xref: /openbmc/linux/drivers/ata/libata-sff.c (revision 732a675a)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 #include <linux/highmem.h>
39 
40 #include "libata.h"
41 
42 const struct ata_port_operations ata_sff_port_ops = {
43 	.inherits		= &ata_base_port_ops,
44 
45 	.qc_prep		= ata_sff_qc_prep,
46 	.qc_issue		= ata_sff_qc_issue,
47 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
48 
49 	.freeze			= ata_sff_freeze,
50 	.thaw			= ata_sff_thaw,
51 	.prereset		= ata_sff_prereset,
52 	.softreset		= ata_sff_softreset,
53 	.hardreset		= sata_sff_hardreset,
54 	.postreset		= ata_sff_postreset,
55 	.error_handler		= ata_sff_error_handler,
56 	.post_internal_cmd	= ata_sff_post_internal_cmd,
57 
58 	.sff_dev_select		= ata_sff_dev_select,
59 	.sff_check_status	= ata_sff_check_status,
60 	.sff_tf_load		= ata_sff_tf_load,
61 	.sff_tf_read		= ata_sff_tf_read,
62 	.sff_exec_command	= ata_sff_exec_command,
63 	.sff_data_xfer		= ata_sff_data_xfer,
64 	.sff_irq_on		= ata_sff_irq_on,
65 	.sff_irq_clear		= ata_sff_irq_clear,
66 
67 	.port_start		= ata_sff_port_start,
68 };
69 
70 const struct ata_port_operations ata_bmdma_port_ops = {
71 	.inherits		= &ata_sff_port_ops,
72 
73 	.mode_filter		= ata_bmdma_mode_filter,
74 
75 	.bmdma_setup		= ata_bmdma_setup,
76 	.bmdma_start		= ata_bmdma_start,
77 	.bmdma_stop		= ata_bmdma_stop,
78 	.bmdma_status		= ata_bmdma_status,
79 };
80 
81 /**
82  *	ata_fill_sg - Fill PCI IDE PRD table
83  *	@qc: Metadata associated with taskfile to be transferred
84  *
85  *	Fill PCI IDE PRD (scatter-gather) table with segments
86  *	associated with the current disk command.
87  *
88  *	LOCKING:
89  *	spin_lock_irqsave(host lock)
90  *
91  */
92 static void ata_fill_sg(struct ata_queued_cmd *qc)
93 {
94 	struct ata_port *ap = qc->ap;
95 	struct scatterlist *sg;
96 	unsigned int si, pi;
97 
98 	pi = 0;
99 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
100 		u32 addr, offset;
101 		u32 sg_len, len;
102 
103 		/* determine if physical DMA addr spans 64K boundary.
104 		 * Note h/w doesn't support 64-bit, so we unconditionally
105 		 * truncate dma_addr_t to u32.
106 		 */
107 		addr = (u32) sg_dma_address(sg);
108 		sg_len = sg_dma_len(sg);
109 
110 		while (sg_len) {
111 			offset = addr & 0xffff;
112 			len = sg_len;
113 			if ((offset + sg_len) > 0x10000)
114 				len = 0x10000 - offset;
115 
116 			ap->prd[pi].addr = cpu_to_le32(addr);
117 			ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
118 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
119 
120 			pi++;
121 			sg_len -= len;
122 			addr += len;
123 		}
124 	}
125 
126 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
127 }
128 
129 /**
130  *	ata_fill_sg_dumb - Fill PCI IDE PRD table
131  *	@qc: Metadata associated with taskfile to be transferred
132  *
133  *	Fill PCI IDE PRD (scatter-gather) table with segments
134  *	associated with the current disk command. Perform the fill
135  *	so that we avoid writing any length 64K records for
136  *	controllers that don't follow the spec.
137  *
138  *	LOCKING:
139  *	spin_lock_irqsave(host lock)
140  *
141  */
142 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
143 {
144 	struct ata_port *ap = qc->ap;
145 	struct scatterlist *sg;
146 	unsigned int si, pi;
147 
148 	pi = 0;
149 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
150 		u32 addr, offset;
151 		u32 sg_len, len, blen;
152 
153 		/* determine if physical DMA addr spans 64K boundary.
154 		 * Note h/w doesn't support 64-bit, so we unconditionally
155 		 * truncate dma_addr_t to u32.
156 		 */
157 		addr = (u32) sg_dma_address(sg);
158 		sg_len = sg_dma_len(sg);
159 
160 		while (sg_len) {
161 			offset = addr & 0xffff;
162 			len = sg_len;
163 			if ((offset + sg_len) > 0x10000)
164 				len = 0x10000 - offset;
165 
166 			blen = len & 0xffff;
167 			ap->prd[pi].addr = cpu_to_le32(addr);
168 			if (blen == 0) {
169 			   /* Some PATA chipsets like the CS5530 can't
170 			      cope with 0x0000 meaning 64K as the spec says */
171 				ap->prd[pi].flags_len = cpu_to_le32(0x8000);
172 				blen = 0x8000;
173 				ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
174 			}
175 			ap->prd[pi].flags_len = cpu_to_le32(blen);
176 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
177 
178 			pi++;
179 			sg_len -= len;
180 			addr += len;
181 		}
182 	}
183 
184 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
185 }
186 
187 /**
188  *	ata_sff_qc_prep - Prepare taskfile for submission
189  *	@qc: Metadata associated with taskfile to be prepared
190  *
191  *	Prepare ATA taskfile for submission.
192  *
193  *	LOCKING:
194  *	spin_lock_irqsave(host lock)
195  */
196 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
197 {
198 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
199 		return;
200 
201 	ata_fill_sg(qc);
202 }
203 
204 /**
205  *	ata_sff_dumb_qc_prep - Prepare taskfile for submission
206  *	@qc: Metadata associated with taskfile to be prepared
207  *
208  *	Prepare ATA taskfile for submission.
209  *
210  *	LOCKING:
211  *	spin_lock_irqsave(host lock)
212  */
213 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
214 {
215 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
216 		return;
217 
218 	ata_fill_sg_dumb(qc);
219 }
220 
221 /**
222  *	ata_sff_check_status - Read device status reg & clear interrupt
223  *	@ap: port where the device is
224  *
225  *	Reads ATA taskfile status register for currently-selected device
226  *	and return its value. This also clears pending interrupts
227  *      from this device
228  *
229  *	LOCKING:
230  *	Inherited from caller.
231  */
232 u8 ata_sff_check_status(struct ata_port *ap)
233 {
234 	return ioread8(ap->ioaddr.status_addr);
235 }
236 
237 /**
238  *	ata_sff_altstatus - Read device alternate status reg
239  *	@ap: port where the device is
240  *
241  *	Reads ATA taskfile alternate status register for
242  *	currently-selected device and return its value.
243  *
244  *	Note: may NOT be used as the check_altstatus() entry in
245  *	ata_port_operations.
246  *
247  *	LOCKING:
248  *	Inherited from caller.
249  */
250 static u8 ata_sff_altstatus(struct ata_port *ap)
251 {
252 	if (ap->ops->sff_check_altstatus)
253 		return ap->ops->sff_check_altstatus(ap);
254 
255 	return ioread8(ap->ioaddr.altstatus_addr);
256 }
257 
258 /**
259  *	ata_sff_irq_status - Check if the device is busy
260  *	@ap: port where the device is
261  *
262  *	Determine if the port is currently busy. Uses altstatus
263  *	if available in order to avoid clearing shared IRQ status
264  *	when finding an IRQ source. Non ctl capable devices don't
265  *	share interrupt lines fortunately for us.
266  *
267  *	LOCKING:
268  *	Inherited from caller.
269  */
270 static u8 ata_sff_irq_status(struct ata_port *ap)
271 {
272 	u8 status;
273 
274 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
275 		status = ata_sff_altstatus(ap);
276 		/* Not us: We are busy */
277 		if (status & ATA_BUSY)
278 		    	return status;
279 	}
280 	/* Clear INTRQ latch */
281 	status = ap->ops->sff_check_status(ap);
282 	return status;
283 }
284 
285 /**
286  *	ata_sff_sync - Flush writes
287  *	@ap: Port to wait for.
288  *
289  *	CAUTION:
290  *	If we have an mmio device with no ctl and no altstatus
291  *	method this will fail. No such devices are known to exist.
292  *
293  *	LOCKING:
294  *	Inherited from caller.
295  */
296 
297 static void ata_sff_sync(struct ata_port *ap)
298 {
299 	if (ap->ops->sff_check_altstatus)
300 		ap->ops->sff_check_altstatus(ap);
301 	else if (ap->ioaddr.altstatus_addr)
302 		ioread8(ap->ioaddr.altstatus_addr);
303 }
304 
305 /**
306  *	ata_sff_pause		-	Flush writes and wait 400nS
307  *	@ap: Port to pause for.
308  *
309  *	CAUTION:
310  *	If we have an mmio device with no ctl and no altstatus
311  *	method this will fail. No such devices are known to exist.
312  *
313  *	LOCKING:
314  *	Inherited from caller.
315  */
316 
317 void ata_sff_pause(struct ata_port *ap)
318 {
319 	ata_sff_sync(ap);
320 	ndelay(400);
321 }
322 
323 /**
324  *	ata_sff_dma_pause	-	Pause before commencing DMA
325  *	@ap: Port to pause for.
326  *
327  *	Perform I/O fencing and ensure sufficient cycle delays occur
328  *	for the HDMA1:0 transition
329  */
330 
331 void ata_sff_dma_pause(struct ata_port *ap)
332 {
333 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
334 		/* An altstatus read will cause the needed delay without
335 		   messing up the IRQ status */
336 		ata_sff_altstatus(ap);
337 		return;
338 	}
339 	/* There are no DMA controllers without ctl. BUG here to ensure
340 	   we never violate the HDMA1:0 transition timing and risk
341 	   corruption. */
342 	BUG();
343 }
344 
345 /**
346  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
347  *	@ap: port containing status register to be polled
348  *	@tmout_pat: impatience timeout
349  *	@tmout: overall timeout
350  *
351  *	Sleep until ATA Status register bit BSY clears,
352  *	or a timeout occurs.
353  *
354  *	LOCKING:
355  *	Kernel thread context (may sleep).
356  *
357  *	RETURNS:
358  *	0 on success, -errno otherwise.
359  */
360 int ata_sff_busy_sleep(struct ata_port *ap,
361 		       unsigned long tmout_pat, unsigned long tmout)
362 {
363 	unsigned long timer_start, timeout;
364 	u8 status;
365 
366 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
367 	timer_start = jiffies;
368 	timeout = timer_start + tmout_pat;
369 	while (status != 0xff && (status & ATA_BUSY) &&
370 	       time_before(jiffies, timeout)) {
371 		msleep(50);
372 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
373 	}
374 
375 	if (status != 0xff && (status & ATA_BUSY))
376 		ata_port_printk(ap, KERN_WARNING,
377 				"port is slow to respond, please be patient "
378 				"(Status 0x%x)\n", status);
379 
380 	timeout = timer_start + tmout;
381 	while (status != 0xff && (status & ATA_BUSY) &&
382 	       time_before(jiffies, timeout)) {
383 		msleep(50);
384 		status = ap->ops->sff_check_status(ap);
385 	}
386 
387 	if (status == 0xff)
388 		return -ENODEV;
389 
390 	if (status & ATA_BUSY) {
391 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
392 				"(%lu secs, Status 0x%x)\n",
393 				tmout / HZ, status);
394 		return -EBUSY;
395 	}
396 
397 	return 0;
398 }
399 
400 static int ata_sff_check_ready(struct ata_link *link)
401 {
402 	u8 status = link->ap->ops->sff_check_status(link->ap);
403 
404 	return ata_check_ready(status);
405 }
406 
407 /**
408  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
409  *	@link: SFF link to wait ready status for
410  *	@deadline: deadline jiffies for the operation
411  *
412  *	Sleep until ATA Status register bit BSY clears, or timeout
413  *	occurs.
