xref: /openbmc/linux/drivers/ata/libata-sff.c (revision cce8ccca)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-sff.c - helper library for PCI IDE BMDMA
4  *
5  *  Maintained by:  Tejun Heo <tj@kernel.org>
6  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
7  *		    on emails.
8  *
9  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
10  *  Copyright 2003-2006 Jeff Garzik
11  *
12  *  libata documentation is available via 'make {ps|pdf}docs',
13  *  as Documentation/driver-api/libata.rst
14  *
15  *  Hardware documentation available from http://www.t13.org/ and
16  *  http://www.sata-io.org/
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/gfp.h>
21 #include <linux/pci.h>
22 #include <linux/module.h>
23 #include <linux/libata.h>
24 #include <linux/highmem.h>
25 
26 #include "libata.h"
27 
28 static struct workqueue_struct *ata_sff_wq;
29 
30 const struct ata_port_operations ata_sff_port_ops = {
31 	.inherits		= &ata_base_port_ops,
32 
33 	.qc_prep		= ata_noop_qc_prep,
34 	.qc_issue		= ata_sff_qc_issue,
35 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
36 
37 	.freeze			= ata_sff_freeze,
38 	.thaw			= ata_sff_thaw,
39 	.prereset		= ata_sff_prereset,
40 	.softreset		= ata_sff_softreset,
41 	.hardreset		= sata_sff_hardreset,
42 	.postreset		= ata_sff_postreset,
43 	.error_handler		= ata_sff_error_handler,
44 
45 	.sff_dev_select		= ata_sff_dev_select,
46 	.sff_check_status	= ata_sff_check_status,
47 	.sff_tf_load		= ata_sff_tf_load,
48 	.sff_tf_read		= ata_sff_tf_read,
49 	.sff_exec_command	= ata_sff_exec_command,
50 	.sff_data_xfer		= ata_sff_data_xfer,
51 	.sff_drain_fifo		= ata_sff_drain_fifo,
52 
53 	.lost_interrupt		= ata_sff_lost_interrupt,
54 };
55 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
56 
57 /**
58  *	ata_sff_check_status - Read device status reg & clear interrupt
59  *	@ap: port where the device is
60  *
61  *	Reads ATA taskfile status register for currently-selected device
62  *	and return its value. This also clears pending interrupts
63  *      from this device
64  *
65  *	LOCKING:
66  *	Inherited from caller.
67  */
68 u8 ata_sff_check_status(struct ata_port *ap)
69 {
70 	return ioread8(ap->ioaddr.status_addr);
71 }
72 EXPORT_SYMBOL_GPL(ata_sff_check_status);
73 
74 /**
75  *	ata_sff_altstatus - Read device alternate status reg
76  *	@ap: port where the device is
77  *
78  *	Reads ATA taskfile alternate status register for
79  *	currently-selected device and return its value.
80  *
81  *	Note: may NOT be used as the check_altstatus() entry in
82  *	ata_port_operations.
83  *
84  *	LOCKING:
85  *	Inherited from caller.
86  */
87 static u8 ata_sff_altstatus(struct ata_port *ap)
88 {
89 	if (ap->ops->sff_check_altstatus)
90 		return ap->ops->sff_check_altstatus(ap);
91 
92 	return ioread8(ap->ioaddr.altstatus_addr);
93 }
94 
95 /**
96  *	ata_sff_irq_status - Check if the device is busy
97  *	@ap: port where the device is
98  *
99  *	Determine if the port is currently busy. Uses altstatus
100  *	if available in order to avoid clearing shared IRQ status
101  *	when finding an IRQ source. Non ctl capable devices don't
102  *	share interrupt lines fortunately for us.
103  *
104  *	LOCKING:
105  *	Inherited from caller.
106  */
107 static u8 ata_sff_irq_status(struct ata_port *ap)
108 {
109 	u8 status;
110 
111 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
112 		status = ata_sff_altstatus(ap);
113 		/* Not us: We are busy */
114 		if (status & ATA_BUSY)
115 			return status;
116 	}
117 	/* Clear INTRQ latch */
118 	status = ap->ops->sff_check_status(ap);
119 	return status;
120 }
121 
122 /**
123  *	ata_sff_sync - Flush writes
124  *	@ap: Port to wait for.
125  *
126  *	CAUTION:
127  *	If we have an mmio device with no ctl and no altstatus
128  *	method this will fail. No such devices are known to exist.
129  *
130  *	LOCKING:
131  *	Inherited from caller.
132  */
133 
134 static void ata_sff_sync(struct ata_port *ap)
135 {
136 	if (ap->ops->sff_check_altstatus)
137 		ap->ops->sff_check_altstatus(ap);
138 	else if (ap->ioaddr.altstatus_addr)
139 		ioread8(ap->ioaddr.altstatus_addr);
140 }
141 
142 /**
143  *	ata_sff_pause		-	Flush writes and wait 400nS
144  *	@ap: Port to pause for.
145  *
146  *	CAUTION:
147  *	If we have an mmio device with no ctl and no altstatus
148  *	method this will fail. No such devices are known to exist.
149  *
150  *	LOCKING:
151  *	Inherited from caller.
152  */
153 
154 void ata_sff_pause(struct ata_port *ap)
155 {
156 	ata_sff_sync(ap);
157 	ndelay(400);
158 }
159 EXPORT_SYMBOL_GPL(ata_sff_pause);
160 
161 /**
162  *	ata_sff_dma_pause	-	Pause before commencing DMA
163  *	@ap: Port to pause for.
164  *
165  *	Perform I/O fencing and ensure sufficient cycle delays occur
166  *	for the HDMA1:0 transition
167  */
168 
169 void ata_sff_dma_pause(struct ata_port *ap)
170 {
171 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
172 		/* An altstatus read will cause the needed delay without
173 		   messing up the IRQ status */
174 		ata_sff_altstatus(ap);
175 		return;
176 	}
177 	/* There are no DMA controllers without ctl. BUG here to ensure
178 	   we never violate the HDMA1:0 transition timing and risk
179 	   corruption. */
180 	BUG();
181 }
182 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
183 
184 /**
185  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
186  *	@ap: port containing status register to be polled
187  *	@tmout_pat: impatience timeout in msecs
188  *	@tmout: overall timeout in msecs
189  *
190  *	Sleep until ATA Status register bit BSY clears,
191  *	or a timeout occurs.
192  *
193  *	LOCKING:
194  *	Kernel thread context (may sleep).
195  *
196  *	RETURNS:
197  *	0 on success, -errno otherwise.
198  */
199 int ata_sff_busy_sleep(struct ata_port *ap,
200 		       unsigned long tmout_pat, unsigned long tmout)
201 {
202 	unsigned long timer_start, timeout;
203 	u8 status;
204 
205 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
206 	timer_start = jiffies;
207 	timeout = ata_deadline(timer_start, tmout_pat);
208 	while (status != 0xff && (status & ATA_BUSY) &&
209 	       time_before(jiffies, timeout)) {
210 		ata_msleep(ap, 50);
211 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
212 	}
213 
214 	if (status != 0xff && (status & ATA_BUSY))
215 		ata_port_warn(ap,
216 			      "port is slow to respond, please be patient (Status 0x%x)\n",
217 			      status);
218 
219 	timeout = ata_deadline(timer_start, tmout);
220 	while (status != 0xff && (status & ATA_BUSY) &&
221 	       time_before(jiffies, timeout)) {
222 		ata_msleep(ap, 50);
223 		status = ap->ops->sff_check_status(ap);
224 	}
225 
226 	if (status == 0xff)
227 		return -ENODEV;
228 
229 	if (status & ATA_BUSY) {
230 		ata_port_err(ap,
231 			     "port failed to respond (%lu secs, Status 0x%x)\n",
232 			     DIV_ROUND_UP(tmout, 1000), status);
233 		return -EBUSY;
234 	}
235 
236 	return 0;
237 }
238 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
239 
240 static int ata_sff_check_ready(struct ata_link *link)
241 {
242 	u8 status = link->ap->ops->sff_check_status(link->ap);
243 
244 	return ata_check_ready(status);
245 }
246 
247 /**
248  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
249  *	@link: SFF link to wait ready status for
250  *	@deadline: deadline jiffies for the operation
251  *
252  *	Sleep until ATA Status register bit BSY clears, or timeout
253  *	occurs.
254  *
255  *	LOCKING:
256  *	Kernel thread context (may sleep).
257  *
258  *	RETURNS:
259  *	0 on success, -errno otherwise.
260  */
261 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
262 {
263 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
264 }
265 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
266 
267 /**
268  *	ata_sff_set_devctl - Write device control reg
269  *	@ap: port where the device is
270  *	@ctl: value to write
271  *
272  *	Writes ATA taskfile device control register.
273  *
274  *	Note: may NOT be used as the sff_set_devctl() entry in
275  *	ata_port_operations.
276  *
277  *	LOCKING:
278  *	Inherited from caller.
279  */
280 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
281 {
282 	if (ap->ops->sff_set_devctl)
283 		ap->ops->sff_set_devctl(ap, ctl);
284 	else
285 		iowrite8(ctl, ap->ioaddr.ctl_addr);
286 }
287 
288 /**
289  *	ata_sff_dev_select - Select device 0/1 on ATA bus
290  *	@ap: ATA channel to manipulate
291  *	@device: ATA device (numbered from zero) to select
292  *
293  *	Use the method defined in the ATA specification to
294  *	make either device 0, or device 1, active on the
295  *	ATA channel.  Works with both PIO and MMIO.
296  *
297  *	May be used as the dev_select() entry in ata_port_operations.
298  *
299  *	LOCKING:
300  *	caller.
301  */
302 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
303 {
304 	u8 tmp;
305 
306 	if (device == 0)
307 		tmp = ATA_DEVICE_OBS;
308 	else
309 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
310 
311 	iowrite8(tmp, ap->ioaddr.device_addr);
312 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
313 }
314 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
315 
316 /**
317  *	ata_dev_select - Select device 0/1 on ATA bus
318  *	@ap: ATA channel to manipulate
319  *	@device: ATA device (numbered from zero) to select
320  *	@wait: non-zero to wait for Status register BSY bit to clear
321  *	@can_sleep: non-zero if context allows sleeping
322  *
323  *	Use the method defined in the ATA specification to
324  *	make either device 0, or device 1, active on the
325  *	ATA channel.
326  *
327  *	This is a high-level version of ata_sff_dev_select(), which
328  *	additionally provides the services of inserting the proper
329  *	pauses and status polling, where needed.
330  *
331  *	LOCKING:
332  *	caller.
333  */
334 static void ata_dev_select(struct ata_port *ap, unsigned int device,
335 			   unsigned int wait, unsigned int can_sleep)
336 {
337 	if (ata_msg_probe(ap))
338 		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
339 			      device, wait);
340 
341 	if (wait)
342 		ata_wait_idle(ap);
343 
344 	ap->ops->sff_dev_select(ap, device);
345 
346 	if (wait) {
347 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
348 			ata_msleep(ap, 150);
349 		ata_wait_idle(ap);
350 	}
351 }
352 
353 /**
354  *	ata_sff_irq_on - Enable interrupts on a port.
355  *	@ap: Port on which interrupts are enabled.
356  *
357  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
358  *	wait for idle, clear any pending interrupts.
359  *
360  *	Note: may NOT be used as the sff_irq_on() entry in
361  *	ata_port_operations.
362  *
363  *	LOCKING:
364  *	Inherited from caller.
365  */
366 void ata_sff_irq_on(struct ata_port *ap)
367 {
368 	struct ata_ioports *ioaddr = &ap->ioaddr;
369 
370 	if (ap->ops->sff_irq_on) {
371 		ap->ops->sff_irq_on(ap);
372 		return;
373 	}
374 
375 	ap->ctl &= ~ATA_NIEN;
376 	ap->last_ctl = ap->ctl;
377 
378 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
379 		ata_sff_set_devctl(ap, ap->ctl);
380 	ata_wait_idle(ap);
381 
382 	if (ap->ops->sff_irq_clear)
383 		ap->ops->sff_irq_clear(ap);
384 }
385 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
386 
387 /**
388  *	ata_sff_tf_load - send taskfile registers to host controller
389  *	@ap: Port to which output is sent
390  *	@tf: ATA taskfile register set
391  *
392  *	Outputs ATA taskfile to standard ATA host controller.
393  *
394  *	LOCKING:
395  *	Inherited from caller.
