xref: /openbmc/linux/drivers/ata/libata-sff.c (revision 9ac8d3fb)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 #include <linux/highmem.h>
39 
40 #include "libata.h"
41 
42 const struct ata_port_operations ata_sff_port_ops = {
43 	.inherits		= &ata_base_port_ops,
44 
45 	.qc_prep		= ata_sff_qc_prep,
46 	.qc_issue		= ata_sff_qc_issue,
47 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
48 
49 	.freeze			= ata_sff_freeze,
50 	.thaw			= ata_sff_thaw,
51 	.prereset		= ata_sff_prereset,
52 	.softreset		= ata_sff_softreset,
53 	.hardreset		= sata_sff_hardreset,
54 	.postreset		= ata_sff_postreset,
55 	.error_handler		= ata_sff_error_handler,
56 	.post_internal_cmd	= ata_sff_post_internal_cmd,
57 
58 	.sff_dev_select		= ata_sff_dev_select,
59 	.sff_check_status	= ata_sff_check_status,
60 	.sff_tf_load		= ata_sff_tf_load,
61 	.sff_tf_read		= ata_sff_tf_read,
62 	.sff_exec_command	= ata_sff_exec_command,
63 	.sff_data_xfer		= ata_sff_data_xfer,
64 	.sff_irq_on		= ata_sff_irq_on,
65 	.sff_irq_clear		= ata_sff_irq_clear,
66 
67 	.port_start		= ata_sff_port_start,
68 };
69 
70 const struct ata_port_operations ata_bmdma_port_ops = {
71 	.inherits		= &ata_sff_port_ops,
72 
73 	.mode_filter		= ata_bmdma_mode_filter,
74 
75 	.bmdma_setup		= ata_bmdma_setup,
76 	.bmdma_start		= ata_bmdma_start,
77 	.bmdma_stop		= ata_bmdma_stop,
78 	.bmdma_status		= ata_bmdma_status,
79 };
80 
81 /**
82  *	ata_fill_sg - Fill PCI IDE PRD table
83  *	@qc: Metadata associated with taskfile to be transferred
84  *
85  *	Fill PCI IDE PRD (scatter-gather) table with segments
86  *	associated with the current disk command.
87  *
88  *	LOCKING:
89  *	spin_lock_irqsave(host lock)
90  *
91  */
92 static void ata_fill_sg(struct ata_queued_cmd *qc)
93 {
94 	struct ata_port *ap = qc->ap;
95 	struct scatterlist *sg;
96 	unsigned int si, pi;
97 
98 	pi = 0;
99 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
100 		u32 addr, offset;
101 		u32 sg_len, len;
102 
103 		/* determine if physical DMA addr spans 64K boundary.
104 		 * Note h/w doesn't support 64-bit, so we unconditionally
105 		 * truncate dma_addr_t to u32.
106 		 */
107 		addr = (u32) sg_dma_address(sg);
108 		sg_len = sg_dma_len(sg);
109 
110 		while (sg_len) {
111 			offset = addr & 0xffff;
112 			len = sg_len;
113 			if ((offset + sg_len) > 0x10000)
114 				len = 0x10000 - offset;
115 
116 			ap->prd[pi].addr = cpu_to_le32(addr);
117 			ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
118 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
119 
120 			pi++;
121 			sg_len -= len;
122 			addr += len;
123 		}
124 	}
125 
126 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
127 }
128 
129 /**
130  *	ata_fill_sg_dumb - Fill PCI IDE PRD table
131  *	@qc: Metadata associated with taskfile to be transferred
132  *
133  *	Fill PCI IDE PRD (scatter-gather) table with segments
134  *	associated with the current disk command. Perform the fill
135  *	so that we avoid writing any length 64K records for
136  *	controllers that don't follow the spec.
137  *
138  *	LOCKING:
139  *	spin_lock_irqsave(host lock)
140  *
141  */
142 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
143 {
144 	struct ata_port *ap = qc->ap;
145 	struct scatterlist *sg;
146 	unsigned int si, pi;
147 
148 	pi = 0;
149 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
150 		u32 addr, offset;
151 		u32 sg_len, len, blen;
152 
153 		/* determine if physical DMA addr spans 64K boundary.
154 		 * Note h/w doesn't support 64-bit, so we unconditionally
155 		 * truncate dma_addr_t to u32.
156 		 */
157 		addr = (u32) sg_dma_address(sg);
158 		sg_len = sg_dma_len(sg);
159 
160 		while (sg_len) {
161 			offset = addr & 0xffff;
162 			len = sg_len;
163 			if ((offset + sg_len) > 0x10000)
164 				len = 0x10000 - offset;
165 
166 			blen = len & 0xffff;
167 			ap->prd[pi].addr = cpu_to_le32(addr);
168 			if (blen == 0) {
169 			   /* Some PATA chipsets like the CS5530 can't
170 			      cope with 0x0000 meaning 64K as the spec says */
171 				ap->prd[pi].flags_len = cpu_to_le32(0x8000);
172 				blen = 0x8000;
173 				ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
174 			}
175 			ap->prd[pi].flags_len = cpu_to_le32(blen);
176 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
177 
178 			pi++;
179 			sg_len -= len;
180 			addr += len;
181 		}
182 	}
183 
184 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
185 }
186 
187 /**
188  *	ata_sff_qc_prep - Prepare taskfile for submission
189  *	@qc: Metadata associated with taskfile to be prepared
190  *
191  *	Prepare ATA taskfile for submission.
192  *
193  *	LOCKING:
194  *	spin_lock_irqsave(host lock)
195  */
196 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
197 {
198 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
199 		return;
200 
201 	ata_fill_sg(qc);
202 }
203 
204 /**
205  *	ata_sff_dumb_qc_prep - Prepare taskfile for submission
206  *	@qc: Metadata associated with taskfile to be prepared
207  *
208  *	Prepare ATA taskfile for submission.
209  *
210  *	LOCKING:
211  *	spin_lock_irqsave(host lock)
212  */
213 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
214 {
215 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
216 		return;
217 
218 	ata_fill_sg_dumb(qc);
219 }
220 
221 /**
222  *	ata_sff_check_status - Read device status reg & clear interrupt
223  *	@ap: port where the device is
224  *
225  *	Reads ATA taskfile status register for currently-selected device
226  *	and return its value. This also clears pending interrupts
227  *      from this device
228  *
229  *	LOCKING:
230  *	Inherited from caller.
231  */
232 u8 ata_sff_check_status(struct ata_port *ap)
233 {
234 	return ioread8(ap->ioaddr.status_addr);
235 }
236 
237 /**
238  *	ata_sff_altstatus - Read device alternate status reg
239  *	@ap: port where the device is
240  *
241  *	Reads ATA taskfile alternate status register for
242  *	currently-selected device and return its value.
243  *
244  *	Note: may NOT be used as the check_altstatus() entry in
245  *	ata_port_operations.
246  *
247  *	LOCKING:
248  *	Inherited from caller.
249  */
250 static u8 ata_sff_altstatus(struct ata_port *ap)
251 {
252 	if (ap->ops->sff_check_altstatus)
253 		return ap->ops->sff_check_altstatus(ap);
254 
255 	return ioread8(ap->ioaddr.altstatus_addr);
256 }
257 
258 /**
259  *	ata_sff_irq_status - Check if the device is busy
260  *	@ap: port where the device is
261  *
262  *	Determine if the port is currently busy. Uses altstatus
263  *	if available in order to avoid clearing shared IRQ status
264  *	when finding an IRQ source. Non ctl capable devices don't
265  *	share interrupt lines fortunately for us.
266  *
267  *	LOCKING:
268  *	Inherited from caller.
269  */
270 static u8 ata_sff_irq_status(struct ata_port *ap)
271 {
272 	u8 status;
273 
274 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
275 		status = ata_sff_altstatus(ap);
276 		/* Not us: We are busy */
277 		if (status & ATA_BUSY)
278 		    	return status;
279 	}
280 	/* Clear INTRQ latch */
281 	status = ap->ops->sff_check_status(ap);
282 	return status;
283 }
284 
285 /**
286  *	ata_sff_sync - Flush writes
287  *	@ap: Port to wait for.
288  *
289  *	CAUTION:
290  *	If we have an mmio device with no ctl and no altstatus
291  *	method this will fail. No such devices are known to exist.
292  *
293  *	LOCKING:
294  *	Inherited from caller.
295  */
296 
297 static void ata_sff_sync(struct ata_port *ap)
298 {
299 	if (ap->ops->sff_check_altstatus)
300 		ap->ops->sff_check_altstatus(ap);
301 	else if (ap->ioaddr.altstatus_addr)
302 		ioread8(ap->ioaddr.altstatus_addr);
303 }
304 
305 /**
306  *	ata_sff_pause		-	Flush writes and wait 400nS
307  *	@ap: Port to pause for.
308  *
309  *	CAUTION:
310  *	If we have an mmio device with no ctl and no altstatus
311  *	method this will fail. No such devices are known to exist.
312  *
313  *	LOCKING:
314  *	Inherited from caller.
315  */
316 
317 void ata_sff_pause(struct ata_port *ap)
318 {
319 	ata_sff_sync(ap);
320 	ndelay(400);
321 }
322 
323 /**
324  *	ata_sff_dma_pause	-	Pause before commencing DMA
325  *	@ap: Port to pause for.
326  *
327  *	Perform I/O fencing and ensure sufficient cycle delays occur
328  *	for the HDMA1:0 transition
329  */
330 
331 void ata_sff_dma_pause(struct ata_port *ap)
332 {
333 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
334 		/* An altstatus read will cause the needed delay without
335 		   messing up the IRQ status */
336 		ata_sff_altstatus(ap);
337 		return;
338 	}
339 	/* There are no DMA controllers without ctl. BUG here to ensure
340 	   we never violate the HDMA1:0 transition timing and risk
341 	   corruption. */
342 	BUG();
343 }
344 
345 /**
346  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
347  *	@ap: port containing status register to be polled
348  *	@tmout_pat: impatience timeout in msecs
349  *	@tmout: overall timeout in msecs
350  *
351  *	Sleep until ATA Status register bit BSY clears,
352  *	or a timeout occurs.
353  *
354  *	LOCKING:
355  *	Kernel thread context (may sleep).
356  *
357  *	RETURNS:
358  *	0 on success, -errno otherwise.
359  */
360 int ata_sff_busy_sleep(struct ata_port *ap,
361 		       unsigned long tmout_pat, unsigned long tmout)
362 {
363 	unsigned long timer_start, timeout;
364 	u8 status;
365 
366 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
367 	timer_start = jiffies;
368 	timeout = ata_deadline(timer_start, tmout_pat);
369 	while (status != 0xff && (status & ATA_BUSY) &&
370 	       time_before(jiffies, timeout)) {
371 		msleep(50);
372 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
373 	}
374 
375 	if (status != 0xff && (status & ATA_BUSY))
376 		ata_port_printk(ap, KERN_WARNING,
377 				"port is slow to respond, please be patient "
378 				"(Status 0x%x)\n", status);
379 
380 	timeout = ata_deadline(timer_start, tmout);
381 	while (status != 0xff && (status & ATA_BUSY) &&
382 	       time_before(jiffies, timeout)) {
383 		msleep(50);
384 		status = ap->ops->sff_check_status(ap);
385 	}
386 
387 	if (status == 0xff)
388 		return -ENODEV;
389 
390 	if (status & ATA_BUSY) {
391 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
392 				"(%lu secs, Status 0x%x)\n",
393 				DIV_ROUND_UP(tmout, 1000), status);
394 		return -EBUSY;
395 	}
396 
397 	return 0;
398 }
399 
400 static int ata_sff_check_ready(struct ata_link *link)
401 {
402 	u8 status = link->ap->ops->sff_check_status(link->ap);
403 
404 	return ata_check_ready(status);
405 }
406 
407 /**
408  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
409  *	@link: SFF link to wait ready status for
410  *	@deadline: deadline jiffies for the operation
411  *
412  *	Sleep until ATA Status register bit BSY clears, or timeout
413  *	occurs.