414  *
415  *	LOCKING:
416  *	Kernel thread context (may sleep).
417  *
418  *	RETURNS:
419  *	0 on success, -errno otherwise.
420  */
421 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
422 {
423 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
424 }
425 
426 /**
427  *	ata_sff_dev_select - Select device 0/1 on ATA bus
428  *	@ap: ATA channel to manipulate
429  *	@device: ATA device (numbered from zero) to select
430  *
431  *	Use the method defined in the ATA specification to
432  *	make either device 0, or device 1, active on the
433  *	ATA channel.  Works with both PIO and MMIO.
434  *
435  *	May be used as the dev_select() entry in ata_port_operations.
436  *
437  *	LOCKING:
438  *	caller.
439  */
440 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
441 {
442 	u8 tmp;
443 
444 	if (device == 0)
445 		tmp = ATA_DEVICE_OBS;
446 	else
447 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
448 
449 	iowrite8(tmp, ap->ioaddr.device_addr);
450 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
451 }
452 
453 /**
454  *	ata_dev_select - Select device 0/1 on ATA bus
455  *	@ap: ATA channel to manipulate
456  *	@device: ATA device (numbered from zero) to select
457  *	@wait: non-zero to wait for Status register BSY bit to clear
458  *	@can_sleep: non-zero if context allows sleeping
459  *
460  *	Use the method defined in the ATA specification to
461  *	make either device 0, or device 1, active on the
462  *	ATA channel.
463  *
464  *	This is a high-level version of ata_sff_dev_select(), which
465  *	additionally provides the services of inserting the proper
466  *	pauses and status polling, where needed.
467  *
468  *	LOCKING:
469  *	caller.
470  */
471 void ata_dev_select(struct ata_port *ap, unsigned int device,
472 			   unsigned int wait, unsigned int can_sleep)
473 {
474 	if (ata_msg_probe(ap))
475 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
476 				"device %u, wait %u\n", device, wait);
477 
478 	if (wait)
479 		ata_wait_idle(ap);
480 
481 	ap->ops->sff_dev_select(ap, device);
482 
483 	if (wait) {
484 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
485 			msleep(150);
486 		ata_wait_idle(ap);
487 	}
488 }
489 
490 /**
491  *	ata_sff_irq_on - Enable interrupts on a port.
492  *	@ap: Port on which interrupts are enabled.
493  *
494  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
495  *	wait for idle, clear any pending interrupts.
496  *
497  *	LOCKING:
498  *	Inherited from caller.
499  */
500 u8 ata_sff_irq_on(struct ata_port *ap)
501 {
502 	struct ata_ioports *ioaddr = &ap->ioaddr;
503 	u8 tmp;
504 
505 	ap->ctl &= ~ATA_NIEN;
506 	ap->last_ctl = ap->ctl;
507 
508 	if (ioaddr->ctl_addr)
509 		iowrite8(ap->ctl, ioaddr->ctl_addr);
510 	tmp = ata_wait_idle(ap);
511 
512 	ap->ops->sff_irq_clear(ap);
513 
514 	return tmp;
515 }
516 
517 /**
518  *	ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
519  *	@ap: Port associated with this ATA transaction.
520  *
521  *	Clear interrupt and error flags in DMA status register.
522  *
523  *	May be used as the irq_clear() entry in ata_port_operations.
524  *
525  *	LOCKING:
526  *	spin_lock_irqsave(host lock)
527  */
528 void ata_sff_irq_clear(struct ata_port *ap)
529 {
530 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
531 
532 	if (!mmio)
533 		return;
534 
535 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
536 }
537 
538 /**
539  *	ata_sff_tf_load - send taskfile registers to host controller
540  *	@ap: Port to which output is sent
541  *	@tf: ATA taskfile register set
542  *
543  *	Outputs ATA taskfile to standard ATA host controller.
544  *
545  *	LOCKING:
546  *	Inherited from caller.
547  */
548 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
549 {
550 	struct ata_ioports *ioaddr = &ap->ioaddr;
551 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
552 
553 	if (tf->ctl != ap->last_ctl) {
554 		if (ioaddr->ctl_addr)
555 			iowrite8(tf->ctl, ioaddr->ctl_addr);
556 		ap->last_ctl = tf->ctl;
557 		ata_wait_idle(ap);
558 	}
559 
560 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
561 		WARN_ON(!ioaddr->ctl_addr);
562 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
563 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
564 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
565 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
566 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
567 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
568 			tf->hob_feature,
569 			tf->hob_nsect,
570 			tf->hob_lbal,
571 			tf->hob_lbam,
572 			tf->hob_lbah);
573 	}
574 
575 	if (is_addr) {
576 		iowrite8(tf->feature, ioaddr->feature_addr);
577 		iowrite8(tf->nsect, ioaddr->nsect_addr);
578 		iowrite8(tf->lbal, ioaddr->lbal_addr);
579 		iowrite8(tf->lbam, ioaddr->lbam_addr);
580 		iowrite8(tf->lbah, ioaddr->lbah_addr);
581 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
582 			tf->feature,
583 			tf->nsect,
584 			tf->lbal,
585 			tf->lbam,
586 			tf->lbah);
587 	}
588 
589 	if (tf->flags & ATA_TFLAG_DEVICE) {
590 		iowrite8(tf->device, ioaddr->device_addr);
591 		VPRINTK("device 0x%X\n", tf->device);
592 	}
593 
594 	ata_wait_idle(ap);
595 }
596 
597 /**
598  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
599  *	@ap: Port from which input is read
600  *	@tf: ATA taskfile register set for storing input
601  *
602  *	Reads ATA taskfile registers for currently-selected device
603  *	into @tf. Assumes the device has a fully SFF compliant task file
604  *	layout and behaviour. If you device does not (eg has a different
605  *	status method) then you will need to provide a replacement tf_read
606  *
607  *	LOCKING:
608  *	Inherited from caller.
609  */
610 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
611 {
612 	struct ata_ioports *ioaddr = &ap->ioaddr;
613 
614 	tf->command = ata_sff_check_status(ap);
615 	tf->feature = ioread8(ioaddr->error_addr);
616 	tf->nsect = ioread8(ioaddr->nsect_addr);
617 	tf->lbal = ioread8(ioaddr->lbal_addr);
618 	tf->lbam = ioread8(ioaddr->lbam_addr);
619 	tf->lbah = ioread8(ioaddr->lbah_addr);
620 	tf->device = ioread8(ioaddr->device_addr);
621 
622 	if (tf->flags & ATA_TFLAG_LBA48) {
623 		if (likely(ioaddr->ctl_addr)) {
624 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
625 			tf->hob_feature = ioread8(ioaddr->error_addr);
626 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
627 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
628 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
629 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
630 			iowrite8(tf->ctl, ioaddr->ctl_addr);
631 			ap->last_ctl = tf->ctl;
632 		} else
633 			WARN_ON(1);
634 	}
635 }
636 
637 /**
638  *	ata_sff_exec_command - issue ATA command to host controller
639  *	@ap: port to which command is being issued
640  *	@tf: ATA taskfile register set
641  *
642  *	Issues ATA command, with proper synchronization with interrupt
643  *	handler / other threads.
644  *
645  *	LOCKING:
646  *	spin_lock_irqsave(host lock)
647  */
648 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
649 {
650 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
651 
652 	iowrite8(tf->command, ap->ioaddr.command_addr);
653 	ata_sff_pause(ap);
654 }
655 
656 /**
657  *	ata_tf_to_host - issue ATA taskfile to host controller
658  *	@ap: port to which command is being issued
659  *	@tf: ATA taskfile register set
660  *
661  *	Issues ATA taskfile register set to ATA host controller,
662  *	with proper synchronization with interrupt handler and
663  *	other threads.
664  *
665  *	LOCKING:
666  *	spin_lock_irqsave(host lock)
667  */
668 static inline void ata_tf_to_host(struct ata_port *ap,
669 				  const struct ata_taskfile *tf)
670 {
671 	ap->ops->sff_tf_load(ap, tf);
672 	ap->ops->sff_exec_command(ap, tf);
673 }
674 
675 /**
676  *	ata_sff_data_xfer - Transfer data by PIO
677  *	@dev: device to target
678  *	@buf: data buffer
679  *	@buflen: buffer length
680  *	@rw: read/write
681  *
682  *	Transfer data from/to the device data register by PIO.
683  *
684  *	LOCKING:
685  *	Inherited from caller.
686  *
687  *	RETURNS:
688  *	Bytes consumed.
689  */
690 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
691 			       unsigned int buflen, int rw)
692 {
693 	struct ata_port *ap = dev->link->ap;
694 	void __iomem *data_addr = ap->ioaddr.data_addr;
695 	unsigned int words = buflen >> 1;
696 
697 	/* Transfer multiple of 2 bytes */
698 	if (rw == READ)
699 		ioread16_rep(data_addr, buf, words);
700 	else
701 		iowrite16_rep(data_addr, buf, words);
702 
703 	/* Transfer trailing 1 byte, if any. */
704 	if (unlikely(buflen & 0x01)) {
705 		__le16 align_buf[1] = { 0 };
706 		unsigned char *trailing_buf = buf + buflen - 1;
707 
708 		if (rw == READ) {
709 			align_buf[0] = cpu_to_le16(ioread16(data_addr));
710 			memcpy(trailing_buf, align_buf, 1);
711 		} else {
712 			memcpy(align_buf, trailing_buf, 1);
713 			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
714 		}
715 		words++;
716 	}
717 
718 	return words << 1;
719 }
720 
721 /**
722  *	ata_sff_data_xfer_noirq - Transfer data by PIO
723  *	@dev: device to target
724  *	@buf: data buffer
725  *	@buflen: buffer length
726  *	@rw: read/write
727  *
728  *	Transfer data from/to the device data register by PIO. Do the
729  *	transfer with interrupts disabled.
730  *
731  *	LOCKING:
732  *	Inherited from caller.
733  *
734  *	RETURNS:
735  *	Bytes consumed.
736  */
737 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
738 				     unsigned int buflen, int rw)
739 {
740 	unsigned long flags;
741 	unsigned int consumed;
742 
743 	local_irq_save(flags);
744 	consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
745 	local_irq_restore(flags);
746 
747 	return consumed;
748 }
749 
750 /**
751  *	ata_pio_sector - Transfer a sector of data.
752  *	@qc: Command on going
753  *
754  *	Transfer qc->sect_size bytes of data from/to the ATA device.
755  *
756  *	LOCKING:
757  *	Inherited from caller.
