1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/pci.h> 37 #include <linux/libata.h> 38 #include <linux/highmem.h> 39 40 #include "libata.h" 41 42 const struct ata_port_operations ata_sff_port_ops = { 43 .inherits = &ata_base_port_ops, 44 45 .qc_prep = ata_sff_qc_prep, 46 .qc_issue = ata_sff_qc_issue, 47 .qc_fill_rtf = ata_sff_qc_fill_rtf, 48 49 .freeze = ata_sff_freeze, 50 .thaw = ata_sff_thaw, 51 .prereset = ata_sff_prereset, 52 .softreset = ata_sff_softreset, 53 .hardreset = sata_sff_hardreset, 54 .postreset = ata_sff_postreset, 55 .error_handler = ata_sff_error_handler, 56 .post_internal_cmd = ata_sff_post_internal_cmd, 57 58 .sff_dev_select = ata_sff_dev_select, 59 .sff_check_status = ata_sff_check_status, 60 .sff_tf_load = ata_sff_tf_load, 61 .sff_tf_read = ata_sff_tf_read, 62 .sff_exec_command = ata_sff_exec_command, 63 .sff_data_xfer = ata_sff_data_xfer, 64 .sff_irq_on = ata_sff_irq_on, 65 .sff_irq_clear = ata_sff_irq_clear, 66 67 .port_start = ata_sff_port_start, 68 }; 69 70 const struct ata_port_operations ata_bmdma_port_ops = { 71 .inherits = &ata_sff_port_ops, 72 73 .mode_filter = ata_bmdma_mode_filter, 74 75 .bmdma_setup = ata_bmdma_setup, 76 .bmdma_start = ata_bmdma_start, 77 .bmdma_stop = ata_bmdma_stop, 78 .bmdma_status = ata_bmdma_status, 79 }; 80 81 /** 82 * ata_fill_sg - Fill PCI IDE PRD table 83 * @qc: Metadata associated with taskfile to be transferred 84 * 85 * Fill PCI IDE PRD (scatter-gather) table with segments 86 * associated with the current disk command. 87 * 88 * LOCKING: 89 * spin_lock_irqsave(host lock) 90 * 91 */ 92 static void ata_fill_sg(struct ata_queued_cmd *qc) 93 { 94 struct ata_port *ap = qc->ap; 95 struct scatterlist *sg; 96 unsigned int si, pi; 97 98 pi = 0; 99 for_each_sg(qc->sg, sg, qc->n_elem, si) { 100 u32 addr, offset; 101 u32 sg_len, len; 102 103 /* determine if physical DMA addr spans 64K boundary. 104 * Note h/w doesn't support 64-bit, so we unconditionally 105 * truncate dma_addr_t to u32. 106 */ 107 addr = (u32) sg_dma_address(sg); 108 sg_len = sg_dma_len(sg); 109 110 while (sg_len) { 111 offset = addr & 0xffff; 112 len = sg_len; 113 if ((offset + sg_len) > 0x10000) 114 len = 0x10000 - offset; 115 116 ap->prd[pi].addr = cpu_to_le32(addr); 117 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff); 118 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 119 120 pi++; 121 sg_len -= len; 122 addr += len; 123 } 124 } 125 126 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 127 } 128 129 /** 130 * ata_fill_sg_dumb - Fill PCI IDE PRD table 131 * @qc: Metadata associated with taskfile to be transferred 132 * 133 * Fill PCI IDE PRD (scatter-gather) table with segments 134 * associated with the current disk command. Perform the fill 135 * so that we avoid writing any length 64K records for 136 * controllers that don't follow the spec. 137 * 138 * LOCKING: 139 * spin_lock_irqsave(host lock) 140 * 141 */ 142 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc) 143 { 144 struct ata_port *ap = qc->ap; 145 struct scatterlist *sg; 146 unsigned int si, pi; 147 148 pi = 0; 149 for_each_sg(qc->sg, sg, qc->n_elem, si) { 150 u32 addr, offset; 151 u32 sg_len, len, blen; 152 153 /* determine if physical DMA addr spans 64K boundary. 154 * Note h/w doesn't support 64-bit, so we unconditionally 155 * truncate dma_addr_t to u32. 156 */ 157 addr = (u32) sg_dma_address(sg); 158 sg_len = sg_dma_len(sg); 159 160 while (sg_len) { 161 offset = addr & 0xffff; 162 len = sg_len; 163 if ((offset + sg_len) > 0x10000) 164 len = 0x10000 - offset; 165 166 blen = len & 0xffff; 167 ap->prd[pi].addr = cpu_to_le32(addr); 168 if (blen == 0) { 169 /* Some PATA chipsets like the CS5530 can't 170 cope with 0x0000 meaning 64K as the spec says */ 171 ap->prd[pi].flags_len = cpu_to_le32(0x8000); 172 blen = 0x8000; 173 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000); 174 } 175 ap->prd[pi].flags_len = cpu_to_le32(blen); 176 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 177 178 pi++; 179 sg_len -= len; 180 addr += len; 181 } 182 } 183 184 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 185 } 186 187 /** 188 * ata_sff_qc_prep - Prepare taskfile for submission 189 * @qc: Metadata associated with taskfile to be prepared 190 * 191 * Prepare ATA taskfile for submission. 192 * 193 * LOCKING: 194 * spin_lock_irqsave(host lock) 195 */ 196 void ata_sff_qc_prep(struct ata_queued_cmd *qc) 197 { 198 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 199 return; 200 201 ata_fill_sg(qc); 202 } 203 204 /** 205 * ata_sff_dumb_qc_prep - Prepare taskfile for submission 206 * @qc: Metadata associated with taskfile to be prepared 207 * 208 * Prepare ATA taskfile for submission. 209 * 210 * LOCKING: 211 * spin_lock_irqsave(host lock) 212 */ 213 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc) 214 { 215 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 216 return; 217 218 ata_fill_sg_dumb(qc); 219 } 220 221 /** 222 * ata_sff_check_status - Read device status reg & clear interrupt 223 * @ap: port where the device is 224 * 225 * Reads ATA taskfile status register for currently-selected device 226 * and return its value. This also clears pending interrupts 227 * from this device 228 * 229 * LOCKING: 230 * Inherited from caller. 231 */ 232 u8 ata_sff_check_status(struct ata_port *ap) 233 { 234 return ioread8(ap->ioaddr.status_addr); 235 } 236 237 /** 238 * ata_sff_altstatus - Read device alternate status reg 239 * @ap: port where the device is 240 * 241 * Reads ATA taskfile alternate status register for 242 * currently-selected device and return its value. 243 * 244 * Note: may NOT be used as the check_altstatus() entry in 245 * ata_port_operations. 246 * 247 * LOCKING: 248 * Inherited from caller. 249 */ 250 static u8 ata_sff_altstatus(struct ata_port *ap) 251 { 252 if (ap->ops->sff_check_altstatus) 253 return ap->ops->sff_check_altstatus(ap); 254 255 return ioread8(ap->ioaddr.altstatus_addr); 256 } 257 258 /** 259 * ata_sff_irq_status - Check if the device is busy 260 * @ap: port where the device is 261 * 262 * Determine if the port is currently busy. Uses altstatus 263 * if available in order to avoid clearing shared IRQ status 264 * when finding an IRQ source. Non ctl capable devices don't 265 * share interrupt lines fortunately for us. 266 * 267 * LOCKING: 268 * Inherited from caller. 269 */ 270 static u8 ata_sff_irq_status(struct ata_port *ap) 271 { 272 u8 status; 273 274 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 275 status = ata_sff_altstatus(ap); 276 /* Not us: We are busy */ 277 if (status & ATA_BUSY) 278 return status; 279 } 280 /* Clear INTRQ latch */ 281 status = ap->ops->sff_check_status(ap); 282 return status; 283 } 284 285 /** 286 * ata_sff_sync - Flush writes 287 * @ap: Port to wait for. 288 * 289 * CAUTION: 290 * If we have an mmio device with no ctl and no altstatus 291 * method this will fail. No such devices are known to exist. 292 * 293 * LOCKING: 294 * Inherited from caller. 295 */ 296 297 static void ata_sff_sync(struct ata_port *ap) 298 { 299 if (ap->ops->sff_check_altstatus) 300 ap->ops->sff_check_altstatus(ap); 301 else if (ap->ioaddr.altstatus_addr) 302 ioread8(ap->ioaddr.altstatus_addr); 303 } 304 305 /** 306 * ata_sff_pause - Flush writes and wait 400nS 307 * @ap: Port to pause for. 308 * 309 * CAUTION: 310 * If we have an mmio device with no ctl and no altstatus 311 * method this will fail. No such devices are known to exist. 312 * 313 * LOCKING: 314 * Inherited from caller. 315 */ 316 317 void ata_sff_pause(struct ata_port *ap) 318 { 319 ata_sff_sync(ap); 320 ndelay(400); 321 } 322 323 /** 324 * ata_sff_dma_pause - Pause before commencing DMA 325 * @ap: Port to pause for. 326 * 327 * Perform I/O fencing and ensure sufficient cycle delays occur 328 * for the HDMA1:0 transition 329 */ 330 331 void ata_sff_dma_pause(struct ata_port *ap) 332 { 333 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 334 /* An altstatus read will cause the needed delay without 335 messing up the IRQ status */ 336 ata_sff_altstatus(ap); 337 return; 338 } 339 /* There are no DMA controllers without ctl. BUG here to ensure 340 we never violate the HDMA1:0 transition timing and risk 341 corruption. */ 342 BUG(); 343 } 344 345 /** 346 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 347 * @ap: port containing status register to be polled 348 * @tmout_pat: impatience timeout 349 * @tmout: overall timeout 350 * 351 * Sleep until ATA Status register bit BSY clears, 352 * or a timeout occurs. 353 * 354 * LOCKING: 355 * Kernel thread context (may sleep). 356 * 357 * RETURNS: 358 * 0 on success, -errno otherwise. 359 */ 360 int ata_sff_busy_sleep(struct ata_port *ap, 361 unsigned long tmout_pat, unsigned long tmout) 362 { 363 unsigned long timer_start, timeout; 364 u8 status; 365 366 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 367 timer_start = jiffies; 368 timeout = timer_start + tmout_pat; 369 while (status != 0xff && (status & ATA_BUSY) && 370 time_before(jiffies, timeout)) { 371 msleep(50); 372 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 373 } 374 375 if (status != 0xff && (status & ATA_BUSY)) 376 ata_port_printk(ap, KERN_WARNING, 377 "port is slow to respond, please be patient " 378 "(Status 0x%x)\n", status); 379 380 timeout = timer_start + tmout; 381 while (status != 0xff && (status & ATA_BUSY) && 382 time_before(jiffies, timeout)) { 383 msleep(50); 384 status = ap->ops->sff_check_status(ap); 385 } 386 387 if (status == 0xff) 388 return -ENODEV; 389 390 if (status & ATA_BUSY) { 391 ata_port_printk(ap, KERN_ERR, "port failed to respond " 392 "(%lu secs, Status 0x%x)\n", 393 tmout / HZ, status); 394 return -EBUSY; 395 } 396 397 return 0; 398 } 399 400 static int ata_sff_check_ready(struct ata_link *link) 401 { 402 u8 status = link->ap->ops->sff_check_status(link->ap); 403 404 return ata_check_ready(status); 405 } 406 407 /** 408 * ata_sff_wait_ready - sleep until BSY clears, or timeout 409 * @link: SFF link to wait ready status for 410 * @deadline: deadline jiffies for the operation 411 * 412 * Sleep until ATA Status register bit BSY clears, or timeout 413 * occurs. 414 * 415 * LOCKING: 416 * Kernel thread context (may sleep). 