xref: /openbmc/linux/drivers/ata/libata-sff.c (revision 60772e48)
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/driver-api/libata.rst
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41 
42 #include "libata.h"
43 
44 static struct workqueue_struct *ata_sff_wq;
45 
46 const struct ata_port_operations ata_sff_port_ops = {
47 	.inherits		= &ata_base_port_ops,
48 
49 	.qc_prep		= ata_noop_qc_prep,
50 	.qc_issue		= ata_sff_qc_issue,
51 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
52 
53 	.freeze			= ata_sff_freeze,
54 	.thaw			= ata_sff_thaw,
55 	.prereset		= ata_sff_prereset,
56 	.softreset		= ata_sff_softreset,
57 	.hardreset		= sata_sff_hardreset,
58 	.postreset		= ata_sff_postreset,
59 	.error_handler		= ata_sff_error_handler,
60 
61 	.sff_dev_select		= ata_sff_dev_select,
62 	.sff_check_status	= ata_sff_check_status,
63 	.sff_tf_load		= ata_sff_tf_load,
64 	.sff_tf_read		= ata_sff_tf_read,
65 	.sff_exec_command	= ata_sff_exec_command,
66 	.sff_data_xfer		= ata_sff_data_xfer,
67 	.sff_drain_fifo		= ata_sff_drain_fifo,
68 
69 	.lost_interrupt		= ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72 
73 /**
74  *	ata_sff_check_status - Read device status reg & clear interrupt
75  *	@ap: port where the device is
76  *
77  *	Reads ATA taskfile status register for currently-selected device
78  *	and return its value. This also clears pending interrupts
79  *      from this device
80  *
81  *	LOCKING:
82  *	Inherited from caller.
83  */
84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 	return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89 
90 /**
91  *	ata_sff_altstatus - Read device alternate status reg
92  *	@ap: port where the device is
93  *
94  *	Reads ATA taskfile alternate status register for
95  *	currently-selected device and return its value.
96  *
97  *	Note: may NOT be used as the check_altstatus() entry in
98  *	ata_port_operations.
99  *
100  *	LOCKING:
101  *	Inherited from caller.
102  */
103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 	if (ap->ops->sff_check_altstatus)
106 		return ap->ops->sff_check_altstatus(ap);
107 
108 	return ioread8(ap->ioaddr.altstatus_addr);
109 }
110 
111 /**
112  *	ata_sff_irq_status - Check if the device is busy
113  *	@ap: port where the device is
114  *
115  *	Determine if the port is currently busy. Uses altstatus
116  *	if available in order to avoid clearing shared IRQ status
117  *	when finding an IRQ source. Non ctl capable devices don't
118  *	share interrupt lines fortunately for us.
119  *
120  *	LOCKING:
121  *	Inherited from caller.
122  */
123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 	u8 status;
126 
127 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 		status = ata_sff_altstatus(ap);
129 		/* Not us: We are busy */
130 		if (status & ATA_BUSY)
131 			return status;
132 	}
133 	/* Clear INTRQ latch */
134 	status = ap->ops->sff_check_status(ap);
135 	return status;
136 }
137 
138 /**
139  *	ata_sff_sync - Flush writes
140  *	@ap: Port to wait for.
141  *
142  *	CAUTION:
143  *	If we have an mmio device with no ctl and no altstatus
144  *	method this will fail. No such devices are known to exist.
145  *
146  *	LOCKING:
147  *	Inherited from caller.
148  */
149 
150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 	if (ap->ops->sff_check_altstatus)
153 		ap->ops->sff_check_altstatus(ap);
154 	else if (ap->ioaddr.altstatus_addr)
155 		ioread8(ap->ioaddr.altstatus_addr);
156 }
157 
158 /**
159  *	ata_sff_pause		-	Flush writes and wait 400nS
160  *	@ap: Port to pause for.
161  *
162  *	CAUTION:
163  *	If we have an mmio device with no ctl and no altstatus
164  *	method this will fail. No such devices are known to exist.
165  *
166  *	LOCKING:
167  *	Inherited from caller.
168  */
169 
170 void ata_sff_pause(struct ata_port *ap)
171 {
172 	ata_sff_sync(ap);
173 	ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176 
177 /**
178  *	ata_sff_dma_pause	-	Pause before commencing DMA
179  *	@ap: Port to pause for.
180  *
181  *	Perform I/O fencing and ensure sufficient cycle delays occur
182  *	for the HDMA1:0 transition
183  */
184 
185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 		/* An altstatus read will cause the needed delay without
189 		   messing up the IRQ status */
190 		ata_sff_altstatus(ap);
191 		return;
192 	}
193 	/* There are no DMA controllers without ctl. BUG here to ensure
194 	   we never violate the HDMA1:0 transition timing and risk
195 	   corruption. */
196 	BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199 
200 /**
201  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
202  *	@ap: port containing status register to be polled
203  *	@tmout_pat: impatience timeout in msecs
204  *	@tmout: overall timeout in msecs
205  *
206  *	Sleep until ATA Status register bit BSY clears,
207  *	or a timeout occurs.
208  *
209  *	LOCKING:
210  *	Kernel thread context (may sleep).
211  *
212  *	RETURNS:
213  *	0 on success, -errno otherwise.
214  */
215 int ata_sff_busy_sleep(struct ata_port *ap,
216 		       unsigned long tmout_pat, unsigned long tmout)
217 {
218 	unsigned long timer_start, timeout;
219 	u8 status;
220 
221 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 	timer_start = jiffies;
223 	timeout = ata_deadline(timer_start, tmout_pat);
224 	while (status != 0xff && (status & ATA_BUSY) &&
225 	       time_before(jiffies, timeout)) {
226 		ata_msleep(ap, 50);
227 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 	}
229 
230 	if (status != 0xff && (status & ATA_BUSY))
231 		ata_port_warn(ap,
232 			      "port is slow to respond, please be patient (Status 0x%x)\n",
233 			      status);
234 
235 	timeout = ata_deadline(timer_start, tmout);
236 	while (status != 0xff && (status & ATA_BUSY) &&
237 	       time_before(jiffies, timeout)) {
238 		ata_msleep(ap, 50);
239 		status = ap->ops->sff_check_status(ap);
240 	}
241 
242 	if (status == 0xff)
243 		return -ENODEV;
244 
245 	if (status & ATA_BUSY) {
246 		ata_port_err(ap,
247 			     "port failed to respond (%lu secs, Status 0x%x)\n",
248 			     DIV_ROUND_UP(tmout, 1000), status);
249 		return -EBUSY;
250 	}
251 
252 	return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255 
256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 	u8 status = link->ap->ops->sff_check_status(link->ap);
259 
260 	return ata_check_ready(status);
261 }
262 
263 /**
264  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
265  *	@link: SFF link to wait ready status for
266  *	@deadline: deadline jiffies for the operation
267  *
268  *	Sleep until ATA Status register bit BSY clears, or timeout
269  *	occurs.