414  *
415  *	LOCKING:
416  *	Kernel thread context (may sleep).
417  *
418  *	RETURNS:
419  *	0 on success, -errno otherwise.
420  */
421 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
422 {
423 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
424 }
425 
426 /**
427  *	ata_sff_dev_select - Select device 0/1 on ATA bus
428  *	@ap: ATA channel to manipulate
429  *	@device: ATA device (numbered from zero) to select
430  *
431  *	Use the method defined in the ATA specification to
432  *	make either device 0, or device 1, active on the
433  *	ATA channel.  Works with both PIO and MMIO.
434  *
435  *	May be used as the dev_select() entry in ata_port_operations.
436  *
437  *	LOCKING:
438  *	caller.
439  */
440 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
441 {
442 	u8 tmp;
443 
444 	if (device == 0)
445 		tmp = ATA_DEVICE_OBS;
446 	else
447 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
448 
449 	iowrite8(tmp, ap->ioaddr.device_addr);
450 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
451 }
452 
453 /**
454  *	ata_dev_select - Select device 0/1 on ATA bus
455  *	@ap: ATA channel to manipulate
456  *	@device: ATA device (numbered from zero) to select
457  *	@wait: non-zero to wait for Status register BSY bit to clear
458  *	@can_sleep: non-zero if context allows sleeping
459  *
460  *	Use the method defined in the ATA specification to
461  *	make either device 0, or device 1, active on the
462  *	ATA channel.
463  *
464  *	This is a high-level version of ata_sff_dev_select(), which
465  *	additionally provides the services of inserting the proper
466  *	pauses and status polling, where needed.
467  *
468  *	LOCKING:
469  *	caller.
470  */
471 void ata_dev_select(struct ata_port *ap, unsigned int device,
472 			   unsigned int wait, unsigned int can_sleep)
473 {
474 	if (ata_msg_probe(ap))
475 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
476 				"device %u, wait %u\n", device, wait);
477 
478 	if (wait)
479 		ata_wait_idle(ap);
480 
481 	ap->ops->sff_dev_select(ap, device);
482 
483 	if (wait) {
484 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
485 			msleep(150);
486 		ata_wait_idle(ap);
487 	}
488 }
489 
490 /**
491  *	ata_sff_irq_on - Enable interrupts on a port.
492  *	@ap: Port on which interrupts are enabled.
493  *
494  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
495  *	wait for idle, clear any pending interrupts.
496  *
497  *	LOCKING:
498  *	Inherited from caller.
499  */
500 u8 ata_sff_irq_on(struct ata_port *ap)
501 {
502 	struct ata_ioports *ioaddr = &ap->ioaddr;
503 	u8 tmp;
504 
505 	ap->ctl &= ~ATA_NIEN;
506 	ap->last_ctl = ap->ctl;
507 
508 	if (ioaddr->ctl_addr)
509 		iowrite8(ap->ctl, ioaddr->ctl_addr);
510 	tmp = ata_wait_idle(ap);
511 
512 	ap->ops->sff_irq_clear(ap);
513 
514 	return tmp;
515 }
516 
517 /**
518  *	ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
519  *	@ap: Port associated with this ATA transaction.
520  *
521  *	Clear interrupt and error flags in DMA status register.
522  *
523  *	May be used as the irq_clear() entry in ata_port_operations.
524  *
525  *	LOCKING:
526  *	spin_lock_irqsave(host lock)
527  */
528 void ata_sff_irq_clear(struct ata_port *ap)
529 {
530 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
531 
532 	if (!mmio)
533 		return;
534 
535 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
536 }
537 
538 /**
539  *	ata_sff_tf_load - send taskfile registers to host controller
540  *	@ap: Port to which output is sent
541  *	@tf: ATA taskfile register set
542  *
543  *	Outputs ATA taskfile to standard ATA host controller.
544  *
545  *	LOCKING:
546  *	Inherited from caller.
547  */
548 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
549 {
550 	struct ata_ioports *ioaddr = &ap->ioaddr;
551 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
552 
553 	if (tf->ctl != ap->last_ctl) {
554 		if (ioaddr->ctl_addr)
555 			iowrite8(tf->ctl, ioaddr->ctl_addr);
556 		ap->last_ctl = tf->ctl;
557 		ata_wait_idle(ap);
558 	}
559 
560 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
561 		WARN_ON(!ioaddr->ctl_addr);
562 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
563 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
564 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
565 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
566 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
567 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
568 			tf->hob_feature,
569 			tf->hob_nsect,
570 			tf->hob_lbal,
571 			tf->hob_lbam,
572 			tf->hob_lbah);
573 	}
574 
575 	if (is_addr) {
576 		iowrite8(tf->feature, ioaddr->feature_addr);
577 		iowrite8(tf->nsect, ioaddr->nsect_addr);
578 		iowrite8(tf->lbal, ioaddr->lbal_addr);
579 		iowrite8(tf->lbam, ioaddr->lbam_addr);
580 		iowrite8(tf->lbah, ioaddr->lbah_addr);
581 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
582 			tf->feature,
583 			tf->nsect,
584 			tf->lbal,
585 			tf->lbam,
586 			tf->lbah);
587 	}
588 
589 	if (tf->flags & ATA_TFLAG_DEVICE) {
590 		iowrite8(tf->device, ioaddr->device_addr);
591 		VPRINTK("device 0x%X\n", tf->device);
592 	}
593 
594 	ata_wait_idle(ap);
595 }
596 
597 /**
598  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
599  *	@ap: Port from which input is read
600  *	@tf: ATA taskfile register set for storing input
601  *
602  *	Reads ATA taskfile registers for currently-selected device
603  *	into @tf. Assumes the device has a fully SFF compliant task file
604  *	layout and behaviour. If you device does not (eg has a different
605  *	status method) then you will need to provide a replacement tf_read
606  *
607  *	LOCKING:
608  *	Inherited from caller.
609  */
610 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
611 {
612 	struct ata_ioports *ioaddr = &ap->ioaddr;
613 
614 	tf->command = ata_sff_check_status(ap);
615 	tf->feature = ioread8(ioaddr->error_addr);
616 	tf->nsect = ioread8(ioaddr->nsect_addr);
617 	tf->lbal = ioread8(ioaddr->lbal_addr);
618 	tf->lbam = ioread8(ioaddr->lbam_addr);
619 	tf->lbah = ioread8(ioaddr->lbah_addr);
620 	tf->device = ioread8(ioaddr->device_addr);
621 
622 	if (tf->flags & ATA_TFLAG_LBA48) {
623 		if (likely(ioaddr->ctl_addr)) {
624 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
625 			tf->hob_feature = ioread8(ioaddr->error_addr);
626 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
627 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
628 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
629 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
630 			iowrite8(tf->ctl, ioaddr->ctl_addr);
631 			ap->last_ctl = tf->ctl;
632 		} else
633 			WARN_ON(1);
634 	}
635 }
636 
637 /**
638  *	ata_sff_exec_command - issue ATA command to host controller
639  *	@ap: port to which command is being issued
640  *	@tf: ATA taskfile register set
641  *
642  *	Issues ATA command, with proper synchronization with interrupt
643  *	handler / other threads.
644  *
645  *	LOCKING:
646  *	spin_lock_irqsave(host lock)
647  */
648 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
649 {
650 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
651 
652 	iowrite8(tf->command, ap->ioaddr.command_addr);
653 	ata_sff_pause(ap);
654 }
655 
656 /**
657  *	ata_tf_to_host - issue ATA taskfile to host controller
658  *	@ap: port to which command is being issued
659  *	@tf: ATA taskfile register set
660  *
661  *	Issues ATA taskfile register set to ATA host controller,
662  *	with proper synchronization with interrupt handler and
663  *	other threads.
664  *
665  *	LOCKING:
666  *	spin_lock_irqsave(host lock)
667  */
668 static inline void ata_tf_to_host(struct ata_port *ap,
669 				  const struct ata_taskfile *tf)
670 {
671 	ap->ops->sff_tf_load(ap, tf);
672 	ap->ops->sff_exec_command(ap, tf);
673 }
674 
675 /**
676  *	ata_sff_data_xfer - Transfer data by PIO
677  *	@dev: device to target
678  *	@buf: data buffer
679  *	@buflen: buffer length
680  *	@rw: read/write
681  *
682  *	Transfer data from/to the device data register by PIO.
683  *
684  *	LOCKING:
685  *	Inherited from caller.
686  *
687  *	RETURNS:
688  *	Bytes consumed.
689  */
690 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
691 			       unsigned int buflen, int rw)
692 {
693 	struct ata_port *ap = dev->link->ap;
694 	void __iomem *data_addr = ap->ioaddr.data_addr;
695 	unsigned int words = buflen >> 1;
696 
697 	/* Transfer multiple of 2 bytes */
698 	if (rw == READ)
699 		ioread16_rep(data_addr, buf, words);
700 	else
701 		iowrite16_rep(data_addr, buf, words);
702 
703 	/* Transfer trailing 1 byte, if any. */
704 	if (unlikely(buflen & 0x01)) {
705 		__le16 align_buf[1] = { 0 };
706 		unsigned char *trailing_buf = buf + buflen - 1;
707 
708 		if (rw == READ) {
709 			align_buf[0] = cpu_to_le16(ioread16(data_addr));
710 			memcpy(trailing_buf, align_buf, 1);
711 		} else {
712 			memcpy(align_buf, trailing_buf, 1);
713 			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
714 		}
715 		words++;
716 	}
717 
718 	return words << 1;
719 }
720 
721 /**
722  *	ata_sff_data_xfer_noirq - Transfer data by PIO
723  *	@dev: device to target
724  *	@buf: data buffer
725  *	@buflen: buffer length
726  *	@rw: read/write
727  *
728  *	Transfer data from/to the device data register by PIO. Do the
729  *	transfer with interrupts disabled.
730  *
731  *	LOCKING:
732  *	Inherited from caller.
733  *
734  *	RETURNS:
735  *	Bytes consumed.
736  */
737 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
738 				     unsigned int buflen, int rw)
739 {
740 	unsigned long flags;
741 	unsigned int consumed;
742 
743 	local_irq_save(flags);
744 	consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
745 	local_irq_restore(flags);
746 
747 	return consumed;
748 }
749 
750 /**
751  *	ata_pio_sector - Transfer a sector of data.
752  *	@qc: Command on going
753  *
754  *	Transfer qc->sect_size bytes of data from/to the ATA device.
755  *
756  *	LOCKING:
757  *	Inherited from caller.
