xref: /openbmc/linux/drivers/ata/libata-sff.c (revision e8e0929d)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 #include <linux/highmem.h>
39 
40 #include "libata.h"
41 
42 const struct ata_port_operations ata_sff_port_ops = {
43 	.inherits		= &ata_base_port_ops,
44 
45 	.qc_prep		= ata_sff_qc_prep,
46 	.qc_issue		= ata_sff_qc_issue,
47 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
48 
49 	.freeze			= ata_sff_freeze,
50 	.thaw			= ata_sff_thaw,
51 	.prereset		= ata_sff_prereset,
52 	.softreset		= ata_sff_softreset,
53 	.hardreset		= sata_sff_hardreset,
54 	.postreset		= ata_sff_postreset,
55 	.drain_fifo		= ata_sff_drain_fifo,
56 	.error_handler		= ata_sff_error_handler,
57 	.post_internal_cmd	= ata_sff_post_internal_cmd,
58 
59 	.sff_dev_select		= ata_sff_dev_select,
60 	.sff_check_status	= ata_sff_check_status,
61 	.sff_tf_load		= ata_sff_tf_load,
62 	.sff_tf_read		= ata_sff_tf_read,
63 	.sff_exec_command	= ata_sff_exec_command,
64 	.sff_data_xfer		= ata_sff_data_xfer,
65 	.sff_irq_on		= ata_sff_irq_on,
66 	.sff_irq_clear		= ata_sff_irq_clear,
67 
68 	.lost_interrupt		= ata_sff_lost_interrupt,
69 
70 	.port_start		= ata_sff_port_start,
71 };
72 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
73 
74 const struct ata_port_operations ata_bmdma_port_ops = {
75 	.inherits		= &ata_sff_port_ops,
76 
77 	.mode_filter		= ata_bmdma_mode_filter,
78 
79 	.bmdma_setup		= ata_bmdma_setup,
80 	.bmdma_start		= ata_bmdma_start,
81 	.bmdma_stop		= ata_bmdma_stop,
82 	.bmdma_status		= ata_bmdma_status,
83 };
84 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
85 
86 const struct ata_port_operations ata_bmdma32_port_ops = {
87 	.inherits		= &ata_bmdma_port_ops,
88 
89 	.sff_data_xfer		= ata_sff_data_xfer32,
90 	.port_start		= ata_sff_port_start32,
91 };
92 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
93 
94 /**
95  *	ata_fill_sg - Fill PCI IDE PRD table
96  *	@qc: Metadata associated with taskfile to be transferred
97  *
98  *	Fill PCI IDE PRD (scatter-gather) table with segments
99  *	associated with the current disk command.
100  *
101  *	LOCKING:
102  *	spin_lock_irqsave(host lock)
103  *
104  */
105 static void ata_fill_sg(struct ata_queued_cmd *qc)
106 {
107 	struct ata_port *ap = qc->ap;
108 	struct scatterlist *sg;
109 	unsigned int si, pi;
110 
111 	pi = 0;
112 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
113 		u32 addr, offset;
114 		u32 sg_len, len;
115 
116 		/* determine if physical DMA addr spans 64K boundary.
117 		 * Note h/w doesn't support 64-bit, so we unconditionally
118 		 * truncate dma_addr_t to u32.
119 		 */
120 		addr = (u32) sg_dma_address(sg);
121 		sg_len = sg_dma_len(sg);
122 
123 		while (sg_len) {
124 			offset = addr & 0xffff;
125 			len = sg_len;
126 			if ((offset + sg_len) > 0x10000)
127 				len = 0x10000 - offset;
128 
129 			ap->prd[pi].addr = cpu_to_le32(addr);
130 			ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
131 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
132 
133 			pi++;
134 			sg_len -= len;
135 			addr += len;
136 		}
137 	}
138 
139 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
140 }
141 
142 /**
143  *	ata_fill_sg_dumb - Fill PCI IDE PRD table
144  *	@qc: Metadata associated with taskfile to be transferred
145  *
146  *	Fill PCI IDE PRD (scatter-gather) table with segments
147  *	associated with the current disk command. Perform the fill
148  *	so that we avoid writing any length 64K records for
149  *	controllers that don't follow the spec.
150  *
151  *	LOCKING:
152  *	spin_lock_irqsave(host lock)
153  *
154  */
155 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
156 {
157 	struct ata_port *ap = qc->ap;
158 	struct scatterlist *sg;
159 	unsigned int si, pi;
160 
161 	pi = 0;
162 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
163 		u32 addr, offset;
164 		u32 sg_len, len, blen;
165 
166 		/* determine if physical DMA addr spans 64K boundary.
167 		 * Note h/w doesn't support 64-bit, so we unconditionally
168 		 * truncate dma_addr_t to u32.
169 		 */
170 		addr = (u32) sg_dma_address(sg);
171 		sg_len = sg_dma_len(sg);
172 
173 		while (sg_len) {
174 			offset = addr & 0xffff;
175 			len = sg_len;
176 			if ((offset + sg_len) > 0x10000)
177 				len = 0x10000 - offset;
178 
179 			blen = len & 0xffff;
180 			ap->prd[pi].addr = cpu_to_le32(addr);
181 			if (blen == 0) {
182 				/* Some PATA chipsets like the CS5530 can't
183 				   cope with 0x0000 meaning 64K as the spec
184 				   says */
185 				ap->prd[pi].flags_len = cpu_to_le32(0x8000);
186 				blen = 0x8000;
187 				ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
188 			}
189 			ap->prd[pi].flags_len = cpu_to_le32(blen);
190 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
191 
192 			pi++;
193 			sg_len -= len;
194 			addr += len;
195 		}
196 	}
197 
198 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
199 }
200 
201 /**
202  *	ata_sff_qc_prep - Prepare taskfile for submission
203  *	@qc: Metadata associated with taskfile to be prepared
204  *
205  *	Prepare ATA taskfile for submission.
206  *
207  *	LOCKING:
208  *	spin_lock_irqsave(host lock)
209  */
210 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
211 {
212 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
213 		return;
214 
215 	ata_fill_sg(qc);
216 }
217 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
218 
219 /**
220  *	ata_sff_dumb_qc_prep - Prepare taskfile for submission
221  *	@qc: Metadata associated with taskfile to be prepared
222  *
223  *	Prepare ATA taskfile for submission.
224  *
225  *	LOCKING:
226  *	spin_lock_irqsave(host lock)
227  */
228 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
229 {
230 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
231 		return;
232 
233 	ata_fill_sg_dumb(qc);
234 }
235 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
236 
237 /**
238  *	ata_sff_check_status - Read device status reg & clear interrupt
239  *	@ap: port where the device is
240  *
241  *	Reads ATA taskfile status register for currently-selected device
242  *	and return its value. This also clears pending interrupts
243  *      from this device
244  *
245  *	LOCKING:
246  *	Inherited from caller.
247  */
248 u8 ata_sff_check_status(struct ata_port *ap)
249 {
250 	return ioread8(ap->ioaddr.status_addr);
251 }
252 EXPORT_SYMBOL_GPL(ata_sff_check_status);
253 
254 /**
255  *	ata_sff_altstatus - Read device alternate status reg
256  *	@ap: port where the device is
257  *
258  *	Reads ATA taskfile alternate status register for
259  *	currently-selected device and return its value.
260  *
261  *	Note: may NOT be used as the check_altstatus() entry in
262  *	ata_port_operations.
263  *
264  *	LOCKING:
265  *	Inherited from caller.
266  */
267 static u8 ata_sff_altstatus(struct ata_port *ap)
268 {
269 	if (ap->ops->sff_check_altstatus)
270 		return ap->ops->sff_check_altstatus(ap);
271 
272 	return ioread8(ap->ioaddr.altstatus_addr);
273 }
274 
275 /**
276  *	ata_sff_irq_status - Check if the device is busy
277  *	@ap: port where the device is
278  *
279  *	Determine if the port is currently busy. Uses altstatus
280  *	if available in order to avoid clearing shared IRQ status
281  *	when finding an IRQ source. Non ctl capable devices don't
282  *	share interrupt lines fortunately for us.
283  *
284  *	LOCKING:
285  *	Inherited from caller.
286  */
287 static u8 ata_sff_irq_status(struct ata_port *ap)
288 {
289 	u8 status;
290 
291 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
292 		status = ata_sff_altstatus(ap);
293 		/* Not us: We are busy */
294 		if (status & ATA_BUSY)
295 			return status;
296 	}
297 	/* Clear INTRQ latch */
298 	status = ap->ops->sff_check_status(ap);
299 	return status;
300 }
301 
302 /**
303  *	ata_sff_sync - Flush writes
304  *	@ap: Port to wait for.
305  *
306  *	CAUTION:
307  *	If we have an mmio device with no ctl and no altstatus
308  *	method this will fail. No such devices are known to exist.
309  *
310  *	LOCKING:
311  *	Inherited from caller.
312  */
313 
314 static void ata_sff_sync(struct ata_port *ap)
315 {
316 	if (ap->ops->sff_check_altstatus)
317 		ap->ops->sff_check_altstatus(ap);
318 	else if (ap->ioaddr.altstatus_addr)
319 		ioread8(ap->ioaddr.altstatus_addr);
320 }
321 
322 /**
323  *	ata_sff_pause		-	Flush writes and wait 400nS
324  *	@ap: Port to pause for.
325  *
326  *	CAUTION:
327  *	If we have an mmio device with no ctl and no altstatus
328  *	method this will fail. No such devices are known to exist.
329  *
330  *	LOCKING:
331  *	Inherited from caller.
332  */
333 
334 void ata_sff_pause(struct ata_port *ap)
335 {
336 	ata_sff_sync(ap);
337 	ndelay(400);
338 }
339 EXPORT_SYMBOL_GPL(ata_sff_pause);
340 
341 /**
342  *	ata_sff_dma_pause	-	Pause before commencing DMA
343  *	@ap: Port to pause for.
344  *
345  *	Perform I/O fencing and ensure sufficient cycle delays occur
346  *	for the HDMA1:0 transition
347  */
348 
349 void ata_sff_dma_pause(struct ata_port *ap)
350 {
351 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
352 		/* An altstatus read will cause the needed delay without
353 		   messing up the IRQ status */
354 		ata_sff_altstatus(ap);
355 		return;
356 	}
357 	/* There are no DMA controllers without ctl. BUG here to ensure
358 	   we never violate the HDMA1:0 transition timing and risk
359 	   corruption. */
360 	BUG();
361 }
362 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
363 
364 /**
365  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
366  *	@ap: port containing status register to be polled
367  *	@tmout_pat: impatience timeout in msecs
368  *	@tmout: overall timeout in msecs
369  *
370  *	Sleep until ATA Status register bit BSY clears,
371  *	or a timeout occurs.
372  *
373  *	LOCKING:
374  *	Kernel thread context (may sleep).
375  *
376  *	RETURNS:
377  *	0 on success, -errno otherwise.
378  */
379 int ata_sff_busy_sleep(struct ata_port *ap,
380 		       unsigned long tmout_pat, unsigned long tmout)
381 {
382 	unsigned long timer_start, timeout;
383 	u8 status;
384 
385 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
386 	timer_start = jiffies;
387 	timeout = ata_deadline(timer_start, tmout_pat);
388 	while (status != 0xff && (status & ATA_BUSY) &&
389 	       time_before(jiffies, timeout)) {
390 		msleep(50);
391 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
392 	}
393 
394 	if (status != 0xff && (status & ATA_BUSY))
395 		ata_port_printk(ap, KERN_WARNING,
396 				"port is slow to respond, please be patient "
397 				"(Status 0x%x)\n", status);
398 
399 	timeout = ata_deadline(timer_start, tmout);
400 	while (status != 0xff && (status & ATA_BUSY) &&
401 	       time_before(jiffies, timeout)) {
402 		msleep(50);
403 		status = ap->ops->sff_check_status(ap);
404 	}
405 
406 	if (status == 0xff)
407 		return -ENODEV;
408 
409 	if (status & ATA_BUSY) {
410 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
411 				"(%lu secs, Status 0x%x)\n",
412 				DIV_ROUND_UP(tmout, 1000), status);
413 		return -EBUSY;
414 	}
415 
416 	return 0;
417 }
418 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
419 
420 static int ata_sff_check_ready(struct ata_link *link)
421 {
422 	u8 status = link->ap->ops->sff_check_status(link->ap);
423 
424 	return ata_check_ready(status);
425 }
426 
427 /**
428  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
429  *	@link: SFF link to wait ready status for
430  *	@deadline: deadline jiffies for the operation
431  *
432  *	Sleep until ATA Status register bit BSY clears, or timeout
433  *	occurs.
