xref: /openbmc/linux/drivers/ata/libata-sff.c (revision b04b4f78)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 #include <linux/highmem.h>
39 
40 #include "libata.h"
41 
42 const struct ata_port_operations ata_sff_port_ops = {
43 	.inherits		= &ata_base_port_ops,
44 
45 	.qc_prep		= ata_sff_qc_prep,
46 	.qc_issue		= ata_sff_qc_issue,
47 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
48 
49 	.freeze			= ata_sff_freeze,
50 	.thaw			= ata_sff_thaw,
51 	.prereset		= ata_sff_prereset,
52 	.softreset		= ata_sff_softreset,
53 	.hardreset		= sata_sff_hardreset,
54 	.postreset		= ata_sff_postreset,
55 	.drain_fifo		= ata_sff_drain_fifo,
56 	.error_handler		= ata_sff_error_handler,
57 	.post_internal_cmd	= ata_sff_post_internal_cmd,
58 
59 	.sff_dev_select		= ata_sff_dev_select,
60 	.sff_check_status	= ata_sff_check_status,
61 	.sff_tf_load		= ata_sff_tf_load,
62 	.sff_tf_read		= ata_sff_tf_read,
63 	.sff_exec_command	= ata_sff_exec_command,
64 	.sff_data_xfer		= ata_sff_data_xfer,
65 	.sff_irq_on		= ata_sff_irq_on,
66 	.sff_irq_clear		= ata_sff_irq_clear,
67 
68 	.lost_interrupt		= ata_sff_lost_interrupt,
69 
70 	.port_start		= ata_sff_port_start,
71 };
72 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
73 
74 const struct ata_port_operations ata_bmdma_port_ops = {
75 	.inherits		= &ata_sff_port_ops,
76 
77 	.mode_filter		= ata_bmdma_mode_filter,
78 
79 	.bmdma_setup		= ata_bmdma_setup,
80 	.bmdma_start		= ata_bmdma_start,
81 	.bmdma_stop		= ata_bmdma_stop,
82 	.bmdma_status		= ata_bmdma_status,
83 };
84 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
85 
86 const struct ata_port_operations ata_bmdma32_port_ops = {
87 	.inherits		= &ata_bmdma_port_ops,
88 
89 	.sff_data_xfer		= ata_sff_data_xfer32,
90 	.port_start		= ata_sff_port_start32,
91 };
92 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
93 
94 /**
95  *	ata_fill_sg - Fill PCI IDE PRD table
96  *	@qc: Metadata associated with taskfile to be transferred
97  *
98  *	Fill PCI IDE PRD (scatter-gather) table with segments
99  *	associated with the current disk command.
100  *
101  *	LOCKING:
102  *	spin_lock_irqsave(host lock)
103  *
104  */
105 static void ata_fill_sg(struct ata_queued_cmd *qc)
106 {
107 	struct ata_port *ap = qc->ap;
108 	struct scatterlist *sg;
109 	unsigned int si, pi;
110 
111 	pi = 0;
112 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
113 		u32 addr, offset;
114 		u32 sg_len, len;
115 
116 		/* determine if physical DMA addr spans 64K boundary.
117 		 * Note h/w doesn't support 64-bit, so we unconditionally
118 		 * truncate dma_addr_t to u32.
119 		 */
120 		addr = (u32) sg_dma_address(sg);
121 		sg_len = sg_dma_len(sg);
122 
123 		while (sg_len) {
124 			offset = addr & 0xffff;
125 			len = sg_len;
126 			if ((offset + sg_len) > 0x10000)
127 				len = 0x10000 - offset;
128 
129 			ap->prd[pi].addr = cpu_to_le32(addr);
130 			ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
131 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
132 
133 			pi++;
134 			sg_len -= len;
135 			addr += len;
136 		}
137 	}
138 
139 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
140 }
141 
142 /**
143  *	ata_fill_sg_dumb - Fill PCI IDE PRD table
144  *	@qc: Metadata associated with taskfile to be transferred
145  *
146  *	Fill PCI IDE PRD (scatter-gather) table with segments
147  *	associated with the current disk command. Perform the fill
148  *	so that we avoid writing any length 64K records for
149  *	controllers that don't follow the spec.
150  *
151  *	LOCKING:
152  *	spin_lock_irqsave(host lock)
153  *
154  */
155 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
156 {
157 	struct ata_port *ap = qc->ap;
158 	struct scatterlist *sg;
159 	unsigned int si, pi;
160 
161 	pi = 0;
162 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
163 		u32 addr, offset;
164 		u32 sg_len, len, blen;
165 
166 		/* determine if physical DMA addr spans 64K boundary.
167 		 * Note h/w doesn't support 64-bit, so we unconditionally
168 		 * truncate dma_addr_t to u32.
169 		 */
170 		addr = (u32) sg_dma_address(sg);
171 		sg_len = sg_dma_len(sg);
172 
173 		while (sg_len) {
174 			offset = addr & 0xffff;
175 			len = sg_len;
176 			if ((offset + sg_len) > 0x10000)
177 				len = 0x10000 - offset;
178 
179 			blen = len & 0xffff;
180 			ap->prd[pi].addr = cpu_to_le32(addr);
181 			if (blen == 0) {
182 				/* Some PATA chipsets like the CS5530 can't
183 				   cope with 0x0000 meaning 64K as the spec
184 				   says */
185 				ap->prd[pi].flags_len = cpu_to_le32(0x8000);
186 				blen = 0x8000;
187 				ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
188 			}
189 			ap->prd[pi].flags_len = cpu_to_le32(blen);
190 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
191 
192 			pi++;
193 			sg_len -= len;
194 			addr += len;
195 		}
196 	}
197 
198 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
199 }
200 
201 /**
202  *	ata_sff_qc_prep - Prepare taskfile for submission
203  *	@qc: Metadata associated with taskfile to be prepared
204  *
205  *	Prepare ATA taskfile for submission.
206  *
207  *	LOCKING:
208  *	spin_lock_irqsave(host lock)
209  */
210 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
211 {
212 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
213 		return;
214 
215 	ata_fill_sg(qc);
216 }
217 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
218 
219 /**
220  *	ata_sff_dumb_qc_prep - Prepare taskfile for submission
221  *	@qc: Metadata associated with taskfile to be prepared
222  *
223  *	Prepare ATA taskfile for submission.
224  *
225  *	LOCKING:
226  *	spin_lock_irqsave(host lock)
227  */
228 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
229 {
230 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
231 		return;
232 
233 	ata_fill_sg_dumb(qc);
234 }
235 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
236 
237 /**
238  *	ata_sff_check_status - Read device status reg & clear interrupt
239  *	@ap: port where the device is
240  *
241  *	Reads ATA taskfile status register for currently-selected device
242  *	and return its value. This also clears pending interrupts
243  *      from this device
244  *
245  *	LOCKING:
246  *	Inherited from caller.
247  */
248 u8 ata_sff_check_status(struct ata_port *ap)
249 {
250 	return ioread8(ap->ioaddr.status_addr);
251 }
252 EXPORT_SYMBOL_GPL(ata_sff_check_status);
253 
254 /**
255  *	ata_sff_altstatus - Read device alternate status reg
256  *	@ap: port where the device is
257  *
258  *	Reads ATA taskfile alternate status register for
259  *	currently-selected device and return its value.
260  *
261  *	Note: may NOT be used as the check_altstatus() entry in
262  *	ata_port_operations.
263  *
264  *	LOCKING:
265  *	Inherited from caller.
266  */
267 static u8 ata_sff_altstatus(struct ata_port *ap)
268 {
269 	if (ap->ops->sff_check_altstatus)
270 		return ap->ops->sff_check_altstatus(ap);
271 
272 	return ioread8(ap->ioaddr.altstatus_addr);
273 }
274 
275 /**
276  *	ata_sff_irq_status - Check if the device is busy
277  *	@ap: port where the device is
278  *
279  *	Determine if the port is currently busy. Uses altstatus
280  *	if available in order to avoid clearing shared IRQ status
281  *	when finding an IRQ source. Non ctl capable devices don't
282  *	share interrupt lines fortunately for us.
283  *
284  *	LOCKING:
285  *	Inherited from caller.
286  */
287 static u8 ata_sff_irq_status(struct ata_port *ap)
288 {
289 	u8 status;
290 
291 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
292 		status = ata_sff_altstatus(ap);
293 		/* Not us: We are busy */
294 		if (status & ATA_BUSY)
295 			return status;
296 	}
297 	/* Clear INTRQ latch */
298 	status = ap->ops->sff_check_status(ap);
299 	return status;
300 }
301 
302 /**
303  *	ata_sff_sync - Flush writes
304  *	@ap: Port to wait for.
305  *
306  *	CAUTION:
307  *	If we have an mmio device with no ctl and no altstatus
308  *	method this will fail. No such devices are known to exist.
309  *
310  *	LOCKING:
311  *	Inherited from caller.
312  */
313 
314 static void ata_sff_sync(struct ata_port *ap)
315 {
316 	if (ap->ops->sff_check_altstatus)
317 		ap->ops->sff_check_altstatus(ap);
318 	else if (ap->ioaddr.altstatus_addr)
319 		ioread8(ap->ioaddr.altstatus_addr);
320 }
321 
322 /**
323  *	ata_sff_pause		-	Flush writes and wait 400nS
324  *	@ap: Port to pause for.
325  *
326  *	CAUTION:
327  *	If we have an mmio device with no ctl and no altstatus
328  *	method this will fail. No such devices are known to exist.
329  *
330  *	LOCKING:
331  *	Inherited from caller.
332  */
333 
334 void ata_sff_pause(struct ata_port *ap)
335 {
336 	ata_sff_sync(ap);
337 	ndelay(400);
338 }
339 EXPORT_SYMBOL_GPL(ata_sff_pause);
340 
341 /**
342  *	ata_sff_dma_pause	-	Pause before commencing DMA
343  *	@ap: Port to pause for.
344  *
345  *	Perform I/O fencing and ensure sufficient cycle delays occur
346  *	for the HDMA1:0 transition
347  */
348 
349 void ata_sff_dma_pause(struct ata_port *ap)
350 {
351 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
352 		/* An altstatus read will cause the needed delay without
353 		   messing up the IRQ status */
354 		ata_sff_altstatus(ap);
355 		return;
356 	}
357 	/* There are no DMA controllers without ctl. BUG here to ensure
358 	   we never violate the HDMA1:0 transition timing and risk
359 	   corruption. */
360 	BUG();
361 }
362 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
363 
364 /**
365  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
366  *	@ap: port containing status register to be polled
367  *	@tmout_pat: impatience timeout in msecs
368  *	@tmout: overall timeout in msecs
369  *
370  *	Sleep until ATA Status register bit BSY clears,
371  *	or a timeout occurs.
372  *
373  *	LOCKING:
374  *	Kernel thread context (may sleep).
375  *
376  *	RETURNS:
377  *	0 on success, -errno otherwise.
378  */
379 int ata_sff_busy_sleep(struct ata_port *ap,
380 		       unsigned long tmout_pat, unsigned long tmout)
381 {
382 	unsigned long timer_start, timeout;
383 	u8 status;
384 
385 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
386 	timer_start = jiffies;
387 	timeout = ata_deadline(timer_start, tmout_pat);
388 	while (status != 0xff && (status & ATA_BUSY) &&
389 	       time_before(jiffies, timeout)) {
390 		msleep(50);
391 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
392 	}
393 
394 	if (status != 0xff && (status & ATA_BUSY))
395 		ata_port_printk(ap, KERN_WARNING,
396 				"port is slow to respond, please be patient "
397 				"(Status 0x%x)\n", status);
398 
399 	timeout = ata_deadline(timer_start, tmout);
400 	while (status != 0xff && (status & ATA_BUSY) &&
401 	       time_before(jiffies, timeout)) {
402 		msleep(50);
403 		status = ap->ops->sff_check_status(ap);
404 	}
405 
406 	if (status == 0xff)
407 		return -ENODEV;
408 
409 	if (status & ATA_BUSY) {
410 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
411 				"(%lu secs, Status 0x%x)\n",
412 				DIV_ROUND_UP(tmout, 1000), status);
413 		return -EBUSY;
414 	}
415 
416 	return 0;
417 }
418 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
419 
420 static int ata_sff_check_ready(struct ata_link *link)
421 {
422 	u8 status = link->ap->ops->sff_check_status(link->ap);
423 
424 	return ata_check_ready(status);
425 }
426 
427 /**
428  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
429  *	@link: SFF link to wait ready status for
430  *	@deadline: deadline jiffies for the operation
431  *
432  *	Sleep until ATA Status register bit BSY clears, or timeout
433  *	occurs.