396  */
397 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
398 {
399 	struct ata_ioports *ioaddr = &ap->ioaddr;
400 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
401 
402 	if (tf->ctl != ap->last_ctl) {
403 		if (ioaddr->ctl_addr)
404 			iowrite8(tf->ctl, ioaddr->ctl_addr);
405 		ap->last_ctl = tf->ctl;
406 		ata_wait_idle(ap);
407 	}
408 
409 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
410 		WARN_ON_ONCE(!ioaddr->ctl_addr);
411 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
412 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
413 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
414 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
415 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
416 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
417 			tf->hob_feature,
418 			tf->hob_nsect,
419 			tf->hob_lbal,
420 			tf->hob_lbam,
421 			tf->hob_lbah);
422 	}
423 
424 	if (is_addr) {
425 		iowrite8(tf->feature, ioaddr->feature_addr);
426 		iowrite8(tf->nsect, ioaddr->nsect_addr);
427 		iowrite8(tf->lbal, ioaddr->lbal_addr);
428 		iowrite8(tf->lbam, ioaddr->lbam_addr);
429 		iowrite8(tf->lbah, ioaddr->lbah_addr);
430 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
431 			tf->feature,
432 			tf->nsect,
433 			tf->lbal,
434 			tf->lbam,
435 			tf->lbah);
436 	}
437 
438 	if (tf->flags & ATA_TFLAG_DEVICE) {
439 		iowrite8(tf->device, ioaddr->device_addr);
440 		VPRINTK("device 0x%X\n", tf->device);
441 	}
442 
443 	ata_wait_idle(ap);
444 }
445 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
446 
447 /**
448  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
449  *	@ap: Port from which input is read
450  *	@tf: ATA taskfile register set for storing input
451  *
452  *	Reads ATA taskfile registers for currently-selected device
453  *	into @tf. Assumes the device has a fully SFF compliant task file
454  *	layout and behaviour. If you device does not (eg has a different
455  *	status method) then you will need to provide a replacement tf_read
456  *
457  *	LOCKING:
458  *	Inherited from caller.
459  */
460 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
461 {
462 	struct ata_ioports *ioaddr = &ap->ioaddr;
463 
464 	tf->command = ata_sff_check_status(ap);
465 	tf->feature = ioread8(ioaddr->error_addr);
466 	tf->nsect = ioread8(ioaddr->nsect_addr);
467 	tf->lbal = ioread8(ioaddr->lbal_addr);
468 	tf->lbam = ioread8(ioaddr->lbam_addr);
469 	tf->lbah = ioread8(ioaddr->lbah_addr);
470 	tf->device = ioread8(ioaddr->device_addr);
471 
472 	if (tf->flags & ATA_TFLAG_LBA48) {
473 		if (likely(ioaddr->ctl_addr)) {
474 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
475 			tf->hob_feature = ioread8(ioaddr->error_addr);
476 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
477 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
478 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
479 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
480 			iowrite8(tf->ctl, ioaddr->ctl_addr);
481 			ap->last_ctl = tf->ctl;
482 		} else
483 			WARN_ON_ONCE(1);
484 	}
485 }
486 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
487 
488 /**
489  *	ata_sff_exec_command - issue ATA command to host controller
490  *	@ap: port to which command is being issued
491  *	@tf: ATA taskfile register set
492  *
493  *	Issues ATA command, with proper synchronization with interrupt
494  *	handler / other threads.
495  *
496  *	LOCKING:
497  *	spin_lock_irqsave(host lock)
498  */
499 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
500 {
501 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
502 
503 	iowrite8(tf->command, ap->ioaddr.command_addr);
504 	ata_sff_pause(ap);
505 }
506 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
507 
508 /**
509  *	ata_tf_to_host - issue ATA taskfile to host controller
510  *	@ap: port to which command is being issued
511  *	@tf: ATA taskfile register set
512  *
513  *	Issues ATA taskfile register set to ATA host controller,
514  *	with proper synchronization with interrupt handler and
515  *	other threads.
516  *
517  *	LOCKING:
518  *	spin_lock_irqsave(host lock)
519  */
520 static inline void ata_tf_to_host(struct ata_port *ap,
521 				  const struct ata_taskfile *tf)
522 {
523 	ap->ops->sff_tf_load(ap, tf);
524 	ap->ops->sff_exec_command(ap, tf);
525 }
526 
527 /**
528  *	ata_sff_data_xfer - Transfer data by PIO
529  *	@qc: queued command
530  *	@buf: data buffer
531  *	@buflen: buffer length
532  *	@rw: read/write
533  *
534  *	Transfer data from/to the device data register by PIO.
535  *
536  *	LOCKING:
537  *	Inherited from caller.
538  *
539  *	RETURNS:
540  *	Bytes consumed.
541  */
542 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
543 			       unsigned int buflen, int rw)
544 {
545 	struct ata_port *ap = qc->dev->link->ap;
546 	void __iomem *data_addr = ap->ioaddr.data_addr;
547 	unsigned int words = buflen >> 1;
548 
549 	/* Transfer multiple of 2 bytes */
550 	if (rw == READ)
551 		ioread16_rep(data_addr, buf, words);
552 	else
553 		iowrite16_rep(data_addr, buf, words);
554 
555 	/* Transfer trailing byte, if any. */
556 	if (unlikely(buflen & 0x01)) {
557 		unsigned char pad[2] = { };
558 
559 		/* Point buf to the tail of buffer */
560 		buf += buflen - 1;
561 
562 		/*
563 		 * Use io*16_rep() accessors here as well to avoid pointlessly
564 		 * swapping bytes to and from on the big endian machines...
565 		 */
566 		if (rw == READ) {
567 			ioread16_rep(data_addr, pad, 1);
568 			*buf = pad[0];
569 		} else {
570 			pad[0] = *buf;
571 			iowrite16_rep(data_addr, pad, 1);
572 		}
573 		words++;
574 	}
575 
576 	return words << 1;
577 }
578 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
579 
580 /**
581  *	ata_sff_data_xfer32 - Transfer data by PIO
582  *	@qc: queued command
583  *	@buf: data buffer
584  *	@buflen: buffer length
585  *	@rw: read/write
586  *
587  *	Transfer data from/to the device data register by PIO using 32bit
588  *	I/O operations.
589  *
590  *	LOCKING:
591  *	Inherited from caller.
592  *
593  *	RETURNS:
594  *	Bytes consumed.
595  */
596 
597 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
598 			       unsigned int buflen, int rw)
599 {
600 	struct ata_device *dev = qc->dev;
601 	struct ata_port *ap = dev->link->ap;
602 	void __iomem *data_addr = ap->ioaddr.data_addr;
603 	unsigned int words = buflen >> 2;
604 	int slop = buflen & 3;
605 
606 	if (!(ap->pflags & ATA_PFLAG_PIO32))
607 		return ata_sff_data_xfer(qc, buf, buflen, rw);
608 
609 	/* Transfer multiple of 4 bytes */
610 	if (rw == READ)
611 		ioread32_rep(data_addr, buf, words);
612 	else
613 		iowrite32_rep(data_addr, buf, words);
614 
615 	/* Transfer trailing bytes, if any */
616 	if (unlikely(slop)) {
617 		unsigned char pad[4] = { };
618 
619 		/* Point buf to the tail of buffer */
620 		buf += buflen - slop;
621 
622 		/*
623 		 * Use io*_rep() accessors here as well to avoid pointlessly
624 		 * swapping bytes to and from on the big endian machines...
625 		 */
626 		if (rw == READ) {
627 			if (slop < 3)
628 				ioread16_rep(data_addr, pad, 1);
629 			else
630 				ioread32_rep(data_addr, pad, 1);
631 			memcpy(buf, pad, slop);
632 		} else {
633 			memcpy(pad, buf, slop);
634 			if (slop < 3)
635 				iowrite16_rep(data_addr, pad, 1);
636 			else
637 				iowrite32_rep(data_addr, pad, 1);
638 		}
639 	}
640 	return (buflen + 1) & ~1;
641 }
642 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
643 
644 /**
645  *	ata_pio_sector - Transfer a sector of data.
646  *	@qc: Command on going
647  *
648  *	Transfer qc->sect_size bytes of data from/to the ATA device.
649  *
650  *	LOCKING:
651  *	Inherited from caller.
652  */
653 static void ata_pio_sector(struct ata_queued_cmd *qc)
654 {
655 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
656 	struct ata_port *ap = qc->ap;
657 	struct page *page;
658 	unsigned int offset;
659 	unsigned char *buf;
660 
661 	if (!qc->cursg) {
662 		qc->curbytes = qc->nbytes;
663 		return;
664 	}
665 	if (qc->curbytes == qc->nbytes - qc->sect_size)
666 		ap->hsm_task_state = HSM_ST_LAST;
667 
668 	page = sg_page(qc->cursg);
669 	offset = qc->cursg->offset + qc->cursg_ofs;
670 
671 	/* get the current page and offset */
672 	page = nth_page(page, (offset >> PAGE_SHIFT));
673 	offset %= PAGE_SIZE;
674 
675 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
676 
677 	/* do the actual data transfer */
678 	buf = kmap_atomic(page);
679 	ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
680 	kunmap_atomic(buf);
681 
682 	if (!do_write && !PageSlab(page))
683 		flush_dcache_page(page);
684 
685 	qc->curbytes += qc->sect_size;
686 	qc->cursg_ofs += qc->sect_size;
687 
688 	if (qc->cursg_ofs == qc->cursg->length) {
689 		qc->cursg = sg_next(qc->cursg);
690 		if (!qc->cursg)
691 			ap->hsm_task_state = HSM_ST_LAST;
692 		qc->cursg_ofs = 0;
693 	}
694 }
695 
696 /**
697  *	ata_pio_sectors - Transfer one or many sectors.
698  *	@qc: Command on going
699  *
700  *	Transfer one or many sectors of data from/to the
701  *	ATA device for the DRQ request.
702  *
703  *	LOCKING:
704  *	Inherited from caller.
705  */
706 static void ata_pio_sectors(struct ata_queued_cmd *qc)
707 {
708 	if (is_multi_taskfile(&qc->tf)) {
709 		/* READ/WRITE MULTIPLE */
710 		unsigned int nsect;
711 
712 		WARN_ON_ONCE(qc->dev->multi_count == 0);
713 
714 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
715 			    qc->dev->multi_count);
716 		while (nsect--)
717 			ata_pio_sector(qc);
718 	} else
719 		ata_pio_sector(qc);
720 
721 	ata_sff_sync(qc->ap); /* flush */
722 }
723 
724 /**
725  *	atapi_send_cdb - Write CDB bytes to hardware
726  *	@ap: Port to which ATAPI device is attached.
727  *	@qc: Taskfile currently active
728  *
729  *	When device has indicated its readiness to accept
730  *	a CDB, this function is called.  Send the CDB.
731  *
732  *	LOCKING:
733  *	caller.
734  */
735 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
736 {
737 	/* send SCSI cdb */
738 	DPRINTK("send cdb\n");
739 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
740 
741 	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
742 	ata_sff_sync(ap);
743 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
744 	   or is bmdma_start guaranteed to do it ? */
745 	switch (qc->tf.protocol) {
746 	case ATAPI_PROT_PIO:
747 		ap->hsm_task_state = HSM_ST;
748 		break;
749 	case ATAPI_PROT_NODATA:
750 		ap->hsm_task_state = HSM_ST_LAST;
751 		break;
752 #ifdef CONFIG_ATA_BMDMA
753 	case ATAPI_PROT_DMA:
754 		ap->hsm_task_state = HSM_ST_LAST;
755 		/* initiate bmdma */
756 		ap->ops->bmdma_start(qc);
757 		break;
758 #endif /* CONFIG_ATA_BMDMA */
759 	default:
760 		BUG();
761 	}
762 }
763 
764 /**
765  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
766  *	@qc: Command on going
767  *	@bytes: number of bytes
768  *
769  *	Transfer Transfer data from/to the ATAPI device.
770  *
771  *	LOCKING:
772  *	Inherited from caller.
773  *
774  */
775 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
776 {
777 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
778 	struct ata_port *ap = qc->ap;
779 	struct ata_device *dev = qc->dev;
780 	struct ata_eh_info *ehi = &dev->link->eh_info;
781 	struct scatterlist *sg;
782 	struct page *page;
783 	unsigned char *buf;
784 	unsigned int offset, count, consumed;
785 
786 next_sg:
787 	sg = qc->cursg;
788 	if (unlikely(!sg)) {
789 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
790 				  "buf=%u cur=%u bytes=%u",
791 				  qc->nbytes, qc->curbytes, bytes);
792 		return -1;
793 	}
794 
795 	page = sg_page(sg);
796 	offset = sg->offset + qc->cursg_ofs;
797 
798 	/* get the current page and offset */
799 	page = nth_page(page, (offset >> PAGE_SHIFT));
800 	offset %= PAGE_SIZE;
801 
802 	/* don't overrun current sg */
803 	count = min(sg->length - qc->cursg_ofs, bytes);
804 
805 	/* don't cross page boundaries */
806 	count = min(count, (unsigned int)PAGE_SIZE - offset);
807 
808 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
809 
810 	/* do the actual data transfer */
811 	buf = kmap_atomic(page);
812 	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
813 	kunmap_atomic(buf);
814 
815 	bytes -= min(bytes, consumed);
816 	qc->curbytes += count;
817 	qc->cursg_ofs += count;
818 
819 	if (qc->cursg_ofs == sg->length) {
820 		qc->cursg = sg_next(qc->cursg);
821 		qc->cursg_ofs = 0;
822 	}
823 
824 	/*
825 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
826 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
827 	 * check correctly as it doesn't know if it is the last request being
828 	 * made. Somebody should implement a proper sanity check.
