1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/gfp.h> 37 #include <linux/pci.h> 38 #include <linux/module.h> 39 #include <linux/libata.h> 40 #include <linux/highmem.h> 41 42 #include "libata.h" 43 44 static struct workqueue_struct *ata_sff_wq; 45 46 const struct ata_port_operations ata_sff_port_ops = { 47 .inherits = &ata_base_port_ops, 48 49 .qc_prep = ata_noop_qc_prep, 50 .qc_issue = ata_sff_qc_issue, 51 .qc_fill_rtf = ata_sff_qc_fill_rtf, 52 53 .freeze = ata_sff_freeze, 54 .thaw = ata_sff_thaw, 55 .prereset = ata_sff_prereset, 56 .softreset = ata_sff_softreset, 57 .hardreset = sata_sff_hardreset, 58 .postreset = ata_sff_postreset, 59 .error_handler = ata_sff_error_handler, 60 61 .sff_dev_select = ata_sff_dev_select, 62 .sff_check_status = ata_sff_check_status, 63 .sff_tf_load = ata_sff_tf_load, 64 .sff_tf_read = ata_sff_tf_read, 65 .sff_exec_command = ata_sff_exec_command, 66 .sff_data_xfer = ata_sff_data_xfer, 67 .sff_drain_fifo = ata_sff_drain_fifo, 68 69 .lost_interrupt = ata_sff_lost_interrupt, 70 }; 71 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 72 73 /** 74 * ata_sff_check_status - Read device status reg & clear interrupt 75 * @ap: port where the device is 76 * 77 * Reads ATA taskfile status register for currently-selected device 78 * and return its value. This also clears pending interrupts 79 * from this device 80 * 81 * LOCKING: 82 * Inherited from caller. 83 */ 84 u8 ata_sff_check_status(struct ata_port *ap) 85 { 86 return ioread8(ap->ioaddr.status_addr); 87 } 88 EXPORT_SYMBOL_GPL(ata_sff_check_status); 89 90 /** 91 * ata_sff_altstatus - Read device alternate status reg 92 * @ap: port where the device is 93 * 94 * Reads ATA taskfile alternate status register for 95 * currently-selected device and return its value. 96 * 97 * Note: may NOT be used as the check_altstatus() entry in 98 * ata_port_operations. 99 * 100 * LOCKING: 101 * Inherited from caller. 102 */ 103 static u8 ata_sff_altstatus(struct ata_port *ap) 104 { 105 if (ap->ops->sff_check_altstatus) 106 return ap->ops->sff_check_altstatus(ap); 107 108 return ioread8(ap->ioaddr.altstatus_addr); 109 } 110 111 /** 112 * ata_sff_irq_status - Check if the device is busy 113 * @ap: port where the device is 114 * 115 * Determine if the port is currently busy. Uses altstatus 116 * if available in order to avoid clearing shared IRQ status 117 * when finding an IRQ source. Non ctl capable devices don't 118 * share interrupt lines fortunately for us. 119 * 120 * LOCKING: 121 * Inherited from caller. 122 */ 123 static u8 ata_sff_irq_status(struct ata_port *ap) 124 { 125 u8 status; 126 127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 128 status = ata_sff_altstatus(ap); 129 /* Not us: We are busy */ 130 if (status & ATA_BUSY) 131 return status; 132 } 133 /* Clear INTRQ latch */ 134 status = ap->ops->sff_check_status(ap); 135 return status; 136 } 137 138 /** 139 * ata_sff_sync - Flush writes 140 * @ap: Port to wait for. 141 * 142 * CAUTION: 143 * If we have an mmio device with no ctl and no altstatus 144 * method this will fail. No such devices are known to exist. 145 * 146 * LOCKING: 147 * Inherited from caller. 148 */ 149 150 static void ata_sff_sync(struct ata_port *ap) 151 { 152 if (ap->ops->sff_check_altstatus) 153 ap->ops->sff_check_altstatus(ap); 154 else if (ap->ioaddr.altstatus_addr) 155 ioread8(ap->ioaddr.altstatus_addr); 156 } 157 158 /** 159 * ata_sff_pause - Flush writes and wait 400nS 160 * @ap: Port to pause for. 161 * 162 * CAUTION: 163 * If we have an mmio device with no ctl and no altstatus 164 * method this will fail. No such devices are known to exist. 165 * 166 * LOCKING: 167 * Inherited from caller. 168 */ 169 170 void ata_sff_pause(struct ata_port *ap) 171 { 172 ata_sff_sync(ap); 173 ndelay(400); 174 } 175 EXPORT_SYMBOL_GPL(ata_sff_pause); 176 177 /** 178 * ata_sff_dma_pause - Pause before commencing DMA 179 * @ap: Port to pause for. 180 * 181 * Perform I/O fencing and ensure sufficient cycle delays occur 182 * for the HDMA1:0 transition 183 */ 184 185 void ata_sff_dma_pause(struct ata_port *ap) 186 { 187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 188 /* An altstatus read will cause the needed delay without 189 messing up the IRQ status */ 190 ata_sff_altstatus(ap); 191 return; 192 } 193 /* There are no DMA controllers without ctl. BUG here to ensure 194 we never violate the HDMA1:0 transition timing and risk 195 corruption. */ 196 BUG(); 197 } 198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 199 200 /** 201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 202 * @ap: port containing status register to be polled 203 * @tmout_pat: impatience timeout in msecs 204 * @tmout: overall timeout in msecs 205 * 206 * Sleep until ATA Status register bit BSY clears, 207 * or a timeout occurs. 208 * 209 * LOCKING: 210 * Kernel thread context (may sleep). 211 * 212 * RETURNS: 213 * 0 on success, -errno otherwise. 214 */ 215 int ata_sff_busy_sleep(struct ata_port *ap, 216 unsigned long tmout_pat, unsigned long tmout) 217 { 218 unsigned long timer_start, timeout; 219 u8 status; 220 221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 222 timer_start = jiffies; 223 timeout = ata_deadline(timer_start, tmout_pat); 224 while (status != 0xff && (status & ATA_BUSY) && 225 time_before(jiffies, timeout)) { 226 ata_msleep(ap, 50); 227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 228 } 229 230 if (status != 0xff && (status & ATA_BUSY)) 231 ata_port_warn(ap, 232 "port is slow to respond, please be patient (Status 0x%x)\n", 233 status); 234 235 timeout = ata_deadline(timer_start, tmout); 236 while (status != 0xff && (status & ATA_BUSY) && 237 time_before(jiffies, timeout)) { 238 ata_msleep(ap, 50); 239 status = ap->ops->sff_check_status(ap); 240 } 241 242 if (status == 0xff) 243 return -ENODEV; 244 245 if (status & ATA_BUSY) { 246 ata_port_err(ap, 247 "port failed to respond (%lu secs, Status 0x%x)\n", 248 DIV_ROUND_UP(tmout, 1000), status); 249 return -EBUSY; 250 } 251 252 return 0; 253 } 254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 255 256 static int ata_sff_check_ready(struct ata_link *link) 257 { 258 u8 status = link->ap->ops->sff_check_status(link->ap); 259 260 return ata_check_ready(status); 261 } 262 263 /** 264 * ata_sff_wait_ready - sleep until BSY clears, or timeout 265 * @link: SFF link to wait ready status for 266 * @deadline: deadline jiffies for the operation 267 * 268 * Sleep until ATA Status register bit BSY clears, or timeout 269 * occurs. 270 * 271 * LOCKING: 272 * Kernel thread context (may sleep). 273 * 274 * RETURNS: 275 * 0 on success, -errno otherwise. 276 */ 277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 278 { 279 return ata_wait_ready(link, deadline, ata_sff_check_ready); 280 } 281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 282 283 /** 284 * ata_sff_set_devctl - Write device control reg 285 * @ap: port where the device is 286 * @ctl: value to write 287 * 288 * Writes ATA taskfile device control register. 289 * 290 * Note: may NOT be used as the sff_set_devctl() entry in 291 * ata_port_operations. 292 * 293 * LOCKING: 294 * Inherited from caller. 295 */ 296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 297 { 298 if (ap->ops->sff_set_devctl) 299 ap->ops->sff_set_devctl(ap, ctl); 300 else 301 iowrite8(ctl, ap->ioaddr.ctl_addr); 302 } 303 304 /** 305 * ata_sff_dev_select - Select device 0/1 on ATA bus 306 * @ap: ATA channel to manipulate 307 * @device: ATA device (numbered from zero) to select 308 * 309 * Use the method defined in the ATA specification to 310 * make either device 0, or device 1, active on the 311 * ATA channel. Works with both PIO and MMIO. 312 * 313 * May be used as the dev_select() entry in ata_port_operations. 314 * 315 * LOCKING: 316 * caller. 317 */ 318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 319 { 320 u8 tmp; 321 322 if (device == 0) 323 tmp = ATA_DEVICE_OBS; 324 else 325 tmp = ATA_DEVICE_OBS | ATA_DEV1; 326 327 iowrite8(tmp, ap->ioaddr.device_addr); 328 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 329 } 330 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 331 332 /** 333 * ata_dev_select - Select device 0/1 on ATA bus 334 * @ap: ATA channel to manipulate 335 * @device: ATA device (numbered from zero) to select 336 * @wait: non-zero to wait for Status register BSY bit to clear 337 * @can_sleep: non-zero if context allows sleeping 338 * 339 * Use the method defined in the ATA specification to 340 * make either device 0, or device 1, active on the 341 * ATA channel. 342 * 343 * This is a high-level version of ata_sff_dev_select(), which 344 * additionally provides the services of inserting the proper 345 * pauses and status polling, where needed. 346 * 347 * LOCKING: 348 * caller. 349 */ 350 static void ata_dev_select(struct ata_port *ap, unsigned int device, 351 unsigned int wait, unsigned int can_sleep) 352 { 353 if (ata_msg_probe(ap)) 354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n", 355 device, wait); 356 357 if (wait) 358 ata_wait_idle(ap); 359 360 ap->ops->sff_dev_select(ap, device); 361 362 if (wait) { 363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 364 ata_msleep(ap, 150); 365 ata_wait_idle(ap); 366 } 367 } 368 369 /** 370 * ata_sff_irq_on - Enable interrupts on a port. 371 * @ap: Port on which interrupts are enabled. 372 * 373 * Enable interrupts on a legacy IDE device using MMIO or PIO, 374 * wait for idle, clear any pending interrupts. 375 * 376 * Note: may NOT be used as the sff_irq_on() entry in 377 * ata_port_operations. 378 * 379 * LOCKING: 380 * Inherited from caller. 381 */ 382 void ata_sff_irq_on(struct ata_port *ap) 383 { 384 struct ata_ioports *ioaddr = &ap->ioaddr; 385 386 if (ap->ops->sff_irq_on) { 387 ap->ops->sff_irq_on(ap); 388 return; 389 } 390 391 ap->ctl &= ~ATA_NIEN; 392 ap->last_ctl = ap->ctl; 393 394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 395 ata_sff_set_devctl(ap, ap->ctl); 396 ata_wait_idle(ap); 397 398 if (ap->ops->sff_irq_clear) 399 ap->ops->sff_irq_clear(ap); 400 } 401 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 402 403 /** 404 * ata_sff_tf_load - send taskfile registers to host controller 405 * @ap: Port to which output is sent 406 * @tf: ATA taskfile register set 407 * 408 * Outputs ATA taskfile to standard ATA host controller. 409 * 410 * LOCKING: 411 * Inherited from caller. 412 */ 413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 414 { 415 struct ata_ioports *ioaddr = &ap->ioaddr; 416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 417 418 if (tf->ctl != ap->last_ctl) { 419 if (ioaddr->ctl_addr) 420 iowrite8(tf->ctl, ioaddr->ctl_addr); 421 ap->last_ctl = tf->ctl; 422 ata_wait_idle(ap); 423 } 424 425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 426 WARN_ON_ONCE(!ioaddr->ctl_addr); 427 iowrite8(tf->hob_feature, ioaddr->feature_addr); 428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 433 tf->hob_feature, 434 tf->hob_nsect, 435 tf->hob_lbal, 436 tf->hob_lbam, 437 tf->hob_lbah); 438 } 439 440 if (is_addr) { 441 iowrite8(tf->feature, ioaddr->feature_addr); 442 iowrite8(tf->nsect, ioaddr->nsect_addr); 443 iowrite8(tf->lbal, ioaddr->lbal_addr); 444 iowrite8(tf->lbam, ioaddr->lbam_addr); 445 iowrite8(tf->lbah, ioaddr->lbah_addr); 446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 447 tf->feature, 448 tf->nsect, 449 tf->lbal, 450 tf->lbam, 451 tf->lbah); 452 } 453 454 if (tf->flags & ATA_TFLAG_DEVICE) { 455 iowrite8(tf->device, ioaddr->device_addr); 456 VPRINTK("device 0x%X\n", tf->device); 457 } 458 459 ata_wait_idle(ap); 460 } 461 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 462 463 /** 464 * ata_sff_tf_read - input device's ATA taskfile shadow registers 465 * @ap: Port from which input is read 466 * @tf: ATA taskfile register set for storing input 467 * 468 * Reads ATA taskfile registers for currently-selected device 469 * into @tf. Assumes the device has a fully SFF compliant task file 470 * layout and behaviour. If you device does not (eg has a different 471 * status method) then you will need to provide a replacement tf_read 472 * 473 * LOCKING: 474 * Inherited from caller. 