1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/gfp.h> 37 #include <linux/pci.h> 38 #include <linux/libata.h> 39 #include <linux/highmem.h> 40 41 #include "libata.h" 42 43 static struct workqueue_struct *ata_sff_wq; 44 45 const struct ata_port_operations ata_sff_port_ops = { 46 .inherits = &ata_base_port_ops, 47 48 .qc_prep = ata_noop_qc_prep, 49 .qc_issue = ata_sff_qc_issue, 50 .qc_fill_rtf = ata_sff_qc_fill_rtf, 51 52 .freeze = ata_sff_freeze, 53 .thaw = ata_sff_thaw, 54 .prereset = ata_sff_prereset, 55 .softreset = ata_sff_softreset, 56 .hardreset = sata_sff_hardreset, 57 .postreset = ata_sff_postreset, 58 .error_handler = ata_sff_error_handler, 59 60 .sff_dev_select = ata_sff_dev_select, 61 .sff_check_status = ata_sff_check_status, 62 .sff_tf_load = ata_sff_tf_load, 63 .sff_tf_read = ata_sff_tf_read, 64 .sff_exec_command = ata_sff_exec_command, 65 .sff_data_xfer = ata_sff_data_xfer, 66 .sff_drain_fifo = ata_sff_drain_fifo, 67 68 .lost_interrupt = ata_sff_lost_interrupt, 69 }; 70 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 71 72 /** 73 * ata_sff_check_status - Read device status reg & clear interrupt 74 * @ap: port where the device is 75 * 76 * Reads ATA taskfile status register for currently-selected device 77 * and return its value. This also clears pending interrupts 78 * from this device 79 * 80 * LOCKING: 81 * Inherited from caller. 82 */ 83 u8 ata_sff_check_status(struct ata_port *ap) 84 { 85 return ioread8(ap->ioaddr.status_addr); 86 } 87 EXPORT_SYMBOL_GPL(ata_sff_check_status); 88 89 /** 90 * ata_sff_altstatus - Read device alternate status reg 91 * @ap: port where the device is 92 * 93 * Reads ATA taskfile alternate status register for 94 * currently-selected device and return its value. 95 * 96 * Note: may NOT be used as the check_altstatus() entry in 97 * ata_port_operations. 98 * 99 * LOCKING: 100 * Inherited from caller. 101 */ 102 static u8 ata_sff_altstatus(struct ata_port *ap) 103 { 104 if (ap->ops->sff_check_altstatus) 105 return ap->ops->sff_check_altstatus(ap); 106 107 return ioread8(ap->ioaddr.altstatus_addr); 108 } 109 110 /** 111 * ata_sff_irq_status - Check if the device is busy 112 * @ap: port where the device is 113 * 114 * Determine if the port is currently busy. Uses altstatus 115 * if available in order to avoid clearing shared IRQ status 116 * when finding an IRQ source. Non ctl capable devices don't 117 * share interrupt lines fortunately for us. 118 * 119 * LOCKING: 120 * Inherited from caller. 121 */ 122 static u8 ata_sff_irq_status(struct ata_port *ap) 123 { 124 u8 status; 125 126 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 127 status = ata_sff_altstatus(ap); 128 /* Not us: We are busy */ 129 if (status & ATA_BUSY) 130 return status; 131 } 132 /* Clear INTRQ latch */ 133 status = ap->ops->sff_check_status(ap); 134 return status; 135 } 136 137 /** 138 * ata_sff_sync - Flush writes 139 * @ap: Port to wait for. 140 * 141 * CAUTION: 142 * If we have an mmio device with no ctl and no altstatus 143 * method this will fail. No such devices are known to exist. 144 * 145 * LOCKING: 146 * Inherited from caller. 147 */ 148 149 static void ata_sff_sync(struct ata_port *ap) 150 { 151 if (ap->ops->sff_check_altstatus) 152 ap->ops->sff_check_altstatus(ap); 153 else if (ap->ioaddr.altstatus_addr) 154 ioread8(ap->ioaddr.altstatus_addr); 155 } 156 157 /** 158 * ata_sff_pause - Flush writes and wait 400nS 159 * @ap: Port to pause for. 160 * 161 * CAUTION: 162 * If we have an mmio device with no ctl and no altstatus 163 * method this will fail. No such devices are known to exist. 164 * 165 * LOCKING: 166 * Inherited from caller. 167 */ 168 169 void ata_sff_pause(struct ata_port *ap) 170 { 171 ata_sff_sync(ap); 172 ndelay(400); 173 } 174 EXPORT_SYMBOL_GPL(ata_sff_pause); 175 176 /** 177 * ata_sff_dma_pause - Pause before commencing DMA 178 * @ap: Port to pause for. 179 * 180 * Perform I/O fencing and ensure sufficient cycle delays occur 181 * for the HDMA1:0 transition 182 */ 183 184 void ata_sff_dma_pause(struct ata_port *ap) 185 { 186 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 187 /* An altstatus read will cause the needed delay without 188 messing up the IRQ status */ 189 ata_sff_altstatus(ap); 190 return; 191 } 192 /* There are no DMA controllers without ctl. BUG here to ensure 193 we never violate the HDMA1:0 transition timing and risk 194 corruption. */ 195 BUG(); 196 } 197 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 198 199 /** 200 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 201 * @ap: port containing status register to be polled 202 * @tmout_pat: impatience timeout in msecs 203 * @tmout: overall timeout in msecs 204 * 205 * Sleep until ATA Status register bit BSY clears, 206 * or a timeout occurs. 207 * 208 * LOCKING: 209 * Kernel thread context (may sleep). 210 * 211 * RETURNS: 212 * 0 on success, -errno otherwise. 213 */ 214 int ata_sff_busy_sleep(struct ata_port *ap, 215 unsigned long tmout_pat, unsigned long tmout) 216 { 217 unsigned long timer_start, timeout; 218 u8 status; 219 220 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 221 timer_start = jiffies; 222 timeout = ata_deadline(timer_start, tmout_pat); 223 while (status != 0xff && (status & ATA_BUSY) && 224 time_before(jiffies, timeout)) { 225 ata_msleep(ap, 50); 226 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 227 } 228 229 if (status != 0xff && (status & ATA_BUSY)) 230 ata_port_printk(ap, KERN_WARNING, 231 "port is slow to respond, please be patient " 232 "(Status 0x%x)\n", status); 233 234 timeout = ata_deadline(timer_start, tmout); 235 while (status != 0xff && (status & ATA_BUSY) && 236 time_before(jiffies, timeout)) { 237 ata_msleep(ap, 50); 238 status = ap->ops->sff_check_status(ap); 239 } 240 241 if (status == 0xff) 242 return -ENODEV; 243 244 if (status & ATA_BUSY) { 245 ata_port_printk(ap, KERN_ERR, "port failed to respond " 246 "(%lu secs, Status 0x%x)\n", 247 DIV_ROUND_UP(tmout, 1000), status); 248 return -EBUSY; 249 } 250 251 return 0; 252 } 253 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 254 255 static int ata_sff_check_ready(struct ata_link *link) 256 { 257 u8 status = link->ap->ops->sff_check_status(link->ap); 258 259 return ata_check_ready(status); 260 } 261 262 /** 263 * ata_sff_wait_ready - sleep until BSY clears, or timeout 264 * @link: SFF link to wait ready status for 265 * @deadline: deadline jiffies for the operation 266 * 267 * Sleep until ATA Status register bit BSY clears, or timeout 268 * occurs. 269 * 270 * LOCKING: 271 * Kernel thread context (may sleep). 272 * 273 * RETURNS: 274 * 0 on success, -errno otherwise. 275 */ 276 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 277 { 278 return ata_wait_ready(link, deadline, ata_sff_check_ready); 279 } 280 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 281 282 /** 283 * ata_sff_set_devctl - Write device control reg 284 * @ap: port where the device is 285 * @ctl: value to write 286 * 287 * Writes ATA taskfile device control register. 288 * 289 * Note: may NOT be used as the sff_set_devctl() entry in 290 * ata_port_operations. 291 * 292 * LOCKING: 293 * Inherited from caller. 294 */ 295 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 296 { 297 if (ap->ops->sff_set_devctl) 298 ap->ops->sff_set_devctl(ap, ctl); 299 else 300 iowrite8(ctl, ap->ioaddr.ctl_addr); 301 } 302 303 /** 304 * ata_sff_dev_select - Select device 0/1 on ATA bus 305 * @ap: ATA channel to manipulate 306 * @device: ATA device (numbered from zero) to select 307 * 308 * Use the method defined in the ATA specification to 309 * make either device 0, or device 1, active on the 310 * ATA channel. Works with both PIO and MMIO. 311 * 312 * May be used as the dev_select() entry in ata_port_operations. 313 * 314 * LOCKING: 315 * caller. 316 */ 317 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 318 { 319 u8 tmp; 320 321 if (device == 0) 322 tmp = ATA_DEVICE_OBS; 323 else 324 tmp = ATA_DEVICE_OBS | ATA_DEV1; 325 326 iowrite8(tmp, ap->ioaddr.device_addr); 327 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 328 } 329 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 330 331 /** 332 * ata_dev_select - Select device 0/1 on ATA bus 333 * @ap: ATA channel to manipulate 334 * @device: ATA device (numbered from zero) to select 335 * @wait: non-zero to wait for Status register BSY bit to clear 336 * @can_sleep: non-zero if context allows sleeping 337 * 338 * Use the method defined in the ATA specification to 339 * make either device 0, or device 1, active on the 340 * ATA channel. 341 * 342 * This is a high-level version of ata_sff_dev_select(), which 343 * additionally provides the services of inserting the proper 344 * pauses and status polling, where needed. 345 * 346 * LOCKING: 347 * caller. 348 */ 349 static void ata_dev_select(struct ata_port *ap, unsigned int device, 350 unsigned int wait, unsigned int can_sleep) 351 { 352 if (ata_msg_probe(ap)) 353 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 354 "device %u, wait %u\n", device, wait); 355 356 if (wait) 357 ata_wait_idle(ap); 358 359 ap->ops->sff_dev_select(ap, device); 360 361 if (wait) { 362 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 363 ata_msleep(ap, 150); 364 ata_wait_idle(ap); 365 } 366 } 367 368 /** 369 * ata_sff_irq_on - Enable interrupts on a port. 370 * @ap: Port on which interrupts are enabled. 371 * 372 * Enable interrupts on a legacy IDE device using MMIO or PIO, 373 * wait for idle, clear any pending interrupts. 374 * 375 * Note: may NOT be used as the sff_irq_on() entry in 376 * ata_port_operations. 377 * 378 * LOCKING: 379 * Inherited from caller. 380 */ 381 void ata_sff_irq_on(struct ata_port *ap) 382 { 383 struct ata_ioports *ioaddr = &ap->ioaddr; 384 385 if (ap->ops->sff_irq_on) { 386 ap->ops->sff_irq_on(ap); 387 return; 388 } 389 390 ap->ctl &= ~ATA_NIEN; 391 ap->last_ctl = ap->ctl; 392 393 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 394 ata_sff_set_devctl(ap, ap->ctl); 395 ata_wait_idle(ap); 396 397 if (ap->ops->sff_irq_clear) 398 ap->ops->sff_irq_clear(ap); 399 } 400 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 401 402 /** 403 * ata_sff_tf_load - send taskfile registers to host controller 404 * @ap: Port to which output is sent 405 * @tf: ATA taskfile register set 406 * 407 * Outputs ATA taskfile to standard ATA host controller. 408 * 409 * LOCKING: 410 * Inherited from caller. 411 */ 412 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 413 { 414 struct ata_ioports *ioaddr = &ap->ioaddr; 415 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 416 417 if (tf->ctl != ap->last_ctl) { 418 if (ioaddr->ctl_addr) 419 iowrite8(tf->ctl, ioaddr->ctl_addr); 420 ap->last_ctl = tf->ctl; 421 ata_wait_idle(ap); 422 } 423 424 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 425 WARN_ON_ONCE(!ioaddr->ctl_addr); 426 iowrite8(tf->hob_feature, ioaddr->feature_addr); 427 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 428 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 429 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 430 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 431 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 432 tf->hob_feature, 433 tf->hob_nsect, 434 tf->hob_lbal, 435 tf->hob_lbam, 436 tf->hob_lbah); 437 } 438 439 if (is_addr) { 440 iowrite8(tf->feature, ioaddr->feature_addr); 441 iowrite8(tf->nsect, ioaddr->nsect_addr); 442 iowrite8(tf->lbal, ioaddr->lbal_addr); 443 iowrite8(tf->lbam, ioaddr->lbam_addr); 444 iowrite8(tf->lbah, ioaddr->lbah_addr); 445 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 446 tf->feature, 447 tf->nsect, 448 tf->lbal, 449 tf->lbam, 450 tf->lbah); 451 } 452 453 if (tf->flags & ATA_TFLAG_DEVICE) { 454 iowrite8(tf->device, ioaddr->device_addr); 455 VPRINTK("device 0x%X\n", tf->device); 456 } 457 458 ata_wait_idle(ap); 459 } 460 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 461 462 /** 463 * ata_sff_tf_read - input device's ATA taskfile shadow registers 464 * @ap: Port from which input is read 465 * @tf: ATA taskfile register set for storing input 466 * 467 * Reads ATA taskfile registers for currently-selected device 468 * into @tf. Assumes the device has a fully SFF compliant task file 469 * layout and behaviour. If you device does not (eg has a different 470 * status method) then you will need to provide a replacement tf_read 471 * 472 * LOCKING: 473 * Inherited from caller. 