758  */
759 static void ata_pio_sector(struct ata_queued_cmd *qc)
760 {
761 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
762 	struct ata_port *ap = qc->ap;
763 	struct page *page;
764 	unsigned int offset;
765 	unsigned char *buf;
766 
767 	if (qc->curbytes == qc->nbytes - qc->sect_size)
768 		ap->hsm_task_state = HSM_ST_LAST;
769 
770 	page = sg_page(qc->cursg);
771 	offset = qc->cursg->offset + qc->cursg_ofs;
772 
773 	/* get the current page and offset */
774 	page = nth_page(page, (offset >> PAGE_SHIFT));
775 	offset %= PAGE_SIZE;
776 
777 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
778 
779 	if (PageHighMem(page)) {
780 		unsigned long flags;
781 
782 		/* FIXME: use a bounce buffer */
783 		local_irq_save(flags);
784 		buf = kmap_atomic(page, KM_IRQ0);
785 
786 		/* do the actual data transfer */
787 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
788 				       do_write);
789 
790 		kunmap_atomic(buf, KM_IRQ0);
791 		local_irq_restore(flags);
792 	} else {
793 		buf = page_address(page);
794 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
795 				       do_write);
796 	}
797 
798 	qc->curbytes += qc->sect_size;
799 	qc->cursg_ofs += qc->sect_size;
800 
801 	if (qc->cursg_ofs == qc->cursg->length) {
802 		qc->cursg = sg_next(qc->cursg);
803 		qc->cursg_ofs = 0;
804 	}
805 }
806 
807 /**
808  *	ata_pio_sectors - Transfer one or many sectors.
809  *	@qc: Command on going
810  *
811  *	Transfer one or many sectors of data from/to the
812  *	ATA device for the DRQ request.
813  *
814  *	LOCKING:
815  *	Inherited from caller.
816  */
817 static void ata_pio_sectors(struct ata_queued_cmd *qc)
818 {
819 	if (is_multi_taskfile(&qc->tf)) {
820 		/* READ/WRITE MULTIPLE */
821 		unsigned int nsect;
822 
823 		WARN_ON(qc->dev->multi_count == 0);
824 
825 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
826 			    qc->dev->multi_count);
827 		while (nsect--)
828 			ata_pio_sector(qc);
829 	} else
830 		ata_pio_sector(qc);
831 
832 	ata_sff_sync(qc->ap); /* flush */
833 }
834 
835 /**
836  *	atapi_send_cdb - Write CDB bytes to hardware
837  *	@ap: Port to which ATAPI device is attached.
838  *	@qc: Taskfile currently active
839  *
840  *	When device has indicated its readiness to accept
841  *	a CDB, this function is called.  Send the CDB.
842  *
843  *	LOCKING:
844  *	caller.
845  */
846 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
847 {
848 	/* send SCSI cdb */
849 	DPRINTK("send cdb\n");
850 	WARN_ON(qc->dev->cdb_len < 12);
851 
852 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
853 	ata_sff_sync(ap);
854 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
855 	   or is bmdma_start guaranteed to do it ? */
856 	switch (qc->tf.protocol) {
857 	case ATAPI_PROT_PIO:
858 		ap->hsm_task_state = HSM_ST;
859 		break;
860 	case ATAPI_PROT_NODATA:
861 		ap->hsm_task_state = HSM_ST_LAST;
862 		break;
863 	case ATAPI_PROT_DMA:
864 		ap->hsm_task_state = HSM_ST_LAST;
865 		/* initiate bmdma */
866 		ap->ops->bmdma_start(qc);
867 		break;
868 	}
869 }
870 
871 /**
872  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
873  *	@qc: Command on going
874  *	@bytes: number of bytes
875  *
876  *	Transfer Transfer data from/to the ATAPI device.
877  *
878  *	LOCKING:
879  *	Inherited from caller.
880  *
881  */
882 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
883 {
884 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
885 	struct ata_port *ap = qc->ap;
886 	struct ata_device *dev = qc->dev;
887 	struct ata_eh_info *ehi = &dev->link->eh_info;
888 	struct scatterlist *sg;
889 	struct page *page;
890 	unsigned char *buf;
891 	unsigned int offset, count, consumed;
892 
893 next_sg:
894 	sg = qc->cursg;
895 	if (unlikely(!sg)) {
896 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
897 				  "buf=%u cur=%u bytes=%u",
898 				  qc->nbytes, qc->curbytes, bytes);
899 		return -1;
900 	}
901 
902 	page = sg_page(sg);
903 	offset = sg->offset + qc->cursg_ofs;
904 
905 	/* get the current page and offset */
906 	page = nth_page(page, (offset >> PAGE_SHIFT));
907 	offset %= PAGE_SIZE;
908 
909 	/* don't overrun current sg */
910 	count = min(sg->length - qc->cursg_ofs, bytes);
911 
912 	/* don't cross page boundaries */
913 	count = min(count, (unsigned int)PAGE_SIZE - offset);
914 
915 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
916 
917 	if (PageHighMem(page)) {
918 		unsigned long flags;
919 
920 		/* FIXME: use bounce buffer */
921 		local_irq_save(flags);
922 		buf = kmap_atomic(page, KM_IRQ0);
923 
924 		/* do the actual data transfer */
925 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset, count, rw);
926 
927 		kunmap_atomic(buf, KM_IRQ0);
928 		local_irq_restore(flags);
929 	} else {
930 		buf = page_address(page);
931 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset, count, rw);
932 	}
933 
934 	bytes -= min(bytes, consumed);
935 	qc->curbytes += count;
936 	qc->cursg_ofs += count;
937 
938 	if (qc->cursg_ofs == sg->length) {
939 		qc->cursg = sg_next(qc->cursg);
940 		qc->cursg_ofs = 0;
941 	}
942 
943 	/* consumed can be larger than count only for the last transfer */
944 	WARN_ON(qc->cursg && count != consumed);
945 
946 	if (bytes)
947 		goto next_sg;
948 	return 0;
949 }
950 
951 /**
952  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
953  *	@qc: Command on going
954  *
955  *	Transfer Transfer data from/to the ATAPI device.
956  *
957  *	LOCKING:
958  *	Inherited from caller.
959  */
960 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
961 {
962 	struct ata_port *ap = qc->ap;
963 	struct ata_device *dev = qc->dev;
964 	struct ata_eh_info *ehi = &dev->link->eh_info;
965 	unsigned int ireason, bc_lo, bc_hi, bytes;
966 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
967 
968 	/* Abuse qc->result_tf for temp storage of intermediate TF
969 	 * here to save some kernel stack usage.
970 	 * For normal completion, qc->result_tf is not relevant. For
971 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
972 	 * So, the correctness of qc->result_tf is not affected.
973 	 */
974 	ap->ops->sff_tf_read(ap, &qc->result_tf);
975 	ireason = qc->result_tf.nsect;
976 	bc_lo = qc->result_tf.lbam;
977 	bc_hi = qc->result_tf.lbah;
978 	bytes = (bc_hi << 8) | bc_lo;
979 
980 	/* shall be cleared to zero, indicating xfer of data */
981 	if (unlikely(ireason & (1 << 0)))
982 		goto atapi_check;
983 
984 	/* make sure transfer direction matches expected */
985 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
986 	if (unlikely(do_write != i_write))
987 		goto atapi_check;
988 
989 	if (unlikely(!bytes))
990 		goto atapi_check;
991 
992 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
993 
994 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
995 		goto err_out;
996 	ata_sff_sync(ap); /* flush */
997 
998 	return;
999 
1000  atapi_check:
1001 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1002 			  ireason, bytes);
1003  err_out:
1004 	qc->err_mask |= AC_ERR_HSM;
1005 	ap->hsm_task_state = HSM_ST_ERR;
1006 }
1007 
1008 /**
1009  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1010  *	@ap: the target ata_port
1011  *	@qc: qc on going
1012  *
1013  *	RETURNS:
1014  *	1 if ok in workqueue, 0 otherwise.
1015  */
1016 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1017 {
1018 	if (qc->tf.flags & ATA_TFLAG_POLLING)
1019 		return 1;
1020 
1021 	if (ap->hsm_task_state == HSM_ST_FIRST) {
1022 		if (qc->tf.protocol == ATA_PROT_PIO &&
1023 		    (qc->tf.flags & ATA_TFLAG_WRITE))
1024 		    return 1;
1025 
1026 		if (ata_is_atapi(qc->tf.protocol) &&
1027 		    !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1028 			return 1;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 /**
1035  *	ata_hsm_qc_complete - finish a qc running on standard HSM
1036  *	@qc: Command to complete
1037  *	@in_wq: 1 if called from workqueue, 0 otherwise
1038  *
1039  *	Finish @qc which is running on standard HSM.
1040  *
1041  *	LOCKING:
1042  *	If @in_wq is zero, spin_lock_irqsave(host lock).
1043  *	Otherwise, none on entry and grabs host lock.
1044  */
1045 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1046 {
1047 	struct ata_port *ap = qc->ap;
1048 	unsigned long flags;
1049 
1050 	if (ap->ops->error_handler) {
1051 		if (in_wq) {
1052 			spin_lock_irqsave(ap->lock, flags);
1053 
1054 			/* EH might have kicked in while host lock is
1055 			 * released.
1056 			 */
1057 			qc = ata_qc_from_tag(ap, qc->tag);
1058 			if (qc) {
1059 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1060 					ap->ops->sff_irq_on(ap);
1061 					ata_qc_complete(qc);
1062 				} else
1063 					ata_port_freeze(ap);
1064 			}
1065 
1066 			spin_unlock_irqrestore(ap->lock, flags);
1067 		} else {
1068 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1069 				ata_qc_complete(qc);
1070 			else
1071 				ata_port_freeze(ap);
1072 		}
1073 	} else {
1074 		if (in_wq) {
1075 			spin_lock_irqsave(ap->lock, flags);
1076 			ap->ops->sff_irq_on(ap);
1077 			ata_qc_complete(qc);
1078 			spin_unlock_irqrestore(ap->lock, flags);
1079 		} else
1080 			ata_qc_complete(qc);
1081 	}
1082 }
1083 
1084 /**
1085  *	ata_sff_hsm_move - move the HSM to the next state.
1086  *	@ap: the target ata_port
1087  *	@qc: qc on going
1088  *	@status: current device status
1089  *	@in_wq: 1 if called from workqueue, 0 otherwise
1090  *
1091  *	RETURNS:
1092  *	1 when poll next status needed, 0 otherwise.
1093  */
1094 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1095 		     u8 status, int in_wq)
1096 {
1097 	struct ata_eh_info *ehi = &ap->link.eh_info;
1098 	unsigned long flags = 0;
1099 	int poll_next;
1100 
1101 	WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1102 
1103 	/* Make sure ata_sff_qc_issue() does not throw things
1104 	 * like DMA polling into the workqueue. Notice that
1105 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1106 	 */
1107 	WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
1108 
1109 fsm_start:
1110 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1111 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1112 
1113 	switch (ap->hsm_task_state) {
1114 	case HSM_ST_FIRST:
1115 		/* Send first data block or PACKET CDB */
1116 
1117 		/* If polling, we will stay in the work queue after
1118 		 * sending the data. Otherwise, interrupt handler
1119 		 * takes over after sending the data.
