529 /* see ata_dma_blacklisted() */ 1530 BUG(); 1531 break; 1532 default: 1533 break; 1534 } 1535 } 1536 1537 /* select the device */ 1538 ata_dev_select(ap, qc->dev->devno, 1, 0); 1539 1540 /* start the command */ 1541 switch (qc->tf.protocol) { 1542 case ATA_PROT_NODATA: 1543 if (qc->tf.flags & ATA_TFLAG_POLLING) 1544 ata_qc_set_polling(qc); 1545 1546 ata_tf_to_host(ap, &qc->tf); 1547 ap->hsm_task_state = HSM_ST_LAST; 1548 1549 if (qc->tf.flags & ATA_TFLAG_POLLING) 1550 ata_pio_queue_task(ap, qc, 0); 1551 1552 break; 1553 1554 case ATA_PROT_DMA: 1555 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 1556 1557 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1558 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1559 ap->ops->bmdma_start(qc); /* initiate bmdma */ 1560 ap->hsm_task_state = HSM_ST_LAST; 1561 break; 1562 1563 case ATA_PROT_PIO: 1564 if (qc->tf.flags & ATA_TFLAG_POLLING) 1565 ata_qc_set_polling(qc); 1566 1567 ata_tf_to_host(ap, &qc->tf); 1568 1569 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1570 /* PIO data out protocol */ 1571 ap->hsm_task_state = HSM_ST_FIRST; 1572 ata_pio_queue_task(ap, qc, 0); 1573 1574 /* always send first data block using 1575 * the ata_pio_task() codepath. 1576 */ 1577 } else { 1578 /* PIO data in protocol */ 1579 ap->hsm_task_state = HSM_ST; 1580 1581 if (qc->tf.flags & ATA_TFLAG_POLLING) 1582 ata_pio_queue_task(ap, qc, 0); 1583 1584 /* if polling, ata_pio_task() handles the rest. 1585 * otherwise, interrupt handler takes over from here. 1586 */ 1587 } 1588 1589 break; 1590 1591 case ATAPI_PROT_PIO: 1592 case ATAPI_PROT_NODATA: 1593 if (qc->tf.flags & ATA_TFLAG_POLLING) 1594 ata_qc_set_polling(qc); 1595 1596 ata_tf_to_host(ap, &qc->tf); 1597 1598 ap->hsm_task_state = HSM_ST_FIRST; 1599 1600 /* send cdb by polling if no cdb interrupt */ 1601 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1602 (qc->tf.flags & ATA_TFLAG_POLLING)) 1603 ata_pio_queue_task(ap, qc, 0); 1604 break; 1605 1606 case ATAPI_PROT_DMA: 1607 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 1608 1609 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1610 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1611 ap->hsm_task_state = HSM_ST_FIRST; 1612 1613 /* send cdb by polling if no cdb interrupt */ 1614 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1615 ata_pio_queue_task(ap, qc, 0); 1616 break; 1617 1618 default: 1619 WARN_ON_ONCE(1); 1620 return AC_ERR_SYSTEM; 1621 } 1622 1623 return 0; 1624 } 1625 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1626 1627 /** 1628 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1629 * @qc: qc to fill result TF for 1630 * 1631 * @qc is finished and result TF needs to be filled. Fill it 1632 * using ->sff_tf_read. 1633 * 1634 * LOCKING: 1635 * spin_lock_irqsave(host lock) 1636 * 1637 * RETURNS: 1638 * true indicating that result TF is successfully filled. 1639 */ 1640 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1641 { 1642 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1643 return true; 1644 } 1645 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1646 1647 /** 1648 * ata_sff_host_intr - Handle host interrupt for given (port, task) 1649 * @ap: Port on which interrupt arrived (possibly...) 1650 * @qc: Taskfile currently active in engine 1651 * 1652 * Handle host interrupt for given queued command. Currently, 1653 * only DMA interrupts are handled. All other commands are 1654 * handled via polling with interrupts disabled (nIEN bit). 1655 * 1656 * LOCKING: 1657 * spin_lock_irqsave(host lock) 1658 * 1659 * RETURNS: 1660 * One if interrupt was handled, zero if not (shared irq). 1661 */ 1662 unsigned int ata_sff_host_intr(struct ata_port *ap, 1663 struct ata_queued_cmd *qc) 1664 { 1665 struct ata_eh_info *ehi = &ap->link.eh_info; 1666 u8 status, host_stat = 0; 1667 1668 VPRINTK("ata%u: protocol %d task_state %d\n", 1669 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1670 1671 /* Check whether we are expecting interrupt in this state */ 1672 switch (ap->hsm_task_state) { 1673 case HSM_ST_FIRST: 1674 /* Some pre-ATAPI-4 devices assert INTRQ 1675 * at this state when ready to receive CDB. 1676 */ 1677 1678 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1679 * The flag was turned on only for atapi devices. No 1680 * need to check ata_is_atapi(qc->tf.protocol) again. 1681 */ 1682 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1683 goto idle_irq; 1684 break; 1685 case HSM_ST_LAST: 1686 if (qc->tf.protocol == ATA_PROT_DMA || 1687 qc->tf.protocol == ATAPI_PROT_DMA) { 1688 /* check status of DMA engine */ 1689 host_stat = ap->ops->bmdma_status(ap); 1690 VPRINTK("ata%u: host_stat 0x%X\n", 1691 ap->print_id, host_stat); 1692 1693 /* if it's not our irq... */ 1694 if (!(host_stat & ATA_DMA_INTR)) 1695 goto idle_irq; 1696 1697 /* before we do anything else, clear DMA-Start bit */ 1698 ap->ops->bmdma_stop(qc); 1699 1700 if (unlikely(host_stat & ATA_DMA_ERR)) { 1701 /* error when transfering data to/from memory */ 1702 qc->err_mask |= AC_ERR_HOST_BUS; 1703 ap->hsm_task_state = HSM_ST_ERR; 1704 } 1705 } 1706 break; 1707 case HSM_ST: 1708 break; 1709 default: 1710 goto idle_irq; 1711 } 1712 1713 1714 /* check main status, clearing INTRQ if needed */ 1715 status = ata_sff_irq_status(ap); 1716 if (status & ATA_BUSY) 1717 goto idle_irq; 1718 1719 /* ack bmdma irq events */ 1720 ap->ops->sff_irq_clear(ap); 1721 1722 ata_sff_hsm_move(ap, qc, status, 0); 1723 1724 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 1725 qc->tf.protocol == ATAPI_PROT_DMA)) 1726 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 1727 1728 return 1; /* irq handled */ 1729 1730 idle_irq: 1731 ap->stats.idle_irq++; 1732 1733 #ifdef ATA_IRQ_TRAP 1734 if ((ap->stats.idle_irq % 1000) == 0) { 1735 ap->ops->sff_check_status(ap); 1736 ap->ops->sff_irq_clear(ap); 1737 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 1738 return 1; 1739 } 1740 #endif 1741 return 0; /* irq not handled */ 1742 } 1743 EXPORT_SYMBOL_GPL(ata_sff_host_intr); 1744 1745 /** 1746 * ata_sff_interrupt - Default ATA host interrupt handler 1747 * @irq: irq line (unused) 1748 * @dev_instance: pointer to our ata_host information structure 1749 * 1750 * Default interrupt handler for PCI IDE devices. Calls 1751 * ata_sff_host_intr() for each port that is not disabled. 