xref: /openbmc/linux/drivers/ata/libata-sff.c (revision c0e297dc)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41 
42 #include "libata.h"
43 
44 static struct workqueue_struct *ata_sff_wq;
45 
46 const struct ata_port_operations ata_sff_port_ops = {
47 	.inherits		= &ata_base_port_ops,
48 
49 	.qc_prep		= ata_noop_qc_prep,
50 	.qc_issue		= ata_sff_qc_issue,
51 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
52 
53 	.freeze			= ata_sff_freeze,
54 	.thaw			= ata_sff_thaw,
55 	.prereset		= ata_sff_prereset,
56 	.softreset		= ata_sff_softreset,
57 	.hardreset		= sata_sff_hardreset,
58 	.postreset		= ata_sff_postreset,
59 	.error_handler		= ata_sff_error_handler,
60 
61 	.sff_dev_select		= ata_sff_dev_select,
62 	.sff_check_status	= ata_sff_check_status,
63 	.sff_tf_load		= ata_sff_tf_load,
64 	.sff_tf_read		= ata_sff_tf_read,
65 	.sff_exec_command	= ata_sff_exec_command,
66 	.sff_data_xfer		= ata_sff_data_xfer,
67 	.sff_drain_fifo		= ata_sff_drain_fifo,
68 
69 	.lost_interrupt		= ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72 
73 /**
74  *	ata_sff_check_status - Read device status reg & clear interrupt
75  *	@ap: port where the device is
76  *
77  *	Reads ATA taskfile status register for currently-selected device
78  *	and return its value. This also clears pending interrupts
79  *      from this device
80  *
81  *	LOCKING:
82  *	Inherited from caller.
83  */
84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 	return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89 
90 /**
91  *	ata_sff_altstatus - Read device alternate status reg
92  *	@ap: port where the device is
93  *
94  *	Reads ATA taskfile alternate status register for
95  *	currently-selected device and return its value.
96  *
97  *	Note: may NOT be used as the check_altstatus() entry in
98  *	ata_port_operations.
99  *
100  *	LOCKING:
101  *	Inherited from caller.
102  */
103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 	if (ap->ops->sff_check_altstatus)
106 		return ap->ops->sff_check_altstatus(ap);
107 
108 	return ioread8(ap->ioaddr.altstatus_addr);
109 }
110 
111 /**
112  *	ata_sff_irq_status - Check if the device is busy
113  *	@ap: port where the device is
114  *
115  *	Determine if the port is currently busy. Uses altstatus
116  *	if available in order to avoid clearing shared IRQ status
117  *	when finding an IRQ source. Non ctl capable devices don't
118  *	share interrupt lines fortunately for us.
119  *
120  *	LOCKING:
121  *	Inherited from caller.
122  */
123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 	u8 status;
126 
127 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 		status = ata_sff_altstatus(ap);
129 		/* Not us: We are busy */
130 		if (status & ATA_BUSY)
131 			return status;
132 	}
133 	/* Clear INTRQ latch */
134 	status = ap->ops->sff_check_status(ap);
135 	return status;
136 }
137 
138 /**
139  *	ata_sff_sync - Flush writes
140  *	@ap: Port to wait for.
141  *
142  *	CAUTION:
143  *	If we have an mmio device with no ctl and no altstatus
144  *	method this will fail. No such devices are known to exist.
145  *
146  *	LOCKING:
147  *	Inherited from caller.
148  */
149 
150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 	if (ap->ops->sff_check_altstatus)
153 		ap->ops->sff_check_altstatus(ap);
154 	else if (ap->ioaddr.altstatus_addr)
155 		ioread8(ap->ioaddr.altstatus_addr);
156 }
157 
158 /**
159  *	ata_sff_pause		-	Flush writes and wait 400nS
160  *	@ap: Port to pause for.
161  *
162  *	CAUTION:
163  *	If we have an mmio device with no ctl and no altstatus
164  *	method this will fail. No such devices are known to exist.
165  *
166  *	LOCKING:
167  *	Inherited from caller.
168  */
169 
170 void ata_sff_pause(struct ata_port *ap)
171 {
172 	ata_sff_sync(ap);
173 	ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176 
177 /**
178  *	ata_sff_dma_pause	-	Pause before commencing DMA
179  *	@ap: Port to pause for.
180  *
181  *	Perform I/O fencing and ensure sufficient cycle delays occur
182  *	for the HDMA1:0 transition
183  */
184 
185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 		/* An altstatus read will cause the needed delay without
189 		   messing up the IRQ status */
190 		ata_sff_altstatus(ap);
191 		return;
192 	}
193 	/* There are no DMA controllers without ctl. BUG here to ensure
194 	   we never violate the HDMA1:0 transition timing and risk
195 	   corruption. */
196 	BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199 
200 /**
201  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
202  *	@ap: port containing status register to be polled
203  *	@tmout_pat: impatience timeout in msecs
204  *	@tmout: overall timeout in msecs
205  *
206  *	Sleep until ATA Status register bit BSY clears,
207  *	or a timeout occurs.
208  *
209  *	LOCKING:
210  *	Kernel thread context (may sleep).
211  *
212  *	RETURNS:
213  *	0 on success, -errno otherwise.
214  */
215 int ata_sff_busy_sleep(struct ata_port *ap,
216 		       unsigned long tmout_pat, unsigned long tmout)
217 {
218 	unsigned long timer_start, timeout;
219 	u8 status;
220 
221 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 	timer_start = jiffies;
223 	timeout = ata_deadline(timer_start, tmout_pat);
224 	while (status != 0xff && (status & ATA_BUSY) &&
225 	       time_before(jiffies, timeout)) {
226 		ata_msleep(ap, 50);
227 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 	}
229 
230 	if (status != 0xff && (status & ATA_BUSY))
231 		ata_port_warn(ap,
232 			      "port is slow to respond, please be patient (Status 0x%x)\n",
233 			      status);
234 
235 	timeout = ata_deadline(timer_start, tmout);
236 	while (status != 0xff && (status & ATA_BUSY) &&
237 	       time_before(jiffies, timeout)) {
238 		ata_msleep(ap, 50);
239 		status = ap->ops->sff_check_status(ap);
240 	}
241 
242 	if (status == 0xff)
243 		return -ENODEV;
244 
245 	if (status & ATA_BUSY) {
246 		ata_port_err(ap,
247 			     "port failed to respond (%lu secs, Status 0x%x)\n",
248 			     DIV_ROUND_UP(tmout, 1000), status);
249 		return -EBUSY;
250 	}
251 
252 	return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255 
256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 	u8 status = link->ap->ops->sff_check_status(link->ap);
259 
260 	return ata_check_ready(status);
261 }
262 
263 /**
264  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
265  *	@link: SFF link to wait ready status for
266  *	@deadline: deadline jiffies for the operation
267  *
268  *	Sleep until ATA Status register bit BSY clears, or timeout
269  *	occurs.
270  *
271  *	LOCKING:
272  *	Kernel thread context (may sleep).
273  *
274  *	RETURNS:
275  *	0 on success, -errno otherwise.
276  */
277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282 
283 /**
284  *	ata_sff_set_devctl - Write device control reg
285  *	@ap: port where the device is
286  *	@ctl: value to write
287  *
288  *	Writes ATA taskfile device control register.
289  *
290  *	Note: may NOT be used as the sff_set_devctl() entry in
291  *	ata_port_operations.
292  *
293  *	LOCKING:
294  *	Inherited from caller.
295  */
296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 	if (ap->ops->sff_set_devctl)
299 		ap->ops->sff_set_devctl(ap, ctl);
300 	else
301 		iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303 
304 /**
305  *	ata_sff_dev_select - Select device 0/1 on ATA bus
306  *	@ap: ATA channel to manipulate
307  *	@device: ATA device (numbered from zero) to select
308  *
309  *	Use the method defined in the ATA specification to
310  *	make either device 0, or device 1, active on the
311  *	ATA channel.  Works with both PIO and MMIO.
312  *
313  *	May be used as the dev_select() entry in ata_port_operations.
314  *
315  *	LOCKING:
316  *	caller.
317  */
318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 	u8 tmp;
321 
322 	if (device == 0)
323 		tmp = ATA_DEVICE_OBS;
324 	else
325 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
326 
327 	iowrite8(tmp, ap->ioaddr.device_addr);
328 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331 
332 /**
333  *	ata_dev_select - Select device 0/1 on ATA bus
334  *	@ap: ATA channel to manipulate
335  *	@device: ATA device (numbered from zero) to select
336  *	@wait: non-zero to wait for Status register BSY bit to clear
337  *	@can_sleep: non-zero if context allows sleeping
338  *
339  *	Use the method defined in the ATA specification to
340  *	make either device 0, or device 1, active on the
341  *	ATA channel.
342  *
343  *	This is a high-level version of ata_sff_dev_select(), which
344  *	additionally provides the services of inserting the proper
345  *	pauses and status polling, where needed.
346  *
347  *	LOCKING:
348  *	caller.
349  */
350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 			   unsigned int wait, unsigned int can_sleep)
352 {
353 	if (ata_msg_probe(ap))
354 		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 			      device, wait);
356 
357 	if (wait)
358 		ata_wait_idle(ap);
359 
360 	ap->ops->sff_dev_select(ap, device);
361 
362 	if (wait) {
363 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 			ata_msleep(ap, 150);
365 		ata_wait_idle(ap);
366 	}
367 }
368 
369 /**
370  *	ata_sff_irq_on - Enable interrupts on a port.
371  *	@ap: Port on which interrupts are enabled.
372  *
373  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
374  *	wait for idle, clear any pending interrupts.
375  *
376  *	Note: may NOT be used as the sff_irq_on() entry in
377  *	ata_port_operations.
378  *
379  *	LOCKING:
380  *	Inherited from caller.
381  */
382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 	struct ata_ioports *ioaddr = &ap->ioaddr;
385 
386 	if (ap->ops->sff_irq_on) {
387 		ap->ops->sff_irq_on(ap);
388 		return;
389 	}
390 
391 	ap->ctl &= ~ATA_NIEN;
392 	ap->last_ctl = ap->ctl;
393 
394 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 		ata_sff_set_devctl(ap, ap->ctl);
396 	ata_wait_idle(ap);
397 
398 	if (ap->ops->sff_irq_clear)
399 		ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402 
403 /**
404  *	ata_sff_tf_load - send taskfile registers to host controller
405  *	@ap: Port to which output is sent
406  *	@tf: ATA taskfile register set
407  *
408  *	Outputs ATA taskfile to standard ATA host controller.
409  *
410  *	LOCKING:
411  *	Inherited from caller.
412  */
413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 	struct ata_ioports *ioaddr = &ap->ioaddr;
416 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417 
418 	if (tf->ctl != ap->last_ctl) {
419 		if (ioaddr->ctl_addr)
420 			iowrite8(tf->ctl, ioaddr->ctl_addr);
421 		ap->last_ctl = tf->ctl;
422 		ata_wait_idle(ap);
423 	}
424 
425 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 		WARN_ON_ONCE(!ioaddr->ctl_addr);
427 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 			tf->hob_feature,
434 			tf->hob_nsect,
435 			tf->hob_lbal,
436 			tf->hob_lbam,
437 			tf->hob_lbah);
438 	}
439 
440 	if (is_addr) {
441 		iowrite8(tf->feature, ioaddr->feature_addr);
442 		iowrite8(tf->nsect, ioaddr->nsect_addr);
443 		iowrite8(tf->lbal, ioaddr->lbal_addr);
444 		iowrite8(tf->lbam, ioaddr->lbam_addr);
445 		iowrite8(tf->lbah, ioaddr->lbah_addr);
446 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 			tf->feature,
448 			tf->nsect,
449 			tf->lbal,
450 			tf->lbam,
451 			tf->lbah);
452 	}
453 
454 	if (tf->flags & ATA_TFLAG_DEVICE) {
455 		iowrite8(tf->device, ioaddr->device_addr);
456 		VPRINTK("device 0x%X\n", tf->device);
457 	}
458 
459 	ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462 
463 /**
464  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
465  *	@ap: Port from which input is read
466  *	@tf: ATA taskfile register set for storing input
467  *
468  *	Reads ATA taskfile registers for currently-selected device
469  *	into @tf. Assumes the device has a fully SFF compliant task file
470  *	layout and behaviour. If you device does not (eg has a different
471  *	status method) then you will need to provide a replacement tf_read
472  *
473  *	LOCKING:
474  *	Inherited from caller.