1120 		 */
1121 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1122 
1123 		/* check device status */
1124 		if (unlikely((status & ATA_DRQ) == 0)) {
1125 			/* handle BSY=0, DRQ=0 as error */
1126 			if (likely(status & (ATA_ERR | ATA_DF)))
1127 				/* device stops HSM for abort/error */
1128 				qc->err_mask |= AC_ERR_DEV;
1129 			else {
1130 				/* HSM violation. Let EH handle this */
1131 				ata_ehi_push_desc(ehi,
1132 					"ST_FIRST: !(DRQ|ERR|DF)");
1133 				qc->err_mask |= AC_ERR_HSM;
1134 			}
1135 
1136 			ap->hsm_task_state = HSM_ST_ERR;
1137 			goto fsm_start;
1138 		}
1139 
1140 		/* Device should not ask for data transfer (DRQ=1)
1141 		 * when it finds something wrong.
1142 		 * We ignore DRQ here and stop the HSM by
1143 		 * changing hsm_task_state to HSM_ST_ERR and
1144 		 * let the EH abort the command or reset the device.
1145 		 */
1146 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1147 			/* Some ATAPI tape drives forget to clear the ERR bit
1148 			 * when doing the next command (mostly request sense).
1149 			 * We ignore ERR here to workaround and proceed sending
1150 			 * the CDB.
1151 			 */
1152 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1153 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1154 					"DRQ=1 with device error, "
1155 					"dev_stat 0x%X", status);
1156 				qc->err_mask |= AC_ERR_HSM;
1157 				ap->hsm_task_state = HSM_ST_ERR;
1158 				goto fsm_start;
1159 			}
1160 		}
1161 
1162 		/* Send the CDB (atapi) or the first data block (ata pio out).
1163 		 * During the state transition, interrupt handler shouldn't
1164 		 * be invoked before the data transfer is complete and
1165 		 * hsm_task_state is changed. Hence, the following locking.
1166 		 */
1167 		if (in_wq)
1168 			spin_lock_irqsave(ap->lock, flags);
1169 
1170 		if (qc->tf.protocol == ATA_PROT_PIO) {
1171 			/* PIO data out protocol.
1172 			 * send first data block.
1173 			 */
1174 
1175 			/* ata_pio_sectors() might change the state
1176 			 * to HSM_ST_LAST. so, the state is changed here
1177 			 * before ata_pio_sectors().
1178 			 */
1179 			ap->hsm_task_state = HSM_ST;
1180 			ata_pio_sectors(qc);
1181 		} else
1182 			/* send CDB */
1183 			atapi_send_cdb(ap, qc);
1184 
1185 		if (in_wq)
1186 			spin_unlock_irqrestore(ap->lock, flags);
1187 
1188 		/* if polling, ata_pio_task() handles the rest.
1189 		 * otherwise, interrupt handler takes over from here.
1190 		 */
1191 		break;
1192 
1193 	case HSM_ST:
1194 		/* complete command or read/write the data register */
1195 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1196 			/* ATAPI PIO protocol */
1197 			if ((status & ATA_DRQ) == 0) {
1198 				/* No more data to transfer or device error.
1199 				 * Device error will be tagged in HSM_ST_LAST.
1200 				 */
1201 				ap->hsm_task_state = HSM_ST_LAST;
1202 				goto fsm_start;
1203 			}
1204 
1205 			/* Device should not ask for data transfer (DRQ=1)
1206 			 * when it finds something wrong.
1207 			 * We ignore DRQ here and stop the HSM by
1208 			 * changing hsm_task_state to HSM_ST_ERR and
1209 			 * let the EH abort the command or reset the device.
1210 			 */
1211 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1212 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1213 					"DRQ=1 with device error, "
1214 					"dev_stat 0x%X", status);
1215 				qc->err_mask |= AC_ERR_HSM;
1216 				ap->hsm_task_state = HSM_ST_ERR;
1217 				goto fsm_start;
1218 			}
1219 
1220 			atapi_pio_bytes(qc);
1221 
1222 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1223 				/* bad ireason reported by device */
1224 				goto fsm_start;
1225 
1226 		} else {
1227 			/* ATA PIO protocol */
1228 			if (unlikely((status & ATA_DRQ) == 0)) {
1229 				/* handle BSY=0, DRQ=0 as error */
1230 				if (likely(status & (ATA_ERR | ATA_DF)))
1231 					/* device stops HSM for abort/error */
1232 					qc->err_mask |= AC_ERR_DEV;
1233 				else {
1234 					/* HSM violation. Let EH handle this.
1235 					 * Phantom devices also trigger this
1236 					 * condition.  Mark hint.
1237 					 */
1238 					ata_ehi_push_desc(ehi, "ST-ATA: "
1239 						"DRQ=1 with device error, "
1240 						"dev_stat 0x%X", status);
1241 					qc->err_mask |= AC_ERR_HSM |
1242 							AC_ERR_NODEV_HINT;
1243 				}
1244 
1245 				ap->hsm_task_state = HSM_ST_ERR;
1246 				goto fsm_start;
1247 			}
1248 
1249 			/* For PIO reads, some devices may ask for
1250 			 * data transfer (DRQ=1) alone with ERR=1.
1251 			 * We respect DRQ here and transfer one
1252 			 * block of junk data before changing the
1253 			 * hsm_task_state to HSM_ST_ERR.
1254 			 *
1255 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1256 			 * sense since the data block has been
1257 			 * transferred to the device.
1258 			 */
1259 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1260 				/* data might be corrputed */
1261 				qc->err_mask |= AC_ERR_DEV;
1262 
1263 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1264 					ata_pio_sectors(qc);
1265 					status = ata_wait_idle(ap);
1266 				}
1267 
1268 				if (status & (ATA_BUSY | ATA_DRQ)) {
1269 					ata_ehi_push_desc(ehi, "ST-ATA: "
1270 						"BUSY|DRQ persists on ERR|DF, "
1271 						"dev_stat 0x%X", status);
1272 					qc->err_mask |= AC_ERR_HSM;
1273 				}
1274 
1275 				/* ata_pio_sectors() might change the
1276 				 * state to HSM_ST_LAST. so, the state
1277 				 * is changed after ata_pio_sectors().
1278 				 */
1279 				ap->hsm_task_state = HSM_ST_ERR;
1280 				goto fsm_start;
1281 			}
1282 
1283 			ata_pio_sectors(qc);
1284 
1285 			if (ap->hsm_task_state == HSM_ST_LAST &&
1286 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1287 				/* all data read */
1288 				status = ata_wait_idle(ap);
1289 				goto fsm_start;
1290 			}
1291 		}
1292 
1293 		poll_next = 1;
1294 		break;
1295 
1296 	case HSM_ST_LAST:
1297 		if (unlikely(!ata_ok(status))) {
1298 			qc->err_mask |= __ac_err_mask(status);
1299 			ap->hsm_task_state = HSM_ST_ERR;
1300 			goto fsm_start;
1301 		}
1302 
1303 		/* no more data to transfer */
1304 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1305 			ap->print_id, qc->dev->devno, status);
1306 
1307 		WARN_ON(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1308 
1309 		ap->hsm_task_state = HSM_ST_IDLE;
1310 
1311 		/* complete taskfile transaction */
1312 		ata_hsm_qc_complete(qc, in_wq);
1313 
1314 		poll_next = 0;
1315 		break;
1316 
1317 	case HSM_ST_ERR:
1318 		ap->hsm_task_state = HSM_ST_IDLE;
1319 
1320 		/* complete taskfile transaction */
1321 		ata_hsm_qc_complete(qc, in_wq);
1322 
1323 		poll_next = 0;
1324 		break;
1325 	default:
1326 		poll_next = 0;
1327 		BUG();
1328 	}
1329 
1330 	return poll_next;
1331 }
1332 
1333 void ata_pio_task(struct work_struct *work)
1334 {
1335 	struct ata_port *ap =
1336 		container_of(work, struct ata_port, port_task.work);
1337 	struct ata_queued_cmd *qc = ap->port_task_data;
1338 	u8 status;
1339 	int poll_next;
1340 
1341 fsm_start:
1342 	WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
1343 
1344 	/*
1345 	 * This is purely heuristic.  This is a fast path.
1346 	 * Sometimes when we enter, BSY will be cleared in
1347 	 * a chk-status or two.  If not, the drive is probably seeking
1348 	 * or something.  Snooze for a couple msecs, then
1349 	 * chk-status again.  If still busy, queue delayed work.
1350 	 */
1351 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1352 	if (status & ATA_BUSY) {
1353 		msleep(2);
1354 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1355 		if (status & ATA_BUSY) {
1356 			ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1357 			return;
1358 		}
1359 	}
1360 
1361 	/* move the HSM */
1362 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1363 
1364 	/* another command or interrupt handler
1365 	 * may be running at this point.
1366 	 */
1367 	if (poll_next)
1368 		goto fsm_start;
1369 }
1370 
1371 /**
1372  *	ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1373  *	@qc: command to issue to device
1374  *
1375  *	Using various libata functions and hooks, this function
1376  *	starts an ATA command.  ATA commands are grouped into
1377  *	classes called "protocols", and issuing each type of protocol
1378  *	is slightly different.
1379  *
1380  *	May be used as the qc_issue() entry in ata_port_operations.
1381  *
1382  *	LOCKING:
1383  *	spin_lock_irqsave(host lock)
1384  *
1385  *	RETURNS:
1386  *	Zero on success, AC_ERR_* mask on failure
1387  */
1388 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1389 {
1390 	struct ata_port *ap = qc->ap;
1391 
1392 	/* Use polling pio if the LLD doesn't handle
1393 	 * interrupt driven pio and atapi CDB interrupt.
1394 	 */
1395 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
1396 		switch (qc->tf.protocol) {
1397 		case ATA_PROT_PIO:
1398 		case ATA_PROT_NODATA:
1399 		case ATAPI_PROT_PIO:
1400 		case ATAPI_PROT_NODATA:
1401 			qc->tf.flags |= ATA_TFLAG_POLLING;
1402 			break;
1403 		case ATAPI_PROT_DMA:
1404 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1405 				/* see ata_dma_blacklisted() */
1406 				BUG();
1407 			break;
1408 		default:
1409 			break;
1410 		}
1411 	}
1412 
1413 	/* select the device */
1414 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1415 
1416 	/* start the command */
1417 	switch (qc->tf.protocol) {
1418 	case ATA_PROT_NODATA:
1419 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1420 			ata_qc_set_polling(qc);
1421 
1422 		ata_tf_to_host(ap, &qc->tf);
1423 		ap->hsm_task_state = HSM_ST_LAST;
1424 
1425 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1426 			ata_pio_queue_task(ap, qc, 0);
1427 
1428 		break;
1429 
1430 	case ATA_PROT_DMA:
1431 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1432 
1433 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1434 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1435 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
1436 		ap->hsm_task_state = HSM_ST_LAST;
1437 		break;
1438 
1439 	case ATA_PROT_PIO:
1440 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1441 			ata_qc_set_polling(qc);
1442 
1443 		ata_tf_to_host(ap, &qc->tf);
1444 
1445 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1446 			/* PIO data out protocol */
1447 			ap->hsm_task_state = HSM_ST_FIRST;
1448 			ata_pio_queue_task(ap, qc, 0);
1449 
1450 			/* always send first data block using
1451 			 * the ata_pio_task() codepath.
1452 			 */
1453 		} else {
1454 			/* PIO data in protocol */
1455 			ap->hsm_task_state = HSM_ST;
1456 
1457 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1458 				ata_pio_queue_task(ap, qc, 0);
1459 
1460 			/* if polling, ata_pio_task() handles the rest.
1461 			 * otherwise, interrupt handler takes over from here.