1752 * 1753 * LOCKING: 1754 * Obtains host lock during operation. 1755 * 1756 * RETURNS: 1757 * IRQ_NONE or IRQ_HANDLED. 1758 */ 1759 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1760 { 1761 struct ata_host *host = dev_instance; 1762 unsigned int i; 1763 unsigned int handled = 0; 1764 unsigned long flags; 1765 1766 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1767 spin_lock_irqsave(&host->lock, flags); 1768 1769 for (i = 0; i < host->n_ports; i++) { 1770 struct ata_port *ap; 1771 1772 ap = host->ports[i]; 1773 if (ap && 1774 !(ap->flags & ATA_FLAG_DISABLED)) { 1775 struct ata_queued_cmd *qc; 1776 1777 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1778 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 1779 (qc->flags & ATA_QCFLAG_ACTIVE)) 1780 handled |= ata_sff_host_intr(ap, qc); 1781 } 1782 } 1783 1784 spin_unlock_irqrestore(&host->lock, flags); 1785 1786 return IRQ_RETVAL(handled); 1787 } 1788 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1789 1790 /** 1791 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1792 * @ap: port that appears to have timed out 1793 * 1794 * Called from the libata error handlers when the core code suspects 1795 * an interrupt has been lost. If it has complete anything we can and 1796 * then return. Interface must support altstatus for this faster 1797 * recovery to occur. 1798 * 1799 * Locking: 1800 * Caller holds host lock 1801 */ 1802 1803 void ata_sff_lost_interrupt(struct ata_port *ap) 1804 { 1805 u8 status; 1806 struct ata_queued_cmd *qc; 1807 1808 /* Only one outstanding command per SFF channel */ 1809 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1810 /* Check we have a live one.. */ 1811 if (qc == NULL || !(qc->flags & ATA_QCFLAG_ACTIVE)) 1812 return; 1813 /* We cannot lose an interrupt on a polled command */ 1814 if (qc->tf.flags & ATA_TFLAG_POLLING) 1815 return; 1816 /* See if the controller thinks it is still busy - if so the command 1817 isn't a lost IRQ but is still in progress */ 1818 status = ata_sff_altstatus(ap); 1819 if (status & ATA_BUSY) 1820 return; 1821 1822 /* There was a command running, we are no longer busy and we have 1823 no interrupt. */ 1824 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n", 1825 status); 1826 /* Run the host interrupt logic as if the interrupt had not been 1827 lost */ 1828 ata_sff_host_intr(ap, qc); 1829 } 1830 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1831 1832 /** 1833 * ata_sff_freeze - Freeze SFF controller port 1834 * @ap: port to freeze 1835 * 1836 * Freeze BMDMA controller port. 1837 * 1838 * LOCKING: 1839 * Inherited from caller. 1840 */ 1841 void ata_sff_freeze(struct ata_port *ap) 1842 { 1843 struct ata_ioports *ioaddr = &ap->ioaddr; 1844 1845 ap->ctl |= ATA_NIEN; 1846 ap->last_ctl = ap->ctl; 1847 1848 if (ioaddr->ctl_addr) 1849 iowrite8(ap->ctl, ioaddr->ctl_addr); 1850 1851 /* Under certain circumstances, some controllers raise IRQ on 1852 * ATA_NIEN manipulation. Also, many controllers fail to mask 1853 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1854 */ 1855 ap->ops->sff_check_status(ap); 1856 1857 ap->ops->sff_irq_clear(ap); 1858 } 1859 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1860 1861 /** 1862 * ata_sff_thaw - Thaw SFF controller port 1863 * @ap: port to thaw 1864 * 1865 * Thaw SFF controller port. 1866 * 1867 * LOCKING: 1868 * Inherited from caller. 1869 */ 1870 void ata_sff_thaw(struct ata_port *ap) 1871 { 1872 /* clear & re-enable interrupts */ 1873 ap->ops->sff_check_status(ap); 1874 ap->ops->sff_irq_clear(ap); 1875 ap->ops->sff_irq_on(ap); 1876 } 1877 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1878 1879 /** 1880 * ata_sff_prereset - prepare SFF link for reset 1881 * @link: SFF link to be reset 1882 * @deadline: deadline jiffies for the operation 1883 * 1884 * SFF link @link is about to be reset. Initialize it. It first 1885 * calls ata_std_prereset() and wait for !BSY if the port is 1886 * being softreset. 1887 * 1888 * LOCKING: 1889 * Kernel thread context (may sleep) 1890 * 1891 * RETURNS: 1892 * 0 on success, -errno otherwise. 1893 */ 1894 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1895 { 1896 struct ata_eh_context *ehc = &link->eh_context; 1897 int rc; 1898 1899 rc = ata_std_prereset(link, deadline); 1900 if (rc) 1901 return rc; 1902 1903 /* if we're about to do hardreset, nothing more to do */ 1904 if (ehc->i.action & ATA_EH_HARDRESET) 1905 return 0; 1906 1907 /* wait for !BSY if we don't know that no device is attached */ 1908 if (!ata_link_offline(link)) { 1909 rc = ata_sff_wait_ready(link, deadline); 1910 if (rc && rc != -ENODEV) { 1911 ata_link_printk(link, KERN_WARNING, "device not ready " 1912 "(errno=%d), forcing hardreset\n", rc); 1913 ehc->i.action |= ATA_EH_HARDRESET; 1914 } 1915 } 1916 1917 return 0; 1918 } 1919 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1920 1921 /** 1922 * ata_devchk - PATA device presence detection 1923 * @ap: ATA channel to examine 1924 * @device: Device to examine (starting at zero) 1925 * 1926 * This technique was originally described in 1927 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1928 * later found its way into the ATA/ATAPI spec. 1929 * 1930 * Write a pattern to the ATA shadow registers, 1931 * and if a device is present, it will respond by 1932 * correctly storing and echoing back the 1933 * ATA shadow register contents. 