475 */ 476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 477 { 478 struct ata_ioports *ioaddr = &ap->ioaddr; 479 480 tf->command = ata_sff_check_status(ap); 481 tf->feature = ioread8(ioaddr->error_addr); 482 tf->nsect = ioread8(ioaddr->nsect_addr); 483 tf->lbal = ioread8(ioaddr->lbal_addr); 484 tf->lbam = ioread8(ioaddr->lbam_addr); 485 tf->lbah = ioread8(ioaddr->lbah_addr); 486 tf->device = ioread8(ioaddr->device_addr); 487 488 if (tf->flags & ATA_TFLAG_LBA48) { 489 if (likely(ioaddr->ctl_addr)) { 490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 491 tf->hob_feature = ioread8(ioaddr->error_addr); 492 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 493 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 494 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 495 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 496 iowrite8(tf->ctl, ioaddr->ctl_addr); 497 ap->last_ctl = tf->ctl; 498 } else 499 WARN_ON_ONCE(1); 500 } 501 } 502 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 503 504 /** 505 * ata_sff_exec_command - issue ATA command to host controller 506 * @ap: port to which command is being issued 507 * @tf: ATA taskfile register set 508 * 509 * Issues ATA command, with proper synchronization with interrupt 510 * handler / other threads. 511 * 512 * LOCKING: 513 * spin_lock_irqsave(host lock) 514 */ 515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 516 { 517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 518 519 iowrite8(tf->command, ap->ioaddr.command_addr); 520 ata_sff_pause(ap); 521 } 522 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 523 524 /** 525 * ata_tf_to_host - issue ATA taskfile to host controller 526 * @ap: port to which command is being issued 527 * @tf: ATA taskfile register set 528 * 529 * Issues ATA taskfile register set to ATA host controller, 530 * with proper synchronization with interrupt handler and 531 * other threads. 532 * 533 * LOCKING: 534 * spin_lock_irqsave(host lock) 535 */ 536 static inline void ata_tf_to_host(struct ata_port *ap, 537 const struct ata_taskfile *tf) 538 { 539 ap->ops->sff_tf_load(ap, tf); 540 ap->ops->sff_exec_command(ap, tf); 541 } 542 543 /** 544 * ata_sff_data_xfer - Transfer data by PIO 545 * @dev: device to target 546 * @buf: data buffer 547 * @buflen: buffer length 548 * @rw: read/write 549 * 550 * Transfer data from/to the device data register by PIO. 551 * 552 * LOCKING: 553 * Inherited from caller. 554 * 555 * RETURNS: 556 * Bytes consumed. 557 */ 558 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 559 unsigned int buflen, int rw) 560 { 561 struct ata_port *ap = dev->link->ap; 562 void __iomem *data_addr = ap->ioaddr.data_addr; 563 unsigned int words = buflen >> 1; 564 565 /* Transfer multiple of 2 bytes */ 566 if (rw == READ) 567 ioread16_rep(data_addr, buf, words); 568 else 569 iowrite16_rep(data_addr, buf, words); 570 571 /* Transfer trailing byte, if any. */ 572 if (unlikely(buflen & 0x01)) { 573 unsigned char pad[2] = { }; 574 575 /* Point buf to the tail of buffer */ 576 buf += buflen - 1; 577 578 /* 579 * Use io*16_rep() accessors here as well to avoid pointlessly 580 * swapping bytes to and from on the big endian machines... 581 */ 582 if (rw == READ) { 583 ioread16_rep(data_addr, pad, 1); 584 *buf = pad[0]; 585 } else { 586 pad[0] = *buf; 587 iowrite16_rep(data_addr, pad, 1); 588 } 589 words++; 590 } 591 592 return words << 1; 593 } 594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 595 596 /** 597 * ata_sff_data_xfer32 - Transfer data by PIO 598 * @dev: device to target 599 * @buf: data buffer 600 * @buflen: buffer length 601 * @rw: read/write 602 * 603 * Transfer data from/to the device data register by PIO using 32bit 604 * I/O operations. 605 * 606 * LOCKING: 607 * Inherited from caller. 608 * 609 * RETURNS: 610 * Bytes consumed. 611 */ 612 613 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, 614 unsigned int buflen, int rw) 615 { 616 struct ata_port *ap = dev->link->ap; 617 void __iomem *data_addr = ap->ioaddr.data_addr; 618 unsigned int words = buflen >> 2; 619 int slop = buflen & 3; 620 621 if (!(ap->pflags & ATA_PFLAG_PIO32)) 622 return ata_sff_data_xfer(dev, buf, buflen, rw); 623 624 /* Transfer multiple of 4 bytes */ 625 if (rw == READ) 626 ioread32_rep(data_addr, buf, words); 627 else 628 iowrite32_rep(data_addr, buf, words); 629 630 /* Transfer trailing bytes, if any */ 631 if (unlikely(slop)) { 632 unsigned char pad[4] = { }; 633 634 /* Point buf to the tail of buffer */ 635 buf += buflen - slop; 636 637 /* 638 * Use io*_rep() accessors here as well to avoid pointlessly 639 * swapping bytes to and from on the big endian machines... 640 */ 641 if (rw == READ) { 642 if (slop < 3) 643 ioread16_rep(data_addr, pad, 1); 644 else 645 ioread32_rep(data_addr, pad, 1); 646 memcpy(buf, pad, slop); 647 } else { 648 memcpy(pad, buf, slop); 649 if (slop < 3) 650 iowrite16_rep(data_addr, pad, 1); 651 else 652 iowrite32_rep(data_addr, pad, 1); 653 } 654 } 655 return (buflen + 1) & ~1; 656 } 657 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 658 659 /** 660 * ata_sff_data_xfer_noirq - Transfer data by PIO 661 * @dev: device to target 662 * @buf: data buffer 663 * @buflen: buffer length 664 * @rw: read/write 665 * 666 * Transfer data from/to the device data register by PIO. Do the 667 * transfer with interrupts disabled. 668 * 669 * LOCKING: 670 * Inherited from caller. 671 * 672 * RETURNS: 673 * Bytes consumed. 674 */ 675 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 676 unsigned int buflen, int rw) 677 { 678 unsigned long flags; 679 unsigned int consumed; 680 681 local_irq_save(flags); 682 consumed = ata_sff_data_xfer32(dev, buf, buflen, rw); 683 local_irq_restore(flags); 684 685 return consumed; 686 } 687 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 688 689 /** 690 * ata_pio_sector - Transfer a sector of data. 691 * @qc: Command on going 692 * 693 * Transfer qc->sect_size bytes of data from/to the ATA device. 694 * 695 * LOCKING: 696 * Inherited from caller. 697 */ 698 static void ata_pio_sector(struct ata_queued_cmd *qc) 699 { 700 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 701 struct ata_port *ap = qc->ap; 702 struct page *page; 703 unsigned int offset; 704 unsigned char *buf; 705 706 if (qc->curbytes == qc->nbytes - qc->sect_size) 707 ap->hsm_task_state = HSM_ST_LAST; 708 709 page = sg_page(qc->cursg); 710 offset = qc->cursg->offset + qc->cursg_ofs; 711 712 /* get the current page and offset */ 713 page = nth_page(page, (offset >> PAGE_SHIFT)); 714 offset %= PAGE_SIZE; 715 716 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 717 718 if (PageHighMem(page)) { 719 unsigned long flags; 720 721 /* FIXME: use a bounce buffer */ 722 local_irq_save(flags); 723 buf = kmap_atomic(page); 724 725 /* do the actual data transfer */ 726 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 727 do_write); 728 729 kunmap_atomic(buf); 730 local_irq_restore(flags); 731 } else { 732 buf = page_address(page); 733 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 734 do_write); 735 } 736 737 if (!do_write && !PageSlab(page)) 738 flush_dcache_page(page); 739 740 qc->curbytes += qc->sect_size; 741 qc->cursg_ofs += qc->sect_size; 742 743 if (qc->cursg_ofs == qc->cursg->length) { 744 qc->cursg = sg_next(qc->cursg); 745 qc->cursg_ofs = 0; 746 } 747 } 748 749 /** 750 * ata_pio_sectors - Transfer one or many sectors. 751 * @qc: Command on going 752 * 753 * Transfer one or many sectors of data from/to the 754 * ATA device for the DRQ request. 755 * 756 * LOCKING: 757 * Inherited from caller. 758 */ 759 static void ata_pio_sectors(struct ata_queued_cmd *qc) 760 { 761 if (is_multi_taskfile(&qc->tf)) { 762 /* READ/WRITE MULTIPLE */ 763 unsigned int nsect; 764 765 WARN_ON_ONCE(qc->dev->multi_count == 0); 766 767 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 768 qc->dev->multi_count); 769 while (nsect--) 770 ata_pio_sector(qc); 771 } else 772 ata_pio_sector(qc); 773 774 ata_sff_sync(qc->ap); /* flush */ 775 } 776 777 /** 778 * atapi_send_cdb - Write CDB bytes to hardware 779 * @ap: Port to which ATAPI device is attached. 780 * @qc: Taskfile currently active 781 * 782 * When device has indicated its readiness to accept 783 * a CDB, this function is called. Send the CDB. 784 * 785 * LOCKING: 786 * caller. 787 */ 788 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 789 { 790 /* send SCSI cdb */ 791 DPRINTK("send cdb\n"); 792 WARN_ON_ONCE(qc->dev->cdb_len < 12); 793 794 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 795 ata_sff_sync(ap); 796 /* FIXME: If the CDB is for DMA do we need to do the transition delay 797 or is bmdma_start guaranteed to do it ? */ 798 switch (qc->tf.protocol) { 799 case ATAPI_PROT_PIO: 800 ap->hsm_task_state = HSM_ST; 801 break; 802 case ATAPI_PROT_NODATA: 803 ap->hsm_task_state = HSM_ST_LAST; 804 break; 805 #ifdef CONFIG_ATA_BMDMA 806 case ATAPI_PROT_DMA: 807 ap->hsm_task_state = HSM_ST_LAST; 808 /* initiate bmdma */ 809 ap->ops->bmdma_start(qc); 810 break; 811 #endif /* CONFIG_ATA_BMDMA */ 812 default: 813 BUG(); 814 } 815 } 816 817 /** 818 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 819 * @qc: Command on going 820 * @bytes: number of bytes 821 * 822 * Transfer Transfer data from/to the ATAPI device. 823 * 824 * LOCKING: 825 * Inherited from caller. 826 * 827 */ 828 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 829 { 830 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 831 struct ata_port *ap = qc->ap; 832 struct ata_device *dev = qc->dev; 833 struct ata_eh_info *ehi = &dev->link->eh_info; 834 struct scatterlist *sg; 835 struct page *page; 836 unsigned char *buf; 837 unsigned int offset, count, consumed; 838 839 next_sg: 840 sg = qc->cursg; 841 if (unlikely(!sg)) { 842 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 843 "buf=%u cur=%u bytes=%u", 844 qc->nbytes, qc->curbytes, bytes); 845 return -1; 846 } 847 848 page = sg_page(sg); 849 offset = sg->offset + qc->cursg_ofs; 850 851 /* get the current page and offset */ 852 page = nth_page(page, (offset >> PAGE_SHIFT)); 853 offset %= PAGE_SIZE; 854 855 /* don't overrun current sg */ 856 count = min(sg->length - qc->cursg_ofs, bytes); 857 858 /* don't cross page boundaries */ 859 count = min(count, (unsigned int)PAGE_SIZE - offset); 860 861 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 862 863 if (PageHighMem(page)) { 864 unsigned long flags; 865 866 /* FIXME: use bounce buffer */ 867 local_irq_save(flags); 868 buf = kmap_atomic(page); 869 870 /* do the actual data transfer */ 871 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 872 count, rw); 873 874 kunmap_atomic(buf); 875 local_irq_restore(flags); 876 } else { 877 buf = page_address(page); 878 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 879 count, rw); 880 } 881 882 bytes -= min(bytes, consumed); 883 qc->curbytes += count; 884 qc->cursg_ofs += count; 885 886 if (qc->cursg_ofs == sg->length) { 887 qc->cursg = sg_next(qc->cursg); 888 qc->cursg_ofs = 0; 889 } 890 891 /* 892 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 893 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 894 * check correctly as it doesn't know if it is the last request being 895 * made. Somebody should implement a proper sanity check. 896 */ 897 if (bytes) 898 goto next_sg; 899 return 0; 900 } 901 902 /** 903 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 904 * @qc: Command on going 905 * 906 * Transfer Transfer data from/to the ATAPI device. 907 * 908 * LOCKING: 909 * Inherited from caller. 