1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-sff.c - helper library for PCI IDE BMDMA 4 * 5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2006 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/gfp.h> 17 #include <linux/pci.h> 18 #include <linux/module.h> 19 #include <linux/libata.h> 20 #include <linux/highmem.h> 21 #include <trace/events/libata.h> 22 #include "libata.h" 23 24 static struct workqueue_struct *ata_sff_wq; 25 26 const struct ata_port_operations ata_sff_port_ops = { 27 .inherits = &ata_base_port_ops, 28 29 .qc_prep = ata_noop_qc_prep, 30 .qc_issue = ata_sff_qc_issue, 31 .qc_fill_rtf = ata_sff_qc_fill_rtf, 32 33 .freeze = ata_sff_freeze, 34 .thaw = ata_sff_thaw, 35 .prereset = ata_sff_prereset, 36 .softreset = ata_sff_softreset, 37 .hardreset = sata_sff_hardreset, 38 .postreset = ata_sff_postreset, 39 .error_handler = ata_sff_error_handler, 40 41 .sff_dev_select = ata_sff_dev_select, 42 .sff_check_status = ata_sff_check_status, 43 .sff_tf_load = ata_sff_tf_load, 44 .sff_tf_read = ata_sff_tf_read, 45 .sff_exec_command = ata_sff_exec_command, 46 .sff_data_xfer = ata_sff_data_xfer, 47 .sff_drain_fifo = ata_sff_drain_fifo, 48 49 .lost_interrupt = ata_sff_lost_interrupt, 50 }; 51 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 52 53 /** 54 * ata_sff_check_status - Read device status reg & clear interrupt 55 * @ap: port where the device is 56 * 57 * Reads ATA taskfile status register for currently-selected device 58 * and return its value. This also clears pending interrupts 59 * from this device 60 * 61 * LOCKING: 62 * Inherited from caller. 63 */ 64 u8 ata_sff_check_status(struct ata_port *ap) 65 { 66 return ioread8(ap->ioaddr.status_addr); 67 } 68 EXPORT_SYMBOL_GPL(ata_sff_check_status); 69 70 /** 71 * ata_sff_altstatus - Read device alternate status reg 72 * @ap: port where the device is 73 * @status: pointer to a status value 74 * 75 * Reads ATA alternate status register for currently-selected device 76 * and return its value. 77 * 78 * RETURN: 79 * true if the register exists, false if not. 80 * 81 * LOCKING: 82 * Inherited from caller. 83 */ 84 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status) 85 { 86 u8 tmp; 87 88 if (ap->ops->sff_check_altstatus) { 89 tmp = ap->ops->sff_check_altstatus(ap); 90 goto read; 91 } 92 if (ap->ioaddr.altstatus_addr) { 93 tmp = ioread8(ap->ioaddr.altstatus_addr); 94 goto read; 95 } 96 return false; 97 98 read: 99 if (status) 100 *status = tmp; 101 return true; 102 } 103 104 /** 105 * ata_sff_irq_status - Check if the device is busy 106 * @ap: port where the device is 107 * 108 * Determine if the port is currently busy. Uses altstatus 109 * if available in order to avoid clearing shared IRQ status 110 * when finding an IRQ source. Non ctl capable devices don't 111 * share interrupt lines fortunately for us. 112 * 113 * LOCKING: 114 * Inherited from caller. 115 */ 116 static u8 ata_sff_irq_status(struct ata_port *ap) 117 { 118 u8 status; 119 120 /* Not us: We are busy */ 121 if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY)) 122 return status; 123 /* Clear INTRQ latch */ 124 status = ap->ops->sff_check_status(ap); 125 return status; 126 } 127 128 /** 129 * ata_sff_sync - Flush writes 130 * @ap: Port to wait for. 131 * 132 * CAUTION: 133 * If we have an mmio device with no ctl and no altstatus 134 * method this will fail. No such devices are known to exist. 135 * 136 * LOCKING: 137 * Inherited from caller. 138 */ 139 140 static void ata_sff_sync(struct ata_port *ap) 141 { 142 ata_sff_altstatus(ap, NULL); 143 } 144 145 /** 146 * ata_sff_pause - Flush writes and wait 400nS 147 * @ap: Port to pause for. 148 * 149 * CAUTION: 150 * If we have an mmio device with no ctl and no altstatus 151 * method this will fail. No such devices are known to exist. 152 * 153 * LOCKING: 154 * Inherited from caller. 155 */ 156 157 void ata_sff_pause(struct ata_port *ap) 158 { 159 ata_sff_sync(ap); 160 ndelay(400); 161 } 162 EXPORT_SYMBOL_GPL(ata_sff_pause); 163 164 /** 165 * ata_sff_dma_pause - Pause before commencing DMA 166 * @ap: Port to pause for. 167 * 168 * Perform I/O fencing and ensure sufficient cycle delays occur 169 * for the HDMA1:0 transition 170 */ 171 172 void ata_sff_dma_pause(struct ata_port *ap) 173 { 174 /* 175 * An altstatus read will cause the needed delay without 176 * messing up the IRQ status 177 */ 178 if (ata_sff_altstatus(ap, NULL)) 179 return; 180 /* There are no DMA controllers without ctl. BUG here to ensure 181 we never violate the HDMA1:0 transition timing and risk 182 corruption. */ 183 BUG(); 184 } 185 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 186 187 static int ata_sff_check_ready(struct ata_link *link) 188 { 189 u8 status = link->ap->ops->sff_check_status(link->ap); 190 191 return ata_check_ready(status); 192 } 193 194 /** 195 * ata_sff_wait_ready - sleep until BSY clears, or timeout 196 * @link: SFF link to wait ready status for 197 * @deadline: deadline jiffies for the operation 198 * 199 * Sleep until ATA Status register bit BSY clears, or timeout 200 * occurs. 201 * 202 * LOCKING: 203 * Kernel thread context (may sleep). 204 * 205 * RETURNS: 206 * 0 on success, -errno otherwise. 207 */ 208 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 209 { 210 return ata_wait_ready(link, deadline, ata_sff_check_ready); 211 } 212 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 213 214 /** 215 * ata_sff_set_devctl - Write device control reg 216 * @ap: port where the device is 217 * @ctl: value to write 218 * 219 * Writes ATA device control register. 220 * 221 * RETURN: 222 * true if the register exists, false if not. 223 * 224 * LOCKING: 225 * Inherited from caller. 226 */ 227 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 228 { 229 if (ap->ops->sff_set_devctl) { 230 ap->ops->sff_set_devctl(ap, ctl); 231 return true; 232 } 233 if (ap->ioaddr.ctl_addr) { 234 iowrite8(ctl, ap->ioaddr.ctl_addr); 235 return true; 236 } 237 238 return false; 239 } 240 241 /** 242 * ata_sff_dev_select - Select device 0/1 on ATA bus 243 * @ap: ATA channel to manipulate 244 * @device: ATA device (numbered from zero) to select 245 * 246 * Use the method defined in the ATA specification to 247 * make either device 0, or device 1, active on the 248 * ATA channel. Works with both PIO and MMIO. 249 * 250 * May be used as the dev_select() entry in ata_port_operations. 251 * 252 * LOCKING: 253 * caller. 254 */ 255 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 256 { 257 u8 tmp; 258 259 if (device == 0) 260 tmp = ATA_DEVICE_OBS; 261 else 262 tmp = ATA_DEVICE_OBS | ATA_DEV1; 263 264 iowrite8(tmp, ap->ioaddr.device_addr); 265 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 266 } 267 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 268 269 /** 270 * ata_dev_select - Select device 0/1 on ATA bus 271 * @ap: ATA channel to manipulate 272 * @device: ATA device (numbered from zero) to select 273 * @wait: non-zero to wait for Status register BSY bit to clear 274 * @can_sleep: non-zero if context allows sleeping 275 * 276 * Use the method defined in the ATA specification to 277 * make either device 0, or device 1, active on the 278 * ATA channel. 279 * 280 * This is a high-level version of ata_sff_dev_select(), which 281 * additionally provides the services of inserting the proper 282 * pauses and status polling, where needed. 283 * 284 * LOCKING: 285 * caller. 286 */ 287 static void ata_dev_select(struct ata_port *ap, unsigned int device, 288 unsigned int wait, unsigned int can_sleep) 289 { 290 if (wait) 291 ata_wait_idle(ap); 292 293 ap->ops->sff_dev_select(ap, device); 294 295 if (wait) { 296 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 297 ata_msleep(ap, 150); 298 ata_wait_idle(ap); 299 } 300 } 301 302 /** 303 * ata_sff_irq_on - Enable interrupts on a port. 304 * @ap: Port on which interrupts are enabled. 305 * 306 * Enable interrupts on a legacy IDE device using MMIO or PIO, 307 * wait for idle, clear any pending interrupts. 308 * 309 * Note: may NOT be used as the sff_irq_on() entry in 310 * ata_port_operations. 311 * 312 * LOCKING: 313 * Inherited from caller. 314 */ 315 void ata_sff_irq_on(struct ata_port *ap) 316 { 317 if (ap->ops->sff_irq_on) { 318 ap->ops->sff_irq_on(ap); 319 return; 320 } 321 322 ap->ctl &= ~ATA_NIEN; 323 ap->last_ctl = ap->ctl; 324 325 ata_sff_set_devctl(ap, ap->ctl); 326 ata_wait_idle(ap); 327 328 if (ap->ops->sff_irq_clear) 329 ap->ops->sff_irq_clear(ap); 330 } 331 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 332 333 /** 334 * ata_sff_tf_load - send taskfile registers to host controller 335 * @ap: Port to which output is sent 336 * @tf: ATA taskfile register set 337 * 338 * Outputs ATA taskfile to standard ATA host controller. 339 * 340 * LOCKING: 341 * Inherited from caller. 342 */ 343 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 344 { 345 struct ata_ioports *ioaddr = &ap->ioaddr; 346 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 347 348 if (tf->ctl != ap->last_ctl) { 349 if (ioaddr->ctl_addr) 350 iowrite8(tf->ctl, ioaddr->ctl_addr); 351 ap->last_ctl = tf->ctl; 352 ata_wait_idle(ap); 353 } 354 355 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 356 WARN_ON_ONCE(!ioaddr->ctl_addr); 357 iowrite8(tf->hob_feature, ioaddr->feature_addr); 358 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 359 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 360 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 361 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 362 } 363 364 if (is_addr) { 365 iowrite8(tf->feature, ioaddr->feature_addr); 366 iowrite8(tf->nsect, ioaddr->nsect_addr); 367 iowrite8(tf->lbal, ioaddr->lbal_addr); 368 iowrite8(tf->lbam, ioaddr->lbam_addr); 369 iowrite8(tf->lbah, ioaddr->lbah_addr); 370 } 371 372 if (tf->flags & ATA_TFLAG_DEVICE) 373 iowrite8(tf->device, ioaddr->device_addr); 374 375 ata_wait_idle(ap); 376 } 377 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 378 379 /** 380 * ata_sff_tf_read - input device's ATA taskfile shadow registers 381 * @ap: Port from which input is read 382 * @tf: ATA taskfile register set for storing input 383 * 384 * Reads ATA taskfile registers for currently-selected device 385 * into @tf. Assumes the device has a fully SFF compliant task file 386 * layout and behaviour. If you device does not (eg has a different 387 * status method) then you will need to provide a replacement tf_read 388 * 389 * LOCKING: 390 * Inherited from caller. 391 */ 392 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 393 { 394 struct ata_ioports *ioaddr = &ap->ioaddr; 395 396 tf->status = ata_sff_check_status(ap); 397 tf->error = ioread8(ioaddr->error_addr); 398 tf->nsect = ioread8(ioaddr->nsect_addr); 399 tf->lbal = ioread8(ioaddr->lbal_addr); 400 tf->lbam = ioread8(ioaddr->lbam_addr); 401 tf->lbah = ioread8(ioaddr->lbah_addr); 402 tf->device = ioread8(ioaddr->device_addr); 403 404 if (tf->flags & ATA_TFLAG_LBA48) { 405 if (likely(ioaddr->ctl_addr)) { 406 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 407 tf->hob_feature = ioread8(ioaddr->error_addr); 408 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 409 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 410 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 411 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 412 iowrite8(tf->ctl, ioaddr->ctl_addr); 413 ap->last_ctl = tf->ctl; 414 } else 415 WARN_ON_ONCE(1); 416 } 417 } 418 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 419 420 /** 421 * ata_sff_exec_command - issue ATA command to host controller 422 * @ap: port to which command is being issued 423 * @tf: ATA taskfile register set 424 * 425 * Issues ATA command, with proper synchronization with interrupt 426 * handler / other threads. 