434  *
435  *	LOCKING:
436  *	Kernel thread context (may sleep).
437  *
438  *	RETURNS:
439  *	0 on success, -errno otherwise.
440  */
441 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
442 {
443 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
444 }
445 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
446 
447 /**
448  *	ata_sff_dev_select - Select device 0/1 on ATA bus
449  *	@ap: ATA channel to manipulate
450  *	@device: ATA device (numbered from zero) to select
451  *
452  *	Use the method defined in the ATA specification to
453  *	make either device 0, or device 1, active on the
454  *	ATA channel.  Works with both PIO and MMIO.
455  *
456  *	May be used as the dev_select() entry in ata_port_operations.
457  *
458  *	LOCKING:
459  *	caller.
460  */
461 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
462 {
463 	u8 tmp;
464 
465 	if (device == 0)
466 		tmp = ATA_DEVICE_OBS;
467 	else
468 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
469 
470 	iowrite8(tmp, ap->ioaddr.device_addr);
471 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
472 }
473 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
474 
475 /**
476  *	ata_dev_select - Select device 0/1 on ATA bus
477  *	@ap: ATA channel to manipulate
478  *	@device: ATA device (numbered from zero) to select
479  *	@wait: non-zero to wait for Status register BSY bit to clear
480  *	@can_sleep: non-zero if context allows sleeping
481  *
482  *	Use the method defined in the ATA specification to
483  *	make either device 0, or device 1, active on the
484  *	ATA channel.
485  *
486  *	This is a high-level version of ata_sff_dev_select(), which
487  *	additionally provides the services of inserting the proper
488  *	pauses and status polling, where needed.
489  *
490  *	LOCKING:
491  *	caller.
492  */
493 void ata_dev_select(struct ata_port *ap, unsigned int device,
494 			   unsigned int wait, unsigned int can_sleep)
495 {
496 	if (ata_msg_probe(ap))
497 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
498 				"device %u, wait %u\n", device, wait);
499 
500 	if (wait)
501 		ata_wait_idle(ap);
502 
503 	ap->ops->sff_dev_select(ap, device);
504 
505 	if (wait) {
506 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
507 			msleep(150);
508 		ata_wait_idle(ap);
509 	}
510 }
511 
512 /**
513  *	ata_sff_irq_on - Enable interrupts on a port.
514  *	@ap: Port on which interrupts are enabled.
515  *
516  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
517  *	wait for idle, clear any pending interrupts.
518  *
519  *	LOCKING:
520  *	Inherited from caller.
521  */
522 u8 ata_sff_irq_on(struct ata_port *ap)
523 {
524 	struct ata_ioports *ioaddr = &ap->ioaddr;
525 	u8 tmp;
526 
527 	ap->ctl &= ~ATA_NIEN;
528 	ap->last_ctl = ap->ctl;
529 
530 	if (ioaddr->ctl_addr)
531 		iowrite8(ap->ctl, ioaddr->ctl_addr);
532 	tmp = ata_wait_idle(ap);
533 
534 	ap->ops->sff_irq_clear(ap);
535 
536 	return tmp;
537 }
538 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
539 
540 /**
541  *	ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
542  *	@ap: Port associated with this ATA transaction.
543  *
544  *	Clear interrupt and error flags in DMA status register.
545  *
546  *	May be used as the irq_clear() entry in ata_port_operations.
547  *
548  *	LOCKING:
549  *	spin_lock_irqsave(host lock)
550  */
551 void ata_sff_irq_clear(struct ata_port *ap)
552 {
553 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
554 
555 	if (!mmio)
556 		return;
557 
558 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
559 }
560 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
561 
562 /**
563  *	ata_sff_tf_load - send taskfile registers to host controller
564  *	@ap: Port to which output is sent
565  *	@tf: ATA taskfile register set
566  *
567  *	Outputs ATA taskfile to standard ATA host controller.
568  *
569  *	LOCKING:
570  *	Inherited from caller.
571  */
572 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
573 {
574 	struct ata_ioports *ioaddr = &ap->ioaddr;
575 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
576 
577 	if (tf->ctl != ap->last_ctl) {
578 		if (ioaddr->ctl_addr)
579 			iowrite8(tf->ctl, ioaddr->ctl_addr);
580 		ap->last_ctl = tf->ctl;
581 		ata_wait_idle(ap);
582 	}
583 
584 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
585 		WARN_ON_ONCE(!ioaddr->ctl_addr);
586 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
587 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
588 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
589 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
590 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
591 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
592 			tf->hob_feature,
593 			tf->hob_nsect,
594 			tf->hob_lbal,
595 			tf->hob_lbam,
596 			tf->hob_lbah);
597 	}
598 
599 	if (is_addr) {
600 		iowrite8(tf->feature, ioaddr->feature_addr);
601 		iowrite8(tf->nsect, ioaddr->nsect_addr);
602 		iowrite8(tf->lbal, ioaddr->lbal_addr);
603 		iowrite8(tf->lbam, ioaddr->lbam_addr);
604 		iowrite8(tf->lbah, ioaddr->lbah_addr);
605 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
606 			tf->feature,
607 			tf->nsect,
608 			tf->lbal,
609 			tf->lbam,
610 			tf->lbah);
611 	}
612 
613 	if (tf->flags & ATA_TFLAG_DEVICE) {
614 		iowrite8(tf->device, ioaddr->device_addr);
615 		VPRINTK("device 0x%X\n", tf->device);
616 	}
617 
618 	ata_wait_idle(ap);
619 }
620 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
621 
622 /**
623  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
624  *	@ap: Port from which input is read
625  *	@tf: ATA taskfile register set for storing input
626  *
627  *	Reads ATA taskfile registers for currently-selected device
628  *	into @tf. Assumes the device has a fully SFF compliant task file
629  *	layout and behaviour. If you device does not (eg has a different
630  *	status method) then you will need to provide a replacement tf_read
631  *
632  *	LOCKING:
633  *	Inherited from caller.
634  */
635 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
636 {
637 	struct ata_ioports *ioaddr = &ap->ioaddr;
638 
639 	tf->command = ata_sff_check_status(ap);
640 	tf->feature = ioread8(ioaddr->error_addr);
641 	tf->nsect = ioread8(ioaddr->nsect_addr);
642 	tf->lbal = ioread8(ioaddr->lbal_addr);
643 	tf->lbam = ioread8(ioaddr->lbam_addr);
644 	tf->lbah = ioread8(ioaddr->lbah_addr);
645 	tf->device = ioread8(ioaddr->device_addr);
646 
647 	if (tf->flags & ATA_TFLAG_LBA48) {
648 		if (likely(ioaddr->ctl_addr)) {
649 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
650 			tf->hob_feature = ioread8(ioaddr->error_addr);
651 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
652 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
653 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
654 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
655 			iowrite8(tf->ctl, ioaddr->ctl_addr);
656 			ap->last_ctl = tf->ctl;
657 		} else
658 			WARN_ON_ONCE(1);
659 	}
660 }
661 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
662 
663 /**
664  *	ata_sff_exec_command - issue ATA command to host controller
665  *	@ap: port to which command is being issued
666  *	@tf: ATA taskfile register set
667  *
668  *	Issues ATA command, with proper synchronization with interrupt
669  *	handler / other threads.
670  *
671  *	LOCKING:
672  *	spin_lock_irqsave(host lock)
673  */
674 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
675 {
676 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
677 
678 	iowrite8(tf->command, ap->ioaddr.command_addr);
679 	ata_sff_pause(ap);
680 }
681 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
682 
683 /**
684  *	ata_tf_to_host - issue ATA taskfile to host controller
685  *	@ap: port to which command is being issued
686  *	@tf: ATA taskfile register set
687  *
688  *	Issues ATA taskfile register set to ATA host controller,
689  *	with proper synchronization with interrupt handler and
690  *	other threads.
691  *
692  *	LOCKING:
693  *	spin_lock_irqsave(host lock)
694  */
695 static inline void ata_tf_to_host(struct ata_port *ap,
696 				  const struct ata_taskfile *tf)
697 {
698 	ap->ops->sff_tf_load(ap, tf);
699 	ap->ops->sff_exec_command(ap, tf);
700 }
701 
702 /**
703  *	ata_sff_data_xfer - Transfer data by PIO
704  *	@dev: device to target
705  *	@buf: data buffer
706  *	@buflen: buffer length
707  *	@rw: read/write
708  *
709  *	Transfer data from/to the device data register by PIO.
710  *
711  *	LOCKING:
712  *	Inherited from caller.
713  *
714  *	RETURNS:
715  *	Bytes consumed.
716  */
717 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
718 			       unsigned int buflen, int rw)
719 {
720 	struct ata_port *ap = dev->link->ap;
721 	void __iomem *data_addr = ap->ioaddr.data_addr;
722 	unsigned int words = buflen >> 1;
723 
724 	/* Transfer multiple of 2 bytes */
725 	if (rw == READ)
726 		ioread16_rep(data_addr, buf, words);
727 	else
728 		iowrite16_rep(data_addr, buf, words);
729 
730 	/* Transfer trailing byte, if any. */
731 	if (unlikely(buflen & 0x01)) {
732 		unsigned char pad[2];
733 
734 		/* Point buf to the tail of buffer */
735 		buf += buflen - 1;
736 
737 		/*
738 		 * Use io*16_rep() accessors here as well to avoid pointlessly
739 		 * swapping bytes to and fro on the big endian machines...
740 		 */
741 		if (rw == READ) {
742 			ioread16_rep(data_addr, pad, 1);
743 			*buf = pad[0];
744 		} else {
745 			pad[0] = *buf;
746 			iowrite16_rep(data_addr, pad, 1);
747 		}
748 		words++;
749 	}
750 
751 	return words << 1;
752 }
753 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
754 
755 /**
756  *	ata_sff_data_xfer32 - Transfer data by PIO
757  *	@dev: device to target
758  *	@buf: data buffer
759  *	@buflen: buffer length
760  *	@rw: read/write
761  *
762  *	Transfer data from/to the device data register by PIO using 32bit
763  *	I/O operations.
764  *
765  *	LOCKING:
766  *	Inherited from caller.
767  *
768  *	RETURNS:
769  *	Bytes consumed.
770  */
771 
772 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
773 			       unsigned int buflen, int rw)
774 {
775 	struct ata_port *ap = dev->link->ap;
776 	void __iomem *data_addr = ap->ioaddr.data_addr;
777 	unsigned int words = buflen >> 2;
778 	int slop = buflen & 3;
779 
780 	if (!(ap->pflags & ATA_PFLAG_PIO32))
781 		return ata_sff_data_xfer(dev, buf, buflen, rw);
782 
783 	/* Transfer multiple of 4 bytes */
784 	if (rw == READ)
785 		ioread32_rep(data_addr, buf, words);
786 	else
787 		iowrite32_rep(data_addr, buf, words);
788 
789 	/* Transfer trailing bytes, if any */
790 	if (unlikely(slop)) {
791 		unsigned char pad[4];
792 
793 		/* Point buf to the tail of buffer */
794 		buf += buflen - slop;
795 
796 		/*
797 		 * Use io*_rep() accessors here as well to avoid pointlessly
798 		 * swapping bytes to and fro on the big endian machines...
799 		 */
800 		if (rw == READ) {
801 			if (slop < 3)
802 				ioread16_rep(data_addr, pad, 1);
803 			else
804 				ioread32_rep(data_addr, pad, 1);
805 			memcpy(buf, pad, slop);
806 		} else {
807 			memcpy(pad, buf, slop);
808 			if (slop < 3)
809 				iowrite16_rep(data_addr, pad, 1);
810 			else
811 				iowrite32_rep(data_addr, pad, 1);
812 		}
813 	}
814 	return (buflen + 1) & ~1;
815 }
816 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
817 
818 /**
819  *	ata_sff_data_xfer_noirq - Transfer data by PIO
820  *	@dev: device to target
821  *	@buf: data buffer
822  *	@buflen: buffer length
823  *	@rw: read/write
824  *
825  *	Transfer data from/to the device data register by PIO. Do the
826  *	transfer with interrupts disabled.