417 * 418 * RETURNS: 419 * 0 on success, -errno otherwise. 420 */ 421 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 422 { 423 return ata_wait_ready(link, deadline, ata_sff_check_ready); 424 } 425 426 /** 427 * ata_sff_dev_select - Select device 0/1 on ATA bus 428 * @ap: ATA channel to manipulate 429 * @device: ATA device (numbered from zero) to select 430 * 431 * Use the method defined in the ATA specification to 432 * make either device 0, or device 1, active on the 433 * ATA channel. Works with both PIO and MMIO. 434 * 435 * May be used as the dev_select() entry in ata_port_operations. 436 * 437 * LOCKING: 438 * caller. 439 */ 440 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 441 { 442 u8 tmp; 443 444 if (device == 0) 445 tmp = ATA_DEVICE_OBS; 446 else 447 tmp = ATA_DEVICE_OBS | ATA_DEV1; 448 449 iowrite8(tmp, ap->ioaddr.device_addr); 450 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 451 } 452 453 /** 454 * ata_dev_select - Select device 0/1 on ATA bus 455 * @ap: ATA channel to manipulate 456 * @device: ATA device (numbered from zero) to select 457 * @wait: non-zero to wait for Status register BSY bit to clear 458 * @can_sleep: non-zero if context allows sleeping 459 * 460 * Use the method defined in the ATA specification to 461 * make either device 0, or device 1, active on the 462 * ATA channel. 463 * 464 * This is a high-level version of ata_sff_dev_select(), which 465 * additionally provides the services of inserting the proper 466 * pauses and status polling, where needed. 467 * 468 * LOCKING: 469 * caller. 470 */ 471 void ata_dev_select(struct ata_port *ap, unsigned int device, 472 unsigned int wait, unsigned int can_sleep) 473 { 474 if (ata_msg_probe(ap)) 475 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 476 "device %u, wait %u\n", device, wait); 477 478 if (wait) 479 ata_wait_idle(ap); 480 481 ap->ops->sff_dev_select(ap, device); 482 483 if (wait) { 484 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 485 msleep(150); 486 ata_wait_idle(ap); 487 } 488 } 489 490 /** 491 * ata_sff_irq_on - Enable interrupts on a port. 492 * @ap: Port on which interrupts are enabled. 493 * 494 * Enable interrupts on a legacy IDE device using MMIO or PIO, 495 * wait for idle, clear any pending interrupts. 496 * 497 * LOCKING: 498 * Inherited from caller. 499 */ 500 u8 ata_sff_irq_on(struct ata_port *ap) 501 { 502 struct ata_ioports *ioaddr = &ap->ioaddr; 503 u8 tmp; 504 505 ap->ctl &= ~ATA_NIEN; 506 ap->last_ctl = ap->ctl; 507 508 if (ioaddr->ctl_addr) 509 iowrite8(ap->ctl, ioaddr->ctl_addr); 510 tmp = ata_wait_idle(ap); 511 512 ap->ops->sff_irq_clear(ap); 513 514 return tmp; 515 } 516 517 /** 518 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt. 519 * @ap: Port associated with this ATA transaction. 520 * 521 * Clear interrupt and error flags in DMA status register. 522 * 523 * May be used as the irq_clear() entry in ata_port_operations. 524 * 525 * LOCKING: 526 * spin_lock_irqsave(host lock) 527 */ 528 void ata_sff_irq_clear(struct ata_port *ap) 529 { 530 void __iomem *mmio = ap->ioaddr.bmdma_addr; 531 532 if (!mmio) 533 return; 534 535 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 536 } 537 538 /** 539 * ata_sff_tf_load - send taskfile registers to host controller 540 * @ap: Port to which output is sent 541 * @tf: ATA taskfile register set 542 * 543 * Outputs ATA taskfile to standard ATA host controller. 544 * 545 * LOCKING: 546 * Inherited from caller. 547 */ 548 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 549 { 550 struct ata_ioports *ioaddr = &ap->ioaddr; 551 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 552 553 if (tf->ctl != ap->last_ctl) { 554 if (ioaddr->ctl_addr) 555 iowrite8(tf->ctl, ioaddr->ctl_addr); 556 ap->last_ctl = tf->ctl; 557 ata_wait_idle(ap); 558 } 559 560 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 561 WARN_ON(!ioaddr->ctl_addr); 562 iowrite8(tf->hob_feature, ioaddr->feature_addr); 563 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 564 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 565 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 566 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 567 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 568 tf->hob_feature, 569 tf->hob_nsect, 570 tf->hob_lbal, 571 tf->hob_lbam, 572 tf->hob_lbah); 573 } 574 575 if (is_addr) { 576 iowrite8(tf->feature, ioaddr->feature_addr); 577 iowrite8(tf->nsect, ioaddr->nsect_addr); 578 iowrite8(tf->lbal, ioaddr->lbal_addr); 579 iowrite8(tf->lbam, ioaddr->lbam_addr); 580 iowrite8(tf->lbah, ioaddr->lbah_addr); 581 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 582 tf->feature, 583 tf->nsect, 584 tf->lbal, 585 tf->lbam, 586 tf->lbah); 587 } 588 589 if (tf->flags & ATA_TFLAG_DEVICE) { 590 iowrite8(tf->device, ioaddr->device_addr); 591 VPRINTK("device 0x%X\n", tf->device); 592 } 593 594 ata_wait_idle(ap); 595 } 596 597 /** 598 * ata_sff_tf_read - input device's ATA taskfile shadow registers 599 * @ap: Port from which input is read 600 * @tf: ATA taskfile register set for storing input 601 * 602 * Reads ATA taskfile registers for currently-selected device 603 * into @tf. Assumes the device has a fully SFF compliant task file 604 * layout and behaviour. If you device does not (eg has a different 605 * status method) then you will need to provide a replacement tf_read 606 * 607 * LOCKING: 608 * Inherited from caller. 609 */ 610 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 611 { 612 struct ata_ioports *ioaddr = &ap->ioaddr; 613 614 tf->command = ata_sff_check_status(ap); 615 tf->feature = ioread8(ioaddr->error_addr); 616 tf->nsect = ioread8(ioaddr->nsect_addr); 617 tf->lbal = ioread8(ioaddr->lbal_addr); 618 tf->lbam = ioread8(ioaddr->lbam_addr); 619 tf->lbah = ioread8(ioaddr->lbah_addr); 620 tf->device = ioread8(ioaddr->device_addr); 621 622 if (tf->flags & ATA_TFLAG_LBA48) { 623 if (likely(ioaddr->ctl_addr)) { 624 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 625 tf->hob_feature = ioread8(ioaddr->error_addr); 626 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 627 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 628 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 629 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 630 iowrite8(tf->ctl, ioaddr->ctl_addr); 631 ap->last_ctl = tf->ctl; 632 } else 633 WARN_ON(1); 634 } 635 } 636 637 /** 638 * ata_sff_exec_command - issue ATA command to host controller 639 * @ap: port to which command is being issued 640 * @tf: ATA taskfile register set 641 * 642 * Issues ATA command, with proper synchronization with interrupt 643 * handler / other threads. 644 * 645 * LOCKING: 646 * spin_lock_irqsave(host lock) 647 */ 648 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 649 { 650 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 651 652 iowrite8(tf->command, ap->ioaddr.command_addr); 653 ata_sff_pause(ap); 654 } 655 656 /** 657 * ata_tf_to_host - issue ATA taskfile to host controller 658 * @ap: port to which command is being issued 659 * @tf: ATA taskfile register set 660 * 661 * Issues ATA taskfile register set to ATA host controller, 662 * with proper synchronization with interrupt handler and 663 * other threads. 664 * 665 * LOCKING: 666 * spin_lock_irqsave(host lock) 667 */ 668 static inline void ata_tf_to_host(struct ata_port *ap, 669 const struct ata_taskfile *tf) 670 { 671 ap->ops->sff_tf_load(ap, tf); 672 ap->ops->sff_exec_command(ap, tf); 673 } 674 675 /** 676 * ata_sff_data_xfer - Transfer data by PIO 677 * @dev: device to target 678 * @buf: data buffer 679 * @buflen: buffer length 680 * @rw: read/write 681 * 682 * Transfer data from/to the device data register by PIO. 683 * 684 * LOCKING: 685 * Inherited from caller. 686 * 687 * RETURNS: 688 * Bytes consumed. 689 */ 690 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 691 unsigned int buflen, int rw) 692 { 693 struct ata_port *ap = dev->link->ap; 694 void __iomem *data_addr = ap->ioaddr.data_addr; 695 unsigned int words = buflen >> 1; 696 697 /* Transfer multiple of 2 bytes */ 698 if (rw == READ) 699 ioread16_rep(data_addr, buf, words); 700 else 701 iowrite16_rep(data_addr, buf, words); 702 703 /* Transfer trailing 1 byte, if any. */ 704 if (unlikely(buflen & 0x01)) { 705 __le16 align_buf[1] = { 0 }; 706 unsigned char *trailing_buf = buf + buflen - 1; 707 708 if (rw == READ) { 709 align_buf[0] = cpu_to_le16(ioread16(data_addr)); 710 memcpy(trailing_buf, align_buf, 1); 711 } else { 712 memcpy(align_buf, trailing_buf, 1); 713 iowrite16(le16_to_cpu(align_buf[0]), data_addr); 714 } 715 words++; 716 } 717 718 return words << 1; 719 } 720 721 /** 722 * ata_sff_data_xfer_noirq - Transfer data by PIO 723 * @dev: device to target 724 * @buf: data buffer 725 * @buflen: buffer length 726 * @rw: read/write 727 * 728 * Transfer data from/to the device data register by PIO. Do the 729 * transfer with interrupts disabled. 730 * 731 * LOCKING: 732 * Inherited from caller. 733 * 734 * RETURNS: 735 * Bytes consumed. 736 */ 737 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 738 unsigned int buflen, int rw) 739 { 740 unsigned long flags; 741 unsigned int consumed; 742 743 local_irq_save(flags); 744 consumed = ata_sff_data_xfer(dev, buf, buflen, rw); 745 local_irq_restore(flags); 746 747 return consumed; 748 } 749 750 /** 751 * ata_pio_sector - Transfer a sector of data. 752 * @qc: Command on going 753 * 754 * Transfer qc->sect_size bytes of data from/to the ATA device. 755 * 756 * LOCKING: 757 * Inherited from caller. 