xref: /openbmc/linux/drivers/ata/libata-sff.c (revision 64c70b1c)
1 /*
2  *  libata-bmdma.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 
39 #include "libata.h"
40 
41 /**
42  *	ata_irq_on - Enable interrupts on a port.
43  *	@ap: Port on which interrupts are enabled.
44  *
45  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
46  *	wait for idle, clear any pending interrupts.
47  *
48  *	LOCKING:
49  *	Inherited from caller.
50  */
51 u8 ata_irq_on(struct ata_port *ap)
52 {
53 	struct ata_ioports *ioaddr = &ap->ioaddr;
54 	u8 tmp;
55 
56 	ap->ctl &= ~ATA_NIEN;
57 	ap->last_ctl = ap->ctl;
58 
59 	iowrite8(ap->ctl, ioaddr->ctl_addr);
60 	tmp = ata_wait_idle(ap);
61 
62 	ap->ops->irq_clear(ap);
63 
64 	return tmp;
65 }
66 
67 u8 ata_dummy_irq_on (struct ata_port *ap) 	{ return 0; }
68 
69 /**
70  *	ata_irq_ack - Acknowledge a device interrupt.
71  *	@ap: Port on which interrupts are enabled.
72  *
73  *	Wait up to 10 ms for legacy IDE device to become idle (BUSY
74  *	or BUSY+DRQ clear).  Obtain dma status and port status from
75  *	device.  Clear the interrupt.  Return port status.
76  *
77  *	LOCKING:
78  */
79 
80 u8 ata_irq_ack(struct ata_port *ap, unsigned int chk_drq)
81 {
82 	unsigned int bits = chk_drq ? ATA_BUSY | ATA_DRQ : ATA_BUSY;
83 	u8 host_stat = 0, post_stat = 0, status;
84 
85 	status = ata_busy_wait(ap, bits, 1000);
86 	if (status & bits)
87 		if (ata_msg_err(ap))
88 			printk(KERN_ERR "abnormal status 0x%X\n", status);
89 
90 	if (ap->ioaddr.bmdma_addr) {
91 		/* get controller status; clear intr, err bits */
92 		host_stat = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
93 		iowrite8(host_stat | ATA_DMA_INTR | ATA_DMA_ERR,
94 			 ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
95 
96 		post_stat = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
97 	}
98 	if (ata_msg_intr(ap))
99 		printk(KERN_INFO "%s: irq ack: host_stat 0x%X, new host_stat 0x%X, drv_stat 0x%X\n",
100 			__FUNCTION__,
101 			host_stat, post_stat, status);
102 	return status;
103 }
104 
105 u8 ata_dummy_irq_ack(struct ata_port *ap, unsigned int chk_drq) { return 0; }
106 
107 /**
108  *	ata_tf_load - send taskfile registers to host controller
109  *	@ap: Port to which output is sent
110  *	@tf: ATA taskfile register set
111  *
112  *	Outputs ATA taskfile to standard ATA host controller.
113  *
114  *	LOCKING:
115  *	Inherited from caller.
116  */
117 
118 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
119 {
120 	struct ata_ioports *ioaddr = &ap->ioaddr;
121 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
122 
123 	if (tf->ctl != ap->last_ctl) {
124 		iowrite8(tf->ctl, ioaddr->ctl_addr);
125 		ap->last_ctl = tf->ctl;
126 		ata_wait_idle(ap);
127 	}
128 
129 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
130 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
131 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
132 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
133 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
134 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
135 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
136 			tf->hob_feature,
137 			tf->hob_nsect,
138 			tf->hob_lbal,
139 			tf->hob_lbam,
140 			tf->hob_lbah);
141 	}
142 
143 	if (is_addr) {
144 		iowrite8(tf->feature, ioaddr->feature_addr);
145 		iowrite8(tf->nsect, ioaddr->nsect_addr);
146 		iowrite8(tf->lbal, ioaddr->lbal_addr);
147 		iowrite8(tf->lbam, ioaddr->lbam_addr);
148 		iowrite8(tf->lbah, ioaddr->lbah_addr);
149 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
150 			tf->feature,
151 			tf->nsect,
152 			tf->lbal,
153 			tf->lbam,
154 			tf->lbah);
155 	}
156 
157 	if (tf->flags & ATA_TFLAG_DEVICE) {
158 		iowrite8(tf->device, ioaddr->device_addr);
159 		VPRINTK("device 0x%X\n", tf->device);
160 	}
161 
162 	ata_wait_idle(ap);
163 }
164 
165 /**
166  *	ata_exec_command - issue ATA command to host controller
167  *	@ap: port to which command is being issued
168  *	@tf: ATA taskfile register set
169  *
170  *	Issues ATA command, with proper synchronization with interrupt
171  *	handler / other threads.