910 */ 911 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 912 { 913 struct ata_port *ap = qc->ap; 914 struct ata_device *dev = qc->dev; 915 struct ata_eh_info *ehi = &dev->link->eh_info; 916 unsigned int ireason, bc_lo, bc_hi, bytes; 917 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 918 919 /* Abuse qc->result_tf for temp storage of intermediate TF 920 * here to save some kernel stack usage. 921 * For normal completion, qc->result_tf is not relevant. For 922 * error, qc->result_tf is later overwritten by ata_qc_complete(). 923 * So, the correctness of qc->result_tf is not affected. 924 */ 925 ap->ops->sff_tf_read(ap, &qc->result_tf); 926 ireason = qc->result_tf.nsect; 927 bc_lo = qc->result_tf.lbam; 928 bc_hi = qc->result_tf.lbah; 929 bytes = (bc_hi << 8) | bc_lo; 930 931 /* shall be cleared to zero, indicating xfer of data */ 932 if (unlikely(ireason & ATAPI_COD)) 933 goto atapi_check; 934 935 /* make sure transfer direction matches expected */ 936 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 937 if (unlikely(do_write != i_write)) 938 goto atapi_check; 939 940 if (unlikely(!bytes)) 941 goto atapi_check; 942 943 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 944 945 if (unlikely(__atapi_pio_bytes(qc, bytes))) 946 goto err_out; 947 ata_sff_sync(ap); /* flush */ 948 949 return; 950 951 atapi_check: 952 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 953 ireason, bytes); 954 err_out: 955 qc->err_mask |= AC_ERR_HSM; 956 ap->hsm_task_state = HSM_ST_ERR; 957 } 958 959 /** 960 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 961 * @ap: the target ata_port 962 * @qc: qc on going 963 * 964 * RETURNS: 965 * 1 if ok in workqueue, 0 otherwise. 966 */ 967 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 968 struct ata_queued_cmd *qc) 969 { 970 if (qc->tf.flags & ATA_TFLAG_POLLING) 971 return 1; 972 973 if (ap->hsm_task_state == HSM_ST_FIRST) { 974 if (qc->tf.protocol == ATA_PROT_PIO && 975 (qc->tf.flags & ATA_TFLAG_WRITE)) 976 return 1; 977 978 if (ata_is_atapi(qc->tf.protocol) && 979 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 980 return 1; 981 } 982 983 return 0; 984 } 985 986 /** 987 * ata_hsm_qc_complete - finish a qc running on standard HSM 988 * @qc: Command to complete 989 * @in_wq: 1 if called from workqueue, 0 otherwise 990 * 991 * Finish @qc which is running on standard HSM. 992 * 993 * LOCKING: 994 * If @in_wq is zero, spin_lock_irqsave(host lock). 995 * Otherwise, none on entry and grabs host lock. 996 */ 997 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 998 { 999 struct ata_port *ap = qc->ap; 1000 unsigned long flags; 1001 1002 if (ap->ops->error_handler) { 1003 if (in_wq) { 1004 spin_lock_irqsave(ap->lock, flags); 1005 1006 /* EH might have kicked in while host lock is 1007 * released. 1008 */ 1009 qc = ata_qc_from_tag(ap, qc->tag); 1010 if (qc) { 1011 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1012 ata_sff_irq_on(ap); 1013 ata_qc_complete(qc); 1014 } else 1015 ata_port_freeze(ap); 1016 } 1017 1018 spin_unlock_irqrestore(ap->lock, flags); 1019 } else { 1020 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1021 ata_qc_complete(qc); 1022 else 1023 ata_port_freeze(ap); 1024 } 1025 } else { 1026 if (in_wq) { 1027 spin_lock_irqsave(ap->lock, flags); 1028 ata_sff_irq_on(ap); 1029 ata_qc_complete(qc); 1030 spin_unlock_irqrestore(ap->lock, flags); 1031 } else 1032 ata_qc_complete(qc); 1033 } 1034 } 1035 1036 /** 1037 * ata_sff_hsm_move - move the HSM to the next state. 1038 * @ap: the target ata_port 1039 * @qc: qc on going 1040 * @status: current device status 1041 * @in_wq: 1 if called from workqueue, 0 otherwise 1042 * 1043 * RETURNS: 1044 * 1 when poll next status needed, 0 otherwise. 1045 */ 1046 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1047 u8 status, int in_wq) 1048 { 1049 struct ata_link *link = qc->dev->link; 1050 struct ata_eh_info *ehi = &link->eh_info; 1051 unsigned long flags = 0; 1052 int poll_next; 1053 1054 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1055 1056 /* Make sure ata_sff_qc_issue() does not throw things 1057 * like DMA polling into the workqueue. Notice that 1058 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1059 */ 1060 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1061 1062 fsm_start: 1063 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1064 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1065 1066 switch (ap->hsm_task_state) { 1067 case HSM_ST_FIRST: 1068 /* Send first data block or PACKET CDB */ 1069 1070 /* If polling, we will stay in the work queue after 1071 * sending the data. Otherwise, interrupt handler 1072 * takes over after sending the data. 1073 */ 1074 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1075 1076 /* check device status */ 1077 if (unlikely((status & ATA_DRQ) == 0)) { 1078 /* handle BSY=0, DRQ=0 as error */ 1079 if (likely(status & (ATA_ERR | ATA_DF))) 1080 /* device stops HSM for abort/error */ 1081 qc->err_mask |= AC_ERR_DEV; 1082 else { 1083 /* HSM violation. Let EH handle this */ 1084 ata_ehi_push_desc(ehi, 1085 "ST_FIRST: !(DRQ|ERR|DF)"); 1086 qc->err_mask |= AC_ERR_HSM; 1087 } 1088 1089 ap->hsm_task_state = HSM_ST_ERR; 1090 goto fsm_start; 1091 } 1092 1093 /* Device should not ask for data transfer (DRQ=1) 1094 * when it finds something wrong. 1095 * We ignore DRQ here and stop the HSM by 1096 * changing hsm_task_state to HSM_ST_ERR and 1097 * let the EH abort the command or reset the device. 1098 */ 1099 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1100 /* Some ATAPI tape drives forget to clear the ERR bit 1101 * when doing the next command (mostly request sense). 1102 * We ignore ERR here to workaround and proceed sending 1103 * the CDB. 1104 */ 1105 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1106 ata_ehi_push_desc(ehi, "ST_FIRST: " 1107 "DRQ=1 with device error, " 1108 "dev_stat 0x%X", status); 1109 qc->err_mask |= AC_ERR_HSM; 1110 ap->hsm_task_state = HSM_ST_ERR; 1111 goto fsm_start; 1112 } 1113 } 1114 1115 /* Send the CDB (atapi) or the first data block (ata pio out). 1116 * During the state transition, interrupt handler shouldn't 1117 * be invoked before the data transfer is complete and 1118 * hsm_task_state is changed. Hence, the following locking. 1119 */ 1120 if (in_wq) 1121 spin_lock_irqsave(ap->lock, flags); 1122 1123 if (qc->tf.protocol == ATA_PROT_PIO) { 1124 /* PIO data out protocol. 1125 * send first data block. 1126 */ 1127 1128 /* ata_pio_sectors() might change the state 1129 * to HSM_ST_LAST. so, the state is changed here 1130 * before ata_pio_sectors(). 1131 */ 1132 ap->hsm_task_state = HSM_ST; 1133 ata_pio_sectors(qc); 1134 } else 1135 /* send CDB */ 1136 atapi_send_cdb(ap, qc); 1137 1138 if (in_wq) 1139 spin_unlock_irqrestore(ap->lock, flags); 1140 1141 /* if polling, ata_sff_pio_task() handles the rest. 1142 * otherwise, interrupt handler takes over from here. 1143 */ 1144 break; 1145 1146 case HSM_ST: 1147 /* complete command or read/write the data register */ 1148 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1149 /* ATAPI PIO protocol */ 1150 if ((status & ATA_DRQ) == 0) { 1151 /* No more data to transfer or device error. 1152 * Device error will be tagged in HSM_ST_LAST. 1153 */ 1154 ap->hsm_task_state = HSM_ST_LAST; 1155 goto fsm_start; 1156 } 1157 1158 /* Device should not ask for data transfer (DRQ=1) 1159 * when it finds something wrong. 1160 * We ignore DRQ here and stop the HSM by 1161 * changing hsm_task_state to HSM_ST_ERR and 1162 * let the EH abort the command or reset the device. 1163 */ 1164 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1165 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1166 "DRQ=1 with device error, " 1167 "dev_stat 0x%X", status); 1168 qc->err_mask |= AC_ERR_HSM; 1169 ap->hsm_task_state = HSM_ST_ERR; 1170 goto fsm_start; 1171 } 1172 1173 atapi_pio_bytes(qc); 1174 1175 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1176 /* bad ireason reported by device */ 1177 goto fsm_start; 1178 1179 } else { 1180 /* ATA PIO protocol */ 1181 if (unlikely((status & ATA_DRQ) == 0)) { 1182 /* handle BSY=0, DRQ=0 as error */ 1183 if (likely(status & (ATA_ERR | ATA_DF))) { 1184 /* device stops HSM for abort/error */ 1185 qc->err_mask |= AC_ERR_DEV; 1186 1187 /* If diagnostic failed and this is 1188 * IDENTIFY, it's likely a phantom 1189 * device. Mark hint. 1190 */ 1191 if (qc->dev->horkage & 1192 ATA_HORKAGE_DIAGNOSTIC) 1193 qc->err_mask |= 1194 AC_ERR_NODEV_HINT; 1195 } else { 1196 /* HSM violation. Let EH handle this. 1197 * Phantom devices also trigger this 1198 * condition. Mark hint. 1199 */ 1200 ata_ehi_push_desc(ehi, "ST-ATA: " 1201 "DRQ=0 without device error, " 1202 "dev_stat 0x%X", status); 1203 qc->err_mask |= AC_ERR_HSM | 1204 AC_ERR_NODEV_HINT; 1205 } 1206 1207 ap->hsm_task_state = HSM_ST_ERR; 1208 goto fsm_start; 1209 } 1210 1211 /* For PIO reads, some devices may ask for 1212 * data transfer (DRQ=1) alone with ERR=1. 1213 * We respect DRQ here and transfer one 1214 * block of junk data before changing the 1215 * hsm_task_state to HSM_ST_ERR. 1216 * 1217 * For PIO writes, ERR=1 DRQ=1 doesn't make 1218 * sense since the data block has been 1219 * transferred to the device. 1220 */ 1221 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1222 /* data might be corrputed */ 1223 qc->err_mask |= AC_ERR_DEV; 1224 1225 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1226 ata_pio_sectors(qc); 1227 status = ata_wait_idle(ap); 1228 } 1229 1230 if (status & (ATA_BUSY | ATA_DRQ)) { 1231 ata_ehi_push_desc(ehi, "ST-ATA: " 1232 "BUSY|DRQ persists on ERR|DF, " 1233 "dev_stat 0x%X", status); 1234 qc->err_mask |= AC_ERR_HSM; 1235 } 1236 1237 /* There are oddball controllers with 1238 * status register stuck at 0x7f and 1239 * lbal/m/h at zero which makes it 1240 * pass all other presence detection 1241 * mechanisms we have. Set NODEV_HINT 1242 * for it. Kernel bz#7241. 1243 */ 1244 if (status == 0x7f) 1245 qc->err_mask |= AC_ERR_NODEV_HINT; 1246 1247 /* ata_pio_sectors() might change the 1248 * state to HSM_ST_LAST. so, the state 1249 * is changed after ata_pio_sectors(). 