xref: /openbmc/linux/drivers/ata/libata-sff.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
40 
41 #include "libata.h"
42 
43 static struct workqueue_struct *ata_sff_wq;
44 
45 const struct ata_port_operations ata_sff_port_ops = {
46 	.inherits		= &ata_base_port_ops,
47 
48 	.qc_prep		= ata_noop_qc_prep,
49 	.qc_issue		= ata_sff_qc_issue,
50 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
51 
52 	.freeze			= ata_sff_freeze,
53 	.thaw			= ata_sff_thaw,
54 	.prereset		= ata_sff_prereset,
55 	.softreset		= ata_sff_softreset,
56 	.hardreset		= sata_sff_hardreset,
57 	.postreset		= ata_sff_postreset,
58 	.error_handler		= ata_sff_error_handler,
59 
60 	.sff_dev_select		= ata_sff_dev_select,
61 	.sff_check_status	= ata_sff_check_status,
62 	.sff_tf_load		= ata_sff_tf_load,
63 	.sff_tf_read		= ata_sff_tf_read,
64 	.sff_exec_command	= ata_sff_exec_command,
65 	.sff_data_xfer		= ata_sff_data_xfer,
66 	.sff_drain_fifo		= ata_sff_drain_fifo,
67 
68 	.lost_interrupt		= ata_sff_lost_interrupt,
69 };
70 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
71 
72 /**
73  *	ata_sff_check_status - Read device status reg & clear interrupt
74  *	@ap: port where the device is
75  *
76  *	Reads ATA taskfile status register for currently-selected device
77  *	and return its value. This also clears pending interrupts
78  *      from this device
79  *
80  *	LOCKING:
81  *	Inherited from caller.
82  */
83 u8 ata_sff_check_status(struct ata_port *ap)
84 {
85 	return ioread8(ap->ioaddr.status_addr);
86 }
87 EXPORT_SYMBOL_GPL(ata_sff_check_status);
88 
89 /**
90  *	ata_sff_altstatus - Read device alternate status reg
91  *	@ap: port where the device is
92  *
93  *	Reads ATA taskfile alternate status register for
94  *	currently-selected device and return its value.
95  *
96  *	Note: may NOT be used as the check_altstatus() entry in
97  *	ata_port_operations.
98  *
99  *	LOCKING:
100  *	Inherited from caller.
101  */
102 static u8 ata_sff_altstatus(struct ata_port *ap)
103 {
104 	if (ap->ops->sff_check_altstatus)
105 		return ap->ops->sff_check_altstatus(ap);
106 
107 	return ioread8(ap->ioaddr.altstatus_addr);
108 }
109 
110 /**
111  *	ata_sff_irq_status - Check if the device is busy
112  *	@ap: port where the device is
113  *
114  *	Determine if the port is currently busy. Uses altstatus
115  *	if available in order to avoid clearing shared IRQ status
116  *	when finding an IRQ source. Non ctl capable devices don't
117  *	share interrupt lines fortunately for us.
118  *
119  *	LOCKING:
120  *	Inherited from caller.
121  */
122 static u8 ata_sff_irq_status(struct ata_port *ap)
123 {
124 	u8 status;
125 
126 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
127 		status = ata_sff_altstatus(ap);
128 		/* Not us: We are busy */
129 		if (status & ATA_BUSY)
130 			return status;
131 	}
132 	/* Clear INTRQ latch */
133 	status = ap->ops->sff_check_status(ap);
134 	return status;
135 }
136 
137 /**
138  *	ata_sff_sync - Flush writes
139  *	@ap: Port to wait for.
140  *
141  *	CAUTION:
142  *	If we have an mmio device with no ctl and no altstatus
143  *	method this will fail. No such devices are known to exist.
144  *
145  *	LOCKING:
146  *	Inherited from caller.
147  */
148 
149 static void ata_sff_sync(struct ata_port *ap)
150 {
151 	if (ap->ops->sff_check_altstatus)
152 		ap->ops->sff_check_altstatus(ap);
153 	else if (ap->ioaddr.altstatus_addr)
154 		ioread8(ap->ioaddr.altstatus_addr);
155 }
156 
157 /**
158  *	ata_sff_pause		-	Flush writes and wait 400nS
159  *	@ap: Port to pause for.
160  *
161  *	CAUTION:
162  *	If we have an mmio device with no ctl and no altstatus
163  *	method this will fail. No such devices are known to exist.
164  *
165  *	LOCKING:
166  *	Inherited from caller.
167  */
168 
169 void ata_sff_pause(struct ata_port *ap)
170 {
171 	ata_sff_sync(ap);
172 	ndelay(400);
173 }
174 EXPORT_SYMBOL_GPL(ata_sff_pause);
175 
176 /**
177  *	ata_sff_dma_pause	-	Pause before commencing DMA
178  *	@ap: Port to pause for.
179  *
180  *	Perform I/O fencing and ensure sufficient cycle delays occur
181  *	for the HDMA1:0 transition
182  */
183 
184 void ata_sff_dma_pause(struct ata_port *ap)
185 {
186 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
187 		/* An altstatus read will cause the needed delay without
188 		   messing up the IRQ status */
189 		ata_sff_altstatus(ap);
190 		return;
191 	}
192 	/* There are no DMA controllers without ctl. BUG here to ensure
193 	   we never violate the HDMA1:0 transition timing and risk
194 	   corruption. */
195 	BUG();
196 }
197 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
198 
199 /**
200  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
201  *	@ap: port containing status register to be polled
202  *	@tmout_pat: impatience timeout in msecs
203  *	@tmout: overall timeout in msecs
204  *
205  *	Sleep until ATA Status register bit BSY clears,
206  *	or a timeout occurs.
207  *
208  *	LOCKING:
209  *	Kernel thread context (may sleep).
210  *
211  *	RETURNS:
212  *	0 on success, -errno otherwise.
213  */
214 int ata_sff_busy_sleep(struct ata_port *ap,
215 		       unsigned long tmout_pat, unsigned long tmout)
216 {
217 	unsigned long timer_start, timeout;
218 	u8 status;
219 
220 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
221 	timer_start = jiffies;
222 	timeout = ata_deadline(timer_start, tmout_pat);
223 	while (status != 0xff && (status & ATA_BUSY) &&
224 	       time_before(jiffies, timeout)) {
225 		ata_msleep(ap, 50);
226 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
227 	}
228 
229 	if (status != 0xff && (status & ATA_BUSY))
230 		ata_port_printk(ap, KERN_WARNING,
231 				"port is slow to respond, please be patient "
232 				"(Status 0x%x)\n", status);
233 
234 	timeout = ata_deadline(timer_start, tmout);
235 	while (status != 0xff && (status & ATA_BUSY) &&
236 	       time_before(jiffies, timeout)) {
237 		ata_msleep(ap, 50);
238 		status = ap->ops->sff_check_status(ap);
239 	}
240 
241 	if (status == 0xff)
242 		return -ENODEV;
243 
244 	if (status & ATA_BUSY) {
245 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
246 				"(%lu secs, Status 0x%x)\n",
247 				DIV_ROUND_UP(tmout, 1000), status);
248 		return -EBUSY;
249 	}
250 
251 	return 0;
252 }
253 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
254 
255 static int ata_sff_check_ready(struct ata_link *link)
256 {
257 	u8 status = link->ap->ops->sff_check_status(link->ap);
258 
259 	return ata_check_ready(status);
260 }
261 
262 /**
263  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
264  *	@link: SFF link to wait ready status for
265  *	@deadline: deadline jiffies for the operation
266  *
267  *	Sleep until ATA Status register bit BSY clears, or timeout
268  *	occurs.
269  *
270  *	LOCKING:
271  *	Kernel thread context (may sleep).
272  *
273  *	RETURNS:
274  *	0 on success, -errno otherwise.
275  */
276 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
277 {
278 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
279 }
280 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
281 
282 /**
283  *	ata_sff_set_devctl - Write device control reg
284  *	@ap: port where the device is
285  *	@ctl: value to write
286  *
287  *	Writes ATA taskfile device control register.
288  *
289  *	Note: may NOT be used as the sff_set_devctl() entry in
290  *	ata_port_operations.
291  *
292  *	LOCKING:
293  *	Inherited from caller.
294  */
295 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
296 {
297 	if (ap->ops->sff_set_devctl)
298 		ap->ops->sff_set_devctl(ap, ctl);
299 	else
300 		iowrite8(ctl, ap->ioaddr.ctl_addr);
301 }
302 
303 /**
304  *	ata_sff_dev_select - Select device 0/1 on ATA bus
305  *	@ap: ATA channel to manipulate
306  *	@device: ATA device (numbered from zero) to select
307  *
308  *	Use the method defined in the ATA specification to
309  *	make either device 0, or device 1, active on the
310  *	ATA channel.  Works with both PIO and MMIO.
311  *
312  *	May be used as the dev_select() entry in ata_port_operations.
313  *
314  *	LOCKING:
315  *	caller.
316  */
317 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
318 {
319 	u8 tmp;
320 
321 	if (device == 0)
322 		tmp = ATA_DEVICE_OBS;
323 	else
324 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
325 
326 	iowrite8(tmp, ap->ioaddr.device_addr);
327 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
328 }
329 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
330 
331 /**
332  *	ata_dev_select - Select device 0/1 on ATA bus
333  *	@ap: ATA channel to manipulate
334  *	@device: ATA device (numbered from zero) to select
335  *	@wait: non-zero to wait for Status register BSY bit to clear
336  *	@can_sleep: non-zero if context allows sleeping
337  *
338  *	Use the method defined in the ATA specification to
339  *	make either device 0, or device 1, active on the
340  *	ATA channel.
341  *
342  *	This is a high-level version of ata_sff_dev_select(), which
343  *	additionally provides the services of inserting the proper
344  *	pauses and status polling, where needed.
345  *
346  *	LOCKING:
347  *	caller.
348  */
349 static void ata_dev_select(struct ata_port *ap, unsigned int device,
350 			   unsigned int wait, unsigned int can_sleep)
351 {
352 	if (ata_msg_probe(ap))
353 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
354 				"device %u, wait %u\n", device, wait);
355 
356 	if (wait)
357 		ata_wait_idle(ap);
358 
359 	ap->ops->sff_dev_select(ap, device);
360 
361 	if (wait) {
362 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
363 			ata_msleep(ap, 150);
364 		ata_wait_idle(ap);
365 	}
366 }
367 
368 /**
369  *	ata_sff_irq_on - Enable interrupts on a port.
370  *	@ap: Port on which interrupts are enabled.
371  *
372  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
373  *	wait for idle, clear any pending interrupts.
374  *
375  *	Note: may NOT be used as the sff_irq_on() entry in
376  *	ata_port_operations.
377  *
378  *	LOCKING:
379  *	Inherited from caller.
380  */
381 void ata_sff_irq_on(struct ata_port *ap)
382 {
383 	struct ata_ioports *ioaddr = &ap->ioaddr;
384 
385 	if (ap->ops->sff_irq_on) {
386 		ap->ops->sff_irq_on(ap);
387 		return;
388 	}
389 
390 	ap->ctl &= ~ATA_NIEN;
391 	ap->last_ctl = ap->ctl;
392 
393 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
394 		ata_sff_set_devctl(ap, ap->ctl);
395 	ata_wait_idle(ap);
396 
397 	if (ap->ops->sff_irq_clear)
398 		ap->ops->sff_irq_clear(ap);
399 }
400 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
401 
402 /**
403  *	ata_sff_tf_load - send taskfile registers to host controller
404  *	@ap: Port to which output is sent
405  *	@tf: ATA taskfile register set
406  *
407  *	Outputs ATA taskfile to standard ATA host controller.
408  *
409  *	LOCKING:
410  *	Inherited from caller.
411  */
412 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
413 {
414 	struct ata_ioports *ioaddr = &ap->ioaddr;
415 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
416 
417 	if (tf->ctl != ap->last_ctl) {
418 		if (ioaddr->ctl_addr)
419 			iowrite8(tf->ctl, ioaddr->ctl_addr);
420 		ap->last_ctl = tf->ctl;
421 		ata_wait_idle(ap);
422 	}
423 
424 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
425 		WARN_ON_ONCE(!ioaddr->ctl_addr);
426 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
427 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
428 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
429 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
430 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
431 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
432 			tf->hob_feature,
433 			tf->hob_nsect,
434 			tf->hob_lbal,
435 			tf->hob_lbam,
436 			tf->hob_lbah);
437 	}
438 
439 	if (is_addr) {
440 		iowrite8(tf->feature, ioaddr->feature_addr);
441 		iowrite8(tf->nsect, ioaddr->nsect_addr);
442 		iowrite8(tf->lbal, ioaddr->lbal_addr);
443 		iowrite8(tf->lbam, ioaddr->lbam_addr);
444 		iowrite8(tf->lbah, ioaddr->lbah_addr);
445 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
446 			tf->feature,
447 			tf->nsect,
448 			tf->lbal,
449 			tf->lbam,
450 			tf->lbah);
451 	}
452 
453 	if (tf->flags & ATA_TFLAG_DEVICE) {
454 		iowrite8(tf->device, ioaddr->device_addr);
455 		VPRINTK("device 0x%X\n", tf->device);
456 	}
457 
458 	ata_wait_idle(ap);
459 }
460 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
461 
462 /**
463  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
464  *	@ap: Port from which input is read
465  *	@tf: ATA taskfile register set for storing input
466  *
467  *	Reads ATA taskfile registers for currently-selected device
468  *	into @tf. Assumes the device has a fully SFF compliant task file
469  *	layout and behaviour. If you device does not (eg has a different
470  *	status method) then you will need to provide a replacement tf_read
471  *
472  *	LOCKING:
473  *	Inherited from caller.