172  *
173  *	LOCKING:
174  *	spin_lock_irqsave(host lock)
175  */
176 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
177 {
178 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
179 
180 	iowrite8(tf->command, ap->ioaddr.command_addr);
181 	ata_pause(ap);
182 }
183 
184 /**
185  *	ata_tf_read - input device's ATA taskfile shadow registers
186  *	@ap: Port from which input is read
187  *	@tf: ATA taskfile register set for storing input
188  *
189  *	Reads ATA taskfile registers for currently-selected device
190  *	into @tf.
191  *
192  *	LOCKING:
193  *	Inherited from caller.
194  */
195 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
196 {
197 	struct ata_ioports *ioaddr = &ap->ioaddr;
198 
199 	tf->command = ata_check_status(ap);
200 	tf->feature = ioread8(ioaddr->error_addr);
201 	tf->nsect = ioread8(ioaddr->nsect_addr);
202 	tf->lbal = ioread8(ioaddr->lbal_addr);
203 	tf->lbam = ioread8(ioaddr->lbam_addr);
204 	tf->lbah = ioread8(ioaddr->lbah_addr);
205 	tf->device = ioread8(ioaddr->device_addr);
206 
207 	if (tf->flags & ATA_TFLAG_LBA48) {
208 		iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
209 		tf->hob_feature = ioread8(ioaddr->error_addr);
210 		tf->hob_nsect = ioread8(ioaddr->nsect_addr);
211 		tf->hob_lbal = ioread8(ioaddr->lbal_addr);
212 		tf->hob_lbam = ioread8(ioaddr->lbam_addr);
213 		tf->hob_lbah = ioread8(ioaddr->lbah_addr);
214 	}
215 }
216 
217 /**
218  *	ata_check_status - Read device status reg & clear interrupt
219  *	@ap: port where the device is
220  *
221  *	Reads ATA taskfile status register for currently-selected device
222  *	and return its value. This also clears pending interrupts
223  *      from this device
224  *
225  *	LOCKING:
226  *	Inherited from caller.
227  */
228 u8 ata_check_status(struct ata_port *ap)
229 {
230 	return ioread8(ap->ioaddr.status_addr);
231 }
232 
233 /**
234  *	ata_altstatus - Read device alternate status reg
235  *	@ap: port where the device is
236  *
237  *	Reads ATA taskfile alternate status register for
238  *	currently-selected device and return its value.
239  *
240  *	Note: may NOT be used as the check_altstatus() entry in
241  *	ata_port_operations.
242  *
243  *	LOCKING:
244  *	Inherited from caller.
245  */
246 u8 ata_altstatus(struct ata_port *ap)
247 {
248 	if (ap->ops->check_altstatus)
249 		return ap->ops->check_altstatus(ap);
250 
251 	return ioread8(ap->ioaddr.altstatus_addr);
252 }
253 
254 /**
255  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
256  *	@qc: Info associated with this ATA transaction.
257  *
258  *	LOCKING:
259  *	spin_lock_irqsave(host lock)
260  */
261 void ata_bmdma_setup(struct ata_queued_cmd *qc)
262 {
263 	struct ata_port *ap = qc->ap;
264 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
265 	u8 dmactl;
266 
267 	/* load PRD table addr. */
268 	mb();	/* make sure PRD table writes are visible to controller */
269 	iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
270 
271 	/* specify data direction, triple-check start bit is clear */
272 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
273 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
274 	if (!rw)
275 		dmactl |= ATA_DMA_WR;
276 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
277 
278 	/* issue r/w command */
279 	ap->ops->exec_command(ap, &qc->tf);
280 }
281 
282 /**
283  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
284  *	@qc: Info associated with this ATA transaction.
285  *
286  *	LOCKING:
287  *	spin_lock_irqsave(host lock)
288  */
289 void ata_bmdma_start (struct ata_queued_cmd *qc)
290 {
291 	struct ata_port *ap = qc->ap;
292 	u8 dmactl;
293 
294 	/* start host DMA transaction */
295 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
296 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
297 
298 	/* Strictly, one may wish to issue a readb() here, to
299 	 * flush the mmio write.  However, control also passes
300 	 * to the hardware at this point, and it will interrupt
301 	 * us when we are to resume control.  So, in effect,
302 	 * we don't care when the mmio write flushes.
303 	 * Further, a read of the DMA status register _immediately_
304 	 * following the write may not be what certain flaky hardware
305 	 * is expected, so I think it is best to not add a readb()
306 	 * without first all the MMIO ATA cards/mobos.
307 	 * Or maybe I'm just being paranoid.
308 	 */
309 }
310 
311 /**
312  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
313  *	@ap: Port associated with this ATA transaction.