1462 			 */
1463 		}
1464 
1465 		break;
1466 
1467 	case ATAPI_PROT_PIO:
1468 	case ATAPI_PROT_NODATA:
1469 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1470 			ata_qc_set_polling(qc);
1471 
1472 		ata_tf_to_host(ap, &qc->tf);
1473 
1474 		ap->hsm_task_state = HSM_ST_FIRST;
1475 
1476 		/* send cdb by polling if no cdb interrupt */
1477 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1478 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1479 			ata_pio_queue_task(ap, qc, 0);
1480 		break;
1481 
1482 	case ATAPI_PROT_DMA:
1483 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1484 
1485 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1486 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1487 		ap->hsm_task_state = HSM_ST_FIRST;
1488 
1489 		/* send cdb by polling if no cdb interrupt */
1490 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1491 			ata_pio_queue_task(ap, qc, 0);
1492 		break;
1493 
1494 	default:
1495 		WARN_ON(1);
1496 		return AC_ERR_SYSTEM;
1497 	}
1498 
1499 	return 0;
1500 }
1501 
1502 /**
1503  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1504  *	@qc: qc to fill result TF for
1505  *
1506  *	@qc is finished and result TF needs to be filled.  Fill it
1507  *	using ->sff_tf_read.
1508  *
1509  *	LOCKING:
1510  *	spin_lock_irqsave(host lock)
1511  *
1512  *	RETURNS:
1513  *	true indicating that result TF is successfully filled.
1514  */
1515 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1516 {
1517 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1518 	return true;
1519 }
1520 
1521 /**
1522  *	ata_sff_host_intr - Handle host interrupt for given (port, task)
1523  *	@ap: Port on which interrupt arrived (possibly...)
1524  *	@qc: Taskfile currently active in engine
1525  *
1526  *	Handle host interrupt for given queued command.  Currently,
1527  *	only DMA interrupts are handled.  All other commands are
1528  *	handled via polling with interrupts disabled (nIEN bit).
1529  *
1530  *	LOCKING:
1531  *	spin_lock_irqsave(host lock)
1532  *
1533  *	RETURNS:
1534  *	One if interrupt was handled, zero if not (shared irq).
1535  */
1536 inline unsigned int ata_sff_host_intr(struct ata_port *ap,
1537 				      struct ata_queued_cmd *qc)
1538 {
1539 	struct ata_eh_info *ehi = &ap->link.eh_info;
1540 	u8 status, host_stat = 0;
1541 
1542 	VPRINTK("ata%u: protocol %d task_state %d\n",
1543 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1544 
1545 	/* Check whether we are expecting interrupt in this state */
1546 	switch (ap->hsm_task_state) {
1547 	case HSM_ST_FIRST:
1548 		/* Some pre-ATAPI-4 devices assert INTRQ
1549 		 * at this state when ready to receive CDB.
1550 		 */
1551 
1552 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1553 		 * The flag was turned on only for atapi devices.  No
1554 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1555 		 */
1556 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1557 			goto idle_irq;
1558 		break;
1559 	case HSM_ST_LAST:
1560 		if (qc->tf.protocol == ATA_PROT_DMA ||
1561 		    qc->tf.protocol == ATAPI_PROT_DMA) {
1562 			/* check status of DMA engine */
1563 			host_stat = ap->ops->bmdma_status(ap);
1564 			VPRINTK("ata%u: host_stat 0x%X\n",
1565 				ap->print_id, host_stat);
1566 
1567 			/* if it's not our irq... */
1568 			if (!(host_stat & ATA_DMA_INTR))
1569 				goto idle_irq;
1570 
1571 			/* before we do anything else, clear DMA-Start bit */
1572 			ap->ops->bmdma_stop(qc);
1573 
1574 			if (unlikely(host_stat & ATA_DMA_ERR)) {
1575 				/* error when transfering data to/from memory */
1576 				qc->err_mask |= AC_ERR_HOST_BUS;
1577 				ap->hsm_task_state = HSM_ST_ERR;
1578 			}
1579 		}
1580 		break;
1581 	case HSM_ST:
1582 		break;
1583 	default:
1584 		goto idle_irq;
1585 	}
1586 
1587 
1588 	/* check main status, clearing INTRQ if needed */
1589 	status = ata_sff_irq_status(ap);
1590 	if (status & ATA_BUSY)
1591 		goto idle_irq;
1592 
1593 	/* ack bmdma irq events */
1594 	ap->ops->sff_irq_clear(ap);
1595 
1596 	ata_sff_hsm_move(ap, qc, status, 0);
1597 
1598 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1599 				       qc->tf.protocol == ATAPI_PROT_DMA))
1600 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1601 
1602 	return 1;	/* irq handled */
1603 
1604 idle_irq:
1605 	ap->stats.idle_irq++;
1606 
1607 #ifdef ATA_IRQ_TRAP
1608 	if ((ap->stats.idle_irq % 1000) == 0) {
1609 		ap->ops->sff_check_status(ap);
1610 		ap->ops->sff_irq_clear(ap);
1611 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1612 		return 1;
1613 	}
1614 #endif
1615 	return 0;	/* irq not handled */
1616 }
1617 
1618 /**
1619  *	ata_sff_interrupt - Default ATA host interrupt handler
1620  *	@irq: irq line (unused)
1621  *	@dev_instance: pointer to our ata_host information structure
1622  *
1623  *	Default interrupt handler for PCI IDE devices.  Calls
1624  *	ata_sff_host_intr() for each port that is not disabled.
1625  *
1626  *	LOCKING:
1627  *	Obtains host lock during operation.
1628  *
1629  *	RETURNS:
1630  *	IRQ_NONE or IRQ_HANDLED.
1631  */
1632 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1633 {
1634 	struct ata_host *host = dev_instance;
1635 	unsigned int i;
1636 	unsigned int handled = 0;
1637 	unsigned long flags;
1638 
1639 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1640 	spin_lock_irqsave(&host->lock, flags);
1641 
1642 	for (i = 0; i < host->n_ports; i++) {
1643 		struct ata_port *ap;
1644 
1645 		ap = host->ports[i];
1646 		if (ap &&
1647 		    !(ap->flags & ATA_FLAG_DISABLED)) {
1648 			struct ata_queued_cmd *qc;
1649 
1650 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
1651 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1652 			    (qc->flags & ATA_QCFLAG_ACTIVE))
1653 				handled |= ata_sff_host_intr(ap, qc);
1654 		}
1655 	}
1656 
1657 	spin_unlock_irqrestore(&host->lock, flags);
1658 
1659 	return IRQ_RETVAL(handled);
1660 }
1661 
1662 /**
1663  *	ata_sff_freeze - Freeze SFF controller port
1664  *	@ap: port to freeze
1665  *
1666  *	Freeze BMDMA controller port.
1667  *
1668  *	LOCKING:
1669  *	Inherited from caller.
1670  */
1671 void ata_sff_freeze(struct ata_port *ap)
1672 {
1673 	struct ata_ioports *ioaddr = &ap->ioaddr;
1674 
1675 	ap->ctl |= ATA_NIEN;
1676 	ap->last_ctl = ap->ctl;
1677 
1678 	if (ioaddr->ctl_addr)
1679 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1680 
1681 	/* Under certain circumstances, some controllers raise IRQ on
1682 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1683 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1684 	 */
1685 	ap->ops->sff_check_status(ap);
1686 
1687 	ap->ops->sff_irq_clear(ap);
1688 }
1689 
1690 /**
1691  *	ata_sff_thaw - Thaw SFF controller port
1692  *	@ap: port to thaw
1693  *
1694  *	Thaw SFF controller port.
1695  *
1696  *	LOCKING:
1697  *	Inherited from caller.
1698  */
1699 void ata_sff_thaw(struct ata_port *ap)
1700 {
1701 	/* clear & re-enable interrupts */
1702 	ap->ops->sff_check_status(ap);
1703 	ap->ops->sff_irq_clear(ap);
1704 	ap->ops->sff_irq_on(ap);
1705 }
1706 
1707 /**
1708  *	ata_sff_prereset - prepare SFF link for reset
1709  *	@link: SFF link to be reset
1710  *	@deadline: deadline jiffies for the operation
1711  *
1712  *	SFF link @link is about to be reset.  Initialize it.  It first
1713  *	calls ata_std_prereset() and wait for !BSY if the port is
1714  *	being softreset.
1715  *
1716  *	LOCKING:
1717  *	Kernel thread context (may sleep)
1718  *
1719  *	RETURNS:
1720  *	0 on success, -errno otherwise.
1721  */
1722 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1723 {
1724 	struct ata_eh_context *ehc = &link->eh_context;
1725 	int rc;
1726 
1727 	rc = ata_std_prereset(link, deadline);
1728 	if (rc)
1729 		return rc;
1730 
1731 	/* if we're about to do hardreset, nothing more to do */
1732 	if (ehc->i.action & ATA_EH_HARDRESET)
1733 		return 0;
1734 
1735 	/* wait for !BSY if we don't know that no device is attached */
1736 	if (!ata_link_offline(link)) {
1737 		rc = ata_sff_wait_ready(link, deadline);
1738 		if (rc && rc != -ENODEV) {
1739 			ata_link_printk(link, KERN_WARNING, "device not ready "
1740 					"(errno=%d), forcing hardreset\n", rc);
1741 			ehc->i.action |= ATA_EH_HARDRESET;
1742 		}
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 /**
1749  *	ata_devchk - PATA device presence detection
1750  *	@ap: ATA channel to examine
1751  *	@device: Device to examine (starting at zero)
1752  *
1753  *	This technique was originally described in
1754  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1755  *	later found its way into the ATA/ATAPI spec.
1756  *
1757  *	Write a pattern to the ATA shadow registers,
1758  *	and if a device is present, it will respond by
1759  *	correctly storing and echoing back the
1760  *	ATA shadow register contents.
1761  *
1762  *	LOCKING:
1763  *	caller.
1764  */
1765 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1766 {
1767 	struct ata_ioports *ioaddr = &ap->ioaddr;
1768 	u8 nsect, lbal;
1769 
1770 	ap->ops->sff_dev_select(ap, device);
1771 
1772 	iowrite8(0x55, ioaddr->nsect_addr);
1773 	iowrite8(0xaa, ioaddr->lbal_addr);
1774 
1775 	iowrite8(0xaa, ioaddr->nsect_addr);
1776 	iowrite8(0x55, ioaddr->lbal_addr);
1777 
1778 	iowrite8(0x55, ioaddr->nsect_addr);
1779 	iowrite8(0xaa, ioaddr->lbal_addr);
1780 
1781 	nsect = ioread8(ioaddr->nsect_addr);
1782 	lbal = ioread8(ioaddr->lbal_addr);
1783 
1784 	if ((nsect == 0x55) && (lbal == 0xaa))
1785 		return 1;	/* we found a device */
1786 
1787 	return 0;		/* nothing found */
1788 }
1789 
1790 /**
1791  *	ata_sff_dev_classify - Parse returned ATA device signature
1792  *	@dev: ATA device to classify (starting at zero)
1793  *	@present: device seems present
1794  *	@r_err: Value of error register on completion
1795  *
1796  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1797  *	an ATA/ATAPI-defined set of values is placed in the ATA
1798  *	shadow registers, indicating the results of device detection
1799  *	and diagnostics.
1800  *
1801  *	Select the ATA device, and read the values from the ATA shadow
1802  *	registers.  Then parse according to the Error register value,
1803  *	and the spec-defined values examined by ata_dev_classify().
1804  *
1805  *	LOCKING:
1806  *	caller.