427 * 428 * LOCKING: 429 * spin_lock_irqsave(host lock) 430 */ 431 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 432 { 433 iowrite8(tf->command, ap->ioaddr.command_addr); 434 ata_sff_pause(ap); 435 } 436 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 437 438 /** 439 * ata_tf_to_host - issue ATA taskfile to host controller 440 * @ap: port to which command is being issued 441 * @tf: ATA taskfile register set 442 * @tag: tag of the associated command 443 * 444 * Issues ATA taskfile register set to ATA host controller, 445 * with proper synchronization with interrupt handler and 446 * other threads. 447 * 448 * LOCKING: 449 * spin_lock_irqsave(host lock) 450 */ 451 static inline void ata_tf_to_host(struct ata_port *ap, 452 const struct ata_taskfile *tf, 453 unsigned int tag) 454 { 455 trace_ata_tf_load(ap, tf); 456 ap->ops->sff_tf_load(ap, tf); 457 trace_ata_exec_command(ap, tf, tag); 458 ap->ops->sff_exec_command(ap, tf); 459 } 460 461 /** 462 * ata_sff_data_xfer - Transfer data by PIO 463 * @qc: queued command 464 * @buf: data buffer 465 * @buflen: buffer length 466 * @rw: read/write 467 * 468 * Transfer data from/to the device data register by PIO. 469 * 470 * LOCKING: 471 * Inherited from caller. 472 * 473 * RETURNS: 474 * Bytes consumed. 475 */ 476 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, 477 unsigned int buflen, int rw) 478 { 479 struct ata_port *ap = qc->dev->link->ap; 480 void __iomem *data_addr = ap->ioaddr.data_addr; 481 unsigned int words = buflen >> 1; 482 483 /* Transfer multiple of 2 bytes */ 484 if (rw == READ) 485 ioread16_rep(data_addr, buf, words); 486 else 487 iowrite16_rep(data_addr, buf, words); 488 489 /* Transfer trailing byte, if any. */ 490 if (unlikely(buflen & 0x01)) { 491 unsigned char pad[2] = { }; 492 493 /* Point buf to the tail of buffer */ 494 buf += buflen - 1; 495 496 /* 497 * Use io*16_rep() accessors here as well to avoid pointlessly 498 * swapping bytes to and from on the big endian machines... 499 */ 500 if (rw == READ) { 501 ioread16_rep(data_addr, pad, 1); 502 *buf = pad[0]; 503 } else { 504 pad[0] = *buf; 505 iowrite16_rep(data_addr, pad, 1); 506 } 507 words++; 508 } 509 510 return words << 1; 511 } 512 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 513 514 /** 515 * ata_sff_data_xfer32 - Transfer data by PIO 516 * @qc: queued command 517 * @buf: data buffer 518 * @buflen: buffer length 519 * @rw: read/write 520 * 521 * Transfer data from/to the device data register by PIO using 32bit 522 * I/O operations. 523 * 524 * LOCKING: 525 * Inherited from caller. 526 * 527 * RETURNS: 528 * Bytes consumed. 529 */ 530 531 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, 532 unsigned int buflen, int rw) 533 { 534 struct ata_device *dev = qc->dev; 535 struct ata_port *ap = dev->link->ap; 536 void __iomem *data_addr = ap->ioaddr.data_addr; 537 unsigned int words = buflen >> 2; 538 int slop = buflen & 3; 539 540 if (!(ap->pflags & ATA_PFLAG_PIO32)) 541 return ata_sff_data_xfer(qc, buf, buflen, rw); 542 543 /* Transfer multiple of 4 bytes */ 544 if (rw == READ) 545 ioread32_rep(data_addr, buf, words); 546 else 547 iowrite32_rep(data_addr, buf, words); 548 549 /* Transfer trailing bytes, if any */ 550 if (unlikely(slop)) { 551 unsigned char pad[4] = { }; 552 553 /* Point buf to the tail of buffer */ 554 buf += buflen - slop; 555 556 /* 557 * Use io*_rep() accessors here as well to avoid pointlessly 558 * swapping bytes to and from on the big endian machines... 559 */ 560 if (rw == READ) { 561 if (slop < 3) 562 ioread16_rep(data_addr, pad, 1); 563 else 564 ioread32_rep(data_addr, pad, 1); 565 memcpy(buf, pad, slop); 566 } else { 567 memcpy(pad, buf, slop); 568 if (slop < 3) 569 iowrite16_rep(data_addr, pad, 1); 570 else 571 iowrite32_rep(data_addr, pad, 1); 572 } 573 } 574 return (buflen + 1) & ~1; 575 } 576 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 577 578 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page, 579 unsigned int offset, size_t xfer_size) 580 { 581 bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 582 unsigned char *buf; 583 584 buf = kmap_atomic(page); 585 qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write); 586 kunmap_atomic(buf); 587 588 if (!do_write && !PageSlab(page)) 589 flush_dcache_page(page); 590 } 591 592 /** 593 * ata_pio_sector - Transfer a sector of data. 594 * @qc: Command on going 595 * 596 * Transfer qc->sect_size bytes of data from/to the ATA device. 597 * 598 * LOCKING: 599 * Inherited from caller. 600 */ 601 static void ata_pio_sector(struct ata_queued_cmd *qc) 602 { 603 struct ata_port *ap = qc->ap; 604 struct page *page; 605 unsigned int offset; 606 607 if (!qc->cursg) { 608 qc->curbytes = qc->nbytes; 609 return; 610 } 611 if (qc->curbytes == qc->nbytes - qc->sect_size) 612 ap->hsm_task_state = HSM_ST_LAST; 613 614 page = sg_page(qc->cursg); 615 offset = qc->cursg->offset + qc->cursg_ofs; 616 617 /* get the current page and offset */ 618 page = nth_page(page, (offset >> PAGE_SHIFT)); 619 offset %= PAGE_SIZE; 620 621 trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size); 622 623 /* 624 * Split the transfer when it splits a page boundary. Note that the 625 * split still has to be dword aligned like all ATA data transfers. 626 */ 627 WARN_ON_ONCE(offset % 4); 628 if (offset + qc->sect_size > PAGE_SIZE) { 629 unsigned int split_len = PAGE_SIZE - offset; 630 631 ata_pio_xfer(qc, page, offset, split_len); 632 ata_pio_xfer(qc, nth_page(page, 1), 0, 633 qc->sect_size - split_len); 634 } else { 635 ata_pio_xfer(qc, page, offset, qc->sect_size); 636 } 637 638 qc->curbytes += qc->sect_size; 639 qc->cursg_ofs += qc->sect_size; 640 641 if (qc->cursg_ofs == qc->cursg->length) { 642 qc->cursg = sg_next(qc->cursg); 643 if (!qc->cursg) 644 ap->hsm_task_state = HSM_ST_LAST; 645 qc->cursg_ofs = 0; 646 } 647 } 648 649 /** 650 * ata_pio_sectors - Transfer one or many sectors. 651 * @qc: Command on going 652 * 653 * Transfer one or many sectors of data from/to the 654 * ATA device for the DRQ request. 655 * 656 * LOCKING: 657 * Inherited from caller. 658 */ 659 static void ata_pio_sectors(struct ata_queued_cmd *qc) 660 { 661 if (is_multi_taskfile(&qc->tf)) { 662 /* READ/WRITE MULTIPLE */ 663 unsigned int nsect; 664 665 WARN_ON_ONCE(qc->dev->multi_count == 0); 666 667 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 668 qc->dev->multi_count); 669 while (nsect--) 670 ata_pio_sector(qc); 671 } else 672 ata_pio_sector(qc); 673 674 ata_sff_sync(qc->ap); /* flush */ 675 } 676 677 /** 678 * atapi_send_cdb - Write CDB bytes to hardware 679 * @ap: Port to which ATAPI device is attached. 680 * @qc: Taskfile currently active 681 * 682 * When device has indicated its readiness to accept 683 * a CDB, this function is called. Send the CDB. 684 * 685 * LOCKING: 686 * caller. 687 */ 688 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 689 { 690 /* send SCSI cdb */ 691 trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len); 692 WARN_ON_ONCE(qc->dev->cdb_len < 12); 693 694 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); 695 ata_sff_sync(ap); 696 /* FIXME: If the CDB is for DMA do we need to do the transition delay 697 or is bmdma_start guaranteed to do it ? */ 698 switch (qc->tf.protocol) { 699 case ATAPI_PROT_PIO: 700 ap->hsm_task_state = HSM_ST; 701 break; 702 case ATAPI_PROT_NODATA: 703 ap->hsm_task_state = HSM_ST_LAST; 704 break; 705 #ifdef CONFIG_ATA_BMDMA 706 case ATAPI_PROT_DMA: 707 ap->hsm_task_state = HSM_ST_LAST; 708 /* initiate bmdma */ 709 trace_ata_bmdma_start(ap, &qc->tf, qc->tag); 710 ap->ops->bmdma_start(qc); 711 break; 712 #endif /* CONFIG_ATA_BMDMA */ 713 default: 714 BUG(); 715 } 716 } 717 718 /** 719 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 720 * @qc: Command on going 721 * @bytes: number of bytes 722 * 723 * Transfer data from/to the ATAPI device. 724 * 725 * LOCKING: 726 * Inherited from caller. 727 * 728 */ 729 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 730 { 731 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 732 struct ata_port *ap = qc->ap; 733 struct ata_device *dev = qc->dev; 734 struct ata_eh_info *ehi = &dev->link->eh_info; 735 struct scatterlist *sg; 736 struct page *page; 737 unsigned char *buf; 738 unsigned int offset, count, consumed; 739 740 next_sg: 741 sg = qc->cursg; 742 if (unlikely(!sg)) { 743 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 744 "buf=%u cur=%u bytes=%u", 745 qc->nbytes, qc->curbytes, bytes); 746 return -1; 747 } 748 749 page = sg_page(sg); 750 offset = sg->offset + qc->cursg_ofs; 751 752 /* get the current page and offset */ 753 page = nth_page(page, (offset >> PAGE_SHIFT)); 754 offset %= PAGE_SIZE; 755 756 /* don't overrun current sg */ 757 count = min(sg->length - qc->cursg_ofs, bytes); 758 759 /* don't cross page boundaries */ 760 count = min(count, (unsigned int)PAGE_SIZE - offset); 761 762 trace_atapi_pio_transfer_data(qc, offset, count); 763 764 /* do the actual data transfer */ 765 buf = kmap_atomic(page); 766 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw); 767 kunmap_atomic(buf); 768 769 bytes -= min(bytes, consumed); 770 qc->curbytes += count; 771 qc->cursg_ofs += count; 772 773 if (qc->cursg_ofs == sg->length) { 774 qc->cursg = sg_next(qc->cursg); 775 qc->cursg_ofs = 0; 776 } 777 778 /* 779 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 780 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 781 * check correctly as it doesn't know if it is the last request being 782 * made. Somebody should implement a proper sanity check. 783 */ 784 if (bytes) 785 goto next_sg; 786 return 0; 787 } 788 789 /** 790 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 791 * @qc: Command on going 792 * 793 * Transfer Transfer data from/to the ATAPI device. 794 * 795 * LOCKING: 796 * Inherited from caller. 797 */ 798 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 799 { 800 struct ata_port *ap = qc->ap; 801 struct ata_device *dev = qc->dev; 802 struct ata_eh_info *ehi = &dev->link->eh_info; 803 unsigned int ireason, bc_lo, bc_hi, bytes; 804 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 805 806 /* Abuse qc->result_tf for temp storage of intermediate TF 807 * here to save some kernel stack usage. 808 * For normal completion, qc->result_tf is not relevant. For 809 * error, qc->result_tf is later overwritten by ata_qc_complete(). 810 * So, the correctness of qc->result_tf is not affected. 811 */ 812 ap->ops->sff_tf_read(ap, &qc->result_tf); 813 ireason = qc->result_tf.nsect; 814 bc_lo = qc->result_tf.lbam; 815 bc_hi = qc->result_tf.lbah; 816 bytes = (bc_hi << 8) | bc_lo; 817 818 /* shall be cleared to zero, indicating xfer of data */ 819 if (unlikely(ireason & ATAPI_COD)) 820 goto atapi_check; 821 822 /* make sure transfer direction matches expected */ 823 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 824 if (unlikely(do_write != i_write)) 825 goto atapi_check; 826 827 if (unlikely(!bytes)) 828 goto atapi_check; 829 830 if (unlikely(__atapi_pio_bytes(qc, bytes))) 831 goto err_out; 832 ata_sff_sync(ap); /* flush */ 833 834 return; 835 836 atapi_check: 837 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 838 ireason, bytes); 839 err_out: 840 qc->err_mask |= AC_ERR_HSM; 841 ap->hsm_task_state = HSM_ST_ERR; 842 } 843 844 /** 845 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 846 * @ap: the target ata_port 847 * @qc: qc on going 848 * 849 * RETURNS: 850 * 1 if ok in workqueue, 0 otherwise. 