1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-sff.c - helper library for PCI IDE BMDMA 4 * 5 * Maintained by: Tejun Heo <tj@kernel.org> 6 * Please ALWAYS copy linux-ide@vger.kernel.org 7 * on emails. 8 * 9 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 10 * Copyright 2003-2006 Jeff Garzik 11 * 12 * libata documentation is available via 'make {ps|pdf}docs', 13 * as Documentation/driver-api/libata.rst 14 * 15 * Hardware documentation available from http://www.t13.org/ and 16 * http://www.sata-io.org/ 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/gfp.h> 21 #include <linux/pci.h> 22 #include <linux/module.h> 23 #include <linux/libata.h> 24 #include <linux/highmem.h> 25 26 #include "libata.h" 27 28 static struct workqueue_struct *ata_sff_wq; 29 30 const struct ata_port_operations ata_sff_port_ops = { 31 .inherits = &ata_base_port_ops, 32 33 .qc_prep = ata_noop_qc_prep, 34 .qc_issue = ata_sff_qc_issue, 35 .qc_fill_rtf = ata_sff_qc_fill_rtf, 36 37 .freeze = ata_sff_freeze, 38 .thaw = ata_sff_thaw, 39 .prereset = ata_sff_prereset, 40 .softreset = ata_sff_softreset, 41 .hardreset = sata_sff_hardreset, 42 .postreset = ata_sff_postreset, 43 .error_handler = ata_sff_error_handler, 44 45 .sff_dev_select = ata_sff_dev_select, 46 .sff_check_status = ata_sff_check_status, 47 .sff_tf_load = ata_sff_tf_load, 48 .sff_tf_read = ata_sff_tf_read, 49 .sff_exec_command = ata_sff_exec_command, 50 .sff_data_xfer = ata_sff_data_xfer, 51 .sff_drain_fifo = ata_sff_drain_fifo, 52 53 .lost_interrupt = ata_sff_lost_interrupt, 54 }; 55 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 56 57 /** 58 * ata_sff_check_status - Read device status reg & clear interrupt 59 * @ap: port where the device is 60 * 61 * Reads ATA taskfile status register for currently-selected device 62 * and return its value. This also clears pending interrupts 63 * from this device 64 * 65 * LOCKING: 66 * Inherited from caller. 67 */ 68 u8 ata_sff_check_status(struct ata_port *ap) 69 { 70 return ioread8(ap->ioaddr.status_addr); 71 } 72 EXPORT_SYMBOL_GPL(ata_sff_check_status); 73 74 /** 75 * ata_sff_altstatus - Read device alternate status reg 76 * @ap: port where the device is 77 * 78 * Reads ATA taskfile alternate status register for 79 * currently-selected device and return its value. 80 * 81 * Note: may NOT be used as the check_altstatus() entry in 82 * ata_port_operations. 83 * 84 * LOCKING: 85 * Inherited from caller. 86 */ 87 static u8 ata_sff_altstatus(struct ata_port *ap) 88 { 89 if (ap->ops->sff_check_altstatus) 90 return ap->ops->sff_check_altstatus(ap); 91 92 return ioread8(ap->ioaddr.altstatus_addr); 93 } 94 95 /** 96 * ata_sff_irq_status - Check if the device is busy 97 * @ap: port where the device is 98 * 99 * Determine if the port is currently busy. Uses altstatus 100 * if available in order to avoid clearing shared IRQ status 101 * when finding an IRQ source. Non ctl capable devices don't 102 * share interrupt lines fortunately for us. 103 * 104 * LOCKING: 105 * Inherited from caller. 106 */ 107 static u8 ata_sff_irq_status(struct ata_port *ap) 108 { 109 u8 status; 110 111 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 112 status = ata_sff_altstatus(ap); 113 /* Not us: We are busy */ 114 if (status & ATA_BUSY) 115 return status; 116 } 117 /* Clear INTRQ latch */ 118 status = ap->ops->sff_check_status(ap); 119 return status; 120 } 121 122 /** 123 * ata_sff_sync - Flush writes 124 * @ap: Port to wait for. 125 * 126 * CAUTION: 127 * If we have an mmio device with no ctl and no altstatus 128 * method this will fail. No such devices are known to exist. 129 * 130 * LOCKING: 131 * Inherited from caller. 132 */ 133 134 static void ata_sff_sync(struct ata_port *ap) 135 { 136 if (ap->ops->sff_check_altstatus) 137 ap->ops->sff_check_altstatus(ap); 138 else if (ap->ioaddr.altstatus_addr) 139 ioread8(ap->ioaddr.altstatus_addr); 140 } 141 142 /** 143 * ata_sff_pause - Flush writes and wait 400nS 144 * @ap: Port to pause for. 145 * 146 * CAUTION: 147 * If we have an mmio device with no ctl and no altstatus 148 * method this will fail. No such devices are known to exist. 149 * 150 * LOCKING: 151 * Inherited from caller. 152 */ 153 154 void ata_sff_pause(struct ata_port *ap) 155 { 156 ata_sff_sync(ap); 157 ndelay(400); 158 } 159 EXPORT_SYMBOL_GPL(ata_sff_pause); 160 161 /** 162 * ata_sff_dma_pause - Pause before commencing DMA 163 * @ap: Port to pause for. 164 * 165 * Perform I/O fencing and ensure sufficient cycle delays occur 166 * for the HDMA1:0 transition 167 */ 168 169 void ata_sff_dma_pause(struct ata_port *ap) 170 { 171 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 172 /* An altstatus read will cause the needed delay without 173 messing up the IRQ status */ 174 ata_sff_altstatus(ap); 175 return; 176 } 177 /* There are no DMA controllers without ctl. BUG here to ensure 178 we never violate the HDMA1:0 transition timing and risk 179 corruption. */ 180 BUG(); 181 } 182 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 183 184 /** 185 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 186 * @ap: port containing status register to be polled 187 * @tmout_pat: impatience timeout in msecs 188 * @tmout: overall timeout in msecs 189 * 190 * Sleep until ATA Status register bit BSY clears, 191 * or a timeout occurs. 192 * 193 * LOCKING: 194 * Kernel thread context (may sleep). 195 * 196 * RETURNS: 197 * 0 on success, -errno otherwise. 198 */ 199 int ata_sff_busy_sleep(struct ata_port *ap, 200 unsigned long tmout_pat, unsigned long tmout) 201 { 202 unsigned long timer_start, timeout; 203 u8 status; 204 205 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 206 timer_start = jiffies; 207 timeout = ata_deadline(timer_start, tmout_pat); 208 while (status != 0xff && (status & ATA_BUSY) && 209 time_before(jiffies, timeout)) { 210 ata_msleep(ap, 50); 211 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 212 } 213 214 if (status != 0xff && (status & ATA_BUSY)) 215 ata_port_warn(ap, 216 "port is slow to respond, please be patient (Status 0x%x)\n", 217 status); 218 219 timeout = ata_deadline(timer_start, tmout); 220 while (status != 0xff && (status & ATA_BUSY) && 221 time_before(jiffies, timeout)) { 222 ata_msleep(ap, 50); 223 status = ap->ops->sff_check_status(ap); 224 } 225 226 if (status == 0xff) 227 return -ENODEV; 228 229 if (status & ATA_BUSY) { 230 ata_port_err(ap, 231 "port failed to respond (%lu secs, Status 0x%x)\n", 232 DIV_ROUND_UP(tmout, 1000), status); 233 return -EBUSY; 234 } 235 236 return 0; 237 } 238 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 239 240 static int ata_sff_check_ready(struct ata_link *link) 241 { 242 u8 status = link->ap->ops->sff_check_status(link->ap); 243 244 return ata_check_ready(status); 245 } 246 247 /** 248 * ata_sff_wait_ready - sleep until BSY clears, or timeout 249 * @link: SFF link to wait ready status for 250 * @deadline: deadline jiffies for the operation 251 * 252 * Sleep until ATA Status register bit BSY clears, or timeout 253 * occurs. 254 * 255 * LOCKING: 256 * Kernel thread context (may sleep). 257 * 258 * RETURNS: 259 * 0 on success, -errno otherwise. 260 */ 261 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 262 { 263 return ata_wait_ready(link, deadline, ata_sff_check_ready); 264 } 265 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 266 267 /** 268 * ata_sff_set_devctl - Write device control reg 269 * @ap: port where the device is 270 * @ctl: value to write 271 * 272 * Writes ATA taskfile device control register. 273 * 274 * Note: may NOT be used as the sff_set_devctl() entry in 275 * ata_port_operations. 276 * 277 * LOCKING: 278 * Inherited from caller. 279 */ 280 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 281 { 282 if (ap->ops->sff_set_devctl) 283 ap->ops->sff_set_devctl(ap, ctl); 284 else 285 iowrite8(ctl, ap->ioaddr.ctl_addr); 286 } 287 288 /** 289 * ata_sff_dev_select - Select device 0/1 on ATA bus 290 * @ap: ATA channel to manipulate 291 * @device: ATA device (numbered from zero) to select 292 * 293 * Use the method defined in the ATA specification to 294 * make either device 0, or device 1, active on the 295 * ATA channel. Works with both PIO and MMIO. 296 * 297 * May be used as the dev_select() entry in ata_port_operations. 298 * 299 * LOCKING: 300 * caller. 301 */ 302 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 303 { 304 u8 tmp; 305 306 if (device == 0) 307 tmp = ATA_DEVICE_OBS; 308 else 309 tmp = ATA_DEVICE_OBS | ATA_DEV1; 310 311 iowrite8(tmp, ap->ioaddr.device_addr); 312 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 313 } 314 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 315 316 /** 317 * ata_dev_select - Select device 0/1 on ATA bus 318 * @ap: ATA channel to manipulate 319 * @device: ATA device (numbered from zero) to select 320 * @wait: non-zero to wait for Status register BSY bit to clear 321 * @can_sleep: non-zero if context allows sleeping 322 * 323 * Use the method defined in the ATA specification to 324 * make either device 0, or device 1, active on the 325 * ATA channel. 326 * 327 * This is a high-level version of ata_sff_dev_select(), which 328 * additionally provides the services of inserting the proper 329 * pauses and status polling, where needed. 330 * 331 * LOCKING: 332 * caller. 333 */ 334 static void ata_dev_select(struct ata_port *ap, unsigned int device, 335 unsigned int wait, unsigned int can_sleep) 336 { 337 if (ata_msg_probe(ap)) 338 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n", 339 device, wait); 340 341 if (wait) 342 ata_wait_idle(ap); 343 344 ap->ops->sff_dev_select(ap, device); 345 346 if (wait) { 347 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 348 ata_msleep(ap, 150); 349 ata_wait_idle(ap); 350 } 351 } 352 353 /** 354 * ata_sff_irq_on - Enable interrupts on a port. 355 * @ap: Port on which interrupts are enabled. 356 * 357 * Enable interrupts on a legacy IDE device using MMIO or PIO, 358 * wait for idle, clear any pending interrupts. 359 * 360 * Note: may NOT be used as the sff_irq_on() entry in 361 * ata_port_operations. 362 * 363 * LOCKING: 364 * Inherited from caller. 365 */ 366 void ata_sff_irq_on(struct ata_port *ap) 367 { 368 struct ata_ioports *ioaddr = &ap->ioaddr; 369 370 if (ap->ops->sff_irq_on) { 371 ap->ops->sff_irq_on(ap); 372 return; 373 } 374 375 ap->ctl &= ~ATA_NIEN; 376 ap->last_ctl = ap->ctl; 377 378 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 379 ata_sff_set_devctl(ap, ap->ctl); 380 ata_wait_idle(ap); 381 382 if (ap->ops->sff_irq_clear) 383 ap->ops->sff_irq_clear(ap); 384 } 385 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 386 387 /** 388 * ata_sff_tf_load - send taskfile registers to host controller 389 * @ap: Port to which output is sent 390 * @tf: ATA taskfile register set 391 * 392 * Outputs ATA taskfile to standard ATA host controller. 393 * 394 * LOCKING: 395 * Inherited from caller. 