474 */ 475 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 476 { 477 struct ata_ioports *ioaddr = &ap->ioaddr; 478 479 tf->command = ata_sff_check_status(ap); 480 tf->feature = ioread8(ioaddr->error_addr); 481 tf->nsect = ioread8(ioaddr->nsect_addr); 482 tf->lbal = ioread8(ioaddr->lbal_addr); 483 tf->lbam = ioread8(ioaddr->lbam_addr); 484 tf->lbah = ioread8(ioaddr->lbah_addr); 485 tf->device = ioread8(ioaddr->device_addr); 486 487 if (tf->flags & ATA_TFLAG_LBA48) { 488 if (likely(ioaddr->ctl_addr)) { 489 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 490 tf->hob_feature = ioread8(ioaddr->error_addr); 491 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 492 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 493 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 494 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 495 iowrite8(tf->ctl, ioaddr->ctl_addr); 496 ap->last_ctl = tf->ctl; 497 } else 498 WARN_ON_ONCE(1); 499 } 500 } 501 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 502 503 /** 504 * ata_sff_exec_command - issue ATA command to host controller 505 * @ap: port to which command is being issued 506 * @tf: ATA taskfile register set 507 * 508 * Issues ATA command, with proper synchronization with interrupt 509 * handler / other threads. 510 * 511 * LOCKING: 512 * spin_lock_irqsave(host lock) 513 */ 514 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 515 { 516 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 517 518 iowrite8(tf->command, ap->ioaddr.command_addr); 519 ata_sff_pause(ap); 520 } 521 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 522 523 /** 524 * ata_tf_to_host - issue ATA taskfile to host controller 525 * @ap: port to which command is being issued 526 * @tf: ATA taskfile register set 527 * 528 * Issues ATA taskfile register set to ATA host controller, 529 * with proper synchronization with interrupt handler and 530 * other threads. 531 * 532 * LOCKING: 533 * spin_lock_irqsave(host lock) 534 */ 535 static inline void ata_tf_to_host(struct ata_port *ap, 536 const struct ata_taskfile *tf) 537 { 538 ap->ops->sff_tf_load(ap, tf); 539 ap->ops->sff_exec_command(ap, tf); 540 } 541 542 /** 543 * ata_sff_data_xfer - Transfer data by PIO 544 * @dev: device to target 545 * @buf: data buffer 546 * @buflen: buffer length 547 * @rw: read/write 548 * 549 * Transfer data from/to the device data register by PIO. 550 * 551 * LOCKING: 552 * Inherited from caller. 553 * 554 * RETURNS: 555 * Bytes consumed. 556 */ 557 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 558 unsigned int buflen, int rw) 559 { 560 struct ata_port *ap = dev->link->ap; 561 void __iomem *data_addr = ap->ioaddr.data_addr; 562 unsigned int words = buflen >> 1; 563 564 /* Transfer multiple of 2 bytes */ 565 if (rw == READ) 566 ioread16_rep(data_addr, buf, words); 567 else 568 iowrite16_rep(data_addr, buf, words); 569 570 /* Transfer trailing byte, if any. */ 571 if (unlikely(buflen & 0x01)) { 572 unsigned char pad[2]; 573 574 /* Point buf to the tail of buffer */ 575 buf += buflen - 1; 576 577 /* 578 * Use io*16_rep() accessors here as well to avoid pointlessly 579 * swapping bytes to and from on the big endian machines... 580 */ 581 if (rw == READ) { 582 ioread16_rep(data_addr, pad, 1); 583 *buf = pad[0]; 584 } else { 585 pad[0] = *buf; 586 iowrite16_rep(data_addr, pad, 1); 587 } 588 words++; 589 } 590 591 return words << 1; 592 } 593 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 594 595 /** 596 * ata_sff_data_xfer32 - Transfer data by PIO 597 * @dev: device to target 598 * @buf: data buffer 599 * @buflen: buffer length 600 * @rw: read/write 601 * 602 * Transfer data from/to the device data register by PIO using 32bit 603 * I/O operations. 604 * 605 * LOCKING: 606 * Inherited from caller. 607 * 608 * RETURNS: 609 * Bytes consumed. 610 */ 611 612 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, 613 unsigned int buflen, int rw) 614 { 615 struct ata_port *ap = dev->link->ap; 616 void __iomem *data_addr = ap->ioaddr.data_addr; 617 unsigned int words = buflen >> 2; 618 int slop = buflen & 3; 619 620 if (!(ap->pflags & ATA_PFLAG_PIO32)) 621 return ata_sff_data_xfer(dev, buf, buflen, rw); 622 623 /* Transfer multiple of 4 bytes */ 624 if (rw == READ) 625 ioread32_rep(data_addr, buf, words); 626 else 627 iowrite32_rep(data_addr, buf, words); 628 629 /* Transfer trailing bytes, if any */ 630 if (unlikely(slop)) { 631 unsigned char pad[4]; 632 633 /* Point buf to the tail of buffer */ 634 buf += buflen - slop; 635 636 /* 637 * Use io*_rep() accessors here as well to avoid pointlessly 638 * swapping bytes to and from on the big endian machines... 639 */ 640 if (rw == READ) { 641 if (slop < 3) 642 ioread16_rep(data_addr, pad, 1); 643 else 644 ioread32_rep(data_addr, pad, 1); 645 memcpy(buf, pad, slop); 646 } else { 647 memcpy(pad, buf, slop); 648 if (slop < 3) 649 iowrite16_rep(data_addr, pad, 1); 650 else 651 iowrite32_rep(data_addr, pad, 1); 652 } 653 } 654 return (buflen + 1) & ~1; 655 } 656 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 657 658 /** 659 * ata_sff_data_xfer_noirq - Transfer data by PIO 660 * @dev: device to target 661 * @buf: data buffer 662 * @buflen: buffer length 663 * @rw: read/write 664 * 665 * Transfer data from/to the device data register by PIO. Do the 666 * transfer with interrupts disabled. 667 * 668 * LOCKING: 669 * Inherited from caller. 670 * 671 * RETURNS: 672 * Bytes consumed. 673 */ 674 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 675 unsigned int buflen, int rw) 676 { 677 unsigned long flags; 678 unsigned int consumed; 679 680 local_irq_save(flags); 681 consumed = ata_sff_data_xfer(dev, buf, buflen, rw); 682 local_irq_restore(flags); 683 684 return consumed; 685 } 686 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 687 688 /** 689 * ata_pio_sector - Transfer a sector of data. 690 * @qc: Command on going 691 * 692 * Transfer qc->sect_size bytes of data from/to the ATA device. 693 * 694 * LOCKING: 695 * Inherited from caller. 696 */ 697 static void ata_pio_sector(struct ata_queued_cmd *qc) 698 { 699 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 700 struct ata_port *ap = qc->ap; 701 struct page *page; 702 unsigned int offset; 703 unsigned char *buf; 704 705 if (qc->curbytes == qc->nbytes - qc->sect_size) 706 ap->hsm_task_state = HSM_ST_LAST; 707 708 page = sg_page(qc->cursg); 709 offset = qc->cursg->offset + qc->cursg_ofs; 710 711 /* get the current page and offset */ 712 page = nth_page(page, (offset >> PAGE_SHIFT)); 713 offset %= PAGE_SIZE; 714 715 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 716 717 if (PageHighMem(page)) { 718 unsigned long flags; 719 720 /* FIXME: use a bounce buffer */ 721 local_irq_save(flags); 722 buf = kmap_atomic(page, KM_IRQ0); 723 724 /* do the actual data transfer */ 725 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 726 do_write); 727 728 kunmap_atomic(buf, KM_IRQ0); 729 local_irq_restore(flags); 730 } else { 731 buf = page_address(page); 732 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 733 do_write); 734 } 735 736 if (!do_write && !PageSlab(page)) 737 flush_dcache_page(page); 738 739 qc->curbytes += qc->sect_size; 740 qc->cursg_ofs += qc->sect_size; 741 742 if (qc->cursg_ofs == qc->cursg->length) { 743 qc->cursg = sg_next(qc->cursg); 744 qc->cursg_ofs = 0; 745 } 746 } 747 748 /** 749 * ata_pio_sectors - Transfer one or many sectors. 750 * @qc: Command on going 751 * 752 * Transfer one or many sectors of data from/to the 753 * ATA device for the DRQ request. 754 * 755 * LOCKING: 756 * Inherited from caller. 757 */ 758 static void ata_pio_sectors(struct ata_queued_cmd *qc) 759 { 760 if (is_multi_taskfile(&qc->tf)) { 761 /* READ/WRITE MULTIPLE */ 762 unsigned int nsect; 763 764 WARN_ON_ONCE(qc->dev->multi_count == 0); 765 766 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 767 qc->dev->multi_count); 768 while (nsect--) 769 ata_pio_sector(qc); 770 } else 771 ata_pio_sector(qc); 772 773 ata_sff_sync(qc->ap); /* flush */ 774 } 775 776 /** 777 * atapi_send_cdb - Write CDB bytes to hardware 778 * @ap: Port to which ATAPI device is attached. 779 * @qc: Taskfile currently active 780 * 781 * When device has indicated its readiness to accept 782 * a CDB, this function is called. Send the CDB. 783 * 784 * LOCKING: 785 * caller. 786 */ 787 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 788 { 789 /* send SCSI cdb */ 790 DPRINTK("send cdb\n"); 791 WARN_ON_ONCE(qc->dev->cdb_len < 12); 792 793 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 794 ata_sff_sync(ap); 795 /* FIXME: If the CDB is for DMA do we need to do the transition delay 796 or is bmdma_start guaranteed to do it ? */ 797 switch (qc->tf.protocol) { 798 case ATAPI_PROT_PIO: 799 ap->hsm_task_state = HSM_ST; 800 break; 801 case ATAPI_PROT_NODATA: 802 ap->hsm_task_state = HSM_ST_LAST; 803 break; 804 #ifdef CONFIG_ATA_BMDMA 805 case ATAPI_PROT_DMA: 806 ap->hsm_task_state = HSM_ST_LAST; 807 /* initiate bmdma */ 808 ap->ops->bmdma_start(qc); 809 break; 810 #endif /* CONFIG_ATA_BMDMA */ 811 default: 812 BUG(); 813 } 814 } 815 816 /** 817 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 818 * @qc: Command on going 819 * @bytes: number of bytes 820 * 821 * Transfer Transfer data from/to the ATAPI device. 822 * 823 * LOCKING: 824 * Inherited from caller. 825 * 826 */ 827 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 828 { 829 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 830 struct ata_port *ap = qc->ap; 831 struct ata_device *dev = qc->dev; 832 struct ata_eh_info *ehi = &dev->link->eh_info; 833 struct scatterlist *sg; 834 struct page *page; 835 unsigned char *buf; 836 unsigned int offset, count, consumed; 837 838 next_sg: 839 sg = qc->cursg; 840 if (unlikely(!sg)) { 841 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 842 "buf=%u cur=%u bytes=%u", 843 qc->nbytes, qc->curbytes, bytes); 844 return -1; 845 } 846 847 page = sg_page(sg); 848 offset = sg->offset + qc->cursg_ofs; 849 850 /* get the current page and offset */ 851 page = nth_page(page, (offset >> PAGE_SHIFT)); 852 offset %= PAGE_SIZE; 853 854 /* don't overrun current sg */ 855 count = min(sg->length - qc->cursg_ofs, bytes); 856 857 /* don't cross page boundaries */ 858 count = min(count, (unsigned int)PAGE_SIZE - offset); 859 860 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 861 862 if (PageHighMem(page)) { 863 unsigned long flags; 864 865 /* FIXME: use bounce buffer */ 866 local_irq_save(flags); 867 buf = kmap_atomic(page, KM_IRQ0); 868 869 /* do the actual data transfer */ 870 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 871 count, rw); 872 873 kunmap_atomic(buf, KM_IRQ0); 874 local_irq_restore(flags); 875 } else { 876 buf = page_address(page); 877 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 878 count, rw); 879 } 880 881 bytes -= min(bytes, consumed); 882 qc->curbytes += count; 883 qc->cursg_ofs += count; 884 885 if (qc->cursg_ofs == sg->length) { 886 qc->cursg = sg_next(qc->cursg); 887 qc->cursg_ofs = 0; 888 } 889 890 /* 891 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 892 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 893 * check correctly as it doesn't know if it is the last request being 894 * made. Somebody should implement a proper sanity check. 