758  */
759 static void ata_pio_sector(struct ata_queued_cmd *qc)
760 {
761 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
762 	struct ata_port *ap = qc->ap;
763 	struct page *page;
764 	unsigned int offset;
765 	unsigned char *buf;
766 
767 	if (qc->curbytes == qc->nbytes - qc->sect_size)
768 		ap->hsm_task_state = HSM_ST_LAST;
769 
770 	page = sg_page(qc->cursg);
771 	offset = qc->cursg->offset + qc->cursg_ofs;
772 
773 	/* get the current page and offset */
774 	page = nth_page(page, (offset >> PAGE_SHIFT));
775 	offset %= PAGE_SIZE;
776 
777 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
778 
779 	if (PageHighMem(page)) {
780 		unsigned long flags;
781 
782 		/* FIXME: use a bounce buffer */
783 		local_irq_save(flags);
784 		buf = kmap_atomic(page, KM_IRQ0);
785 
786 		/* do the actual data transfer */
787 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
788 				       do_write);
789 
790 		kunmap_atomic(buf, KM_IRQ0);
791 		local_irq_restore(flags);
792 	} else {
793 		buf = page_address(page);
794 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
795 				       do_write);
796 	}
797 
798 	qc->curbytes += qc->sect_size;
799 	qc->cursg_ofs += qc->sect_size;
800 
801 	if (qc->cursg_ofs == qc->cursg->length) {
802 		qc->cursg = sg_next(qc->cursg);
803 		qc->cursg_ofs = 0;
804 	}
805 }
806 
807 /**
808  *	ata_pio_sectors - Transfer one or many sectors.
809  *	@qc: Command on going
810  *
811  *	Transfer one or many sectors of data from/to the
812  *	ATA device for the DRQ request.
813  *
814  *	LOCKING:
815  *	Inherited from caller.
816  */
817 static void ata_pio_sectors(struct ata_queued_cmd *qc)
818 {
819 	if (is_multi_taskfile(&qc->tf)) {
820 		/* READ/WRITE MULTIPLE */
821 		unsigned int nsect;
822 
823 		WARN_ON(qc->dev->multi_count == 0);
824 
825 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
826 			    qc->dev->multi_count);
827 		while (nsect--)
828 			ata_pio_sector(qc);
829 	} else
830 		ata_pio_sector(qc);
831 
832 	ata_sff_sync(qc->ap); /* flush */
833 }
834 
835 /**
836  *	atapi_send_cdb - Write CDB bytes to hardware
837  *	@ap: Port to which ATAPI device is attached.
838  *	@qc: Taskfile currently active
839  *
840  *	When device has indicated its readiness to accept
841  *	a CDB, this function is called.  Send the CDB.
842  *
843  *	LOCKING:
844  *	caller.
845  */
846 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
847 {
848 	/* send SCSI cdb */
849 	DPRINTK("send cdb\n");
850 	WARN_ON(qc->dev->cdb_len < 12);
851 
852 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
853 	ata_sff_sync(ap);
854 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
855 	   or is bmdma_start guaranteed to do it ? */
856 	switch (qc->tf.protocol) {
857 	case ATAPI_PROT_PIO:
858 		ap->hsm_task_state = HSM_ST;
859 		break;
860 	case ATAPI_PROT_NODATA:
861 		ap->hsm_task_state = HSM_ST_LAST;
862 		break;
863 	case ATAPI_PROT_DMA:
864 		ap->hsm_task_state = HSM_ST_LAST;
865 		/* initiate bmdma */
866 		ap->ops->bmdma_start(qc);
867 		break;
868 	}
869 }
870 
871 /**
872  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
873  *	@qc: Command on going
874  *	@bytes: number of bytes
875  *
876  *	Transfer Transfer data from/to the ATAPI device.
877  *
878  *	LOCKING:
879  *	Inherited from caller.
880  *
881  */
882 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
883 {
884 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
885 	struct ata_port *ap = qc->ap;
886 	struct ata_device *dev = qc->dev;
887 	struct ata_eh_info *ehi = &dev->link->eh_info;
888 	struct scatterlist *sg;
889 	struct page *page;
890 	unsigned char *buf;
891 	unsigned int offset, count, consumed;
892 
893 next_sg:
894 	sg = qc->cursg;
895 	if (unlikely(!sg)) {
896 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
897 				  "buf=%u cur=%u bytes=%u",
898 				  qc->nbytes, qc->curbytes, bytes);
899 		return -1;
900 	}
901 
902 	page = sg_page(sg);
903 	offset = sg->offset + qc->cursg_ofs;
904 
905 	/* get the current page and offset */
906 	page = nth_page(page, (offset >> PAGE_SHIFT));
907 	offset %= PAGE_SIZE;
908 
909 	/* don't overrun current sg */
910 	count = min(sg->length - qc->cursg_ofs, bytes);
911 
912 	/* don't cross page boundaries */
913 	count = min(count, (unsigned int)PAGE_SIZE - offset);
914 
915 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
916 
917 	if (PageHighMem(page)) {
918 		unsigned long flags;
919 
920 		/* FIXME: use bounce buffer */
921 		local_irq_save(flags);
922 		buf = kmap_atomic(page, KM_IRQ0);
923 
924 		/* do the actual data transfer */
925 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset, count, rw);
926 
927 		kunmap_atomic(buf, KM_IRQ0);
928 		local_irq_restore(flags);
929 	} else {
930 		buf = page_address(page);
931 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset, count, rw);
932 	}
933 
934 	bytes -= min(bytes, consumed);
935 	qc->curbytes += count;
936 	qc->cursg_ofs += count;
937 
938 	if (qc->cursg_ofs == sg->length) {
939 		qc->cursg = sg_next(qc->cursg);
940 		qc->cursg_ofs = 0;
941 	}
942 
943 	/* consumed can be larger than count only for the last transfer */
944 	WARN_ON(qc->cursg && count != consumed);
945 
946 	if (bytes)
947 		goto next_sg;
948 	return 0;
949 }
950 
951 /**
952  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
953  *	@qc: Command on going
954  *
955  *	Transfer Transfer data from/to the ATAPI device.
956  *
957  *	LOCKING:
958  *	Inherited from caller.
959  */
960 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
961 {
962 	struct ata_port *ap = qc->ap;
963 	struct ata_device *dev = qc->dev;
964 	struct ata_eh_info *ehi = &dev->link->eh_info;
965 	unsigned int ireason, bc_lo, bc_hi, bytes;
966 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
967 
968 	/* Abuse qc->result_tf for temp storage of intermediate TF
969 	 * here to save some kernel stack usage.
970 	 * For normal completion, qc->result_tf is not relevant. For
971 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
972 	 * So, the correctness of qc->result_tf is not affected.
973 	 */
974 	ap->ops->sff_tf_read(ap, &qc->result_tf);
975 	ireason = qc->result_tf.nsect;
976 	bc_lo = qc->result_tf.lbam;
977 	bc_hi = qc->result_tf.lbah;
978 	bytes = (bc_hi << 8) | bc_lo;
979 
980 	/* shall be cleared to zero, indicating xfer of data */
981 	if (unlikely(ireason & (1 << 0)))
982 		goto atapi_check;
983 
984 	/* make sure transfer direction matches expected */
985 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
986 	if (unlikely(do_write != i_write))
987 		goto atapi_check;
988 
989 	if (unlikely(!bytes))
990 		goto atapi_check;
991 
992 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
993 
994 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
995 		goto err_out;
996 	ata_sff_sync(ap); /* flush */
997 
998 	return;
999 
1000  atapi_check:
1001 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1002 			  ireason, bytes);
1003  err_out:
1004 	qc->err_mask |= AC_ERR_HSM;
1005 	ap->hsm_task_state = HSM_ST_ERR;
1006 }
1007 
1008 /**
1009  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1010  *	@ap: the target ata_port
1011  *	@qc: qc on going
1012  *
1013  *	RETURNS:
1014  *	1 if ok in workqueue, 0 otherwise.
1015  */
1016 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1017 {
1018 	if (qc->tf.flags & ATA_TFLAG_POLLING)
1019 		return 1;
1020 
1021 	if (ap->hsm_task_state == HSM_ST_FIRST) {
1022 		if (qc->tf.protocol == ATA_PROT_PIO &&
1023 		    (qc->tf.flags & ATA_TFLAG_WRITE))
1024 		    return 1;
1025 
1026 		if (ata_is_atapi(qc->tf.protocol) &&
1027 		    !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1028 			return 1;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 /**
1035  *	ata_hsm_qc_complete - finish a qc running on standard HSM
1036  *	@qc: Command to complete
1037  *	@in_wq: 1 if called from workqueue, 0 otherwise
1038  *
1039  *	Finish @qc which is running on standard HSM.
1040  *
1041  *	LOCKING:
1042  *	If @in_wq is zero, spin_lock_irqsave(host lock).
1043  *	Otherwise, none on entry and grabs host lock.
1044  */
1045 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1046 {
1047 	struct ata_port *ap = qc->ap;
1048 	unsigned long flags;
1049 
1050 	if (ap->ops->error_handler) {
1051 		if (in_wq) {
1052 			spin_lock_irqsave(ap->lock, flags);
1053 
1054 			/* EH might have kicked in while host lock is
1055 			 * released.
1056 			 */
1057 			qc = ata_qc_from_tag(ap, qc->tag);
1058 			if (qc) {
1059 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1060 					ap->ops->sff_irq_on(ap);
1061 					ata_qc_complete(qc);
1062 				} else
1063 					ata_port_freeze(ap);
1064 			}
1065 
1066 			spin_unlock_irqrestore(ap->lock, flags);
1067 		} else {
1068 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1069 				ata_qc_complete(qc);
1070 			else
1071 				ata_port_freeze(ap);
1072 		}
1073 	} else {
1074 		if (in_wq) {
1075 			spin_lock_irqsave(ap->lock, flags);
1076 			ap->ops->sff_irq_on(ap);
1077 			ata_qc_complete(qc);
1078 			spin_unlock_irqrestore(ap->lock, flags);
1079 		} else
1080 			ata_qc_complete(qc);
1081 	}
1082 }
1083 
1084 /**
1085  *	ata_sff_hsm_move - move the HSM to the next state.
1086  *	@ap: the target ata_port
1087  *	@qc: qc on going
1088  *	@status: current device status
1089  *	@in_wq: 1 if called from workqueue, 0 otherwise
1090  *
1091  *	RETURNS:
1092  *	1 when poll next status needed, 0 otherwise.
1093  */
1094 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1095 		     u8 status, int in_wq)
1096 {
1097 	unsigned long flags = 0;
1098 	int poll_next;
1099 
1100 	WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1101 
1102 	/* Make sure ata_sff_qc_issue() does not throw things
1103 	 * like DMA polling into the workqueue. Notice that
1104 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1105 	 */
1106 	WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
1107 
1108 fsm_start:
1109 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1110 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1111 
1112 	switch (ap->hsm_task_state) {
1113 	case HSM_ST_FIRST:
1114 		/* Send first data block or PACKET CDB */
1115 
1116 		/* If polling, we will stay in the work queue after
1117 		 * sending the data. Otherwise, interrupt handler
1118 		 * takes over after sending the data.