434  *
435  *	LOCKING:
436  *	Kernel thread context (may sleep).
437  *
438  *	RETURNS:
439  *	0 on success, -errno otherwise.
440  */
441 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
442 {
443 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
444 }
445 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
446 
447 /**
448  *	ata_sff_dev_select - Select device 0/1 on ATA bus
449  *	@ap: ATA channel to manipulate
450  *	@device: ATA device (numbered from zero) to select
451  *
452  *	Use the method defined in the ATA specification to
453  *	make either device 0, or device 1, active on the
454  *	ATA channel.  Works with both PIO and MMIO.
455  *
456  *	May be used as the dev_select() entry in ata_port_operations.
457  *
458  *	LOCKING:
459  *	caller.
460  */
461 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
462 {
463 	u8 tmp;
464 
465 	if (device == 0)
466 		tmp = ATA_DEVICE_OBS;
467 	else
468 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
469 
470 	iowrite8(tmp, ap->ioaddr.device_addr);
471 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
472 }
473 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
474 
475 /**
476  *	ata_dev_select - Select device 0/1 on ATA bus
477  *	@ap: ATA channel to manipulate
478  *	@device: ATA device (numbered from zero) to select
479  *	@wait: non-zero to wait for Status register BSY bit to clear
480  *	@can_sleep: non-zero if context allows sleeping
481  *
482  *	Use the method defined in the ATA specification to
483  *	make either device 0, or device 1, active on the
484  *	ATA channel.
485  *
486  *	This is a high-level version of ata_sff_dev_select(), which
487  *	additionally provides the services of inserting the proper
488  *	pauses and status polling, where needed.
489  *
490  *	LOCKING:
491  *	caller.
492  */
493 void ata_dev_select(struct ata_port *ap, unsigned int device,
494 			   unsigned int wait, unsigned int can_sleep)
495 {
496 	if (ata_msg_probe(ap))
497 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
498 				"device %u, wait %u\n", device, wait);
499 
500 	if (wait)
501 		ata_wait_idle(ap);
502 
503 	ap->ops->sff_dev_select(ap, device);
504 
505 	if (wait) {
506 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
507 			msleep(150);
508 		ata_wait_idle(ap);
509 	}
510 }
511 
512 /**
513  *	ata_sff_irq_on - Enable interrupts on a port.
514  *	@ap: Port on which interrupts are enabled.
515  *
516  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
517  *	wait for idle, clear any pending interrupts.
518  *
519  *	LOCKING:
520  *	Inherited from caller.
521  */
522 u8 ata_sff_irq_on(struct ata_port *ap)
523 {
524 	struct ata_ioports *ioaddr = &ap->ioaddr;
525 	u8 tmp;
526 
527 	ap->ctl &= ~ATA_NIEN;
528 	ap->last_ctl = ap->ctl;
529 
530 	if (ioaddr->ctl_addr)
531 		iowrite8(ap->ctl, ioaddr->ctl_addr);
532 	tmp = ata_wait_idle(ap);
533 
534 	ap->ops->sff_irq_clear(ap);
535 
536 	return tmp;
537 }
538 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
539 
540 /**
541  *	ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
542  *	@ap: Port associated with this ATA transaction.
543  *
544  *	Clear interrupt and error flags in DMA status register.
545  *
546  *	May be used as the irq_clear() entry in ata_port_operations.
547  *
548  *	LOCKING:
549  *	spin_lock_irqsave(host lock)
550  */
551 void ata_sff_irq_clear(struct ata_port *ap)
552 {
553 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
554 
555 	if (!mmio)
556 		return;
557 
558 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
559 }
560 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
561 
562 /**
563  *	ata_sff_tf_load - send taskfile registers to host controller
564  *	@ap: Port to which output is sent
565  *	@tf: ATA taskfile register set
566  *
567  *	Outputs ATA taskfile to standard ATA host controller.
568  *
569  *	LOCKING:
570  *	Inherited from caller.
571  */
572 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
573 {
574 	struct ata_ioports *ioaddr = &ap->ioaddr;
575 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
576 
577 	if (tf->ctl != ap->last_ctl) {
578 		if (ioaddr->ctl_addr)
579 			iowrite8(tf->ctl, ioaddr->ctl_addr);
580 		ap->last_ctl = tf->ctl;
581 		ata_wait_idle(ap);
582 	}
583 
584 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
585 		WARN_ON_ONCE(!ioaddr->ctl_addr);
586 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
587 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
588 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
589 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
590 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
591 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
592 			tf->hob_feature,
593 			tf->hob_nsect,
594 			tf->hob_lbal,
595 			tf->hob_lbam,
596 			tf->hob_lbah);
597 	}
598 
599 	if (is_addr) {
600 		iowrite8(tf->feature, ioaddr->feature_addr);
601 		iowrite8(tf->nsect, ioaddr->nsect_addr);
602 		iowrite8(tf->lbal, ioaddr->lbal_addr);
603 		iowrite8(tf->lbam, ioaddr->lbam_addr);
604 		iowrite8(tf->lbah, ioaddr->lbah_addr);
605 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
606 			tf->feature,
607 			tf->nsect,
608 			tf->lbal,
609 			tf->lbam,
610 			tf->lbah);
611 	}
612 
613 	if (tf->flags & ATA_TFLAG_DEVICE) {
614 		iowrite8(tf->device, ioaddr->device_addr);
615 		VPRINTK("device 0x%X\n", tf->device);
616 	}
617 
618 	ata_wait_idle(ap);
619 }
620 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
621 
622 /**
623  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
624  *	@ap: Port from which input is read
625  *	@tf: ATA taskfile register set for storing input
626  *
627  *	Reads ATA taskfile registers for currently-selected device
628  *	into @tf. Assumes the device has a fully SFF compliant task file
629  *	layout and behaviour. If you device does not (eg has a different
630  *	status method) then you will need to provide a replacement tf_read
631  *
632  *	LOCKING:
633  *	Inherited from caller.
634  */
635 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
636 {
637 	struct ata_ioports *ioaddr = &ap->ioaddr;
638 
639 	tf->command = ata_sff_check_status(ap);
640 	tf->feature = ioread8(ioaddr->error_addr);
641 	tf->nsect = ioread8(ioaddr->nsect_addr);
642 	tf->lbal = ioread8(ioaddr->lbal_addr);
643 	tf->lbam = ioread8(ioaddr->lbam_addr);
644 	tf->lbah = ioread8(ioaddr->lbah_addr);
645 	tf->device = ioread8(ioaddr->device_addr);
646 
647 	if (tf->flags & ATA_TFLAG_LBA48) {
648 		if (likely(ioaddr->ctl_addr)) {
649 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
650 			tf->hob_feature = ioread8(ioaddr->error_addr);
651 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
652 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
653 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
654 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
655 			iowrite8(tf->ctl, ioaddr->ctl_addr);
656 			ap->last_ctl = tf->ctl;
657 		} else
658 			WARN_ON_ONCE(1);
659 	}
660 }
661 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
662 
663 /**
664  *	ata_sff_exec_command - issue ATA command to host controller
665  *	@ap: port to which command is being issued
666  *	@tf: ATA taskfile register set
667  *
668  *	Issues ATA command, with proper synchronization with interrupt
669  *	handler / other threads.
670  *
671  *	LOCKING:
672  *	spin_lock_irqsave(host lock)
673  */
674 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
675 {
676 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
677 
678 	iowrite8(tf->command, ap->ioaddr.command_addr);
679 	ata_sff_pause(ap);
680 }
681 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
682 
683 /**
684  *	ata_tf_to_host - issue ATA taskfile to host controller
685  *	@ap: port to which command is being issued
686  *	@tf: ATA taskfile register set
687  *
688  *	Issues ATA taskfile register set to ATA host controller,
689  *	with proper synchronization with interrupt handler and
690  *	other threads.
691  *
692  *	LOCKING:
693  *	spin_lock_irqsave(host lock)
694  */
695 static inline void ata_tf_to_host(struct ata_port *ap,
696 				  const struct ata_taskfile *tf)
697 {
698 	ap->ops->sff_tf_load(ap, tf);
699 	ap->ops->sff_exec_command(ap, tf);
700 }
701 
702 /**
703  *	ata_sff_data_xfer - Transfer data by PIO
704  *	@dev: device to target
705  *	@buf: data buffer
706  *	@buflen: buffer length
707  *	@rw: read/write
708  *
709  *	Transfer data from/to the device data register by PIO.
710  *
711  *	LOCKING:
712  *	Inherited from caller.
713  *
714  *	RETURNS:
715  *	Bytes consumed.
716  */
717 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
718 			       unsigned int buflen, int rw)
719 {
720 	struct ata_port *ap = dev->link->ap;
721 	void __iomem *data_addr = ap->ioaddr.data_addr;
722 	unsigned int words = buflen >> 1;
723 
724 	/* Transfer multiple of 2 bytes */
725 	if (rw == READ)
726 		ioread16_rep(data_addr, buf, words);
727 	else
728 		iowrite16_rep(data_addr, buf, words);
729 
730 	/* Transfer trailing 1 byte, if any. */
731 	if (unlikely(buflen & 0x01)) {
732 		__le16 align_buf[1] = { 0 };
733 		unsigned char *trailing_buf = buf + buflen - 1;
734 
735 		if (rw == READ) {
736 			align_buf[0] = cpu_to_le16(ioread16(data_addr));
737 			memcpy(trailing_buf, align_buf, 1);
738 		} else {
739 			memcpy(align_buf, trailing_buf, 1);
740 			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
741 		}
742 		words++;
743 	}
744 
745 	return words << 1;
746 }
747 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
748 
749 /**
750  *	ata_sff_data_xfer32 - Transfer data by PIO
751  *	@dev: device to target
752  *	@buf: data buffer
753  *	@buflen: buffer length
754  *	@rw: read/write
755  *
756  *	Transfer data from/to the device data register by PIO using 32bit
757  *	I/O operations.
758  *
759  *	LOCKING:
760  *	Inherited from caller.
761  *
762  *	RETURNS:
763  *	Bytes consumed.
764  */
765 
766 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
767 			       unsigned int buflen, int rw)
768 {
769 	struct ata_port *ap = dev->link->ap;
770 	void __iomem *data_addr = ap->ioaddr.data_addr;
771 	unsigned int words = buflen >> 2;
772 	int slop = buflen & 3;
773 
774 	if (!(ap->pflags & ATA_PFLAG_PIO32))
775 		return ata_sff_data_xfer(dev, buf, buflen, rw);
776 
777 	/* Transfer multiple of 4 bytes */
778 	if (rw == READ)
779 		ioread32_rep(data_addr, buf, words);
780 	else
781 		iowrite32_rep(data_addr, buf, words);
782 
783 	/* Transfer trailing bytes, if any */
784 	if (unlikely(slop)) {
785 		unsigned char pad[4];
786 
787 		/* Point buf to the tail of buffer */
788 		buf += buflen - slop;
789 
790 		/*
791 		 * Use io*_rep() accessors here as well to avoid pointlessly
792 		 * swapping bytes to and fro on the big endian machines...
793 		 */
794 		if (rw == READ) {
795 			if (slop < 3)
796 				ioread16_rep(data_addr, pad, 1);
797 			else
798 				ioread32_rep(data_addr, pad, 1);
799 			memcpy(buf, pad, slop);
800 		} else {
801 			memcpy(pad, buf, slop);
802 			if (slop < 3)
803 				iowrite16_rep(data_addr, pad, 1);
804 			else
805 				iowrite32_rep(data_addr, pad, 1);
806 		}
807 	}
808 	return (buflen + 1) & ~1;
809 }
810 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
811 
812 /**
813  *	ata_sff_data_xfer_noirq - Transfer data by PIO
814  *	@dev: device to target
815  *	@buf: data buffer
816  *	@buflen: buffer length
817  *	@rw: read/write
818  *
819  *	Transfer data from/to the device data register by PIO. Do the
820  *	transfer with interrupts disabled.