475  */
476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 	struct ata_ioports *ioaddr = &ap->ioaddr;
479 
480 	tf->command = ata_sff_check_status(ap);
481 	tf->feature = ioread8(ioaddr->error_addr);
482 	tf->nsect = ioread8(ioaddr->nsect_addr);
483 	tf->lbal = ioread8(ioaddr->lbal_addr);
484 	tf->lbam = ioread8(ioaddr->lbam_addr);
485 	tf->lbah = ioread8(ioaddr->lbah_addr);
486 	tf->device = ioread8(ioaddr->device_addr);
487 
488 	if (tf->flags & ATA_TFLAG_LBA48) {
489 		if (likely(ioaddr->ctl_addr)) {
490 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 			tf->hob_feature = ioread8(ioaddr->error_addr);
492 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 			iowrite8(tf->ctl, ioaddr->ctl_addr);
497 			ap->last_ctl = tf->ctl;
498 		} else
499 			WARN_ON_ONCE(1);
500 	}
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503 
504 /**
505  *	ata_sff_exec_command - issue ATA command to host controller
506  *	@ap: port to which command is being issued
507  *	@tf: ATA taskfile register set
508  *
509  *	Issues ATA command, with proper synchronization with interrupt
510  *	handler / other threads.
511  *
512  *	LOCKING:
513  *	spin_lock_irqsave(host lock)
514  */
515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518 
519 	iowrite8(tf->command, ap->ioaddr.command_addr);
520 	ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523 
524 /**
525  *	ata_tf_to_host - issue ATA taskfile to host controller
526  *	@ap: port to which command is being issued
527  *	@tf: ATA taskfile register set
528  *
529  *	Issues ATA taskfile register set to ATA host controller,
530  *	with proper synchronization with interrupt handler and
531  *	other threads.
532  *
533  *	LOCKING:
534  *	spin_lock_irqsave(host lock)
535  */
536 static inline void ata_tf_to_host(struct ata_port *ap,
537 				  const struct ata_taskfile *tf)
538 {
539 	ap->ops->sff_tf_load(ap, tf);
540 	ap->ops->sff_exec_command(ap, tf);
541 }
542 
543 /**
544  *	ata_sff_data_xfer - Transfer data by PIO
545  *	@dev: device to target
546  *	@buf: data buffer
547  *	@buflen: buffer length
548  *	@rw: read/write
549  *
550  *	Transfer data from/to the device data register by PIO.
551  *
552  *	LOCKING:
553  *	Inherited from caller.
554  *
555  *	RETURNS:
556  *	Bytes consumed.
557  */
558 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
559 			       unsigned int buflen, int rw)
560 {
561 	struct ata_port *ap = dev->link->ap;
562 	void __iomem *data_addr = ap->ioaddr.data_addr;
563 	unsigned int words = buflen >> 1;
564 
565 	/* Transfer multiple of 2 bytes */
566 	if (rw == READ)
567 		ioread16_rep(data_addr, buf, words);
568 	else
569 		iowrite16_rep(data_addr, buf, words);
570 
571 	/* Transfer trailing byte, if any. */
572 	if (unlikely(buflen & 0x01)) {
573 		unsigned char pad[2] = { };
574 
575 		/* Point buf to the tail of buffer */
576 		buf += buflen - 1;
577 
578 		/*
579 		 * Use io*16_rep() accessors here as well to avoid pointlessly
580 		 * swapping bytes to and from on the big endian machines...
581 		 */
582 		if (rw == READ) {
583 			ioread16_rep(data_addr, pad, 1);
584 			*buf = pad[0];
585 		} else {
586 			pad[0] = *buf;
587 			iowrite16_rep(data_addr, pad, 1);
588 		}
589 		words++;
590 	}
591 
592 	return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595 
596 /**
597  *	ata_sff_data_xfer32 - Transfer data by PIO
598  *	@dev: device to target
599  *	@buf: data buffer
600  *	@buflen: buffer length
601  *	@rw: read/write
602  *
603  *	Transfer data from/to the device data register by PIO using 32bit
604  *	I/O operations.
605  *
606  *	LOCKING:
607  *	Inherited from caller.
608  *
609  *	RETURNS:
610  *	Bytes consumed.
611  */
612 
613 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
614 			       unsigned int buflen, int rw)
615 {
616 	struct ata_port *ap = dev->link->ap;
617 	void __iomem *data_addr = ap->ioaddr.data_addr;
618 	unsigned int words = buflen >> 2;
619 	int slop = buflen & 3;
620 
621 	if (!(ap->pflags & ATA_PFLAG_PIO32))
622 		return ata_sff_data_xfer(dev, buf, buflen, rw);
623 
624 	/* Transfer multiple of 4 bytes */
625 	if (rw == READ)
626 		ioread32_rep(data_addr, buf, words);
627 	else
628 		iowrite32_rep(data_addr, buf, words);
629 
630 	/* Transfer trailing bytes, if any */
631 	if (unlikely(slop)) {
632 		unsigned char pad[4] = { };
633 
634 		/* Point buf to the tail of buffer */
635 		buf += buflen - slop;
636 
637 		/*
638 		 * Use io*_rep() accessors here as well to avoid pointlessly
639 		 * swapping bytes to and from on the big endian machines...
640 		 */
641 		if (rw == READ) {
642 			if (slop < 3)
643 				ioread16_rep(data_addr, pad, 1);
644 			else
645 				ioread32_rep(data_addr, pad, 1);
646 			memcpy(buf, pad, slop);
647 		} else {
648 			memcpy(pad, buf, slop);
649 			if (slop < 3)
650 				iowrite16_rep(data_addr, pad, 1);
651 			else
652 				iowrite32_rep(data_addr, pad, 1);
653 		}
654 	}
655 	return (buflen + 1) & ~1;
656 }
657 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
658 
659 /**
660  *	ata_sff_data_xfer_noirq - Transfer data by PIO
661  *	@dev: device to target
662  *	@buf: data buffer
663  *	@buflen: buffer length
664  *	@rw: read/write
665  *
666  *	Transfer data from/to the device data register by PIO. Do the
667  *	transfer with interrupts disabled.
668  *
669  *	LOCKING:
670  *	Inherited from caller.
671  *
672  *	RETURNS:
673  *	Bytes consumed.
674  */
675 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
676 				     unsigned int buflen, int rw)
677 {
678 	unsigned long flags;
679 	unsigned int consumed;
680 
681 	local_irq_save(flags);
682 	consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
683 	local_irq_restore(flags);
684 
685 	return consumed;
686 }
687 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
688 
689 /**
690  *	ata_pio_sector - Transfer a sector of data.
691  *	@qc: Command on going
692  *
693  *	Transfer qc->sect_size bytes of data from/to the ATA device.
694  *
695  *	LOCKING:
696  *	Inherited from caller.
697  */
698 static void ata_pio_sector(struct ata_queued_cmd *qc)
699 {
700 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
701 	struct ata_port *ap = qc->ap;
702 	struct page *page;
703 	unsigned int offset;
704 	unsigned char *buf;
705 
706 	if (qc->curbytes == qc->nbytes - qc->sect_size)
707 		ap->hsm_task_state = HSM_ST_LAST;
708 
709 	page = sg_page(qc->cursg);
710 	offset = qc->cursg->offset + qc->cursg_ofs;
711 
712 	/* get the current page and offset */
713 	page = nth_page(page, (offset >> PAGE_SHIFT));
714 	offset %= PAGE_SIZE;
715 
716 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
717 
718 	if (PageHighMem(page)) {
719 		unsigned long flags;
720 
721 		/* FIXME: use a bounce buffer */
722 		local_irq_save(flags);
723 		buf = kmap_atomic(page);
724 
725 		/* do the actual data transfer */
726 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
727 				       do_write);
728 
729 		kunmap_atomic(buf);
730 		local_irq_restore(flags);
731 	} else {
732 		buf = page_address(page);
733 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
734 				       do_write);
735 	}
736 
737 	if (!do_write && !PageSlab(page))
738 		flush_dcache_page(page);
739 
740 	qc->curbytes += qc->sect_size;
741 	qc->cursg_ofs += qc->sect_size;
742 
743 	if (qc->cursg_ofs == qc->cursg->length) {
744 		qc->cursg = sg_next(qc->cursg);
745 		qc->cursg_ofs = 0;
746 	}
747 }
748 
749 /**
750  *	ata_pio_sectors - Transfer one or many sectors.
751  *	@qc: Command on going
752  *
753  *	Transfer one or many sectors of data from/to the
754  *	ATA device for the DRQ request.
755  *
756  *	LOCKING:
757  *	Inherited from caller.
758  */
759 static void ata_pio_sectors(struct ata_queued_cmd *qc)
760 {
761 	if (is_multi_taskfile(&qc->tf)) {
762 		/* READ/WRITE MULTIPLE */
763 		unsigned int nsect;
764 
765 		WARN_ON_ONCE(qc->dev->multi_count == 0);
766 
767 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
768 			    qc->dev->multi_count);
769 		while (nsect--)
770 			ata_pio_sector(qc);
771 	} else
772 		ata_pio_sector(qc);
773 
774 	ata_sff_sync(qc->ap); /* flush */
775 }
776 
777 /**
778  *	atapi_send_cdb - Write CDB bytes to hardware
779  *	@ap: Port to which ATAPI device is attached.
780  *	@qc: Taskfile currently active
781  *
782  *	When device has indicated its readiness to accept
783  *	a CDB, this function is called.  Send the CDB.
784  *
785  *	LOCKING:
786  *	caller.
787  */
788 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
789 {
790 	/* send SCSI cdb */
791 	DPRINTK("send cdb\n");
792 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
793 
794 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
795 	ata_sff_sync(ap);
796 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
797 	   or is bmdma_start guaranteed to do it ? */
798 	switch (qc->tf.protocol) {
799 	case ATAPI_PROT_PIO:
800 		ap->hsm_task_state = HSM_ST;
801 		break;
802 	case ATAPI_PROT_NODATA:
803 		ap->hsm_task_state = HSM_ST_LAST;
804 		break;
805 #ifdef CONFIG_ATA_BMDMA
806 	case ATAPI_PROT_DMA:
807 		ap->hsm_task_state = HSM_ST_LAST;
808 		/* initiate bmdma */
809 		ap->ops->bmdma_start(qc);
810 		break;
811 #endif /* CONFIG_ATA_BMDMA */
812 	default:
813 		BUG();
814 	}
815 }
816 
817 /**
818  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
819  *	@qc: Command on going
820  *	@bytes: number of bytes
821  *
822  *	Transfer Transfer data from/to the ATAPI device.
823  *
824  *	LOCKING:
825  *	Inherited from caller.
826  *
827  */
828 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
829 {
830 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
831 	struct ata_port *ap = qc->ap;
832 	struct ata_device *dev = qc->dev;
833 	struct ata_eh_info *ehi = &dev->link->eh_info;
834 	struct scatterlist *sg;
835 	struct page *page;
836 	unsigned char *buf;
837 	unsigned int offset, count, consumed;
838 
839 next_sg:
840 	sg = qc->cursg;
841 	if (unlikely(!sg)) {
842 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
843 				  "buf=%u cur=%u bytes=%u",
844 				  qc->nbytes, qc->curbytes, bytes);
845 		return -1;
846 	}
847 
848 	page = sg_page(sg);
849 	offset = sg->offset + qc->cursg_ofs;
850 
851 	/* get the current page and offset */
852 	page = nth_page(page, (offset >> PAGE_SHIFT));
853 	offset %= PAGE_SIZE;
854 
855 	/* don't overrun current sg */
856 	count = min(sg->length - qc->cursg_ofs, bytes);
857 
858 	/* don't cross page boundaries */
859 	count = min(count, (unsigned int)PAGE_SIZE - offset);
860 
861 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
862 
863 	if (PageHighMem(page)) {
864 		unsigned long flags;
865 
866 		/* FIXME: use bounce buffer */
867 		local_irq_save(flags);
868 		buf = kmap_atomic(page);
869 
870 		/* do the actual data transfer */
871 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
872 								count, rw);
873 
874 		kunmap_atomic(buf);
875 		local_irq_restore(flags);
876 	} else {
877 		buf = page_address(page);
878 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
879 								count, rw);
880 	}
881 
882 	bytes -= min(bytes, consumed);
883 	qc->curbytes += count;
884 	qc->cursg_ofs += count;
885 
886 	if (qc->cursg_ofs == sg->length) {
887 		qc->cursg = sg_next(qc->cursg);
888 		qc->cursg_ofs = 0;
889 	}
890 
891 	/*
892 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
893 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
894 	 * check correctly as it doesn't know if it is the last request being
895 	 * made. Somebody should implement a proper sanity check.
896 	 */
897 	if (bytes)
898 		goto next_sg;
899 	return 0;
900 }
901 
902 /**
903  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
904  *	@qc: Command on going
905  *
906  *	Transfer Transfer data from/to the ATAPI device.