270  *
271  *	LOCKING:
272  *	Kernel thread context (may sleep).
273  *
274  *	RETURNS:
275  *	0 on success, -errno otherwise.
276  */
277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282 
283 /**
284  *	ata_sff_set_devctl - Write device control reg
285  *	@ap: port where the device is
286  *	@ctl: value to write
287  *
288  *	Writes ATA taskfile device control register.
289  *
290  *	Note: may NOT be used as the sff_set_devctl() entry in
291  *	ata_port_operations.
292  *
293  *	LOCKING:
294  *	Inherited from caller.
295  */
296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 	if (ap->ops->sff_set_devctl)
299 		ap->ops->sff_set_devctl(ap, ctl);
300 	else
301 		iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303 
304 /**
305  *	ata_sff_dev_select - Select device 0/1 on ATA bus
306  *	@ap: ATA channel to manipulate
307  *	@device: ATA device (numbered from zero) to select
308  *
309  *	Use the method defined in the ATA specification to
310  *	make either device 0, or device 1, active on the
311  *	ATA channel.  Works with both PIO and MMIO.
312  *
313  *	May be used as the dev_select() entry in ata_port_operations.
314  *
315  *	LOCKING:
316  *	caller.
317  */
318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 	u8 tmp;
321 
322 	if (device == 0)
323 		tmp = ATA_DEVICE_OBS;
324 	else
325 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
326 
327 	iowrite8(tmp, ap->ioaddr.device_addr);
328 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331 
332 /**
333  *	ata_dev_select - Select device 0/1 on ATA bus
334  *	@ap: ATA channel to manipulate
335  *	@device: ATA device (numbered from zero) to select
336  *	@wait: non-zero to wait for Status register BSY bit to clear
337  *	@can_sleep: non-zero if context allows sleeping
338  *
339  *	Use the method defined in the ATA specification to
340  *	make either device 0, or device 1, active on the
341  *	ATA channel.
342  *
343  *	This is a high-level version of ata_sff_dev_select(), which
344  *	additionally provides the services of inserting the proper
345  *	pauses and status polling, where needed.
346  *
347  *	LOCKING:
348  *	caller.
349  */
350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 			   unsigned int wait, unsigned int can_sleep)
352 {
353 	if (ata_msg_probe(ap))
354 		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 			      device, wait);
356 
357 	if (wait)
358 		ata_wait_idle(ap);
359 
360 	ap->ops->sff_dev_select(ap, device);
361 
362 	if (wait) {
363 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 			ata_msleep(ap, 150);
365 		ata_wait_idle(ap);
366 	}
367 }
368 
369 /**
370  *	ata_sff_irq_on - Enable interrupts on a port.
371  *	@ap: Port on which interrupts are enabled.
372  *
373  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
374  *	wait for idle, clear any pending interrupts.
375  *
376  *	Note: may NOT be used as the sff_irq_on() entry in
377  *	ata_port_operations.
378  *
379  *	LOCKING:
380  *	Inherited from caller.
381  */
382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 	struct ata_ioports *ioaddr = &ap->ioaddr;
385 
386 	if (ap->ops->sff_irq_on) {
387 		ap->ops->sff_irq_on(ap);
388 		return;
389 	}
390 
391 	ap->ctl &= ~ATA_NIEN;
392 	ap->last_ctl = ap->ctl;
393 
394 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 		ata_sff_set_devctl(ap, ap->ctl);
396 	ata_wait_idle(ap);
397 
398 	if (ap->ops->sff_irq_clear)
399 		ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402 
403 /**
404  *	ata_sff_tf_load - send taskfile registers to host controller
405  *	@ap: Port to which output is sent
406  *	@tf: ATA taskfile register set
407  *
408  *	Outputs ATA taskfile to standard ATA host controller.
409  *
410  *	LOCKING:
411  *	Inherited from caller.
412  */
413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 	struct ata_ioports *ioaddr = &ap->ioaddr;
416 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417 
418 	if (tf->ctl != ap->last_ctl) {
419 		if (ioaddr->ctl_addr)
420 			iowrite8(tf->ctl, ioaddr->ctl_addr);
421 		ap->last_ctl = tf->ctl;
422 		ata_wait_idle(ap);
423 	}
424 
425 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 		WARN_ON_ONCE(!ioaddr->ctl_addr);
427 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 			tf->hob_feature,
434 			tf->hob_nsect,
435 			tf->hob_lbal,
436 			tf->hob_lbam,
437 			tf->hob_lbah);
438 	}
439 
440 	if (is_addr) {
441 		iowrite8(tf->feature, ioaddr->feature_addr);
442 		iowrite8(tf->nsect, ioaddr->nsect_addr);
443 		iowrite8(tf->lbal, ioaddr->lbal_addr);
444 		iowrite8(tf->lbam, ioaddr->lbam_addr);
445 		iowrite8(tf->lbah, ioaddr->lbah_addr);
446 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 			tf->feature,
448 			tf->nsect,
449 			tf->lbal,
450 			tf->lbam,
451 			tf->lbah);
452 	}
453 
454 	if (tf->flags & ATA_TFLAG_DEVICE) {
455 		iowrite8(tf->device, ioaddr->device_addr);
456 		VPRINTK("device 0x%X\n", tf->device);
457 	}
458 
459 	ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462 
463 /**
464  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
465  *	@ap: Port from which input is read
466  *	@tf: ATA taskfile register set for storing input
467  *
468  *	Reads ATA taskfile registers for currently-selected device
469  *	into @tf. Assumes the device has a fully SFF compliant task file
470  *	layout and behaviour. If you device does not (eg has a different
471  *	status method) then you will need to provide a replacement tf_read
472  *
473  *	LOCKING:
474  *	Inherited from caller.
