1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-sff.c - helper library for PCI IDE BMDMA 4 * 5 * Maintained by: Tejun Heo <tj@kernel.org> 6 * Please ALWAYS copy linux-ide@vger.kernel.org 7 * on emails. 8 * 9 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 10 * Copyright 2003-2006 Jeff Garzik 11 * 12 * libata documentation is available via 'make {ps|pdf}docs', 13 * as Documentation/driver-api/libata.rst 14 * 15 * Hardware documentation available from http://www.t13.org/ and 16 * http://www.sata-io.org/ 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/gfp.h> 21 #include <linux/pci.h> 22 #include <linux/module.h> 23 #include <linux/libata.h> 24 #include <linux/highmem.h> 25 26 #include "libata.h" 27 28 static struct workqueue_struct *ata_sff_wq; 29 30 const struct ata_port_operations ata_sff_port_ops = { 31 .inherits = &ata_base_port_ops, 32 33 .qc_prep = ata_noop_qc_prep, 34 .qc_issue = ata_sff_qc_issue, 35 .qc_fill_rtf = ata_sff_qc_fill_rtf, 36 37 .freeze = ata_sff_freeze, 38 .thaw = ata_sff_thaw, 39 .prereset = ata_sff_prereset, 40 .softreset = ata_sff_softreset, 41 .hardreset = sata_sff_hardreset, 42 .postreset = ata_sff_postreset, 43 .error_handler = ata_sff_error_handler, 44 45 .sff_dev_select = ata_sff_dev_select, 46 .sff_check_status = ata_sff_check_status, 47 .sff_tf_load = ata_sff_tf_load, 48 .sff_tf_read = ata_sff_tf_read, 49 .sff_exec_command = ata_sff_exec_command, 50 .sff_data_xfer = ata_sff_data_xfer, 51 .sff_drain_fifo = ata_sff_drain_fifo, 52 53 .lost_interrupt = ata_sff_lost_interrupt, 54 }; 55 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 56 57 /** 58 * ata_sff_check_status - Read device status reg & clear interrupt 59 * @ap: port where the device is 60 * 61 * Reads ATA taskfile status register for currently-selected device 62 * and return its value. This also clears pending interrupts 63 * from this device 64 * 65 * LOCKING: 66 * Inherited from caller. 67 */ 68 u8 ata_sff_check_status(struct ata_port *ap) 69 { 70 return ioread8(ap->ioaddr.status_addr); 71 } 72 EXPORT_SYMBOL_GPL(ata_sff_check_status); 73 74 /** 75 * ata_sff_altstatus - Read device alternate status reg 76 * @ap: port where the device is 77 * 78 * Reads ATA taskfile alternate status register for 79 * currently-selected device and return its value. 80 * 81 * Note: may NOT be used as the check_altstatus() entry in 82 * ata_port_operations. 83 * 84 * LOCKING: 85 * Inherited from caller. 86 */ 87 static u8 ata_sff_altstatus(struct ata_port *ap) 88 { 89 if (ap->ops->sff_check_altstatus) 90 return ap->ops->sff_check_altstatus(ap); 91 92 return ioread8(ap->ioaddr.altstatus_addr); 93 } 94 95 /** 96 * ata_sff_irq_status - Check if the device is busy 97 * @ap: port where the device is 98 * 99 * Determine if the port is currently busy. Uses altstatus 100 * if available in order to avoid clearing shared IRQ status 101 * when finding an IRQ source. Non ctl capable devices don't 102 * share interrupt lines fortunately for us. 103 * 104 * LOCKING: 105 * Inherited from caller. 106 */ 107 static u8 ata_sff_irq_status(struct ata_port *ap) 108 { 109 u8 status; 110 111 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 112 status = ata_sff_altstatus(ap); 113 /* Not us: We are busy */ 114 if (status & ATA_BUSY) 115 return status; 116 } 117 /* Clear INTRQ latch */ 118 status = ap->ops->sff_check_status(ap); 119 return status; 120 } 121 122 /** 123 * ata_sff_sync - Flush writes 124 * @ap: Port to wait for. 125 * 126 * CAUTION: 127 * If we have an mmio device with no ctl and no altstatus 128 * method this will fail. No such devices are known to exist. 129 * 130 * LOCKING: 131 * Inherited from caller. 132 */ 133 134 static void ata_sff_sync(struct ata_port *ap) 135 { 136 if (ap->ops->sff_check_altstatus) 137 ap->ops->sff_check_altstatus(ap); 138 else if (ap->ioaddr.altstatus_addr) 139 ioread8(ap->ioaddr.altstatus_addr); 140 } 141 142 /** 143 * ata_sff_pause - Flush writes and wait 400nS 144 * @ap: Port to pause for. 145 * 146 * CAUTION: 147 * If we have an mmio device with no ctl and no altstatus 148 * method this will fail. No such devices are known to exist. 149 * 150 * LOCKING: 151 * Inherited from caller. 152 */ 153 154 void ata_sff_pause(struct ata_port *ap) 155 { 156 ata_sff_sync(ap); 157 ndelay(400); 158 } 159 EXPORT_SYMBOL_GPL(ata_sff_pause); 160 161 /** 162 * ata_sff_dma_pause - Pause before commencing DMA 163 * @ap: Port to pause for. 164 * 165 * Perform I/O fencing and ensure sufficient cycle delays occur 166 * for the HDMA1:0 transition 167 */ 168 169 void ata_sff_dma_pause(struct ata_port *ap) 170 { 171 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 172 /* An altstatus read will cause the needed delay without 173 messing up the IRQ status */ 174 ata_sff_altstatus(ap); 175 return; 176 } 177 /* There are no DMA controllers without ctl. BUG here to ensure 178 we never violate the HDMA1:0 transition timing and risk 179 corruption. */ 180 BUG(); 181 } 182 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 183 184 /** 185 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 186 * @ap: port containing status register to be polled 187 * @tmout_pat: impatience timeout in msecs 188 * @tmout: overall timeout in msecs 189 * 190 * Sleep until ATA Status register bit BSY clears, 191 * or a timeout occurs. 192 * 193 * LOCKING: 194 * Kernel thread context (may sleep). 195 * 196 * RETURNS: 197 * 0 on success, -errno otherwise. 198 */ 199 int ata_sff_busy_sleep(struct ata_port *ap, 200 unsigned long tmout_pat, unsigned long tmout) 201 { 202 unsigned long timer_start, timeout; 203 u8 status; 204 205 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 206 timer_start = jiffies; 207 timeout = ata_deadline(timer_start, tmout_pat); 208 while (status != 0xff && (status & ATA_BUSY) && 209 time_before(jiffies, timeout)) { 210 ata_msleep(ap, 50); 211 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 212 } 213 214 if (status != 0xff && (status & ATA_BUSY)) 215 ata_port_warn(ap, 216 "port is slow to respond, please be patient (Status 0x%x)\n", 217 status); 218 219 timeout = ata_deadline(timer_start, tmout); 220 while (status != 0xff && (status & ATA_BUSY) && 221 time_before(jiffies, timeout)) { 222 ata_msleep(ap, 50); 223 status = ap->ops->sff_check_status(ap); 224 } 225 226 if (status == 0xff) 227 return -ENODEV; 228 229 if (status & ATA_BUSY) { 230 ata_port_err(ap, 231 "port failed to respond (%lu secs, Status 0x%x)\n", 232 DIV_ROUND_UP(tmout, 1000), status); 233 return -EBUSY; 234 } 235 236 return 0; 237 } 238 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 239 240 static int ata_sff_check_ready(struct ata_link *link) 241 { 242 u8 status = link->ap->ops->sff_check_status(link->ap); 243 244 return ata_check_ready(status); 245 } 246 247 /** 248 * ata_sff_wait_ready - sleep until BSY clears, or timeout 249 * @link: SFF link to wait ready status for 250 * @deadline: deadline jiffies for the operation 251 * 252 * Sleep until ATA Status register bit BSY clears, or timeout 253 * occurs. 254 * 255 * LOCKING: 256 * Kernel thread context (may sleep). 257 * 258 * RETURNS: 259 * 0 on success, -errno otherwise. 260 */ 261 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 262 { 263 return ata_wait_ready(link, deadline, ata_sff_check_ready); 264 } 265 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 266 267 /** 268 * ata_sff_set_devctl - Write device control reg 269 * @ap: port where the device is 270 * @ctl: value to write 271 * 272 * Writes ATA taskfile device control register. 273 * 274 * Note: may NOT be used as the sff_set_devctl() entry in 275 * ata_port_operations. 276 * 277 * LOCKING: 278 * Inherited from caller. 279 */ 280 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 281 { 282 if (ap->ops->sff_set_devctl) 283 ap->ops->sff_set_devctl(ap, ctl); 284 else 285 iowrite8(ctl, ap->ioaddr.ctl_addr); 286 } 287 288 /** 289 * ata_sff_dev_select - Select device 0/1 on ATA bus 290 * @ap: ATA channel to manipulate 291 * @device: ATA device (numbered from zero) to select 292 * 293 * Use the method defined in the ATA specification to 294 * make either device 0, or device 1, active on the 295 * ATA channel. Works with both PIO and MMIO. 296 * 297 * May be used as the dev_select() entry in ata_port_operations. 298 * 299 * LOCKING: 300 * caller. 301 */ 302 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 303 { 304 u8 tmp; 305 306 if (device == 0) 307 tmp = ATA_DEVICE_OBS; 308 else 309 tmp = ATA_DEVICE_OBS | ATA_DEV1; 310 311 iowrite8(tmp, ap->ioaddr.device_addr); 312 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 313 } 314 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 315 316 /** 317 * ata_dev_select - Select device 0/1 on ATA bus 318 * @ap: ATA channel to manipulate 319 * @device: ATA device (numbered from zero) to select 320 * @wait: non-zero to wait for Status register BSY bit to clear 321 * @can_sleep: non-zero if context allows sleeping 322 * 323 * Use the method defined in the ATA specification to 324 * make either device 0, or device 1, active on the 325 * ATA channel. 326 * 327 * This is a high-level version of ata_sff_dev_select(), which 328 * additionally provides the services of inserting the proper 329 * pauses and status polling, where needed. 330 * 331 * LOCKING: 332 * caller. 333 */ 334 static void ata_dev_select(struct ata_port *ap, unsigned int device, 335 unsigned int wait, unsigned int can_sleep) 336 { 337 if (ata_msg_probe(ap)) 338 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n", 339 device, wait); 340 341 if (wait) 342 ata_wait_idle(ap); 343 344 ap->ops->sff_dev_select(ap, device); 345 346 if (wait) { 347 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 348 ata_msleep(ap, 150); 349 ata_wait_idle(ap); 350 } 351 } 352 353 /** 354 * ata_sff_irq_on - Enable interrupts on a port. 355 * @ap: Port on which interrupts are enabled. 356 * 357 * Enable interrupts on a legacy IDE device using MMIO or PIO, 358 * wait for idle, clear any pending interrupts. 359 * 360 * Note: may NOT be used as the sff_irq_on() entry in 361 * ata_port_operations. 362 * 363 * LOCKING: 364 * Inherited from caller. 365 */ 366 void ata_sff_irq_on(struct ata_port *ap) 367 { 368 struct ata_ioports *ioaddr = &ap->ioaddr; 369 370 if (ap->ops->sff_irq_on) { 371 ap->ops->sff_irq_on(ap); 372 return; 373 } 374 375 ap->ctl &= ~ATA_NIEN; 376 ap->last_ctl = ap->ctl; 377 378 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 379 ata_sff_set_devctl(ap, ap->ctl); 380 ata_wait_idle(ap); 381 382 if (ap->ops->sff_irq_clear) 383 ap->ops->sff_irq_clear(ap); 384 } 385 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 386 387 /** 388 * ata_sff_tf_load - send taskfile registers to host controller 389 * @ap: Port to which output is sent 390 * @tf: ATA taskfile register set 391 * 392 * Outputs ATA taskfile to standard ATA host controller. 393 * 394 * LOCKING: 395 * Inherited from caller. 