474  */
475 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
476 {
477 	struct ata_ioports *ioaddr = &ap->ioaddr;
478 
479 	tf->command = ata_sff_check_status(ap);
480 	tf->feature = ioread8(ioaddr->error_addr);
481 	tf->nsect = ioread8(ioaddr->nsect_addr);
482 	tf->lbal = ioread8(ioaddr->lbal_addr);
483 	tf->lbam = ioread8(ioaddr->lbam_addr);
484 	tf->lbah = ioread8(ioaddr->lbah_addr);
485 	tf->device = ioread8(ioaddr->device_addr);
486 
487 	if (tf->flags & ATA_TFLAG_LBA48) {
488 		if (likely(ioaddr->ctl_addr)) {
489 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
490 			tf->hob_feature = ioread8(ioaddr->error_addr);
491 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
492 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
493 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
494 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
495 			iowrite8(tf->ctl, ioaddr->ctl_addr);
496 			ap->last_ctl = tf->ctl;
497 		} else
498 			WARN_ON_ONCE(1);
499 	}
500 }
501 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
502 
503 /**
504  *	ata_sff_exec_command - issue ATA command to host controller
505  *	@ap: port to which command is being issued
506  *	@tf: ATA taskfile register set
507  *
508  *	Issues ATA command, with proper synchronization with interrupt
509  *	handler / other threads.
510  *
511  *	LOCKING:
512  *	spin_lock_irqsave(host lock)
513  */
514 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
515 {
516 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
517 
518 	iowrite8(tf->command, ap->ioaddr.command_addr);
519 	ata_sff_pause(ap);
520 }
521 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
522 
523 /**
524  *	ata_tf_to_host - issue ATA taskfile to host controller
525  *	@ap: port to which command is being issued
526  *	@tf: ATA taskfile register set
527  *
528  *	Issues ATA taskfile register set to ATA host controller,
529  *	with proper synchronization with interrupt handler and
530  *	other threads.
531  *
532  *	LOCKING:
533  *	spin_lock_irqsave(host lock)
534  */
535 static inline void ata_tf_to_host(struct ata_port *ap,
536 				  const struct ata_taskfile *tf)
537 {
538 	ap->ops->sff_tf_load(ap, tf);
539 	ap->ops->sff_exec_command(ap, tf);
540 }
541 
542 /**
543  *	ata_sff_data_xfer - Transfer data by PIO
544  *	@dev: device to target
545  *	@buf: data buffer
546  *	@buflen: buffer length
547  *	@rw: read/write
548  *
549  *	Transfer data from/to the device data register by PIO.
550  *
551  *	LOCKING:
552  *	Inherited from caller.
553  *
554  *	RETURNS:
555  *	Bytes consumed.
556  */
557 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
558 			       unsigned int buflen, int rw)
559 {
560 	struct ata_port *ap = dev->link->ap;
561 	void __iomem *data_addr = ap->ioaddr.data_addr;
562 	unsigned int words = buflen >> 1;
563 
564 	/* Transfer multiple of 2 bytes */
565 	if (rw == READ)
566 		ioread16_rep(data_addr, buf, words);
567 	else
568 		iowrite16_rep(data_addr, buf, words);
569 
570 	/* Transfer trailing byte, if any. */
571 	if (unlikely(buflen & 0x01)) {
572 		unsigned char pad[2];
573 
574 		/* Point buf to the tail of buffer */
575 		buf += buflen - 1;
576 
577 		/*
578 		 * Use io*16_rep() accessors here as well to avoid pointlessly
579 		 * swapping bytes to and from on the big endian machines...
580 		 */
581 		if (rw == READ) {
582 			ioread16_rep(data_addr, pad, 1);
583 			*buf = pad[0];
584 		} else {
585 			pad[0] = *buf;
586 			iowrite16_rep(data_addr, pad, 1);
587 		}
588 		words++;
589 	}
590 
591 	return words << 1;
592 }
593 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
594 
595 /**
596  *	ata_sff_data_xfer32 - Transfer data by PIO
597  *	@dev: device to target
598  *	@buf: data buffer
599  *	@buflen: buffer length
600  *	@rw: read/write
601  *
602  *	Transfer data from/to the device data register by PIO using 32bit
603  *	I/O operations.
604  *
605  *	LOCKING:
606  *	Inherited from caller.
607  *
608  *	RETURNS:
609  *	Bytes consumed.
610  */
611 
612 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
613 			       unsigned int buflen, int rw)
614 {
615 	struct ata_port *ap = dev->link->ap;
616 	void __iomem *data_addr = ap->ioaddr.data_addr;
617 	unsigned int words = buflen >> 2;
618 	int slop = buflen & 3;
619 
620 	if (!(ap->pflags & ATA_PFLAG_PIO32))
621 		return ata_sff_data_xfer(dev, buf, buflen, rw);
622 
623 	/* Transfer multiple of 4 bytes */
624 	if (rw == READ)
625 		ioread32_rep(data_addr, buf, words);
626 	else
627 		iowrite32_rep(data_addr, buf, words);
628 
629 	/* Transfer trailing bytes, if any */
630 	if (unlikely(slop)) {
631 		unsigned char pad[4];
632 
633 		/* Point buf to the tail of buffer */
634 		buf += buflen - slop;
635 
636 		/*
637 		 * Use io*_rep() accessors here as well to avoid pointlessly
638 		 * swapping bytes to and from on the big endian machines...
639 		 */
640 		if (rw == READ) {
641 			if (slop < 3)
642 				ioread16_rep(data_addr, pad, 1);
643 			else
644 				ioread32_rep(data_addr, pad, 1);
645 			memcpy(buf, pad, slop);
646 		} else {
647 			memcpy(pad, buf, slop);
648 			if (slop < 3)
649 				iowrite16_rep(data_addr, pad, 1);
650 			else
651 				iowrite32_rep(data_addr, pad, 1);
652 		}
653 	}
654 	return (buflen + 1) & ~1;
655 }
656 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
657 
658 /**
659  *	ata_sff_data_xfer_noirq - Transfer data by PIO
660  *	@dev: device to target
661  *	@buf: data buffer
662  *	@buflen: buffer length
663  *	@rw: read/write
664  *
665  *	Transfer data from/to the device data register by PIO. Do the
666  *	transfer with interrupts disabled.
667  *
668  *	LOCKING:
669  *	Inherited from caller.
670  *
671  *	RETURNS:
672  *	Bytes consumed.
673  */
674 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
675 				     unsigned int buflen, int rw)
676 {
677 	unsigned long flags;
678 	unsigned int consumed;
679 
680 	local_irq_save(flags);
681 	consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
682 	local_irq_restore(flags);
683 
684 	return consumed;
685 }
686 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
687 
688 /**
689  *	ata_pio_sector - Transfer a sector of data.
690  *	@qc: Command on going
691  *
692  *	Transfer qc->sect_size bytes of data from/to the ATA device.
693  *
694  *	LOCKING:
695  *	Inherited from caller.
696  */
697 static void ata_pio_sector(struct ata_queued_cmd *qc)
698 {
699 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
700 	struct ata_port *ap = qc->ap;
701 	struct page *page;
702 	unsigned int offset;
703 	unsigned char *buf;
704 
705 	if (qc->curbytes == qc->nbytes - qc->sect_size)
706 		ap->hsm_task_state = HSM_ST_LAST;
707 
708 	page = sg_page(qc->cursg);
709 	offset = qc->cursg->offset + qc->cursg_ofs;
710 
711 	/* get the current page and offset */
712 	page = nth_page(page, (offset >> PAGE_SHIFT));
713 	offset %= PAGE_SIZE;
714 
715 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
716 
717 	if (PageHighMem(page)) {
718 		unsigned long flags;
719 
720 		/* FIXME: use a bounce buffer */
721 		local_irq_save(flags);
722 		buf = kmap_atomic(page, KM_IRQ0);
723 
724 		/* do the actual data transfer */
725 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
726 				       do_write);
727 
728 		kunmap_atomic(buf, KM_IRQ0);
729 		local_irq_restore(flags);
730 	} else {
731 		buf = page_address(page);
732 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
733 				       do_write);
734 	}
735 
736 	if (!do_write && !PageSlab(page))
737 		flush_dcache_page(page);
738 
739 	qc->curbytes += qc->sect_size;
740 	qc->cursg_ofs += qc->sect_size;
741 
742 	if (qc->cursg_ofs == qc->cursg->length) {
743 		qc->cursg = sg_next(qc->cursg);
744 		qc->cursg_ofs = 0;
745 	}
746 }
747 
748 /**
749  *	ata_pio_sectors - Transfer one or many sectors.
750  *	@qc: Command on going
751  *
752  *	Transfer one or many sectors of data from/to the
753  *	ATA device for the DRQ request.
754  *
755  *	LOCKING:
756  *	Inherited from caller.
757  */
758 static void ata_pio_sectors(struct ata_queued_cmd *qc)
759 {
760 	if (is_multi_taskfile(&qc->tf)) {
761 		/* READ/WRITE MULTIPLE */
762 		unsigned int nsect;
763 
764 		WARN_ON_ONCE(qc->dev->multi_count == 0);
765 
766 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
767 			    qc->dev->multi_count);
768 		while (nsect--)
769 			ata_pio_sector(qc);
770 	} else
771 		ata_pio_sector(qc);
772 
773 	ata_sff_sync(qc->ap); /* flush */
774 }
775 
776 /**
777  *	atapi_send_cdb - Write CDB bytes to hardware
778  *	@ap: Port to which ATAPI device is attached.
779  *	@qc: Taskfile currently active
780  *
781  *	When device has indicated its readiness to accept
782  *	a CDB, this function is called.  Send the CDB.
783  *
784  *	LOCKING:
785  *	caller.
786  */
787 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
788 {
789 	/* send SCSI cdb */
790 	DPRINTK("send cdb\n");
791 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
792 
793 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
794 	ata_sff_sync(ap);
795 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
796 	   or is bmdma_start guaranteed to do it ? */
797 	switch (qc->tf.protocol) {
798 	case ATAPI_PROT_PIO:
799 		ap->hsm_task_state = HSM_ST;
800 		break;
801 	case ATAPI_PROT_NODATA:
802 		ap->hsm_task_state = HSM_ST_LAST;
803 		break;
804 #ifdef CONFIG_ATA_BMDMA
805 	case ATAPI_PROT_DMA:
806 		ap->hsm_task_state = HSM_ST_LAST;
807 		/* initiate bmdma */
808 		ap->ops->bmdma_start(qc);
809 		break;
810 #endif /* CONFIG_ATA_BMDMA */
811 	default:
812 		BUG();
813 	}
814 }
815 
816 /**
817  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
818  *	@qc: Command on going
819  *	@bytes: number of bytes
820  *
821  *	Transfer Transfer data from/to the ATAPI device.
822  *
823  *	LOCKING:
824  *	Inherited from caller.
825  *
826  */
827 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
828 {
829 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
830 	struct ata_port *ap = qc->ap;
831 	struct ata_device *dev = qc->dev;
832 	struct ata_eh_info *ehi = &dev->link->eh_info;
833 	struct scatterlist *sg;
834 	struct page *page;
835 	unsigned char *buf;
836 	unsigned int offset, count, consumed;
837 
838 next_sg:
839 	sg = qc->cursg;
840 	if (unlikely(!sg)) {
841 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
842 				  "buf=%u cur=%u bytes=%u",
843 				  qc->nbytes, qc->curbytes, bytes);
844 		return -1;
845 	}
846 
847 	page = sg_page(sg);
848 	offset = sg->offset + qc->cursg_ofs;
849 
850 	/* get the current page and offset */
851 	page = nth_page(page, (offset >> PAGE_SHIFT));
852 	offset %= PAGE_SIZE;
853 
854 	/* don't overrun current sg */
855 	count = min(sg->length - qc->cursg_ofs, bytes);
856 
857 	/* don't cross page boundaries */
858 	count = min(count, (unsigned int)PAGE_SIZE - offset);
859 
860 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
861 
862 	if (PageHighMem(page)) {
863 		unsigned long flags;
864 
865 		/* FIXME: use bounce buffer */
866 		local_irq_save(flags);
867 		buf = kmap_atomic(page, KM_IRQ0);
868 
869 		/* do the actual data transfer */
870 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
871 								count, rw);
872 
873 		kunmap_atomic(buf, KM_IRQ0);
874 		local_irq_restore(flags);
875 	} else {
876 		buf = page_address(page);
877 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
878 								count, rw);
879 	}
880 
881 	bytes -= min(bytes, consumed);
882 	qc->curbytes += count;
883 	qc->cursg_ofs += count;
884 
885 	if (qc->cursg_ofs == sg->length) {
886 		qc->cursg = sg_next(qc->cursg);
887 		qc->cursg_ofs = 0;
888 	}
889 
890 	/*
891 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
892 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
893 	 * check correctly as it doesn't know if it is the last request being
894 	 * made. Somebody should implement a proper sanity check.