907  *
908  *	LOCKING:
909  *	Inherited from caller.
910  */
911 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
912 {
913 	struct ata_port *ap = qc->ap;
914 	struct ata_device *dev = qc->dev;
915 	struct ata_eh_info *ehi = &dev->link->eh_info;
916 	unsigned int ireason, bc_lo, bc_hi, bytes;
917 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
918 
919 	/* Abuse qc->result_tf for temp storage of intermediate TF
920 	 * here to save some kernel stack usage.
921 	 * For normal completion, qc->result_tf is not relevant. For
922 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
923 	 * So, the correctness of qc->result_tf is not affected.
924 	 */
925 	ap->ops->sff_tf_read(ap, &qc->result_tf);
926 	ireason = qc->result_tf.nsect;
927 	bc_lo = qc->result_tf.lbam;
928 	bc_hi = qc->result_tf.lbah;
929 	bytes = (bc_hi << 8) | bc_lo;
930 
931 	/* shall be cleared to zero, indicating xfer of data */
932 	if (unlikely(ireason & ATAPI_COD))
933 		goto atapi_check;
934 
935 	/* make sure transfer direction matches expected */
936 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
937 	if (unlikely(do_write != i_write))
938 		goto atapi_check;
939 
940 	if (unlikely(!bytes))
941 		goto atapi_check;
942 
943 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
944 
945 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
946 		goto err_out;
947 	ata_sff_sync(ap); /* flush */
948 
949 	return;
950 
951  atapi_check:
952 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
953 			  ireason, bytes);
954  err_out:
955 	qc->err_mask |= AC_ERR_HSM;
956 	ap->hsm_task_state = HSM_ST_ERR;
957 }
958 
959 /**
960  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
961  *	@ap: the target ata_port
962  *	@qc: qc on going
963  *
964  *	RETURNS:
965  *	1 if ok in workqueue, 0 otherwise.
966  */
967 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
968 						struct ata_queued_cmd *qc)
969 {
970 	if (qc->tf.flags & ATA_TFLAG_POLLING)
971 		return 1;
972 
973 	if (ap->hsm_task_state == HSM_ST_FIRST) {
974 		if (qc->tf.protocol == ATA_PROT_PIO &&
975 		   (qc->tf.flags & ATA_TFLAG_WRITE))
976 		    return 1;
977 
978 		if (ata_is_atapi(qc->tf.protocol) &&
979 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
980 			return 1;
981 	}
982 
983 	return 0;
984 }
985 
986 /**
987  *	ata_hsm_qc_complete - finish a qc running on standard HSM
988  *	@qc: Command to complete
989  *	@in_wq: 1 if called from workqueue, 0 otherwise
990  *
991  *	Finish @qc which is running on standard HSM.
992  *
993  *	LOCKING:
994  *	If @in_wq is zero, spin_lock_irqsave(host lock).
995  *	Otherwise, none on entry and grabs host lock.
996  */
997 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
998 {
999 	struct ata_port *ap = qc->ap;
1000 	unsigned long flags;
1001 
1002 	if (ap->ops->error_handler) {
1003 		if (in_wq) {
1004 			spin_lock_irqsave(ap->lock, flags);
1005 
1006 			/* EH might have kicked in while host lock is
1007 			 * released.
1008 			 */
1009 			qc = ata_qc_from_tag(ap, qc->tag);
1010 			if (qc) {
1011 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1012 					ata_sff_irq_on(ap);
1013 					ata_qc_complete(qc);
1014 				} else
1015 					ata_port_freeze(ap);
1016 			}
1017 
1018 			spin_unlock_irqrestore(ap->lock, flags);
1019 		} else {
1020 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1021 				ata_qc_complete(qc);
1022 			else
1023 				ata_port_freeze(ap);
1024 		}
1025 	} else {
1026 		if (in_wq) {
1027 			spin_lock_irqsave(ap->lock, flags);
1028 			ata_sff_irq_on(ap);
1029 			ata_qc_complete(qc);
1030 			spin_unlock_irqrestore(ap->lock, flags);
1031 		} else
1032 			ata_qc_complete(qc);
1033 	}
1034 }
1035 
1036 /**
1037  *	ata_sff_hsm_move - move the HSM to the next state.
1038  *	@ap: the target ata_port
1039  *	@qc: qc on going
1040  *	@status: current device status
1041  *	@in_wq: 1 if called from workqueue, 0 otherwise
1042  *
1043  *	RETURNS:
1044  *	1 when poll next status needed, 0 otherwise.
1045  */
1046 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1047 		     u8 status, int in_wq)
1048 {
1049 	struct ata_link *link = qc->dev->link;
1050 	struct ata_eh_info *ehi = &link->eh_info;
1051 	unsigned long flags = 0;
1052 	int poll_next;
1053 
1054 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1055 
1056 	/* Make sure ata_sff_qc_issue() does not throw things
1057 	 * like DMA polling into the workqueue. Notice that
1058 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1059 	 */
1060 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1061 
1062 fsm_start:
1063 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1064 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1065 
1066 	switch (ap->hsm_task_state) {
1067 	case HSM_ST_FIRST:
1068 		/* Send first data block or PACKET CDB */
1069 
1070 		/* If polling, we will stay in the work queue after
1071 		 * sending the data. Otherwise, interrupt handler
1072 		 * takes over after sending the data.
1073 		 */
1074 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1075 
1076 		/* check device status */
1077 		if (unlikely((status & ATA_DRQ) == 0)) {
1078 			/* handle BSY=0, DRQ=0 as error */
1079 			if (likely(status & (ATA_ERR | ATA_DF)))
1080 				/* device stops HSM for abort/error */
1081 				qc->err_mask |= AC_ERR_DEV;
1082 			else {
1083 				/* HSM violation. Let EH handle this */
1084 				ata_ehi_push_desc(ehi,
1085 					"ST_FIRST: !(DRQ|ERR|DF)");
1086 				qc->err_mask |= AC_ERR_HSM;
1087 			}
1088 
1089 			ap->hsm_task_state = HSM_ST_ERR;
1090 			goto fsm_start;
1091 		}
1092 
1093 		/* Device should not ask for data transfer (DRQ=1)
1094 		 * when it finds something wrong.
1095 		 * We ignore DRQ here and stop the HSM by
1096 		 * changing hsm_task_state to HSM_ST_ERR and
1097 		 * let the EH abort the command or reset the device.
1098 		 */
1099 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1100 			/* Some ATAPI tape drives forget to clear the ERR bit
1101 			 * when doing the next command (mostly request sense).
1102 			 * We ignore ERR here to workaround and proceed sending
1103 			 * the CDB.
1104 			 */
1105 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1106 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1107 					"DRQ=1 with device error, "
1108 					"dev_stat 0x%X", status);
1109 				qc->err_mask |= AC_ERR_HSM;
1110 				ap->hsm_task_state = HSM_ST_ERR;
1111 				goto fsm_start;
1112 			}
1113 		}
1114 
1115 		/* Send the CDB (atapi) or the first data block (ata pio out).
1116 		 * During the state transition, interrupt handler shouldn't
1117 		 * be invoked before the data transfer is complete and
1118 		 * hsm_task_state is changed. Hence, the following locking.
1119 		 */
1120 		if (in_wq)
1121 			spin_lock_irqsave(ap->lock, flags);
1122 
1123 		if (qc->tf.protocol == ATA_PROT_PIO) {
1124 			/* PIO data out protocol.
1125 			 * send first data block.
1126 			 */
1127 
1128 			/* ata_pio_sectors() might change the state
1129 			 * to HSM_ST_LAST. so, the state is changed here
1130 			 * before ata_pio_sectors().
1131 			 */
1132 			ap->hsm_task_state = HSM_ST;
1133 			ata_pio_sectors(qc);
1134 		} else
1135 			/* send CDB */
1136 			atapi_send_cdb(ap, qc);
1137 
1138 		if (in_wq)
1139 			spin_unlock_irqrestore(ap->lock, flags);
1140 
1141 		/* if polling, ata_sff_pio_task() handles the rest.
1142 		 * otherwise, interrupt handler takes over from here.
1143 		 */
1144 		break;
1145 
1146 	case HSM_ST:
1147 		/* complete command or read/write the data register */
1148 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1149 			/* ATAPI PIO protocol */
1150 			if ((status & ATA_DRQ) == 0) {
1151 				/* No more data to transfer or device error.
1152 				 * Device error will be tagged in HSM_ST_LAST.
1153 				 */
1154 				ap->hsm_task_state = HSM_ST_LAST;
1155 				goto fsm_start;
1156 			}
1157 
1158 			/* Device should not ask for data transfer (DRQ=1)
1159 			 * when it finds something wrong.
1160 			 * We ignore DRQ here and stop the HSM by
1161 			 * changing hsm_task_state to HSM_ST_ERR and
1162 			 * let the EH abort the command or reset the device.
1163 			 */
1164 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1165 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1166 					"DRQ=1 with device error, "
1167 					"dev_stat 0x%X", status);
1168 				qc->err_mask |= AC_ERR_HSM;
1169 				ap->hsm_task_state = HSM_ST_ERR;
1170 				goto fsm_start;
1171 			}
1172 
1173 			atapi_pio_bytes(qc);
1174 
1175 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1176 				/* bad ireason reported by device */
1177 				goto fsm_start;
1178 
1179 		} else {
1180 			/* ATA PIO protocol */
1181 			if (unlikely((status & ATA_DRQ) == 0)) {
1182 				/* handle BSY=0, DRQ=0 as error */
1183 				if (likely(status & (ATA_ERR | ATA_DF))) {
1184 					/* device stops HSM for abort/error */
1185 					qc->err_mask |= AC_ERR_DEV;
1186 
1187 					/* If diagnostic failed and this is
1188 					 * IDENTIFY, it's likely a phantom
1189 					 * device.  Mark hint.
1190 					 */
1191 					if (qc->dev->horkage &
1192 					    ATA_HORKAGE_DIAGNOSTIC)
1193 						qc->err_mask |=
1194 							AC_ERR_NODEV_HINT;
1195 				} else {
1196 					/* HSM violation. Let EH handle this.
1197 					 * Phantom devices also trigger this
1198 					 * condition.  Mark hint.
1199 					 */
1200 					ata_ehi_push_desc(ehi, "ST-ATA: "
1201 						"DRQ=0 without device error, "
1202 						"dev_stat 0x%X", status);
1203 					qc->err_mask |= AC_ERR_HSM |
1204 							AC_ERR_NODEV_HINT;
1205 				}
1206 
1207 				ap->hsm_task_state = HSM_ST_ERR;
1208 				goto fsm_start;
1209 			}
1210 
1211 			/* For PIO reads, some devices may ask for
1212 			 * data transfer (DRQ=1) alone with ERR=1.
1213 			 * We respect DRQ here and transfer one
1214 			 * block of junk data before changing the
1215 			 * hsm_task_state to HSM_ST_ERR.
1216 			 *
1217 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1218 			 * sense since the data block has been
1219 			 * transferred to the device.
1220 			 */
1221 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1222 				/* data might be corrputed */
1223 				qc->err_mask |= AC_ERR_DEV;
1224 
1225 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1226 					ata_pio_sectors(qc);
1227 					status = ata_wait_idle(ap);
1228 				}
1229 
1230 				if (status & (ATA_BUSY | ATA_DRQ)) {
1231 					ata_ehi_push_desc(ehi, "ST-ATA: "
1232 						"BUSY|DRQ persists on ERR|DF, "
1233 						"dev_stat 0x%X", status);
1234 					qc->err_mask |= AC_ERR_HSM;
1235 				}
1236 
1237 				/* There are oddball controllers with
1238 				 * status register stuck at 0x7f and
1239 				 * lbal/m/h at zero which makes it
1240 				 * pass all other presence detection
1241 				 * mechanisms we have.  Set NODEV_HINT
1242 				 * for it.  Kernel bz#7241.
1243 				 */
1244 				if (status == 0x7f)
1245 					qc->err_mask |= AC_ERR_NODEV_HINT;
1246 
1247 				/* ata_pio_sectors() might change the
1248 				 * state to HSM_ST_LAST. so, the state
1249 				 * is changed after ata_pio_sectors().