396 */ 397 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 398 { 399 struct ata_ioports *ioaddr = &ap->ioaddr; 400 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 401 402 if (tf->ctl != ap->last_ctl) { 403 if (ioaddr->ctl_addr) 404 iowrite8(tf->ctl, ioaddr->ctl_addr); 405 ap->last_ctl = tf->ctl; 406 ata_wait_idle(ap); 407 } 408 409 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 410 WARN_ON_ONCE(!ioaddr->ctl_addr); 411 iowrite8(tf->hob_feature, ioaddr->feature_addr); 412 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 413 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 414 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 415 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 416 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 417 tf->hob_feature, 418 tf->hob_nsect, 419 tf->hob_lbal, 420 tf->hob_lbam, 421 tf->hob_lbah); 422 } 423 424 if (is_addr) { 425 iowrite8(tf->feature, ioaddr->feature_addr); 426 iowrite8(tf->nsect, ioaddr->nsect_addr); 427 iowrite8(tf->lbal, ioaddr->lbal_addr); 428 iowrite8(tf->lbam, ioaddr->lbam_addr); 429 iowrite8(tf->lbah, ioaddr->lbah_addr); 430 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 431 tf->feature, 432 tf->nsect, 433 tf->lbal, 434 tf->lbam, 435 tf->lbah); 436 } 437 438 if (tf->flags & ATA_TFLAG_DEVICE) { 439 iowrite8(tf->device, ioaddr->device_addr); 440 VPRINTK("device 0x%X\n", tf->device); 441 } 442 443 ata_wait_idle(ap); 444 } 445 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 446 447 /** 448 * ata_sff_tf_read - input device's ATA taskfile shadow registers 449 * @ap: Port from which input is read 450 * @tf: ATA taskfile register set for storing input 451 * 452 * Reads ATA taskfile registers for currently-selected device 453 * into @tf. Assumes the device has a fully SFF compliant task file 454 * layout and behaviour. If you device does not (eg has a different 455 * status method) then you will need to provide a replacement tf_read 456 * 457 * LOCKING: 458 * Inherited from caller. 459 */ 460 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 461 { 462 struct ata_ioports *ioaddr = &ap->ioaddr; 463 464 tf->command = ata_sff_check_status(ap); 465 tf->feature = ioread8(ioaddr->error_addr); 466 tf->nsect = ioread8(ioaddr->nsect_addr); 467 tf->lbal = ioread8(ioaddr->lbal_addr); 468 tf->lbam = ioread8(ioaddr->lbam_addr); 469 tf->lbah = ioread8(ioaddr->lbah_addr); 470 tf->device = ioread8(ioaddr->device_addr); 471 472 if (tf->flags & ATA_TFLAG_LBA48) { 473 if (likely(ioaddr->ctl_addr)) { 474 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 475 tf->hob_feature = ioread8(ioaddr->error_addr); 476 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 477 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 478 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 479 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 480 iowrite8(tf->ctl, ioaddr->ctl_addr); 481 ap->last_ctl = tf->ctl; 482 } else 483 WARN_ON_ONCE(1); 484 } 485 } 486 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 487 488 /** 489 * ata_sff_exec_command - issue ATA command to host controller 490 * @ap: port to which command is being issued 491 * @tf: ATA taskfile register set 492 * 493 * Issues ATA command, with proper synchronization with interrupt 494 * handler / other threads. 495 * 496 * LOCKING: 497 * spin_lock_irqsave(host lock) 498 */ 499 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 500 { 501 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 502 503 iowrite8(tf->command, ap->ioaddr.command_addr); 504 ata_sff_pause(ap); 505 } 506 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 507 508 /** 509 * ata_tf_to_host - issue ATA taskfile to host controller 510 * @ap: port to which command is being issued 511 * @tf: ATA taskfile register set 512 * 513 * Issues ATA taskfile register set to ATA host controller, 514 * with proper synchronization with interrupt handler and 515 * other threads. 516 * 517 * LOCKING: 518 * spin_lock_irqsave(host lock) 519 */ 520 static inline void ata_tf_to_host(struct ata_port *ap, 521 const struct ata_taskfile *tf) 522 { 523 ap->ops->sff_tf_load(ap, tf); 524 ap->ops->sff_exec_command(ap, tf); 525 } 526 527 /** 528 * ata_sff_data_xfer - Transfer data by PIO 529 * @qc: queued command 530 * @buf: data buffer 531 * @buflen: buffer length 532 * @rw: read/write 533 * 534 * Transfer data from/to the device data register by PIO. 535 * 536 * LOCKING: 537 * Inherited from caller. 538 * 539 * RETURNS: 540 * Bytes consumed. 541 */ 542 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, 543 unsigned int buflen, int rw) 544 { 545 struct ata_port *ap = qc->dev->link->ap; 546 void __iomem *data_addr = ap->ioaddr.data_addr; 547 unsigned int words = buflen >> 1; 548 549 /* Transfer multiple of 2 bytes */ 550 if (rw == READ) 551 ioread16_rep(data_addr, buf, words); 552 else 553 iowrite16_rep(data_addr, buf, words); 554 555 /* Transfer trailing byte, if any. */ 556 if (unlikely(buflen & 0x01)) { 557 unsigned char pad[2] = { }; 558 559 /* Point buf to the tail of buffer */ 560 buf += buflen - 1; 561 562 /* 563 * Use io*16_rep() accessors here as well to avoid pointlessly 564 * swapping bytes to and from on the big endian machines... 565 */ 566 if (rw == READ) { 567 ioread16_rep(data_addr, pad, 1); 568 *buf = pad[0]; 569 } else { 570 pad[0] = *buf; 571 iowrite16_rep(data_addr, pad, 1); 572 } 573 words++; 574 } 575 576 return words << 1; 577 } 578 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 579 580 /** 581 * ata_sff_data_xfer32 - Transfer data by PIO 582 * @qc: queued command 583 * @buf: data buffer 584 * @buflen: buffer length 585 * @rw: read/write 586 * 587 * Transfer data from/to the device data register by PIO using 32bit 588 * I/O operations. 589 * 590 * LOCKING: 591 * Inherited from caller. 592 * 593 * RETURNS: 594 * Bytes consumed. 595 */ 596 597 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, 598 unsigned int buflen, int rw) 599 { 600 struct ata_device *dev = qc->dev; 601 struct ata_port *ap = dev->link->ap; 602 void __iomem *data_addr = ap->ioaddr.data_addr; 603 unsigned int words = buflen >> 2; 604 int slop = buflen & 3; 605 606 if (!(ap->pflags & ATA_PFLAG_PIO32)) 607 return ata_sff_data_xfer(qc, buf, buflen, rw); 608 609 /* Transfer multiple of 4 bytes */ 610 if (rw == READ) 611 ioread32_rep(data_addr, buf, words); 612 else 613 iowrite32_rep(data_addr, buf, words); 614 615 /* Transfer trailing bytes, if any */ 616 if (unlikely(slop)) { 617 unsigned char pad[4] = { }; 618 619 /* Point buf to the tail of buffer */ 620 buf += buflen - slop; 621 622 /* 623 * Use io*_rep() accessors here as well to avoid pointlessly 624 * swapping bytes to and from on the big endian machines... 625 */ 626 if (rw == READ) { 627 if (slop < 3) 628 ioread16_rep(data_addr, pad, 1); 629 else 630 ioread32_rep(data_addr, pad, 1); 631 memcpy(buf, pad, slop); 632 } else { 633 memcpy(pad, buf, slop); 634 if (slop < 3) 635 iowrite16_rep(data_addr, pad, 1); 636 else 637 iowrite32_rep(data_addr, pad, 1); 638 } 639 } 640 return (buflen + 1) & ~1; 641 } 642 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 643 644 /** 645 * ata_pio_sector - Transfer a sector of data. 646 * @qc: Command on going 647 * 648 * Transfer qc->sect_size bytes of data from/to the ATA device. 649 * 650 * LOCKING: 651 * Inherited from caller. 652 */ 653 static void ata_pio_sector(struct ata_queued_cmd *qc) 654 { 655 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 656 struct ata_port *ap = qc->ap; 657 struct page *page; 658 unsigned int offset; 659 unsigned char *buf; 660 661 if (!qc->cursg) { 662 qc->curbytes = qc->nbytes; 663 return; 664 } 665 if (qc->curbytes == qc->nbytes - qc->sect_size) 666 ap->hsm_task_state = HSM_ST_LAST; 667 668 page = sg_page(qc->cursg); 669 offset = qc->cursg->offset + qc->cursg_ofs; 670 671 /* get the current page and offset */ 672 page = nth_page(page, (offset >> PAGE_SHIFT)); 673 offset %= PAGE_SIZE; 674 675 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 676 677 /* do the actual data transfer */ 678 buf = kmap_atomic(page); 679 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write); 680 kunmap_atomic(buf); 681 682 if (!do_write && !PageSlab(page)) 683 flush_dcache_page(page); 684 685 qc->curbytes += qc->sect_size; 686 qc->cursg_ofs += qc->sect_size; 687 688 if (qc->cursg_ofs == qc->cursg->length) { 689 qc->cursg = sg_next(qc->cursg); 690 if (!qc->cursg) 691 ap->hsm_task_state = HSM_ST_LAST; 692 qc->cursg_ofs = 0; 693 } 694 } 695 696 /** 697 * ata_pio_sectors - Transfer one or many sectors. 698 * @qc: Command on going 699 * 700 * Transfer one or many sectors of data from/to the 701 * ATA device for the DRQ request. 702 * 703 * LOCKING: 704 * Inherited from caller. 705 */ 706 static void ata_pio_sectors(struct ata_queued_cmd *qc) 707 { 708 if (is_multi_taskfile(&qc->tf)) { 709 /* READ/WRITE MULTIPLE */ 710 unsigned int nsect; 711 712 WARN_ON_ONCE(qc->dev->multi_count == 0); 713 714 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 715 qc->dev->multi_count); 716 while (nsect--) 717 ata_pio_sector(qc); 718 } else 719 ata_pio_sector(qc); 720 721 ata_sff_sync(qc->ap); /* flush */ 722 } 723 724 /** 725 * atapi_send_cdb - Write CDB bytes to hardware 726 * @ap: Port to which ATAPI device is attached. 727 * @qc: Taskfile currently active 728 * 729 * When device has indicated its readiness to accept 730 * a CDB, this function is called. Send the CDB. 731 * 732 * LOCKING: 733 * caller. 734 */ 735 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 736 { 737 /* send SCSI cdb */ 738 DPRINTK("send cdb\n"); 739 WARN_ON_ONCE(qc->dev->cdb_len < 12); 740 741 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); 742 ata_sff_sync(ap); 743 /* FIXME: If the CDB is for DMA do we need to do the transition delay 744 or is bmdma_start guaranteed to do it ? */ 745 switch (qc->tf.protocol) { 746 case ATAPI_PROT_PIO: 747 ap->hsm_task_state = HSM_ST; 748 break; 749 case ATAPI_PROT_NODATA: 750 ap->hsm_task_state = HSM_ST_LAST; 751 break; 752 #ifdef CONFIG_ATA_BMDMA 753 case ATAPI_PROT_DMA: 754 ap->hsm_task_state = HSM_ST_LAST; 755 /* initiate bmdma */ 756 ap->ops->bmdma_start(qc); 757 break; 758 #endif /* CONFIG_ATA_BMDMA */ 759 default: 760 BUG(); 761 } 762 } 763 764 /** 765 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 766 * @qc: Command on going 767 * @bytes: number of bytes 768 * 769 * Transfer Transfer data from/to the ATAPI device. 770 * 771 * LOCKING: 772 * Inherited from caller. 773 * 774 */ 775 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 776 { 777 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 778 struct ata_port *ap = qc->ap; 779 struct ata_device *dev = qc->dev; 780 struct ata_eh_info *ehi = &dev->link->eh_info; 781 struct scatterlist *sg; 782 struct page *page; 783 unsigned char *buf; 784 unsigned int offset, count, consumed; 785 786 next_sg: 787 sg = qc->cursg; 788 if (unlikely(!sg)) { 789 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 790 "buf=%u cur=%u bytes=%u", 791 qc->nbytes, qc->curbytes, bytes); 792 return -1; 793 } 794 795 page = sg_page(sg); 796 offset = sg->offset + qc->cursg_ofs; 797 798 /* get the current page and offset */ 799 page = nth_page(page, (offset >> PAGE_SHIFT)); 800 offset %= PAGE_SIZE; 801 802 /* don't overrun current sg */ 803 count = min(sg->length - qc->cursg_ofs, bytes); 804 805 /* don't cross page boundaries */ 806 count = min(count, (unsigned int)PAGE_SIZE - offset); 807 808 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 809 810 /* do the actual data transfer */ 811 buf = kmap_atomic(page); 812 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw); 813 kunmap_atomic(buf); 814 815 bytes -= min(bytes, consumed); 816 qc->curbytes += count; 817 qc->cursg_ofs += count; 818 819 if (qc->cursg_ofs == sg->length) { 820 qc->cursg = sg_next(qc->cursg); 821 qc->cursg_ofs = 0; 822 } 823 824 /* 825 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 826 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 827 * check correctly as it doesn't know if it is the last request being 828 * made. Somebody should implement a proper sanity check. 829 */ 830 if (bytes) 831 goto next_sg; 832 return 0; 833 } 834 835 /** 836 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 837 * @qc: Command on going 838 * 839 * Transfer Transfer data from/to the ATAPI device. 840 * 841 * LOCKING: 842 * Inherited from caller. 843 */ 844 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 845 { 846 struct ata_port *ap = qc->ap; 847 struct ata_device *dev = qc->dev; 848 struct ata_eh_info *ehi = &dev->link->eh_info; 849 unsigned int ireason, bc_lo, bc_hi, bytes; 850 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 851 852 /* Abuse qc->result_tf for temp storage of intermediate TF 853 * here to save some kernel stack usage. 