396 */ 397 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 398 { 399 struct ata_ioports *ioaddr = &ap->ioaddr; 400 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 401 402 if (tf->ctl != ap->last_ctl) { 403 if (ioaddr->ctl_addr) 404 iowrite8(tf->ctl, ioaddr->ctl_addr); 405 ap->last_ctl = tf->ctl; 406 ata_wait_idle(ap); 407 } 408 409 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 410 WARN_ON_ONCE(!ioaddr->ctl_addr); 411 iowrite8(tf->hob_feature, ioaddr->feature_addr); 412 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 413 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 414 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 415 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 416 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 417 tf->hob_feature, 418 tf->hob_nsect, 419 tf->hob_lbal, 420 tf->hob_lbam, 421 tf->hob_lbah); 422 } 423 424 if (is_addr) { 425 iowrite8(tf->feature, ioaddr->feature_addr); 426 iowrite8(tf->nsect, ioaddr->nsect_addr); 427 iowrite8(tf->lbal, ioaddr->lbal_addr); 428 iowrite8(tf->lbam, ioaddr->lbam_addr); 429 iowrite8(tf->lbah, ioaddr->lbah_addr); 430 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 431 tf->feature, 432 tf->nsect, 433 tf->lbal, 434 tf->lbam, 435 tf->lbah); 436 } 437 438 if (tf->flags & ATA_TFLAG_DEVICE) { 439 iowrite8(tf->device, ioaddr->device_addr); 440 VPRINTK("device 0x%X\n", tf->device); 441 } 442 443 ata_wait_idle(ap); 444 } 445 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 446 447 /** 448 * ata_sff_tf_read - input device's ATA taskfile shadow registers 449 * @ap: Port from which input is read 450 * @tf: ATA taskfile register set for storing input 451 * 452 * Reads ATA taskfile registers for currently-selected device 453 * into @tf. Assumes the device has a fully SFF compliant task file 454 * layout and behaviour. If you device does not (eg has a different 455 * status method) then you will need to provide a replacement tf_read 456 * 457 * LOCKING: 458 * Inherited from caller. 459 */ 460 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 461 { 462 struct ata_ioports *ioaddr = &ap->ioaddr; 463 464 tf->command = ata_sff_check_status(ap); 465 tf->feature = ioread8(ioaddr->error_addr); 466 tf->nsect = ioread8(ioaddr->nsect_addr); 467 tf->lbal = ioread8(ioaddr->lbal_addr); 468 tf->lbam = ioread8(ioaddr->lbam_addr); 469 tf->lbah = ioread8(ioaddr->lbah_addr); 470 tf->device = ioread8(ioaddr->device_addr); 471 472 if (tf->flags & ATA_TFLAG_LBA48) { 473 if (likely(ioaddr->ctl_addr)) { 474 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 475 tf->hob_feature = ioread8(ioaddr->error_addr); 476 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 477 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 478 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 479 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 480 iowrite8(tf->ctl, ioaddr->ctl_addr); 481 ap->last_ctl = tf->ctl; 482 } else 483 WARN_ON_ONCE(1); 484 } 485 } 486 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 487 488 /** 489 * ata_sff_exec_command - issue ATA command to host controller 490 * @ap: port to which command is being issued 491 * @tf: ATA taskfile register set 492 * 493 * Issues ATA command, with proper synchronization with interrupt 494 * handler / other threads. 495 * 496 * LOCKING: 497 * spin_lock_irqsave(host lock) 498 */ 499 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 500 { 501 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 502 503 iowrite8(tf->command, ap->ioaddr.command_addr); 504 ata_sff_pause(ap); 505 } 506 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 507 508 /** 509 * ata_tf_to_host - issue ATA taskfile to host controller 510 * @ap: port to which command is being issued 511 * @tf: ATA taskfile register set 512 * 513 * Issues ATA taskfile register set to ATA host controller, 514 * with proper synchronization with interrupt handler and 515 * other threads. 516 * 517 * LOCKING: 518 * spin_lock_irqsave(host lock) 519 */ 520 static inline void ata_tf_to_host(struct ata_port *ap, 521 const struct ata_taskfile *tf) 522 { 523 ap->ops->sff_tf_load(ap, tf); 524 ap->ops->sff_exec_command(ap, tf); 525 } 526 527 /** 528 * ata_sff_data_xfer - Transfer data by PIO 529 * @qc: queued command 530 * @buf: data buffer 531 * @buflen: buffer length 532 * @rw: read/write 533 * 534 * Transfer data from/to the device data register by PIO. 535 * 536 * LOCKING: 537 * Inherited from caller. 538 * 539 * RETURNS: 540 * Bytes consumed. 541 */ 542 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, 543 unsigned int buflen, int rw) 544 { 545 struct ata_port *ap = qc->dev->link->ap; 546 void __iomem *data_addr = ap->ioaddr.data_addr; 547 unsigned int words = buflen >> 1; 548 549 /* Transfer multiple of 2 bytes */ 550 if (rw == READ) 551 ioread16_rep(data_addr, buf, words); 552 else 553 iowrite16_rep(data_addr, buf, words); 554 555 /* Transfer trailing byte, if any. */ 556 if (unlikely(buflen & 0x01)) { 557 unsigned char pad[2] = { }; 558 559 /* Point buf to the tail of buffer */ 560 buf += buflen - 1; 561 562 /* 563 * Use io*16_rep() accessors here as well to avoid pointlessly 564 * swapping bytes to and from on the big endian machines... 565 */ 566 if (rw == READ) { 567 ioread16_rep(data_addr, pad, 1); 568 *buf = pad[0]; 569 } else { 570 pad[0] = *buf; 571 iowrite16_rep(data_addr, pad, 1); 572 } 573 words++; 574 } 575 576 return words << 1; 577 } 578 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 579 580 /** 581 * ata_sff_data_xfer32 - Transfer data by PIO 582 * @qc: queued command 583 * @buf: data buffer 584 * @buflen: buffer length 585 * @rw: read/write 586 * 587 * Transfer data from/to the device data register by PIO using 32bit 588 * I/O operations. 589 * 590 * LOCKING: 591 * Inherited from caller. 592 * 593 * RETURNS: 594 * Bytes consumed. 595 */ 596 597 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, 598 unsigned int buflen, int rw) 599 { 600 struct ata_device *dev = qc->dev; 601 struct ata_port *ap = dev->link->ap; 602 void __iomem *data_addr = ap->ioaddr.data_addr; 603 unsigned int words = buflen >> 2; 604 int slop = buflen & 3; 605 606 if (!(ap->pflags & ATA_PFLAG_PIO32)) 607 return ata_sff_data_xfer(qc, buf, buflen, rw); 608 609 /* Transfer multiple of 4 bytes */ 610 if (rw == READ) 611 ioread32_rep(data_addr, buf, words); 612 else 613 iowrite32_rep(data_addr, buf, words); 614 615 /* Transfer trailing bytes, if any */ 616 if (unlikely(slop)) { 617 unsigned char pad[4] = { }; 618 619 /* Point buf to the tail of buffer */ 620 buf += buflen - slop; 621 622 /* 623 * Use io*_rep() accessors here as well to avoid pointlessly 624 * swapping bytes to and from on the big endian machines... 625 */ 626 if (rw == READ) { 627 if (slop < 3) 628 ioread16_rep(data_addr, pad, 1); 629 else 630 ioread32_rep(data_addr, pad, 1); 631 memcpy(buf, pad, slop); 632 } else { 633 memcpy(pad, buf, slop); 634 if (slop < 3) 635 iowrite16_rep(data_addr, pad, 1); 636 else 637 iowrite32_rep(data_addr, pad, 1); 638 } 639 } 640 return (buflen + 1) & ~1; 641 } 642 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 643 644 /** 645 * ata_pio_sector - Transfer a sector of data. 646 * @qc: Command on going 647 * 648 * Transfer qc->sect_size bytes of data from/to the ATA device. 649 * 650 * LOCKING: 651 * Inherited from caller. 652 */ 653 static void ata_pio_sector(struct ata_queued_cmd *qc) 654 { 655 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 656 struct ata_port *ap = qc->ap; 657 struct page *page; 658 unsigned int offset; 659 unsigned char *buf; 660 661 if (qc->curbytes == qc->nbytes - qc->sect_size) 662 ap->hsm_task_state = HSM_ST_LAST; 663 664 page = sg_page(qc->cursg); 665 offset = qc->cursg->offset + qc->cursg_ofs; 666 667 /* get the current page and offset */ 668 page = nth_page(page, (offset >> PAGE_SHIFT)); 669 offset %= PAGE_SIZE; 670 671 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 672 673 /* do the actual data transfer */ 674 buf = kmap_atomic(page); 675 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write); 676 kunmap_atomic(buf); 677 678 if (!do_write && !PageSlab(page)) 679 flush_dcache_page(page); 680 681 qc->curbytes += qc->sect_size; 682 qc->cursg_ofs += qc->sect_size; 683 684 if (qc->cursg_ofs == qc->cursg->length) { 685 qc->cursg = sg_next(qc->cursg); 686 qc->cursg_ofs = 0; 687 } 688 } 689 690 /** 691 * ata_pio_sectors - Transfer one or many sectors. 692 * @qc: Command on going 693 * 694 * Transfer one or many sectors of data from/to the 695 * ATA device for the DRQ request. 696 * 697 * LOCKING: 698 * Inherited from caller. 699 */ 700 static void ata_pio_sectors(struct ata_queued_cmd *qc) 701 { 702 if (is_multi_taskfile(&qc->tf)) { 703 /* READ/WRITE MULTIPLE */ 704 unsigned int nsect; 705 706 WARN_ON_ONCE(qc->dev->multi_count == 0); 707 708 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 709 qc->dev->multi_count); 710 while (nsect--) 711 ata_pio_sector(qc); 712 } else 713 ata_pio_sector(qc); 714 715 ata_sff_sync(qc->ap); /* flush */ 716 } 717 718 /** 719 * atapi_send_cdb - Write CDB bytes to hardware 720 * @ap: Port to which ATAPI device is attached. 721 * @qc: Taskfile currently active 722 * 723 * When device has indicated its readiness to accept 724 * a CDB, this function is called. Send the CDB. 725 * 726 * LOCKING: 727 * caller. 728 */ 729 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 730 { 731 /* send SCSI cdb */ 732 DPRINTK("send cdb\n"); 733 WARN_ON_ONCE(qc->dev->cdb_len < 12); 734 735 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); 736 ata_sff_sync(ap); 737 /* FIXME: If the CDB is for DMA do we need to do the transition delay 738 or is bmdma_start guaranteed to do it ? */ 739 switch (qc->tf.protocol) { 740 case ATAPI_PROT_PIO: 741 ap->hsm_task_state = HSM_ST; 742 break; 743 case ATAPI_PROT_NODATA: 744 ap->hsm_task_state = HSM_ST_LAST; 745 break; 746 #ifdef CONFIG_ATA_BMDMA 747 case ATAPI_PROT_DMA: 748 ap->hsm_task_state = HSM_ST_LAST; 749 /* initiate bmdma */ 750 ap->ops->bmdma_start(qc); 751 break; 752 #endif /* CONFIG_ATA_BMDMA */ 753 default: 754 BUG(); 755 } 756 } 757 758 /** 759 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 760 * @qc: Command on going 761 * @bytes: number of bytes 762 * 763 * Transfer Transfer data from/to the ATAPI device. 764 * 765 * LOCKING: 766 * Inherited from caller. 767 * 768 */ 769 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 770 { 771 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 772 struct ata_port *ap = qc->ap; 773 struct ata_device *dev = qc->dev; 774 struct ata_eh_info *ehi = &dev->link->eh_info; 775 struct scatterlist *sg; 776 struct page *page; 777 unsigned char *buf; 778 unsigned int offset, count, consumed; 779 780 next_sg: 781 sg = qc->cursg; 782 if (unlikely(!sg)) { 783 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 784 "buf=%u cur=%u bytes=%u", 785 qc->nbytes, qc->curbytes, bytes); 786 return -1; 787 } 788 789 page = sg_page(sg); 790 offset = sg->offset + qc->cursg_ofs; 791 792 /* get the current page and offset */ 793 page = nth_page(page, (offset >> PAGE_SHIFT)); 794 offset %= PAGE_SIZE; 795 796 /* don't overrun current sg */ 797 count = min(sg->length - qc->cursg_ofs, bytes); 798 799 /* don't cross page boundaries */ 800 count = min(count, (unsigned int)PAGE_SIZE - offset); 801 802 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 803 804 /* do the actual data transfer */ 805 buf = kmap_atomic(page); 806 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw); 807 kunmap_atomic(buf); 808 809 bytes -= min(bytes, consumed); 810 qc->curbytes += count; 811 qc->cursg_ofs += count; 812 813 if (qc->cursg_ofs == sg->length) { 814 qc->cursg = sg_next(qc->cursg); 815 qc->cursg_ofs = 0; 816 } 817 818 /* 819 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 820 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 821 * check correctly as it doesn't know if it is the last request being 822 * made. Somebody should implement a proper sanity check. 823 */ 824 if (bytes) 825 goto next_sg; 826 return 0; 827 } 828 829 /** 830 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 831 * @qc: Command on going 832 * 833 * Transfer Transfer data from/to the ATAPI device. 834 * 835 * LOCKING: 836 * Inherited from caller. 837 */ 838 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 839 { 840 struct ata_port *ap = qc->ap; 841 struct ata_device *dev = qc->dev; 842 struct ata_eh_info *ehi = &dev->link->eh_info; 843 unsigned int ireason, bc_lo, bc_hi, bytes; 844 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 845 846 /* Abuse qc->result_tf for temp storage of intermediate TF 847 * here to save some kernel stack usage. 