1250 				 */
1251 				ap->hsm_task_state = HSM_ST_ERR;
1252 				goto fsm_start;
1253 			}
1254 
1255 			ata_pio_sectors(qc);
1256 
1257 			if (ap->hsm_task_state == HSM_ST_LAST &&
1258 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1259 				/* all data read */
1260 				status = ata_wait_idle(ap);
1261 				goto fsm_start;
1262 			}
1263 		}
1264 
1265 		poll_next = 1;
1266 		break;
1267 
1268 	case HSM_ST_LAST:
1269 		if (unlikely(!ata_ok(status))) {
1270 			qc->err_mask |= __ac_err_mask(status);
1271 			ap->hsm_task_state = HSM_ST_ERR;
1272 			goto fsm_start;
1273 		}
1274 
1275 		/* no more data to transfer */
1276 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1277 			ap->print_id, qc->dev->devno, status);
1278 
1279 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1280 
1281 		ap->hsm_task_state = HSM_ST_IDLE;
1282 
1283 		/* complete taskfile transaction */
1284 		ata_hsm_qc_complete(qc, in_wq);
1285 
1286 		poll_next = 0;
1287 		break;
1288 
1289 	case HSM_ST_ERR:
1290 		ap->hsm_task_state = HSM_ST_IDLE;
1291 
1292 		/* complete taskfile transaction */
1293 		ata_hsm_qc_complete(qc, in_wq);
1294 
1295 		poll_next = 0;
1296 		break;
1297 	default:
1298 		poll_next = 0;
1299 		BUG();
1300 	}
1301 
1302 	return poll_next;
1303 }
1304 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1305 
1306 void ata_sff_queue_work(struct work_struct *work)
1307 {
1308 	queue_work(ata_sff_wq, work);
1309 }
1310 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1311 
1312 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1313 {
1314 	queue_delayed_work(ata_sff_wq, dwork, delay);
1315 }
1316 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1317 
1318 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1319 {
1320 	struct ata_port *ap = link->ap;
1321 
1322 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1323 		(ap->sff_pio_task_link != link));
1324 	ap->sff_pio_task_link = link;
1325 
1326 	/* may fail if ata_sff_flush_pio_task() in progress */
1327 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1328 }
1329 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1330 
1331 void ata_sff_flush_pio_task(struct ata_port *ap)
1332 {
1333 	DPRINTK("ENTER\n");
1334 
1335 	cancel_delayed_work_sync(&ap->sff_pio_task);
1336 
1337 	/*
1338 	 * We wanna reset the HSM state to IDLE.  If we do so without
1339 	 * grabbing the port lock, critical sections protected by it which
1340 	 * expect the HSM state to stay stable may get surprised.  For
1341 	 * example, we may set IDLE in between the time
1342 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1343 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1344 	 */
1345 	spin_lock_irq(ap->lock);
1346 	ap->hsm_task_state = HSM_ST_IDLE;
1347 	spin_unlock_irq(ap->lock);
1348 
1349 	ap->sff_pio_task_link = NULL;
1350 
1351 	if (ata_msg_ctl(ap))
1352 		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1353 }
1354 
1355 static void ata_sff_pio_task(struct work_struct *work)
1356 {
1357 	struct ata_port *ap =
1358 		container_of(work, struct ata_port, sff_pio_task.work);
1359 	struct ata_link *link = ap->sff_pio_task_link;
1360 	struct ata_queued_cmd *qc;
1361 	u8 status;
1362 	int poll_next;
1363 
1364 	BUG_ON(ap->sff_pio_task_link == NULL);
1365 	/* qc can be NULL if timeout occurred */
1366 	qc = ata_qc_from_tag(ap, link->active_tag);
1367 	if (!qc) {
1368 		ap->sff_pio_task_link = NULL;
1369 		return;
1370 	}
1371 
1372 fsm_start:
1373 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1374 
1375 	/*
1376 	 * This is purely heuristic.  This is a fast path.
1377 	 * Sometimes when we enter, BSY will be cleared in
1378 	 * a chk-status or two.  If not, the drive is probably seeking
1379 	 * or something.  Snooze for a couple msecs, then
1380 	 * chk-status again.  If still busy, queue delayed work.
1381 	 */
1382 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1383 	if (status & ATA_BUSY) {
1384 		ata_msleep(ap, 2);
1385 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1386 		if (status & ATA_BUSY) {
1387 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1388 			return;
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * hsm_move() may trigger another command to be processed.
1394 	 * clean the link beforehand.
1395 	 */
1396 	ap->sff_pio_task_link = NULL;
1397 	/* move the HSM */
1398 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1399 
1400 	/* another command or interrupt handler
1401 	 * may be running at this point.
1402 	 */
1403 	if (poll_next)
1404 		goto fsm_start;
1405 }
1406 
1407 /**
1408  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1409  *	@qc: command to issue to device
1410  *
1411  *	This function issues a PIO or NODATA command to a SFF
1412  *	controller.
1413  *
1414  *	LOCKING:
1415  *	spin_lock_irqsave(host lock)
1416  *
1417  *	RETURNS:
1418  *	Zero on success, AC_ERR_* mask on failure
1419  */
1420 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1421 {
1422 	struct ata_port *ap = qc->ap;
1423 	struct ata_link *link = qc->dev->link;
1424 
1425 	/* Use polling pio if the LLD doesn't handle
1426 	 * interrupt driven pio and atapi CDB interrupt.
1427 	 */
1428 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1429 		qc->tf.flags |= ATA_TFLAG_POLLING;
1430 
1431 	/* select the device */
1432 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1433 
1434 	/* start the command */
1435 	switch (qc->tf.protocol) {
1436 	case ATA_PROT_NODATA:
1437 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1438 			ata_qc_set_polling(qc);
1439 
1440 		ata_tf_to_host(ap, &qc->tf);
1441 		ap->hsm_task_state = HSM_ST_LAST;
1442 
1443 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1444 			ata_sff_queue_pio_task(link, 0);
1445 
1446 		break;
1447 
1448 	case ATA_PROT_PIO:
1449 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1450 			ata_qc_set_polling(qc);
1451 
1452 		ata_tf_to_host(ap, &qc->tf);
1453 
1454 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1455 			/* PIO data out protocol */
1456 			ap->hsm_task_state = HSM_ST_FIRST;
1457 			ata_sff_queue_pio_task(link, 0);
1458 
1459 			/* always send first data block using the
1460 			 * ata_sff_pio_task() codepath.
1461 			 */
1462 		} else {
1463 			/* PIO data in protocol */
1464 			ap->hsm_task_state = HSM_ST;
1465 
1466 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1467 				ata_sff_queue_pio_task(link, 0);
1468 
1469 			/* if polling, ata_sff_pio_task() handles the
1470 			 * rest.  otherwise, interrupt handler takes
1471 			 * over from here.
1472 			 */
1473 		}
1474 
1475 		break;
1476 
1477 	case ATAPI_PROT_PIO:
1478 	case ATAPI_PROT_NODATA:
1479 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1480 			ata_qc_set_polling(qc);
1481 
1482 		ata_tf_to_host(ap, &qc->tf);
1483 
1484 		ap->hsm_task_state = HSM_ST_FIRST;
1485 
1486 		/* send cdb by polling if no cdb interrupt */
1487 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1488 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1489 			ata_sff_queue_pio_task(link, 0);
1490 		break;
1491 
1492 	default:
1493 		WARN_ON_ONCE(1);
1494 		return AC_ERR_SYSTEM;
1495 	}
1496 
1497 	return 0;
1498 }
1499 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1500 
1501 /**
1502  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1503  *	@qc: qc to fill result TF for
1504  *
1505  *	@qc is finished and result TF needs to be filled.  Fill it
1506  *	using ->sff_tf_read.
1507  *
1508  *	LOCKING:
1509  *	spin_lock_irqsave(host lock)
1510  *
1511  *	RETURNS:
1512  *	true indicating that result TF is successfully filled.
1513  */
1514 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1515 {
1516 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1517 	return true;
1518 }
1519 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1520 
1521 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1522 {
1523 	ap->stats.idle_irq++;
1524 
1525 #ifdef ATA_IRQ_TRAP
1526 	if ((ap->stats.idle_irq % 1000) == 0) {
1527 		ap->ops->sff_check_status(ap);
1528 		if (ap->ops->sff_irq_clear)
1529 			ap->ops->sff_irq_clear(ap);
1530 		ata_port_warn(ap, "irq trap\n");
1531 		return 1;
1532 	}
1533 #endif
1534 	return 0;	/* irq not handled */
1535 }
1536 
1537 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1538 					struct ata_queued_cmd *qc,
1539 					bool hsmv_on_idle)
1540 {
1541 	u8 status;
1542 
1543 	VPRINTK("ata%u: protocol %d task_state %d\n",
1544 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1545 
1546 	/* Check whether we are expecting interrupt in this state */
1547 	switch (ap->hsm_task_state) {
1548 	case HSM_ST_FIRST:
1549 		/* Some pre-ATAPI-4 devices assert INTRQ
1550 		 * at this state when ready to receive CDB.
1551 		 */
1552 
1553 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1554 		 * The flag was turned on only for atapi devices.  No
1555 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1556 		 */
1557 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1558 			return ata_sff_idle_irq(ap);
1559 		break;
1560 	case HSM_ST_IDLE:
1561 		return ata_sff_idle_irq(ap);
1562 	default:
1563 		break;
1564 	}
1565 
1566 	/* check main status, clearing INTRQ if needed */
1567 	status = ata_sff_irq_status(ap);
1568 	if (status & ATA_BUSY) {
1569 		if (hsmv_on_idle) {
1570 			/* BMDMA engine is already stopped, we're screwed */
1571 			qc->err_mask |= AC_ERR_HSM;
1572 			ap->hsm_task_state = HSM_ST_ERR;
1573 		} else
1574 			return ata_sff_idle_irq(ap);
1575 	}
1576 
1577 	/* clear irq events */
1578 	if (ap->ops->sff_irq_clear)
1579 		ap->ops->sff_irq_clear(ap);
1580 
1581 	ata_sff_hsm_move(ap, qc, status, 0);
1582 
1583 	return 1;	/* irq handled */
1584 }
1585 
1586 /**
1587  *	ata_sff_port_intr - Handle SFF port interrupt
1588  *	@ap: Port on which interrupt arrived (possibly...)
1589  *	@qc: Taskfile currently active in engine
1590  *
1591  *	Handle port interrupt for given queued command.
1592  *
1593  *	LOCKING:
1594  *	spin_lock_irqsave(host lock)
1595  *
1596  *	RETURNS:
1597  *	One if interrupt was handled, zero if not (shared irq).
1598  */
1599 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1600 {
1601 	return __ata_sff_port_intr(ap, qc, false);
1602 }
1603 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1604 
1605 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1606 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1607 {
1608 	struct ata_host *host = dev_instance;
1609 	bool retried = false;
1610 	unsigned int i;
1611 	unsigned int handled, idle, polling;
1612 	unsigned long flags;
1613 
1614 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1615 	spin_lock_irqsave(&host->lock, flags);
1616 
1617 retry:
1618 	handled = idle = polling = 0;
1619 	for (i = 0; i < host->n_ports; i++) {
1620 		struct ata_port *ap = host->ports[i];
1621 		struct ata_queued_cmd *qc;
1622 
1623 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1624 		if (qc) {
1625 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1626 				handled |= port_intr(ap, qc);
1627 			else
1628 				polling |= 1 << i;
1629 		} else
1630 			idle |= 1 << i;
1631 	}
1632 
1633 	/*
1634 	 * If no port was expecting IRQ but the controller is actually
1635 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1636 	 * pending status if available and clear spurious IRQ.
1637 	 */
1638 	if (!handled && !retried) {
1639 		bool retry = false;
1640 
1641 		for (i = 0; i < host->n_ports; i++) {
1642 			struct ata_port *ap = host->ports[i];
1643 
1644 			if (polling & (1 << i))
1645 				continue;
1646 
1647 			if (!ap->ops->sff_irq_check ||
1648 			    !ap->ops->sff_irq_check(ap))
1649 				continue;
1650 
1651 			if (idle & (1 << i)) {
1652 				ap->ops->sff_check_status(ap);
1653 				if (ap->ops->sff_irq_clear)
1654 					ap->ops->sff_irq_clear(ap);
1655 			} else {
1656 				/* clear INTRQ and check if BUSY cleared */
1657 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1658 					retry |= true;
1659 				/*
1660 				 * With command in flight, we can't do
1661 				 * sff_irq_clear() w/o racing with completion.
1662 				 */
1663 			}
1664 		}
1665 
1666 		if (retry) {
1667 			retried = true;
1668 			goto retry;
1669 		}
1670 	}
1671 
1672 	spin_unlock_irqrestore(&host->lock, flags);
1673 
1674 	return IRQ_RETVAL(handled);
1675 }
1676 
1677 /**
1678  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1679  *	@irq: irq line (unused)
1680  *	@dev_instance: pointer to our ata_host information structure
1681  *
1682  *	Default interrupt handler for PCI IDE devices.  Calls
1683  *	ata_sff_port_intr() for each port that is not disabled.
1684  *
1685  *	LOCKING:
1686  *	Obtains host lock during operation.