829 	 */
830 	if (bytes)
831 		goto next_sg;
832 	return 0;
833 }
834 
835 /**
836  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
837  *	@qc: Command on going
838  *
839  *	Transfer Transfer data from/to the ATAPI device.
840  *
841  *	LOCKING:
842  *	Inherited from caller.
843  */
844 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
845 {
846 	struct ata_port *ap = qc->ap;
847 	struct ata_device *dev = qc->dev;
848 	struct ata_eh_info *ehi = &dev->link->eh_info;
849 	unsigned int ireason, bc_lo, bc_hi, bytes;
850 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
851 
852 	/* Abuse qc->result_tf for temp storage of intermediate TF
853 	 * here to save some kernel stack usage.
854 	 * For normal completion, qc->result_tf is not relevant. For
855 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
856 	 * So, the correctness of qc->result_tf is not affected.
857 	 */
858 	ap->ops->sff_tf_read(ap, &qc->result_tf);
859 	ireason = qc->result_tf.nsect;
860 	bc_lo = qc->result_tf.lbam;
861 	bc_hi = qc->result_tf.lbah;
862 	bytes = (bc_hi << 8) | bc_lo;
863 
864 	/* shall be cleared to zero, indicating xfer of data */
865 	if (unlikely(ireason & ATAPI_COD))
866 		goto atapi_check;
867 
868 	/* make sure transfer direction matches expected */
869 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
870 	if (unlikely(do_write != i_write))
871 		goto atapi_check;
872 
873 	if (unlikely(!bytes))
874 		goto atapi_check;
875 
876 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
877 
878 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
879 		goto err_out;
880 	ata_sff_sync(ap); /* flush */
881 
882 	return;
883 
884  atapi_check:
885 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
886 			  ireason, bytes);
887  err_out:
888 	qc->err_mask |= AC_ERR_HSM;
889 	ap->hsm_task_state = HSM_ST_ERR;
890 }
891 
892 /**
893  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
894  *	@ap: the target ata_port
895  *	@qc: qc on going
896  *
897  *	RETURNS:
898  *	1 if ok in workqueue, 0 otherwise.
899  */
900 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
901 						struct ata_queued_cmd *qc)
902 {
903 	if (qc->tf.flags & ATA_TFLAG_POLLING)
904 		return 1;
905 
906 	if (ap->hsm_task_state == HSM_ST_FIRST) {
907 		if (qc->tf.protocol == ATA_PROT_PIO &&
908 		   (qc->tf.flags & ATA_TFLAG_WRITE))
909 		    return 1;
910 
911 		if (ata_is_atapi(qc->tf.protocol) &&
912 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
913 			return 1;
914 	}
915 
916 	return 0;
917 }
918 
919 /**
920  *	ata_hsm_qc_complete - finish a qc running on standard HSM
921  *	@qc: Command to complete
922  *	@in_wq: 1 if called from workqueue, 0 otherwise
923  *
924  *	Finish @qc which is running on standard HSM.
925  *
926  *	LOCKING:
927  *	If @in_wq is zero, spin_lock_irqsave(host lock).
928  *	Otherwise, none on entry and grabs host lock.
929  */
930 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
931 {
932 	struct ata_port *ap = qc->ap;
933 
934 	if (ap->ops->error_handler) {
935 		if (in_wq) {
936 			/* EH might have kicked in while host lock is
937 			 * released.
938 			 */
939 			qc = ata_qc_from_tag(ap, qc->tag);
940 			if (qc) {
941 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
942 					ata_sff_irq_on(ap);
943 					ata_qc_complete(qc);
944 				} else
945 					ata_port_freeze(ap);
946 			}
947 		} else {
948 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
949 				ata_qc_complete(qc);
950 			else
951 				ata_port_freeze(ap);
952 		}
953 	} else {
954 		if (in_wq) {
955 			ata_sff_irq_on(ap);
956 			ata_qc_complete(qc);
957 		} else
958 			ata_qc_complete(qc);
959 	}
960 }
961 
962 /**
963  *	ata_sff_hsm_move - move the HSM to the next state.
964  *	@ap: the target ata_port
965  *	@qc: qc on going
966  *	@status: current device status
967  *	@in_wq: 1 if called from workqueue, 0 otherwise
968  *
969  *	RETURNS:
970  *	1 when poll next status needed, 0 otherwise.
971  */
972 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
973 		     u8 status, int in_wq)
974 {
975 	struct ata_link *link = qc->dev->link;
976 	struct ata_eh_info *ehi = &link->eh_info;
977 	int poll_next;
978 
979 	lockdep_assert_held(ap->lock);
980 
981 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
982 
983 	/* Make sure ata_sff_qc_issue() does not throw things
984 	 * like DMA polling into the workqueue. Notice that
985 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
986 	 */
987 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
988 
989 fsm_start:
990 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
991 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
992 
993 	switch (ap->hsm_task_state) {
994 	case HSM_ST_FIRST:
995 		/* Send first data block or PACKET CDB */
996 
997 		/* If polling, we will stay in the work queue after
998 		 * sending the data. Otherwise, interrupt handler
999 		 * takes over after sending the data.
1000 		 */
1001 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1002 
1003 		/* check device status */
1004 		if (unlikely((status & ATA_DRQ) == 0)) {
1005 			/* handle BSY=0, DRQ=0 as error */
1006 			if (likely(status & (ATA_ERR | ATA_DF)))
1007 				/* device stops HSM for abort/error */
1008 				qc->err_mask |= AC_ERR_DEV;
1009 			else {
1010 				/* HSM violation. Let EH handle this */
1011 				ata_ehi_push_desc(ehi,
1012 					"ST_FIRST: !(DRQ|ERR|DF)");
1013 				qc->err_mask |= AC_ERR_HSM;
1014 			}
1015 
1016 			ap->hsm_task_state = HSM_ST_ERR;
1017 			goto fsm_start;
1018 		}
1019 
1020 		/* Device should not ask for data transfer (DRQ=1)
1021 		 * when it finds something wrong.
1022 		 * We ignore DRQ here and stop the HSM by
1023 		 * changing hsm_task_state to HSM_ST_ERR and
1024 		 * let the EH abort the command or reset the device.
1025 		 */
1026 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1027 			/* Some ATAPI tape drives forget to clear the ERR bit
1028 			 * when doing the next command (mostly request sense).
1029 			 * We ignore ERR here to workaround and proceed sending
1030 			 * the CDB.
1031 			 */
1032 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1033 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1034 					"DRQ=1 with device error, "
1035 					"dev_stat 0x%X", status);
1036 				qc->err_mask |= AC_ERR_HSM;
1037 				ap->hsm_task_state = HSM_ST_ERR;
1038 				goto fsm_start;
1039 			}
1040 		}
1041 
1042 		if (qc->tf.protocol == ATA_PROT_PIO) {
1043 			/* PIO data out protocol.
1044 			 * send first data block.
1045 			 */
1046 
1047 			/* ata_pio_sectors() might change the state
1048 			 * to HSM_ST_LAST. so, the state is changed here
1049 			 * before ata_pio_sectors().
1050 			 */
1051 			ap->hsm_task_state = HSM_ST;
1052 			ata_pio_sectors(qc);
1053 		} else
1054 			/* send CDB */
1055 			atapi_send_cdb(ap, qc);
1056 
1057 		/* if polling, ata_sff_pio_task() handles the rest.
1058 		 * otherwise, interrupt handler takes over from here.
1059 		 */
1060 		break;
1061 
1062 	case HSM_ST:
1063 		/* complete command or read/write the data register */
1064 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1065 			/* ATAPI PIO protocol */
1066 			if ((status & ATA_DRQ) == 0) {
1067 				/* No more data to transfer or device error.
1068 				 * Device error will be tagged in HSM_ST_LAST.
1069 				 */
1070 				ap->hsm_task_state = HSM_ST_LAST;
1071 				goto fsm_start;
1072 			}
1073 
1074 			/* Device should not ask for data transfer (DRQ=1)
1075 			 * when it finds something wrong.
1076 			 * We ignore DRQ here and stop the HSM by
1077 			 * changing hsm_task_state to HSM_ST_ERR and
1078 			 * let the EH abort the command or reset the device.
1079 			 */
1080 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1081 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1082 					"DRQ=1 with device error, "
1083 					"dev_stat 0x%X", status);
1084 				qc->err_mask |= AC_ERR_HSM;
1085 				ap->hsm_task_state = HSM_ST_ERR;
1086 				goto fsm_start;
1087 			}
1088 
1089 			atapi_pio_bytes(qc);
1090 
1091 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1092 				/* bad ireason reported by device */
1093 				goto fsm_start;
1094 
1095 		} else {
1096 			/* ATA PIO protocol */
1097 			if (unlikely((status & ATA_DRQ) == 0)) {
1098 				/* handle BSY=0, DRQ=0 as error */
1099 				if (likely(status & (ATA_ERR | ATA_DF))) {
1100 					/* device stops HSM for abort/error */
1101 					qc->err_mask |= AC_ERR_DEV;
1102 
1103 					/* If diagnostic failed and this is
1104 					 * IDENTIFY, it's likely a phantom
1105 					 * device.  Mark hint.
1106 					 */
1107 					if (qc->dev->horkage &
1108 					    ATA_HORKAGE_DIAGNOSTIC)
1109 						qc->err_mask |=
1110 							AC_ERR_NODEV_HINT;
1111 				} else {
1112 					/* HSM violation. Let EH handle this.
1113 					 * Phantom devices also trigger this
1114 					 * condition.  Mark hint.
1115 					 */
1116 					ata_ehi_push_desc(ehi, "ST-ATA: "
1117 						"DRQ=0 without device error, "
1118 						"dev_stat 0x%X", status);
1119 					qc->err_mask |= AC_ERR_HSM |
1120 							AC_ERR_NODEV_HINT;
1121 				}
1122 
1123 				ap->hsm_task_state = HSM_ST_ERR;
1124 				goto fsm_start;
1125 			}
1126 
1127 			/* For PIO reads, some devices may ask for
1128 			 * data transfer (DRQ=1) alone with ERR=1.
1129 			 * We respect DRQ here and transfer one
1130 			 * block of junk data before changing the
1131 			 * hsm_task_state to HSM_ST_ERR.
1132 			 *
1133 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1134 			 * sense since the data block has been
1135 			 * transferred to the device.
1136 			 */
1137 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1138 				/* data might be corrputed */
1139 				qc->err_mask |= AC_ERR_DEV;
1140 
1141 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1142 					ata_pio_sectors(qc);
1143 					status = ata_wait_idle(ap);
1144 				}
1145 
1146 				if (status & (ATA_BUSY | ATA_DRQ)) {
1147 					ata_ehi_push_desc(ehi, "ST-ATA: "
1148 						"BUSY|DRQ persists on ERR|DF, "
1149 						"dev_stat 0x%X", status);
1150 					qc->err_mask |= AC_ERR_HSM;
1151 				}
1152 
1153 				/* There are oddball controllers with
1154 				 * status register stuck at 0x7f and
1155 				 * lbal/m/h at zero which makes it
1156 				 * pass all other presence detection
1157 				 * mechanisms we have.  Set NODEV_HINT
1158 				 * for it.  Kernel bz#7241.
1159 				 */
1160 				if (status == 0x7f)
1161 					qc->err_mask |= AC_ERR_NODEV_HINT;
1162 
1163 				/* ata_pio_sectors() might change the
1164 				 * state to HSM_ST_LAST. so, the state
1165 				 * is changed after ata_pio_sectors().