895 */ 896 if (bytes) 897 goto next_sg; 898 return 0; 899 } 900 901 /** 902 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 903 * @qc: Command on going 904 * 905 * Transfer Transfer data from/to the ATAPI device. 906 * 907 * LOCKING: 908 * Inherited from caller. 909 */ 910 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 911 { 912 struct ata_port *ap = qc->ap; 913 struct ata_device *dev = qc->dev; 914 struct ata_eh_info *ehi = &dev->link->eh_info; 915 unsigned int ireason, bc_lo, bc_hi, bytes; 916 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 917 918 /* Abuse qc->result_tf for temp storage of intermediate TF 919 * here to save some kernel stack usage. 920 * For normal completion, qc->result_tf is not relevant. For 921 * error, qc->result_tf is later overwritten by ata_qc_complete(). 922 * So, the correctness of qc->result_tf is not affected. 923 */ 924 ap->ops->sff_tf_read(ap, &qc->result_tf); 925 ireason = qc->result_tf.nsect; 926 bc_lo = qc->result_tf.lbam; 927 bc_hi = qc->result_tf.lbah; 928 bytes = (bc_hi << 8) | bc_lo; 929 930 /* shall be cleared to zero, indicating xfer of data */ 931 if (unlikely(ireason & (1 << 0))) 932 goto atapi_check; 933 934 /* make sure transfer direction matches expected */ 935 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 936 if (unlikely(do_write != i_write)) 937 goto atapi_check; 938 939 if (unlikely(!bytes)) 940 goto atapi_check; 941 942 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 943 944 if (unlikely(__atapi_pio_bytes(qc, bytes))) 945 goto err_out; 946 ata_sff_sync(ap); /* flush */ 947 948 return; 949 950 atapi_check: 951 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 952 ireason, bytes); 953 err_out: 954 qc->err_mask |= AC_ERR_HSM; 955 ap->hsm_task_state = HSM_ST_ERR; 956 } 957 958 /** 959 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 960 * @ap: the target ata_port 961 * @qc: qc on going 962 * 963 * RETURNS: 964 * 1 if ok in workqueue, 0 otherwise. 965 */ 966 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 967 struct ata_queued_cmd *qc) 968 { 969 if (qc->tf.flags & ATA_TFLAG_POLLING) 970 return 1; 971 972 if (ap->hsm_task_state == HSM_ST_FIRST) { 973 if (qc->tf.protocol == ATA_PROT_PIO && 974 (qc->tf.flags & ATA_TFLAG_WRITE)) 975 return 1; 976 977 if (ata_is_atapi(qc->tf.protocol) && 978 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 979 return 1; 980 } 981 982 return 0; 983 } 984 985 /** 986 * ata_hsm_qc_complete - finish a qc running on standard HSM 987 * @qc: Command to complete 988 * @in_wq: 1 if called from workqueue, 0 otherwise 989 * 990 * Finish @qc which is running on standard HSM. 991 * 992 * LOCKING: 993 * If @in_wq is zero, spin_lock_irqsave(host lock). 994 * Otherwise, none on entry and grabs host lock. 995 */ 996 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 997 { 998 struct ata_port *ap = qc->ap; 999 unsigned long flags; 1000 1001 if (ap->ops->error_handler) { 1002 if (in_wq) { 1003 spin_lock_irqsave(ap->lock, flags); 1004 1005 /* EH might have kicked in while host lock is 1006 * released. 1007 */ 1008 qc = ata_qc_from_tag(ap, qc->tag); 1009 if (qc) { 1010 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1011 ata_sff_irq_on(ap); 1012 ata_qc_complete(qc); 1013 } else 1014 ata_port_freeze(ap); 1015 } 1016 1017 spin_unlock_irqrestore(ap->lock, flags); 1018 } else { 1019 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1020 ata_qc_complete(qc); 1021 else 1022 ata_port_freeze(ap); 1023 } 1024 } else { 1025 if (in_wq) { 1026 spin_lock_irqsave(ap->lock, flags); 1027 ata_sff_irq_on(ap); 1028 ata_qc_complete(qc); 1029 spin_unlock_irqrestore(ap->lock, flags); 1030 } else 1031 ata_qc_complete(qc); 1032 } 1033 } 1034 1035 /** 1036 * ata_sff_hsm_move - move the HSM to the next state. 1037 * @ap: the target ata_port 1038 * @qc: qc on going 1039 * @status: current device status 1040 * @in_wq: 1 if called from workqueue, 0 otherwise 1041 * 1042 * RETURNS: 1043 * 1 when poll next status needed, 0 otherwise. 1044 */ 1045 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1046 u8 status, int in_wq) 1047 { 1048 struct ata_link *link = qc->dev->link; 1049 struct ata_eh_info *ehi = &link->eh_info; 1050 unsigned long flags = 0; 1051 int poll_next; 1052 1053 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1054 1055 /* Make sure ata_sff_qc_issue() does not throw things 1056 * like DMA polling into the workqueue. Notice that 1057 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1058 */ 1059 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1060 1061 fsm_start: 1062 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1063 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1064 1065 switch (ap->hsm_task_state) { 1066 case HSM_ST_FIRST: 1067 /* Send first data block or PACKET CDB */ 1068 1069 /* If polling, we will stay in the work queue after 1070 * sending the data. Otherwise, interrupt handler 1071 * takes over after sending the data. 1072 */ 1073 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1074 1075 /* check device status */ 1076 if (unlikely((status & ATA_DRQ) == 0)) { 1077 /* handle BSY=0, DRQ=0 as error */ 1078 if (likely(status & (ATA_ERR | ATA_DF))) 1079 /* device stops HSM for abort/error */ 1080 qc->err_mask |= AC_ERR_DEV; 1081 else { 1082 /* HSM violation. Let EH handle this */ 1083 ata_ehi_push_desc(ehi, 1084 "ST_FIRST: !(DRQ|ERR|DF)"); 1085 qc->err_mask |= AC_ERR_HSM; 1086 } 1087 1088 ap->hsm_task_state = HSM_ST_ERR; 1089 goto fsm_start; 1090 } 1091 1092 /* Device should not ask for data transfer (DRQ=1) 1093 * when it finds something wrong. 1094 * We ignore DRQ here and stop the HSM by 1095 * changing hsm_task_state to HSM_ST_ERR and 1096 * let the EH abort the command or reset the device. 1097 */ 1098 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1099 /* Some ATAPI tape drives forget to clear the ERR bit 1100 * when doing the next command (mostly request sense). 1101 * We ignore ERR here to workaround and proceed sending 1102 * the CDB. 1103 */ 1104 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1105 ata_ehi_push_desc(ehi, "ST_FIRST: " 1106 "DRQ=1 with device error, " 1107 "dev_stat 0x%X", status); 1108 qc->err_mask |= AC_ERR_HSM; 1109 ap->hsm_task_state = HSM_ST_ERR; 1110 goto fsm_start; 1111 } 1112 } 1113 1114 /* Send the CDB (atapi) or the first data block (ata pio out). 1115 * During the state transition, interrupt handler shouldn't 1116 * be invoked before the data transfer is complete and 1117 * hsm_task_state is changed. Hence, the following locking. 1118 */ 1119 if (in_wq) 1120 spin_lock_irqsave(ap->lock, flags); 1121 1122 if (qc->tf.protocol == ATA_PROT_PIO) { 1123 /* PIO data out protocol. 1124 * send first data block. 1125 */ 1126 1127 /* ata_pio_sectors() might change the state 1128 * to HSM_ST_LAST. so, the state is changed here 1129 * before ata_pio_sectors(). 1130 */ 1131 ap->hsm_task_state = HSM_ST; 1132 ata_pio_sectors(qc); 1133 } else 1134 /* send CDB */ 1135 atapi_send_cdb(ap, qc); 1136 1137 if (in_wq) 1138 spin_unlock_irqrestore(ap->lock, flags); 1139 1140 /* if polling, ata_sff_pio_task() handles the rest. 1141 * otherwise, interrupt handler takes over from here. 1142 */ 1143 break; 1144 1145 case HSM_ST: 1146 /* complete command or read/write the data register */ 1147 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1148 /* ATAPI PIO protocol */ 1149 if ((status & ATA_DRQ) == 0) { 1150 /* No more data to transfer or device error. 1151 * Device error will be tagged in HSM_ST_LAST. 1152 */ 1153 ap->hsm_task_state = HSM_ST_LAST; 1154 goto fsm_start; 1155 } 1156 1157 /* Device should not ask for data transfer (DRQ=1) 1158 * when it finds something wrong. 1159 * We ignore DRQ here and stop the HSM by 1160 * changing hsm_task_state to HSM_ST_ERR and 1161 * let the EH abort the command or reset the device. 1162 */ 1163 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1164 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1165 "DRQ=1 with device error, " 1166 "dev_stat 0x%X", status); 1167 qc->err_mask |= AC_ERR_HSM; 1168 ap->hsm_task_state = HSM_ST_ERR; 1169 goto fsm_start; 1170 } 1171 1172 atapi_pio_bytes(qc); 1173 1174 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1175 /* bad ireason reported by device */ 1176 goto fsm_start; 1177 1178 } else { 1179 /* ATA PIO protocol */ 1180 if (unlikely((status & ATA_DRQ) == 0)) { 1181 /* handle BSY=0, DRQ=0 as error */ 1182 if (likely(status & (ATA_ERR | ATA_DF))) { 1183 /* device stops HSM for abort/error */ 1184 qc->err_mask |= AC_ERR_DEV; 1185 1186 /* If diagnostic failed and this is 1187 * IDENTIFY, it's likely a phantom 1188 * device. Mark hint. 1189 */ 1190 if (qc->dev->horkage & 1191 ATA_HORKAGE_DIAGNOSTIC) 1192 qc->err_mask |= 1193 AC_ERR_NODEV_HINT; 1194 } else { 1195 /* HSM violation. Let EH handle this. 1196 * Phantom devices also trigger this 1197 * condition. Mark hint. 1198 */ 1199 ata_ehi_push_desc(ehi, "ST-ATA: " 1200 "DRQ=0 without device error, " 1201 "dev_stat 0x%X", status); 1202 qc->err_mask |= AC_ERR_HSM | 1203 AC_ERR_NODEV_HINT; 1204 } 1205 1206 ap->hsm_task_state = HSM_ST_ERR; 1207 goto fsm_start; 1208 } 1209 1210 /* For PIO reads, some devices may ask for 1211 * data transfer (DRQ=1) alone with ERR=1. 1212 * We respect DRQ here and transfer one 1213 * block of junk data before changing the 1214 * hsm_task_state to HSM_ST_ERR. 1215 * 1216 * For PIO writes, ERR=1 DRQ=1 doesn't make 1217 * sense since the data block has been 1218 * transferred to the device. 1219 */ 1220 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1221 /* data might be corrputed */ 1222 qc->err_mask |= AC_ERR_DEV; 1223 1224 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1225 ata_pio_sectors(qc); 1226 status = ata_wait_idle(ap); 1227 } 1228 1229 if (status & (ATA_BUSY | ATA_DRQ)) { 1230 ata_ehi_push_desc(ehi, "ST-ATA: " 1231 "BUSY|DRQ persists on ERR|DF, " 1232 "dev_stat 0x%X", status); 1233 qc->err_mask |= AC_ERR_HSM; 1234 } 1235 1236 /* There are oddball controllers with 1237 * status register stuck at 0x7f and 1238 * lbal/m/h at zero which makes it 1239 * pass all other presence detection 1240 * mechanisms we have. Set NODEV_HINT 1241 * for it. Kernel bz#7241. 1242 */ 1243 if (status == 0x7f) 1244 qc->err_mask |= AC_ERR_NODEV_HINT; 1245 1246 /* ata_pio_sectors() might change the 1247 * state to HSM_ST_LAST. so, the state 1248 * is changed after ata_pio_sectors(). 