758 */ 759 static void ata_pio_sector(struct ata_queued_cmd *qc) 760 { 761 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 762 struct ata_port *ap = qc->ap; 763 struct page *page; 764 unsigned int offset; 765 unsigned char *buf; 766 767 if (qc->curbytes == qc->nbytes - qc->sect_size) 768 ap->hsm_task_state = HSM_ST_LAST; 769 770 page = sg_page(qc->cursg); 771 offset = qc->cursg->offset + qc->cursg_ofs; 772 773 /* get the current page and offset */ 774 page = nth_page(page, (offset >> PAGE_SHIFT)); 775 offset %= PAGE_SIZE; 776 777 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 778 779 if (PageHighMem(page)) { 780 unsigned long flags; 781 782 /* FIXME: use a bounce buffer */ 783 local_irq_save(flags); 784 buf = kmap_atomic(page, KM_IRQ0); 785 786 /* do the actual data transfer */ 787 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 788 do_write); 789 790 kunmap_atomic(buf, KM_IRQ0); 791 local_irq_restore(flags); 792 } else { 793 buf = page_address(page); 794 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 795 do_write); 796 } 797 798 qc->curbytes += qc->sect_size; 799 qc->cursg_ofs += qc->sect_size; 800 801 if (qc->cursg_ofs == qc->cursg->length) { 802 qc->cursg = sg_next(qc->cursg); 803 qc->cursg_ofs = 0; 804 } 805 } 806 807 /** 808 * ata_pio_sectors - Transfer one or many sectors. 809 * @qc: Command on going 810 * 811 * Transfer one or many sectors of data from/to the 812 * ATA device for the DRQ request. 813 * 814 * LOCKING: 815 * Inherited from caller. 816 */ 817 static void ata_pio_sectors(struct ata_queued_cmd *qc) 818 { 819 if (is_multi_taskfile(&qc->tf)) { 820 /* READ/WRITE MULTIPLE */ 821 unsigned int nsect; 822 823 WARN_ON(qc->dev->multi_count == 0); 824 825 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 826 qc->dev->multi_count); 827 while (nsect--) 828 ata_pio_sector(qc); 829 } else 830 ata_pio_sector(qc); 831 832 ata_sff_sync(qc->ap); /* flush */ 833 } 834 835 /** 836 * atapi_send_cdb - Write CDB bytes to hardware 837 * @ap: Port to which ATAPI device is attached. 838 * @qc: Taskfile currently active 839 * 840 * When device has indicated its readiness to accept 841 * a CDB, this function is called. Send the CDB. 842 * 843 * LOCKING: 844 * caller. 845 */ 846 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 847 { 848 /* send SCSI cdb */ 849 DPRINTK("send cdb\n"); 850 WARN_ON(qc->dev->cdb_len < 12); 851 852 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 853 ata_sff_sync(ap); 854 /* FIXME: If the CDB is for DMA do we need to do the transition delay 855 or is bmdma_start guaranteed to do it ? */ 856 switch (qc->tf.protocol) { 857 case ATAPI_PROT_PIO: 858 ap->hsm_task_state = HSM_ST; 859 break; 860 case ATAPI_PROT_NODATA: 861 ap->hsm_task_state = HSM_ST_LAST; 862 break; 863 case ATAPI_PROT_DMA: 864 ap->hsm_task_state = HSM_ST_LAST; 865 /* initiate bmdma */ 866 ap->ops->bmdma_start(qc); 867 break; 868 } 869 } 870 871 /** 872 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 873 * @qc: Command on going 874 * @bytes: number of bytes 875 * 876 * Transfer Transfer data from/to the ATAPI device. 877 * 878 * LOCKING: 879 * Inherited from caller. 880 * 881 */ 882 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 883 { 884 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 885 struct ata_port *ap = qc->ap; 886 struct ata_device *dev = qc->dev; 887 struct ata_eh_info *ehi = &dev->link->eh_info; 888 struct scatterlist *sg; 889 struct page *page; 890 unsigned char *buf; 891 unsigned int offset, count, consumed; 892 893 next_sg: 894 sg = qc->cursg; 895 if (unlikely(!sg)) { 896 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 897 "buf=%u cur=%u bytes=%u", 898 qc->nbytes, qc->curbytes, bytes); 899 return -1; 900 } 901 902 page = sg_page(sg); 903 offset = sg->offset + qc->cursg_ofs; 904 905 /* get the current page and offset */ 906 page = nth_page(page, (offset >> PAGE_SHIFT)); 907 offset %= PAGE_SIZE; 908 909 /* don't overrun current sg */ 910 count = min(sg->length - qc->cursg_ofs, bytes); 911 912 /* don't cross page boundaries */ 913 count = min(count, (unsigned int)PAGE_SIZE - offset); 914 915 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 916 917 if (PageHighMem(page)) { 918 unsigned long flags; 919 920 /* FIXME: use bounce buffer */ 921 local_irq_save(flags); 922 buf = kmap_atomic(page, KM_IRQ0); 923 924 /* do the actual data transfer */ 925 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw); 926 927 kunmap_atomic(buf, KM_IRQ0); 928 local_irq_restore(flags); 929 } else { 930 buf = page_address(page); 931 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw); 932 } 933 934 bytes -= min(bytes, consumed); 935 qc->curbytes += count; 936 qc->cursg_ofs += count; 937 938 if (qc->cursg_ofs == sg->length) { 939 qc->cursg = sg_next(qc->cursg); 940 qc->cursg_ofs = 0; 941 } 942 943 /* consumed can be larger than count only for the last transfer */ 944 WARN_ON(qc->cursg && count != consumed); 945 946 if (bytes) 947 goto next_sg; 948 return 0; 949 } 950 951 /** 952 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 953 * @qc: Command on going 954 * 955 * Transfer Transfer data from/to the ATAPI device. 956 * 957 * LOCKING: 958 * Inherited from caller. 959 */ 960 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 961 { 962 struct ata_port *ap = qc->ap; 963 struct ata_device *dev = qc->dev; 964 struct ata_eh_info *ehi = &dev->link->eh_info; 965 unsigned int ireason, bc_lo, bc_hi, bytes; 966 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 967 968 /* Abuse qc->result_tf for temp storage of intermediate TF 969 * here to save some kernel stack usage. 970 * For normal completion, qc->result_tf is not relevant. For 971 * error, qc->result_tf is later overwritten by ata_qc_complete(). 972 * So, the correctness of qc->result_tf is not affected. 973 */ 974 ap->ops->sff_tf_read(ap, &qc->result_tf); 975 ireason = qc->result_tf.nsect; 976 bc_lo = qc->result_tf.lbam; 977 bc_hi = qc->result_tf.lbah; 978 bytes = (bc_hi << 8) | bc_lo; 979 980 /* shall be cleared to zero, indicating xfer of data */ 981 if (unlikely(ireason & (1 << 0))) 982 goto atapi_check; 983 984 /* make sure transfer direction matches expected */ 985 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 986 if (unlikely(do_write != i_write)) 987 goto atapi_check; 988 989 if (unlikely(!bytes)) 990 goto atapi_check; 991 992 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 993 994 if (unlikely(__atapi_pio_bytes(qc, bytes))) 995 goto err_out; 996 ata_sff_sync(ap); /* flush */ 997 998 return; 999 1000 atapi_check: 1001 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 1002 ireason, bytes); 1003 err_out: 1004 qc->err_mask |= AC_ERR_HSM; 1005 ap->hsm_task_state = HSM_ST_ERR; 1006 } 1007 1008 /** 1009 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 1010 * @ap: the target ata_port 1011 * @qc: qc on going 1012 * 1013 * RETURNS: 1014 * 1 if ok in workqueue, 0 otherwise. 1015 */ 1016 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc) 1017 { 1018 if (qc->tf.flags & ATA_TFLAG_POLLING) 1019 return 1; 1020 1021 if (ap->hsm_task_state == HSM_ST_FIRST) { 1022 if (qc->tf.protocol == ATA_PROT_PIO && 1023 (qc->tf.flags & ATA_TFLAG_WRITE)) 1024 return 1; 1025 1026 if (ata_is_atapi(qc->tf.protocol) && 1027 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1028 return 1; 1029 } 1030 1031 return 0; 1032 } 1033 1034 /** 1035 * ata_hsm_qc_complete - finish a qc running on standard HSM 1036 * @qc: Command to complete 1037 * @in_wq: 1 if called from workqueue, 0 otherwise 1038 * 1039 * Finish @qc which is running on standard HSM. 1040 * 1041 * LOCKING: 1042 * If @in_wq is zero, spin_lock_irqsave(host lock). 1043 * Otherwise, none on entry and grabs host lock. 1044 */ 1045 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 1046 { 1047 struct ata_port *ap = qc->ap; 1048 unsigned long flags; 1049 1050 if (ap->ops->error_handler) { 1051 if (in_wq) { 1052 spin_lock_irqsave(ap->lock, flags); 1053 1054 /* EH might have kicked in while host lock is 1055 * released. 1056 */ 1057 qc = ata_qc_from_tag(ap, qc->tag); 1058 if (qc) { 1059 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1060 ap->ops->sff_irq_on(ap); 1061 ata_qc_complete(qc); 1062 } else 1063 ata_port_freeze(ap); 1064 } 1065 1066 spin_unlock_irqrestore(ap->lock, flags); 1067 } else { 1068 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1069 ata_qc_complete(qc); 1070 else 1071 ata_port_freeze(ap); 1072 } 1073 } else { 1074 if (in_wq) { 1075 spin_lock_irqsave(ap->lock, flags); 1076 ap->ops->sff_irq_on(ap); 1077 ata_qc_complete(qc); 1078 spin_unlock_irqrestore(ap->lock, flags); 1079 } else 1080 ata_qc_complete(qc); 1081 } 1082 } 1083 1084 /** 1085 * ata_sff_hsm_move - move the HSM to the next state. 1086 * @ap: the target ata_port 1087 * @qc: qc on going 1088 * @status: current device status 1089 * @in_wq: 1 if called from workqueue, 0 otherwise 1090 * 1091 * RETURNS: 1092 * 1 when poll next status needed, 0 otherwise. 1093 */ 1094 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1095 u8 status, int in_wq) 1096 { 1097 unsigned long flags = 0; 1098 int poll_next; 1099 1100 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1101 1102 /* Make sure ata_sff_qc_issue() does not throw things 1103 * like DMA polling into the workqueue. Notice that 1104 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1105 */ 1106 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1107 1108 fsm_start: 1109 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1110 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1111 1112 switch (ap->hsm_task_state) { 1113 case HSM_ST_FIRST: 1114 /* Send first data block or PACKET CDB */ 1115 1116 /* If polling, we will stay in the work queue after 1117 * sending the data. Otherwise, interrupt handler 1118 * takes over after sending the data. 1119 */ 1120 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1121 1122 /* check device status */ 1123 if (unlikely((status & ATA_DRQ) == 0)) { 1124 /* handle BSY=0, DRQ=0 as error */ 1125 if (likely(status & (ATA_ERR | ATA_DF))) 1126 /* device stops HSM for abort/error */ 1127 qc->err_mask |= AC_ERR_DEV; 1128 else 1129 /* HSM violation. Let EH handle this */ 1130 qc->err_mask |= AC_ERR_HSM; 1131 1132 ap->hsm_task_state = HSM_ST_ERR; 1133 goto fsm_start; 1134 } 1135 1136 /* Device should not ask for data transfer (DRQ=1) 1137 * when it finds something wrong. 1138 * We ignore DRQ here and stop the HSM by 1139 * changing hsm_task_state to HSM_ST_ERR and 1140 * let the EH abort the command or reset the device. 1141 */ 1142 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1143 /* Some ATAPI tape drives forget to clear the ERR bit 1144 * when doing the next command (mostly request sense). 