1166 				 */
1167 				ap->hsm_task_state = HSM_ST_ERR;
1168 				goto fsm_start;
1169 			}
1170 
1171 			ata_pio_sectors(qc);
1172 
1173 			if (ap->hsm_task_state == HSM_ST_LAST &&
1174 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1175 				/* all data read */
1176 				status = ata_wait_idle(ap);
1177 				goto fsm_start;
1178 			}
1179 		}
1180 
1181 		poll_next = 1;
1182 		break;
1183 
1184 	case HSM_ST_LAST:
1185 		if (unlikely(!ata_ok(status))) {
1186 			qc->err_mask |= __ac_err_mask(status);
1187 			ap->hsm_task_state = HSM_ST_ERR;
1188 			goto fsm_start;
1189 		}
1190 
1191 		/* no more data to transfer */
1192 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1193 			ap->print_id, qc->dev->devno, status);
1194 
1195 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1196 
1197 		ap->hsm_task_state = HSM_ST_IDLE;
1198 
1199 		/* complete taskfile transaction */
1200 		ata_hsm_qc_complete(qc, in_wq);
1201 
1202 		poll_next = 0;
1203 		break;
1204 
1205 	case HSM_ST_ERR:
1206 		ap->hsm_task_state = HSM_ST_IDLE;
1207 
1208 		/* complete taskfile transaction */
1209 		ata_hsm_qc_complete(qc, in_wq);
1210 
1211 		poll_next = 0;
1212 		break;
1213 	default:
1214 		poll_next = 0;
1215 		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1216 		     ap->print_id, ap->hsm_task_state);
1217 	}
1218 
1219 	return poll_next;
1220 }
1221 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1222 
1223 void ata_sff_queue_work(struct work_struct *work)
1224 {
1225 	queue_work(ata_sff_wq, work);
1226 }
1227 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1228 
1229 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1230 {
1231 	queue_delayed_work(ata_sff_wq, dwork, delay);
1232 }
1233 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1234 
1235 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1236 {
1237 	struct ata_port *ap = link->ap;
1238 
1239 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1240 		(ap->sff_pio_task_link != link));
1241 	ap->sff_pio_task_link = link;
1242 
1243 	/* may fail if ata_sff_flush_pio_task() in progress */
1244 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1245 }
1246 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1247 
1248 void ata_sff_flush_pio_task(struct ata_port *ap)
1249 {
1250 	DPRINTK("ENTER\n");
1251 
1252 	cancel_delayed_work_sync(&ap->sff_pio_task);
1253 
1254 	/*
1255 	 * We wanna reset the HSM state to IDLE.  If we do so without
1256 	 * grabbing the port lock, critical sections protected by it which
1257 	 * expect the HSM state to stay stable may get surprised.  For
1258 	 * example, we may set IDLE in between the time
1259 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1260 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1261 	 */
1262 	spin_lock_irq(ap->lock);
1263 	ap->hsm_task_state = HSM_ST_IDLE;
1264 	spin_unlock_irq(ap->lock);
1265 
1266 	ap->sff_pio_task_link = NULL;
1267 
1268 	if (ata_msg_ctl(ap))
1269 		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1270 }
1271 
1272 static void ata_sff_pio_task(struct work_struct *work)
1273 {
1274 	struct ata_port *ap =
1275 		container_of(work, struct ata_port, sff_pio_task.work);
1276 	struct ata_link *link = ap->sff_pio_task_link;
1277 	struct ata_queued_cmd *qc;
1278 	u8 status;
1279 	int poll_next;
1280 
1281 	spin_lock_irq(ap->lock);
1282 
1283 	BUG_ON(ap->sff_pio_task_link == NULL);
1284 	/* qc can be NULL if timeout occurred */
1285 	qc = ata_qc_from_tag(ap, link->active_tag);
1286 	if (!qc) {
1287 		ap->sff_pio_task_link = NULL;
1288 		goto out_unlock;
1289 	}
1290 
1291 fsm_start:
1292 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1293 
1294 	/*
1295 	 * This is purely heuristic.  This is a fast path.
1296 	 * Sometimes when we enter, BSY will be cleared in
1297 	 * a chk-status or two.  If not, the drive is probably seeking
1298 	 * or something.  Snooze for a couple msecs, then
1299 	 * chk-status again.  If still busy, queue delayed work.
1300 	 */
1301 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1302 	if (status & ATA_BUSY) {
1303 		spin_unlock_irq(ap->lock);
1304 		ata_msleep(ap, 2);
1305 		spin_lock_irq(ap->lock);
1306 
1307 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1308 		if (status & ATA_BUSY) {
1309 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1310 			goto out_unlock;
1311 		}
1312 	}
1313 
1314 	/*
1315 	 * hsm_move() may trigger another command to be processed.
1316 	 * clean the link beforehand.
1317 	 */
1318 	ap->sff_pio_task_link = NULL;
1319 	/* move the HSM */
1320 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1321 
1322 	/* another command or interrupt handler
1323 	 * may be running at this point.
1324 	 */
1325 	if (poll_next)
1326 		goto fsm_start;
1327 out_unlock:
1328 	spin_unlock_irq(ap->lock);
1329 }
1330 
1331 /**
1332  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1333  *	@qc: command to issue to device
1334  *
1335  *	This function issues a PIO or NODATA command to a SFF
1336  *	controller.
1337  *
1338  *	LOCKING:
1339  *	spin_lock_irqsave(host lock)
1340  *
1341  *	RETURNS:
1342  *	Zero on success, AC_ERR_* mask on failure
1343  */
1344 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1345 {
1346 	struct ata_port *ap = qc->ap;
1347 	struct ata_link *link = qc->dev->link;
1348 
1349 	/* Use polling pio if the LLD doesn't handle
1350 	 * interrupt driven pio and atapi CDB interrupt.
1351 	 */
1352 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1353 		qc->tf.flags |= ATA_TFLAG_POLLING;
1354 
1355 	/* select the device */
1356 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1357 
1358 	/* start the command */
1359 	switch (qc->tf.protocol) {
1360 	case ATA_PROT_NODATA:
1361 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1362 			ata_qc_set_polling(qc);
1363 
1364 		ata_tf_to_host(ap, &qc->tf);
1365 		ap->hsm_task_state = HSM_ST_LAST;
1366 
1367 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1368 			ata_sff_queue_pio_task(link, 0);
1369 
1370 		break;
1371 
1372 	case ATA_PROT_PIO:
1373 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1374 			ata_qc_set_polling(qc);
1375 
1376 		ata_tf_to_host(ap, &qc->tf);
1377 
1378 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1379 			/* PIO data out protocol */
1380 			ap->hsm_task_state = HSM_ST_FIRST;
1381 			ata_sff_queue_pio_task(link, 0);
1382 
1383 			/* always send first data block using the
1384 			 * ata_sff_pio_task() codepath.
1385 			 */
1386 		} else {
1387 			/* PIO data in protocol */
1388 			ap->hsm_task_state = HSM_ST;
1389 
1390 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1391 				ata_sff_queue_pio_task(link, 0);
1392 
1393 			/* if polling, ata_sff_pio_task() handles the
1394 			 * rest.  otherwise, interrupt handler takes
1395 			 * over from here.
1396 			 */
1397 		}
1398 
1399 		break;
1400 
1401 	case ATAPI_PROT_PIO:
1402 	case ATAPI_PROT_NODATA:
1403 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1404 			ata_qc_set_polling(qc);
1405 
1406 		ata_tf_to_host(ap, &qc->tf);
1407 
1408 		ap->hsm_task_state = HSM_ST_FIRST;
1409 
1410 		/* send cdb by polling if no cdb interrupt */
1411 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1412 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1413 			ata_sff_queue_pio_task(link, 0);
1414 		break;
1415 
1416 	default:
1417 		return AC_ERR_SYSTEM;
1418 	}
1419 
1420 	return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1423 
1424 /**
1425  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1426  *	@qc: qc to fill result TF for
1427  *
1428  *	@qc is finished and result TF needs to be filled.  Fill it
1429  *	using ->sff_tf_read.
1430  *
1431  *	LOCKING:
1432  *	spin_lock_irqsave(host lock)
1433  *
1434  *	RETURNS:
1435  *	true indicating that result TF is successfully filled.
1436  */
1437 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1438 {
1439 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1440 	return true;
1441 }
1442 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1443 
1444 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1445 {
1446 	ap->stats.idle_irq++;
1447 
1448 #ifdef ATA_IRQ_TRAP
1449 	if ((ap->stats.idle_irq % 1000) == 0) {
1450 		ap->ops->sff_check_status(ap);
1451 		if (ap->ops->sff_irq_clear)
1452 			ap->ops->sff_irq_clear(ap);
1453 		ata_port_warn(ap, "irq trap\n");
1454 		return 1;
1455 	}
1456 #endif
1457 	return 0;	/* irq not handled */
1458 }
1459 
1460 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1461 					struct ata_queued_cmd *qc,
1462 					bool hsmv_on_idle)
1463 {
1464 	u8 status;
1465 
1466 	VPRINTK("ata%u: protocol %d task_state %d\n",
1467 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1468 
1469 	/* Check whether we are expecting interrupt in this state */
1470 	switch (ap->hsm_task_state) {
1471 	case HSM_ST_FIRST:
1472 		/* Some pre-ATAPI-4 devices assert INTRQ
1473 		 * at this state when ready to receive CDB.
1474 		 */
1475 
1476 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1477 		 * The flag was turned on only for atapi devices.  No
1478 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1479 		 */
1480 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1481 			return ata_sff_idle_irq(ap);
1482 		break;
1483 	case HSM_ST_IDLE:
1484 		return ata_sff_idle_irq(ap);
1485 	default:
1486 		break;
1487 	}
1488 
1489 	/* check main status, clearing INTRQ if needed */
1490 	status = ata_sff_irq_status(ap);
1491 	if (status & ATA_BUSY) {
1492 		if (hsmv_on_idle) {
1493 			/* BMDMA engine is already stopped, we're screwed */
1494 			qc->err_mask |= AC_ERR_HSM;
1495 			ap->hsm_task_state = HSM_ST_ERR;
1496 		} else
1497 			return ata_sff_idle_irq(ap);
1498 	}
1499 
1500 	/* clear irq events */
1501 	if (ap->ops->sff_irq_clear)
1502 		ap->ops->sff_irq_clear(ap);
1503 
1504 	ata_sff_hsm_move(ap, qc, status, 0);
1505 
1506 	return 1;	/* irq handled */
1507 }
1508 
1509 /**
1510  *	ata_sff_port_intr - Handle SFF port interrupt
1511  *	@ap: Port on which interrupt arrived (possibly...)
1512  *	@qc: Taskfile currently active in engine
1513  *
1514  *	Handle port interrupt for given queued command.
1515  *
1516  *	LOCKING:
1517  *	spin_lock_irqsave(host lock)
1518  *
1519  *	RETURNS:
1520  *	One if interrupt was handled, zero if not (shared irq).
1521  */
1522 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1523 {
1524 	return __ata_sff_port_intr(ap, qc, false);
1525 }
1526 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1527 
1528 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1529 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1530 {
1531 	struct ata_host *host = dev_instance;
1532 	bool retried = false;
1533 	unsigned int i;
1534 	unsigned int handled, idle, polling;
1535 	unsigned long flags;
1536 
1537 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1538 	spin_lock_irqsave(&host->lock, flags);
1539 
1540 retry:
1541 	handled = idle = polling = 0;
1542 	for (i = 0; i < host->n_ports; i++) {
1543 		struct ata_port *ap = host->ports[i];
1544 		struct ata_queued_cmd *qc;
1545 
1546 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1547 		if (qc) {
1548 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1549 				handled |= port_intr(ap, qc);
1550 			else
1551 				polling |= 1 << i;
1552 		} else
1553 			idle |= 1 << i;
1554 	}
1555 
1556 	/*
1557 	 * If no port was expecting IRQ but the controller is actually
1558 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1559 	 * pending status if available and clear spurious IRQ.
1560 	 */
1561 	if (!handled && !retried) {
1562 		bool retry = false;
1563 
1564 		for (i = 0; i < host->n_ports; i++) {
1565 			struct ata_port *ap = host->ports[i];
1566 
1567 			if (polling & (1 << i))
1568 				continue;
1569 
1570 			if (!ap->ops->sff_irq_check ||
1571 			    !ap->ops->sff_irq_check(ap))
1572 				continue;
1573 
1574 			if (idle & (1 << i)) {
1575 				ap->ops->sff_check_status(ap);
1576 				if (ap->ops->sff_irq_clear)
1577 					ap->ops->sff_irq_clear(ap);
1578 			} else {
1579 				/* clear INTRQ and check if BUSY cleared */
1580 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1581 					retry |= true;
1582 				/*
1583 				 * With command in flight, we can't do
1584 				 * sff_irq_clear() w/o racing with completion.
1585 				 */
1586 			}
1587 		}
1588 
1589 		if (retry) {
1590 			retried = true;
1591 			goto retry;
1592 		}
1593 	}
1594 
1595 	spin_unlock_irqrestore(&host->lock, flags);
1596 
1597 	return IRQ_RETVAL(handled);
1598 }
1599 
1600 /**
1601  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1602  *	@irq: irq line (unused)
1603  *	@dev_instance: pointer to our ata_host information structure
1604  *
1605  *	Default interrupt handler for PCI IDE devices.  Calls
1606  *	ata_sff_port_intr() for each port that is not disabled.
1607  *
1608  *	LOCKING:
1609  *	Obtains host lock during operation.