854 * For normal completion, qc->result_tf is not relevant. For 855 * error, qc->result_tf is later overwritten by ata_qc_complete(). 856 * So, the correctness of qc->result_tf is not affected. 857 */ 858 ap->ops->sff_tf_read(ap, &qc->result_tf); 859 ireason = qc->result_tf.nsect; 860 bc_lo = qc->result_tf.lbam; 861 bc_hi = qc->result_tf.lbah; 862 bytes = (bc_hi << 8) | bc_lo; 863 864 /* shall be cleared to zero, indicating xfer of data */ 865 if (unlikely(ireason & ATAPI_COD)) 866 goto atapi_check; 867 868 /* make sure transfer direction matches expected */ 869 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 870 if (unlikely(do_write != i_write)) 871 goto atapi_check; 872 873 if (unlikely(!bytes)) 874 goto atapi_check; 875 876 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 877 878 if (unlikely(__atapi_pio_bytes(qc, bytes))) 879 goto err_out; 880 ata_sff_sync(ap); /* flush */ 881 882 return; 883 884 atapi_check: 885 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 886 ireason, bytes); 887 err_out: 888 qc->err_mask |= AC_ERR_HSM; 889 ap->hsm_task_state = HSM_ST_ERR; 890 } 891 892 /** 893 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 894 * @ap: the target ata_port 895 * @qc: qc on going 896 * 897 * RETURNS: 898 * 1 if ok in workqueue, 0 otherwise. 899 */ 900 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 901 struct ata_queued_cmd *qc) 902 { 903 if (qc->tf.flags & ATA_TFLAG_POLLING) 904 return 1; 905 906 if (ap->hsm_task_state == HSM_ST_FIRST) { 907 if (qc->tf.protocol == ATA_PROT_PIO && 908 (qc->tf.flags & ATA_TFLAG_WRITE)) 909 return 1; 910 911 if (ata_is_atapi(qc->tf.protocol) && 912 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 913 return 1; 914 } 915 916 return 0; 917 } 918 919 /** 920 * ata_hsm_qc_complete - finish a qc running on standard HSM 921 * @qc: Command to complete 922 * @in_wq: 1 if called from workqueue, 0 otherwise 923 * 924 * Finish @qc which is running on standard HSM. 925 * 926 * LOCKING: 927 * If @in_wq is zero, spin_lock_irqsave(host lock). 928 * Otherwise, none on entry and grabs host lock. 929 */ 930 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 931 { 932 struct ata_port *ap = qc->ap; 933 934 if (ap->ops->error_handler) { 935 if (in_wq) { 936 /* EH might have kicked in while host lock is 937 * released. 938 */ 939 qc = ata_qc_from_tag(ap, qc->tag); 940 if (qc) { 941 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 942 ata_sff_irq_on(ap); 943 ata_qc_complete(qc); 944 } else 945 ata_port_freeze(ap); 946 } 947 } else { 948 if (likely(!(qc->err_mask & AC_ERR_HSM))) 949 ata_qc_complete(qc); 950 else 951 ata_port_freeze(ap); 952 } 953 } else { 954 if (in_wq) { 955 ata_sff_irq_on(ap); 956 ata_qc_complete(qc); 957 } else 958 ata_qc_complete(qc); 959 } 960 } 961 962 /** 963 * ata_sff_hsm_move - move the HSM to the next state. 964 * @ap: the target ata_port 965 * @qc: qc on going 966 * @status: current device status 967 * @in_wq: 1 if called from workqueue, 0 otherwise 968 * 969 * RETURNS: 970 * 1 when poll next status needed, 0 otherwise. 971 */ 972 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 973 u8 status, int in_wq) 974 { 975 struct ata_link *link = qc->dev->link; 976 struct ata_eh_info *ehi = &link->eh_info; 977 int poll_next; 978 979 lockdep_assert_held(ap->lock); 980 981 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 982 983 /* Make sure ata_sff_qc_issue() does not throw things 984 * like DMA polling into the workqueue. Notice that 985 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 986 */ 987 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 988 989 fsm_start: 990 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 991 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 992 993 switch (ap->hsm_task_state) { 994 case HSM_ST_FIRST: 995 /* Send first data block or PACKET CDB */ 996 997 /* If polling, we will stay in the work queue after 998 * sending the data. Otherwise, interrupt handler 999 * takes over after sending the data. 1000 */ 1001 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1002 1003 /* check device status */ 1004 if (unlikely((status & ATA_DRQ) == 0)) { 1005 /* handle BSY=0, DRQ=0 as error */ 1006 if (likely(status & (ATA_ERR | ATA_DF))) 1007 /* device stops HSM for abort/error */ 1008 qc->err_mask |= AC_ERR_DEV; 1009 else { 1010 /* HSM violation. Let EH handle this */ 1011 ata_ehi_push_desc(ehi, 1012 "ST_FIRST: !(DRQ|ERR|DF)"); 1013 qc->err_mask |= AC_ERR_HSM; 1014 } 1015 1016 ap->hsm_task_state = HSM_ST_ERR; 1017 goto fsm_start; 1018 } 1019 1020 /* Device should not ask for data transfer (DRQ=1) 1021 * when it finds something wrong. 1022 * We ignore DRQ here and stop the HSM by 1023 * changing hsm_task_state to HSM_ST_ERR and 1024 * let the EH abort the command or reset the device. 1025 */ 1026 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1027 /* Some ATAPI tape drives forget to clear the ERR bit 1028 * when doing the next command (mostly request sense). 1029 * We ignore ERR here to workaround and proceed sending 1030 * the CDB. 1031 */ 1032 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1033 ata_ehi_push_desc(ehi, "ST_FIRST: " 1034 "DRQ=1 with device error, " 1035 "dev_stat 0x%X", status); 1036 qc->err_mask |= AC_ERR_HSM; 1037 ap->hsm_task_state = HSM_ST_ERR; 1038 goto fsm_start; 1039 } 1040 } 1041 1042 if (qc->tf.protocol == ATA_PROT_PIO) { 1043 /* PIO data out protocol. 1044 * send first data block. 1045 */ 1046 1047 /* ata_pio_sectors() might change the state 1048 * to HSM_ST_LAST. so, the state is changed here 1049 * before ata_pio_sectors(). 1050 */ 1051 ap->hsm_task_state = HSM_ST; 1052 ata_pio_sectors(qc); 1053 } else 1054 /* send CDB */ 1055 atapi_send_cdb(ap, qc); 1056 1057 /* if polling, ata_sff_pio_task() handles the rest. 1058 * otherwise, interrupt handler takes over from here. 1059 */ 1060 break; 1061 1062 case HSM_ST: 1063 /* complete command or read/write the data register */ 1064 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1065 /* ATAPI PIO protocol */ 1066 if ((status & ATA_DRQ) == 0) { 1067 /* No more data to transfer or device error. 1068 * Device error will be tagged in HSM_ST_LAST. 1069 */ 1070 ap->hsm_task_state = HSM_ST_LAST; 1071 goto fsm_start; 1072 } 1073 1074 /* Device should not ask for data transfer (DRQ=1) 1075 * when it finds something wrong. 1076 * We ignore DRQ here and stop the HSM by 1077 * changing hsm_task_state to HSM_ST_ERR and 1078 * let the EH abort the command or reset the device. 1079 */ 1080 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1081 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1082 "DRQ=1 with device error, " 1083 "dev_stat 0x%X", status); 1084 qc->err_mask |= AC_ERR_HSM; 1085 ap->hsm_task_state = HSM_ST_ERR; 1086 goto fsm_start; 1087 } 1088 1089 atapi_pio_bytes(qc); 1090 1091 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1092 /* bad ireason reported by device */ 1093 goto fsm_start; 1094 1095 } else { 1096 /* ATA PIO protocol */ 1097 if (unlikely((status & ATA_DRQ) == 0)) { 1098 /* handle BSY=0, DRQ=0 as error */ 1099 if (likely(status & (ATA_ERR | ATA_DF))) { 1100 /* device stops HSM for abort/error */ 1101 qc->err_mask |= AC_ERR_DEV; 1102 1103 /* If diagnostic failed and this is 1104 * IDENTIFY, it's likely a phantom 1105 * device. Mark hint. 1106 */ 1107 if (qc->dev->horkage & 1108 ATA_HORKAGE_DIAGNOSTIC) 1109 qc->err_mask |= 1110 AC_ERR_NODEV_HINT; 1111 } else { 1112 /* HSM violation. Let EH handle this. 1113 * Phantom devices also trigger this 1114 * condition. Mark hint. 1115 */ 1116 ata_ehi_push_desc(ehi, "ST-ATA: " 1117 "DRQ=0 without device error, " 1118 "dev_stat 0x%X", status); 1119 qc->err_mask |= AC_ERR_HSM | 1120 AC_ERR_NODEV_HINT; 1121 } 1122 1123 ap->hsm_task_state = HSM_ST_ERR; 1124 goto fsm_start; 1125 } 1126 1127 /* For PIO reads, some devices may ask for 1128 * data transfer (DRQ=1) alone with ERR=1. 1129 * We respect DRQ here and transfer one 1130 * block of junk data before changing the 1131 * hsm_task_state to HSM_ST_ERR. 1132 * 1133 * For PIO writes, ERR=1 DRQ=1 doesn't make 1134 * sense since the data block has been 1135 * transferred to the device. 1136 */ 1137 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1138 /* data might be corrputed */ 1139 qc->err_mask |= AC_ERR_DEV; 1140 1141 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1142 ata_pio_sectors(qc); 1143 status = ata_wait_idle(ap); 1144 } 1145 1146 if (status & (ATA_BUSY | ATA_DRQ)) { 1147 ata_ehi_push_desc(ehi, "ST-ATA: " 1148 "BUSY|DRQ persists on ERR|DF, " 1149 "dev_stat 0x%X", status); 1150 qc->err_mask |= AC_ERR_HSM; 1151 } 1152 1153 /* There are oddball controllers with 1154 * status register stuck at 0x7f and 1155 * lbal/m/h at zero which makes it 1156 * pass all other presence detection 1157 * mechanisms we have. Set NODEV_HINT 1158 * for it. Kernel bz#7241. 1159 */ 1160 if (status == 0x7f) 1161 qc->err_mask |= AC_ERR_NODEV_HINT; 1162 1163 /* ata_pio_sectors() might change the 1164 * state to HSM_ST_LAST. so, the state 1165 * is changed after ata_pio_sectors(). 1166 */ 1167 ap->hsm_task_state = HSM_ST_ERR; 1168 goto fsm_start; 1169 } 1170 1171 ata_pio_sectors(qc); 1172 1173 if (ap->hsm_task_state == HSM_ST_LAST && 1174 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1175 /* all data read */ 1176 status = ata_wait_idle(ap); 1177 goto fsm_start; 1178 } 1179 } 1180 1181 poll_next = 1; 1182 break; 1183 1184 case HSM_ST_LAST: 1185 if (unlikely(!ata_ok(status))) { 1186 qc->err_mask |= __ac_err_mask(status); 1187 ap->hsm_task_state = HSM_ST_ERR; 1188 goto fsm_start; 1189 } 1190 1191 /* no more data to transfer */ 1192 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1193 ap->print_id, qc->dev->devno, status); 1194 1195 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1196 1197 ap->hsm_task_state = HSM_ST_IDLE; 1198 1199 /* complete taskfile transaction */ 1200 ata_hsm_qc_complete(qc, in_wq); 1201 1202 poll_next = 0; 1203 break; 1204 1205 case HSM_ST_ERR: 1206 ap->hsm_task_state = HSM_ST_IDLE; 1207 1208 /* complete taskfile transaction */ 1209 ata_hsm_qc_complete(qc, in_wq); 1210 1211 poll_next = 0; 1212 break; 1213 default: 1214 poll_next = 0; 1215 WARN(true, "ata%d: SFF host state machine in invalid state %d", 1216 ap->print_id, ap->hsm_task_state); 1217 } 1218 1219 return poll_next; 1220 } 1221 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1222 1223 void ata_sff_queue_work(struct work_struct *work) 1224 { 1225 queue_work(ata_sff_wq, work); 1226 } 1227 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1228 1229 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1230 { 1231 queue_delayed_work(ata_sff_wq, dwork, delay); 1232 } 1233 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1234 1235 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1236 { 1237 struct ata_port *ap = link->ap; 1238 1239 WARN_ON((ap->sff_pio_task_link != NULL) && 1240 (ap->sff_pio_task_link != link)); 1241 ap->sff_pio_task_link = link; 1242 1243 /* may fail if ata_sff_flush_pio_task() in progress */ 1244 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1245 } 1246 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1247 1248 void ata_sff_flush_pio_task(struct ata_port *ap) 1249 { 1250 DPRINTK("ENTER\n"); 1251 1252 cancel_delayed_work_sync(&ap->sff_pio_task); 1253 1254 /* 1255 * We wanna reset the HSM state to IDLE. If we do so without 1256 * grabbing the port lock, critical sections protected by it which 1257 * expect the HSM state to stay stable may get surprised. For 1258 * example, we may set IDLE in between the time 1259 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1260 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1261 */ 1262 spin_lock_irq(ap->lock); 1263 ap->hsm_task_state = HSM_ST_IDLE; 1264 spin_unlock_irq(ap->lock); 1265 1266 ap->sff_pio_task_link = NULL; 1267 1268 if (ata_msg_ctl(ap)) 1269 ata_port_dbg(ap, "%s: EXIT\n", __func__); 1270 } 1271 1272 static void ata_sff_pio_task(struct work_struct *work) 1273 { 1274 struct ata_port *ap = 1275 container_of(work, struct ata_port, sff_pio_task.work); 1276 struct ata_link *link = ap->sff_pio_task_link; 1277 struct ata_queued_cmd *qc; 1278 u8 status; 1279 int poll_next; 1280 1281 spin_lock_irq(ap->lock); 1282 1283 BUG_ON(ap->sff_pio_task_link == NULL); 1284 /* qc can be NULL if timeout occurred */ 1285 qc = ata_qc_from_tag(ap, link->active_tag); 1286 if (!qc) { 1287 ap->sff_pio_task_link = NULL; 1288 goto out_unlock; 1289 } 1290 1291 fsm_start: 1292 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1293 1294 /* 1295 * This is purely heuristic. This is a fast path. 1296 * Sometimes when we enter, BSY will be cleared in 1297 * a chk-status or two. If not, the drive is probably seeking 1298 * or something. Snooze for a couple msecs, then 1299 * chk-status again. If still busy, queue delayed work. 1300 */ 1301 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1302 if (status & ATA_BUSY) { 1303 spin_unlock_irq(ap->lock); 1304 ata_msleep(ap, 2); 1305 spin_lock_irq(ap->lock); 1306 1307 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1308 if (status & ATA_BUSY) { 1309 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1310 goto out_unlock; 1311 } 1312 } 1313 1314 /* 1315 * hsm_move() may trigger another command to be processed. 