1934 * 1935 * LOCKING: 1936 * caller. 1937 */ 1938 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1939 { 1940 struct ata_ioports *ioaddr = &ap->ioaddr; 1941 u8 nsect, lbal; 1942 1943 ap->ops->sff_dev_select(ap, device); 1944 1945 iowrite8(0x55, ioaddr->nsect_addr); 1946 iowrite8(0xaa, ioaddr->lbal_addr); 1947 1948 iowrite8(0xaa, ioaddr->nsect_addr); 1949 iowrite8(0x55, ioaddr->lbal_addr); 1950 1951 iowrite8(0x55, ioaddr->nsect_addr); 1952 iowrite8(0xaa, ioaddr->lbal_addr); 1953 1954 nsect = ioread8(ioaddr->nsect_addr); 1955 lbal = ioread8(ioaddr->lbal_addr); 1956 1957 if ((nsect == 0x55) && (lbal == 0xaa)) 1958 return 1; /* we found a device */ 1959 1960 return 0; /* nothing found */ 1961 } 1962 1963 /** 1964 * ata_sff_dev_classify - Parse returned ATA device signature 1965 * @dev: ATA device to classify (starting at zero) 1966 * @present: device seems present 1967 * @r_err: Value of error register on completion 1968 * 1969 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1970 * an ATA/ATAPI-defined set of values is placed in the ATA 1971 * shadow registers, indicating the results of device detection 1972 * and diagnostics. 1973 * 1974 * Select the ATA device, and read the values from the ATA shadow 1975 * registers. Then parse according to the Error register value, 1976 * and the spec-defined values examined by ata_dev_classify(). 1977 * 1978 * LOCKING: 1979 * caller. 1980 * 1981 * RETURNS: 1982 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1983 */ 1984 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1985 u8 *r_err) 1986 { 1987 struct ata_port *ap = dev->link->ap; 1988 struct ata_taskfile tf; 1989 unsigned int class; 1990 u8 err; 1991 1992 ap->ops->sff_dev_select(ap, dev->devno); 1993 1994 memset(&tf, 0, sizeof(tf)); 1995 1996 ap->ops->sff_tf_read(ap, &tf); 1997 err = tf.feature; 1998 if (r_err) 1999 *r_err = err; 2000 2001 /* see if device passed diags: continue and warn later */ 2002 if (err == 0) 2003 /* diagnostic fail : do nothing _YET_ */ 2004 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 2005 else if (err == 1) 2006 /* do nothing */ ; 2007 else if ((dev->devno == 0) && (err == 0x81)) 2008 /* do nothing */ ; 2009 else 2010 return ATA_DEV_NONE; 2011 2012 /* determine if device is ATA or ATAPI */ 2013 class = ata_dev_classify(&tf); 2014 2015 if (class == ATA_DEV_UNKNOWN) { 2016 /* If the device failed diagnostic, it's likely to 2017 * have reported incorrect device signature too. 2018 * Assume ATA device if the device seems present but 2019 * device signature is invalid with diagnostic 2020 * failure. 2021 */ 2022 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 2023 class = ATA_DEV_ATA; 2024 else 2025 class = ATA_DEV_NONE; 2026 } else if ((class == ATA_DEV_ATA) && 2027 (ap->ops->sff_check_status(ap) == 0)) 2028 class = ATA_DEV_NONE; 2029 2030 return class; 2031 } 2032 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 2033 2034 /** 2035 * ata_sff_wait_after_reset - wait for devices to become ready after reset 2036 * @link: SFF link which is just reset 2037 * @devmask: mask of present devices 2038 * @deadline: deadline jiffies for the operation 2039 * 2040 * Wait devices attached to SFF @link to become ready after 2041 * reset. It contains preceding 150ms wait to avoid accessing TF 2042 * status register too early. 2043 * 2044 * LOCKING: 2045 * Kernel thread context (may sleep). 2046 * 2047 * RETURNS: 2048 * 0 on success, -ENODEV if some or all of devices in @devmask 2049 * don't seem to exist. -errno on other errors. 2050 */ 2051 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 2052 unsigned long deadline) 2053 { 2054 struct ata_port *ap = link->ap; 2055 struct ata_ioports *ioaddr = &ap->ioaddr; 2056 unsigned int dev0 = devmask & (1 << 0); 2057 unsigned int dev1 = devmask & (1 << 1); 2058 int rc, ret = 0; 2059 2060 msleep(ATA_WAIT_AFTER_RESET); 2061 2062 /* always check readiness of the master device */ 2063 rc = ata_sff_wait_ready(link, deadline); 2064 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 2065 * and TF status is 0xff, bail out on it too. 2066 */ 2067 if (rc) 2068 return rc; 2069 2070 /* if device 1 was found in ata_devchk, wait for register 2071 * access briefly, then wait for BSY to clear. 2072 */ 2073 if (dev1) { 2074 int i; 2075 2076 ap->ops->sff_dev_select(ap, 1); 2077 2078 /* Wait for register access. Some ATAPI devices fail 2079 * to set nsect/lbal after reset, so don't waste too 2080 * much time on it. We're gonna wait for !BSY anyway. 2081 */ 2082 for (i = 0; i < 2; i++) { 2083 u8 nsect, lbal; 2084 2085 nsect = ioread8(ioaddr->nsect_addr); 2086 lbal = ioread8(ioaddr->lbal_addr); 2087 if ((nsect == 1) && (lbal == 1)) 2088 break; 2089 msleep(50); /* give drive a breather */ 2090 } 2091 2092 rc = ata_sff_wait_ready(link, deadline); 2093 if (rc) { 2094 if (rc != -ENODEV) 2095 return rc; 2096 ret = rc; 2097 } 2098 } 2099 2100 /* is all this really necessary? */ 2101 ap->ops->sff_dev_select(ap, 0); 2102 if (dev1) 2103 ap->ops->sff_dev_select(ap, 1); 2104 if (dev0) 2105 ap->ops->sff_dev_select(ap, 0); 2106 2107 return ret; 2108 } 2109 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2110 2111 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 2112 unsigned long deadline) 2113 { 2114 struct ata_ioports *ioaddr = &ap->ioaddr; 2115 2116 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2117 2118 /* software reset. causes dev0 to be selected */ 2119 iowrite8(ap->ctl, ioaddr->ctl_addr); 2120 udelay(20); /* FIXME: flush */ 2121 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2122 udelay(20); /* FIXME: flush */ 2123 iowrite8(ap->ctl, ioaddr->ctl_addr); 2124 ap->last_ctl = ap->ctl; 2125 2126 /* wait the port to become ready */ 2127 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2128 } 2129 2130 /** 2131 * ata_sff_softreset - reset host port via ATA SRST 2132 * @link: ATA link to reset 2133 * @classes: resulting classes of attached devices 2134 * @deadline: deadline jiffies for the operation 2135 * 2136 * Reset host port using ATA SRST. 2137 * 2138 * LOCKING: 2139 * Kernel thread context (may sleep) 2140 * 2141 * RETURNS: 2142 * 0 on success, -errno otherwise. 