821  *
822  *	LOCKING:
823  *	Inherited from caller.
824  *
825  *	RETURNS:
826  *	Bytes consumed.
827  */
828 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
829 				     unsigned int buflen, int rw)
830 {
831 	unsigned long flags;
832 	unsigned int consumed;
833 
834 	local_irq_save(flags);
835 	consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
836 	local_irq_restore(flags);
837 
838 	return consumed;
839 }
840 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
841 
842 /**
843  *	ata_pio_sector - Transfer a sector of data.
844  *	@qc: Command on going
845  *
846  *	Transfer qc->sect_size bytes of data from/to the ATA device.
847  *
848  *	LOCKING:
849  *	Inherited from caller.
850  */
851 static void ata_pio_sector(struct ata_queued_cmd *qc)
852 {
853 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
854 	struct ata_port *ap = qc->ap;
855 	struct page *page;
856 	unsigned int offset;
857 	unsigned char *buf;
858 
859 	if (qc->curbytes == qc->nbytes - qc->sect_size)
860 		ap->hsm_task_state = HSM_ST_LAST;
861 
862 	page = sg_page(qc->cursg);
863 	offset = qc->cursg->offset + qc->cursg_ofs;
864 
865 	/* get the current page and offset */
866 	page = nth_page(page, (offset >> PAGE_SHIFT));
867 	offset %= PAGE_SIZE;
868 
869 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
870 
871 	if (PageHighMem(page)) {
872 		unsigned long flags;
873 
874 		/* FIXME: use a bounce buffer */
875 		local_irq_save(flags);
876 		buf = kmap_atomic(page, KM_IRQ0);
877 
878 		/* do the actual data transfer */
879 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
880 				       do_write);
881 
882 		kunmap_atomic(buf, KM_IRQ0);
883 		local_irq_restore(flags);
884 	} else {
885 		buf = page_address(page);
886 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
887 				       do_write);
888 	}
889 
890 	qc->curbytes += qc->sect_size;
891 	qc->cursg_ofs += qc->sect_size;
892 
893 	if (qc->cursg_ofs == qc->cursg->length) {
894 		qc->cursg = sg_next(qc->cursg);
895 		qc->cursg_ofs = 0;
896 	}
897 }
898 
899 /**
900  *	ata_pio_sectors - Transfer one or many sectors.
901  *	@qc: Command on going
902  *
903  *	Transfer one or many sectors of data from/to the
904  *	ATA device for the DRQ request.
905  *
906  *	LOCKING:
907  *	Inherited from caller.
908  */
909 static void ata_pio_sectors(struct ata_queued_cmd *qc)
910 {
911 	if (is_multi_taskfile(&qc->tf)) {
912 		/* READ/WRITE MULTIPLE */
913 		unsigned int nsect;
914 
915 		WARN_ON_ONCE(qc->dev->multi_count == 0);
916 
917 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
918 			    qc->dev->multi_count);
919 		while (nsect--)
920 			ata_pio_sector(qc);
921 	} else
922 		ata_pio_sector(qc);
923 
924 	ata_sff_sync(qc->ap); /* flush */
925 }
926 
927 /**
928  *	atapi_send_cdb - Write CDB bytes to hardware
929  *	@ap: Port to which ATAPI device is attached.
930  *	@qc: Taskfile currently active
931  *
932  *	When device has indicated its readiness to accept
933  *	a CDB, this function is called.  Send the CDB.
934  *
935  *	LOCKING:
936  *	caller.
937  */
938 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
939 {
940 	/* send SCSI cdb */
941 	DPRINTK("send cdb\n");
942 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
943 
944 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
945 	ata_sff_sync(ap);
946 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
947 	   or is bmdma_start guaranteed to do it ? */
948 	switch (qc->tf.protocol) {
949 	case ATAPI_PROT_PIO:
950 		ap->hsm_task_state = HSM_ST;
951 		break;
952 	case ATAPI_PROT_NODATA:
953 		ap->hsm_task_state = HSM_ST_LAST;
954 		break;
955 	case ATAPI_PROT_DMA:
956 		ap->hsm_task_state = HSM_ST_LAST;
957 		/* initiate bmdma */
958 		ap->ops->bmdma_start(qc);
959 		break;
960 	}
961 }
962 
963 /**
964  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
965  *	@qc: Command on going
966  *	@bytes: number of bytes
967  *
968  *	Transfer Transfer data from/to the ATAPI device.
969  *
970  *	LOCKING:
971  *	Inherited from caller.
972  *
973  */
974 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
975 {
976 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
977 	struct ata_port *ap = qc->ap;
978 	struct ata_device *dev = qc->dev;
979 	struct ata_eh_info *ehi = &dev->link->eh_info;
980 	struct scatterlist *sg;
981 	struct page *page;
982 	unsigned char *buf;
983 	unsigned int offset, count, consumed;
984 
985 next_sg:
986 	sg = qc->cursg;
987 	if (unlikely(!sg)) {
988 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
989 				  "buf=%u cur=%u bytes=%u",
990 				  qc->nbytes, qc->curbytes, bytes);
991 		return -1;
992 	}
993 
994 	page = sg_page(sg);
995 	offset = sg->offset + qc->cursg_ofs;
996 
997 	/* get the current page and offset */
998 	page = nth_page(page, (offset >> PAGE_SHIFT));
999 	offset %= PAGE_SIZE;
1000 
1001 	/* don't overrun current sg */
1002 	count = min(sg->length - qc->cursg_ofs, bytes);
1003 
1004 	/* don't cross page boundaries */
1005 	count = min(count, (unsigned int)PAGE_SIZE - offset);
1006 
1007 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
1008 
1009 	if (PageHighMem(page)) {
1010 		unsigned long flags;
1011 
1012 		/* FIXME: use bounce buffer */
1013 		local_irq_save(flags);
1014 		buf = kmap_atomic(page, KM_IRQ0);
1015 
1016 		/* do the actual data transfer */
1017 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
1018 								count, rw);
1019 
1020 		kunmap_atomic(buf, KM_IRQ0);
1021 		local_irq_restore(flags);
1022 	} else {
1023 		buf = page_address(page);
1024 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
1025 								count, rw);
1026 	}
1027 
1028 	bytes -= min(bytes, consumed);
1029 	qc->curbytes += count;
1030 	qc->cursg_ofs += count;
1031 
1032 	if (qc->cursg_ofs == sg->length) {
1033 		qc->cursg = sg_next(qc->cursg);
1034 		qc->cursg_ofs = 0;
1035 	}
1036 
1037 	/*
1038 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
1039 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
1040 	 * check correctly as it doesn't know if it is the last request being
1041 	 * made. Somebody should implement a proper sanity check.
1042 	 */
1043 	if (bytes)
1044 		goto next_sg;
1045 	return 0;
1046 }
1047 
1048 /**
1049  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
1050  *	@qc: Command on going
1051  *
1052  *	Transfer Transfer data from/to the ATAPI device.
1053  *
1054  *	LOCKING:
1055  *	Inherited from caller.
1056  */
1057 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
1058 {
1059 	struct ata_port *ap = qc->ap;
1060 	struct ata_device *dev = qc->dev;
1061 	struct ata_eh_info *ehi = &dev->link->eh_info;
1062 	unsigned int ireason, bc_lo, bc_hi, bytes;
1063 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
1064 
1065 	/* Abuse qc->result_tf for temp storage of intermediate TF
1066 	 * here to save some kernel stack usage.
1067 	 * For normal completion, qc->result_tf is not relevant. For
1068 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
1069 	 * So, the correctness of qc->result_tf is not affected.
1070 	 */
1071 	ap->ops->sff_tf_read(ap, &qc->result_tf);
1072 	ireason = qc->result_tf.nsect;
1073 	bc_lo = qc->result_tf.lbam;
1074 	bc_hi = qc->result_tf.lbah;
1075 	bytes = (bc_hi << 8) | bc_lo;
1076 
1077 	/* shall be cleared to zero, indicating xfer of data */
1078 	if (unlikely(ireason & (1 << 0)))
1079 		goto atapi_check;
1080 
1081 	/* make sure transfer direction matches expected */
1082 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
1083 	if (unlikely(do_write != i_write))
1084 		goto atapi_check;
1085 
1086 	if (unlikely(!bytes))
1087 		goto atapi_check;
1088 
1089 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
1090 
1091 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
1092 		goto err_out;
1093 	ata_sff_sync(ap); /* flush */
1094 
1095 	return;
1096 
1097  atapi_check:
1098 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1099 			  ireason, bytes);
1100  err_out:
1101 	qc->err_mask |= AC_ERR_HSM;
1102 	ap->hsm_task_state = HSM_ST_ERR;
1103 }
1104 
1105 /**
1106  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1107  *	@ap: the target ata_port
1108  *	@qc: qc on going
1109  *
1110  *	RETURNS:
1111  *	1 if ok in workqueue, 0 otherwise.
1112  */
1113 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
1114 						struct ata_queued_cmd *qc)
1115 {
1116 	if (qc->tf.flags & ATA_TFLAG_POLLING)
1117 		return 1;
1118 
1119 	if (ap->hsm_task_state == HSM_ST_FIRST) {
1120 		if (qc->tf.protocol == ATA_PROT_PIO &&
1121 		   (qc->tf.flags & ATA_TFLAG_WRITE))
1122 		    return 1;
1123 
1124 		if (ata_is_atapi(qc->tf.protocol) &&
1125 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1126 			return 1;
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 /**
1133  *	ata_hsm_qc_complete - finish a qc running on standard HSM
1134  *	@qc: Command to complete
1135  *	@in_wq: 1 if called from workqueue, 0 otherwise
1136  *
1137  *	Finish @qc which is running on standard HSM.
1138  *
1139  *	LOCKING:
1140  *	If @in_wq is zero, spin_lock_irqsave(host lock).
1141  *	Otherwise, none on entry and grabs host lock.
1142  */
1143 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1144 {
1145 	struct ata_port *ap = qc->ap;
1146 	unsigned long flags;
1147 
1148 	if (ap->ops->error_handler) {
1149 		if (in_wq) {
1150 			spin_lock_irqsave(ap->lock, flags);
1151 
1152 			/* EH might have kicked in while host lock is
1153 			 * released.
1154 			 */
1155 			qc = ata_qc_from_tag(ap, qc->tag);
1156 			if (qc) {
1157 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1158 					ap->ops->sff_irq_on(ap);
1159 					ata_qc_complete(qc);
1160 				} else
1161 					ata_port_freeze(ap);
1162 			}
1163 
1164 			spin_unlock_irqrestore(ap->lock, flags);
1165 		} else {
1166 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1167 				ata_qc_complete(qc);
1168 			else
1169 				ata_port_freeze(ap);
1170 		}
1171 	} else {
1172 		if (in_wq) {
1173 			spin_lock_irqsave(ap->lock, flags);
1174 			ap->ops->sff_irq_on(ap);
1175 			ata_qc_complete(qc);
1176 			spin_unlock_irqrestore(ap->lock, flags);
1177 		} else
1178 			ata_qc_complete(qc);
1179 	}
1180 }
1181 
1182 /**
1183  *	ata_sff_hsm_move - move the HSM to the next state.
1184  *	@ap: the target ata_port
1185  *	@qc: qc on going
1186  *	@status: current device status
1187  *	@in_wq: 1 if called from workqueue, 0 otherwise
1188  *
1189  *	RETURNS:
1190  *	1 when poll next status needed, 0 otherwise.
1191  */
1192 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1193 		     u8 status, int in_wq)
1194 {
1195 	struct ata_eh_info *ehi = &ap->link.eh_info;
1196 	unsigned long flags = 0;
1197 	int poll_next;
1198 
1199 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1200 
1201 	/* Make sure ata_sff_qc_issue() does not throw things
1202 	 * like DMA polling into the workqueue. Notice that
1203 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1204 	 */
1205 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1206 
1207 fsm_start:
1208 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1209 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1210 
1211 	switch (ap->hsm_task_state) {
1212 	case HSM_ST_FIRST:
1213 		/* Send first data block or PACKET CDB */
1214 
1215 		/* If polling, we will stay in the work queue after
1216 		 * sending the data. Otherwise, interrupt handler
1217 		 * takes over after sending the data.