1687  *
1688  *	RETURNS:
1689  *	IRQ_NONE or IRQ_HANDLED.
1690  */
1691 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1692 {
1693 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1694 }
1695 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1696 
1697 /**
1698  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1699  *	@ap: port that appears to have timed out
1700  *
1701  *	Called from the libata error handlers when the core code suspects
1702  *	an interrupt has been lost. If it has complete anything we can and
1703  *	then return. Interface must support altstatus for this faster
1704  *	recovery to occur.
1705  *
1706  *	Locking:
1707  *	Caller holds host lock
1708  */
1709 
1710 void ata_sff_lost_interrupt(struct ata_port *ap)
1711 {
1712 	u8 status;
1713 	struct ata_queued_cmd *qc;
1714 
1715 	/* Only one outstanding command per SFF channel */
1716 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1717 	/* We cannot lose an interrupt on a non-existent or polled command */
1718 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1719 		return;
1720 	/* See if the controller thinks it is still busy - if so the command
1721 	   isn't a lost IRQ but is still in progress */
1722 	status = ata_sff_altstatus(ap);
1723 	if (status & ATA_BUSY)
1724 		return;
1725 
1726 	/* There was a command running, we are no longer busy and we have
1727 	   no interrupt. */
1728 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1729 								status);
1730 	/* Run the host interrupt logic as if the interrupt had not been
1731 	   lost */
1732 	ata_sff_port_intr(ap, qc);
1733 }
1734 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1735 
1736 /**
1737  *	ata_sff_freeze - Freeze SFF controller port
1738  *	@ap: port to freeze
1739  *
1740  *	Freeze SFF controller port.
1741  *
1742  *	LOCKING:
1743  *	Inherited from caller.
1744  */
1745 void ata_sff_freeze(struct ata_port *ap)
1746 {
1747 	ap->ctl |= ATA_NIEN;
1748 	ap->last_ctl = ap->ctl;
1749 
1750 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1751 		ata_sff_set_devctl(ap, ap->ctl);
1752 
1753 	/* Under certain circumstances, some controllers raise IRQ on
1754 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1755 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1756 	 */
1757 	ap->ops->sff_check_status(ap);
1758 
1759 	if (ap->ops->sff_irq_clear)
1760 		ap->ops->sff_irq_clear(ap);
1761 }
1762 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1763 
1764 /**
1765  *	ata_sff_thaw - Thaw SFF controller port
1766  *	@ap: port to thaw
1767  *
1768  *	Thaw SFF controller port.
1769  *
1770  *	LOCKING:
1771  *	Inherited from caller.
1772  */
1773 void ata_sff_thaw(struct ata_port *ap)
1774 {
1775 	/* clear & re-enable interrupts */
1776 	ap->ops->sff_check_status(ap);
1777 	if (ap->ops->sff_irq_clear)
1778 		ap->ops->sff_irq_clear(ap);
1779 	ata_sff_irq_on(ap);
1780 }
1781 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1782 
1783 /**
1784  *	ata_sff_prereset - prepare SFF link for reset
1785  *	@link: SFF link to be reset
1786  *	@deadline: deadline jiffies for the operation
1787  *
1788  *	SFF link @link is about to be reset.  Initialize it.  It first
1789  *	calls ata_std_prereset() and wait for !BSY if the port is
1790  *	being softreset.
1791  *
1792  *	LOCKING:
1793  *	Kernel thread context (may sleep)
1794  *
1795  *	RETURNS:
1796  *	0 on success, -errno otherwise.
1797  */
1798 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1799 {
1800 	struct ata_eh_context *ehc = &link->eh_context;
1801 	int rc;
1802 
1803 	rc = ata_std_prereset(link, deadline);
1804 	if (rc)
1805 		return rc;
1806 
1807 	/* if we're about to do hardreset, nothing more to do */
1808 	if (ehc->i.action & ATA_EH_HARDRESET)
1809 		return 0;
1810 
1811 	/* wait for !BSY if we don't know that no device is attached */
1812 	if (!ata_link_offline(link)) {
1813 		rc = ata_sff_wait_ready(link, deadline);
1814 		if (rc && rc != -ENODEV) {
1815 			ata_link_warn(link,
1816 				      "device not ready (errno=%d), forcing hardreset\n",
1817 				      rc);
1818 			ehc->i.action |= ATA_EH_HARDRESET;
1819 		}
1820 	}
1821 
1822 	return 0;
1823 }
1824 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1825 
1826 /**
1827  *	ata_devchk - PATA device presence detection
1828  *	@ap: ATA channel to examine
1829  *	@device: Device to examine (starting at zero)
1830  *
1831  *	This technique was originally described in
1832  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1833  *	later found its way into the ATA/ATAPI spec.
1834  *
1835  *	Write a pattern to the ATA shadow registers,
1836  *	and if a device is present, it will respond by
1837  *	correctly storing and echoing back the
1838  *	ATA shadow register contents.
1839  *
1840  *	LOCKING:
1841  *	caller.
1842  */
1843 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1844 {
1845 	struct ata_ioports *ioaddr = &ap->ioaddr;
1846 	u8 nsect, lbal;
1847 
1848 	ap->ops->sff_dev_select(ap, device);
1849 
1850 	iowrite8(0x55, ioaddr->nsect_addr);
1851 	iowrite8(0xaa, ioaddr->lbal_addr);
1852 
1853 	iowrite8(0xaa, ioaddr->nsect_addr);
1854 	iowrite8(0x55, ioaddr->lbal_addr);
1855 
1856 	iowrite8(0x55, ioaddr->nsect_addr);
1857 	iowrite8(0xaa, ioaddr->lbal_addr);
1858 
1859 	nsect = ioread8(ioaddr->nsect_addr);
1860 	lbal = ioread8(ioaddr->lbal_addr);
1861 
1862 	if ((nsect == 0x55) && (lbal == 0xaa))
1863 		return 1;	/* we found a device */
1864 
1865 	return 0;		/* nothing found */
1866 }
1867 
1868 /**
1869  *	ata_sff_dev_classify - Parse returned ATA device signature
1870  *	@dev: ATA device to classify (starting at zero)
1871  *	@present: device seems present
1872  *	@r_err: Value of error register on completion
1873  *
1874  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1875  *	an ATA/ATAPI-defined set of values is placed in the ATA
1876  *	shadow registers, indicating the results of device detection
1877  *	and diagnostics.
1878  *
1879  *	Select the ATA device, and read the values from the ATA shadow
1880  *	registers.  Then parse according to the Error register value,
1881  *	and the spec-defined values examined by ata_dev_classify().
1882  *
1883  *	LOCKING:
1884  *	caller.
1885  *
1886  *	RETURNS:
1887  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1888  */
1889 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1890 				  u8 *r_err)
1891 {
1892 	struct ata_port *ap = dev->link->ap;
1893 	struct ata_taskfile tf;
1894 	unsigned int class;
1895 	u8 err;
1896 
1897 	ap->ops->sff_dev_select(ap, dev->devno);
1898 
1899 	memset(&tf, 0, sizeof(tf));
1900 
1901 	ap->ops->sff_tf_read(ap, &tf);
1902 	err = tf.feature;
1903 	if (r_err)
1904 		*r_err = err;
1905 
1906 	/* see if device passed diags: continue and warn later */
1907 	if (err == 0)
1908 		/* diagnostic fail : do nothing _YET_ */
1909 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1910 	else if (err == 1)
1911 		/* do nothing */ ;
1912 	else if ((dev->devno == 0) && (err == 0x81))
1913 		/* do nothing */ ;
1914 	else
1915 		return ATA_DEV_NONE;
1916 
1917 	/* determine if device is ATA or ATAPI */
1918 	class = ata_dev_classify(&tf);
1919 
1920 	if (class == ATA_DEV_UNKNOWN) {
1921 		/* If the device failed diagnostic, it's likely to
1922 		 * have reported incorrect device signature too.
1923 		 * Assume ATA device if the device seems present but
1924 		 * device signature is invalid with diagnostic
1925 		 * failure.
1926 		 */
1927 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1928 			class = ATA_DEV_ATA;
1929 		else
1930 			class = ATA_DEV_NONE;
1931 	} else if ((class == ATA_DEV_ATA) &&
1932 		   (ap->ops->sff_check_status(ap) == 0))
1933 		class = ATA_DEV_NONE;
1934 
1935 	return class;
1936 }
1937 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1938 
1939 /**
1940  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1941  *	@link: SFF link which is just reset
1942  *	@devmask: mask of present devices
1943  *	@deadline: deadline jiffies for the operation
1944  *
1945  *	Wait devices attached to SFF @link to become ready after
1946  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1947  *	status register too early.
1948  *
1949  *	LOCKING:
1950  *	Kernel thread context (may sleep).
1951  *
1952  *	RETURNS:
1953  *	0 on success, -ENODEV if some or all of devices in @devmask
1954  *	don't seem to exist.  -errno on other errors.
1955  */
1956 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1957 			     unsigned long deadline)
1958 {
1959 	struct ata_port *ap = link->ap;
1960 	struct ata_ioports *ioaddr = &ap->ioaddr;
1961 	unsigned int dev0 = devmask & (1 << 0);
1962 	unsigned int dev1 = devmask & (1 << 1);
1963 	int rc, ret = 0;
1964 
1965 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1966 
1967 	/* always check readiness of the master device */
1968 	rc = ata_sff_wait_ready(link, deadline);
1969 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1970 	 * and TF status is 0xff, bail out on it too.
1971 	 */
1972 	if (rc)
1973 		return rc;
1974 
1975 	/* if device 1 was found in ata_devchk, wait for register
1976 	 * access briefly, then wait for BSY to clear.
1977 	 */
1978 	if (dev1) {
1979 		int i;
1980 
1981 		ap->ops->sff_dev_select(ap, 1);
1982 
1983 		/* Wait for register access.  Some ATAPI devices fail
1984 		 * to set nsect/lbal after reset, so don't waste too
1985 		 * much time on it.  We're gonna wait for !BSY anyway.
1986 		 */
1987 		for (i = 0; i < 2; i++) {
1988 			u8 nsect, lbal;
1989 
1990 			nsect = ioread8(ioaddr->nsect_addr);
1991 			lbal = ioread8(ioaddr->lbal_addr);
1992 			if ((nsect == 1) && (lbal == 1))
1993 				break;
1994 			ata_msleep(ap, 50);	/* give drive a breather */
1995 		}
1996 
1997 		rc = ata_sff_wait_ready(link, deadline);
1998 		if (rc) {
1999 			if (rc != -ENODEV)
2000 				return rc;
2001 			ret = rc;
2002 		}
2003 	}
2004 
2005 	/* is all this really necessary? */
2006 	ap->ops->sff_dev_select(ap, 0);
2007 	if (dev1)
2008 		ap->ops->sff_dev_select(ap, 1);
2009 	if (dev0)
2010 		ap->ops->sff_dev_select(ap, 0);
2011 
2012 	return ret;
2013 }
2014 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2015 
2016 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2017 			     unsigned long deadline)
2018 {
2019 	struct ata_ioports *ioaddr = &ap->ioaddr;
2020 
2021 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2022 
2023 	if (ap->ioaddr.ctl_addr) {
2024 		/* software reset.  causes dev0 to be selected */
2025 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2026 		udelay(20);	/* FIXME: flush */
2027 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2028 		udelay(20);	/* FIXME: flush */
2029 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2030 		ap->last_ctl = ap->ctl;
2031 	}
2032 
2033 	/* wait the port to become ready */
2034 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2035 }
2036 
2037 /**
2038  *	ata_sff_softreset - reset host port via ATA SRST
2039  *	@link: ATA link to reset
2040  *	@classes: resulting classes of attached devices
2041  *	@deadline: deadline jiffies for the operation
2042  *
2043  *	Reset host port using ATA SRST.
2044  *
2045  *	LOCKING:
2046  *	Kernel thread context (may sleep)
2047  *
2048  *	RETURNS:
2049  *	0 on success, -errno otherwise.