1807  *
1808  *	RETURNS:
1809  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1810  */
1811 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1812 				  u8 *r_err)
1813 {
1814 	struct ata_port *ap = dev->link->ap;
1815 	struct ata_taskfile tf;
1816 	unsigned int class;
1817 	u8 err;
1818 
1819 	ap->ops->sff_dev_select(ap, dev->devno);
1820 
1821 	memset(&tf, 0, sizeof(tf));
1822 
1823 	ap->ops->sff_tf_read(ap, &tf);
1824 	err = tf.feature;
1825 	if (r_err)
1826 		*r_err = err;
1827 
1828 	/* see if device passed diags: continue and warn later */
1829 	if (err == 0)
1830 		/* diagnostic fail : do nothing _YET_ */
1831 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1832 	else if (err == 1)
1833 		/* do nothing */ ;
1834 	else if ((dev->devno == 0) && (err == 0x81))
1835 		/* do nothing */ ;
1836 	else
1837 		return ATA_DEV_NONE;
1838 
1839 	/* determine if device is ATA or ATAPI */
1840 	class = ata_dev_classify(&tf);
1841 
1842 	if (class == ATA_DEV_UNKNOWN) {
1843 		/* If the device failed diagnostic, it's likely to
1844 		 * have reported incorrect device signature too.
1845 		 * Assume ATA device if the device seems present but
1846 		 * device signature is invalid with diagnostic
1847 		 * failure.
1848 		 */
1849 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1850 			class = ATA_DEV_ATA;
1851 		else
1852 			class = ATA_DEV_NONE;
1853 	} else if ((class == ATA_DEV_ATA) &&
1854 		   (ap->ops->sff_check_status(ap) == 0))
1855 		class = ATA_DEV_NONE;
1856 
1857 	return class;
1858 }
1859 
1860 /**
1861  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1862  *	@link: SFF link which is just reset
1863  *	@devmask: mask of present devices
1864  *	@deadline: deadline jiffies for the operation
1865  *
1866  *	Wait devices attached to SFF @link to become ready after
1867  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1868  *	status register too early.
1869  *
1870  *	LOCKING:
1871  *	Kernel thread context (may sleep).
1872  *
1873  *	RETURNS:
1874  *	0 on success, -ENODEV if some or all of devices in @devmask
1875  *	don't seem to exist.  -errno on other errors.
1876  */
1877 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1878 			     unsigned long deadline)
1879 {
1880 	struct ata_port *ap = link->ap;
1881 	struct ata_ioports *ioaddr = &ap->ioaddr;
1882 	unsigned int dev0 = devmask & (1 << 0);
1883 	unsigned int dev1 = devmask & (1 << 1);
1884 	int rc, ret = 0;
1885 
1886 	msleep(ATA_WAIT_AFTER_RESET);
1887 
1888 	/* always check readiness of the master device */
1889 	rc = ata_sff_wait_ready(link, deadline);
1890 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1891 	 * and TF status is 0xff, bail out on it too.
1892 	 */
1893 	if (rc)
1894 		return rc;
1895 
1896 	/* if device 1 was found in ata_devchk, wait for register
1897 	 * access briefly, then wait for BSY to clear.
1898 	 */
1899 	if (dev1) {
1900 		int i;
1901 
1902 		ap->ops->sff_dev_select(ap, 1);
1903 
1904 		/* Wait for register access.  Some ATAPI devices fail
1905 		 * to set nsect/lbal after reset, so don't waste too
1906 		 * much time on it.  We're gonna wait for !BSY anyway.
1907 		 */
1908 		for (i = 0; i < 2; i++) {
1909 			u8 nsect, lbal;
1910 
1911 			nsect = ioread8(ioaddr->nsect_addr);
1912 			lbal = ioread8(ioaddr->lbal_addr);
1913 			if ((nsect == 1) && (lbal == 1))
1914 				break;
1915 			msleep(50);	/* give drive a breather */
1916 		}
1917 
1918 		rc = ata_sff_wait_ready(link, deadline);
1919 		if (rc) {
1920 			if (rc != -ENODEV)
1921 				return rc;
1922 			ret = rc;
1923 		}
1924 	}
1925 
1926 	/* is all this really necessary? */
1927 	ap->ops->sff_dev_select(ap, 0);
1928 	if (dev1)
1929 		ap->ops->sff_dev_select(ap, 1);
1930 	if (dev0)
1931 		ap->ops->sff_dev_select(ap, 0);
1932 
1933 	return ret;
1934 }
1935 
1936 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1937 			     unsigned long deadline)
1938 {
1939 	struct ata_ioports *ioaddr = &ap->ioaddr;
1940 
1941 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1942 
1943 	/* software reset.  causes dev0 to be selected */
1944 	iowrite8(ap->ctl, ioaddr->ctl_addr);
1945 	udelay(20);	/* FIXME: flush */
1946 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1947 	udelay(20);	/* FIXME: flush */
1948 	iowrite8(ap->ctl, ioaddr->ctl_addr);
1949 
1950 	/* wait the port to become ready */
1951 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1952 }
1953 
1954 /**
1955  *	ata_sff_softreset - reset host port via ATA SRST
1956  *	@link: ATA link to reset
1957  *	@classes: resulting classes of attached devices
1958  *	@deadline: deadline jiffies for the operation
1959  *
1960  *	Reset host port using ATA SRST.
1961  *
1962  *	LOCKING:
1963  *	Kernel thread context (may sleep)
1964  *
1965  *	RETURNS:
1966  *	0 on success, -errno otherwise.
1967  */
1968 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1969 		      unsigned long deadline)
1970 {
1971 	struct ata_port *ap = link->ap;
1972 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1973 	unsigned int devmask = 0;
1974 	int rc;
1975 	u8 err;
1976 
1977 	DPRINTK("ENTER\n");
1978 
1979 	/* determine if device 0/1 are present */
1980 	if (ata_devchk(ap, 0))
1981 		devmask |= (1 << 0);
1982 	if (slave_possible && ata_devchk(ap, 1))
1983 		devmask |= (1 << 1);
1984 
1985 	/* select device 0 again */
1986 	ap->ops->sff_dev_select(ap, 0);
1987 
1988 	/* issue bus reset */
1989 	DPRINTK("about to softreset, devmask=%x\n", devmask);
1990 	rc = ata_bus_softreset(ap, devmask, deadline);
1991 	/* if link is occupied, -ENODEV too is an error */
1992 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1993 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
1994 		return rc;
1995 	}
1996 
1997 	/* determine by signature whether we have ATA or ATAPI devices */
1998 	classes[0] = ata_sff_dev_classify(&link->device[0],
1999 					  devmask & (1 << 0), &err);
2000 	if (slave_possible && err != 0x81)
2001 		classes[1] = ata_sff_dev_classify(&link->device[1],
2002 						  devmask & (1 << 1), &err);
2003 
2004 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2005 	return 0;
2006 }
2007 
2008 /**
2009  *	sata_sff_hardreset - reset host port via SATA phy reset
2010  *	@link: link to reset
2011  *	@class: resulting class of attached device
2012  *	@deadline: deadline jiffies for the operation
2013  *
2014  *	SATA phy-reset host port using DET bits of SControl register,
2015  *	wait for !BSY and classify the attached device.
2016  *
2017  *	LOCKING:
2018  *	Kernel thread context (may sleep)
2019  *
2020  *	RETURNS:
2021  *	0 on success, -errno otherwise.
2022  */
2023 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2024 		       unsigned long deadline)
2025 {
2026 	struct ata_eh_context *ehc = &link->eh_context;
2027 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2028 	bool online;
2029 	int rc;
2030 
2031 	rc = sata_link_hardreset(link, timing, deadline, &online,
2032 				 ata_sff_check_ready);
2033 	if (online)
2034 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2035 
2036 	DPRINTK("EXIT, class=%u\n", *class);
2037 	return rc;
2038 }
2039 
2040 /**
2041  *	ata_sff_postreset - SFF postreset callback
2042  *	@link: the target SFF ata_link
2043  *	@classes: classes of attached devices
2044  *
2045  *	This function is invoked after a successful reset.  It first
2046  *	calls ata_std_postreset() and performs SFF specific postreset
2047  *	processing.
2048  *
2049  *	LOCKING:
2050  *	Kernel thread context (may sleep)
2051  */
2052 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2053 {
2054 	struct ata_port *ap = link->ap;
2055 
2056 	ata_std_postreset(link, classes);
2057 
2058 	/* is double-select really necessary? */
2059 	if (classes[0] != ATA_DEV_NONE)
2060 		ap->ops->sff_dev_select(ap, 1);
2061 	if (classes[1] != ATA_DEV_NONE)
2062 		ap->ops->sff_dev_select(ap, 0);
2063 
2064 	/* bail out if no device is present */
2065 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2066 		DPRINTK("EXIT, no device\n");
2067 		return;
2068 	}
2069 
2070 	/* set up device control */
2071 	if (ap->ioaddr.ctl_addr)
2072 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2073 }
2074 
2075 /**
2076  *	ata_sff_error_handler - Stock error handler for BMDMA controller
2077  *	@ap: port to handle error for
2078  *
2079  *	Stock error handler for SFF controller.  It can handle both
2080  *	PATA and SATA controllers.  Many controllers should be able to
2081  *	use this EH as-is or with some added handling before and
2082  *	after.
2083  *
2084  *	LOCKING:
2085  *	Kernel thread context (may sleep)
2086  */
2087 void ata_sff_error_handler(struct ata_port *ap)
2088 {
2089 	ata_reset_fn_t softreset = ap->ops->softreset;
2090 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2091 	struct ata_queued_cmd *qc;
2092 	unsigned long flags;
2093 	int thaw = 0;
2094 
2095 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2096 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2097 		qc = NULL;
2098 
2099 	/* reset PIO HSM and stop DMA engine */
2100 	spin_lock_irqsave(ap->lock, flags);
2101 
2102 	ap->hsm_task_state = HSM_ST_IDLE;
2103 
2104 	if (ap->ioaddr.bmdma_addr &&
2105 	    qc && (qc->tf.protocol == ATA_PROT_DMA ||
2106 		   qc->tf.protocol == ATAPI_PROT_DMA)) {
2107 		u8 host_stat;
2108 
2109 		host_stat = ap->ops->bmdma_status(ap);
2110 
2111 		/* BMDMA controllers indicate host bus error by
2112 		 * setting DMA_ERR bit and timing out.  As it wasn't
2113 		 * really a timeout event, adjust error mask and
2114 		 * cancel frozen state.
2115 		 */
2116 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2117 			qc->err_mask = AC_ERR_HOST_BUS;
2118 			thaw = 1;
2119 		}
2120 
2121 		ap->ops->bmdma_stop(qc);
2122 	}
2123 
2124 	ata_sff_sync(ap);		/* FIXME: We don't need this */
2125 	ap->ops->sff_check_status(ap);
2126 	ap->ops->sff_irq_clear(ap);
2127 
2128 	spin_unlock_irqrestore(ap->lock, flags);
2129 
2130 	if (thaw)
2131 		ata_eh_thaw_port(ap);
2132 
2133 	/* PIO and DMA engines have been stopped, perform recovery */
2134 
2135 	/* Ignore ata_sff_softreset if ctl isn't accessible and
2136 	 * built-in hardresets if SCR access isn't available.