895 	 */
896 	if (bytes)
897 		goto next_sg;
898 	return 0;
899 }
900 
901 /**
902  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
903  *	@qc: Command on going
904  *
905  *	Transfer Transfer data from/to the ATAPI device.
906  *
907  *	LOCKING:
908  *	Inherited from caller.
909  */
910 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
911 {
912 	struct ata_port *ap = qc->ap;
913 	struct ata_device *dev = qc->dev;
914 	struct ata_eh_info *ehi = &dev->link->eh_info;
915 	unsigned int ireason, bc_lo, bc_hi, bytes;
916 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
917 
918 	/* Abuse qc->result_tf for temp storage of intermediate TF
919 	 * here to save some kernel stack usage.
920 	 * For normal completion, qc->result_tf is not relevant. For
921 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
922 	 * So, the correctness of qc->result_tf is not affected.
923 	 */
924 	ap->ops->sff_tf_read(ap, &qc->result_tf);
925 	ireason = qc->result_tf.nsect;
926 	bc_lo = qc->result_tf.lbam;
927 	bc_hi = qc->result_tf.lbah;
928 	bytes = (bc_hi << 8) | bc_lo;
929 
930 	/* shall be cleared to zero, indicating xfer of data */
931 	if (unlikely(ireason & (1 << 0)))
932 		goto atapi_check;
933 
934 	/* make sure transfer direction matches expected */
935 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
936 	if (unlikely(do_write != i_write))
937 		goto atapi_check;
938 
939 	if (unlikely(!bytes))
940 		goto atapi_check;
941 
942 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
943 
944 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
945 		goto err_out;
946 	ata_sff_sync(ap); /* flush */
947 
948 	return;
949 
950  atapi_check:
951 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
952 			  ireason, bytes);
953  err_out:
954 	qc->err_mask |= AC_ERR_HSM;
955 	ap->hsm_task_state = HSM_ST_ERR;
956 }
957 
958 /**
959  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
960  *	@ap: the target ata_port
961  *	@qc: qc on going
962  *
963  *	RETURNS:
964  *	1 if ok in workqueue, 0 otherwise.
965  */
966 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
967 						struct ata_queued_cmd *qc)
968 {
969 	if (qc->tf.flags & ATA_TFLAG_POLLING)
970 		return 1;
971 
972 	if (ap->hsm_task_state == HSM_ST_FIRST) {
973 		if (qc->tf.protocol == ATA_PROT_PIO &&
974 		   (qc->tf.flags & ATA_TFLAG_WRITE))
975 		    return 1;
976 
977 		if (ata_is_atapi(qc->tf.protocol) &&
978 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
979 			return 1;
980 	}
981 
982 	return 0;
983 }
984 
985 /**
986  *	ata_hsm_qc_complete - finish a qc running on standard HSM
987  *	@qc: Command to complete
988  *	@in_wq: 1 if called from workqueue, 0 otherwise
989  *
990  *	Finish @qc which is running on standard HSM.
991  *
992  *	LOCKING:
993  *	If @in_wq is zero, spin_lock_irqsave(host lock).
994  *	Otherwise, none on entry and grabs host lock.
995  */
996 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
997 {
998 	struct ata_port *ap = qc->ap;
999 	unsigned long flags;
1000 
1001 	if (ap->ops->error_handler) {
1002 		if (in_wq) {
1003 			spin_lock_irqsave(ap->lock, flags);
1004 
1005 			/* EH might have kicked in while host lock is
1006 			 * released.
1007 			 */
1008 			qc = ata_qc_from_tag(ap, qc->tag);
1009 			if (qc) {
1010 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1011 					ata_sff_irq_on(ap);
1012 					ata_qc_complete(qc);
1013 				} else
1014 					ata_port_freeze(ap);
1015 			}
1016 
1017 			spin_unlock_irqrestore(ap->lock, flags);
1018 		} else {
1019 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1020 				ata_qc_complete(qc);
1021 			else
1022 				ata_port_freeze(ap);
1023 		}
1024 	} else {
1025 		if (in_wq) {
1026 			spin_lock_irqsave(ap->lock, flags);
1027 			ata_sff_irq_on(ap);
1028 			ata_qc_complete(qc);
1029 			spin_unlock_irqrestore(ap->lock, flags);
1030 		} else
1031 			ata_qc_complete(qc);
1032 	}
1033 }
1034 
1035 /**
1036  *	ata_sff_hsm_move - move the HSM to the next state.
1037  *	@ap: the target ata_port
1038  *	@qc: qc on going
1039  *	@status: current device status
1040  *	@in_wq: 1 if called from workqueue, 0 otherwise
1041  *
1042  *	RETURNS:
1043  *	1 when poll next status needed, 0 otherwise.
1044  */
1045 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1046 		     u8 status, int in_wq)
1047 {
1048 	struct ata_link *link = qc->dev->link;
1049 	struct ata_eh_info *ehi = &link->eh_info;
1050 	unsigned long flags = 0;
1051 	int poll_next;
1052 
1053 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1054 
1055 	/* Make sure ata_sff_qc_issue() does not throw things
1056 	 * like DMA polling into the workqueue. Notice that
1057 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1058 	 */
1059 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1060 
1061 fsm_start:
1062 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1063 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1064 
1065 	switch (ap->hsm_task_state) {
1066 	case HSM_ST_FIRST:
1067 		/* Send first data block or PACKET CDB */
1068 
1069 		/* If polling, we will stay in the work queue after
1070 		 * sending the data. Otherwise, interrupt handler
1071 		 * takes over after sending the data.
1072 		 */
1073 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1074 
1075 		/* check device status */
1076 		if (unlikely((status & ATA_DRQ) == 0)) {
1077 			/* handle BSY=0, DRQ=0 as error */
1078 			if (likely(status & (ATA_ERR | ATA_DF)))
1079 				/* device stops HSM for abort/error */
1080 				qc->err_mask |= AC_ERR_DEV;
1081 			else {
1082 				/* HSM violation. Let EH handle this */
1083 				ata_ehi_push_desc(ehi,
1084 					"ST_FIRST: !(DRQ|ERR|DF)");
1085 				qc->err_mask |= AC_ERR_HSM;
1086 			}
1087 
1088 			ap->hsm_task_state = HSM_ST_ERR;
1089 			goto fsm_start;
1090 		}
1091 
1092 		/* Device should not ask for data transfer (DRQ=1)
1093 		 * when it finds something wrong.
1094 		 * We ignore DRQ here and stop the HSM by
1095 		 * changing hsm_task_state to HSM_ST_ERR and
1096 		 * let the EH abort the command or reset the device.
1097 		 */
1098 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1099 			/* Some ATAPI tape drives forget to clear the ERR bit
1100 			 * when doing the next command (mostly request sense).
1101 			 * We ignore ERR here to workaround and proceed sending
1102 			 * the CDB.
1103 			 */
1104 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1105 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1106 					"DRQ=1 with device error, "
1107 					"dev_stat 0x%X", status);
1108 				qc->err_mask |= AC_ERR_HSM;
1109 				ap->hsm_task_state = HSM_ST_ERR;
1110 				goto fsm_start;
1111 			}
1112 		}
1113 
1114 		/* Send the CDB (atapi) or the first data block (ata pio out).
1115 		 * During the state transition, interrupt handler shouldn't
1116 		 * be invoked before the data transfer is complete and
1117 		 * hsm_task_state is changed. Hence, the following locking.
1118 		 */
1119 		if (in_wq)
1120 			spin_lock_irqsave(ap->lock, flags);
1121 
1122 		if (qc->tf.protocol == ATA_PROT_PIO) {
1123 			/* PIO data out protocol.
1124 			 * send first data block.
1125 			 */
1126 
1127 			/* ata_pio_sectors() might change the state
1128 			 * to HSM_ST_LAST. so, the state is changed here
1129 			 * before ata_pio_sectors().
1130 			 */
1131 			ap->hsm_task_state = HSM_ST;
1132 			ata_pio_sectors(qc);
1133 		} else
1134 			/* send CDB */
1135 			atapi_send_cdb(ap, qc);
1136 
1137 		if (in_wq)
1138 			spin_unlock_irqrestore(ap->lock, flags);
1139 
1140 		/* if polling, ata_sff_pio_task() handles the rest.
1141 		 * otherwise, interrupt handler takes over from here.
1142 		 */
1143 		break;
1144 
1145 	case HSM_ST:
1146 		/* complete command or read/write the data register */
1147 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1148 			/* ATAPI PIO protocol */
1149 			if ((status & ATA_DRQ) == 0) {
1150 				/* No more data to transfer or device error.
1151 				 * Device error will be tagged in HSM_ST_LAST.
1152 				 */
1153 				ap->hsm_task_state = HSM_ST_LAST;
1154 				goto fsm_start;
1155 			}
1156 
1157 			/* Device should not ask for data transfer (DRQ=1)
1158 			 * when it finds something wrong.
1159 			 * We ignore DRQ here and stop the HSM by
1160 			 * changing hsm_task_state to HSM_ST_ERR and
1161 			 * let the EH abort the command or reset the device.
1162 			 */
1163 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1164 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1165 					"DRQ=1 with device error, "
1166 					"dev_stat 0x%X", status);
1167 				qc->err_mask |= AC_ERR_HSM;
1168 				ap->hsm_task_state = HSM_ST_ERR;
1169 				goto fsm_start;
1170 			}
1171 
1172 			atapi_pio_bytes(qc);
1173 
1174 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1175 				/* bad ireason reported by device */
1176 				goto fsm_start;
1177 
1178 		} else {
1179 			/* ATA PIO protocol */
1180 			if (unlikely((status & ATA_DRQ) == 0)) {
1181 				/* handle BSY=0, DRQ=0 as error */
1182 				if (likely(status & (ATA_ERR | ATA_DF))) {
1183 					/* device stops HSM for abort/error */
1184 					qc->err_mask |= AC_ERR_DEV;
1185 
1186 					/* If diagnostic failed and this is
1187 					 * IDENTIFY, it's likely a phantom
1188 					 * device.  Mark hint.
1189 					 */
1190 					if (qc->dev->horkage &
1191 					    ATA_HORKAGE_DIAGNOSTIC)
1192 						qc->err_mask |=
1193 							AC_ERR_NODEV_HINT;
1194 				} else {
1195 					/* HSM violation. Let EH handle this.
1196 					 * Phantom devices also trigger this
1197 					 * condition.  Mark hint.
1198 					 */
1199 					ata_ehi_push_desc(ehi, "ST-ATA: "
1200 						"DRQ=0 without device error, "
1201 						"dev_stat 0x%X", status);
1202 					qc->err_mask |= AC_ERR_HSM |
1203 							AC_ERR_NODEV_HINT;
1204 				}
1205 
1206 				ap->hsm_task_state = HSM_ST_ERR;
1207 				goto fsm_start;
1208 			}
1209 
1210 			/* For PIO reads, some devices may ask for
1211 			 * data transfer (DRQ=1) alone with ERR=1.
1212 			 * We respect DRQ here and transfer one
1213 			 * block of junk data before changing the
1214 			 * hsm_task_state to HSM_ST_ERR.
1215 			 *
1216 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1217 			 * sense since the data block has been
1218 			 * transferred to the device.
1219 			 */
1220 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1221 				/* data might be corrputed */
1222 				qc->err_mask |= AC_ERR_DEV;
1223 
1224 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1225 					ata_pio_sectors(qc);
1226 					status = ata_wait_idle(ap);
1227 				}
1228 
1229 				if (status & (ATA_BUSY | ATA_DRQ)) {
1230 					ata_ehi_push_desc(ehi, "ST-ATA: "
1231 						"BUSY|DRQ persists on ERR|DF, "
1232 						"dev_stat 0x%X", status);
1233 					qc->err_mask |= AC_ERR_HSM;
1234 				}
1235 
1236 				/* There are oddball controllers with
1237 				 * status register stuck at 0x7f and
1238 				 * lbal/m/h at zero which makes it
1239 				 * pass all other presence detection
1240 				 * mechanisms we have.  Set NODEV_HINT
1241 				 * for it.  Kernel bz#7241.