1316 * clean the link beforehand. 1317 */ 1318 ap->sff_pio_task_link = NULL; 1319 /* move the HSM */ 1320 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1321 1322 /* another command or interrupt handler 1323 * may be running at this point. 1324 */ 1325 if (poll_next) 1326 goto fsm_start; 1327 out_unlock: 1328 spin_unlock_irq(ap->lock); 1329 } 1330 1331 /** 1332 * ata_sff_qc_issue - issue taskfile to a SFF controller 1333 * @qc: command to issue to device 1334 * 1335 * This function issues a PIO or NODATA command to a SFF 1336 * controller. 1337 * 1338 * LOCKING: 1339 * spin_lock_irqsave(host lock) 1340 * 1341 * RETURNS: 1342 * Zero on success, AC_ERR_* mask on failure 1343 */ 1344 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1345 { 1346 struct ata_port *ap = qc->ap; 1347 struct ata_link *link = qc->dev->link; 1348 1349 /* Use polling pio if the LLD doesn't handle 1350 * interrupt driven pio and atapi CDB interrupt. 1351 */ 1352 if (ap->flags & ATA_FLAG_PIO_POLLING) 1353 qc->tf.flags |= ATA_TFLAG_POLLING; 1354 1355 /* select the device */ 1356 ata_dev_select(ap, qc->dev->devno, 1, 0); 1357 1358 /* start the command */ 1359 switch (qc->tf.protocol) { 1360 case ATA_PROT_NODATA: 1361 if (qc->tf.flags & ATA_TFLAG_POLLING) 1362 ata_qc_set_polling(qc); 1363 1364 ata_tf_to_host(ap, &qc->tf); 1365 ap->hsm_task_state = HSM_ST_LAST; 1366 1367 if (qc->tf.flags & ATA_TFLAG_POLLING) 1368 ata_sff_queue_pio_task(link, 0); 1369 1370 break; 1371 1372 case ATA_PROT_PIO: 1373 if (qc->tf.flags & ATA_TFLAG_POLLING) 1374 ata_qc_set_polling(qc); 1375 1376 ata_tf_to_host(ap, &qc->tf); 1377 1378 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1379 /* PIO data out protocol */ 1380 ap->hsm_task_state = HSM_ST_FIRST; 1381 ata_sff_queue_pio_task(link, 0); 1382 1383 /* always send first data block using the 1384 * ata_sff_pio_task() codepath. 1385 */ 1386 } else { 1387 /* PIO data in protocol */ 1388 ap->hsm_task_state = HSM_ST; 1389 1390 if (qc->tf.flags & ATA_TFLAG_POLLING) 1391 ata_sff_queue_pio_task(link, 0); 1392 1393 /* if polling, ata_sff_pio_task() handles the 1394 * rest. otherwise, interrupt handler takes 1395 * over from here. 1396 */ 1397 } 1398 1399 break; 1400 1401 case ATAPI_PROT_PIO: 1402 case ATAPI_PROT_NODATA: 1403 if (qc->tf.flags & ATA_TFLAG_POLLING) 1404 ata_qc_set_polling(qc); 1405 1406 ata_tf_to_host(ap, &qc->tf); 1407 1408 ap->hsm_task_state = HSM_ST_FIRST; 1409 1410 /* send cdb by polling if no cdb interrupt */ 1411 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1412 (qc->tf.flags & ATA_TFLAG_POLLING)) 1413 ata_sff_queue_pio_task(link, 0); 1414 break; 1415 1416 default: 1417 return AC_ERR_SYSTEM; 1418 } 1419 1420 return 0; 1421 } 1422 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1423 1424 /** 1425 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1426 * @qc: qc to fill result TF for 1427 * 1428 * @qc is finished and result TF needs to be filled. Fill it 1429 * using ->sff_tf_read. 1430 * 1431 * LOCKING: 1432 * spin_lock_irqsave(host lock) 1433 * 1434 * RETURNS: 1435 * true indicating that result TF is successfully filled. 1436 */ 1437 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1438 { 1439 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1440 return true; 1441 } 1442 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1443 1444 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1445 { 1446 ap->stats.idle_irq++; 1447 1448 #ifdef ATA_IRQ_TRAP 1449 if ((ap->stats.idle_irq % 1000) == 0) { 1450 ap->ops->sff_check_status(ap); 1451 if (ap->ops->sff_irq_clear) 1452 ap->ops->sff_irq_clear(ap); 1453 ata_port_warn(ap, "irq trap\n"); 1454 return 1; 1455 } 1456 #endif 1457 return 0; /* irq not handled */ 1458 } 1459 1460 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1461 struct ata_queued_cmd *qc, 1462 bool hsmv_on_idle) 1463 { 1464 u8 status; 1465 1466 VPRINTK("ata%u: protocol %d task_state %d\n", 1467 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1468 1469 /* Check whether we are expecting interrupt in this state */ 1470 switch (ap->hsm_task_state) { 1471 case HSM_ST_FIRST: 1472 /* Some pre-ATAPI-4 devices assert INTRQ 1473 * at this state when ready to receive CDB. 1474 */ 1475 1476 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1477 * The flag was turned on only for atapi devices. No 1478 * need to check ata_is_atapi(qc->tf.protocol) again. 1479 */ 1480 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1481 return ata_sff_idle_irq(ap); 1482 break; 1483 case HSM_ST_IDLE: 1484 return ata_sff_idle_irq(ap); 1485 default: 1486 break; 1487 } 1488 1489 /* check main status, clearing INTRQ if needed */ 1490 status = ata_sff_irq_status(ap); 1491 if (status & ATA_BUSY) { 1492 if (hsmv_on_idle) { 1493 /* BMDMA engine is already stopped, we're screwed */ 1494 qc->err_mask |= AC_ERR_HSM; 1495 ap->hsm_task_state = HSM_ST_ERR; 1496 } else 1497 return ata_sff_idle_irq(ap); 1498 } 1499 1500 /* clear irq events */ 1501 if (ap->ops->sff_irq_clear) 1502 ap->ops->sff_irq_clear(ap); 1503 1504 ata_sff_hsm_move(ap, qc, status, 0); 1505 1506 return 1; /* irq handled */ 1507 } 1508 1509 /** 1510 * ata_sff_port_intr - Handle SFF port interrupt 1511 * @ap: Port on which interrupt arrived (possibly...) 1512 * @qc: Taskfile currently active in engine 1513 * 1514 * Handle port interrupt for given queued command. 1515 * 1516 * LOCKING: 1517 * spin_lock_irqsave(host lock) 1518 * 1519 * RETURNS: 1520 * One if interrupt was handled, zero if not (shared irq). 1521 */ 1522 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1523 { 1524 return __ata_sff_port_intr(ap, qc, false); 1525 } 1526 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1527 1528 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1529 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1530 { 1531 struct ata_host *host = dev_instance; 1532 bool retried = false; 1533 unsigned int i; 1534 unsigned int handled, idle, polling; 1535 unsigned long flags; 1536 1537 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1538 spin_lock_irqsave(&host->lock, flags); 1539 1540 retry: 1541 handled = idle = polling = 0; 1542 for (i = 0; i < host->n_ports; i++) { 1543 struct ata_port *ap = host->ports[i]; 1544 struct ata_queued_cmd *qc; 1545 1546 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1547 if (qc) { 1548 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1549 handled |= port_intr(ap, qc); 1550 else 1551 polling |= 1 << i; 1552 } else 1553 idle |= 1 << i; 1554 } 1555 1556 /* 1557 * If no port was expecting IRQ but the controller is actually 1558 * asserting IRQ line, nobody cared will ensue. Check IRQ 1559 * pending status if available and clear spurious IRQ. 1560 */ 1561 if (!handled && !retried) { 1562 bool retry = false; 1563 1564 for (i = 0; i < host->n_ports; i++) { 1565 struct ata_port *ap = host->ports[i]; 1566 1567 if (polling & (1 << i)) 1568 continue; 1569 1570 if (!ap->ops->sff_irq_check || 1571 !ap->ops->sff_irq_check(ap)) 1572 continue; 1573 1574 if (idle & (1 << i)) { 1575 ap->ops->sff_check_status(ap); 1576 if (ap->ops->sff_irq_clear) 1577 ap->ops->sff_irq_clear(ap); 1578 } else { 1579 /* clear INTRQ and check if BUSY cleared */ 1580 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1581 retry |= true; 1582 /* 1583 * With command in flight, we can't do 1584 * sff_irq_clear() w/o racing with completion. 1585 */ 1586 } 1587 } 1588 1589 if (retry) { 1590 retried = true; 1591 goto retry; 1592 } 1593 } 1594 1595 spin_unlock_irqrestore(&host->lock, flags); 1596 1597 return IRQ_RETVAL(handled); 1598 } 1599 1600 /** 1601 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1602 * @irq: irq line (unused) 1603 * @dev_instance: pointer to our ata_host information structure 1604 * 1605 * Default interrupt handler for PCI IDE devices. Calls 1606 * ata_sff_port_intr() for each port that is not disabled. 1607 * 1608 * LOCKING: 1609 * Obtains host lock during operation. 1610 * 1611 * RETURNS: 1612 * IRQ_NONE or IRQ_HANDLED. 1613 */ 1614 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1615 { 1616 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1617 } 1618 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1619 1620 /** 1621 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1622 * @ap: port that appears to have timed out 1623 * 1624 * Called from the libata error handlers when the core code suspects 1625 * an interrupt has been lost. If it has complete anything we can and 1626 * then return. Interface must support altstatus for this faster 1627 * recovery to occur. 1628 * 1629 * Locking: 1630 * Caller holds host lock 1631 */ 1632 1633 void ata_sff_lost_interrupt(struct ata_port *ap) 1634 { 1635 u8 status; 1636 struct ata_queued_cmd *qc; 1637 1638 /* Only one outstanding command per SFF channel */ 1639 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1640 /* We cannot lose an interrupt on a non-existent or polled command */ 1641 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1642 return; 1643 /* See if the controller thinks it is still busy - if so the command 1644 isn't a lost IRQ but is still in progress */ 1645 status = ata_sff_altstatus(ap); 1646 if (status & ATA_BUSY) 1647 return; 1648 1649 /* There was a command running, we are no longer busy and we have 1650 no interrupt. */ 1651 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", 1652 status); 1653 /* Run the host interrupt logic as if the interrupt had not been 1654 lost */ 1655 ata_sff_port_intr(ap, qc); 1656 } 1657 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1658 1659 /** 1660 * ata_sff_freeze - Freeze SFF controller port 1661 * @ap: port to freeze 1662 * 1663 * Freeze SFF controller port. 1664 * 1665 * LOCKING: 1666 * Inherited from caller. 1667 */ 1668 void ata_sff_freeze(struct ata_port *ap) 1669 { 1670 ap->ctl |= ATA_NIEN; 1671 ap->last_ctl = ap->ctl; 1672 1673 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1674 ata_sff_set_devctl(ap, ap->ctl); 1675 1676 /* Under certain circumstances, some controllers raise IRQ on 1677 * ATA_NIEN manipulation. Also, many controllers fail to mask 1678 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1679 */ 1680 ap->ops->sff_check_status(ap); 1681 1682 if (ap->ops->sff_irq_clear) 1683 ap->ops->sff_irq_clear(ap); 1684 } 1685 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1686 1687 /** 1688 * ata_sff_thaw - Thaw SFF controller port 1689 * @ap: port to thaw 1690 * 1691 * Thaw SFF controller port. 1692 * 1693 * LOCKING: 1694 * Inherited from caller. 