1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/pci.h> 37 #include <linux/libata.h> 38 #include <linux/highmem.h> 39 40 #include "libata.h" 41 42 const struct ata_port_operations ata_sff_port_ops = { 43 .inherits = &ata_base_port_ops, 44 45 .qc_prep = ata_sff_qc_prep, 46 .qc_issue = ata_sff_qc_issue, 47 .qc_fill_rtf = ata_sff_qc_fill_rtf, 48 49 .freeze = ata_sff_freeze, 50 .thaw = ata_sff_thaw, 51 .prereset = ata_sff_prereset, 52 .softreset = ata_sff_softreset, 53 .hardreset = sata_sff_hardreset, 54 .postreset = ata_sff_postreset, 55 .drain_fifo = ata_sff_drain_fifo, 56 .error_handler = ata_sff_error_handler, 57 .post_internal_cmd = ata_sff_post_internal_cmd, 58 59 .sff_dev_select = ata_sff_dev_select, 60 .sff_check_status = ata_sff_check_status, 61 .sff_tf_load = ata_sff_tf_load, 62 .sff_tf_read = ata_sff_tf_read, 63 .sff_exec_command = ata_sff_exec_command, 64 .sff_data_xfer = ata_sff_data_xfer, 65 .sff_irq_on = ata_sff_irq_on, 66 .sff_irq_clear = ata_sff_irq_clear, 67 68 .lost_interrupt = ata_sff_lost_interrupt, 69 70 .port_start = ata_sff_port_start, 71 }; 72 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 73 74 const struct ata_port_operations ata_bmdma_port_ops = { 75 .inherits = &ata_sff_port_ops, 76 77 .mode_filter = ata_bmdma_mode_filter, 78 79 .bmdma_setup = ata_bmdma_setup, 80 .bmdma_start = ata_bmdma_start, 81 .bmdma_stop = ata_bmdma_stop, 82 .bmdma_status = ata_bmdma_status, 83 }; 84 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 85 86 const struct ata_port_operations ata_bmdma32_port_ops = { 87 .inherits = &ata_bmdma_port_ops, 88 89 .sff_data_xfer = ata_sff_data_xfer32, 90 .port_start = ata_sff_port_start32, 91 }; 92 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 93 94 /** 95 * ata_fill_sg - Fill PCI IDE PRD table 96 * @qc: Metadata associated with taskfile to be transferred 97 * 98 * Fill PCI IDE PRD (scatter-gather) table with segments 99 * associated with the current disk command. 100 * 101 * LOCKING: 102 * spin_lock_irqsave(host lock) 103 * 104 */ 105 static void ata_fill_sg(struct ata_queued_cmd *qc) 106 { 107 struct ata_port *ap = qc->ap; 108 struct scatterlist *sg; 109 unsigned int si, pi; 110 111 pi = 0; 112 for_each_sg(qc->sg, sg, qc->n_elem, si) { 113 u32 addr, offset; 114 u32 sg_len, len; 115 116 /* determine if physical DMA addr spans 64K boundary. 117 * Note h/w doesn't support 64-bit, so we unconditionally 118 * truncate dma_addr_t to u32. 119 */ 120 addr = (u32) sg_dma_address(sg); 121 sg_len = sg_dma_len(sg); 122 123 while (sg_len) { 124 offset = addr & 0xffff; 125 len = sg_len; 126 if ((offset + sg_len) > 0x10000) 127 len = 0x10000 - offset; 128 129 ap->prd[pi].addr = cpu_to_le32(addr); 130 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff); 131 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 132 133 pi++; 134 sg_len -= len; 135 addr += len; 136 } 137 } 138 139 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 140 } 141 142 /** 143 * ata_fill_sg_dumb - Fill PCI IDE PRD table 144 * @qc: Metadata associated with taskfile to be transferred 145 * 146 * Fill PCI IDE PRD (scatter-gather) table with segments 147 * associated with the current disk command. Perform the fill 148 * so that we avoid writing any length 64K records for 149 * controllers that don't follow the spec. 150 * 151 * LOCKING: 152 * spin_lock_irqsave(host lock) 153 * 154 */ 155 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc) 156 { 157 struct ata_port *ap = qc->ap; 158 struct scatterlist *sg; 159 unsigned int si, pi; 160 161 pi = 0; 162 for_each_sg(qc->sg, sg, qc->n_elem, si) { 163 u32 addr, offset; 164 u32 sg_len, len, blen; 165 166 /* determine if physical DMA addr spans 64K boundary. 167 * Note h/w doesn't support 64-bit, so we unconditionally 168 * truncate dma_addr_t to u32. 169 */ 170 addr = (u32) sg_dma_address(sg); 171 sg_len = sg_dma_len(sg); 172 173 while (sg_len) { 174 offset = addr & 0xffff; 175 len = sg_len; 176 if ((offset + sg_len) > 0x10000) 177 len = 0x10000 - offset; 178 179 blen = len & 0xffff; 180 ap->prd[pi].addr = cpu_to_le32(addr); 181 if (blen == 0) { 182 /* Some PATA chipsets like the CS5530 can't 183 cope with 0x0000 meaning 64K as the spec 184 says */ 185 ap->prd[pi].flags_len = cpu_to_le32(0x8000); 186 blen = 0x8000; 187 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000); 188 } 189 ap->prd[pi].flags_len = cpu_to_le32(blen); 190 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 191 192 pi++; 193 sg_len -= len; 194 addr += len; 195 } 196 } 197 198 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 199 } 200 201 /** 202 * ata_sff_qc_prep - Prepare taskfile for submission 203 * @qc: Metadata associated with taskfile to be prepared 204 * 205 * Prepare ATA taskfile for submission. 206 * 207 * LOCKING: 208 * spin_lock_irqsave(host lock) 209 */ 210 void ata_sff_qc_prep(struct ata_queued_cmd *qc) 211 { 212 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 213 return; 214 215 ata_fill_sg(qc); 216 } 217 EXPORT_SYMBOL_GPL(ata_sff_qc_prep); 218 219 /** 220 * ata_sff_dumb_qc_prep - Prepare taskfile for submission 221 * @qc: Metadata associated with taskfile to be prepared 222 * 223 * Prepare ATA taskfile for submission. 224 * 225 * LOCKING: 226 * spin_lock_irqsave(host lock) 227 */ 228 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc) 229 { 230 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 231 return; 232 233 ata_fill_sg_dumb(qc); 234 } 235 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep); 236 237 /** 238 * ata_sff_check_status - Read device status reg & clear interrupt 239 * @ap: port where the device is 240 * 241 * Reads ATA taskfile status register for currently-selected device 242 * and return its value. This also clears pending interrupts 243 * from this device 244 * 245 * LOCKING: 246 * Inherited from caller. 247 */ 248 u8 ata_sff_check_status(struct ata_port *ap) 249 { 250 return ioread8(ap->ioaddr.status_addr); 251 } 252 EXPORT_SYMBOL_GPL(ata_sff_check_status); 253 254 /** 255 * ata_sff_altstatus - Read device alternate status reg 256 * @ap: port where the device is 257 * 258 * Reads ATA taskfile alternate status register for 259 * currently-selected device and return its value. 260 * 261 * Note: may NOT be used as the check_altstatus() entry in 262 * ata_port_operations. 263 * 264 * LOCKING: 265 * Inherited from caller. 266 */ 267 static u8 ata_sff_altstatus(struct ata_port *ap) 268 { 269 if (ap->ops->sff_check_altstatus) 270 return ap->ops->sff_check_altstatus(ap); 271 272 return ioread8(ap->ioaddr.altstatus_addr); 273 } 274 275 /** 276 * ata_sff_irq_status - Check if the device is busy 277 * @ap: port where the device is 278 * 279 * Determine if the port is currently busy. Uses altstatus 280 * if available in order to avoid clearing shared IRQ status 281 * when finding an IRQ source. Non ctl capable devices don't 282 * share interrupt lines fortunately for us. 283 * 284 * LOCKING: 285 * Inherited from caller. 286 */ 287 static u8 ata_sff_irq_status(struct ata_port *ap) 288 { 289 u8 status; 290 291 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 292 status = ata_sff_altstatus(ap); 293 /* Not us: We are busy */ 294 if (status & ATA_BUSY) 295 return status; 296 } 297 /* Clear INTRQ latch */ 298 status = ap->ops->sff_check_status(ap); 299 return status; 300 } 301 302 /** 303 * ata_sff_sync - Flush writes 304 * @ap: Port to wait for. 305 * 306 * CAUTION: 307 * If we have an mmio device with no ctl and no altstatus 308 * method this will fail. No such devices are known to exist. 309 * 310 * LOCKING: 311 * Inherited from caller. 312 */ 313 314 static void ata_sff_sync(struct ata_port *ap) 315 { 316 if (ap->ops->sff_check_altstatus) 317 ap->ops->sff_check_altstatus(ap); 318 else if (ap->ioaddr.altstatus_addr) 319 ioread8(ap->ioaddr.altstatus_addr); 320 } 321 322 /** 323 * ata_sff_pause - Flush writes and wait 400nS 324 * @ap: Port to pause for. 325 * 326 * CAUTION: 327 * If we have an mmio device with no ctl and no altstatus 328 * method this will fail. No such devices are known to exist. 329 * 330 * LOCKING: 331 * Inherited from caller. 332 */ 333 334 void ata_sff_pause(struct ata_port *ap) 335 { 336 ata_sff_sync(ap); 337 ndelay(400); 338 } 339 EXPORT_SYMBOL_GPL(ata_sff_pause); 340 341 /** 342 * ata_sff_dma_pause - Pause before commencing DMA 343 * @ap: Port to pause for. 344 * 345 * Perform I/O fencing and ensure sufficient cycle delays occur 346 * for the HDMA1:0 transition 347 */ 348 349 void ata_sff_dma_pause(struct ata_port *ap) 350 { 351 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 352 /* An altstatus read will cause the needed delay without 353 messing up the IRQ status */ 354 ata_sff_altstatus(ap); 355 return; 356 } 357 /* There are no DMA controllers without ctl. BUG here to ensure 358 we never violate the HDMA1:0 transition timing and risk 359 corruption. */ 360 BUG(); 361 } 362 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 363 364 /** 365 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 366 * @ap: port containing status register to be polled 367 * @tmout_pat: impatience timeout in msecs 368 * @tmout: overall timeout in msecs 369 * 370 * Sleep until ATA Status register bit BSY clears, 371 * or a timeout occurs. 372 * 373 * LOCKING: 374 * Kernel thread context (may sleep). 375 * 376 * RETURNS: 377 * 0 on success, -errno otherwise. 378 */ 379 int ata_sff_busy_sleep(struct ata_port *ap, 380 unsigned long tmout_pat, unsigned long tmout) 381 { 382 unsigned long timer_start, timeout; 383 u8 status; 384 385 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 386 timer_start = jiffies; 387 timeout = ata_deadline(timer_start, tmout_pat); 388 while (status != 0xff && (status & ATA_BUSY) && 389 time_before(jiffies, timeout)) { 390 msleep(50); 391 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 392 } 393 394 if (status != 0xff && (status & ATA_BUSY)) 395 ata_port_printk(ap, KERN_WARNING, 396 "port is slow to respond, please be patient " 397 "(Status 0x%x)\n", status); 398 399 timeout = ata_deadline(timer_start, tmout); 400 while (status != 0xff && (status & ATA_BUSY) && 401 time_before(jiffies, timeout)) { 402 msleep(50); 403 status = ap->ops->sff_check_status(ap); 404 } 405 406 if (status == 0xff) 407 return -ENODEV; 408 409 if (status & ATA_BUSY) { 410 ata_port_printk(ap, KERN_ERR, "port failed to respond " 411 "(%lu secs, Status 0x%x)\n", 412 DIV_ROUND_UP(tmout, 1000), status); 413 return -EBUSY; 414 } 415 416 return 0; 417 } 418 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 419 420 static int ata_sff_check_ready(struct ata_link *link) 421 { 422 u8 status = link->ap->ops->sff_check_status(link->ap); 423 424 return ata_check_ready(status); 425 } 426 427 /** 428 * ata_sff_wait_ready - sleep until BSY clears, or timeout 429 * @link: SFF link to wait ready status for 430 * @deadline: deadline jiffies for the operation 431 * 432 * Sleep until ATA Status register bit BSY clears, or timeout 433 * occurs. 434 * 435 * LOCKING: 436 * Kernel thread context (may sleep). 