1218 		 */
1219 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1220 
1221 		/* check device status */
1222 		if (unlikely((status & ATA_DRQ) == 0)) {
1223 			/* handle BSY=0, DRQ=0 as error */
1224 			if (likely(status & (ATA_ERR | ATA_DF)))
1225 				/* device stops HSM for abort/error */
1226 				qc->err_mask |= AC_ERR_DEV;
1227 			else {
1228 				/* HSM violation. Let EH handle this */
1229 				ata_ehi_push_desc(ehi,
1230 					"ST_FIRST: !(DRQ|ERR|DF)");
1231 				qc->err_mask |= AC_ERR_HSM;
1232 			}
1233 
1234 			ap->hsm_task_state = HSM_ST_ERR;
1235 			goto fsm_start;
1236 		}
1237 
1238 		/* Device should not ask for data transfer (DRQ=1)
1239 		 * when it finds something wrong.
1240 		 * We ignore DRQ here and stop the HSM by
1241 		 * changing hsm_task_state to HSM_ST_ERR and
1242 		 * let the EH abort the command or reset the device.
1243 		 */
1244 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1245 			/* Some ATAPI tape drives forget to clear the ERR bit
1246 			 * when doing the next command (mostly request sense).
1247 			 * We ignore ERR here to workaround and proceed sending
1248 			 * the CDB.
1249 			 */
1250 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1251 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1252 					"DRQ=1 with device error, "
1253 					"dev_stat 0x%X", status);
1254 				qc->err_mask |= AC_ERR_HSM;
1255 				ap->hsm_task_state = HSM_ST_ERR;
1256 				goto fsm_start;
1257 			}
1258 		}
1259 
1260 		/* Send the CDB (atapi) or the first data block (ata pio out).
1261 		 * During the state transition, interrupt handler shouldn't
1262 		 * be invoked before the data transfer is complete and
1263 		 * hsm_task_state is changed. Hence, the following locking.
1264 		 */
1265 		if (in_wq)
1266 			spin_lock_irqsave(ap->lock, flags);
1267 
1268 		if (qc->tf.protocol == ATA_PROT_PIO) {
1269 			/* PIO data out protocol.
1270 			 * send first data block.
1271 			 */
1272 
1273 			/* ata_pio_sectors() might change the state
1274 			 * to HSM_ST_LAST. so, the state is changed here
1275 			 * before ata_pio_sectors().
1276 			 */
1277 			ap->hsm_task_state = HSM_ST;
1278 			ata_pio_sectors(qc);
1279 		} else
1280 			/* send CDB */
1281 			atapi_send_cdb(ap, qc);
1282 
1283 		if (in_wq)
1284 			spin_unlock_irqrestore(ap->lock, flags);
1285 
1286 		/* if polling, ata_pio_task() handles the rest.
1287 		 * otherwise, interrupt handler takes over from here.
1288 		 */
1289 		break;
1290 
1291 	case HSM_ST:
1292 		/* complete command or read/write the data register */
1293 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1294 			/* ATAPI PIO protocol */
1295 			if ((status & ATA_DRQ) == 0) {
1296 				/* No more data to transfer or device error.
1297 				 * Device error will be tagged in HSM_ST_LAST.
1298 				 */
1299 				ap->hsm_task_state = HSM_ST_LAST;
1300 				goto fsm_start;
1301 			}
1302 
1303 			/* Device should not ask for data transfer (DRQ=1)
1304 			 * when it finds something wrong.
1305 			 * We ignore DRQ here and stop the HSM by
1306 			 * changing hsm_task_state to HSM_ST_ERR and
1307 			 * let the EH abort the command or reset the device.
1308 			 */
1309 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1310 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1311 					"DRQ=1 with device error, "
1312 					"dev_stat 0x%X", status);
1313 				qc->err_mask |= AC_ERR_HSM;
1314 				ap->hsm_task_state = HSM_ST_ERR;
1315 				goto fsm_start;
1316 			}
1317 
1318 			atapi_pio_bytes(qc);
1319 
1320 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1321 				/* bad ireason reported by device */
1322 				goto fsm_start;
1323 
1324 		} else {
1325 			/* ATA PIO protocol */
1326 			if (unlikely((status & ATA_DRQ) == 0)) {
1327 				/* handle BSY=0, DRQ=0 as error */
1328 				if (likely(status & (ATA_ERR | ATA_DF))) {
1329 					/* device stops HSM for abort/error */
1330 					qc->err_mask |= AC_ERR_DEV;
1331 
1332 					/* If diagnostic failed and this is
1333 					 * IDENTIFY, it's likely a phantom
1334 					 * device.  Mark hint.
1335 					 */
1336 					if (qc->dev->horkage &
1337 					    ATA_HORKAGE_DIAGNOSTIC)
1338 						qc->err_mask |=
1339 							AC_ERR_NODEV_HINT;
1340 				} else {
1341 					/* HSM violation. Let EH handle this.
1342 					 * Phantom devices also trigger this
1343 					 * condition.  Mark hint.
1344 					 */
1345 					ata_ehi_push_desc(ehi, "ST-ATA: "
1346 						"DRQ=0 without device error, "
1347 						"dev_stat 0x%X", status);
1348 					qc->err_mask |= AC_ERR_HSM |
1349 							AC_ERR_NODEV_HINT;
1350 				}
1351 
1352 				ap->hsm_task_state = HSM_ST_ERR;
1353 				goto fsm_start;
1354 			}
1355 
1356 			/* For PIO reads, some devices may ask for
1357 			 * data transfer (DRQ=1) alone with ERR=1.
1358 			 * We respect DRQ here and transfer one
1359 			 * block of junk data before changing the
1360 			 * hsm_task_state to HSM_ST_ERR.
1361 			 *
1362 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1363 			 * sense since the data block has been
1364 			 * transferred to the device.
1365 			 */
1366 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1367 				/* data might be corrputed */
1368 				qc->err_mask |= AC_ERR_DEV;
1369 
1370 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1371 					ata_pio_sectors(qc);
1372 					status = ata_wait_idle(ap);
1373 				}
1374 
1375 				if (status & (ATA_BUSY | ATA_DRQ)) {
1376 					ata_ehi_push_desc(ehi, "ST-ATA: "
1377 						"BUSY|DRQ persists on ERR|DF, "
1378 						"dev_stat 0x%X", status);
1379 					qc->err_mask |= AC_ERR_HSM;
1380 				}
1381 
1382 				/* There are oddball controllers with
1383 				 * status register stuck at 0x7f and
1384 				 * lbal/m/h at zero which makes it
1385 				 * pass all other presence detection
1386 				 * mechanisms we have.  Set NODEV_HINT
1387 				 * for it.  Kernel bz#7241.
1388 				 */
1389 				if (status == 0x7f)
1390 					qc->err_mask |= AC_ERR_NODEV_HINT;
1391 
1392 				/* ata_pio_sectors() might change the
1393 				 * state to HSM_ST_LAST. so, the state
1394 				 * is changed after ata_pio_sectors().
1395 				 */
1396 				ap->hsm_task_state = HSM_ST_ERR;
1397 				goto fsm_start;
1398 			}
1399 
1400 			ata_pio_sectors(qc);
1401 
1402 			if (ap->hsm_task_state == HSM_ST_LAST &&
1403 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1404 				/* all data read */
1405 				status = ata_wait_idle(ap);
1406 				goto fsm_start;
1407 			}
1408 		}
1409 
1410 		poll_next = 1;
1411 		break;
1412 
1413 	case HSM_ST_LAST:
1414 		if (unlikely(!ata_ok(status))) {
1415 			qc->err_mask |= __ac_err_mask(status);
1416 			ap->hsm_task_state = HSM_ST_ERR;
1417 			goto fsm_start;
1418 		}
1419 
1420 		/* no more data to transfer */
1421 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1422 			ap->print_id, qc->dev->devno, status);
1423 
1424 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1425 
1426 		ap->hsm_task_state = HSM_ST_IDLE;
1427 
1428 		/* complete taskfile transaction */
1429 		ata_hsm_qc_complete(qc, in_wq);
1430 
1431 		poll_next = 0;
1432 		break;
1433 
1434 	case HSM_ST_ERR:
1435 		ap->hsm_task_state = HSM_ST_IDLE;
1436 
1437 		/* complete taskfile transaction */
1438 		ata_hsm_qc_complete(qc, in_wq);
1439 
1440 		poll_next = 0;
1441 		break;
1442 	default:
1443 		poll_next = 0;
1444 		BUG();
1445 	}
1446 
1447 	return poll_next;
1448 }
1449 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1450 
1451 void ata_pio_task(struct work_struct *work)
1452 {
1453 	struct ata_port *ap =
1454 		container_of(work, struct ata_port, port_task.work);
1455 	struct ata_queued_cmd *qc = ap->port_task_data;
1456 	u8 status;
1457 	int poll_next;
1458 
1459 fsm_start:
1460 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1461 
1462 	/*
1463 	 * This is purely heuristic.  This is a fast path.
1464 	 * Sometimes when we enter, BSY will be cleared in
1465 	 * a chk-status or two.  If not, the drive is probably seeking
1466 	 * or something.  Snooze for a couple msecs, then
1467 	 * chk-status again.  If still busy, queue delayed work.
1468 	 */
1469 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1470 	if (status & ATA_BUSY) {
1471 		msleep(2);
1472 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1473 		if (status & ATA_BUSY) {
1474 			ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1475 			return;
1476 		}
1477 	}
1478 
1479 	/* move the HSM */
1480 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1481 
1482 	/* another command or interrupt handler
1483 	 * may be running at this point.
1484 	 */
1485 	if (poll_next)
1486 		goto fsm_start;
1487 }
1488 
1489 /**
1490  *	ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1491  *	@qc: command to issue to device
1492  *
1493  *	Using various libata functions and hooks, this function
1494  *	starts an ATA command.  ATA commands are grouped into
1495  *	classes called "protocols", and issuing each type of protocol
1496  *	is slightly different.
1497  *
1498  *	May be used as the qc_issue() entry in ata_port_operations.
1499  *
1500  *	LOCKING:
1501  *	spin_lock_irqsave(host lock)
1502  *
1503  *	RETURNS:
1504  *	Zero on success, AC_ERR_* mask on failure
1505  */
1506 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1507 {
1508 	struct ata_port *ap = qc->ap;
1509 
1510 	/* Use polling pio if the LLD doesn't handle
1511 	 * interrupt driven pio and atapi CDB interrupt.
1512 	 */
1513 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
1514 		switch (qc->tf.protocol) {
1515 		case ATA_PROT_PIO:
1516 		case ATA_PROT_NODATA:
1517 		case ATAPI_PROT_PIO:
1518 		case ATAPI_PROT_NODATA:
1519 			qc->tf.flags |= ATA_TFLAG_POLLING;
1520 			break;
1521 		case ATAPI_PROT_DMA:
1522 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1523 				/* see ata_dma_blacklisted() */
1524 				BUG();
1525 			break;
1526 		default:
1527 			break;
1528 		}
1529 	}
1530 
1531 	/* select the device */
1532 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1533 
1534 	/* start the command */
1535 	switch (qc->tf.protocol) {
1536 	case ATA_PROT_NODATA:
1537 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1538 			ata_qc_set_polling(qc);
1539 
1540 		ata_tf_to_host(ap, &qc->tf);
1541 		ap->hsm_task_state = HSM_ST_LAST;
1542 
1543 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1544 			ata_pio_queue_task(ap, qc, 0);
1545 
1546 		break;
1547 
1548 	case ATA_PROT_DMA:
1549 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1550 
1551 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1552 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1553 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
1554 		ap->hsm_task_state = HSM_ST_LAST;
1555 		break;
1556 
1557 	case ATA_PROT_PIO:
1558 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1559 			ata_qc_set_polling(qc);
1560 
1561 		ata_tf_to_host(ap, &qc->tf);
1562 
1563 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1564 			/* PIO data out protocol */
1565 			ap->hsm_task_state = HSM_ST_FIRST;
1566 			ata_pio_queue_task(ap, qc, 0);
1567 
1568 			/* always send first data block using
1569 			 * the ata_pio_task() codepath.