1119 		 */
1120 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1121 
1122 		/* check device status */
1123 		if (unlikely((status & ATA_DRQ) == 0)) {
1124 			/* handle BSY=0, DRQ=0 as error */
1125 			if (likely(status & (ATA_ERR | ATA_DF)))
1126 				/* device stops HSM for abort/error */
1127 				qc->err_mask |= AC_ERR_DEV;
1128 			else
1129 				/* HSM violation. Let EH handle this */
1130 				qc->err_mask |= AC_ERR_HSM;
1131 
1132 			ap->hsm_task_state = HSM_ST_ERR;
1133 			goto fsm_start;
1134 		}
1135 
1136 		/* Device should not ask for data transfer (DRQ=1)
1137 		 * when it finds something wrong.
1138 		 * We ignore DRQ here and stop the HSM by
1139 		 * changing hsm_task_state to HSM_ST_ERR and
1140 		 * let the EH abort the command or reset the device.
1141 		 */
1142 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1143 			/* Some ATAPI tape drives forget to clear the ERR bit
1144 			 * when doing the next command (mostly request sense).
1145 			 * We ignore ERR here to workaround and proceed sending
1146 			 * the CDB.
1147 			 */
1148 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1149 				ata_port_printk(ap, KERN_WARNING,
1150 						"DRQ=1 with device error, "
1151 						"dev_stat 0x%X\n", status);
1152 				qc->err_mask |= AC_ERR_HSM;
1153 				ap->hsm_task_state = HSM_ST_ERR;
1154 				goto fsm_start;
1155 			}
1156 		}
1157 
1158 		/* Send the CDB (atapi) or the first data block (ata pio out).
1159 		 * During the state transition, interrupt handler shouldn't
1160 		 * be invoked before the data transfer is complete and
1161 		 * hsm_task_state is changed. Hence, the following locking.
1162 		 */
1163 		if (in_wq)
1164 			spin_lock_irqsave(ap->lock, flags);
1165 
1166 		if (qc->tf.protocol == ATA_PROT_PIO) {
1167 			/* PIO data out protocol.
1168 			 * send first data block.
1169 			 */
1170 
1171 			/* ata_pio_sectors() might change the state
1172 			 * to HSM_ST_LAST. so, the state is changed here
1173 			 * before ata_pio_sectors().
1174 			 */
1175 			ap->hsm_task_state = HSM_ST;
1176 			ata_pio_sectors(qc);
1177 		} else
1178 			/* send CDB */
1179 			atapi_send_cdb(ap, qc);
1180 
1181 		if (in_wq)
1182 			spin_unlock_irqrestore(ap->lock, flags);
1183 
1184 		/* if polling, ata_pio_task() handles the rest.
1185 		 * otherwise, interrupt handler takes over from here.
1186 		 */
1187 		break;
1188 
1189 	case HSM_ST:
1190 		/* complete command or read/write the data register */
1191 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1192 			/* ATAPI PIO protocol */
1193 			if ((status & ATA_DRQ) == 0) {
1194 				/* No more data to transfer or device error.
1195 				 * Device error will be tagged in HSM_ST_LAST.
1196 				 */
1197 				ap->hsm_task_state = HSM_ST_LAST;
1198 				goto fsm_start;
1199 			}
1200 
1201 			/* Device should not ask for data transfer (DRQ=1)
1202 			 * when it finds something wrong.
1203 			 * We ignore DRQ here and stop the HSM by
1204 			 * changing hsm_task_state to HSM_ST_ERR and
1205 			 * let the EH abort the command or reset the device.
1206 			 */
1207 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1208 				ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
1209 						"device error, dev_stat 0x%X\n",
1210 						status);
1211 				qc->err_mask |= AC_ERR_HSM;
1212 				ap->hsm_task_state = HSM_ST_ERR;
1213 				goto fsm_start;
1214 			}
1215 
1216 			atapi_pio_bytes(qc);
1217 
1218 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1219 				/* bad ireason reported by device */
1220 				goto fsm_start;
1221 
1222 		} else {
1223 			/* ATA PIO protocol */
1224 			if (unlikely((status & ATA_DRQ) == 0)) {
1225 				/* handle BSY=0, DRQ=0 as error */
1226 				if (likely(status & (ATA_ERR | ATA_DF)))
1227 					/* device stops HSM for abort/error */
1228 					qc->err_mask |= AC_ERR_DEV;
1229 				else
1230 					/* HSM violation. Let EH handle this.
1231 					 * Phantom devices also trigger this
1232 					 * condition.  Mark hint.
1233 					 */
1234 					qc->err_mask |= AC_ERR_HSM |
1235 							AC_ERR_NODEV_HINT;
1236 
1237 				ap->hsm_task_state = HSM_ST_ERR;
1238 				goto fsm_start;
1239 			}
1240 
1241 			/* For PIO reads, some devices may ask for
1242 			 * data transfer (DRQ=1) alone with ERR=1.
1243 			 * We respect DRQ here and transfer one
1244 			 * block of junk data before changing the
1245 			 * hsm_task_state to HSM_ST_ERR.
1246 			 *
1247 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1248 			 * sense since the data block has been
1249 			 * transferred to the device.
1250 			 */
1251 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1252 				/* data might be corrputed */
1253 				qc->err_mask |= AC_ERR_DEV;
1254 
1255 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1256 					ata_pio_sectors(qc);
1257 					status = ata_wait_idle(ap);
1258 				}
1259 
1260 				if (status & (ATA_BUSY | ATA_DRQ))
1261 					qc->err_mask |= AC_ERR_HSM;
1262 
1263 				/* ata_pio_sectors() might change the
1264 				 * state to HSM_ST_LAST. so, the state
1265 				 * is changed after ata_pio_sectors().
1266 				 */
1267 				ap->hsm_task_state = HSM_ST_ERR;
1268 				goto fsm_start;
1269 			}
1270 
1271 			ata_pio_sectors(qc);
1272 
1273 			if (ap->hsm_task_state == HSM_ST_LAST &&
1274 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1275 				/* all data read */
1276 				status = ata_wait_idle(ap);
1277 				goto fsm_start;
1278 			}
1279 		}
1280 
1281 		poll_next = 1;
1282 		break;
1283 
1284 	case HSM_ST_LAST:
1285 		if (unlikely(!ata_ok(status))) {
1286 			qc->err_mask |= __ac_err_mask(status);
1287 			ap->hsm_task_state = HSM_ST_ERR;
1288 			goto fsm_start;
1289 		}
1290 
1291 		/* no more data to transfer */
1292 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1293 			ap->print_id, qc->dev->devno, status);
1294 
1295 		WARN_ON(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1296 
1297 		ap->hsm_task_state = HSM_ST_IDLE;
1298 
1299 		/* complete taskfile transaction */
1300 		ata_hsm_qc_complete(qc, in_wq);
1301 
1302 		poll_next = 0;
1303 		break;
1304 
1305 	case HSM_ST_ERR:
1306 		/* make sure qc->err_mask is available to
1307 		 * know what's wrong and recover
1308 		 */
1309 		WARN_ON(!(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)));
1310 
1311 		ap->hsm_task_state = HSM_ST_IDLE;
1312 
1313 		/* complete taskfile transaction */
1314 		ata_hsm_qc_complete(qc, in_wq);
1315 
1316 		poll_next = 0;
1317 		break;
1318 	default:
1319 		poll_next = 0;
1320 		BUG();
1321 	}
1322 
1323 	return poll_next;
1324 }
1325 
1326 void ata_pio_task(struct work_struct *work)
1327 {
1328 	struct ata_port *ap =
1329 		container_of(work, struct ata_port, port_task.work);
1330 	struct ata_queued_cmd *qc = ap->port_task_data;
1331 	u8 status;
1332 	int poll_next;
1333 
1334 fsm_start:
1335 	WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
1336 
1337 	/*
1338 	 * This is purely heuristic.  This is a fast path.
1339 	 * Sometimes when we enter, BSY will be cleared in
1340 	 * a chk-status or two.  If not, the drive is probably seeking
1341 	 * or something.  Snooze for a couple msecs, then
1342 	 * chk-status again.  If still busy, queue delayed work.
1343 	 */
1344 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1345 	if (status & ATA_BUSY) {
1346 		msleep(2);
1347 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1348 		if (status & ATA_BUSY) {
1349 			ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1350 			return;
1351 		}
1352 	}
1353 
1354 	/* move the HSM */
1355 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1356 
1357 	/* another command or interrupt handler
1358 	 * may be running at this point.
1359 	 */
1360 	if (poll_next)
1361 		goto fsm_start;
1362 }
1363 
1364 /**
1365  *	ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1366  *	@qc: command to issue to device
1367  *
1368  *	Using various libata functions and hooks, this function
1369  *	starts an ATA command.  ATA commands are grouped into
1370  *	classes called "protocols", and issuing each type of protocol
1371  *	is slightly different.
1372  *
1373  *	May be used as the qc_issue() entry in ata_port_operations.
1374  *
1375  *	LOCKING:
1376  *	spin_lock_irqsave(host lock)
1377  *
1378  *	RETURNS:
1379  *	Zero on success, AC_ERR_* mask on failure
1380  */
1381 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1382 {
1383 	struct ata_port *ap = qc->ap;
1384 
1385 	/* Use polling pio if the LLD doesn't handle
1386 	 * interrupt driven pio and atapi CDB interrupt.
1387 	 */
1388 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
1389 		switch (qc->tf.protocol) {
1390 		case ATA_PROT_PIO:
1391 		case ATA_PROT_NODATA:
1392 		case ATAPI_PROT_PIO:
1393 		case ATAPI_PROT_NODATA:
1394 			qc->tf.flags |= ATA_TFLAG_POLLING;
1395 			break;
1396 		case ATAPI_PROT_DMA:
1397 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1398 				/* see ata_dma_blacklisted() */
1399 				BUG();
1400 			break;
1401 		default:
1402 			break;
1403 		}
1404 	}
1405 
1406 	/* select the device */
1407 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1408 
1409 	/* start the command */
1410 	switch (qc->tf.protocol) {
1411 	case ATA_PROT_NODATA:
1412 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1413 			ata_qc_set_polling(qc);
1414 
1415 		ata_tf_to_host(ap, &qc->tf);
1416 		ap->hsm_task_state = HSM_ST_LAST;
1417 
1418 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1419 			ata_pio_queue_task(ap, qc, 0);
1420 
1421 		break;
1422 
1423 	case ATA_PROT_DMA:
1424 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1425 
1426 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1427 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1428 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
1429 		ap->hsm_task_state = HSM_ST_LAST;
1430 		break;
1431 
1432 	case ATA_PROT_PIO:
1433 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1434 			ata_qc_set_polling(qc);
1435 
1436 		ata_tf_to_host(ap, &qc->tf);
1437 
1438 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1439 			/* PIO data out protocol */
1440 			ap->hsm_task_state = HSM_ST_FIRST;
1441 			ata_pio_queue_task(ap, qc, 0);
1442 
1443 			/* always send first data block using
1444 			 * the ata_pio_task() codepath.
1445 			 */
1446 		} else {
1447 			/* PIO data in protocol */
1448 			ap->hsm_task_state = HSM_ST;
1449 
1450 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1451 				ata_pio_queue_task(ap, qc, 0);
1452 
1453 			/* if polling, ata_pio_task() handles the rest.
1454 			 * otherwise, interrupt handler takes over from here.