437 * 438 * RETURNS: 439 * 0 on success, -errno otherwise. 440 */ 441 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 442 { 443 return ata_wait_ready(link, deadline, ata_sff_check_ready); 444 } 445 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 446 447 /** 448 * ata_sff_dev_select - Select device 0/1 on ATA bus 449 * @ap: ATA channel to manipulate 450 * @device: ATA device (numbered from zero) to select 451 * 452 * Use the method defined in the ATA specification to 453 * make either device 0, or device 1, active on the 454 * ATA channel. Works with both PIO and MMIO. 455 * 456 * May be used as the dev_select() entry in ata_port_operations. 457 * 458 * LOCKING: 459 * caller. 460 */ 461 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 462 { 463 u8 tmp; 464 465 if (device == 0) 466 tmp = ATA_DEVICE_OBS; 467 else 468 tmp = ATA_DEVICE_OBS | ATA_DEV1; 469 470 iowrite8(tmp, ap->ioaddr.device_addr); 471 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 472 } 473 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 474 475 /** 476 * ata_dev_select - Select device 0/1 on ATA bus 477 * @ap: ATA channel to manipulate 478 * @device: ATA device (numbered from zero) to select 479 * @wait: non-zero to wait for Status register BSY bit to clear 480 * @can_sleep: non-zero if context allows sleeping 481 * 482 * Use the method defined in the ATA specification to 483 * make either device 0, or device 1, active on the 484 * ATA channel. 485 * 486 * This is a high-level version of ata_sff_dev_select(), which 487 * additionally provides the services of inserting the proper 488 * pauses and status polling, where needed. 489 * 490 * LOCKING: 491 * caller. 492 */ 493 void ata_dev_select(struct ata_port *ap, unsigned int device, 494 unsigned int wait, unsigned int can_sleep) 495 { 496 if (ata_msg_probe(ap)) 497 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 498 "device %u, wait %u\n", device, wait); 499 500 if (wait) 501 ata_wait_idle(ap); 502 503 ap->ops->sff_dev_select(ap, device); 504 505 if (wait) { 506 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 507 msleep(150); 508 ata_wait_idle(ap); 509 } 510 } 511 512 /** 513 * ata_sff_irq_on - Enable interrupts on a port. 514 * @ap: Port on which interrupts are enabled. 515 * 516 * Enable interrupts on a legacy IDE device using MMIO or PIO, 517 * wait for idle, clear any pending interrupts. 518 * 519 * LOCKING: 520 * Inherited from caller. 521 */ 522 u8 ata_sff_irq_on(struct ata_port *ap) 523 { 524 struct ata_ioports *ioaddr = &ap->ioaddr; 525 u8 tmp; 526 527 ap->ctl &= ~ATA_NIEN; 528 ap->last_ctl = ap->ctl; 529 530 if (ioaddr->ctl_addr) 531 iowrite8(ap->ctl, ioaddr->ctl_addr); 532 tmp = ata_wait_idle(ap); 533 534 ap->ops->sff_irq_clear(ap); 535 536 return tmp; 537 } 538 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 539 540 /** 541 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt. 542 * @ap: Port associated with this ATA transaction. 543 * 544 * Clear interrupt and error flags in DMA status register. 545 * 546 * May be used as the irq_clear() entry in ata_port_operations. 547 * 548 * LOCKING: 549 * spin_lock_irqsave(host lock) 550 */ 551 void ata_sff_irq_clear(struct ata_port *ap) 552 { 553 void __iomem *mmio = ap->ioaddr.bmdma_addr; 554 555 if (!mmio) 556 return; 557 558 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 559 } 560 EXPORT_SYMBOL_GPL(ata_sff_irq_clear); 561 562 /** 563 * ata_sff_tf_load - send taskfile registers to host controller 564 * @ap: Port to which output is sent 565 * @tf: ATA taskfile register set 566 * 567 * Outputs ATA taskfile to standard ATA host controller. 568 * 569 * LOCKING: 570 * Inherited from caller. 571 */ 572 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 573 { 574 struct ata_ioports *ioaddr = &ap->ioaddr; 575 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 576 577 if (tf->ctl != ap->last_ctl) { 578 if (ioaddr->ctl_addr) 579 iowrite8(tf->ctl, ioaddr->ctl_addr); 580 ap->last_ctl = tf->ctl; 581 ata_wait_idle(ap); 582 } 583 584 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 585 WARN_ON_ONCE(!ioaddr->ctl_addr); 586 iowrite8(tf->hob_feature, ioaddr->feature_addr); 587 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 588 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 589 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 590 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 591 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 592 tf->hob_feature, 593 tf->hob_nsect, 594 tf->hob_lbal, 595 tf->hob_lbam, 596 tf->hob_lbah); 597 } 598 599 if (is_addr) { 600 iowrite8(tf->feature, ioaddr->feature_addr); 601 iowrite8(tf->nsect, ioaddr->nsect_addr); 602 iowrite8(tf->lbal, ioaddr->lbal_addr); 603 iowrite8(tf->lbam, ioaddr->lbam_addr); 604 iowrite8(tf->lbah, ioaddr->lbah_addr); 605 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 606 tf->feature, 607 tf->nsect, 608 tf->lbal, 609 tf->lbam, 610 tf->lbah); 611 } 612 613 if (tf->flags & ATA_TFLAG_DEVICE) { 614 iowrite8(tf->device, ioaddr->device_addr); 615 VPRINTK("device 0x%X\n", tf->device); 616 } 617 618 ata_wait_idle(ap); 619 } 620 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 621 622 /** 623 * ata_sff_tf_read - input device's ATA taskfile shadow registers 624 * @ap: Port from which input is read 625 * @tf: ATA taskfile register set for storing input 626 * 627 * Reads ATA taskfile registers for currently-selected device 628 * into @tf. Assumes the device has a fully SFF compliant task file 629 * layout and behaviour. If you device does not (eg has a different 630 * status method) then you will need to provide a replacement tf_read 631 * 632 * LOCKING: 633 * Inherited from caller. 634 */ 635 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 636 { 637 struct ata_ioports *ioaddr = &ap->ioaddr; 638 639 tf->command = ata_sff_check_status(ap); 640 tf->feature = ioread8(ioaddr->error_addr); 641 tf->nsect = ioread8(ioaddr->nsect_addr); 642 tf->lbal = ioread8(ioaddr->lbal_addr); 643 tf->lbam = ioread8(ioaddr->lbam_addr); 644 tf->lbah = ioread8(ioaddr->lbah_addr); 645 tf->device = ioread8(ioaddr->device_addr); 646 647 if (tf->flags & ATA_TFLAG_LBA48) { 648 if (likely(ioaddr->ctl_addr)) { 649 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 650 tf->hob_feature = ioread8(ioaddr->error_addr); 651 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 652 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 653 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 654 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 655 iowrite8(tf->ctl, ioaddr->ctl_addr); 656 ap->last_ctl = tf->ctl; 657 } else 658 WARN_ON_ONCE(1); 659 } 660 } 661 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 662 663 /** 664 * ata_sff_exec_command - issue ATA command to host controller 665 * @ap: port to which command is being issued 666 * @tf: ATA taskfile register set 667 * 668 * Issues ATA command, with proper synchronization with interrupt 669 * handler / other threads. 670 * 671 * LOCKING: 672 * spin_lock_irqsave(host lock) 673 */ 674 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 675 { 676 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 677 678 iowrite8(tf->command, ap->ioaddr.command_addr); 679 ata_sff_pause(ap); 680 } 681 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 682 683 /** 684 * ata_tf_to_host - issue ATA taskfile to host controller 685 * @ap: port to which command is being issued 686 * @tf: ATA taskfile register set 687 * 688 * Issues ATA taskfile register set to ATA host controller, 689 * with proper synchronization with interrupt handler and 690 * other threads. 691 * 692 * LOCKING: 693 * spin_lock_irqsave(host lock) 694 */ 695 static inline void ata_tf_to_host(struct ata_port *ap, 696 const struct ata_taskfile *tf) 697 { 698 ap->ops->sff_tf_load(ap, tf); 699 ap->ops->sff_exec_command(ap, tf); 700 } 701 702 /** 703 * ata_sff_data_xfer - Transfer data by PIO 704 * @dev: device to target 705 * @buf: data buffer 706 * @buflen: buffer length 707 * @rw: read/write 708 * 709 * Transfer data from/to the device data register by PIO. 710 * 711 * LOCKING: 712 * Inherited from caller. 713 * 714 * RETURNS: 715 * Bytes consumed. 716 */ 717 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 718 unsigned int buflen, int rw) 719 { 720 struct ata_port *ap = dev->link->ap; 721 void __iomem *data_addr = ap->ioaddr.data_addr; 722 unsigned int words = buflen >> 1; 723 724 /* Transfer multiple of 2 bytes */ 725 if (rw == READ) 726 ioread16_rep(data_addr, buf, words); 727 else 728 iowrite16_rep(data_addr, buf, words); 729 730 /* Transfer trailing byte, if any. */ 731 if (unlikely(buflen & 0x01)) { 732 unsigned char pad[2]; 733 734 /* Point buf to the tail of buffer */ 735 buf += buflen - 1; 736 737 /* 738 * Use io*16_rep() accessors here as well to avoid pointlessly 739 * swapping bytes to and from on the big endian machines... 740 */ 741 if (rw == READ) { 742 ioread16_rep(data_addr, pad, 1); 743 *buf = pad[0]; 744 } else { 745 pad[0] = *buf; 746 iowrite16_rep(data_addr, pad, 1); 747 } 748 words++; 749 } 750 751 return words << 1; 752 } 753 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 754 755 /** 756 * ata_sff_data_xfer32 - Transfer data by PIO 757 * @dev: device to target 758 * @buf: data buffer 759 * @buflen: buffer length 760 * @rw: read/write 761 * 762 * Transfer data from/to the device data register by PIO using 32bit 763 * I/O operations. 764 * 765 * LOCKING: 766 * Inherited from caller. 767 * 768 * RETURNS: 769 * Bytes consumed. 770 */ 771 772 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, 773 unsigned int buflen, int rw) 774 { 775 struct ata_port *ap = dev->link->ap; 776 void __iomem *data_addr = ap->ioaddr.data_addr; 777 unsigned int words = buflen >> 2; 778 int slop = buflen & 3; 779 780 if (!(ap->pflags & ATA_PFLAG_PIO32)) 781 return ata_sff_data_xfer(dev, buf, buflen, rw); 782 783 /* Transfer multiple of 4 bytes */ 784 if (rw == READ) 785 ioread32_rep(data_addr, buf, words); 786 else 787 iowrite32_rep(data_addr, buf, words); 788 789 /* Transfer trailing bytes, if any */ 790 if (unlikely(slop)) { 791 unsigned char pad[4]; 792 793 /* Point buf to the tail of buffer */ 794 buf += buflen - slop; 795 796 /* 797 * Use io*_rep() accessors here as well to avoid pointlessly 798 * swapping bytes to and from on the big endian machines... 799 */ 800 if (rw == READ) { 801 if (slop < 3) 802 ioread16_rep(data_addr, pad, 1); 803 else 804 ioread32_rep(data_addr, pad, 1); 805 memcpy(buf, pad, slop); 806 } else { 807 memcpy(pad, buf, slop); 808 if (slop < 3) 809 iowrite16_rep(data_addr, pad, 1); 810 else 811 iowrite32_rep(data_addr, pad, 1); 812 } 813 } 814 return (buflen + 1) & ~1; 815 } 816 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 817 818 /** 819 * ata_sff_data_xfer_noirq - Transfer data by PIO 820 * @dev: device to target 821 * @buf: data buffer 822 * @buflen: buffer length 823 * @rw: read/write 824 * 825 * Transfer data from/to the device data register by PIO. Do the 826 * transfer with interrupts disabled. 827 * 828 * LOCKING: 829 * Inherited from caller. 