827  *
828  *	LOCKING:
829  *	Inherited from caller.
830  *
831  *	RETURNS:
832  *	Bytes consumed.
833  */
834 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
835 				     unsigned int buflen, int rw)
836 {
837 	unsigned long flags;
838 	unsigned int consumed;
839 
840 	local_irq_save(flags);
841 	consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
842 	local_irq_restore(flags);
843 
844 	return consumed;
845 }
846 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
847 
848 /**
849  *	ata_pio_sector - Transfer a sector of data.
850  *	@qc: Command on going
851  *
852  *	Transfer qc->sect_size bytes of data from/to the ATA device.
853  *
854  *	LOCKING:
855  *	Inherited from caller.
856  */
857 static void ata_pio_sector(struct ata_queued_cmd *qc)
858 {
859 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
860 	struct ata_port *ap = qc->ap;
861 	struct page *page;
862 	unsigned int offset;
863 	unsigned char *buf;
864 
865 	if (qc->curbytes == qc->nbytes - qc->sect_size)
866 		ap->hsm_task_state = HSM_ST_LAST;
867 
868 	page = sg_page(qc->cursg);
869 	offset = qc->cursg->offset + qc->cursg_ofs;
870 
871 	/* get the current page and offset */
872 	page = nth_page(page, (offset >> PAGE_SHIFT));
873 	offset %= PAGE_SIZE;
874 
875 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
876 
877 	if (PageHighMem(page)) {
878 		unsigned long flags;
879 
880 		/* FIXME: use a bounce buffer */
881 		local_irq_save(flags);
882 		buf = kmap_atomic(page, KM_IRQ0);
883 
884 		/* do the actual data transfer */
885 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
886 				       do_write);
887 
888 		kunmap_atomic(buf, KM_IRQ0);
889 		local_irq_restore(flags);
890 	} else {
891 		buf = page_address(page);
892 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
893 				       do_write);
894 	}
895 
896 	qc->curbytes += qc->sect_size;
897 	qc->cursg_ofs += qc->sect_size;
898 
899 	if (qc->cursg_ofs == qc->cursg->length) {
900 		qc->cursg = sg_next(qc->cursg);
901 		qc->cursg_ofs = 0;
902 	}
903 }
904 
905 /**
906  *	ata_pio_sectors - Transfer one or many sectors.
907  *	@qc: Command on going
908  *
909  *	Transfer one or many sectors of data from/to the
910  *	ATA device for the DRQ request.
911  *
912  *	LOCKING:
913  *	Inherited from caller.
914  */
915 static void ata_pio_sectors(struct ata_queued_cmd *qc)
916 {
917 	if (is_multi_taskfile(&qc->tf)) {
918 		/* READ/WRITE MULTIPLE */
919 		unsigned int nsect;
920 
921 		WARN_ON_ONCE(qc->dev->multi_count == 0);
922 
923 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
924 			    qc->dev->multi_count);
925 		while (nsect--)
926 			ata_pio_sector(qc);
927 	} else
928 		ata_pio_sector(qc);
929 
930 	ata_sff_sync(qc->ap); /* flush */
931 }
932 
933 /**
934  *	atapi_send_cdb - Write CDB bytes to hardware
935  *	@ap: Port to which ATAPI device is attached.
936  *	@qc: Taskfile currently active
937  *
938  *	When device has indicated its readiness to accept
939  *	a CDB, this function is called.  Send the CDB.
940  *
941  *	LOCKING:
942  *	caller.
943  */
944 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
945 {
946 	/* send SCSI cdb */
947 	DPRINTK("send cdb\n");
948 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
949 
950 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
951 	ata_sff_sync(ap);
952 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
953 	   or is bmdma_start guaranteed to do it ? */
954 	switch (qc->tf.protocol) {
955 	case ATAPI_PROT_PIO:
956 		ap->hsm_task_state = HSM_ST;
957 		break;
958 	case ATAPI_PROT_NODATA:
959 		ap->hsm_task_state = HSM_ST_LAST;
960 		break;
961 	case ATAPI_PROT_DMA:
962 		ap->hsm_task_state = HSM_ST_LAST;
963 		/* initiate bmdma */
964 		ap->ops->bmdma_start(qc);
965 		break;
966 	}
967 }
968 
969 /**
970  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
971  *	@qc: Command on going
972  *	@bytes: number of bytes
973  *
974  *	Transfer Transfer data from/to the ATAPI device.
975  *
976  *	LOCKING:
977  *	Inherited from caller.
978  *
979  */
980 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
981 {
982 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
983 	struct ata_port *ap = qc->ap;
984 	struct ata_device *dev = qc->dev;
985 	struct ata_eh_info *ehi = &dev->link->eh_info;
986 	struct scatterlist *sg;
987 	struct page *page;
988 	unsigned char *buf;
989 	unsigned int offset, count, consumed;
990 
991 next_sg:
992 	sg = qc->cursg;
993 	if (unlikely(!sg)) {
994 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
995 				  "buf=%u cur=%u bytes=%u",
996 				  qc->nbytes, qc->curbytes, bytes);
997 		return -1;
998 	}
999 
1000 	page = sg_page(sg);
1001 	offset = sg->offset + qc->cursg_ofs;
1002 
1003 	/* get the current page and offset */
1004 	page = nth_page(page, (offset >> PAGE_SHIFT));
1005 	offset %= PAGE_SIZE;
1006 
1007 	/* don't overrun current sg */
1008 	count = min(sg->length - qc->cursg_ofs, bytes);
1009 
1010 	/* don't cross page boundaries */
1011 	count = min(count, (unsigned int)PAGE_SIZE - offset);
1012 
1013 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
1014 
1015 	if (PageHighMem(page)) {
1016 		unsigned long flags;
1017 
1018 		/* FIXME: use bounce buffer */
1019 		local_irq_save(flags);
1020 		buf = kmap_atomic(page, KM_IRQ0);
1021 
1022 		/* do the actual data transfer */
1023 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
1024 								count, rw);
1025 
1026 		kunmap_atomic(buf, KM_IRQ0);
1027 		local_irq_restore(flags);
1028 	} else {
1029 		buf = page_address(page);
1030 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
1031 								count, rw);
1032 	}
1033 
1034 	bytes -= min(bytes, consumed);
1035 	qc->curbytes += count;
1036 	qc->cursg_ofs += count;
1037 
1038 	if (qc->cursg_ofs == sg->length) {
1039 		qc->cursg = sg_next(qc->cursg);
1040 		qc->cursg_ofs = 0;
1041 	}
1042 
1043 	/*
1044 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
1045 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
1046 	 * check correctly as it doesn't know if it is the last request being
1047 	 * made. Somebody should implement a proper sanity check.
1048 	 */
1049 	if (bytes)
1050 		goto next_sg;
1051 	return 0;
1052 }
1053 
1054 /**
1055  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
1056  *	@qc: Command on going
1057  *
1058  *	Transfer Transfer data from/to the ATAPI device.
1059  *
1060  *	LOCKING:
1061  *	Inherited from caller.
1062  */
1063 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
1064 {
1065 	struct ata_port *ap = qc->ap;
1066 	struct ata_device *dev = qc->dev;
1067 	struct ata_eh_info *ehi = &dev->link->eh_info;
1068 	unsigned int ireason, bc_lo, bc_hi, bytes;
1069 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
1070 
1071 	/* Abuse qc->result_tf for temp storage of intermediate TF
1072 	 * here to save some kernel stack usage.
1073 	 * For normal completion, qc->result_tf is not relevant. For
1074 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
1075 	 * So, the correctness of qc->result_tf is not affected.
1076 	 */
1077 	ap->ops->sff_tf_read(ap, &qc->result_tf);
1078 	ireason = qc->result_tf.nsect;
1079 	bc_lo = qc->result_tf.lbam;
1080 	bc_hi = qc->result_tf.lbah;
1081 	bytes = (bc_hi << 8) | bc_lo;
1082 
1083 	/* shall be cleared to zero, indicating xfer of data */
1084 	if (unlikely(ireason & (1 << 0)))
1085 		goto atapi_check;
1086 
1087 	/* make sure transfer direction matches expected */
1088 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
1089 	if (unlikely(do_write != i_write))
1090 		goto atapi_check;
1091 
1092 	if (unlikely(!bytes))
1093 		goto atapi_check;
1094 
1095 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
1096 
1097 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
1098 		goto err_out;
1099 	ata_sff_sync(ap); /* flush */
1100 
1101 	return;
1102 
1103  atapi_check:
1104 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1105 			  ireason, bytes);
1106  err_out:
1107 	qc->err_mask |= AC_ERR_HSM;
1108 	ap->hsm_task_state = HSM_ST_ERR;
1109 }
1110 
1111 /**
1112  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1113  *	@ap: the target ata_port
1114  *	@qc: qc on going
1115  *
1116  *	RETURNS:
1117  *	1 if ok in workqueue, 0 otherwise.
1118  */
1119 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
1120 						struct ata_queued_cmd *qc)
1121 {
1122 	if (qc->tf.flags & ATA_TFLAG_POLLING)
1123 		return 1;
1124 
1125 	if (ap->hsm_task_state == HSM_ST_FIRST) {
1126 		if (qc->tf.protocol == ATA_PROT_PIO &&
1127 		   (qc->tf.flags & ATA_TFLAG_WRITE))
1128 		    return 1;
1129 
1130 		if (ata_is_atapi(qc->tf.protocol) &&
1131 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1132 			return 1;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 /**
1139  *	ata_hsm_qc_complete - finish a qc running on standard HSM
1140  *	@qc: Command to complete
1141  *	@in_wq: 1 if called from workqueue, 0 otherwise
1142  *
1143  *	Finish @qc which is running on standard HSM.
1144  *
1145  *	LOCKING:
1146  *	If @in_wq is zero, spin_lock_irqsave(host lock).
1147  *	Otherwise, none on entry and grabs host lock.
1148  */
1149 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1150 {
1151 	struct ata_port *ap = qc->ap;
1152 	unsigned long flags;
1153 
1154 	if (ap->ops->error_handler) {
1155 		if (in_wq) {
1156 			spin_lock_irqsave(ap->lock, flags);
1157 
1158 			/* EH might have kicked in while host lock is
1159 			 * released.
1160 			 */
1161 			qc = ata_qc_from_tag(ap, qc->tag);
1162 			if (qc) {
1163 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1164 					ap->ops->sff_irq_on(ap);
1165 					ata_qc_complete(qc);
1166 				} else
1167 					ata_port_freeze(ap);
1168 			}
1169 
1170 			spin_unlock_irqrestore(ap->lock, flags);
1171 		} else {
1172 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1173 				ata_qc_complete(qc);
1174 			else
1175 				ata_port_freeze(ap);
1176 		}
1177 	} else {
1178 		if (in_wq) {
1179 			spin_lock_irqsave(ap->lock, flags);
1180 			ap->ops->sff_irq_on(ap);
1181 			ata_qc_complete(qc);
1182 			spin_unlock_irqrestore(ap->lock, flags);
1183 		} else
1184 			ata_qc_complete(qc);
1185 	}
1186 }
1187 
1188 /**
1189  *	ata_sff_hsm_move - move the HSM to the next state.
1190  *	@ap: the target ata_port
1191  *	@qc: qc on going
1192  *	@status: current device status
1193  *	@in_wq: 1 if called from workqueue, 0 otherwise
1194  *
1195  *	RETURNS:
1196  *	1 when poll next status needed, 0 otherwise.
1197  */
1198 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1199 		     u8 status, int in_wq)
1200 {
1201 	struct ata_eh_info *ehi = &ap->link.eh_info;
1202 	unsigned long flags = 0;
1203 	int poll_next;
1204 
1205 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1206 
1207 	/* Make sure ata_sff_qc_issue() does not throw things
1208 	 * like DMA polling into the workqueue. Notice that
1209 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1210 	 */
1211 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1212 
1213 fsm_start:
1214 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1215 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1216 
1217 	switch (ap->hsm_task_state) {
1218 	case HSM_ST_FIRST:
1219 		/* Send first data block or PACKET CDB */
1220 
1221 		/* If polling, we will stay in the work queue after
1222 		 * sending the data. Otherwise, interrupt handler
1223 		 * takes over after sending the data.