1610  *
1611  *	RETURNS:
1612  *	IRQ_NONE or IRQ_HANDLED.
1613  */
1614 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1615 {
1616 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1617 }
1618 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1619 
1620 /**
1621  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1622  *	@ap: port that appears to have timed out
1623  *
1624  *	Called from the libata error handlers when the core code suspects
1625  *	an interrupt has been lost. If it has complete anything we can and
1626  *	then return. Interface must support altstatus for this faster
1627  *	recovery to occur.
1628  *
1629  *	Locking:
1630  *	Caller holds host lock
1631  */
1632 
1633 void ata_sff_lost_interrupt(struct ata_port *ap)
1634 {
1635 	u8 status;
1636 	struct ata_queued_cmd *qc;
1637 
1638 	/* Only one outstanding command per SFF channel */
1639 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1640 	/* We cannot lose an interrupt on a non-existent or polled command */
1641 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1642 		return;
1643 	/* See if the controller thinks it is still busy - if so the command
1644 	   isn't a lost IRQ but is still in progress */
1645 	status = ata_sff_altstatus(ap);
1646 	if (status & ATA_BUSY)
1647 		return;
1648 
1649 	/* There was a command running, we are no longer busy and we have
1650 	   no interrupt. */
1651 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1652 								status);
1653 	/* Run the host interrupt logic as if the interrupt had not been
1654 	   lost */
1655 	ata_sff_port_intr(ap, qc);
1656 }
1657 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1658 
1659 /**
1660  *	ata_sff_freeze - Freeze SFF controller port
1661  *	@ap: port to freeze
1662  *
1663  *	Freeze SFF controller port.
1664  *
1665  *	LOCKING:
1666  *	Inherited from caller.
1667  */
1668 void ata_sff_freeze(struct ata_port *ap)
1669 {
1670 	ap->ctl |= ATA_NIEN;
1671 	ap->last_ctl = ap->ctl;
1672 
1673 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1674 		ata_sff_set_devctl(ap, ap->ctl);
1675 
1676 	/* Under certain circumstances, some controllers raise IRQ on
1677 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1678 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1679 	 */
1680 	ap->ops->sff_check_status(ap);
1681 
1682 	if (ap->ops->sff_irq_clear)
1683 		ap->ops->sff_irq_clear(ap);
1684 }
1685 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1686 
1687 /**
1688  *	ata_sff_thaw - Thaw SFF controller port
1689  *	@ap: port to thaw
1690  *
1691  *	Thaw SFF controller port.
1692  *
1693  *	LOCKING:
1694  *	Inherited from caller.
1695  */
1696 void ata_sff_thaw(struct ata_port *ap)
1697 {
1698 	/* clear & re-enable interrupts */
1699 	ap->ops->sff_check_status(ap);
1700 	if (ap->ops->sff_irq_clear)
1701 		ap->ops->sff_irq_clear(ap);
1702 	ata_sff_irq_on(ap);
1703 }
1704 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1705 
1706 /**
1707  *	ata_sff_prereset - prepare SFF link for reset
1708  *	@link: SFF link to be reset
1709  *	@deadline: deadline jiffies for the operation
1710  *
1711  *	SFF link @link is about to be reset.  Initialize it.  It first
1712  *	calls ata_std_prereset() and wait for !BSY if the port is
1713  *	being softreset.
1714  *
1715  *	LOCKING:
1716  *	Kernel thread context (may sleep)
1717  *
1718  *	RETURNS:
1719  *	0 on success, -errno otherwise.
1720  */
1721 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1722 {
1723 	struct ata_eh_context *ehc = &link->eh_context;
1724 	int rc;
1725 
1726 	rc = ata_std_prereset(link, deadline);
1727 	if (rc)
1728 		return rc;
1729 
1730 	/* if we're about to do hardreset, nothing more to do */
1731 	if (ehc->i.action & ATA_EH_HARDRESET)
1732 		return 0;
1733 
1734 	/* wait for !BSY if we don't know that no device is attached */
1735 	if (!ata_link_offline(link)) {
1736 		rc = ata_sff_wait_ready(link, deadline);
1737 		if (rc && rc != -ENODEV) {
1738 			ata_link_warn(link,
1739 				      "device not ready (errno=%d), forcing hardreset\n",
1740 				      rc);
1741 			ehc->i.action |= ATA_EH_HARDRESET;
1742 		}
1743 	}
1744 
1745 	return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1748 
1749 /**
1750  *	ata_devchk - PATA device presence detection
1751  *	@ap: ATA channel to examine
1752  *	@device: Device to examine (starting at zero)
1753  *
1754  *	This technique was originally described in
1755  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1756  *	later found its way into the ATA/ATAPI spec.
1757  *
1758  *	Write a pattern to the ATA shadow registers,
1759  *	and if a device is present, it will respond by
1760  *	correctly storing and echoing back the
1761  *	ATA shadow register contents.
1762  *
1763  *	LOCKING:
1764  *	caller.
1765  */
1766 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1767 {
1768 	struct ata_ioports *ioaddr = &ap->ioaddr;
1769 	u8 nsect, lbal;
1770 
1771 	ap->ops->sff_dev_select(ap, device);
1772 
1773 	iowrite8(0x55, ioaddr->nsect_addr);
1774 	iowrite8(0xaa, ioaddr->lbal_addr);
1775 
1776 	iowrite8(0xaa, ioaddr->nsect_addr);
1777 	iowrite8(0x55, ioaddr->lbal_addr);
1778 
1779 	iowrite8(0x55, ioaddr->nsect_addr);
1780 	iowrite8(0xaa, ioaddr->lbal_addr);
1781 
1782 	nsect = ioread8(ioaddr->nsect_addr);
1783 	lbal = ioread8(ioaddr->lbal_addr);
1784 
1785 	if ((nsect == 0x55) && (lbal == 0xaa))
1786 		return 1;	/* we found a device */
1787 
1788 	return 0;		/* nothing found */
1789 }
1790 
1791 /**
1792  *	ata_sff_dev_classify - Parse returned ATA device signature
1793  *	@dev: ATA device to classify (starting at zero)
1794  *	@present: device seems present
1795  *	@r_err: Value of error register on completion
1796  *
1797  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1798  *	an ATA/ATAPI-defined set of values is placed in the ATA
1799  *	shadow registers, indicating the results of device detection
1800  *	and diagnostics.
1801  *
1802  *	Select the ATA device, and read the values from the ATA shadow
1803  *	registers.  Then parse according to the Error register value,
1804  *	and the spec-defined values examined by ata_dev_classify().
1805  *
1806  *	LOCKING:
1807  *	caller.
1808  *
1809  *	RETURNS:
1810  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1811  */
1812 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1813 				  u8 *r_err)
1814 {
1815 	struct ata_port *ap = dev->link->ap;
1816 	struct ata_taskfile tf;
1817 	unsigned int class;
1818 	u8 err;
1819 
1820 	ap->ops->sff_dev_select(ap, dev->devno);
1821 
1822 	memset(&tf, 0, sizeof(tf));
1823 
1824 	ap->ops->sff_tf_read(ap, &tf);
1825 	err = tf.feature;
1826 	if (r_err)
1827 		*r_err = err;
1828 
1829 	/* see if device passed diags: continue and warn later */
1830 	if (err == 0)
1831 		/* diagnostic fail : do nothing _YET_ */
1832 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1833 	else if (err == 1)
1834 		/* do nothing */ ;
1835 	else if ((dev->devno == 0) && (err == 0x81))
1836 		/* do nothing */ ;
1837 	else
1838 		return ATA_DEV_NONE;
1839 
1840 	/* determine if device is ATA or ATAPI */
1841 	class = ata_dev_classify(&tf);
1842 
1843 	if (class == ATA_DEV_UNKNOWN) {
1844 		/* If the device failed diagnostic, it's likely to
1845 		 * have reported incorrect device signature too.
1846 		 * Assume ATA device if the device seems present but
1847 		 * device signature is invalid with diagnostic
1848 		 * failure.
1849 		 */
1850 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1851 			class = ATA_DEV_ATA;
1852 		else
1853 			class = ATA_DEV_NONE;
1854 	} else if ((class == ATA_DEV_ATA) &&
1855 		   (ap->ops->sff_check_status(ap) == 0))
1856 		class = ATA_DEV_NONE;
1857 
1858 	return class;
1859 }
1860 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1861 
1862 /**
1863  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1864  *	@link: SFF link which is just reset
1865  *	@devmask: mask of present devices
1866  *	@deadline: deadline jiffies for the operation
1867  *
1868  *	Wait devices attached to SFF @link to become ready after
1869  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1870  *	status register too early.
1871  *
1872  *	LOCKING:
1873  *	Kernel thread context (may sleep).
1874  *
1875  *	RETURNS:
1876  *	0 on success, -ENODEV if some or all of devices in @devmask
1877  *	don't seem to exist.  -errno on other errors.
1878  */
1879 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1880 			     unsigned long deadline)
1881 {
1882 	struct ata_port *ap = link->ap;
1883 	struct ata_ioports *ioaddr = &ap->ioaddr;
1884 	unsigned int dev0 = devmask & (1 << 0);
1885 	unsigned int dev1 = devmask & (1 << 1);
1886 	int rc, ret = 0;
1887 
1888 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1889 
1890 	/* always check readiness of the master device */
1891 	rc = ata_sff_wait_ready(link, deadline);
1892 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1893 	 * and TF status is 0xff, bail out on it too.
1894 	 */
1895 	if (rc)
1896 		return rc;
1897 
1898 	/* if device 1 was found in ata_devchk, wait for register
1899 	 * access briefly, then wait for BSY to clear.
1900 	 */
1901 	if (dev1) {
1902 		int i;
1903 
1904 		ap->ops->sff_dev_select(ap, 1);
1905 
1906 		/* Wait for register access.  Some ATAPI devices fail
1907 		 * to set nsect/lbal after reset, so don't waste too
1908 		 * much time on it.  We're gonna wait for !BSY anyway.
1909 		 */
1910 		for (i = 0; i < 2; i++) {
1911 			u8 nsect, lbal;
1912 
1913 			nsect = ioread8(ioaddr->nsect_addr);
1914 			lbal = ioread8(ioaddr->lbal_addr);
1915 			if ((nsect == 1) && (lbal == 1))
1916 				break;
1917 			ata_msleep(ap, 50);	/* give drive a breather */
1918 		}
1919 
1920 		rc = ata_sff_wait_ready(link, deadline);
1921 		if (rc) {
1922 			if (rc != -ENODEV)
1923 				return rc;
1924 			ret = rc;
1925 		}
1926 	}
1927 
1928 	/* is all this really necessary? */
1929 	ap->ops->sff_dev_select(ap, 0);
1930 	if (dev1)
1931 		ap->ops->sff_dev_select(ap, 1);
1932 	if (dev0)
1933 		ap->ops->sff_dev_select(ap, 0);
1934 
1935 	return ret;
1936 }
1937 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1938 
1939 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1940 			     unsigned long deadline)
1941 {
1942 	struct ata_ioports *ioaddr = &ap->ioaddr;
1943 
1944 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1945 
1946 	if (ap->ioaddr.ctl_addr) {
1947 		/* software reset.  causes dev0 to be selected */
1948 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1949 		udelay(20);	/* FIXME: flush */
1950 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1951 		udelay(20);	/* FIXME: flush */
1952 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1953 		ap->last_ctl = ap->ctl;
1954 	}
1955 
1956 	/* wait the port to become ready */
1957 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1958 }
1959 
1960 /**
1961  *	ata_sff_softreset - reset host port via ATA SRST
1962  *	@link: ATA link to reset
1963  *	@classes: resulting classes of attached devices
1964  *	@deadline: deadline jiffies for the operation
1965  *
1966  *	Reset host port using ATA SRST.
1967  *
1968  *	LOCKING:
1969  *	Kernel thread context (may sleep)
1970  *
1971  *	RETURNS:
1972  *	0 on success, -errno otherwise.
1973  */
1974 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1975 		      unsigned long deadline)
1976 {
1977 	struct ata_port *ap = link->ap;
1978 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1979 	unsigned int devmask = 0;
1980 	int rc;
1981 	u8 err;
1982 
1983 	DPRINTK("ENTER\n");
1984 
1985 	/* determine if device 0/1 are present */
1986 	if (ata_devchk(ap, 0))
1987 		devmask |= (1 << 0);
1988 	if (slave_possible && ata_devchk(ap, 1))
1989 		devmask |= (1 << 1);
1990 
1991 	/* select device 0 again */
1992 	ap->ops->sff_dev_select(ap, 0);
1993 
1994 	/* issue bus reset */
1995 	DPRINTK("about to softreset, devmask=%x\n", devmask);
1996 	rc = ata_bus_softreset(ap, devmask, deadline);
1997 	/* if link is occupied, -ENODEV too is an error */
1998 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1999 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2000 		return rc;
2001 	}
2002 
2003 	/* determine by signature whether we have ATA or ATAPI devices */
2004 	classes[0] = ata_sff_dev_classify(&link->device[0],
2005 					  devmask & (1 << 0), &err);
2006 	if (slave_possible && err != 0x81)
2007 		classes[1] = ata_sff_dev_classify(&link->device[1],
2008 						  devmask & (1 << 1), &err);
2009 
2010 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2011 	return 0;
2012 }
2013 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2014 
2015 /**
2016  *	sata_sff_hardreset - reset host port via SATA phy reset
2017  *	@link: link to reset
2018  *	@class: resulting class of attached device
2019  *	@deadline: deadline jiffies for the operation
2020  *
2021  *	SATA phy-reset host port using DET bits of SControl register,
2022  *	wait for !BSY and classify the attached device.