2143 */ 2144 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2145 unsigned long deadline) 2146 { 2147 struct ata_port *ap = link->ap; 2148 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2149 unsigned int devmask = 0; 2150 int rc; 2151 u8 err; 2152 2153 DPRINTK("ENTER\n"); 2154 2155 /* determine if device 0/1 are present */ 2156 if (ata_devchk(ap, 0)) 2157 devmask |= (1 << 0); 2158 if (slave_possible && ata_devchk(ap, 1)) 2159 devmask |= (1 << 1); 2160 2161 /* select device 0 again */ 2162 ap->ops->sff_dev_select(ap, 0); 2163 2164 /* issue bus reset */ 2165 DPRINTK("about to softreset, devmask=%x\n", devmask); 2166 rc = ata_bus_softreset(ap, devmask, deadline); 2167 /* if link is occupied, -ENODEV too is an error */ 2168 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2169 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); 2170 return rc; 2171 } 2172 2173 /* determine by signature whether we have ATA or ATAPI devices */ 2174 classes[0] = ata_sff_dev_classify(&link->device[0], 2175 devmask & (1 << 0), &err); 2176 if (slave_possible && err != 0x81) 2177 classes[1] = ata_sff_dev_classify(&link->device[1], 2178 devmask & (1 << 1), &err); 2179 2180 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2181 return 0; 2182 } 2183 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2184 2185 /** 2186 * sata_sff_hardreset - reset host port via SATA phy reset 2187 * @link: link to reset 2188 * @class: resulting class of attached device 2189 * @deadline: deadline jiffies for the operation 2190 * 2191 * SATA phy-reset host port using DET bits of SControl register, 2192 * wait for !BSY and classify the attached device. 2193 * 2194 * LOCKING: 2195 * Kernel thread context (may sleep) 2196 * 2197 * RETURNS: 2198 * 0 on success, -errno otherwise. 2199 */ 2200 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2201 unsigned long deadline) 2202 { 2203 struct ata_eh_context *ehc = &link->eh_context; 2204 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2205 bool online; 2206 int rc; 2207 2208 rc = sata_link_hardreset(link, timing, deadline, &online, 2209 ata_sff_check_ready); 2210 if (online) 2211 *class = ata_sff_dev_classify(link->device, 1, NULL); 2212 2213 DPRINTK("EXIT, class=%u\n", *class); 2214 return rc; 2215 } 2216 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2217 2218 /** 2219 * ata_sff_postreset - SFF postreset callback 2220 * @link: the target SFF ata_link 2221 * @classes: classes of attached devices 2222 * 2223 * This function is invoked after a successful reset. It first 2224 * calls ata_std_postreset() and performs SFF specific postreset 2225 * processing. 2226 * 2227 * LOCKING: 2228 * Kernel thread context (may sleep) 2229 */ 2230 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2231 { 2232 struct ata_port *ap = link->ap; 2233 2234 ata_std_postreset(link, classes); 2235 2236 /* is double-select really necessary? */ 2237 if (classes[0] != ATA_DEV_NONE) 2238 ap->ops->sff_dev_select(ap, 1); 2239 if (classes[1] != ATA_DEV_NONE) 2240 ap->ops->sff_dev_select(ap, 0); 2241 2242 /* bail out if no device is present */ 2243 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2244 DPRINTK("EXIT, no device\n"); 2245 return; 2246 } 2247 2248 /* set up device control */ 2249 if (ap->ioaddr.ctl_addr) { 2250 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 2251 ap->last_ctl = ap->ctl; 2252 } 2253 } 2254 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2255 2256 /** 2257 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2258 * @qc: command 2259 * 2260 * Drain the FIFO and device of any stuck data following a command 2261 * failing to complete. In some cases this is neccessary before a 2262 * reset will recover the device. 2263 * 2264 */ 2265 2266 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2267 { 2268 int count; 2269 struct ata_port *ap; 2270 2271 /* We only need to flush incoming data when a command was running */ 2272 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2273 return; 2274 2275 ap = qc->ap; 2276 /* Drain up to 64K of data before we give up this recovery method */ 2277 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2278 && count < 32768; count++) 2279 ioread16(ap->ioaddr.data_addr); 2280 2281 /* Can become DEBUG later */ 2282 if (count) 2283 ata_port_printk(ap, KERN_DEBUG, 2284 "drained %d bytes to clear DRQ.\n", count); 2285 2286 } 2287 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2288 2289 /** 2290 * ata_sff_error_handler - Stock error handler for BMDMA controller 2291 * @ap: port to handle error for 2292 * 2293 * Stock error handler for SFF controller. It can handle both 2294 * PATA and SATA controllers. Many controllers should be able to 2295 * use this EH as-is or with some added handling before and 2296 * after. 2297 * 2298 * LOCKING: 2299 * Kernel thread context (may sleep) 2300 */ 2301 void ata_sff_error_handler(struct ata_port *ap) 2302 { 2303 ata_reset_fn_t softreset = ap->ops->softreset; 2304 ata_reset_fn_t hardreset = ap->ops->hardreset; 2305 struct ata_queued_cmd *qc; 2306 unsigned long flags; 2307 int thaw = 0; 2308 2309 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2310 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2311 qc = NULL; 2312 2313 /* reset PIO HSM and stop DMA engine */ 2314 spin_lock_irqsave(ap->lock, flags); 2315 2316 ap->hsm_task_state = HSM_ST_IDLE; 2317 2318 if (ap->ioaddr.bmdma_addr && 2319 qc && (qc->tf.protocol == ATA_PROT_DMA || 2320 qc->tf.protocol == ATAPI_PROT_DMA)) { 2321 u8 host_stat; 2322 2323 host_stat = ap->ops->bmdma_status(ap); 2324 2325 /* BMDMA controllers indicate host bus error by 2326 * setting DMA_ERR bit and timing out. As it wasn't 2327 * really a timeout event, adjust error mask and 2328 * cancel frozen state. 