1224 		 */
1225 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1226 
1227 		/* check device status */
1228 		if (unlikely((status & ATA_DRQ) == 0)) {
1229 			/* handle BSY=0, DRQ=0 as error */
1230 			if (likely(status & (ATA_ERR | ATA_DF)))
1231 				/* device stops HSM for abort/error */
1232 				qc->err_mask |= AC_ERR_DEV;
1233 			else {
1234 				/* HSM violation. Let EH handle this */
1235 				ata_ehi_push_desc(ehi,
1236 					"ST_FIRST: !(DRQ|ERR|DF)");
1237 				qc->err_mask |= AC_ERR_HSM;
1238 			}
1239 
1240 			ap->hsm_task_state = HSM_ST_ERR;
1241 			goto fsm_start;
1242 		}
1243 
1244 		/* Device should not ask for data transfer (DRQ=1)
1245 		 * when it finds something wrong.
1246 		 * We ignore DRQ here and stop the HSM by
1247 		 * changing hsm_task_state to HSM_ST_ERR and
1248 		 * let the EH abort the command or reset the device.
1249 		 */
1250 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1251 			/* Some ATAPI tape drives forget to clear the ERR bit
1252 			 * when doing the next command (mostly request sense).
1253 			 * We ignore ERR here to workaround and proceed sending
1254 			 * the CDB.
1255 			 */
1256 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1257 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1258 					"DRQ=1 with device error, "
1259 					"dev_stat 0x%X", status);
1260 				qc->err_mask |= AC_ERR_HSM;
1261 				ap->hsm_task_state = HSM_ST_ERR;
1262 				goto fsm_start;
1263 			}
1264 		}
1265 
1266 		/* Send the CDB (atapi) or the first data block (ata pio out).
1267 		 * During the state transition, interrupt handler shouldn't
1268 		 * be invoked before the data transfer is complete and
1269 		 * hsm_task_state is changed. Hence, the following locking.
1270 		 */
1271 		if (in_wq)
1272 			spin_lock_irqsave(ap->lock, flags);
1273 
1274 		if (qc->tf.protocol == ATA_PROT_PIO) {
1275 			/* PIO data out protocol.
1276 			 * send first data block.
1277 			 */
1278 
1279 			/* ata_pio_sectors() might change the state
1280 			 * to HSM_ST_LAST. so, the state is changed here
1281 			 * before ata_pio_sectors().
1282 			 */
1283 			ap->hsm_task_state = HSM_ST;
1284 			ata_pio_sectors(qc);
1285 		} else
1286 			/* send CDB */
1287 			atapi_send_cdb(ap, qc);
1288 
1289 		if (in_wq)
1290 			spin_unlock_irqrestore(ap->lock, flags);
1291 
1292 		/* if polling, ata_pio_task() handles the rest.
1293 		 * otherwise, interrupt handler takes over from here.
1294 		 */
1295 		break;
1296 
1297 	case HSM_ST:
1298 		/* complete command or read/write the data register */
1299 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1300 			/* ATAPI PIO protocol */
1301 			if ((status & ATA_DRQ) == 0) {
1302 				/* No more data to transfer or device error.
1303 				 * Device error will be tagged in HSM_ST_LAST.
1304 				 */
1305 				ap->hsm_task_state = HSM_ST_LAST;
1306 				goto fsm_start;
1307 			}
1308 
1309 			/* Device should not ask for data transfer (DRQ=1)
1310 			 * when it finds something wrong.
1311 			 * We ignore DRQ here and stop the HSM by
1312 			 * changing hsm_task_state to HSM_ST_ERR and
1313 			 * let the EH abort the command or reset the device.
1314 			 */
1315 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1316 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1317 					"DRQ=1 with device error, "
1318 					"dev_stat 0x%X", status);
1319 				qc->err_mask |= AC_ERR_HSM;
1320 				ap->hsm_task_state = HSM_ST_ERR;
1321 				goto fsm_start;
1322 			}
1323 
1324 			atapi_pio_bytes(qc);
1325 
1326 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1327 				/* bad ireason reported by device */
1328 				goto fsm_start;
1329 
1330 		} else {
1331 			/* ATA PIO protocol */
1332 			if (unlikely((status & ATA_DRQ) == 0)) {
1333 				/* handle BSY=0, DRQ=0 as error */
1334 				if (likely(status & (ATA_ERR | ATA_DF))) {
1335 					/* device stops HSM for abort/error */
1336 					qc->err_mask |= AC_ERR_DEV;
1337 
1338 					/* If diagnostic failed and this is
1339 					 * IDENTIFY, it's likely a phantom
1340 					 * device.  Mark hint.
1341 					 */
1342 					if (qc->dev->horkage &
1343 					    ATA_HORKAGE_DIAGNOSTIC)
1344 						qc->err_mask |=
1345 							AC_ERR_NODEV_HINT;
1346 				} else {
1347 					/* HSM violation. Let EH handle this.
1348 					 * Phantom devices also trigger this
1349 					 * condition.  Mark hint.
1350 					 */
1351 					ata_ehi_push_desc(ehi, "ST-ATA: "
1352 						"DRQ=0 without device error, "
1353 						"dev_stat 0x%X", status);
1354 					qc->err_mask |= AC_ERR_HSM |
1355 							AC_ERR_NODEV_HINT;
1356 				}
1357 
1358 				ap->hsm_task_state = HSM_ST_ERR;
1359 				goto fsm_start;
1360 			}
1361 
1362 			/* For PIO reads, some devices may ask for
1363 			 * data transfer (DRQ=1) alone with ERR=1.
1364 			 * We respect DRQ here and transfer one
1365 			 * block of junk data before changing the
1366 			 * hsm_task_state to HSM_ST_ERR.
1367 			 *
1368 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1369 			 * sense since the data block has been
1370 			 * transferred to the device.
1371 			 */
1372 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1373 				/* data might be corrputed */
1374 				qc->err_mask |= AC_ERR_DEV;
1375 
1376 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1377 					ata_pio_sectors(qc);
1378 					status = ata_wait_idle(ap);
1379 				}
1380 
1381 				if (status & (ATA_BUSY | ATA_DRQ)) {
1382 					ata_ehi_push_desc(ehi, "ST-ATA: "
1383 						"BUSY|DRQ persists on ERR|DF, "
1384 						"dev_stat 0x%X", status);
1385 					qc->err_mask |= AC_ERR_HSM;
1386 				}
1387 
1388 				/* There are oddball controllers with
1389 				 * status register stuck at 0x7f and
1390 				 * lbal/m/h at zero which makes it
1391 				 * pass all other presence detection
1392 				 * mechanisms we have.  Set NODEV_HINT
1393 				 * for it.  Kernel bz#7241.
1394 				 */
1395 				if (status == 0x7f)
1396 					qc->err_mask |= AC_ERR_NODEV_HINT;
1397 
1398 				/* ata_pio_sectors() might change the
1399 				 * state to HSM_ST_LAST. so, the state
1400 				 * is changed after ata_pio_sectors().
1401 				 */
1402 				ap->hsm_task_state = HSM_ST_ERR;
1403 				goto fsm_start;
1404 			}
1405 
1406 			ata_pio_sectors(qc);
1407 
1408 			if (ap->hsm_task_state == HSM_ST_LAST &&
1409 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1410 				/* all data read */
1411 				status = ata_wait_idle(ap);
1412 				goto fsm_start;
1413 			}
1414 		}
1415 
1416 		poll_next = 1;
1417 		break;
1418 
1419 	case HSM_ST_LAST:
1420 		if (unlikely(!ata_ok(status))) {
1421 			qc->err_mask |= __ac_err_mask(status);
1422 			ap->hsm_task_state = HSM_ST_ERR;
1423 			goto fsm_start;
1424 		}
1425 
1426 		/* no more data to transfer */
1427 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1428 			ap->print_id, qc->dev->devno, status);
1429 
1430 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1431 
1432 		ap->hsm_task_state = HSM_ST_IDLE;
1433 
1434 		/* complete taskfile transaction */
1435 		ata_hsm_qc_complete(qc, in_wq);
1436 
1437 		poll_next = 0;
1438 		break;
1439 
1440 	case HSM_ST_ERR:
1441 		ap->hsm_task_state = HSM_ST_IDLE;
1442 
1443 		/* complete taskfile transaction */
1444 		ata_hsm_qc_complete(qc, in_wq);
1445 
1446 		poll_next = 0;
1447 		break;
1448 	default:
1449 		poll_next = 0;
1450 		BUG();
1451 	}
1452 
1453 	return poll_next;
1454 }
1455 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1456 
1457 void ata_pio_task(struct work_struct *work)
1458 {
1459 	struct ata_port *ap =
1460 		container_of(work, struct ata_port, port_task.work);
1461 	struct ata_queued_cmd *qc = ap->port_task_data;
1462 	u8 status;
1463 	int poll_next;
1464 
1465 fsm_start:
1466 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1467 
1468 	/*
1469 	 * This is purely heuristic.  This is a fast path.
1470 	 * Sometimes when we enter, BSY will be cleared in
1471 	 * a chk-status or two.  If not, the drive is probably seeking
1472 	 * or something.  Snooze for a couple msecs, then
1473 	 * chk-status again.  If still busy, queue delayed work.
1474 	 */
1475 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1476 	if (status & ATA_BUSY) {
1477 		msleep(2);
1478 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1479 		if (status & ATA_BUSY) {
1480 			ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1481 			return;
1482 		}
1483 	}
1484 
1485 	/* move the HSM */
1486 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1487 
1488 	/* another command or interrupt handler
1489 	 * may be running at this point.
1490 	 */
1491 	if (poll_next)
1492 		goto fsm_start;
1493 }
1494 
1495 /**
1496  *	ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1497  *	@qc: command to issue to device
1498  *
1499  *	Using various libata functions and hooks, this function
1500  *	starts an ATA command.  ATA commands are grouped into
1501  *	classes called "protocols", and issuing each type of protocol
1502  *	is slightly different.
1503  *
1504  *	May be used as the qc_issue() entry in ata_port_operations.
1505  *
1506  *	LOCKING:
1507  *	spin_lock_irqsave(host lock)
1508  *
1509  *	RETURNS:
1510  *	Zero on success, AC_ERR_* mask on failure
1511  */
1512 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1513 {
1514 	struct ata_port *ap = qc->ap;
1515 
1516 	/* Use polling pio if the LLD doesn't handle
1517 	 * interrupt driven pio and atapi CDB interrupt.
1518 	 */
1519 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
1520 		switch (qc->tf.protocol) {
1521 		case ATA_PROT_PIO:
1522 		case ATA_PROT_NODATA:
1523 		case ATAPI_PROT_PIO:
1524 		case ATAPI_PROT_NODATA:
1525 			qc->tf.flags |= ATA_TFLAG_POLLING;
1526 			break;
1527 		case ATAPI_PROT_DMA:
1528 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1529 				/* see ata_dma_blacklisted() */
1530 				BUG();
1531 			break;
1532 		default:
1533 			break;
1534 		}
1535 	}
1536 
1537 	/* select the device */
1538 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1539 
1540 	/* start the command */
1541 	switch (qc->tf.protocol) {
1542 	case ATA_PROT_NODATA:
1543 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1544 			ata_qc_set_polling(qc);
1545 
1546 		ata_tf_to_host(ap, &qc->tf);
1547 		ap->hsm_task_state = HSM_ST_LAST;
1548 
1549 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1550 			ata_pio_queue_task(ap, qc, 0);
1551 
1552 		break;
1553 
1554 	case ATA_PROT_DMA:
1555 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1556 
1557 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1558 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1559 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
1560 		ap->hsm_task_state = HSM_ST_LAST;
1561 		break;
1562 
1563 	case ATA_PROT_PIO:
1564 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1565 			ata_qc_set_polling(qc);
1566 
1567 		ata_tf_to_host(ap, &qc->tf);
1568 
1569 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1570 			/* PIO data out protocol */
1571 			ap->hsm_task_state = HSM_ST_FIRST;
1572 			ata_pio_queue_task(ap, qc, 0);
1573 
1574 			/* always send first data block using
1575 			 * the ata_pio_task() codepath.