314  *
315  *	Clear interrupt and error flags in DMA status register.
316  *
317  *	May be used as the irq_clear() entry in ata_port_operations.
318  *
319  *	LOCKING:
320  *	spin_lock_irqsave(host lock)
321  */
322 void ata_bmdma_irq_clear(struct ata_port *ap)
323 {
324 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
325 
326 	if (!mmio)
327 		return;
328 
329 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
330 }
331 
332 /**
333  *	ata_bmdma_status - Read PCI IDE BMDMA status
334  *	@ap: Port associated with this ATA transaction.
335  *
336  *	Read and return BMDMA status register.
337  *
338  *	May be used as the bmdma_status() entry in ata_port_operations.
339  *
340  *	LOCKING:
341  *	spin_lock_irqsave(host lock)
342  */
343 u8 ata_bmdma_status(struct ata_port *ap)
344 {
345 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
346 }
347 
348 /**
349  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
350  *	@qc: Command we are ending DMA for
351  *
352  *	Clears the ATA_DMA_START flag in the dma control register
353  *
354  *	May be used as the bmdma_stop() entry in ata_port_operations.
355  *
356  *	LOCKING:
357  *	spin_lock_irqsave(host lock)
358  */
359 void ata_bmdma_stop(struct ata_queued_cmd *qc)
360 {
361 	struct ata_port *ap = qc->ap;
362 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
363 
364 	/* clear start/stop bit */
365 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
366 		 mmio + ATA_DMA_CMD);
367 
368 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
369 	ata_altstatus(ap);        /* dummy read */
370 }
371 
372 /**
373  *	ata_bmdma_freeze - Freeze BMDMA controller port
374  *	@ap: port to freeze
375  *
376  *	Freeze BMDMA controller port.
377  *
378  *	LOCKING:
379  *	Inherited from caller.
380  */
381 void ata_bmdma_freeze(struct ata_port *ap)
382 {
383 	struct ata_ioports *ioaddr = &ap->ioaddr;
384 
385 	ap->ctl |= ATA_NIEN;
386 	ap->last_ctl = ap->ctl;
387 
388 	iowrite8(ap->ctl, ioaddr->ctl_addr);
389 
390 	/* Under certain circumstances, some controllers raise IRQ on
391 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
392 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
393 	 */
394 	ata_chk_status(ap);
395 
396 	ap->ops->irq_clear(ap);
397 }
398 
399 /**
400  *	ata_bmdma_thaw - Thaw BMDMA controller port
401  *	@ap: port to thaw
402  *
403  *	Thaw BMDMA controller port.
404  *
405  *	LOCKING:
406  *	Inherited from caller.
407  */
408 void ata_bmdma_thaw(struct ata_port *ap)
409 {
410 	/* clear & re-enable interrupts */
411 	ata_chk_status(ap);
412 	ap->ops->irq_clear(ap);
413 	ap->ops->irq_on(ap);
414 }
415 
416 /**
417  *	ata_bmdma_drive_eh - Perform EH with given methods for BMDMA controller
418  *	@ap: port to handle error for
419  *	@prereset: prereset method (can be NULL)
420  *	@softreset: softreset method (can be NULL)
421  *	@hardreset: hardreset method (can be NULL)
422  *	@postreset: postreset method (can be NULL)
423  *
424  *	Handle error for ATA BMDMA controller.  It can handle both
425  *	PATA and SATA controllers.  Many controllers should be able to
426  *	use this EH as-is or with some added handling before and
427  *	after.
428  *
429  *	This function is intended to be used for constructing
430  *	->error_handler callback by low level drivers.
431  *
432  *	LOCKING:
433  *	Kernel thread context (may sleep)
434  */
435 void ata_bmdma_drive_eh(struct ata_port *ap, ata_prereset_fn_t prereset,
436 			ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
437 			ata_postreset_fn_t postreset)
438 {
439 	struct ata_queued_cmd *qc;
440 	unsigned long flags;
441 	int thaw = 0;
442 
443 	qc = __ata_qc_from_tag(ap, ap->active_tag);
444 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
445 		qc = NULL;
446 
447 	/* reset PIO HSM and stop DMA engine */
448 	spin_lock_irqsave(ap->lock, flags);
449 
450 	ap->hsm_task_state = HSM_ST_IDLE;
451 
452 	if (qc && (qc->tf.protocol == ATA_PROT_DMA ||
453 		   qc->tf.protocol == ATA_PROT_ATAPI_DMA)) {
454 		u8 host_stat;
455 
456 		host_stat = ap->ops->bmdma_status(ap);
457 
458 		/* BMDMA controllers indicate host bus error by
459 		 * setting DMA_ERR bit and timing out.  As it wasn't
460 		 * really a timeout event, adjust error mask and
461 		 * cancel frozen state.