1242 				 */
1243 				if (status == 0x7f)
1244 					qc->err_mask |= AC_ERR_NODEV_HINT;
1245 
1246 				/* ata_pio_sectors() might change the
1247 				 * state to HSM_ST_LAST. so, the state
1248 				 * is changed after ata_pio_sectors().
1249 				 */
1250 				ap->hsm_task_state = HSM_ST_ERR;
1251 				goto fsm_start;
1252 			}
1253 
1254 			ata_pio_sectors(qc);
1255 
1256 			if (ap->hsm_task_state == HSM_ST_LAST &&
1257 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1258 				/* all data read */
1259 				status = ata_wait_idle(ap);
1260 				goto fsm_start;
1261 			}
1262 		}
1263 
1264 		poll_next = 1;
1265 		break;
1266 
1267 	case HSM_ST_LAST:
1268 		if (unlikely(!ata_ok(status))) {
1269 			qc->err_mask |= __ac_err_mask(status);
1270 			ap->hsm_task_state = HSM_ST_ERR;
1271 			goto fsm_start;
1272 		}
1273 
1274 		/* no more data to transfer */
1275 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1276 			ap->print_id, qc->dev->devno, status);
1277 
1278 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1279 
1280 		ap->hsm_task_state = HSM_ST_IDLE;
1281 
1282 		/* complete taskfile transaction */
1283 		ata_hsm_qc_complete(qc, in_wq);
1284 
1285 		poll_next = 0;
1286 		break;
1287 
1288 	case HSM_ST_ERR:
1289 		ap->hsm_task_state = HSM_ST_IDLE;
1290 
1291 		/* complete taskfile transaction */
1292 		ata_hsm_qc_complete(qc, in_wq);
1293 
1294 		poll_next = 0;
1295 		break;
1296 	default:
1297 		poll_next = 0;
1298 		BUG();
1299 	}
1300 
1301 	return poll_next;
1302 }
1303 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1304 
1305 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1306 {
1307 	struct ata_port *ap = link->ap;
1308 
1309 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1310 		(ap->sff_pio_task_link != link));
1311 	ap->sff_pio_task_link = link;
1312 
1313 	/* may fail if ata_sff_flush_pio_task() in progress */
1314 	queue_delayed_work(ata_sff_wq, &ap->sff_pio_task,
1315 			   msecs_to_jiffies(delay));
1316 }
1317 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1318 
1319 void ata_sff_flush_pio_task(struct ata_port *ap)
1320 {
1321 	DPRINTK("ENTER\n");
1322 
1323 	cancel_delayed_work_sync(&ap->sff_pio_task);
1324 	ap->hsm_task_state = HSM_ST_IDLE;
1325 
1326 	if (ata_msg_ctl(ap))
1327 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1328 }
1329 
1330 static void ata_sff_pio_task(struct work_struct *work)
1331 {
1332 	struct ata_port *ap =
1333 		container_of(work, struct ata_port, sff_pio_task.work);
1334 	struct ata_link *link = ap->sff_pio_task_link;
1335 	struct ata_queued_cmd *qc;
1336 	u8 status;
1337 	int poll_next;
1338 
1339 	BUG_ON(ap->sff_pio_task_link == NULL);
1340 	/* qc can be NULL if timeout occurred */
1341 	qc = ata_qc_from_tag(ap, link->active_tag);
1342 	if (!qc) {
1343 		ap->sff_pio_task_link = NULL;
1344 		return;
1345 	}
1346 
1347 fsm_start:
1348 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1349 
1350 	/*
1351 	 * This is purely heuristic.  This is a fast path.
1352 	 * Sometimes when we enter, BSY will be cleared in
1353 	 * a chk-status or two.  If not, the drive is probably seeking
1354 	 * or something.  Snooze for a couple msecs, then
1355 	 * chk-status again.  If still busy, queue delayed work.
1356 	 */
1357 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1358 	if (status & ATA_BUSY) {
1359 		ata_msleep(ap, 2);
1360 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1361 		if (status & ATA_BUSY) {
1362 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1363 			return;
1364 		}
1365 	}
1366 
1367 	/*
1368 	 * hsm_move() may trigger another command to be processed.
1369 	 * clean the link beforehand.
1370 	 */
1371 	ap->sff_pio_task_link = NULL;
1372 	/* move the HSM */
1373 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1374 
1375 	/* another command or interrupt handler
1376 	 * may be running at this point.
1377 	 */
1378 	if (poll_next)
1379 		goto fsm_start;
1380 }
1381 
1382 /**
1383  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1384  *	@qc: command to issue to device
1385  *
1386  *	This function issues a PIO or NODATA command to a SFF
1387  *	controller.
1388  *
1389  *	LOCKING:
1390  *	spin_lock_irqsave(host lock)
1391  *
1392  *	RETURNS:
1393  *	Zero on success, AC_ERR_* mask on failure
1394  */
1395 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1396 {
1397 	struct ata_port *ap = qc->ap;
1398 	struct ata_link *link = qc->dev->link;
1399 
1400 	/* Use polling pio if the LLD doesn't handle
1401 	 * interrupt driven pio and atapi CDB interrupt.
1402 	 */
1403 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1404 		qc->tf.flags |= ATA_TFLAG_POLLING;
1405 
1406 	/* select the device */
1407 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1408 
1409 	/* start the command */
1410 	switch (qc->tf.protocol) {
1411 	case ATA_PROT_NODATA:
1412 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1413 			ata_qc_set_polling(qc);
1414 
1415 		ata_tf_to_host(ap, &qc->tf);
1416 		ap->hsm_task_state = HSM_ST_LAST;
1417 
1418 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1419 			ata_sff_queue_pio_task(link, 0);
1420 
1421 		break;
1422 
1423 	case ATA_PROT_PIO:
1424 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1425 			ata_qc_set_polling(qc);
1426 
1427 		ata_tf_to_host(ap, &qc->tf);
1428 
1429 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1430 			/* PIO data out protocol */
1431 			ap->hsm_task_state = HSM_ST_FIRST;
1432 			ata_sff_queue_pio_task(link, 0);
1433 
1434 			/* always send first data block using the
1435 			 * ata_sff_pio_task() codepath.
1436 			 */
1437 		} else {
1438 			/* PIO data in protocol */
1439 			ap->hsm_task_state = HSM_ST;
1440 
1441 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1442 				ata_sff_queue_pio_task(link, 0);
1443 
1444 			/* if polling, ata_sff_pio_task() handles the
1445 			 * rest.  otherwise, interrupt handler takes
1446 			 * over from here.
1447 			 */
1448 		}
1449 
1450 		break;
1451 
1452 	case ATAPI_PROT_PIO:
1453 	case ATAPI_PROT_NODATA:
1454 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1455 			ata_qc_set_polling(qc);
1456 
1457 		ata_tf_to_host(ap, &qc->tf);
1458 
1459 		ap->hsm_task_state = HSM_ST_FIRST;
1460 
1461 		/* send cdb by polling if no cdb interrupt */
1462 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1463 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1464 			ata_sff_queue_pio_task(link, 0);
1465 		break;
1466 
1467 	default:
1468 		WARN_ON_ONCE(1);
1469 		return AC_ERR_SYSTEM;
1470 	}
1471 
1472 	return 0;
1473 }
1474 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1475 
1476 /**
1477  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1478  *	@qc: qc to fill result TF for
1479  *
1480  *	@qc is finished and result TF needs to be filled.  Fill it
1481  *	using ->sff_tf_read.
1482  *
1483  *	LOCKING:
1484  *	spin_lock_irqsave(host lock)
1485  *
1486  *	RETURNS:
1487  *	true indicating that result TF is successfully filled.
1488  */
1489 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1490 {
1491 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1492 	return true;
1493 }
1494 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1495 
1496 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1497 {
1498 	ap->stats.idle_irq++;
1499 
1500 #ifdef ATA_IRQ_TRAP
1501 	if ((ap->stats.idle_irq % 1000) == 0) {
1502 		ap->ops->sff_check_status(ap);
1503 		if (ap->ops->sff_irq_clear)
1504 			ap->ops->sff_irq_clear(ap);
1505 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1506 		return 1;
1507 	}
1508 #endif
1509 	return 0;	/* irq not handled */
1510 }
1511 
1512 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1513 					struct ata_queued_cmd *qc,
1514 					bool hsmv_on_idle)
1515 {
1516 	u8 status;
1517 
1518 	VPRINTK("ata%u: protocol %d task_state %d\n",
1519 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1520 
1521 	/* Check whether we are expecting interrupt in this state */
1522 	switch (ap->hsm_task_state) {
1523 	case HSM_ST_FIRST:
1524 		/* Some pre-ATAPI-4 devices assert INTRQ
1525 		 * at this state when ready to receive CDB.
1526 		 */
1527 
1528 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1529 		 * The flag was turned on only for atapi devices.  No
1530 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1531 		 */
1532 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1533 			return ata_sff_idle_irq(ap);
1534 		break;
1535 	case HSM_ST_IDLE:
1536 		return ata_sff_idle_irq(ap);
1537 	default:
1538 		break;
1539 	}
1540 
1541 	/* check main status, clearing INTRQ if needed */
1542 	status = ata_sff_irq_status(ap);
1543 	if (status & ATA_BUSY) {
1544 		if (hsmv_on_idle) {
1545 			/* BMDMA engine is already stopped, we're screwed */
1546 			qc->err_mask |= AC_ERR_HSM;
1547 			ap->hsm_task_state = HSM_ST_ERR;
1548 		} else
1549 			return ata_sff_idle_irq(ap);
1550 	}
1551 
1552 	/* clear irq events */
1553 	if (ap->ops->sff_irq_clear)
1554 		ap->ops->sff_irq_clear(ap);
1555 
1556 	ata_sff_hsm_move(ap, qc, status, 0);
1557 
1558 	return 1;	/* irq handled */
1559 }
1560 
1561 /**
1562  *	ata_sff_port_intr - Handle SFF port interrupt
1563  *	@ap: Port on which interrupt arrived (possibly...)
1564  *	@qc: Taskfile currently active in engine
1565  *
1566  *	Handle port interrupt for given queued command.
1567  *
1568  *	LOCKING:
1569  *	spin_lock_irqsave(host lock)
1570  *
1571  *	RETURNS:
1572  *	One if interrupt was handled, zero if not (shared irq).
1573  */
1574 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1575 {
1576 	return __ata_sff_port_intr(ap, qc, false);
1577 }
1578 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1579 
1580 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1581 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1582 {
1583 	struct ata_host *host = dev_instance;
1584 	bool retried = false;
1585 	unsigned int i;
1586 	unsigned int handled, idle, polling;
1587 	unsigned long flags;
1588 
1589 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1590 	spin_lock_irqsave(&host->lock, flags);
1591 
1592 retry:
1593 	handled = idle = polling = 0;
1594 	for (i = 0; i < host->n_ports; i++) {
1595 		struct ata_port *ap = host->ports[i];
1596 		struct ata_queued_cmd *qc;
1597 
1598 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1599 		if (qc) {
1600 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1601 				handled |= port_intr(ap, qc);
1602 			else
1603 				polling |= 1 << i;
1604 		} else
1605 			idle |= 1 << i;
1606 	}
1607 
1608 	/*
1609 	 * If no port was expecting IRQ but the controller is actually
1610 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1611 	 * pending status if available and clear spurious IRQ.
1612 	 */
1613 	if (!handled && !retried) {
1614 		bool retry = false;
1615 
1616 		for (i = 0; i < host->n_ports; i++) {
1617 			struct ata_port *ap = host->ports[i];
1618 
1619 			if (polling & (1 << i))
1620 				continue;
1621 
1622 			if (!ap->ops->sff_irq_check ||
1623 			    !ap->ops->sff_irq_check(ap))
1624 				continue;
1625 
1626 			if (idle & (1 << i)) {
1627 				ap->ops->sff_check_status(ap);
1628 				if (ap->ops->sff_irq_clear)
1629 					ap->ops->sff_irq_clear(ap);
1630 			} else {
1631 				/* clear INTRQ and check if BUSY cleared */
1632 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1633 					retry |= true;
1634 				/*
1635 				 * With command in flight, we can't do
1636 				 * sff_irq_clear() w/o racing with completion.
1637 				 */
1638 			}
1639 		}
1640 
1641 		if (retry) {
1642 			retried = true;
1643 			goto retry;
1644 		}
1645 	}
1646 
1647 	spin_unlock_irqrestore(&host->lock, flags);
1648 
1649 	return IRQ_RETVAL(handled);
1650 }
1651 
1652 /**
1653  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1654  *	@irq: irq line (unused)
1655  *	@dev_instance: pointer to our ata_host information structure
1656  *
1657  *	Default interrupt handler for PCI IDE devices.  Calls
1658  *	ata_sff_port_intr() for each port that is not disabled.
1659  *
1660  *	LOCKING:
1661  *	Obtains host lock during operation.
1662  *
1663  *	RETURNS:
1664  *	IRQ_NONE or IRQ_HANDLED.