1695 */ 1696 void ata_sff_thaw(struct ata_port *ap) 1697 { 1698 /* clear & re-enable interrupts */ 1699 ap->ops->sff_check_status(ap); 1700 if (ap->ops->sff_irq_clear) 1701 ap->ops->sff_irq_clear(ap); 1702 ata_sff_irq_on(ap); 1703 } 1704 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1705 1706 /** 1707 * ata_sff_prereset - prepare SFF link for reset 1708 * @link: SFF link to be reset 1709 * @deadline: deadline jiffies for the operation 1710 * 1711 * SFF link @link is about to be reset. Initialize it. It first 1712 * calls ata_std_prereset() and wait for !BSY if the port is 1713 * being softreset. 1714 * 1715 * LOCKING: 1716 * Kernel thread context (may sleep) 1717 * 1718 * RETURNS: 1719 * 0 on success, -errno otherwise. 1720 */ 1721 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1722 { 1723 struct ata_eh_context *ehc = &link->eh_context; 1724 int rc; 1725 1726 rc = ata_std_prereset(link, deadline); 1727 if (rc) 1728 return rc; 1729 1730 /* if we're about to do hardreset, nothing more to do */ 1731 if (ehc->i.action & ATA_EH_HARDRESET) 1732 return 0; 1733 1734 /* wait for !BSY if we don't know that no device is attached */ 1735 if (!ata_link_offline(link)) { 1736 rc = ata_sff_wait_ready(link, deadline); 1737 if (rc && rc != -ENODEV) { 1738 ata_link_warn(link, 1739 "device not ready (errno=%d), forcing hardreset\n", 1740 rc); 1741 ehc->i.action |= ATA_EH_HARDRESET; 1742 } 1743 } 1744 1745 return 0; 1746 } 1747 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1748 1749 /** 1750 * ata_devchk - PATA device presence detection 1751 * @ap: ATA channel to examine 1752 * @device: Device to examine (starting at zero) 1753 * 1754 * This technique was originally described in 1755 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1756 * later found its way into the ATA/ATAPI spec. 1757 * 1758 * Write a pattern to the ATA shadow registers, 1759 * and if a device is present, it will respond by 1760 * correctly storing and echoing back the 1761 * ATA shadow register contents. 1762 * 1763 * LOCKING: 1764 * caller. 1765 */ 1766 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1767 { 1768 struct ata_ioports *ioaddr = &ap->ioaddr; 1769 u8 nsect, lbal; 1770 1771 ap->ops->sff_dev_select(ap, device); 1772 1773 iowrite8(0x55, ioaddr->nsect_addr); 1774 iowrite8(0xaa, ioaddr->lbal_addr); 1775 1776 iowrite8(0xaa, ioaddr->nsect_addr); 1777 iowrite8(0x55, ioaddr->lbal_addr); 1778 1779 iowrite8(0x55, ioaddr->nsect_addr); 1780 iowrite8(0xaa, ioaddr->lbal_addr); 1781 1782 nsect = ioread8(ioaddr->nsect_addr); 1783 lbal = ioread8(ioaddr->lbal_addr); 1784 1785 if ((nsect == 0x55) && (lbal == 0xaa)) 1786 return 1; /* we found a device */ 1787 1788 return 0; /* nothing found */ 1789 } 1790 1791 /** 1792 * ata_sff_dev_classify - Parse returned ATA device signature 1793 * @dev: ATA device to classify (starting at zero) 1794 * @present: device seems present 1795 * @r_err: Value of error register on completion 1796 * 1797 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1798 * an ATA/ATAPI-defined set of values is placed in the ATA 1799 * shadow registers, indicating the results of device detection 1800 * and diagnostics. 1801 * 1802 * Select the ATA device, and read the values from the ATA shadow 1803 * registers. Then parse according to the Error register value, 1804 * and the spec-defined values examined by ata_dev_classify(). 1805 * 1806 * LOCKING: 1807 * caller. 1808 * 1809 * RETURNS: 1810 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1811 */ 1812 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1813 u8 *r_err) 1814 { 1815 struct ata_port *ap = dev->link->ap; 1816 struct ata_taskfile tf; 1817 unsigned int class; 1818 u8 err; 1819 1820 ap->ops->sff_dev_select(ap, dev->devno); 1821 1822 memset(&tf, 0, sizeof(tf)); 1823 1824 ap->ops->sff_tf_read(ap, &tf); 1825 err = tf.feature; 1826 if (r_err) 1827 *r_err = err; 1828 1829 /* see if device passed diags: continue and warn later */ 1830 if (err == 0) 1831 /* diagnostic fail : do nothing _YET_ */ 1832 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1833 else if (err == 1) 1834 /* do nothing */ ; 1835 else if ((dev->devno == 0) && (err == 0x81)) 1836 /* do nothing */ ; 1837 else 1838 return ATA_DEV_NONE; 1839 1840 /* determine if device is ATA or ATAPI */ 1841 class = ata_dev_classify(&tf); 1842 1843 if (class == ATA_DEV_UNKNOWN) { 1844 /* If the device failed diagnostic, it's likely to 1845 * have reported incorrect device signature too. 1846 * Assume ATA device if the device seems present but 1847 * device signature is invalid with diagnostic 1848 * failure. 1849 */ 1850 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1851 class = ATA_DEV_ATA; 1852 else 1853 class = ATA_DEV_NONE; 1854 } else if ((class == ATA_DEV_ATA) && 1855 (ap->ops->sff_check_status(ap) == 0)) 1856 class = ATA_DEV_NONE; 1857 1858 return class; 1859 } 1860 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1861 1862 /** 1863 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1864 * @link: SFF link which is just reset 1865 * @devmask: mask of present devices 1866 * @deadline: deadline jiffies for the operation 1867 * 1868 * Wait devices attached to SFF @link to become ready after 1869 * reset. It contains preceding 150ms wait to avoid accessing TF 1870 * status register too early. 1871 * 1872 * LOCKING: 1873 * Kernel thread context (may sleep). 1874 * 1875 * RETURNS: 1876 * 0 on success, -ENODEV if some or all of devices in @devmask 1877 * don't seem to exist. -errno on other errors. 1878 */ 1879 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1880 unsigned long deadline) 1881 { 1882 struct ata_port *ap = link->ap; 1883 struct ata_ioports *ioaddr = &ap->ioaddr; 1884 unsigned int dev0 = devmask & (1 << 0); 1885 unsigned int dev1 = devmask & (1 << 1); 1886 int rc, ret = 0; 1887 1888 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1889 1890 /* always check readiness of the master device */ 1891 rc = ata_sff_wait_ready(link, deadline); 1892 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1893 * and TF status is 0xff, bail out on it too. 1894 */ 1895 if (rc) 1896 return rc; 1897 1898 /* if device 1 was found in ata_devchk, wait for register 1899 * access briefly, then wait for BSY to clear. 1900 */ 1901 if (dev1) { 1902 int i; 1903 1904 ap->ops->sff_dev_select(ap, 1); 1905 1906 /* Wait for register access. Some ATAPI devices fail 1907 * to set nsect/lbal after reset, so don't waste too 1908 * much time on it. We're gonna wait for !BSY anyway. 1909 */ 1910 for (i = 0; i < 2; i++) { 1911 u8 nsect, lbal; 1912 1913 nsect = ioread8(ioaddr->nsect_addr); 1914 lbal = ioread8(ioaddr->lbal_addr); 1915 if ((nsect == 1) && (lbal == 1)) 1916 break; 1917 ata_msleep(ap, 50); /* give drive a breather */ 1918 } 1919 1920 rc = ata_sff_wait_ready(link, deadline); 1921 if (rc) { 1922 if (rc != -ENODEV) 1923 return rc; 1924 ret = rc; 1925 } 1926 } 1927 1928 /* is all this really necessary? */ 1929 ap->ops->sff_dev_select(ap, 0); 1930 if (dev1) 1931 ap->ops->sff_dev_select(ap, 1); 1932 if (dev0) 1933 ap->ops->sff_dev_select(ap, 0); 1934 1935 return ret; 1936 } 1937 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 1938 1939 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1940 unsigned long deadline) 1941 { 1942 struct ata_ioports *ioaddr = &ap->ioaddr; 1943 1944 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 1945 1946 if (ap->ioaddr.ctl_addr) { 1947 /* software reset. causes dev0 to be selected */ 1948 iowrite8(ap->ctl, ioaddr->ctl_addr); 1949 udelay(20); /* FIXME: flush */ 1950 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 1951 udelay(20); /* FIXME: flush */ 1952 iowrite8(ap->ctl, ioaddr->ctl_addr); 1953 ap->last_ctl = ap->ctl; 1954 } 1955 1956 /* wait the port to become ready */ 1957 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 1958 } 1959 1960 /** 1961 * ata_sff_softreset - reset host port via ATA SRST 1962 * @link: ATA link to reset 1963 * @classes: resulting classes of attached devices 1964 * @deadline: deadline jiffies for the operation 1965 * 1966 * Reset host port using ATA SRST. 1967 * 1968 * LOCKING: 1969 * Kernel thread context (may sleep) 1970 * 1971 * RETURNS: 1972 * 0 on success, -errno otherwise. 1973 */ 1974 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 1975 unsigned long deadline) 1976 { 1977 struct ata_port *ap = link->ap; 1978 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 1979 unsigned int devmask = 0; 1980 int rc; 1981 u8 err; 1982 1983 DPRINTK("ENTER\n"); 1984 1985 /* determine if device 0/1 are present */ 1986 if (ata_devchk(ap, 0)) 1987 devmask |= (1 << 0); 1988 if (slave_possible && ata_devchk(ap, 1)) 1989 devmask |= (1 << 1); 1990 1991 /* select device 0 again */ 1992 ap->ops->sff_dev_select(ap, 0); 1993 1994 /* issue bus reset */ 1995 DPRINTK("about to softreset, devmask=%x\n", devmask); 1996 rc = ata_bus_softreset(ap, devmask, deadline); 1997 /* if link is occupied, -ENODEV too is an error */ 1998 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 1999 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 2000 return rc; 2001 } 2002 2003 /* determine by signature whether we have ATA or ATAPI devices */ 2004 classes[0] = ata_sff_dev_classify(&link->device[0], 2005 devmask & (1 << 0), &err); 2006 if (slave_possible && err != 0x81) 2007 classes[1] = ata_sff_dev_classify(&link->device[1], 2008 devmask & (1 << 1), &err); 2009 2010 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2011 return 0; 2012 } 2013 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2014 2015 /** 2016 * sata_sff_hardreset - reset host port via SATA phy reset 2017 * @link: link to reset 2018 * @class: resulting class of attached device 2019 * @deadline: deadline jiffies for the operation 2020 * 2021 * SATA phy-reset host port using DET bits of SControl register, 2022 * wait for !BSY and classify the attached device. 2023 * 2024 * LOCKING: 2025 * Kernel thread context (may sleep) 2026 * 2027 * RETURNS: 2028 * 0 on success, -errno otherwise. 2029 */ 2030 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2031 unsigned long deadline) 2032 { 2033 struct ata_eh_context *ehc = &link->eh_context; 2034 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2035 bool online; 2036 int rc; 2037 2038 rc = sata_link_hardreset(link, timing, deadline, &online, 2039 ata_sff_check_ready); 2040 if (online) 2041 *class = ata_sff_dev_classify(link->device, 1, NULL); 2042 2043 DPRINTK("EXIT, class=%u\n", *class); 2044 return rc; 2045 } 2046 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2047 2048 /** 2049 * ata_sff_postreset - SFF postreset callback 2050 * @link: the target SFF ata_link 2051 * @classes: classes of attached devices 2052 * 2053 * This function is invoked after a successful reset. It first 2054 * calls ata_std_postreset() and performs SFF specific postreset 2055 * processing. 2056 * 2057 * LOCKING: 2058 * Kernel thread context (may sleep) 2059 */ 2060 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2061 { 2062 struct ata_port *ap = link->ap; 2063 2064 ata_std_postreset(link, classes); 2065 2066 /* is double-select really necessary? */ 2067 if (classes[0] != ATA_DEV_NONE) 2068 ap->ops->sff_dev_select(ap, 1); 2069 if (classes[1] != ATA_DEV_NONE) 2070 ap->ops->sff_dev_select(ap, 0); 2071 2072 /* bail out if no device is present */ 2073 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2074 DPRINTK("EXIT, no device\n"); 2075 return; 2076 } 2077 2078 /* set up device control */ 2079 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2080 ata_sff_set_devctl(ap, ap->ctl); 2081 ap->last_ctl = ap->ctl; 2082 } 2083 } 2084 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2085 2086 /** 2087 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2088 * @qc: command 2089 * 2090 * Drain the FIFO and device of any stuck data following a command 2091 * failing to complete. In some cases this is necessary before a 2092 * reset will recover the device. 