1145 * We ignore ERR here to workaround and proceed sending 1146 * the CDB. 1147 */ 1148 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1149 ata_port_printk(ap, KERN_WARNING, 1150 "DRQ=1 with device error, " 1151 "dev_stat 0x%X\n", status); 1152 qc->err_mask |= AC_ERR_HSM; 1153 ap->hsm_task_state = HSM_ST_ERR; 1154 goto fsm_start; 1155 } 1156 } 1157 1158 /* Send the CDB (atapi) or the first data block (ata pio out). 1159 * During the state transition, interrupt handler shouldn't 1160 * be invoked before the data transfer is complete and 1161 * hsm_task_state is changed. Hence, the following locking. 1162 */ 1163 if (in_wq) 1164 spin_lock_irqsave(ap->lock, flags); 1165 1166 if (qc->tf.protocol == ATA_PROT_PIO) { 1167 /* PIO data out protocol. 1168 * send first data block. 1169 */ 1170 1171 /* ata_pio_sectors() might change the state 1172 * to HSM_ST_LAST. so, the state is changed here 1173 * before ata_pio_sectors(). 1174 */ 1175 ap->hsm_task_state = HSM_ST; 1176 ata_pio_sectors(qc); 1177 } else 1178 /* send CDB */ 1179 atapi_send_cdb(ap, qc); 1180 1181 if (in_wq) 1182 spin_unlock_irqrestore(ap->lock, flags); 1183 1184 /* if polling, ata_pio_task() handles the rest. 1185 * otherwise, interrupt handler takes over from here. 1186 */ 1187 break; 1188 1189 case HSM_ST: 1190 /* complete command or read/write the data register */ 1191 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1192 /* ATAPI PIO protocol */ 1193 if ((status & ATA_DRQ) == 0) { 1194 /* No more data to transfer or device error. 1195 * Device error will be tagged in HSM_ST_LAST. 1196 */ 1197 ap->hsm_task_state = HSM_ST_LAST; 1198 goto fsm_start; 1199 } 1200 1201 /* Device should not ask for data transfer (DRQ=1) 1202 * when it finds something wrong. 1203 * We ignore DRQ here and stop the HSM by 1204 * changing hsm_task_state to HSM_ST_ERR and 1205 * let the EH abort the command or reset the device. 1206 */ 1207 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1208 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with " 1209 "device error, dev_stat 0x%X\n", 1210 status); 1211 qc->err_mask |= AC_ERR_HSM; 1212 ap->hsm_task_state = HSM_ST_ERR; 1213 goto fsm_start; 1214 } 1215 1216 atapi_pio_bytes(qc); 1217 1218 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1219 /* bad ireason reported by device */ 1220 goto fsm_start; 1221 1222 } else { 1223 /* ATA PIO protocol */ 1224 if (unlikely((status & ATA_DRQ) == 0)) { 1225 /* handle BSY=0, DRQ=0 as error */ 1226 if (likely(status & (ATA_ERR | ATA_DF))) 1227 /* device stops HSM for abort/error */ 1228 qc->err_mask |= AC_ERR_DEV; 1229 else 1230 /* HSM violation. Let EH handle this. 1231 * Phantom devices also trigger this 1232 * condition. Mark hint. 1233 */ 1234 qc->err_mask |= AC_ERR_HSM | 1235 AC_ERR_NODEV_HINT; 1236 1237 ap->hsm_task_state = HSM_ST_ERR; 1238 goto fsm_start; 1239 } 1240 1241 /* For PIO reads, some devices may ask for 1242 * data transfer (DRQ=1) alone with ERR=1. 1243 * We respect DRQ here and transfer one 1244 * block of junk data before changing the 1245 * hsm_task_state to HSM_ST_ERR. 1246 * 1247 * For PIO writes, ERR=1 DRQ=1 doesn't make 1248 * sense since the data block has been 1249 * transferred to the device. 1250 */ 1251 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1252 /* data might be corrputed */ 1253 qc->err_mask |= AC_ERR_DEV; 1254 1255 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1256 ata_pio_sectors(qc); 1257 status = ata_wait_idle(ap); 1258 } 1259 1260 if (status & (ATA_BUSY | ATA_DRQ)) 1261 qc->err_mask |= AC_ERR_HSM; 1262 1263 /* ata_pio_sectors() might change the 1264 * state to HSM_ST_LAST. so, the state 1265 * is changed after ata_pio_sectors(). 1266 */ 1267 ap->hsm_task_state = HSM_ST_ERR; 1268 goto fsm_start; 1269 } 1270 1271 ata_pio_sectors(qc); 1272 1273 if (ap->hsm_task_state == HSM_ST_LAST && 1274 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1275 /* all data read */ 1276 status = ata_wait_idle(ap); 1277 goto fsm_start; 1278 } 1279 } 1280 1281 poll_next = 1; 1282 break; 1283 1284 case HSM_ST_LAST: 1285 if (unlikely(!ata_ok(status))) { 1286 qc->err_mask |= __ac_err_mask(status); 1287 ap->hsm_task_state = HSM_ST_ERR; 1288 goto fsm_start; 1289 } 1290 1291 /* no more data to transfer */ 1292 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1293 ap->print_id, qc->dev->devno, status); 1294 1295 WARN_ON(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1296 1297 ap->hsm_task_state = HSM_ST_IDLE; 1298 1299 /* complete taskfile transaction */ 1300 ata_hsm_qc_complete(qc, in_wq); 1301 1302 poll_next = 0; 1303 break; 1304 1305 case HSM_ST_ERR: 1306 /* make sure qc->err_mask is available to 1307 * know what's wrong and recover 1308 */ 1309 WARN_ON(!(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM))); 1310 1311 ap->hsm_task_state = HSM_ST_IDLE; 1312 1313 /* complete taskfile transaction */ 1314 ata_hsm_qc_complete(qc, in_wq); 1315 1316 poll_next = 0; 1317 break; 1318 default: 1319 poll_next = 0; 1320 BUG(); 1321 } 1322 1323 return poll_next; 1324 } 1325 1326 void ata_pio_task(struct work_struct *work) 1327 { 1328 struct ata_port *ap = 1329 container_of(work, struct ata_port, port_task.work); 1330 struct ata_queued_cmd *qc = ap->port_task_data; 1331 u8 status; 1332 int poll_next; 1333 1334 fsm_start: 1335 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE); 1336 1337 /* 1338 * This is purely heuristic. This is a fast path. 1339 * Sometimes when we enter, BSY will be cleared in 1340 * a chk-status or two. If not, the drive is probably seeking 1341 * or something. Snooze for a couple msecs, then 1342 * chk-status again. If still busy, queue delayed work. 1343 */ 1344 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1345 if (status & ATA_BUSY) { 1346 msleep(2); 1347 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1348 if (status & ATA_BUSY) { 1349 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE); 1350 return; 1351 } 1352 } 1353 1354 /* move the HSM */ 1355 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1356 1357 /* another command or interrupt handler 1358 * may be running at this point. 1359 */ 1360 if (poll_next) 1361 goto fsm_start; 1362 } 1363 1364 /** 1365 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner 1366 * @qc: command to issue to device 1367 * 1368 * Using various libata functions and hooks, this function 1369 * starts an ATA command. ATA commands are grouped into 1370 * classes called "protocols", and issuing each type of protocol 1371 * is slightly different. 1372 * 1373 * May be used as the qc_issue() entry in ata_port_operations. 1374 * 1375 * LOCKING: 1376 * spin_lock_irqsave(host lock) 1377 * 1378 * RETURNS: 1379 * Zero on success, AC_ERR_* mask on failure 1380 */ 1381 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1382 { 1383 struct ata_port *ap = qc->ap; 1384 1385 /* Use polling pio if the LLD doesn't handle 1386 * interrupt driven pio and atapi CDB interrupt. 1387 */ 1388 if (ap->flags & ATA_FLAG_PIO_POLLING) { 1389 switch (qc->tf.protocol) { 1390 case ATA_PROT_PIO: 1391 case ATA_PROT_NODATA: 1392 case ATAPI_PROT_PIO: 1393 case ATAPI_PROT_NODATA: 1394 qc->tf.flags |= ATA_TFLAG_POLLING; 1395 break; 1396 case ATAPI_PROT_DMA: 1397 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 1398 /* see ata_dma_blacklisted() */ 1399 BUG(); 1400 break; 1401 default: 1402 break; 1403 } 1404 } 1405 1406 /* select the device */ 1407 ata_dev_select(ap, qc->dev->devno, 1, 0); 1408 1409 /* start the command */ 1410 switch (qc->tf.protocol) { 1411 case ATA_PROT_NODATA: 1412 if (qc->tf.flags & ATA_TFLAG_POLLING) 1413 ata_qc_set_polling(qc); 1414 1415 ata_tf_to_host(ap, &qc->tf); 1416 ap->hsm_task_state = HSM_ST_LAST; 1417 1418 if (qc->tf.flags & ATA_TFLAG_POLLING) 1419 ata_pio_queue_task(ap, qc, 0); 1420 1421 break; 1422 1423 case ATA_PROT_DMA: 1424 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 1425 1426 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1427 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1428 ap->ops->bmdma_start(qc); /* initiate bmdma */ 1429 ap->hsm_task_state = HSM_ST_LAST; 1430 break; 1431 1432 case ATA_PROT_PIO: 1433 if (qc->tf.flags & ATA_TFLAG_POLLING) 1434 ata_qc_set_polling(qc); 1435 1436 ata_tf_to_host(ap, &qc->tf); 1437 1438 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1439 /* PIO data out protocol */ 1440 ap->hsm_task_state = HSM_ST_FIRST; 1441 ata_pio_queue_task(ap, qc, 0); 1442 1443 /* always send first data block using 1444 * the ata_pio_task() codepath. 1445 */ 1446 } else { 1447 /* PIO data in protocol */ 1448 ap->hsm_task_state = HSM_ST; 1449 1450 if (qc->tf.flags & ATA_TFLAG_POLLING) 1451 ata_pio_queue_task(ap, qc, 0); 1452 1453 /* if polling, ata_pio_task() handles the rest. 1454 * otherwise, interrupt handler takes over from here. 1455 */ 1456 } 1457 1458 break; 1459 1460 case ATAPI_PROT_PIO: 1461 case ATAPI_PROT_NODATA: 1462 if (qc->tf.flags & ATA_TFLAG_POLLING) 1463 ata_qc_set_polling(qc); 1464 1465 ata_tf_to_host(ap, &qc->tf); 1466 1467 ap->hsm_task_state = HSM_ST_FIRST; 1468 1469 /* send cdb by polling if no cdb interrupt */ 1470 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1471 (qc->tf.flags & ATA_TFLAG_POLLING)) 1472 ata_pio_queue_task(ap, qc, 0); 1473 break; 1474 1475 case ATAPI_PROT_DMA: 1476 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 1477 1478 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1479 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1480 ap->hsm_task_state = HSM_ST_FIRST; 1481 1482 /* send cdb by polling if no cdb interrupt */ 1483 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1484 ata_pio_queue_task(ap, qc, 0); 1485 break; 1486 1487 default: 1488 WARN_ON(1); 1489 return AC_ERR_SYSTEM; 1490 } 1491 1492 return 0; 1493 } 1494 1495 /** 1496 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1497 * @qc: qc to fill result TF for 1498 * 1499 * @qc is finished and result TF needs to be filled. Fill it 1500 * using ->sff_tf_read. 1501 * 1502 * LOCKING: 1503 * spin_lock_irqsave(host lock) 1504 * 1505 * RETURNS: 1506 * true indicating that result TF is successfully filled. 