475  */
476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 	struct ata_ioports *ioaddr = &ap->ioaddr;
479 
480 	tf->command = ata_sff_check_status(ap);
481 	tf->feature = ioread8(ioaddr->error_addr);
482 	tf->nsect = ioread8(ioaddr->nsect_addr);
483 	tf->lbal = ioread8(ioaddr->lbal_addr);
484 	tf->lbam = ioread8(ioaddr->lbam_addr);
485 	tf->lbah = ioread8(ioaddr->lbah_addr);
486 	tf->device = ioread8(ioaddr->device_addr);
487 
488 	if (tf->flags & ATA_TFLAG_LBA48) {
489 		if (likely(ioaddr->ctl_addr)) {
490 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 			tf->hob_feature = ioread8(ioaddr->error_addr);
492 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 			iowrite8(tf->ctl, ioaddr->ctl_addr);
497 			ap->last_ctl = tf->ctl;
498 		} else
499 			WARN_ON_ONCE(1);
500 	}
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503 
504 /**
505  *	ata_sff_exec_command - issue ATA command to host controller
506  *	@ap: port to which command is being issued
507  *	@tf: ATA taskfile register set
508  *
509  *	Issues ATA command, with proper synchronization with interrupt
510  *	handler / other threads.
511  *
512  *	LOCKING:
513  *	spin_lock_irqsave(host lock)
514  */
515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518 
519 	iowrite8(tf->command, ap->ioaddr.command_addr);
520 	ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523 
524 /**
525  *	ata_tf_to_host - issue ATA taskfile to host controller
526  *	@ap: port to which command is being issued
527  *	@tf: ATA taskfile register set
528  *
529  *	Issues ATA taskfile register set to ATA host controller,
530  *	with proper synchronization with interrupt handler and
531  *	other threads.
532  *
533  *	LOCKING:
534  *	spin_lock_irqsave(host lock)
535  */
536 static inline void ata_tf_to_host(struct ata_port *ap,
537 				  const struct ata_taskfile *tf)
538 {
539 	ap->ops->sff_tf_load(ap, tf);
540 	ap->ops->sff_exec_command(ap, tf);
541 }
542 
543 /**
544  *	ata_sff_data_xfer - Transfer data by PIO
545  *	@qc: queued command
546  *	@buf: data buffer
547  *	@buflen: buffer length
548  *	@rw: read/write
549  *
550  *	Transfer data from/to the device data register by PIO.
551  *
552  *	LOCKING:
553  *	Inherited from caller.
554  *
555  *	RETURNS:
556  *	Bytes consumed.
557  */
558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
559 			       unsigned int buflen, int rw)
560 {
561 	struct ata_port *ap = qc->dev->link->ap;
562 	void __iomem *data_addr = ap->ioaddr.data_addr;
563 	unsigned int words = buflen >> 1;
564 
565 	/* Transfer multiple of 2 bytes */
566 	if (rw == READ)
567 		ioread16_rep(data_addr, buf, words);
568 	else
569 		iowrite16_rep(data_addr, buf, words);
570 
571 	/* Transfer trailing byte, if any. */
572 	if (unlikely(buflen & 0x01)) {
573 		unsigned char pad[2] = { };
574 
575 		/* Point buf to the tail of buffer */
576 		buf += buflen - 1;
577 
578 		/*
579 		 * Use io*16_rep() accessors here as well to avoid pointlessly
580 		 * swapping bytes to and from on the big endian machines...
581 		 */
582 		if (rw == READ) {
583 			ioread16_rep(data_addr, pad, 1);
584 			*buf = pad[0];
585 		} else {
586 			pad[0] = *buf;
587 			iowrite16_rep(data_addr, pad, 1);
588 		}
589 		words++;
590 	}
591 
592 	return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595 
596 /**
597  *	ata_sff_data_xfer32 - Transfer data by PIO
598  *	@qc: queued command
599  *	@buf: data buffer
600  *	@buflen: buffer length
601  *	@rw: read/write
602  *
603  *	Transfer data from/to the device data register by PIO using 32bit
604  *	I/O operations.
605  *
606  *	LOCKING:
607  *	Inherited from caller.
608  *
609  *	RETURNS:
610  *	Bytes consumed.
611  */
612 
613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
614 			       unsigned int buflen, int rw)
615 {
616 	struct ata_device *dev = qc->dev;
617 	struct ata_port *ap = dev->link->ap;
618 	void __iomem *data_addr = ap->ioaddr.data_addr;
619 	unsigned int words = buflen >> 2;
620 	int slop = buflen & 3;
621 
622 	if (!(ap->pflags & ATA_PFLAG_PIO32))
623 		return ata_sff_data_xfer(qc, buf, buflen, rw);
624 
625 	/* Transfer multiple of 4 bytes */
626 	if (rw == READ)
627 		ioread32_rep(data_addr, buf, words);
628 	else
629 		iowrite32_rep(data_addr, buf, words);
630 
631 	/* Transfer trailing bytes, if any */
632 	if (unlikely(slop)) {
633 		unsigned char pad[4] = { };
634 
635 		/* Point buf to the tail of buffer */
636 		buf += buflen - slop;
637 
638 		/*
639 		 * Use io*_rep() accessors here as well to avoid pointlessly
640 		 * swapping bytes to and from on the big endian machines...
641 		 */
642 		if (rw == READ) {
643 			if (slop < 3)
644 				ioread16_rep(data_addr, pad, 1);
645 			else
646 				ioread32_rep(data_addr, pad, 1);
647 			memcpy(buf, pad, slop);
648 		} else {
649 			memcpy(pad, buf, slop);
650 			if (slop < 3)
651 				iowrite16_rep(data_addr, pad, 1);
652 			else
653 				iowrite32_rep(data_addr, pad, 1);
654 		}
655 	}
656 	return (buflen + 1) & ~1;
657 }
658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
659 
660 /**
661  *	ata_sff_data_xfer_noirq - Transfer data by PIO
662  *	@qc: queued command
663  *	@buf: data buffer
664  *	@buflen: buffer length
665  *	@rw: read/write
666  *
667  *	Transfer data from/to the device data register by PIO. Do the
668  *	transfer with interrupts disabled.
669  *
670  *	LOCKING:
671  *	Inherited from caller.
672  *
673  *	RETURNS:
674  *	Bytes consumed.