1665  */
1666 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1667 {
1668 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1669 }
1670 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1671 
1672 /**
1673  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1674  *	@ap: port that appears to have timed out
1675  *
1676  *	Called from the libata error handlers when the core code suspects
1677  *	an interrupt has been lost. If it has complete anything we can and
1678  *	then return. Interface must support altstatus for this faster
1679  *	recovery to occur.
1680  *
1681  *	Locking:
1682  *	Caller holds host lock
1683  */
1684 
1685 void ata_sff_lost_interrupt(struct ata_port *ap)
1686 {
1687 	u8 status;
1688 	struct ata_queued_cmd *qc;
1689 
1690 	/* Only one outstanding command per SFF channel */
1691 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1692 	/* We cannot lose an interrupt on a non-existent or polled command */
1693 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1694 		return;
1695 	/* See if the controller thinks it is still busy - if so the command
1696 	   isn't a lost IRQ but is still in progress */
1697 	status = ata_sff_altstatus(ap);
1698 	if (status & ATA_BUSY)
1699 		return;
1700 
1701 	/* There was a command running, we are no longer busy and we have
1702 	   no interrupt. */
1703 	ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1704 								status);
1705 	/* Run the host interrupt logic as if the interrupt had not been
1706 	   lost */
1707 	ata_sff_port_intr(ap, qc);
1708 }
1709 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1710 
1711 /**
1712  *	ata_sff_freeze - Freeze SFF controller port
1713  *	@ap: port to freeze
1714  *
1715  *	Freeze SFF controller port.
1716  *
1717  *	LOCKING:
1718  *	Inherited from caller.
1719  */
1720 void ata_sff_freeze(struct ata_port *ap)
1721 {
1722 	ap->ctl |= ATA_NIEN;
1723 	ap->last_ctl = ap->ctl;
1724 
1725 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1726 		ata_sff_set_devctl(ap, ap->ctl);
1727 
1728 	/* Under certain circumstances, some controllers raise IRQ on
1729 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1730 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1731 	 */
1732 	ap->ops->sff_check_status(ap);
1733 
1734 	if (ap->ops->sff_irq_clear)
1735 		ap->ops->sff_irq_clear(ap);
1736 }
1737 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1738 
1739 /**
1740  *	ata_sff_thaw - Thaw SFF controller port
1741  *	@ap: port to thaw
1742  *
1743  *	Thaw SFF controller port.
1744  *
1745  *	LOCKING:
1746  *	Inherited from caller.
1747  */
1748 void ata_sff_thaw(struct ata_port *ap)
1749 {
1750 	/* clear & re-enable interrupts */
1751 	ap->ops->sff_check_status(ap);
1752 	if (ap->ops->sff_irq_clear)
1753 		ap->ops->sff_irq_clear(ap);
1754 	ata_sff_irq_on(ap);
1755 }
1756 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1757 
1758 /**
1759  *	ata_sff_prereset - prepare SFF link for reset
1760  *	@link: SFF link to be reset
1761  *	@deadline: deadline jiffies for the operation
1762  *
1763  *	SFF link @link is about to be reset.  Initialize it.  It first
1764  *	calls ata_std_prereset() and wait for !BSY if the port is
1765  *	being softreset.
1766  *
1767  *	LOCKING:
1768  *	Kernel thread context (may sleep)
1769  *
1770  *	RETURNS:
1771  *	0 on success, -errno otherwise.
1772  */
1773 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1774 {
1775 	struct ata_eh_context *ehc = &link->eh_context;
1776 	int rc;
1777 
1778 	rc = ata_std_prereset(link, deadline);
1779 	if (rc)
1780 		return rc;
1781 
1782 	/* if we're about to do hardreset, nothing more to do */
1783 	if (ehc->i.action & ATA_EH_HARDRESET)
1784 		return 0;
1785 
1786 	/* wait for !BSY if we don't know that no device is attached */
1787 	if (!ata_link_offline(link)) {
1788 		rc = ata_sff_wait_ready(link, deadline);
1789 		if (rc && rc != -ENODEV) {
1790 			ata_link_printk(link, KERN_WARNING, "device not ready "
1791 					"(errno=%d), forcing hardreset\n", rc);
1792 			ehc->i.action |= ATA_EH_HARDRESET;
1793 		}
1794 	}
1795 
1796 	return 0;
1797 }
1798 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1799 
1800 /**
1801  *	ata_devchk - PATA device presence detection
1802  *	@ap: ATA channel to examine
1803  *	@device: Device to examine (starting at zero)
1804  *
1805  *	This technique was originally described in
1806  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1807  *	later found its way into the ATA/ATAPI spec.
1808  *
1809  *	Write a pattern to the ATA shadow registers,
1810  *	and if a device is present, it will respond by
1811  *	correctly storing and echoing back the
1812  *	ATA shadow register contents.
1813  *
1814  *	LOCKING:
1815  *	caller.
1816  */
1817 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1818 {
1819 	struct ata_ioports *ioaddr = &ap->ioaddr;
1820 	u8 nsect, lbal;
1821 
1822 	ap->ops->sff_dev_select(ap, device);
1823 
1824 	iowrite8(0x55, ioaddr->nsect_addr);
1825 	iowrite8(0xaa, ioaddr->lbal_addr);
1826 
1827 	iowrite8(0xaa, ioaddr->nsect_addr);
1828 	iowrite8(0x55, ioaddr->lbal_addr);
1829 
1830 	iowrite8(0x55, ioaddr->nsect_addr);
1831 	iowrite8(0xaa, ioaddr->lbal_addr);
1832 
1833 	nsect = ioread8(ioaddr->nsect_addr);
1834 	lbal = ioread8(ioaddr->lbal_addr);
1835 
1836 	if ((nsect == 0x55) && (lbal == 0xaa))
1837 		return 1;	/* we found a device */
1838 
1839 	return 0;		/* nothing found */
1840 }
1841 
1842 /**
1843  *	ata_sff_dev_classify - Parse returned ATA device signature
1844  *	@dev: ATA device to classify (starting at zero)
1845  *	@present: device seems present
1846  *	@r_err: Value of error register on completion
1847  *
1848  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1849  *	an ATA/ATAPI-defined set of values is placed in the ATA
1850  *	shadow registers, indicating the results of device detection
1851  *	and diagnostics.
1852  *
1853  *	Select the ATA device, and read the values from the ATA shadow
1854  *	registers.  Then parse according to the Error register value,
1855  *	and the spec-defined values examined by ata_dev_classify().
1856  *
1857  *	LOCKING:
1858  *	caller.
1859  *
1860  *	RETURNS:
1861  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1862  */
1863 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1864 				  u8 *r_err)
1865 {
1866 	struct ata_port *ap = dev->link->ap;
1867 	struct ata_taskfile tf;
1868 	unsigned int class;
1869 	u8 err;
1870 
1871 	ap->ops->sff_dev_select(ap, dev->devno);
1872 
1873 	memset(&tf, 0, sizeof(tf));
1874 
1875 	ap->ops->sff_tf_read(ap, &tf);
1876 	err = tf.feature;
1877 	if (r_err)
1878 		*r_err = err;
1879 
1880 	/* see if device passed diags: continue and warn later */
1881 	if (err == 0)
1882 		/* diagnostic fail : do nothing _YET_ */
1883 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1884 	else if (err == 1)
1885 		/* do nothing */ ;
1886 	else if ((dev->devno == 0) && (err == 0x81))
1887 		/* do nothing */ ;
1888 	else
1889 		return ATA_DEV_NONE;
1890 
1891 	/* determine if device is ATA or ATAPI */
1892 	class = ata_dev_classify(&tf);
1893 
1894 	if (class == ATA_DEV_UNKNOWN) {
1895 		/* If the device failed diagnostic, it's likely to
1896 		 * have reported incorrect device signature too.
1897 		 * Assume ATA device if the device seems present but
1898 		 * device signature is invalid with diagnostic
1899 		 * failure.
1900 		 */
1901 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1902 			class = ATA_DEV_ATA;
1903 		else
1904 			class = ATA_DEV_NONE;
1905 	} else if ((class == ATA_DEV_ATA) &&
1906 		   (ap->ops->sff_check_status(ap) == 0))
1907 		class = ATA_DEV_NONE;
1908 
1909 	return class;
1910 }
1911 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1912 
1913 /**
1914  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1915  *	@link: SFF link which is just reset
1916  *	@devmask: mask of present devices
1917  *	@deadline: deadline jiffies for the operation
1918  *
1919  *	Wait devices attached to SFF @link to become ready after
1920  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1921  *	status register too early.
1922  *
1923  *	LOCKING:
1924  *	Kernel thread context (may sleep).
1925  *
1926  *	RETURNS:
1927  *	0 on success, -ENODEV if some or all of devices in @devmask
1928  *	don't seem to exist.  -errno on other errors.
1929  */
1930 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1931 			     unsigned long deadline)
1932 {
1933 	struct ata_port *ap = link->ap;
1934 	struct ata_ioports *ioaddr = &ap->ioaddr;
1935 	unsigned int dev0 = devmask & (1 << 0);
1936 	unsigned int dev1 = devmask & (1 << 1);
1937 	int rc, ret = 0;
1938 
1939 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1940 
1941 	/* always check readiness of the master device */
1942 	rc = ata_sff_wait_ready(link, deadline);
1943 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1944 	 * and TF status is 0xff, bail out on it too.
1945 	 */
1946 	if (rc)
1947 		return rc;
1948 
1949 	/* if device 1 was found in ata_devchk, wait for register
1950 	 * access briefly, then wait for BSY to clear.
1951 	 */
1952 	if (dev1) {
1953 		int i;
1954 
1955 		ap->ops->sff_dev_select(ap, 1);
1956 
1957 		/* Wait for register access.  Some ATAPI devices fail
1958 		 * to set nsect/lbal after reset, so don't waste too
1959 		 * much time on it.  We're gonna wait for !BSY anyway.
1960 		 */
1961 		for (i = 0; i < 2; i++) {
1962 			u8 nsect, lbal;
1963 
1964 			nsect = ioread8(ioaddr->nsect_addr);
1965 			lbal = ioread8(ioaddr->lbal_addr);
1966 			if ((nsect == 1) && (lbal == 1))
1967 				break;
1968 			ata_msleep(ap, 50);	/* give drive a breather */
1969 		}
1970 
1971 		rc = ata_sff_wait_ready(link, deadline);
1972 		if (rc) {
1973 			if (rc != -ENODEV)
1974 				return rc;
1975 			ret = rc;
1976 		}
1977 	}
1978 
1979 	/* is all this really necessary? */
1980 	ap->ops->sff_dev_select(ap, 0);
1981 	if (dev1)
1982 		ap->ops->sff_dev_select(ap, 1);
1983 	if (dev0)
1984 		ap->ops->sff_dev_select(ap, 0);
1985 
1986 	return ret;
1987 }
1988 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1989 
1990 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1991 			     unsigned long deadline)
1992 {
1993 	struct ata_ioports *ioaddr = &ap->ioaddr;
1994 
1995 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1996 
1997 	/* software reset.  causes dev0 to be selected */
1998 	iowrite8(ap->ctl, ioaddr->ctl_addr);
1999 	udelay(20);	/* FIXME: flush */
2000 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2001 	udelay(20);	/* FIXME: flush */
2002 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2003 	ap->last_ctl = ap->ctl;
2004 
2005 	/* wait the port to become ready */
2006 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2007 }
2008 
2009 /**
2010  *	ata_sff_softreset - reset host port via ATA SRST
2011  *	@link: ATA link to reset
2012  *	@classes: resulting classes of attached devices
2013  *	@deadline: deadline jiffies for the operation
2014  *
2015  *	Reset host port using ATA SRST.
2016  *
2017  *	LOCKING:
2018  *	Kernel thread context (may sleep)
2019  *
2020  *	RETURNS:
2021  *	0 on success, -errno otherwise.
2022  */
2023 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2024 		      unsigned long deadline)
2025 {
2026 	struct ata_port *ap = link->ap;
2027 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2028 	unsigned int devmask = 0;
2029 	int rc;
2030 	u8 err;
2031 
2032 	DPRINTK("ENTER\n");
2033 
2034 	/* determine if device 0/1 are present */
2035 	if (ata_devchk(ap, 0))
2036 		devmask |= (1 << 0);
2037 	if (slave_possible && ata_devchk(ap, 1))
2038 		devmask |= (1 << 1);
2039 
2040 	/* select device 0 again */
2041 	ap->ops->sff_dev_select(ap, 0);
2042 
2043 	/* issue bus reset */
2044 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2045 	rc = ata_bus_softreset(ap, devmask, deadline);
2046 	/* if link is occupied, -ENODEV too is an error */
2047 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2048 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2049 		return rc;
2050 	}
2051 
2052 	/* determine by signature whether we have ATA or ATAPI devices */
2053 	classes[0] = ata_sff_dev_classify(&link->device[0],
2054 					  devmask & (1 << 0), &err);
2055 	if (slave_possible && err != 0x81)
2056 		classes[1] = ata_sff_dev_classify(&link->device[1],
2057 						  devmask & (1 << 1), &err);
2058 
2059 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2060 	return 0;
2061 }
2062 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2063 
2064 /**
2065  *	sata_sff_hardreset - reset host port via SATA phy reset
2066  *	@link: link to reset
2067  *	@class: resulting class of attached device
2068  *	@deadline: deadline jiffies for the operation
2069  *
2070  *	SATA phy-reset host port using DET bits of SControl register,
2071  *	wait for !BSY and classify the attached device.