1250 */ 1251 ap->hsm_task_state = HSM_ST_ERR; 1252 goto fsm_start; 1253 } 1254 1255 ata_pio_sectors(qc); 1256 1257 if (ap->hsm_task_state == HSM_ST_LAST && 1258 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1259 /* all data read */ 1260 status = ata_wait_idle(ap); 1261 goto fsm_start; 1262 } 1263 } 1264 1265 poll_next = 1; 1266 break; 1267 1268 case HSM_ST_LAST: 1269 if (unlikely(!ata_ok(status))) { 1270 qc->err_mask |= __ac_err_mask(status); 1271 ap->hsm_task_state = HSM_ST_ERR; 1272 goto fsm_start; 1273 } 1274 1275 /* no more data to transfer */ 1276 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1277 ap->print_id, qc->dev->devno, status); 1278 1279 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1280 1281 ap->hsm_task_state = HSM_ST_IDLE; 1282 1283 /* complete taskfile transaction */ 1284 ata_hsm_qc_complete(qc, in_wq); 1285 1286 poll_next = 0; 1287 break; 1288 1289 case HSM_ST_ERR: 1290 ap->hsm_task_state = HSM_ST_IDLE; 1291 1292 /* complete taskfile transaction */ 1293 ata_hsm_qc_complete(qc, in_wq); 1294 1295 poll_next = 0; 1296 break; 1297 default: 1298 poll_next = 0; 1299 BUG(); 1300 } 1301 1302 return poll_next; 1303 } 1304 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1305 1306 void ata_sff_queue_work(struct work_struct *work) 1307 { 1308 queue_work(ata_sff_wq, work); 1309 } 1310 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1311 1312 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1313 { 1314 queue_delayed_work(ata_sff_wq, dwork, delay); 1315 } 1316 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1317 1318 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1319 { 1320 struct ata_port *ap = link->ap; 1321 1322 WARN_ON((ap->sff_pio_task_link != NULL) && 1323 (ap->sff_pio_task_link != link)); 1324 ap->sff_pio_task_link = link; 1325 1326 /* may fail if ata_sff_flush_pio_task() in progress */ 1327 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1328 } 1329 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1330 1331 void ata_sff_flush_pio_task(struct ata_port *ap) 1332 { 1333 DPRINTK("ENTER\n"); 1334 1335 cancel_delayed_work_sync(&ap->sff_pio_task); 1336 ap->hsm_task_state = HSM_ST_IDLE; 1337 ap->sff_pio_task_link = NULL; 1338 1339 if (ata_msg_ctl(ap)) 1340 ata_port_dbg(ap, "%s: EXIT\n", __func__); 1341 } 1342 1343 static void ata_sff_pio_task(struct work_struct *work) 1344 { 1345 struct ata_port *ap = 1346 container_of(work, struct ata_port, sff_pio_task.work); 1347 struct ata_link *link = ap->sff_pio_task_link; 1348 struct ata_queued_cmd *qc; 1349 u8 status; 1350 int poll_next; 1351 1352 BUG_ON(ap->sff_pio_task_link == NULL); 1353 /* qc can be NULL if timeout occurred */ 1354 qc = ata_qc_from_tag(ap, link->active_tag); 1355 if (!qc) { 1356 ap->sff_pio_task_link = NULL; 1357 return; 1358 } 1359 1360 fsm_start: 1361 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1362 1363 /* 1364 * This is purely heuristic. This is a fast path. 1365 * Sometimes when we enter, BSY will be cleared in 1366 * a chk-status or two. If not, the drive is probably seeking 1367 * or something. Snooze for a couple msecs, then 1368 * chk-status again. If still busy, queue delayed work. 1369 */ 1370 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1371 if (status & ATA_BUSY) { 1372 ata_msleep(ap, 2); 1373 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1374 if (status & ATA_BUSY) { 1375 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1376 return; 1377 } 1378 } 1379 1380 /* 1381 * hsm_move() may trigger another command to be processed. 1382 * clean the link beforehand. 1383 */ 1384 ap->sff_pio_task_link = NULL; 1385 /* move the HSM */ 1386 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1387 1388 /* another command or interrupt handler 1389 * may be running at this point. 1390 */ 1391 if (poll_next) 1392 goto fsm_start; 1393 } 1394 1395 /** 1396 * ata_sff_qc_issue - issue taskfile to a SFF controller 1397 * @qc: command to issue to device 1398 * 1399 * This function issues a PIO or NODATA command to a SFF 1400 * controller. 1401 * 1402 * LOCKING: 1403 * spin_lock_irqsave(host lock) 1404 * 1405 * RETURNS: 1406 * Zero on success, AC_ERR_* mask on failure 1407 */ 1408 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1409 { 1410 struct ata_port *ap = qc->ap; 1411 struct ata_link *link = qc->dev->link; 1412 1413 /* Use polling pio if the LLD doesn't handle 1414 * interrupt driven pio and atapi CDB interrupt. 1415 */ 1416 if (ap->flags & ATA_FLAG_PIO_POLLING) 1417 qc->tf.flags |= ATA_TFLAG_POLLING; 1418 1419 /* select the device */ 1420 ata_dev_select(ap, qc->dev->devno, 1, 0); 1421 1422 /* start the command */ 1423 switch (qc->tf.protocol) { 1424 case ATA_PROT_NODATA: 1425 if (qc->tf.flags & ATA_TFLAG_POLLING) 1426 ata_qc_set_polling(qc); 1427 1428 ata_tf_to_host(ap, &qc->tf); 1429 ap->hsm_task_state = HSM_ST_LAST; 1430 1431 if (qc->tf.flags & ATA_TFLAG_POLLING) 1432 ata_sff_queue_pio_task(link, 0); 1433 1434 break; 1435 1436 case ATA_PROT_PIO: 1437 if (qc->tf.flags & ATA_TFLAG_POLLING) 1438 ata_qc_set_polling(qc); 1439 1440 ata_tf_to_host(ap, &qc->tf); 1441 1442 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1443 /* PIO data out protocol */ 1444 ap->hsm_task_state = HSM_ST_FIRST; 1445 ata_sff_queue_pio_task(link, 0); 1446 1447 /* always send first data block using the 1448 * ata_sff_pio_task() codepath. 1449 */ 1450 } else { 1451 /* PIO data in protocol */ 1452 ap->hsm_task_state = HSM_ST; 1453 1454 if (qc->tf.flags & ATA_TFLAG_POLLING) 1455 ata_sff_queue_pio_task(link, 0); 1456 1457 /* if polling, ata_sff_pio_task() handles the 1458 * rest. otherwise, interrupt handler takes 1459 * over from here. 1460 */ 1461 } 1462 1463 break; 1464 1465 case ATAPI_PROT_PIO: 1466 case ATAPI_PROT_NODATA: 1467 if (qc->tf.flags & ATA_TFLAG_POLLING) 1468 ata_qc_set_polling(qc); 1469 1470 ata_tf_to_host(ap, &qc->tf); 1471 1472 ap->hsm_task_state = HSM_ST_FIRST; 1473 1474 /* send cdb by polling if no cdb interrupt */ 1475 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1476 (qc->tf.flags & ATA_TFLAG_POLLING)) 1477 ata_sff_queue_pio_task(link, 0); 1478 break; 1479 1480 default: 1481 WARN_ON_ONCE(1); 1482 return AC_ERR_SYSTEM; 1483 } 1484 1485 return 0; 1486 } 1487 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1488 1489 /** 1490 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1491 * @qc: qc to fill result TF for 1492 * 1493 * @qc is finished and result TF needs to be filled. Fill it 1494 * using ->sff_tf_read. 1495 * 1496 * LOCKING: 1497 * spin_lock_irqsave(host lock) 1498 * 1499 * RETURNS: 1500 * true indicating that result TF is successfully filled. 1501 */ 1502 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1503 { 1504 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1505 return true; 1506 } 1507 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1508 1509 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1510 { 1511 ap->stats.idle_irq++; 1512 1513 #ifdef ATA_IRQ_TRAP 1514 if ((ap->stats.idle_irq % 1000) == 0) { 1515 ap->ops->sff_check_status(ap); 1516 if (ap->ops->sff_irq_clear) 1517 ap->ops->sff_irq_clear(ap); 1518 ata_port_warn(ap, "irq trap\n"); 1519 return 1; 1520 } 1521 #endif 1522 return 0; /* irq not handled */ 1523 } 1524 1525 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1526 struct ata_queued_cmd *qc, 1527 bool hsmv_on_idle) 1528 { 1529 u8 status; 1530 1531 VPRINTK("ata%u: protocol %d task_state %d\n", 1532 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1533 1534 /* Check whether we are expecting interrupt in this state */ 1535 switch (ap->hsm_task_state) { 1536 case HSM_ST_FIRST: 1537 /* Some pre-ATAPI-4 devices assert INTRQ 1538 * at this state when ready to receive CDB. 1539 */ 1540 1541 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1542 * The flag was turned on only for atapi devices. No 1543 * need to check ata_is_atapi(qc->tf.protocol) again. 1544 */ 1545 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1546 return ata_sff_idle_irq(ap); 1547 break; 1548 case HSM_ST_IDLE: 1549 return ata_sff_idle_irq(ap); 1550 default: 1551 break; 1552 } 1553 1554 /* check main status, clearing INTRQ if needed */ 1555 status = ata_sff_irq_status(ap); 1556 if (status & ATA_BUSY) { 1557 if (hsmv_on_idle) { 1558 /* BMDMA engine is already stopped, we're screwed */ 1559 qc->err_mask |= AC_ERR_HSM; 1560 ap->hsm_task_state = HSM_ST_ERR; 1561 } else 1562 return ata_sff_idle_irq(ap); 1563 } 1564 1565 /* clear irq events */ 1566 if (ap->ops->sff_irq_clear) 1567 ap->ops->sff_irq_clear(ap); 1568 1569 ata_sff_hsm_move(ap, qc, status, 0); 1570 1571 return 1; /* irq handled */ 1572 } 1573 1574 /** 1575 * ata_sff_port_intr - Handle SFF port interrupt 1576 * @ap: Port on which interrupt arrived (possibly...) 1577 * @qc: Taskfile currently active in engine 1578 * 1579 * Handle port interrupt for given queued command. 1580 * 1581 * LOCKING: 1582 * spin_lock_irqsave(host lock) 1583 * 1584 * RETURNS: 1585 * One if interrupt was handled, zero if not (shared irq). 1586 */ 1587 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1588 { 1589 return __ata_sff_port_intr(ap, qc, false); 1590 } 1591 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1592 1593 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1594 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1595 { 1596 struct ata_host *host = dev_instance; 1597 bool retried = false; 1598 unsigned int i; 1599 unsigned int handled, idle, polling; 1600 unsigned long flags; 1601 1602 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1603 spin_lock_irqsave(&host->lock, flags); 1604 1605 retry: 1606 handled = idle = polling = 0; 1607 for (i = 0; i < host->n_ports; i++) { 1608 struct ata_port *ap = host->ports[i]; 1609 struct ata_queued_cmd *qc; 1610 1611 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1612 if (qc) { 1613 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1614 handled |= port_intr(ap, qc); 1615 else 1616 polling |= 1 << i; 1617 } else 1618 idle |= 1 << i; 1619 } 1620 1621 /* 1622 * If no port was expecting IRQ but the controller is actually 1623 * asserting IRQ line, nobody cared will ensue. Check IRQ 1624 * pending status if available and clear spurious IRQ. 1625 */ 1626 if (!handled && !retried) { 1627 bool retry = false; 1628 1629 for (i = 0; i < host->n_ports; i++) { 1630 struct ata_port *ap = host->ports[i]; 1631 1632 if (polling & (1 << i)) 1633 continue; 1634 1635 if (!ap->ops->sff_irq_check || 1636 !ap->ops->sff_irq_check(ap)) 1637 continue; 1638 1639 if (idle & (1 << i)) { 1640 ap->ops->sff_check_status(ap); 1641 if (ap->ops->sff_irq_clear) 1642 ap->ops->sff_irq_clear(ap); 1643 } else { 1644 /* clear INTRQ and check if BUSY cleared */ 1645 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1646 retry |= true; 1647 /* 1648 * With command in flight, we can't do 1649 * sff_irq_clear() w/o racing with completion. 1650 */ 1651 } 1652 } 1653 1654 if (retry) { 1655 retried = true; 1656 goto retry; 1657 } 1658 } 1659 1660 spin_unlock_irqrestore(&host->lock, flags); 1661 1662 return IRQ_RETVAL(handled); 1663 } 1664 1665 /** 1666 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1667 * @irq: irq line (unused) 1668 * @dev_instance: pointer to our ata_host information structure 1669 * 1670 * Default interrupt handler for PCI IDE devices. Calls 1671 * ata_sff_port_intr() for each port that is not disabled. 1672 * 1673 * LOCKING: 1674 * Obtains host lock during operation. 1675 * 1676 * RETURNS: 1677 * IRQ_NONE or IRQ_HANDLED. 1678 */ 1679 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1680 { 1681 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1682 } 1683 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1684 1685 /** 1686 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1687 * @ap: port that appears to have timed out 1688 * 1689 * Called from the libata error handlers when the core code suspects 1690 * an interrupt has been lost. If it has complete anything we can and 1691 * then return. Interface must support altstatus for this faster 1692 * recovery to occur. 1693 * 1694 * Locking: 1695 * Caller holds host lock 1696 */ 1697 1698 void ata_sff_lost_interrupt(struct ata_port *ap) 1699 { 1700 u8 status; 1701 struct ata_queued_cmd *qc; 1702 1703 /* Only one outstanding command per SFF channel */ 1704 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1705 /* We cannot lose an interrupt on a non-existent or polled command */ 1706 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1707 return; 1708 /* See if the controller thinks it is still busy - if so the command 1709 isn't a lost IRQ but is still in progress */ 1710 status = ata_sff_altstatus(ap); 1711 if (status & ATA_BUSY) 1712 return; 1713 1714 /* There was a command running, we are no longer busy and we have 1715 no interrupt. */ 1716 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", 1717 status); 1718 /* Run the host interrupt logic as if the interrupt had not been 1719 lost */ 1720 ata_sff_port_intr(ap, qc); 1721 } 1722 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1723 1724 /** 1725 * ata_sff_freeze - Freeze SFF controller port 1726 * @ap: port to freeze 1727 * 1728 * Freeze SFF controller port. 1729 * 1730 * LOCKING: 1731 * Inherited from caller. 