1576 			 */
1577 		} else {
1578 			/* PIO data in protocol */
1579 			ap->hsm_task_state = HSM_ST;
1580 
1581 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1582 				ata_pio_queue_task(ap, qc, 0);
1583 
1584 			/* if polling, ata_pio_task() handles the rest.
1585 			 * otherwise, interrupt handler takes over from here.
1586 			 */
1587 		}
1588 
1589 		break;
1590 
1591 	case ATAPI_PROT_PIO:
1592 	case ATAPI_PROT_NODATA:
1593 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1594 			ata_qc_set_polling(qc);
1595 
1596 		ata_tf_to_host(ap, &qc->tf);
1597 
1598 		ap->hsm_task_state = HSM_ST_FIRST;
1599 
1600 		/* send cdb by polling if no cdb interrupt */
1601 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1602 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1603 			ata_pio_queue_task(ap, qc, 0);
1604 		break;
1605 
1606 	case ATAPI_PROT_DMA:
1607 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1608 
1609 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1610 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1611 		ap->hsm_task_state = HSM_ST_FIRST;
1612 
1613 		/* send cdb by polling if no cdb interrupt */
1614 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1615 			ata_pio_queue_task(ap, qc, 0);
1616 		break;
1617 
1618 	default:
1619 		WARN_ON_ONCE(1);
1620 		return AC_ERR_SYSTEM;
1621 	}
1622 
1623 	return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1626 
1627 /**
1628  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1629  *	@qc: qc to fill result TF for
1630  *
1631  *	@qc is finished and result TF needs to be filled.  Fill it
1632  *	using ->sff_tf_read.
1633  *
1634  *	LOCKING:
1635  *	spin_lock_irqsave(host lock)
1636  *
1637  *	RETURNS:
1638  *	true indicating that result TF is successfully filled.
1639  */
1640 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1641 {
1642 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1643 	return true;
1644 }
1645 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1646 
1647 /**
1648  *	ata_sff_host_intr - Handle host interrupt for given (port, task)
1649  *	@ap: Port on which interrupt arrived (possibly...)
1650  *	@qc: Taskfile currently active in engine
1651  *
1652  *	Handle host interrupt for given queued command.  Currently,
1653  *	only DMA interrupts are handled.  All other commands are
1654  *	handled via polling with interrupts disabled (nIEN bit).
1655  *
1656  *	LOCKING:
1657  *	spin_lock_irqsave(host lock)
1658  *
1659  *	RETURNS:
1660  *	One if interrupt was handled, zero if not (shared irq).
1661  */
1662 unsigned int ata_sff_host_intr(struct ata_port *ap,
1663 				      struct ata_queued_cmd *qc)
1664 {
1665 	struct ata_eh_info *ehi = &ap->link.eh_info;
1666 	u8 status, host_stat = 0;
1667 
1668 	VPRINTK("ata%u: protocol %d task_state %d\n",
1669 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1670 
1671 	/* Check whether we are expecting interrupt in this state */
1672 	switch (ap->hsm_task_state) {
1673 	case HSM_ST_FIRST:
1674 		/* Some pre-ATAPI-4 devices assert INTRQ
1675 		 * at this state when ready to receive CDB.
1676 		 */
1677 
1678 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1679 		 * The flag was turned on only for atapi devices.  No
1680 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1681 		 */
1682 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1683 			goto idle_irq;
1684 		break;
1685 	case HSM_ST_LAST:
1686 		if (qc->tf.protocol == ATA_PROT_DMA ||
1687 		    qc->tf.protocol == ATAPI_PROT_DMA) {
1688 			/* check status of DMA engine */
1689 			host_stat = ap->ops->bmdma_status(ap);
1690 			VPRINTK("ata%u: host_stat 0x%X\n",
1691 				ap->print_id, host_stat);
1692 
1693 			/* if it's not our irq... */
1694 			if (!(host_stat & ATA_DMA_INTR))
1695 				goto idle_irq;
1696 
1697 			/* before we do anything else, clear DMA-Start bit */
1698 			ap->ops->bmdma_stop(qc);
1699 
1700 			if (unlikely(host_stat & ATA_DMA_ERR)) {
1701 				/* error when transfering data to/from memory */
1702 				qc->err_mask |= AC_ERR_HOST_BUS;
1703 				ap->hsm_task_state = HSM_ST_ERR;
1704 			}
1705 		}
1706 		break;
1707 	case HSM_ST:
1708 		break;
1709 	default:
1710 		goto idle_irq;
1711 	}
1712 
1713 
1714 	/* check main status, clearing INTRQ if needed */
1715 	status = ata_sff_irq_status(ap);
1716 	if (status & ATA_BUSY)
1717 		goto idle_irq;
1718 
1719 	/* ack bmdma irq events */
1720 	ap->ops->sff_irq_clear(ap);
1721 
1722 	ata_sff_hsm_move(ap, qc, status, 0);
1723 
1724 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1725 				       qc->tf.protocol == ATAPI_PROT_DMA))
1726 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1727 
1728 	return 1;	/* irq handled */
1729 
1730 idle_irq:
1731 	ap->stats.idle_irq++;
1732 
1733 #ifdef ATA_IRQ_TRAP
1734 	if ((ap->stats.idle_irq % 1000) == 0) {
1735 		ap->ops->sff_check_status(ap);
1736 		ap->ops->sff_irq_clear(ap);
1737 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1738 		return 1;
1739 	}
1740 #endif
1741 	return 0;	/* irq not handled */
1742 }
1743 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
1744 
1745 /**
1746  *	ata_sff_interrupt - Default ATA host interrupt handler
1747  *	@irq: irq line (unused)
1748  *	@dev_instance: pointer to our ata_host information structure
1749  *
1750  *	Default interrupt handler for PCI IDE devices.  Calls
1751  *	ata_sff_host_intr() for each port that is not disabled.
1752  *
1753  *	LOCKING:
1754  *	Obtains host lock during operation.
1755  *
1756  *	RETURNS:
1757  *	IRQ_NONE or IRQ_HANDLED.
1758  */
1759 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1760 {
1761 	struct ata_host *host = dev_instance;
1762 	unsigned int i;
1763 	unsigned int handled = 0;
1764 	unsigned long flags;
1765 
1766 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1767 	spin_lock_irqsave(&host->lock, flags);
1768 
1769 	for (i = 0; i < host->n_ports; i++) {
1770 		struct ata_port *ap;
1771 
1772 		ap = host->ports[i];
1773 		if (ap &&
1774 		    !(ap->flags & ATA_FLAG_DISABLED)) {
1775 			struct ata_queued_cmd *qc;
1776 
1777 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
1778 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1779 			    (qc->flags & ATA_QCFLAG_ACTIVE))
1780 				handled |= ata_sff_host_intr(ap, qc);
1781 		}
1782 	}
1783 
1784 	spin_unlock_irqrestore(&host->lock, flags);
1785 
1786 	return IRQ_RETVAL(handled);
1787 }
1788 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1789 
1790 /**
1791  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1792  *	@ap: port that appears to have timed out
1793  *
1794  *	Called from the libata error handlers when the core code suspects
1795  *	an interrupt has been lost. If it has complete anything we can and
1796  *	then return. Interface must support altstatus for this faster
1797  *	recovery to occur.
1798  *
1799  *	Locking:
1800  *	Caller holds host lock
1801  */
1802 
1803 void ata_sff_lost_interrupt(struct ata_port *ap)
1804 {
1805 	u8 status;
1806 	struct ata_queued_cmd *qc;
1807 
1808 	/* Only one outstanding command per SFF channel */
1809 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1810 	/* Check we have a live one.. */
1811 	if (qc == NULL ||  !(qc->flags & ATA_QCFLAG_ACTIVE))
1812 		return;
1813 	/* We cannot lose an interrupt on a polled command */
1814 	if (qc->tf.flags & ATA_TFLAG_POLLING)
1815 		return;
1816 	/* See if the controller thinks it is still busy - if so the command
1817 	   isn't a lost IRQ but is still in progress */
1818 	status = ata_sff_altstatus(ap);
1819 	if (status & ATA_BUSY)
1820 		return;
1821 
1822 	/* There was a command running, we are no longer busy and we have
1823 	   no interrupt. */
1824 	ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1825 								status);
1826 	/* Run the host interrupt logic as if the interrupt had not been
1827 	   lost */
1828 	ata_sff_host_intr(ap, qc);
1829 }
1830 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1831 
1832 /**
1833  *	ata_sff_freeze - Freeze SFF controller port
1834  *	@ap: port to freeze
1835  *
1836  *	Freeze BMDMA controller port.
1837  *
1838  *	LOCKING:
1839  *	Inherited from caller.
1840  */
1841 void ata_sff_freeze(struct ata_port *ap)
1842 {
1843 	struct ata_ioports *ioaddr = &ap->ioaddr;
1844 
1845 	ap->ctl |= ATA_NIEN;
1846 	ap->last_ctl = ap->ctl;
1847 
1848 	if (ioaddr->ctl_addr)
1849 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1850 
1851 	/* Under certain circumstances, some controllers raise IRQ on
1852 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1853 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1854 	 */
1855 	ap->ops->sff_check_status(ap);
1856 
1857 	ap->ops->sff_irq_clear(ap);
1858 }
1859 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1860 
1861 /**
1862  *	ata_sff_thaw - Thaw SFF controller port
1863  *	@ap: port to thaw
1864  *
1865  *	Thaw SFF controller port.
1866  *
1867  *	LOCKING:
1868  *	Inherited from caller.
1869  */
1870 void ata_sff_thaw(struct ata_port *ap)
1871 {
1872 	/* clear & re-enable interrupts */
1873 	ap->ops->sff_check_status(ap);
1874 	ap->ops->sff_irq_clear(ap);
1875 	ap->ops->sff_irq_on(ap);
1876 }
1877 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1878 
1879 /**
1880  *	ata_sff_prereset - prepare SFF link for reset
1881  *	@link: SFF link to be reset
1882  *	@deadline: deadline jiffies for the operation
1883  *
1884  *	SFF link @link is about to be reset.  Initialize it.  It first
1885  *	calls ata_std_prereset() and wait for !BSY if the port is
1886  *	being softreset.
1887  *
1888  *	LOCKING:
1889  *	Kernel thread context (may sleep)
1890  *
1891  *	RETURNS:
1892  *	0 on success, -errno otherwise.
1893  */
1894 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1895 {
1896 	struct ata_eh_context *ehc = &link->eh_context;
1897 	int rc;
1898 
1899 	rc = ata_std_prereset(link, deadline);
1900 	if (rc)
1901 		return rc;
1902 
1903 	/* if we're about to do hardreset, nothing more to do */
1904 	if (ehc->i.action & ATA_EH_HARDRESET)
1905 		return 0;
1906 
1907 	/* wait for !BSY if we don't know that no device is attached */
1908 	if (!ata_link_offline(link)) {
1909 		rc = ata_sff_wait_ready(link, deadline);
1910 		if (rc && rc != -ENODEV) {
1911 			ata_link_printk(link, KERN_WARNING, "device not ready "
1912 					"(errno=%d), forcing hardreset\n", rc);
1913 			ehc->i.action |= ATA_EH_HARDRESET;
1914 		}
1915 	}
1916 
1917 	return 0;
1918 }
1919 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1920 
1921 /**
1922  *	ata_devchk - PATA device presence detection
1923  *	@ap: ATA channel to examine
1924  *	@device: Device to examine (starting at zero)
1925  *
1926  *	This technique was originally described in
1927  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1928  *	later found its way into the ATA/ATAPI spec.
1929  *
1930  *	Write a pattern to the ATA shadow registers,
1931  *	and if a device is present, it will respond by
1932  *	correctly storing and echoing back the
1933  *	ATA shadow register contents.
1934  *
1935  *	LOCKING:
1936  *	caller.