2072  *
2073  *	LOCKING:
2074  *	Kernel thread context (may sleep)
2075  *
2076  *	RETURNS:
2077  *	0 on success, -errno otherwise.
2078  */
2079 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2080 		       unsigned long deadline)
2081 {
2082 	struct ata_eh_context *ehc = &link->eh_context;
2083 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2084 	bool online;
2085 	int rc;
2086 
2087 	rc = sata_link_hardreset(link, timing, deadline, &online,
2088 				 ata_sff_check_ready);
2089 	if (online)
2090 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2091 
2092 	DPRINTK("EXIT, class=%u\n", *class);
2093 	return rc;
2094 }
2095 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2096 
2097 /**
2098  *	ata_sff_postreset - SFF postreset callback
2099  *	@link: the target SFF ata_link
2100  *	@classes: classes of attached devices
2101  *
2102  *	This function is invoked after a successful reset.  It first
2103  *	calls ata_std_postreset() and performs SFF specific postreset
2104  *	processing.
2105  *
2106  *	LOCKING:
2107  *	Kernel thread context (may sleep)
2108  */
2109 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2110 {
2111 	struct ata_port *ap = link->ap;
2112 
2113 	ata_std_postreset(link, classes);
2114 
2115 	/* is double-select really necessary? */
2116 	if (classes[0] != ATA_DEV_NONE)
2117 		ap->ops->sff_dev_select(ap, 1);
2118 	if (classes[1] != ATA_DEV_NONE)
2119 		ap->ops->sff_dev_select(ap, 0);
2120 
2121 	/* bail out if no device is present */
2122 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2123 		DPRINTK("EXIT, no device\n");
2124 		return;
2125 	}
2126 
2127 	/* set up device control */
2128 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2129 		ata_sff_set_devctl(ap, ap->ctl);
2130 		ap->last_ctl = ap->ctl;
2131 	}
2132 }
2133 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2134 
2135 /**
2136  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2137  *	@qc: command
2138  *
2139  *	Drain the FIFO and device of any stuck data following a command
2140  *	failing to complete. In some cases this is necessary before a
2141  *	reset will recover the device.
2142  *
2143  */
2144 
2145 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2146 {
2147 	int count;
2148 	struct ata_port *ap;
2149 
2150 	/* We only need to flush incoming data when a command was running */
2151 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2152 		return;
2153 
2154 	ap = qc->ap;
2155 	/* Drain up to 64K of data before we give up this recovery method */
2156 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2157 						&& count < 65536; count += 2)
2158 		ioread16(ap->ioaddr.data_addr);
2159 
2160 	/* Can become DEBUG later */
2161 	if (count)
2162 		ata_port_printk(ap, KERN_DEBUG,
2163 			"drained %d bytes to clear DRQ.\n", count);
2164 
2165 }
2166 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2167 
2168 /**
2169  *	ata_sff_error_handler - Stock error handler for SFF controller
2170  *	@ap: port to handle error for
2171  *
2172  *	Stock error handler for SFF controller.  It can handle both
2173  *	PATA and SATA controllers.  Many controllers should be able to
2174  *	use this EH as-is or with some added handling before and
2175  *	after.
2176  *
2177  *	LOCKING:
2178  *	Kernel thread context (may sleep)
2179  */
2180 void ata_sff_error_handler(struct ata_port *ap)
2181 {
2182 	ata_reset_fn_t softreset = ap->ops->softreset;
2183 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2184 	struct ata_queued_cmd *qc;
2185 	unsigned long flags;
2186 
2187 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2188 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2189 		qc = NULL;
2190 
2191 	spin_lock_irqsave(ap->lock, flags);
2192 
2193 	/*
2194 	 * We *MUST* do FIFO draining before we issue a reset as
2195 	 * several devices helpfully clear their internal state and
2196 	 * will lock solid if we touch the data port post reset. Pass
2197 	 * qc in case anyone wants to do different PIO/DMA recovery or
2198 	 * has per command fixups
2199 	 */
2200 	if (ap->ops->sff_drain_fifo)
2201 		ap->ops->sff_drain_fifo(qc);
2202 
2203 	spin_unlock_irqrestore(ap->lock, flags);
2204 
2205 	/* ignore ata_sff_softreset if ctl isn't accessible */
2206 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2207 		softreset = NULL;
2208 
2209 	/* ignore built-in hardresets if SCR access is not available */
2210 	if ((hardreset == sata_std_hardreset ||
2211 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2212 		hardreset = NULL;
2213 
2214 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2215 		  ap->ops->postreset);
2216 }
2217 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2218 
2219 /**
2220  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2221  *	@ioaddr: IO address structure to be initialized
2222  *
2223  *	Utility function which initializes data_addr, error_addr,
2224  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2225  *	device_addr, status_addr, and command_addr to standard offsets
2226  *	relative to cmd_addr.
2227  *
2228  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2229  */
2230 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2231 {
2232 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2233 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2234 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2235 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2236 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2237 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2238 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2239 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2240 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2241 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2242 }
2243 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2244 
2245 #ifdef CONFIG_PCI
2246 
2247 static int ata_resources_present(struct pci_dev *pdev, int port)
2248 {
2249 	int i;
2250 
2251 	/* Check the PCI resources for this channel are enabled */
2252 	port = port * 2;
2253 	for (i = 0; i < 2; i++) {
2254 		if (pci_resource_start(pdev, port + i) == 0 ||
2255 		    pci_resource_len(pdev, port + i) == 0)
2256 			return 0;
2257 	}
2258 	return 1;
2259 }
2260 
2261 /**
2262  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2263  *	@host: target ATA host
2264  *
2265  *	Acquire native PCI ATA resources for @host and initialize the
2266  *	first two ports of @host accordingly.  Ports marked dummy are
2267  *	skipped and allocation failure makes the port dummy.
2268  *
2269  *	Note that native PCI resources are valid even for legacy hosts
2270  *	as we fix up pdev resources array early in boot, so this
2271  *	function can be used for both native and legacy SFF hosts.
2272  *
2273  *	LOCKING:
2274  *	Inherited from calling layer (may sleep).
2275  *
2276  *	RETURNS:
2277  *	0 if at least one port is initialized, -ENODEV if no port is
2278  *	available.
2279  */
2280 int ata_pci_sff_init_host(struct ata_host *host)
2281 {
2282 	struct device *gdev = host->dev;
2283 	struct pci_dev *pdev = to_pci_dev(gdev);
2284 	unsigned int mask = 0;
2285 	int i, rc;
2286 
2287 	/* request, iomap BARs and init port addresses accordingly */
2288 	for (i = 0; i < 2; i++) {
2289 		struct ata_port *ap = host->ports[i];
2290 		int base = i * 2;
2291 		void __iomem * const *iomap;
2292 
2293 		if (ata_port_is_dummy(ap))
2294 			continue;
2295 
2296 		/* Discard disabled ports.  Some controllers show
2297 		 * their unused channels this way.  Disabled ports are
2298 		 * made dummy.
2299 		 */
2300 		if (!ata_resources_present(pdev, i)) {
2301 			ap->ops = &ata_dummy_port_ops;
2302 			continue;
2303 		}
2304 
2305 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2306 					dev_driver_string(gdev));
2307 		if (rc) {
2308 			dev_printk(KERN_WARNING, gdev,
2309 				   "failed to request/iomap BARs for port %d "
2310 				   "(errno=%d)\n", i, rc);
2311 			if (rc == -EBUSY)
2312 				pcim_pin_device(pdev);
2313 			ap->ops = &ata_dummy_port_ops;
2314 			continue;
2315 		}
2316 		host->iomap = iomap = pcim_iomap_table(pdev);
2317 
2318 		ap->ioaddr.cmd_addr = iomap[base];
2319 		ap->ioaddr.altstatus_addr =
2320 		ap->ioaddr.ctl_addr = (void __iomem *)
2321 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2322 		ata_sff_std_ports(&ap->ioaddr);
2323 
2324 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2325 			(unsigned long long)pci_resource_start(pdev, base),
2326 			(unsigned long long)pci_resource_start(pdev, base + 1));
2327 
2328 		mask |= 1 << i;
2329 	}
2330 
2331 	if (!mask) {
2332 		dev_printk(KERN_ERR, gdev, "no available native port\n");
2333 		return -ENODEV;
2334 	}
2335 
2336 	return 0;
2337 }
2338 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2339 
2340 /**
2341  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2342  *	@pdev: target PCI device
2343  *	@ppi: array of port_info, must be enough for two ports
2344  *	@r_host: out argument for the initialized ATA host
2345  *
2346  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2347  *	all PCI resources and initialize it accordingly in one go.
2348  *
2349  *	LOCKING:
2350  *	Inherited from calling layer (may sleep).
2351  *
2352  *	RETURNS:
2353  *	0 on success, -errno otherwise.
2354  */
2355 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2356 			     const struct ata_port_info * const *ppi,
2357 			     struct ata_host **r_host)
2358 {
2359 	struct ata_host *host;
2360 	int rc;
2361 
2362 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2363 		return -ENOMEM;
2364 
2365 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2366 	if (!host) {
2367 		dev_printk(KERN_ERR, &pdev->dev,
2368 			   "failed to allocate ATA host\n");
2369 		rc = -ENOMEM;
2370 		goto err_out;
2371 	}
2372 
2373 	rc = ata_pci_sff_init_host(host);
2374 	if (rc)
2375 		goto err_out;
2376 
2377 	devres_remove_group(&pdev->dev, NULL);
2378 	*r_host = host;
2379 	return 0;
2380 
2381 err_out:
2382 	devres_release_group(&pdev->dev, NULL);
2383 	return rc;
2384 }
2385 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2386 
2387 /**
2388  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2389  *	@host: target SFF ATA host
2390  *	@irq_handler: irq_handler used when requesting IRQ(s)
2391  *	@sht: scsi_host_template to use when registering the host
2392  *
2393  *	This is the counterpart of ata_host_activate() for SFF ATA
2394  *	hosts.  This separate helper is necessary because SFF hosts
2395  *	use two separate interrupts in legacy mode.
2396  *
2397  *	LOCKING:
2398  *	Inherited from calling layer (may sleep).
2399  *
2400  *	RETURNS:
2401  *	0 on success, -errno otherwise.
2402  */
2403 int ata_pci_sff_activate_host(struct ata_host *host,
2404 			      irq_handler_t irq_handler,
2405 			      struct scsi_host_template *sht)
2406 {
2407 	struct device *dev = host->dev;
2408 	struct pci_dev *pdev = to_pci_dev(dev);
2409 	const char *drv_name = dev_driver_string(host->dev);
2410 	int legacy_mode = 0, rc;
2411 
2412 	rc = ata_host_start(host);
2413 	if (rc)
2414 		return rc;
2415 
2416 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2417 		u8 tmp8, mask;
2418 
2419 		/* TODO: What if one channel is in native mode ... */
2420 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2421 		mask = (1 << 2) | (1 << 0);
2422 		if ((tmp8 & mask) != mask)
2423 			legacy_mode = 1;
2424 #if defined(CONFIG_NO_ATA_LEGACY)
2425 		/* Some platforms with PCI limits cannot address compat
2426 		   port space. In that case we punt if their firmware has
2427 		   left a device in compatibility mode */
2428 		if (legacy_mode) {
2429 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2430 			return -EOPNOTSUPP;
2431 		}
2432 #endif
2433 	}
2434 
2435 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2436 		return -ENOMEM;
2437 
2438 	if (!legacy_mode && pdev->irq) {
2439 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2440 				      IRQF_SHARED, drv_name, host);
2441 		if (rc)
2442 			goto out;
2443 
2444 		ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2445 		ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2446 	} else if (legacy_mode) {
2447 		if (!ata_port_is_dummy(host->ports[0])) {
2448 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2449 					      irq_handler, IRQF_SHARED,
2450 					      drv_name, host);
2451 			if (rc)
2452 				goto out;
2453 
2454 			ata_port_desc(host->ports[0], "irq %d",
2455 				      ATA_PRIMARY_IRQ(pdev));
2456 		}
2457 
2458 		if (!ata_port_is_dummy(host->ports[1])) {
2459 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2460 					      irq_handler, IRQF_SHARED,
2461 					      drv_name, host);
2462 			if (rc)
2463 				goto out;
2464 
2465 			ata_port_desc(host->ports[1], "irq %d",
2466 				      ATA_SECONDARY_IRQ(pdev));
2467 		}
2468 	}
2469 
2470 	rc = ata_host_register(host, sht);
2471 out:
2472 	if (rc == 0)
2473 		devres_remove_group(dev, NULL);
2474 	else
2475 		devres_release_group(dev, NULL);
2476 
2477 	return rc;
2478 }
2479 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2480 
2481 static const struct ata_port_info *ata_sff_find_valid_pi(
2482 					const struct ata_port_info * const *ppi)
2483 {
2484 	int i;
2485 
2486 	/* look up the first valid port_info */
2487 	for (i = 0; i < 2 && ppi[i]; i++)
2488 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2489 			return ppi[i];
2490 
2491 	return NULL;
2492 }
2493 
2494 /**
2495  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2496  *	@pdev: Controller to be initialized
2497  *	@ppi: array of port_info, must be enough for two ports
2498  *	@sht: scsi_host_template to use when registering the host
2499  *	@host_priv: host private_data
2500  *	@hflag: host flags
2501  *
2502  *	This is a helper function which can be called from a driver's
2503  *	xxx_init_one() probe function if the hardware uses traditional
2504  *	IDE taskfile registers and is PIO only.