851 */ 852 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 853 struct ata_queued_cmd *qc) 854 { 855 if (qc->tf.flags & ATA_TFLAG_POLLING) 856 return 1; 857 858 if (ap->hsm_task_state == HSM_ST_FIRST) { 859 if (qc->tf.protocol == ATA_PROT_PIO && 860 (qc->tf.flags & ATA_TFLAG_WRITE)) 861 return 1; 862 863 if (ata_is_atapi(qc->tf.protocol) && 864 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 865 return 1; 866 } 867 868 return 0; 869 } 870 871 /** 872 * ata_hsm_qc_complete - finish a qc running on standard HSM 873 * @qc: Command to complete 874 * @in_wq: 1 if called from workqueue, 0 otherwise 875 * 876 * Finish @qc which is running on standard HSM. 877 * 878 * LOCKING: 879 * If @in_wq is zero, spin_lock_irqsave(host lock). 880 * Otherwise, none on entry and grabs host lock. 881 */ 882 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 883 { 884 struct ata_port *ap = qc->ap; 885 886 if (ap->ops->error_handler) { 887 if (in_wq) { 888 /* EH might have kicked in while host lock is 889 * released. 890 */ 891 qc = ata_qc_from_tag(ap, qc->tag); 892 if (qc) { 893 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 894 ata_sff_irq_on(ap); 895 ata_qc_complete(qc); 896 } else 897 ata_port_freeze(ap); 898 } 899 } else { 900 if (likely(!(qc->err_mask & AC_ERR_HSM))) 901 ata_qc_complete(qc); 902 else 903 ata_port_freeze(ap); 904 } 905 } else { 906 if (in_wq) { 907 ata_sff_irq_on(ap); 908 ata_qc_complete(qc); 909 } else 910 ata_qc_complete(qc); 911 } 912 } 913 914 /** 915 * ata_sff_hsm_move - move the HSM to the next state. 916 * @ap: the target ata_port 917 * @qc: qc on going 918 * @status: current device status 919 * @in_wq: 1 if called from workqueue, 0 otherwise 920 * 921 * RETURNS: 922 * 1 when poll next status needed, 0 otherwise. 923 */ 924 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 925 u8 status, int in_wq) 926 { 927 struct ata_link *link = qc->dev->link; 928 struct ata_eh_info *ehi = &link->eh_info; 929 int poll_next; 930 931 lockdep_assert_held(ap->lock); 932 933 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 934 935 /* Make sure ata_sff_qc_issue() does not throw things 936 * like DMA polling into the workqueue. Notice that 937 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 938 */ 939 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 940 941 fsm_start: 942 trace_ata_sff_hsm_state(qc, status); 943 944 switch (ap->hsm_task_state) { 945 case HSM_ST_FIRST: 946 /* Send first data block or PACKET CDB */ 947 948 /* If polling, we will stay in the work queue after 949 * sending the data. Otherwise, interrupt handler 950 * takes over after sending the data. 951 */ 952 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 953 954 /* check device status */ 955 if (unlikely((status & ATA_DRQ) == 0)) { 956 /* handle BSY=0, DRQ=0 as error */ 957 if (likely(status & (ATA_ERR | ATA_DF))) 958 /* device stops HSM for abort/error */ 959 qc->err_mask |= AC_ERR_DEV; 960 else { 961 /* HSM violation. Let EH handle this */ 962 ata_ehi_push_desc(ehi, 963 "ST_FIRST: !(DRQ|ERR|DF)"); 964 qc->err_mask |= AC_ERR_HSM; 965 } 966 967 ap->hsm_task_state = HSM_ST_ERR; 968 goto fsm_start; 969 } 970 971 /* Device should not ask for data transfer (DRQ=1) 972 * when it finds something wrong. 973 * We ignore DRQ here and stop the HSM by 974 * changing hsm_task_state to HSM_ST_ERR and 975 * let the EH abort the command or reset the device. 976 */ 977 if (unlikely(status & (ATA_ERR | ATA_DF))) { 978 /* Some ATAPI tape drives forget to clear the ERR bit 979 * when doing the next command (mostly request sense). 980 * We ignore ERR here to workaround and proceed sending 981 * the CDB. 982 */ 983 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 984 ata_ehi_push_desc(ehi, "ST_FIRST: " 985 "DRQ=1 with device error, " 986 "dev_stat 0x%X", status); 987 qc->err_mask |= AC_ERR_HSM; 988 ap->hsm_task_state = HSM_ST_ERR; 989 goto fsm_start; 990 } 991 } 992 993 if (qc->tf.protocol == ATA_PROT_PIO) { 994 /* PIO data out protocol. 995 * send first data block. 996 */ 997 998 /* ata_pio_sectors() might change the state 999 * to HSM_ST_LAST. so, the state is changed here 1000 * before ata_pio_sectors(). 1001 */ 1002 ap->hsm_task_state = HSM_ST; 1003 ata_pio_sectors(qc); 1004 } else 1005 /* send CDB */ 1006 atapi_send_cdb(ap, qc); 1007 1008 /* if polling, ata_sff_pio_task() handles the rest. 1009 * otherwise, interrupt handler takes over from here. 1010 */ 1011 break; 1012 1013 case HSM_ST: 1014 /* complete command or read/write the data register */ 1015 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1016 /* ATAPI PIO protocol */ 1017 if ((status & ATA_DRQ) == 0) { 1018 /* No more data to transfer or device error. 1019 * Device error will be tagged in HSM_ST_LAST. 1020 */ 1021 ap->hsm_task_state = HSM_ST_LAST; 1022 goto fsm_start; 1023 } 1024 1025 /* Device should not ask for data transfer (DRQ=1) 1026 * when it finds something wrong. 1027 * We ignore DRQ here and stop the HSM by 1028 * changing hsm_task_state to HSM_ST_ERR and 1029 * let the EH abort the command or reset the device. 1030 */ 1031 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1032 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1033 "DRQ=1 with device error, " 1034 "dev_stat 0x%X", status); 1035 qc->err_mask |= AC_ERR_HSM; 1036 ap->hsm_task_state = HSM_ST_ERR; 1037 goto fsm_start; 1038 } 1039 1040 atapi_pio_bytes(qc); 1041 1042 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1043 /* bad ireason reported by device */ 1044 goto fsm_start; 1045 1046 } else { 1047 /* ATA PIO protocol */ 1048 if (unlikely((status & ATA_DRQ) == 0)) { 1049 /* handle BSY=0, DRQ=0 as error */ 1050 if (likely(status & (ATA_ERR | ATA_DF))) { 1051 /* device stops HSM for abort/error */ 1052 qc->err_mask |= AC_ERR_DEV; 1053 1054 /* If diagnostic failed and this is 1055 * IDENTIFY, it's likely a phantom 1056 * device. Mark hint. 1057 */ 1058 if (qc->dev->horkage & 1059 ATA_HORKAGE_DIAGNOSTIC) 1060 qc->err_mask |= 1061 AC_ERR_NODEV_HINT; 1062 } else { 1063 /* HSM violation. Let EH handle this. 1064 * Phantom devices also trigger this 1065 * condition. Mark hint. 1066 */ 1067 ata_ehi_push_desc(ehi, "ST-ATA: " 1068 "DRQ=0 without device error, " 1069 "dev_stat 0x%X", status); 1070 qc->err_mask |= AC_ERR_HSM | 1071 AC_ERR_NODEV_HINT; 1072 } 1073 1074 ap->hsm_task_state = HSM_ST_ERR; 1075 goto fsm_start; 1076 } 1077 1078 /* For PIO reads, some devices may ask for 1079 * data transfer (DRQ=1) alone with ERR=1. 1080 * We respect DRQ here and transfer one 1081 * block of junk data before changing the 1082 * hsm_task_state to HSM_ST_ERR. 1083 * 1084 * For PIO writes, ERR=1 DRQ=1 doesn't make 1085 * sense since the data block has been 1086 * transferred to the device. 1087 */ 1088 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1089 /* data might be corrputed */ 1090 qc->err_mask |= AC_ERR_DEV; 1091 1092 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1093 ata_pio_sectors(qc); 1094 status = ata_wait_idle(ap); 1095 } 1096 1097 if (status & (ATA_BUSY | ATA_DRQ)) { 1098 ata_ehi_push_desc(ehi, "ST-ATA: " 1099 "BUSY|DRQ persists on ERR|DF, " 1100 "dev_stat 0x%X", status); 1101 qc->err_mask |= AC_ERR_HSM; 1102 } 1103 1104 /* There are oddball controllers with 1105 * status register stuck at 0x7f and 1106 * lbal/m/h at zero which makes it 1107 * pass all other presence detection 1108 * mechanisms we have. Set NODEV_HINT 1109 * for it. Kernel bz#7241. 1110 */ 1111 if (status == 0x7f) 1112 qc->err_mask |= AC_ERR_NODEV_HINT; 1113 1114 /* ata_pio_sectors() might change the 1115 * state to HSM_ST_LAST. so, the state 1116 * is changed after ata_pio_sectors(). 1117 */ 1118 ap->hsm_task_state = HSM_ST_ERR; 1119 goto fsm_start; 1120 } 1121 1122 ata_pio_sectors(qc); 1123 1124 if (ap->hsm_task_state == HSM_ST_LAST && 1125 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1126 /* all data read */ 1127 status = ata_wait_idle(ap); 1128 goto fsm_start; 1129 } 1130 } 1131 1132 poll_next = 1; 1133 break; 1134 1135 case HSM_ST_LAST: 1136 if (unlikely(!ata_ok(status))) { 1137 qc->err_mask |= __ac_err_mask(status); 1138 ap->hsm_task_state = HSM_ST_ERR; 1139 goto fsm_start; 1140 } 1141 1142 /* no more data to transfer */ 1143 trace_ata_sff_hsm_command_complete(qc, status); 1144 1145 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1146 1147 ap->hsm_task_state = HSM_ST_IDLE; 1148 1149 /* complete taskfile transaction */ 1150 ata_hsm_qc_complete(qc, in_wq); 1151 1152 poll_next = 0; 1153 break; 1154 1155 case HSM_ST_ERR: 1156 ap->hsm_task_state = HSM_ST_IDLE; 1157 1158 /* complete taskfile transaction */ 1159 ata_hsm_qc_complete(qc, in_wq); 1160 1161 poll_next = 0; 1162 break; 1163 default: 1164 poll_next = 0; 1165 WARN(true, "ata%d: SFF host state machine in invalid state %d", 1166 ap->print_id, ap->hsm_task_state); 1167 } 1168 1169 return poll_next; 1170 } 1171 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1172 1173 void ata_sff_queue_work(struct work_struct *work) 1174 { 1175 queue_work(ata_sff_wq, work); 1176 } 1177 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1178 1179 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1180 { 1181 queue_delayed_work(ata_sff_wq, dwork, delay); 1182 } 1183 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1184 1185 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1186 { 1187 struct ata_port *ap = link->ap; 1188 1189 WARN_ON((ap->sff_pio_task_link != NULL) && 1190 (ap->sff_pio_task_link != link)); 1191 ap->sff_pio_task_link = link; 1192 1193 /* may fail if ata_sff_flush_pio_task() in progress */ 1194 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1195 } 1196 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1197 1198 void ata_sff_flush_pio_task(struct ata_port *ap) 1199 { 1200 trace_ata_sff_flush_pio_task(ap); 1201 1202 cancel_delayed_work_sync(&ap->sff_pio_task); 1203 1204 /* 1205 * We wanna reset the HSM state to IDLE. If we do so without 1206 * grabbing the port lock, critical sections protected by it which 1207 * expect the HSM state to stay stable may get surprised. For 1208 * example, we may set IDLE in between the time 1209 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1210 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1211 */ 1212 spin_lock_irq(ap->lock); 1213 ap->hsm_task_state = HSM_ST_IDLE; 1214 spin_unlock_irq(ap->lock); 1215 1216 ap->sff_pio_task_link = NULL; 1217 } 1218 1219 static void ata_sff_pio_task(struct work_struct *work) 1220 { 1221 struct ata_port *ap = 1222 container_of(work, struct ata_port, sff_pio_task.work); 1223 struct ata_link *link = ap->sff_pio_task_link; 1224 struct ata_queued_cmd *qc; 1225 u8 status; 1226 int poll_next; 1227 1228 spin_lock_irq(ap->lock); 1229 1230 BUG_ON(ap->sff_pio_task_link == NULL); 1231 /* qc can be NULL if timeout occurred */ 1232 qc = ata_qc_from_tag(ap, link->active_tag); 1233 if (!qc) { 1234 ap->sff_pio_task_link = NULL; 1235 goto out_unlock; 1236 } 1237 1238 fsm_start: 1239 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1240 1241 /* 1242 * This is purely heuristic. This is a fast path. 1243 * Sometimes when we enter, BSY will be cleared in 1244 * a chk-status or two. If not, the drive is probably seeking 1245 * or something. Snooze for a couple msecs, then 1246 * chk-status again. If still busy, queue delayed work. 1247 */ 1248 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1249 if (status & ATA_BUSY) { 1250 spin_unlock_irq(ap->lock); 1251 ata_msleep(ap, 2); 1252 spin_lock_irq(ap->lock); 1253 1254 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1255 if (status & ATA_BUSY) { 1256 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1257 goto out_unlock; 1258 } 1259 } 1260 1261 /* 1262 * hsm_move() may trigger another command to be processed. 