2329 */ 2330 if (qc->err_mask == AC_ERR_TIMEOUT 2331 && (host_stat & ATA_DMA_ERR)) { 2332 qc->err_mask = AC_ERR_HOST_BUS; 2333 thaw = 1; 2334 } 2335 2336 ap->ops->bmdma_stop(qc); 2337 } 2338 2339 ata_sff_sync(ap); /* FIXME: We don't need this */ 2340 ap->ops->sff_check_status(ap); 2341 ap->ops->sff_irq_clear(ap); 2342 /* We *MUST* do FIFO draining before we issue a reset as several 2343 * devices helpfully clear their internal state and will lock solid 2344 * if we touch the data port post reset. Pass qc in case anyone wants 2345 * to do different PIO/DMA recovery or has per command fixups 2346 */ 2347 if (ap->ops->drain_fifo) 2348 ap->ops->drain_fifo(qc); 2349 2350 spin_unlock_irqrestore(ap->lock, flags); 2351 2352 if (thaw) 2353 ata_eh_thaw_port(ap); 2354 2355 /* PIO and DMA engines have been stopped, perform recovery */ 2356 2357 /* Ignore ata_sff_softreset if ctl isn't accessible and 2358 * built-in hardresets if SCR access isn't available. 2359 */ 2360 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) 2361 softreset = NULL; 2362 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link)) 2363 hardreset = NULL; 2364 2365 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2366 ap->ops->postreset); 2367 } 2368 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2369 2370 /** 2371 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller 2372 * @qc: internal command to clean up 2373 * 2374 * LOCKING: 2375 * Kernel thread context (may sleep) 2376 */ 2377 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc) 2378 { 2379 struct ata_port *ap = qc->ap; 2380 unsigned long flags; 2381 2382 spin_lock_irqsave(ap->lock, flags); 2383 2384 ap->hsm_task_state = HSM_ST_IDLE; 2385 2386 if (ap->ioaddr.bmdma_addr) 2387 ata_bmdma_stop(qc); 2388 2389 spin_unlock_irqrestore(ap->lock, flags); 2390 } 2391 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd); 2392 2393 /** 2394 * ata_sff_port_start - Set port up for dma. 2395 * @ap: Port to initialize 2396 * 2397 * Called just after data structures for each port are 2398 * initialized. Allocates space for PRD table if the device 2399 * is DMA capable SFF. 2400 * 2401 * May be used as the port_start() entry in ata_port_operations. 2402 * 2403 * LOCKING: 2404 * Inherited from caller. 2405 */ 2406 int ata_sff_port_start(struct ata_port *ap) 2407 { 2408 if (ap->ioaddr.bmdma_addr) 2409 return ata_port_start(ap); 2410 return 0; 2411 } 2412 EXPORT_SYMBOL_GPL(ata_sff_port_start); 2413 2414 /** 2415 * ata_sff_port_start32 - Set port up for dma. 2416 * @ap: Port to initialize 2417 * 2418 * Called just after data structures for each port are 2419 * initialized. Allocates space for PRD table if the device 2420 * is DMA capable SFF. 2421 * 2422 * May be used as the port_start() entry in ata_port_operations for 2423 * devices that are capable of 32bit PIO. 2424 * 2425 * LOCKING: 2426 * Inherited from caller. 2427 */ 2428 int ata_sff_port_start32(struct ata_port *ap) 2429 { 2430 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 2431 if (ap->ioaddr.bmdma_addr) 2432 return ata_port_start(ap); 2433 return 0; 2434 } 2435 EXPORT_SYMBOL_GPL(ata_sff_port_start32); 2436 2437 /** 2438 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2439 * @ioaddr: IO address structure to be initialized 2440 * 2441 * Utility function which initializes data_addr, error_addr, 2442 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2443 * device_addr, status_addr, and command_addr to standard offsets 2444 * relative to cmd_addr. 2445 * 2446 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2447 */ 2448 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2449 { 2450 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2451 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2452 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2453 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2454 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2455 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2456 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2457 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2458 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2459 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2460 } 2461 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2462 2463 unsigned long ata_bmdma_mode_filter(struct ata_device *adev, 2464 unsigned long xfer_mask) 2465 { 2466 /* Filter out DMA modes if the device has been configured by 2467 the BIOS as PIO only */ 2468 2469 if (adev->link->ap->ioaddr.bmdma_addr == NULL) 2470 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 2471 return xfer_mask; 2472 } 2473 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter); 2474 2475 /** 2476 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2477 * @qc: Info associated with this ATA transaction. 2478 * 2479 * LOCKING: 2480 * spin_lock_irqsave(host lock) 2481 */ 2482 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2483 { 2484 struct ata_port *ap = qc->ap; 2485 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2486 u8 dmactl; 2487 2488 /* load PRD table addr. */ 2489 mb(); /* make sure PRD table writes are visible to controller */ 2490 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2491 2492 /* specify data direction, triple-check start bit is clear */ 2493 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2494 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2495 if (!rw) 2496 dmactl |= ATA_DMA_WR; 2497 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2498 2499 /* issue r/w command */ 2500 ap->ops->sff_exec_command(ap, &qc->tf); 2501 } 2502 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2503 2504 /** 2505 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2506 * @qc: Info associated with this ATA transaction. 