1937  */
1938 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1939 {
1940 	struct ata_ioports *ioaddr = &ap->ioaddr;
1941 	u8 nsect, lbal;
1942 
1943 	ap->ops->sff_dev_select(ap, device);
1944 
1945 	iowrite8(0x55, ioaddr->nsect_addr);
1946 	iowrite8(0xaa, ioaddr->lbal_addr);
1947 
1948 	iowrite8(0xaa, ioaddr->nsect_addr);
1949 	iowrite8(0x55, ioaddr->lbal_addr);
1950 
1951 	iowrite8(0x55, ioaddr->nsect_addr);
1952 	iowrite8(0xaa, ioaddr->lbal_addr);
1953 
1954 	nsect = ioread8(ioaddr->nsect_addr);
1955 	lbal = ioread8(ioaddr->lbal_addr);
1956 
1957 	if ((nsect == 0x55) && (lbal == 0xaa))
1958 		return 1;	/* we found a device */
1959 
1960 	return 0;		/* nothing found */
1961 }
1962 
1963 /**
1964  *	ata_sff_dev_classify - Parse returned ATA device signature
1965  *	@dev: ATA device to classify (starting at zero)
1966  *	@present: device seems present
1967  *	@r_err: Value of error register on completion
1968  *
1969  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1970  *	an ATA/ATAPI-defined set of values is placed in the ATA
1971  *	shadow registers, indicating the results of device detection
1972  *	and diagnostics.
1973  *
1974  *	Select the ATA device, and read the values from the ATA shadow
1975  *	registers.  Then parse according to the Error register value,
1976  *	and the spec-defined values examined by ata_dev_classify().
1977  *
1978  *	LOCKING:
1979  *	caller.
1980  *
1981  *	RETURNS:
1982  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1983  */
1984 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1985 				  u8 *r_err)
1986 {
1987 	struct ata_port *ap = dev->link->ap;
1988 	struct ata_taskfile tf;
1989 	unsigned int class;
1990 	u8 err;
1991 
1992 	ap->ops->sff_dev_select(ap, dev->devno);
1993 
1994 	memset(&tf, 0, sizeof(tf));
1995 
1996 	ap->ops->sff_tf_read(ap, &tf);
1997 	err = tf.feature;
1998 	if (r_err)
1999 		*r_err = err;
2000 
2001 	/* see if device passed diags: continue and warn later */
2002 	if (err == 0)
2003 		/* diagnostic fail : do nothing _YET_ */
2004 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
2005 	else if (err == 1)
2006 		/* do nothing */ ;
2007 	else if ((dev->devno == 0) && (err == 0x81))
2008 		/* do nothing */ ;
2009 	else
2010 		return ATA_DEV_NONE;
2011 
2012 	/* determine if device is ATA or ATAPI */
2013 	class = ata_dev_classify(&tf);
2014 
2015 	if (class == ATA_DEV_UNKNOWN) {
2016 		/* If the device failed diagnostic, it's likely to
2017 		 * have reported incorrect device signature too.
2018 		 * Assume ATA device if the device seems present but
2019 		 * device signature is invalid with diagnostic
2020 		 * failure.
2021 		 */
2022 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
2023 			class = ATA_DEV_ATA;
2024 		else
2025 			class = ATA_DEV_NONE;
2026 	} else if ((class == ATA_DEV_ATA) &&
2027 		   (ap->ops->sff_check_status(ap) == 0))
2028 		class = ATA_DEV_NONE;
2029 
2030 	return class;
2031 }
2032 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2033 
2034 /**
2035  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
2036  *	@link: SFF link which is just reset
2037  *	@devmask: mask of present devices
2038  *	@deadline: deadline jiffies for the operation
2039  *
2040  *	Wait devices attached to SFF @link to become ready after
2041  *	reset.  It contains preceding 150ms wait to avoid accessing TF
2042  *	status register too early.
2043  *
2044  *	LOCKING:
2045  *	Kernel thread context (may sleep).
2046  *
2047  *	RETURNS:
2048  *	0 on success, -ENODEV if some or all of devices in @devmask
2049  *	don't seem to exist.  -errno on other errors.
2050  */
2051 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
2052 			     unsigned long deadline)
2053 {
2054 	struct ata_port *ap = link->ap;
2055 	struct ata_ioports *ioaddr = &ap->ioaddr;
2056 	unsigned int dev0 = devmask & (1 << 0);
2057 	unsigned int dev1 = devmask & (1 << 1);
2058 	int rc, ret = 0;
2059 
2060 	msleep(ATA_WAIT_AFTER_RESET);
2061 
2062 	/* always check readiness of the master device */
2063 	rc = ata_sff_wait_ready(link, deadline);
2064 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
2065 	 * and TF status is 0xff, bail out on it too.
2066 	 */
2067 	if (rc)
2068 		return rc;
2069 
2070 	/* if device 1 was found in ata_devchk, wait for register
2071 	 * access briefly, then wait for BSY to clear.
2072 	 */
2073 	if (dev1) {
2074 		int i;
2075 
2076 		ap->ops->sff_dev_select(ap, 1);
2077 
2078 		/* Wait for register access.  Some ATAPI devices fail
2079 		 * to set nsect/lbal after reset, so don't waste too
2080 		 * much time on it.  We're gonna wait for !BSY anyway.
2081 		 */
2082 		for (i = 0; i < 2; i++) {
2083 			u8 nsect, lbal;
2084 
2085 			nsect = ioread8(ioaddr->nsect_addr);
2086 			lbal = ioread8(ioaddr->lbal_addr);
2087 			if ((nsect == 1) && (lbal == 1))
2088 				break;
2089 			msleep(50);	/* give drive a breather */
2090 		}
2091 
2092 		rc = ata_sff_wait_ready(link, deadline);
2093 		if (rc) {
2094 			if (rc != -ENODEV)
2095 				return rc;
2096 			ret = rc;
2097 		}
2098 	}
2099 
2100 	/* is all this really necessary? */
2101 	ap->ops->sff_dev_select(ap, 0);
2102 	if (dev1)
2103 		ap->ops->sff_dev_select(ap, 1);
2104 	if (dev0)
2105 		ap->ops->sff_dev_select(ap, 0);
2106 
2107 	return ret;
2108 }
2109 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2110 
2111 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2112 			     unsigned long deadline)
2113 {
2114 	struct ata_ioports *ioaddr = &ap->ioaddr;
2115 
2116 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2117 
2118 	/* software reset.  causes dev0 to be selected */
2119 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2120 	udelay(20);	/* FIXME: flush */
2121 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2122 	udelay(20);	/* FIXME: flush */
2123 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2124 	ap->last_ctl = ap->ctl;
2125 
2126 	/* wait the port to become ready */
2127 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2128 }
2129 
2130 /**
2131  *	ata_sff_softreset - reset host port via ATA SRST
2132  *	@link: ATA link to reset
2133  *	@classes: resulting classes of attached devices
2134  *	@deadline: deadline jiffies for the operation
2135  *
2136  *	Reset host port using ATA SRST.
2137  *
2138  *	LOCKING:
2139  *	Kernel thread context (may sleep)
2140  *
2141  *	RETURNS:
2142  *	0 on success, -errno otherwise.
2143  */
2144 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2145 		      unsigned long deadline)
2146 {
2147 	struct ata_port *ap = link->ap;
2148 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2149 	unsigned int devmask = 0;
2150 	int rc;
2151 	u8 err;
2152 
2153 	DPRINTK("ENTER\n");
2154 
2155 	/* determine if device 0/1 are present */
2156 	if (ata_devchk(ap, 0))
2157 		devmask |= (1 << 0);
2158 	if (slave_possible && ata_devchk(ap, 1))
2159 		devmask |= (1 << 1);
2160 
2161 	/* select device 0 again */
2162 	ap->ops->sff_dev_select(ap, 0);
2163 
2164 	/* issue bus reset */
2165 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2166 	rc = ata_bus_softreset(ap, devmask, deadline);
2167 	/* if link is occupied, -ENODEV too is an error */
2168 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2169 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2170 		return rc;
2171 	}
2172 
2173 	/* determine by signature whether we have ATA or ATAPI devices */
2174 	classes[0] = ata_sff_dev_classify(&link->device[0],
2175 					  devmask & (1 << 0), &err);
2176 	if (slave_possible && err != 0x81)
2177 		classes[1] = ata_sff_dev_classify(&link->device[1],
2178 						  devmask & (1 << 1), &err);
2179 
2180 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2181 	return 0;
2182 }
2183 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2184 
2185 /**
2186  *	sata_sff_hardreset - reset host port via SATA phy reset
2187  *	@link: link to reset
2188  *	@class: resulting class of attached device
2189  *	@deadline: deadline jiffies for the operation
2190  *
2191  *	SATA phy-reset host port using DET bits of SControl register,
2192  *	wait for !BSY and classify the attached device.
2193  *
2194  *	LOCKING:
2195  *	Kernel thread context (may sleep)
2196  *
2197  *	RETURNS:
2198  *	0 on success, -errno otherwise.
2199  */
2200 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2201 		       unsigned long deadline)
2202 {
2203 	struct ata_eh_context *ehc = &link->eh_context;
2204 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2205 	bool online;
2206 	int rc;
2207 
2208 	rc = sata_link_hardreset(link, timing, deadline, &online,
2209 				 ata_sff_check_ready);
2210 	if (online)
2211 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2212 
2213 	DPRINTK("EXIT, class=%u\n", *class);
2214 	return rc;
2215 }
2216 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2217 
2218 /**
2219  *	ata_sff_postreset - SFF postreset callback
2220  *	@link: the target SFF ata_link
2221  *	@classes: classes of attached devices
2222  *
2223  *	This function is invoked after a successful reset.  It first
2224  *	calls ata_std_postreset() and performs SFF specific postreset
2225  *	processing.
2226  *
2227  *	LOCKING:
2228  *	Kernel thread context (may sleep)
2229  */
2230 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2231 {
2232 	struct ata_port *ap = link->ap;
2233 
2234 	ata_std_postreset(link, classes);
2235 
2236 	/* is double-select really necessary? */
2237 	if (classes[0] != ATA_DEV_NONE)
2238 		ap->ops->sff_dev_select(ap, 1);
2239 	if (classes[1] != ATA_DEV_NONE)
2240 		ap->ops->sff_dev_select(ap, 0);
2241 
2242 	/* bail out if no device is present */
2243 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2244 		DPRINTK("EXIT, no device\n");
2245 		return;
2246 	}
2247 
2248 	/* set up device control */
2249 	if (ap->ioaddr.ctl_addr) {
2250 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2251 		ap->last_ctl = ap->ctl;
2252 	}
2253 }
2254 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2255 
2256 /**
2257  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2258  *	@qc: command
2259  *
2260  *	Drain the FIFO and device of any stuck data following a command
2261  *	failing to complete. In some cases this is neccessary before a
2262  *	reset will recover the device.
2263  *
2264  */
2265 
2266 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2267 {
2268 	int count;
2269 	struct ata_port *ap;
2270 
2271 	/* We only need to flush incoming data when a command was running */
2272 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2273 		return;
2274 
2275 	ap = qc->ap;
2276 	/* Drain up to 64K of data before we give up this recovery method */
2277 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2278 						&& count < 32768; count++)
2279 		ioread16(ap->ioaddr.data_addr);
2280 
2281 	/* Can become DEBUG later */
2282 	if (count)
2283 		ata_port_printk(ap, KERN_DEBUG,
2284 			"drained %d bytes to clear DRQ.\n", count);
2285 
2286 }
2287 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2288 
2289 /**
2290  *	ata_sff_error_handler - Stock error handler for BMDMA controller
2291  *	@ap: port to handle error for
2292  *
2293  *	Stock error handler for SFF controller.  It can handle both
2294  *	PATA and SATA controllers.  Many controllers should be able to
2295  *	use this EH as-is or with some added handling before and
2296  *	after.
2297  *
2298  *	LOCKING:
2299  *	Kernel thread context (may sleep)
2300  */
2301 void ata_sff_error_handler(struct ata_port *ap)
2302 {
2303 	ata_reset_fn_t softreset = ap->ops->softreset;
2304 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2305 	struct ata_queued_cmd *qc;
2306 	unsigned long flags;
2307 	int thaw = 0;
2308 
2309 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2310 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2311 		qc = NULL;
2312 
2313 	/* reset PIO HSM and stop DMA engine */
2314 	spin_lock_irqsave(ap->lock, flags);
2315 
2316 	ap->hsm_task_state = HSM_ST_IDLE;
2317 
2318 	if (ap->ioaddr.bmdma_addr &&
2319 	    qc && (qc->tf.protocol == ATA_PROT_DMA ||
2320 		   qc->tf.protocol == ATAPI_PROT_DMA)) {
2321 		u8 host_stat;
2322 
2323 		host_stat = ap->ops->bmdma_status(ap);
2324 
2325 		/* BMDMA controllers indicate host bus error by
2326 		 * setting DMA_ERR bit and timing out.  As it wasn't
2327 		 * really a timeout event, adjust error mask and
2328 		 * cancel frozen state.