1249 */ 1250 ap->hsm_task_state = HSM_ST_ERR; 1251 goto fsm_start; 1252 } 1253 1254 ata_pio_sectors(qc); 1255 1256 if (ap->hsm_task_state == HSM_ST_LAST && 1257 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1258 /* all data read */ 1259 status = ata_wait_idle(ap); 1260 goto fsm_start; 1261 } 1262 } 1263 1264 poll_next = 1; 1265 break; 1266 1267 case HSM_ST_LAST: 1268 if (unlikely(!ata_ok(status))) { 1269 qc->err_mask |= __ac_err_mask(status); 1270 ap->hsm_task_state = HSM_ST_ERR; 1271 goto fsm_start; 1272 } 1273 1274 /* no more data to transfer */ 1275 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1276 ap->print_id, qc->dev->devno, status); 1277 1278 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1279 1280 ap->hsm_task_state = HSM_ST_IDLE; 1281 1282 /* complete taskfile transaction */ 1283 ata_hsm_qc_complete(qc, in_wq); 1284 1285 poll_next = 0; 1286 break; 1287 1288 case HSM_ST_ERR: 1289 ap->hsm_task_state = HSM_ST_IDLE; 1290 1291 /* complete taskfile transaction */ 1292 ata_hsm_qc_complete(qc, in_wq); 1293 1294 poll_next = 0; 1295 break; 1296 default: 1297 poll_next = 0; 1298 BUG(); 1299 } 1300 1301 return poll_next; 1302 } 1303 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1304 1305 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1306 { 1307 struct ata_port *ap = link->ap; 1308 1309 WARN_ON((ap->sff_pio_task_link != NULL) && 1310 (ap->sff_pio_task_link != link)); 1311 ap->sff_pio_task_link = link; 1312 1313 /* may fail if ata_sff_flush_pio_task() in progress */ 1314 queue_delayed_work(ata_sff_wq, &ap->sff_pio_task, 1315 msecs_to_jiffies(delay)); 1316 } 1317 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1318 1319 void ata_sff_flush_pio_task(struct ata_port *ap) 1320 { 1321 DPRINTK("ENTER\n"); 1322 1323 cancel_delayed_work_sync(&ap->sff_pio_task); 1324 ap->hsm_task_state = HSM_ST_IDLE; 1325 1326 if (ata_msg_ctl(ap)) 1327 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1328 } 1329 1330 static void ata_sff_pio_task(struct work_struct *work) 1331 { 1332 struct ata_port *ap = 1333 container_of(work, struct ata_port, sff_pio_task.work); 1334 struct ata_link *link = ap->sff_pio_task_link; 1335 struct ata_queued_cmd *qc; 1336 u8 status; 1337 int poll_next; 1338 1339 BUG_ON(ap->sff_pio_task_link == NULL); 1340 /* qc can be NULL if timeout occurred */ 1341 qc = ata_qc_from_tag(ap, link->active_tag); 1342 if (!qc) { 1343 ap->sff_pio_task_link = NULL; 1344 return; 1345 } 1346 1347 fsm_start: 1348 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1349 1350 /* 1351 * This is purely heuristic. This is a fast path. 1352 * Sometimes when we enter, BSY will be cleared in 1353 * a chk-status or two. If not, the drive is probably seeking 1354 * or something. Snooze for a couple msecs, then 1355 * chk-status again. If still busy, queue delayed work. 1356 */ 1357 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1358 if (status & ATA_BUSY) { 1359 ata_msleep(ap, 2); 1360 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1361 if (status & ATA_BUSY) { 1362 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1363 return; 1364 } 1365 } 1366 1367 /* 1368 * hsm_move() may trigger another command to be processed. 1369 * clean the link beforehand. 1370 */ 1371 ap->sff_pio_task_link = NULL; 1372 /* move the HSM */ 1373 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1374 1375 /* another command or interrupt handler 1376 * may be running at this point. 1377 */ 1378 if (poll_next) 1379 goto fsm_start; 1380 } 1381 1382 /** 1383 * ata_sff_qc_issue - issue taskfile to a SFF controller 1384 * @qc: command to issue to device 1385 * 1386 * This function issues a PIO or NODATA command to a SFF 1387 * controller. 1388 * 1389 * LOCKING: 1390 * spin_lock_irqsave(host lock) 1391 * 1392 * RETURNS: 1393 * Zero on success, AC_ERR_* mask on failure 1394 */ 1395 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1396 { 1397 struct ata_port *ap = qc->ap; 1398 struct ata_link *link = qc->dev->link; 1399 1400 /* Use polling pio if the LLD doesn't handle 1401 * interrupt driven pio and atapi CDB interrupt. 1402 */ 1403 if (ap->flags & ATA_FLAG_PIO_POLLING) 1404 qc->tf.flags |= ATA_TFLAG_POLLING; 1405 1406 /* select the device */ 1407 ata_dev_select(ap, qc->dev->devno, 1, 0); 1408 1409 /* start the command */ 1410 switch (qc->tf.protocol) { 1411 case ATA_PROT_NODATA: 1412 if (qc->tf.flags & ATA_TFLAG_POLLING) 1413 ata_qc_set_polling(qc); 1414 1415 ata_tf_to_host(ap, &qc->tf); 1416 ap->hsm_task_state = HSM_ST_LAST; 1417 1418 if (qc->tf.flags & ATA_TFLAG_POLLING) 1419 ata_sff_queue_pio_task(link, 0); 1420 1421 break; 1422 1423 case ATA_PROT_PIO: 1424 if (qc->tf.flags & ATA_TFLAG_POLLING) 1425 ata_qc_set_polling(qc); 1426 1427 ata_tf_to_host(ap, &qc->tf); 1428 1429 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1430 /* PIO data out protocol */ 1431 ap->hsm_task_state = HSM_ST_FIRST; 1432 ata_sff_queue_pio_task(link, 0); 1433 1434 /* always send first data block using the 1435 * ata_sff_pio_task() codepath. 1436 */ 1437 } else { 1438 /* PIO data in protocol */ 1439 ap->hsm_task_state = HSM_ST; 1440 1441 if (qc->tf.flags & ATA_TFLAG_POLLING) 1442 ata_sff_queue_pio_task(link, 0); 1443 1444 /* if polling, ata_sff_pio_task() handles the 1445 * rest. otherwise, interrupt handler takes 1446 * over from here. 1447 */ 1448 } 1449 1450 break; 1451 1452 case ATAPI_PROT_PIO: 1453 case ATAPI_PROT_NODATA: 1454 if (qc->tf.flags & ATA_TFLAG_POLLING) 1455 ata_qc_set_polling(qc); 1456 1457 ata_tf_to_host(ap, &qc->tf); 1458 1459 ap->hsm_task_state = HSM_ST_FIRST; 1460 1461 /* send cdb by polling if no cdb interrupt */ 1462 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1463 (qc->tf.flags & ATA_TFLAG_POLLING)) 1464 ata_sff_queue_pio_task(link, 0); 1465 break; 1466 1467 default: 1468 WARN_ON_ONCE(1); 1469 return AC_ERR_SYSTEM; 1470 } 1471 1472 return 0; 1473 } 1474 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1475 1476 /** 1477 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1478 * @qc: qc to fill result TF for 1479 * 1480 * @qc is finished and result TF needs to be filled. Fill it 1481 * using ->sff_tf_read. 1482 * 1483 * LOCKING: 1484 * spin_lock_irqsave(host lock) 1485 * 1486 * RETURNS: 1487 * true indicating that result TF is successfully filled. 1488 */ 1489 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1490 { 1491 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1492 return true; 1493 } 1494 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1495 1496 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1497 { 1498 ap->stats.idle_irq++; 1499 1500 #ifdef ATA_IRQ_TRAP 1501 if ((ap->stats.idle_irq % 1000) == 0) { 1502 ap->ops->sff_check_status(ap); 1503 if (ap->ops->sff_irq_clear) 1504 ap->ops->sff_irq_clear(ap); 1505 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 1506 return 1; 1507 } 1508 #endif 1509 return 0; /* irq not handled */ 1510 } 1511 1512 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1513 struct ata_queued_cmd *qc, 1514 bool hsmv_on_idle) 1515 { 1516 u8 status; 1517 1518 VPRINTK("ata%u: protocol %d task_state %d\n", 1519 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1520 1521 /* Check whether we are expecting interrupt in this state */ 1522 switch (ap->hsm_task_state) { 1523 case HSM_ST_FIRST: 1524 /* Some pre-ATAPI-4 devices assert INTRQ 1525 * at this state when ready to receive CDB. 1526 */ 1527 1528 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1529 * The flag was turned on only for atapi devices. No 1530 * need to check ata_is_atapi(qc->tf.protocol) again. 1531 */ 1532 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1533 return ata_sff_idle_irq(ap); 1534 break; 1535 case HSM_ST_IDLE: 1536 return ata_sff_idle_irq(ap); 1537 default: 1538 break; 1539 } 1540 1541 /* check main status, clearing INTRQ if needed */ 1542 status = ata_sff_irq_status(ap); 1543 if (status & ATA_BUSY) { 1544 if (hsmv_on_idle) { 1545 /* BMDMA engine is already stopped, we're screwed */ 1546 qc->err_mask |= AC_ERR_HSM; 1547 ap->hsm_task_state = HSM_ST_ERR; 1548 } else 1549 return ata_sff_idle_irq(ap); 1550 } 1551 1552 /* clear irq events */ 1553 if (ap->ops->sff_irq_clear) 1554 ap->ops->sff_irq_clear(ap); 1555 1556 ata_sff_hsm_move(ap, qc, status, 0); 1557 1558 return 1; /* irq handled */ 1559 } 1560 1561 /** 1562 * ata_sff_port_intr - Handle SFF port interrupt 1563 * @ap: Port on which interrupt arrived (possibly...) 1564 * @qc: Taskfile currently active in engine 1565 * 1566 * Handle port interrupt for given queued command. 1567 * 1568 * LOCKING: 1569 * spin_lock_irqsave(host lock) 1570 * 1571 * RETURNS: 1572 * One if interrupt was handled, zero if not (shared irq). 1573 */ 1574 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1575 { 1576 return __ata_sff_port_intr(ap, qc, false); 1577 } 1578 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1579 1580 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1581 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1582 { 1583 struct ata_host *host = dev_instance; 1584 bool retried = false; 1585 unsigned int i; 1586 unsigned int handled, idle, polling; 1587 unsigned long flags; 1588 1589 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1590 spin_lock_irqsave(&host->lock, flags); 1591 1592 retry: 1593 handled = idle = polling = 0; 1594 for (i = 0; i < host->n_ports; i++) { 1595 struct ata_port *ap = host->ports[i]; 1596 struct ata_queued_cmd *qc; 1597 1598 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1599 if (qc) { 1600 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1601 handled |= port_intr(ap, qc); 1602 else 1603 polling |= 1 << i; 1604 } else 1605 idle |= 1 << i; 1606 } 1607 1608 /* 1609 * If no port was expecting IRQ but the controller is actually 1610 * asserting IRQ line, nobody cared will ensue. Check IRQ 1611 * pending status if available and clear spurious IRQ. 1612 */ 1613 if (!handled && !retried) { 1614 bool retry = false; 1615 1616 for (i = 0; i < host->n_ports; i++) { 1617 struct ata_port *ap = host->ports[i]; 1618 1619 if (polling & (1 << i)) 1620 continue; 1621 1622 if (!ap->ops->sff_irq_check || 1623 !ap->ops->sff_irq_check(ap)) 1624 continue; 1625 1626 if (idle & (1 << i)) { 1627 ap->ops->sff_check_status(ap); 1628 if (ap->ops->sff_irq_clear) 1629 ap->ops->sff_irq_clear(ap); 1630 } else { 1631 /* clear INTRQ and check if BUSY cleared */ 1632 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1633 retry |= true; 1634 /* 1635 * With command in flight, we can't do 1636 * sff_irq_clear() w/o racing with completion. 1637 */ 1638 } 1639 } 1640 1641 if (retry) { 1642 retried = true; 1643 goto retry; 1644 } 1645 } 1646 1647 spin_unlock_irqrestore(&host->lock, flags); 1648 1649 return IRQ_RETVAL(handled); 1650 } 1651 1652 /** 1653 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1654 * @irq: irq line (unused) 1655 * @dev_instance: pointer to our ata_host information structure 1656 * 1657 * Default interrupt handler for PCI IDE devices. Calls 1658 * ata_sff_port_intr() for each port that is not disabled. 1659 * 1660 * LOCKING: 1661 * Obtains host lock during operation. 1662 * 1663 * RETURNS: 1664 * IRQ_NONE or IRQ_HANDLED. 1665 */ 1666 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1667 { 1668 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1669 } 1670 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1671 1672 /** 1673 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1674 * @ap: port that appears to have timed out 1675 * 1676 * Called from the libata error handlers when the core code suspects 1677 * an interrupt has been lost. If it has complete anything we can and 1678 * then return. Interface must support altstatus for this faster 1679 * recovery to occur. 1680 * 1681 * Locking: 1682 * Caller holds host lock 1683 */ 1684 1685 void ata_sff_lost_interrupt(struct ata_port *ap) 1686 { 1687 u8 status; 1688 struct ata_queued_cmd *qc; 1689 1690 /* Only one outstanding command per SFF channel */ 1691 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1692 /* We cannot lose an interrupt on a non-existent or polled command */ 1693 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1694 return; 1695 /* See if the controller thinks it is still busy - if so the command 1696 isn't a lost IRQ but is still in progress */ 1697 status = ata_sff_altstatus(ap); 1698 if (status & ATA_BUSY) 1699 return; 1700 1701 /* There was a command running, we are no longer busy and we have 1702 no interrupt. */ 1703 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n", 1704 status); 1705 /* Run the host interrupt logic as if the interrupt had not been 1706 lost */ 1707 ata_sff_port_intr(ap, qc); 1708 } 1709 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1710 1711 /** 1712 * ata_sff_freeze - Freeze SFF controller port 1713 * @ap: port to freeze 1714 * 1715 * Freeze SFF controller port. 1716 * 1717 * LOCKING: 1718 * Inherited from caller. 1719 */ 1720 void ata_sff_freeze(struct ata_port *ap) 1721 { 1722 ap->ctl |= ATA_NIEN; 1723 ap->last_ctl = ap->ctl; 1724 1725 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1726 ata_sff_set_devctl(ap, ap->ctl); 1727 1728 /* Under certain circumstances, some controllers raise IRQ on 1729 * ATA_NIEN manipulation. Also, many controllers fail to mask 1730 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1731 */ 1732 ap->ops->sff_check_status(ap); 1733 1734 if (ap->ops->sff_irq_clear) 1735 ap->ops->sff_irq_clear(ap); 1736 } 1737 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1738 1739 /** 1740 * ata_sff_thaw - Thaw SFF controller port 1741 * @ap: port to thaw 1742 * 1743 * Thaw SFF controller port. 1744 * 1745 * LOCKING: 1746 * Inherited from caller. 