1455 			 */
1456 		}
1457 
1458 		break;
1459 
1460 	case ATAPI_PROT_PIO:
1461 	case ATAPI_PROT_NODATA:
1462 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1463 			ata_qc_set_polling(qc);
1464 
1465 		ata_tf_to_host(ap, &qc->tf);
1466 
1467 		ap->hsm_task_state = HSM_ST_FIRST;
1468 
1469 		/* send cdb by polling if no cdb interrupt */
1470 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1471 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1472 			ata_pio_queue_task(ap, qc, 0);
1473 		break;
1474 
1475 	case ATAPI_PROT_DMA:
1476 		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1477 
1478 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1479 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1480 		ap->hsm_task_state = HSM_ST_FIRST;
1481 
1482 		/* send cdb by polling if no cdb interrupt */
1483 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1484 			ata_pio_queue_task(ap, qc, 0);
1485 		break;
1486 
1487 	default:
1488 		WARN_ON(1);
1489 		return AC_ERR_SYSTEM;
1490 	}
1491 
1492 	return 0;
1493 }
1494 
1495 /**
1496  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1497  *	@qc: qc to fill result TF for
1498  *
1499  *	@qc is finished and result TF needs to be filled.  Fill it
1500  *	using ->sff_tf_read.
1501  *
1502  *	LOCKING:
1503  *	spin_lock_irqsave(host lock)
1504  *
1505  *	RETURNS:
1506  *	true indicating that result TF is successfully filled.
1507  */
1508 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1509 {
1510 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1511 	return true;
1512 }
1513 
1514 /**
1515  *	ata_sff_host_intr - Handle host interrupt for given (port, task)
1516  *	@ap: Port on which interrupt arrived (possibly...)
1517  *	@qc: Taskfile currently active in engine
1518  *
1519  *	Handle host interrupt for given queued command.  Currently,
1520  *	only DMA interrupts are handled.  All other commands are
1521  *	handled via polling with interrupts disabled (nIEN bit).
1522  *
1523  *	LOCKING:
1524  *	spin_lock_irqsave(host lock)
1525  *
1526  *	RETURNS:
1527  *	One if interrupt was handled, zero if not (shared irq).
1528  */
1529 inline unsigned int ata_sff_host_intr(struct ata_port *ap,
1530 				      struct ata_queued_cmd *qc)
1531 {
1532 	struct ata_eh_info *ehi = &ap->link.eh_info;
1533 	u8 status, host_stat = 0;
1534 
1535 	VPRINTK("ata%u: protocol %d task_state %d\n",
1536 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1537 
1538 	/* Check whether we are expecting interrupt in this state */
1539 	switch (ap->hsm_task_state) {
1540 	case HSM_ST_FIRST:
1541 		/* Some pre-ATAPI-4 devices assert INTRQ
1542 		 * at this state when ready to receive CDB.
1543 		 */
1544 
1545 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1546 		 * The flag was turned on only for atapi devices.  No
1547 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1548 		 */
1549 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1550 			goto idle_irq;
1551 		break;
1552 	case HSM_ST_LAST:
1553 		if (qc->tf.protocol == ATA_PROT_DMA ||
1554 		    qc->tf.protocol == ATAPI_PROT_DMA) {
1555 			/* check status of DMA engine */
1556 			host_stat = ap->ops->bmdma_status(ap);
1557 			VPRINTK("ata%u: host_stat 0x%X\n",
1558 				ap->print_id, host_stat);
1559 
1560 			/* if it's not our irq... */
1561 			if (!(host_stat & ATA_DMA_INTR))
1562 				goto idle_irq;
1563 
1564 			/* before we do anything else, clear DMA-Start bit */
1565 			ap->ops->bmdma_stop(qc);
1566 
1567 			if (unlikely(host_stat & ATA_DMA_ERR)) {
1568 				/* error when transfering data to/from memory */
1569 				qc->err_mask |= AC_ERR_HOST_BUS;
1570 				ap->hsm_task_state = HSM_ST_ERR;
1571 			}
1572 		}
1573 		break;
1574 	case HSM_ST:
1575 		break;
1576 	default:
1577 		goto idle_irq;
1578 	}
1579 
1580 
1581 	/* check main status, clearing INTRQ if needed */
1582 	status = ata_sff_irq_status(ap);
1583 	if (status & ATA_BUSY)
1584 		goto idle_irq;
1585 
1586 	/* ack bmdma irq events */
1587 	ap->ops->sff_irq_clear(ap);
1588 
1589 	ata_sff_hsm_move(ap, qc, status, 0);
1590 
1591 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1592 				       qc->tf.protocol == ATAPI_PROT_DMA))
1593 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1594 
1595 	return 1;	/* irq handled */
1596 
1597 idle_irq:
1598 	ap->stats.idle_irq++;
1599 
1600 #ifdef ATA_IRQ_TRAP
1601 	if ((ap->stats.idle_irq % 1000) == 0) {
1602 		ap->ops->sff_check_status(ap);
1603 		ap->ops->sff_irq_clear(ap);
1604 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1605 		return 1;
1606 	}
1607 #endif
1608 	return 0;	/* irq not handled */
1609 }
1610 
1611 /**
1612  *	ata_sff_interrupt - Default ATA host interrupt handler
1613  *	@irq: irq line (unused)
1614  *	@dev_instance: pointer to our ata_host information structure
1615  *
1616  *	Default interrupt handler for PCI IDE devices.  Calls
1617  *	ata_sff_host_intr() for each port that is not disabled.
1618  *
1619  *	LOCKING:
1620  *	Obtains host lock during operation.
1621  *
1622  *	RETURNS:
1623  *	IRQ_NONE or IRQ_HANDLED.
1624  */
1625 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1626 {
1627 	struct ata_host *host = dev_instance;
1628 	unsigned int i;
1629 	unsigned int handled = 0;
1630 	unsigned long flags;
1631 
1632 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1633 	spin_lock_irqsave(&host->lock, flags);
1634 
1635 	for (i = 0; i < host->n_ports; i++) {
1636 		struct ata_port *ap;
1637 
1638 		ap = host->ports[i];
1639 		if (ap &&
1640 		    !(ap->flags & ATA_FLAG_DISABLED)) {
1641 			struct ata_queued_cmd *qc;
1642 
1643 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
1644 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1645 			    (qc->flags & ATA_QCFLAG_ACTIVE))
1646 				handled |= ata_sff_host_intr(ap, qc);
1647 		}
1648 	}
1649 
1650 	spin_unlock_irqrestore(&host->lock, flags);
1651 
1652 	return IRQ_RETVAL(handled);
1653 }
1654 
1655 /**
1656  *	ata_sff_freeze - Freeze SFF controller port
1657  *	@ap: port to freeze
1658  *
1659  *	Freeze BMDMA controller port.
1660  *
1661  *	LOCKING:
1662  *	Inherited from caller.
1663  */
1664 void ata_sff_freeze(struct ata_port *ap)
1665 {
1666 	struct ata_ioports *ioaddr = &ap->ioaddr;
1667 
1668 	ap->ctl |= ATA_NIEN;
1669 	ap->last_ctl = ap->ctl;
1670 
1671 	if (ioaddr->ctl_addr)
1672 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1673 
1674 	/* Under certain circumstances, some controllers raise IRQ on
1675 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1676 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1677 	 */
1678 	ap->ops->sff_check_status(ap);
1679 
1680 	ap->ops->sff_irq_clear(ap);
1681 }
1682 
1683 /**
1684  *	ata_sff_thaw - Thaw SFF controller port
1685  *	@ap: port to thaw
1686  *
1687  *	Thaw SFF controller port.
1688  *
1689  *	LOCKING:
1690  *	Inherited from caller.
1691  */
1692 void ata_sff_thaw(struct ata_port *ap)
1693 {
1694 	/* clear & re-enable interrupts */
1695 	ap->ops->sff_check_status(ap);
1696 	ap->ops->sff_irq_clear(ap);
1697 	ap->ops->sff_irq_on(ap);
1698 }
1699 
1700 /**
1701  *	ata_sff_prereset - prepare SFF link for reset
1702  *	@link: SFF link to be reset
1703  *	@deadline: deadline jiffies for the operation
1704  *
1705  *	SFF link @link is about to be reset.  Initialize it.  It first
1706  *	calls ata_std_prereset() and wait for !BSY if the port is
1707  *	being softreset.
1708  *
1709  *	LOCKING:
1710  *	Kernel thread context (may sleep)
1711  *
1712  *	RETURNS:
1713  *	0 on success, -errno otherwise.
1714  */
1715 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1716 {
1717 	struct ata_eh_context *ehc = &link->eh_context;
1718 	int rc;
1719 
1720 	rc = ata_std_prereset(link, deadline);
1721 	if (rc)
1722 		return rc;
1723 
1724 	/* if we're about to do hardreset, nothing more to do */
1725 	if (ehc->i.action & ATA_EH_HARDRESET)
1726 		return 0;
1727 
1728 	/* wait for !BSY if we don't know that no device is attached */
1729 	if (!ata_link_offline(link)) {
1730 		rc = ata_sff_wait_ready(link, deadline);
1731 		if (rc && rc != -ENODEV) {
1732 			ata_link_printk(link, KERN_WARNING, "device not ready "
1733 					"(errno=%d), forcing hardreset\n", rc);
1734 			ehc->i.action |= ATA_EH_HARDRESET;
1735 		}
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 /**
1742  *	ata_devchk - PATA device presence detection
1743  *	@ap: ATA channel to examine
1744  *	@device: Device to examine (starting at zero)
1745  *
1746  *	This technique was originally described in
1747  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1748  *	later found its way into the ATA/ATAPI spec.
1749  *
1750  *	Write a pattern to the ATA shadow registers,
1751  *	and if a device is present, it will respond by
1752  *	correctly storing and echoing back the
1753  *	ATA shadow register contents.
1754  *
1755  *	LOCKING:
1756  *	caller.
1757  */
1758 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1759 {
1760 	struct ata_ioports *ioaddr = &ap->ioaddr;
1761 	u8 nsect, lbal;
1762 
1763 	ap->ops->sff_dev_select(ap, device);
1764 
1765 	iowrite8(0x55, ioaddr->nsect_addr);
1766 	iowrite8(0xaa, ioaddr->lbal_addr);
1767 
1768 	iowrite8(0xaa, ioaddr->nsect_addr);
1769 	iowrite8(0x55, ioaddr->lbal_addr);
1770 
1771 	iowrite8(0x55, ioaddr->nsect_addr);
1772 	iowrite8(0xaa, ioaddr->lbal_addr);
1773 
1774 	nsect = ioread8(ioaddr->nsect_addr);
1775 	lbal = ioread8(ioaddr->lbal_addr);
1776 
1777 	if ((nsect == 0x55) && (lbal == 0xaa))
1778 		return 1;	/* we found a device */
1779 
1780 	return 0;		/* nothing found */
1781 }
1782 
1783 /**
1784  *	ata_sff_dev_classify - Parse returned ATA device signature
1785  *	@dev: ATA device to classify (starting at zero)
1786  *	@present: device seems present
1787  *	@r_err: Value of error register on completion
1788  *
1789  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1790  *	an ATA/ATAPI-defined set of values is placed in the ATA
1791  *	shadow registers, indicating the results of device detection
1792  *	and diagnostics.
1793  *
1794  *	Select the ATA device, and read the values from the ATA shadow
1795  *	registers.  Then parse according to the Error register value,
1796  *	and the spec-defined values examined by ata_dev_classify().