2023  *
2024  *	LOCKING:
2025  *	Kernel thread context (may sleep)
2026  *
2027  *	RETURNS:
2028  *	0 on success, -errno otherwise.
2029  */
2030 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2031 		       unsigned long deadline)
2032 {
2033 	struct ata_eh_context *ehc = &link->eh_context;
2034 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2035 	bool online;
2036 	int rc;
2037 
2038 	rc = sata_link_hardreset(link, timing, deadline, &online,
2039 				 ata_sff_check_ready);
2040 	if (online)
2041 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2042 
2043 	DPRINTK("EXIT, class=%u\n", *class);
2044 	return rc;
2045 }
2046 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2047 
2048 /**
2049  *	ata_sff_postreset - SFF postreset callback
2050  *	@link: the target SFF ata_link
2051  *	@classes: classes of attached devices
2052  *
2053  *	This function is invoked after a successful reset.  It first
2054  *	calls ata_std_postreset() and performs SFF specific postreset
2055  *	processing.
2056  *
2057  *	LOCKING:
2058  *	Kernel thread context (may sleep)
2059  */
2060 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2061 {
2062 	struct ata_port *ap = link->ap;
2063 
2064 	ata_std_postreset(link, classes);
2065 
2066 	/* is double-select really necessary? */
2067 	if (classes[0] != ATA_DEV_NONE)
2068 		ap->ops->sff_dev_select(ap, 1);
2069 	if (classes[1] != ATA_DEV_NONE)
2070 		ap->ops->sff_dev_select(ap, 0);
2071 
2072 	/* bail out if no device is present */
2073 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2074 		DPRINTK("EXIT, no device\n");
2075 		return;
2076 	}
2077 
2078 	/* set up device control */
2079 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2080 		ata_sff_set_devctl(ap, ap->ctl);
2081 		ap->last_ctl = ap->ctl;
2082 	}
2083 }
2084 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2085 
2086 /**
2087  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2088  *	@qc: command
2089  *
2090  *	Drain the FIFO and device of any stuck data following a command
2091  *	failing to complete. In some cases this is necessary before a
2092  *	reset will recover the device.
2093  *
2094  */
2095 
2096 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2097 {
2098 	int count;
2099 	struct ata_port *ap;
2100 
2101 	/* We only need to flush incoming data when a command was running */
2102 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2103 		return;
2104 
2105 	ap = qc->ap;
2106 	/* Drain up to 64K of data before we give up this recovery method */
2107 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2108 						&& count < 65536; count += 2)
2109 		ioread16(ap->ioaddr.data_addr);
2110 
2111 	/* Can become DEBUG later */
2112 	if (count)
2113 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2114 
2115 }
2116 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2117 
2118 /**
2119  *	ata_sff_error_handler - Stock error handler for SFF controller
2120  *	@ap: port to handle error for
2121  *
2122  *	Stock error handler for SFF controller.  It can handle both
2123  *	PATA and SATA controllers.  Many controllers should be able to
2124  *	use this EH as-is or with some added handling before and
2125  *	after.
2126  *
2127  *	LOCKING:
2128  *	Kernel thread context (may sleep)
2129  */
2130 void ata_sff_error_handler(struct ata_port *ap)
2131 {
2132 	ata_reset_fn_t softreset = ap->ops->softreset;
2133 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2134 	struct ata_queued_cmd *qc;
2135 	unsigned long flags;
2136 
2137 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2138 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2139 		qc = NULL;
2140 
2141 	spin_lock_irqsave(ap->lock, flags);
2142 
2143 	/*
2144 	 * We *MUST* do FIFO draining before we issue a reset as
2145 	 * several devices helpfully clear their internal state and
2146 	 * will lock solid if we touch the data port post reset. Pass
2147 	 * qc in case anyone wants to do different PIO/DMA recovery or
2148 	 * has per command fixups
2149 	 */
2150 	if (ap->ops->sff_drain_fifo)
2151 		ap->ops->sff_drain_fifo(qc);
2152 
2153 	spin_unlock_irqrestore(ap->lock, flags);
2154 
2155 	/* ignore built-in hardresets if SCR access is not available */
2156 	if ((hardreset == sata_std_hardreset ||
2157 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2158 		hardreset = NULL;
2159 
2160 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2161 		  ap->ops->postreset);
2162 }
2163 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2164 
2165 /**
2166  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2167  *	@ioaddr: IO address structure to be initialized
2168  *
2169  *	Utility function which initializes data_addr, error_addr,
2170  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2171  *	device_addr, status_addr, and command_addr to standard offsets
2172  *	relative to cmd_addr.
2173  *
2174  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2175  */
2176 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2177 {
2178 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2179 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2180 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2181 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2182 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2183 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2184 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2185 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2186 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2187 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2188 }
2189 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2190 
2191 #ifdef CONFIG_PCI
2192 
2193 static int ata_resources_present(struct pci_dev *pdev, int port)
2194 {
2195 	int i;
2196 
2197 	/* Check the PCI resources for this channel are enabled */
2198 	port = port * 2;
2199 	for (i = 0; i < 2; i++) {
2200 		if (pci_resource_start(pdev, port + i) == 0 ||
2201 		    pci_resource_len(pdev, port + i) == 0)
2202 			return 0;
2203 	}
2204 	return 1;
2205 }
2206 
2207 /**
2208  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2209  *	@host: target ATA host
2210  *
2211  *	Acquire native PCI ATA resources for @host and initialize the
2212  *	first two ports of @host accordingly.  Ports marked dummy are
2213  *	skipped and allocation failure makes the port dummy.
2214  *
2215  *	Note that native PCI resources are valid even for legacy hosts
2216  *	as we fix up pdev resources array early in boot, so this
2217  *	function can be used for both native and legacy SFF hosts.
2218  *
2219  *	LOCKING:
2220  *	Inherited from calling layer (may sleep).
2221  *
2222  *	RETURNS:
2223  *	0 if at least one port is initialized, -ENODEV if no port is
2224  *	available.
2225  */
2226 int ata_pci_sff_init_host(struct ata_host *host)
2227 {
2228 	struct device *gdev = host->dev;
2229 	struct pci_dev *pdev = to_pci_dev(gdev);
2230 	unsigned int mask = 0;
2231 	int i, rc;
2232 
2233 	/* request, iomap BARs and init port addresses accordingly */
2234 	for (i = 0; i < 2; i++) {
2235 		struct ata_port *ap = host->ports[i];
2236 		int base = i * 2;
2237 		void __iomem * const *iomap;
2238 
2239 		if (ata_port_is_dummy(ap))
2240 			continue;
2241 
2242 		/* Discard disabled ports.  Some controllers show
2243 		 * their unused channels this way.  Disabled ports are
2244 		 * made dummy.
2245 		 */
2246 		if (!ata_resources_present(pdev, i)) {
2247 			ap->ops = &ata_dummy_port_ops;
2248 			continue;
2249 		}
2250 
2251 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2252 					dev_driver_string(gdev));
2253 		if (rc) {
2254 			dev_warn(gdev,
2255 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2256 				 i, rc);
2257 			if (rc == -EBUSY)
2258 				pcim_pin_device(pdev);
2259 			ap->ops = &ata_dummy_port_ops;
2260 			continue;
2261 		}
2262 		host->iomap = iomap = pcim_iomap_table(pdev);
2263 
2264 		ap->ioaddr.cmd_addr = iomap[base];
2265 		ap->ioaddr.altstatus_addr =
2266 		ap->ioaddr.ctl_addr = (void __iomem *)
2267 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2268 		ata_sff_std_ports(&ap->ioaddr);
2269 
2270 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2271 			(unsigned long long)pci_resource_start(pdev, base),
2272 			(unsigned long long)pci_resource_start(pdev, base + 1));
2273 
2274 		mask |= 1 << i;
2275 	}
2276 
2277 	if (!mask) {
2278 		dev_err(gdev, "no available native port\n");
2279 		return -ENODEV;
2280 	}
2281 
2282 	return 0;
2283 }
2284 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2285 
2286 /**
2287  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2288  *	@pdev: target PCI device
2289  *	@ppi: array of port_info, must be enough for two ports
2290  *	@r_host: out argument for the initialized ATA host
2291  *
2292  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2293  *	all PCI resources and initialize it accordingly in one go.
2294  *
2295  *	LOCKING:
2296  *	Inherited from calling layer (may sleep).
2297  *
2298  *	RETURNS:
2299  *	0 on success, -errno otherwise.
2300  */
2301 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2302 			     const struct ata_port_info * const *ppi,
2303 			     struct ata_host **r_host)
2304 {
2305 	struct ata_host *host;
2306 	int rc;
2307 
2308 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2309 		return -ENOMEM;
2310 
2311 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2312 	if (!host) {
2313 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2314 		rc = -ENOMEM;
2315 		goto err_out;
2316 	}
2317 
2318 	rc = ata_pci_sff_init_host(host);
2319 	if (rc)
2320 		goto err_out;
2321 
2322 	devres_remove_group(&pdev->dev, NULL);
2323 	*r_host = host;
2324 	return 0;
2325 
2326 err_out:
2327 	devres_release_group(&pdev->dev, NULL);
2328 	return rc;
2329 }
2330 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2331 
2332 /**
2333  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2334  *	@host: target SFF ATA host
2335  *	@irq_handler: irq_handler used when requesting IRQ(s)
2336  *	@sht: scsi_host_template to use when registering the host
2337  *
2338  *	This is the counterpart of ata_host_activate() for SFF ATA
2339  *	hosts.  This separate helper is necessary because SFF hosts
2340  *	use two separate interrupts in legacy mode.
2341  *
2342  *	LOCKING:
2343  *	Inherited from calling layer (may sleep).
2344  *
2345  *	RETURNS:
2346  *	0 on success, -errno otherwise.