1747 */ 1748 void ata_sff_thaw(struct ata_port *ap) 1749 { 1750 /* clear & re-enable interrupts */ 1751 ap->ops->sff_check_status(ap); 1752 if (ap->ops->sff_irq_clear) 1753 ap->ops->sff_irq_clear(ap); 1754 ata_sff_irq_on(ap); 1755 } 1756 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1757 1758 /** 1759 * ata_sff_prereset - prepare SFF link for reset 1760 * @link: SFF link to be reset 1761 * @deadline: deadline jiffies for the operation 1762 * 1763 * SFF link @link is about to be reset. Initialize it. It first 1764 * calls ata_std_prereset() and wait for !BSY if the port is 1765 * being softreset. 1766 * 1767 * LOCKING: 1768 * Kernel thread context (may sleep) 1769 * 1770 * RETURNS: 1771 * 0 on success, -errno otherwise. 1772 */ 1773 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1774 { 1775 struct ata_eh_context *ehc = &link->eh_context; 1776 int rc; 1777 1778 rc = ata_std_prereset(link, deadline); 1779 if (rc) 1780 return rc; 1781 1782 /* if we're about to do hardreset, nothing more to do */ 1783 if (ehc->i.action & ATA_EH_HARDRESET) 1784 return 0; 1785 1786 /* wait for !BSY if we don't know that no device is attached */ 1787 if (!ata_link_offline(link)) { 1788 rc = ata_sff_wait_ready(link, deadline); 1789 if (rc && rc != -ENODEV) { 1790 ata_link_printk(link, KERN_WARNING, "device not ready " 1791 "(errno=%d), forcing hardreset\n", rc); 1792 ehc->i.action |= ATA_EH_HARDRESET; 1793 } 1794 } 1795 1796 return 0; 1797 } 1798 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1799 1800 /** 1801 * ata_devchk - PATA device presence detection 1802 * @ap: ATA channel to examine 1803 * @device: Device to examine (starting at zero) 1804 * 1805 * This technique was originally described in 1806 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1807 * later found its way into the ATA/ATAPI spec. 1808 * 1809 * Write a pattern to the ATA shadow registers, 1810 * and if a device is present, it will respond by 1811 * correctly storing and echoing back the 1812 * ATA shadow register contents. 1813 * 1814 * LOCKING: 1815 * caller. 1816 */ 1817 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1818 { 1819 struct ata_ioports *ioaddr = &ap->ioaddr; 1820 u8 nsect, lbal; 1821 1822 ap->ops->sff_dev_select(ap, device); 1823 1824 iowrite8(0x55, ioaddr->nsect_addr); 1825 iowrite8(0xaa, ioaddr->lbal_addr); 1826 1827 iowrite8(0xaa, ioaddr->nsect_addr); 1828 iowrite8(0x55, ioaddr->lbal_addr); 1829 1830 iowrite8(0x55, ioaddr->nsect_addr); 1831 iowrite8(0xaa, ioaddr->lbal_addr); 1832 1833 nsect = ioread8(ioaddr->nsect_addr); 1834 lbal = ioread8(ioaddr->lbal_addr); 1835 1836 if ((nsect == 0x55) && (lbal == 0xaa)) 1837 return 1; /* we found a device */ 1838 1839 return 0; /* nothing found */ 1840 } 1841 1842 /** 1843 * ata_sff_dev_classify - Parse returned ATA device signature 1844 * @dev: ATA device to classify (starting at zero) 1845 * @present: device seems present 1846 * @r_err: Value of error register on completion 1847 * 1848 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1849 * an ATA/ATAPI-defined set of values is placed in the ATA 1850 * shadow registers, indicating the results of device detection 1851 * and diagnostics. 1852 * 1853 * Select the ATA device, and read the values from the ATA shadow 1854 * registers. Then parse according to the Error register value, 1855 * and the spec-defined values examined by ata_dev_classify(). 1856 * 1857 * LOCKING: 1858 * caller. 1859 * 1860 * RETURNS: 1861 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1862 */ 1863 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1864 u8 *r_err) 1865 { 1866 struct ata_port *ap = dev->link->ap; 1867 struct ata_taskfile tf; 1868 unsigned int class; 1869 u8 err; 1870 1871 ap->ops->sff_dev_select(ap, dev->devno); 1872 1873 memset(&tf, 0, sizeof(tf)); 1874 1875 ap->ops->sff_tf_read(ap, &tf); 1876 err = tf.feature; 1877 if (r_err) 1878 *r_err = err; 1879 1880 /* see if device passed diags: continue and warn later */ 1881 if (err == 0) 1882 /* diagnostic fail : do nothing _YET_ */ 1883 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1884 else if (err == 1) 1885 /* do nothing */ ; 1886 else if ((dev->devno == 0) && (err == 0x81)) 1887 /* do nothing */ ; 1888 else 1889 return ATA_DEV_NONE; 1890 1891 /* determine if device is ATA or ATAPI */ 1892 class = ata_dev_classify(&tf); 1893 1894 if (class == ATA_DEV_UNKNOWN) { 1895 /* If the device failed diagnostic, it's likely to 1896 * have reported incorrect device signature too. 1897 * Assume ATA device if the device seems present but 1898 * device signature is invalid with diagnostic 1899 * failure. 1900 */ 1901 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1902 class = ATA_DEV_ATA; 1903 else 1904 class = ATA_DEV_NONE; 1905 } else if ((class == ATA_DEV_ATA) && 1906 (ap->ops->sff_check_status(ap) == 0)) 1907 class = ATA_DEV_NONE; 1908 1909 return class; 1910 } 1911 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1912 1913 /** 1914 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1915 * @link: SFF link which is just reset 1916 * @devmask: mask of present devices 1917 * @deadline: deadline jiffies for the operation 1918 * 1919 * Wait devices attached to SFF @link to become ready after 1920 * reset. It contains preceding 150ms wait to avoid accessing TF 1921 * status register too early. 1922 * 1923 * LOCKING: 1924 * Kernel thread context (may sleep). 1925 * 1926 * RETURNS: 1927 * 0 on success, -ENODEV if some or all of devices in @devmask 1928 * don't seem to exist. -errno on other errors. 1929 */ 1930 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1931 unsigned long deadline) 1932 { 1933 struct ata_port *ap = link->ap; 1934 struct ata_ioports *ioaddr = &ap->ioaddr; 1935 unsigned int dev0 = devmask & (1 << 0); 1936 unsigned int dev1 = devmask & (1 << 1); 1937 int rc, ret = 0; 1938 1939 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1940 1941 /* always check readiness of the master device */ 1942 rc = ata_sff_wait_ready(link, deadline); 1943 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1944 * and TF status is 0xff, bail out on it too. 1945 */ 1946 if (rc) 1947 return rc; 1948 1949 /* if device 1 was found in ata_devchk, wait for register 1950 * access briefly, then wait for BSY to clear. 1951 */ 1952 if (dev1) { 1953 int i; 1954 1955 ap->ops->sff_dev_select(ap, 1); 1956 1957 /* Wait for register access. Some ATAPI devices fail 1958 * to set nsect/lbal after reset, so don't waste too 1959 * much time on it. We're gonna wait for !BSY anyway. 1960 */ 1961 for (i = 0; i < 2; i++) { 1962 u8 nsect, lbal; 1963 1964 nsect = ioread8(ioaddr->nsect_addr); 1965 lbal = ioread8(ioaddr->lbal_addr); 1966 if ((nsect == 1) && (lbal == 1)) 1967 break; 1968 ata_msleep(ap, 50); /* give drive a breather */ 1969 } 1970 1971 rc = ata_sff_wait_ready(link, deadline); 1972 if (rc) { 1973 if (rc != -ENODEV) 1974 return rc; 1975 ret = rc; 1976 } 1977 } 1978 1979 /* is all this really necessary? */ 1980 ap->ops->sff_dev_select(ap, 0); 1981 if (dev1) 1982 ap->ops->sff_dev_select(ap, 1); 1983 if (dev0) 1984 ap->ops->sff_dev_select(ap, 0); 1985 1986 return ret; 1987 } 1988 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 1989 1990 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1991 unsigned long deadline) 1992 { 1993 struct ata_ioports *ioaddr = &ap->ioaddr; 1994 1995 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 1996 1997 /* software reset. causes dev0 to be selected */ 1998 iowrite8(ap->ctl, ioaddr->ctl_addr); 1999 udelay(20); /* FIXME: flush */ 2000 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2001 udelay(20); /* FIXME: flush */ 2002 iowrite8(ap->ctl, ioaddr->ctl_addr); 2003 ap->last_ctl = ap->ctl; 2004 2005 /* wait the port to become ready */ 2006 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2007 } 2008 2009 /** 2010 * ata_sff_softreset - reset host port via ATA SRST 2011 * @link: ATA link to reset 2012 * @classes: resulting classes of attached devices 2013 * @deadline: deadline jiffies for the operation 2014 * 2015 * Reset host port using ATA SRST. 2016 * 2017 * LOCKING: 2018 * Kernel thread context (may sleep) 2019 * 2020 * RETURNS: 2021 * 0 on success, -errno otherwise. 2022 */ 2023 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2024 unsigned long deadline) 2025 { 2026 struct ata_port *ap = link->ap; 2027 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2028 unsigned int devmask = 0; 2029 int rc; 2030 u8 err; 2031 2032 DPRINTK("ENTER\n"); 2033 2034 /* determine if device 0/1 are present */ 2035 if (ata_devchk(ap, 0)) 2036 devmask |= (1 << 0); 2037 if (slave_possible && ata_devchk(ap, 1)) 2038 devmask |= (1 << 1); 2039 2040 /* select device 0 again */ 2041 ap->ops->sff_dev_select(ap, 0); 2042 2043 /* issue bus reset */ 2044 DPRINTK("about to softreset, devmask=%x\n", devmask); 2045 rc = ata_bus_softreset(ap, devmask, deadline); 2046 /* if link is occupied, -ENODEV too is an error */ 2047 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2048 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); 2049 return rc; 2050 } 2051 2052 /* determine by signature whether we have ATA or ATAPI devices */ 2053 classes[0] = ata_sff_dev_classify(&link->device[0], 2054 devmask & (1 << 0), &err); 2055 if (slave_possible && err != 0x81) 2056 classes[1] = ata_sff_dev_classify(&link->device[1], 2057 devmask & (1 << 1), &err); 2058 2059 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2060 return 0; 2061 } 2062 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2063 2064 /** 2065 * sata_sff_hardreset - reset host port via SATA phy reset 2066 * @link: link to reset 2067 * @class: resulting class of attached device 2068 * @deadline: deadline jiffies for the operation 2069 * 2070 * SATA phy-reset host port using DET bits of SControl register, 2071 * wait for !BSY and classify the attached device. 2072 * 2073 * LOCKING: 2074 * Kernel thread context (may sleep) 2075 * 2076 * RETURNS: 2077 * 0 on success, -errno otherwise. 2078 */ 2079 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2080 unsigned long deadline) 2081 { 2082 struct ata_eh_context *ehc = &link->eh_context; 2083 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2084 bool online; 2085 int rc; 2086 2087 rc = sata_link_hardreset(link, timing, deadline, &online, 2088 ata_sff_check_ready); 2089 if (online) 2090 *class = ata_sff_dev_classify(link->device, 1, NULL); 2091 2092 DPRINTK("EXIT, class=%u\n", *class); 2093 return rc; 2094 } 2095 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2096 2097 /** 2098 * ata_sff_postreset - SFF postreset callback 2099 * @link: the target SFF ata_link 2100 * @classes: classes of attached devices 2101 * 2102 * This function is invoked after a successful reset. It first 2103 * calls ata_std_postreset() and performs SFF specific postreset 2104 * processing. 2105 * 2106 * LOCKING: 2107 * Kernel thread context (may sleep) 2108 */ 2109 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2110 { 2111 struct ata_port *ap = link->ap; 2112 2113 ata_std_postreset(link, classes); 2114 2115 /* is double-select really necessary? */ 2116 if (classes[0] != ATA_DEV_NONE) 2117 ap->ops->sff_dev_select(ap, 1); 2118 if (classes[1] != ATA_DEV_NONE) 2119 ap->ops->sff_dev_select(ap, 0); 2120 2121 /* bail out if no device is present */ 2122 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2123 DPRINTK("EXIT, no device\n"); 2124 return; 2125 } 2126 2127 /* set up device control */ 2128 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2129 ata_sff_set_devctl(ap, ap->ctl); 2130 ap->last_ctl = ap->ctl; 2131 } 2132 } 2133 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2134 2135 /** 2136 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2137 * @qc: command 2138 * 2139 * Drain the FIFO and device of any stuck data following a command 2140 * failing to complete. In some cases this is necessary before a 2141 * reset will recover the device. 