830 * 831 * RETURNS: 832 * Bytes consumed. 833 */ 834 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 835 unsigned int buflen, int rw) 836 { 837 unsigned long flags; 838 unsigned int consumed; 839 840 local_irq_save(flags); 841 consumed = ata_sff_data_xfer(dev, buf, buflen, rw); 842 local_irq_restore(flags); 843 844 return consumed; 845 } 846 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 847 848 /** 849 * ata_pio_sector - Transfer a sector of data. 850 * @qc: Command on going 851 * 852 * Transfer qc->sect_size bytes of data from/to the ATA device. 853 * 854 * LOCKING: 855 * Inherited from caller. 856 */ 857 static void ata_pio_sector(struct ata_queued_cmd *qc) 858 { 859 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 860 struct ata_port *ap = qc->ap; 861 struct page *page; 862 unsigned int offset; 863 unsigned char *buf; 864 865 if (qc->curbytes == qc->nbytes - qc->sect_size) 866 ap->hsm_task_state = HSM_ST_LAST; 867 868 page = sg_page(qc->cursg); 869 offset = qc->cursg->offset + qc->cursg_ofs; 870 871 /* get the current page and offset */ 872 page = nth_page(page, (offset >> PAGE_SHIFT)); 873 offset %= PAGE_SIZE; 874 875 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 876 877 if (PageHighMem(page)) { 878 unsigned long flags; 879 880 /* FIXME: use a bounce buffer */ 881 local_irq_save(flags); 882 buf = kmap_atomic(page, KM_IRQ0); 883 884 /* do the actual data transfer */ 885 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 886 do_write); 887 888 kunmap_atomic(buf, KM_IRQ0); 889 local_irq_restore(flags); 890 } else { 891 buf = page_address(page); 892 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 893 do_write); 894 } 895 896 if (!do_write) 897 flush_dcache_page(page); 898 899 qc->curbytes += qc->sect_size; 900 qc->cursg_ofs += qc->sect_size; 901 902 if (qc->cursg_ofs == qc->cursg->length) { 903 qc->cursg = sg_next(qc->cursg); 904 qc->cursg_ofs = 0; 905 } 906 } 907 908 /** 909 * ata_pio_sectors - Transfer one or many sectors. 910 * @qc: Command on going 911 * 912 * Transfer one or many sectors of data from/to the 913 * ATA device for the DRQ request. 914 * 915 * LOCKING: 916 * Inherited from caller. 917 */ 918 static void ata_pio_sectors(struct ata_queued_cmd *qc) 919 { 920 if (is_multi_taskfile(&qc->tf)) { 921 /* READ/WRITE MULTIPLE */ 922 unsigned int nsect; 923 924 WARN_ON_ONCE(qc->dev->multi_count == 0); 925 926 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 927 qc->dev->multi_count); 928 while (nsect--) 929 ata_pio_sector(qc); 930 } else 931 ata_pio_sector(qc); 932 933 ata_sff_sync(qc->ap); /* flush */ 934 } 935 936 /** 937 * atapi_send_cdb - Write CDB bytes to hardware 938 * @ap: Port to which ATAPI device is attached. 939 * @qc: Taskfile currently active 940 * 941 * When device has indicated its readiness to accept 942 * a CDB, this function is called. Send the CDB. 943 * 944 * LOCKING: 945 * caller. 946 */ 947 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 948 { 949 /* send SCSI cdb */ 950 DPRINTK("send cdb\n"); 951 WARN_ON_ONCE(qc->dev->cdb_len < 12); 952 953 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 954 ata_sff_sync(ap); 955 /* FIXME: If the CDB is for DMA do we need to do the transition delay 956 or is bmdma_start guaranteed to do it ? */ 957 switch (qc->tf.protocol) { 958 case ATAPI_PROT_PIO: 959 ap->hsm_task_state = HSM_ST; 960 break; 961 case ATAPI_PROT_NODATA: 962 ap->hsm_task_state = HSM_ST_LAST; 963 break; 964 case ATAPI_PROT_DMA: 965 ap->hsm_task_state = HSM_ST_LAST; 966 /* initiate bmdma */ 967 ap->ops->bmdma_start(qc); 968 break; 969 } 970 } 971 972 /** 973 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 974 * @qc: Command on going 975 * @bytes: number of bytes 976 * 977 * Transfer Transfer data from/to the ATAPI device. 978 * 979 * LOCKING: 980 * Inherited from caller. 981 * 982 */ 983 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 984 { 985 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 986 struct ata_port *ap = qc->ap; 987 struct ata_device *dev = qc->dev; 988 struct ata_eh_info *ehi = &dev->link->eh_info; 989 struct scatterlist *sg; 990 struct page *page; 991 unsigned char *buf; 992 unsigned int offset, count, consumed; 993 994 next_sg: 995 sg = qc->cursg; 996 if (unlikely(!sg)) { 997 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 998 "buf=%u cur=%u bytes=%u", 999 qc->nbytes, qc->curbytes, bytes); 1000 return -1; 1001 } 1002 1003 page = sg_page(sg); 1004 offset = sg->offset + qc->cursg_ofs; 1005 1006 /* get the current page and offset */ 1007 page = nth_page(page, (offset >> PAGE_SHIFT)); 1008 offset %= PAGE_SIZE; 1009 1010 /* don't overrun current sg */ 1011 count = min(sg->length - qc->cursg_ofs, bytes); 1012 1013 /* don't cross page boundaries */ 1014 count = min(count, (unsigned int)PAGE_SIZE - offset); 1015 1016 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 1017 1018 if (PageHighMem(page)) { 1019 unsigned long flags; 1020 1021 /* FIXME: use bounce buffer */ 1022 local_irq_save(flags); 1023 buf = kmap_atomic(page, KM_IRQ0); 1024 1025 /* do the actual data transfer */ 1026 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 1027 count, rw); 1028 1029 kunmap_atomic(buf, KM_IRQ0); 1030 local_irq_restore(flags); 1031 } else { 1032 buf = page_address(page); 1033 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 1034 count, rw); 1035 } 1036 1037 bytes -= min(bytes, consumed); 1038 qc->curbytes += count; 1039 qc->cursg_ofs += count; 1040 1041 if (qc->cursg_ofs == sg->length) { 1042 qc->cursg = sg_next(qc->cursg); 1043 qc->cursg_ofs = 0; 1044 } 1045 1046 /* 1047 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 1048 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 1049 * check correctly as it doesn't know if it is the last request being 1050 * made. Somebody should implement a proper sanity check. 1051 */ 1052 if (bytes) 1053 goto next_sg; 1054 return 0; 1055 } 1056 1057 /** 1058 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 1059 * @qc: Command on going 1060 * 1061 * Transfer Transfer data from/to the ATAPI device. 1062 * 1063 * LOCKING: 1064 * Inherited from caller. 1065 */ 1066 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 1067 { 1068 struct ata_port *ap = qc->ap; 1069 struct ata_device *dev = qc->dev; 1070 struct ata_eh_info *ehi = &dev->link->eh_info; 1071 unsigned int ireason, bc_lo, bc_hi, bytes; 1072 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 1073 1074 /* Abuse qc->result_tf for temp storage of intermediate TF 1075 * here to save some kernel stack usage. 1076 * For normal completion, qc->result_tf is not relevant. For 1077 * error, qc->result_tf is later overwritten by ata_qc_complete(). 1078 * So, the correctness of qc->result_tf is not affected. 1079 */ 1080 ap->ops->sff_tf_read(ap, &qc->result_tf); 1081 ireason = qc->result_tf.nsect; 1082 bc_lo = qc->result_tf.lbam; 1083 bc_hi = qc->result_tf.lbah; 1084 bytes = (bc_hi << 8) | bc_lo; 1085 1086 /* shall be cleared to zero, indicating xfer of data */ 1087 if (unlikely(ireason & (1 << 0))) 1088 goto atapi_check; 1089 1090 /* make sure transfer direction matches expected */ 1091 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 1092 if (unlikely(do_write != i_write)) 1093 goto atapi_check; 1094 1095 if (unlikely(!bytes)) 1096 goto atapi_check; 1097 1098 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 1099 1100 if (unlikely(__atapi_pio_bytes(qc, bytes))) 1101 goto err_out; 1102 ata_sff_sync(ap); /* flush */ 1103 1104 return; 1105 1106 atapi_check: 1107 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 1108 ireason, bytes); 1109 err_out: 1110 qc->err_mask |= AC_ERR_HSM; 1111 ap->hsm_task_state = HSM_ST_ERR; 1112 } 1113 1114 /** 1115 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 1116 * @ap: the target ata_port 1117 * @qc: qc on going 1118 * 1119 * RETURNS: 1120 * 1 if ok in workqueue, 0 otherwise. 1121 */ 1122 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 1123 struct ata_queued_cmd *qc) 1124 { 1125 if (qc->tf.flags & ATA_TFLAG_POLLING) 1126 return 1; 1127 1128 if (ap->hsm_task_state == HSM_ST_FIRST) { 1129 if (qc->tf.protocol == ATA_PROT_PIO && 1130 (qc->tf.flags & ATA_TFLAG_WRITE)) 1131 return 1; 1132 1133 if (ata_is_atapi(qc->tf.protocol) && 1134 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1135 return 1; 1136 } 1137 1138 return 0; 1139 } 1140 1141 /** 1142 * ata_hsm_qc_complete - finish a qc running on standard HSM 1143 * @qc: Command to complete 1144 * @in_wq: 1 if called from workqueue, 0 otherwise 1145 * 1146 * Finish @qc which is running on standard HSM. 1147 * 1148 * LOCKING: 1149 * If @in_wq is zero, spin_lock_irqsave(host lock). 1150 * Otherwise, none on entry and grabs host lock. 1151 */ 1152 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 1153 { 1154 struct ata_port *ap = qc->ap; 1155 unsigned long flags; 1156 1157 if (ap->ops->error_handler) { 1158 if (in_wq) { 1159 spin_lock_irqsave(ap->lock, flags); 1160 1161 /* EH might have kicked in while host lock is 1162 * released. 1163 */ 1164 qc = ata_qc_from_tag(ap, qc->tag); 1165 if (qc) { 1166 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1167 ap->ops->sff_irq_on(ap); 1168 ata_qc_complete(qc); 1169 } else 1170 ata_port_freeze(ap); 1171 } 1172 1173 spin_unlock_irqrestore(ap->lock, flags); 1174 } else { 1175 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1176 ata_qc_complete(qc); 1177 else 1178 ata_port_freeze(ap); 1179 } 1180 } else { 1181 if (in_wq) { 1182 spin_lock_irqsave(ap->lock, flags); 1183 ap->ops->sff_irq_on(ap); 1184 ata_qc_complete(qc); 1185 spin_unlock_irqrestore(ap->lock, flags); 1186 } else 1187 ata_qc_complete(qc); 1188 } 1189 } 1190 1191 /** 1192 * ata_sff_hsm_move - move the HSM to the next state. 1193 * @ap: the target ata_port 1194 * @qc: qc on going 1195 * @status: current device status 1196 * @in_wq: 1 if called from workqueue, 0 otherwise 1197 * 1198 * RETURNS: 1199 * 1 when poll next status needed, 0 otherwise. 1200 */ 1201 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1202 u8 status, int in_wq) 1203 { 1204 struct ata_eh_info *ehi = &ap->link.eh_info; 1205 unsigned long flags = 0; 1206 int poll_next; 1207 1208 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1209 1210 /* Make sure ata_sff_qc_issue() does not throw things 1211 * like DMA polling into the workqueue. Notice that 1212 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1213 */ 1214 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1215 1216 fsm_start: 1217 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1218 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1219 1220 switch (ap->hsm_task_state) { 1221 case HSM_ST_FIRST: 1222 /* Send first data block or PACKET CDB */ 1223 1224 /* If polling, we will stay in the work queue after 1225 * sending the data. Otherwise, interrupt handler 1226 * takes over after sending the data. 1227 */ 1228 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1229 1230 /* check device status */ 1231 if (unlikely((status & ATA_DRQ) == 0)) { 1232 /* handle BSY=0, DRQ=0 as error */ 1233 if (likely(status & (ATA_ERR | ATA_DF))) 1234 /* device stops HSM for abort/error */ 1235 qc->err_mask |= AC_ERR_DEV; 1236 else { 1237 /* HSM violation. Let EH handle this */ 1238 ata_ehi_push_desc(ehi, 1239 "ST_FIRST: !