675  */
676 unsigned int ata_sff_data_xfer_noirq(struct ata_queued_cmd *qc, unsigned char *buf,
677 				     unsigned int buflen, int rw)
678 {
679 	unsigned long flags;
680 	unsigned int consumed;
681 
682 	local_irq_save(flags);
683 	consumed = ata_sff_data_xfer32(qc, buf, buflen, rw);
684 	local_irq_restore(flags);
685 
686 	return consumed;
687 }
688 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
689 
690 /**
691  *	ata_pio_sector - Transfer a sector of data.
692  *	@qc: Command on going
693  *
694  *	Transfer qc->sect_size bytes of data from/to the ATA device.
695  *
696  *	LOCKING:
697  *	Inherited from caller.
698  */
699 static void ata_pio_sector(struct ata_queued_cmd *qc)
700 {
701 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
702 	struct ata_port *ap = qc->ap;
703 	struct page *page;
704 	unsigned int offset;
705 	unsigned char *buf;
706 
707 	if (qc->curbytes == qc->nbytes - qc->sect_size)
708 		ap->hsm_task_state = HSM_ST_LAST;
709 
710 	page = sg_page(qc->cursg);
711 	offset = qc->cursg->offset + qc->cursg_ofs;
712 
713 	/* get the current page and offset */
714 	page = nth_page(page, (offset >> PAGE_SHIFT));
715 	offset %= PAGE_SIZE;
716 
717 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
718 
719 	/* do the actual data transfer */
720 	buf = kmap_atomic(page);
721 	ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
722 	kunmap_atomic(buf);
723 
724 	if (!do_write && !PageSlab(page))
725 		flush_dcache_page(page);
726 
727 	qc->curbytes += qc->sect_size;
728 	qc->cursg_ofs += qc->sect_size;
729 
730 	if (qc->cursg_ofs == qc->cursg->length) {
731 		qc->cursg = sg_next(qc->cursg);
732 		qc->cursg_ofs = 0;
733 	}
734 }
735 
736 /**
737  *	ata_pio_sectors - Transfer one or many sectors.
738  *	@qc: Command on going
739  *
740  *	Transfer one or many sectors of data from/to the
741  *	ATA device for the DRQ request.
742  *
743  *	LOCKING:
744  *	Inherited from caller.
745  */
746 static void ata_pio_sectors(struct ata_queued_cmd *qc)
747 {
748 	if (is_multi_taskfile(&qc->tf)) {
749 		/* READ/WRITE MULTIPLE */
750 		unsigned int nsect;
751 
752 		WARN_ON_ONCE(qc->dev->multi_count == 0);
753 
754 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
755 			    qc->dev->multi_count);
756 		while (nsect--)
757 			ata_pio_sector(qc);
758 	} else
759 		ata_pio_sector(qc);
760 
761 	ata_sff_sync(qc->ap); /* flush */
762 }
763 
764 /**
765  *	atapi_send_cdb - Write CDB bytes to hardware
766  *	@ap: Port to which ATAPI device is attached.
767  *	@qc: Taskfile currently active
768  *
769  *	When device has indicated its readiness to accept
770  *	a CDB, this function is called.  Send the CDB.
771  *
772  *	LOCKING:
773  *	caller.
774  */
775 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
776 {
777 	/* send SCSI cdb */
778 	DPRINTK("send cdb\n");
779 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
780 
781 	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
782 	ata_sff_sync(ap);
783 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
784 	   or is bmdma_start guaranteed to do it ? */
785 	switch (qc->tf.protocol) {
786 	case ATAPI_PROT_PIO:
787 		ap->hsm_task_state = HSM_ST;
788 		break;
789 	case ATAPI_PROT_NODATA:
790 		ap->hsm_task_state = HSM_ST_LAST;
791 		break;
792 #ifdef CONFIG_ATA_BMDMA
793 	case ATAPI_PROT_DMA:
794 		ap->hsm_task_state = HSM_ST_LAST;
795 		/* initiate bmdma */
796 		ap->ops->bmdma_start(qc);
797 		break;
798 #endif /* CONFIG_ATA_BMDMA */
799 	default:
800 		BUG();
801 	}
802 }
803 
804 /**
805  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
806  *	@qc: Command on going
807  *	@bytes: number of bytes
808  *
809  *	Transfer Transfer data from/to the ATAPI device.
810  *
811  *	LOCKING:
812  *	Inherited from caller.
813  *
814  */
815 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
816 {
817 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
818 	struct ata_port *ap = qc->ap;
819 	struct ata_device *dev = qc->dev;
820 	struct ata_eh_info *ehi = &dev->link->eh_info;
821 	struct scatterlist *sg;
822 	struct page *page;
823 	unsigned char *buf;
824 	unsigned int offset, count, consumed;
825 
826 next_sg:
827 	sg = qc->cursg;
828 	if (unlikely(!sg)) {
829 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
830 				  "buf=%u cur=%u bytes=%u",
831 				  qc->nbytes, qc->curbytes, bytes);
832 		return -1;
833 	}
834 
835 	page = sg_page(sg);
836 	offset = sg->offset + qc->cursg_ofs;
837 
838 	/* get the current page and offset */
839 	page = nth_page(page, (offset >> PAGE_SHIFT));
840 	offset %= PAGE_SIZE;
841 
842 	/* don't overrun current sg */
843 	count = min(sg->length - qc->cursg_ofs, bytes);
844 
845 	/* don't cross page boundaries */
846 	count = min(count, (unsigned int)PAGE_SIZE - offset);
847 
848 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
849 
850 	/* do the actual data transfer */
851 	buf = kmap_atomic(page);
852 	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
853 	kunmap_atomic(buf);
854 
855 	bytes -= min(bytes, consumed);
856 	qc->curbytes += count;
857 	qc->cursg_ofs += count;
858 
859 	if (qc->cursg_ofs == sg->length) {
860 		qc->cursg = sg_next(qc->cursg);
861 		qc->cursg_ofs = 0;
862 	}
863 
864 	/*
865 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
866 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
867 	 * check correctly as it doesn't know if it is the last request being
868 	 * made. Somebody should implement a proper sanity check.
869 	 */
870 	if (bytes)
871 		goto next_sg;
872 	return 0;
873 }
874 
875 /**
876  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
877  *	@qc: Command on going
878  *
879  *	Transfer Transfer data from/to the ATAPI device.