1263 * clean the link beforehand. 1264 */ 1265 ap->sff_pio_task_link = NULL; 1266 /* move the HSM */ 1267 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1268 1269 /* another command or interrupt handler 1270 * may be running at this point. 1271 */ 1272 if (poll_next) 1273 goto fsm_start; 1274 out_unlock: 1275 spin_unlock_irq(ap->lock); 1276 } 1277 1278 /** 1279 * ata_sff_qc_issue - issue taskfile to a SFF controller 1280 * @qc: command to issue to device 1281 * 1282 * This function issues a PIO or NODATA command to a SFF 1283 * controller. 1284 * 1285 * LOCKING: 1286 * spin_lock_irqsave(host lock) 1287 * 1288 * RETURNS: 1289 * Zero on success, AC_ERR_* mask on failure 1290 */ 1291 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1292 { 1293 struct ata_port *ap = qc->ap; 1294 struct ata_link *link = qc->dev->link; 1295 1296 /* Use polling pio if the LLD doesn't handle 1297 * interrupt driven pio and atapi CDB interrupt. 1298 */ 1299 if (ap->flags & ATA_FLAG_PIO_POLLING) 1300 qc->tf.flags |= ATA_TFLAG_POLLING; 1301 1302 /* select the device */ 1303 ata_dev_select(ap, qc->dev->devno, 1, 0); 1304 1305 /* start the command */ 1306 switch (qc->tf.protocol) { 1307 case ATA_PROT_NODATA: 1308 if (qc->tf.flags & ATA_TFLAG_POLLING) 1309 ata_qc_set_polling(qc); 1310 1311 ata_tf_to_host(ap, &qc->tf, qc->tag); 1312 ap->hsm_task_state = HSM_ST_LAST; 1313 1314 if (qc->tf.flags & ATA_TFLAG_POLLING) 1315 ata_sff_queue_pio_task(link, 0); 1316 1317 break; 1318 1319 case ATA_PROT_PIO: 1320 if (qc->tf.flags & ATA_TFLAG_POLLING) 1321 ata_qc_set_polling(qc); 1322 1323 ata_tf_to_host(ap, &qc->tf, qc->tag); 1324 1325 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1326 /* PIO data out protocol */ 1327 ap->hsm_task_state = HSM_ST_FIRST; 1328 ata_sff_queue_pio_task(link, 0); 1329 1330 /* always send first data block using the 1331 * ata_sff_pio_task() codepath. 1332 */ 1333 } else { 1334 /* PIO data in protocol */ 1335 ap->hsm_task_state = HSM_ST; 1336 1337 if (qc->tf.flags & ATA_TFLAG_POLLING) 1338 ata_sff_queue_pio_task(link, 0); 1339 1340 /* if polling, ata_sff_pio_task() handles the 1341 * rest. otherwise, interrupt handler takes 1342 * over from here. 1343 */ 1344 } 1345 1346 break; 1347 1348 case ATAPI_PROT_PIO: 1349 case ATAPI_PROT_NODATA: 1350 if (qc->tf.flags & ATA_TFLAG_POLLING) 1351 ata_qc_set_polling(qc); 1352 1353 ata_tf_to_host(ap, &qc->tf, qc->tag); 1354 1355 ap->hsm_task_state = HSM_ST_FIRST; 1356 1357 /* send cdb by polling if no cdb interrupt */ 1358 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1359 (qc->tf.flags & ATA_TFLAG_POLLING)) 1360 ata_sff_queue_pio_task(link, 0); 1361 break; 1362 1363 default: 1364 return AC_ERR_SYSTEM; 1365 } 1366 1367 return 0; 1368 } 1369 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1370 1371 /** 1372 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1373 * @qc: qc to fill result TF for 1374 * 1375 * @qc is finished and result TF needs to be filled. Fill it 1376 * using ->sff_tf_read. 1377 * 1378 * LOCKING: 1379 * spin_lock_irqsave(host lock) 1380 * 1381 * RETURNS: 1382 * true indicating that result TF is successfully filled. 1383 */ 1384 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1385 { 1386 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1387 return true; 1388 } 1389 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1390 1391 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1392 { 1393 ap->stats.idle_irq++; 1394 1395 #ifdef ATA_IRQ_TRAP 1396 if ((ap->stats.idle_irq % 1000) == 0) { 1397 ap->ops->sff_check_status(ap); 1398 if (ap->ops->sff_irq_clear) 1399 ap->ops->sff_irq_clear(ap); 1400 ata_port_warn(ap, "irq trap\n"); 1401 return 1; 1402 } 1403 #endif 1404 return 0; /* irq not handled */ 1405 } 1406 1407 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1408 struct ata_queued_cmd *qc, 1409 bool hsmv_on_idle) 1410 { 1411 u8 status; 1412 1413 trace_ata_sff_port_intr(qc, hsmv_on_idle); 1414 1415 /* Check whether we are expecting interrupt in this state */ 1416 switch (ap->hsm_task_state) { 1417 case HSM_ST_FIRST: 1418 /* Some pre-ATAPI-4 devices assert INTRQ 1419 * at this state when ready to receive CDB. 1420 */ 1421 1422 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1423 * The flag was turned on only for atapi devices. No 1424 * need to check ata_is_atapi(qc->tf.protocol) again. 1425 */ 1426 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1427 return ata_sff_idle_irq(ap); 1428 break; 1429 case HSM_ST_IDLE: 1430 return ata_sff_idle_irq(ap); 1431 default: 1432 break; 1433 } 1434 1435 /* check main status, clearing INTRQ if needed */ 1436 status = ata_sff_irq_status(ap); 1437 if (status & ATA_BUSY) { 1438 if (hsmv_on_idle) { 1439 /* BMDMA engine is already stopped, we're screwed */ 1440 qc->err_mask |= AC_ERR_HSM; 1441 ap->hsm_task_state = HSM_ST_ERR; 1442 } else 1443 return ata_sff_idle_irq(ap); 1444 } 1445 1446 /* clear irq events */ 1447 if (ap->ops->sff_irq_clear) 1448 ap->ops->sff_irq_clear(ap); 1449 1450 ata_sff_hsm_move(ap, qc, status, 0); 1451 1452 return 1; /* irq handled */ 1453 } 1454 1455 /** 1456 * ata_sff_port_intr - Handle SFF port interrupt 1457 * @ap: Port on which interrupt arrived (possibly...) 1458 * @qc: Taskfile currently active in engine 1459 * 1460 * Handle port interrupt for given queued command. 1461 * 1462 * LOCKING: 1463 * spin_lock_irqsave(host lock) 1464 * 1465 * RETURNS: 1466 * One if interrupt was handled, zero if not (shared irq). 1467 */ 1468 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1469 { 1470 return __ata_sff_port_intr(ap, qc, false); 1471 } 1472 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1473 1474 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1475 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1476 { 1477 struct ata_host *host = dev_instance; 1478 bool retried = false; 1479 unsigned int i; 1480 unsigned int handled, idle, polling; 1481 unsigned long flags; 1482 1483 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1484 spin_lock_irqsave(&host->lock, flags); 1485 1486 retry: 1487 handled = idle = polling = 0; 1488 for (i = 0; i < host->n_ports; i++) { 1489 struct ata_port *ap = host->ports[i]; 1490 struct ata_queued_cmd *qc; 1491 1492 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1493 if (qc) { 1494 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1495 handled |= port_intr(ap, qc); 1496 else 1497 polling |= 1 << i; 1498 } else 1499 idle |= 1 << i; 1500 } 1501 1502 /* 1503 * If no port was expecting IRQ but the controller is actually 1504 * asserting IRQ line, nobody cared will ensue. Check IRQ 1505 * pending status if available and clear spurious IRQ. 1506 */ 1507 if (!handled && !retried) { 1508 bool retry = false; 1509 1510 for (i = 0; i < host->n_ports; i++) { 1511 struct ata_port *ap = host->ports[i]; 1512 1513 if (polling & (1 << i)) 1514 continue; 1515 1516 if (!ap->ops->sff_irq_check || 1517 !ap->ops->sff_irq_check(ap)) 1518 continue; 1519 1520 if (idle & (1 << i)) { 1521 ap->ops->sff_check_status(ap); 1522 if (ap->ops->sff_irq_clear) 1523 ap->ops->sff_irq_clear(ap); 1524 } else { 1525 /* clear INTRQ and check if BUSY cleared */ 1526 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1527 retry |= true; 1528 /* 1529 * With command in flight, we can't do 1530 * sff_irq_clear() w/o racing with completion. 1531 */ 1532 } 1533 } 1534 1535 if (retry) { 1536 retried = true; 1537 goto retry; 1538 } 1539 } 1540 1541 spin_unlock_irqrestore(&host->lock, flags); 1542 1543 return IRQ_RETVAL(handled); 1544 } 1545 1546 /** 1547 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1548 * @irq: irq line (unused) 1549 * @dev_instance: pointer to our ata_host information structure 1550 * 1551 * Default interrupt handler for PCI IDE devices. Calls 1552 * ata_sff_port_intr() for each port that is not disabled. 1553 * 1554 * LOCKING: 1555 * Obtains host lock during operation. 1556 * 1557 * RETURNS: 1558 * IRQ_NONE or IRQ_HANDLED. 1559 */ 1560 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1561 { 1562 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1563 } 1564 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1565 1566 /** 1567 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1568 * @ap: port that appears to have timed out 1569 * 1570 * Called from the libata error handlers when the core code suspects 1571 * an interrupt has been lost. If it has complete anything we can and 1572 * then return. Interface must support altstatus for this faster 1573 * recovery to occur. 1574 * 1575 * Locking: 1576 * Caller holds host lock 1577 */ 1578 1579 void ata_sff_lost_interrupt(struct ata_port *ap) 1580 { 1581 u8 status = 0; 1582 struct ata_queued_cmd *qc; 1583 1584 /* Only one outstanding command per SFF channel */ 1585 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1586 /* We cannot lose an interrupt on a non-existent or polled command */ 1587 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1588 return; 1589 /* See if the controller thinks it is still busy - if so the command 1590 isn't a lost IRQ but is still in progress */ 1591 if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status))) 1592 return; 1593 if (status & ATA_BUSY) 1594 return; 1595 1596 /* There was a command running, we are no longer busy and we have 1597 no interrupt. */ 1598 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status); 1599 /* Run the host interrupt logic as if the interrupt had not been 1600 lost */ 1601 ata_sff_port_intr(ap, qc); 1602 } 1603 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1604 1605 /** 1606 * ata_sff_freeze - Freeze SFF controller port 1607 * @ap: port to freeze 1608 * 1609 * Freeze SFF controller port. 1610 * 1611 * LOCKING: 1612 * Inherited from caller. 1613 */ 1614 void ata_sff_freeze(struct ata_port *ap) 1615 { 1616 ap->ctl |= ATA_NIEN; 1617 ap->last_ctl = ap->ctl; 1618 1619 ata_sff_set_devctl(ap, ap->ctl); 1620 1621 /* Under certain circumstances, some controllers raise IRQ on 1622 * ATA_NIEN manipulation. Also, many controllers fail to mask 1623 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1624 */ 1625 ap->ops->sff_check_status(ap); 1626 1627 if (ap->ops->sff_irq_clear) 1628 ap->ops->sff_irq_clear(ap); 1629 } 1630 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1631 1632 /** 1633 * ata_sff_thaw - Thaw SFF controller port 1634 * @ap: port to thaw 1635 * 1636 * Thaw SFF controller port. 1637 * 1638 * LOCKING: 1639 * Inherited from caller. 1640 */ 1641 void ata_sff_thaw(struct ata_port *ap) 1642 { 1643 /* clear & re-enable interrupts */ 1644 ap->ops->sff_check_status(ap); 1645 if (ap->ops->sff_irq_clear) 1646 ap->ops->sff_irq_clear(ap); 1647 ata_sff_irq_on(ap); 1648 } 1649 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1650 1651 /** 1652 * ata_sff_prereset - prepare SFF link for reset 1653 * @link: SFF link to be reset 1654 * @deadline: deadline jiffies for the operation 1655 * 1656 * SFF link @link is about to be reset. Initialize it. It first 1657 * calls ata_std_prereset() and wait for !BSY if the port is 1658 * being softreset. 1659 * 1660 * LOCKING: 1661 * Kernel thread context (may sleep) 1662 * 1663 * RETURNS: 1664 * Always 0. 