462 		 */
463 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
464 			qc->err_mask = AC_ERR_HOST_BUS;
465 			thaw = 1;
466 		}
467 
468 		ap->ops->bmdma_stop(qc);
469 	}
470 
471 	ata_altstatus(ap);
472 	ata_chk_status(ap);
473 	ap->ops->irq_clear(ap);
474 
475 	spin_unlock_irqrestore(ap->lock, flags);
476 
477 	if (thaw)
478 		ata_eh_thaw_port(ap);
479 
480 	/* PIO and DMA engines have been stopped, perform recovery */
481 	ata_do_eh(ap, prereset, softreset, hardreset, postreset);
482 }
483 
484 /**
485  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
486  *	@ap: port to handle error for
487  *
488  *	Stock error handler for BMDMA controller.
489  *
490  *	LOCKING:
491  *	Kernel thread context (may sleep)
492  */
493 void ata_bmdma_error_handler(struct ata_port *ap)
494 {
495 	ata_reset_fn_t hardreset;
496 
497 	hardreset = NULL;
498 	if (sata_scr_valid(ap))
499 		hardreset = sata_std_hardreset;
500 
501 	ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset, hardreset,
502 			   ata_std_postreset);
503 }
504 
505 /**
506  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for
507  *				      BMDMA controller
508  *	@qc: internal command to clean up
509  *
510  *	LOCKING:
511  *	Kernel thread context (may sleep)
512  */
513 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
514 {
515 	if (qc->ap->ioaddr.bmdma_addr)
516 		ata_bmdma_stop(qc);
517 }
518 
519 /**
520  *	ata_sff_port_start - Set port up for dma.
521  *	@ap: Port to initialize
522  *
523  *	Called just after data structures for each port are
524  *	initialized.  Allocates space for PRD table if the device
525  *	is DMA capable SFF.
526  *
527  *	May be used as the port_start() entry in ata_port_operations.
528  *
529  *	LOCKING:
530  *	Inherited from caller.
531  */
532 
533 int ata_sff_port_start(struct ata_port *ap)
534 {
535 	if (ap->ioaddr.bmdma_addr)
536 		return ata_port_start(ap);
537 	return 0;
538 }
539 
540 #ifdef CONFIG_PCI
541 
542 static int ata_resources_present(struct pci_dev *pdev, int port)
543 {
544 	int i;
545 
546 	/* Check the PCI resources for this channel are enabled */
547 	port = port * 2;
548 	for (i = 0; i < 2; i ++) {
549 		if (pci_resource_start(pdev, port + i) == 0 ||
550 		    pci_resource_len(pdev, port + i) == 0)
551 			return 0;
552 	}
553 	return 1;
554 }
555 
556 /**
557  *	ata_pci_init_bmdma - acquire PCI BMDMA resources and init ATA host
558  *	@host: target ATA host
559  *
560  *	Acquire PCI BMDMA resources and initialize @host accordingly.
561  *
562  *	LOCKING:
563  *	Inherited from calling layer (may sleep).
564  *
565  *	RETURNS:
566  *	0 on success, -errno otherwise.
567  */
568 int ata_pci_init_bmdma(struct ata_host *host)
569 {
570 	struct device *gdev = host->dev;
571 	struct pci_dev *pdev = to_pci_dev(gdev);
572 	int i, rc;
573 
574 	/* TODO: If we get no DMA mask we should fall back to PIO */
575 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
576 	if (rc)
577 		return rc;
578 	rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
579 	if (rc)
580 		return rc;
581 
582 	/* request and iomap DMA region */
583 	rc = pcim_iomap_regions(pdev, 1 << 4, DRV_NAME);
584 	if (rc) {
585 		dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
586 		return -ENOMEM;
587 	}
588 	host->iomap = pcim_iomap_table(pdev);
589 
590 	for (i = 0; i < 2; i++) {
591 		struct ata_port *ap = host->ports[i];
592 		void __iomem *bmdma = host->iomap[4] + 8 * i;
593 
594 		if (ata_port_is_dummy(ap))
595 			continue;
596 
597 		ap->ioaddr.bmdma_addr = bmdma;
598 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
599 		    (ioread8(bmdma + 2) & 0x80))
600 			host->flags |= ATA_HOST_SIMPLEX;
601 	}
602 
603 	return 0;
604 }
605 
606 /**
607  *	ata_pci_init_native_host - acquire native ATA resources and init host
608  *	@host: target ATA host
609  *
610  *	Acquire native PCI ATA resources for @host and initialize the
611  *	first two ports of @host accordingly.  Ports marked dummy are
612  *	skipped and allocation failure makes the port dummy.