1507 */ 1508 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1509 { 1510 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1511 return true; 1512 } 1513 1514 /** 1515 * ata_sff_host_intr - Handle host interrupt for given (port, task) 1516 * @ap: Port on which interrupt arrived (possibly...) 1517 * @qc: Taskfile currently active in engine 1518 * 1519 * Handle host interrupt for given queued command. Currently, 1520 * only DMA interrupts are handled. All other commands are 1521 * handled via polling with interrupts disabled (nIEN bit). 1522 * 1523 * LOCKING: 1524 * spin_lock_irqsave(host lock) 1525 * 1526 * RETURNS: 1527 * One if interrupt was handled, zero if not (shared irq). 1528 */ 1529 inline unsigned int ata_sff_host_intr(struct ata_port *ap, 1530 struct ata_queued_cmd *qc) 1531 { 1532 struct ata_eh_info *ehi = &ap->link.eh_info; 1533 u8 status, host_stat = 0; 1534 1535 VPRINTK("ata%u: protocol %d task_state %d\n", 1536 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1537 1538 /* Check whether we are expecting interrupt in this state */ 1539 switch (ap->hsm_task_state) { 1540 case HSM_ST_FIRST: 1541 /* Some pre-ATAPI-4 devices assert INTRQ 1542 * at this state when ready to receive CDB. 1543 */ 1544 1545 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1546 * The flag was turned on only for atapi devices. No 1547 * need to check ata_is_atapi(qc->tf.protocol) again. 1548 */ 1549 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1550 goto idle_irq; 1551 break; 1552 case HSM_ST_LAST: 1553 if (qc->tf.protocol == ATA_PROT_DMA || 1554 qc->tf.protocol == ATAPI_PROT_DMA) { 1555 /* check status of DMA engine */ 1556 host_stat = ap->ops->bmdma_status(ap); 1557 VPRINTK("ata%u: host_stat 0x%X\n", 1558 ap->print_id, host_stat); 1559 1560 /* if it's not our irq... */ 1561 if (!(host_stat & ATA_DMA_INTR)) 1562 goto idle_irq; 1563 1564 /* before we do anything else, clear DMA-Start bit */ 1565 ap->ops->bmdma_stop(qc); 1566 1567 if (unlikely(host_stat & ATA_DMA_ERR)) { 1568 /* error when transfering data to/from memory */ 1569 qc->err_mask |= AC_ERR_HOST_BUS; 1570 ap->hsm_task_state = HSM_ST_ERR; 1571 } 1572 } 1573 break; 1574 case HSM_ST: 1575 break; 1576 default: 1577 goto idle_irq; 1578 } 1579 1580 1581 /* check main status, clearing INTRQ if needed */ 1582 status = ata_sff_irq_status(ap); 1583 if (status & ATA_BUSY) 1584 goto idle_irq; 1585 1586 /* ack bmdma irq events */ 1587 ap->ops->sff_irq_clear(ap); 1588 1589 ata_sff_hsm_move(ap, qc, status, 0); 1590 1591 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 1592 qc->tf.protocol == ATAPI_PROT_DMA)) 1593 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 1594 1595 return 1; /* irq handled */ 1596 1597 idle_irq: 1598 ap->stats.idle_irq++; 1599 1600 #ifdef ATA_IRQ_TRAP 1601 if ((ap->stats.idle_irq % 1000) == 0) { 1602 ap->ops->sff_check_status(ap); 1603 ap->ops->sff_irq_clear(ap); 1604 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 1605 return 1; 1606 } 1607 #endif 1608 return 0; /* irq not handled */ 1609 } 1610 1611 /** 1612 * ata_sff_interrupt - Default ATA host interrupt handler 1613 * @irq: irq line (unused) 1614 * @dev_instance: pointer to our ata_host information structure 1615 * 1616 * Default interrupt handler for PCI IDE devices. Calls 1617 * ata_sff_host_intr() for each port that is not disabled. 1618 * 1619 * LOCKING: 1620 * Obtains host lock during operation. 1621 * 1622 * RETURNS: 1623 * IRQ_NONE or IRQ_HANDLED. 1624 */ 1625 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1626 { 1627 struct ata_host *host = dev_instance; 1628 unsigned int i; 1629 unsigned int handled = 0; 1630 unsigned long flags; 1631 1632 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1633 spin_lock_irqsave(&host->lock, flags); 1634 1635 for (i = 0; i < host->n_ports; i++) { 1636 struct ata_port *ap; 1637 1638 ap = host->ports[i]; 1639 if (ap && 1640 !(ap->flags & ATA_FLAG_DISABLED)) { 1641 struct ata_queued_cmd *qc; 1642 1643 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1644 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 1645 (qc->flags & ATA_QCFLAG_ACTIVE)) 1646 handled |= ata_sff_host_intr(ap, qc); 1647 } 1648 } 1649 1650 spin_unlock_irqrestore(&host->lock, flags); 1651 1652 return IRQ_RETVAL(handled); 1653 } 1654 1655 /** 1656 * ata_sff_freeze - Freeze SFF controller port 1657 * @ap: port to freeze 1658 * 1659 * Freeze BMDMA controller port. 1660 * 1661 * LOCKING: 1662 * Inherited from caller. 1663 */ 1664 void ata_sff_freeze(struct ata_port *ap) 1665 { 1666 struct ata_ioports *ioaddr = &ap->ioaddr; 1667 1668 ap->ctl |= ATA_NIEN; 1669 ap->last_ctl = ap->ctl; 1670 1671 if (ioaddr->ctl_addr) 1672 iowrite8(ap->ctl, ioaddr->ctl_addr); 1673 1674 /* Under certain circumstances, some controllers raise IRQ on 1675 * ATA_NIEN manipulation. Also, many controllers fail to mask 1676 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1677 */ 1678 ap->ops->sff_check_status(ap); 1679 1680 ap->ops->sff_irq_clear(ap); 1681 } 1682 1683 /** 1684 * ata_sff_thaw - Thaw SFF controller port 1685 * @ap: port to thaw 1686 * 1687 * Thaw SFF controller port. 1688 * 1689 * LOCKING: 1690 * Inherited from caller. 1691 */ 1692 void ata_sff_thaw(struct ata_port *ap) 1693 { 1694 /* clear & re-enable interrupts */ 1695 ap->ops->sff_check_status(ap); 1696 ap->ops->sff_irq_clear(ap); 1697 ap->ops->sff_irq_on(ap); 1698 } 1699 1700 /** 1701 * ata_sff_prereset - prepare SFF link for reset 1702 * @link: SFF link to be reset 1703 * @deadline: deadline jiffies for the operation 1704 * 1705 * SFF link @link is about to be reset. Initialize it. It first 1706 * calls ata_std_prereset() and wait for !BSY if the port is 1707 * being softreset. 1708 * 1709 * LOCKING: 1710 * Kernel thread context (may sleep) 1711 * 1712 * RETURNS: 1713 * 0 on success, -errno otherwise. 1714 */ 1715 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1716 { 1717 struct ata_eh_context *ehc = &link->eh_context; 1718 int rc; 1719 1720 rc = ata_std_prereset(link, deadline); 1721 if (rc) 1722 return rc; 1723 1724 /* if we're about to do hardreset, nothing more to do */ 1725 if (ehc->i.action & ATA_EH_HARDRESET) 1726 return 0; 1727 1728 /* wait for !BSY if we don't know that no device is attached */ 1729 if (!ata_link_offline(link)) { 1730 rc = ata_sff_wait_ready(link, deadline); 1731 if (rc && rc != -ENODEV) { 1732 ata_link_printk(link, KERN_WARNING, "device not ready " 1733 "(errno=%d), forcing hardreset\n", rc); 1734 ehc->i.action |= ATA_EH_HARDRESET; 1735 } 1736 } 1737 1738 return 0; 1739 } 1740 1741 /** 1742 * ata_devchk - PATA device presence detection 1743 * @ap: ATA channel to examine 1744 * @device: Device to examine (starting at zero) 1745 * 1746 * This technique was originally described in 1747 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1748 * later found its way into the ATA/ATAPI spec. 1749 * 1750 * Write a pattern to the ATA shadow registers, 1751 * and if a device is present, it will respond by 1752 * correctly storing and echoing back the 1753 * ATA shadow register contents. 1754 * 1755 * LOCKING: 1756 * caller. 1757 */ 1758 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1759 { 1760 struct ata_ioports *ioaddr = &ap->ioaddr; 1761 u8 nsect, lbal; 1762 1763 ap->ops->sff_dev_select(ap, device); 1764 1765 iowrite8(0x55, ioaddr->nsect_addr); 1766 iowrite8(0xaa, ioaddr->lbal_addr); 1767 1768 iowrite8(0xaa, ioaddr->nsect_addr); 1769 iowrite8(0x55, ioaddr->lbal_addr); 1770 1771 iowrite8(0x55, ioaddr->nsect_addr); 1772 iowrite8(0xaa, ioaddr->lbal_addr); 1773 1774 nsect = ioread8(ioaddr->nsect_addr); 1775 lbal = ioread8(ioaddr->lbal_addr); 1776 1777 if ((nsect == 0x55) && (lbal == 0xaa)) 1778 return 1; /* we found a device */ 1779 1780 return 0; /* nothing found */ 1781 } 1782 1783 /** 1784 * ata_sff_dev_classify - Parse returned ATA device signature 1785 * @dev: ATA device to classify (starting at zero) 1786 * @present: device seems present 1787 * @r_err: Value of error register on completion 1788 * 1789 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1790 * an ATA/ATAPI-defined set of values is placed in the ATA 1791 * shadow registers, indicating the results of device detection 1792 * and diagnostics. 1793 * 1794 * Select the ATA device, and read the values from the ATA shadow 1795 * registers. Then parse according to the Error register value, 1796 * and the spec-defined values examined by ata_dev_classify(). 1797 * 1798 * LOCKING: 1799 * caller. 1800 * 1801 * RETURNS: 1802 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1803 */ 1804 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1805 u8 *r_err) 1806 { 1807 struct ata_port *ap = dev->link->ap; 1808 struct ata_taskfile tf; 1809 unsigned int class; 1810 u8 err; 1811 1812 ap->ops->sff_dev_select(ap, dev->devno); 1813 1814 memset(&tf, 0, sizeof(tf)); 1815 1816 ap->ops->sff_tf_read(ap, &tf); 1817 err = tf.feature; 1818 if (r_err) 1819 *r_err = err; 1820 1821 /* see if device passed diags: continue and warn later */ 1822 if (err == 0) 1823 /* diagnostic fail : do nothing _YET_ */ 1824 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1825 else if (err == 1) 1826 /* do nothing */ ; 1827 else if ((dev->devno == 0) && (err == 0x81)) 1828 /* do nothing */ ; 1829 else 1830 return ATA_DEV_NONE; 1831 1832 /* determine if device is ATA or ATAPI */ 1833 class = ata_dev_classify(&tf); 1834 1835 if (class == ATA_DEV_UNKNOWN) { 1836 /* If the device failed diagnostic, it's likely to 1837 * have reported incorrect device signature too. 1838 * Assume ATA device if the device seems present but 1839 * device signature is invalid with diagnostic 1840 * failure. 1841 */ 1842 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1843 class = ATA_DEV_ATA; 1844 else 1845 class = ATA_DEV_NONE; 1846 } else if ((class == ATA_DEV_ATA) && 1847 (ap->ops->sff_check_status(ap) == 0)) 1848 class = ATA_DEV_NONE; 1849 1850 return class; 1851 } 1852 1853 /** 1854 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1855 * @link: SFF link which is just reset 1856 * @devmask: mask of present devices 1857 * @deadline: deadline jiffies for the operation 1858 * 1859 * Wait devices attached to SFF @link to become ready after 1860 * reset. It contains preceding 150ms wait to avoid accessing TF 1861 * status register too early. 