1570 			 */
1571 		} else {
1572 			/* PIO data in protocol */
1573 			ap->hsm_task_state = HSM_ST;
1574 
1575 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1576 				ata_pio_queue_task(ap, qc, 0);
1577 
1578 			/* if polling, ata_pio_task() handles the rest.
1579 			 * otherwise, interrupt handler takes over from here.
1580 			 */
1581 		}
1582 
1583 		break;
1584 
1585 	case ATAPI_PROT_PIO:
1586 	case ATAPI_PROT_NODATA:
1587 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1588 			ata_qc_set_polling(qc);
1589 
1590 		ata_tf_to_host(ap, &qc->tf);
1591 
1592 		ap->hsm_task_state = HSM_ST_FIRST;
1593 
1594 		/* send cdb by polling if no cdb interrupt */
1595 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1596 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1597 			ata_pio_queue_task(ap, qc, 0);
1598 		break;
1599 
1600 	case ATAPI_PROT_DMA:
1601 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1602 
1603 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1604 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1605 		ap->hsm_task_state = HSM_ST_FIRST;
1606 
1607 		/* send cdb by polling if no cdb interrupt */
1608 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1609 			ata_pio_queue_task(ap, qc, 0);
1610 		break;
1611 
1612 	default:
1613 		WARN_ON_ONCE(1);
1614 		return AC_ERR_SYSTEM;
1615 	}
1616 
1617 	return 0;
1618 }
1619 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1620 
1621 /**
1622  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1623  *	@qc: qc to fill result TF for
1624  *
1625  *	@qc is finished and result TF needs to be filled.  Fill it
1626  *	using ->sff_tf_read.
1627  *
1628  *	LOCKING:
1629  *	spin_lock_irqsave(host lock)
1630  *
1631  *	RETURNS:
1632  *	true indicating that result TF is successfully filled.
1633  */
1634 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1635 {
1636 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1637 	return true;
1638 }
1639 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1640 
1641 /**
1642  *	ata_sff_host_intr - Handle host interrupt for given (port, task)
1643  *	@ap: Port on which interrupt arrived (possibly...)
1644  *	@qc: Taskfile currently active in engine
1645  *
1646  *	Handle host interrupt for given queued command.  Currently,
1647  *	only DMA interrupts are handled.  All other commands are
1648  *	handled via polling with interrupts disabled (nIEN bit).
1649  *
1650  *	LOCKING:
1651  *	spin_lock_irqsave(host lock)
1652  *
1653  *	RETURNS:
1654  *	One if interrupt was handled, zero if not (shared irq).
1655  */
1656 unsigned int ata_sff_host_intr(struct ata_port *ap,
1657 				      struct ata_queued_cmd *qc)
1658 {
1659 	struct ata_eh_info *ehi = &ap->link.eh_info;
1660 	u8 status, host_stat = 0;
1661 
1662 	VPRINTK("ata%u: protocol %d task_state %d\n",
1663 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1664 
1665 	/* Check whether we are expecting interrupt in this state */
1666 	switch (ap->hsm_task_state) {
1667 	case HSM_ST_FIRST:
1668 		/* Some pre-ATAPI-4 devices assert INTRQ
1669 		 * at this state when ready to receive CDB.
1670 		 */
1671 
1672 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1673 		 * The flag was turned on only for atapi devices.  No
1674 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1675 		 */
1676 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1677 			goto idle_irq;
1678 		break;
1679 	case HSM_ST_LAST:
1680 		if (qc->tf.protocol == ATA_PROT_DMA ||
1681 		    qc->tf.protocol == ATAPI_PROT_DMA) {
1682 			/* check status of DMA engine */
1683 			host_stat = ap->ops->bmdma_status(ap);
1684 			VPRINTK("ata%u: host_stat 0x%X\n",
1685 				ap->print_id, host_stat);
1686 
1687 			/* if it's not our irq... */
1688 			if (!(host_stat & ATA_DMA_INTR))
1689 				goto idle_irq;
1690 
1691 			/* before we do anything else, clear DMA-Start bit */
1692 			ap->ops->bmdma_stop(qc);
1693 
1694 			if (unlikely(host_stat & ATA_DMA_ERR)) {
1695 				/* error when transfering data to/from memory */
1696 				qc->err_mask |= AC_ERR_HOST_BUS;
1697 				ap->hsm_task_state = HSM_ST_ERR;
1698 			}
1699 		}
1700 		break;
1701 	case HSM_ST:
1702 		break;
1703 	default:
1704 		goto idle_irq;
1705 	}
1706 
1707 
1708 	/* check main status, clearing INTRQ if needed */
1709 	status = ata_sff_irq_status(ap);
1710 	if (status & ATA_BUSY)
1711 		goto idle_irq;
1712 
1713 	/* ack bmdma irq events */
1714 	ap->ops->sff_irq_clear(ap);
1715 
1716 	ata_sff_hsm_move(ap, qc, status, 0);
1717 
1718 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1719 				       qc->tf.protocol == ATAPI_PROT_DMA))
1720 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1721 
1722 	return 1;	/* irq handled */
1723 
1724 idle_irq:
1725 	ap->stats.idle_irq++;
1726 
1727 #ifdef ATA_IRQ_TRAP
1728 	if ((ap->stats.idle_irq % 1000) == 0) {
1729 		ap->ops->sff_check_status(ap);
1730 		ap->ops->sff_irq_clear(ap);
1731 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1732 		return 1;
1733 	}
1734 #endif
1735 	return 0;	/* irq not handled */
1736 }
1737 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
1738 
1739 /**
1740  *	ata_sff_interrupt - Default ATA host interrupt handler
1741  *	@irq: irq line (unused)
1742  *	@dev_instance: pointer to our ata_host information structure
1743  *
1744  *	Default interrupt handler for PCI IDE devices.  Calls
1745  *	ata_sff_host_intr() for each port that is not disabled.
1746  *
1747  *	LOCKING:
1748  *	Obtains host lock during operation.
1749  *
1750  *	RETURNS:
1751  *	IRQ_NONE or IRQ_HANDLED.
1752  */
1753 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1754 {
1755 	struct ata_host *host = dev_instance;
1756 	unsigned int i;
1757 	unsigned int handled = 0;
1758 	unsigned long flags;
1759 
1760 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1761 	spin_lock_irqsave(&host->lock, flags);
1762 
1763 	for (i = 0; i < host->n_ports; i++) {
1764 		struct ata_port *ap;
1765 
1766 		ap = host->ports[i];
1767 		if (ap &&
1768 		    !(ap->flags & ATA_FLAG_DISABLED)) {
1769 			struct ata_queued_cmd *qc;
1770 
1771 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
1772 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1773 			    (qc->flags & ATA_QCFLAG_ACTIVE))
1774 				handled |= ata_sff_host_intr(ap, qc);
1775 		}
1776 	}
1777 
1778 	spin_unlock_irqrestore(&host->lock, flags);
1779 
1780 	return IRQ_RETVAL(handled);
1781 }
1782 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1783 
1784 /**
1785  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1786  *	@ap: port that appears to have timed out
1787  *
1788  *	Called from the libata error handlers when the core code suspects
1789  *	an interrupt has been lost. If it has complete anything we can and
1790  *	then return. Interface must support altstatus for this faster
1791  *	recovery to occur.
1792  *
1793  *	Locking:
1794  *	Caller holds host lock
1795  */
1796 
1797 void ata_sff_lost_interrupt(struct ata_port *ap)
1798 {
1799 	u8 status;
1800 	struct ata_queued_cmd *qc;
1801 
1802 	/* Only one outstanding command per SFF channel */
1803 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1804 	/* Check we have a live one.. */
1805 	if (qc == NULL ||  !(qc->flags & ATA_QCFLAG_ACTIVE))
1806 		return;
1807 	/* We cannot lose an interrupt on a polled command */
1808 	if (qc->tf.flags & ATA_TFLAG_POLLING)
1809 		return;
1810 	/* See if the controller thinks it is still busy - if so the command
1811 	   isn't a lost IRQ but is still in progress */
1812 	status = ata_sff_altstatus(ap);
1813 	if (status & ATA_BUSY)
1814 		return;
1815 
1816 	/* There was a command running, we are no longer busy and we have
1817 	   no interrupt. */
1818 	ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1819 								status);
1820 	/* Run the host interrupt logic as if the interrupt had not been
1821 	   lost */
1822 	ata_sff_host_intr(ap, qc);
1823 }
1824 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1825 
1826 /**
1827  *	ata_sff_freeze - Freeze SFF controller port
1828  *	@ap: port to freeze
1829  *
1830  *	Freeze BMDMA controller port.
1831  *
1832  *	LOCKING:
1833  *	Inherited from caller.
1834  */
1835 void ata_sff_freeze(struct ata_port *ap)
1836 {
1837 	struct ata_ioports *ioaddr = &ap->ioaddr;
1838 
1839 	ap->ctl |= ATA_NIEN;
1840 	ap->last_ctl = ap->ctl;
1841 
1842 	if (ioaddr->ctl_addr)
1843 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1844 
1845 	/* Under certain circumstances, some controllers raise IRQ on
1846 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1847 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1848 	 */
1849 	ap->ops->sff_check_status(ap);
1850 
1851 	ap->ops->sff_irq_clear(ap);
1852 }
1853 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1854 
1855 /**
1856  *	ata_sff_thaw - Thaw SFF controller port
1857  *	@ap: port to thaw
1858  *
1859  *	Thaw SFF controller port.
1860  *
1861  *	LOCKING:
1862  *	Inherited from caller.
1863  */
1864 void ata_sff_thaw(struct ata_port *ap)
1865 {
1866 	/* clear & re-enable interrupts */
1867 	ap->ops->sff_check_status(ap);
1868 	ap->ops->sff_irq_clear(ap);
1869 	ap->ops->sff_irq_on(ap);
1870 }
1871 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1872 
1873 /**
1874  *	ata_sff_prereset - prepare SFF link for reset
1875  *	@link: SFF link to be reset
1876  *	@deadline: deadline jiffies for the operation
1877  *
1878  *	SFF link @link is about to be reset.  Initialize it.  It first
1879  *	calls ata_std_prereset() and wait for !BSY if the port is
1880  *	being softreset.
1881  *
1882  *	LOCKING:
1883  *	Kernel thread context (may sleep)
1884  *
1885  *	RETURNS:
1886  *	0 on success, -errno otherwise.
1887  */
1888 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1889 {
1890 	struct ata_eh_context *ehc = &link->eh_context;
1891 	int rc;
1892 
1893 	rc = ata_std_prereset(link, deadline);
1894 	if (rc)
1895 		return rc;
1896 
1897 	/* if we're about to do hardreset, nothing more to do */
1898 	if (ehc->i.action & ATA_EH_HARDRESET)
1899 		return 0;
1900 
1901 	/* wait for !BSY if we don't know that no device is attached */
1902 	if (!ata_link_offline(link)) {
1903 		rc = ata_sff_wait_ready(link, deadline);
1904 		if (rc && rc != -ENODEV) {
1905 			ata_link_printk(link, KERN_WARNING, "device not ready "
1906 					"(errno=%d), forcing hardreset\n", rc);
1907 			ehc->i.action |= ATA_EH_HARDRESET;
1908 		}
1909 	}
1910 
1911 	return 0;
1912 }
1913 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1914 
1915 /**
1916  *	ata_devchk - PATA device presence detection
1917  *	@ap: ATA channel to examine
1918  *	@device: Device to examine (starting at zero)
1919  *
1920  *	This technique was originally described in
1921  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1922  *	later found its way into the ATA/ATAPI spec.
1923  *
1924  *	Write a pattern to the ATA shadow registers,
1925  *	and if a device is present, it will respond by
1926  *	correctly storing and echoing back the
1927  *	ATA shadow register contents.
1928  *
1929  *	LOCKING:
1930  *	caller.