2050  */
2051 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2052 		      unsigned long deadline)
2053 {
2054 	struct ata_port *ap = link->ap;
2055 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2056 	unsigned int devmask = 0;
2057 	int rc;
2058 	u8 err;
2059 
2060 	DPRINTK("ENTER\n");
2061 
2062 	/* determine if device 0/1 are present */
2063 	if (ata_devchk(ap, 0))
2064 		devmask |= (1 << 0);
2065 	if (slave_possible && ata_devchk(ap, 1))
2066 		devmask |= (1 << 1);
2067 
2068 	/* select device 0 again */
2069 	ap->ops->sff_dev_select(ap, 0);
2070 
2071 	/* issue bus reset */
2072 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2073 	rc = ata_bus_softreset(ap, devmask, deadline);
2074 	/* if link is occupied, -ENODEV too is an error */
2075 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2076 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2077 		return rc;
2078 	}
2079 
2080 	/* determine by signature whether we have ATA or ATAPI devices */
2081 	classes[0] = ata_sff_dev_classify(&link->device[0],
2082 					  devmask & (1 << 0), &err);
2083 	if (slave_possible && err != 0x81)
2084 		classes[1] = ata_sff_dev_classify(&link->device[1],
2085 						  devmask & (1 << 1), &err);
2086 
2087 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2088 	return 0;
2089 }
2090 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2091 
2092 /**
2093  *	sata_sff_hardreset - reset host port via SATA phy reset
2094  *	@link: link to reset
2095  *	@class: resulting class of attached device
2096  *	@deadline: deadline jiffies for the operation
2097  *
2098  *	SATA phy-reset host port using DET bits of SControl register,
2099  *	wait for !BSY and classify the attached device.
2100  *
2101  *	LOCKING:
2102  *	Kernel thread context (may sleep)
2103  *
2104  *	RETURNS:
2105  *	0 on success, -errno otherwise.
2106  */
2107 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2108 		       unsigned long deadline)
2109 {
2110 	struct ata_eh_context *ehc = &link->eh_context;
2111 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2112 	bool online;
2113 	int rc;
2114 
2115 	rc = sata_link_hardreset(link, timing, deadline, &online,
2116 				 ata_sff_check_ready);
2117 	if (online)
2118 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2119 
2120 	DPRINTK("EXIT, class=%u\n", *class);
2121 	return rc;
2122 }
2123 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2124 
2125 /**
2126  *	ata_sff_postreset - SFF postreset callback
2127  *	@link: the target SFF ata_link
2128  *	@classes: classes of attached devices
2129  *
2130  *	This function is invoked after a successful reset.  It first
2131  *	calls ata_std_postreset() and performs SFF specific postreset
2132  *	processing.
2133  *
2134  *	LOCKING:
2135  *	Kernel thread context (may sleep)
2136  */
2137 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2138 {
2139 	struct ata_port *ap = link->ap;
2140 
2141 	ata_std_postreset(link, classes);
2142 
2143 	/* is double-select really necessary? */
2144 	if (classes[0] != ATA_DEV_NONE)
2145 		ap->ops->sff_dev_select(ap, 1);
2146 	if (classes[1] != ATA_DEV_NONE)
2147 		ap->ops->sff_dev_select(ap, 0);
2148 
2149 	/* bail out if no device is present */
2150 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2151 		DPRINTK("EXIT, no device\n");
2152 		return;
2153 	}
2154 
2155 	/* set up device control */
2156 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2157 		ata_sff_set_devctl(ap, ap->ctl);
2158 		ap->last_ctl = ap->ctl;
2159 	}
2160 }
2161 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2162 
2163 /**
2164  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2165  *	@qc: command
2166  *
2167  *	Drain the FIFO and device of any stuck data following a command
2168  *	failing to complete. In some cases this is necessary before a
2169  *	reset will recover the device.
2170  *
2171  */
2172 
2173 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2174 {
2175 	int count;
2176 	struct ata_port *ap;
2177 
2178 	/* We only need to flush incoming data when a command was running */
2179 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2180 		return;
2181 
2182 	ap = qc->ap;
2183 	/* Drain up to 64K of data before we give up this recovery method */
2184 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2185 						&& count < 65536; count += 2)
2186 		ioread16(ap->ioaddr.data_addr);
2187 
2188 	/* Can become DEBUG later */
2189 	if (count)
2190 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2191 
2192 }
2193 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2194 
2195 /**
2196  *	ata_sff_error_handler - Stock error handler for SFF controller
2197  *	@ap: port to handle error for
2198  *
2199  *	Stock error handler for SFF controller.  It can handle both
2200  *	PATA and SATA controllers.  Many controllers should be able to
2201  *	use this EH as-is or with some added handling before and
2202  *	after.
2203  *
2204  *	LOCKING:
2205  *	Kernel thread context (may sleep)
2206  */
2207 void ata_sff_error_handler(struct ata_port *ap)
2208 {
2209 	ata_reset_fn_t softreset = ap->ops->softreset;
2210 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2211 	struct ata_queued_cmd *qc;
2212 	unsigned long flags;
2213 
2214 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2215 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2216 		qc = NULL;
2217 
2218 	spin_lock_irqsave(ap->lock, flags);
2219 
2220 	/*
2221 	 * We *MUST* do FIFO draining before we issue a reset as
2222 	 * several devices helpfully clear their internal state and
2223 	 * will lock solid if we touch the data port post reset. Pass
2224 	 * qc in case anyone wants to do different PIO/DMA recovery or
2225 	 * has per command fixups
2226 	 */
2227 	if (ap->ops->sff_drain_fifo)
2228 		ap->ops->sff_drain_fifo(qc);
2229 
2230 	spin_unlock_irqrestore(ap->lock, flags);
2231 
2232 	/* ignore built-in hardresets if SCR access is not available */
2233 	if ((hardreset == sata_std_hardreset ||
2234 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2235 		hardreset = NULL;
2236 
2237 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2238 		  ap->ops->postreset);
2239 }
2240 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2241 
2242 /**
2243  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2244  *	@ioaddr: IO address structure to be initialized
2245  *
2246  *	Utility function which initializes data_addr, error_addr,
2247  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2248  *	device_addr, status_addr, and command_addr to standard offsets
2249  *	relative to cmd_addr.
2250  *
2251  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2252  */
2253 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2254 {
2255 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2256 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2257 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2258 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2259 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2260 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2261 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2262 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2263 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2264 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2265 }
2266 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2267 
2268 #ifdef CONFIG_PCI
2269 
2270 static int ata_resources_present(struct pci_dev *pdev, int port)
2271 {
2272 	int i;
2273 
2274 	/* Check the PCI resources for this channel are enabled */
2275 	port = port * 2;
2276 	for (i = 0; i < 2; i++) {
2277 		if (pci_resource_start(pdev, port + i) == 0 ||
2278 		    pci_resource_len(pdev, port + i) == 0)
2279 			return 0;
2280 	}
2281 	return 1;
2282 }
2283 
2284 /**
2285  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2286  *	@host: target ATA host
2287  *
2288  *	Acquire native PCI ATA resources for @host and initialize the
2289  *	first two ports of @host accordingly.  Ports marked dummy are
2290  *	skipped and allocation failure makes the port dummy.
2291  *
2292  *	Note that native PCI resources are valid even for legacy hosts
2293  *	as we fix up pdev resources array early in boot, so this
2294  *	function can be used for both native and legacy SFF hosts.
2295  *
2296  *	LOCKING:
2297  *	Inherited from calling layer (may sleep).
2298  *
2299  *	RETURNS:
2300  *	0 if at least one port is initialized, -ENODEV if no port is
2301  *	available.
2302  */
2303 int ata_pci_sff_init_host(struct ata_host *host)
2304 {
2305 	struct device *gdev = host->dev;
2306 	struct pci_dev *pdev = to_pci_dev(gdev);
2307 	unsigned int mask = 0;
2308 	int i, rc;
2309 
2310 	/* request, iomap BARs and init port addresses accordingly */
2311 	for (i = 0; i < 2; i++) {
2312 		struct ata_port *ap = host->ports[i];
2313 		int base = i * 2;
2314 		void __iomem * const *iomap;
2315 
2316 		if (ata_port_is_dummy(ap))
2317 			continue;
2318 
2319 		/* Discard disabled ports.  Some controllers show
2320 		 * their unused channels this way.  Disabled ports are
2321 		 * made dummy.
2322 		 */
2323 		if (!ata_resources_present(pdev, i)) {
2324 			ap->ops = &ata_dummy_port_ops;
2325 			continue;
2326 		}
2327 
2328 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2329 					dev_driver_string(gdev));
2330 		if (rc) {
2331 			dev_warn(gdev,
2332 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2333 				 i, rc);
2334 			if (rc == -EBUSY)
2335 				pcim_pin_device(pdev);
2336 			ap->ops = &ata_dummy_port_ops;
2337 			continue;
2338 		}
2339 		host->iomap = iomap = pcim_iomap_table(pdev);
2340 
2341 		ap->ioaddr.cmd_addr = iomap[base];
2342 		ap->ioaddr.altstatus_addr =
2343 		ap->ioaddr.ctl_addr = (void __iomem *)
2344 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2345 		ata_sff_std_ports(&ap->ioaddr);
2346 
2347 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2348 			(unsigned long long)pci_resource_start(pdev, base),
2349 			(unsigned long long)pci_resource_start(pdev, base + 1));
2350 
2351 		mask |= 1 << i;
2352 	}
2353 
2354 	if (!mask) {
2355 		dev_err(gdev, "no available native port\n");
2356 		return -ENODEV;
2357 	}
2358 
2359 	return 0;
2360 }
2361 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2362 
2363 /**
2364  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2365  *	@pdev: target PCI device
2366  *	@ppi: array of port_info, must be enough for two ports
2367  *	@r_host: out argument for the initialized ATA host
2368  *
2369  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2370  *	all PCI resources and initialize it accordingly in one go.
2371  *
2372  *	LOCKING:
2373  *	Inherited from calling layer (may sleep).
2374  *
2375  *	RETURNS:
2376  *	0 on success, -errno otherwise.
2377  */
2378 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2379 			     const struct ata_port_info * const *ppi,
2380 			     struct ata_host **r_host)
2381 {
2382 	struct ata_host *host;
2383 	int rc;
2384 
2385 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2386 		return -ENOMEM;
2387 
2388 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2389 	if (!host) {
2390 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2391 		rc = -ENOMEM;
2392 		goto err_out;
2393 	}
2394 
2395 	rc = ata_pci_sff_init_host(host);
2396 	if (rc)
2397 		goto err_out;
2398 
2399 	devres_remove_group(&pdev->dev, NULL);
2400 	*r_host = host;
2401 	return 0;
2402 
2403 err_out:
2404 	devres_release_group(&pdev->dev, NULL);
2405 	return rc;
2406 }
2407 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2408 
2409 /**
2410  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2411  *	@host: target SFF ATA host
2412  *	@irq_handler: irq_handler used when requesting IRQ(s)
2413  *	@sht: scsi_host_template to use when registering the host
2414  *
2415  *	This is the counterpart of ata_host_activate() for SFF ATA
2416  *	hosts.  This separate helper is necessary because SFF hosts
2417  *	use two separate interrupts in legacy mode.
2418  *
2419  *	LOCKING:
2420  *	Inherited from calling layer (may sleep).
2421  *
2422  *	RETURNS:
2423  *	0 on success, -errno otherwise.