880  *
881  *	LOCKING:
882  *	Inherited from caller.
883  */
884 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
885 {
886 	struct ata_port *ap = qc->ap;
887 	struct ata_device *dev = qc->dev;
888 	struct ata_eh_info *ehi = &dev->link->eh_info;
889 	unsigned int ireason, bc_lo, bc_hi, bytes;
890 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
891 
892 	/* Abuse qc->result_tf for temp storage of intermediate TF
893 	 * here to save some kernel stack usage.
894 	 * For normal completion, qc->result_tf is not relevant. For
895 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
896 	 * So, the correctness of qc->result_tf is not affected.
897 	 */
898 	ap->ops->sff_tf_read(ap, &qc->result_tf);
899 	ireason = qc->result_tf.nsect;
900 	bc_lo = qc->result_tf.lbam;
901 	bc_hi = qc->result_tf.lbah;
902 	bytes = (bc_hi << 8) | bc_lo;
903 
904 	/* shall be cleared to zero, indicating xfer of data */
905 	if (unlikely(ireason & ATAPI_COD))
906 		goto atapi_check;
907 
908 	/* make sure transfer direction matches expected */
909 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
910 	if (unlikely(do_write != i_write))
911 		goto atapi_check;
912 
913 	if (unlikely(!bytes))
914 		goto atapi_check;
915 
916 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
917 
918 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
919 		goto err_out;
920 	ata_sff_sync(ap); /* flush */
921 
922 	return;
923 
924  atapi_check:
925 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
926 			  ireason, bytes);
927  err_out:
928 	qc->err_mask |= AC_ERR_HSM;
929 	ap->hsm_task_state = HSM_ST_ERR;
930 }
931 
932 /**
933  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
934  *	@ap: the target ata_port
935  *	@qc: qc on going
936  *
937  *	RETURNS:
938  *	1 if ok in workqueue, 0 otherwise.
939  */
940 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
941 						struct ata_queued_cmd *qc)
942 {
943 	if (qc->tf.flags & ATA_TFLAG_POLLING)
944 		return 1;
945 
946 	if (ap->hsm_task_state == HSM_ST_FIRST) {
947 		if (qc->tf.protocol == ATA_PROT_PIO &&
948 		   (qc->tf.flags & ATA_TFLAG_WRITE))
949 		    return 1;
950 
951 		if (ata_is_atapi(qc->tf.protocol) &&
952 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
953 			return 1;
954 	}
955 
956 	return 0;
957 }
958 
959 /**
960  *	ata_hsm_qc_complete - finish a qc running on standard HSM
961  *	@qc: Command to complete
962  *	@in_wq: 1 if called from workqueue, 0 otherwise
963  *
964  *	Finish @qc which is running on standard HSM.
965  *
966  *	LOCKING:
967  *	If @in_wq is zero, spin_lock_irqsave(host lock).
968  *	Otherwise, none on entry and grabs host lock.
969  */
970 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
971 {
972 	struct ata_port *ap = qc->ap;
973 
974 	if (ap->ops->error_handler) {
975 		if (in_wq) {
976 			/* EH might have kicked in while host lock is
977 			 * released.
978 			 */
979 			qc = ata_qc_from_tag(ap, qc->tag);
980 			if (qc) {
981 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
982 					ata_sff_irq_on(ap);
983 					ata_qc_complete(qc);
984 				} else
985 					ata_port_freeze(ap);
986 			}
987 		} else {
988 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
989 				ata_qc_complete(qc);
990 			else
991 				ata_port_freeze(ap);
992 		}
993 	} else {
994 		if (in_wq) {
995 			ata_sff_irq_on(ap);
996 			ata_qc_complete(qc);
997 		} else
998 			ata_qc_complete(qc);
999 	}
1000 }
1001 
1002 /**
1003  *	ata_sff_hsm_move - move the HSM to the next state.
1004  *	@ap: the target ata_port
1005  *	@qc: qc on going
1006  *	@status: current device status
1007  *	@in_wq: 1 if called from workqueue, 0 otherwise
1008  *
1009  *	RETURNS:
1010  *	1 when poll next status needed, 0 otherwise.
1011  */
1012 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1013 		     u8 status, int in_wq)
1014 {
1015 	struct ata_link *link = qc->dev->link;
1016 	struct ata_eh_info *ehi = &link->eh_info;
1017 	int poll_next;
1018 
1019 	lockdep_assert_held(ap->lock);
1020 
1021 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1022 
1023 	/* Make sure ata_sff_qc_issue() does not throw things
1024 	 * like DMA polling into the workqueue. Notice that
1025 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1026 	 */
1027 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1028 
1029 fsm_start:
1030 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1031 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1032 
1033 	switch (ap->hsm_task_state) {
1034 	case HSM_ST_FIRST:
1035 		/* Send first data block or PACKET CDB */
1036 
1037 		/* If polling, we will stay in the work queue after
1038 		 * sending the data. Otherwise, interrupt handler
1039 		 * takes over after sending the data.
1040 		 */
1041 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1042 
1043 		/* check device status */
1044 		if (unlikely((status & ATA_DRQ) == 0)) {
1045 			/* handle BSY=0, DRQ=0 as error */
1046 			if (likely(status & (ATA_ERR | ATA_DF)))
1047 				/* device stops HSM for abort/error */
1048 				qc->err_mask |= AC_ERR_DEV;
1049 			else {
1050 				/* HSM violation. Let EH handle this */
1051 				ata_ehi_push_desc(ehi,
1052 					"ST_FIRST: !(DRQ|ERR|DF)");
1053 				qc->err_mask |= AC_ERR_HSM;
1054 			}
1055 
1056 			ap->hsm_task_state = HSM_ST_ERR;
1057 			goto fsm_start;
1058 		}
1059 
1060 		/* Device should not ask for data transfer (DRQ=1)
1061 		 * when it finds something wrong.
1062 		 * We ignore DRQ here and stop the HSM by
1063 		 * changing hsm_task_state to HSM_ST_ERR and
1064 		 * let the EH abort the command or reset the device.
1065 		 */
1066 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1067 			/* Some ATAPI tape drives forget to clear the ERR bit
1068 			 * when doing the next command (mostly request sense).
1069 			 * We ignore ERR here to workaround and proceed sending
1070 			 * the CDB.