613  *
614  *	LOCKING:
615  *	Inherited from calling layer (may sleep).
616  *
617  *	RETURNS:
618  *	0 if at least one port is initialized, -ENODEV if no port is
619  *	available.
620  */
621 int ata_pci_init_native_host(struct ata_host *host)
622 {
623 	struct device *gdev = host->dev;
624 	struct pci_dev *pdev = to_pci_dev(gdev);
625 	unsigned int mask = 0;
626 	int i, rc;
627 
628 	/* request, iomap BARs and init port addresses accordingly */
629 	for (i = 0; i < 2; i++) {
630 		struct ata_port *ap = host->ports[i];
631 		int base = i * 2;
632 		void __iomem * const *iomap;
633 
634 		if (ata_port_is_dummy(ap))
635 			continue;
636 
637 		/* Discard disabled ports.  Some controllers show
638 		 * their unused channels this way.  Disabled ports are
639 		 * made dummy.
640 		 */
641 		if (!ata_resources_present(pdev, i)) {
642 			ap->ops = &ata_dummy_port_ops;
643 			continue;
644 		}
645 
646 		rc = pcim_iomap_regions(pdev, 0x3 << base, DRV_NAME);
647 		if (rc) {
648 			dev_printk(KERN_WARNING, gdev,
649 				   "failed to request/iomap BARs for port %d "
650 				   "(errno=%d)\n", i, rc);
651 			if (rc == -EBUSY)
652 				pcim_pin_device(pdev);
653 			ap->ops = &ata_dummy_port_ops;
654 			continue;
655 		}
656 		host->iomap = iomap = pcim_iomap_table(pdev);
657 
658 		ap->ioaddr.cmd_addr = iomap[base];
659 		ap->ioaddr.altstatus_addr =
660 		ap->ioaddr.ctl_addr = (void __iomem *)
661 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
662 		ata_std_ports(&ap->ioaddr);
663 
664 		mask |= 1 << i;
665 	}
666 
667 	if (!mask) {
668 		dev_printk(KERN_ERR, gdev, "no available native port\n");
669 		return -ENODEV;
670 	}
671 
672 	return 0;
673 }
674 
675 /**
676  *	ata_pci_prepare_native_host - helper to prepare native PCI ATA host
677  *	@pdev: target PCI device
678  *	@ppi: array of port_info, must be enough for two ports
679  *	@r_host: out argument for the initialized ATA host
680  *
681  *	Helper to allocate ATA host for @pdev, acquire all native PCI
682  *	resources and initialize it accordingly in one go.
683  *
684  *	LOCKING:
685  *	Inherited from calling layer (may sleep).
686  *
687  *	RETURNS:
688  *	0 on success, -errno otherwise.
689  */
690 int ata_pci_prepare_native_host(struct pci_dev *pdev,
691 				const struct ata_port_info * const * ppi,
692 				struct ata_host **r_host)
693 {
694 	struct ata_host *host;
695 	int rc;
696 
697 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
698 		return -ENOMEM;
699 
700 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
701 	if (!host) {
702 		dev_printk(KERN_ERR, &pdev->dev,
703 			   "failed to allocate ATA host\n");
704 		rc = -ENOMEM;
705 		goto err_out;
706 	}
707 
708 	rc = ata_pci_init_native_host(host);
709 	if (rc)
710 		goto err_out;
711 
712 	/* init DMA related stuff */
713 	rc = ata_pci_init_bmdma(host);
714 	if (rc)
715 		goto err_bmdma;
716 
717 	devres_remove_group(&pdev->dev, NULL);
718 	*r_host = host;
719 	return 0;
720 
721  err_bmdma:
722 	/* This is necessary because PCI and iomap resources are
723 	 * merged and releasing the top group won't release the
724 	 * acquired resources if some of those have been acquired
725 	 * before entering this function.