2424  */
2425 int ata_pci_sff_activate_host(struct ata_host *host,
2426 			      irq_handler_t irq_handler,
2427 			      struct scsi_host_template *sht)
2428 {
2429 	struct device *dev = host->dev;
2430 	struct pci_dev *pdev = to_pci_dev(dev);
2431 	const char *drv_name = dev_driver_string(host->dev);
2432 	int legacy_mode = 0, rc;
2433 
2434 	rc = ata_host_start(host);
2435 	if (rc)
2436 		return rc;
2437 
2438 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2439 		u8 tmp8, mask;
2440 
2441 		/* TODO: What if one channel is in native mode ... */
2442 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2443 		mask = (1 << 2) | (1 << 0);
2444 		if ((tmp8 & mask) != mask)
2445 			legacy_mode = 1;
2446 	}
2447 
2448 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2449 		return -ENOMEM;
2450 
2451 	if (!legacy_mode && pdev->irq) {
2452 		int i;
2453 
2454 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2455 				      IRQF_SHARED, drv_name, host);
2456 		if (rc)
2457 			goto out;
2458 
2459 		for (i = 0; i < 2; i++) {
2460 			if (ata_port_is_dummy(host->ports[i]))
2461 				continue;
2462 			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2463 		}
2464 	} else if (legacy_mode) {
2465 		if (!ata_port_is_dummy(host->ports[0])) {
2466 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2467 					      irq_handler, IRQF_SHARED,
2468 					      drv_name, host);
2469 			if (rc)
2470 				goto out;
2471 
2472 			ata_port_desc(host->ports[0], "irq %d",
2473 				      ATA_PRIMARY_IRQ(pdev));
2474 		}
2475 
2476 		if (!ata_port_is_dummy(host->ports[1])) {
2477 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2478 					      irq_handler, IRQF_SHARED,
2479 					      drv_name, host);
2480 			if (rc)
2481 				goto out;
2482 
2483 			ata_port_desc(host->ports[1], "irq %d",
2484 				      ATA_SECONDARY_IRQ(pdev));
2485 		}
2486 	}
2487 
2488 	rc = ata_host_register(host, sht);
2489 out:
2490 	if (rc == 0)
2491 		devres_remove_group(dev, NULL);
2492 	else
2493 		devres_release_group(dev, NULL);
2494 
2495 	return rc;
2496 }
2497 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2498 
2499 static const struct ata_port_info *ata_sff_find_valid_pi(
2500 					const struct ata_port_info * const *ppi)
2501 {
2502 	int i;
2503 
2504 	/* look up the first valid port_info */
2505 	for (i = 0; i < 2 && ppi[i]; i++)
2506 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2507 			return ppi[i];
2508 
2509 	return NULL;
2510 }
2511 
2512 static int ata_pci_init_one(struct pci_dev *pdev,
2513 		const struct ata_port_info * const *ppi,
2514 		struct scsi_host_template *sht, void *host_priv,
2515 		int hflags, bool bmdma)
2516 {
2517 	struct device *dev = &pdev->dev;
2518 	const struct ata_port_info *pi;
2519 	struct ata_host *host = NULL;
2520 	int rc;
2521 
2522 	DPRINTK("ENTER\n");
2523 
2524 	pi = ata_sff_find_valid_pi(ppi);
2525 	if (!pi) {
2526 		dev_err(&pdev->dev, "no valid port_info specified\n");
2527 		return -EINVAL;
2528 	}
2529 
2530 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2531 		return -ENOMEM;
2532 
2533 	rc = pcim_enable_device(pdev);
2534 	if (rc)
2535 		goto out;
2536 
2537 #ifdef CONFIG_ATA_BMDMA
2538 	if (bmdma)
2539 		/* prepare and activate BMDMA host */
2540 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2541 	else
2542 #endif
2543 		/* prepare and activate SFF host */
2544 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2545 	if (rc)
2546 		goto out;
2547 	host->private_data = host_priv;
2548 	host->flags |= hflags;
2549 
2550 #ifdef CONFIG_ATA_BMDMA
2551 	if (bmdma) {
2552 		pci_set_master(pdev);
2553 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2554 	} else
2555 #endif
2556 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2557 out:
2558 	if (rc == 0)
2559 		devres_remove_group(&pdev->dev, NULL);
2560 	else
2561 		devres_release_group(&pdev->dev, NULL);
2562 
2563 	return rc;
2564 }
2565 
2566 /**
2567  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2568  *	@pdev: Controller to be initialized
2569  *	@ppi: array of port_info, must be enough for two ports
2570  *	@sht: scsi_host_template to use when registering the host
2571  *	@host_priv: host private_data
2572  *	@hflag: host flags
2573  *
2574  *	This is a helper function which can be called from a driver's
2575  *	xxx_init_one() probe function if the hardware uses traditional
2576  *	IDE taskfile registers and is PIO only.
2577  *
2578  *	ASSUMPTION:
2579  *	Nobody makes a single channel controller that appears solely as
2580  *	the secondary legacy port on PCI.
2581  *
2582  *	LOCKING:
2583  *	Inherited from PCI layer (may sleep).
2584  *
2585  *	RETURNS:
2586  *	Zero on success, negative on errno-based value on error.
2587  */
2588 int ata_pci_sff_init_one(struct pci_dev *pdev,
2589 		 const struct ata_port_info * const *ppi,
2590 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2591 {
2592 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2593 }
2594 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2595 
2596 #endif /* CONFIG_PCI */
2597 
2598 /*
2599  *	BMDMA support
2600  */
2601 
2602 #ifdef CONFIG_ATA_BMDMA
2603 
2604 const struct ata_port_operations ata_bmdma_port_ops = {
2605 	.inherits		= &ata_sff_port_ops,
2606 
2607 	.error_handler		= ata_bmdma_error_handler,
2608 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2609 
2610 	.qc_prep		= ata_bmdma_qc_prep,
2611 	.qc_issue		= ata_bmdma_qc_issue,
2612 
2613 	.sff_irq_clear		= ata_bmdma_irq_clear,
2614 	.bmdma_setup		= ata_bmdma_setup,
2615 	.bmdma_start		= ata_bmdma_start,
2616 	.bmdma_stop		= ata_bmdma_stop,
2617 	.bmdma_status		= ata_bmdma_status,
2618 
2619 	.port_start		= ata_bmdma_port_start,
2620 };
2621 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2622 
2623 const struct ata_port_operations ata_bmdma32_port_ops = {
2624 	.inherits		= &ata_bmdma_port_ops,
2625 
2626 	.sff_data_xfer		= ata_sff_data_xfer32,
2627 	.port_start		= ata_bmdma_port_start32,
2628 };
2629 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2630 
2631 /**
2632  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2633  *	@qc: Metadata associated with taskfile to be transferred
2634  *
2635  *	Fill PCI IDE PRD (scatter-gather) table with segments
2636  *	associated with the current disk command.
2637  *
2638  *	LOCKING:
2639  *	spin_lock_irqsave(host lock)
2640  *
2641  */
2642 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2643 {
2644 	struct ata_port *ap = qc->ap;
2645 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2646 	struct scatterlist *sg;
2647 	unsigned int si, pi;
2648 
2649 	pi = 0;
2650 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2651 		u32 addr, offset;
2652 		u32 sg_len, len;
2653 
2654 		/* determine if physical DMA addr spans 64K boundary.
2655 		 * Note h/w doesn't support 64-bit, so we unconditionally
2656 		 * truncate dma_addr_t to u32.
2657 		 */
2658 		addr = (u32) sg_dma_address(sg);
2659 		sg_len = sg_dma_len(sg);
2660 
2661 		while (sg_len) {
2662 			offset = addr & 0xffff;
2663 			len = sg_len;
2664 			if ((offset + sg_len) > 0x10000)
2665 				len = 0x10000 - offset;
2666 
2667 			prd[pi].addr = cpu_to_le32(addr);
2668 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2669 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2670 
2671 			pi++;
2672 			sg_len -= len;
2673 			addr += len;
2674 		}
2675 	}
2676 
2677 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2678 }
2679 
2680 /**
2681  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2682  *	@qc: Metadata associated with taskfile to be transferred
2683  *
2684  *	Fill PCI IDE PRD (scatter-gather) table with segments
2685  *	associated with the current disk command. Perform the fill
2686  *	so that we avoid writing any length 64K records for
2687  *	controllers that don't follow the spec.
2688  *
2689  *	LOCKING:
2690  *	spin_lock_irqsave(host lock)
2691  *
2692  */
2693 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2694 {
2695 	struct ata_port *ap = qc->ap;
2696 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2697 	struct scatterlist *sg;
2698 	unsigned int si, pi;
2699 
2700 	pi = 0;
2701 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2702 		u32 addr, offset;
2703 		u32 sg_len, len, blen;
2704 
2705 		/* determine if physical DMA addr spans 64K boundary.
2706 		 * Note h/w doesn't support 64-bit, so we unconditionally
2707 		 * truncate dma_addr_t to u32.
2708 		 */
2709 		addr = (u32) sg_dma_address(sg);
2710 		sg_len = sg_dma_len(sg);
2711 
2712 		while (sg_len) {
2713 			offset = addr & 0xffff;
2714 			len = sg_len;
2715 			if ((offset + sg_len) > 0x10000)
2716 				len = 0x10000 - offset;
2717 
2718 			blen = len & 0xffff;
2719 			prd[pi].addr = cpu_to_le32(addr);
2720 			if (blen == 0) {
2721 				/* Some PATA chipsets like the CS5530 can't
2722 				   cope with 0x0000 meaning 64K as the spec
2723 				   says */
2724 				prd[pi].flags_len = cpu_to_le32(0x8000);
2725 				blen = 0x8000;
2726 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2727 			}
2728 			prd[pi].flags_len = cpu_to_le32(blen);
2729 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2730 
2731 			pi++;
2732 			sg_len -= len;
2733 			addr += len;
2734 		}
2735 	}
2736 
2737 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2738 }
2739 
2740 /**
2741  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2742  *	@qc: Metadata associated with taskfile to be prepared
2743  *
2744  *	Prepare ATA taskfile for submission.
2745  *
2746  *	LOCKING:
2747  *	spin_lock_irqsave(host lock)
2748  */
2749 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2750 {
2751 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2752 		return;
2753 
2754 	ata_bmdma_fill_sg(qc);
2755 }
2756 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2757 
2758 /**
2759  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2760  *	@qc: Metadata associated with taskfile to be prepared
2761  *
2762  *	Prepare ATA taskfile for submission.
2763  *
2764  *	LOCKING:
2765  *	spin_lock_irqsave(host lock)
2766  */
2767 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2768 {
2769 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2770 		return;
2771 
2772 	ata_bmdma_fill_sg_dumb(qc);
2773 }
2774 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2775 
2776 /**
2777  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2778  *	@qc: command to issue to device
2779  *
2780  *	This function issues a PIO, NODATA or DMA command to a
2781  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2782  *	ata_sff_qc_issue().
2783  *
2784  *	LOCKING:
2785  *	spin_lock_irqsave(host lock)
2786  *
2787  *	RETURNS:
2788  *	Zero on success, AC_ERR_* mask on failure
2789  */
2790 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2791 {
2792 	struct ata_port *ap = qc->ap;
2793 	struct ata_link *link = qc->dev->link;
2794 
2795 	/* defer PIO handling to sff_qc_issue */
2796 	if (!ata_is_dma(qc->tf.protocol))
2797 		return ata_sff_qc_issue(qc);
2798 
2799 	/* select the device */
2800 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2801 
2802 	/* start the command */
2803 	switch (qc->tf.protocol) {
2804 	case ATA_PROT_DMA:
2805 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2806 
2807 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2808 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2809 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2810 		ap->hsm_task_state = HSM_ST_LAST;
2811 		break;
2812 
2813 	case ATAPI_PROT_DMA:
2814 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2815 
2816 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2817 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2818 		ap->hsm_task_state = HSM_ST_FIRST;
2819 
2820 		/* send cdb by polling if no cdb interrupt */
2821 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2822 			ata_sff_queue_pio_task(link, 0);
2823 		break;
2824 
2825 	default:
2826 		WARN_ON(1);
2827 		return AC_ERR_SYSTEM;
2828 	}
2829 
2830 	return 0;
2831 }
2832 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2833 
2834 /**
2835  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2836  *	@ap: Port on which interrupt arrived (possibly...)
2837  *	@qc: Taskfile currently active in engine
2838  *
2839  *	Handle port interrupt for given queued command.
2840  *
2841  *	LOCKING:
2842  *	spin_lock_irqsave(host lock)
2843  *
2844  *	RETURNS:
2845  *	One if interrupt was handled, zero if not (shared irq).
2846  */
2847 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2848 {
2849 	struct ata_eh_info *ehi = &ap->link.eh_info;
2850 	u8 host_stat = 0;
2851 	bool bmdma_stopped = false;
2852 	unsigned int handled;
2853 
2854 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2855 		/* check status of DMA engine */
2856 		host_stat = ap->ops->bmdma_status(ap);
2857 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2858 
2859 		/* if it's not our irq... */
2860 		if (!(host_stat & ATA_DMA_INTR))
2861 			return ata_sff_idle_irq(ap);
2862 
2863 		/* before we do anything else, clear DMA-Start bit */
2864 		ap->ops->bmdma_stop(qc);
2865 		bmdma_stopped = true;
2866 
2867 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2868 			/* error when transferring data to/from memory */
2869 			qc->err_mask |= AC_ERR_HOST_BUS;
2870 			ap->hsm_task_state = HSM_ST_ERR;
2871 		}
2872 	}
2873 
2874 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2875 
2876 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2877 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2878 
2879 	return handled;
2880 }
2881 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2882 
2883 /**
2884  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2885  *	@irq: irq line (unused)
2886  *	@dev_instance: pointer to our ata_host information structure
2887  *
2888  *	Default interrupt handler for PCI IDE devices.  Calls
2889  *	ata_bmdma_port_intr() for each port that is not disabled.
2890  *
2891  *	LOCKING:
2892  *	Obtains host lock during operation.
2893  *
2894  *	RETURNS:
2895  *	IRQ_NONE or IRQ_HANDLED.
2896  */
2897 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2898 {
2899 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2900 }
2901 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2902 
2903 /**
2904  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2905  *	@ap: port to handle error for
2906  *
2907  *	Stock error handler for BMDMA controller.  It can handle both
2908  *	PATA and SATA controllers.  Most BMDMA controllers should be
2909  *	able to use this EH as-is or with some added handling before
2910  *	and after.