2505  *
2506  *	ASSUMPTION:
2507  *	Nobody makes a single channel controller that appears solely as
2508  *	the secondary legacy port on PCI.
2509  *
2510  *	LOCKING:
2511  *	Inherited from PCI layer (may sleep).
2512  *
2513  *	RETURNS:
2514  *	Zero on success, negative on errno-based value on error.
2515  */
2516 int ata_pci_sff_init_one(struct pci_dev *pdev,
2517 		 const struct ata_port_info * const *ppi,
2518 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2519 {
2520 	struct device *dev = &pdev->dev;
2521 	const struct ata_port_info *pi;
2522 	struct ata_host *host = NULL;
2523 	int rc;
2524 
2525 	DPRINTK("ENTER\n");
2526 
2527 	pi = ata_sff_find_valid_pi(ppi);
2528 	if (!pi) {
2529 		dev_printk(KERN_ERR, &pdev->dev,
2530 			   "no valid port_info specified\n");
2531 		return -EINVAL;
2532 	}
2533 
2534 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2535 		return -ENOMEM;
2536 
2537 	rc = pcim_enable_device(pdev);
2538 	if (rc)
2539 		goto out;
2540 
2541 	/* prepare and activate SFF host */
2542 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2543 	if (rc)
2544 		goto out;
2545 	host->private_data = host_priv;
2546 	host->flags |= hflag;
2547 
2548 	rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2549 out:
2550 	if (rc == 0)
2551 		devres_remove_group(&pdev->dev, NULL);
2552 	else
2553 		devres_release_group(&pdev->dev, NULL);
2554 
2555 	return rc;
2556 }
2557 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2558 
2559 #endif /* CONFIG_PCI */
2560 
2561 /*
2562  *	BMDMA support
2563  */
2564 
2565 #ifdef CONFIG_ATA_BMDMA
2566 
2567 const struct ata_port_operations ata_bmdma_port_ops = {
2568 	.inherits		= &ata_sff_port_ops,
2569 
2570 	.error_handler		= ata_bmdma_error_handler,
2571 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2572 
2573 	.qc_prep		= ata_bmdma_qc_prep,
2574 	.qc_issue		= ata_bmdma_qc_issue,
2575 
2576 	.sff_irq_clear		= ata_bmdma_irq_clear,
2577 	.bmdma_setup		= ata_bmdma_setup,
2578 	.bmdma_start		= ata_bmdma_start,
2579 	.bmdma_stop		= ata_bmdma_stop,
2580 	.bmdma_status		= ata_bmdma_status,
2581 
2582 	.port_start		= ata_bmdma_port_start,
2583 };
2584 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2585 
2586 const struct ata_port_operations ata_bmdma32_port_ops = {
2587 	.inherits		= &ata_bmdma_port_ops,
2588 
2589 	.sff_data_xfer		= ata_sff_data_xfer32,
2590 	.port_start		= ata_bmdma_port_start32,
2591 };
2592 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2593 
2594 /**
2595  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2596  *	@qc: Metadata associated with taskfile to be transferred
2597  *
2598  *	Fill PCI IDE PRD (scatter-gather) table with segments
2599  *	associated with the current disk command.
2600  *
2601  *	LOCKING:
2602  *	spin_lock_irqsave(host lock)
2603  *
2604  */
2605 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2606 {
2607 	struct ata_port *ap = qc->ap;
2608 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2609 	struct scatterlist *sg;
2610 	unsigned int si, pi;
2611 
2612 	pi = 0;
2613 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2614 		u32 addr, offset;
2615 		u32 sg_len, len;
2616 
2617 		/* determine if physical DMA addr spans 64K boundary.
2618 		 * Note h/w doesn't support 64-bit, so we unconditionally
2619 		 * truncate dma_addr_t to u32.
2620 		 */
2621 		addr = (u32) sg_dma_address(sg);
2622 		sg_len = sg_dma_len(sg);
2623 
2624 		while (sg_len) {
2625 			offset = addr & 0xffff;
2626 			len = sg_len;
2627 			if ((offset + sg_len) > 0x10000)
2628 				len = 0x10000 - offset;
2629 
2630 			prd[pi].addr = cpu_to_le32(addr);
2631 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2632 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2633 
2634 			pi++;
2635 			sg_len -= len;
2636 			addr += len;
2637 		}
2638 	}
2639 
2640 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2641 }
2642 
2643 /**
2644  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2645  *	@qc: Metadata associated with taskfile to be transferred
2646  *
2647  *	Fill PCI IDE PRD (scatter-gather) table with segments
2648  *	associated with the current disk command. Perform the fill
2649  *	so that we avoid writing any length 64K records for
2650  *	controllers that don't follow the spec.
2651  *
2652  *	LOCKING:
2653  *	spin_lock_irqsave(host lock)
2654  *
2655  */
2656 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2657 {
2658 	struct ata_port *ap = qc->ap;
2659 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2660 	struct scatterlist *sg;
2661 	unsigned int si, pi;
2662 
2663 	pi = 0;
2664 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2665 		u32 addr, offset;
2666 		u32 sg_len, len, blen;
2667 
2668 		/* determine if physical DMA addr spans 64K boundary.
2669 		 * Note h/w doesn't support 64-bit, so we unconditionally
2670 		 * truncate dma_addr_t to u32.
2671 		 */
2672 		addr = (u32) sg_dma_address(sg);
2673 		sg_len = sg_dma_len(sg);
2674 
2675 		while (sg_len) {
2676 			offset = addr & 0xffff;
2677 			len = sg_len;
2678 			if ((offset + sg_len) > 0x10000)
2679 				len = 0x10000 - offset;
2680 
2681 			blen = len & 0xffff;
2682 			prd[pi].addr = cpu_to_le32(addr);
2683 			if (blen == 0) {
2684 				/* Some PATA chipsets like the CS5530 can't
2685 				   cope with 0x0000 meaning 64K as the spec
2686 				   says */
2687 				prd[pi].flags_len = cpu_to_le32(0x8000);
2688 				blen = 0x8000;
2689 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2690 			}
2691 			prd[pi].flags_len = cpu_to_le32(blen);
2692 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2693 
2694 			pi++;
2695 			sg_len -= len;
2696 			addr += len;
2697 		}
2698 	}
2699 
2700 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2701 }
2702 
2703 /**
2704  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2705  *	@qc: Metadata associated with taskfile to be prepared
2706  *
2707  *	Prepare ATA taskfile for submission.
2708  *
2709  *	LOCKING:
2710  *	spin_lock_irqsave(host lock)
2711  */
2712 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2713 {
2714 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2715 		return;
2716 
2717 	ata_bmdma_fill_sg(qc);
2718 }
2719 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2720 
2721 /**
2722  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2723  *	@qc: Metadata associated with taskfile to be prepared
2724  *
2725  *	Prepare ATA taskfile for submission.
2726  *
2727  *	LOCKING:
2728  *	spin_lock_irqsave(host lock)
2729  */
2730 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2731 {
2732 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2733 		return;
2734 
2735 	ata_bmdma_fill_sg_dumb(qc);
2736 }
2737 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2738 
2739 /**
2740  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2741  *	@qc: command to issue to device
2742  *
2743  *	This function issues a PIO, NODATA or DMA command to a
2744  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2745  *	ata_sff_qc_issue().
2746  *
2747  *	LOCKING:
2748  *	spin_lock_irqsave(host lock)
2749  *
2750  *	RETURNS:
2751  *	Zero on success, AC_ERR_* mask on failure
2752  */
2753 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2754 {
2755 	struct ata_port *ap = qc->ap;
2756 	struct ata_link *link = qc->dev->link;
2757 
2758 	/* defer PIO handling to sff_qc_issue */
2759 	if (!ata_is_dma(qc->tf.protocol))
2760 		return ata_sff_qc_issue(qc);
2761 
2762 	/* select the device */
2763 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2764 
2765 	/* start the command */
2766 	switch (qc->tf.protocol) {
2767 	case ATA_PROT_DMA:
2768 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2769 
2770 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2771 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2772 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2773 		ap->hsm_task_state = HSM_ST_LAST;
2774 		break;
2775 
2776 	case ATAPI_PROT_DMA:
2777 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2778 
2779 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2780 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2781 		ap->hsm_task_state = HSM_ST_FIRST;
2782 
2783 		/* send cdb by polling if no cdb interrupt */
2784 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2785 			ata_sff_queue_pio_task(link, 0);
2786 		break;
2787 
2788 	default:
2789 		WARN_ON(1);
2790 		return AC_ERR_SYSTEM;
2791 	}
2792 
2793 	return 0;
2794 }
2795 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2796 
2797 /**
2798  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2799  *	@ap: Port on which interrupt arrived (possibly...)
2800  *	@qc: Taskfile currently active in engine
2801  *
2802  *	Handle port interrupt for given queued command.
2803  *
2804  *	LOCKING:
2805  *	spin_lock_irqsave(host lock)
2806  *
2807  *	RETURNS:
2808  *	One if interrupt was handled, zero if not (shared irq).
2809  */
2810 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2811 {
2812 	struct ata_eh_info *ehi = &ap->link.eh_info;
2813 	u8 host_stat = 0;
2814 	bool bmdma_stopped = false;
2815 	unsigned int handled;
2816 
2817 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2818 		/* check status of DMA engine */
2819 		host_stat = ap->ops->bmdma_status(ap);
2820 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2821 
2822 		/* if it's not our irq... */
2823 		if (!(host_stat & ATA_DMA_INTR))
2824 			return ata_sff_idle_irq(ap);
2825 
2826 		/* before we do anything else, clear DMA-Start bit */
2827 		ap->ops->bmdma_stop(qc);
2828 		bmdma_stopped = true;
2829 
2830 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2831 			/* error when transfering data to/from memory */
2832 			qc->err_mask |= AC_ERR_HOST_BUS;
2833 			ap->hsm_task_state = HSM_ST_ERR;
2834 		}
2835 	}
2836 
2837 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2838 
2839 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2840 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2841 
2842 	return handled;
2843 }
2844 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2845 
2846 /**
2847  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2848  *	@irq: irq line (unused)
2849  *	@dev_instance: pointer to our ata_host information structure
2850  *
2851  *	Default interrupt handler for PCI IDE devices.  Calls
2852  *	ata_bmdma_port_intr() for each port that is not disabled.
2853  *
2854  *	LOCKING:
2855  *	Obtains host lock during operation.
2856  *
2857  *	RETURNS:
2858  *	IRQ_NONE or IRQ_HANDLED.
2859  */
2860 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2861 {
2862 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2863 }
2864 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2865 
2866 /**
2867  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2868  *	@ap: port to handle error for
2869  *
2870  *	Stock error handler for BMDMA controller.  It can handle both
2871  *	PATA and SATA controllers.  Most BMDMA controllers should be
2872  *	able to use this EH as-is or with some added handling before
2873  *	and after.
2874  *
2875  *	LOCKING:
2876  *	Kernel thread context (may sleep)
2877  */
2878 void ata_bmdma_error_handler(struct ata_port *ap)
2879 {
2880 	struct ata_queued_cmd *qc;
2881 	unsigned long flags;
2882 	bool thaw = false;
2883 
2884 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2885 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2886 		qc = NULL;
2887 
2888 	/* reset PIO HSM and stop DMA engine */
2889 	spin_lock_irqsave(ap->lock, flags);
2890 
2891 	if (qc && ata_is_dma(qc->tf.protocol)) {
2892 		u8 host_stat;
2893 
2894 		host_stat = ap->ops->bmdma_status(ap);
2895 
2896 		/* BMDMA controllers indicate host bus error by
2897 		 * setting DMA_ERR bit and timing out.  As it wasn't
2898 		 * really a timeout event, adjust error mask and
2899 		 * cancel frozen state.