2093 * 2094 */ 2095 2096 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2097 { 2098 int count; 2099 struct ata_port *ap; 2100 2101 /* We only need to flush incoming data when a command was running */ 2102 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2103 return; 2104 2105 ap = qc->ap; 2106 /* Drain up to 64K of data before we give up this recovery method */ 2107 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2108 && count < 65536; count += 2) 2109 ioread16(ap->ioaddr.data_addr); 2110 2111 /* Can become DEBUG later */ 2112 if (count) 2113 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2114 2115 } 2116 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2117 2118 /** 2119 * ata_sff_error_handler - Stock error handler for SFF controller 2120 * @ap: port to handle error for 2121 * 2122 * Stock error handler for SFF controller. It can handle both 2123 * PATA and SATA controllers. Many controllers should be able to 2124 * use this EH as-is or with some added handling before and 2125 * after. 2126 * 2127 * LOCKING: 2128 * Kernel thread context (may sleep) 2129 */ 2130 void ata_sff_error_handler(struct ata_port *ap) 2131 { 2132 ata_reset_fn_t softreset = ap->ops->softreset; 2133 ata_reset_fn_t hardreset = ap->ops->hardreset; 2134 struct ata_queued_cmd *qc; 2135 unsigned long flags; 2136 2137 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2138 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2139 qc = NULL; 2140 2141 spin_lock_irqsave(ap->lock, flags); 2142 2143 /* 2144 * We *MUST* do FIFO draining before we issue a reset as 2145 * several devices helpfully clear their internal state and 2146 * will lock solid if we touch the data port post reset. Pass 2147 * qc in case anyone wants to do different PIO/DMA recovery or 2148 * has per command fixups 2149 */ 2150 if (ap->ops->sff_drain_fifo) 2151 ap->ops->sff_drain_fifo(qc); 2152 2153 spin_unlock_irqrestore(ap->lock, flags); 2154 2155 /* ignore built-in hardresets if SCR access is not available */ 2156 if ((hardreset == sata_std_hardreset || 2157 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2158 hardreset = NULL; 2159 2160 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2161 ap->ops->postreset); 2162 } 2163 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2164 2165 /** 2166 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2167 * @ioaddr: IO address structure to be initialized 2168 * 2169 * Utility function which initializes data_addr, error_addr, 2170 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2171 * device_addr, status_addr, and command_addr to standard offsets 2172 * relative to cmd_addr. 2173 * 2174 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2175 */ 2176 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2177 { 2178 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2179 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2180 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2181 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2182 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2183 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2184 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2185 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2186 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2187 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2188 } 2189 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2190 2191 #ifdef CONFIG_PCI 2192 2193 static int ata_resources_present(struct pci_dev *pdev, int port) 2194 { 2195 int i; 2196 2197 /* Check the PCI resources for this channel are enabled */ 2198 port = port * 2; 2199 for (i = 0; i < 2; i++) { 2200 if (pci_resource_start(pdev, port + i) == 0 || 2201 pci_resource_len(pdev, port + i) == 0) 2202 return 0; 2203 } 2204 return 1; 2205 } 2206 2207 /** 2208 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2209 * @host: target ATA host 2210 * 2211 * Acquire native PCI ATA resources for @host and initialize the 2212 * first two ports of @host accordingly. Ports marked dummy are 2213 * skipped and allocation failure makes the port dummy. 2214 * 2215 * Note that native PCI resources are valid even for legacy hosts 2216 * as we fix up pdev resources array early in boot, so this 2217 * function can be used for both native and legacy SFF hosts. 2218 * 2219 * LOCKING: 2220 * Inherited from calling layer (may sleep). 2221 * 2222 * RETURNS: 2223 * 0 if at least one port is initialized, -ENODEV if no port is 2224 * available. 2225 */ 2226 int ata_pci_sff_init_host(struct ata_host *host) 2227 { 2228 struct device *gdev = host->dev; 2229 struct pci_dev *pdev = to_pci_dev(gdev); 2230 unsigned int mask = 0; 2231 int i, rc; 2232 2233 /* request, iomap BARs and init port addresses accordingly */ 2234 for (i = 0; i < 2; i++) { 2235 struct ata_port *ap = host->ports[i]; 2236 int base = i * 2; 2237 void __iomem * const *iomap; 2238 2239 if (ata_port_is_dummy(ap)) 2240 continue; 2241 2242 /* Discard disabled ports. Some controllers show 2243 * their unused channels this way. Disabled ports are 2244 * made dummy. 2245 */ 2246 if (!ata_resources_present(pdev, i)) { 2247 ap->ops = &ata_dummy_port_ops; 2248 continue; 2249 } 2250 2251 rc = pcim_iomap_regions(pdev, 0x3 << base, 2252 dev_driver_string(gdev)); 2253 if (rc) { 2254 dev_warn(gdev, 2255 "failed to request/iomap BARs for port %d (errno=%d)\n", 2256 i, rc); 2257 if (rc == -EBUSY) 2258 pcim_pin_device(pdev); 2259 ap->ops = &ata_dummy_port_ops; 2260 continue; 2261 } 2262 host->iomap = iomap = pcim_iomap_table(pdev); 2263 2264 ap->ioaddr.cmd_addr = iomap[base]; 2265 ap->ioaddr.altstatus_addr = 2266 ap->ioaddr.ctl_addr = (void __iomem *) 2267 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2268 ata_sff_std_ports(&ap->ioaddr); 2269 2270 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2271 (unsigned long long)pci_resource_start(pdev, base), 2272 (unsigned long long)pci_resource_start(pdev, base + 1)); 2273 2274 mask |= 1 << i; 2275 } 2276 2277 if (!mask) { 2278 dev_err(gdev, "no available native port\n"); 2279 return -ENODEV; 2280 } 2281 2282 return 0; 2283 } 2284 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2285 2286 /** 2287 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2288 * @pdev: target PCI device 2289 * @ppi: array of port_info, must be enough for two ports 2290 * @r_host: out argument for the initialized ATA host 2291 * 2292 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2293 * all PCI resources and initialize it accordingly in one go. 2294 * 2295 * LOCKING: 2296 * Inherited from calling layer (may sleep). 2297 * 2298 * RETURNS: 2299 * 0 on success, -errno otherwise. 2300 */ 2301 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2302 const struct ata_port_info * const *ppi, 2303 struct ata_host **r_host) 2304 { 2305 struct ata_host *host; 2306 int rc; 2307 2308 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2309 return -ENOMEM; 2310 2311 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2312 if (!host) { 2313 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2314 rc = -ENOMEM; 2315 goto err_out; 2316 } 2317 2318 rc = ata_pci_sff_init_host(host); 2319 if (rc) 2320 goto err_out; 2321 2322 devres_remove_group(&pdev->dev, NULL); 2323 *r_host = host; 2324 return 0; 2325 2326 err_out: 2327 devres_release_group(&pdev->dev, NULL); 2328 return rc; 2329 } 2330 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2331 2332 /** 2333 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2334 * @host: target SFF ATA host 2335 * @irq_handler: irq_handler used when requesting IRQ(s) 2336 * @sht: scsi_host_template to use when registering the host 2337 * 2338 * This is the counterpart of ata_host_activate() for SFF ATA 2339 * hosts. This separate helper is necessary because SFF hosts 2340 * use two separate interrupts in legacy mode. 2341 * 2342 * LOCKING: 2343 * Inherited from calling layer (may sleep). 2344 * 2345 * RETURNS: 2346 * 0 on success, -errno otherwise. 2347 */ 2348 int ata_pci_sff_activate_host(struct ata_host *host, 2349 irq_handler_t irq_handler, 2350 struct scsi_host_template *sht) 2351 { 2352 struct device *dev = host->dev; 2353 struct pci_dev *pdev = to_pci_dev(dev); 2354 const char *drv_name = dev_driver_string(host->dev); 2355 int legacy_mode = 0, rc; 2356 2357 rc = ata_host_start(host); 2358 if (rc) 2359 return rc; 2360 2361 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2362 u8 tmp8, mask = 0; 2363 2364 /* 2365 * ATA spec says we should use legacy mode when one 2366 * port is in legacy mode, but disabled ports on some 2367 * PCI hosts appear as fixed legacy ports, e.g SB600/700 2368 * on which the secondary port is not wired, so 2369 * ignore ports that are marked as 'dummy' during 2370 * this check 2371 */ 2372 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2373 if (!ata_port_is_dummy(host->ports[0])) 2374 mask |= (1 << 0); 2375 if (!ata_port_is_dummy(host->ports[1])) 2376 mask |= (1 << 2); 2377 if ((tmp8 & mask) != mask) 2378 legacy_mode = 1; 2379 } 2380 2381 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2382 return -ENOMEM; 2383 2384 if (!legacy_mode && pdev->irq) { 2385 int i; 2386 2387 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2388 IRQF_SHARED, drv_name, host); 2389 if (rc) 2390 goto out; 2391 2392 for (i = 0; i < 2; i++) { 2393 if (ata_port_is_dummy(host->ports[i])) 2394 continue; 2395 ata_port_desc(host->ports[i], "irq %d", pdev->irq); 2396 } 2397 } else if (legacy_mode) { 2398 if (!ata_port_is_dummy(host->ports[0])) { 2399 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2400 irq_handler, IRQF_SHARED, 2401 drv_name, host); 2402 if (rc) 2403 goto out; 2404 2405 ata_port_desc(host->ports[0], "irq %d", 2406 ATA_PRIMARY_IRQ(pdev)); 2407 } 2408 2409 if (!ata_port_is_dummy(host->ports[1])) { 2410 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2411 irq_handler, IRQF_SHARED, 2412 drv_name, host); 2413 if (rc) 2414 goto out; 2415 2416 ata_port_desc(host->ports[1], "irq %d", 2417 ATA_SECONDARY_IRQ(pdev)); 2418 } 2419 } 2420 2421 rc = ata_host_register(host, sht); 2422 out: 2423 if (rc == 0) 2424 devres_remove_group(dev, NULL); 2425 else 2426 devres_release_group(dev, NULL); 2427 2428 return rc; 2429 } 2430 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2431 2432 static const struct ata_port_info *ata_sff_find_valid_pi( 2433 const struct ata_port_info * const *ppi) 2434 { 2435 int i; 2436 2437 /* look up the first valid port_info */ 2438 for (i = 0; i < 2 && ppi[i]; i++) 2439 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2440 return ppi[i]; 2441 2442 return NULL; 2443 } 2444 2445 static int ata_pci_init_one(struct pci_dev *pdev, 2446 const struct ata_port_info * const *ppi, 2447 struct scsi_host_template *sht, void *host_priv, 2448 int hflags, bool bmdma) 2449 { 2450 struct device *dev = &pdev->dev; 2451 const struct ata_port_info *pi; 2452 struct ata_host *host = NULL; 2453 int rc; 2454 2455 DPRINTK("ENTER\n"); 2456 2457 pi = ata_sff_find_valid_pi(ppi); 2458 if (!pi) { 2459 dev_err(&pdev->dev, "no valid port_info specified\n"); 2460 return -EINVAL; 2461 } 2462 2463 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2464 return -ENOMEM; 2465 2466 rc = pcim_enable_device(pdev); 2467 if (rc) 2468 goto out; 2469 2470 #ifdef CONFIG_ATA_BMDMA 2471 if (bmdma) 2472 /* prepare and activate BMDMA host */ 2473 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2474 else 2475 #endif 2476 /* prepare and activate SFF host */ 2477 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2478 if (rc) 2479 goto out; 2480 host->private_data = host_priv; 2481 host->flags |= hflags; 2482 2483 #ifdef CONFIG_ATA_BMDMA 2484 if (bmdma) { 2485 pci_set_master(pdev); 2486 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2487 } else 2488 #endif 2489 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2490 out: 2491 if (rc == 0) 2492 devres_remove_group(&pdev->dev, NULL); 2493 else 2494 devres_release_group(&pdev->dev, NULL); 2495 2496 return rc; 2497 } 2498 2499 /** 2500 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2501 * @pdev: Controller to be initialized 2502 * @ppi: array of port_info, must be enough for two ports 2503 * @sht: scsi_host_template to use when registering the host 2504 * @host_priv: host private_data 2505 * @hflag: host flags 2506 * 2507 * This is a helper function which can be called from a driver's 2508 * xxx_init_one() probe function if the hardware uses traditional 2509 * IDE taskfile registers and is PIO only. 2510 * 2511 * ASSUMPTION: 2512 * Nobody makes a single channel controller that appears solely as 2513 * the secondary legacy port on PCI. 2514 * 2515 * LOCKING: 2516 * Inherited from PCI layer (may sleep). 