1862 * 1863 * LOCKING: 1864 * Kernel thread context (may sleep). 1865 * 1866 * RETURNS: 1867 * 0 on success, -ENODEV if some or all of devices in @devmask 1868 * don't seem to exist. -errno on other errors. 1869 */ 1870 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1871 unsigned long deadline) 1872 { 1873 struct ata_port *ap = link->ap; 1874 struct ata_ioports *ioaddr = &ap->ioaddr; 1875 unsigned int dev0 = devmask & (1 << 0); 1876 unsigned int dev1 = devmask & (1 << 1); 1877 int rc, ret = 0; 1878 1879 msleep(ATA_WAIT_AFTER_RESET_MSECS); 1880 1881 /* always check readiness of the master device */ 1882 rc = ata_sff_wait_ready(link, deadline); 1883 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1884 * and TF status is 0xff, bail out on it too. 1885 */ 1886 if (rc) 1887 return rc; 1888 1889 /* if device 1 was found in ata_devchk, wait for register 1890 * access briefly, then wait for BSY to clear. 1891 */ 1892 if (dev1) { 1893 int i; 1894 1895 ap->ops->sff_dev_select(ap, 1); 1896 1897 /* Wait for register access. Some ATAPI devices fail 1898 * to set nsect/lbal after reset, so don't waste too 1899 * much time on it. We're gonna wait for !BSY anyway. 1900 */ 1901 for (i = 0; i < 2; i++) { 1902 u8 nsect, lbal; 1903 1904 nsect = ioread8(ioaddr->nsect_addr); 1905 lbal = ioread8(ioaddr->lbal_addr); 1906 if ((nsect == 1) && (lbal == 1)) 1907 break; 1908 msleep(50); /* give drive a breather */ 1909 } 1910 1911 rc = ata_sff_wait_ready(link, deadline); 1912 if (rc) { 1913 if (rc != -ENODEV) 1914 return rc; 1915 ret = rc; 1916 } 1917 } 1918 1919 /* is all this really necessary? */ 1920 ap->ops->sff_dev_select(ap, 0); 1921 if (dev1) 1922 ap->ops->sff_dev_select(ap, 1); 1923 if (dev0) 1924 ap->ops->sff_dev_select(ap, 0); 1925 1926 return ret; 1927 } 1928 1929 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1930 unsigned long deadline) 1931 { 1932 struct ata_ioports *ioaddr = &ap->ioaddr; 1933 1934 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 1935 1936 /* software reset. causes dev0 to be selected */ 1937 iowrite8(ap->ctl, ioaddr->ctl_addr); 1938 udelay(20); /* FIXME: flush */ 1939 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 1940 udelay(20); /* FIXME: flush */ 1941 iowrite8(ap->ctl, ioaddr->ctl_addr); 1942 1943 /* wait the port to become ready */ 1944 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 1945 } 1946 1947 /** 1948 * ata_sff_softreset - reset host port via ATA SRST 1949 * @link: ATA link to reset 1950 * @classes: resulting classes of attached devices 1951 * @deadline: deadline jiffies for the operation 1952 * 1953 * Reset host port using ATA SRST. 1954 * 1955 * LOCKING: 1956 * Kernel thread context (may sleep) 1957 * 1958 * RETURNS: 1959 * 0 on success, -errno otherwise. 1960 */ 1961 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 1962 unsigned long deadline) 1963 { 1964 struct ata_port *ap = link->ap; 1965 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 1966 unsigned int devmask = 0; 1967 int rc; 1968 u8 err; 1969 1970 DPRINTK("ENTER\n"); 1971 1972 /* determine if device 0/1 are present */ 1973 if (ata_devchk(ap, 0)) 1974 devmask |= (1 << 0); 1975 if (slave_possible && ata_devchk(ap, 1)) 1976 devmask |= (1 << 1); 1977 1978 /* select device 0 again */ 1979 ap->ops->sff_dev_select(ap, 0); 1980 1981 /* issue bus reset */ 1982 DPRINTK("about to softreset, devmask=%x\n", devmask); 1983 rc = ata_bus_softreset(ap, devmask, deadline); 1984 /* if link is occupied, -ENODEV too is an error */ 1985 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 1986 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); 1987 return rc; 1988 } 1989 1990 /* determine by signature whether we have ATA or ATAPI devices */ 1991 classes[0] = ata_sff_dev_classify(&link->device[0], 1992 devmask & (1 << 0), &err); 1993 if (slave_possible && err != 0x81) 1994 classes[1] = ata_sff_dev_classify(&link->device[1], 1995 devmask & (1 << 1), &err); 1996 1997 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 1998 return 0; 1999 } 2000 2001 /** 2002 * sata_sff_hardreset - reset host port via SATA phy reset 2003 * @link: link to reset 2004 * @class: resulting class of attached device 2005 * @deadline: deadline jiffies for the operation 2006 * 2007 * SATA phy-reset host port using DET bits of SControl register, 2008 * wait for !BSY and classify the attached device. 2009 * 2010 * LOCKING: 2011 * Kernel thread context (may sleep) 2012 * 2013 * RETURNS: 2014 * 0 on success, -errno otherwise. 2015 */ 2016 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2017 unsigned long deadline) 2018 { 2019 struct ata_eh_context *ehc = &link->eh_context; 2020 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2021 bool online; 2022 int rc; 2023 2024 rc = sata_link_hardreset(link, timing, deadline, &online, 2025 ata_sff_check_ready); 2026 if (online) 2027 *class = ata_sff_dev_classify(link->device, 1, NULL); 2028 2029 DPRINTK("EXIT, class=%u\n", *class); 2030 return rc; 2031 } 2032 2033 /** 2034 * ata_sff_postreset - SFF postreset callback 2035 * @link: the target SFF ata_link 2036 * @classes: classes of attached devices 2037 * 2038 * This function is invoked after a successful reset. It first 2039 * calls ata_std_postreset() and performs SFF specific postreset 2040 * processing. 2041 * 2042 * LOCKING: 2043 * Kernel thread context (may sleep) 2044 */ 2045 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2046 { 2047 struct ata_port *ap = link->ap; 2048 2049 ata_std_postreset(link, classes); 2050 2051 /* is double-select really necessary? */ 2052 if (classes[0] != ATA_DEV_NONE) 2053 ap->ops->sff_dev_select(ap, 1); 2054 if (classes[1] != ATA_DEV_NONE) 2055 ap->ops->sff_dev_select(ap, 0); 2056 2057 /* bail out if no device is present */ 2058 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2059 DPRINTK("EXIT, no device\n"); 2060 return; 2061 } 2062 2063 /* set up device control */ 2064 if (ap->ioaddr.ctl_addr) 2065 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 2066 } 2067 2068 /** 2069 * ata_sff_error_handler - Stock error handler for BMDMA controller 2070 * @ap: port to handle error for 2071 * 2072 * Stock error handler for SFF controller. It can handle both 2073 * PATA and SATA controllers. Many controllers should be able to 2074 * use this EH as-is or with some added handling before and 2075 * after. 2076 * 2077 * LOCKING: 2078 * Kernel thread context (may sleep) 2079 */ 2080 void ata_sff_error_handler(struct ata_port *ap) 2081 { 2082 ata_reset_fn_t softreset = ap->ops->softreset; 2083 ata_reset_fn_t hardreset = ap->ops->hardreset; 2084 struct ata_queued_cmd *qc; 2085 unsigned long flags; 2086 int thaw = 0; 2087 2088 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2089 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2090 qc = NULL; 2091 2092 /* reset PIO HSM and stop DMA engine */ 2093 spin_lock_irqsave(ap->lock, flags); 2094 2095 ap->hsm_task_state = HSM_ST_IDLE; 2096 2097 if (ap->ioaddr.bmdma_addr && 2098 qc && (qc->tf.protocol == ATA_PROT_DMA || 2099 qc->tf.protocol == ATAPI_PROT_DMA)) { 2100 u8 host_stat; 2101 2102 host_stat = ap->ops->bmdma_status(ap); 2103 2104 /* BMDMA controllers indicate host bus error by 2105 * setting DMA_ERR bit and timing out. As it wasn't 2106 * really a timeout event, adjust error mask and 2107 * cancel frozen state. 2108 */ 2109 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2110 qc->err_mask = AC_ERR_HOST_BUS; 2111 thaw = 1; 2112 } 2113 2114 ap->ops->bmdma_stop(qc); 2115 } 2116 2117 ata_sff_sync(ap); /* FIXME: We don't need this */ 2118 ap->ops->sff_check_status(ap); 2119 ap->ops->sff_irq_clear(ap); 2120 2121 spin_unlock_irqrestore(ap->lock, flags); 2122 2123 if (thaw) 2124 ata_eh_thaw_port(ap); 2125 2126 /* PIO and DMA engines have been stopped, perform recovery */ 2127 2128 /* Ignore ata_sff_softreset if ctl isn't accessible and 2129 * built-in hardresets if SCR access isn't available. 2130 */ 2131 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) 2132 softreset = NULL; 2133 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link)) 2134 hardreset = NULL; 2135 2136 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2137 ap->ops->postreset); 2138 } 2139 2140 /** 2141 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller 2142 * @qc: internal command to clean up 2143 * 2144 * LOCKING: 2145 * Kernel thread context (may sleep) 2146 */ 2147 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc) 2148 { 2149 if (qc->ap->ioaddr.bmdma_addr) 2150 ata_bmdma_stop(qc); 2151 } 2152 2153 /** 2154 * ata_sff_port_start - Set port up for dma. 2155 * @ap: Port to initialize 2156 * 2157 * Called just after data structures for each port are 2158 * initialized. Allocates space for PRD table if the device 2159 * is DMA capable SFF. 2160 * 2161 * May be used as the port_start() entry in ata_port_operations. 2162 * 2163 * LOCKING: 2164 * Inherited from caller. 2165 */ 2166 int ata_sff_port_start(struct ata_port *ap) 2167 { 2168 if (ap->ioaddr.bmdma_addr) 2169 return ata_port_start(ap); 2170 return 0; 2171 } 2172 2173 /** 2174 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2175 * @ioaddr: IO address structure to be initialized 2176 * 2177 * Utility function which initializes data_addr, error_addr, 2178 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2179 * device_addr, status_addr, and command_addr to standard offsets 2180 * relative to cmd_addr. 2181 * 2182 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2183 */ 2184 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2185 { 2186 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2187 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2188 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2189 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2190 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2191 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2192 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2193 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2194 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2195 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2196 } 2197 2198 unsigned long ata_bmdma_mode_filter(struct ata_device *adev, 2199 unsigned long xfer_mask) 2200 { 2201 /* Filter out DMA modes if the device has been configured by 2202 the BIOS as PIO only */ 2203 2204 if (adev->link->ap->ioaddr.bmdma_addr == NULL) 2205 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 2206 return xfer_mask; 2207 } 2208 2209 /** 2210 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2211 * @qc: Info associated with this ATA transaction. 