1797  *
1798  *	LOCKING:
1799  *	caller.
1800  *
1801  *	RETURNS:
1802  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1803  */
1804 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1805 				  u8 *r_err)
1806 {
1807 	struct ata_port *ap = dev->link->ap;
1808 	struct ata_taskfile tf;
1809 	unsigned int class;
1810 	u8 err;
1811 
1812 	ap->ops->sff_dev_select(ap, dev->devno);
1813 
1814 	memset(&tf, 0, sizeof(tf));
1815 
1816 	ap->ops->sff_tf_read(ap, &tf);
1817 	err = tf.feature;
1818 	if (r_err)
1819 		*r_err = err;
1820 
1821 	/* see if device passed diags: continue and warn later */
1822 	if (err == 0)
1823 		/* diagnostic fail : do nothing _YET_ */
1824 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1825 	else if (err == 1)
1826 		/* do nothing */ ;
1827 	else if ((dev->devno == 0) && (err == 0x81))
1828 		/* do nothing */ ;
1829 	else
1830 		return ATA_DEV_NONE;
1831 
1832 	/* determine if device is ATA or ATAPI */
1833 	class = ata_dev_classify(&tf);
1834 
1835 	if (class == ATA_DEV_UNKNOWN) {
1836 		/* If the device failed diagnostic, it's likely to
1837 		 * have reported incorrect device signature too.
1838 		 * Assume ATA device if the device seems present but
1839 		 * device signature is invalid with diagnostic
1840 		 * failure.
1841 		 */
1842 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1843 			class = ATA_DEV_ATA;
1844 		else
1845 			class = ATA_DEV_NONE;
1846 	} else if ((class == ATA_DEV_ATA) &&
1847 		   (ap->ops->sff_check_status(ap) == 0))
1848 		class = ATA_DEV_NONE;
1849 
1850 	return class;
1851 }
1852 
1853 /**
1854  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1855  *	@link: SFF link which is just reset
1856  *	@devmask: mask of present devices
1857  *	@deadline: deadline jiffies for the operation
1858  *
1859  *	Wait devices attached to SFF @link to become ready after
1860  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1861  *	status register too early.
1862  *
1863  *	LOCKING:
1864  *	Kernel thread context (may sleep).
1865  *
1866  *	RETURNS:
1867  *	0 on success, -ENODEV if some or all of devices in @devmask
1868  *	don't seem to exist.  -errno on other errors.
1869  */
1870 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1871 			     unsigned long deadline)
1872 {
1873 	struct ata_port *ap = link->ap;
1874 	struct ata_ioports *ioaddr = &ap->ioaddr;
1875 	unsigned int dev0 = devmask & (1 << 0);
1876 	unsigned int dev1 = devmask & (1 << 1);
1877 	int rc, ret = 0;
1878 
1879 	msleep(ATA_WAIT_AFTER_RESET_MSECS);
1880 
1881 	/* always check readiness of the master device */
1882 	rc = ata_sff_wait_ready(link, deadline);
1883 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1884 	 * and TF status is 0xff, bail out on it too.
1885 	 */
1886 	if (rc)
1887 		return rc;
1888 
1889 	/* if device 1 was found in ata_devchk, wait for register
1890 	 * access briefly, then wait for BSY to clear.
1891 	 */
1892 	if (dev1) {
1893 		int i;
1894 
1895 		ap->ops->sff_dev_select(ap, 1);
1896 
1897 		/* Wait for register access.  Some ATAPI devices fail
1898 		 * to set nsect/lbal after reset, so don't waste too
1899 		 * much time on it.  We're gonna wait for !BSY anyway.
1900 		 */
1901 		for (i = 0; i < 2; i++) {
1902 			u8 nsect, lbal;
1903 
1904 			nsect = ioread8(ioaddr->nsect_addr);
1905 			lbal = ioread8(ioaddr->lbal_addr);
1906 			if ((nsect == 1) && (lbal == 1))
1907 				break;
1908 			msleep(50);	/* give drive a breather */
1909 		}
1910 
1911 		rc = ata_sff_wait_ready(link, deadline);
1912 		if (rc) {
1913 			if (rc != -ENODEV)
1914 				return rc;
1915 			ret = rc;
1916 		}
1917 	}
1918 
1919 	/* is all this really necessary? */
1920 	ap->ops->sff_dev_select(ap, 0);
1921 	if (dev1)
1922 		ap->ops->sff_dev_select(ap, 1);
1923 	if (dev0)
1924 		ap->ops->sff_dev_select(ap, 0);
1925 
1926 	return ret;
1927 }
1928 
1929 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1930 			     unsigned long deadline)
1931 {
1932 	struct ata_ioports *ioaddr = &ap->ioaddr;
1933 
1934 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1935 
1936 	/* software reset.  causes dev0 to be selected */
1937 	iowrite8(ap->ctl, ioaddr->ctl_addr);
1938 	udelay(20);	/* FIXME: flush */
1939 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1940 	udelay(20);	/* FIXME: flush */
1941 	iowrite8(ap->ctl, ioaddr->ctl_addr);
1942 
1943 	/* wait the port to become ready */
1944 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1945 }
1946 
1947 /**
1948  *	ata_sff_softreset - reset host port via ATA SRST
1949  *	@link: ATA link to reset
1950  *	@classes: resulting classes of attached devices
1951  *	@deadline: deadline jiffies for the operation
1952  *
1953  *	Reset host port using ATA SRST.
1954  *
1955  *	LOCKING:
1956  *	Kernel thread context (may sleep)
1957  *
1958  *	RETURNS:
1959  *	0 on success, -errno otherwise.
1960  */
1961 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1962 		      unsigned long deadline)
1963 {
1964 	struct ata_port *ap = link->ap;
1965 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1966 	unsigned int devmask = 0;
1967 	int rc;
1968 	u8 err;
1969 
1970 	DPRINTK("ENTER\n");
1971 
1972 	/* determine if device 0/1 are present */
1973 	if (ata_devchk(ap, 0))
1974 		devmask |= (1 << 0);
1975 	if (slave_possible && ata_devchk(ap, 1))
1976 		devmask |= (1 << 1);
1977 
1978 	/* select device 0 again */
1979 	ap->ops->sff_dev_select(ap, 0);
1980 
1981 	/* issue bus reset */
1982 	DPRINTK("about to softreset, devmask=%x\n", devmask);
1983 	rc = ata_bus_softreset(ap, devmask, deadline);
1984 	/* if link is occupied, -ENODEV too is an error */
1985 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1986 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
1987 		return rc;
1988 	}
1989 
1990 	/* determine by signature whether we have ATA or ATAPI devices */
1991 	classes[0] = ata_sff_dev_classify(&link->device[0],
1992 					  devmask & (1 << 0), &err);
1993 	if (slave_possible && err != 0x81)
1994 		classes[1] = ata_sff_dev_classify(&link->device[1],
1995 						  devmask & (1 << 1), &err);
1996 
1997 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
1998 	return 0;
1999 }
2000 
2001 /**
2002  *	sata_sff_hardreset - reset host port via SATA phy reset
2003  *	@link: link to reset
2004  *	@class: resulting class of attached device
2005  *	@deadline: deadline jiffies for the operation
2006  *
2007  *	SATA phy-reset host port using DET bits of SControl register,
2008  *	wait for !BSY and classify the attached device.
2009  *
2010  *	LOCKING:
2011  *	Kernel thread context (may sleep)
2012  *
2013  *	RETURNS:
2014  *	0 on success, -errno otherwise.
2015  */
2016 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2017 		       unsigned long deadline)
2018 {
2019 	struct ata_eh_context *ehc = &link->eh_context;
2020 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2021 	bool online;
2022 	int rc;
2023 
2024 	rc = sata_link_hardreset(link, timing, deadline, &online,
2025 				 ata_sff_check_ready);
2026 	if (online)
2027 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2028 
2029 	DPRINTK("EXIT, class=%u\n", *class);
2030 	return rc;
2031 }
2032 
2033 /**
2034  *	ata_sff_postreset - SFF postreset callback
2035  *	@link: the target SFF ata_link
2036  *	@classes: classes of attached devices
2037  *
2038  *	This function is invoked after a successful reset.  It first
2039  *	calls ata_std_postreset() and performs SFF specific postreset
2040  *	processing.
2041  *
2042  *	LOCKING:
2043  *	Kernel thread context (may sleep)
2044  */
2045 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2046 {
2047 	struct ata_port *ap = link->ap;
2048 
2049 	ata_std_postreset(link, classes);
2050 
2051 	/* is double-select really necessary? */
2052 	if (classes[0] != ATA_DEV_NONE)
2053 		ap->ops->sff_dev_select(ap, 1);
2054 	if (classes[1] != ATA_DEV_NONE)
2055 		ap->ops->sff_dev_select(ap, 0);
2056 
2057 	/* bail out if no device is present */
2058 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2059 		DPRINTK("EXIT, no device\n");
2060 		return;
2061 	}
2062 
2063 	/* set up device control */
2064 	if (ap->ioaddr.ctl_addr)
2065 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2066 }
2067 
2068 /**
2069  *	ata_sff_error_handler - Stock error handler for BMDMA controller
2070  *	@ap: port to handle error for
2071  *
2072  *	Stock error handler for SFF controller.  It can handle both
2073  *	PATA and SATA controllers.  Many controllers should be able to
2074  *	use this EH as-is or with some added handling before and
2075  *	after.
2076  *
2077  *	LOCKING:
2078  *	Kernel thread context (may sleep)
2079  */
2080 void ata_sff_error_handler(struct ata_port *ap)
2081 {
2082 	ata_reset_fn_t softreset = ap->ops->softreset;
2083 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2084 	struct ata_queued_cmd *qc;
2085 	unsigned long flags;
2086 	int thaw = 0;
2087 
2088 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2089 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2090 		qc = NULL;
2091 
2092 	/* reset PIO HSM and stop DMA engine */
2093 	spin_lock_irqsave(ap->lock, flags);
2094 
2095 	ap->hsm_task_state = HSM_ST_IDLE;
2096 
2097 	if (ap->ioaddr.bmdma_addr &&
2098 	    qc && (qc->tf.protocol == ATA_PROT_DMA ||
2099 		   qc->tf.protocol == ATAPI_PROT_DMA)) {
2100 		u8 host_stat;
2101 
2102 		host_stat = ap->ops->bmdma_status(ap);
2103 
2104 		/* BMDMA controllers indicate host bus error by
2105 		 * setting DMA_ERR bit and timing out.  As it wasn't
2106 		 * really a timeout event, adjust error mask and
2107 		 * cancel frozen state.
2108 		 */
2109 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2110 			qc->err_mask = AC_ERR_HOST_BUS;
2111 			thaw = 1;
2112 		}
2113 
2114 		ap->ops->bmdma_stop(qc);
2115 	}
2116 
2117 	ata_sff_sync(ap);		/* FIXME: We don't need this */
2118 	ap->ops->sff_check_status(ap);
2119 	ap->ops->sff_irq_clear(ap);
2120 
2121 	spin_unlock_irqrestore(ap->lock, flags);
2122 
2123 	if (thaw)
2124 		ata_eh_thaw_port(ap);
2125 
2126 	/* PIO and DMA engines have been stopped, perform recovery */
2127 
2128 	/* Ignore ata_sff_softreset if ctl isn't accessible and
2129 	 * built-in hardresets if SCR access isn't available.