2142 * 2143 */ 2144 2145 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2146 { 2147 int count; 2148 struct ata_port *ap; 2149 2150 /* We only need to flush incoming data when a command was running */ 2151 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2152 return; 2153 2154 ap = qc->ap; 2155 /* Drain up to 64K of data before we give up this recovery method */ 2156 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2157 && count < 65536; count += 2) 2158 ioread16(ap->ioaddr.data_addr); 2159 2160 /* Can become DEBUG later */ 2161 if (count) 2162 ata_port_printk(ap, KERN_DEBUG, 2163 "drained %d bytes to clear DRQ.\n", count); 2164 2165 } 2166 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2167 2168 /** 2169 * ata_sff_error_handler - Stock error handler for SFF controller 2170 * @ap: port to handle error for 2171 * 2172 * Stock error handler for SFF controller. It can handle both 2173 * PATA and SATA controllers. Many controllers should be able to 2174 * use this EH as-is or with some added handling before and 2175 * after. 2176 * 2177 * LOCKING: 2178 * Kernel thread context (may sleep) 2179 */ 2180 void ata_sff_error_handler(struct ata_port *ap) 2181 { 2182 ata_reset_fn_t softreset = ap->ops->softreset; 2183 ata_reset_fn_t hardreset = ap->ops->hardreset; 2184 struct ata_queued_cmd *qc; 2185 unsigned long flags; 2186 2187 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2188 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2189 qc = NULL; 2190 2191 spin_lock_irqsave(ap->lock, flags); 2192 2193 /* 2194 * We *MUST* do FIFO draining before we issue a reset as 2195 * several devices helpfully clear their internal state and 2196 * will lock solid if we touch the data port post reset. Pass 2197 * qc in case anyone wants to do different PIO/DMA recovery or 2198 * has per command fixups 2199 */ 2200 if (ap->ops->sff_drain_fifo) 2201 ap->ops->sff_drain_fifo(qc); 2202 2203 spin_unlock_irqrestore(ap->lock, flags); 2204 2205 /* ignore ata_sff_softreset if ctl isn't accessible */ 2206 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) 2207 softreset = NULL; 2208 2209 /* ignore built-in hardresets if SCR access is not available */ 2210 if ((hardreset == sata_std_hardreset || 2211 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2212 hardreset = NULL; 2213 2214 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2215 ap->ops->postreset); 2216 } 2217 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2218 2219 /** 2220 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2221 * @ioaddr: IO address structure to be initialized 2222 * 2223 * Utility function which initializes data_addr, error_addr, 2224 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2225 * device_addr, status_addr, and command_addr to standard offsets 2226 * relative to cmd_addr. 2227 * 2228 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2229 */ 2230 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2231 { 2232 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2233 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2234 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2235 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2236 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2237 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2238 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2239 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2240 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2241 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2242 } 2243 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2244 2245 #ifdef CONFIG_PCI 2246 2247 static int ata_resources_present(struct pci_dev *pdev, int port) 2248 { 2249 int i; 2250 2251 /* Check the PCI resources for this channel are enabled */ 2252 port = port * 2; 2253 for (i = 0; i < 2; i++) { 2254 if (pci_resource_start(pdev, port + i) == 0 || 2255 pci_resource_len(pdev, port + i) == 0) 2256 return 0; 2257 } 2258 return 1; 2259 } 2260 2261 /** 2262 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2263 * @host: target ATA host 2264 * 2265 * Acquire native PCI ATA resources for @host and initialize the 2266 * first two ports of @host accordingly. Ports marked dummy are 2267 * skipped and allocation failure makes the port dummy. 2268 * 2269 * Note that native PCI resources are valid even for legacy hosts 2270 * as we fix up pdev resources array early in boot, so this 2271 * function can be used for both native and legacy SFF hosts. 2272 * 2273 * LOCKING: 2274 * Inherited from calling layer (may sleep). 2275 * 2276 * RETURNS: 2277 * 0 if at least one port is initialized, -ENODEV if no port is 2278 * available. 2279 */ 2280 int ata_pci_sff_init_host(struct ata_host *host) 2281 { 2282 struct device *gdev = host->dev; 2283 struct pci_dev *pdev = to_pci_dev(gdev); 2284 unsigned int mask = 0; 2285 int i, rc; 2286 2287 /* request, iomap BARs and init port addresses accordingly */ 2288 for (i = 0; i < 2; i++) { 2289 struct ata_port *ap = host->ports[i]; 2290 int base = i * 2; 2291 void __iomem * const *iomap; 2292 2293 if (ata_port_is_dummy(ap)) 2294 continue; 2295 2296 /* Discard disabled ports. Some controllers show 2297 * their unused channels this way. Disabled ports are 2298 * made dummy. 2299 */ 2300 if (!ata_resources_present(pdev, i)) { 2301 ap->ops = &ata_dummy_port_ops; 2302 continue; 2303 } 2304 2305 rc = pcim_iomap_regions(pdev, 0x3 << base, 2306 dev_driver_string(gdev)); 2307 if (rc) { 2308 dev_printk(KERN_WARNING, gdev, 2309 "failed to request/iomap BARs for port %d " 2310 "(errno=%d)\n", i, rc); 2311 if (rc == -EBUSY) 2312 pcim_pin_device(pdev); 2313 ap->ops = &ata_dummy_port_ops; 2314 continue; 2315 } 2316 host->iomap = iomap = pcim_iomap_table(pdev); 2317 2318 ap->ioaddr.cmd_addr = iomap[base]; 2319 ap->ioaddr.altstatus_addr = 2320 ap->ioaddr.ctl_addr = (void __iomem *) 2321 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2322 ata_sff_std_ports(&ap->ioaddr); 2323 2324 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2325 (unsigned long long)pci_resource_start(pdev, base), 2326 (unsigned long long)pci_resource_start(pdev, base + 1)); 2327 2328 mask |= 1 << i; 2329 } 2330 2331 if (!mask) { 2332 dev_printk(KERN_ERR, gdev, "no available native port\n"); 2333 return -ENODEV; 2334 } 2335 2336 return 0; 2337 } 2338 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2339 2340 /** 2341 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2342 * @pdev: target PCI device 2343 * @ppi: array of port_info, must be enough for two ports 2344 * @r_host: out argument for the initialized ATA host 2345 * 2346 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2347 * all PCI resources and initialize it accordingly in one go. 2348 * 2349 * LOCKING: 2350 * Inherited from calling layer (may sleep). 2351 * 2352 * RETURNS: 2353 * 0 on success, -errno otherwise. 2354 */ 2355 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2356 const struct ata_port_info * const *ppi, 2357 struct ata_host **r_host) 2358 { 2359 struct ata_host *host; 2360 int rc; 2361 2362 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2363 return -ENOMEM; 2364 2365 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2366 if (!host) { 2367 dev_printk(KERN_ERR, &pdev->dev, 2368 "failed to allocate ATA host\n"); 2369 rc = -ENOMEM; 2370 goto err_out; 2371 } 2372 2373 rc = ata_pci_sff_init_host(host); 2374 if (rc) 2375 goto err_out; 2376 2377 devres_remove_group(&pdev->dev, NULL); 2378 *r_host = host; 2379 return 0; 2380 2381 err_out: 2382 devres_release_group(&pdev->dev, NULL); 2383 return rc; 2384 } 2385 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2386 2387 /** 2388 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2389 * @host: target SFF ATA host 2390 * @irq_handler: irq_handler used when requesting IRQ(s) 2391 * @sht: scsi_host_template to use when registering the host 2392 * 2393 * This is the counterpart of ata_host_activate() for SFF ATA 2394 * hosts. This separate helper is necessary because SFF hosts 2395 * use two separate interrupts in legacy mode. 2396 * 2397 * LOCKING: 2398 * Inherited from calling layer (may sleep). 2399 * 2400 * RETURNS: 2401 * 0 on success, -errno otherwise. 2402 */ 2403 int ata_pci_sff_activate_host(struct ata_host *host, 2404 irq_handler_t irq_handler, 2405 struct scsi_host_template *sht) 2406 { 2407 struct device *dev = host->dev; 2408 struct pci_dev *pdev = to_pci_dev(dev); 2409 const char *drv_name = dev_driver_string(host->dev); 2410 int legacy_mode = 0, rc; 2411 2412 rc = ata_host_start(host); 2413 if (rc) 2414 return rc; 2415 2416 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2417 u8 tmp8, mask; 2418 2419 /* TODO: What if one channel is in native mode ... */ 2420 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2421 mask = (1 << 2) | (1 << 0); 2422 if ((tmp8 & mask) != mask) 2423 legacy_mode = 1; 2424 #if defined(CONFIG_NO_ATA_LEGACY) 2425 /* Some platforms with PCI limits cannot address compat 2426 port space. In that case we punt if their firmware has 2427 left a device in compatibility mode */ 2428 if (legacy_mode) { 2429 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); 2430 return -EOPNOTSUPP; 2431 } 2432 #endif 2433 } 2434 2435 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2436 return -ENOMEM; 2437 2438 if (!legacy_mode && pdev->irq) { 2439 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2440 IRQF_SHARED, drv_name, host); 2441 if (rc) 2442 goto out; 2443 2444 ata_port_desc(host->ports[0], "irq %d", pdev->irq); 2445 ata_port_desc(host->ports[1], "irq %d", pdev->irq); 2446 } else if (legacy_mode) { 2447 if (!ata_port_is_dummy(host->ports[0])) { 2448 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2449 irq_handler, IRQF_SHARED, 2450 drv_name, host); 2451 if (rc) 2452 goto out; 2453 2454 ata_port_desc(host->ports[0], "irq %d", 2455 ATA_PRIMARY_IRQ(pdev)); 2456 } 2457 2458 if (!ata_port_is_dummy(host->ports[1])) { 2459 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2460 irq_handler, IRQF_SHARED, 2461 drv_name, host); 2462 if (rc) 2463 goto out; 2464 2465 ata_port_desc(host->ports[1], "irq %d", 2466 ATA_SECONDARY_IRQ(pdev)); 2467 } 2468 } 2469 2470 rc = ata_host_register(host, sht); 2471 out: 2472 if (rc == 0) 2473 devres_remove_group(dev, NULL); 2474 else 2475 devres_release_group(dev, NULL); 2476 2477 return rc; 2478 } 2479 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2480 2481 static const struct ata_port_info *ata_sff_find_valid_pi( 2482 const struct ata_port_info * const *ppi) 2483 { 2484 int i; 2485 2486 /* look up the first valid port_info */ 2487 for (i = 0; i < 2 && ppi[i]; i++) 2488 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2489 return ppi[i]; 2490 2491 return NULL; 2492 } 2493 2494 /** 2495 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2496 * @pdev: Controller to be initialized 2497 * @ppi: array of port_info, must be enough for two ports 2498 * @sht: scsi_host_template to use when registering the host 2499 * @host_priv: host private_data 2500 * @hflag: host flags 2501 * 2502 * This is a helper function which can be called from a driver's 2503 * xxx_init_one() probe function if the hardware uses traditional 2504 * IDE taskfile registers and is PIO only. 2505 * 2506 * ASSUMPTION: 2507 * Nobody makes a single channel controller that appears solely as 2508 * the secondary legacy port on PCI. 2509 * 2510 * LOCKING: 2511 * Inherited from PCI layer (may sleep). 2512 * 2513 * RETURNS: 2514 * Zero on success, negative on errno-based value on error. 