(DRQ|ERR|DF)"); 1240 qc->err_mask |= AC_ERR_HSM; 1241 } 1242 1243 ap->hsm_task_state = HSM_ST_ERR; 1244 goto fsm_start; 1245 } 1246 1247 /* Device should not ask for data transfer (DRQ=1) 1248 * when it finds something wrong. 1249 * We ignore DRQ here and stop the HSM by 1250 * changing hsm_task_state to HSM_ST_ERR and 1251 * let the EH abort the command or reset the device. 1252 */ 1253 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1254 /* Some ATAPI tape drives forget to clear the ERR bit 1255 * when doing the next command (mostly request sense). 1256 * We ignore ERR here to workaround and proceed sending 1257 * the CDB. 1258 */ 1259 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1260 ata_ehi_push_desc(ehi, "ST_FIRST: " 1261 "DRQ=1 with device error, " 1262 "dev_stat 0x%X", status); 1263 qc->err_mask |= AC_ERR_HSM; 1264 ap->hsm_task_state = HSM_ST_ERR; 1265 goto fsm_start; 1266 } 1267 } 1268 1269 /* Send the CDB (atapi) or the first data block (ata pio out). 1270 * During the state transition, interrupt handler shouldn't 1271 * be invoked before the data transfer is complete and 1272 * hsm_task_state is changed. Hence, the following locking. 1273 */ 1274 if (in_wq) 1275 spin_lock_irqsave(ap->lock, flags); 1276 1277 if (qc->tf.protocol == ATA_PROT_PIO) { 1278 /* PIO data out protocol. 1279 * send first data block. 1280 */ 1281 1282 /* ata_pio_sectors() might change the state 1283 * to HSM_ST_LAST. so, the state is changed here 1284 * before ata_pio_sectors(). 1285 */ 1286 ap->hsm_task_state = HSM_ST; 1287 ata_pio_sectors(qc); 1288 } else 1289 /* send CDB */ 1290 atapi_send_cdb(ap, qc); 1291 1292 if (in_wq) 1293 spin_unlock_irqrestore(ap->lock, flags); 1294 1295 /* if polling, ata_pio_task() handles the rest. 1296 * otherwise, interrupt handler takes over from here. 1297 */ 1298 break; 1299 1300 case HSM_ST: 1301 /* complete command or read/write the data register */ 1302 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1303 /* ATAPI PIO protocol */ 1304 if ((status & ATA_DRQ) == 0) { 1305 /* No more data to transfer or device error. 1306 * Device error will be tagged in HSM_ST_LAST. 1307 */ 1308 ap->hsm_task_state = HSM_ST_LAST; 1309 goto fsm_start; 1310 } 1311 1312 /* Device should not ask for data transfer (DRQ=1) 1313 * when it finds something wrong. 1314 * We ignore DRQ here and stop the HSM by 1315 * changing hsm_task_state to HSM_ST_ERR and 1316 * let the EH abort the command or reset the device. 1317 */ 1318 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1319 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1320 "DRQ=1 with device error, " 1321 "dev_stat 0x%X", status); 1322 qc->err_mask |= AC_ERR_HSM; 1323 ap->hsm_task_state = HSM_ST_ERR; 1324 goto fsm_start; 1325 } 1326 1327 atapi_pio_bytes(qc); 1328 1329 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1330 /* bad ireason reported by device */ 1331 goto fsm_start; 1332 1333 } else { 1334 /* ATA PIO protocol */ 1335 if (unlikely((status & ATA_DRQ) == 0)) { 1336 /* handle BSY=0, DRQ=0 as error */ 1337 if (likely(status & (ATA_ERR | ATA_DF))) { 1338 /* device stops HSM for abort/error */ 1339 qc->err_mask |= AC_ERR_DEV; 1340 1341 /* If diagnostic failed and this is 1342 * IDENTIFY, it's likely a phantom 1343 * device. Mark hint. 1344 */ 1345 if (qc->dev->horkage & 1346 ATA_HORKAGE_DIAGNOSTIC) 1347 qc->err_mask |= 1348 AC_ERR_NODEV_HINT; 1349 } else { 1350 /* HSM violation. Let EH handle this. 1351 * Phantom devices also trigger this 1352 * condition. Mark hint. 1353 */ 1354 ata_ehi_push_desc(ehi, "ST-ATA: " 1355 "DRQ=0 without device error, " 1356 "dev_stat 0x%X", status); 1357 qc->err_mask |= AC_ERR_HSM | 1358 AC_ERR_NODEV_HINT; 1359 } 1360 1361 ap->hsm_task_state = HSM_ST_ERR; 1362 goto fsm_start; 1363 } 1364 1365 /* For PIO reads, some devices may ask for 1366 * data transfer (DRQ=1) alone with ERR=1. 1367 * We respect DRQ here and transfer one 1368 * block of junk data before changing the 1369 * hsm_task_state to HSM_ST_ERR. 1370 * 1371 * For PIO writes, ERR=1 DRQ=1 doesn't make 1372 * sense since the data block has been 1373 * transferred to the device. 1374 */ 1375 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1376 /* data might be corrputed */ 1377 qc->err_mask |= AC_ERR_DEV; 1378 1379 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1380 ata_pio_sectors(qc); 1381 status = ata_wait_idle(ap); 1382 } 1383 1384 if (status & (ATA_BUSY | ATA_DRQ)) { 1385 ata_ehi_push_desc(ehi, "ST-ATA: " 1386 "BUSY|DRQ persists on ERR|DF, " 1387 "dev_stat 0x%X", status); 1388 qc->err_mask |= AC_ERR_HSM; 1389 } 1390 1391 /* There are oddball controllers with 1392 * status register stuck at 0x7f and 1393 * lbal/m/h at zero which makes it 1394 * pass all other presence detection 1395 * mechanisms we have. Set NODEV_HINT 1396 * for it. Kernel bz#7241. 1397 */ 1398 if (status == 0x7f) 1399 qc->err_mask |= AC_ERR_NODEV_HINT; 1400 1401 /* ata_pio_sectors() might change the 1402 * state to HSM_ST_LAST. so, the state 1403 * is changed after ata_pio_sectors(). 1404 */ 1405 ap->hsm_task_state = HSM_ST_ERR; 1406 goto fsm_start; 1407 } 1408 1409 ata_pio_sectors(qc); 1410 1411 if (ap->hsm_task_state == HSM_ST_LAST && 1412 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1413 /* all data read */ 1414 status = ata_wait_idle(ap); 1415 goto fsm_start; 1416 } 1417 } 1418 1419 poll_next = 1; 1420 break; 1421 1422 case HSM_ST_LAST: 1423 if (unlikely(!ata_ok(status))) { 1424 qc->err_mask |= __ac_err_mask(status); 1425 ap->hsm_task_state = HSM_ST_ERR; 1426 goto fsm_start; 1427 } 1428 1429 /* no more data to transfer */ 1430 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1431 ap->print_id, qc->dev->devno, status); 1432 1433 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1434 1435 ap->hsm_task_state = HSM_ST_IDLE; 1436 1437 /* complete taskfile transaction */ 1438 ata_hsm_qc_complete(qc, in_wq); 1439 1440 poll_next = 0; 1441 break; 1442 1443 case HSM_ST_ERR: 1444 ap->hsm_task_state = HSM_ST_IDLE; 1445 1446 /* complete taskfile transaction */ 1447 ata_hsm_qc_complete(qc, in_wq); 1448 1449 poll_next = 0; 1450 break; 1451 default: 1452 poll_next = 0; 1453 BUG(); 1454 } 1455 1456 return poll_next; 1457 } 1458 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1459 1460 void ata_pio_task(struct work_struct *work) 1461 { 1462 struct ata_port *ap = 1463 container_of(work, struct ata_port, port_task.work); 1464 struct ata_queued_cmd *qc = ap->port_task_data; 1465 u8 status; 1466 int poll_next; 1467 1468 fsm_start: 1469 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1470 1471 /* 1472 * This is purely heuristic. This is a fast path. 1473 * Sometimes when we enter, BSY will be cleared in 1474 * a chk-status or two. If not, the drive is probably seeking 1475 * or something. Snooze for a couple msecs, then 1476 * chk-status again. If still busy, queue delayed work. 1477 */ 1478 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1479 if (status & ATA_BUSY) { 1480 msleep(2); 1481 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1482 if (status & ATA_BUSY) { 1483 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE); 1484 return; 1485 } 1486 } 1487 1488 /* move the HSM */ 1489 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1490 1491 /* another command or interrupt handler 1492 * may be running at this point. 1493 */ 1494 if (poll_next) 1495 goto fsm_start; 1496 } 1497 1498 /** 1499 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner 1500 * @qc: command to issue to device 1501 * 1502 * Using various libata functions and hooks, this function 1503 * starts an ATA command. ATA commands are grouped into 1504 * classes called "protocols", and issuing each type of protocol 1505 * is slightly different. 1506 * 1507 * May be used as the qc_issue() entry in ata_port_operations. 1508 * 1509 * LOCKING: 1510 * spin_lock_irqsave(host lock) 1511 * 1512 * RETURNS: 1513 * Zero on success, AC_ERR_* mask on failure 1514 */ 1515 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1516 { 1517 struct ata_port *ap = qc->ap; 1518 1519 /* Use polling pio if the LLD doesn't handle 1520 * interrupt driven pio and atapi CDB interrupt. 1521 */ 1522 if (ap->flags & ATA_FLAG_PIO_POLLING) { 1523 switch (qc->tf.protocol) { 1524 case ATA_PROT_PIO: 1525 case ATA_PROT_NODATA: 1526 case ATAPI_PROT_PIO: 1527 case ATAPI_PROT_NODATA: 1528 qc->tf.flags |= ATA_TFLAG_POLLING; 1529 break; 1530 case ATAPI_PROT_DMA: 1531 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 1532 /* see ata_dma_blacklisted() */ 1533 BUG(); 1534 break; 1535 default: 1536 break; 1537 } 1538 } 1539 1540 /* select the device */ 1541 ata_dev_select(ap, qc->dev->devno, 1, 0); 1542 1543 /* start the command */ 1544 switch (qc->tf.protocol) { 1545 case ATA_PROT_NODATA: 1546 if (qc->tf.flags & ATA_TFLAG_POLLING) 1547 ata_qc_set_polling(qc); 1548 1549 ata_tf_to_host(ap, &qc->tf); 1550 ap->hsm_task_state = HSM_ST_LAST; 1551 1552 if (qc->tf.flags & ATA_TFLAG_POLLING) 1553 ata_pio_queue_task(ap, qc, 0); 1554 1555 break; 1556 1557 case ATA_PROT_DMA: 1558 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 1559 1560 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1561 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1562 ap->ops->bmdma_start(qc); /* initiate bmdma */ 1563 ap->hsm_task_state = HSM_ST_LAST; 1564 break; 1565 1566 case ATA_PROT_PIO: 1567 if (qc->tf.flags & ATA_TFLAG_POLLING) 1568 ata_qc_set_polling(qc); 1569 1570 ata_tf_to_host(ap, &qc->tf); 1571 1572 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1573 /* PIO data out protocol */ 1574 ap->hsm_task_state = HSM_ST_FIRST; 1575 ata_pio_queue_task(ap, qc, 0); 1576 1577 /* always send first data block using 1578 * the ata_pio_task() codepath. 1579 */ 1580 } else { 1581 /* PIO data in protocol */ 1582 ap->hsm_task_state = HSM_ST; 1583 1584 if (qc->tf.flags & ATA_TFLAG_POLLING) 1585 ata_pio_queue_task(ap, qc, 0); 1586 1587 /* if polling, ata_pio_task() handles the rest. 1588 * otherwise, interrupt handler takes over from here. 1589 */ 1590 } 1591 1592 break; 1593 1594 case ATAPI_PROT_PIO: 1595 case ATAPI_PROT_NODATA: 1596 if (qc->tf.flags & ATA_TFLAG_POLLING) 1597 ata_qc_set_polling(qc); 1598 1599 ata_tf_to_host(ap, &qc->tf); 1600 1601 ap->hsm_task_state = HSM_ST_FIRST; 1602 1603 /* send cdb by polling if no cdb interrupt */ 1604 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1605 (qc->tf.flags & ATA_TFLAG_POLLING)) 1606 ata_pio_queue_task(ap, qc, 0); 1607 break; 1608 1609 case ATAPI_PROT_DMA: 1610 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 1611 1612 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1613 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1614 ap->hsm_task_state = HSM_ST_FIRST; 1615 1616 /* send cdb by polling if no cdb interrupt */ 1617 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1618 ata_pio_queue_task(ap, qc, 0); 1619 break; 1620 1621 default: 1622 WARN_ON_ONCE(1); 1623 return AC_ERR_SYSTEM; 1624 } 1625 1626 return 0; 1627 } 1628 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1629 1630 /** 1631 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1632 * @qc: qc to fill result TF for 1633 * 1634 * @qc is finished and result TF needs to be filled. Fill it 1635 * using ->sff_tf_read. 1636 * 1637 * LOCKING: 1638 * spin_lock_irqsave(host lock) 1639 * 1640 * RETURNS: 1641 * true indicating that result TF is successfully filled. 