2212 * 2213 * LOCKING: 2214 * spin_lock_irqsave(host lock) 2215 */ 2216 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2217 { 2218 struct ata_port *ap = qc->ap; 2219 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2220 u8 dmactl; 2221 2222 /* load PRD table addr. */ 2223 mb(); /* make sure PRD table writes are visible to controller */ 2224 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2225 2226 /* specify data direction, triple-check start bit is clear */ 2227 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2228 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2229 if (!rw) 2230 dmactl |= ATA_DMA_WR; 2231 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2232 2233 /* issue r/w command */ 2234 ap->ops->sff_exec_command(ap, &qc->tf); 2235 } 2236 2237 /** 2238 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2239 * @qc: Info associated with this ATA transaction. 2240 * 2241 * LOCKING: 2242 * spin_lock_irqsave(host lock) 2243 */ 2244 void ata_bmdma_start(struct ata_queued_cmd *qc) 2245 { 2246 struct ata_port *ap = qc->ap; 2247 u8 dmactl; 2248 2249 /* start host DMA transaction */ 2250 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2251 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2252 2253 /* Strictly, one may wish to issue an ioread8() here, to 2254 * flush the mmio write. However, control also passes 2255 * to the hardware at this point, and it will interrupt 2256 * us when we are to resume control. So, in effect, 2257 * we don't care when the mmio write flushes. 2258 * Further, a read of the DMA status register _immediately_ 2259 * following the write may not be what certain flaky hardware 2260 * is expected, so I think it is best to not add a readb() 2261 * without first all the MMIO ATA cards/mobos. 2262 * Or maybe I'm just being paranoid. 2263 * 2264 * FIXME: The posting of this write means I/O starts are 2265 * unneccessarily delayed for MMIO 2266 */ 2267 } 2268 2269 /** 2270 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2271 * @qc: Command we are ending DMA for 2272 * 2273 * Clears the ATA_DMA_START flag in the dma control register 2274 * 2275 * May be used as the bmdma_stop() entry in ata_port_operations. 2276 * 2277 * LOCKING: 2278 * spin_lock_irqsave(host lock) 2279 */ 2280 void ata_bmdma_stop(struct ata_queued_cmd *qc) 2281 { 2282 struct ata_port *ap = qc->ap; 2283 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2284 2285 /* clear start/stop bit */ 2286 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 2287 mmio + ATA_DMA_CMD); 2288 2289 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 2290 ata_sff_dma_pause(ap); 2291 } 2292 2293 /** 2294 * ata_bmdma_status - Read PCI IDE BMDMA status 2295 * @ap: Port associated with this ATA transaction. 2296 * 2297 * Read and return BMDMA status register. 2298 * 2299 * May be used as the bmdma_status() entry in ata_port_operations. 2300 * 2301 * LOCKING: 2302 * spin_lock_irqsave(host lock) 2303 */ 2304 u8 ata_bmdma_status(struct ata_port *ap) 2305 { 2306 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 2307 } 2308 2309 /** 2310 * ata_bus_reset - reset host port and associated ATA channel 2311 * @ap: port to reset 2312 * 2313 * This is typically the first time we actually start issuing 2314 * commands to the ATA channel. We wait for BSY to clear, then 2315 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 2316 * result. Determine what devices, if any, are on the channel 2317 * by looking at the device 0/1 error register. Look at the signature 2318 * stored in each device's taskfile registers, to determine if 2319 * the device is ATA or ATAPI. 2320 * 2321 * LOCKING: 2322 * PCI/etc. bus probe sem. 2323 * Obtains host lock. 2324 * 2325 * SIDE EFFECTS: 2326 * Sets ATA_FLAG_DISABLED if bus reset fails. 2327 * 2328 * DEPRECATED: 2329 * This function is only for drivers which still use old EH and 2330 * will be removed soon. 2331 */ 2332 void ata_bus_reset(struct ata_port *ap) 2333 { 2334 struct ata_device *device = ap->link.device; 2335 struct ata_ioports *ioaddr = &ap->ioaddr; 2336 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2337 u8 err; 2338 unsigned int dev0, dev1 = 0, devmask = 0; 2339 int rc; 2340 2341 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 2342 2343 /* determine if device 0/1 are present */ 2344 if (ap->flags & ATA_FLAG_SATA_RESET) 2345 dev0 = 1; 2346 else { 2347 dev0 = ata_devchk(ap, 0); 2348 if (slave_possible) 2349 dev1 = ata_devchk(ap, 1); 2350 } 2351 2352 if (dev0) 2353 devmask |= (1 << 0); 2354 if (dev1) 2355 devmask |= (1 << 1); 2356 2357 /* select device 0 again */ 2358 ap->ops->sff_dev_select(ap, 0); 2359 2360 /* issue bus reset */ 2361 if (ap->flags & ATA_FLAG_SRST) { 2362 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ); 2363 if (rc && rc != -ENODEV) 2364 goto err_out; 2365 } 2366 2367 /* 2368 * determine by signature whether we have ATA or ATAPI devices 2369 */ 2370 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err); 2371 if ((slave_possible) && (err != 0x81)) 2372 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err); 2373 2374 /* is double-select really necessary? */ 2375 if (device[1].class != ATA_DEV_NONE) 2376 ap->ops->sff_dev_select(ap, 1); 2377 if (device[0].class != ATA_DEV_NONE) 2378 ap->ops->sff_dev_select(ap, 0); 2379 2380 /* if no devices were detected, disable this port */ 2381 if ((device[0].class == ATA_DEV_NONE) && 2382 (device[1].class == ATA_DEV_NONE)) 2383 goto err_out; 2384 2385 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 2386 /* set up device control for ATA_FLAG_SATA_RESET */ 2387 iowrite8(ap->ctl, ioaddr->ctl_addr); 2388 } 2389 2390 DPRINTK("EXIT\n"); 2391 return; 2392 2393 err_out: 2394 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 2395 ata_port_disable(ap); 2396 2397 DPRINTK("EXIT\n"); 2398 } 2399 2400 #ifdef CONFIG_PCI 2401 2402 /** 2403 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 2404 * @pdev: PCI device 2405 * 2406 * Some PCI ATA devices report simplex mode but in fact can be told to 2407 * enter non simplex mode. This implements the necessary logic to 2408 * perform the task on such devices. Calling it on other devices will 2409 * have -undefined- behaviour. 2410 */ 2411 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 2412 { 2413 unsigned long bmdma = pci_resource_start(pdev, 4); 2414 u8 simplex; 2415 2416 if (bmdma == 0) 2417 return -ENOENT; 2418 2419 simplex = inb(bmdma + 0x02); 2420 outb(simplex & 0x60, bmdma + 0x02); 2421 simplex = inb(bmdma + 0x02); 2422 if (simplex & 0x80) 2423 return -EOPNOTSUPP; 2424 return 0; 2425 } 2426 2427 /** 2428 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 2429 * @host: target ATA host 2430 * 2431 * Acquire PCI BMDMA resources and initialize @host accordingly. 2432 * 2433 * LOCKING: 2434 * Inherited from calling layer (may sleep). 2435 * 2436 * RETURNS: 2437 * 0 on success, -errno otherwise. 2438 */ 2439 int ata_pci_bmdma_init(struct ata_host *host) 2440 { 2441 struct device *gdev = host->dev; 2442 struct pci_dev *pdev = to_pci_dev(gdev); 2443 int i, rc; 2444 2445 /* No BAR4 allocation: No DMA */ 2446 if (pci_resource_start(pdev, 4) == 0) 2447 return 0; 2448 2449 /* TODO: If we get no DMA mask we should fall back to PIO */ 2450 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 2451 if (rc) 2452 return rc; 2453 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 2454 if (rc) 2455 return rc; 2456 2457 /* request and iomap DMA region */ 2458 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 2459 if (rc) { 2460 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n"); 2461 return -ENOMEM; 2462 } 2463 host->iomap = pcim_iomap_table(pdev); 2464 2465 for (i = 0; i < 2; i++) { 2466 struct ata_port *ap = host->ports[i]; 2467 void __iomem *bmdma = host->iomap[4] + 8 * i; 2468 2469 if (ata_port_is_dummy(ap)) 2470 continue; 2471 2472 ap->ioaddr.bmdma_addr = bmdma; 2473 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 2474 (ioread8(bmdma + 2) & 0x80)) 2475 host->flags |= ATA_HOST_SIMPLEX; 2476 2477 ata_port_desc(ap, "bmdma 0x%llx", 2478 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 2479 } 2480 2481 return 0; 2482 } 2483 2484 static int ata_resources_present(struct pci_dev *pdev, int port) 2485 { 2486 int i; 2487 2488 /* Check the PCI resources for this channel are enabled */ 2489 port = port * 2; 2490 for (i = 0; i < 2; i ++) { 2491 if (pci_resource_start(pdev, port + i) == 0 || 2492 pci_resource_len(pdev, port + i) == 0) 2493 return 0; 2494 } 2495 return 1; 2496 } 2497 2498 /** 2499 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2500 * @host: target ATA host 2501 * 2502 * Acquire native PCI ATA resources for @host and initialize the 2503 * first two ports of @host accordingly. Ports marked dummy are 2504 * skipped and allocation failure makes the port dummy. 2505 * 2506 * Note that native PCI resources are valid even for legacy hosts 2507 * as we fix up pdev resources array early in boot, so this 2508 * function can be used for both native and legacy SFF hosts. 2509 * 2510 * LOCKING: 2511 * Inherited from calling layer (may sleep). 2512 * 2513 * RETURNS: 2514 * 0 if at least one port is initialized, -ENODEV if no port is 2515 * available. 2516 */ 2517 int ata_pci_sff_init_host(struct ata_host *host) 2518 { 2519 struct device *gdev = host->dev; 2520 struct pci_dev *pdev = to_pci_dev(gdev); 2521 unsigned int mask = 0; 2522 int i, rc; 2523 2524 /* request, iomap BARs and init port addresses accordingly */ 2525 for (i = 0; i < 2; i++) { 2526 struct ata_port *ap = host->ports[i]; 2527 int base = i * 2; 2528 void __iomem * const *iomap; 2529 2530 if (ata_port_is_dummy(ap)) 2531 continue; 2532 2533 /* Discard disabled ports. Some controllers show 2534 * their unused channels this way. Disabled ports are 2535 * made dummy. 