2507 * 2508 * LOCKING: 2509 * spin_lock_irqsave(host lock) 2510 */ 2511 void ata_bmdma_start(struct ata_queued_cmd *qc) 2512 { 2513 struct ata_port *ap = qc->ap; 2514 u8 dmactl; 2515 2516 /* start host DMA transaction */ 2517 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2518 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2519 2520 /* Strictly, one may wish to issue an ioread8() here, to 2521 * flush the mmio write. However, control also passes 2522 * to the hardware at this point, and it will interrupt 2523 * us when we are to resume control. So, in effect, 2524 * we don't care when the mmio write flushes. 2525 * Further, a read of the DMA status register _immediately_ 2526 * following the write may not be what certain flaky hardware 2527 * is expected, so I think it is best to not add a readb() 2528 * without first all the MMIO ATA cards/mobos. 2529 * Or maybe I'm just being paranoid. 2530 * 2531 * FIXME: The posting of this write means I/O starts are 2532 * unneccessarily delayed for MMIO 2533 */ 2534 } 2535 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2536 2537 /** 2538 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2539 * @qc: Command we are ending DMA for 2540 * 2541 * Clears the ATA_DMA_START flag in the dma control register 2542 * 2543 * May be used as the bmdma_stop() entry in ata_port_operations. 2544 * 2545 * LOCKING: 2546 * spin_lock_irqsave(host lock) 2547 */ 2548 void ata_bmdma_stop(struct ata_queued_cmd *qc) 2549 { 2550 struct ata_port *ap = qc->ap; 2551 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2552 2553 /* clear start/stop bit */ 2554 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 2555 mmio + ATA_DMA_CMD); 2556 2557 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 2558 ata_sff_dma_pause(ap); 2559 } 2560 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 2561 2562 /** 2563 * ata_bmdma_status - Read PCI IDE BMDMA status 2564 * @ap: Port associated with this ATA transaction. 2565 * 2566 * Read and return BMDMA status register. 2567 * 2568 * May be used as the bmdma_status() entry in ata_port_operations. 2569 * 2570 * LOCKING: 2571 * spin_lock_irqsave(host lock) 2572 */ 2573 u8 ata_bmdma_status(struct ata_port *ap) 2574 { 2575 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 2576 } 2577 EXPORT_SYMBOL_GPL(ata_bmdma_status); 2578 2579 /** 2580 * ata_bus_reset - reset host port and associated ATA channel 2581 * @ap: port to reset 2582 * 2583 * This is typically the first time we actually start issuing 2584 * commands to the ATA channel. We wait for BSY to clear, then 2585 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 2586 * result. Determine what devices, if any, are on the channel 2587 * by looking at the device 0/1 error register. Look at the signature 2588 * stored in each device's taskfile registers, to determine if 2589 * the device is ATA or ATAPI. 2590 * 2591 * LOCKING: 2592 * PCI/etc. bus probe sem. 2593 * Obtains host lock. 2594 * 2595 * SIDE EFFECTS: 2596 * Sets ATA_FLAG_DISABLED if bus reset fails. 2597 * 2598 * DEPRECATED: 2599 * This function is only for drivers which still use old EH and 2600 * will be removed soon. 2601 */ 2602 void ata_bus_reset(struct ata_port *ap) 2603 { 2604 struct ata_device *device = ap->link.device; 2605 struct ata_ioports *ioaddr = &ap->ioaddr; 2606 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2607 u8 err; 2608 unsigned int dev0, dev1 = 0, devmask = 0; 2609 int rc; 2610 2611 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 2612 2613 /* determine if device 0/1 are present */ 2614 if (ap->flags & ATA_FLAG_SATA_RESET) 2615 dev0 = 1; 2616 else { 2617 dev0 = ata_devchk(ap, 0); 2618 if (slave_possible) 2619 dev1 = ata_devchk(ap, 1); 2620 } 2621 2622 if (dev0) 2623 devmask |= (1 << 0); 2624 if (dev1) 2625 devmask |= (1 << 1); 2626 2627 /* select device 0 again */ 2628 ap->ops->sff_dev_select(ap, 0); 2629 2630 /* issue bus reset */ 2631 if (ap->flags & ATA_FLAG_SRST) { 2632 rc = ata_bus_softreset(ap, devmask, 2633 ata_deadline(jiffies, 40000)); 2634 if (rc && rc != -ENODEV) 2635 goto err_out; 2636 } 2637 2638 /* 2639 * determine by signature whether we have ATA or ATAPI devices 2640 */ 2641 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err); 2642 if ((slave_possible) && (err != 0x81)) 2643 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err); 2644 2645 /* is double-select really necessary? */ 2646 if (device[1].class != ATA_DEV_NONE) 2647 ap->ops->sff_dev_select(ap, 1); 2648 if (device[0].class != ATA_DEV_NONE) 2649 ap->ops->sff_dev_select(ap, 0); 2650 2651 /* if no devices were detected, disable this port */ 2652 if ((device[0].class == ATA_DEV_NONE) && 2653 (device[1].class == ATA_DEV_NONE)) 2654 goto err_out; 2655 2656 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 2657 /* set up device control for ATA_FLAG_SATA_RESET */ 2658 iowrite8(ap->ctl, ioaddr->ctl_addr); 2659 ap->last_ctl = ap->ctl; 2660 } 2661 2662 DPRINTK("EXIT\n"); 2663 return; 2664 2665 err_out: 2666 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 2667 ata_port_disable(ap); 2668 2669 DPRINTK("EXIT\n"); 2670 } 2671 EXPORT_SYMBOL_GPL(ata_bus_reset); 2672 2673 #ifdef CONFIG_PCI 2674 2675 /** 2676 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 2677 * @pdev: PCI device 2678 * 2679 * Some PCI ATA devices report simplex mode but in fact can be told to 2680 * enter non simplex mode. This implements the necessary logic to 2681 * perform the task on such devices. Calling it on other devices will 2682 * have -undefined- behaviour. 