1071 			 */
1072 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1073 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1074 					"DRQ=1 with device error, "
1075 					"dev_stat 0x%X", status);
1076 				qc->err_mask |= AC_ERR_HSM;
1077 				ap->hsm_task_state = HSM_ST_ERR;
1078 				goto fsm_start;
1079 			}
1080 		}
1081 
1082 		if (qc->tf.protocol == ATA_PROT_PIO) {
1083 			/* PIO data out protocol.
1084 			 * send first data block.
1085 			 */
1086 
1087 			/* ata_pio_sectors() might change the state
1088 			 * to HSM_ST_LAST. so, the state is changed here
1089 			 * before ata_pio_sectors().
1090 			 */
1091 			ap->hsm_task_state = HSM_ST;
1092 			ata_pio_sectors(qc);
1093 		} else
1094 			/* send CDB */
1095 			atapi_send_cdb(ap, qc);
1096 
1097 		/* if polling, ata_sff_pio_task() handles the rest.
1098 		 * otherwise, interrupt handler takes over from here.
1099 		 */
1100 		break;
1101 
1102 	case HSM_ST:
1103 		/* complete command or read/write the data register */
1104 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1105 			/* ATAPI PIO protocol */
1106 			if ((status & ATA_DRQ) == 0) {
1107 				/* No more data to transfer or device error.
1108 				 * Device error will be tagged in HSM_ST_LAST.
1109 				 */
1110 				ap->hsm_task_state = HSM_ST_LAST;
1111 				goto fsm_start;
1112 			}
1113 
1114 			/* Device should not ask for data transfer (DRQ=1)
1115 			 * when it finds something wrong.
1116 			 * We ignore DRQ here and stop the HSM by
1117 			 * changing hsm_task_state to HSM_ST_ERR and
1118 			 * let the EH abort the command or reset the device.
1119 			 */
1120 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1121 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1122 					"DRQ=1 with device error, "
1123 					"dev_stat 0x%X", status);
1124 				qc->err_mask |= AC_ERR_HSM;
1125 				ap->hsm_task_state = HSM_ST_ERR;
1126 				goto fsm_start;
1127 			}
1128 
1129 			atapi_pio_bytes(qc);
1130 
1131 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1132 				/* bad ireason reported by device */
1133 				goto fsm_start;
1134 
1135 		} else {
1136 			/* ATA PIO protocol */
1137 			if (unlikely((status & ATA_DRQ) == 0)) {
1138 				/* handle BSY=0, DRQ=0 as error */
1139 				if (likely(status & (ATA_ERR | ATA_DF))) {
1140 					/* device stops HSM for abort/error */
1141 					qc->err_mask |= AC_ERR_DEV;
1142 
1143 					/* If diagnostic failed and this is
1144 					 * IDENTIFY, it's likely a phantom
1145 					 * device.  Mark hint.
1146 					 */
1147 					if (qc->dev->horkage &
1148 					    ATA_HORKAGE_DIAGNOSTIC)
1149 						qc->err_mask |=
1150 							AC_ERR_NODEV_HINT;
1151 				} else {
1152 					/* HSM violation. Let EH handle this.
1153 					 * Phantom devices also trigger this
1154 					 * condition.  Mark hint.
1155 					 */
1156 					ata_ehi_push_desc(ehi, "ST-ATA: "
1157 						"DRQ=0 without device error, "
1158 						"dev_stat 0x%X", status);
1159 					qc->err_mask |= AC_ERR_HSM |
1160 							AC_ERR_NODEV_HINT;
1161 				}
1162 
1163 				ap->hsm_task_state = HSM_ST_ERR;
1164 				goto fsm_start;
1165 			}
1166 
1167 			/* For PIO reads, some devices may ask for
1168 			 * data transfer (DRQ=1) alone with ERR=1.
1169 			 * We respect DRQ here and transfer one
1170 			 * block of junk data before changing the
1171 			 * hsm_task_state to HSM_ST_ERR.
1172 			 *
1173 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1174 			 * sense since the data block has been
1175 			 * transferred to the device.
1176 			 */
1177 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1178 				/* data might be corrputed */
1179 				qc->err_mask |= AC_ERR_DEV;
1180 
1181 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1182 					ata_pio_sectors(qc);
1183 					status = ata_wait_idle(ap);
1184 				}
1185 
1186 				if (status & (ATA_BUSY | ATA_DRQ)) {
1187 					ata_ehi_push_desc(ehi, "ST-ATA: "
1188 						"BUSY|DRQ persists on ERR|DF, "
1189 						"dev_stat 0x%X", status);
1190 					qc->err_mask |= AC_ERR_HSM;
1191 				}
1192 
1193 				/* There are oddball controllers with
1194 				 * status register stuck at 0x7f and
1195 				 * lbal/m/h at zero which makes it
1196 				 * pass all other presence detection
1197 				 * mechanisms we have.  Set NODEV_HINT
1198 				 * for it.  Kernel bz#7241.
1199 				 */
1200 				if (status == 0x7f)
1201 					qc->err_mask |= AC_ERR_NODEV_HINT;
1202 
1203 				/* ata_pio_sectors() might change the
1204 				 * state to HSM_ST_LAST. so, the state
1205 				 * is changed after ata_pio_sectors().