1931  */
1932 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1933 {
1934 	struct ata_ioports *ioaddr = &ap->ioaddr;
1935 	u8 nsect, lbal;
1936 
1937 	ap->ops->sff_dev_select(ap, device);
1938 
1939 	iowrite8(0x55, ioaddr->nsect_addr);
1940 	iowrite8(0xaa, ioaddr->lbal_addr);
1941 
1942 	iowrite8(0xaa, ioaddr->nsect_addr);
1943 	iowrite8(0x55, ioaddr->lbal_addr);
1944 
1945 	iowrite8(0x55, ioaddr->nsect_addr);
1946 	iowrite8(0xaa, ioaddr->lbal_addr);
1947 
1948 	nsect = ioread8(ioaddr->nsect_addr);
1949 	lbal = ioread8(ioaddr->lbal_addr);
1950 
1951 	if ((nsect == 0x55) && (lbal == 0xaa))
1952 		return 1;	/* we found a device */
1953 
1954 	return 0;		/* nothing found */
1955 }
1956 
1957 /**
1958  *	ata_sff_dev_classify - Parse returned ATA device signature
1959  *	@dev: ATA device to classify (starting at zero)
1960  *	@present: device seems present
1961  *	@r_err: Value of error register on completion
1962  *
1963  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1964  *	an ATA/ATAPI-defined set of values is placed in the ATA
1965  *	shadow registers, indicating the results of device detection
1966  *	and diagnostics.
1967  *
1968  *	Select the ATA device, and read the values from the ATA shadow
1969  *	registers.  Then parse according to the Error register value,
1970  *	and the spec-defined values examined by ata_dev_classify().
1971  *
1972  *	LOCKING:
1973  *	caller.
1974  *
1975  *	RETURNS:
1976  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1977  */
1978 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1979 				  u8 *r_err)
1980 {
1981 	struct ata_port *ap = dev->link->ap;
1982 	struct ata_taskfile tf;
1983 	unsigned int class;
1984 	u8 err;
1985 
1986 	ap->ops->sff_dev_select(ap, dev->devno);
1987 
1988 	memset(&tf, 0, sizeof(tf));
1989 
1990 	ap->ops->sff_tf_read(ap, &tf);
1991 	err = tf.feature;
1992 	if (r_err)
1993 		*r_err = err;
1994 
1995 	/* see if device passed diags: continue and warn later */
1996 	if (err == 0)
1997 		/* diagnostic fail : do nothing _YET_ */
1998 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1999 	else if (err == 1)
2000 		/* do nothing */ ;
2001 	else if ((dev->devno == 0) && (err == 0x81))
2002 		/* do nothing */ ;
2003 	else
2004 		return ATA_DEV_NONE;
2005 
2006 	/* determine if device is ATA or ATAPI */
2007 	class = ata_dev_classify(&tf);
2008 
2009 	if (class == ATA_DEV_UNKNOWN) {
2010 		/* If the device failed diagnostic, it's likely to
2011 		 * have reported incorrect device signature too.
2012 		 * Assume ATA device if the device seems present but
2013 		 * device signature is invalid with diagnostic
2014 		 * failure.
2015 		 */
2016 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
2017 			class = ATA_DEV_ATA;
2018 		else
2019 			class = ATA_DEV_NONE;
2020 	} else if ((class == ATA_DEV_ATA) &&
2021 		   (ap->ops->sff_check_status(ap) == 0))
2022 		class = ATA_DEV_NONE;
2023 
2024 	return class;
2025 }
2026 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2027 
2028 /**
2029  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
2030  *	@link: SFF link which is just reset
2031  *	@devmask: mask of present devices
2032  *	@deadline: deadline jiffies for the operation
2033  *
2034  *	Wait devices attached to SFF @link to become ready after
2035  *	reset.  It contains preceding 150ms wait to avoid accessing TF
2036  *	status register too early.
2037  *
2038  *	LOCKING:
2039  *	Kernel thread context (may sleep).
2040  *
2041  *	RETURNS:
2042  *	0 on success, -ENODEV if some or all of devices in @devmask
2043  *	don't seem to exist.  -errno on other errors.
2044  */
2045 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
2046 			     unsigned long deadline)
2047 {
2048 	struct ata_port *ap = link->ap;
2049 	struct ata_ioports *ioaddr = &ap->ioaddr;
2050 	unsigned int dev0 = devmask & (1 << 0);
2051 	unsigned int dev1 = devmask & (1 << 1);
2052 	int rc, ret = 0;
2053 
2054 	msleep(ATA_WAIT_AFTER_RESET);
2055 
2056 	/* always check readiness of the master device */
2057 	rc = ata_sff_wait_ready(link, deadline);
2058 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
2059 	 * and TF status is 0xff, bail out on it too.
2060 	 */
2061 	if (rc)
2062 		return rc;
2063 
2064 	/* if device 1 was found in ata_devchk, wait for register
2065 	 * access briefly, then wait for BSY to clear.
2066 	 */
2067 	if (dev1) {
2068 		int i;
2069 
2070 		ap->ops->sff_dev_select(ap, 1);
2071 
2072 		/* Wait for register access.  Some ATAPI devices fail
2073 		 * to set nsect/lbal after reset, so don't waste too
2074 		 * much time on it.  We're gonna wait for !BSY anyway.
2075 		 */
2076 		for (i = 0; i < 2; i++) {
2077 			u8 nsect, lbal;
2078 
2079 			nsect = ioread8(ioaddr->nsect_addr);
2080 			lbal = ioread8(ioaddr->lbal_addr);
2081 			if ((nsect == 1) && (lbal == 1))
2082 				break;
2083 			msleep(50);	/* give drive a breather */
2084 		}
2085 
2086 		rc = ata_sff_wait_ready(link, deadline);
2087 		if (rc) {
2088 			if (rc != -ENODEV)
2089 				return rc;
2090 			ret = rc;
2091 		}
2092 	}
2093 
2094 	/* is all this really necessary? */
2095 	ap->ops->sff_dev_select(ap, 0);
2096 	if (dev1)
2097 		ap->ops->sff_dev_select(ap, 1);
2098 	if (dev0)
2099 		ap->ops->sff_dev_select(ap, 0);
2100 
2101 	return ret;
2102 }
2103 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2104 
2105 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2106 			     unsigned long deadline)
2107 {
2108 	struct ata_ioports *ioaddr = &ap->ioaddr;
2109 
2110 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2111 
2112 	/* software reset.  causes dev0 to be selected */
2113 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2114 	udelay(20);	/* FIXME: flush */
2115 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2116 	udelay(20);	/* FIXME: flush */
2117 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2118 	ap->last_ctl = ap->ctl;
2119 
2120 	/* wait the port to become ready */
2121 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2122 }
2123 
2124 /**
2125  *	ata_sff_softreset - reset host port via ATA SRST
2126  *	@link: ATA link to reset
2127  *	@classes: resulting classes of attached devices
2128  *	@deadline: deadline jiffies for the operation
2129  *
2130  *	Reset host port using ATA SRST.
2131  *
2132  *	LOCKING:
2133  *	Kernel thread context (may sleep)
2134  *
2135  *	RETURNS:
2136  *	0 on success, -errno otherwise.
2137  */
2138 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2139 		      unsigned long deadline)
2140 {
2141 	struct ata_port *ap = link->ap;
2142 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2143 	unsigned int devmask = 0;
2144 	int rc;
2145 	u8 err;
2146 
2147 	DPRINTK("ENTER\n");
2148 
2149 	/* determine if device 0/1 are present */
2150 	if (ata_devchk(ap, 0))
2151 		devmask |= (1 << 0);
2152 	if (slave_possible && ata_devchk(ap, 1))
2153 		devmask |= (1 << 1);
2154 
2155 	/* select device 0 again */
2156 	ap->ops->sff_dev_select(ap, 0);
2157 
2158 	/* issue bus reset */
2159 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2160 	rc = ata_bus_softreset(ap, devmask, deadline);
2161 	/* if link is occupied, -ENODEV too is an error */
2162 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2163 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2164 		return rc;
2165 	}
2166 
2167 	/* determine by signature whether we have ATA or ATAPI devices */
2168 	classes[0] = ata_sff_dev_classify(&link->device[0],
2169 					  devmask & (1 << 0), &err);
2170 	if (slave_possible && err != 0x81)
2171 		classes[1] = ata_sff_dev_classify(&link->device[1],
2172 						  devmask & (1 << 1), &err);
2173 
2174 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2175 	return 0;
2176 }
2177 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2178 
2179 /**
2180  *	sata_sff_hardreset - reset host port via SATA phy reset
2181  *	@link: link to reset
2182  *	@class: resulting class of attached device
2183  *	@deadline: deadline jiffies for the operation
2184  *
2185  *	SATA phy-reset host port using DET bits of SControl register,
2186  *	wait for !BSY and classify the attached device.
2187  *
2188  *	LOCKING:
2189  *	Kernel thread context (may sleep)
2190  *
2191  *	RETURNS:
2192  *	0 on success, -errno otherwise.
2193  */
2194 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2195 		       unsigned long deadline)
2196 {
2197 	struct ata_eh_context *ehc = &link->eh_context;
2198 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2199 	bool online;
2200 	int rc;
2201 
2202 	rc = sata_link_hardreset(link, timing, deadline, &online,
2203 				 ata_sff_check_ready);
2204 	if (online)
2205 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2206 
2207 	DPRINTK("EXIT, class=%u\n", *class);
2208 	return rc;
2209 }
2210 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2211 
2212 /**
2213  *	ata_sff_postreset - SFF postreset callback
2214  *	@link: the target SFF ata_link
2215  *	@classes: classes of attached devices
2216  *
2217  *	This function is invoked after a successful reset.  It first
2218  *	calls ata_std_postreset() and performs SFF specific postreset
2219  *	processing.
2220  *
2221  *	LOCKING:
2222  *	Kernel thread context (may sleep)
2223  */
2224 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2225 {
2226 	struct ata_port *ap = link->ap;
2227 
2228 	ata_std_postreset(link, classes);
2229 
2230 	/* is double-select really necessary? */
2231 	if (classes[0] != ATA_DEV_NONE)
2232 		ap->ops->sff_dev_select(ap, 1);
2233 	if (classes[1] != ATA_DEV_NONE)
2234 		ap->ops->sff_dev_select(ap, 0);
2235 
2236 	/* bail out if no device is present */
2237 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2238 		DPRINTK("EXIT, no device\n");
2239 		return;
2240 	}
2241 
2242 	/* set up device control */
2243 	if (ap->ioaddr.ctl_addr) {
2244 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2245 		ap->last_ctl = ap->ctl;
2246 	}
2247 }
2248 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2249 
2250 /**
2251  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2252  *	@qc: command
2253  *
2254  *	Drain the FIFO and device of any stuck data following a command
2255  *	failing to complete. In some cases this is neccessary before a
2256  *	reset will recover the device.
2257  *
2258  */
2259 
2260 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2261 {
2262 	int count;
2263 	struct ata_port *ap;
2264 
2265 	/* We only need to flush incoming data when a command was running */
2266 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2267 		return;
2268 
2269 	ap = qc->ap;
2270 	/* Drain up to 64K of data before we give up this recovery method */
2271 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2272 						&& count < 32768; count++)
2273 		ioread16(ap->ioaddr.data_addr);
2274 
2275 	/* Can become DEBUG later */
2276 	if (count)
2277 		ata_port_printk(ap, KERN_DEBUG,
2278 			"drained %d bytes to clear DRQ.\n", count);
2279 
2280 }
2281 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2282 
2283 /**
2284  *	ata_sff_error_handler - Stock error handler for BMDMA controller
2285  *	@ap: port to handle error for
2286  *
2287  *	Stock error handler for SFF controller.  It can handle both
2288  *	PATA and SATA controllers.  Many controllers should be able to
2289  *	use this EH as-is or with some added handling before and
2290  *	after.
2291  *
2292  *	LOCKING:
2293  *	Kernel thread context (may sleep)
2294  */
2295 void ata_sff_error_handler(struct ata_port *ap)
2296 {
2297 	ata_reset_fn_t softreset = ap->ops->softreset;
2298 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2299 	struct ata_queued_cmd *qc;
2300 	unsigned long flags;
2301 	int thaw = 0;
2302 
2303 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2304 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2305 		qc = NULL;
2306 
2307 	/* reset PIO HSM and stop DMA engine */
2308 	spin_lock_irqsave(ap->lock, flags);
2309 
2310 	ap->hsm_task_state = HSM_ST_IDLE;
2311 
2312 	if (ap->ioaddr.bmdma_addr &&
2313 	    qc && (qc->tf.protocol == ATA_PROT_DMA ||
2314 		   qc->tf.protocol == ATAPI_PROT_DMA)) {
2315 		u8 host_stat;
2316 
2317 		host_stat = ap->ops->bmdma_status(ap);
2318 
2319 		/* BMDMA controllers indicate host bus error by
2320 		 * setting DMA_ERR bit and timing out.  As it wasn't
2321 		 * really a timeout event, adjust error mask and
2322 		 * cancel frozen state.