1732 */ 1733 void ata_sff_freeze(struct ata_port *ap) 1734 { 1735 ap->ctl |= ATA_NIEN; 1736 ap->last_ctl = ap->ctl; 1737 1738 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1739 ata_sff_set_devctl(ap, ap->ctl); 1740 1741 /* Under certain circumstances, some controllers raise IRQ on 1742 * ATA_NIEN manipulation. Also, many controllers fail to mask 1743 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1744 */ 1745 ap->ops->sff_check_status(ap); 1746 1747 if (ap->ops->sff_irq_clear) 1748 ap->ops->sff_irq_clear(ap); 1749 } 1750 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1751 1752 /** 1753 * ata_sff_thaw - Thaw SFF controller port 1754 * @ap: port to thaw 1755 * 1756 * Thaw SFF controller port. 1757 * 1758 * LOCKING: 1759 * Inherited from caller. 1760 */ 1761 void ata_sff_thaw(struct ata_port *ap) 1762 { 1763 /* clear & re-enable interrupts */ 1764 ap->ops->sff_check_status(ap); 1765 if (ap->ops->sff_irq_clear) 1766 ap->ops->sff_irq_clear(ap); 1767 ata_sff_irq_on(ap); 1768 } 1769 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1770 1771 /** 1772 * ata_sff_prereset - prepare SFF link for reset 1773 * @link: SFF link to be reset 1774 * @deadline: deadline jiffies for the operation 1775 * 1776 * SFF link @link is about to be reset. Initialize it. It first 1777 * calls ata_std_prereset() and wait for !BSY if the port is 1778 * being softreset. 1779 * 1780 * LOCKING: 1781 * Kernel thread context (may sleep) 1782 * 1783 * RETURNS: 1784 * 0 on success, -errno otherwise. 1785 */ 1786 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1787 { 1788 struct ata_eh_context *ehc = &link->eh_context; 1789 int rc; 1790 1791 rc = ata_std_prereset(link, deadline); 1792 if (rc) 1793 return rc; 1794 1795 /* if we're about to do hardreset, nothing more to do */ 1796 if (ehc->i.action & ATA_EH_HARDRESET) 1797 return 0; 1798 1799 /* wait for !BSY if we don't know that no device is attached */ 1800 if (!ata_link_offline(link)) { 1801 rc = ata_sff_wait_ready(link, deadline); 1802 if (rc && rc != -ENODEV) { 1803 ata_link_warn(link, 1804 "device not ready (errno=%d), forcing hardreset\n", 1805 rc); 1806 ehc->i.action |= ATA_EH_HARDRESET; 1807 } 1808 } 1809 1810 return 0; 1811 } 1812 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1813 1814 /** 1815 * ata_devchk - PATA device presence detection 1816 * @ap: ATA channel to examine 1817 * @device: Device to examine (starting at zero) 1818 * 1819 * This technique was originally described in 1820 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1821 * later found its way into the ATA/ATAPI spec. 1822 * 1823 * Write a pattern to the ATA shadow registers, 1824 * and if a device is present, it will respond by 1825 * correctly storing and echoing back the 1826 * ATA shadow register contents. 1827 * 1828 * LOCKING: 1829 * caller. 1830 */ 1831 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1832 { 1833 struct ata_ioports *ioaddr = &ap->ioaddr; 1834 u8 nsect, lbal; 1835 1836 ap->ops->sff_dev_select(ap, device); 1837 1838 iowrite8(0x55, ioaddr->nsect_addr); 1839 iowrite8(0xaa, ioaddr->lbal_addr); 1840 1841 iowrite8(0xaa, ioaddr->nsect_addr); 1842 iowrite8(0x55, ioaddr->lbal_addr); 1843 1844 iowrite8(0x55, ioaddr->nsect_addr); 1845 iowrite8(0xaa, ioaddr->lbal_addr); 1846 1847 nsect = ioread8(ioaddr->nsect_addr); 1848 lbal = ioread8(ioaddr->lbal_addr); 1849 1850 if ((nsect == 0x55) && (lbal == 0xaa)) 1851 return 1; /* we found a device */ 1852 1853 return 0; /* nothing found */ 1854 } 1855 1856 /** 1857 * ata_sff_dev_classify - Parse returned ATA device signature 1858 * @dev: ATA device to classify (starting at zero) 1859 * @present: device seems present 1860 * @r_err: Value of error register on completion 1861 * 1862 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1863 * an ATA/ATAPI-defined set of values is placed in the ATA 1864 * shadow registers, indicating the results of device detection 1865 * and diagnostics. 1866 * 1867 * Select the ATA device, and read the values from the ATA shadow 1868 * registers. Then parse according to the Error register value, 1869 * and the spec-defined values examined by ata_dev_classify(). 1870 * 1871 * LOCKING: 1872 * caller. 1873 * 1874 * RETURNS: 1875 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1876 */ 1877 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1878 u8 *r_err) 1879 { 1880 struct ata_port *ap = dev->link->ap; 1881 struct ata_taskfile tf; 1882 unsigned int class; 1883 u8 err; 1884 1885 ap->ops->sff_dev_select(ap, dev->devno); 1886 1887 memset(&tf, 0, sizeof(tf)); 1888 1889 ap->ops->sff_tf_read(ap, &tf); 1890 err = tf.feature; 1891 if (r_err) 1892 *r_err = err; 1893 1894 /* see if device passed diags: continue and warn later */ 1895 if (err == 0) 1896 /* diagnostic fail : do nothing _YET_ */ 1897 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1898 else if (err == 1) 1899 /* do nothing */ ; 1900 else if ((dev->devno == 0) && (err == 0x81)) 1901 /* do nothing */ ; 1902 else 1903 return ATA_DEV_NONE; 1904 1905 /* determine if device is ATA or ATAPI */ 1906 class = ata_dev_classify(&tf); 1907 1908 if (class == ATA_DEV_UNKNOWN) { 1909 /* If the device failed diagnostic, it's likely to 1910 * have reported incorrect device signature too. 1911 * Assume ATA device if the device seems present but 1912 * device signature is invalid with diagnostic 1913 * failure. 1914 */ 1915 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1916 class = ATA_DEV_ATA; 1917 else 1918 class = ATA_DEV_NONE; 1919 } else if ((class == ATA_DEV_ATA) && 1920 (ap->ops->sff_check_status(ap) == 0)) 1921 class = ATA_DEV_NONE; 1922 1923 return class; 1924 } 1925 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1926 1927 /** 1928 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1929 * @link: SFF link which is just reset 1930 * @devmask: mask of present devices 1931 * @deadline: deadline jiffies for the operation 1932 * 1933 * Wait devices attached to SFF @link to become ready after 1934 * reset. It contains preceding 150ms wait to avoid accessing TF 1935 * status register too early. 1936 * 1937 * LOCKING: 1938 * Kernel thread context (may sleep). 1939 * 1940 * RETURNS: 1941 * 0 on success, -ENODEV if some or all of devices in @devmask 1942 * don't seem to exist. -errno on other errors. 1943 */ 1944 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1945 unsigned long deadline) 1946 { 1947 struct ata_port *ap = link->ap; 1948 struct ata_ioports *ioaddr = &ap->ioaddr; 1949 unsigned int dev0 = devmask & (1 << 0); 1950 unsigned int dev1 = devmask & (1 << 1); 1951 int rc, ret = 0; 1952 1953 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1954 1955 /* always check readiness of the master device */ 1956 rc = ata_sff_wait_ready(link, deadline); 1957 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1958 * and TF status is 0xff, bail out on it too. 1959 */ 1960 if (rc) 1961 return rc; 1962 1963 /* if device 1 was found in ata_devchk, wait for register 1964 * access briefly, then wait for BSY to clear. 1965 */ 1966 if (dev1) { 1967 int i; 1968 1969 ap->ops->sff_dev_select(ap, 1); 1970 1971 /* Wait for register access. Some ATAPI devices fail 1972 * to set nsect/lbal after reset, so don't waste too 1973 * much time on it. We're gonna wait for !BSY anyway. 1974 */ 1975 for (i = 0; i < 2; i++) { 1976 u8 nsect, lbal; 1977 1978 nsect = ioread8(ioaddr->nsect_addr); 1979 lbal = ioread8(ioaddr->lbal_addr); 1980 if ((nsect == 1) && (lbal == 1)) 1981 break; 1982 ata_msleep(ap, 50); /* give drive a breather */ 1983 } 1984 1985 rc = ata_sff_wait_ready(link, deadline); 1986 if (rc) { 1987 if (rc != -ENODEV) 1988 return rc; 1989 ret = rc; 1990 } 1991 } 1992 1993 /* is all this really necessary? */ 1994 ap->ops->sff_dev_select(ap, 0); 1995 if (dev1) 1996 ap->ops->sff_dev_select(ap, 1); 1997 if (dev0) 1998 ap->ops->sff_dev_select(ap, 0); 1999 2000 return ret; 2001 } 2002 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2003 2004 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 2005 unsigned long deadline) 2006 { 2007 struct ata_ioports *ioaddr = &ap->ioaddr; 2008 2009 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2010 2011 /* software reset. causes dev0 to be selected */ 2012 iowrite8(ap->ctl, ioaddr->ctl_addr); 2013 udelay(20); /* FIXME: flush */ 2014 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2015 udelay(20); /* FIXME: flush */ 2016 iowrite8(ap->ctl, ioaddr->ctl_addr); 2017 ap->last_ctl = ap->ctl; 2018 2019 /* wait the port to become ready */ 2020 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2021 } 2022 2023 /** 2024 * ata_sff_softreset - reset host port via ATA SRST 2025 * @link: ATA link to reset 2026 * @classes: resulting classes of attached devices 2027 * @deadline: deadline jiffies for the operation 2028 * 2029 * Reset host port using ATA SRST. 2030 * 2031 * LOCKING: 2032 * Kernel thread context (may sleep) 2033 * 2034 * RETURNS: 2035 * 0 on success, -errno otherwise. 2036 */ 2037 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2038 unsigned long deadline) 2039 { 2040 struct ata_port *ap = link->ap; 2041 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2042 unsigned int devmask = 0; 2043 int rc; 2044 u8 err; 2045 2046 DPRINTK("ENTER\n"); 2047 2048 /* determine if device 0/1 are present */ 2049 if (ata_devchk(ap, 0)) 2050 devmask |= (1 << 0); 2051 if (slave_possible && ata_devchk(ap, 1)) 2052 devmask |= (1 << 1); 2053 2054 /* select device 0 again */ 2055 ap->ops->sff_dev_select(ap, 0); 2056 2057 /* issue bus reset */ 2058 DPRINTK("about to softreset, devmask=%x\n", devmask); 2059 rc = ata_bus_softreset(ap, devmask, deadline); 2060 /* if link is occupied, -ENODEV too is an error */ 2061 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2062 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 2063 return rc; 2064 } 2065 2066 /* determine by signature whether we have ATA or ATAPI devices */ 2067 classes[0] = ata_sff_dev_classify(&link->device[0], 2068 devmask & (1 << 0), &err); 2069 if (slave_possible && err != 0x81) 2070 classes[1] = ata_sff_dev_classify(&link->device[1], 2071 devmask & (1 << 1), &err); 2072 2073 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2074 return 0; 2075 } 2076 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2077 2078 /** 2079 * sata_sff_hardreset - reset host port via SATA phy reset 2080 * @link: link to reset 2081 * @class: resulting class of attached device 2082 * @deadline: deadline jiffies for the operation 2083 * 2084 * SATA phy-reset host port using DET bits of SControl register, 2085 * wait for !BSY and classify the attached device. 2086 * 2087 * LOCKING: 2088 * Kernel thread context (may sleep) 2089 * 2090 * RETURNS: 2091 * 0 on success, -errno otherwise. 2092 */ 2093 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2094 unsigned long deadline) 2095 { 2096 struct ata_eh_context *ehc = &link->eh_context; 2097 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2098 bool online; 2099 int rc; 2100 2101 rc = sata_link_hardreset(link, timing, deadline, &online, 2102 ata_sff_check_ready); 2103 if (online) 2104 *class = ata_sff_dev_classify(link->device, 1, NULL); 2105 2106 DPRINTK("EXIT, class=%u\n", *class); 2107 return rc; 2108 } 2109 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2110 2111 /** 2112 * ata_sff_postreset - SFF postreset callback 2113 * @link: the target SFF ata_link 2114 * @classes: classes of attached devices 2115 * 2116 * This function is invoked after a successful reset. It first 2117 * calls ata_std_postreset() and performs SFF specific postreset 2118 * processing. 2119 * 2120 * LOCKING: 2121 * Kernel thread context (may sleep) 2122 */ 2123 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2124 { 2125 struct ata_port *ap = link->ap; 2126 2127 ata_std_postreset(link, classes); 2128 2129 /* is double-select really necessary? */ 2130 if (classes[0] != ATA_DEV_NONE) 2131 ap->ops->sff_dev_select(ap, 1); 2132 if (classes[1] != ATA_DEV_NONE) 2133 ap->ops->sff_dev_select(ap, 0); 2134 2135 /* bail out if no device is present */ 2136 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2137 DPRINTK("EXIT, no device\n"); 2138 return; 2139 } 2140 2141 /* set up device control */ 2142 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2143 ata_sff_set_devctl(ap, ap->ctl); 2144 ap->last_ctl = ap->ctl; 2145 } 2146 } 2147 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2148 2149 /** 2150 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2151 * @qc: command 2152 * 2153 * Drain the FIFO and device of any stuck data following a command 2154 * failing to complete. In some cases this is necessary before a 2155 * reset will recover the device. 