848 * For normal completion, qc->result_tf is not relevant. For 849 * error, qc->result_tf is later overwritten by ata_qc_complete(). 850 * So, the correctness of qc->result_tf is not affected. 851 */ 852 ap->ops->sff_tf_read(ap, &qc->result_tf); 853 ireason = qc->result_tf.nsect; 854 bc_lo = qc->result_tf.lbam; 855 bc_hi = qc->result_tf.lbah; 856 bytes = (bc_hi << 8) | bc_lo; 857 858 /* shall be cleared to zero, indicating xfer of data */ 859 if (unlikely(ireason & ATAPI_COD)) 860 goto atapi_check; 861 862 /* make sure transfer direction matches expected */ 863 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 864 if (unlikely(do_write != i_write)) 865 goto atapi_check; 866 867 if (unlikely(!bytes)) 868 goto atapi_check; 869 870 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 871 872 if (unlikely(__atapi_pio_bytes(qc, bytes))) 873 goto err_out; 874 ata_sff_sync(ap); /* flush */ 875 876 return; 877 878 atapi_check: 879 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 880 ireason, bytes); 881 err_out: 882 qc->err_mask |= AC_ERR_HSM; 883 ap->hsm_task_state = HSM_ST_ERR; 884 } 885 886 /** 887 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 888 * @ap: the target ata_port 889 * @qc: qc on going 890 * 891 * RETURNS: 892 * 1 if ok in workqueue, 0 otherwise. 893 */ 894 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 895 struct ata_queued_cmd *qc) 896 { 897 if (qc->tf.flags & ATA_TFLAG_POLLING) 898 return 1; 899 900 if (ap->hsm_task_state == HSM_ST_FIRST) { 901 if (qc->tf.protocol == ATA_PROT_PIO && 902 (qc->tf.flags & ATA_TFLAG_WRITE)) 903 return 1; 904 905 if (ata_is_atapi(qc->tf.protocol) && 906 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 907 return 1; 908 } 909 910 return 0; 911 } 912 913 /** 914 * ata_hsm_qc_complete - finish a qc running on standard HSM 915 * @qc: Command to complete 916 * @in_wq: 1 if called from workqueue, 0 otherwise 917 * 918 * Finish @qc which is running on standard HSM. 919 * 920 * LOCKING: 921 * If @in_wq is zero, spin_lock_irqsave(host lock). 922 * Otherwise, none on entry and grabs host lock. 923 */ 924 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 925 { 926 struct ata_port *ap = qc->ap; 927 928 if (ap->ops->error_handler) { 929 if (in_wq) { 930 /* EH might have kicked in while host lock is 931 * released. 932 */ 933 qc = ata_qc_from_tag(ap, qc->tag); 934 if (qc) { 935 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 936 ata_sff_irq_on(ap); 937 ata_qc_complete(qc); 938 } else 939 ata_port_freeze(ap); 940 } 941 } else { 942 if (likely(!(qc->err_mask & AC_ERR_HSM))) 943 ata_qc_complete(qc); 944 else 945 ata_port_freeze(ap); 946 } 947 } else { 948 if (in_wq) { 949 ata_sff_irq_on(ap); 950 ata_qc_complete(qc); 951 } else 952 ata_qc_complete(qc); 953 } 954 } 955 956 /** 957 * ata_sff_hsm_move - move the HSM to the next state. 958 * @ap: the target ata_port 959 * @qc: qc on going 960 * @status: current device status 961 * @in_wq: 1 if called from workqueue, 0 otherwise 962 * 963 * RETURNS: 964 * 1 when poll next status needed, 0 otherwise. 965 */ 966 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 967 u8 status, int in_wq) 968 { 969 struct ata_link *link = qc->dev->link; 970 struct ata_eh_info *ehi = &link->eh_info; 971 int poll_next; 972 973 lockdep_assert_held(ap->lock); 974 975 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 976 977 /* Make sure ata_sff_qc_issue() does not throw things 978 * like DMA polling into the workqueue. Notice that 979 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 980 */ 981 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 982 983 fsm_start: 984 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 985 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 986 987 switch (ap->hsm_task_state) { 988 case HSM_ST_FIRST: 989 /* Send first data block or PACKET CDB */ 990 991 /* If polling, we will stay in the work queue after 992 * sending the data. Otherwise, interrupt handler 993 * takes over after sending the data. 994 */ 995 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 996 997 /* check device status */ 998 if (unlikely((status & ATA_DRQ) == 0)) { 999 /* handle BSY=0, DRQ=0 as error */ 1000 if (likely(status & (ATA_ERR | ATA_DF))) 1001 /* device stops HSM for abort/error */ 1002 qc->err_mask |= AC_ERR_DEV; 1003 else { 1004 /* HSM violation. Let EH handle this */ 1005 ata_ehi_push_desc(ehi, 1006 "ST_FIRST: !(DRQ|ERR|DF)"); 1007 qc->err_mask |= AC_ERR_HSM; 1008 } 1009 1010 ap->hsm_task_state = HSM_ST_ERR; 1011 goto fsm_start; 1012 } 1013 1014 /* Device should not ask for data transfer (DRQ=1) 1015 * when it finds something wrong. 1016 * We ignore DRQ here and stop the HSM by 1017 * changing hsm_task_state to HSM_ST_ERR and 1018 * let the EH abort the command or reset the device. 1019 */ 1020 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1021 /* Some ATAPI tape drives forget to clear the ERR bit 1022 * when doing the next command (mostly request sense). 1023 * We ignore ERR here to workaround and proceed sending 1024 * the CDB. 1025 */ 1026 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1027 ata_ehi_push_desc(ehi, "ST_FIRST: " 1028 "DRQ=1 with device error, " 1029 "dev_stat 0x%X", status); 1030 qc->err_mask |= AC_ERR_HSM; 1031 ap->hsm_task_state = HSM_ST_ERR; 1032 goto fsm_start; 1033 } 1034 } 1035 1036 if (qc->tf.protocol == ATA_PROT_PIO) { 1037 /* PIO data out protocol. 1038 * send first data block. 1039 */ 1040 1041 /* ata_pio_sectors() might change the state 1042 * to HSM_ST_LAST. so, the state is changed here 1043 * before ata_pio_sectors(). 1044 */ 1045 ap->hsm_task_state = HSM_ST; 1046 ata_pio_sectors(qc); 1047 } else 1048 /* send CDB */ 1049 atapi_send_cdb(ap, qc); 1050 1051 /* if polling, ata_sff_pio_task() handles the rest. 1052 * otherwise, interrupt handler takes over from here. 1053 */ 1054 break; 1055 1056 case HSM_ST: 1057 /* complete command or read/write the data register */ 1058 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1059 /* ATAPI PIO protocol */ 1060 if ((status & ATA_DRQ) == 0) { 1061 /* No more data to transfer or device error. 1062 * Device error will be tagged in HSM_ST_LAST. 1063 */ 1064 ap->hsm_task_state = HSM_ST_LAST; 1065 goto fsm_start; 1066 } 1067 1068 /* Device should not ask for data transfer (DRQ=1) 1069 * when it finds something wrong. 1070 * We ignore DRQ here and stop the HSM by 1071 * changing hsm_task_state to HSM_ST_ERR and 1072 * let the EH abort the command or reset the device. 1073 */ 1074 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1075 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1076 "DRQ=1 with device error, " 1077 "dev_stat 0x%X", status); 1078 qc->err_mask |= AC_ERR_HSM; 1079 ap->hsm_task_state = HSM_ST_ERR; 1080 goto fsm_start; 1081 } 1082 1083 atapi_pio_bytes(qc); 1084 1085 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1086 /* bad ireason reported by device */ 1087 goto fsm_start; 1088 1089 } else { 1090 /* ATA PIO protocol */ 1091 if (unlikely((status & ATA_DRQ) == 0)) { 1092 /* handle BSY=0, DRQ=0 as error */ 1093 if (likely(status & (ATA_ERR | ATA_DF))) { 1094 /* device stops HSM for abort/error */ 1095 qc->err_mask |= AC_ERR_DEV; 1096 1097 /* If diagnostic failed and this is 1098 * IDENTIFY, it's likely a phantom 1099 * device. Mark hint. 1100 */ 1101 if (qc->dev->horkage & 1102 ATA_HORKAGE_DIAGNOSTIC) 1103 qc->err_mask |= 1104 AC_ERR_NODEV_HINT; 1105 } else { 1106 /* HSM violation. Let EH handle this. 1107 * Phantom devices also trigger this 1108 * condition. Mark hint. 1109 */ 1110 ata_ehi_push_desc(ehi, "ST-ATA: " 1111 "DRQ=0 without device error, " 1112 "dev_stat 0x%X", status); 1113 qc->err_mask |= AC_ERR_HSM | 1114 AC_ERR_NODEV_HINT; 1115 } 1116 1117 ap->hsm_task_state = HSM_ST_ERR; 1118 goto fsm_start; 1119 } 1120 1121 /* For PIO reads, some devices may ask for 1122 * data transfer (DRQ=1) alone with ERR=1. 1123 * We respect DRQ here and transfer one 1124 * block of junk data before changing the 1125 * hsm_task_state to HSM_ST_ERR. 1126 * 1127 * For PIO writes, ERR=1 DRQ=1 doesn't make 1128 * sense since the data block has been 1129 * transferred to the device. 1130 */ 1131 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1132 /* data might be corrputed */ 1133 qc->err_mask |= AC_ERR_DEV; 1134 1135 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1136 ata_pio_sectors(qc); 1137 status = ata_wait_idle(ap); 1138 } 1139 1140 if (status & (ATA_BUSY | ATA_DRQ)) { 1141 ata_ehi_push_desc(ehi, "ST-ATA: " 1142 "BUSY|DRQ persists on ERR|DF, " 1143 "dev_stat 0x%X", status); 1144 qc->err_mask |= AC_ERR_HSM; 1145 } 1146 1147 /* There are oddball controllers with 1148 * status register stuck at 0x7f and 1149 * lbal/m/h at zero which makes it 1150 * pass all other presence detection 1151 * mechanisms we have. Set NODEV_HINT 1152 * for it. Kernel bz#7241. 1153 */ 1154 if (status == 0x7f) 1155 qc->err_mask |= AC_ERR_NODEV_HINT; 1156 1157 /* ata_pio_sectors() might change the 1158 * state to HSM_ST_LAST. so, the state 1159 * is changed after ata_pio_sectors(). 1160 */ 1161 ap->hsm_task_state = HSM_ST_ERR; 1162 goto fsm_start; 1163 } 1164 1165 ata_pio_sectors(qc); 1166 1167 if (ap->hsm_task_state == HSM_ST_LAST && 1168 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1169 /* all data read */ 1170 status = ata_wait_idle(ap); 1171 goto fsm_start; 1172 } 1173 } 1174 1175 poll_next = 1; 1176 break; 1177 1178 case HSM_ST_LAST: 1179 if (unlikely(!ata_ok(status))) { 1180 qc->err_mask |= __ac_err_mask(status); 1181 ap->hsm_task_state = HSM_ST_ERR; 1182 goto fsm_start; 1183 } 1184 1185 /* no more data to transfer */ 1186 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1187 ap->print_id, qc->dev->devno, status); 1188 1189 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1190 1191 ap->hsm_task_state = HSM_ST_IDLE; 1192 1193 /* complete taskfile transaction */ 1194 ata_hsm_qc_complete(qc, in_wq); 1195 1196 poll_next = 0; 1197 break; 1198 1199 case HSM_ST_ERR: 1200 ap->hsm_task_state = HSM_ST_IDLE; 1201 1202 /* complete taskfile transaction */ 1203 ata_hsm_qc_complete(qc, in_wq); 1204 1205 poll_next = 0; 1206 break; 1207 default: 1208 poll_next = 0; 1209 WARN(true, "ata%d: SFF host state machine in invalid state %d", 1210 ap->print_id, ap->hsm_task_state); 1211 } 1212 1213 return poll_next; 1214 } 1215 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1216 1217 void ata_sff_queue_work(struct work_struct *work) 1218 { 1219 queue_work(ata_sff_wq, work); 1220 } 1221 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1222 1223 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1224 { 1225 queue_delayed_work(ata_sff_wq, dwork, delay); 1226 } 1227 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1228 1229 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1230 { 1231 struct ata_port *ap = link->ap; 1232 1233 WARN_ON((ap->sff_pio_task_link != NULL) && 1234 (ap->sff_pio_task_link != link)); 1235 ap->sff_pio_task_link = link; 1236 1237 /* may fail if ata_sff_flush_pio_task() in progress */ 1238 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1239 } 1240 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1241 1242 void ata_sff_flush_pio_task(struct ata_port *ap) 1243 { 1244 DPRINTK("ENTER\n"); 1245 1246 cancel_delayed_work_sync(&ap->sff_pio_task); 1247 1248 /* 1249 * We wanna reset the HSM state to IDLE. If we do so without 1250 * grabbing the port lock, critical sections protected by it which 1251 * expect the HSM state to stay stable may get surprised. For 1252 * example, we may set IDLE in between the time 1253 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1254 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1255 */ 1256 spin_lock_irq(ap->lock); 1257 ap->hsm_task_state = HSM_ST_IDLE; 1258 spin_unlock_irq(ap->lock); 1259 1260 ap->sff_pio_task_link = NULL; 1261 1262 if (ata_msg_ctl(ap)) 1263 ata_port_dbg(ap, "%s: EXIT\n", __func__); 1264 } 1265 1266 static void ata_sff_pio_task(struct work_struct *work) 1267 { 1268 struct ata_port *ap = 1269 container_of(work, struct ata_port, sff_pio_task.work); 1270 struct ata_link *link = ap->sff_pio_task_link; 1271 struct ata_queued_cmd *qc; 1272 u8 status; 1273 int poll_next; 1274 1275 spin_lock_irq(ap->lock); 1276 1277 BUG_ON(ap->sff_pio_task_link == NULL); 1278 /* qc can be NULL if timeout occurred */ 1279 qc = ata_qc_from_tag(ap, link->active_tag); 1280 if (!qc) { 1281 ap->sff_pio_task_link = NULL; 1282 goto out_unlock; 1283 } 1284 1285 fsm_start: 1286 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1287 1288 /* 1289 * This is purely heuristic. This is a fast path. 1290 * Sometimes when we enter, BSY will be cleared in 1291 * a chk-status or two. If not, the drive is probably seeking 1292 * or something. Snooze for a couple msecs, then 1293 * chk-status again. If still busy, queue delayed work. 1294 */ 1295 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1296 if (status & ATA_BUSY) { 1297 spin_unlock_irq(ap->lock); 1298 ata_msleep(ap, 2); 1299 spin_lock_irq(ap->lock); 1300 1301 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1302 if (status & ATA_BUSY) { 1303 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1304 goto out_unlock; 1305 } 1306 } 1307 1308 /* 1309 * hsm_move() may trigger another command to be processed. 