2137 	 */
2138 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2139 		softreset = NULL;
2140 	if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2141 		hardreset = NULL;
2142 
2143 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2144 		  ap->ops->postreset);
2145 }
2146 
2147 /**
2148  *	ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2149  *	@qc: internal command to clean up
2150  *
2151  *	LOCKING:
2152  *	Kernel thread context (may sleep)
2153  */
2154 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2155 {
2156 	struct ata_port *ap = qc->ap;
2157 	unsigned long flags;
2158 
2159 	spin_lock_irqsave(ap->lock, flags);
2160 
2161 	ap->hsm_task_state = HSM_ST_IDLE;
2162 
2163 	if (ap->ioaddr.bmdma_addr)
2164 		ata_bmdma_stop(qc);
2165 
2166 	spin_unlock_irqrestore(ap->lock, flags);
2167 }
2168 
2169 /**
2170  *	ata_sff_port_start - Set port up for dma.
2171  *	@ap: Port to initialize
2172  *
2173  *	Called just after data structures for each port are
2174  *	initialized.  Allocates space for PRD table if the device
2175  *	is DMA capable SFF.
2176  *
2177  *	May be used as the port_start() entry in ata_port_operations.
2178  *
2179  *	LOCKING:
2180  *	Inherited from caller.
2181  */
2182 int ata_sff_port_start(struct ata_port *ap)
2183 {
2184 	if (ap->ioaddr.bmdma_addr)
2185 		return ata_port_start(ap);
2186 	return 0;
2187 }
2188 
2189 /**
2190  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2191  *	@ioaddr: IO address structure to be initialized
2192  *
2193  *	Utility function which initializes data_addr, error_addr,
2194  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2195  *	device_addr, status_addr, and command_addr to standard offsets
2196  *	relative to cmd_addr.
2197  *
2198  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2199  */
2200 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2201 {
2202 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2203 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2204 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2205 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2206 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2207 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2208 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2209 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2210 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2211 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2212 }
2213 
2214 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2215 				    unsigned long xfer_mask)
2216 {
2217 	/* Filter out DMA modes if the device has been configured by
2218 	   the BIOS as PIO only */
2219 
2220 	if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2221 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2222 	return xfer_mask;
2223 }
2224 
2225 /**
2226  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2227  *	@qc: Info associated with this ATA transaction.
2228  *
2229  *	LOCKING:
2230  *	spin_lock_irqsave(host lock)
2231  */
2232 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2233 {
2234 	struct ata_port *ap = qc->ap;
2235 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2236 	u8 dmactl;
2237 
2238 	/* load PRD table addr. */
2239 	mb();	/* make sure PRD table writes are visible to controller */
2240 	iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2241 
2242 	/* specify data direction, triple-check start bit is clear */
2243 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2244 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2245 	if (!rw)
2246 		dmactl |= ATA_DMA_WR;
2247 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2248 
2249 	/* issue r/w command */
2250 	ap->ops->sff_exec_command(ap, &qc->tf);
2251 }
2252 
2253 /**
2254  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2255  *	@qc: Info associated with this ATA transaction.
2256  *
2257  *	LOCKING:
2258  *	spin_lock_irqsave(host lock)
2259  */
2260 void ata_bmdma_start(struct ata_queued_cmd *qc)
2261 {
2262 	struct ata_port *ap = qc->ap;
2263 	u8 dmactl;
2264 
2265 	/* start host DMA transaction */
2266 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2267 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2268 
2269 	/* Strictly, one may wish to issue an ioread8() here, to
2270 	 * flush the mmio write.  However, control also passes
2271 	 * to the hardware at this point, and it will interrupt
2272 	 * us when we are to resume control.  So, in effect,
2273 	 * we don't care when the mmio write flushes.
2274 	 * Further, a read of the DMA status register _immediately_
2275 	 * following the write may not be what certain flaky hardware
2276 	 * is expected, so I think it is best to not add a readb()
2277 	 * without first all the MMIO ATA cards/mobos.
2278 	 * Or maybe I'm just being paranoid.
2279 	 *
2280 	 * FIXME: The posting of this write means I/O starts are
2281 	 * unneccessarily delayed for MMIO
2282 	 */
2283 }
2284 
2285 /**
2286  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2287  *	@qc: Command we are ending DMA for
2288  *
2289  *	Clears the ATA_DMA_START flag in the dma control register
2290  *
2291  *	May be used as the bmdma_stop() entry in ata_port_operations.
2292  *
2293  *	LOCKING:
2294  *	spin_lock_irqsave(host lock)
2295  */
2296 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2297 {
2298 	struct ata_port *ap = qc->ap;
2299 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2300 
2301 	/* clear start/stop bit */
2302 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2303 		 mmio + ATA_DMA_CMD);
2304 
2305 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2306 	ata_sff_dma_pause(ap);
2307 }
2308 
2309 /**
2310  *	ata_bmdma_status - Read PCI IDE BMDMA status
2311  *	@ap: Port associated with this ATA transaction.
2312  *
2313  *	Read and return BMDMA status register.
2314  *
2315  *	May be used as the bmdma_status() entry in ata_port_operations.
2316  *
2317  *	LOCKING:
2318  *	spin_lock_irqsave(host lock)
2319  */
2320 u8 ata_bmdma_status(struct ata_port *ap)
2321 {
2322 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2323 }
2324 
2325 /**
2326  *	ata_bus_reset - reset host port and associated ATA channel
2327  *	@ap: port to reset
2328  *
2329  *	This is typically the first time we actually start issuing
2330  *	commands to the ATA channel.  We wait for BSY to clear, then
2331  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2332  *	result.  Determine what devices, if any, are on the channel
2333  *	by looking at the device 0/1 error register.  Look at the signature
2334  *	stored in each device's taskfile registers, to determine if
2335  *	the device is ATA or ATAPI.
2336  *
2337  *	LOCKING:
2338  *	PCI/etc. bus probe sem.
2339  *	Obtains host lock.
2340  *
2341  *	SIDE EFFECTS:
2342  *	Sets ATA_FLAG_DISABLED if bus reset fails.
2343  *
2344  *	DEPRECATED:
2345  *	This function is only for drivers which still use old EH and
2346  *	will be removed soon.
2347  */
2348 void ata_bus_reset(struct ata_port *ap)
2349 {
2350 	struct ata_device *device = ap->link.device;
2351 	struct ata_ioports *ioaddr = &ap->ioaddr;
2352 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2353 	u8 err;
2354 	unsigned int dev0, dev1 = 0, devmask = 0;
2355 	int rc;
2356 
2357 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2358 
2359 	/* determine if device 0/1 are present */
2360 	if (ap->flags & ATA_FLAG_SATA_RESET)
2361 		dev0 = 1;
2362 	else {
2363 		dev0 = ata_devchk(ap, 0);
2364 		if (slave_possible)
2365 			dev1 = ata_devchk(ap, 1);
2366 	}
2367 
2368 	if (dev0)
2369 		devmask |= (1 << 0);
2370 	if (dev1)
2371 		devmask |= (1 << 1);
2372 
2373 	/* select device 0 again */
2374 	ap->ops->sff_dev_select(ap, 0);
2375 
2376 	/* issue bus reset */
2377 	if (ap->flags & ATA_FLAG_SRST) {
2378 		rc = ata_bus_softreset(ap, devmask,
2379 				       ata_deadline(jiffies, 40000));
2380 		if (rc && rc != -ENODEV)
2381 			goto err_out;
2382 	}
2383 
2384 	/*
2385 	 * determine by signature whether we have ATA or ATAPI devices
2386 	 */
2387 	device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2388 	if ((slave_possible) && (err != 0x81))
2389 		device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2390 
2391 	/* is double-select really necessary? */
2392 	if (device[1].class != ATA_DEV_NONE)
2393 		ap->ops->sff_dev_select(ap, 1);
2394 	if (device[0].class != ATA_DEV_NONE)
2395 		ap->ops->sff_dev_select(ap, 0);
2396 
2397 	/* if no devices were detected, disable this port */
2398 	if ((device[0].class == ATA_DEV_NONE) &&
2399 	    (device[1].class == ATA_DEV_NONE))
2400 		goto err_out;
2401 
2402 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2403 		/* set up device control for ATA_FLAG_SATA_RESET */
2404 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2405 	}
2406 
2407 	DPRINTK("EXIT\n");
2408 	return;
2409 
2410 err_out:
2411 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
2412 	ata_port_disable(ap);
2413 
2414 	DPRINTK("EXIT\n");
2415 }
2416 
2417 #ifdef CONFIG_PCI
2418 
2419 /**
2420  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
2421  *	@pdev: PCI device
2422  *
2423  *	Some PCI ATA devices report simplex mode but in fact can be told to
2424  *	enter non simplex mode. This implements the necessary logic to
2425  *	perform the task on such devices. Calling it on other devices will
2426  *	have -undefined- behaviour.
2427  */
2428 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2429 {
2430 	unsigned long bmdma = pci_resource_start(pdev, 4);
2431 	u8 simplex;
2432 
2433 	if (bmdma == 0)
2434 		return -ENOENT;
2435 
2436 	simplex = inb(bmdma + 0x02);
2437 	outb(simplex & 0x60, bmdma + 0x02);
2438 	simplex = inb(bmdma + 0x02);
2439 	if (simplex & 0x80)
2440 		return -EOPNOTSUPP;
2441 	return 0;
2442 }
2443 
2444 /**
2445  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2446  *	@host: target ATA host
2447  *
2448  *	Acquire PCI BMDMA resources and initialize @host accordingly.
2449  *
2450  *	LOCKING:
2451  *	Inherited from calling layer (may sleep).
2452  *
2453  *	RETURNS:
2454  *	0 on success, -errno otherwise.
2455  */
2456 int ata_pci_bmdma_init(struct ata_host *host)
2457 {
2458 	struct device *gdev = host->dev;
2459 	struct pci_dev *pdev = to_pci_dev(gdev);
2460 	int i, rc;
2461 
2462 	/* No BAR4 allocation: No DMA */
2463 	if (pci_resource_start(pdev, 4) == 0)
2464 		return 0;
2465 
2466 	/* TODO: If we get no DMA mask we should fall back to PIO */
2467 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2468 	if (rc)
2469 		return rc;
2470 	rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2471 	if (rc)
2472 		return rc;
2473 
2474 	/* request and iomap DMA region */
2475 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2476 	if (rc) {
2477 		dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2478 		return -ENOMEM;
2479 	}
2480 	host->iomap = pcim_iomap_table(pdev);
2481 
2482 	for (i = 0; i < 2; i++) {
2483 		struct ata_port *ap = host->ports[i];
2484 		void __iomem *bmdma = host->iomap[4] + 8 * i;
2485 
2486 		if (ata_port_is_dummy(ap))
2487 			continue;
2488 
2489 		ap->ioaddr.bmdma_addr = bmdma;
2490 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2491 		    (ioread8(bmdma + 2) & 0x80))
2492 			host->flags |= ATA_HOST_SIMPLEX;
2493 
2494 		ata_port_desc(ap, "bmdma 0x%llx",
2495 			(unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2496 	}
2497 
2498 	return 0;
2499 }
2500 
2501 static int ata_resources_present(struct pci_dev *pdev, int port)
2502 {
2503 	int i;
2504 
2505 	/* Check the PCI resources for this channel are enabled */
2506 	port = port * 2;
2507 	for (i = 0; i < 2; i ++) {
2508 		if (pci_resource_start(pdev, port + i) == 0 ||
2509 		    pci_resource_len(pdev, port + i) == 0)
2510 			return 0;
2511 	}
2512 	return 1;
2513 }
2514 
2515 /**
2516  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2517  *	@host: target ATA host
2518  *
2519  *	Acquire native PCI ATA resources for @host and initialize the
2520  *	first two ports of @host accordingly.  Ports marked dummy are
2521  *	skipped and allocation failure makes the port dummy.