2683 */ 2684 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 2685 { 2686 unsigned long bmdma = pci_resource_start(pdev, 4); 2687 u8 simplex; 2688 2689 if (bmdma == 0) 2690 return -ENOENT; 2691 2692 simplex = inb(bmdma + 0x02); 2693 outb(simplex & 0x60, bmdma + 0x02); 2694 simplex = inb(bmdma + 0x02); 2695 if (simplex & 0x80) 2696 return -EOPNOTSUPP; 2697 return 0; 2698 } 2699 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 2700 2701 /** 2702 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 2703 * @host: target ATA host 2704 * 2705 * Acquire PCI BMDMA resources and initialize @host accordingly. 2706 * 2707 * LOCKING: 2708 * Inherited from calling layer (may sleep). 2709 * 2710 * RETURNS: 2711 * 0 on success, -errno otherwise. 2712 */ 2713 int ata_pci_bmdma_init(struct ata_host *host) 2714 { 2715 struct device *gdev = host->dev; 2716 struct pci_dev *pdev = to_pci_dev(gdev); 2717 int i, rc; 2718 2719 /* No BAR4 allocation: No DMA */ 2720 if (pci_resource_start(pdev, 4) == 0) 2721 return 0; 2722 2723 /* TODO: If we get no DMA mask we should fall back to PIO */ 2724 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 2725 if (rc) 2726 return rc; 2727 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 2728 if (rc) 2729 return rc; 2730 2731 /* request and iomap DMA region */ 2732 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 2733 if (rc) { 2734 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n"); 2735 return -ENOMEM; 2736 } 2737 host->iomap = pcim_iomap_table(pdev); 2738 2739 for (i = 0; i < 2; i++) { 2740 struct ata_port *ap = host->ports[i]; 2741 void __iomem *bmdma = host->iomap[4] + 8 * i; 2742 2743 if (ata_port_is_dummy(ap)) 2744 continue; 2745 2746 ap->ioaddr.bmdma_addr = bmdma; 2747 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 2748 (ioread8(bmdma + 2) & 0x80)) 2749 host->flags |= ATA_HOST_SIMPLEX; 2750 2751 ata_port_desc(ap, "bmdma 0x%llx", 2752 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 2753 } 2754 2755 return 0; 2756 } 2757 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 2758 2759 static int ata_resources_present(struct pci_dev *pdev, int port) 2760 { 2761 int i; 2762 2763 /* Check the PCI resources for this channel are enabled */ 2764 port = port * 2; 2765 for (i = 0; i < 2; i++) { 2766 if (pci_resource_start(pdev, port + i) == 0 || 2767 pci_resource_len(pdev, port + i) == 0) 2768 return 0; 2769 } 2770 return 1; 2771 } 2772 2773 /** 2774 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2775 * @host: target ATA host 2776 * 2777 * Acquire native PCI ATA resources for @host and initialize the 2778 * first two ports of @host accordingly. Ports marked dummy are 2779 * skipped and allocation failure makes the port dummy. 2780 * 2781 * Note that native PCI resources are valid even for legacy hosts 2782 * as we fix up pdev resources array early in boot, so this 2783 * function can be used for both native and legacy SFF hosts. 2784 * 2785 * LOCKING: 2786 * Inherited from calling layer (may sleep). 2787 * 2788 * RETURNS: 2789 * 0 if at least one port is initialized, -ENODEV if no port is 2790 * available. 2791 */ 2792 int ata_pci_sff_init_host(struct ata_host *host) 2793 { 2794 struct device *gdev = host->dev; 2795 struct pci_dev *pdev = to_pci_dev(gdev); 2796 unsigned int mask = 0; 2797 int i, rc; 2798 2799 /* request, iomap BARs and init port addresses accordingly */ 2800 for (i = 0; i < 2; i++) { 2801 struct ata_port *ap = host->ports[i]; 2802 int base = i * 2; 2803 void __iomem * const *iomap; 2804 2805 if (ata_port_is_dummy(ap)) 2806 continue; 2807 2808 /* Discard disabled ports. Some controllers show 2809 * their unused channels this way. Disabled ports are 2810 * made dummy. 2811 */ 2812 if (!ata_resources_present(pdev, i)) { 2813 ap->ops = &ata_dummy_port_ops; 2814 continue; 2815 } 2816 2817 rc = pcim_iomap_regions(pdev, 0x3 << base, 2818 dev_driver_string(gdev)); 2819 if (rc) { 2820 dev_printk(KERN_WARNING, gdev, 2821 "failed to request/iomap BARs for port %d " 2822 "(errno=%d)\n", i, rc); 2823 if (rc == -EBUSY) 2824 pcim_pin_device(pdev); 2825 ap->ops = &ata_dummy_port_ops; 2826 continue; 2827 } 2828 host->iomap = iomap = pcim_iomap_table(pdev); 2829 2830 ap->ioaddr.cmd_addr = iomap[base]; 2831 ap->ioaddr.altstatus_addr = 2832 ap->ioaddr.ctl_addr = (void __iomem *) 2833 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2834 ata_sff_std_ports(&ap->ioaddr); 2835 2836 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2837 (unsigned long long)pci_resource_start(pdev, base), 2838 (unsigned long long)pci_resource_start(pdev, base + 1)); 2839 2840 mask |= 1 << i; 2841 } 2842 2843 if (!mask) { 2844 dev_printk(KERN_ERR, gdev, "no available native port\n"); 2845 return -ENODEV; 2846 } 2847 2848 return 0; 2849 } 2850 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2851 2852 /** 2853 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host 2854 * @pdev: target PCI device 2855 * @ppi: array of port_info, must be enough for two ports 2856 * @r_host: out argument for the initialized ATA host 2857 * 2858 * Helper to allocate ATA host for @pdev, acquire all native PCI 2859 * resources and initialize it accordingly in one go. 2860 * 2861 * LOCKING: 2862 * Inherited from calling layer (may sleep). 2863 * 2864 * RETURNS: 2865 * 0 on success, -errno otherwise. 