2517 * 2518 * RETURNS: 2519 * Zero on success, negative on errno-based value on error. 2520 */ 2521 int ata_pci_sff_init_one(struct pci_dev *pdev, 2522 const struct ata_port_info * const *ppi, 2523 struct scsi_host_template *sht, void *host_priv, int hflag) 2524 { 2525 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2526 } 2527 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2528 2529 #endif /* CONFIG_PCI */ 2530 2531 /* 2532 * BMDMA support 2533 */ 2534 2535 #ifdef CONFIG_ATA_BMDMA 2536 2537 const struct ata_port_operations ata_bmdma_port_ops = { 2538 .inherits = &ata_sff_port_ops, 2539 2540 .error_handler = ata_bmdma_error_handler, 2541 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2542 2543 .qc_prep = ata_bmdma_qc_prep, 2544 .qc_issue = ata_bmdma_qc_issue, 2545 2546 .sff_irq_clear = ata_bmdma_irq_clear, 2547 .bmdma_setup = ata_bmdma_setup, 2548 .bmdma_start = ata_bmdma_start, 2549 .bmdma_stop = ata_bmdma_stop, 2550 .bmdma_status = ata_bmdma_status, 2551 2552 .port_start = ata_bmdma_port_start, 2553 }; 2554 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2555 2556 const struct ata_port_operations ata_bmdma32_port_ops = { 2557 .inherits = &ata_bmdma_port_ops, 2558 2559 .sff_data_xfer = ata_sff_data_xfer32, 2560 .port_start = ata_bmdma_port_start32, 2561 }; 2562 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2563 2564 /** 2565 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2566 * @qc: Metadata associated with taskfile to be transferred 2567 * 2568 * Fill PCI IDE PRD (scatter-gather) table with segments 2569 * associated with the current disk command. 2570 * 2571 * LOCKING: 2572 * spin_lock_irqsave(host lock) 2573 * 2574 */ 2575 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2576 { 2577 struct ata_port *ap = qc->ap; 2578 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2579 struct scatterlist *sg; 2580 unsigned int si, pi; 2581 2582 pi = 0; 2583 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2584 u32 addr, offset; 2585 u32 sg_len, len; 2586 2587 /* determine if physical DMA addr spans 64K boundary. 2588 * Note h/w doesn't support 64-bit, so we unconditionally 2589 * truncate dma_addr_t to u32. 2590 */ 2591 addr = (u32) sg_dma_address(sg); 2592 sg_len = sg_dma_len(sg); 2593 2594 while (sg_len) { 2595 offset = addr & 0xffff; 2596 len = sg_len; 2597 if ((offset + sg_len) > 0x10000) 2598 len = 0x10000 - offset; 2599 2600 prd[pi].addr = cpu_to_le32(addr); 2601 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2602 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2603 2604 pi++; 2605 sg_len -= len; 2606 addr += len; 2607 } 2608 } 2609 2610 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2611 } 2612 2613 /** 2614 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2615 * @qc: Metadata associated with taskfile to be transferred 2616 * 2617 * Fill PCI IDE PRD (scatter-gather) table with segments 2618 * associated with the current disk command. Perform the fill 2619 * so that we avoid writing any length 64K records for 2620 * controllers that don't follow the spec. 2621 * 2622 * LOCKING: 2623 * spin_lock_irqsave(host lock) 2624 * 2625 */ 2626 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2627 { 2628 struct ata_port *ap = qc->ap; 2629 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2630 struct scatterlist *sg; 2631 unsigned int si, pi; 2632 2633 pi = 0; 2634 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2635 u32 addr, offset; 2636 u32 sg_len, len, blen; 2637 2638 /* determine if physical DMA addr spans 64K boundary. 2639 * Note h/w doesn't support 64-bit, so we unconditionally 2640 * truncate dma_addr_t to u32. 2641 */ 2642 addr = (u32) sg_dma_address(sg); 2643 sg_len = sg_dma_len(sg); 2644 2645 while (sg_len) { 2646 offset = addr & 0xffff; 2647 len = sg_len; 2648 if ((offset + sg_len) > 0x10000) 2649 len = 0x10000 - offset; 2650 2651 blen = len & 0xffff; 2652 prd[pi].addr = cpu_to_le32(addr); 2653 if (blen == 0) { 2654 /* Some PATA chipsets like the CS5530 can't 2655 cope with 0x0000 meaning 64K as the spec 2656 says */ 2657 prd[pi].flags_len = cpu_to_le32(0x8000); 2658 blen = 0x8000; 2659 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2660 } 2661 prd[pi].flags_len = cpu_to_le32(blen); 2662 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2663 2664 pi++; 2665 sg_len -= len; 2666 addr += len; 2667 } 2668 } 2669 2670 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2671 } 2672 2673 /** 2674 * ata_bmdma_qc_prep - Prepare taskfile for submission 2675 * @qc: Metadata associated with taskfile to be prepared 2676 * 2677 * Prepare ATA taskfile for submission. 2678 * 2679 * LOCKING: 2680 * spin_lock_irqsave(host lock) 2681 */ 2682 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2683 { 2684 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2685 return AC_ERR_OK; 2686 2687 ata_bmdma_fill_sg(qc); 2688 2689 return AC_ERR_OK; 2690 } 2691 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2692 2693 /** 2694 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2695 * @qc: Metadata associated with taskfile to be prepared 2696 * 2697 * Prepare ATA taskfile for submission. 2698 * 2699 * LOCKING: 2700 * spin_lock_irqsave(host lock) 2701 */ 2702 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2703 { 2704 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2705 return AC_ERR_OK; 2706 2707 ata_bmdma_fill_sg_dumb(qc); 2708 2709 return AC_ERR_OK; 2710 } 2711 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2712 2713 /** 2714 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2715 * @qc: command to issue to device 2716 * 2717 * This function issues a PIO, NODATA or DMA command to a 2718 * SFF/BMDMA controller. PIO and NODATA are handled by 2719 * ata_sff_qc_issue(). 2720 * 2721 * LOCKING: 2722 * spin_lock_irqsave(host lock) 2723 * 2724 * RETURNS: 2725 * Zero on success, AC_ERR_* mask on failure 2726 */ 2727 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2728 { 2729 struct ata_port *ap = qc->ap; 2730 struct ata_link *link = qc->dev->link; 2731 2732 /* defer PIO handling to sff_qc_issue */ 2733 if (!ata_is_dma(qc->tf.protocol)) 2734 return ata_sff_qc_issue(qc); 2735 2736 /* select the device */ 2737 ata_dev_select(ap, qc->dev->devno, 1, 0); 2738 2739 /* start the command */ 2740 switch (qc->tf.protocol) { 2741 case ATA_PROT_DMA: 2742 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2743 2744 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2745 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2746 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2747 ap->hsm_task_state = HSM_ST_LAST; 2748 break; 2749 2750 case ATAPI_PROT_DMA: 2751 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2752 2753 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2754 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2755 ap->hsm_task_state = HSM_ST_FIRST; 2756 2757 /* send cdb by polling if no cdb interrupt */ 2758 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2759 ata_sff_queue_pio_task(link, 0); 2760 break; 2761 2762 default: 2763 WARN_ON(1); 2764 return AC_ERR_SYSTEM; 2765 } 2766 2767 return 0; 2768 } 2769 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2770 2771 /** 2772 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2773 * @ap: Port on which interrupt arrived (possibly...) 2774 * @qc: Taskfile currently active in engine 2775 * 2776 * Handle port interrupt for given queued command. 2777 * 2778 * LOCKING: 2779 * spin_lock_irqsave(host lock) 2780 * 2781 * RETURNS: 2782 * One if interrupt was handled, zero if not (shared irq). 2783 */ 2784 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2785 { 2786 struct ata_eh_info *ehi = &ap->link.eh_info; 2787 u8 host_stat = 0; 2788 bool bmdma_stopped = false; 2789 unsigned int handled; 2790 2791 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2792 /* check status of DMA engine */ 2793 host_stat = ap->ops->bmdma_status(ap); 2794 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); 2795 2796 /* if it's not our irq... */ 2797 if (!(host_stat & ATA_DMA_INTR)) 2798 return ata_sff_idle_irq(ap); 2799 2800 /* before we do anything else, clear DMA-Start bit */ 2801 ap->ops->bmdma_stop(qc); 2802 bmdma_stopped = true; 2803 2804 if (unlikely(host_stat & ATA_DMA_ERR)) { 2805 /* error when transferring data to/from memory */ 2806 qc->err_mask |= AC_ERR_HOST_BUS; 2807 ap->hsm_task_state = HSM_ST_ERR; 2808 } 2809 } 2810 2811 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2812 2813 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2814 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2815 2816 return handled; 2817 } 2818 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2819 2820 /** 2821 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2822 * @irq: irq line (unused) 2823 * @dev_instance: pointer to our ata_host information structure 2824 * 2825 * Default interrupt handler for PCI IDE devices. Calls 2826 * ata_bmdma_port_intr() for each port that is not disabled. 2827 * 2828 * LOCKING: 2829 * Obtains host lock during operation. 2830 * 2831 * RETURNS: 2832 * IRQ_NONE or IRQ_HANDLED. 2833 */ 2834 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2835 { 2836 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2837 } 2838 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2839 2840 /** 2841 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2842 * @ap: port to handle error for 2843 * 2844 * Stock error handler for BMDMA controller. It can handle both 2845 * PATA and SATA controllers. Most BMDMA controllers should be 2846 * able to use this EH as-is or with some added handling before 2847 * and after. 2848 * 2849 * LOCKING: 2850 * Kernel thread context (may sleep) 2851 */ 2852 void ata_bmdma_error_handler(struct ata_port *ap) 2853 { 2854 struct ata_queued_cmd *qc; 2855 unsigned long flags; 2856 bool thaw = false; 2857 2858 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2859 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2860 qc = NULL; 2861 2862 /* reset PIO HSM and stop DMA engine */ 2863 spin_lock_irqsave(ap->lock, flags); 2864 2865 if (qc && ata_is_dma(qc->tf.protocol)) { 2866 u8 host_stat; 2867 2868 host_stat = ap->ops->bmdma_status(ap); 2869 2870 /* BMDMA controllers indicate host bus error by 2871 * setting DMA_ERR bit and timing out. As it wasn't 2872 * really a timeout event, adjust error mask and 2873 * cancel frozen state. 