1642 */ 1643 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1644 { 1645 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1646 return true; 1647 } 1648 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1649 1650 /** 1651 * ata_sff_host_intr - Handle host interrupt for given (port, task) 1652 * @ap: Port on which interrupt arrived (possibly...) 1653 * @qc: Taskfile currently active in engine 1654 * 1655 * Handle host interrupt for given queued command. Currently, 1656 * only DMA interrupts are handled. All other commands are 1657 * handled via polling with interrupts disabled (nIEN bit). 1658 * 1659 * LOCKING: 1660 * spin_lock_irqsave(host lock) 1661 * 1662 * RETURNS: 1663 * One if interrupt was handled, zero if not (shared irq). 1664 */ 1665 unsigned int ata_sff_host_intr(struct ata_port *ap, 1666 struct ata_queued_cmd *qc) 1667 { 1668 struct ata_eh_info *ehi = &ap->link.eh_info; 1669 u8 status, host_stat = 0; 1670 1671 VPRINTK("ata%u: protocol %d task_state %d\n", 1672 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1673 1674 /* Check whether we are expecting interrupt in this state */ 1675 switch (ap->hsm_task_state) { 1676 case HSM_ST_FIRST: 1677 /* Some pre-ATAPI-4 devices assert INTRQ 1678 * at this state when ready to receive CDB. 1679 */ 1680 1681 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1682 * The flag was turned on only for atapi devices. No 1683 * need to check ata_is_atapi(qc->tf.protocol) again. 1684 */ 1685 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1686 goto idle_irq; 1687 break; 1688 case HSM_ST_LAST: 1689 if (qc->tf.protocol == ATA_PROT_DMA || 1690 qc->tf.protocol == ATAPI_PROT_DMA) { 1691 /* check status of DMA engine */ 1692 host_stat = ap->ops->bmdma_status(ap); 1693 VPRINTK("ata%u: host_stat 0x%X\n", 1694 ap->print_id, host_stat); 1695 1696 /* if it's not our irq... */ 1697 if (!(host_stat & ATA_DMA_INTR)) 1698 goto idle_irq; 1699 1700 /* before we do anything else, clear DMA-Start bit */ 1701 ap->ops->bmdma_stop(qc); 1702 1703 if (unlikely(host_stat & ATA_DMA_ERR)) { 1704 /* error when transfering data to/from memory */ 1705 qc->err_mask |= AC_ERR_HOST_BUS; 1706 ap->hsm_task_state = HSM_ST_ERR; 1707 } 1708 } 1709 break; 1710 case HSM_ST: 1711 break; 1712 default: 1713 goto idle_irq; 1714 } 1715 1716 1717 /* check main status, clearing INTRQ if needed */ 1718 status = ata_sff_irq_status(ap); 1719 if (status & ATA_BUSY) 1720 goto idle_irq; 1721 1722 /* ack bmdma irq events */ 1723 ap->ops->sff_irq_clear(ap); 1724 1725 ata_sff_hsm_move(ap, qc, status, 0); 1726 1727 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 1728 qc->tf.protocol == ATAPI_PROT_DMA)) 1729 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 1730 1731 return 1; /* irq handled */ 1732 1733 idle_irq: 1734 ap->stats.idle_irq++; 1735 1736 #ifdef ATA_IRQ_TRAP 1737 if ((ap->stats.idle_irq % 1000) == 0) { 1738 ap->ops->sff_check_status(ap); 1739 ap->ops->sff_irq_clear(ap); 1740 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 1741 return 1; 1742 } 1743 #endif 1744 return 0; /* irq not handled */ 1745 } 1746 EXPORT_SYMBOL_GPL(ata_sff_host_intr); 1747 1748 /** 1749 * ata_sff_interrupt - Default ATA host interrupt handler 1750 * @irq: irq line (unused) 1751 * @dev_instance: pointer to our ata_host information structure 1752 * 1753 * Default interrupt handler for PCI IDE devices. Calls 1754 * ata_sff_host_intr() for each port that is not disabled. 1755 * 1756 * LOCKING: 1757 * Obtains host lock during operation. 1758 * 1759 * RETURNS: 1760 * IRQ_NONE or IRQ_HANDLED. 1761 */ 1762 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1763 { 1764 struct ata_host *host = dev_instance; 1765 unsigned int i; 1766 unsigned int handled = 0; 1767 unsigned long flags; 1768 1769 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1770 spin_lock_irqsave(&host->lock, flags); 1771 1772 for (i = 0; i < host->n_ports; i++) { 1773 struct ata_port *ap; 1774 1775 ap = host->ports[i]; 1776 if (ap && 1777 !(ap->flags & ATA_FLAG_DISABLED)) { 1778 struct ata_queued_cmd *qc; 1779 1780 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1781 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 1782 (qc->flags & ATA_QCFLAG_ACTIVE)) 1783 handled |= ata_sff_host_intr(ap, qc); 1784 } 1785 } 1786 1787 spin_unlock_irqrestore(&host->lock, flags); 1788 1789 return IRQ_RETVAL(handled); 1790 } 1791 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1792 1793 /** 1794 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1795 * @ap: port that appears to have timed out 1796 * 1797 * Called from the libata error handlers when the core code suspects 1798 * an interrupt has been lost. If it has complete anything we can and 1799 * then return. Interface must support altstatus for this faster 1800 * recovery to occur. 1801 * 1802 * Locking: 1803 * Caller holds host lock 1804 */ 1805 1806 void ata_sff_lost_interrupt(struct ata_port *ap) 1807 { 1808 u8 status; 1809 struct ata_queued_cmd *qc; 1810 1811 /* Only one outstanding command per SFF channel */ 1812 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1813 /* Check we have a live one.. */ 1814 if (qc == NULL || !(qc->flags & ATA_QCFLAG_ACTIVE)) 1815 return; 1816 /* We cannot lose an interrupt on a polled command */ 1817 if (qc->tf.flags & ATA_TFLAG_POLLING) 1818 return; 1819 /* See if the controller thinks it is still busy - if so the command 1820 isn't a lost IRQ but is still in progress */ 1821 status = ata_sff_altstatus(ap); 1822 if (status & ATA_BUSY) 1823 return; 1824 1825 /* There was a command running, we are no longer busy and we have 1826 no interrupt. */ 1827 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n", 1828 status); 1829 /* Run the host interrupt logic as if the interrupt had not been 1830 lost */ 1831 ata_sff_host_intr(ap, qc); 1832 } 1833 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1834 1835 /** 1836 * ata_sff_freeze - Freeze SFF controller port 1837 * @ap: port to freeze 1838 * 1839 * Freeze BMDMA controller port. 1840 * 1841 * LOCKING: 1842 * Inherited from caller. 1843 */ 1844 void ata_sff_freeze(struct ata_port *ap) 1845 { 1846 struct ata_ioports *ioaddr = &ap->ioaddr; 1847 1848 ap->ctl |= ATA_NIEN; 1849 ap->last_ctl = ap->ctl; 1850 1851 if (ioaddr->ctl_addr) 1852 iowrite8(ap->ctl, ioaddr->ctl_addr); 1853 1854 /* Under certain circumstances, some controllers raise IRQ on 1855 * ATA_NIEN manipulation. Also, many controllers fail to mask 1856 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1857 */ 1858 ap->ops->sff_check_status(ap); 1859 1860 ap->ops->sff_irq_clear(ap); 1861 } 1862 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1863 1864 /** 1865 * ata_sff_thaw - Thaw SFF controller port 1866 * @ap: port to thaw 1867 * 1868 * Thaw SFF controller port. 1869 * 1870 * LOCKING: 1871 * Inherited from caller. 1872 */ 1873 void ata_sff_thaw(struct ata_port *ap) 1874 { 1875 /* clear & re-enable interrupts */ 1876 ap->ops->sff_check_status(ap); 1877 ap->ops->sff_irq_clear(ap); 1878 ap->ops->sff_irq_on(ap); 1879 } 1880 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1881 1882 /** 1883 * ata_sff_prereset - prepare SFF link for reset 1884 * @link: SFF link to be reset 1885 * @deadline: deadline jiffies for the operation 1886 * 1887 * SFF link @link is about to be reset. Initialize it. It first 1888 * calls ata_std_prereset() and wait for !BSY if the port is 1889 * being softreset. 1890 * 1891 * LOCKING: 1892 * Kernel thread context (may sleep) 1893 * 1894 * RETURNS: 1895 * 0 on success, -errno otherwise. 1896 */ 1897 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1898 { 1899 struct ata_eh_context *ehc = &link->eh_context; 1900 int rc; 1901 1902 rc = ata_std_prereset(link, deadline); 1903 if (rc) 1904 return rc; 1905 1906 /* if we're about to do hardreset, nothing more to do */ 1907 if (ehc->i.action & ATA_EH_HARDRESET) 1908 return 0; 1909 1910 /* wait for !BSY if we don't know that no device is attached */ 1911 if (!ata_link_offline(link)) { 1912 rc = ata_sff_wait_ready(link, deadline); 1913 if (rc && rc != -ENODEV) { 1914 ata_link_printk(link, KERN_WARNING, "device not ready " 1915 "(errno=%d), forcing hardreset\n", rc); 1916 ehc->i.action |= ATA_EH_HARDRESET; 1917 } 1918 } 1919 1920 return 0; 1921 } 1922 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1923 1924 /** 1925 * ata_devchk - PATA device presence detection 1926 * @ap: ATA channel to examine 1927 * @device: Device to examine (starting at zero) 1928 * 1929 * This technique was originally described in 1930 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1931 * later found its way into the ATA/ATAPI spec. 1932 * 1933 * Write a pattern to the ATA shadow registers, 1934 * and if a device is present, it will respond by 1935 * correctly storing and echoing back the 1936 * ATA shadow register contents. 1937 * 1938 * LOCKING: 1939 * caller. 1940 */ 1941 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1942 { 1943 struct ata_ioports *ioaddr = &ap->ioaddr; 1944 u8 nsect, lbal; 1945 1946 ap->ops->sff_dev_select(ap, device); 1947 1948 iowrite8(0x55, ioaddr->nsect_addr); 1949 iowrite8(0xaa, ioaddr->lbal_addr); 1950 1951 iowrite8(0xaa, ioaddr->nsect_addr); 1952 iowrite8(0x55, ioaddr->lbal_addr); 1953 1954 iowrite8(0x55, ioaddr->nsect_addr); 1955 iowrite8(0xaa, ioaddr->lbal_addr); 1956 1957 nsect = ioread8(ioaddr->nsect_addr); 1958 lbal = ioread8(ioaddr->lbal_addr); 1959 1960 if ((nsect == 0x55) && (lbal == 0xaa)) 1961 return 1; /* we found a device */ 1962 1963 return 0; /* nothing found */ 1964 } 1965 1966 /** 1967 * ata_sff_dev_classify - Parse returned ATA device signature 1968 * @dev: ATA device to classify (starting at zero) 1969 * @present: device seems present 1970 * @r_err: Value of error register on completion 1971 * 1972 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1973 * an ATA/ATAPI-defined set of values is placed in the ATA 1974 * shadow registers, indicating the results of device detection 1975 * and diagnostics. 1976 * 1977 * Select the ATA device, and read the values from the ATA shadow 1978 * registers. Then parse according to the Error register value, 1979 * and the spec-defined values examined by ata_dev_classify(). 1980 * 1981 * LOCKING: 1982 * caller. 