726 	 */
727 	pcim_iounmap_regions(pdev, 0xf);
728  err_out:
729 	devres_release_group(&pdev->dev, NULL);
730 	return rc;
731 }
732 
733 struct ata_legacy_devres {
734 	unsigned int	mask;
735 	unsigned long	cmd_port[2];
736 	void __iomem *	cmd_addr[2];
737 	void __iomem *	ctl_addr[2];
738 	unsigned int	irq[2];
739 	void *		irq_dev_id[2];
740 };
741 
742 static void ata_legacy_free_irqs(struct ata_legacy_devres *legacy_dr)
743 {
744 	int i;
745 
746 	for (i = 0; i < 2; i++) {
747 		if (!legacy_dr->irq[i])
748 			continue;
749 
750 		free_irq(legacy_dr->irq[i], legacy_dr->irq_dev_id[i]);
751 		legacy_dr->irq[i] = 0;
752 		legacy_dr->irq_dev_id[i] = NULL;
753 	}
754 }
755 
756 static void ata_legacy_release(struct device *gdev, void *res)
757 {
758 	struct ata_legacy_devres *this = res;
759 	int i;
760 
761 	ata_legacy_free_irqs(this);
762 
763 	for (i = 0; i < 2; i++) {
764 		if (this->cmd_addr[i])
765 			ioport_unmap(this->cmd_addr[i]);
766 		if (this->ctl_addr[i])
767 			ioport_unmap(this->ctl_addr[i]);
768 		if (this->cmd_port[i])
769 			release_region(this->cmd_port[i], 8);
770 	}
771 }
772 
773 static int ata_init_legacy_port(struct ata_port *ap,
774 				struct ata_legacy_devres *legacy_dr)
775 {
776 	struct ata_host *host = ap->host;
777 	int port_no = ap->port_no;
778 	unsigned long cmd_port, ctl_port;
779 
780 	if (port_no == 0) {
781 		cmd_port = ATA_PRIMARY_CMD;
782 		ctl_port = ATA_PRIMARY_CTL;
783 	} else {
784 		cmd_port = ATA_SECONDARY_CMD;
785 		ctl_port = ATA_SECONDARY_CTL;
786 	}
787 
788 	/* request cmd_port */
789 	if (request_region(cmd_port, 8, "libata"))
790 		legacy_dr->cmd_port[port_no] = cmd_port;
791 	else {
792 		dev_printk(KERN_WARNING, host->dev,
793 			   "0x%0lX IDE port busy\n", cmd_port);
794 		return -EBUSY;
795 	}
796 
797 	/* iomap cmd and ctl ports */
798 	legacy_dr->cmd_addr[port_no] = ioport_map(cmd_port, 8);
799 	legacy_dr->ctl_addr[port_no] = ioport_map(ctl_port, 1);
800 	if (!legacy_dr->cmd_addr[port_no] || !legacy_dr->ctl_addr[port_no]) {
801 		dev_printk(KERN_WARNING, host->dev,
802 			   "failed to map cmd/ctl ports\n");
803 		return -ENOMEM;
804 	}
805 
806 	/* init IO addresses */
807 	ap->ioaddr.cmd_addr = legacy_dr->cmd_addr[port_no];
808 	ap->ioaddr.altstatus_addr = legacy_dr->ctl_addr[port_no];
809 	ap->ioaddr.ctl_addr = legacy_dr->ctl_addr[port_no];
810 	ata_std_ports(&ap->ioaddr);
811 
812 	return 0;
813 }
814 
815 /**
816  *	ata_init_legacy_host - acquire legacy ATA resources and init ATA host
817  *	@host: target ATA host
818  *	@was_busy: out parameter, indicates whether any port was busy
819  *
820  *	Acquire legacy ATA resources for the first two ports of @host
821  *	and initialize it accordingly.  Ports marked dummy are skipped
822  *	and resource acquistion failure makes the port dummy.
823  *
824  *	LOCKING:
825  *	Inherited from calling layer (may sleep).
826  *
827  *	RETURNS:
828  *	0 if at least one port is initialized, -ENODEV if no port is
829  *	available.
830  */
831 static int ata_init_legacy_host(struct ata_host *host, int *was_busy)
832 {
833 	struct device *gdev = host->dev;
834 	struct ata_legacy_devres *legacy_dr;
835 	int i, rc;
836 
837 	if (!devres_open_group(gdev, NULL, GFP_KERNEL))
838 		return -ENOMEM;
839 
840 	rc = -ENOMEM;
841 	legacy_dr = devres_alloc(ata_legacy_release, sizeof(*legacy_dr),
842 				 GFP_KERNEL);
843 	if (!legacy_dr)
844 		goto err_out;
845 	devres_add(gdev, legacy_dr);
846 
847 	for (i = 0; i < 2; i++) {
848 		if (ata_port_is_dummy(host->ports[i]))
849 			continue;
850 
851 		rc = ata_init_legacy_port(host->ports[i], legacy_dr);
852 		if (rc == 0)
853 			legacy_dr->mask |= 1 << i;
854 		else {
855 			if (rc == -EBUSY)
856 				(*was_busy)++;
857 			host->ports[i]->ops = &ata_dummy_port_ops;
858 		}
859 	}
860 
861 	if (!legacy_dr->mask) {
862 		dev_printk(KERN_ERR, gdev, "no available legacy port\n");
863 		return -ENODEV;
864 	}
865 
866 	devres_remove_group(gdev, NULL);
867 	return 0;
868 
869  err_out:
870 	devres_release_group(gdev, NULL);
871 	return rc;
872 }
873 
874 /**
875  *	ata_request_legacy_irqs - request legacy ATA IRQs
876  *	@host: target ATA host
877  *	@handler: array of IRQ handlers
878  *	@irq_flags: array of IRQ flags
879  *	@dev_id: array of IRQ dev_ids
880  *
881  *	Request legacy IRQs for non-dummy legacy ports in @host.  All
882  *	IRQ parameters are passed as array to allow ports to have
883  *	separate IRQ handlers.