1310 * clean the link beforehand. 1311 */ 1312 ap->sff_pio_task_link = NULL; 1313 /* move the HSM */ 1314 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1315 1316 /* another command or interrupt handler 1317 * may be running at this point. 1318 */ 1319 if (poll_next) 1320 goto fsm_start; 1321 out_unlock: 1322 spin_unlock_irq(ap->lock); 1323 } 1324 1325 /** 1326 * ata_sff_qc_issue - issue taskfile to a SFF controller 1327 * @qc: command to issue to device 1328 * 1329 * This function issues a PIO or NODATA command to a SFF 1330 * controller. 1331 * 1332 * LOCKING: 1333 * spin_lock_irqsave(host lock) 1334 * 1335 * RETURNS: 1336 * Zero on success, AC_ERR_* mask on failure 1337 */ 1338 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1339 { 1340 struct ata_port *ap = qc->ap; 1341 struct ata_link *link = qc->dev->link; 1342 1343 /* Use polling pio if the LLD doesn't handle 1344 * interrupt driven pio and atapi CDB interrupt. 1345 */ 1346 if (ap->flags & ATA_FLAG_PIO_POLLING) 1347 qc->tf.flags |= ATA_TFLAG_POLLING; 1348 1349 /* select the device */ 1350 ata_dev_select(ap, qc->dev->devno, 1, 0); 1351 1352 /* start the command */ 1353 switch (qc->tf.protocol) { 1354 case ATA_PROT_NODATA: 1355 if (qc->tf.flags & ATA_TFLAG_POLLING) 1356 ata_qc_set_polling(qc); 1357 1358 ata_tf_to_host(ap, &qc->tf); 1359 ap->hsm_task_state = HSM_ST_LAST; 1360 1361 if (qc->tf.flags & ATA_TFLAG_POLLING) 1362 ata_sff_queue_pio_task(link, 0); 1363 1364 break; 1365 1366 case ATA_PROT_PIO: 1367 if (qc->tf.flags & ATA_TFLAG_POLLING) 1368 ata_qc_set_polling(qc); 1369 1370 ata_tf_to_host(ap, &qc->tf); 1371 1372 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1373 /* PIO data out protocol */ 1374 ap->hsm_task_state = HSM_ST_FIRST; 1375 ata_sff_queue_pio_task(link, 0); 1376 1377 /* always send first data block using the 1378 * ata_sff_pio_task() codepath. 1379 */ 1380 } else { 1381 /* PIO data in protocol */ 1382 ap->hsm_task_state = HSM_ST; 1383 1384 if (qc->tf.flags & ATA_TFLAG_POLLING) 1385 ata_sff_queue_pio_task(link, 0); 1386 1387 /* if polling, ata_sff_pio_task() handles the 1388 * rest. otherwise, interrupt handler takes 1389 * over from here. 1390 */ 1391 } 1392 1393 break; 1394 1395 case ATAPI_PROT_PIO: 1396 case ATAPI_PROT_NODATA: 1397 if (qc->tf.flags & ATA_TFLAG_POLLING) 1398 ata_qc_set_polling(qc); 1399 1400 ata_tf_to_host(ap, &qc->tf); 1401 1402 ap->hsm_task_state = HSM_ST_FIRST; 1403 1404 /* send cdb by polling if no cdb interrupt */ 1405 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1406 (qc->tf.flags & ATA_TFLAG_POLLING)) 1407 ata_sff_queue_pio_task(link, 0); 1408 break; 1409 1410 default: 1411 return AC_ERR_SYSTEM; 1412 } 1413 1414 return 0; 1415 } 1416 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1417 1418 /** 1419 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1420 * @qc: qc to fill result TF for 1421 * 1422 * @qc is finished and result TF needs to be filled. Fill it 1423 * using ->sff_tf_read. 1424 * 1425 * LOCKING: 1426 * spin_lock_irqsave(host lock) 1427 * 1428 * RETURNS: 1429 * true indicating that result TF is successfully filled. 1430 */ 1431 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1432 { 1433 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1434 return true; 1435 } 1436 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1437 1438 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1439 { 1440 ap->stats.idle_irq++; 1441 1442 #ifdef ATA_IRQ_TRAP 1443 if ((ap->stats.idle_irq % 1000) == 0) { 1444 ap->ops->sff_check_status(ap); 1445 if (ap->ops->sff_irq_clear) 1446 ap->ops->sff_irq_clear(ap); 1447 ata_port_warn(ap, "irq trap\n"); 1448 return 1; 1449 } 1450 #endif 1451 return 0; /* irq not handled */ 1452 } 1453 1454 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1455 struct ata_queued_cmd *qc, 1456 bool hsmv_on_idle) 1457 { 1458 u8 status; 1459 1460 VPRINTK("ata%u: protocol %d task_state %d\n", 1461 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1462 1463 /* Check whether we are expecting interrupt in this state */ 1464 switch (ap->hsm_task_state) { 1465 case HSM_ST_FIRST: 1466 /* Some pre-ATAPI-4 devices assert INTRQ 1467 * at this state when ready to receive CDB. 1468 */ 1469 1470 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1471 * The flag was turned on only for atapi devices. No 1472 * need to check ata_is_atapi(qc->tf.protocol) again. 1473 */ 1474 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1475 return ata_sff_idle_irq(ap); 1476 break; 1477 case HSM_ST_IDLE: 1478 return ata_sff_idle_irq(ap); 1479 default: 1480 break; 1481 } 1482 1483 /* check main status, clearing INTRQ if needed */ 1484 status = ata_sff_irq_status(ap); 1485 if (status & ATA_BUSY) { 1486 if (hsmv_on_idle) { 1487 /* BMDMA engine is already stopped, we're screwed */ 1488 qc->err_mask |= AC_ERR_HSM; 1489 ap->hsm_task_state = HSM_ST_ERR; 1490 } else 1491 return ata_sff_idle_irq(ap); 1492 } 1493 1494 /* clear irq events */ 1495 if (ap->ops->sff_irq_clear) 1496 ap->ops->sff_irq_clear(ap); 1497 1498 ata_sff_hsm_move(ap, qc, status, 0); 1499 1500 return 1; /* irq handled */ 1501 } 1502 1503 /** 1504 * ata_sff_port_intr - Handle SFF port interrupt 1505 * @ap: Port on which interrupt arrived (possibly...) 1506 * @qc: Taskfile currently active in engine 1507 * 1508 * Handle port interrupt for given queued command. 1509 * 1510 * LOCKING: 1511 * spin_lock_irqsave(host lock) 1512 * 1513 * RETURNS: 1514 * One if interrupt was handled, zero if not (shared irq). 1515 */ 1516 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1517 { 1518 return __ata_sff_port_intr(ap, qc, false); 1519 } 1520 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1521 1522 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1523 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1524 { 1525 struct ata_host *host = dev_instance; 1526 bool retried = false; 1527 unsigned int i; 1528 unsigned int handled, idle, polling; 1529 unsigned long flags; 1530 1531 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1532 spin_lock_irqsave(&host->lock, flags); 1533 1534 retry: 1535 handled = idle = polling = 0; 1536 for (i = 0; i < host->n_ports; i++) { 1537 struct ata_port *ap = host->ports[i]; 1538 struct ata_queued_cmd *qc; 1539 1540 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1541 if (qc) { 1542 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1543 handled |= port_intr(ap, qc); 1544 else 1545 polling |= 1 << i; 1546 } else 1547 idle |= 1 << i; 1548 } 1549 1550 /* 1551 * If no port was expecting IRQ but the controller is actually 1552 * asserting IRQ line, nobody cared will ensue. Check IRQ 1553 * pending status if available and clear spurious IRQ. 1554 */ 1555 if (!handled && !retried) { 1556 bool retry = false; 1557 1558 for (i = 0; i < host->n_ports; i++) { 1559 struct ata_port *ap = host->ports[i]; 1560 1561 if (polling & (1 << i)) 1562 continue; 1563 1564 if (!ap->ops->sff_irq_check || 1565 !ap->ops->sff_irq_check(ap)) 1566 continue; 1567 1568 if (idle & (1 << i)) { 1569 ap->ops->sff_check_status(ap); 1570 if (ap->ops->sff_irq_clear) 1571 ap->ops->sff_irq_clear(ap); 1572 } else { 1573 /* clear INTRQ and check if BUSY cleared */ 1574 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1575 retry |= true; 1576 /* 1577 * With command in flight, we can't do 1578 * sff_irq_clear() w/o racing with completion. 1579 */ 1580 } 1581 } 1582 1583 if (retry) { 1584 retried = true; 1585 goto retry; 1586 } 1587 } 1588 1589 spin_unlock_irqrestore(&host->lock, flags); 1590 1591 return IRQ_RETVAL(handled); 1592 } 1593 1594 /** 1595 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1596 * @irq: irq line (unused) 1597 * @dev_instance: pointer to our ata_host information structure 1598 * 1599 * Default interrupt handler for PCI IDE devices. Calls 1600 * ata_sff_port_intr() for each port that is not disabled. 1601 * 1602 * LOCKING: 1603 * Obtains host lock during operation. 1604 * 1605 * RETURNS: 1606 * IRQ_NONE or IRQ_HANDLED. 1607 */ 1608 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1609 { 1610 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1611 } 1612 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1613 1614 /** 1615 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1616 * @ap: port that appears to have timed out 1617 * 1618 * Called from the libata error handlers when the core code suspects 1619 * an interrupt has been lost. If it has complete anything we can and 1620 * then return. Interface must support altstatus for this faster 1621 * recovery to occur. 1622 * 1623 * Locking: 1624 * Caller holds host lock 1625 */ 1626 1627 void ata_sff_lost_interrupt(struct ata_port *ap) 1628 { 1629 u8 status; 1630 struct ata_queued_cmd *qc; 1631 1632 /* Only one outstanding command per SFF channel */ 1633 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1634 /* We cannot lose an interrupt on a non-existent or polled command */ 1635 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1636 return; 1637 /* See if the controller thinks it is still busy - if so the command 1638 isn't a lost IRQ but is still in progress */ 1639 status = ata_sff_altstatus(ap); 1640 if (status & ATA_BUSY) 1641 return; 1642 1643 /* There was a command running, we are no longer busy and we have 1644 no interrupt. */ 1645 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", 1646 status); 1647 /* Run the host interrupt logic as if the interrupt had not been 1648 lost */ 1649 ata_sff_port_intr(ap, qc); 1650 } 1651 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1652 1653 /** 1654 * ata_sff_freeze - Freeze SFF controller port 1655 * @ap: port to freeze 1656 * 1657 * Freeze SFF controller port. 1658 * 1659 * LOCKING: 1660 * Inherited from caller. 1661 */ 1662 void ata_sff_freeze(struct ata_port *ap) 1663 { 1664 ap->ctl |= ATA_NIEN; 1665 ap->last_ctl = ap->ctl; 1666 1667 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1668 ata_sff_set_devctl(ap, ap->ctl); 1669 1670 /* Under certain circumstances, some controllers raise IRQ on 1671 * ATA_NIEN manipulation. Also, many controllers fail to mask 1672 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1673 */ 1674 ap->ops->sff_check_status(ap); 1675 1676 if (ap->ops->sff_irq_clear) 1677 ap->ops->sff_irq_clear(ap); 1678 } 1679 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1680 1681 /** 1682 * ata_sff_thaw - Thaw SFF controller port 1683 * @ap: port to thaw 1684 * 1685 * Thaw SFF controller port. 1686 * 1687 * LOCKING: 1688 * Inherited from caller. 