1665 */ 1666 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1667 { 1668 struct ata_eh_context *ehc = &link->eh_context; 1669 int rc; 1670 1671 /* The standard prereset is best-effort and always returns 0 */ 1672 ata_std_prereset(link, deadline); 1673 1674 /* if we're about to do hardreset, nothing more to do */ 1675 if (ehc->i.action & ATA_EH_HARDRESET) 1676 return 0; 1677 1678 /* wait for !BSY if we don't know that no device is attached */ 1679 if (!ata_link_offline(link)) { 1680 rc = ata_sff_wait_ready(link, deadline); 1681 if (rc && rc != -ENODEV) { 1682 ata_link_warn(link, 1683 "device not ready (errno=%d), forcing hardreset\n", 1684 rc); 1685 ehc->i.action |= ATA_EH_HARDRESET; 1686 } 1687 } 1688 1689 return 0; 1690 } 1691 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1692 1693 /** 1694 * ata_devchk - PATA device presence detection 1695 * @ap: ATA channel to examine 1696 * @device: Device to examine (starting at zero) 1697 * 1698 * This technique was originally described in 1699 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1700 * later found its way into the ATA/ATAPI spec. 1701 * 1702 * Write a pattern to the ATA shadow registers, 1703 * and if a device is present, it will respond by 1704 * correctly storing and echoing back the 1705 * ATA shadow register contents. 1706 * 1707 * RETURN: 1708 * true if device is present, false if not. 1709 * 1710 * LOCKING: 1711 * caller. 1712 */ 1713 static bool ata_devchk(struct ata_port *ap, unsigned int device) 1714 { 1715 struct ata_ioports *ioaddr = &ap->ioaddr; 1716 u8 nsect, lbal; 1717 1718 ap->ops->sff_dev_select(ap, device); 1719 1720 iowrite8(0x55, ioaddr->nsect_addr); 1721 iowrite8(0xaa, ioaddr->lbal_addr); 1722 1723 iowrite8(0xaa, ioaddr->nsect_addr); 1724 iowrite8(0x55, ioaddr->lbal_addr); 1725 1726 iowrite8(0x55, ioaddr->nsect_addr); 1727 iowrite8(0xaa, ioaddr->lbal_addr); 1728 1729 nsect = ioread8(ioaddr->nsect_addr); 1730 lbal = ioread8(ioaddr->lbal_addr); 1731 1732 if ((nsect == 0x55) && (lbal == 0xaa)) 1733 return true; /* we found a device */ 1734 1735 return false; /* nothing found */ 1736 } 1737 1738 /** 1739 * ata_sff_dev_classify - Parse returned ATA device signature 1740 * @dev: ATA device to classify (starting at zero) 1741 * @present: device seems present 1742 * @r_err: Value of error register on completion 1743 * 1744 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1745 * an ATA/ATAPI-defined set of values is placed in the ATA 1746 * shadow registers, indicating the results of device detection 1747 * and diagnostics. 1748 * 1749 * Select the ATA device, and read the values from the ATA shadow 1750 * registers. Then parse according to the Error register value, 1751 * and the spec-defined values examined by ata_dev_classify(). 1752 * 1753 * LOCKING: 1754 * caller. 1755 * 1756 * RETURNS: 1757 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1758 */ 1759 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1760 u8 *r_err) 1761 { 1762 struct ata_port *ap = dev->link->ap; 1763 struct ata_taskfile tf; 1764 unsigned int class; 1765 u8 err; 1766 1767 ap->ops->sff_dev_select(ap, dev->devno); 1768 1769 memset(&tf, 0, sizeof(tf)); 1770 1771 ap->ops->sff_tf_read(ap, &tf); 1772 err = tf.error; 1773 if (r_err) 1774 *r_err = err; 1775 1776 /* see if device passed diags: continue and warn later */ 1777 if (err == 0) 1778 /* diagnostic fail : do nothing _YET_ */ 1779 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1780 else if (err == 1) 1781 /* do nothing */ ; 1782 else if ((dev->devno == 0) && (err == 0x81)) 1783 /* do nothing */ ; 1784 else 1785 return ATA_DEV_NONE; 1786 1787 /* determine if device is ATA or ATAPI */ 1788 class = ata_port_classify(ap, &tf); 1789 switch (class) { 1790 case ATA_DEV_UNKNOWN: 1791 /* 1792 * If the device failed diagnostic, it's likely to 1793 * have reported incorrect device signature too. 1794 * Assume ATA device if the device seems present but 1795 * device signature is invalid with diagnostic 1796 * failure. 1797 */ 1798 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1799 class = ATA_DEV_ATA; 1800 else 1801 class = ATA_DEV_NONE; 1802 break; 1803 case ATA_DEV_ATA: 1804 if (ap->ops->sff_check_status(ap) == 0) 1805 class = ATA_DEV_NONE; 1806 break; 1807 } 1808 return class; 1809 } 1810 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1811 1812 /** 1813 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1814 * @link: SFF link which is just reset 1815 * @devmask: mask of present devices 1816 * @deadline: deadline jiffies for the operation 1817 * 1818 * Wait devices attached to SFF @link to become ready after 1819 * reset. It contains preceding 150ms wait to avoid accessing TF 1820 * status register too early. 1821 * 1822 * LOCKING: 1823 * Kernel thread context (may sleep). 1824 * 1825 * RETURNS: 1826 * 0 on success, -ENODEV if some or all of devices in @devmask 1827 * don't seem to exist. -errno on other errors. 1828 */ 1829 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1830 unsigned long deadline) 1831 { 1832 struct ata_port *ap = link->ap; 1833 struct ata_ioports *ioaddr = &ap->ioaddr; 1834 unsigned int dev0 = devmask & (1 << 0); 1835 unsigned int dev1 = devmask & (1 << 1); 1836 int rc, ret = 0; 1837 1838 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1839 1840 /* always check readiness of the master device */ 1841 rc = ata_sff_wait_ready(link, deadline); 1842 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1843 * and TF status is 0xff, bail out on it too. 1844 */ 1845 if (rc) 1846 return rc; 1847 1848 /* if device 1 was found in ata_devchk, wait for register 1849 * access briefly, then wait for BSY to clear. 1850 */ 1851 if (dev1) { 1852 int i; 1853 1854 ap->ops->sff_dev_select(ap, 1); 1855 1856 /* Wait for register access. Some ATAPI devices fail 1857 * to set nsect/lbal after reset, so don't waste too 1858 * much time on it. We're gonna wait for !BSY anyway. 1859 */ 1860 for (i = 0; i < 2; i++) { 1861 u8 nsect, lbal; 1862 1863 nsect = ioread8(ioaddr->nsect_addr); 1864 lbal = ioread8(ioaddr->lbal_addr); 1865 if ((nsect == 1) && (lbal == 1)) 1866 break; 1867 ata_msleep(ap, 50); /* give drive a breather */ 1868 } 1869 1870 rc = ata_sff_wait_ready(link, deadline); 1871 if (rc) { 1872 if (rc != -ENODEV) 1873 return rc; 1874 ret = rc; 1875 } 1876 } 1877 1878 /* is all this really necessary? */ 1879 ap->ops->sff_dev_select(ap, 0); 1880 if (dev1) 1881 ap->ops->sff_dev_select(ap, 1); 1882 if (dev0) 1883 ap->ops->sff_dev_select(ap, 0); 1884 1885 return ret; 1886 } 1887 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 1888 1889 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1890 unsigned long deadline) 1891 { 1892 struct ata_ioports *ioaddr = &ap->ioaddr; 1893 1894 if (ap->ioaddr.ctl_addr) { 1895 /* software reset. causes dev0 to be selected */ 1896 iowrite8(ap->ctl, ioaddr->ctl_addr); 1897 udelay(20); /* FIXME: flush */ 1898 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 1899 udelay(20); /* FIXME: flush */ 1900 iowrite8(ap->ctl, ioaddr->ctl_addr); 1901 ap->last_ctl = ap->ctl; 1902 } 1903 1904 /* wait the port to become ready */ 1905 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 1906 } 1907 1908 /** 1909 * ata_sff_softreset - reset host port via ATA SRST 1910 * @link: ATA link to reset 1911 * @classes: resulting classes of attached devices 1912 * @deadline: deadline jiffies for the operation 1913 * 1914 * Reset host port using ATA SRST. 1915 * 1916 * LOCKING: 1917 * Kernel thread context (may sleep) 1918 * 1919 * RETURNS: 1920 * 0 on success, -errno otherwise. 1921 */ 1922 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 1923 unsigned long deadline) 1924 { 1925 struct ata_port *ap = link->ap; 1926 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 1927 unsigned int devmask = 0; 1928 int rc; 1929 u8 err; 1930 1931 /* determine if device 0/1 are present */ 1932 if (ata_devchk(ap, 0)) 1933 devmask |= (1 << 0); 1934 if (slave_possible && ata_devchk(ap, 1)) 1935 devmask |= (1 << 1); 1936 1937 /* select device 0 again */ 1938 ap->ops->sff_dev_select(ap, 0); 1939 1940 /* issue bus reset */ 1941 rc = ata_bus_softreset(ap, devmask, deadline); 1942 /* if link is occupied, -ENODEV too is an error */ 1943 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 1944 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 1945 return rc; 1946 } 1947 1948 /* determine by signature whether we have ATA or ATAPI devices */ 1949 classes[0] = ata_sff_dev_classify(&link->device[0], 1950 devmask & (1 << 0), &err); 1951 if (slave_possible && err != 0x81) 1952 classes[1] = ata_sff_dev_classify(&link->device[1], 1953 devmask & (1 << 1), &err); 1954 1955 return 0; 1956 } 1957 EXPORT_SYMBOL_GPL(ata_sff_softreset); 1958 1959 /** 1960 * sata_sff_hardreset - reset host port via SATA phy reset 1961 * @link: link to reset 1962 * @class: resulting class of attached device 1963 * @deadline: deadline jiffies for the operation 1964 * 1965 * SATA phy-reset host port using DET bits of SControl register, 1966 * wait for !BSY and classify the attached device. 1967 * 1968 * LOCKING: 1969 * Kernel thread context (may sleep) 1970 * 1971 * RETURNS: 1972 * 0 on success, -errno otherwise. 1973 */ 1974 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 1975 unsigned long deadline) 1976 { 1977 struct ata_eh_context *ehc = &link->eh_context; 1978 const unsigned long *timing = sata_ehc_deb_timing(ehc); 1979 bool online; 1980 int rc; 1981 1982 rc = sata_link_hardreset(link, timing, deadline, &online, 1983 ata_sff_check_ready); 1984 if (online) 1985 *class = ata_sff_dev_classify(link->device, 1, NULL); 1986 1987 return rc; 1988 } 1989 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 1990 1991 /** 1992 * ata_sff_postreset - SFF postreset callback 1993 * @link: the target SFF ata_link 1994 * @classes: classes of attached devices 1995 * 1996 * This function is invoked after a successful reset. It first 1997 * calls ata_std_postreset() and performs SFF specific postreset 1998 * processing. 1999 * 2000 * LOCKING: 2001 * Kernel thread context (may sleep) 2002 */ 2003 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2004 { 2005 struct ata_port *ap = link->ap; 2006 2007 ata_std_postreset(link, classes); 2008 2009 /* is double-select really necessary? */ 2010 if (classes[0] != ATA_DEV_NONE) 2011 ap->ops->sff_dev_select(ap, 1); 2012 if (classes[1] != ATA_DEV_NONE) 2013 ap->ops->sff_dev_select(ap, 0); 2014 2015 /* bail out if no device is present */ 2016 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) 2017 return; 2018 2019 /* set up device control */ 2020 if (ata_sff_set_devctl(ap, ap->ctl)) 2021 ap->last_ctl = ap->ctl; 2022 } 2023 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2024 2025 /** 2026 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2027 * @qc: command 2028 * 2029 * Drain the FIFO and device of any stuck data following a command 2030 * failing to complete. In some cases this is necessary before a 2031 * reset will recover the device. 2032 * 2033 */ 2034 2035 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2036 { 2037 int count; 2038 struct ata_port *ap; 2039 2040 /* We only need to flush incoming data when a command was running */ 2041 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2042 return; 2043 2044 ap = qc->ap; 2045 /* Drain up to 64K of data before we give up this recovery method */ 2046 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2047 && count < 65536; count += 2) 2048 ioread16(ap->ioaddr.data_addr); 2049 2050 if (count) 2051 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2052 2053 } 2054 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2055 2056 /** 2057 * ata_sff_error_handler - Stock error handler for SFF controller 2058 * @ap: port to handle error for 2059 * 2060 * Stock error handler for SFF controller. It can handle both 2061 * PATA and SATA controllers. Many controllers should be able to 2062 * use this EH as-is or with some added handling before and 2063 * after. 