2329 		 */
2330 		if (qc->err_mask == AC_ERR_TIMEOUT
2331 						&& (host_stat & ATA_DMA_ERR)) {
2332 			qc->err_mask = AC_ERR_HOST_BUS;
2333 			thaw = 1;
2334 		}
2335 
2336 		ap->ops->bmdma_stop(qc);
2337 	}
2338 
2339 	ata_sff_sync(ap);		/* FIXME: We don't need this */
2340 	ap->ops->sff_check_status(ap);
2341 	ap->ops->sff_irq_clear(ap);
2342 	/* We *MUST* do FIFO draining before we issue a reset as several
2343 	 * devices helpfully clear their internal state and will lock solid
2344 	 * if we touch the data port post reset. Pass qc in case anyone wants
2345 	 *  to do different PIO/DMA recovery or has per command fixups
2346 	 */
2347 	if (ap->ops->drain_fifo)
2348 		ap->ops->drain_fifo(qc);
2349 
2350 	spin_unlock_irqrestore(ap->lock, flags);
2351 
2352 	if (thaw)
2353 		ata_eh_thaw_port(ap);
2354 
2355 	/* PIO and DMA engines have been stopped, perform recovery */
2356 
2357 	/* Ignore ata_sff_softreset if ctl isn't accessible and
2358 	 * built-in hardresets if SCR access isn't available.
2359 	 */
2360 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2361 		softreset = NULL;
2362 	if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2363 		hardreset = NULL;
2364 
2365 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2366 		  ap->ops->postreset);
2367 }
2368 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2369 
2370 /**
2371  *	ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2372  *	@qc: internal command to clean up
2373  *
2374  *	LOCKING:
2375  *	Kernel thread context (may sleep)
2376  */
2377 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2378 {
2379 	struct ata_port *ap = qc->ap;
2380 	unsigned long flags;
2381 
2382 	spin_lock_irqsave(ap->lock, flags);
2383 
2384 	ap->hsm_task_state = HSM_ST_IDLE;
2385 
2386 	if (ap->ioaddr.bmdma_addr)
2387 		ata_bmdma_stop(qc);
2388 
2389 	spin_unlock_irqrestore(ap->lock, flags);
2390 }
2391 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2392 
2393 /**
2394  *	ata_sff_port_start - Set port up for dma.
2395  *	@ap: Port to initialize
2396  *
2397  *	Called just after data structures for each port are
2398  *	initialized.  Allocates space for PRD table if the device
2399  *	is DMA capable SFF.
2400  *
2401  *	May be used as the port_start() entry in ata_port_operations.
2402  *
2403  *	LOCKING:
2404  *	Inherited from caller.
2405  */
2406 int ata_sff_port_start(struct ata_port *ap)
2407 {
2408 	if (ap->ioaddr.bmdma_addr)
2409 		return ata_port_start(ap);
2410 	return 0;
2411 }
2412 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2413 
2414 /**
2415  *	ata_sff_port_start32 - Set port up for dma.
2416  *	@ap: Port to initialize
2417  *
2418  *	Called just after data structures for each port are
2419  *	initialized.  Allocates space for PRD table if the device
2420  *	is DMA capable SFF.
2421  *
2422  *	May be used as the port_start() entry in ata_port_operations for
2423  *	devices that are capable of 32bit PIO.
2424  *
2425  *	LOCKING:
2426  *	Inherited from caller.
2427  */
2428 int ata_sff_port_start32(struct ata_port *ap)
2429 {
2430 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
2431 	if (ap->ioaddr.bmdma_addr)
2432 		return ata_port_start(ap);
2433 	return 0;
2434 }
2435 EXPORT_SYMBOL_GPL(ata_sff_port_start32);
2436 
2437 /**
2438  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2439  *	@ioaddr: IO address structure to be initialized
2440  *
2441  *	Utility function which initializes data_addr, error_addr,
2442  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2443  *	device_addr, status_addr, and command_addr to standard offsets
2444  *	relative to cmd_addr.
2445  *
2446  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2447  */
2448 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2449 {
2450 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2451 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2452 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2453 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2454 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2455 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2456 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2457 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2458 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2459 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2460 }
2461 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2462 
2463 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2464 				    unsigned long xfer_mask)
2465 {
2466 	/* Filter out DMA modes if the device has been configured by
2467 	   the BIOS as PIO only */
2468 
2469 	if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2470 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2471 	return xfer_mask;
2472 }
2473 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2474 
2475 /**
2476  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2477  *	@qc: Info associated with this ATA transaction.
2478  *
2479  *	LOCKING:
2480  *	spin_lock_irqsave(host lock)
2481  */
2482 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2483 {
2484 	struct ata_port *ap = qc->ap;
2485 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2486 	u8 dmactl;
2487 
2488 	/* load PRD table addr. */
2489 	mb();	/* make sure PRD table writes are visible to controller */
2490 	iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2491 
2492 	/* specify data direction, triple-check start bit is clear */
2493 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2494 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2495 	if (!rw)
2496 		dmactl |= ATA_DMA_WR;
2497 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2498 
2499 	/* issue r/w command */
2500 	ap->ops->sff_exec_command(ap, &qc->tf);
2501 }
2502 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2503 
2504 /**
2505  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2506  *	@qc: Info associated with this ATA transaction.
2507  *
2508  *	LOCKING:
2509  *	spin_lock_irqsave(host lock)
2510  */
2511 void ata_bmdma_start(struct ata_queued_cmd *qc)
2512 {
2513 	struct ata_port *ap = qc->ap;
2514 	u8 dmactl;
2515 
2516 	/* start host DMA transaction */
2517 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2518 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2519 
2520 	/* Strictly, one may wish to issue an ioread8() here, to
2521 	 * flush the mmio write.  However, control also passes
2522 	 * to the hardware at this point, and it will interrupt
2523 	 * us when we are to resume control.  So, in effect,
2524 	 * we don't care when the mmio write flushes.
2525 	 * Further, a read of the DMA status register _immediately_
2526 	 * following the write may not be what certain flaky hardware
2527 	 * is expected, so I think it is best to not add a readb()
2528 	 * without first all the MMIO ATA cards/mobos.
2529 	 * Or maybe I'm just being paranoid.
2530 	 *
2531 	 * FIXME: The posting of this write means I/O starts are
2532 	 * unneccessarily delayed for MMIO
2533 	 */
2534 }
2535 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2536 
2537 /**
2538  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2539  *	@qc: Command we are ending DMA for
2540  *
2541  *	Clears the ATA_DMA_START flag in the dma control register
2542  *
2543  *	May be used as the bmdma_stop() entry in ata_port_operations.
2544  *
2545  *	LOCKING:
2546  *	spin_lock_irqsave(host lock)
2547  */
2548 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2549 {
2550 	struct ata_port *ap = qc->ap;
2551 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2552 
2553 	/* clear start/stop bit */
2554 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2555 		 mmio + ATA_DMA_CMD);
2556 
2557 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2558 	ata_sff_dma_pause(ap);
2559 }
2560 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2561 
2562 /**
2563  *	ata_bmdma_status - Read PCI IDE BMDMA status
2564  *	@ap: Port associated with this ATA transaction.
2565  *
2566  *	Read and return BMDMA status register.
2567  *
2568  *	May be used as the bmdma_status() entry in ata_port_operations.
2569  *
2570  *	LOCKING:
2571  *	spin_lock_irqsave(host lock)
2572  */
2573 u8 ata_bmdma_status(struct ata_port *ap)
2574 {
2575 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2576 }
2577 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2578 
2579 /**
2580  *	ata_bus_reset - reset host port and associated ATA channel
2581  *	@ap: port to reset
2582  *
2583  *	This is typically the first time we actually start issuing
2584  *	commands to the ATA channel.  We wait for BSY to clear, then
2585  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2586  *	result.  Determine what devices, if any, are on the channel
2587  *	by looking at the device 0/1 error register.  Look at the signature
2588  *	stored in each device's taskfile registers, to determine if
2589  *	the device is ATA or ATAPI.
2590  *
2591  *	LOCKING:
2592  *	PCI/etc. bus probe sem.
2593  *	Obtains host lock.
2594  *
2595  *	SIDE EFFECTS:
2596  *	Sets ATA_FLAG_DISABLED if bus reset fails.
2597  *
2598  *	DEPRECATED:
2599  *	This function is only for drivers which still use old EH and
2600  *	will be removed soon.
2601  */
2602 void ata_bus_reset(struct ata_port *ap)
2603 {
2604 	struct ata_device *device = ap->link.device;
2605 	struct ata_ioports *ioaddr = &ap->ioaddr;
2606 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2607 	u8 err;
2608 	unsigned int dev0, dev1 = 0, devmask = 0;
2609 	int rc;
2610 
2611 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2612 
2613 	/* determine if device 0/1 are present */
2614 	if (ap->flags & ATA_FLAG_SATA_RESET)
2615 		dev0 = 1;
2616 	else {
2617 		dev0 = ata_devchk(ap, 0);
2618 		if (slave_possible)
2619 			dev1 = ata_devchk(ap, 1);
2620 	}
2621 
2622 	if (dev0)
2623 		devmask |= (1 << 0);
2624 	if (dev1)
2625 		devmask |= (1 << 1);
2626 
2627 	/* select device 0 again */
2628 	ap->ops->sff_dev_select(ap, 0);
2629 
2630 	/* issue bus reset */
2631 	if (ap->flags & ATA_FLAG_SRST) {
2632 		rc = ata_bus_softreset(ap, devmask,
2633 				       ata_deadline(jiffies, 40000));
2634 		if (rc && rc != -ENODEV)
2635 			goto err_out;
2636 	}
2637 
2638 	/*
2639 	 * determine by signature whether we have ATA or ATAPI devices
2640 	 */
2641 	device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2642 	if ((slave_possible) && (err != 0x81))
2643 		device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2644 
2645 	/* is double-select really necessary? */
2646 	if (device[1].class != ATA_DEV_NONE)
2647 		ap->ops->sff_dev_select(ap, 1);
2648 	if (device[0].class != ATA_DEV_NONE)
2649 		ap->ops->sff_dev_select(ap, 0);
2650 
2651 	/* if no devices were detected, disable this port */
2652 	if ((device[0].class == ATA_DEV_NONE) &&
2653 	    (device[1].class == ATA_DEV_NONE))
2654 		goto err_out;
2655 
2656 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2657 		/* set up device control for ATA_FLAG_SATA_RESET */
2658 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2659 		ap->last_ctl = ap->ctl;
2660 	}
2661 
2662 	DPRINTK("EXIT\n");
2663 	return;
2664 
2665 err_out:
2666 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
2667 	ata_port_disable(ap);
2668 
2669 	DPRINTK("EXIT\n");
2670 }
2671 EXPORT_SYMBOL_GPL(ata_bus_reset);
2672 
2673 #ifdef CONFIG_PCI
2674 
2675 /**
2676  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
2677  *	@pdev: PCI device
2678  *
2679  *	Some PCI ATA devices report simplex mode but in fact can be told to
2680  *	enter non simplex mode. This implements the necessary logic to
2681  *	perform the task on such devices. Calling it on other devices will
2682  *	have -undefined- behaviour.
2683  */
2684 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2685 {
2686 	unsigned long bmdma = pci_resource_start(pdev, 4);
2687 	u8 simplex;
2688 
2689 	if (bmdma == 0)
2690 		return -ENOENT;
2691 
2692 	simplex = inb(bmdma + 0x02);
2693 	outb(simplex & 0x60, bmdma + 0x02);
2694 	simplex = inb(bmdma + 0x02);
2695 	if (simplex & 0x80)
2696 		return -EOPNOTSUPP;
2697 	return 0;
2698 }
2699 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2700 
2701 /**
2702  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2703  *	@host: target ATA host
2704  *
2705  *	Acquire PCI BMDMA resources and initialize @host accordingly.
2706  *
2707  *	LOCKING:
2708  *	Inherited from calling layer (may sleep).
2709  *
2710  *	RETURNS:
2711  *	0 on success, -errno otherwise.