2866 */ 2867 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2868 const struct ata_port_info * const *ppi, 2869 struct ata_host **r_host) 2870 { 2871 struct ata_host *host; 2872 int rc; 2873 2874 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2875 return -ENOMEM; 2876 2877 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2878 if (!host) { 2879 dev_printk(KERN_ERR, &pdev->dev, 2880 "failed to allocate ATA host\n"); 2881 rc = -ENOMEM; 2882 goto err_out; 2883 } 2884 2885 rc = ata_pci_sff_init_host(host); 2886 if (rc) 2887 goto err_out; 2888 2889 /* init DMA related stuff */ 2890 rc = ata_pci_bmdma_init(host); 2891 if (rc) 2892 goto err_bmdma; 2893 2894 devres_remove_group(&pdev->dev, NULL); 2895 *r_host = host; 2896 return 0; 2897 2898 err_bmdma: 2899 /* This is necessary because PCI and iomap resources are 2900 * merged and releasing the top group won't release the 2901 * acquired resources if some of those have been acquired 2902 * before entering this function. 2903 */ 2904 pcim_iounmap_regions(pdev, 0xf); 2905 err_out: 2906 devres_release_group(&pdev->dev, NULL); 2907 return rc; 2908 } 2909 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2910 2911 /** 2912 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2913 * @host: target SFF ATA host 2914 * @irq_handler: irq_handler used when requesting IRQ(s) 2915 * @sht: scsi_host_template to use when registering the host 2916 * 2917 * This is the counterpart of ata_host_activate() for SFF ATA 2918 * hosts. This separate helper is necessary because SFF hosts 2919 * use two separate interrupts in legacy mode. 2920 * 2921 * LOCKING: 2922 * Inherited from calling layer (may sleep). 2923 * 2924 * RETURNS: 2925 * 0 on success, -errno otherwise. 2926 */ 2927 int ata_pci_sff_activate_host(struct ata_host *host, 2928 irq_handler_t irq_handler, 2929 struct scsi_host_template *sht) 2930 { 2931 struct device *dev = host->dev; 2932 struct pci_dev *pdev = to_pci_dev(dev); 2933 const char *drv_name = dev_driver_string(host->dev); 2934 int legacy_mode = 0, rc; 2935 2936 rc = ata_host_start(host); 2937 if (rc) 2938 return rc; 2939 2940 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2941 u8 tmp8, mask; 2942 2943 /* TODO: What if one channel is in native mode ... */ 2944 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2945 mask = (1 << 2) | (1 << 0); 2946 if ((tmp8 & mask) != mask) 2947 legacy_mode = 1; 2948 #if defined(CONFIG_NO_ATA_LEGACY) 2949 /* Some platforms with PCI limits cannot address compat 2950 port space. In that case we punt if their firmware has 2951 left a device in compatibility mode */ 2952 if (legacy_mode) { 2953 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); 2954 return -EOPNOTSUPP; 2955 } 2956 #endif 2957 } 2958 2959 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2960 return -ENOMEM; 2961 2962 if (!legacy_mode && pdev->irq) { 2963 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2964 IRQF_SHARED, drv_name, host); 2965 if (rc) 2966 goto out; 2967 2968 ata_port_desc(host->ports[0], "irq %d", pdev->irq); 2969 ata_port_desc(host->ports[1], "irq %d", pdev->irq); 2970 } else if (legacy_mode) { 2971 if (!ata_port_is_dummy(host->ports[0])) { 2972 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2973 irq_handler, IRQF_SHARED, 2974 drv_name, host); 2975 if (rc) 2976 goto out; 2977 2978 ata_port_desc(host->ports[0], "irq %d", 2979 ATA_PRIMARY_IRQ(pdev)); 2980 } 2981 2982 if (!ata_port_is_dummy(host->ports[1])) { 2983 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2984 irq_handler, IRQF_SHARED, 2985 drv_name, host); 2986 if (rc) 2987 goto out; 2988 2989 ata_port_desc(host->ports[1], "irq %d", 2990 ATA_SECONDARY_IRQ(pdev)); 2991 } 2992 } 2993 2994 rc = ata_host_register(host, sht); 2995 out: 2996 if (rc == 0) 2997 devres_remove_group(dev, NULL); 2998 else 2999 devres_release_group(dev, NULL); 3000 3001 return rc; 3002 } 3003 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 3004 3005 /** 3006 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller 3007 * @pdev: Controller to be initialized 3008 * @ppi: array of port_info, must be enough for two ports 3009 * @sht: scsi_host_template to use when registering the host 3010 * @host_priv: host private_data 3011 * 3012 * This is a helper function which can be called from a driver's 3013 * xxx_init_one() probe function if the hardware uses traditional 3014 * IDE taskfile registers. 3015 * 3016 * This function calls pci_enable_device(), reserves its register 3017 * regions, sets the dma mask, enables bus master mode, and calls 3018 * ata_device_add() 3019 * 3020 * ASSUMPTION: 3021 * Nobody makes a single channel controller that appears solely as 3022 * the secondary legacy port on PCI. 3023 * 3024 * LOCKING: 3025 * Inherited from PCI layer (may sleep). 3026 * 3027 * RETURNS: 3028 * Zero on success, negative on errno-based value on error. 3029 */ 3030 int ata_pci_sff_init_one(struct pci_dev *pdev, 3031 const struct ata_port_info * const *ppi, 3032 struct scsi_host_template *sht, void *host_priv) 3033 { 3034 struct device *dev = &pdev->dev; 3035 const struct ata_port_info *pi = NULL; 3036 struct ata_host *host = NULL; 3037 int i, rc; 3038 3039 DPRINTK("ENTER\n"); 3040 3041 /* look up the first valid port_info */ 3042 for (i = 0; i < 2 && ppi[i]; i++) { 3043 if (ppi[i]->port_ops != &ata_dummy_port_ops) { 3044 pi = ppi[i]; 3045 break; 3046 } 3047 } 3048 3049 if (!pi) { 3050 dev_printk(KERN_ERR, &pdev->dev, 3051 "no valid port_info specified\n"); 3052 return -EINVAL; 3053 } 3054 3055 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 3056 return -ENOMEM; 3057 3058 rc = pcim_enable_device(pdev); 3059 if (rc) 3060 goto out; 3061 3062 /* prepare and activate SFF host */ 3063 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 3064 if (rc) 3065 goto out; 3066 host->private_data = host_priv; 3067 3068 pci_set_master(pdev); 3069 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 3070 out: 3071 if (rc == 0) 3072 devres_remove_group(&pdev->dev, NULL); 3073 else 3074 devres_release_group(&pdev->dev, NULL); 3075 3076 return rc; 3077 } 3078 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 3079 3080 #endif /* CONFIG_PCI */ 3081