2323 		 */
2324 		if (qc->err_mask == AC_ERR_TIMEOUT
2325 						&& (host_stat & ATA_DMA_ERR)) {
2326 			qc->err_mask = AC_ERR_HOST_BUS;
2327 			thaw = 1;
2328 		}
2329 
2330 		ap->ops->bmdma_stop(qc);
2331 	}
2332 
2333 	ata_sff_sync(ap);		/* FIXME: We don't need this */
2334 	ap->ops->sff_check_status(ap);
2335 	ap->ops->sff_irq_clear(ap);
2336 	/* We *MUST* do FIFO draining before we issue a reset as several
2337 	 * devices helpfully clear their internal state and will lock solid
2338 	 * if we touch the data port post reset. Pass qc in case anyone wants
2339 	 *  to do different PIO/DMA recovery or has per command fixups
2340 	 */
2341 	if (ap->ops->drain_fifo)
2342 		ap->ops->drain_fifo(qc);
2343 
2344 	spin_unlock_irqrestore(ap->lock, flags);
2345 
2346 	if (thaw)
2347 		ata_eh_thaw_port(ap);
2348 
2349 	/* PIO and DMA engines have been stopped, perform recovery */
2350 
2351 	/* Ignore ata_sff_softreset if ctl isn't accessible and
2352 	 * built-in hardresets if SCR access isn't available.
2353 	 */
2354 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2355 		softreset = NULL;
2356 	if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2357 		hardreset = NULL;
2358 
2359 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2360 		  ap->ops->postreset);
2361 }
2362 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2363 
2364 /**
2365  *	ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2366  *	@qc: internal command to clean up
2367  *
2368  *	LOCKING:
2369  *	Kernel thread context (may sleep)
2370  */
2371 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2372 {
2373 	struct ata_port *ap = qc->ap;
2374 	unsigned long flags;
2375 
2376 	spin_lock_irqsave(ap->lock, flags);
2377 
2378 	ap->hsm_task_state = HSM_ST_IDLE;
2379 
2380 	if (ap->ioaddr.bmdma_addr)
2381 		ata_bmdma_stop(qc);
2382 
2383 	spin_unlock_irqrestore(ap->lock, flags);
2384 }
2385 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2386 
2387 /**
2388  *	ata_sff_port_start - Set port up for dma.
2389  *	@ap: Port to initialize
2390  *
2391  *	Called just after data structures for each port are
2392  *	initialized.  Allocates space for PRD table if the device
2393  *	is DMA capable SFF.
2394  *
2395  *	May be used as the port_start() entry in ata_port_operations.
2396  *
2397  *	LOCKING:
2398  *	Inherited from caller.
2399  */
2400 int ata_sff_port_start(struct ata_port *ap)
2401 {
2402 	if (ap->ioaddr.bmdma_addr)
2403 		return ata_port_start(ap);
2404 	return 0;
2405 }
2406 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2407 
2408 /**
2409  *	ata_sff_port_start32 - Set port up for dma.
2410  *	@ap: Port to initialize
2411  *
2412  *	Called just after data structures for each port are
2413  *	initialized.  Allocates space for PRD table if the device
2414  *	is DMA capable SFF.
2415  *
2416  *	May be used as the port_start() entry in ata_port_operations for
2417  *	devices that are capable of 32bit PIO.
2418  *
2419  *	LOCKING:
2420  *	Inherited from caller.
2421  */
2422 int ata_sff_port_start32(struct ata_port *ap)
2423 {
2424 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
2425 	if (ap->ioaddr.bmdma_addr)
2426 		return ata_port_start(ap);
2427 	return 0;
2428 }
2429 EXPORT_SYMBOL_GPL(ata_sff_port_start32);
2430 
2431 /**
2432  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2433  *	@ioaddr: IO address structure to be initialized
2434  *
2435  *	Utility function which initializes data_addr, error_addr,
2436  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2437  *	device_addr, status_addr, and command_addr to standard offsets
2438  *	relative to cmd_addr.
2439  *
2440  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2441  */
2442 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2443 {
2444 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2445 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2446 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2447 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2448 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2449 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2450 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2451 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2452 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2453 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2454 }
2455 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2456 
2457 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2458 				    unsigned long xfer_mask)
2459 {
2460 	/* Filter out DMA modes if the device has been configured by
2461 	   the BIOS as PIO only */
2462 
2463 	if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2464 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2465 	return xfer_mask;
2466 }
2467 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2468 
2469 /**
2470  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2471  *	@qc: Info associated with this ATA transaction.
2472  *
2473  *	LOCKING:
2474  *	spin_lock_irqsave(host lock)
2475  */
2476 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2477 {
2478 	struct ata_port *ap = qc->ap;
2479 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2480 	u8 dmactl;
2481 
2482 	/* load PRD table addr. */
2483 	mb();	/* make sure PRD table writes are visible to controller */
2484 	iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2485 
2486 	/* specify data direction, triple-check start bit is clear */
2487 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2488 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2489 	if (!rw)
2490 		dmactl |= ATA_DMA_WR;
2491 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2492 
2493 	/* issue r/w command */
2494 	ap->ops->sff_exec_command(ap, &qc->tf);
2495 }
2496 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2497 
2498 /**
2499  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2500  *	@qc: Info associated with this ATA transaction.
2501  *
2502  *	LOCKING:
2503  *	spin_lock_irqsave(host lock)
2504  */
2505 void ata_bmdma_start(struct ata_queued_cmd *qc)
2506 {
2507 	struct ata_port *ap = qc->ap;
2508 	u8 dmactl;
2509 
2510 	/* start host DMA transaction */
2511 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2512 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2513 
2514 	/* Strictly, one may wish to issue an ioread8() here, to
2515 	 * flush the mmio write.  However, control also passes
2516 	 * to the hardware at this point, and it will interrupt
2517 	 * us when we are to resume control.  So, in effect,
2518 	 * we don't care when the mmio write flushes.
2519 	 * Further, a read of the DMA status register _immediately_
2520 	 * following the write may not be what certain flaky hardware
2521 	 * is expected, so I think it is best to not add a readb()
2522 	 * without first all the MMIO ATA cards/mobos.
2523 	 * Or maybe I'm just being paranoid.
2524 	 *
2525 	 * FIXME: The posting of this write means I/O starts are
2526 	 * unneccessarily delayed for MMIO
2527 	 */
2528 }
2529 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2530 
2531 /**
2532  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2533  *	@qc: Command we are ending DMA for
2534  *
2535  *	Clears the ATA_DMA_START flag in the dma control register
2536  *
2537  *	May be used as the bmdma_stop() entry in ata_port_operations.
2538  *
2539  *	LOCKING:
2540  *	spin_lock_irqsave(host lock)
2541  */
2542 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2543 {
2544 	struct ata_port *ap = qc->ap;
2545 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2546 
2547 	/* clear start/stop bit */
2548 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2549 		 mmio + ATA_DMA_CMD);
2550 
2551 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2552 	ata_sff_dma_pause(ap);
2553 }
2554 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2555 
2556 /**
2557  *	ata_bmdma_status - Read PCI IDE BMDMA status
2558  *	@ap: Port associated with this ATA transaction.
2559  *
2560  *	Read and return BMDMA status register.
2561  *
2562  *	May be used as the bmdma_status() entry in ata_port_operations.
2563  *
2564  *	LOCKING:
2565  *	spin_lock_irqsave(host lock)
2566  */
2567 u8 ata_bmdma_status(struct ata_port *ap)
2568 {
2569 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2570 }
2571 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2572 
2573 /**
2574  *	ata_bus_reset - reset host port and associated ATA channel
2575  *	@ap: port to reset
2576  *
2577  *	This is typically the first time we actually start issuing
2578  *	commands to the ATA channel.  We wait for BSY to clear, then
2579  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2580  *	result.  Determine what devices, if any, are on the channel
2581  *	by looking at the device 0/1 error register.  Look at the signature
2582  *	stored in each device's taskfile registers, to determine if
2583  *	the device is ATA or ATAPI.
2584  *
2585  *	LOCKING:
2586  *	PCI/etc. bus probe sem.
2587  *	Obtains host lock.
2588  *
2589  *	SIDE EFFECTS:
2590  *	Sets ATA_FLAG_DISABLED if bus reset fails.
2591  *
2592  *	DEPRECATED:
2593  *	This function is only for drivers which still use old EH and
2594  *	will be removed soon.
2595  */
2596 void ata_bus_reset(struct ata_port *ap)
2597 {
2598 	struct ata_device *device = ap->link.device;
2599 	struct ata_ioports *ioaddr = &ap->ioaddr;
2600 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2601 	u8 err;
2602 	unsigned int dev0, dev1 = 0, devmask = 0;
2603 	int rc;
2604 
2605 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2606 
2607 	/* determine if device 0/1 are present */
2608 	if (ap->flags & ATA_FLAG_SATA_RESET)
2609 		dev0 = 1;
2610 	else {
2611 		dev0 = ata_devchk(ap, 0);
2612 		if (slave_possible)
2613 			dev1 = ata_devchk(ap, 1);
2614 	}
2615 
2616 	if (dev0)
2617 		devmask |= (1 << 0);
2618 	if (dev1)
2619 		devmask |= (1 << 1);
2620 
2621 	/* select device 0 again */
2622 	ap->ops->sff_dev_select(ap, 0);
2623 
2624 	/* issue bus reset */
2625 	if (ap->flags & ATA_FLAG_SRST) {
2626 		rc = ata_bus_softreset(ap, devmask,
2627 				       ata_deadline(jiffies, 40000));
2628 		if (rc && rc != -ENODEV)
2629 			goto err_out;
2630 	}
2631 
2632 	/*
2633 	 * determine by signature whether we have ATA or ATAPI devices
2634 	 */
2635 	device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2636 	if ((slave_possible) && (err != 0x81))
2637 		device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2638 
2639 	/* is double-select really necessary? */
2640 	if (device[1].class != ATA_DEV_NONE)
2641 		ap->ops->sff_dev_select(ap, 1);
2642 	if (device[0].class != ATA_DEV_NONE)
2643 		ap->ops->sff_dev_select(ap, 0);
2644 
2645 	/* if no devices were detected, disable this port */
2646 	if ((device[0].class == ATA_DEV_NONE) &&
2647 	    (device[1].class == ATA_DEV_NONE))
2648 		goto err_out;
2649 
2650 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2651 		/* set up device control for ATA_FLAG_SATA_RESET */
2652 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2653 		ap->last_ctl = ap->ctl;
2654 	}
2655 
2656 	DPRINTK("EXIT\n");
2657 	return;
2658 
2659 err_out:
2660 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
2661 	ata_port_disable(ap);
2662 
2663 	DPRINTK("EXIT\n");
2664 }
2665 EXPORT_SYMBOL_GPL(ata_bus_reset);
2666 
2667 #ifdef CONFIG_PCI
2668 
2669 /**
2670  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
2671  *	@pdev: PCI device
2672  *
2673  *	Some PCI ATA devices report simplex mode but in fact can be told to
2674  *	enter non simplex mode. This implements the necessary logic to
2675  *	perform the task on such devices. Calling it on other devices will
2676  *	have -undefined- behaviour.
2677  */
2678 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2679 {
2680 	unsigned long bmdma = pci_resource_start(pdev, 4);
2681 	u8 simplex;
2682 
2683 	if (bmdma == 0)
2684 		return -ENOENT;
2685 
2686 	simplex = inb(bmdma + 0x02);
2687 	outb(simplex & 0x60, bmdma + 0x02);
2688 	simplex = inb(bmdma + 0x02);
2689 	if (simplex & 0x80)
2690 		return -EOPNOTSUPP;
2691 	return 0;
2692 }
2693 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2694 
2695 /**
2696  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2697  *	@host: target ATA host
2698  *
2699  *	Acquire PCI BMDMA resources and initialize @host accordingly.
2700  *
2701  *	LOCKING:
2702  *	Inherited from calling layer (may sleep).
2703  *
2704  *	RETURNS:
2705  *	0 on success, -errno otherwise.