2130 	 */
2131 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2132 		softreset = NULL;
2133 	if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2134 		hardreset = NULL;
2135 
2136 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2137 		  ap->ops->postreset);
2138 }
2139 
2140 /**
2141  *	ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2142  *	@qc: internal command to clean up
2143  *
2144  *	LOCKING:
2145  *	Kernel thread context (may sleep)
2146  */
2147 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2148 {
2149 	if (qc->ap->ioaddr.bmdma_addr)
2150 		ata_bmdma_stop(qc);
2151 }
2152 
2153 /**
2154  *	ata_sff_port_start - Set port up for dma.
2155  *	@ap: Port to initialize
2156  *
2157  *	Called just after data structures for each port are
2158  *	initialized.  Allocates space for PRD table if the device
2159  *	is DMA capable SFF.
2160  *
2161  *	May be used as the port_start() entry in ata_port_operations.
2162  *
2163  *	LOCKING:
2164  *	Inherited from caller.
2165  */
2166 int ata_sff_port_start(struct ata_port *ap)
2167 {
2168 	if (ap->ioaddr.bmdma_addr)
2169 		return ata_port_start(ap);
2170 	return 0;
2171 }
2172 
2173 /**
2174  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2175  *	@ioaddr: IO address structure to be initialized
2176  *
2177  *	Utility function which initializes data_addr, error_addr,
2178  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2179  *	device_addr, status_addr, and command_addr to standard offsets
2180  *	relative to cmd_addr.
2181  *
2182  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2183  */
2184 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2185 {
2186 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2187 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2188 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2189 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2190 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2191 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2192 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2193 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2194 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2195 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2196 }
2197 
2198 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2199 				    unsigned long xfer_mask)
2200 {
2201 	/* Filter out DMA modes if the device has been configured by
2202 	   the BIOS as PIO only */
2203 
2204 	if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2205 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2206 	return xfer_mask;
2207 }
2208 
2209 /**
2210  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2211  *	@qc: Info associated with this ATA transaction.
2212  *
2213  *	LOCKING:
2214  *	spin_lock_irqsave(host lock)
2215  */
2216 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2217 {
2218 	struct ata_port *ap = qc->ap;
2219 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2220 	u8 dmactl;
2221 
2222 	/* load PRD table addr. */
2223 	mb();	/* make sure PRD table writes are visible to controller */
2224 	iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2225 
2226 	/* specify data direction, triple-check start bit is clear */
2227 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2228 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2229 	if (!rw)
2230 		dmactl |= ATA_DMA_WR;
2231 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2232 
2233 	/* issue r/w command */
2234 	ap->ops->sff_exec_command(ap, &qc->tf);
2235 }
2236 
2237 /**
2238  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2239  *	@qc: Info associated with this ATA transaction.
2240  *
2241  *	LOCKING:
2242  *	spin_lock_irqsave(host lock)
2243  */
2244 void ata_bmdma_start(struct ata_queued_cmd *qc)
2245 {
2246 	struct ata_port *ap = qc->ap;
2247 	u8 dmactl;
2248 
2249 	/* start host DMA transaction */
2250 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2251 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2252 
2253 	/* Strictly, one may wish to issue an ioread8() here, to
2254 	 * flush the mmio write.  However, control also passes
2255 	 * to the hardware at this point, and it will interrupt
2256 	 * us when we are to resume control.  So, in effect,
2257 	 * we don't care when the mmio write flushes.
2258 	 * Further, a read of the DMA status register _immediately_
2259 	 * following the write may not be what certain flaky hardware
2260 	 * is expected, so I think it is best to not add a readb()
2261 	 * without first all the MMIO ATA cards/mobos.
2262 	 * Or maybe I'm just being paranoid.
2263 	 *
2264 	 * FIXME: The posting of this write means I/O starts are
2265 	 * unneccessarily delayed for MMIO
2266 	 */
2267 }
2268 
2269 /**
2270  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2271  *	@qc: Command we are ending DMA for
2272  *
2273  *	Clears the ATA_DMA_START flag in the dma control register
2274  *
2275  *	May be used as the bmdma_stop() entry in ata_port_operations.
2276  *
2277  *	LOCKING:
2278  *	spin_lock_irqsave(host lock)
2279  */
2280 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2281 {
2282 	struct ata_port *ap = qc->ap;
2283 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2284 
2285 	/* clear start/stop bit */
2286 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2287 		 mmio + ATA_DMA_CMD);
2288 
2289 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2290 	ata_sff_dma_pause(ap);
2291 }
2292 
2293 /**
2294  *	ata_bmdma_status - Read PCI IDE BMDMA status
2295  *	@ap: Port associated with this ATA transaction.
2296  *
2297  *	Read and return BMDMA status register.
2298  *
2299  *	May be used as the bmdma_status() entry in ata_port_operations.
2300  *
2301  *	LOCKING:
2302  *	spin_lock_irqsave(host lock)
2303  */
2304 u8 ata_bmdma_status(struct ata_port *ap)
2305 {
2306 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2307 }
2308 
2309 /**
2310  *	ata_bus_reset - reset host port and associated ATA channel
2311  *	@ap: port to reset
2312  *
2313  *	This is typically the first time we actually start issuing
2314  *	commands to the ATA channel.  We wait for BSY to clear, then
2315  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2316  *	result.  Determine what devices, if any, are on the channel
2317  *	by looking at the device 0/1 error register.  Look at the signature
2318  *	stored in each device's taskfile registers, to determine if
2319  *	the device is ATA or ATAPI.
2320  *
2321  *	LOCKING:
2322  *	PCI/etc. bus probe sem.
2323  *	Obtains host lock.
2324  *
2325  *	SIDE EFFECTS:
2326  *	Sets ATA_FLAG_DISABLED if bus reset fails.
2327  *
2328  *	DEPRECATED:
2329  *	This function is only for drivers which still use old EH and
2330  *	will be removed soon.
2331  */
2332 void ata_bus_reset(struct ata_port *ap)
2333 {
2334 	struct ata_device *device = ap->link.device;
2335 	struct ata_ioports *ioaddr = &ap->ioaddr;
2336 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2337 	u8 err;
2338 	unsigned int dev0, dev1 = 0, devmask = 0;
2339 	int rc;
2340 
2341 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2342 
2343 	/* determine if device 0/1 are present */
2344 	if (ap->flags & ATA_FLAG_SATA_RESET)
2345 		dev0 = 1;
2346 	else {
2347 		dev0 = ata_devchk(ap, 0);
2348 		if (slave_possible)
2349 			dev1 = ata_devchk(ap, 1);
2350 	}
2351 
2352 	if (dev0)
2353 		devmask |= (1 << 0);
2354 	if (dev1)
2355 		devmask |= (1 << 1);
2356 
2357 	/* select device 0 again */
2358 	ap->ops->sff_dev_select(ap, 0);
2359 
2360 	/* issue bus reset */
2361 	if (ap->flags & ATA_FLAG_SRST) {
2362 		rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
2363 		if (rc && rc != -ENODEV)
2364 			goto err_out;
2365 	}
2366 
2367 	/*
2368 	 * determine by signature whether we have ATA or ATAPI devices
2369 	 */
2370 	device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2371 	if ((slave_possible) && (err != 0x81))
2372 		device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2373 
2374 	/* is double-select really necessary? */
2375 	if (device[1].class != ATA_DEV_NONE)
2376 		ap->ops->sff_dev_select(ap, 1);
2377 	if (device[0].class != ATA_DEV_NONE)
2378 		ap->ops->sff_dev_select(ap, 0);
2379 
2380 	/* if no devices were detected, disable this port */
2381 	if ((device[0].class == ATA_DEV_NONE) &&
2382 	    (device[1].class == ATA_DEV_NONE))
2383 		goto err_out;
2384 
2385 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2386 		/* set up device control for ATA_FLAG_SATA_RESET */
2387 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2388 	}
2389 
2390 	DPRINTK("EXIT\n");
2391 	return;
2392 
2393 err_out:
2394 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
2395 	ata_port_disable(ap);
2396 
2397 	DPRINTK("EXIT\n");
2398 }
2399 
2400 #ifdef CONFIG_PCI
2401 
2402 /**
2403  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
2404  *	@pdev: PCI device
2405  *
2406  *	Some PCI ATA devices report simplex mode but in fact can be told to
2407  *	enter non simplex mode. This implements the necessary logic to
2408  *	perform the task on such devices. Calling it on other devices will
2409  *	have -undefined- behaviour.
2410  */
2411 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2412 {
2413 	unsigned long bmdma = pci_resource_start(pdev, 4);
2414 	u8 simplex;
2415 
2416 	if (bmdma == 0)
2417 		return -ENOENT;
2418 
2419 	simplex = inb(bmdma + 0x02);
2420 	outb(simplex & 0x60, bmdma + 0x02);
2421 	simplex = inb(bmdma + 0x02);
2422 	if (simplex & 0x80)
2423 		return -EOPNOTSUPP;
2424 	return 0;
2425 }
2426 
2427 /**
2428  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2429  *	@host: target ATA host
2430  *
2431  *	Acquire PCI BMDMA resources and initialize @host accordingly.
2432  *
2433  *	LOCKING:
2434  *	Inherited from calling layer (may sleep).
2435  *
2436  *	RETURNS:
2437  *	0 on success, -errno otherwise.
2438  */
2439 int ata_pci_bmdma_init(struct ata_host *host)
2440 {
2441 	struct device *gdev = host->dev;
2442 	struct pci_dev *pdev = to_pci_dev(gdev);
2443 	int i, rc;
2444 
2445 	/* No BAR4 allocation: No DMA */
2446 	if (pci_resource_start(pdev, 4) == 0)
2447 		return 0;
2448 
2449 	/* TODO: If we get no DMA mask we should fall back to PIO */
2450 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2451 	if (rc)
2452 		return rc;
2453 	rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2454 	if (rc)
2455 		return rc;
2456 
2457 	/* request and iomap DMA region */
2458 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2459 	if (rc) {
2460 		dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2461 		return -ENOMEM;
2462 	}
2463 	host->iomap = pcim_iomap_table(pdev);
2464 
2465 	for (i = 0; i < 2; i++) {
2466 		struct ata_port *ap = host->ports[i];
2467 		void __iomem *bmdma = host->iomap[4] + 8 * i;
2468 
2469 		if (ata_port_is_dummy(ap))
2470 			continue;
2471 
2472 		ap->ioaddr.bmdma_addr = bmdma;
2473 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2474 		    (ioread8(bmdma + 2) & 0x80))
2475 			host->flags |= ATA_HOST_SIMPLEX;
2476 
2477 		ata_port_desc(ap, "bmdma 0x%llx",
2478 			(unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2479 	}
2480 
2481 	return 0;
2482 }
2483 
2484 static int ata_resources_present(struct pci_dev *pdev, int port)
2485 {
2486 	int i;
2487 
2488 	/* Check the PCI resources for this channel are enabled */
2489 	port = port * 2;
2490 	for (i = 0; i < 2; i ++) {
2491 		if (pci_resource_start(pdev, port + i) == 0 ||
2492 		    pci_resource_len(pdev, port + i) == 0)
2493 			return 0;
2494 	}
2495 	return 1;
2496 }
2497 
2498 /**
2499  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2500  *	@host: target ATA host
2501  *
2502  *	Acquire native PCI ATA resources for @host and initialize the
2503  *	first two ports of @host accordingly.  Ports marked dummy are
2504  *	skipped and allocation failure makes the port dummy.