1983 * 1984 * RETURNS: 1985 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1986 */ 1987 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1988 u8 *r_err) 1989 { 1990 struct ata_port *ap = dev->link->ap; 1991 struct ata_taskfile tf; 1992 unsigned int class; 1993 u8 err; 1994 1995 ap->ops->sff_dev_select(ap, dev->devno); 1996 1997 memset(&tf, 0, sizeof(tf)); 1998 1999 ap->ops->sff_tf_read(ap, &tf); 2000 err = tf.feature; 2001 if (r_err) 2002 *r_err = err; 2003 2004 /* see if device passed diags: continue and warn later */ 2005 if (err == 0) 2006 /* diagnostic fail : do nothing _YET_ */ 2007 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 2008 else if (err == 1) 2009 /* do nothing */ ; 2010 else if ((dev->devno == 0) && (err == 0x81)) 2011 /* do nothing */ ; 2012 else 2013 return ATA_DEV_NONE; 2014 2015 /* determine if device is ATA or ATAPI */ 2016 class = ata_dev_classify(&tf); 2017 2018 if (class == ATA_DEV_UNKNOWN) { 2019 /* If the device failed diagnostic, it's likely to 2020 * have reported incorrect device signature too. 2021 * Assume ATA device if the device seems present but 2022 * device signature is invalid with diagnostic 2023 * failure. 2024 */ 2025 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 2026 class = ATA_DEV_ATA; 2027 else 2028 class = ATA_DEV_NONE; 2029 } else if ((class == ATA_DEV_ATA) && 2030 (ap->ops->sff_check_status(ap) == 0)) 2031 class = ATA_DEV_NONE; 2032 2033 return class; 2034 } 2035 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 2036 2037 /** 2038 * ata_sff_wait_after_reset - wait for devices to become ready after reset 2039 * @link: SFF link which is just reset 2040 * @devmask: mask of present devices 2041 * @deadline: deadline jiffies for the operation 2042 * 2043 * Wait devices attached to SFF @link to become ready after 2044 * reset. It contains preceding 150ms wait to avoid accessing TF 2045 * status register too early. 2046 * 2047 * LOCKING: 2048 * Kernel thread context (may sleep). 2049 * 2050 * RETURNS: 2051 * 0 on success, -ENODEV if some or all of devices in @devmask 2052 * don't seem to exist. -errno on other errors. 2053 */ 2054 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 2055 unsigned long deadline) 2056 { 2057 struct ata_port *ap = link->ap; 2058 struct ata_ioports *ioaddr = &ap->ioaddr; 2059 unsigned int dev0 = devmask & (1 << 0); 2060 unsigned int dev1 = devmask & (1 << 1); 2061 int rc, ret = 0; 2062 2063 msleep(ATA_WAIT_AFTER_RESET); 2064 2065 /* always check readiness of the master device */ 2066 rc = ata_sff_wait_ready(link, deadline); 2067 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 2068 * and TF status is 0xff, bail out on it too. 2069 */ 2070 if (rc) 2071 return rc; 2072 2073 /* if device 1 was found in ata_devchk, wait for register 2074 * access briefly, then wait for BSY to clear. 2075 */ 2076 if (dev1) { 2077 int i; 2078 2079 ap->ops->sff_dev_select(ap, 1); 2080 2081 /* Wait for register access. Some ATAPI devices fail 2082 * to set nsect/lbal after reset, so don't waste too 2083 * much time on it. We're gonna wait for !BSY anyway. 2084 */ 2085 for (i = 0; i < 2; i++) { 2086 u8 nsect, lbal; 2087 2088 nsect = ioread8(ioaddr->nsect_addr); 2089 lbal = ioread8(ioaddr->lbal_addr); 2090 if ((nsect == 1) && (lbal == 1)) 2091 break; 2092 msleep(50); /* give drive a breather */ 2093 } 2094 2095 rc = ata_sff_wait_ready(link, deadline); 2096 if (rc) { 2097 if (rc != -ENODEV) 2098 return rc; 2099 ret = rc; 2100 } 2101 } 2102 2103 /* is all this really necessary? */ 2104 ap->ops->sff_dev_select(ap, 0); 2105 if (dev1) 2106 ap->ops->sff_dev_select(ap, 1); 2107 if (dev0) 2108 ap->ops->sff_dev_select(ap, 0); 2109 2110 return ret; 2111 } 2112 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2113 2114 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 2115 unsigned long deadline) 2116 { 2117 struct ata_ioports *ioaddr = &ap->ioaddr; 2118 2119 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2120 2121 /* software reset. causes dev0 to be selected */ 2122 iowrite8(ap->ctl, ioaddr->ctl_addr); 2123 udelay(20); /* FIXME: flush */ 2124 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2125 udelay(20); /* FIXME: flush */ 2126 iowrite8(ap->ctl, ioaddr->ctl_addr); 2127 ap->last_ctl = ap->ctl; 2128 2129 /* wait the port to become ready */ 2130 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2131 } 2132 2133 /** 2134 * ata_sff_softreset - reset host port via ATA SRST 2135 * @link: ATA link to reset 2136 * @classes: resulting classes of attached devices 2137 * @deadline: deadline jiffies for the operation 2138 * 2139 * Reset host port using ATA SRST. 2140 * 2141 * LOCKING: 2142 * Kernel thread context (may sleep) 2143 * 2144 * RETURNS: 2145 * 0 on success, -errno otherwise. 2146 */ 2147 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2148 unsigned long deadline) 2149 { 2150 struct ata_port *ap = link->ap; 2151 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2152 unsigned int devmask = 0; 2153 int rc; 2154 u8 err; 2155 2156 DPRINTK("ENTER\n"); 2157 2158 /* determine if device 0/1 are present */ 2159 if (ata_devchk(ap, 0)) 2160 devmask |= (1 << 0); 2161 if (slave_possible && ata_devchk(ap, 1)) 2162 devmask |= (1 << 1); 2163 2164 /* select device 0 again */ 2165 ap->ops->sff_dev_select(ap, 0); 2166 2167 /* issue bus reset */ 2168 DPRINTK("about to softreset, devmask=%x\n", devmask); 2169 rc = ata_bus_softreset(ap, devmask, deadline); 2170 /* if link is occupied, -ENODEV too is an error */ 2171 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2172 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); 2173 return rc; 2174 } 2175 2176 /* determine by signature whether we have ATA or ATAPI devices */ 2177 classes[0] = ata_sff_dev_classify(&link->device[0], 2178 devmask & (1 << 0), &err); 2179 if (slave_possible && err != 0x81) 2180 classes[1] = ata_sff_dev_classify(&link->device[1], 2181 devmask & (1 << 1), &err); 2182 2183 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2184 return 0; 2185 } 2186 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2187 2188 /** 2189 * sata_sff_hardreset - reset host port via SATA phy reset 2190 * @link: link to reset 2191 * @class: resulting class of attached device 2192 * @deadline: deadline jiffies for the operation 2193 * 2194 * SATA phy-reset host port using DET bits of SControl register, 2195 * wait for !BSY and classify the attached device. 2196 * 2197 * LOCKING: 2198 * Kernel thread context (may sleep) 2199 * 2200 * RETURNS: 2201 * 0 on success, -errno otherwise. 2202 */ 2203 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2204 unsigned long deadline) 2205 { 2206 struct ata_eh_context *ehc = &link->eh_context; 2207 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2208 bool online; 2209 int rc; 2210 2211 rc = sata_link_hardreset(link, timing, deadline, &online, 2212 ata_sff_check_ready); 2213 if (online) 2214 *class = ata_sff_dev_classify(link->device, 1, NULL); 2215 2216 DPRINTK("EXIT, class=%u\n", *class); 2217 return rc; 2218 } 2219 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2220 2221 /** 2222 * ata_sff_postreset - SFF postreset callback 2223 * @link: the target SFF ata_link 2224 * @classes: classes of attached devices 2225 * 2226 * This function is invoked after a successful reset. It first 2227 * calls ata_std_postreset() and performs SFF specific postreset 2228 * processing. 2229 * 2230 * LOCKING: 2231 * Kernel thread context (may sleep) 2232 */ 2233 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2234 { 2235 struct ata_port *ap = link->ap; 2236 2237 ata_std_postreset(link, classes); 2238 2239 /* is double-select really necessary? */ 2240 if (classes[0] != ATA_DEV_NONE) 2241 ap->ops->sff_dev_select(ap, 1); 2242 if (classes[1] != ATA_DEV_NONE) 2243 ap->ops->sff_dev_select(ap, 0); 2244 2245 /* bail out if no device is present */ 2246 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2247 DPRINTK("EXIT, no device\n"); 2248 return; 2249 } 2250 2251 /* set up device control */ 2252 if (ap->ioaddr.ctl_addr) { 2253 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 2254 ap->last_ctl = ap->ctl; 2255 } 2256 } 2257 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2258 2259 /** 2260 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2261 * @qc: command 2262 * 2263 * Drain the FIFO and device of any stuck data following a command 2264 * failing to complete. In some cases this is neccessary before a 2265 * reset will recover the device. 2266 * 2267 */ 2268 2269 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2270 { 2271 int count; 2272 struct ata_port *ap; 2273 2274 /* We only need to flush incoming data when a command was running */ 2275 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2276 return; 2277 2278 ap = qc->ap; 2279 /* Drain up to 64K of data before we give up this recovery method */ 2280 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2281 && count < 65536; count += 2) 2282 ioread16(ap->ioaddr.data_addr); 2283 2284 /* Can become DEBUG later */ 2285 if (count) 2286 ata_port_printk(ap, KERN_DEBUG, 2287 "drained %d bytes to clear DRQ.\n", count); 2288 2289 } 2290 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2291 2292 /** 2293 * ata_sff_error_handler - Stock error handler for BMDMA controller 2294 * @ap: port to handle error for 2295 * 2296 * Stock error handler for SFF controller. It can handle both 2297 * PATA and SATA controllers. Many controllers should be able to 2298 * use this EH as-is or with some added handling before and 2299 * after. 2300 * 2301 * LOCKING: 2302 * Kernel thread context (may sleep) 2303 */ 2304 void ata_sff_error_handler(struct ata_port *ap) 2305 { 2306 ata_reset_fn_t softreset = ap->ops->softreset; 2307 ata_reset_fn_t hardreset = ap->ops->hardreset; 2308 struct ata_queued_cmd *qc; 2309 unsigned long flags; 2310 int thaw = 0; 2311 2312 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2313 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2314 qc = NULL; 2315 2316 /* reset PIO HSM and stop DMA engine */ 2317 spin_lock_irqsave(ap->lock, flags); 2318 2319 ap->hsm_task_state = HSM_ST_IDLE; 2320 2321 if (ap->ioaddr.bmdma_addr && 2322 qc && (qc->tf.protocol == ATA_PROT_DMA || 2323 qc->tf.protocol == ATAPI_PROT_DMA)) { 2324 u8 host_stat; 2325 2326 host_stat = ap->ops->bmdma_status(ap); 2327 2328 /* BMDMA controllers indicate host bus error by 2329 * setting DMA_ERR bit and timing out. As it wasn't 2330 * really a timeout event, adjust error mask and 2331 * cancel frozen state. 2332 */ 2333 if (qc->err_mask == AC_ERR_TIMEOUT 2334 && (host_stat & ATA_DMA_ERR)) { 2335 qc->err_mask = AC_ERR_HOST_BUS; 2336 thaw = 1; 2337 } 2338 2339 ap->ops->bmdma_stop(qc); 2340 } 2341 2342 ata_sff_sync(ap); /* FIXME: We don't need this */ 2343 ap->ops->sff_check_status(ap); 2344 ap->ops->sff_irq_clear(ap); 2345 /* We *MUST* do FIFO draining before we issue a reset as several 2346 * devices helpfully clear their internal state and will lock solid 2347 * if we touch the data port post reset. Pass qc in case anyone wants 2348 * to do different PIO/DMA recovery or has per command fixups 2349 */ 2350 if (ap->ops->drain_fifo) 2351 ap->ops->drain_fifo(qc); 2352 2353 spin_unlock_irqrestore(ap->lock, flags); 2354 2355 if (thaw) 2356 ata_eh_thaw_port(ap); 2357 2358 /* PIO and DMA engines have been stopped, perform recovery */ 2359 2360 /* Ignore ata_sff_softreset if ctl isn't accessible and 2361 * built-in hardresets if SCR access isn't available. 