884  *
885  *	LOCKING:
886  *	Inherited from calling layer (may sleep).
887  *
888  *	RETURNS:
889  *	0 on success, -errno otherwise.
890  */
891 static int ata_request_legacy_irqs(struct ata_host *host,
892 				   irq_handler_t const *handler,
893 				   const unsigned int *irq_flags,
894 				   void * const *dev_id)
895 {
896 	struct device *gdev = host->dev;
897 	struct ata_legacy_devres *legacy_dr;
898 	int i, rc;
899 
900 	legacy_dr = devres_find(host->dev, ata_legacy_release, NULL, NULL);
901 	BUG_ON(!legacy_dr);
902 
903 	for (i = 0; i < 2; i++) {
904 		unsigned int irq;
905 
906 		/* FIXME: ATA_*_IRQ() should take generic device not pci_dev */
907 		if (i == 0)
908 			irq = ATA_PRIMARY_IRQ(to_pci_dev(gdev));
909 		else
910 			irq = ATA_SECONDARY_IRQ(to_pci_dev(gdev));
911 
912 		if (!(legacy_dr->mask & (1 << i)))
913 			continue;
914 
915 		if (!handler[i]) {
916 			dev_printk(KERN_ERR, gdev,
917 				   "NULL handler specified for port %d\n", i);
918 			rc = -EINVAL;
919 			goto err_out;
920 		}
921 
922 		rc = request_irq(irq, handler[i], irq_flags[i], DRV_NAME,
923 				 dev_id[i]);
924 		if (rc) {
925 			dev_printk(KERN_ERR, gdev,
926 				"irq %u request failed (errno=%d)\n", irq, rc);
927 			goto err_out;
928 		}
929 
930 		/* record irq allocation in legacy_dr */
931 		legacy_dr->irq[i] = irq;
932 		legacy_dr->irq_dev_id[i] = dev_id[i];
933 
934 		/* only used to print info */
935 		if (i == 0)
936 			host->irq = irq;
937 		else
938 			host->irq2 = irq;
939 	}
940 
941 	return 0;
942 
943  err_out:
944 	ata_legacy_free_irqs(legacy_dr);
945 	return rc;
946 }
947 
948 /**
949  *	ata_pci_init_one - Initialize/register PCI IDE host controller
950  *	@pdev: Controller to be initialized
951  *	@ppi: array of port_info, must be enough for two ports
952  *
953  *	This is a helper function which can be called from a driver's
954  *	xxx_init_one() probe function if the hardware uses traditional
955  *	IDE taskfile registers.
956  *
957  *	This function calls pci_enable_device(), reserves its register
958  *	regions, sets the dma mask, enables bus master mode, and calls
959  *	ata_device_add()
960  *
961  *	ASSUMPTION:
962  *	Nobody makes a single channel controller that appears solely as
963  *	the secondary legacy port on PCI.
964  *
965  *	LOCKING:
966  *	Inherited from PCI layer (may sleep).
967  *
968  *	RETURNS:
969  *	Zero on success, negative on errno-based value on error.