2156 * 2157 */ 2158 2159 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2160 { 2161 int count; 2162 struct ata_port *ap; 2163 2164 /* We only need to flush incoming data when a command was running */ 2165 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2166 return; 2167 2168 ap = qc->ap; 2169 /* Drain up to 64K of data before we give up this recovery method */ 2170 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2171 && count < 65536; count += 2) 2172 ioread16(ap->ioaddr.data_addr); 2173 2174 /* Can become DEBUG later */ 2175 if (count) 2176 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2177 2178 } 2179 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2180 2181 /** 2182 * ata_sff_error_handler - Stock error handler for SFF controller 2183 * @ap: port to handle error for 2184 * 2185 * Stock error handler for SFF controller. It can handle both 2186 * PATA and SATA controllers. Many controllers should be able to 2187 * use this EH as-is or with some added handling before and 2188 * after. 2189 * 2190 * LOCKING: 2191 * Kernel thread context (may sleep) 2192 */ 2193 void ata_sff_error_handler(struct ata_port *ap) 2194 { 2195 ata_reset_fn_t softreset = ap->ops->softreset; 2196 ata_reset_fn_t hardreset = ap->ops->hardreset; 2197 struct ata_queued_cmd *qc; 2198 unsigned long flags; 2199 2200 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2201 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2202 qc = NULL; 2203 2204 spin_lock_irqsave(ap->lock, flags); 2205 2206 /* 2207 * We *MUST* do FIFO draining before we issue a reset as 2208 * several devices helpfully clear their internal state and 2209 * will lock solid if we touch the data port post reset. Pass 2210 * qc in case anyone wants to do different PIO/DMA recovery or 2211 * has per command fixups 2212 */ 2213 if (ap->ops->sff_drain_fifo) 2214 ap->ops->sff_drain_fifo(qc); 2215 2216 spin_unlock_irqrestore(ap->lock, flags); 2217 2218 /* ignore ata_sff_softreset if ctl isn't accessible */ 2219 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) 2220 softreset = NULL; 2221 2222 /* ignore built-in hardresets if SCR access is not available */ 2223 if ((hardreset == sata_std_hardreset || 2224 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2225 hardreset = NULL; 2226 2227 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2228 ap->ops->postreset); 2229 } 2230 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2231 2232 /** 2233 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2234 * @ioaddr: IO address structure to be initialized 2235 * 2236 * Utility function which initializes data_addr, error_addr, 2237 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2238 * device_addr, status_addr, and command_addr to standard offsets 2239 * relative to cmd_addr. 2240 * 2241 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2242 */ 2243 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2244 { 2245 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2246 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2247 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2248 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2249 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2250 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2251 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2252 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2253 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2254 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2255 } 2256 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2257 2258 #ifdef CONFIG_PCI 2259 2260 static int ata_resources_present(struct pci_dev *pdev, int port) 2261 { 2262 int i; 2263 2264 /* Check the PCI resources for this channel are enabled */ 2265 port = port * 2; 2266 for (i = 0; i < 2; i++) { 2267 if (pci_resource_start(pdev, port + i) == 0 || 2268 pci_resource_len(pdev, port + i) == 0) 2269 return 0; 2270 } 2271 return 1; 2272 } 2273 2274 /** 2275 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2276 * @host: target ATA host 2277 * 2278 * Acquire native PCI ATA resources for @host and initialize the 2279 * first two ports of @host accordingly. Ports marked dummy are 2280 * skipped and allocation failure makes the port dummy. 2281 * 2282 * Note that native PCI resources are valid even for legacy hosts 2283 * as we fix up pdev resources array early in boot, so this 2284 * function can be used for both native and legacy SFF hosts. 2285 * 2286 * LOCKING: 2287 * Inherited from calling layer (may sleep). 2288 * 2289 * RETURNS: 2290 * 0 if at least one port is initialized, -ENODEV if no port is 2291 * available. 2292 */ 2293 int ata_pci_sff_init_host(struct ata_host *host) 2294 { 2295 struct device *gdev = host->dev; 2296 struct pci_dev *pdev = to_pci_dev(gdev); 2297 unsigned int mask = 0; 2298 int i, rc; 2299 2300 /* request, iomap BARs and init port addresses accordingly */ 2301 for (i = 0; i < 2; i++) { 2302 struct ata_port *ap = host->ports[i]; 2303 int base = i * 2; 2304 void __iomem * const *iomap; 2305 2306 if (ata_port_is_dummy(ap)) 2307 continue; 2308 2309 /* Discard disabled ports. Some controllers show 2310 * their unused channels this way. Disabled ports are 2311 * made dummy. 2312 */ 2313 if (!ata_resources_present(pdev, i)) { 2314 ap->ops = &ata_dummy_port_ops; 2315 continue; 2316 } 2317 2318 rc = pcim_iomap_regions(pdev, 0x3 << base, 2319 dev_driver_string(gdev)); 2320 if (rc) { 2321 dev_warn(gdev, 2322 "failed to request/iomap BARs for port %d (errno=%d)\n", 2323 i, rc); 2324 if (rc == -EBUSY) 2325 pcim_pin_device(pdev); 2326 ap->ops = &ata_dummy_port_ops; 2327 continue; 2328 } 2329 host->iomap = iomap = pcim_iomap_table(pdev); 2330 2331 ap->ioaddr.cmd_addr = iomap[base]; 2332 ap->ioaddr.altstatus_addr = 2333 ap->ioaddr.ctl_addr = (void __iomem *) 2334 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2335 ata_sff_std_ports(&ap->ioaddr); 2336 2337 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2338 (unsigned long long)pci_resource_start(pdev, base), 2339 (unsigned long long)pci_resource_start(pdev, base + 1)); 2340 2341 mask |= 1 << i; 2342 } 2343 2344 if (!mask) { 2345 dev_err(gdev, "no available native port\n"); 2346 return -ENODEV; 2347 } 2348 2349 return 0; 2350 } 2351 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2352 2353 /** 2354 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2355 * @pdev: target PCI device 2356 * @ppi: array of port_info, must be enough for two ports 2357 * @r_host: out argument for the initialized ATA host 2358 * 2359 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2360 * all PCI resources and initialize it accordingly in one go. 2361 * 2362 * LOCKING: 2363 * Inherited from calling layer (may sleep). 2364 * 2365 * RETURNS: 2366 * 0 on success, -errno otherwise. 2367 */ 2368 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2369 const struct ata_port_info * const *ppi, 2370 struct ata_host **r_host) 2371 { 2372 struct ata_host *host; 2373 int rc; 2374 2375 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2376 return -ENOMEM; 2377 2378 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2379 if (!host) { 2380 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2381 rc = -ENOMEM; 2382 goto err_out; 2383 } 2384 2385 rc = ata_pci_sff_init_host(host); 2386 if (rc) 2387 goto err_out; 2388 2389 devres_remove_group(&pdev->dev, NULL); 2390 *r_host = host; 2391 return 0; 2392 2393 err_out: 2394 devres_release_group(&pdev->dev, NULL); 2395 return rc; 2396 } 2397 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2398 2399 /** 2400 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2401 * @host: target SFF ATA host 2402 * @irq_handler: irq_handler used when requesting IRQ(s) 2403 * @sht: scsi_host_template to use when registering the host 2404 * 2405 * This is the counterpart of ata_host_activate() for SFF ATA 2406 * hosts. This separate helper is necessary because SFF hosts 2407 * use two separate interrupts in legacy mode. 2408 * 2409 * LOCKING: 2410 * Inherited from calling layer (may sleep). 2411 * 2412 * RETURNS: 2413 * 0 on success, -errno otherwise. 2414 */ 2415 int ata_pci_sff_activate_host(struct ata_host *host, 2416 irq_handler_t irq_handler, 2417 struct scsi_host_template *sht) 2418 { 2419 struct device *dev = host->dev; 2420 struct pci_dev *pdev = to_pci_dev(dev); 2421 const char *drv_name = dev_driver_string(host->dev); 2422 int legacy_mode = 0, rc; 2423 2424 rc = ata_host_start(host); 2425 if (rc) 2426 return rc; 2427 2428 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2429 u8 tmp8, mask; 2430 2431 /* TODO: What if one channel is in native mode ... */ 2432 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2433 mask = (1 << 2) | (1 << 0); 2434 if ((tmp8 & mask) != mask) 2435 legacy_mode = 1; 2436 #if defined(CONFIG_NO_ATA_LEGACY) 2437 /* Some platforms with PCI limits cannot address compat 2438 port space. In that case we punt if their firmware has 2439 left a device in compatibility mode */ 2440 if (legacy_mode) { 2441 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); 2442 return -EOPNOTSUPP; 2443 } 2444 #endif 2445 } 2446 2447 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2448 return -ENOMEM; 2449 2450 if (!legacy_mode && pdev->irq) { 2451 int i; 2452 2453 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2454 IRQF_SHARED, drv_name, host); 2455 if (rc) 2456 goto out; 2457 2458 for (i = 0; i < 2; i++) { 2459 if (ata_port_is_dummy(host->ports[i])) 2460 continue; 2461 ata_port_desc(host->ports[i], "irq %d", pdev->irq); 2462 } 2463 } else if (legacy_mode) { 2464 if (!ata_port_is_dummy(host->ports[0])) { 2465 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2466 irq_handler, IRQF_SHARED, 2467 drv_name, host); 2468 if (rc) 2469 goto out; 2470 2471 ata_port_desc(host->ports[0], "irq %d", 2472 ATA_PRIMARY_IRQ(pdev)); 2473 } 2474 2475 if (!ata_port_is_dummy(host->ports[1])) { 2476 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2477 irq_handler, IRQF_SHARED, 2478 drv_name, host); 2479 if (rc) 2480 goto out; 2481 2482 ata_port_desc(host->ports[1], "irq %d", 2483 ATA_SECONDARY_IRQ(pdev)); 2484 } 2485 } 2486 2487 rc = ata_host_register(host, sht); 2488 out: 2489 if (rc == 0) 2490 devres_remove_group(dev, NULL); 2491 else 2492 devres_release_group(dev, NULL); 2493 2494 return rc; 2495 } 2496 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2497 2498 static const struct ata_port_info *ata_sff_find_valid_pi( 2499 const struct ata_port_info * const *ppi) 2500 { 2501 int i; 2502 2503 /* look up the first valid port_info */ 2504 for (i = 0; i < 2 && ppi[i]; i++) 2505 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2506 return ppi[i]; 2507 2508 return NULL; 2509 } 2510 2511 static int ata_pci_init_one(struct pci_dev *pdev, 2512 const struct ata_port_info * const *ppi, 2513 struct scsi_host_template *sht, void *host_priv, 2514 int hflags, bool bmdma) 2515 { 2516 struct device *dev = &pdev->dev; 2517 const struct ata_port_info *pi; 2518 struct ata_host *host = NULL; 2519 int rc; 2520 2521 DPRINTK("ENTER\n"); 2522 2523 pi = ata_sff_find_valid_pi(ppi); 2524 if (!pi) { 2525 dev_err(&pdev->dev, "no valid port_info specified\n"); 2526 return -EINVAL; 2527 } 2528 2529 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2530 return -ENOMEM; 2531 2532 rc = pcim_enable_device(pdev); 2533 if (rc) 2534 goto out; 2535 2536 #ifdef CONFIG_ATA_BMDMA 2537 if (bmdma) 2538 /* prepare and activate BMDMA host */ 2539 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2540 else 2541 #endif 2542 /* prepare and activate SFF host */ 2543 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2544 if (rc) 2545 goto out; 2546 host->private_data = host_priv; 2547 host->flags |= hflags; 2548 2549 #ifdef CONFIG_ATA_BMDMA 2550 if (bmdma) { 2551 pci_set_master(pdev); 2552 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2553 } else 2554 #endif 2555 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2556 out: 2557 if (rc == 0) 2558 devres_remove_group(&pdev->dev, NULL); 2559 else 2560 devres_release_group(&pdev->dev, NULL); 2561 2562 return rc; 2563 } 2564 2565 /** 2566 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2567 * @pdev: Controller to be initialized 2568 * @ppi: array of port_info, must be enough for two ports 2569 * @sht: scsi_host_template to use when registering the host 2570 * @host_priv: host private_data 2571 * @hflag: host flags 2572 * 2573 * This is a helper function which can be called from a driver's 2574 * xxx_init_one() probe function if the hardware uses traditional 2575 * IDE taskfile registers and is PIO only. 2576 * 2577 * ASSUMPTION: 2578 * Nobody makes a single channel controller that appears solely as 2579 * the secondary legacy port on PCI. 2580 * 2581 * LOCKING: 2582 * Inherited from PCI layer (may sleep). 