1689 */ 1690 void ata_sff_thaw(struct ata_port *ap) 1691 { 1692 /* clear & re-enable interrupts */ 1693 ap->ops->sff_check_status(ap); 1694 if (ap->ops->sff_irq_clear) 1695 ap->ops->sff_irq_clear(ap); 1696 ata_sff_irq_on(ap); 1697 } 1698 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1699 1700 /** 1701 * ata_sff_prereset - prepare SFF link for reset 1702 * @link: SFF link to be reset 1703 * @deadline: deadline jiffies for the operation 1704 * 1705 * SFF link @link is about to be reset. Initialize it. It first 1706 * calls ata_std_prereset() and wait for !BSY if the port is 1707 * being softreset. 1708 * 1709 * LOCKING: 1710 * Kernel thread context (may sleep) 1711 * 1712 * RETURNS: 1713 * 0 on success, -errno otherwise. 1714 */ 1715 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1716 { 1717 struct ata_eh_context *ehc = &link->eh_context; 1718 int rc; 1719 1720 rc = ata_std_prereset(link, deadline); 1721 if (rc) 1722 return rc; 1723 1724 /* if we're about to do hardreset, nothing more to do */ 1725 if (ehc->i.action & ATA_EH_HARDRESET) 1726 return 0; 1727 1728 /* wait for !BSY if we don't know that no device is attached */ 1729 if (!ata_link_offline(link)) { 1730 rc = ata_sff_wait_ready(link, deadline); 1731 if (rc && rc != -ENODEV) { 1732 ata_link_warn(link, 1733 "device not ready (errno=%d), forcing hardreset\n", 1734 rc); 1735 ehc->i.action |= ATA_EH_HARDRESET; 1736 } 1737 } 1738 1739 return 0; 1740 } 1741 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1742 1743 /** 1744 * ata_devchk - PATA device presence detection 1745 * @ap: ATA channel to examine 1746 * @device: Device to examine (starting at zero) 1747 * 1748 * This technique was originally described in 1749 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1750 * later found its way into the ATA/ATAPI spec. 1751 * 1752 * Write a pattern to the ATA shadow registers, 1753 * and if a device is present, it will respond by 1754 * correctly storing and echoing back the 1755 * ATA shadow register contents. 1756 * 1757 * LOCKING: 1758 * caller. 1759 */ 1760 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1761 { 1762 struct ata_ioports *ioaddr = &ap->ioaddr; 1763 u8 nsect, lbal; 1764 1765 ap->ops->sff_dev_select(ap, device); 1766 1767 iowrite8(0x55, ioaddr->nsect_addr); 1768 iowrite8(0xaa, ioaddr->lbal_addr); 1769 1770 iowrite8(0xaa, ioaddr->nsect_addr); 1771 iowrite8(0x55, ioaddr->lbal_addr); 1772 1773 iowrite8(0x55, ioaddr->nsect_addr); 1774 iowrite8(0xaa, ioaddr->lbal_addr); 1775 1776 nsect = ioread8(ioaddr->nsect_addr); 1777 lbal = ioread8(ioaddr->lbal_addr); 1778 1779 if ((nsect == 0x55) && (lbal == 0xaa)) 1780 return 1; /* we found a device */ 1781 1782 return 0; /* nothing found */ 1783 } 1784 1785 /** 1786 * ata_sff_dev_classify - Parse returned ATA device signature 1787 * @dev: ATA device to classify (starting at zero) 1788 * @present: device seems present 1789 * @r_err: Value of error register on completion 1790 * 1791 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1792 * an ATA/ATAPI-defined set of values is placed in the ATA 1793 * shadow registers, indicating the results of device detection 1794 * and diagnostics. 1795 * 1796 * Select the ATA device, and read the values from the ATA shadow 1797 * registers. Then parse according to the Error register value, 1798 * and the spec-defined values examined by ata_dev_classify(). 1799 * 1800 * LOCKING: 1801 * caller. 1802 * 1803 * RETURNS: 1804 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1805 */ 1806 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1807 u8 *r_err) 1808 { 1809 struct ata_port *ap = dev->link->ap; 1810 struct ata_taskfile tf; 1811 unsigned int class; 1812 u8 err; 1813 1814 ap->ops->sff_dev_select(ap, dev->devno); 1815 1816 memset(&tf, 0, sizeof(tf)); 1817 1818 ap->ops->sff_tf_read(ap, &tf); 1819 err = tf.feature; 1820 if (r_err) 1821 *r_err = err; 1822 1823 /* see if device passed diags: continue and warn later */ 1824 if (err == 0) 1825 /* diagnostic fail : do nothing _YET_ */ 1826 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1827 else if (err == 1) 1828 /* do nothing */ ; 1829 else if ((dev->devno == 0) && (err == 0x81)) 1830 /* do nothing */ ; 1831 else 1832 return ATA_DEV_NONE; 1833 1834 /* determine if device is ATA or ATAPI */ 1835 class = ata_dev_classify(&tf); 1836 1837 if (class == ATA_DEV_UNKNOWN) { 1838 /* If the device failed diagnostic, it's likely to 1839 * have reported incorrect device signature too. 1840 * Assume ATA device if the device seems present but 1841 * device signature is invalid with diagnostic 1842 * failure. 1843 */ 1844 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1845 class = ATA_DEV_ATA; 1846 else 1847 class = ATA_DEV_NONE; 1848 } else if ((class == ATA_DEV_ATA) && 1849 (ap->ops->sff_check_status(ap) == 0)) 1850 class = ATA_DEV_NONE; 1851 1852 return class; 1853 } 1854 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1855 1856 /** 1857 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1858 * @link: SFF link which is just reset 1859 * @devmask: mask of present devices 1860 * @deadline: deadline jiffies for the operation 1861 * 1862 * Wait devices attached to SFF @link to become ready after 1863 * reset. It contains preceding 150ms wait to avoid accessing TF 1864 * status register too early. 1865 * 1866 * LOCKING: 1867 * Kernel thread context (may sleep). 1868 * 1869 * RETURNS: 1870 * 0 on success, -ENODEV if some or all of devices in @devmask 1871 * don't seem to exist. -errno on other errors. 1872 */ 1873 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1874 unsigned long deadline) 1875 { 1876 struct ata_port *ap = link->ap; 1877 struct ata_ioports *ioaddr = &ap->ioaddr; 1878 unsigned int dev0 = devmask & (1 << 0); 1879 unsigned int dev1 = devmask & (1 << 1); 1880 int rc, ret = 0; 1881 1882 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1883 1884 /* always check readiness of the master device */ 1885 rc = ata_sff_wait_ready(link, deadline); 1886 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1887 * and TF status is 0xff, bail out on it too. 1888 */ 1889 if (rc) 1890 return rc; 1891 1892 /* if device 1 was found in ata_devchk, wait for register 1893 * access briefly, then wait for BSY to clear. 1894 */ 1895 if (dev1) { 1896 int i; 1897 1898 ap->ops->sff_dev_select(ap, 1); 1899 1900 /* Wait for register access. Some ATAPI devices fail 1901 * to set nsect/lbal after reset, so don't waste too 1902 * much time on it. We're gonna wait for !BSY anyway. 1903 */ 1904 for (i = 0; i < 2; i++) { 1905 u8 nsect, lbal; 1906 1907 nsect = ioread8(ioaddr->nsect_addr); 1908 lbal = ioread8(ioaddr->lbal_addr); 1909 if ((nsect == 1) && (lbal == 1)) 1910 break; 1911 ata_msleep(ap, 50); /* give drive a breather */ 1912 } 1913 1914 rc = ata_sff_wait_ready(link, deadline); 1915 if (rc) { 1916 if (rc != -ENODEV) 1917 return rc; 1918 ret = rc; 1919 } 1920 } 1921 1922 /* is all this really necessary? */ 1923 ap->ops->sff_dev_select(ap, 0); 1924 if (dev1) 1925 ap->ops->sff_dev_select(ap, 1); 1926 if (dev0) 1927 ap->ops->sff_dev_select(ap, 0); 1928 1929 return ret; 1930 } 1931 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 1932 1933 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1934 unsigned long deadline) 1935 { 1936 struct ata_ioports *ioaddr = &ap->ioaddr; 1937 1938 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 1939 1940 if (ap->ioaddr.ctl_addr) { 1941 /* software reset. causes dev0 to be selected */ 1942 iowrite8(ap->ctl, ioaddr->ctl_addr); 1943 udelay(20); /* FIXME: flush */ 1944 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 1945 udelay(20); /* FIXME: flush */ 1946 iowrite8(ap->ctl, ioaddr->ctl_addr); 1947 ap->last_ctl = ap->ctl; 1948 } 1949 1950 /* wait the port to become ready */ 1951 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 1952 } 1953 1954 /** 1955 * ata_sff_softreset - reset host port via ATA SRST 1956 * @link: ATA link to reset 1957 * @classes: resulting classes of attached devices 1958 * @deadline: deadline jiffies for the operation 1959 * 1960 * Reset host port using ATA SRST. 1961 * 1962 * LOCKING: 1963 * Kernel thread context (may sleep) 1964 * 1965 * RETURNS: 1966 * 0 on success, -errno otherwise. 1967 */ 1968 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 1969 unsigned long deadline) 1970 { 1971 struct ata_port *ap = link->ap; 1972 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 1973 unsigned int devmask = 0; 1974 int rc; 1975 u8 err; 1976 1977 DPRINTK("ENTER\n"); 1978 1979 /* determine if device 0/1 are present */ 1980 if (ata_devchk(ap, 0)) 1981 devmask |= (1 << 0); 1982 if (slave_possible && ata_devchk(ap, 1)) 1983 devmask |= (1 << 1); 1984 1985 /* select device 0 again */ 1986 ap->ops->sff_dev_select(ap, 0); 1987 1988 /* issue bus reset */ 1989 DPRINTK("about to softreset, devmask=%x\n", devmask); 1990 rc = ata_bus_softreset(ap, devmask, deadline); 1991 /* if link is occupied, -ENODEV too is an error */ 1992 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 1993 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 1994 return rc; 1995 } 1996 1997 /* determine by signature whether we have ATA or ATAPI devices */ 1998 classes[0] = ata_sff_dev_classify(&link->device[0], 1999 devmask & (1 << 0), &err); 2000 if (slave_possible && err != 0x81) 2001 classes[1] = ata_sff_dev_classify(&link->device[1], 2002 devmask & (1 << 1), &err); 2003 2004 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2005 return 0; 2006 } 2007 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2008 2009 /** 2010 * sata_sff_hardreset - reset host port via SATA phy reset 2011 * @link: link to reset 2012 * @class: resulting class of attached device 2013 * @deadline: deadline jiffies for the operation 2014 * 2015 * SATA phy-reset host port using DET bits of SControl register, 2016 * wait for !BSY and classify the attached device. 2017 * 2018 * LOCKING: 2019 * Kernel thread context (may sleep) 2020 * 2021 * RETURNS: 2022 * 0 on success, -errno otherwise. 2023 */ 2024 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2025 unsigned long deadline) 2026 { 2027 struct ata_eh_context *ehc = &link->eh_context; 2028 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2029 bool online; 2030 int rc; 2031 2032 rc = sata_link_hardreset(link, timing, deadline, &online, 2033 ata_sff_check_ready); 2034 if (online) 2035 *class = ata_sff_dev_classify(link->device, 1, NULL); 2036 2037 DPRINTK("EXIT, class=%u\n", *class); 2038 return rc; 2039 } 2040 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2041 2042 /** 2043 * ata_sff_postreset - SFF postreset callback 2044 * @link: the target SFF ata_link 2045 * @classes: classes of attached devices 2046 * 2047 * This function is invoked after a successful reset. It first 2048 * calls ata_std_postreset() and performs SFF specific postreset 2049 * processing. 2050 * 2051 * LOCKING: 2052 * Kernel thread context (may sleep) 2053 */ 2054 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2055 { 2056 struct ata_port *ap = link->ap; 2057 2058 ata_std_postreset(link, classes); 2059 2060 /* is double-select really necessary? */ 2061 if (classes[0] != ATA_DEV_NONE) 2062 ap->ops->sff_dev_select(ap, 1); 2063 if (classes[1] != ATA_DEV_NONE) 2064 ap->ops->sff_dev_select(ap, 0); 2065 2066 /* bail out if no device is present */ 2067 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2068 DPRINTK("EXIT, no device\n"); 2069 return; 2070 } 2071 2072 /* set up device control */ 2073 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2074 ata_sff_set_devctl(ap, ap->ctl); 2075 ap->last_ctl = ap->ctl; 2076 } 2077 } 2078 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2079 2080 /** 2081 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2082 * @qc: command 2083 * 2084 * Drain the FIFO and device of any stuck data following a command 2085 * failing to complete. In some cases this is necessary before a 2086 * reset will recover the device. 