2900 		 */
2901 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2902 			qc->err_mask = AC_ERR_HOST_BUS;
2903 			thaw = true;
2904 		}
2905 
2906 		ap->ops->bmdma_stop(qc);
2907 
2908 		/* if we're gonna thaw, make sure IRQ is clear */
2909 		if (thaw) {
2910 			ap->ops->sff_check_status(ap);
2911 			if (ap->ops->sff_irq_clear)
2912 				ap->ops->sff_irq_clear(ap);
2913 		}
2914 	}
2915 
2916 	spin_unlock_irqrestore(ap->lock, flags);
2917 
2918 	if (thaw)
2919 		ata_eh_thaw_port(ap);
2920 
2921 	ata_sff_error_handler(ap);
2922 }
2923 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2924 
2925 /**
2926  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2927  *	@qc: internal command to clean up
2928  *
2929  *	LOCKING:
2930  *	Kernel thread context (may sleep)
2931  */
2932 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2933 {
2934 	struct ata_port *ap = qc->ap;
2935 	unsigned long flags;
2936 
2937 	if (ata_is_dma(qc->tf.protocol)) {
2938 		spin_lock_irqsave(ap->lock, flags);
2939 		ap->ops->bmdma_stop(qc);
2940 		spin_unlock_irqrestore(ap->lock, flags);
2941 	}
2942 }
2943 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2944 
2945 /**
2946  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2947  *	@ap: Port associated with this ATA transaction.
2948  *
2949  *	Clear interrupt and error flags in DMA status register.
2950  *
2951  *	May be used as the irq_clear() entry in ata_port_operations.
2952  *
2953  *	LOCKING:
2954  *	spin_lock_irqsave(host lock)
2955  */
2956 void ata_bmdma_irq_clear(struct ata_port *ap)
2957 {
2958 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2959 
2960 	if (!mmio)
2961 		return;
2962 
2963 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2964 }
2965 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2966 
2967 /**
2968  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2969  *	@qc: Info associated with this ATA transaction.
2970  *
2971  *	LOCKING:
2972  *	spin_lock_irqsave(host lock)
2973  */
2974 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2975 {
2976 	struct ata_port *ap = qc->ap;
2977 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2978 	u8 dmactl;
2979 
2980 	/* load PRD table addr. */
2981 	mb();	/* make sure PRD table writes are visible to controller */
2982 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2983 
2984 	/* specify data direction, triple-check start bit is clear */
2985 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2986 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2987 	if (!rw)
2988 		dmactl |= ATA_DMA_WR;
2989 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2990 
2991 	/* issue r/w command */
2992 	ap->ops->sff_exec_command(ap, &qc->tf);
2993 }
2994 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2995 
2996 /**
2997  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2998  *	@qc: Info associated with this ATA transaction.
2999  *
3000  *	LOCKING:
3001  *	spin_lock_irqsave(host lock)
3002  */
3003 void ata_bmdma_start(struct ata_queued_cmd *qc)
3004 {
3005 	struct ata_port *ap = qc->ap;
3006 	u8 dmactl;
3007 
3008 	/* start host DMA transaction */
3009 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3010 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3011 
3012 	/* Strictly, one may wish to issue an ioread8() here, to
3013 	 * flush the mmio write.  However, control also passes
3014 	 * to the hardware at this point, and it will interrupt
3015 	 * us when we are to resume control.  So, in effect,
3016 	 * we don't care when the mmio write flushes.
3017 	 * Further, a read of the DMA status register _immediately_
3018 	 * following the write may not be what certain flaky hardware
3019 	 * is expected, so I think it is best to not add a readb()
3020 	 * without first all the MMIO ATA cards/mobos.
3021 	 * Or maybe I'm just being paranoid.
3022 	 *
3023 	 * FIXME: The posting of this write means I/O starts are
3024 	 * unneccessarily delayed for MMIO
3025 	 */
3026 }
3027 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3028 
3029 /**
3030  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3031  *	@qc: Command we are ending DMA for
3032  *
3033  *	Clears the ATA_DMA_START flag in the dma control register
3034  *
3035  *	May be used as the bmdma_stop() entry in ata_port_operations.
3036  *
3037  *	LOCKING:
3038  *	spin_lock_irqsave(host lock)
3039  */
3040 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3041 {
3042 	struct ata_port *ap = qc->ap;
3043 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3044 
3045 	/* clear start/stop bit */
3046 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3047 		 mmio + ATA_DMA_CMD);
3048 
3049 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3050 	ata_sff_dma_pause(ap);
3051 }
3052 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3053 
3054 /**
3055  *	ata_bmdma_status - Read PCI IDE BMDMA status
3056  *	@ap: Port associated with this ATA transaction.
3057  *
3058  *	Read and return BMDMA status register.
3059  *
3060  *	May be used as the bmdma_status() entry in ata_port_operations.
3061  *
3062  *	LOCKING:
3063  *	spin_lock_irqsave(host lock)
3064  */
3065 u8 ata_bmdma_status(struct ata_port *ap)
3066 {
3067 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3068 }
3069 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3070 
3071 
3072 /**
3073  *	ata_bmdma_port_start - Set port up for bmdma.
3074  *	@ap: Port to initialize
3075  *
3076  *	Called just after data structures for each port are
3077  *	initialized.  Allocates space for PRD table.
3078  *
3079  *	May be used as the port_start() entry in ata_port_operations.
3080  *
3081  *	LOCKING:
3082  *	Inherited from caller.
3083  */
3084 int ata_bmdma_port_start(struct ata_port *ap)
3085 {
3086 	if (ap->mwdma_mask || ap->udma_mask) {
3087 		ap->bmdma_prd =
3088 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3089 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3090 		if (!ap->bmdma_prd)
3091 			return -ENOMEM;
3092 	}
3093 
3094 	return 0;
3095 }
3096 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3097 
3098 /**
3099  *	ata_bmdma_port_start32 - Set port up for dma.
3100  *	@ap: Port to initialize
3101  *
3102  *	Called just after data structures for each port are
3103  *	initialized.  Enables 32bit PIO and allocates space for PRD
3104  *	table.
3105  *
3106  *	May be used as the port_start() entry in ata_port_operations for
3107  *	devices that are capable of 32bit PIO.
3108  *
3109  *	LOCKING:
3110  *	Inherited from caller.
3111  */
3112 int ata_bmdma_port_start32(struct ata_port *ap)
3113 {
3114 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3115 	return ata_bmdma_port_start(ap);
3116 }
3117 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3118 
3119 #ifdef CONFIG_PCI
3120 
3121 /**
3122  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3123  *	@pdev: PCI device
3124  *
3125  *	Some PCI ATA devices report simplex mode but in fact can be told to
3126  *	enter non simplex mode. This implements the necessary logic to
3127  *	perform the task on such devices. Calling it on other devices will
3128  *	have -undefined- behaviour.
3129  */
3130 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3131 {
3132 	unsigned long bmdma = pci_resource_start(pdev, 4);
3133 	u8 simplex;
3134 
3135 	if (bmdma == 0)
3136 		return -ENOENT;
3137 
3138 	simplex = inb(bmdma + 0x02);
3139 	outb(simplex & 0x60, bmdma + 0x02);
3140 	simplex = inb(bmdma + 0x02);
3141 	if (simplex & 0x80)
3142 		return -EOPNOTSUPP;
3143 	return 0;
3144 }
3145 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3146 
3147 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3148 {
3149 	int i;
3150 
3151 	dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n",
3152 		   reason);
3153 
3154 	for (i = 0; i < 2; i++) {
3155 		host->ports[i]->mwdma_mask = 0;
3156 		host->ports[i]->udma_mask = 0;
3157 	}
3158 }
3159 
3160 /**
3161  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3162  *	@host: target ATA host
3163  *
3164  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3165  *
3166  *	LOCKING:
3167  *	Inherited from calling layer (may sleep).
3168  */
3169 void ata_pci_bmdma_init(struct ata_host *host)
3170 {
3171 	struct device *gdev = host->dev;
3172 	struct pci_dev *pdev = to_pci_dev(gdev);
3173 	int i, rc;
3174 
3175 	/* No BAR4 allocation: No DMA */
3176 	if (pci_resource_start(pdev, 4) == 0) {
3177 		ata_bmdma_nodma(host, "BAR4 is zero");
3178 		return;
3179 	}
3180 
3181 	/*
3182 	 * Some controllers require BMDMA region to be initialized
3183 	 * even if DMA is not in use to clear IRQ status via
3184 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3185 	 * regardless of dma masks.
3186 	 */
3187 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3188 	if (rc)
3189 		ata_bmdma_nodma(host, "failed to set dma mask");
3190 	if (!rc) {
3191 		rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3192 		if (rc)
3193 			ata_bmdma_nodma(host,
3194 					"failed to set consistent dma mask");
3195 	}
3196 
3197 	/* request and iomap DMA region */
3198 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3199 	if (rc) {
3200 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3201 		return;
3202 	}
3203 	host->iomap = pcim_iomap_table(pdev);
3204 
3205 	for (i = 0; i < 2; i++) {
3206 		struct ata_port *ap = host->ports[i];
3207 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3208 
3209 		if (ata_port_is_dummy(ap))
3210 			continue;
3211 
3212 		ap->ioaddr.bmdma_addr = bmdma;
3213 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3214 		    (ioread8(bmdma + 2) & 0x80))
3215 			host->flags |= ATA_HOST_SIMPLEX;
3216 
3217 		ata_port_desc(ap, "bmdma 0x%llx",
3218 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3219 	}
3220 }
3221 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3222 
3223 /**
3224  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3225  *	@pdev: target PCI device
3226  *	@ppi: array of port_info, must be enough for two ports
3227  *	@r_host: out argument for the initialized ATA host
3228  *
3229  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3230  *	resources and initialize it accordingly in one go.
3231  *
3232  *	LOCKING:
3233  *	Inherited from calling layer (may sleep).
3234  *
3235  *	RETURNS:
3236  *	0 on success, -errno otherwise.
3237  */
3238 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3239 			       const struct ata_port_info * const * ppi,
3240 			       struct ata_host **r_host)
3241 {
3242 	int rc;
3243 
3244 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3245 	if (rc)
3246 		return rc;
3247 
3248 	ata_pci_bmdma_init(*r_host);
3249 	return 0;
3250 }
3251 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3252 
3253 /**
3254  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3255  *	@pdev: Controller to be initialized
3256  *	@ppi: array of port_info, must be enough for two ports
3257  *	@sht: scsi_host_template to use when registering the host
3258  *	@host_priv: host private_data
3259  *	@hflags: host flags
3260  *
3261  *	This function is similar to ata_pci_sff_init_one() but also
3262  *	takes care of BMDMA initialization.
3263  *
3264  *	LOCKING:
3265  *	Inherited from PCI layer (may sleep).
3266  *
3267  *	RETURNS:
3268  *	Zero on success, negative on errno-based value on error.
3269  */
3270 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3271 			   const struct ata_port_info * const * ppi,
3272 			   struct scsi_host_template *sht, void *host_priv,
3273 			   int hflags)
3274 {
3275 	struct device *dev = &pdev->dev;
3276 	const struct ata_port_info *pi;
3277 	struct ata_host *host = NULL;
3278 	int rc;
3279 
3280 	DPRINTK("ENTER\n");
3281 
3282 	pi = ata_sff_find_valid_pi(ppi);
3283 	if (!pi) {
3284 		dev_printk(KERN_ERR, &pdev->dev,
3285 			   "no valid port_info specified\n");
3286 		return -EINVAL;
3287 	}
3288 
3289 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
3290 		return -ENOMEM;
3291 
3292 	rc = pcim_enable_device(pdev);
3293 	if (rc)
3294 		goto out;
3295 
3296 	/* prepare and activate BMDMA host */
3297 	rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
3298 	if (rc)
3299 		goto out;
3300 	host->private_data = host_priv;
3301 	host->flags |= hflags;
3302 
3303 	pci_set_master(pdev);
3304 	rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
3305  out:
3306 	if (rc == 0)
3307 		devres_remove_group(&pdev->dev, NULL);
3308 	else
3309 		devres_release_group(&pdev->dev, NULL);
3310 
3311 	return rc;
3312 }
3313 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3314 
3315 #endif /* CONFIG_PCI */
3316 #endif /* CONFIG_ATA_BMDMA */
3317 
3318 /**
3319  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3320  *	@ap: Port to initialize
3321  *
3322  *	Called on port allocation to initialize SFF/BMDMA specific
3323  *	fields.
3324  *
3325  *	LOCKING:
3326  *	None.
3327  */
3328 void ata_sff_port_init(struct ata_port *ap)
3329 {
3330 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3331 	ap->ctl = ATA_DEVCTL_OBS;
3332 	ap->last_ctl = 0xFF;
3333 }
3334 
3335 int __init ata_sff_init(void)
3336 {
3337 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3338 	if (!ata_sff_wq)
3339 		return -ENOMEM;
3340 
3341 	return 0;
3342 }
3343 
3344 void ata_sff_exit(void)
3345 {
3346 	destroy_workqueue(ata_sff_wq);
3347 }
3348