2536 */ 2537 if (!ata_resources_present(pdev, i)) { 2538 ap->ops = &ata_dummy_port_ops; 2539 continue; 2540 } 2541 2542 rc = pcim_iomap_regions(pdev, 0x3 << base, 2543 dev_driver_string(gdev)); 2544 if (rc) { 2545 dev_printk(KERN_WARNING, gdev, 2546 "failed to request/iomap BARs for port %d " 2547 "(errno=%d)\n", i, rc); 2548 if (rc == -EBUSY) 2549 pcim_pin_device(pdev); 2550 ap->ops = &ata_dummy_port_ops; 2551 continue; 2552 } 2553 host->iomap = iomap = pcim_iomap_table(pdev); 2554 2555 ap->ioaddr.cmd_addr = iomap[base]; 2556 ap->ioaddr.altstatus_addr = 2557 ap->ioaddr.ctl_addr = (void __iomem *) 2558 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2559 ata_sff_std_ports(&ap->ioaddr); 2560 2561 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2562 (unsigned long long)pci_resource_start(pdev, base), 2563 (unsigned long long)pci_resource_start(pdev, base + 1)); 2564 2565 mask |= 1 << i; 2566 } 2567 2568 if (!mask) { 2569 dev_printk(KERN_ERR, gdev, "no available native port\n"); 2570 return -ENODEV; 2571 } 2572 2573 return 0; 2574 } 2575 2576 /** 2577 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host 2578 * @pdev: target PCI device 2579 * @ppi: array of port_info, must be enough for two ports 2580 * @r_host: out argument for the initialized ATA host 2581 * 2582 * Helper to allocate ATA host for @pdev, acquire all native PCI 2583 * resources and initialize it accordingly in one go. 2584 * 2585 * LOCKING: 2586 * Inherited from calling layer (may sleep). 2587 * 2588 * RETURNS: 2589 * 0 on success, -errno otherwise. 2590 */ 2591 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2592 const struct ata_port_info * const * ppi, 2593 struct ata_host **r_host) 2594 { 2595 struct ata_host *host; 2596 int rc; 2597 2598 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2599 return -ENOMEM; 2600 2601 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2602 if (!host) { 2603 dev_printk(KERN_ERR, &pdev->dev, 2604 "failed to allocate ATA host\n"); 2605 rc = -ENOMEM; 2606 goto err_out; 2607 } 2608 2609 rc = ata_pci_sff_init_host(host); 2610 if (rc) 2611 goto err_out; 2612 2613 /* init DMA related stuff */ 2614 rc = ata_pci_bmdma_init(host); 2615 if (rc) 2616 goto err_bmdma; 2617 2618 devres_remove_group(&pdev->dev, NULL); 2619 *r_host = host; 2620 return 0; 2621 2622 err_bmdma: 2623 /* This is necessary because PCI and iomap resources are 2624 * merged and releasing the top group won't release the 2625 * acquired resources if some of those have been acquired 2626 * before entering this function. 2627 */ 2628 pcim_iounmap_regions(pdev, 0xf); 2629 err_out: 2630 devres_release_group(&pdev->dev, NULL); 2631 return rc; 2632 } 2633 2634 /** 2635 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2636 * @host: target SFF ATA host 2637 * @irq_handler: irq_handler used when requesting IRQ(s) 2638 * @sht: scsi_host_template to use when registering the host 2639 * 2640 * This is the counterpart of ata_host_activate() for SFF ATA 2641 * hosts. This separate helper is necessary because SFF hosts 2642 * use two separate interrupts in legacy mode. 2643 * 2644 * LOCKING: 2645 * Inherited from calling layer (may sleep). 2646 * 2647 * RETURNS: 2648 * 0 on success, -errno otherwise. 2649 */ 2650 int ata_pci_sff_activate_host(struct ata_host *host, 2651 irq_handler_t irq_handler, 2652 struct scsi_host_template *sht) 2653 { 2654 struct device *dev = host->dev; 2655 struct pci_dev *pdev = to_pci_dev(dev); 2656 const char *drv_name = dev_driver_string(host->dev); 2657 int legacy_mode = 0, rc; 2658 2659 rc = ata_host_start(host); 2660 if (rc) 2661 return rc; 2662 2663 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2664 u8 tmp8, mask; 2665 2666 /* TODO: What if one channel is in native mode ... */ 2667 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2668 mask = (1 << 2) | (1 << 0); 2669 if ((tmp8 & mask) != mask) 2670 legacy_mode = 1; 2671 #if defined(CONFIG_NO_ATA_LEGACY) 2672 /* Some platforms with PCI limits cannot address compat 2673 port space. In that case we punt if their firmware has 2674 left a device in compatibility mode */ 2675 if (legacy_mode) { 2676 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); 2677 return -EOPNOTSUPP; 2678 } 2679 #endif 2680 } 2681 2682 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2683 return -ENOMEM; 2684 2685 if (!legacy_mode && pdev->irq) { 2686 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2687 IRQF_SHARED, drv_name, host); 2688 if (rc) 2689 goto out; 2690 2691 ata_port_desc(host->ports[0], "irq %d", pdev->irq); 2692 ata_port_desc(host->ports[1], "irq %d", pdev->irq); 2693 } else if (legacy_mode) { 2694 if (!ata_port_is_dummy(host->ports[0])) { 2695 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2696 irq_handler, IRQF_SHARED, 2697 drv_name, host); 2698 if (rc) 2699 goto out; 2700 2701 ata_port_desc(host->ports[0], "irq %d", 2702 ATA_PRIMARY_IRQ(pdev)); 2703 } 2704 2705 if (!ata_port_is_dummy(host->ports[1])) { 2706 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2707 irq_handler, IRQF_SHARED, 2708 drv_name, host); 2709 if (rc) 2710 goto out; 2711 2712 ata_port_desc(host->ports[1], "irq %d", 2713 ATA_SECONDARY_IRQ(pdev)); 2714 } 2715 } 2716 2717 rc = ata_host_register(host, sht); 2718 out: 2719 if (rc == 0) 2720 devres_remove_group(dev, NULL); 2721 else 2722 devres_release_group(dev, NULL); 2723 2724 return rc; 2725 } 2726 2727 /** 2728 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller 2729 * @pdev: Controller to be initialized 2730 * @ppi: array of port_info, must be enough for two ports 2731 * @sht: scsi_host_template to use when registering the host 2732 * @host_priv: host private_data 2733 * 2734 * This is a helper function which can be called from a driver's 2735 * xxx_init_one() probe function if the hardware uses traditional 2736 * IDE taskfile registers. 2737 * 2738 * This function calls pci_enable_device(), reserves its register 2739 * regions, sets the dma mask, enables bus master mode, and calls 2740 * ata_device_add() 2741 * 2742 * ASSUMPTION: 2743 * Nobody makes a single channel controller that appears solely as 2744 * the secondary legacy port on PCI. 2745 * 2746 * LOCKING: 2747 * Inherited from PCI layer (may sleep). 2748 * 2749 * RETURNS: 2750 * Zero on success, negative on errno-based value on error. 2751 */ 2752 int ata_pci_sff_init_one(struct pci_dev *pdev, 2753 const struct ata_port_info * const * ppi, 2754 struct scsi_host_template *sht, void *host_priv) 2755 { 2756 struct device *dev = &pdev->dev; 2757 const struct ata_port_info *pi = NULL; 2758 struct ata_host *host = NULL; 2759 int i, rc; 2760 2761 DPRINTK("ENTER\n"); 2762 2763 /* look up the first valid port_info */ 2764 for (i = 0; i < 2 && ppi[i]; i++) { 2765 if (ppi[i]->port_ops != &ata_dummy_port_ops) { 2766 pi = ppi[i]; 2767 break; 2768 } 2769 } 2770 2771 if (!pi) { 2772 dev_printk(KERN_ERR, &pdev->dev, 2773 "no valid port_info specified\n"); 2774 return -EINVAL; 2775 } 2776 2777 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2778 return -ENOMEM; 2779 2780 rc = pcim_enable_device(pdev); 2781 if (rc) 2782 goto out; 2783 2784 /* prepare and activate SFF host */ 2785 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2786 if (rc) 2787 goto out; 2788 host->private_data = host_priv; 2789 2790 pci_set_master(pdev); 2791 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2792 out: 2793 if (rc == 0) 2794 devres_remove_group(&pdev->dev, NULL); 2795 else 2796 devres_release_group(&pdev->dev, NULL); 2797 2798 return rc; 2799 } 2800 2801 #endif /* CONFIG_PCI */ 2802 2803 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 2804 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2805 EXPORT_SYMBOL_GPL(ata_sff_qc_prep); 2806 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep); 2807 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 2808 EXPORT_SYMBOL_GPL(ata_sff_check_status); 2809 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 2810 EXPORT_SYMBOL_GPL(ata_sff_pause); 2811 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 2812 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 2813 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 2814 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 2815 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 2816 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 2817 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 2818 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 2819 EXPORT_SYMBOL_GPL(ata_sff_irq_clear); 2820 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 2821 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 2822 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 2823 EXPORT_SYMBOL_GPL(ata_sff_host_intr); 2824 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 2825 EXPORT_SYMBOL_GPL(ata_sff_freeze); 2826 EXPORT_SYMBOL_GPL(ata_sff_thaw); 2827 EXPORT_SYMBOL_GPL(ata_sff_prereset); 2828 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 2829 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2830 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2831 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2832 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2833 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2834 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd); 2835 EXPORT_SYMBOL_GPL(ata_sff_port_start); 2836 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2837 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter); 2838 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2839 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2840 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 2841 EXPORT_SYMBOL_GPL(ata_bmdma_status); 2842 EXPORT_SYMBOL_GPL(ata_bus_reset); 2843 #ifdef CONFIG_PCI 2844 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 2845 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 2846 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2847 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2848 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2849 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2850 #endif /* CONFIG_PCI */ 2851