2087 * 2088 */ 2089 2090 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2091 { 2092 int count; 2093 struct ata_port *ap; 2094 2095 /* We only need to flush incoming data when a command was running */ 2096 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2097 return; 2098 2099 ap = qc->ap; 2100 /* Drain up to 64K of data before we give up this recovery method */ 2101 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2102 && count < 65536; count += 2) 2103 ioread16(ap->ioaddr.data_addr); 2104 2105 /* Can become DEBUG later */ 2106 if (count) 2107 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2108 2109 } 2110 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2111 2112 /** 2113 * ata_sff_error_handler - Stock error handler for SFF controller 2114 * @ap: port to handle error for 2115 * 2116 * Stock error handler for SFF controller. It can handle both 2117 * PATA and SATA controllers. Many controllers should be able to 2118 * use this EH as-is or with some added handling before and 2119 * after. 2120 * 2121 * LOCKING: 2122 * Kernel thread context (may sleep) 2123 */ 2124 void ata_sff_error_handler(struct ata_port *ap) 2125 { 2126 ata_reset_fn_t softreset = ap->ops->softreset; 2127 ata_reset_fn_t hardreset = ap->ops->hardreset; 2128 struct ata_queued_cmd *qc; 2129 unsigned long flags; 2130 2131 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2132 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2133 qc = NULL; 2134 2135 spin_lock_irqsave(ap->lock, flags); 2136 2137 /* 2138 * We *MUST* do FIFO draining before we issue a reset as 2139 * several devices helpfully clear their internal state and 2140 * will lock solid if we touch the data port post reset. Pass 2141 * qc in case anyone wants to do different PIO/DMA recovery or 2142 * has per command fixups 2143 */ 2144 if (ap->ops->sff_drain_fifo) 2145 ap->ops->sff_drain_fifo(qc); 2146 2147 spin_unlock_irqrestore(ap->lock, flags); 2148 2149 /* ignore built-in hardresets if SCR access is not available */ 2150 if ((hardreset == sata_std_hardreset || 2151 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2152 hardreset = NULL; 2153 2154 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2155 ap->ops->postreset); 2156 } 2157 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2158 2159 /** 2160 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2161 * @ioaddr: IO address structure to be initialized 2162 * 2163 * Utility function which initializes data_addr, error_addr, 2164 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2165 * device_addr, status_addr, and command_addr to standard offsets 2166 * relative to cmd_addr. 2167 * 2168 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2169 */ 2170 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2171 { 2172 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2173 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2174 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2175 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2176 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2177 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2178 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2179 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2180 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2181 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2182 } 2183 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2184 2185 #ifdef CONFIG_PCI 2186 2187 static int ata_resources_present(struct pci_dev *pdev, int port) 2188 { 2189 int i; 2190 2191 /* Check the PCI resources for this channel are enabled */ 2192 port = port * 2; 2193 for (i = 0; i < 2; i++) { 2194 if (pci_resource_start(pdev, port + i) == 0 || 2195 pci_resource_len(pdev, port + i) == 0) 2196 return 0; 2197 } 2198 return 1; 2199 } 2200 2201 /** 2202 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2203 * @host: target ATA host 2204 * 2205 * Acquire native PCI ATA resources for @host and initialize the 2206 * first two ports of @host accordingly. Ports marked dummy are 2207 * skipped and allocation failure makes the port dummy. 2208 * 2209 * Note that native PCI resources are valid even for legacy hosts 2210 * as we fix up pdev resources array early in boot, so this 2211 * function can be used for both native and legacy SFF hosts. 2212 * 2213 * LOCKING: 2214 * Inherited from calling layer (may sleep). 2215 * 2216 * RETURNS: 2217 * 0 if at least one port is initialized, -ENODEV if no port is 2218 * available. 2219 */ 2220 int ata_pci_sff_init_host(struct ata_host *host) 2221 { 2222 struct device *gdev = host->dev; 2223 struct pci_dev *pdev = to_pci_dev(gdev); 2224 unsigned int mask = 0; 2225 int i, rc; 2226 2227 /* request, iomap BARs and init port addresses accordingly */ 2228 for (i = 0; i < 2; i++) { 2229 struct ata_port *ap = host->ports[i]; 2230 int base = i * 2; 2231 void __iomem * const *iomap; 2232 2233 if (ata_port_is_dummy(ap)) 2234 continue; 2235 2236 /* Discard disabled ports. Some controllers show 2237 * their unused channels this way. Disabled ports are 2238 * made dummy. 2239 */ 2240 if (!ata_resources_present(pdev, i)) { 2241 ap->ops = &ata_dummy_port_ops; 2242 continue; 2243 } 2244 2245 rc = pcim_iomap_regions(pdev, 0x3 << base, 2246 dev_driver_string(gdev)); 2247 if (rc) { 2248 dev_warn(gdev, 2249 "failed to request/iomap BARs for port %d (errno=%d)\n", 2250 i, rc); 2251 if (rc == -EBUSY) 2252 pcim_pin_device(pdev); 2253 ap->ops = &ata_dummy_port_ops; 2254 continue; 2255 } 2256 host->iomap = iomap = pcim_iomap_table(pdev); 2257 2258 ap->ioaddr.cmd_addr = iomap[base]; 2259 ap->ioaddr.altstatus_addr = 2260 ap->ioaddr.ctl_addr = (void __iomem *) 2261 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2262 ata_sff_std_ports(&ap->ioaddr); 2263 2264 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2265 (unsigned long long)pci_resource_start(pdev, base), 2266 (unsigned long long)pci_resource_start(pdev, base + 1)); 2267 2268 mask |= 1 << i; 2269 } 2270 2271 if (!mask) { 2272 dev_err(gdev, "no available native port\n"); 2273 return -ENODEV; 2274 } 2275 2276 return 0; 2277 } 2278 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2279 2280 /** 2281 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2282 * @pdev: target PCI device 2283 * @ppi: array of port_info, must be enough for two ports 2284 * @r_host: out argument for the initialized ATA host 2285 * 2286 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2287 * all PCI resources and initialize it accordingly in one go. 2288 * 2289 * LOCKING: 2290 * Inherited from calling layer (may sleep). 2291 * 2292 * RETURNS: 2293 * 0 on success, -errno otherwise. 2294 */ 2295 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2296 const struct ata_port_info * const *ppi, 2297 struct ata_host **r_host) 2298 { 2299 struct ata_host *host; 2300 int rc; 2301 2302 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2303 return -ENOMEM; 2304 2305 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2306 if (!host) { 2307 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2308 rc = -ENOMEM; 2309 goto err_out; 2310 } 2311 2312 rc = ata_pci_sff_init_host(host); 2313 if (rc) 2314 goto err_out; 2315 2316 devres_remove_group(&pdev->dev, NULL); 2317 *r_host = host; 2318 return 0; 2319 2320 err_out: 2321 devres_release_group(&pdev->dev, NULL); 2322 return rc; 2323 } 2324 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2325 2326 /** 2327 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2328 * @host: target SFF ATA host 2329 * @irq_handler: irq_handler used when requesting IRQ(s) 2330 * @sht: scsi_host_template to use when registering the host 2331 * 2332 * This is the counterpart of ata_host_activate() for SFF ATA 2333 * hosts. This separate helper is necessary because SFF hosts 2334 * use two separate interrupts in legacy mode. 2335 * 2336 * LOCKING: 2337 * Inherited from calling layer (may sleep). 2338 * 2339 * RETURNS: 2340 * 0 on success, -errno otherwise. 2341 */ 2342 int ata_pci_sff_activate_host(struct ata_host *host, 2343 irq_handler_t irq_handler, 2344 struct scsi_host_template *sht) 2345 { 2346 struct device *dev = host->dev; 2347 struct pci_dev *pdev = to_pci_dev(dev); 2348 const char *drv_name = dev_driver_string(host->dev); 2349 int legacy_mode = 0, rc; 2350 2351 rc = ata_host_start(host); 2352 if (rc) 2353 return rc; 2354 2355 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2356 u8 tmp8, mask = 0; 2357 2358 /* 2359 * ATA spec says we should use legacy mode when one 2360 * port is in legacy mode, but disabled ports on some 2361 * PCI hosts appear as fixed legacy ports, e.g SB600/700 2362 * on which the secondary port is not wired, so 2363 * ignore ports that are marked as 'dummy' during 2364 * this check 2365 */ 2366 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2367 if (!ata_port_is_dummy(host->ports[0])) 2368 mask |= (1 << 0); 2369 if (!ata_port_is_dummy(host->ports[1])) 2370 mask |= (1 << 2); 2371 if ((tmp8 & mask) != mask) 2372 legacy_mode = 1; 2373 } 2374 2375 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2376 return -ENOMEM; 2377 2378 if (!legacy_mode && pdev->irq) { 2379 int i; 2380 2381 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2382 IRQF_SHARED, drv_name, host); 2383 if (rc) 2384 goto out; 2385 2386 for (i = 0; i < 2; i++) { 2387 if (ata_port_is_dummy(host->ports[i])) 2388 continue; 2389 ata_port_desc(host->ports[i], "irq %d", pdev->irq); 2390 } 2391 } else if (legacy_mode) { 2392 if (!ata_port_is_dummy(host->ports[0])) { 2393 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2394 irq_handler, IRQF_SHARED, 2395 drv_name, host); 2396 if (rc) 2397 goto out; 2398 2399 ata_port_desc(host->ports[0], "irq %d", 2400 ATA_PRIMARY_IRQ(pdev)); 2401 } 2402 2403 if (!ata_port_is_dummy(host->ports[1])) { 2404 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2405 irq_handler, IRQF_SHARED, 2406 drv_name, host); 2407 if (rc) 2408 goto out; 2409 2410 ata_port_desc(host->ports[1], "irq %d", 2411 ATA_SECONDARY_IRQ(pdev)); 2412 } 2413 } 2414 2415 rc = ata_host_register(host, sht); 2416 out: 2417 if (rc == 0) 2418 devres_remove_group(dev, NULL); 2419 else 2420 devres_release_group(dev, NULL); 2421 2422 return rc; 2423 } 2424 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2425 2426 static const struct ata_port_info *ata_sff_find_valid_pi( 2427 const struct ata_port_info * const *ppi) 2428 { 2429 int i; 2430 2431 /* look up the first valid port_info */ 2432 for (i = 0; i < 2 && ppi[i]; i++) 2433 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2434 return ppi[i]; 2435 2436 return NULL; 2437 } 2438 2439 static int ata_pci_init_one(struct pci_dev *pdev, 2440 const struct ata_port_info * const *ppi, 2441 struct scsi_host_template *sht, void *host_priv, 2442 int hflags, bool bmdma) 2443 { 2444 struct device *dev = &pdev->dev; 2445 const struct ata_port_info *pi; 2446 struct ata_host *host = NULL; 2447 int rc; 2448 2449 DPRINTK("ENTER\n"); 2450 2451 pi = ata_sff_find_valid_pi(ppi); 2452 if (!pi) { 2453 dev_err(&pdev->dev, "no valid port_info specified\n"); 2454 return -EINVAL; 2455 } 2456 2457 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2458 return -ENOMEM; 2459 2460 rc = pcim_enable_device(pdev); 2461 if (rc) 2462 goto out; 2463 2464 #ifdef CONFIG_ATA_BMDMA 2465 if (bmdma) 2466 /* prepare and activate BMDMA host */ 2467 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2468 else 2469 #endif 2470 /* prepare and activate SFF host */ 2471 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2472 if (rc) 2473 goto out; 2474 host->private_data = host_priv; 2475 host->flags |= hflags; 2476 2477 #ifdef CONFIG_ATA_BMDMA 2478 if (bmdma) { 2479 pci_set_master(pdev); 2480 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2481 } else 2482 #endif 2483 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2484 out: 2485 if (rc == 0) 2486 devres_remove_group(&pdev->dev, NULL); 2487 else 2488 devres_release_group(&pdev->dev, NULL); 2489 2490 return rc; 2491 } 2492 2493 /** 2494 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2495 * @pdev: Controller to be initialized 2496 * @ppi: array of port_info, must be enough for two ports 2497 * @sht: scsi_host_template to use when registering the host 2498 * @host_priv: host private_data 2499 * @hflag: host flags 2500 * 2501 * This is a helper function which can be called from a driver's 2502 * xxx_init_one() probe function if the hardware uses traditional 2503 * IDE taskfile registers and is PIO only. 2504 * 2505 * ASSUMPTION: 2506 * Nobody makes a single channel controller that appears solely as 2507 * the secondary legacy port on PCI. 2508 * 2509 * LOCKING: 2510 * Inherited from PCI layer (may sleep). 