2583 * 2584 * RETURNS: 2585 * Zero on success, negative on errno-based value on error. 2586 */ 2587 int ata_pci_sff_init_one(struct pci_dev *pdev, 2588 const struct ata_port_info * const *ppi, 2589 struct scsi_host_template *sht, void *host_priv, int hflag) 2590 { 2591 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2592 } 2593 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2594 2595 #endif /* CONFIG_PCI */ 2596 2597 /* 2598 * BMDMA support 2599 */ 2600 2601 #ifdef CONFIG_ATA_BMDMA 2602 2603 const struct ata_port_operations ata_bmdma_port_ops = { 2604 .inherits = &ata_sff_port_ops, 2605 2606 .error_handler = ata_bmdma_error_handler, 2607 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2608 2609 .qc_prep = ata_bmdma_qc_prep, 2610 .qc_issue = ata_bmdma_qc_issue, 2611 2612 .sff_irq_clear = ata_bmdma_irq_clear, 2613 .bmdma_setup = ata_bmdma_setup, 2614 .bmdma_start = ata_bmdma_start, 2615 .bmdma_stop = ata_bmdma_stop, 2616 .bmdma_status = ata_bmdma_status, 2617 2618 .port_start = ata_bmdma_port_start, 2619 }; 2620 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2621 2622 const struct ata_port_operations ata_bmdma32_port_ops = { 2623 .inherits = &ata_bmdma_port_ops, 2624 2625 .sff_data_xfer = ata_sff_data_xfer32, 2626 .port_start = ata_bmdma_port_start32, 2627 }; 2628 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2629 2630 /** 2631 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2632 * @qc: Metadata associated with taskfile to be transferred 2633 * 2634 * Fill PCI IDE PRD (scatter-gather) table with segments 2635 * associated with the current disk command. 2636 * 2637 * LOCKING: 2638 * spin_lock_irqsave(host lock) 2639 * 2640 */ 2641 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2642 { 2643 struct ata_port *ap = qc->ap; 2644 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2645 struct scatterlist *sg; 2646 unsigned int si, pi; 2647 2648 pi = 0; 2649 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2650 u32 addr, offset; 2651 u32 sg_len, len; 2652 2653 /* determine if physical DMA addr spans 64K boundary. 2654 * Note h/w doesn't support 64-bit, so we unconditionally 2655 * truncate dma_addr_t to u32. 2656 */ 2657 addr = (u32) sg_dma_address(sg); 2658 sg_len = sg_dma_len(sg); 2659 2660 while (sg_len) { 2661 offset = addr & 0xffff; 2662 len = sg_len; 2663 if ((offset + sg_len) > 0x10000) 2664 len = 0x10000 - offset; 2665 2666 prd[pi].addr = cpu_to_le32(addr); 2667 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2668 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2669 2670 pi++; 2671 sg_len -= len; 2672 addr += len; 2673 } 2674 } 2675 2676 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2677 } 2678 2679 /** 2680 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2681 * @qc: Metadata associated with taskfile to be transferred 2682 * 2683 * Fill PCI IDE PRD (scatter-gather) table with segments 2684 * associated with the current disk command. Perform the fill 2685 * so that we avoid writing any length 64K records for 2686 * controllers that don't follow the spec. 2687 * 2688 * LOCKING: 2689 * spin_lock_irqsave(host lock) 2690 * 2691 */ 2692 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2693 { 2694 struct ata_port *ap = qc->ap; 2695 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2696 struct scatterlist *sg; 2697 unsigned int si, pi; 2698 2699 pi = 0; 2700 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2701 u32 addr, offset; 2702 u32 sg_len, len, blen; 2703 2704 /* determine if physical DMA addr spans 64K boundary. 2705 * Note h/w doesn't support 64-bit, so we unconditionally 2706 * truncate dma_addr_t to u32. 2707 */ 2708 addr = (u32) sg_dma_address(sg); 2709 sg_len = sg_dma_len(sg); 2710 2711 while (sg_len) { 2712 offset = addr & 0xffff; 2713 len = sg_len; 2714 if ((offset + sg_len) > 0x10000) 2715 len = 0x10000 - offset; 2716 2717 blen = len & 0xffff; 2718 prd[pi].addr = cpu_to_le32(addr); 2719 if (blen == 0) { 2720 /* Some PATA chipsets like the CS5530 can't 2721 cope with 0x0000 meaning 64K as the spec 2722 says */ 2723 prd[pi].flags_len = cpu_to_le32(0x8000); 2724 blen = 0x8000; 2725 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2726 } 2727 prd[pi].flags_len = cpu_to_le32(blen); 2728 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2729 2730 pi++; 2731 sg_len -= len; 2732 addr += len; 2733 } 2734 } 2735 2736 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2737 } 2738 2739 /** 2740 * ata_bmdma_qc_prep - Prepare taskfile for submission 2741 * @qc: Metadata associated with taskfile to be prepared 2742 * 2743 * Prepare ATA taskfile for submission. 2744 * 2745 * LOCKING: 2746 * spin_lock_irqsave(host lock) 2747 */ 2748 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2749 { 2750 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2751 return; 2752 2753 ata_bmdma_fill_sg(qc); 2754 } 2755 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2756 2757 /** 2758 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2759 * @qc: Metadata associated with taskfile to be prepared 2760 * 2761 * Prepare ATA taskfile for submission. 2762 * 2763 * LOCKING: 2764 * spin_lock_irqsave(host lock) 2765 */ 2766 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2767 { 2768 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2769 return; 2770 2771 ata_bmdma_fill_sg_dumb(qc); 2772 } 2773 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2774 2775 /** 2776 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2777 * @qc: command to issue to device 2778 * 2779 * This function issues a PIO, NODATA or DMA command to a 2780 * SFF/BMDMA controller. PIO and NODATA are handled by 2781 * ata_sff_qc_issue(). 2782 * 2783 * LOCKING: 2784 * spin_lock_irqsave(host lock) 2785 * 2786 * RETURNS: 2787 * Zero on success, AC_ERR_* mask on failure 2788 */ 2789 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2790 { 2791 struct ata_port *ap = qc->ap; 2792 struct ata_link *link = qc->dev->link; 2793 2794 /* defer PIO handling to sff_qc_issue */ 2795 if (!ata_is_dma(qc->tf.protocol)) 2796 return ata_sff_qc_issue(qc); 2797 2798 /* select the device */ 2799 ata_dev_select(ap, qc->dev->devno, 1, 0); 2800 2801 /* start the command */ 2802 switch (qc->tf.protocol) { 2803 case ATA_PROT_DMA: 2804 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2805 2806 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2807 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2808 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2809 ap->hsm_task_state = HSM_ST_LAST; 2810 break; 2811 2812 case ATAPI_PROT_DMA: 2813 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2814 2815 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2816 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2817 ap->hsm_task_state = HSM_ST_FIRST; 2818 2819 /* send cdb by polling if no cdb interrupt */ 2820 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2821 ata_sff_queue_pio_task(link, 0); 2822 break; 2823 2824 default: 2825 WARN_ON(1); 2826 return AC_ERR_SYSTEM; 2827 } 2828 2829 return 0; 2830 } 2831 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2832 2833 /** 2834 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2835 * @ap: Port on which interrupt arrived (possibly...) 2836 * @qc: Taskfile currently active in engine 2837 * 2838 * Handle port interrupt for given queued command. 2839 * 2840 * LOCKING: 2841 * spin_lock_irqsave(host lock) 2842 * 2843 * RETURNS: 2844 * One if interrupt was handled, zero if not (shared irq). 2845 */ 2846 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2847 { 2848 struct ata_eh_info *ehi = &ap->link.eh_info; 2849 u8 host_stat = 0; 2850 bool bmdma_stopped = false; 2851 unsigned int handled; 2852 2853 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2854 /* check status of DMA engine */ 2855 host_stat = ap->ops->bmdma_status(ap); 2856 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); 2857 2858 /* if it's not our irq... */ 2859 if (!(host_stat & ATA_DMA_INTR)) 2860 return ata_sff_idle_irq(ap); 2861 2862 /* before we do anything else, clear DMA-Start bit */ 2863 ap->ops->bmdma_stop(qc); 2864 bmdma_stopped = true; 2865 2866 if (unlikely(host_stat & ATA_DMA_ERR)) { 2867 /* error when transferring data to/from memory */ 2868 qc->err_mask |= AC_ERR_HOST_BUS; 2869 ap->hsm_task_state = HSM_ST_ERR; 2870 } 2871 } 2872 2873 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2874 2875 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2876 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2877 2878 return handled; 2879 } 2880 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2881 2882 /** 2883 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2884 * @irq: irq line (unused) 2885 * @dev_instance: pointer to our ata_host information structure 2886 * 2887 * Default interrupt handler for PCI IDE devices. Calls 2888 * ata_bmdma_port_intr() for each port that is not disabled. 2889 * 2890 * LOCKING: 2891 * Obtains host lock during operation. 2892 * 2893 * RETURNS: 2894 * IRQ_NONE or IRQ_HANDLED. 2895 */ 2896 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2897 { 2898 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2899 } 2900 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2901 2902 /** 2903 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2904 * @ap: port to handle error for 2905 * 2906 * Stock error handler for BMDMA controller. It can handle both 2907 * PATA and SATA controllers. Most BMDMA controllers should be 2908 * able to use this EH as-is or with some added handling before 2909 * and after. 2910 * 2911 * LOCKING: 2912 * Kernel thread context (may sleep) 2913 */ 2914 void ata_bmdma_error_handler(struct ata_port *ap) 2915 { 2916 struct ata_queued_cmd *qc; 2917 unsigned long flags; 2918 bool thaw = false; 2919 2920 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2921 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2922 qc = NULL; 2923 2924 /* reset PIO HSM and stop DMA engine */ 2925 spin_lock_irqsave(ap->lock, flags); 2926 2927 if (qc && ata_is_dma(qc->tf.protocol)) { 2928 u8 host_stat; 2929 2930 host_stat = ap->ops->bmdma_status(ap); 2931 2932 /* BMDMA controllers indicate host bus error by 2933 * setting DMA_ERR bit and timing out. As it wasn't 2934 * really a timeout event, adjust error mask and 2935 * cancel frozen state. 