2522  *
2523  *	Note that native PCI resources are valid even for legacy hosts
2524  *	as we fix up pdev resources array early in boot, so this
2525  *	function can be used for both native and legacy SFF hosts.
2526  *
2527  *	LOCKING:
2528  *	Inherited from calling layer (may sleep).
2529  *
2530  *	RETURNS:
2531  *	0 if at least one port is initialized, -ENODEV if no port is
2532  *	available.
2533  */
2534 int ata_pci_sff_init_host(struct ata_host *host)
2535 {
2536 	struct device *gdev = host->dev;
2537 	struct pci_dev *pdev = to_pci_dev(gdev);
2538 	unsigned int mask = 0;
2539 	int i, rc;
2540 
2541 	/* request, iomap BARs and init port addresses accordingly */
2542 	for (i = 0; i < 2; i++) {
2543 		struct ata_port *ap = host->ports[i];
2544 		int base = i * 2;
2545 		void __iomem * const *iomap;
2546 
2547 		if (ata_port_is_dummy(ap))
2548 			continue;
2549 
2550 		/* Discard disabled ports.  Some controllers show
2551 		 * their unused channels this way.  Disabled ports are
2552 		 * made dummy.
2553 		 */
2554 		if (!ata_resources_present(pdev, i)) {
2555 			ap->ops = &ata_dummy_port_ops;
2556 			continue;
2557 		}
2558 
2559 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2560 					dev_driver_string(gdev));
2561 		if (rc) {
2562 			dev_printk(KERN_WARNING, gdev,
2563 				   "failed to request/iomap BARs for port %d "
2564 				   "(errno=%d)\n", i, rc);
2565 			if (rc == -EBUSY)
2566 				pcim_pin_device(pdev);
2567 			ap->ops = &ata_dummy_port_ops;
2568 			continue;
2569 		}
2570 		host->iomap = iomap = pcim_iomap_table(pdev);
2571 
2572 		ap->ioaddr.cmd_addr = iomap[base];
2573 		ap->ioaddr.altstatus_addr =
2574 		ap->ioaddr.ctl_addr = (void __iomem *)
2575 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2576 		ata_sff_std_ports(&ap->ioaddr);
2577 
2578 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2579 			(unsigned long long)pci_resource_start(pdev, base),
2580 			(unsigned long long)pci_resource_start(pdev, base + 1));
2581 
2582 		mask |= 1 << i;
2583 	}
2584 
2585 	if (!mask) {
2586 		dev_printk(KERN_ERR, gdev, "no available native port\n");
2587 		return -ENODEV;
2588 	}
2589 
2590 	return 0;
2591 }
2592 
2593 /**
2594  *	ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2595  *	@pdev: target PCI device
2596  *	@ppi: array of port_info, must be enough for two ports
2597  *	@r_host: out argument for the initialized ATA host
2598  *
2599  *	Helper to allocate ATA host for @pdev, acquire all native PCI
2600  *	resources and initialize it accordingly in one go.
2601  *
2602  *	LOCKING:
2603  *	Inherited from calling layer (may sleep).
2604  *
2605  *	RETURNS:
2606  *	0 on success, -errno otherwise.
2607  */
2608 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2609 			     const struct ata_port_info * const * ppi,
2610 			     struct ata_host **r_host)
2611 {
2612 	struct ata_host *host;
2613 	int rc;
2614 
2615 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2616 		return -ENOMEM;
2617 
2618 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2619 	if (!host) {
2620 		dev_printk(KERN_ERR, &pdev->dev,
2621 			   "failed to allocate ATA host\n");
2622 		rc = -ENOMEM;
2623 		goto err_out;
2624 	}
2625 
2626 	rc = ata_pci_sff_init_host(host);
2627 	if (rc)
2628 		goto err_out;
2629 
2630 	/* init DMA related stuff */
2631 	rc = ata_pci_bmdma_init(host);
2632 	if (rc)
2633 		goto err_bmdma;
2634 
2635 	devres_remove_group(&pdev->dev, NULL);
2636 	*r_host = host;
2637 	return 0;
2638 
2639  err_bmdma:
2640 	/* This is necessary because PCI and iomap resources are
2641 	 * merged and releasing the top group won't release the
2642 	 * acquired resources if some of those have been acquired
2643 	 * before entering this function.
2644 	 */
2645 	pcim_iounmap_regions(pdev, 0xf);
2646  err_out:
2647 	devres_release_group(&pdev->dev, NULL);
2648 	return rc;
2649 }
2650 
2651 /**
2652  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2653  *	@host: target SFF ATA host
2654  *	@irq_handler: irq_handler used when requesting IRQ(s)
2655  *	@sht: scsi_host_template to use when registering the host
2656  *
2657  *	This is the counterpart of ata_host_activate() for SFF ATA
2658  *	hosts.  This separate helper is necessary because SFF hosts
2659  *	use two separate interrupts in legacy mode.
2660  *
2661  *	LOCKING:
2662  *	Inherited from calling layer (may sleep).
2663  *
2664  *	RETURNS:
2665  *	0 on success, -errno otherwise.
2666  */
2667 int ata_pci_sff_activate_host(struct ata_host *host,
2668 			      irq_handler_t irq_handler,
2669 			      struct scsi_host_template *sht)
2670 {
2671 	struct device *dev = host->dev;
2672 	struct pci_dev *pdev = to_pci_dev(dev);
2673 	const char *drv_name = dev_driver_string(host->dev);
2674 	int legacy_mode = 0, rc;
2675 
2676 	rc = ata_host_start(host);
2677 	if (rc)
2678 		return rc;
2679 
2680 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2681 		u8 tmp8, mask;
2682 
2683 		/* TODO: What if one channel is in native mode ... */
2684 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2685 		mask = (1 << 2) | (1 << 0);
2686 		if ((tmp8 & mask) != mask)
2687 			legacy_mode = 1;
2688 #if defined(CONFIG_NO_ATA_LEGACY)
2689 		/* Some platforms with PCI limits cannot address compat
2690 		   port space. In that case we punt if their firmware has
2691 		   left a device in compatibility mode */
2692 		if (legacy_mode) {
2693 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2694 			return -EOPNOTSUPP;
2695 		}
2696 #endif
2697 	}
2698 
2699 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2700 		return -ENOMEM;
2701 
2702 	if (!legacy_mode && pdev->irq) {
2703 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2704 				      IRQF_SHARED, drv_name, host);
2705 		if (rc)
2706 			goto out;
2707 
2708 		ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2709 		ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2710 	} else if (legacy_mode) {
2711 		if (!ata_port_is_dummy(host->ports[0])) {
2712 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2713 					      irq_handler, IRQF_SHARED,
2714 					      drv_name, host);
2715 			if (rc)
2716 				goto out;
2717 
2718 			ata_port_desc(host->ports[0], "irq %d",
2719 				      ATA_PRIMARY_IRQ(pdev));
2720 		}
2721 
2722 		if (!ata_port_is_dummy(host->ports[1])) {
2723 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2724 					      irq_handler, IRQF_SHARED,
2725 					      drv_name, host);
2726 			if (rc)
2727 				goto out;
2728 
2729 			ata_port_desc(host->ports[1], "irq %d",
2730 				      ATA_SECONDARY_IRQ(pdev));
2731 		}
2732 	}
2733 
2734 	rc = ata_host_register(host, sht);
2735  out:
2736 	if (rc == 0)
2737 		devres_remove_group(dev, NULL);
2738 	else
2739 		devres_release_group(dev, NULL);
2740 
2741 	return rc;
2742 }
2743 
2744 /**
2745  *	ata_pci_sff_init_one - Initialize/register PCI IDE host controller
2746  *	@pdev: Controller to be initialized
2747  *	@ppi: array of port_info, must be enough for two ports
2748  *	@sht: scsi_host_template to use when registering the host
2749  *	@host_priv: host private_data
2750  *
2751  *	This is a helper function which can be called from a driver's
2752  *	xxx_init_one() probe function if the hardware uses traditional
2753  *	IDE taskfile registers.
2754  *
2755  *	This function calls pci_enable_device(), reserves its register
2756  *	regions, sets the dma mask, enables bus master mode, and calls
2757  *	ata_device_add()
2758  *
2759  *	ASSUMPTION:
2760  *	Nobody makes a single channel controller that appears solely as
2761  *	the secondary legacy port on PCI.
2762  *
2763  *	LOCKING:
2764  *	Inherited from PCI layer (may sleep).
2765  *
2766  *	RETURNS:
2767  *	Zero on success, negative on errno-based value on error.
2768  */
2769 int ata_pci_sff_init_one(struct pci_dev *pdev,
2770 			 const struct ata_port_info * const * ppi,
2771 			 struct scsi_host_template *sht, void *host_priv)
2772 {
2773 	struct device *dev = &pdev->dev;
2774 	const struct ata_port_info *pi = NULL;
2775 	struct ata_host *host = NULL;
2776 	int i, rc;
2777 
2778 	DPRINTK("ENTER\n");
2779 
2780 	/* look up the first valid port_info */
2781 	for (i = 0; i < 2 && ppi[i]; i++) {
2782 		if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2783 			pi = ppi[i];
2784 			break;
2785 		}
2786 	}
2787 
2788 	if (!pi) {
2789 		dev_printk(KERN_ERR, &pdev->dev,
2790 			   "no valid port_info specified\n");
2791 		return -EINVAL;
2792 	}
2793 
2794 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2795 		return -ENOMEM;
2796 
2797 	rc = pcim_enable_device(pdev);
2798 	if (rc)
2799 		goto out;
2800 
2801 	/* prepare and activate SFF host */
2802 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2803 	if (rc)
2804 		goto out;
2805 	host->private_data = host_priv;
2806 
2807 	pci_set_master(pdev);
2808 	rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2809  out:
2810 	if (rc == 0)
2811 		devres_remove_group(&pdev->dev, NULL);
2812 	else
2813 		devres_release_group(&pdev->dev, NULL);
2814 
2815 	return rc;
2816 }
2817 
2818 #endif /* CONFIG_PCI */
2819 
2820 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
2821 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2822 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
2823 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
2824 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
2825 EXPORT_SYMBOL_GPL(ata_sff_check_status);
2826 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
2827 EXPORT_SYMBOL_GPL(ata_sff_pause);
2828 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
2829 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
2830 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
2831 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
2832 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
2833 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
2834 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
2835 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
2836 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
2837 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
2838 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
2839 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
2840 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
2841 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
2842 EXPORT_SYMBOL_GPL(ata_sff_freeze);
2843 EXPORT_SYMBOL_GPL(ata_sff_thaw);
2844 EXPORT_SYMBOL_GPL(ata_sff_prereset);
2845 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2846 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2847 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2848 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2849 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2850 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2851 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2852 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2853 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2854 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2855 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2856 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2857 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2858 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2859 EXPORT_SYMBOL_GPL(ata_bus_reset);
2860 #ifdef CONFIG_PCI
2861 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2862 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2863 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2864 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2865 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2866 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2867 #endif /* CONFIG_PCI */
2868