2064 * 2065 * LOCKING: 2066 * Kernel thread context (may sleep) 2067 */ 2068 void ata_sff_error_handler(struct ata_port *ap) 2069 { 2070 ata_reset_fn_t softreset = ap->ops->softreset; 2071 ata_reset_fn_t hardreset = ap->ops->hardreset; 2072 struct ata_queued_cmd *qc; 2073 unsigned long flags; 2074 2075 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2076 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2077 qc = NULL; 2078 2079 spin_lock_irqsave(ap->lock, flags); 2080 2081 /* 2082 * We *MUST* do FIFO draining before we issue a reset as 2083 * several devices helpfully clear their internal state and 2084 * will lock solid if we touch the data port post reset. Pass 2085 * qc in case anyone wants to do different PIO/DMA recovery or 2086 * has per command fixups 2087 */ 2088 if (ap->ops->sff_drain_fifo) 2089 ap->ops->sff_drain_fifo(qc); 2090 2091 spin_unlock_irqrestore(ap->lock, flags); 2092 2093 /* ignore built-in hardresets if SCR access is not available */ 2094 if ((hardreset == sata_std_hardreset || 2095 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2096 hardreset = NULL; 2097 2098 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2099 ap->ops->postreset); 2100 } 2101 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2102 2103 /** 2104 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2105 * @ioaddr: IO address structure to be initialized 2106 * 2107 * Utility function which initializes data_addr, error_addr, 2108 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2109 * device_addr, status_addr, and command_addr to standard offsets 2110 * relative to cmd_addr. 2111 * 2112 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2113 */ 2114 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2115 { 2116 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2117 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2118 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2119 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2120 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2121 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2122 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2123 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2124 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2125 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2126 } 2127 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2128 2129 #ifdef CONFIG_PCI 2130 2131 static bool ata_resources_present(struct pci_dev *pdev, int port) 2132 { 2133 int i; 2134 2135 /* Check the PCI resources for this channel are enabled */ 2136 port *= 2; 2137 for (i = 0; i < 2; i++) { 2138 if (pci_resource_start(pdev, port + i) == 0 || 2139 pci_resource_len(pdev, port + i) == 0) 2140 return false; 2141 } 2142 return true; 2143 } 2144 2145 /** 2146 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2147 * @host: target ATA host 2148 * 2149 * Acquire native PCI ATA resources for @host and initialize the 2150 * first two ports of @host accordingly. Ports marked dummy are 2151 * skipped and allocation failure makes the port dummy. 2152 * 2153 * Note that native PCI resources are valid even for legacy hosts 2154 * as we fix up pdev resources array early in boot, so this 2155 * function can be used for both native and legacy SFF hosts. 2156 * 2157 * LOCKING: 2158 * Inherited from calling layer (may sleep). 2159 * 2160 * RETURNS: 2161 * 0 if at least one port is initialized, -ENODEV if no port is 2162 * available. 2163 */ 2164 int ata_pci_sff_init_host(struct ata_host *host) 2165 { 2166 struct device *gdev = host->dev; 2167 struct pci_dev *pdev = to_pci_dev(gdev); 2168 unsigned int mask = 0; 2169 int i, rc; 2170 2171 /* request, iomap BARs and init port addresses accordingly */ 2172 for (i = 0; i < 2; i++) { 2173 struct ata_port *ap = host->ports[i]; 2174 int base = i * 2; 2175 void __iomem * const *iomap; 2176 2177 if (ata_port_is_dummy(ap)) 2178 continue; 2179 2180 /* Discard disabled ports. Some controllers show 2181 * their unused channels this way. Disabled ports are 2182 * made dummy. 2183 */ 2184 if (!ata_resources_present(pdev, i)) { 2185 ap->ops = &ata_dummy_port_ops; 2186 continue; 2187 } 2188 2189 rc = pcim_iomap_regions(pdev, 0x3 << base, 2190 dev_driver_string(gdev)); 2191 if (rc) { 2192 dev_warn(gdev, 2193 "failed to request/iomap BARs for port %d (errno=%d)\n", 2194 i, rc); 2195 if (rc == -EBUSY) 2196 pcim_pin_device(pdev); 2197 ap->ops = &ata_dummy_port_ops; 2198 continue; 2199 } 2200 host->iomap = iomap = pcim_iomap_table(pdev); 2201 2202 ap->ioaddr.cmd_addr = iomap[base]; 2203 ap->ioaddr.altstatus_addr = 2204 ap->ioaddr.ctl_addr = (void __iomem *) 2205 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2206 ata_sff_std_ports(&ap->ioaddr); 2207 2208 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2209 (unsigned long long)pci_resource_start(pdev, base), 2210 (unsigned long long)pci_resource_start(pdev, base + 1)); 2211 2212 mask |= 1 << i; 2213 } 2214 2215 if (!mask) { 2216 dev_err(gdev, "no available native port\n"); 2217 return -ENODEV; 2218 } 2219 2220 return 0; 2221 } 2222 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2223 2224 /** 2225 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2226 * @pdev: target PCI device 2227 * @ppi: array of port_info, must be enough for two ports 2228 * @r_host: out argument for the initialized ATA host 2229 * 2230 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2231 * all PCI resources and initialize it accordingly in one go. 2232 * 2233 * LOCKING: 2234 * Inherited from calling layer (may sleep). 2235 * 2236 * RETURNS: 2237 * 0 on success, -errno otherwise. 2238 */ 2239 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2240 const struct ata_port_info * const *ppi, 2241 struct ata_host **r_host) 2242 { 2243 struct ata_host *host; 2244 int rc; 2245 2246 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2247 return -ENOMEM; 2248 2249 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2250 if (!host) { 2251 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2252 rc = -ENOMEM; 2253 goto err_out; 2254 } 2255 2256 rc = ata_pci_sff_init_host(host); 2257 if (rc) 2258 goto err_out; 2259 2260 devres_remove_group(&pdev->dev, NULL); 2261 *r_host = host; 2262 return 0; 2263 2264 err_out: 2265 devres_release_group(&pdev->dev, NULL); 2266 return rc; 2267 } 2268 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2269 2270 /** 2271 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2272 * @host: target SFF ATA host 2273 * @irq_handler: irq_handler used when requesting IRQ(s) 2274 * @sht: scsi_host_template to use when registering the host 2275 * 2276 * This is the counterpart of ata_host_activate() for SFF ATA 2277 * hosts. This separate helper is necessary because SFF hosts 2278 * use two separate interrupts in legacy mode. 2279 * 2280 * LOCKING: 2281 * Inherited from calling layer (may sleep). 2282 * 2283 * RETURNS: 2284 * 0 on success, -errno otherwise. 2285 */ 2286 int ata_pci_sff_activate_host(struct ata_host *host, 2287 irq_handler_t irq_handler, 2288 struct scsi_host_template *sht) 2289 { 2290 struct device *dev = host->dev; 2291 struct pci_dev *pdev = to_pci_dev(dev); 2292 const char *drv_name = dev_driver_string(host->dev); 2293 int legacy_mode = 0, rc; 2294 2295 rc = ata_host_start(host); 2296 if (rc) 2297 return rc; 2298 2299 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2300 u8 tmp8, mask = 0; 2301 2302 /* 2303 * ATA spec says we should use legacy mode when one 2304 * port is in legacy mode, but disabled ports on some 2305 * PCI hosts appear as fixed legacy ports, e.g SB600/700 2306 * on which the secondary port is not wired, so 2307 * ignore ports that are marked as 'dummy' during 2308 * this check 2309 */ 2310 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2311 if (!ata_port_is_dummy(host->ports[0])) 2312 mask |= (1 << 0); 2313 if (!ata_port_is_dummy(host->ports[1])) 2314 mask |= (1 << 2); 2315 if ((tmp8 & mask) != mask) 2316 legacy_mode = 1; 2317 } 2318 2319 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2320 return -ENOMEM; 2321 2322 if (!legacy_mode && pdev->irq) { 2323 int i; 2324 2325 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2326 IRQF_SHARED, drv_name, host); 2327 if (rc) 2328 goto out; 2329 2330 for (i = 0; i < 2; i++) { 2331 if (ata_port_is_dummy(host->ports[i])) 2332 continue; 2333 ata_port_desc(host->ports[i], "irq %d", pdev->irq); 2334 } 2335 } else if (legacy_mode) { 2336 if (!ata_port_is_dummy(host->ports[0])) { 2337 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2338 irq_handler, IRQF_SHARED, 2339 drv_name, host); 2340 if (rc) 2341 goto out; 2342 2343 ata_port_desc(host->ports[0], "irq %d", 2344 ATA_PRIMARY_IRQ(pdev)); 2345 } 2346 2347 if (!ata_port_is_dummy(host->ports[1])) { 2348 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2349 irq_handler, IRQF_SHARED, 2350 drv_name, host); 2351 if (rc) 2352 goto out; 2353 2354 ata_port_desc(host->ports[1], "irq %d", 2355 ATA_SECONDARY_IRQ(pdev)); 2356 } 2357 } 2358 2359 rc = ata_host_register(host, sht); 2360 out: 2361 if (rc == 0) 2362 devres_remove_group(dev, NULL); 2363 else 2364 devres_release_group(dev, NULL); 2365 2366 return rc; 2367 } 2368 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2369 2370 static const struct ata_port_info *ata_sff_find_valid_pi( 2371 const struct ata_port_info * const *ppi) 2372 { 2373 int i; 2374 2375 /* look up the first valid port_info */ 2376 for (i = 0; i < 2 && ppi[i]; i++) 2377 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2378 return ppi[i]; 2379 2380 return NULL; 2381 } 2382 2383 static int ata_pci_init_one(struct pci_dev *pdev, 2384 const struct ata_port_info * const *ppi, 2385 struct scsi_host_template *sht, void *host_priv, 2386 int hflags, bool bmdma) 2387 { 2388 struct device *dev = &pdev->dev; 2389 const struct ata_port_info *pi; 2390 struct ata_host *host = NULL; 2391 int rc; 2392 2393 pi = ata_sff_find_valid_pi(ppi); 2394 if (!pi) { 2395 dev_err(&pdev->dev, "no valid port_info specified\n"); 2396 return -EINVAL; 2397 } 2398 2399 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2400 return -ENOMEM; 2401 2402 rc = pcim_enable_device(pdev); 2403 if (rc) 2404 goto out; 2405 2406 #ifdef CONFIG_ATA_BMDMA 2407 if (bmdma) 2408 /* prepare and activate BMDMA host */ 2409 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2410 else 2411 #endif 2412 /* prepare and activate SFF host */ 2413 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2414 if (rc) 2415 goto out; 2416 host->private_data = host_priv; 2417 host->flags |= hflags; 2418 2419 #ifdef CONFIG_ATA_BMDMA 2420 if (bmdma) { 2421 pci_set_master(pdev); 2422 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2423 } else 2424 #endif 2425 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2426 out: 2427 if (rc == 0) 2428 devres_remove_group(&pdev->dev, NULL); 2429 else 2430 devres_release_group(&pdev->dev, NULL); 2431 2432 return rc; 2433 } 2434 2435 /** 2436 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2437 * @pdev: Controller to be initialized 2438 * @ppi: array of port_info, must be enough for two ports 2439 * @sht: scsi_host_template to use when registering the host 2440 * @host_priv: host private_data 2441 * @hflag: host flags 2442 * 2443 * This is a helper function which can be called from a driver's 2444 * xxx_init_one() probe function if the hardware uses traditional 2445 * IDE taskfile registers and is PIO only. 2446 * 2447 * ASSUMPTION: 2448 * Nobody makes a single channel controller that appears solely as 2449 * the secondary legacy port on PCI. 2450 * 2451 * LOCKING: 2452 * Inherited from PCI layer (may sleep). 