2511 * 2512 * RETURNS: 2513 * Zero on success, negative on errno-based value on error. 2514 */ 2515 int ata_pci_sff_init_one(struct pci_dev *pdev, 2516 const struct ata_port_info * const *ppi, 2517 struct scsi_host_template *sht, void *host_priv, int hflag) 2518 { 2519 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2520 } 2521 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2522 2523 #endif /* CONFIG_PCI */ 2524 2525 /* 2526 * BMDMA support 2527 */ 2528 2529 #ifdef CONFIG_ATA_BMDMA 2530 2531 const struct ata_port_operations ata_bmdma_port_ops = { 2532 .inherits = &ata_sff_port_ops, 2533 2534 .error_handler = ata_bmdma_error_handler, 2535 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2536 2537 .qc_prep = ata_bmdma_qc_prep, 2538 .qc_issue = ata_bmdma_qc_issue, 2539 2540 .sff_irq_clear = ata_bmdma_irq_clear, 2541 .bmdma_setup = ata_bmdma_setup, 2542 .bmdma_start = ata_bmdma_start, 2543 .bmdma_stop = ata_bmdma_stop, 2544 .bmdma_status = ata_bmdma_status, 2545 2546 .port_start = ata_bmdma_port_start, 2547 }; 2548 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2549 2550 const struct ata_port_operations ata_bmdma32_port_ops = { 2551 .inherits = &ata_bmdma_port_ops, 2552 2553 .sff_data_xfer = ata_sff_data_xfer32, 2554 .port_start = ata_bmdma_port_start32, 2555 }; 2556 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2557 2558 /** 2559 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2560 * @qc: Metadata associated with taskfile to be transferred 2561 * 2562 * Fill PCI IDE PRD (scatter-gather) table with segments 2563 * associated with the current disk command. 2564 * 2565 * LOCKING: 2566 * spin_lock_irqsave(host lock) 2567 * 2568 */ 2569 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2570 { 2571 struct ata_port *ap = qc->ap; 2572 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2573 struct scatterlist *sg; 2574 unsigned int si, pi; 2575 2576 pi = 0; 2577 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2578 u32 addr, offset; 2579 u32 sg_len, len; 2580 2581 /* determine if physical DMA addr spans 64K boundary. 2582 * Note h/w doesn't support 64-bit, so we unconditionally 2583 * truncate dma_addr_t to u32. 2584 */ 2585 addr = (u32) sg_dma_address(sg); 2586 sg_len = sg_dma_len(sg); 2587 2588 while (sg_len) { 2589 offset = addr & 0xffff; 2590 len = sg_len; 2591 if ((offset + sg_len) > 0x10000) 2592 len = 0x10000 - offset; 2593 2594 prd[pi].addr = cpu_to_le32(addr); 2595 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2596 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2597 2598 pi++; 2599 sg_len -= len; 2600 addr += len; 2601 } 2602 } 2603 2604 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2605 } 2606 2607 /** 2608 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2609 * @qc: Metadata associated with taskfile to be transferred 2610 * 2611 * Fill PCI IDE PRD (scatter-gather) table with segments 2612 * associated with the current disk command. Perform the fill 2613 * so that we avoid writing any length 64K records for 2614 * controllers that don't follow the spec. 2615 * 2616 * LOCKING: 2617 * spin_lock_irqsave(host lock) 2618 * 2619 */ 2620 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2621 { 2622 struct ata_port *ap = qc->ap; 2623 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2624 struct scatterlist *sg; 2625 unsigned int si, pi; 2626 2627 pi = 0; 2628 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2629 u32 addr, offset; 2630 u32 sg_len, len, blen; 2631 2632 /* determine if physical DMA addr spans 64K boundary. 2633 * Note h/w doesn't support 64-bit, so we unconditionally 2634 * truncate dma_addr_t to u32. 2635 */ 2636 addr = (u32) sg_dma_address(sg); 2637 sg_len = sg_dma_len(sg); 2638 2639 while (sg_len) { 2640 offset = addr & 0xffff; 2641 len = sg_len; 2642 if ((offset + sg_len) > 0x10000) 2643 len = 0x10000 - offset; 2644 2645 blen = len & 0xffff; 2646 prd[pi].addr = cpu_to_le32(addr); 2647 if (blen == 0) { 2648 /* Some PATA chipsets like the CS5530 can't 2649 cope with 0x0000 meaning 64K as the spec 2650 says */ 2651 prd[pi].flags_len = cpu_to_le32(0x8000); 2652 blen = 0x8000; 2653 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2654 } 2655 prd[pi].flags_len = cpu_to_le32(blen); 2656 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2657 2658 pi++; 2659 sg_len -= len; 2660 addr += len; 2661 } 2662 } 2663 2664 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2665 } 2666 2667 /** 2668 * ata_bmdma_qc_prep - Prepare taskfile for submission 2669 * @qc: Metadata associated with taskfile to be prepared 2670 * 2671 * Prepare ATA taskfile for submission. 2672 * 2673 * LOCKING: 2674 * spin_lock_irqsave(host lock) 2675 */ 2676 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2677 { 2678 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2679 return; 2680 2681 ata_bmdma_fill_sg(qc); 2682 } 2683 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2684 2685 /** 2686 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2687 * @qc: Metadata associated with taskfile to be prepared 2688 * 2689 * Prepare ATA taskfile for submission. 2690 * 2691 * LOCKING: 2692 * spin_lock_irqsave(host lock) 2693 */ 2694 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2695 { 2696 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2697 return; 2698 2699 ata_bmdma_fill_sg_dumb(qc); 2700 } 2701 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2702 2703 /** 2704 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2705 * @qc: command to issue to device 2706 * 2707 * This function issues a PIO, NODATA or DMA command to a 2708 * SFF/BMDMA controller. PIO and NODATA are handled by 2709 * ata_sff_qc_issue(). 2710 * 2711 * LOCKING: 2712 * spin_lock_irqsave(host lock) 2713 * 2714 * RETURNS: 2715 * Zero on success, AC_ERR_* mask on failure 2716 */ 2717 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2718 { 2719 struct ata_port *ap = qc->ap; 2720 struct ata_link *link = qc->dev->link; 2721 2722 /* defer PIO handling to sff_qc_issue */ 2723 if (!ata_is_dma(qc->tf.protocol)) 2724 return ata_sff_qc_issue(qc); 2725 2726 /* select the device */ 2727 ata_dev_select(ap, qc->dev->devno, 1, 0); 2728 2729 /* start the command */ 2730 switch (qc->tf.protocol) { 2731 case ATA_PROT_DMA: 2732 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2733 2734 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2735 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2736 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2737 ap->hsm_task_state = HSM_ST_LAST; 2738 break; 2739 2740 case ATAPI_PROT_DMA: 2741 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2742 2743 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2744 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2745 ap->hsm_task_state = HSM_ST_FIRST; 2746 2747 /* send cdb by polling if no cdb interrupt */ 2748 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2749 ata_sff_queue_pio_task(link, 0); 2750 break; 2751 2752 default: 2753 WARN_ON(1); 2754 return AC_ERR_SYSTEM; 2755 } 2756 2757 return 0; 2758 } 2759 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2760 2761 /** 2762 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2763 * @ap: Port on which interrupt arrived (possibly...) 2764 * @qc: Taskfile currently active in engine 2765 * 2766 * Handle port interrupt for given queued command. 2767 * 2768 * LOCKING: 2769 * spin_lock_irqsave(host lock) 2770 * 2771 * RETURNS: 2772 * One if interrupt was handled, zero if not (shared irq). 2773 */ 2774 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2775 { 2776 struct ata_eh_info *ehi = &ap->link.eh_info; 2777 u8 host_stat = 0; 2778 bool bmdma_stopped = false; 2779 unsigned int handled; 2780 2781 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2782 /* check status of DMA engine */ 2783 host_stat = ap->ops->bmdma_status(ap); 2784 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); 2785 2786 /* if it's not our irq... */ 2787 if (!(host_stat & ATA_DMA_INTR)) 2788 return ata_sff_idle_irq(ap); 2789 2790 /* before we do anything else, clear DMA-Start bit */ 2791 ap->ops->bmdma_stop(qc); 2792 bmdma_stopped = true; 2793 2794 if (unlikely(host_stat & ATA_DMA_ERR)) { 2795 /* error when transferring data to/from memory */ 2796 qc->err_mask |= AC_ERR_HOST_BUS; 2797 ap->hsm_task_state = HSM_ST_ERR; 2798 } 2799 } 2800 2801 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2802 2803 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2804 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2805 2806 return handled; 2807 } 2808 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2809 2810 /** 2811 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2812 * @irq: irq line (unused) 2813 * @dev_instance: pointer to our ata_host information structure 2814 * 2815 * Default interrupt handler for PCI IDE devices. Calls 2816 * ata_bmdma_port_intr() for each port that is not disabled. 2817 * 2818 * LOCKING: 2819 * Obtains host lock during operation. 2820 * 2821 * RETURNS: 2822 * IRQ_NONE or IRQ_HANDLED. 2823 */ 2824 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2825 { 2826 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2827 } 2828 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2829 2830 /** 2831 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2832 * @ap: port to handle error for 2833 * 2834 * Stock error handler for BMDMA controller. It can handle both 2835 * PATA and SATA controllers. Most BMDMA controllers should be 2836 * able to use this EH as-is or with some added handling before 2837 * and after. 2838 * 2839 * LOCKING: 2840 * Kernel thread context (may sleep) 2841 */ 2842 void ata_bmdma_error_handler(struct ata_port *ap) 2843 { 2844 struct ata_queued_cmd *qc; 2845 unsigned long flags; 2846 bool thaw = false; 2847 2848 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2849 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2850 qc = NULL; 2851 2852 /* reset PIO HSM and stop DMA engine */ 2853 spin_lock_irqsave(ap->lock, flags); 2854 2855 if (qc && ata_is_dma(qc->tf.protocol)) { 2856 u8 host_stat; 2857 2858 host_stat = ap->ops->bmdma_status(ap); 2859 2860 /* BMDMA controllers indicate host bus error by 2861 * setting DMA_ERR bit and timing out. As it wasn't 2862 * really a timeout event, adjust error mask and 2863 * cancel frozen state. 