2936 */ 2937 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2938 qc->err_mask = AC_ERR_HOST_BUS; 2939 thaw = true; 2940 } 2941 2942 ap->ops->bmdma_stop(qc); 2943 2944 /* if we're gonna thaw, make sure IRQ is clear */ 2945 if (thaw) { 2946 ap->ops->sff_check_status(ap); 2947 if (ap->ops->sff_irq_clear) 2948 ap->ops->sff_irq_clear(ap); 2949 } 2950 } 2951 2952 spin_unlock_irqrestore(ap->lock, flags); 2953 2954 if (thaw) 2955 ata_eh_thaw_port(ap); 2956 2957 ata_sff_error_handler(ap); 2958 } 2959 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2960 2961 /** 2962 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2963 * @qc: internal command to clean up 2964 * 2965 * LOCKING: 2966 * Kernel thread context (may sleep) 2967 */ 2968 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2969 { 2970 struct ata_port *ap = qc->ap; 2971 unsigned long flags; 2972 2973 if (ata_is_dma(qc->tf.protocol)) { 2974 spin_lock_irqsave(ap->lock, flags); 2975 ap->ops->bmdma_stop(qc); 2976 spin_unlock_irqrestore(ap->lock, flags); 2977 } 2978 } 2979 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2980 2981 /** 2982 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2983 * @ap: Port associated with this ATA transaction. 2984 * 2985 * Clear interrupt and error flags in DMA status register. 2986 * 2987 * May be used as the irq_clear() entry in ata_port_operations. 2988 * 2989 * LOCKING: 2990 * spin_lock_irqsave(host lock) 2991 */ 2992 void ata_bmdma_irq_clear(struct ata_port *ap) 2993 { 2994 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2995 2996 if (!mmio) 2997 return; 2998 2999 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 3000 } 3001 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 3002 3003 /** 3004 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 3005 * @qc: Info associated with this ATA transaction. 3006 * 3007 * LOCKING: 3008 * spin_lock_irqsave(host lock) 3009 */ 3010 void ata_bmdma_setup(struct ata_queued_cmd *qc) 3011 { 3012 struct ata_port *ap = qc->ap; 3013 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 3014 u8 dmactl; 3015 3016 /* load PRD table addr. */ 3017 mb(); /* make sure PRD table writes are visible to controller */ 3018 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 3019 3020 /* specify data direction, triple-check start bit is clear */ 3021 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3022 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 3023 if (!rw) 3024 dmactl |= ATA_DMA_WR; 3025 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3026 3027 /* issue r/w command */ 3028 ap->ops->sff_exec_command(ap, &qc->tf); 3029 } 3030 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 3031 3032 /** 3033 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 3034 * @qc: Info associated with this ATA transaction. 3035 * 3036 * LOCKING: 3037 * spin_lock_irqsave(host lock) 3038 */ 3039 void ata_bmdma_start(struct ata_queued_cmd *qc) 3040 { 3041 struct ata_port *ap = qc->ap; 3042 u8 dmactl; 3043 3044 /* start host DMA transaction */ 3045 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3046 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3047 3048 /* Strictly, one may wish to issue an ioread8() here, to 3049 * flush the mmio write. However, control also passes 3050 * to the hardware at this point, and it will interrupt 3051 * us when we are to resume control. So, in effect, 3052 * we don't care when the mmio write flushes. 3053 * Further, a read of the DMA status register _immediately_ 3054 * following the write may not be what certain flaky hardware 3055 * is expected, so I think it is best to not add a readb() 3056 * without first all the MMIO ATA cards/mobos. 3057 * Or maybe I'm just being paranoid. 3058 * 3059 * FIXME: The posting of this write means I/O starts are 3060 * unnecessarily delayed for MMIO 3061 */ 3062 } 3063 EXPORT_SYMBOL_GPL(ata_bmdma_start); 3064 3065 /** 3066 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 3067 * @qc: Command we are ending DMA for 3068 * 3069 * Clears the ATA_DMA_START flag in the dma control register 3070 * 3071 * May be used as the bmdma_stop() entry in ata_port_operations. 3072 * 3073 * LOCKING: 3074 * spin_lock_irqsave(host lock) 3075 */ 3076 void ata_bmdma_stop(struct ata_queued_cmd *qc) 3077 { 3078 struct ata_port *ap = qc->ap; 3079 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3080 3081 /* clear start/stop bit */ 3082 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3083 mmio + ATA_DMA_CMD); 3084 3085 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3086 ata_sff_dma_pause(ap); 3087 } 3088 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3089 3090 /** 3091 * ata_bmdma_status - Read PCI IDE BMDMA status 3092 * @ap: Port associated with this ATA transaction. 3093 * 3094 * Read and return BMDMA status register. 3095 * 3096 * May be used as the bmdma_status() entry in ata_port_operations. 3097 * 3098 * LOCKING: 3099 * spin_lock_irqsave(host lock) 3100 */ 3101 u8 ata_bmdma_status(struct ata_port *ap) 3102 { 3103 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3104 } 3105 EXPORT_SYMBOL_GPL(ata_bmdma_status); 3106 3107 3108 /** 3109 * ata_bmdma_port_start - Set port up for bmdma. 3110 * @ap: Port to initialize 3111 * 3112 * Called just after data structures for each port are 3113 * initialized. Allocates space for PRD table. 3114 * 3115 * May be used as the port_start() entry in ata_port_operations. 3116 * 3117 * LOCKING: 3118 * Inherited from caller. 3119 */ 3120 int ata_bmdma_port_start(struct ata_port *ap) 3121 { 3122 if (ap->mwdma_mask || ap->udma_mask) { 3123 ap->bmdma_prd = 3124 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3125 &ap->bmdma_prd_dma, GFP_KERNEL); 3126 if (!ap->bmdma_prd) 3127 return -ENOMEM; 3128 } 3129 3130 return 0; 3131 } 3132 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3133 3134 /** 3135 * ata_bmdma_port_start32 - Set port up for dma. 3136 * @ap: Port to initialize 3137 * 3138 * Called just after data structures for each port are 3139 * initialized. Enables 32bit PIO and allocates space for PRD 3140 * table. 3141 * 3142 * May be used as the port_start() entry in ata_port_operations for 3143 * devices that are capable of 32bit PIO. 3144 * 3145 * LOCKING: 3146 * Inherited from caller. 3147 */ 3148 int ata_bmdma_port_start32(struct ata_port *ap) 3149 { 3150 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3151 return ata_bmdma_port_start(ap); 3152 } 3153 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3154 3155 #ifdef CONFIG_PCI 3156 3157 /** 3158 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3159 * @pdev: PCI device 3160 * 3161 * Some PCI ATA devices report simplex mode but in fact can be told to 3162 * enter non simplex mode. This implements the necessary logic to 3163 * perform the task on such devices. Calling it on other devices will 3164 * have -undefined- behaviour. 3165 */ 3166 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3167 { 3168 unsigned long bmdma = pci_resource_start(pdev, 4); 3169 u8 simplex; 3170 3171 if (bmdma == 0) 3172 return -ENOENT; 3173 3174 simplex = inb(bmdma + 0x02); 3175 outb(simplex & 0x60, bmdma + 0x02); 3176 simplex = inb(bmdma + 0x02); 3177 if (simplex & 0x80) 3178 return -EOPNOTSUPP; 3179 return 0; 3180 } 3181 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3182 3183 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3184 { 3185 int i; 3186 3187 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3188 3189 for (i = 0; i < 2; i++) { 3190 host->ports[i]->mwdma_mask = 0; 3191 host->ports[i]->udma_mask = 0; 3192 } 3193 } 3194 3195 /** 3196 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3197 * @host: target ATA host 3198 * 3199 * Acquire PCI BMDMA resources and initialize @host accordingly. 3200 * 3201 * LOCKING: 3202 * Inherited from calling layer (may sleep). 3203 */ 3204 void ata_pci_bmdma_init(struct ata_host *host) 3205 { 3206 struct device *gdev = host->dev; 3207 struct pci_dev *pdev = to_pci_dev(gdev); 3208 int i, rc; 3209 3210 /* No BAR4 allocation: No DMA */ 3211 if (pci_resource_start(pdev, 4) == 0) { 3212 ata_bmdma_nodma(host, "BAR4 is zero"); 3213 return; 3214 } 3215 3216 /* 3217 * Some controllers require BMDMA region to be initialized 3218 * even if DMA is not in use to clear IRQ status via 3219 * ->sff_irq_clear method. Try to initialize bmdma_addr 3220 * regardless of dma masks. 3221 */ 3222 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 3223 if (rc) 3224 ata_bmdma_nodma(host, "failed to set dma mask"); 3225 if (!rc) { 3226 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 3227 if (rc) 3228 ata_bmdma_nodma(host, 3229 "failed to set consistent dma mask"); 3230 } 3231 3232 /* request and iomap DMA region */ 3233 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3234 if (rc) { 3235 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3236 return; 3237 } 3238 host->iomap = pcim_iomap_table(pdev); 3239 3240 for (i = 0; i < 2; i++) { 3241 struct ata_port *ap = host->ports[i]; 3242 void __iomem *bmdma = host->iomap[4] + 8 * i; 3243 3244 if (ata_port_is_dummy(ap)) 3245 continue; 3246 3247 ap->ioaddr.bmdma_addr = bmdma; 3248 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3249 (ioread8(bmdma + 2) & 0x80)) 3250 host->flags |= ATA_HOST_SIMPLEX; 3251 3252 ata_port_desc(ap, "bmdma 0x%llx", 3253 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3254 } 3255 } 3256 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3257 3258 /** 3259 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3260 * @pdev: target PCI device 3261 * @ppi: array of port_info, must be enough for two ports 3262 * @r_host: out argument for the initialized ATA host 3263 * 3264 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3265 * resources and initialize it accordingly in one go. 3266 * 3267 * LOCKING: 3268 * Inherited from calling layer (may sleep). 3269 * 3270 * RETURNS: 3271 * 0 on success, -errno otherwise. 3272 */ 3273 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3274 const struct ata_port_info * const * ppi, 3275 struct ata_host **r_host) 3276 { 3277 int rc; 3278 3279 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3280 if (rc) 3281 return rc; 3282 3283 ata_pci_bmdma_init(*r_host); 3284 return 0; 3285 } 3286 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3287 3288 /** 3289 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3290 * @pdev: Controller to be initialized 3291 * @ppi: array of port_info, must be enough for two ports 3292 * @sht: scsi_host_template to use when registering the host 3293 * @host_priv: host private_data 3294 * @hflags: host flags 3295 * 3296 * This function is similar to ata_pci_sff_init_one() but also 3297 * takes care of BMDMA initialization. 3298 * 3299 * LOCKING: 3300 * Inherited from PCI layer (may sleep). 3301 * 3302 * RETURNS: 3303 * Zero on success, negative on errno-based value on error. 3304 */ 3305 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3306 const struct ata_port_info * const * ppi, 3307 struct scsi_host_template *sht, void *host_priv, 3308 int hflags) 3309 { 3310 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3311 } 3312 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3313 3314 #endif /* CONFIG_PCI */ 3315 #endif /* CONFIG_ATA_BMDMA */ 3316 3317 /** 3318 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3319 * @ap: Port to initialize 3320 * 3321 * Called on port allocation to initialize SFF/BMDMA specific 3322 * fields. 3323 * 3324 * LOCKING: 3325 * None. 3326 */ 3327 void ata_sff_port_init(struct ata_port *ap) 3328 { 3329 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3330 ap->ctl = ATA_DEVCTL_OBS; 3331 ap->last_ctl = 0xFF; 3332 } 3333 3334 int __init ata_sff_init(void) 3335 { 3336 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3337 if (!ata_sff_wq) 3338 return -ENOMEM; 3339 3340 return 0; 3341 } 3342 3343 void ata_sff_exit(void) 3344 { 3345 destroy_workqueue(ata_sff_wq); 3346 } 3347