2911  *
2912  *	LOCKING:
2913  *	Kernel thread context (may sleep)
2914  */
2915 void ata_bmdma_error_handler(struct ata_port *ap)
2916 {
2917 	struct ata_queued_cmd *qc;
2918 	unsigned long flags;
2919 	bool thaw = false;
2920 
2921 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2922 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2923 		qc = NULL;
2924 
2925 	/* reset PIO HSM and stop DMA engine */
2926 	spin_lock_irqsave(ap->lock, flags);
2927 
2928 	if (qc && ata_is_dma(qc->tf.protocol)) {
2929 		u8 host_stat;
2930 
2931 		host_stat = ap->ops->bmdma_status(ap);
2932 
2933 		/* BMDMA controllers indicate host bus error by
2934 		 * setting DMA_ERR bit and timing out.  As it wasn't
2935 		 * really a timeout event, adjust error mask and
2936 		 * cancel frozen state.
2937 		 */
2938 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2939 			qc->err_mask = AC_ERR_HOST_BUS;
2940 			thaw = true;
2941 		}
2942 
2943 		ap->ops->bmdma_stop(qc);
2944 
2945 		/* if we're gonna thaw, make sure IRQ is clear */
2946 		if (thaw) {
2947 			ap->ops->sff_check_status(ap);
2948 			if (ap->ops->sff_irq_clear)
2949 				ap->ops->sff_irq_clear(ap);
2950 		}
2951 	}
2952 
2953 	spin_unlock_irqrestore(ap->lock, flags);
2954 
2955 	if (thaw)
2956 		ata_eh_thaw_port(ap);
2957 
2958 	ata_sff_error_handler(ap);
2959 }
2960 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2961 
2962 /**
2963  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2964  *	@qc: internal command to clean up
2965  *
2966  *	LOCKING:
2967  *	Kernel thread context (may sleep)
2968  */
2969 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2970 {
2971 	struct ata_port *ap = qc->ap;
2972 	unsigned long flags;
2973 
2974 	if (ata_is_dma(qc->tf.protocol)) {
2975 		spin_lock_irqsave(ap->lock, flags);
2976 		ap->ops->bmdma_stop(qc);
2977 		spin_unlock_irqrestore(ap->lock, flags);
2978 	}
2979 }
2980 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2981 
2982 /**
2983  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2984  *	@ap: Port associated with this ATA transaction.
2985  *
2986  *	Clear interrupt and error flags in DMA status register.
2987  *
2988  *	May be used as the irq_clear() entry in ata_port_operations.
2989  *
2990  *	LOCKING:
2991  *	spin_lock_irqsave(host lock)
2992  */
2993 void ata_bmdma_irq_clear(struct ata_port *ap)
2994 {
2995 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2996 
2997 	if (!mmio)
2998 		return;
2999 
3000 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
3001 }
3002 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
3003 
3004 /**
3005  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3006  *	@qc: Info associated with this ATA transaction.
3007  *
3008  *	LOCKING:
3009  *	spin_lock_irqsave(host lock)
3010  */
3011 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3012 {
3013 	struct ata_port *ap = qc->ap;
3014 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3015 	u8 dmactl;
3016 
3017 	/* load PRD table addr. */
3018 	mb();	/* make sure PRD table writes are visible to controller */
3019 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3020 
3021 	/* specify data direction, triple-check start bit is clear */
3022 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3023 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3024 	if (!rw)
3025 		dmactl |= ATA_DMA_WR;
3026 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3027 
3028 	/* issue r/w command */
3029 	ap->ops->sff_exec_command(ap, &qc->tf);
3030 }
3031 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3032 
3033 /**
3034  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
3035  *	@qc: Info associated with this ATA transaction.
3036  *
3037  *	LOCKING:
3038  *	spin_lock_irqsave(host lock)
3039  */
3040 void ata_bmdma_start(struct ata_queued_cmd *qc)
3041 {
3042 	struct ata_port *ap = qc->ap;
3043 	u8 dmactl;
3044 
3045 	/* start host DMA transaction */
3046 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3047 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3048 
3049 	/* Strictly, one may wish to issue an ioread8() here, to
3050 	 * flush the mmio write.  However, control also passes
3051 	 * to the hardware at this point, and it will interrupt
3052 	 * us when we are to resume control.  So, in effect,
3053 	 * we don't care when the mmio write flushes.
3054 	 * Further, a read of the DMA status register _immediately_
3055 	 * following the write may not be what certain flaky hardware
3056 	 * is expected, so I think it is best to not add a readb()
3057 	 * without first all the MMIO ATA cards/mobos.
3058 	 * Or maybe I'm just being paranoid.
3059 	 *
3060 	 * FIXME: The posting of this write means I/O starts are
3061 	 * unnecessarily delayed for MMIO
3062 	 */
3063 }
3064 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3065 
3066 /**
3067  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3068  *	@qc: Command we are ending DMA for
3069  *
3070  *	Clears the ATA_DMA_START flag in the dma control register
3071  *
3072  *	May be used as the bmdma_stop() entry in ata_port_operations.
3073  *
3074  *	LOCKING:
3075  *	spin_lock_irqsave(host lock)
3076  */
3077 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3078 {
3079 	struct ata_port *ap = qc->ap;
3080 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3081 
3082 	/* clear start/stop bit */
3083 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3084 		 mmio + ATA_DMA_CMD);
3085 
3086 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3087 	ata_sff_dma_pause(ap);
3088 }
3089 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3090 
3091 /**
3092  *	ata_bmdma_status - Read PCI IDE BMDMA status
3093  *	@ap: Port associated with this ATA transaction.
3094  *
3095  *	Read and return BMDMA status register.
3096  *
3097  *	May be used as the bmdma_status() entry in ata_port_operations.
3098  *
3099  *	LOCKING:
3100  *	spin_lock_irqsave(host lock)
3101  */
3102 u8 ata_bmdma_status(struct ata_port *ap)
3103 {
3104 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3105 }
3106 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3107 
3108 
3109 /**
3110  *	ata_bmdma_port_start - Set port up for bmdma.
3111  *	@ap: Port to initialize
3112  *
3113  *	Called just after data structures for each port are
3114  *	initialized.  Allocates space for PRD table.
3115  *
3116  *	May be used as the port_start() entry in ata_port_operations.
3117  *
3118  *	LOCKING:
3119  *	Inherited from caller.
3120  */
3121 int ata_bmdma_port_start(struct ata_port *ap)
3122 {
3123 	if (ap->mwdma_mask || ap->udma_mask) {
3124 		ap->bmdma_prd =
3125 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3126 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3127 		if (!ap->bmdma_prd)
3128 			return -ENOMEM;
3129 	}
3130 
3131 	return 0;
3132 }
3133 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3134 
3135 /**
3136  *	ata_bmdma_port_start32 - Set port up for dma.
3137  *	@ap: Port to initialize
3138  *
3139  *	Called just after data structures for each port are
3140  *	initialized.  Enables 32bit PIO and allocates space for PRD
3141  *	table.
3142  *
3143  *	May be used as the port_start() entry in ata_port_operations for
3144  *	devices that are capable of 32bit PIO.
3145  *
3146  *	LOCKING:
3147  *	Inherited from caller.
3148  */
3149 int ata_bmdma_port_start32(struct ata_port *ap)
3150 {
3151 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3152 	return ata_bmdma_port_start(ap);
3153 }
3154 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3155 
3156 #ifdef CONFIG_PCI
3157 
3158 /**
3159  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3160  *	@pdev: PCI device
3161  *
3162  *	Some PCI ATA devices report simplex mode but in fact can be told to
3163  *	enter non simplex mode. This implements the necessary logic to
3164  *	perform the task on such devices. Calling it on other devices will
3165  *	have -undefined- behaviour.
3166  */
3167 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3168 {
3169 	unsigned long bmdma = pci_resource_start(pdev, 4);
3170 	u8 simplex;
3171 
3172 	if (bmdma == 0)
3173 		return -ENOENT;
3174 
3175 	simplex = inb(bmdma + 0x02);
3176 	outb(simplex & 0x60, bmdma + 0x02);
3177 	simplex = inb(bmdma + 0x02);
3178 	if (simplex & 0x80)
3179 		return -EOPNOTSUPP;
3180 	return 0;
3181 }
3182 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3183 
3184 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3185 {
3186 	int i;
3187 
3188 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3189 
3190 	for (i = 0; i < 2; i++) {
3191 		host->ports[i]->mwdma_mask = 0;
3192 		host->ports[i]->udma_mask = 0;
3193 	}
3194 }
3195 
3196 /**
3197  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3198  *	@host: target ATA host
3199  *
3200  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3201  *
3202  *	LOCKING:
3203  *	Inherited from calling layer (may sleep).
3204  */
3205 void ata_pci_bmdma_init(struct ata_host *host)
3206 {
3207 	struct device *gdev = host->dev;
3208 	struct pci_dev *pdev = to_pci_dev(gdev);
3209 	int i, rc;
3210 
3211 	/* No BAR4 allocation: No DMA */
3212 	if (pci_resource_start(pdev, 4) == 0) {
3213 		ata_bmdma_nodma(host, "BAR4 is zero");
3214 		return;
3215 	}
3216 
3217 	/*
3218 	 * Some controllers require BMDMA region to be initialized
3219 	 * even if DMA is not in use to clear IRQ status via
3220 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3221 	 * regardless of dma masks.
3222 	 */
3223 	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3224 	if (rc)
3225 		ata_bmdma_nodma(host, "failed to set dma mask");
3226 	if (!rc) {
3227 		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3228 		if (rc)
3229 			ata_bmdma_nodma(host,
3230 					"failed to set consistent dma mask");
3231 	}
3232 
3233 	/* request and iomap DMA region */
3234 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3235 	if (rc) {
3236 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3237 		return;
3238 	}
3239 	host->iomap = pcim_iomap_table(pdev);
3240 
3241 	for (i = 0; i < 2; i++) {
3242 		struct ata_port *ap = host->ports[i];
3243 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3244 
3245 		if (ata_port_is_dummy(ap))
3246 			continue;
3247 
3248 		ap->ioaddr.bmdma_addr = bmdma;
3249 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3250 		    (ioread8(bmdma + 2) & 0x80))
3251 			host->flags |= ATA_HOST_SIMPLEX;
3252 
3253 		ata_port_desc(ap, "bmdma 0x%llx",
3254 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3255 	}
3256 }
3257 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3258 
3259 /**
3260  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3261  *	@pdev: target PCI device
3262  *	@ppi: array of port_info, must be enough for two ports
3263  *	@r_host: out argument for the initialized ATA host
3264  *
3265  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3266  *	resources and initialize it accordingly in one go.
3267  *
3268  *	LOCKING:
3269  *	Inherited from calling layer (may sleep).
3270  *
3271  *	RETURNS:
3272  *	0 on success, -errno otherwise.
3273  */
3274 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3275 			       const struct ata_port_info * const * ppi,
3276 			       struct ata_host **r_host)
3277 {
3278 	int rc;
3279 
3280 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3281 	if (rc)
3282 		return rc;
3283 
3284 	ata_pci_bmdma_init(*r_host);
3285 	return 0;
3286 }
3287 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3288 
3289 /**
3290  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3291  *	@pdev: Controller to be initialized
3292  *	@ppi: array of port_info, must be enough for two ports
3293  *	@sht: scsi_host_template to use when registering the host
3294  *	@host_priv: host private_data
3295  *	@hflags: host flags
3296  *
3297  *	This function is similar to ata_pci_sff_init_one() but also
3298  *	takes care of BMDMA initialization.
3299  *
3300  *	LOCKING:
3301  *	Inherited from PCI layer (may sleep).
3302  *
3303  *	RETURNS:
3304  *	Zero on success, negative on errno-based value on error.
3305  */
3306 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3307 			   const struct ata_port_info * const * ppi,
3308 			   struct scsi_host_template *sht, void *host_priv,
3309 			   int hflags)
3310 {
3311 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3312 }
3313 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3314 
3315 #endif /* CONFIG_PCI */
3316 #endif /* CONFIG_ATA_BMDMA */
3317 
3318 /**
3319  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3320  *	@ap: Port to initialize
3321  *
3322  *	Called on port allocation to initialize SFF/BMDMA specific
3323  *	fields.
3324  *
3325  *	LOCKING:
3326  *	None.
3327  */
3328 void ata_sff_port_init(struct ata_port *ap)
3329 {
3330 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3331 	ap->ctl = ATA_DEVCTL_OBS;
3332 	ap->last_ctl = 0xFF;
3333 }
3334 
3335 int __init ata_sff_init(void)
3336 {
3337 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3338 	if (!ata_sff_wq)
3339 		return -ENOMEM;
3340 
3341 	return 0;
3342 }
3343 
3344 void ata_sff_exit(void)
3345 {
3346 	destroy_workqueue(ata_sff_wq);
3347 }
3348