2864 */ 2865 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2866 qc->err_mask = AC_ERR_HOST_BUS; 2867 thaw = true; 2868 } 2869 2870 ap->ops->bmdma_stop(qc); 2871 2872 /* if we're gonna thaw, make sure IRQ is clear */ 2873 if (thaw) { 2874 ap->ops->sff_check_status(ap); 2875 if (ap->ops->sff_irq_clear) 2876 ap->ops->sff_irq_clear(ap); 2877 } 2878 } 2879 2880 spin_unlock_irqrestore(ap->lock, flags); 2881 2882 if (thaw) 2883 ata_eh_thaw_port(ap); 2884 2885 ata_sff_error_handler(ap); 2886 } 2887 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2888 2889 /** 2890 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2891 * @qc: internal command to clean up 2892 * 2893 * LOCKING: 2894 * Kernel thread context (may sleep) 2895 */ 2896 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2897 { 2898 struct ata_port *ap = qc->ap; 2899 unsigned long flags; 2900 2901 if (ata_is_dma(qc->tf.protocol)) { 2902 spin_lock_irqsave(ap->lock, flags); 2903 ap->ops->bmdma_stop(qc); 2904 spin_unlock_irqrestore(ap->lock, flags); 2905 } 2906 } 2907 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2908 2909 /** 2910 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2911 * @ap: Port associated with this ATA transaction. 2912 * 2913 * Clear interrupt and error flags in DMA status register. 2914 * 2915 * May be used as the irq_clear() entry in ata_port_operations. 2916 * 2917 * LOCKING: 2918 * spin_lock_irqsave(host lock) 2919 */ 2920 void ata_bmdma_irq_clear(struct ata_port *ap) 2921 { 2922 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2923 2924 if (!mmio) 2925 return; 2926 2927 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2928 } 2929 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2930 2931 /** 2932 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2933 * @qc: Info associated with this ATA transaction. 2934 * 2935 * LOCKING: 2936 * spin_lock_irqsave(host lock) 2937 */ 2938 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2939 { 2940 struct ata_port *ap = qc->ap; 2941 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2942 u8 dmactl; 2943 2944 /* load PRD table addr. */ 2945 mb(); /* make sure PRD table writes are visible to controller */ 2946 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2947 2948 /* specify data direction, triple-check start bit is clear */ 2949 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2950 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2951 if (!rw) 2952 dmactl |= ATA_DMA_WR; 2953 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2954 2955 /* issue r/w command */ 2956 ap->ops->sff_exec_command(ap, &qc->tf); 2957 } 2958 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2959 2960 /** 2961 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2962 * @qc: Info associated with this ATA transaction. 2963 * 2964 * LOCKING: 2965 * spin_lock_irqsave(host lock) 2966 */ 2967 void ata_bmdma_start(struct ata_queued_cmd *qc) 2968 { 2969 struct ata_port *ap = qc->ap; 2970 u8 dmactl; 2971 2972 /* start host DMA transaction */ 2973 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2974 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2975 2976 /* Strictly, one may wish to issue an ioread8() here, to 2977 * flush the mmio write. However, control also passes 2978 * to the hardware at this point, and it will interrupt 2979 * us when we are to resume control. So, in effect, 2980 * we don't care when the mmio write flushes. 2981 * Further, a read of the DMA status register _immediately_ 2982 * following the write may not be what certain flaky hardware 2983 * is expected, so I think it is best to not add a readb() 2984 * without first all the MMIO ATA cards/mobos. 2985 * Or maybe I'm just being paranoid. 2986 * 2987 * FIXME: The posting of this write means I/O starts are 2988 * unnecessarily delayed for MMIO 2989 */ 2990 } 2991 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2992 2993 /** 2994 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2995 * @qc: Command we are ending DMA for 2996 * 2997 * Clears the ATA_DMA_START flag in the dma control register 2998 * 2999 * May be used as the bmdma_stop() entry in ata_port_operations. 3000 * 3001 * LOCKING: 3002 * spin_lock_irqsave(host lock) 3003 */ 3004 void ata_bmdma_stop(struct ata_queued_cmd *qc) 3005 { 3006 struct ata_port *ap = qc->ap; 3007 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3008 3009 /* clear start/stop bit */ 3010 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3011 mmio + ATA_DMA_CMD); 3012 3013 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3014 ata_sff_dma_pause(ap); 3015 } 3016 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3017 3018 /** 3019 * ata_bmdma_status - Read PCI IDE BMDMA status 3020 * @ap: Port associated with this ATA transaction. 3021 * 3022 * Read and return BMDMA status register. 3023 * 3024 * May be used as the bmdma_status() entry in ata_port_operations. 3025 * 3026 * LOCKING: 3027 * spin_lock_irqsave(host lock) 3028 */ 3029 u8 ata_bmdma_status(struct ata_port *ap) 3030 { 3031 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3032 } 3033 EXPORT_SYMBOL_GPL(ata_bmdma_status); 3034 3035 3036 /** 3037 * ata_bmdma_port_start - Set port up for bmdma. 3038 * @ap: Port to initialize 3039 * 3040 * Called just after data structures for each port are 3041 * initialized. Allocates space for PRD table. 3042 * 3043 * May be used as the port_start() entry in ata_port_operations. 3044 * 3045 * LOCKING: 3046 * Inherited from caller. 3047 */ 3048 int ata_bmdma_port_start(struct ata_port *ap) 3049 { 3050 if (ap->mwdma_mask || ap->udma_mask) { 3051 ap->bmdma_prd = 3052 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3053 &ap->bmdma_prd_dma, GFP_KERNEL); 3054 if (!ap->bmdma_prd) 3055 return -ENOMEM; 3056 } 3057 3058 return 0; 3059 } 3060 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3061 3062 /** 3063 * ata_bmdma_port_start32 - Set port up for dma. 3064 * @ap: Port to initialize 3065 * 3066 * Called just after data structures for each port are 3067 * initialized. Enables 32bit PIO and allocates space for PRD 3068 * table. 3069 * 3070 * May be used as the port_start() entry in ata_port_operations for 3071 * devices that are capable of 32bit PIO. 3072 * 3073 * LOCKING: 3074 * Inherited from caller. 3075 */ 3076 int ata_bmdma_port_start32(struct ata_port *ap) 3077 { 3078 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3079 return ata_bmdma_port_start(ap); 3080 } 3081 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3082 3083 #ifdef CONFIG_PCI 3084 3085 /** 3086 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3087 * @pdev: PCI device 3088 * 3089 * Some PCI ATA devices report simplex mode but in fact can be told to 3090 * enter non simplex mode. This implements the necessary logic to 3091 * perform the task on such devices. Calling it on other devices will 3092 * have -undefined- behaviour. 3093 */ 3094 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3095 { 3096 unsigned long bmdma = pci_resource_start(pdev, 4); 3097 u8 simplex; 3098 3099 if (bmdma == 0) 3100 return -ENOENT; 3101 3102 simplex = inb(bmdma + 0x02); 3103 outb(simplex & 0x60, bmdma + 0x02); 3104 simplex = inb(bmdma + 0x02); 3105 if (simplex & 0x80) 3106 return -EOPNOTSUPP; 3107 return 0; 3108 } 3109 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3110 3111 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3112 { 3113 int i; 3114 3115 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3116 3117 for (i = 0; i < 2; i++) { 3118 host->ports[i]->mwdma_mask = 0; 3119 host->ports[i]->udma_mask = 0; 3120 } 3121 } 3122 3123 /** 3124 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3125 * @host: target ATA host 3126 * 3127 * Acquire PCI BMDMA resources and initialize @host accordingly. 3128 * 3129 * LOCKING: 3130 * Inherited from calling layer (may sleep). 3131 */ 3132 void ata_pci_bmdma_init(struct ata_host *host) 3133 { 3134 struct device *gdev = host->dev; 3135 struct pci_dev *pdev = to_pci_dev(gdev); 3136 int i, rc; 3137 3138 /* No BAR4 allocation: No DMA */ 3139 if (pci_resource_start(pdev, 4) == 0) { 3140 ata_bmdma_nodma(host, "BAR4 is zero"); 3141 return; 3142 } 3143 3144 /* 3145 * Some controllers require BMDMA region to be initialized 3146 * even if DMA is not in use to clear IRQ status via 3147 * ->sff_irq_clear method. Try to initialize bmdma_addr 3148 * regardless of dma masks. 3149 */ 3150 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK); 3151 if (rc) 3152 ata_bmdma_nodma(host, "failed to set dma mask"); 3153 if (!rc) { 3154 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK); 3155 if (rc) 3156 ata_bmdma_nodma(host, 3157 "failed to set consistent dma mask"); 3158 } 3159 3160 /* request and iomap DMA region */ 3161 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3162 if (rc) { 3163 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3164 return; 3165 } 3166 host->iomap = pcim_iomap_table(pdev); 3167 3168 for (i = 0; i < 2; i++) { 3169 struct ata_port *ap = host->ports[i]; 3170 void __iomem *bmdma = host->iomap[4] + 8 * i; 3171 3172 if (ata_port_is_dummy(ap)) 3173 continue; 3174 3175 ap->ioaddr.bmdma_addr = bmdma; 3176 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3177 (ioread8(bmdma + 2) & 0x80)) 3178 host->flags |= ATA_HOST_SIMPLEX; 3179 3180 ata_port_desc(ap, "bmdma 0x%llx", 3181 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3182 } 3183 } 3184 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3185 3186 /** 3187 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3188 * @pdev: target PCI device 3189 * @ppi: array of port_info, must be enough for two ports 3190 * @r_host: out argument for the initialized ATA host 3191 * 3192 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3193 * resources and initialize it accordingly in one go. 3194 * 3195 * LOCKING: 3196 * Inherited from calling layer (may sleep). 3197 * 3198 * RETURNS: 3199 * 0 on success, -errno otherwise. 3200 */ 3201 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3202 const struct ata_port_info * const * ppi, 3203 struct ata_host **r_host) 3204 { 3205 int rc; 3206 3207 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3208 if (rc) 3209 return rc; 3210 3211 ata_pci_bmdma_init(*r_host); 3212 return 0; 3213 } 3214 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3215 3216 /** 3217 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3218 * @pdev: Controller to be initialized 3219 * @ppi: array of port_info, must be enough for two ports 3220 * @sht: scsi_host_template to use when registering the host 3221 * @host_priv: host private_data 3222 * @hflags: host flags 3223 * 3224 * This function is similar to ata_pci_sff_init_one() but also 3225 * takes care of BMDMA initialization. 3226 * 3227 * LOCKING: 3228 * Inherited from PCI layer (may sleep). 3229 * 3230 * RETURNS: 3231 * Zero on success, negative on errno-based value on error. 3232 */ 3233 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3234 const struct ata_port_info * const * ppi, 3235 struct scsi_host_template *sht, void *host_priv, 3236 int hflags) 3237 { 3238 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3239 } 3240 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3241 3242 #endif /* CONFIG_PCI */ 3243 #endif /* CONFIG_ATA_BMDMA */ 3244 3245 /** 3246 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3247 * @ap: Port to initialize 3248 * 3249 * Called on port allocation to initialize SFF/BMDMA specific 3250 * fields. 3251 * 3252 * LOCKING: 3253 * None. 3254 */ 3255 void ata_sff_port_init(struct ata_port *ap) 3256 { 3257 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3258 ap->ctl = ATA_DEVCTL_OBS; 3259 ap->last_ctl = 0xFF; 3260 } 3261 3262 int __init ata_sff_init(void) 3263 { 3264 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3265 if (!ata_sff_wq) 3266 return -ENOMEM; 3267 3268 return 0; 3269 } 3270 3271 void ata_sff_exit(void) 3272 { 3273 destroy_workqueue(ata_sff_wq); 3274 } 3275