2706  */
2707 int ata_pci_bmdma_init(struct ata_host *host)
2708 {
2709 	struct device *gdev = host->dev;
2710 	struct pci_dev *pdev = to_pci_dev(gdev);
2711 	int i, rc;
2712 
2713 	/* No BAR4 allocation: No DMA */
2714 	if (pci_resource_start(pdev, 4) == 0)
2715 		return 0;
2716 
2717 	/* TODO: If we get no DMA mask we should fall back to PIO */
2718 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2719 	if (rc)
2720 		return rc;
2721 	rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2722 	if (rc)
2723 		return rc;
2724 
2725 	/* request and iomap DMA region */
2726 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2727 	if (rc) {
2728 		dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2729 		return -ENOMEM;
2730 	}
2731 	host->iomap = pcim_iomap_table(pdev);
2732 
2733 	for (i = 0; i < 2; i++) {
2734 		struct ata_port *ap = host->ports[i];
2735 		void __iomem *bmdma = host->iomap[4] + 8 * i;
2736 
2737 		if (ata_port_is_dummy(ap))
2738 			continue;
2739 
2740 		ap->ioaddr.bmdma_addr = bmdma;
2741 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2742 		    (ioread8(bmdma + 2) & 0x80))
2743 			host->flags |= ATA_HOST_SIMPLEX;
2744 
2745 		ata_port_desc(ap, "bmdma 0x%llx",
2746 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2747 	}
2748 
2749 	return 0;
2750 }
2751 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2752 
2753 static int ata_resources_present(struct pci_dev *pdev, int port)
2754 {
2755 	int i;
2756 
2757 	/* Check the PCI resources for this channel are enabled */
2758 	port = port * 2;
2759 	for (i = 0; i < 2; i++) {
2760 		if (pci_resource_start(pdev, port + i) == 0 ||
2761 		    pci_resource_len(pdev, port + i) == 0)
2762 			return 0;
2763 	}
2764 	return 1;
2765 }
2766 
2767 /**
2768  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2769  *	@host: target ATA host
2770  *
2771  *	Acquire native PCI ATA resources for @host and initialize the
2772  *	first two ports of @host accordingly.  Ports marked dummy are
2773  *	skipped and allocation failure makes the port dummy.
2774  *
2775  *	Note that native PCI resources are valid even for legacy hosts
2776  *	as we fix up pdev resources array early in boot, so this
2777  *	function can be used for both native and legacy SFF hosts.
2778  *
2779  *	LOCKING:
2780  *	Inherited from calling layer (may sleep).
2781  *
2782  *	RETURNS:
2783  *	0 if at least one port is initialized, -ENODEV if no port is
2784  *	available.
2785  */
2786 int ata_pci_sff_init_host(struct ata_host *host)
2787 {
2788 	struct device *gdev = host->dev;
2789 	struct pci_dev *pdev = to_pci_dev(gdev);
2790 	unsigned int mask = 0;
2791 	int i, rc;
2792 
2793 	/* request, iomap BARs and init port addresses accordingly */
2794 	for (i = 0; i < 2; i++) {
2795 		struct ata_port *ap = host->ports[i];
2796 		int base = i * 2;
2797 		void __iomem * const *iomap;
2798 
2799 		if (ata_port_is_dummy(ap))
2800 			continue;
2801 
2802 		/* Discard disabled ports.  Some controllers show
2803 		 * their unused channels this way.  Disabled ports are
2804 		 * made dummy.
2805 		 */
2806 		if (!ata_resources_present(pdev, i)) {
2807 			ap->ops = &ata_dummy_port_ops;
2808 			continue;
2809 		}
2810 
2811 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2812 					dev_driver_string(gdev));
2813 		if (rc) {
2814 			dev_printk(KERN_WARNING, gdev,
2815 				   "failed to request/iomap BARs for port %d "
2816 				   "(errno=%d)\n", i, rc);
2817 			if (rc == -EBUSY)
2818 				pcim_pin_device(pdev);
2819 			ap->ops = &ata_dummy_port_ops;
2820 			continue;
2821 		}
2822 		host->iomap = iomap = pcim_iomap_table(pdev);
2823 
2824 		ap->ioaddr.cmd_addr = iomap[base];
2825 		ap->ioaddr.altstatus_addr =
2826 		ap->ioaddr.ctl_addr = (void __iomem *)
2827 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2828 		ata_sff_std_ports(&ap->ioaddr);
2829 
2830 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2831 			(unsigned long long)pci_resource_start(pdev, base),
2832 			(unsigned long long)pci_resource_start(pdev, base + 1));
2833 
2834 		mask |= 1 << i;
2835 	}
2836 
2837 	if (!mask) {
2838 		dev_printk(KERN_ERR, gdev, "no available native port\n");
2839 		return -ENODEV;
2840 	}
2841 
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2845 
2846 /**
2847  *	ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2848  *	@pdev: target PCI device
2849  *	@ppi: array of port_info, must be enough for two ports
2850  *	@r_host: out argument for the initialized ATA host
2851  *
2852  *	Helper to allocate ATA host for @pdev, acquire all native PCI
2853  *	resources and initialize it accordingly in one go.
2854  *
2855  *	LOCKING:
2856  *	Inherited from calling layer (may sleep).
2857  *
2858  *	RETURNS:
2859  *	0 on success, -errno otherwise.
2860  */
2861 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2862 			     const struct ata_port_info * const *ppi,
2863 			     struct ata_host **r_host)
2864 {
2865 	struct ata_host *host;
2866 	int rc;
2867 
2868 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2869 		return -ENOMEM;
2870 
2871 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2872 	if (!host) {
2873 		dev_printk(KERN_ERR, &pdev->dev,
2874 			   "failed to allocate ATA host\n");
2875 		rc = -ENOMEM;
2876 		goto err_out;
2877 	}
2878 
2879 	rc = ata_pci_sff_init_host(host);
2880 	if (rc)
2881 		goto err_out;
2882 
2883 	/* init DMA related stuff */
2884 	rc = ata_pci_bmdma_init(host);
2885 	if (rc)
2886 		goto err_bmdma;
2887 
2888 	devres_remove_group(&pdev->dev, NULL);
2889 	*r_host = host;
2890 	return 0;
2891 
2892 err_bmdma:
2893 	/* This is necessary because PCI and iomap resources are
2894 	 * merged and releasing the top group won't release the
2895 	 * acquired resources if some of those have been acquired
2896 	 * before entering this function.
2897 	 */
2898 	pcim_iounmap_regions(pdev, 0xf);
2899 err_out:
2900 	devres_release_group(&pdev->dev, NULL);
2901 	return rc;
2902 }
2903 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2904 
2905 /**
2906  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2907  *	@host: target SFF ATA host
2908  *	@irq_handler: irq_handler used when requesting IRQ(s)
2909  *	@sht: scsi_host_template to use when registering the host
2910  *
2911  *	This is the counterpart of ata_host_activate() for SFF ATA
2912  *	hosts.  This separate helper is necessary because SFF hosts
2913  *	use two separate interrupts in legacy mode.
2914  *
2915  *	LOCKING:
2916  *	Inherited from calling layer (may sleep).
2917  *
2918  *	RETURNS:
2919  *	0 on success, -errno otherwise.
2920  */
2921 int ata_pci_sff_activate_host(struct ata_host *host,
2922 			      irq_handler_t irq_handler,
2923 			      struct scsi_host_template *sht)
2924 {
2925 	struct device *dev = host->dev;
2926 	struct pci_dev *pdev = to_pci_dev(dev);
2927 	const char *drv_name = dev_driver_string(host->dev);
2928 	int legacy_mode = 0, rc;
2929 
2930 	rc = ata_host_start(host);
2931 	if (rc)
2932 		return rc;
2933 
2934 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2935 		u8 tmp8, mask;
2936 
2937 		/* TODO: What if one channel is in native mode ... */
2938 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2939 		mask = (1 << 2) | (1 << 0);
2940 		if ((tmp8 & mask) != mask)
2941 			legacy_mode = 1;
2942 #if defined(CONFIG_NO_ATA_LEGACY)
2943 		/* Some platforms with PCI limits cannot address compat
2944 		   port space. In that case we punt if their firmware has
2945 		   left a device in compatibility mode */
2946 		if (legacy_mode) {
2947 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2948 			return -EOPNOTSUPP;
2949 		}
2950 #endif
2951 	}
2952 
2953 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2954 		return -ENOMEM;
2955 
2956 	if (!legacy_mode && pdev->irq) {
2957 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2958 				      IRQF_SHARED, drv_name, host);
2959 		if (rc)
2960 			goto out;
2961 
2962 		ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2963 		ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2964 	} else if (legacy_mode) {
2965 		if (!ata_port_is_dummy(host->ports[0])) {
2966 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2967 					      irq_handler, IRQF_SHARED,
2968 					      drv_name, host);
2969 			if (rc)
2970 				goto out;
2971 
2972 			ata_port_desc(host->ports[0], "irq %d",
2973 				      ATA_PRIMARY_IRQ(pdev));
2974 		}
2975 
2976 		if (!ata_port_is_dummy(host->ports[1])) {
2977 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2978 					      irq_handler, IRQF_SHARED,
2979 					      drv_name, host);
2980 			if (rc)
2981 				goto out;
2982 
2983 			ata_port_desc(host->ports[1], "irq %d",
2984 				      ATA_SECONDARY_IRQ(pdev));
2985 		}
2986 	}
2987 
2988 	rc = ata_host_register(host, sht);
2989 out:
2990 	if (rc == 0)
2991 		devres_remove_group(dev, NULL);
2992 	else
2993 		devres_release_group(dev, NULL);
2994 
2995 	return rc;
2996 }
2997 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2998 
2999 /**
3000  *	ata_pci_sff_init_one - Initialize/register PCI IDE host controller
3001  *	@pdev: Controller to be initialized
3002  *	@ppi: array of port_info, must be enough for two ports
3003  *	@sht: scsi_host_template to use when registering the host
3004  *	@host_priv: host private_data
3005  *
3006  *	This is a helper function which can be called from a driver's
3007  *	xxx_init_one() probe function if the hardware uses traditional
3008  *	IDE taskfile registers.
3009  *
3010  *	This function calls pci_enable_device(), reserves its register
3011  *	regions, sets the dma mask, enables bus master mode, and calls
3012  *	ata_device_add()
3013  *
3014  *	ASSUMPTION:
3015  *	Nobody makes a single channel controller that appears solely as
3016  *	the secondary legacy port on PCI.
3017  *
3018  *	LOCKING:
3019  *	Inherited from PCI layer (may sleep).
3020  *
3021  *	RETURNS:
3022  *	Zero on success, negative on errno-based value on error.
3023  */
3024 int ata_pci_sff_init_one(struct pci_dev *pdev,
3025 			 const struct ata_port_info * const *ppi,
3026 			 struct scsi_host_template *sht, void *host_priv)
3027 {
3028 	struct device *dev = &pdev->dev;
3029 	const struct ata_port_info *pi = NULL;
3030 	struct ata_host *host = NULL;
3031 	int i, rc;
3032 
3033 	DPRINTK("ENTER\n");
3034 
3035 	/* look up the first valid port_info */
3036 	for (i = 0; i < 2 && ppi[i]; i++) {
3037 		if (ppi[i]->port_ops != &ata_dummy_port_ops) {
3038 			pi = ppi[i];
3039 			break;
3040 		}
3041 	}
3042 
3043 	if (!pi) {
3044 		dev_printk(KERN_ERR, &pdev->dev,
3045 			   "no valid port_info specified\n");
3046 		return -EINVAL;
3047 	}
3048 
3049 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
3050 		return -ENOMEM;
3051 
3052 	rc = pcim_enable_device(pdev);
3053 	if (rc)
3054 		goto out;
3055 
3056 	/* prepare and activate SFF host */
3057 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
3058 	if (rc)
3059 		goto out;
3060 	host->private_data = host_priv;
3061 
3062 	pci_set_master(pdev);
3063 	rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
3064 out:
3065 	if (rc == 0)
3066 		devres_remove_group(&pdev->dev, NULL);
3067 	else
3068 		devres_release_group(&pdev->dev, NULL);
3069 
3070 	return rc;
3071 }
3072 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
3073 
3074 #endif /* CONFIG_PCI */
3075