2362 */ 2363 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) 2364 softreset = NULL; 2365 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link)) 2366 hardreset = NULL; 2367 2368 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2369 ap->ops->postreset); 2370 } 2371 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2372 2373 /** 2374 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller 2375 * @qc: internal command to clean up 2376 * 2377 * LOCKING: 2378 * Kernel thread context (may sleep) 2379 */ 2380 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc) 2381 { 2382 struct ata_port *ap = qc->ap; 2383 unsigned long flags; 2384 2385 spin_lock_irqsave(ap->lock, flags); 2386 2387 ap->hsm_task_state = HSM_ST_IDLE; 2388 2389 if (ap->ioaddr.bmdma_addr) 2390 ap->ops->bmdma_stop(qc); 2391 2392 spin_unlock_irqrestore(ap->lock, flags); 2393 } 2394 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd); 2395 2396 /** 2397 * ata_sff_port_start - Set port up for dma. 2398 * @ap: Port to initialize 2399 * 2400 * Called just after data structures for each port are 2401 * initialized. Allocates space for PRD table if the device 2402 * is DMA capable SFF. 2403 * 2404 * May be used as the port_start() entry in ata_port_operations. 2405 * 2406 * LOCKING: 2407 * Inherited from caller. 2408 */ 2409 int ata_sff_port_start(struct ata_port *ap) 2410 { 2411 if (ap->ioaddr.bmdma_addr) 2412 return ata_port_start(ap); 2413 return 0; 2414 } 2415 EXPORT_SYMBOL_GPL(ata_sff_port_start); 2416 2417 /** 2418 * ata_sff_port_start32 - Set port up for dma. 2419 * @ap: Port to initialize 2420 * 2421 * Called just after data structures for each port are 2422 * initialized. Allocates space for PRD table if the device 2423 * is DMA capable SFF. 2424 * 2425 * May be used as the port_start() entry in ata_port_operations for 2426 * devices that are capable of 32bit PIO. 2427 * 2428 * LOCKING: 2429 * Inherited from caller. 2430 */ 2431 int ata_sff_port_start32(struct ata_port *ap) 2432 { 2433 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 2434 if (ap->ioaddr.bmdma_addr) 2435 return ata_port_start(ap); 2436 return 0; 2437 } 2438 EXPORT_SYMBOL_GPL(ata_sff_port_start32); 2439 2440 /** 2441 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2442 * @ioaddr: IO address structure to be initialized 2443 * 2444 * Utility function which initializes data_addr, error_addr, 2445 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2446 * device_addr, status_addr, and command_addr to standard offsets 2447 * relative to cmd_addr. 2448 * 2449 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2450 */ 2451 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2452 { 2453 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2454 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2455 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2456 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2457 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2458 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2459 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2460 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2461 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2462 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2463 } 2464 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2465 2466 unsigned long ata_bmdma_mode_filter(struct ata_device *adev, 2467 unsigned long xfer_mask) 2468 { 2469 /* Filter out DMA modes if the device has been configured by 2470 the BIOS as PIO only */ 2471 2472 if (adev->link->ap->ioaddr.bmdma_addr == NULL) 2473 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 2474 return xfer_mask; 2475 } 2476 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter); 2477 2478 /** 2479 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2480 * @qc: Info associated with this ATA transaction. 2481 * 2482 * LOCKING: 2483 * spin_lock_irqsave(host lock) 2484 */ 2485 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2486 { 2487 struct ata_port *ap = qc->ap; 2488 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2489 u8 dmactl; 2490 2491 /* load PRD table addr. */ 2492 mb(); /* make sure PRD table writes are visible to controller */ 2493 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2494 2495 /* specify data direction, triple-check start bit is clear */ 2496 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2497 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2498 if (!rw) 2499 dmactl |= ATA_DMA_WR; 2500 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2501 2502 /* issue r/w command */ 2503 ap->ops->sff_exec_command(ap, &qc->tf); 2504 } 2505 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2506 2507 /** 2508 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2509 * @qc: Info associated with this ATA transaction. 2510 * 2511 * LOCKING: 2512 * spin_lock_irqsave(host lock) 2513 */ 2514 void ata_bmdma_start(struct ata_queued_cmd *qc) 2515 { 2516 struct ata_port *ap = qc->ap; 2517 u8 dmactl; 2518 2519 /* start host DMA transaction */ 2520 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2521 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2522 2523 /* Strictly, one may wish to issue an ioread8() here, to 2524 * flush the mmio write. However, control also passes 2525 * to the hardware at this point, and it will interrupt 2526 * us when we are to resume control. So, in effect, 2527 * we don't care when the mmio write flushes. 2528 * Further, a read of the DMA status register _immediately_ 2529 * following the write may not be what certain flaky hardware 2530 * is expected, so I think it is best to not add a readb() 2531 * without first all the MMIO ATA cards/mobos. 2532 * Or maybe I'm just being paranoid. 2533 * 2534 * FIXME: The posting of this write means I/O starts are 2535 * unneccessarily delayed for MMIO 2536 */ 2537 } 2538 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2539 2540 /** 2541 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2542 * @qc: Command we are ending DMA for 2543 * 2544 * Clears the ATA_DMA_START flag in the dma control register 2545 * 2546 * May be used as the bmdma_stop() entry in ata_port_operations. 2547 * 2548 * LOCKING: 2549 * spin_lock_irqsave(host lock) 2550 */ 2551 void ata_bmdma_stop(struct ata_queued_cmd *qc) 2552 { 2553 struct ata_port *ap = qc->ap; 2554 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2555 2556 /* clear start/stop bit */ 2557 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 2558 mmio + ATA_DMA_CMD); 2559 2560 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 2561 ata_sff_dma_pause(ap); 2562 } 2563 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 2564 2565 /** 2566 * ata_bmdma_status - Read PCI IDE BMDMA status 2567 * @ap: Port associated with this ATA transaction. 2568 * 2569 * Read and return BMDMA status register. 2570 * 2571 * May be used as the bmdma_status() entry in ata_port_operations. 2572 * 2573 * LOCKING: 2574 * spin_lock_irqsave(host lock) 2575 */ 2576 u8 ata_bmdma_status(struct ata_port *ap) 2577 { 2578 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 2579 } 2580 EXPORT_SYMBOL_GPL(ata_bmdma_status); 2581 2582 /** 2583 * ata_bus_reset - reset host port and associated ATA channel 2584 * @ap: port to reset 2585 * 2586 * This is typically the first time we actually start issuing 2587 * commands to the ATA channel. We wait for BSY to clear, then 2588 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 2589 * result. Determine what devices, if any, are on the channel 2590 * by looking at the device 0/1 error register. Look at the signature 2591 * stored in each device's taskfile registers, to determine if 2592 * the device is ATA or ATAPI. 2593 * 2594 * LOCKING: 2595 * PCI/etc. bus probe sem. 2596 * Obtains host lock. 2597 * 2598 * SIDE EFFECTS: 2599 * Sets ATA_FLAG_DISABLED if bus reset fails. 2600 * 2601 * DEPRECATED: 2602 * This function is only for drivers which still use old EH and 2603 * will be removed soon. 2604 */ 2605 void ata_bus_reset(struct ata_port *ap) 2606 { 2607 struct ata_device *device = ap->link.device; 2608 struct ata_ioports *ioaddr = &ap->ioaddr; 2609 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2610 u8 err; 2611 unsigned int dev0, dev1 = 0, devmask = 0; 2612 int rc; 2613 2614 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 2615 2616 /* determine if device 0/1 are present */ 2617 if (ap->flags & ATA_FLAG_SATA_RESET) 2618 dev0 = 1; 2619 else { 2620 dev0 = ata_devchk(ap, 0); 2621 if (slave_possible) 2622 dev1 = ata_devchk(ap, 1); 2623 } 2624 2625 if (dev0) 2626 devmask |= (1 << 0); 2627 if (dev1) 2628 devmask |= (1 << 1); 2629 2630 /* select device 0 again */ 2631 ap->ops->sff_dev_select(ap, 0); 2632 2633 /* issue bus reset */ 2634 if (ap->flags & ATA_FLAG_SRST) { 2635 rc = ata_bus_softreset(ap, devmask, 2636 ata_deadline(jiffies, 40000)); 2637 if (rc && rc != -ENODEV) 2638 goto err_out; 2639 } 2640 2641 /* 2642 * determine by signature whether we have ATA or ATAPI devices 2643 */ 2644 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err); 2645 if ((slave_possible) && (err != 0x81)) 2646 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err); 2647 2648 /* is double-select really necessary? */ 2649 if (device[1].class != ATA_DEV_NONE) 2650 ap->ops->sff_dev_select(ap, 1); 2651 if (device[0].class != ATA_DEV_NONE) 2652 ap->ops->sff_dev_select(ap, 0); 2653 2654 /* if no devices were detected, disable this port */ 2655 if ((device[0].class == ATA_DEV_NONE) && 2656 (device[1].class == ATA_DEV_NONE)) 2657 goto err_out; 2658 2659 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 2660 /* set up device control for ATA_FLAG_SATA_RESET */ 2661 iowrite8(ap->ctl, ioaddr->ctl_addr); 2662 ap->last_ctl = ap->ctl; 2663 } 2664 2665 DPRINTK("EXIT\n"); 2666 return; 2667 2668 err_out: 2669 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 2670 ata_port_disable(ap); 2671 2672 DPRINTK("EXIT\n"); 2673 } 2674 EXPORT_SYMBOL_GPL(ata_bus_reset); 2675 2676 #ifdef CONFIG_PCI 2677 2678 /** 2679 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 2680 * @pdev: PCI device 2681 * 2682 * Some PCI ATA devices report simplex mode but in fact can be told to 2683 * enter non simplex mode. This implements the necessary logic to 2684 * perform the task on such devices. Calling it on other devices will 2685 * have -undefined- behaviour. 2686 */ 2687 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 2688 { 2689 unsigned long bmdma = pci_resource_start(pdev, 4); 2690 u8 simplex; 2691 2692 if (bmdma == 0) 2693 return -ENOENT; 2694 2695 simplex = inb(bmdma + 0x02); 2696 outb(simplex & 0x60, bmdma + 0x02); 2697 simplex = inb(bmdma + 0x02); 2698 if (simplex & 0x80) 2699 return -EOPNOTSUPP; 2700 return 0; 2701 } 2702 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 2703 2704 /** 2705 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 2706 * @host: target ATA host 2707 * 2708 * Acquire PCI BMDMA resources and initialize @host accordingly. 