2505  *
2506  *	Note that native PCI resources are valid even for legacy hosts
2507  *	as we fix up pdev resources array early in boot, so this
2508  *	function can be used for both native and legacy SFF hosts.
2509  *
2510  *	LOCKING:
2511  *	Inherited from calling layer (may sleep).
2512  *
2513  *	RETURNS:
2514  *	0 if at least one port is initialized, -ENODEV if no port is
2515  *	available.
2516  */
2517 int ata_pci_sff_init_host(struct ata_host *host)
2518 {
2519 	struct device *gdev = host->dev;
2520 	struct pci_dev *pdev = to_pci_dev(gdev);
2521 	unsigned int mask = 0;
2522 	int i, rc;
2523 
2524 	/* request, iomap BARs and init port addresses accordingly */
2525 	for (i = 0; i < 2; i++) {
2526 		struct ata_port *ap = host->ports[i];
2527 		int base = i * 2;
2528 		void __iomem * const *iomap;
2529 
2530 		if (ata_port_is_dummy(ap))
2531 			continue;
2532 
2533 		/* Discard disabled ports.  Some controllers show
2534 		 * their unused channels this way.  Disabled ports are
2535 		 * made dummy.
2536 		 */
2537 		if (!ata_resources_present(pdev, i)) {
2538 			ap->ops = &ata_dummy_port_ops;
2539 			continue;
2540 		}
2541 
2542 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2543 					dev_driver_string(gdev));
2544 		if (rc) {
2545 			dev_printk(KERN_WARNING, gdev,
2546 				   "failed to request/iomap BARs for port %d "
2547 				   "(errno=%d)\n", i, rc);
2548 			if (rc == -EBUSY)
2549 				pcim_pin_device(pdev);
2550 			ap->ops = &ata_dummy_port_ops;
2551 			continue;
2552 		}
2553 		host->iomap = iomap = pcim_iomap_table(pdev);
2554 
2555 		ap->ioaddr.cmd_addr = iomap[base];
2556 		ap->ioaddr.altstatus_addr =
2557 		ap->ioaddr.ctl_addr = (void __iomem *)
2558 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2559 		ata_sff_std_ports(&ap->ioaddr);
2560 
2561 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2562 			(unsigned long long)pci_resource_start(pdev, base),
2563 			(unsigned long long)pci_resource_start(pdev, base + 1));
2564 
2565 		mask |= 1 << i;
2566 	}
2567 
2568 	if (!mask) {
2569 		dev_printk(KERN_ERR, gdev, "no available native port\n");
2570 		return -ENODEV;
2571 	}
2572 
2573 	return 0;
2574 }
2575 
2576 /**
2577  *	ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2578  *	@pdev: target PCI device
2579  *	@ppi: array of port_info, must be enough for two ports
2580  *	@r_host: out argument for the initialized ATA host
2581  *
2582  *	Helper to allocate ATA host for @pdev, acquire all native PCI
2583  *	resources and initialize it accordingly in one go.
2584  *
2585  *	LOCKING:
2586  *	Inherited from calling layer (may sleep).
2587  *
2588  *	RETURNS:
2589  *	0 on success, -errno otherwise.
2590  */
2591 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2592 			     const struct ata_port_info * const * ppi,
2593 			     struct ata_host **r_host)
2594 {
2595 	struct ata_host *host;
2596 	int rc;
2597 
2598 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2599 		return -ENOMEM;
2600 
2601 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2602 	if (!host) {
2603 		dev_printk(KERN_ERR, &pdev->dev,
2604 			   "failed to allocate ATA host\n");
2605 		rc = -ENOMEM;
2606 		goto err_out;
2607 	}
2608 
2609 	rc = ata_pci_sff_init_host(host);
2610 	if (rc)
2611 		goto err_out;
2612 
2613 	/* init DMA related stuff */
2614 	rc = ata_pci_bmdma_init(host);
2615 	if (rc)
2616 		goto err_bmdma;
2617 
2618 	devres_remove_group(&pdev->dev, NULL);
2619 	*r_host = host;
2620 	return 0;
2621 
2622  err_bmdma:
2623 	/* This is necessary because PCI and iomap resources are
2624 	 * merged and releasing the top group won't release the
2625 	 * acquired resources if some of those have been acquired
2626 	 * before entering this function.
2627 	 */
2628 	pcim_iounmap_regions(pdev, 0xf);
2629  err_out:
2630 	devres_release_group(&pdev->dev, NULL);
2631 	return rc;
2632 }
2633 
2634 /**
2635  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2636  *	@host: target SFF ATA host
2637  *	@irq_handler: irq_handler used when requesting IRQ(s)
2638  *	@sht: scsi_host_template to use when registering the host
2639  *
2640  *	This is the counterpart of ata_host_activate() for SFF ATA
2641  *	hosts.  This separate helper is necessary because SFF hosts
2642  *	use two separate interrupts in legacy mode.
2643  *
2644  *	LOCKING:
2645  *	Inherited from calling layer (may sleep).
2646  *
2647  *	RETURNS:
2648  *	0 on success, -errno otherwise.
2649  */
2650 int ata_pci_sff_activate_host(struct ata_host *host,
2651 			      irq_handler_t irq_handler,
2652 			      struct scsi_host_template *sht)
2653 {
2654 	struct device *dev = host->dev;
2655 	struct pci_dev *pdev = to_pci_dev(dev);
2656 	const char *drv_name = dev_driver_string(host->dev);
2657 	int legacy_mode = 0, rc;
2658 
2659 	rc = ata_host_start(host);
2660 	if (rc)
2661 		return rc;
2662 
2663 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2664 		u8 tmp8, mask;
2665 
2666 		/* TODO: What if one channel is in native mode ... */
2667 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2668 		mask = (1 << 2) | (1 << 0);
2669 		if ((tmp8 & mask) != mask)
2670 			legacy_mode = 1;
2671 #if defined(CONFIG_NO_ATA_LEGACY)
2672 		/* Some platforms with PCI limits cannot address compat
2673 		   port space. In that case we punt if their firmware has
2674 		   left a device in compatibility mode */
2675 		if (legacy_mode) {
2676 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2677 			return -EOPNOTSUPP;
2678 		}
2679 #endif
2680 	}
2681 
2682 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2683 		return -ENOMEM;
2684 
2685 	if (!legacy_mode && pdev->irq) {
2686 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2687 				      IRQF_SHARED, drv_name, host);
2688 		if (rc)
2689 			goto out;
2690 
2691 		ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2692 		ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2693 	} else if (legacy_mode) {
2694 		if (!ata_port_is_dummy(host->ports[0])) {
2695 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2696 					      irq_handler, IRQF_SHARED,
2697 					      drv_name, host);
2698 			if (rc)
2699 				goto out;
2700 
2701 			ata_port_desc(host->ports[0], "irq %d",
2702 				      ATA_PRIMARY_IRQ(pdev));
2703 		}
2704 
2705 		if (!ata_port_is_dummy(host->ports[1])) {
2706 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2707 					      irq_handler, IRQF_SHARED,
2708 					      drv_name, host);
2709 			if (rc)
2710 				goto out;
2711 
2712 			ata_port_desc(host->ports[1], "irq %d",
2713 				      ATA_SECONDARY_IRQ(pdev));
2714 		}
2715 	}
2716 
2717 	rc = ata_host_register(host, sht);
2718  out:
2719 	if (rc == 0)
2720 		devres_remove_group(dev, NULL);
2721 	else
2722 		devres_release_group(dev, NULL);
2723 
2724 	return rc;
2725 }
2726 
2727 /**
2728  *	ata_pci_sff_init_one - Initialize/register PCI IDE host controller
2729  *	@pdev: Controller to be initialized
2730  *	@ppi: array of port_info, must be enough for two ports
2731  *	@sht: scsi_host_template to use when registering the host
2732  *	@host_priv: host private_data
2733  *
2734  *	This is a helper function which can be called from a driver's
2735  *	xxx_init_one() probe function if the hardware uses traditional
2736  *	IDE taskfile registers.
2737  *
2738  *	This function calls pci_enable_device(), reserves its register
2739  *	regions, sets the dma mask, enables bus master mode, and calls
2740  *	ata_device_add()
2741  *
2742  *	ASSUMPTION:
2743  *	Nobody makes a single channel controller that appears solely as
2744  *	the secondary legacy port on PCI.
2745  *
2746  *	LOCKING:
2747  *	Inherited from PCI layer (may sleep).
2748  *
2749  *	RETURNS:
2750  *	Zero on success, negative on errno-based value on error.
2751  */
2752 int ata_pci_sff_init_one(struct pci_dev *pdev,
2753 			 const struct ata_port_info * const * ppi,
2754 			 struct scsi_host_template *sht, void *host_priv)
2755 {
2756 	struct device *dev = &pdev->dev;
2757 	const struct ata_port_info *pi = NULL;
2758 	struct ata_host *host = NULL;
2759 	int i, rc;
2760 
2761 	DPRINTK("ENTER\n");
2762 
2763 	/* look up the first valid port_info */
2764 	for (i = 0; i < 2 && ppi[i]; i++) {
2765 		if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2766 			pi = ppi[i];
2767 			break;
2768 		}
2769 	}
2770 
2771 	if (!pi) {
2772 		dev_printk(KERN_ERR, &pdev->dev,
2773 			   "no valid port_info specified\n");
2774 		return -EINVAL;
2775 	}
2776 
2777 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2778 		return -ENOMEM;
2779 
2780 	rc = pcim_enable_device(pdev);
2781 	if (rc)
2782 		goto out;
2783 
2784 	/* prepare and activate SFF host */
2785 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2786 	if (rc)
2787 		goto out;
2788 	host->private_data = host_priv;
2789 
2790 	pci_set_master(pdev);
2791 	rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2792  out:
2793 	if (rc == 0)
2794 		devres_remove_group(&pdev->dev, NULL);
2795 	else
2796 		devres_release_group(&pdev->dev, NULL);
2797 
2798 	return rc;
2799 }
2800 
2801 #endif /* CONFIG_PCI */
2802 
2803 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
2804 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2805 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
2806 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
2807 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
2808 EXPORT_SYMBOL_GPL(ata_sff_check_status);
2809 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
2810 EXPORT_SYMBOL_GPL(ata_sff_pause);
2811 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
2812 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
2813 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
2814 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
2815 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
2816 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
2817 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
2818 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
2819 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
2820 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
2821 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
2822 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
2823 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
2824 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
2825 EXPORT_SYMBOL_GPL(ata_sff_freeze);
2826 EXPORT_SYMBOL_GPL(ata_sff_thaw);
2827 EXPORT_SYMBOL_GPL(ata_sff_prereset);
2828 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2829 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2830 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2831 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2832 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2833 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2834 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2835 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2836 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2837 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2838 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2839 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2840 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2841 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2842 EXPORT_SYMBOL_GPL(ata_bus_reset);
2843 #ifdef CONFIG_PCI
2844 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2845 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2846 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2847 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2848 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2849 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2850 #endif /* CONFIG_PCI */
2851