2347  */
2348 int ata_pci_sff_activate_host(struct ata_host *host,
2349 			      irq_handler_t irq_handler,
2350 			      struct scsi_host_template *sht)
2351 {
2352 	struct device *dev = host->dev;
2353 	struct pci_dev *pdev = to_pci_dev(dev);
2354 	const char *drv_name = dev_driver_string(host->dev);
2355 	int legacy_mode = 0, rc;
2356 
2357 	rc = ata_host_start(host);
2358 	if (rc)
2359 		return rc;
2360 
2361 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2362 		u8 tmp8, mask = 0;
2363 
2364 		/*
2365 		 * ATA spec says we should use legacy mode when one
2366 		 * port is in legacy mode, but disabled ports on some
2367 		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2368 		 * on which the secondary port is not wired, so
2369 		 * ignore ports that are marked as 'dummy' during
2370 		 * this check
2371 		 */
2372 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2373 		if (!ata_port_is_dummy(host->ports[0]))
2374 			mask |= (1 << 0);
2375 		if (!ata_port_is_dummy(host->ports[1]))
2376 			mask |= (1 << 2);
2377 		if ((tmp8 & mask) != mask)
2378 			legacy_mode = 1;
2379 	}
2380 
2381 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2382 		return -ENOMEM;
2383 
2384 	if (!legacy_mode && pdev->irq) {
2385 		int i;
2386 
2387 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2388 				      IRQF_SHARED, drv_name, host);
2389 		if (rc)
2390 			goto out;
2391 
2392 		for (i = 0; i < 2; i++) {
2393 			if (ata_port_is_dummy(host->ports[i]))
2394 				continue;
2395 			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2396 		}
2397 	} else if (legacy_mode) {
2398 		if (!ata_port_is_dummy(host->ports[0])) {
2399 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2400 					      irq_handler, IRQF_SHARED,
2401 					      drv_name, host);
2402 			if (rc)
2403 				goto out;
2404 
2405 			ata_port_desc(host->ports[0], "irq %d",
2406 				      ATA_PRIMARY_IRQ(pdev));
2407 		}
2408 
2409 		if (!ata_port_is_dummy(host->ports[1])) {
2410 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2411 					      irq_handler, IRQF_SHARED,
2412 					      drv_name, host);
2413 			if (rc)
2414 				goto out;
2415 
2416 			ata_port_desc(host->ports[1], "irq %d",
2417 				      ATA_SECONDARY_IRQ(pdev));
2418 		}
2419 	}
2420 
2421 	rc = ata_host_register(host, sht);
2422 out:
2423 	if (rc == 0)
2424 		devres_remove_group(dev, NULL);
2425 	else
2426 		devres_release_group(dev, NULL);
2427 
2428 	return rc;
2429 }
2430 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2431 
2432 static const struct ata_port_info *ata_sff_find_valid_pi(
2433 					const struct ata_port_info * const *ppi)
2434 {
2435 	int i;
2436 
2437 	/* look up the first valid port_info */
2438 	for (i = 0; i < 2 && ppi[i]; i++)
2439 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2440 			return ppi[i];
2441 
2442 	return NULL;
2443 }
2444 
2445 static int ata_pci_init_one(struct pci_dev *pdev,
2446 		const struct ata_port_info * const *ppi,
2447 		struct scsi_host_template *sht, void *host_priv,
2448 		int hflags, bool bmdma)
2449 {
2450 	struct device *dev = &pdev->dev;
2451 	const struct ata_port_info *pi;
2452 	struct ata_host *host = NULL;
2453 	int rc;
2454 
2455 	DPRINTK("ENTER\n");
2456 
2457 	pi = ata_sff_find_valid_pi(ppi);
2458 	if (!pi) {
2459 		dev_err(&pdev->dev, "no valid port_info specified\n");
2460 		return -EINVAL;
2461 	}
2462 
2463 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2464 		return -ENOMEM;
2465 
2466 	rc = pcim_enable_device(pdev);
2467 	if (rc)
2468 		goto out;
2469 
2470 #ifdef CONFIG_ATA_BMDMA
2471 	if (bmdma)
2472 		/* prepare and activate BMDMA host */
2473 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2474 	else
2475 #endif
2476 		/* prepare and activate SFF host */
2477 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2478 	if (rc)
2479 		goto out;
2480 	host->private_data = host_priv;
2481 	host->flags |= hflags;
2482 
2483 #ifdef CONFIG_ATA_BMDMA
2484 	if (bmdma) {
2485 		pci_set_master(pdev);
2486 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2487 	} else
2488 #endif
2489 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2490 out:
2491 	if (rc == 0)
2492 		devres_remove_group(&pdev->dev, NULL);
2493 	else
2494 		devres_release_group(&pdev->dev, NULL);
2495 
2496 	return rc;
2497 }
2498 
2499 /**
2500  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2501  *	@pdev: Controller to be initialized
2502  *	@ppi: array of port_info, must be enough for two ports
2503  *	@sht: scsi_host_template to use when registering the host
2504  *	@host_priv: host private_data
2505  *	@hflag: host flags
2506  *
2507  *	This is a helper function which can be called from a driver's
2508  *	xxx_init_one() probe function if the hardware uses traditional
2509  *	IDE taskfile registers and is PIO only.
2510  *
2511  *	ASSUMPTION:
2512  *	Nobody makes a single channel controller that appears solely as
2513  *	the secondary legacy port on PCI.
2514  *
2515  *	LOCKING:
2516  *	Inherited from PCI layer (may sleep).
2517  *
2518  *	RETURNS:
2519  *	Zero on success, negative on errno-based value on error.
2520  */
2521 int ata_pci_sff_init_one(struct pci_dev *pdev,
2522 		 const struct ata_port_info * const *ppi,
2523 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2524 {
2525 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2526 }
2527 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2528 
2529 #endif /* CONFIG_PCI */
2530 
2531 /*
2532  *	BMDMA support
2533  */
2534 
2535 #ifdef CONFIG_ATA_BMDMA
2536 
2537 const struct ata_port_operations ata_bmdma_port_ops = {
2538 	.inherits		= &ata_sff_port_ops,
2539 
2540 	.error_handler		= ata_bmdma_error_handler,
2541 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2542 
2543 	.qc_prep		= ata_bmdma_qc_prep,
2544 	.qc_issue		= ata_bmdma_qc_issue,
2545 
2546 	.sff_irq_clear		= ata_bmdma_irq_clear,
2547 	.bmdma_setup		= ata_bmdma_setup,
2548 	.bmdma_start		= ata_bmdma_start,
2549 	.bmdma_stop		= ata_bmdma_stop,
2550 	.bmdma_status		= ata_bmdma_status,
2551 
2552 	.port_start		= ata_bmdma_port_start,
2553 };
2554 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2555 
2556 const struct ata_port_operations ata_bmdma32_port_ops = {
2557 	.inherits		= &ata_bmdma_port_ops,
2558 
2559 	.sff_data_xfer		= ata_sff_data_xfer32,
2560 	.port_start		= ata_bmdma_port_start32,
2561 };
2562 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2563 
2564 /**
2565  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2566  *	@qc: Metadata associated with taskfile to be transferred
2567  *
2568  *	Fill PCI IDE PRD (scatter-gather) table with segments
2569  *	associated with the current disk command.
2570  *
2571  *	LOCKING:
2572  *	spin_lock_irqsave(host lock)
2573  *
2574  */
2575 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2576 {
2577 	struct ata_port *ap = qc->ap;
2578 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2579 	struct scatterlist *sg;
2580 	unsigned int si, pi;
2581 
2582 	pi = 0;
2583 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2584 		u32 addr, offset;
2585 		u32 sg_len, len;
2586 
2587 		/* determine if physical DMA addr spans 64K boundary.
2588 		 * Note h/w doesn't support 64-bit, so we unconditionally
2589 		 * truncate dma_addr_t to u32.
2590 		 */
2591 		addr = (u32) sg_dma_address(sg);
2592 		sg_len = sg_dma_len(sg);
2593 
2594 		while (sg_len) {
2595 			offset = addr & 0xffff;
2596 			len = sg_len;
2597 			if ((offset + sg_len) > 0x10000)
2598 				len = 0x10000 - offset;
2599 
2600 			prd[pi].addr = cpu_to_le32(addr);
2601 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2602 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2603 
2604 			pi++;
2605 			sg_len -= len;
2606 			addr += len;
2607 		}
2608 	}
2609 
2610 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2611 }
2612 
2613 /**
2614  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2615  *	@qc: Metadata associated with taskfile to be transferred
2616  *
2617  *	Fill PCI IDE PRD (scatter-gather) table with segments
2618  *	associated with the current disk command. Perform the fill
2619  *	so that we avoid writing any length 64K records for
2620  *	controllers that don't follow the spec.
2621  *
2622  *	LOCKING:
2623  *	spin_lock_irqsave(host lock)
2624  *
2625  */
2626 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2627 {
2628 	struct ata_port *ap = qc->ap;
2629 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2630 	struct scatterlist *sg;
2631 	unsigned int si, pi;
2632 
2633 	pi = 0;
2634 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2635 		u32 addr, offset;
2636 		u32 sg_len, len, blen;
2637 
2638 		/* determine if physical DMA addr spans 64K boundary.
2639 		 * Note h/w doesn't support 64-bit, so we unconditionally
2640 		 * truncate dma_addr_t to u32.
2641 		 */
2642 		addr = (u32) sg_dma_address(sg);
2643 		sg_len = sg_dma_len(sg);
2644 
2645 		while (sg_len) {
2646 			offset = addr & 0xffff;
2647 			len = sg_len;
2648 			if ((offset + sg_len) > 0x10000)
2649 				len = 0x10000 - offset;
2650 
2651 			blen = len & 0xffff;
2652 			prd[pi].addr = cpu_to_le32(addr);
2653 			if (blen == 0) {
2654 				/* Some PATA chipsets like the CS5530 can't
2655 				   cope with 0x0000 meaning 64K as the spec
2656 				   says */
2657 				prd[pi].flags_len = cpu_to_le32(0x8000);
2658 				blen = 0x8000;
2659 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2660 			}
2661 			prd[pi].flags_len = cpu_to_le32(blen);
2662 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2663 
2664 			pi++;
2665 			sg_len -= len;
2666 			addr += len;
2667 		}
2668 	}
2669 
2670 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2671 }
2672 
2673 /**
2674  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2675  *	@qc: Metadata associated with taskfile to be prepared
2676  *
2677  *	Prepare ATA taskfile for submission.
2678  *
2679  *	LOCKING:
2680  *	spin_lock_irqsave(host lock)
2681  */
2682 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2683 {
2684 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2685 		return;
2686 
2687 	ata_bmdma_fill_sg(qc);
2688 }
2689 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2690 
2691 /**
2692  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2693  *	@qc: Metadata associated with taskfile to be prepared
2694  *
2695  *	Prepare ATA taskfile for submission.
2696  *
2697  *	LOCKING:
2698  *	spin_lock_irqsave(host lock)
2699  */
2700 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2701 {
2702 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2703 		return;
2704 
2705 	ata_bmdma_fill_sg_dumb(qc);
2706 }
2707 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2708 
2709 /**
2710  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2711  *	@qc: command to issue to device
2712  *
2713  *	This function issues a PIO, NODATA or DMA command to a
2714  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2715  *	ata_sff_qc_issue().
2716  *
2717  *	LOCKING:
2718  *	spin_lock_irqsave(host lock)
2719  *
2720  *	RETURNS:
2721  *	Zero on success, AC_ERR_* mask on failure
2722  */
2723 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2724 {
2725 	struct ata_port *ap = qc->ap;
2726 	struct ata_link *link = qc->dev->link;
2727 
2728 	/* defer PIO handling to sff_qc_issue */
2729 	if (!ata_is_dma(qc->tf.protocol))
2730 		return ata_sff_qc_issue(qc);
2731 
2732 	/* select the device */
2733 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2734 
2735 	/* start the command */
2736 	switch (qc->tf.protocol) {
2737 	case ATA_PROT_DMA:
2738 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2739 
2740 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2741 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2742 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2743 		ap->hsm_task_state = HSM_ST_LAST;
2744 		break;
2745 
2746 	case ATAPI_PROT_DMA:
2747 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2748 
2749 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2750 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2751 		ap->hsm_task_state = HSM_ST_FIRST;
2752 
2753 		/* send cdb by polling if no cdb interrupt */
2754 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2755 			ata_sff_queue_pio_task(link, 0);
2756 		break;
2757 
2758 	default:
2759 		WARN_ON(1);
2760 		return AC_ERR_SYSTEM;
2761 	}
2762 
2763 	return 0;
2764 }
2765 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2766 
2767 /**
2768  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2769  *	@ap: Port on which interrupt arrived (possibly...)
2770  *	@qc: Taskfile currently active in engine
2771  *
2772  *	Handle port interrupt for given queued command.
2773  *
2774  *	LOCKING:
2775  *	spin_lock_irqsave(host lock)
2776  *
2777  *	RETURNS:
2778  *	One if interrupt was handled, zero if not (shared irq).
2779  */
2780 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2781 {
2782 	struct ata_eh_info *ehi = &ap->link.eh_info;
2783 	u8 host_stat = 0;
2784 	bool bmdma_stopped = false;
2785 	unsigned int handled;
2786 
2787 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2788 		/* check status of DMA engine */
2789 		host_stat = ap->ops->bmdma_status(ap);
2790 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2791 
2792 		/* if it's not our irq... */
2793 		if (!(host_stat & ATA_DMA_INTR))
2794 			return ata_sff_idle_irq(ap);
2795 
2796 		/* before we do anything else, clear DMA-Start bit */
2797 		ap->ops->bmdma_stop(qc);
2798 		bmdma_stopped = true;
2799 
2800 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2801 			/* error when transferring data to/from memory */
2802 			qc->err_mask |= AC_ERR_HOST_BUS;
2803 			ap->hsm_task_state = HSM_ST_ERR;
2804 		}
2805 	}
2806 
2807 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2808 
2809 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2810 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2811 
2812 	return handled;
2813 }
2814 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2815 
2816 /**
2817  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2818  *	@irq: irq line (unused)
2819  *	@dev_instance: pointer to our ata_host information structure
2820  *
2821  *	Default interrupt handler for PCI IDE devices.  Calls
2822  *	ata_bmdma_port_intr() for each port that is not disabled.
2823  *
2824  *	LOCKING:
2825  *	Obtains host lock during operation.
2826  *
2827  *	RETURNS:
2828  *	IRQ_NONE or IRQ_HANDLED.
2829  */
2830 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2831 {
2832 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2833 }
2834 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2835 
2836 /**
2837  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2838  *	@ap: port to handle error for
2839  *
2840  *	Stock error handler for BMDMA controller.  It can handle both
2841  *	PATA and SATA controllers.  Most BMDMA controllers should be
2842  *	able to use this EH as-is or with some added handling before
2843  *	and after.