2709 * 2710 * LOCKING: 2711 * Inherited from calling layer (may sleep). 2712 * 2713 * RETURNS: 2714 * 0 on success, -errno otherwise. 2715 */ 2716 int ata_pci_bmdma_init(struct ata_host *host) 2717 { 2718 struct device *gdev = host->dev; 2719 struct pci_dev *pdev = to_pci_dev(gdev); 2720 int i, rc; 2721 2722 /* No BAR4 allocation: No DMA */ 2723 if (pci_resource_start(pdev, 4) == 0) 2724 return 0; 2725 2726 /* TODO: If we get no DMA mask we should fall back to PIO */ 2727 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 2728 if (rc) 2729 return rc; 2730 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 2731 if (rc) 2732 return rc; 2733 2734 /* request and iomap DMA region */ 2735 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 2736 if (rc) { 2737 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n"); 2738 return -ENOMEM; 2739 } 2740 host->iomap = pcim_iomap_table(pdev); 2741 2742 for (i = 0; i < 2; i++) { 2743 struct ata_port *ap = host->ports[i]; 2744 void __iomem *bmdma = host->iomap[4] + 8 * i; 2745 2746 if (ata_port_is_dummy(ap)) 2747 continue; 2748 2749 ap->ioaddr.bmdma_addr = bmdma; 2750 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 2751 (ioread8(bmdma + 2) & 0x80)) 2752 host->flags |= ATA_HOST_SIMPLEX; 2753 2754 ata_port_desc(ap, "bmdma 0x%llx", 2755 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 2756 } 2757 2758 return 0; 2759 } 2760 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 2761 2762 static int ata_resources_present(struct pci_dev *pdev, int port) 2763 { 2764 int i; 2765 2766 /* Check the PCI resources for this channel are enabled */ 2767 port = port * 2; 2768 for (i = 0; i < 2; i++) { 2769 if (pci_resource_start(pdev, port + i) == 0 || 2770 pci_resource_len(pdev, port + i) == 0) 2771 return 0; 2772 } 2773 return 1; 2774 } 2775 2776 /** 2777 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2778 * @host: target ATA host 2779 * 2780 * Acquire native PCI ATA resources for @host and initialize the 2781 * first two ports of @host accordingly. Ports marked dummy are 2782 * skipped and allocation failure makes the port dummy. 2783 * 2784 * Note that native PCI resources are valid even for legacy hosts 2785 * as we fix up pdev resources array early in boot, so this 2786 * function can be used for both native and legacy SFF hosts. 2787 * 2788 * LOCKING: 2789 * Inherited from calling layer (may sleep). 2790 * 2791 * RETURNS: 2792 * 0 if at least one port is initialized, -ENODEV if no port is 2793 * available. 2794 */ 2795 int ata_pci_sff_init_host(struct ata_host *host) 2796 { 2797 struct device *gdev = host->dev; 2798 struct pci_dev *pdev = to_pci_dev(gdev); 2799 unsigned int mask = 0; 2800 int i, rc; 2801 2802 /* request, iomap BARs and init port addresses accordingly */ 2803 for (i = 0; i < 2; i++) { 2804 struct ata_port *ap = host->ports[i]; 2805 int base = i * 2; 2806 void __iomem * const *iomap; 2807 2808 if (ata_port_is_dummy(ap)) 2809 continue; 2810 2811 /* Discard disabled ports. Some controllers show 2812 * their unused channels this way. Disabled ports are 2813 * made dummy. 2814 */ 2815 if (!ata_resources_present(pdev, i)) { 2816 ap->ops = &ata_dummy_port_ops; 2817 continue; 2818 } 2819 2820 rc = pcim_iomap_regions(pdev, 0x3 << base, 2821 dev_driver_string(gdev)); 2822 if (rc) { 2823 dev_printk(KERN_WARNING, gdev, 2824 "failed to request/iomap BARs for port %d " 2825 "(errno=%d)\n", i, rc); 2826 if (rc == -EBUSY) 2827 pcim_pin_device(pdev); 2828 ap->ops = &ata_dummy_port_ops; 2829 continue; 2830 } 2831 host->iomap = iomap = pcim_iomap_table(pdev); 2832 2833 ap->ioaddr.cmd_addr = iomap[base]; 2834 ap->ioaddr.altstatus_addr = 2835 ap->ioaddr.ctl_addr = (void __iomem *) 2836 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2837 ata_sff_std_ports(&ap->ioaddr); 2838 2839 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2840 (unsigned long long)pci_resource_start(pdev, base), 2841 (unsigned long long)pci_resource_start(pdev, base + 1)); 2842 2843 mask |= 1 << i; 2844 } 2845 2846 if (!mask) { 2847 dev_printk(KERN_ERR, gdev, "no available native port\n"); 2848 return -ENODEV; 2849 } 2850 2851 return 0; 2852 } 2853 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2854 2855 /** 2856 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host 2857 * @pdev: target PCI device 2858 * @ppi: array of port_info, must be enough for two ports 2859 * @r_host: out argument for the initialized ATA host 2860 * 2861 * Helper to allocate ATA host for @pdev, acquire all native PCI 2862 * resources and initialize it accordingly in one go. 2863 * 2864 * LOCKING: 2865 * Inherited from calling layer (may sleep). 2866 * 2867 * RETURNS: 2868 * 0 on success, -errno otherwise. 2869 */ 2870 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2871 const struct ata_port_info * const *ppi, 2872 struct ata_host **r_host) 2873 { 2874 struct ata_host *host; 2875 int rc; 2876 2877 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2878 return -ENOMEM; 2879 2880 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2881 if (!host) { 2882 dev_printk(KERN_ERR, &pdev->dev, 2883 "failed to allocate ATA host\n"); 2884 rc = -ENOMEM; 2885 goto err_out; 2886 } 2887 2888 rc = ata_pci_sff_init_host(host); 2889 if (rc) 2890 goto err_out; 2891 2892 /* init DMA related stuff */ 2893 rc = ata_pci_bmdma_init(host); 2894 if (rc) 2895 goto err_bmdma; 2896 2897 devres_remove_group(&pdev->dev, NULL); 2898 *r_host = host; 2899 return 0; 2900 2901 err_bmdma: 2902 /* This is necessary because PCI and iomap resources are 2903 * merged and releasing the top group won't release the 2904 * acquired resources if some of those have been acquired 2905 * before entering this function. 2906 */ 2907 pcim_iounmap_regions(pdev, 0xf); 2908 err_out: 2909 devres_release_group(&pdev->dev, NULL); 2910 return rc; 2911 } 2912 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2913 2914 /** 2915 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2916 * @host: target SFF ATA host 2917 * @irq_handler: irq_handler used when requesting IRQ(s) 2918 * @sht: scsi_host_template to use when registering the host 2919 * 2920 * This is the counterpart of ata_host_activate() for SFF ATA 2921 * hosts. This separate helper is necessary because SFF hosts 2922 * use two separate interrupts in legacy mode. 2923 * 2924 * LOCKING: 2925 * Inherited from calling layer (may sleep). 2926 * 2927 * RETURNS: 2928 * 0 on success, -errno otherwise. 2929 */ 2930 int ata_pci_sff_activate_host(struct ata_host *host, 2931 irq_handler_t irq_handler, 2932 struct scsi_host_template *sht) 2933 { 2934 struct device *dev = host->dev; 2935 struct pci_dev *pdev = to_pci_dev(dev); 2936 const char *drv_name = dev_driver_string(host->dev); 2937 int legacy_mode = 0, rc; 2938 2939 rc = ata_host_start(host); 2940 if (rc) 2941 return rc; 2942 2943 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2944 u8 tmp8, mask; 2945 2946 /* TODO: What if one channel is in native mode ... */ 2947 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2948 mask = (1 << 2) | (1 << 0); 2949 if ((tmp8 & mask) != mask) 2950 legacy_mode = 1; 2951 #if defined(CONFIG_NO_ATA_LEGACY) 2952 /* Some platforms with PCI limits cannot address compat 2953 port space. In that case we punt if their firmware has 2954 left a device in compatibility mode */ 2955 if (legacy_mode) { 2956 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); 2957 return -EOPNOTSUPP; 2958 } 2959 #endif 2960 } 2961 2962 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2963 return -ENOMEM; 2964 2965 if (!legacy_mode && pdev->irq) { 2966 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2967 IRQF_SHARED, drv_name, host); 2968 if (rc) 2969 goto out; 2970 2971 ata_port_desc(host->ports[0], "irq %d", pdev->irq); 2972 ata_port_desc(host->ports[1], "irq %d", pdev->irq); 2973 } else if (legacy_mode) { 2974 if (!ata_port_is_dummy(host->ports[0])) { 2975 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2976 irq_handler, IRQF_SHARED, 2977 drv_name, host); 2978 if (rc) 2979 goto out; 2980 2981 ata_port_desc(host->ports[0], "irq %d", 2982 ATA_PRIMARY_IRQ(pdev)); 2983 } 2984 2985 if (!ata_port_is_dummy(host->ports[1])) { 2986 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2987 irq_handler, IRQF_SHARED, 2988 drv_name, host); 2989 if (rc) 2990 goto out; 2991 2992 ata_port_desc(host->ports[1], "irq %d", 2993 ATA_SECONDARY_IRQ(pdev)); 2994 } 2995 } 2996 2997 rc = ata_host_register(host, sht); 2998 out: 2999 if (rc == 0) 3000 devres_remove_group(dev, NULL); 3001 else 3002 devres_release_group(dev, NULL); 3003 3004 return rc; 3005 } 3006 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 3007 3008 /** 3009 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller 3010 * @pdev: Controller to be initialized 3011 * @ppi: array of port_info, must be enough for two ports 3012 * @sht: scsi_host_template to use when registering the host 3013 * @host_priv: host private_data 3014 * 3015 * This is a helper function which can be called from a driver's 3016 * xxx_init_one() probe function if the hardware uses traditional 3017 * IDE taskfile registers. 3018 * 3019 * This function calls pci_enable_device(), reserves its register 3020 * regions, sets the dma mask, enables bus master mode, and calls 3021 * ata_device_add() 3022 * 3023 * ASSUMPTION: 3024 * Nobody makes a single channel controller that appears solely as 3025 * the secondary legacy port on PCI. 3026 * 3027 * LOCKING: 3028 * Inherited from PCI layer (may sleep). 3029 * 3030 * RETURNS: 3031 * Zero on success, negative on errno-based value on error. 3032 */ 3033 int ata_pci_sff_init_one(struct pci_dev *pdev, 3034 const struct ata_port_info * const *ppi, 3035 struct scsi_host_template *sht, void *host_priv) 3036 { 3037 struct device *dev = &pdev->dev; 3038 const struct ata_port_info *pi = NULL; 3039 struct ata_host *host = NULL; 3040 int i, rc; 3041 3042 DPRINTK("ENTER\n"); 3043 3044 /* look up the first valid port_info */ 3045 for (i = 0; i < 2 && ppi[i]; i++) { 3046 if (ppi[i]->port_ops != &ata_dummy_port_ops) { 3047 pi = ppi[i]; 3048 break; 3049 } 3050 } 3051 3052 if (!pi) { 3053 dev_printk(KERN_ERR, &pdev->dev, 3054 "no valid port_info specified\n"); 3055 return -EINVAL; 3056 } 3057 3058 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 3059 return -ENOMEM; 3060 3061 rc = pcim_enable_device(pdev); 3062 if (rc) 3063 goto out; 3064 3065 /* prepare and activate SFF host */ 3066 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 3067 if (rc) 3068 goto out; 3069 host->private_data = host_priv; 3070 3071 pci_set_master(pdev); 3072 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 3073 out: 3074 if (rc == 0) 3075 devres_remove_group(&pdev->dev, NULL); 3076 else 3077 devres_release_group(&pdev->dev, NULL); 3078 3079 return rc; 3080 } 3081 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 3082 3083 #endif /* CONFIG_PCI */ 3084