2712  */
2713 int ata_pci_bmdma_init(struct ata_host *host)
2714 {
2715 	struct device *gdev = host->dev;
2716 	struct pci_dev *pdev = to_pci_dev(gdev);
2717 	int i, rc;
2718 
2719 	/* No BAR4 allocation: No DMA */
2720 	if (pci_resource_start(pdev, 4) == 0)
2721 		return 0;
2722 
2723 	/* TODO: If we get no DMA mask we should fall back to PIO */
2724 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2725 	if (rc)
2726 		return rc;
2727 	rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2728 	if (rc)
2729 		return rc;
2730 
2731 	/* request and iomap DMA region */
2732 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2733 	if (rc) {
2734 		dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2735 		return -ENOMEM;
2736 	}
2737 	host->iomap = pcim_iomap_table(pdev);
2738 
2739 	for (i = 0; i < 2; i++) {
2740 		struct ata_port *ap = host->ports[i];
2741 		void __iomem *bmdma = host->iomap[4] + 8 * i;
2742 
2743 		if (ata_port_is_dummy(ap))
2744 			continue;
2745 
2746 		ap->ioaddr.bmdma_addr = bmdma;
2747 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2748 		    (ioread8(bmdma + 2) & 0x80))
2749 			host->flags |= ATA_HOST_SIMPLEX;
2750 
2751 		ata_port_desc(ap, "bmdma 0x%llx",
2752 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2753 	}
2754 
2755 	return 0;
2756 }
2757 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2758 
2759 static int ata_resources_present(struct pci_dev *pdev, int port)
2760 {
2761 	int i;
2762 
2763 	/* Check the PCI resources for this channel are enabled */
2764 	port = port * 2;
2765 	for (i = 0; i < 2; i++) {
2766 		if (pci_resource_start(pdev, port + i) == 0 ||
2767 		    pci_resource_len(pdev, port + i) == 0)
2768 			return 0;
2769 	}
2770 	return 1;
2771 }
2772 
2773 /**
2774  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2775  *	@host: target ATA host
2776  *
2777  *	Acquire native PCI ATA resources for @host and initialize the
2778  *	first two ports of @host accordingly.  Ports marked dummy are
2779  *	skipped and allocation failure makes the port dummy.
2780  *
2781  *	Note that native PCI resources are valid even for legacy hosts
2782  *	as we fix up pdev resources array early in boot, so this
2783  *	function can be used for both native and legacy SFF hosts.
2784  *
2785  *	LOCKING:
2786  *	Inherited from calling layer (may sleep).
2787  *
2788  *	RETURNS:
2789  *	0 if at least one port is initialized, -ENODEV if no port is
2790  *	available.
2791  */
2792 int ata_pci_sff_init_host(struct ata_host *host)
2793 {
2794 	struct device *gdev = host->dev;
2795 	struct pci_dev *pdev = to_pci_dev(gdev);
2796 	unsigned int mask = 0;
2797 	int i, rc;
2798 
2799 	/* request, iomap BARs and init port addresses accordingly */
2800 	for (i = 0; i < 2; i++) {
2801 		struct ata_port *ap = host->ports[i];
2802 		int base = i * 2;
2803 		void __iomem * const *iomap;
2804 
2805 		if (ata_port_is_dummy(ap))
2806 			continue;
2807 
2808 		/* Discard disabled ports.  Some controllers show
2809 		 * their unused channels this way.  Disabled ports are
2810 		 * made dummy.
2811 		 */
2812 		if (!ata_resources_present(pdev, i)) {
2813 			ap->ops = &ata_dummy_port_ops;
2814 			continue;
2815 		}
2816 
2817 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2818 					dev_driver_string(gdev));
2819 		if (rc) {
2820 			dev_printk(KERN_WARNING, gdev,
2821 				   "failed to request/iomap BARs for port %d "
2822 				   "(errno=%d)\n", i, rc);
2823 			if (rc == -EBUSY)
2824 				pcim_pin_device(pdev);
2825 			ap->ops = &ata_dummy_port_ops;
2826 			continue;
2827 		}
2828 		host->iomap = iomap = pcim_iomap_table(pdev);
2829 
2830 		ap->ioaddr.cmd_addr = iomap[base];
2831 		ap->ioaddr.altstatus_addr =
2832 		ap->ioaddr.ctl_addr = (void __iomem *)
2833 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2834 		ata_sff_std_ports(&ap->ioaddr);
2835 
2836 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2837 			(unsigned long long)pci_resource_start(pdev, base),
2838 			(unsigned long long)pci_resource_start(pdev, base + 1));
2839 
2840 		mask |= 1 << i;
2841 	}
2842 
2843 	if (!mask) {
2844 		dev_printk(KERN_ERR, gdev, "no available native port\n");
2845 		return -ENODEV;
2846 	}
2847 
2848 	return 0;
2849 }
2850 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2851 
2852 /**
2853  *	ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2854  *	@pdev: target PCI device
2855  *	@ppi: array of port_info, must be enough for two ports
2856  *	@r_host: out argument for the initialized ATA host
2857  *
2858  *	Helper to allocate ATA host for @pdev, acquire all native PCI
2859  *	resources and initialize it accordingly in one go.
2860  *
2861  *	LOCKING:
2862  *	Inherited from calling layer (may sleep).
2863  *
2864  *	RETURNS:
2865  *	0 on success, -errno otherwise.
2866  */
2867 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2868 			     const struct ata_port_info * const *ppi,
2869 			     struct ata_host **r_host)
2870 {
2871 	struct ata_host *host;
2872 	int rc;
2873 
2874 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2875 		return -ENOMEM;
2876 
2877 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2878 	if (!host) {
2879 		dev_printk(KERN_ERR, &pdev->dev,
2880 			   "failed to allocate ATA host\n");
2881 		rc = -ENOMEM;
2882 		goto err_out;
2883 	}
2884 
2885 	rc = ata_pci_sff_init_host(host);
2886 	if (rc)
2887 		goto err_out;
2888 
2889 	/* init DMA related stuff */
2890 	rc = ata_pci_bmdma_init(host);
2891 	if (rc)
2892 		goto err_bmdma;
2893 
2894 	devres_remove_group(&pdev->dev, NULL);
2895 	*r_host = host;
2896 	return 0;
2897 
2898 err_bmdma:
2899 	/* This is necessary because PCI and iomap resources are
2900 	 * merged and releasing the top group won't release the
2901 	 * acquired resources if some of those have been acquired
2902 	 * before entering this function.
2903 	 */
2904 	pcim_iounmap_regions(pdev, 0xf);
2905 err_out:
2906 	devres_release_group(&pdev->dev, NULL);
2907 	return rc;
2908 }
2909 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2910 
2911 /**
2912  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2913  *	@host: target SFF ATA host
2914  *	@irq_handler: irq_handler used when requesting IRQ(s)
2915  *	@sht: scsi_host_template to use when registering the host
2916  *
2917  *	This is the counterpart of ata_host_activate() for SFF ATA
2918  *	hosts.  This separate helper is necessary because SFF hosts
2919  *	use two separate interrupts in legacy mode.
2920  *
2921  *	LOCKING:
2922  *	Inherited from calling layer (may sleep).
2923  *
2924  *	RETURNS:
2925  *	0 on success, -errno otherwise.
2926  */
2927 int ata_pci_sff_activate_host(struct ata_host *host,
2928 			      irq_handler_t irq_handler,
2929 			      struct scsi_host_template *sht)
2930 {
2931 	struct device *dev = host->dev;
2932 	struct pci_dev *pdev = to_pci_dev(dev);
2933 	const char *drv_name = dev_driver_string(host->dev);
2934 	int legacy_mode = 0, rc;
2935 
2936 	rc = ata_host_start(host);
2937 	if (rc)
2938 		return rc;
2939 
2940 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2941 		u8 tmp8, mask;
2942 
2943 		/* TODO: What if one channel is in native mode ... */
2944 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2945 		mask = (1 << 2) | (1 << 0);
2946 		if ((tmp8 & mask) != mask)
2947 			legacy_mode = 1;
2948 #if defined(CONFIG_NO_ATA_LEGACY)
2949 		/* Some platforms with PCI limits cannot address compat
2950 		   port space. In that case we punt if their firmware has
2951 		   left a device in compatibility mode */
2952 		if (legacy_mode) {
2953 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2954 			return -EOPNOTSUPP;
2955 		}
2956 #endif
2957 	}
2958 
2959 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2960 		return -ENOMEM;
2961 
2962 	if (!legacy_mode && pdev->irq) {
2963 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2964 				      IRQF_SHARED, drv_name, host);
2965 		if (rc)
2966 			goto out;
2967 
2968 		ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2969 		ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2970 	} else if (legacy_mode) {
2971 		if (!ata_port_is_dummy(host->ports[0])) {
2972 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2973 					      irq_handler, IRQF_SHARED,
2974 					      drv_name, host);
2975 			if (rc)
2976 				goto out;
2977 
2978 			ata_port_desc(host->ports[0], "irq %d",
2979 				      ATA_PRIMARY_IRQ(pdev));
2980 		}
2981 
2982 		if (!ata_port_is_dummy(host->ports[1])) {
2983 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2984 					      irq_handler, IRQF_SHARED,
2985 					      drv_name, host);
2986 			if (rc)
2987 				goto out;
2988 
2989 			ata_port_desc(host->ports[1], "irq %d",
2990 				      ATA_SECONDARY_IRQ(pdev));
2991 		}
2992 	}
2993 
2994 	rc = ata_host_register(host, sht);
2995 out:
2996 	if (rc == 0)
2997 		devres_remove_group(dev, NULL);
2998 	else
2999 		devres_release_group(dev, NULL);
3000 
3001 	return rc;
3002 }
3003 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
3004 
3005 /**
3006  *	ata_pci_sff_init_one - Initialize/register PCI IDE host controller
3007  *	@pdev: Controller to be initialized
3008  *	@ppi: array of port_info, must be enough for two ports
3009  *	@sht: scsi_host_template to use when registering the host
3010  *	@host_priv: host private_data
3011  *
3012  *	This is a helper function which can be called from a driver's
3013  *	xxx_init_one() probe function if the hardware uses traditional
3014  *	IDE taskfile registers.
3015  *
3016  *	This function calls pci_enable_device(), reserves its register
3017  *	regions, sets the dma mask, enables bus master mode, and calls
3018  *	ata_device_add()
3019  *
3020  *	ASSUMPTION:
3021  *	Nobody makes a single channel controller that appears solely as
3022  *	the secondary legacy port on PCI.
3023  *
3024  *	LOCKING:
3025  *	Inherited from PCI layer (may sleep).
3026  *
3027  *	RETURNS:
3028  *	Zero on success, negative on errno-based value on error.
3029  */
3030 int ata_pci_sff_init_one(struct pci_dev *pdev,
3031 			 const struct ata_port_info * const *ppi,
3032 			 struct scsi_host_template *sht, void *host_priv)
3033 {
3034 	struct device *dev = &pdev->dev;
3035 	const struct ata_port_info *pi = NULL;
3036 	struct ata_host *host = NULL;
3037 	int i, rc;
3038 
3039 	DPRINTK("ENTER\n");
3040 
3041 	/* look up the first valid port_info */
3042 	for (i = 0; i < 2 && ppi[i]; i++) {
3043 		if (ppi[i]->port_ops != &ata_dummy_port_ops) {
3044 			pi = ppi[i];
3045 			break;
3046 		}
3047 	}
3048 
3049 	if (!pi) {
3050 		dev_printk(KERN_ERR, &pdev->dev,
3051 			   "no valid port_info specified\n");
3052 		return -EINVAL;
3053 	}
3054 
3055 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
3056 		return -ENOMEM;
3057 
3058 	rc = pcim_enable_device(pdev);
3059 	if (rc)
3060 		goto out;
3061 
3062 	/* prepare and activate SFF host */
3063 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
3064 	if (rc)
3065 		goto out;
3066 	host->private_data = host_priv;
3067 
3068 	pci_set_master(pdev);
3069 	rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
3070 out:
3071 	if (rc == 0)
3072 		devres_remove_group(&pdev->dev, NULL);
3073 	else
3074 		devres_release_group(&pdev->dev, NULL);
3075 
3076 	return rc;
3077 }
3078 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
3079 
3080 #endif /* CONFIG_PCI */
3081