970  */
971 int ata_pci_init_one(struct pci_dev *pdev,
972 		     const struct ata_port_info * const * ppi)
973 {
974 	struct device *dev = &pdev->dev;
975 	const struct ata_port_info *pi = NULL;
976 	struct ata_host *host = NULL;
977 	u8 mask;
978 	int legacy_mode = 0;
979 	int i, rc;
980 
981 	DPRINTK("ENTER\n");
982 
983 	/* look up the first valid port_info */
984 	for (i = 0; i < 2 && ppi[i]; i++) {
985 		if (ppi[i]->port_ops != &ata_dummy_port_ops) {
986 			pi = ppi[i];
987 			break;
988 		}
989 	}
990 
991 	if (!pi) {
992 		dev_printk(KERN_ERR, &pdev->dev,
993 			   "no valid port_info specified\n");
994 		return -EINVAL;
995 	}
996 
997 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
998 		return -ENOMEM;
999 
1000 	/* FIXME: Really for ATA it isn't safe because the device may be
1001 	   multi-purpose and we want to leave it alone if it was already
1002 	   enabled. Secondly for shared use as Arjan says we want refcounting
1003 
1004 	   Checking dev->is_enabled is insufficient as this is not set at
1005 	   boot for the primary video which is BIOS enabled
1006 	  */
1007 
1008 	rc = pcim_enable_device(pdev);
1009 	if (rc)
1010 		goto err_out;
1011 
1012 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
1013 		u8 tmp8;
1014 
1015 		/* TODO: What if one channel is in native mode ... */
1016 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
1017 		mask = (1 << 2) | (1 << 0);
1018 		if ((tmp8 & mask) != mask)
1019 			legacy_mode = 1;
1020 #if defined(CONFIG_NO_ATA_LEGACY)
1021 		/* Some platforms with PCI limits cannot address compat
1022 		   port space. In that case we punt if their firmware has
1023 		   left a device in compatibility mode */
1024 		if (legacy_mode) {
1025 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
1026 			rc = -EOPNOTSUPP;
1027 			goto err_out;
1028 		}
1029 #endif
1030 	}
1031 
1032 	/* alloc and init host */
1033 	host = ata_host_alloc_pinfo(dev, ppi, 2);
1034 	if (!host) {
1035 		dev_printk(KERN_ERR, &pdev->dev,
1036 			   "failed to allocate ATA host\n");
1037 		rc = -ENOMEM;
1038 		goto err_out;
1039 	}
1040 
1041 	if (!legacy_mode) {
1042 		rc = ata_pci_init_native_host(host);
1043 		if (rc)
1044 			goto err_out;
1045 	} else {
1046 		int was_busy = 0;
1047 
1048 		rc = ata_init_legacy_host(host, &was_busy);
1049 		if (was_busy)
1050 			pcim_pin_device(pdev);
1051 		if (rc)
1052 			goto err_out;
1053 
1054 		/* request respective PCI regions, may fail */
1055 		rc = pci_request_region(pdev, 1, DRV_NAME);
1056 		rc = pci_request_region(pdev, 3, DRV_NAME);
1057 	}
1058 
1059 	/* init BMDMA, may fail */
1060 	ata_pci_init_bmdma(host);
1061 	pci_set_master(pdev);
1062 
1063 	/* start host and request IRQ */
1064 	rc = ata_host_start(host);
1065 	if (rc)
1066 		goto err_out;
1067 
1068 	if (!legacy_mode) {
1069 		rc = devm_request_irq(dev, pdev->irq, pi->port_ops->irq_handler,
1070 				      IRQF_SHARED, DRV_NAME, host);
1071 		host->irq = pdev->irq;
1072 	} else {
1073 		irq_handler_t handler[2] = { host->ops->irq_handler,
1074 					     host->ops->irq_handler };
1075 		unsigned int irq_flags[2] = { IRQF_SHARED, IRQF_SHARED };
1076 		void *dev_id[2] = { host, host };
1077 
1078 		rc = ata_request_legacy_irqs(host, handler, irq_flags, dev_id);
1079 	}
1080 	if (rc)
1081 		goto err_out;
1082 
1083 	/* register */
1084 	rc = ata_host_register(host, pi->sht);
1085 	if (rc)
1086 		goto err_out;
1087 
1088 	devres_remove_group(dev, NULL);
1089 	return 0;
1090 
1091 err_out:
1092 	devres_release_group(dev, NULL);
1093 	return rc;
1094 }
1095 
1096 /**
1097  *	ata_pci_clear_simplex	-	attempt to kick device out of simplex
1098  *	@pdev: PCI device
1099  *
1100  *	Some PCI ATA devices report simplex mode but in fact can be told to
1101  *	enter non simplex mode. This implements the neccessary logic to
1102  *	perform the task on such devices. Calling it on other devices will
1103  *	have -undefined- behaviour.
1104  */
1105 
1106 int ata_pci_clear_simplex(struct pci_dev *pdev)
1107 {
1108 	unsigned long bmdma = pci_resource_start(pdev, 4);
1109 	u8 simplex;
1110 
1111 	if (bmdma == 0)
1112 		return -ENOENT;
1113 
1114 	simplex = inb(bmdma + 0x02);
1115 	outb(simplex & 0x60, bmdma + 0x02);
1116 	simplex = inb(bmdma + 0x02);
1117 	if (simplex & 0x80)
1118 		return -EOPNOTSUPP;
1119 	return 0;
1120 }
1121 
1122 unsigned long ata_pci_default_filter(struct ata_device *adev, unsigned long xfer_mask)
1123 {
1124 	/* Filter out DMA modes if the device has been configured by
1125 	   the BIOS as PIO only */
1126 
1127 	if (adev->ap->ioaddr.bmdma_addr == 0)
1128 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1129 	return xfer_mask;
1130 }
1131 
1132 #endif /* CONFIG_PCI */
1133 
1134