2453 * 2454 * RETURNS: 2455 * Zero on success, negative on errno-based value on error. 2456 */ 2457 int ata_pci_sff_init_one(struct pci_dev *pdev, 2458 const struct ata_port_info * const *ppi, 2459 struct scsi_host_template *sht, void *host_priv, int hflag) 2460 { 2461 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2462 } 2463 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2464 2465 #endif /* CONFIG_PCI */ 2466 2467 /* 2468 * BMDMA support 2469 */ 2470 2471 #ifdef CONFIG_ATA_BMDMA 2472 2473 const struct ata_port_operations ata_bmdma_port_ops = { 2474 .inherits = &ata_sff_port_ops, 2475 2476 .error_handler = ata_bmdma_error_handler, 2477 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2478 2479 .qc_prep = ata_bmdma_qc_prep, 2480 .qc_issue = ata_bmdma_qc_issue, 2481 2482 .sff_irq_clear = ata_bmdma_irq_clear, 2483 .bmdma_setup = ata_bmdma_setup, 2484 .bmdma_start = ata_bmdma_start, 2485 .bmdma_stop = ata_bmdma_stop, 2486 .bmdma_status = ata_bmdma_status, 2487 2488 .port_start = ata_bmdma_port_start, 2489 }; 2490 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2491 2492 const struct ata_port_operations ata_bmdma32_port_ops = { 2493 .inherits = &ata_bmdma_port_ops, 2494 2495 .sff_data_xfer = ata_sff_data_xfer32, 2496 .port_start = ata_bmdma_port_start32, 2497 }; 2498 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2499 2500 /** 2501 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2502 * @qc: Metadata associated with taskfile to be transferred 2503 * 2504 * Fill PCI IDE PRD (scatter-gather) table with segments 2505 * associated with the current disk command. 2506 * 2507 * LOCKING: 2508 * spin_lock_irqsave(host lock) 2509 * 2510 */ 2511 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2512 { 2513 struct ata_port *ap = qc->ap; 2514 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2515 struct scatterlist *sg; 2516 unsigned int si, pi; 2517 2518 pi = 0; 2519 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2520 u32 addr, offset; 2521 u32 sg_len, len; 2522 2523 /* determine if physical DMA addr spans 64K boundary. 2524 * Note h/w doesn't support 64-bit, so we unconditionally 2525 * truncate dma_addr_t to u32. 2526 */ 2527 addr = (u32) sg_dma_address(sg); 2528 sg_len = sg_dma_len(sg); 2529 2530 while (sg_len) { 2531 offset = addr & 0xffff; 2532 len = sg_len; 2533 if ((offset + sg_len) > 0x10000) 2534 len = 0x10000 - offset; 2535 2536 prd[pi].addr = cpu_to_le32(addr); 2537 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2538 2539 pi++; 2540 sg_len -= len; 2541 addr += len; 2542 } 2543 } 2544 2545 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2546 } 2547 2548 /** 2549 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2550 * @qc: Metadata associated with taskfile to be transferred 2551 * 2552 * Fill PCI IDE PRD (scatter-gather) table with segments 2553 * associated with the current disk command. Perform the fill 2554 * so that we avoid writing any length 64K records for 2555 * controllers that don't follow the spec. 2556 * 2557 * LOCKING: 2558 * spin_lock_irqsave(host lock) 2559 * 2560 */ 2561 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2562 { 2563 struct ata_port *ap = qc->ap; 2564 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2565 struct scatterlist *sg; 2566 unsigned int si, pi; 2567 2568 pi = 0; 2569 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2570 u32 addr, offset; 2571 u32 sg_len, len, blen; 2572 2573 /* determine if physical DMA addr spans 64K boundary. 2574 * Note h/w doesn't support 64-bit, so we unconditionally 2575 * truncate dma_addr_t to u32. 2576 */ 2577 addr = (u32) sg_dma_address(sg); 2578 sg_len = sg_dma_len(sg); 2579 2580 while (sg_len) { 2581 offset = addr & 0xffff; 2582 len = sg_len; 2583 if ((offset + sg_len) > 0x10000) 2584 len = 0x10000 - offset; 2585 2586 blen = len & 0xffff; 2587 prd[pi].addr = cpu_to_le32(addr); 2588 if (blen == 0) { 2589 /* Some PATA chipsets like the CS5530 can't 2590 cope with 0x0000 meaning 64K as the spec 2591 says */ 2592 prd[pi].flags_len = cpu_to_le32(0x8000); 2593 blen = 0x8000; 2594 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2595 } 2596 prd[pi].flags_len = cpu_to_le32(blen); 2597 2598 pi++; 2599 sg_len -= len; 2600 addr += len; 2601 } 2602 } 2603 2604 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2605 } 2606 2607 /** 2608 * ata_bmdma_qc_prep - Prepare taskfile for submission 2609 * @qc: Metadata associated with taskfile to be prepared 2610 * 2611 * Prepare ATA taskfile for submission. 2612 * 2613 * LOCKING: 2614 * spin_lock_irqsave(host lock) 2615 */ 2616 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2617 { 2618 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2619 return AC_ERR_OK; 2620 2621 ata_bmdma_fill_sg(qc); 2622 2623 return AC_ERR_OK; 2624 } 2625 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2626 2627 /** 2628 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2629 * @qc: Metadata associated with taskfile to be prepared 2630 * 2631 * Prepare ATA taskfile for submission. 2632 * 2633 * LOCKING: 2634 * spin_lock_irqsave(host lock) 2635 */ 2636 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2637 { 2638 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2639 return AC_ERR_OK; 2640 2641 ata_bmdma_fill_sg_dumb(qc); 2642 2643 return AC_ERR_OK; 2644 } 2645 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2646 2647 /** 2648 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2649 * @qc: command to issue to device 2650 * 2651 * This function issues a PIO, NODATA or DMA command to a 2652 * SFF/BMDMA controller. PIO and NODATA are handled by 2653 * ata_sff_qc_issue(). 2654 * 2655 * LOCKING: 2656 * spin_lock_irqsave(host lock) 2657 * 2658 * RETURNS: 2659 * Zero on success, AC_ERR_* mask on failure 2660 */ 2661 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2662 { 2663 struct ata_port *ap = qc->ap; 2664 struct ata_link *link = qc->dev->link; 2665 2666 /* defer PIO handling to sff_qc_issue */ 2667 if (!ata_is_dma(qc->tf.protocol)) 2668 return ata_sff_qc_issue(qc); 2669 2670 /* select the device */ 2671 ata_dev_select(ap, qc->dev->devno, 1, 0); 2672 2673 /* start the command */ 2674 switch (qc->tf.protocol) { 2675 case ATA_PROT_DMA: 2676 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2677 2678 trace_ata_tf_load(ap, &qc->tf); 2679 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2680 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); 2681 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2682 trace_ata_bmdma_start(ap, &qc->tf, qc->tag); 2683 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2684 ap->hsm_task_state = HSM_ST_LAST; 2685 break; 2686 2687 case ATAPI_PROT_DMA: 2688 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2689 2690 trace_ata_tf_load(ap, &qc->tf); 2691 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2692 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); 2693 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2694 ap->hsm_task_state = HSM_ST_FIRST; 2695 2696 /* send cdb by polling if no cdb interrupt */ 2697 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2698 ata_sff_queue_pio_task(link, 0); 2699 break; 2700 2701 default: 2702 WARN_ON(1); 2703 return AC_ERR_SYSTEM; 2704 } 2705 2706 return 0; 2707 } 2708 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2709 2710 /** 2711 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2712 * @ap: Port on which interrupt arrived (possibly...) 2713 * @qc: Taskfile currently active in engine 2714 * 2715 * Handle port interrupt for given queued command. 2716 * 2717 * LOCKING: 2718 * spin_lock_irqsave(host lock) 2719 * 2720 * RETURNS: 2721 * One if interrupt was handled, zero if not (shared irq). 2722 */ 2723 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2724 { 2725 struct ata_eh_info *ehi = &ap->link.eh_info; 2726 u8 host_stat = 0; 2727 bool bmdma_stopped = false; 2728 unsigned int handled; 2729 2730 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2731 /* check status of DMA engine */ 2732 host_stat = ap->ops->bmdma_status(ap); 2733 trace_ata_bmdma_status(ap, host_stat); 2734 2735 /* if it's not our irq... */ 2736 if (!(host_stat & ATA_DMA_INTR)) 2737 return ata_sff_idle_irq(ap); 2738 2739 /* before we do anything else, clear DMA-Start bit */ 2740 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2741 ap->ops->bmdma_stop(qc); 2742 bmdma_stopped = true; 2743 2744 if (unlikely(host_stat & ATA_DMA_ERR)) { 2745 /* error when transferring data to/from memory */ 2746 qc->err_mask |= AC_ERR_HOST_BUS; 2747 ap->hsm_task_state = HSM_ST_ERR; 2748 } 2749 } 2750 2751 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2752 2753 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2754 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2755 2756 return handled; 2757 } 2758 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2759 2760 /** 2761 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2762 * @irq: irq line (unused) 2763 * @dev_instance: pointer to our ata_host information structure 2764 * 2765 * Default interrupt handler for PCI IDE devices. Calls 2766 * ata_bmdma_port_intr() for each port that is not disabled. 2767 * 2768 * LOCKING: 2769 * Obtains host lock during operation. 2770 * 2771 * RETURNS: 2772 * IRQ_NONE or IRQ_HANDLED. 2773 */ 2774 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2775 { 2776 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2777 } 2778 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2779 2780 /** 2781 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2782 * @ap: port to handle error for 2783 * 2784 * Stock error handler for BMDMA controller. It can handle both 2785 * PATA and SATA controllers. Most BMDMA controllers should be 2786 * able to use this EH as-is or with some added handling before 2787 * and after. 2788 * 2789 * LOCKING: 2790 * Kernel thread context (may sleep) 2791 */ 2792 void ata_bmdma_error_handler(struct ata_port *ap) 2793 { 2794 struct ata_queued_cmd *qc; 2795 unsigned long flags; 2796 bool thaw = false; 2797 2798 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2799 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2800 qc = NULL; 2801 2802 /* reset PIO HSM and stop DMA engine */ 2803 spin_lock_irqsave(ap->lock, flags); 2804 2805 if (qc && ata_is_dma(qc->tf.protocol)) { 2806 u8 host_stat; 2807 2808 host_stat = ap->ops->bmdma_status(ap); 2809 trace_ata_bmdma_status(ap, host_stat); 2810 2811 /* BMDMA controllers indicate host bus error by 2812 * setting DMA_ERR bit and timing out. As it wasn't 2813 * really a timeout event, adjust error mask and 2814 * cancel frozen state. 