2515 */ 2516 int ata_pci_sff_init_one(struct pci_dev *pdev, 2517 const struct ata_port_info * const *ppi, 2518 struct scsi_host_template *sht, void *host_priv, int hflag) 2519 { 2520 struct device *dev = &pdev->dev; 2521 const struct ata_port_info *pi; 2522 struct ata_host *host = NULL; 2523 int rc; 2524 2525 DPRINTK("ENTER\n"); 2526 2527 pi = ata_sff_find_valid_pi(ppi); 2528 if (!pi) { 2529 dev_printk(KERN_ERR, &pdev->dev, 2530 "no valid port_info specified\n"); 2531 return -EINVAL; 2532 } 2533 2534 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2535 return -ENOMEM; 2536 2537 rc = pcim_enable_device(pdev); 2538 if (rc) 2539 goto out; 2540 2541 /* prepare and activate SFF host */ 2542 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2543 if (rc) 2544 goto out; 2545 host->private_data = host_priv; 2546 host->flags |= hflag; 2547 2548 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2549 out: 2550 if (rc == 0) 2551 devres_remove_group(&pdev->dev, NULL); 2552 else 2553 devres_release_group(&pdev->dev, NULL); 2554 2555 return rc; 2556 } 2557 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2558 2559 #endif /* CONFIG_PCI */ 2560 2561 /* 2562 * BMDMA support 2563 */ 2564 2565 #ifdef CONFIG_ATA_BMDMA 2566 2567 const struct ata_port_operations ata_bmdma_port_ops = { 2568 .inherits = &ata_sff_port_ops, 2569 2570 .error_handler = ata_bmdma_error_handler, 2571 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2572 2573 .qc_prep = ata_bmdma_qc_prep, 2574 .qc_issue = ata_bmdma_qc_issue, 2575 2576 .sff_irq_clear = ata_bmdma_irq_clear, 2577 .bmdma_setup = ata_bmdma_setup, 2578 .bmdma_start = ata_bmdma_start, 2579 .bmdma_stop = ata_bmdma_stop, 2580 .bmdma_status = ata_bmdma_status, 2581 2582 .port_start = ata_bmdma_port_start, 2583 }; 2584 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2585 2586 const struct ata_port_operations ata_bmdma32_port_ops = { 2587 .inherits = &ata_bmdma_port_ops, 2588 2589 .sff_data_xfer = ata_sff_data_xfer32, 2590 .port_start = ata_bmdma_port_start32, 2591 }; 2592 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2593 2594 /** 2595 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2596 * @qc: Metadata associated with taskfile to be transferred 2597 * 2598 * Fill PCI IDE PRD (scatter-gather) table with segments 2599 * associated with the current disk command. 2600 * 2601 * LOCKING: 2602 * spin_lock_irqsave(host lock) 2603 * 2604 */ 2605 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2606 { 2607 struct ata_port *ap = qc->ap; 2608 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2609 struct scatterlist *sg; 2610 unsigned int si, pi; 2611 2612 pi = 0; 2613 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2614 u32 addr, offset; 2615 u32 sg_len, len; 2616 2617 /* determine if physical DMA addr spans 64K boundary. 2618 * Note h/w doesn't support 64-bit, so we unconditionally 2619 * truncate dma_addr_t to u32. 2620 */ 2621 addr = (u32) sg_dma_address(sg); 2622 sg_len = sg_dma_len(sg); 2623 2624 while (sg_len) { 2625 offset = addr & 0xffff; 2626 len = sg_len; 2627 if ((offset + sg_len) > 0x10000) 2628 len = 0x10000 - offset; 2629 2630 prd[pi].addr = cpu_to_le32(addr); 2631 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2632 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2633 2634 pi++; 2635 sg_len -= len; 2636 addr += len; 2637 } 2638 } 2639 2640 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2641 } 2642 2643 /** 2644 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2645 * @qc: Metadata associated with taskfile to be transferred 2646 * 2647 * Fill PCI IDE PRD (scatter-gather) table with segments 2648 * associated with the current disk command. Perform the fill 2649 * so that we avoid writing any length 64K records for 2650 * controllers that don't follow the spec. 2651 * 2652 * LOCKING: 2653 * spin_lock_irqsave(host lock) 2654 * 2655 */ 2656 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2657 { 2658 struct ata_port *ap = qc->ap; 2659 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2660 struct scatterlist *sg; 2661 unsigned int si, pi; 2662 2663 pi = 0; 2664 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2665 u32 addr, offset; 2666 u32 sg_len, len, blen; 2667 2668 /* determine if physical DMA addr spans 64K boundary. 2669 * Note h/w doesn't support 64-bit, so we unconditionally 2670 * truncate dma_addr_t to u32. 2671 */ 2672 addr = (u32) sg_dma_address(sg); 2673 sg_len = sg_dma_len(sg); 2674 2675 while (sg_len) { 2676 offset = addr & 0xffff; 2677 len = sg_len; 2678 if ((offset + sg_len) > 0x10000) 2679 len = 0x10000 - offset; 2680 2681 blen = len & 0xffff; 2682 prd[pi].addr = cpu_to_le32(addr); 2683 if (blen == 0) { 2684 /* Some PATA chipsets like the CS5530 can't 2685 cope with 0x0000 meaning 64K as the spec 2686 says */ 2687 prd[pi].flags_len = cpu_to_le32(0x8000); 2688 blen = 0x8000; 2689 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2690 } 2691 prd[pi].flags_len = cpu_to_le32(blen); 2692 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2693 2694 pi++; 2695 sg_len -= len; 2696 addr += len; 2697 } 2698 } 2699 2700 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2701 } 2702 2703 /** 2704 * ata_bmdma_qc_prep - Prepare taskfile for submission 2705 * @qc: Metadata associated with taskfile to be prepared 2706 * 2707 * Prepare ATA taskfile for submission. 2708 * 2709 * LOCKING: 2710 * spin_lock_irqsave(host lock) 2711 */ 2712 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2713 { 2714 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2715 return; 2716 2717 ata_bmdma_fill_sg(qc); 2718 } 2719 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2720 2721 /** 2722 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2723 * @qc: Metadata associated with taskfile to be prepared 2724 * 2725 * Prepare ATA taskfile for submission. 2726 * 2727 * LOCKING: 2728 * spin_lock_irqsave(host lock) 2729 */ 2730 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2731 { 2732 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2733 return; 2734 2735 ata_bmdma_fill_sg_dumb(qc); 2736 } 2737 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2738 2739 /** 2740 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2741 * @qc: command to issue to device 2742 * 2743 * This function issues a PIO, NODATA or DMA command to a 2744 * SFF/BMDMA controller. PIO and NODATA are handled by 2745 * ata_sff_qc_issue(). 2746 * 2747 * LOCKING: 2748 * spin_lock_irqsave(host lock) 2749 * 2750 * RETURNS: 2751 * Zero on success, AC_ERR_* mask on failure 2752 */ 2753 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2754 { 2755 struct ata_port *ap = qc->ap; 2756 struct ata_link *link = qc->dev->link; 2757 2758 /* defer PIO handling to sff_qc_issue */ 2759 if (!ata_is_dma(qc->tf.protocol)) 2760 return ata_sff_qc_issue(qc); 2761 2762 /* select the device */ 2763 ata_dev_select(ap, qc->dev->devno, 1, 0); 2764 2765 /* start the command */ 2766 switch (qc->tf.protocol) { 2767 case ATA_PROT_DMA: 2768 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2769 2770 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2771 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2772 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2773 ap->hsm_task_state = HSM_ST_LAST; 2774 break; 2775 2776 case ATAPI_PROT_DMA: 2777 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2778 2779 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2780 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2781 ap->hsm_task_state = HSM_ST_FIRST; 2782 2783 /* send cdb by polling if no cdb interrupt */ 2784 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2785 ata_sff_queue_pio_task(link, 0); 2786 break; 2787 2788 default: 2789 WARN_ON(1); 2790 return AC_ERR_SYSTEM; 2791 } 2792 2793 return 0; 2794 } 2795 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2796 2797 /** 2798 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2799 * @ap: Port on which interrupt arrived (possibly...) 2800 * @qc: Taskfile currently active in engine 2801 * 2802 * Handle port interrupt for given queued command. 2803 * 2804 * LOCKING: 2805 * spin_lock_irqsave(host lock) 2806 * 2807 * RETURNS: 2808 * One if interrupt was handled, zero if not (shared irq). 2809 */ 2810 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2811 { 2812 struct ata_eh_info *ehi = &ap->link.eh_info; 2813 u8 host_stat = 0; 2814 bool bmdma_stopped = false; 2815 unsigned int handled; 2816 2817 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2818 /* check status of DMA engine */ 2819 host_stat = ap->ops->bmdma_status(ap); 2820 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); 2821 2822 /* if it's not our irq... */ 2823 if (!(host_stat & ATA_DMA_INTR)) 2824 return ata_sff_idle_irq(ap); 2825 2826 /* before we do anything else, clear DMA-Start bit */ 2827 ap->ops->bmdma_stop(qc); 2828 bmdma_stopped = true; 2829 2830 if (unlikely(host_stat & ATA_DMA_ERR)) { 2831 /* error when transfering data to/from memory */ 2832 qc->err_mask |= AC_ERR_HOST_BUS; 2833 ap->hsm_task_state = HSM_ST_ERR; 2834 } 2835 } 2836 2837 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2838 2839 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2840 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2841 2842 return handled; 2843 } 2844 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2845 2846 /** 2847 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2848 * @irq: irq line (unused) 2849 * @dev_instance: pointer to our ata_host information structure 2850 * 2851 * Default interrupt handler for PCI IDE devices. Calls 2852 * ata_bmdma_port_intr() for each port that is not disabled. 2853 * 2854 * LOCKING: 2855 * Obtains host lock during operation. 2856 * 2857 * RETURNS: 2858 * IRQ_NONE or IRQ_HANDLED. 2859 */ 2860 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2861 { 2862 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2863 } 2864 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2865 2866 /** 2867 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2868 * @ap: port to handle error for 2869 * 2870 * Stock error handler for BMDMA controller. It can handle both 2871 * PATA and SATA controllers. Most BMDMA controllers should be 2872 * able to use this EH as-is or with some added handling before 2873 * and after. 2874 * 2875 * LOCKING: 2876 * Kernel thread context (may sleep) 2877 */ 2878 void ata_bmdma_error_handler(struct ata_port *ap) 2879 { 2880 struct ata_queued_cmd *qc; 2881 unsigned long flags; 2882 bool thaw = false; 2883 2884 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2885 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2886 qc = NULL; 2887 2888 /* reset PIO HSM and stop DMA engine */ 2889 spin_lock_irqsave(ap->lock, flags); 2890 2891 if (qc && ata_is_dma(qc->tf.protocol)) { 2892 u8 host_stat; 2893 2894 host_stat = ap->ops->bmdma_status(ap); 2895 2896 /* BMDMA controllers indicate host bus error by 2897 * setting DMA_ERR bit and timing out. As it wasn't 2898 * really a timeout event, adjust error mask and 2899 * cancel frozen state. 2900 */ 2901 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2902 qc->err_mask = AC_ERR_HOST_BUS; 2903 thaw = true; 2904 } 2905 2906 ap->ops->bmdma_stop(qc); 2907 2908 /* if we're gonna thaw, make sure IRQ is clear */ 2909 if (thaw) { 2910 ap->ops->sff_check_status(ap); 2911 if (ap->ops->sff_irq_clear) 2912 ap->ops->sff_irq_clear(ap); 2913 } 2914 } 2915 2916 spin_unlock_irqrestore(ap->lock, flags); 2917 2918 if (thaw) 2919 ata_eh_thaw_port(ap); 2920 2921 ata_sff_error_handler(ap); 2922 } 2923 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2924 2925 /** 2926 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2927 * @qc: internal command to clean up 2928 * 2929 * LOCKING: 2930 * Kernel thread context (may sleep) 2931 */ 2932 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2933 { 2934 struct ata_port *ap = qc->ap; 2935 unsigned long flags; 2936 2937 if (ata_is_dma(qc->tf.protocol)) { 2938 spin_lock_irqsave(ap->lock, flags); 2939 ap->ops->bmdma_stop(qc); 2940 spin_unlock_irqrestore(ap->lock, flags); 2941 } 2942 } 2943 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2944 2945 /** 2946 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2947 * @ap: Port associated with this ATA transaction. 