2874 */ 2875 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2876 qc->err_mask = AC_ERR_HOST_BUS; 2877 thaw = true; 2878 } 2879 2880 ap->ops->bmdma_stop(qc); 2881 2882 /* if we're gonna thaw, make sure IRQ is clear */ 2883 if (thaw) { 2884 ap->ops->sff_check_status(ap); 2885 if (ap->ops->sff_irq_clear) 2886 ap->ops->sff_irq_clear(ap); 2887 } 2888 } 2889 2890 spin_unlock_irqrestore(ap->lock, flags); 2891 2892 if (thaw) 2893 ata_eh_thaw_port(ap); 2894 2895 ata_sff_error_handler(ap); 2896 } 2897 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2898 2899 /** 2900 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2901 * @qc: internal command to clean up 2902 * 2903 * LOCKING: 2904 * Kernel thread context (may sleep) 2905 */ 2906 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2907 { 2908 struct ata_port *ap = qc->ap; 2909 unsigned long flags; 2910 2911 if (ata_is_dma(qc->tf.protocol)) { 2912 spin_lock_irqsave(ap->lock, flags); 2913 ap->ops->bmdma_stop(qc); 2914 spin_unlock_irqrestore(ap->lock, flags); 2915 } 2916 } 2917 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2918 2919 /** 2920 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2921 * @ap: Port associated with this ATA transaction. 2922 * 2923 * Clear interrupt and error flags in DMA status register. 2924 * 2925 * May be used as the irq_clear() entry in ata_port_operations. 2926 * 2927 * LOCKING: 2928 * spin_lock_irqsave(host lock) 2929 */ 2930 void ata_bmdma_irq_clear(struct ata_port *ap) 2931 { 2932 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2933 2934 if (!mmio) 2935 return; 2936 2937 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2938 } 2939 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2940 2941 /** 2942 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2943 * @qc: Info associated with this ATA transaction. 2944 * 2945 * LOCKING: 2946 * spin_lock_irqsave(host lock) 2947 */ 2948 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2949 { 2950 struct ata_port *ap = qc->ap; 2951 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2952 u8 dmactl; 2953 2954 /* load PRD table addr. */ 2955 mb(); /* make sure PRD table writes are visible to controller */ 2956 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2957 2958 /* specify data direction, triple-check start bit is clear */ 2959 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2960 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2961 if (!rw) 2962 dmactl |= ATA_DMA_WR; 2963 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2964 2965 /* issue r/w command */ 2966 ap->ops->sff_exec_command(ap, &qc->tf); 2967 } 2968 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2969 2970 /** 2971 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2972 * @qc: Info associated with this ATA transaction. 2973 * 2974 * LOCKING: 2975 * spin_lock_irqsave(host lock) 2976 */ 2977 void ata_bmdma_start(struct ata_queued_cmd *qc) 2978 { 2979 struct ata_port *ap = qc->ap; 2980 u8 dmactl; 2981 2982 /* start host DMA transaction */ 2983 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2984 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2985 2986 /* Strictly, one may wish to issue an ioread8() here, to 2987 * flush the mmio write. However, control also passes 2988 * to the hardware at this point, and it will interrupt 2989 * us when we are to resume control. So, in effect, 2990 * we don't care when the mmio write flushes. 2991 * Further, a read of the DMA status register _immediately_ 2992 * following the write may not be what certain flaky hardware 2993 * is expected, so I think it is best to not add a readb() 2994 * without first all the MMIO ATA cards/mobos. 2995 * Or maybe I'm just being paranoid. 2996 * 2997 * FIXME: The posting of this write means I/O starts are 2998 * unnecessarily delayed for MMIO 2999 */ 3000 } 3001 EXPORT_SYMBOL_GPL(ata_bmdma_start); 3002 3003 /** 3004 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 3005 * @qc: Command we are ending DMA for 3006 * 3007 * Clears the ATA_DMA_START flag in the dma control register 3008 * 3009 * May be used as the bmdma_stop() entry in ata_port_operations. 3010 * 3011 * LOCKING: 3012 * spin_lock_irqsave(host lock) 3013 */ 3014 void ata_bmdma_stop(struct ata_queued_cmd *qc) 3015 { 3016 struct ata_port *ap = qc->ap; 3017 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3018 3019 /* clear start/stop bit */ 3020 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3021 mmio + ATA_DMA_CMD); 3022 3023 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3024 ata_sff_dma_pause(ap); 3025 } 3026 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3027 3028 /** 3029 * ata_bmdma_status - Read PCI IDE BMDMA status 3030 * @ap: Port associated with this ATA transaction. 3031 * 3032 * Read and return BMDMA status register. 3033 * 3034 * May be used as the bmdma_status() entry in ata_port_operations. 3035 * 3036 * LOCKING: 3037 * spin_lock_irqsave(host lock) 3038 */ 3039 u8 ata_bmdma_status(struct ata_port *ap) 3040 { 3041 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3042 } 3043 EXPORT_SYMBOL_GPL(ata_bmdma_status); 3044 3045 3046 /** 3047 * ata_bmdma_port_start - Set port up for bmdma. 3048 * @ap: Port to initialize 3049 * 3050 * Called just after data structures for each port are 3051 * initialized. Allocates space for PRD table. 3052 * 3053 * May be used as the port_start() entry in ata_port_operations. 3054 * 3055 * LOCKING: 3056 * Inherited from caller. 3057 */ 3058 int ata_bmdma_port_start(struct ata_port *ap) 3059 { 3060 if (ap->mwdma_mask || ap->udma_mask) { 3061 ap->bmdma_prd = 3062 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3063 &ap->bmdma_prd_dma, GFP_KERNEL); 3064 if (!ap->bmdma_prd) 3065 return -ENOMEM; 3066 } 3067 3068 return 0; 3069 } 3070 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3071 3072 /** 3073 * ata_bmdma_port_start32 - Set port up for dma. 3074 * @ap: Port to initialize 3075 * 3076 * Called just after data structures for each port are 3077 * initialized. Enables 32bit PIO and allocates space for PRD 3078 * table. 3079 * 3080 * May be used as the port_start() entry in ata_port_operations for 3081 * devices that are capable of 32bit PIO. 3082 * 3083 * LOCKING: 3084 * Inherited from caller. 3085 */ 3086 int ata_bmdma_port_start32(struct ata_port *ap) 3087 { 3088 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3089 return ata_bmdma_port_start(ap); 3090 } 3091 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3092 3093 #ifdef CONFIG_PCI 3094 3095 /** 3096 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3097 * @pdev: PCI device 3098 * 3099 * Some PCI ATA devices report simplex mode but in fact can be told to 3100 * enter non simplex mode. This implements the necessary logic to 3101 * perform the task on such devices. Calling it on other devices will 3102 * have -undefined- behaviour. 3103 */ 3104 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3105 { 3106 unsigned long bmdma = pci_resource_start(pdev, 4); 3107 u8 simplex; 3108 3109 if (bmdma == 0) 3110 return -ENOENT; 3111 3112 simplex = inb(bmdma + 0x02); 3113 outb(simplex & 0x60, bmdma + 0x02); 3114 simplex = inb(bmdma + 0x02); 3115 if (simplex & 0x80) 3116 return -EOPNOTSUPP; 3117 return 0; 3118 } 3119 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3120 3121 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3122 { 3123 int i; 3124 3125 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3126 3127 for (i = 0; i < 2; i++) { 3128 host->ports[i]->mwdma_mask = 0; 3129 host->ports[i]->udma_mask = 0; 3130 } 3131 } 3132 3133 /** 3134 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3135 * @host: target ATA host 3136 * 3137 * Acquire PCI BMDMA resources and initialize @host accordingly. 3138 * 3139 * LOCKING: 3140 * Inherited from calling layer (may sleep). 3141 */ 3142 void ata_pci_bmdma_init(struct ata_host *host) 3143 { 3144 struct device *gdev = host->dev; 3145 struct pci_dev *pdev = to_pci_dev(gdev); 3146 int i, rc; 3147 3148 /* No BAR4 allocation: No DMA */ 3149 if (pci_resource_start(pdev, 4) == 0) { 3150 ata_bmdma_nodma(host, "BAR4 is zero"); 3151 return; 3152 } 3153 3154 /* 3155 * Some controllers require BMDMA region to be initialized 3156 * even if DMA is not in use to clear IRQ status via 3157 * ->sff_irq_clear method. Try to initialize bmdma_addr 3158 * regardless of dma masks. 3159 */ 3160 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK); 3161 if (rc) 3162 ata_bmdma_nodma(host, "failed to set dma mask"); 3163 3164 /* request and iomap DMA region */ 3165 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3166 if (rc) { 3167 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3168 return; 3169 } 3170 host->iomap = pcim_iomap_table(pdev); 3171 3172 for (i = 0; i < 2; i++) { 3173 struct ata_port *ap = host->ports[i]; 3174 void __iomem *bmdma = host->iomap[4] + 8 * i; 3175 3176 if (ata_port_is_dummy(ap)) 3177 continue; 3178 3179 ap->ioaddr.bmdma_addr = bmdma; 3180 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3181 (ioread8(bmdma + 2) & 0x80)) 3182 host->flags |= ATA_HOST_SIMPLEX; 3183 3184 ata_port_desc(ap, "bmdma 0x%llx", 3185 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3186 } 3187 } 3188 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3189 3190 /** 3191 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3192 * @pdev: target PCI device 3193 * @ppi: array of port_info, must be enough for two ports 3194 * @r_host: out argument for the initialized ATA host 3195 * 3196 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3197 * resources and initialize it accordingly in one go. 3198 * 3199 * LOCKING: 3200 * Inherited from calling layer (may sleep). 3201 * 3202 * RETURNS: 3203 * 0 on success, -errno otherwise. 3204 */ 3205 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3206 const struct ata_port_info * const * ppi, 3207 struct ata_host **r_host) 3208 { 3209 int rc; 3210 3211 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3212 if (rc) 3213 return rc; 3214 3215 ata_pci_bmdma_init(*r_host); 3216 return 0; 3217 } 3218 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3219 3220 /** 3221 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3222 * @pdev: Controller to be initialized 3223 * @ppi: array of port_info, must be enough for two ports 3224 * @sht: scsi_host_template to use when registering the host 3225 * @host_priv: host private_data 3226 * @hflags: host flags 3227 * 3228 * This function is similar to ata_pci_sff_init_one() but also 3229 * takes care of BMDMA initialization. 3230 * 3231 * LOCKING: 3232 * Inherited from PCI layer (may sleep). 3233 * 3234 * RETURNS: 3235 * Zero on success, negative on errno-based value on error. 3236 */ 3237 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3238 const struct ata_port_info * const * ppi, 3239 struct scsi_host_template *sht, void *host_priv, 3240 int hflags) 3241 { 3242 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3243 } 3244 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3245 3246 #endif /* CONFIG_PCI */ 3247 #endif /* CONFIG_ATA_BMDMA */ 3248 3249 /** 3250 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3251 * @ap: Port to initialize 3252 * 3253 * Called on port allocation to initialize SFF/BMDMA specific 3254 * fields. 3255 * 3256 * LOCKING: 3257 * None. 3258 */ 3259 void ata_sff_port_init(struct ata_port *ap) 3260 { 3261 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3262 ap->ctl = ATA_DEVCTL_OBS; 3263 ap->last_ctl = 0xFF; 3264 } 3265 3266 int __init ata_sff_init(void) 3267 { 3268 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3269 if (!ata_sff_wq) 3270 return -ENOMEM; 3271 3272 return 0; 3273 } 3274 3275 void ata_sff_exit(void) 3276 { 3277 destroy_workqueue(ata_sff_wq); 3278 } 3279