2815 */ 2816 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2817 qc->err_mask = AC_ERR_HOST_BUS; 2818 thaw = true; 2819 } 2820 2821 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2822 ap->ops->bmdma_stop(qc); 2823 2824 /* if we're gonna thaw, make sure IRQ is clear */ 2825 if (thaw) { 2826 ap->ops->sff_check_status(ap); 2827 if (ap->ops->sff_irq_clear) 2828 ap->ops->sff_irq_clear(ap); 2829 } 2830 } 2831 2832 spin_unlock_irqrestore(ap->lock, flags); 2833 2834 if (thaw) 2835 ata_eh_thaw_port(ap); 2836 2837 ata_sff_error_handler(ap); 2838 } 2839 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2840 2841 /** 2842 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2843 * @qc: internal command to clean up 2844 * 2845 * LOCKING: 2846 * Kernel thread context (may sleep) 2847 */ 2848 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2849 { 2850 struct ata_port *ap = qc->ap; 2851 unsigned long flags; 2852 2853 if (ata_is_dma(qc->tf.protocol)) { 2854 spin_lock_irqsave(ap->lock, flags); 2855 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2856 ap->ops->bmdma_stop(qc); 2857 spin_unlock_irqrestore(ap->lock, flags); 2858 } 2859 } 2860 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2861 2862 /** 2863 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2864 * @ap: Port associated with this ATA transaction. 2865 * 2866 * Clear interrupt and error flags in DMA status register. 2867 * 2868 * May be used as the irq_clear() entry in ata_port_operations. 2869 * 2870 * LOCKING: 2871 * spin_lock_irqsave(host lock) 2872 */ 2873 void ata_bmdma_irq_clear(struct ata_port *ap) 2874 { 2875 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2876 2877 if (!mmio) 2878 return; 2879 2880 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2881 } 2882 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2883 2884 /** 2885 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2886 * @qc: Info associated with this ATA transaction. 2887 * 2888 * LOCKING: 2889 * spin_lock_irqsave(host lock) 2890 */ 2891 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2892 { 2893 struct ata_port *ap = qc->ap; 2894 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2895 u8 dmactl; 2896 2897 /* load PRD table addr. */ 2898 mb(); /* make sure PRD table writes are visible to controller */ 2899 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2900 2901 /* specify data direction, triple-check start bit is clear */ 2902 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2903 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2904 if (!rw) 2905 dmactl |= ATA_DMA_WR; 2906 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2907 2908 /* issue r/w command */ 2909 ap->ops->sff_exec_command(ap, &qc->tf); 2910 } 2911 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2912 2913 /** 2914 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2915 * @qc: Info associated with this ATA transaction. 2916 * 2917 * LOCKING: 2918 * spin_lock_irqsave(host lock) 2919 */ 2920 void ata_bmdma_start(struct ata_queued_cmd *qc) 2921 { 2922 struct ata_port *ap = qc->ap; 2923 u8 dmactl; 2924 2925 /* start host DMA transaction */ 2926 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2927 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2928 2929 /* Strictly, one may wish to issue an ioread8() here, to 2930 * flush the mmio write. However, control also passes 2931 * to the hardware at this point, and it will interrupt 2932 * us when we are to resume control. So, in effect, 2933 * we don't care when the mmio write flushes. 2934 * Further, a read of the DMA status register _immediately_ 2935 * following the write may not be what certain flaky hardware 2936 * is expected, so I think it is best to not add a readb() 2937 * without first all the MMIO ATA cards/mobos. 2938 * Or maybe I'm just being paranoid. 2939 * 2940 * FIXME: The posting of this write means I/O starts are 2941 * unnecessarily delayed for MMIO 2942 */ 2943 } 2944 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2945 2946 /** 2947 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2948 * @qc: Command we are ending DMA for 2949 * 2950 * Clears the ATA_DMA_START flag in the dma control register 2951 * 2952 * May be used as the bmdma_stop() entry in ata_port_operations. 2953 * 2954 * LOCKING: 2955 * spin_lock_irqsave(host lock) 2956 */ 2957 void ata_bmdma_stop(struct ata_queued_cmd *qc) 2958 { 2959 struct ata_port *ap = qc->ap; 2960 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2961 2962 /* clear start/stop bit */ 2963 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 2964 mmio + ATA_DMA_CMD); 2965 2966 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 2967 ata_sff_dma_pause(ap); 2968 } 2969 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 2970 2971 /** 2972 * ata_bmdma_status - Read PCI IDE BMDMA status 2973 * @ap: Port associated with this ATA transaction. 2974 * 2975 * Read and return BMDMA status register. 2976 * 2977 * May be used as the bmdma_status() entry in ata_port_operations. 2978 * 2979 * LOCKING: 2980 * spin_lock_irqsave(host lock) 2981 */ 2982 u8 ata_bmdma_status(struct ata_port *ap) 2983 { 2984 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 2985 } 2986 EXPORT_SYMBOL_GPL(ata_bmdma_status); 2987 2988 2989 /** 2990 * ata_bmdma_port_start - Set port up for bmdma. 2991 * @ap: Port to initialize 2992 * 2993 * Called just after data structures for each port are 2994 * initialized. Allocates space for PRD table. 2995 * 2996 * May be used as the port_start() entry in ata_port_operations. 2997 * 2998 * LOCKING: 2999 * Inherited from caller. 3000 */ 3001 int ata_bmdma_port_start(struct ata_port *ap) 3002 { 3003 if (ap->mwdma_mask || ap->udma_mask) { 3004 ap->bmdma_prd = 3005 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3006 &ap->bmdma_prd_dma, GFP_KERNEL); 3007 if (!ap->bmdma_prd) 3008 return -ENOMEM; 3009 } 3010 3011 return 0; 3012 } 3013 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3014 3015 /** 3016 * ata_bmdma_port_start32 - Set port up for dma. 3017 * @ap: Port to initialize 3018 * 3019 * Called just after data structures for each port are 3020 * initialized. Enables 32bit PIO and allocates space for PRD 3021 * table. 3022 * 3023 * May be used as the port_start() entry in ata_port_operations for 3024 * devices that are capable of 32bit PIO. 3025 * 3026 * LOCKING: 3027 * Inherited from caller. 3028 */ 3029 int ata_bmdma_port_start32(struct ata_port *ap) 3030 { 3031 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3032 return ata_bmdma_port_start(ap); 3033 } 3034 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3035 3036 #ifdef CONFIG_PCI 3037 3038 /** 3039 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3040 * @pdev: PCI device 3041 * 3042 * Some PCI ATA devices report simplex mode but in fact can be told to 3043 * enter non simplex mode. This implements the necessary logic to 3044 * perform the task on such devices. Calling it on other devices will 3045 * have -undefined- behaviour. 3046 */ 3047 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3048 { 3049 unsigned long bmdma = pci_resource_start(pdev, 4); 3050 u8 simplex; 3051 3052 if (bmdma == 0) 3053 return -ENOENT; 3054 3055 simplex = inb(bmdma + 0x02); 3056 outb(simplex & 0x60, bmdma + 0x02); 3057 simplex = inb(bmdma + 0x02); 3058 if (simplex & 0x80) 3059 return -EOPNOTSUPP; 3060 return 0; 3061 } 3062 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3063 3064 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3065 { 3066 int i; 3067 3068 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3069 3070 for (i = 0; i < 2; i++) { 3071 host->ports[i]->mwdma_mask = 0; 3072 host->ports[i]->udma_mask = 0; 3073 } 3074 } 3075 3076 /** 3077 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3078 * @host: target ATA host 3079 * 3080 * Acquire PCI BMDMA resources and initialize @host accordingly. 3081 * 3082 * LOCKING: 3083 * Inherited from calling layer (may sleep). 3084 */ 3085 void ata_pci_bmdma_init(struct ata_host *host) 3086 { 3087 struct device *gdev = host->dev; 3088 struct pci_dev *pdev = to_pci_dev(gdev); 3089 int i, rc; 3090 3091 /* No BAR4 allocation: No DMA */ 3092 if (pci_resource_start(pdev, 4) == 0) { 3093 ata_bmdma_nodma(host, "BAR4 is zero"); 3094 return; 3095 } 3096 3097 /* 3098 * Some controllers require BMDMA region to be initialized 3099 * even if DMA is not in use to clear IRQ status via 3100 * ->sff_irq_clear method. Try to initialize bmdma_addr 3101 * regardless of dma masks. 3102 */ 3103 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK); 3104 if (rc) 3105 ata_bmdma_nodma(host, "failed to set dma mask"); 3106 3107 /* request and iomap DMA region */ 3108 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3109 if (rc) { 3110 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3111 return; 3112 } 3113 host->iomap = pcim_iomap_table(pdev); 3114 3115 for (i = 0; i < 2; i++) { 3116 struct ata_port *ap = host->ports[i]; 3117 void __iomem *bmdma = host->iomap[4] + 8 * i; 3118 3119 if (ata_port_is_dummy(ap)) 3120 continue; 3121 3122 ap->ioaddr.bmdma_addr = bmdma; 3123 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3124 (ioread8(bmdma + 2) & 0x80)) 3125 host->flags |= ATA_HOST_SIMPLEX; 3126 3127 ata_port_desc(ap, "bmdma 0x%llx", 3128 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3129 } 3130 } 3131 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3132 3133 /** 3134 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3135 * @pdev: target PCI device 3136 * @ppi: array of port_info, must be enough for two ports 3137 * @r_host: out argument for the initialized ATA host 3138 * 3139 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3140 * resources and initialize it accordingly in one go. 3141 * 3142 * LOCKING: 3143 * Inherited from calling layer (may sleep). 3144 * 3145 * RETURNS: 3146 * 0 on success, -errno otherwise. 3147 */ 3148 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3149 const struct ata_port_info * const * ppi, 3150 struct ata_host **r_host) 3151 { 3152 int rc; 3153 3154 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3155 if (rc) 3156 return rc; 3157 3158 ata_pci_bmdma_init(*r_host); 3159 return 0; 3160 } 3161 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3162 3163 /** 3164 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3165 * @pdev: Controller to be initialized 3166 * @ppi: array of port_info, must be enough for two ports 3167 * @sht: scsi_host_template to use when registering the host 3168 * @host_priv: host private_data 3169 * @hflags: host flags 3170 * 3171 * This function is similar to ata_pci_sff_init_one() but also 3172 * takes care of BMDMA initialization. 3173 * 3174 * LOCKING: 3175 * Inherited from PCI layer (may sleep). 3176 * 3177 * RETURNS: 3178 * Zero on success, negative on errno-based value on error. 3179 */ 3180 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3181 const struct ata_port_info * const * ppi, 3182 struct scsi_host_template *sht, void *host_priv, 3183 int hflags) 3184 { 3185 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3186 } 3187 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3188 3189 #endif /* CONFIG_PCI */ 3190 #endif /* CONFIG_ATA_BMDMA */ 3191 3192 /** 3193 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3194 * @ap: Port to initialize 3195 * 3196 * Called on port allocation to initialize SFF/BMDMA specific 3197 * fields. 3198 * 3199 * LOCKING: 3200 * None. 3201 */ 3202 void ata_sff_port_init(struct ata_port *ap) 3203 { 3204 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3205 ap->ctl = ATA_DEVCTL_OBS; 3206 ap->last_ctl = 0xFF; 3207 } 3208 3209 int __init ata_sff_init(void) 3210 { 3211 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3212 if (!ata_sff_wq) 3213 return -ENOMEM; 3214 3215 return 0; 3216 } 3217 3218 void ata_sff_exit(void) 3219 { 3220 destroy_workqueue(ata_sff_wq); 3221 } 3222