2844  *
2845  *	LOCKING:
2846  *	Kernel thread context (may sleep)
2847  */
2848 void ata_bmdma_error_handler(struct ata_port *ap)
2849 {
2850 	struct ata_queued_cmd *qc;
2851 	unsigned long flags;
2852 	bool thaw = false;
2853 
2854 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2855 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2856 		qc = NULL;
2857 
2858 	/* reset PIO HSM and stop DMA engine */
2859 	spin_lock_irqsave(ap->lock, flags);
2860 
2861 	if (qc && ata_is_dma(qc->tf.protocol)) {
2862 		u8 host_stat;
2863 
2864 		host_stat = ap->ops->bmdma_status(ap);
2865 
2866 		/* BMDMA controllers indicate host bus error by
2867 		 * setting DMA_ERR bit and timing out.  As it wasn't
2868 		 * really a timeout event, adjust error mask and
2869 		 * cancel frozen state.
2870 		 */
2871 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2872 			qc->err_mask = AC_ERR_HOST_BUS;
2873 			thaw = true;
2874 		}
2875 
2876 		ap->ops->bmdma_stop(qc);
2877 
2878 		/* if we're gonna thaw, make sure IRQ is clear */
2879 		if (thaw) {
2880 			ap->ops->sff_check_status(ap);
2881 			if (ap->ops->sff_irq_clear)
2882 				ap->ops->sff_irq_clear(ap);
2883 		}
2884 	}
2885 
2886 	spin_unlock_irqrestore(ap->lock, flags);
2887 
2888 	if (thaw)
2889 		ata_eh_thaw_port(ap);
2890 
2891 	ata_sff_error_handler(ap);
2892 }
2893 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2894 
2895 /**
2896  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2897  *	@qc: internal command to clean up
2898  *
2899  *	LOCKING:
2900  *	Kernel thread context (may sleep)
2901  */
2902 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2903 {
2904 	struct ata_port *ap = qc->ap;
2905 	unsigned long flags;
2906 
2907 	if (ata_is_dma(qc->tf.protocol)) {
2908 		spin_lock_irqsave(ap->lock, flags);
2909 		ap->ops->bmdma_stop(qc);
2910 		spin_unlock_irqrestore(ap->lock, flags);
2911 	}
2912 }
2913 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2914 
2915 /**
2916  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2917  *	@ap: Port associated with this ATA transaction.
2918  *
2919  *	Clear interrupt and error flags in DMA status register.
2920  *
2921  *	May be used as the irq_clear() entry in ata_port_operations.
2922  *
2923  *	LOCKING:
2924  *	spin_lock_irqsave(host lock)
2925  */
2926 void ata_bmdma_irq_clear(struct ata_port *ap)
2927 {
2928 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2929 
2930 	if (!mmio)
2931 		return;
2932 
2933 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2934 }
2935 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2936 
2937 /**
2938  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2939  *	@qc: Info associated with this ATA transaction.
2940  *
2941  *	LOCKING:
2942  *	spin_lock_irqsave(host lock)
2943  */
2944 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2945 {
2946 	struct ata_port *ap = qc->ap;
2947 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2948 	u8 dmactl;
2949 
2950 	/* load PRD table addr. */
2951 	mb();	/* make sure PRD table writes are visible to controller */
2952 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2953 
2954 	/* specify data direction, triple-check start bit is clear */
2955 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2956 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2957 	if (!rw)
2958 		dmactl |= ATA_DMA_WR;
2959 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2960 
2961 	/* issue r/w command */
2962 	ap->ops->sff_exec_command(ap, &qc->tf);
2963 }
2964 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2965 
2966 /**
2967  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2968  *	@qc: Info associated with this ATA transaction.
2969  *
2970  *	LOCKING:
2971  *	spin_lock_irqsave(host lock)
2972  */
2973 void ata_bmdma_start(struct ata_queued_cmd *qc)
2974 {
2975 	struct ata_port *ap = qc->ap;
2976 	u8 dmactl;
2977 
2978 	/* start host DMA transaction */
2979 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2980 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2981 
2982 	/* Strictly, one may wish to issue an ioread8() here, to
2983 	 * flush the mmio write.  However, control also passes
2984 	 * to the hardware at this point, and it will interrupt
2985 	 * us when we are to resume control.  So, in effect,
2986 	 * we don't care when the mmio write flushes.
2987 	 * Further, a read of the DMA status register _immediately_
2988 	 * following the write may not be what certain flaky hardware
2989 	 * is expected, so I think it is best to not add a readb()
2990 	 * without first all the MMIO ATA cards/mobos.
2991 	 * Or maybe I'm just being paranoid.
2992 	 *
2993 	 * FIXME: The posting of this write means I/O starts are
2994 	 * unnecessarily delayed for MMIO
2995 	 */
2996 }
2997 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2998 
2999 /**
3000  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3001  *	@qc: Command we are ending DMA for
3002  *
3003  *	Clears the ATA_DMA_START flag in the dma control register
3004  *
3005  *	May be used as the bmdma_stop() entry in ata_port_operations.
3006  *
3007  *	LOCKING:
3008  *	spin_lock_irqsave(host lock)
3009  */
3010 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3011 {
3012 	struct ata_port *ap = qc->ap;
3013 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3014 
3015 	/* clear start/stop bit */
3016 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3017 		 mmio + ATA_DMA_CMD);
3018 
3019 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3020 	ata_sff_dma_pause(ap);
3021 }
3022 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3023 
3024 /**
3025  *	ata_bmdma_status - Read PCI IDE BMDMA status
3026  *	@ap: Port associated with this ATA transaction.
3027  *
3028  *	Read and return BMDMA status register.
3029  *
3030  *	May be used as the bmdma_status() entry in ata_port_operations.
3031  *
3032  *	LOCKING:
3033  *	spin_lock_irqsave(host lock)
3034  */
3035 u8 ata_bmdma_status(struct ata_port *ap)
3036 {
3037 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3038 }
3039 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3040 
3041 
3042 /**
3043  *	ata_bmdma_port_start - Set port up for bmdma.
3044  *	@ap: Port to initialize
3045  *
3046  *	Called just after data structures for each port are
3047  *	initialized.  Allocates space for PRD table.
3048  *
3049  *	May be used as the port_start() entry in ata_port_operations.
3050  *
3051  *	LOCKING:
3052  *	Inherited from caller.
3053  */
3054 int ata_bmdma_port_start(struct ata_port *ap)
3055 {
3056 	if (ap->mwdma_mask || ap->udma_mask) {
3057 		ap->bmdma_prd =
3058 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3059 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3060 		if (!ap->bmdma_prd)
3061 			return -ENOMEM;
3062 	}
3063 
3064 	return 0;
3065 }
3066 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3067 
3068 /**
3069  *	ata_bmdma_port_start32 - Set port up for dma.
3070  *	@ap: Port to initialize
3071  *
3072  *	Called just after data structures for each port are
3073  *	initialized.  Enables 32bit PIO and allocates space for PRD
3074  *	table.
3075  *
3076  *	May be used as the port_start() entry in ata_port_operations for
3077  *	devices that are capable of 32bit PIO.
3078  *
3079  *	LOCKING:
3080  *	Inherited from caller.
3081  */
3082 int ata_bmdma_port_start32(struct ata_port *ap)
3083 {
3084 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3085 	return ata_bmdma_port_start(ap);
3086 }
3087 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3088 
3089 #ifdef CONFIG_PCI
3090 
3091 /**
3092  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3093  *	@pdev: PCI device
3094  *
3095  *	Some PCI ATA devices report simplex mode but in fact can be told to
3096  *	enter non simplex mode. This implements the necessary logic to
3097  *	perform the task on such devices. Calling it on other devices will
3098  *	have -undefined- behaviour.
3099  */
3100 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3101 {
3102 	unsigned long bmdma = pci_resource_start(pdev, 4);
3103 	u8 simplex;
3104 
3105 	if (bmdma == 0)
3106 		return -ENOENT;
3107 
3108 	simplex = inb(bmdma + 0x02);
3109 	outb(simplex & 0x60, bmdma + 0x02);
3110 	simplex = inb(bmdma + 0x02);
3111 	if (simplex & 0x80)
3112 		return -EOPNOTSUPP;
3113 	return 0;
3114 }
3115 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3116 
3117 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3118 {
3119 	int i;
3120 
3121 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3122 
3123 	for (i = 0; i < 2; i++) {
3124 		host->ports[i]->mwdma_mask = 0;
3125 		host->ports[i]->udma_mask = 0;
3126 	}
3127 }
3128 
3129 /**
3130  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3131  *	@host: target ATA host
3132  *
3133  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3134  *
3135  *	LOCKING:
3136  *	Inherited from calling layer (may sleep).
3137  */
3138 void ata_pci_bmdma_init(struct ata_host *host)
3139 {
3140 	struct device *gdev = host->dev;
3141 	struct pci_dev *pdev = to_pci_dev(gdev);
3142 	int i, rc;
3143 
3144 	/* No BAR4 allocation: No DMA */
3145 	if (pci_resource_start(pdev, 4) == 0) {
3146 		ata_bmdma_nodma(host, "BAR4 is zero");
3147 		return;
3148 	}
3149 
3150 	/*
3151 	 * Some controllers require BMDMA region to be initialized
3152 	 * even if DMA is not in use to clear IRQ status via
3153 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3154 	 * regardless of dma masks.
3155 	 */
3156 	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3157 	if (rc)
3158 		ata_bmdma_nodma(host, "failed to set dma mask");
3159 	if (!rc) {
3160 		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3161 		if (rc)
3162 			ata_bmdma_nodma(host,
3163 					"failed to set consistent dma mask");
3164 	}
3165 
3166 	/* request and iomap DMA region */
3167 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3168 	if (rc) {
3169 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3170 		return;
3171 	}
3172 	host->iomap = pcim_iomap_table(pdev);
3173 
3174 	for (i = 0; i < 2; i++) {
3175 		struct ata_port *ap = host->ports[i];
3176 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3177 
3178 		if (ata_port_is_dummy(ap))
3179 			continue;
3180 
3181 		ap->ioaddr.bmdma_addr = bmdma;
3182 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3183 		    (ioread8(bmdma + 2) & 0x80))
3184 			host->flags |= ATA_HOST_SIMPLEX;
3185 
3186 		ata_port_desc(ap, "bmdma 0x%llx",
3187 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3188 	}
3189 }
3190 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3191 
3192 /**
3193  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3194  *	@pdev: target PCI device
3195  *	@ppi: array of port_info, must be enough for two ports
3196  *	@r_host: out argument for the initialized ATA host
3197  *
3198  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3199  *	resources and initialize it accordingly in one go.
3200  *
3201  *	LOCKING:
3202  *	Inherited from calling layer (may sleep).
3203  *
3204  *	RETURNS:
3205  *	0 on success, -errno otherwise.
3206  */
3207 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3208 			       const struct ata_port_info * const * ppi,
3209 			       struct ata_host **r_host)
3210 {
3211 	int rc;
3212 
3213 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3214 	if (rc)
3215 		return rc;
3216 
3217 	ata_pci_bmdma_init(*r_host);
3218 	return 0;
3219 }
3220 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3221 
3222 /**
3223  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3224  *	@pdev: Controller to be initialized
3225  *	@ppi: array of port_info, must be enough for two ports
3226  *	@sht: scsi_host_template to use when registering the host
3227  *	@host_priv: host private_data
3228  *	@hflags: host flags
3229  *
3230  *	This function is similar to ata_pci_sff_init_one() but also
3231  *	takes care of BMDMA initialization.
3232  *
3233  *	LOCKING:
3234  *	Inherited from PCI layer (may sleep).
3235  *
3236  *	RETURNS:
3237  *	Zero on success, negative on errno-based value on error.
3238  */
3239 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3240 			   const struct ata_port_info * const * ppi,
3241 			   struct scsi_host_template *sht, void *host_priv,
3242 			   int hflags)
3243 {
3244 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3245 }
3246 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3247 
3248 #endif /* CONFIG_PCI */
3249 #endif /* CONFIG_ATA_BMDMA */
3250 
3251 /**
3252  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3253  *	@ap: Port to initialize
3254  *
3255  *	Called on port allocation to initialize SFF/BMDMA specific
3256  *	fields.
3257  *
3258  *	LOCKING:
3259  *	None.
3260  */
3261 void ata_sff_port_init(struct ata_port *ap)
3262 {
3263 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3264 	ap->ctl = ATA_DEVCTL_OBS;
3265 	ap->last_ctl = 0xFF;
3266 }
3267 
3268 int __init ata_sff_init(void)
3269 {
3270 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3271 	if (!ata_sff_wq)
3272 		return -ENOMEM;
3273 
3274 	return 0;
3275 }
3276 
3277 void ata_sff_exit(void)
3278 {
3279 	destroy_workqueue(ata_sff_wq);
3280 }
3281