1206 				 */
1207 				ap->hsm_task_state = HSM_ST_ERR;
1208 				goto fsm_start;
1209 			}
1210 
1211 			ata_pio_sectors(qc);
1212 
1213 			if (ap->hsm_task_state == HSM_ST_LAST &&
1214 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1215 				/* all data read */
1216 				status = ata_wait_idle(ap);
1217 				goto fsm_start;
1218 			}
1219 		}
1220 
1221 		poll_next = 1;
1222 		break;
1223 
1224 	case HSM_ST_LAST:
1225 		if (unlikely(!ata_ok(status))) {
1226 			qc->err_mask |= __ac_err_mask(status);
1227 			ap->hsm_task_state = HSM_ST_ERR;
1228 			goto fsm_start;
1229 		}
1230 
1231 		/* no more data to transfer */
1232 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1233 			ap->print_id, qc->dev->devno, status);
1234 
1235 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1236 
1237 		ap->hsm_task_state = HSM_ST_IDLE;
1238 
1239 		/* complete taskfile transaction */
1240 		ata_hsm_qc_complete(qc, in_wq);
1241 
1242 		poll_next = 0;
1243 		break;
1244 
1245 	case HSM_ST_ERR:
1246 		ap->hsm_task_state = HSM_ST_IDLE;
1247 
1248 		/* complete taskfile transaction */
1249 		ata_hsm_qc_complete(qc, in_wq);
1250 
1251 		poll_next = 0;
1252 		break;
1253 	default:
1254 		poll_next = 0;
1255 		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1256 		     ap->print_id, ap->hsm_task_state);
1257 	}
1258 
1259 	return poll_next;
1260 }
1261 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1262 
1263 void ata_sff_queue_work(struct work_struct *work)
1264 {
1265 	queue_work(ata_sff_wq, work);
1266 }
1267 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1268 
1269 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1270 {
1271 	queue_delayed_work(ata_sff_wq, dwork, delay);
1272 }
1273 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1274 
1275 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1276 {
1277 	struct ata_port *ap = link->ap;
1278 
1279 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1280 		(ap->sff_pio_task_link != link));
1281 	ap->sff_pio_task_link = link;
1282 
1283 	/* may fail if ata_sff_flush_pio_task() in progress */
1284 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1285 }
1286 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1287 
1288 void ata_sff_flush_pio_task(struct ata_port *ap)
1289 {
1290 	DPRINTK("ENTER\n");
1291 
1292 	cancel_delayed_work_sync(&ap->sff_pio_task);
1293 
1294 	/*
1295 	 * We wanna reset the HSM state to IDLE.  If we do so without
1296 	 * grabbing the port lock, critical sections protected by it which
1297 	 * expect the HSM state to stay stable may get surprised.  For
1298 	 * example, we may set IDLE in between the time
1299 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1300 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1301 	 */
1302 	spin_lock_irq(ap->lock);
1303 	ap->hsm_task_state = HSM_ST_IDLE;
1304 	spin_unlock_irq(ap->lock);
1305 
1306 	ap->sff_pio_task_link = NULL;
1307 
1308 	if (ata_msg_ctl(ap))
1309 		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1310 }
1311 
1312 static void ata_sff_pio_task(struct work_struct *work)
1313 {
1314 	struct ata_port *ap =
1315 		container_of(work, struct ata_port, sff_pio_task.work);
1316 	struct ata_link *link = ap->sff_pio_task_link;
1317 	struct ata_queued_cmd *qc;
1318 	u8 status;
1319 	int poll_next;
1320 
1321 	spin_lock_irq(ap->lock);
1322 
1323 	BUG_ON(ap->sff_pio_task_link == NULL);
1324 	/* qc can be NULL if timeout occurred */
1325 	qc = ata_qc_from_tag(ap, link->active_tag);
1326 	if (!qc) {
1327 		ap->sff_pio_task_link = NULL;
1328 		goto out_unlock;
1329 	}
1330 
1331 fsm_start:
1332 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1333 
1334 	/*
1335 	 * This is purely heuristic.  This is a fast path.
1336 	 * Sometimes when we enter, BSY will be cleared in
1337 	 * a chk-status or two.  If not, the drive is probably seeking
1338 	 * or something.  Snooze for a couple msecs, then
1339 	 * chk-status again.  If still busy, queue delayed work.
1340 	 */
1341 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1342 	if (status & ATA_BUSY) {
1343 		spin_unlock_irq(ap->lock);
1344 		ata_msleep(ap, 2);
1345 		spin_lock_irq(ap->lock);
1346 
1347 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1348 		if (status & ATA_BUSY) {
1349 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1350 			goto out_unlock;
1351 		}
1352 	}
1353 
1354 	/*
1355 	 * hsm_move() may trigger another command to be processed.
1356 	 * clean the link beforehand.
1357 	 */
1358 	ap->sff_pio_task_link = NULL;
1359 	/* move the HSM */
1360 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1361 
1362 	/* another command or interrupt handler
1363 	 * may be running at this point.
1364 	 */
1365 	if (poll_next)
1366 		goto fsm_start;
1367 out_unlock:
1368 	spin_unlock_irq(ap->lock);
1369 }
1370 
1371 /**
1372  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1373  *	@qc: command to issue to device
1374  *
1375  *	This function issues a PIO or NODATA command to a SFF
1376  *	controller.
1377  *
1378  *	LOCKING:
1379  *	spin_lock_irqsave(host lock)
1380  *
1381  *	RETURNS:
1382  *	Zero on success, AC_ERR_* mask on failure
1383  */
1384 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1385 {
1386 	struct ata_port *ap = qc->ap;
1387 	struct ata_link *link = qc->dev->link;
1388 
1389 	/* Use polling pio if the LLD doesn't handle
1390 	 * interrupt driven pio and atapi CDB interrupt.
1391 	 */
1392 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1393 		qc->tf.flags |= ATA_TFLAG_POLLING;
1394 
1395 	/* select the device */
1396 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1397 
1398 	/* start the command */
1399 	switch (qc->tf.protocol) {
1400 	case ATA_PROT_NODATA:
1401 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1402 			ata_qc_set_polling(qc);
1403 
1404 		ata_tf_to_host(ap, &qc->tf);
1405 		ap->hsm_task_state = HSM_ST_LAST;
1406 
1407 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1408 			ata_sff_queue_pio_task(link, 0);
1409 
1410 		break;
1411 
1412 	case ATA_PROT_PIO:
1413 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1414 			ata_qc_set_polling(qc);
1415 
1416 		ata_tf_to_host(ap, &qc->tf);
1417 
1418 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1419 			/* PIO data out protocol */
1420 			ap->hsm_task_state = HSM_ST_FIRST;
1421 			ata_sff_queue_pio_task(link, 0);
1422 
1423 			/* always send first data block using the
1424 			 * ata_sff_pio_task() codepath.
1425 			 */
1426 		} else {
1427 			/* PIO data in protocol */
1428 			ap->hsm_task_state = HSM_ST;
1429 
1430 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1431 				ata_sff_queue_pio_task(link, 0);
1432 
1433 			/* if polling, ata_sff_pio_task() handles the
1434 			 * rest.  otherwise, interrupt handler takes
1435 			 * over from here.