2948 * 2949 * Clear interrupt and error flags in DMA status register. 2950 * 2951 * May be used as the irq_clear() entry in ata_port_operations. 2952 * 2953 * LOCKING: 2954 * spin_lock_irqsave(host lock) 2955 */ 2956 void ata_bmdma_irq_clear(struct ata_port *ap) 2957 { 2958 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2959 2960 if (!mmio) 2961 return; 2962 2963 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2964 } 2965 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2966 2967 /** 2968 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2969 * @qc: Info associated with this ATA transaction. 2970 * 2971 * LOCKING: 2972 * spin_lock_irqsave(host lock) 2973 */ 2974 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2975 { 2976 struct ata_port *ap = qc->ap; 2977 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2978 u8 dmactl; 2979 2980 /* load PRD table addr. */ 2981 mb(); /* make sure PRD table writes are visible to controller */ 2982 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2983 2984 /* specify data direction, triple-check start bit is clear */ 2985 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2986 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2987 if (!rw) 2988 dmactl |= ATA_DMA_WR; 2989 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2990 2991 /* issue r/w command */ 2992 ap->ops->sff_exec_command(ap, &qc->tf); 2993 } 2994 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2995 2996 /** 2997 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2998 * @qc: Info associated with this ATA transaction. 2999 * 3000 * LOCKING: 3001 * spin_lock_irqsave(host lock) 3002 */ 3003 void ata_bmdma_start(struct ata_queued_cmd *qc) 3004 { 3005 struct ata_port *ap = qc->ap; 3006 u8 dmactl; 3007 3008 /* start host DMA transaction */ 3009 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3010 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3011 3012 /* Strictly, one may wish to issue an ioread8() here, to 3013 * flush the mmio write. However, control also passes 3014 * to the hardware at this point, and it will interrupt 3015 * us when we are to resume control. So, in effect, 3016 * we don't care when the mmio write flushes. 3017 * Further, a read of the DMA status register _immediately_ 3018 * following the write may not be what certain flaky hardware 3019 * is expected, so I think it is best to not add a readb() 3020 * without first all the MMIO ATA cards/mobos. 3021 * Or maybe I'm just being paranoid. 3022 * 3023 * FIXME: The posting of this write means I/O starts are 3024 * unneccessarily delayed for MMIO 3025 */ 3026 } 3027 EXPORT_SYMBOL_GPL(ata_bmdma_start); 3028 3029 /** 3030 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 3031 * @qc: Command we are ending DMA for 3032 * 3033 * Clears the ATA_DMA_START flag in the dma control register 3034 * 3035 * May be used as the bmdma_stop() entry in ata_port_operations. 3036 * 3037 * LOCKING: 3038 * spin_lock_irqsave(host lock) 3039 */ 3040 void ata_bmdma_stop(struct ata_queued_cmd *qc) 3041 { 3042 struct ata_port *ap = qc->ap; 3043 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3044 3045 /* clear start/stop bit */ 3046 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3047 mmio + ATA_DMA_CMD); 3048 3049 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3050 ata_sff_dma_pause(ap); 3051 } 3052 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3053 3054 /** 3055 * ata_bmdma_status - Read PCI IDE BMDMA status 3056 * @ap: Port associated with this ATA transaction. 3057 * 3058 * Read and return BMDMA status register. 3059 * 3060 * May be used as the bmdma_status() entry in ata_port_operations. 3061 * 3062 * LOCKING: 3063 * spin_lock_irqsave(host lock) 3064 */ 3065 u8 ata_bmdma_status(struct ata_port *ap) 3066 { 3067 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3068 } 3069 EXPORT_SYMBOL_GPL(ata_bmdma_status); 3070 3071 3072 /** 3073 * ata_bmdma_port_start - Set port up for bmdma. 3074 * @ap: Port to initialize 3075 * 3076 * Called just after data structures for each port are 3077 * initialized. Allocates space for PRD table. 3078 * 3079 * May be used as the port_start() entry in ata_port_operations. 3080 * 3081 * LOCKING: 3082 * Inherited from caller. 3083 */ 3084 int ata_bmdma_port_start(struct ata_port *ap) 3085 { 3086 if (ap->mwdma_mask || ap->udma_mask) { 3087 ap->bmdma_prd = 3088 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3089 &ap->bmdma_prd_dma, GFP_KERNEL); 3090 if (!ap->bmdma_prd) 3091 return -ENOMEM; 3092 } 3093 3094 return 0; 3095 } 3096 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3097 3098 /** 3099 * ata_bmdma_port_start32 - Set port up for dma. 3100 * @ap: Port to initialize 3101 * 3102 * Called just after data structures for each port are 3103 * initialized. Enables 32bit PIO and allocates space for PRD 3104 * table. 3105 * 3106 * May be used as the port_start() entry in ata_port_operations for 3107 * devices that are capable of 32bit PIO. 3108 * 3109 * LOCKING: 3110 * Inherited from caller. 3111 */ 3112 int ata_bmdma_port_start32(struct ata_port *ap) 3113 { 3114 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3115 return ata_bmdma_port_start(ap); 3116 } 3117 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3118 3119 #ifdef CONFIG_PCI 3120 3121 /** 3122 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3123 * @pdev: PCI device 3124 * 3125 * Some PCI ATA devices report simplex mode but in fact can be told to 3126 * enter non simplex mode. This implements the necessary logic to 3127 * perform the task on such devices. Calling it on other devices will 3128 * have -undefined- behaviour. 3129 */ 3130 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3131 { 3132 unsigned long bmdma = pci_resource_start(pdev, 4); 3133 u8 simplex; 3134 3135 if (bmdma == 0) 3136 return -ENOENT; 3137 3138 simplex = inb(bmdma + 0x02); 3139 outb(simplex & 0x60, bmdma + 0x02); 3140 simplex = inb(bmdma + 0x02); 3141 if (simplex & 0x80) 3142 return -EOPNOTSUPP; 3143 return 0; 3144 } 3145 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3146 3147 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3148 { 3149 int i; 3150 3151 dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n", 3152 reason); 3153 3154 for (i = 0; i < 2; i++) { 3155 host->ports[i]->mwdma_mask = 0; 3156 host->ports[i]->udma_mask = 0; 3157 } 3158 } 3159 3160 /** 3161 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3162 * @host: target ATA host 3163 * 3164 * Acquire PCI BMDMA resources and initialize @host accordingly. 3165 * 3166 * LOCKING: 3167 * Inherited from calling layer (may sleep). 3168 */ 3169 void ata_pci_bmdma_init(struct ata_host *host) 3170 { 3171 struct device *gdev = host->dev; 3172 struct pci_dev *pdev = to_pci_dev(gdev); 3173 int i, rc; 3174 3175 /* No BAR4 allocation: No DMA */ 3176 if (pci_resource_start(pdev, 4) == 0) { 3177 ata_bmdma_nodma(host, "BAR4 is zero"); 3178 return; 3179 } 3180 3181 /* 3182 * Some controllers require BMDMA region to be initialized 3183 * even if DMA is not in use to clear IRQ status via 3184 * ->sff_irq_clear method. Try to initialize bmdma_addr 3185 * regardless of dma masks. 3186 */ 3187 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 3188 if (rc) 3189 ata_bmdma_nodma(host, "failed to set dma mask"); 3190 if (!rc) { 3191 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 3192 if (rc) 3193 ata_bmdma_nodma(host, 3194 "failed to set consistent dma mask"); 3195 } 3196 3197 /* request and iomap DMA region */ 3198 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3199 if (rc) { 3200 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3201 return; 3202 } 3203 host->iomap = pcim_iomap_table(pdev); 3204 3205 for (i = 0; i < 2; i++) { 3206 struct ata_port *ap = host->ports[i]; 3207 void __iomem *bmdma = host->iomap[4] + 8 * i; 3208 3209 if (ata_port_is_dummy(ap)) 3210 continue; 3211 3212 ap->ioaddr.bmdma_addr = bmdma; 3213 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3214 (ioread8(bmdma + 2) & 0x80)) 3215 host->flags |= ATA_HOST_SIMPLEX; 3216 3217 ata_port_desc(ap, "bmdma 0x%llx", 3218 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3219 } 3220 } 3221 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3222 3223 /** 3224 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3225 * @pdev: target PCI device 3226 * @ppi: array of port_info, must be enough for two ports 3227 * @r_host: out argument for the initialized ATA host 3228 * 3229 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3230 * resources and initialize it accordingly in one go. 3231 * 3232 * LOCKING: 3233 * Inherited from calling layer (may sleep). 3234 * 3235 * RETURNS: 3236 * 0 on success, -errno otherwise. 3237 */ 3238 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3239 const struct ata_port_info * const * ppi, 3240 struct ata_host **r_host) 3241 { 3242 int rc; 3243 3244 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3245 if (rc) 3246 return rc; 3247 3248 ata_pci_bmdma_init(*r_host); 3249 return 0; 3250 } 3251 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3252 3253 /** 3254 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3255 * @pdev: Controller to be initialized 3256 * @ppi: array of port_info, must be enough for two ports 3257 * @sht: scsi_host_template to use when registering the host 3258 * @host_priv: host private_data 3259 * @hflags: host flags 3260 * 3261 * This function is similar to ata_pci_sff_init_one() but also 3262 * takes care of BMDMA initialization. 3263 * 3264 * LOCKING: 3265 * Inherited from PCI layer (may sleep). 3266 * 3267 * RETURNS: 3268 * Zero on success, negative on errno-based value on error. 3269 */ 3270 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3271 const struct ata_port_info * const * ppi, 3272 struct scsi_host_template *sht, void *host_priv, 3273 int hflags) 3274 { 3275 struct device *dev = &pdev->dev; 3276 const struct ata_port_info *pi; 3277 struct ata_host *host = NULL; 3278 int rc; 3279 3280 DPRINTK("ENTER\n"); 3281 3282 pi = ata_sff_find_valid_pi(ppi); 3283 if (!pi) { 3284 dev_printk(KERN_ERR, &pdev->dev, 3285 "no valid port_info specified\n"); 3286 return -EINVAL; 3287 } 3288 3289 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 3290 return -ENOMEM; 3291 3292 rc = pcim_enable_device(pdev); 3293 if (rc) 3294 goto out; 3295 3296 /* prepare and activate BMDMA host */ 3297 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 3298 if (rc) 3299 goto out; 3300 host->private_data = host_priv; 3301 host->flags |= hflags; 3302 3303 pci_set_master(pdev); 3304 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 3305 out: 3306 if (rc == 0) 3307 devres_remove_group(&pdev->dev, NULL); 3308 else 3309 devres_release_group(&pdev->dev, NULL); 3310 3311 return rc; 3312 } 3313 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3314 3315 #endif /* CONFIG_PCI */ 3316 #endif /* CONFIG_ATA_BMDMA */ 3317 3318 /** 3319 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3320 * @ap: Port to initialize 3321 * 3322 * Called on port allocation to initialize SFF/BMDMA specific 3323 * fields. 3324 * 3325 * LOCKING: 3326 * None. 3327 */ 3328 void ata_sff_port_init(struct ata_port *ap) 3329 { 3330 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3331 ap->ctl = ATA_DEVCTL_OBS; 3332 ap->last_ctl = 0xFF; 3333 } 3334 3335 int __init ata_sff_init(void) 3336 { 3337 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3338 if (!ata_sff_wq) 3339 return -ENOMEM; 3340 3341 return 0; 3342 } 3343 3344 void ata_sff_exit(void) 3345 { 3346 destroy_workqueue(ata_sff_wq); 3347 } 3348