1436 			 */
1437 		}
1438 
1439 		break;
1440 
1441 	case ATAPI_PROT_PIO:
1442 	case ATAPI_PROT_NODATA:
1443 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1444 			ata_qc_set_polling(qc);
1445 
1446 		ata_tf_to_host(ap, &qc->tf);
1447 
1448 		ap->hsm_task_state = HSM_ST_FIRST;
1449 
1450 		/* send cdb by polling if no cdb interrupt */
1451 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1452 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1453 			ata_sff_queue_pio_task(link, 0);
1454 		break;
1455 
1456 	default:
1457 		return AC_ERR_SYSTEM;
1458 	}
1459 
1460 	return 0;
1461 }
1462 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1463 
1464 /**
1465  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1466  *	@qc: qc to fill result TF for
1467  *
1468  *	@qc is finished and result TF needs to be filled.  Fill it
1469  *	using ->sff_tf_read.
1470  *
1471  *	LOCKING:
1472  *	spin_lock_irqsave(host lock)
1473  *
1474  *	RETURNS:
1475  *	true indicating that result TF is successfully filled.
1476  */
1477 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1478 {
1479 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1480 	return true;
1481 }
1482 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1483 
1484 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1485 {
1486 	ap->stats.idle_irq++;
1487 
1488 #ifdef ATA_IRQ_TRAP
1489 	if ((ap->stats.idle_irq % 1000) == 0) {
1490 		ap->ops->sff_check_status(ap);
1491 		if (ap->ops->sff_irq_clear)
1492 			ap->ops->sff_irq_clear(ap);
1493 		ata_port_warn(ap, "irq trap\n");
1494 		return 1;
1495 	}
1496 #endif
1497 	return 0;	/* irq not handled */
1498 }
1499 
1500 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1501 					struct ata_queued_cmd *qc,
1502 					bool hsmv_on_idle)
1503 {
1504 	u8 status;
1505 
1506 	VPRINTK("ata%u: protocol %d task_state %d\n",
1507 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1508 
1509 	/* Check whether we are expecting interrupt in this state */
1510 	switch (ap->hsm_task_state) {
1511 	case HSM_ST_FIRST:
1512 		/* Some pre-ATAPI-4 devices assert INTRQ
1513 		 * at this state when ready to receive CDB.
1514 		 */
1515 
1516 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1517 		 * The flag was turned on only for atapi devices.  No
1518 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1519 		 */
1520 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1521 			return ata_sff_idle_irq(ap);
1522 		break;
1523 	case HSM_ST_IDLE:
1524 		return ata_sff_idle_irq(ap);
1525 	default:
1526 		break;
1527 	}
1528 
1529 	/* check main status, clearing INTRQ if needed */
1530 	status = ata_sff_irq_status(ap);
1531 	if (status & ATA_BUSY) {
1532 		if (hsmv_on_idle) {
1533 			/* BMDMA engine is already stopped, we're screwed */
1534 			qc->err_mask |= AC_ERR_HSM;
1535 			ap->hsm_task_state = HSM_ST_ERR;
1536 		} else
1537 			return ata_sff_idle_irq(ap);
1538 	}
1539 
1540 	/* clear irq events */
1541 	if (ap->ops->sff_irq_clear)
1542 		ap->ops->sff_irq_clear(ap);
1543 
1544 	ata_sff_hsm_move(ap, qc, status, 0);
1545 
1546 	return 1;	/* irq handled */
1547 }
1548 
1549 /**
1550  *	ata_sff_port_intr - Handle SFF port interrupt
1551  *	@ap: Port on which interrupt arrived (possibly...)
1552  *	@qc: Taskfile currently active in engine
1553  *
1554  *	Handle port interrupt for given queued command.
1555  *
1556  *	LOCKING:
1557  *	spin_lock_irqsave(host lock)
1558  *
1559  *	RETURNS:
1560  *	One if interrupt was handled, zero if not (shared irq).
1561  */
1562 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1563 {
1564 	return __ata_sff_port_intr(ap, qc, false);
1565 }
1566 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1567 
1568 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1569 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1570 {
1571 	struct ata_host *host = dev_instance;
1572 	bool retried = false;
1573 	unsigned int i;
1574 	unsigned int handled, idle, polling;
1575 	unsigned long flags;
1576 
1577 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1578 	spin_lock_irqsave(&host->lock, flags);
1579 
1580 retry:
1581 	handled = idle = polling = 0;
1582 	for (i = 0; i < host->n_ports; i++) {
1583 		struct ata_port *ap = host->ports[i];
1584 		struct ata_queued_cmd *qc;
1585 
1586 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1587 		if (qc) {
1588 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1589 				handled |= port_intr(ap, qc);
1590 			else
1591 				polling |= 1 << i;
1592 		} else
1593 			idle |= 1 << i;
1594 	}
1595 
1596 	/*
1597 	 * If no port was expecting IRQ but the controller is actually
1598 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1599 	 * pending status if available and clear spurious IRQ.
1600 	 */
1601 	if (!handled && !retried) {
1602 		bool retry = false;
1603 
1604 		for (i = 0; i < host->n_ports; i++) {
1605 			struct ata_port *ap = host->ports[i];
1606 
1607 			if (polling & (1 << i))
1608 				continue;
1609 
1610 			if (!ap->ops->sff_irq_check ||
1611 			    !ap->ops->sff_irq_check(ap))
1612 				continue;
1613 
1614 			if (idle & (1 << i)) {
1615 				ap->ops->sff_check_status(ap);
1616 				if (ap->ops->sff_irq_clear)
1617 					ap->ops->sff_irq_clear(ap);
1618 			} else {
1619 				/* clear INTRQ and check if BUSY cleared */
1620 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1621 					retry |= true;
1622 				/*
1623 				 * With command in flight, we can't do
1624 				 * sff_irq_clear() w/o racing with completion.
1625 				 */
1626 			}
1627 		}
1628 
1629 		if (retry) {
1630 			retried = true;
1631 			goto retry;
1632 		}
1633 	}
1634 
1635 	spin_unlock_irqrestore(&host->lock, flags);
1636 
1637 	return IRQ_RETVAL(handled);
1638 }
1639 
1640 /**
1641  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1642  *	@irq: irq line (unused)
1643  *	@dev_instance: pointer to our ata_host information structure
1644  *
1645  *	Default interrupt handler for PCI IDE devices.  Calls
1646  *	ata_sff_port_intr() for each port that is not disabled.
1647  *
1648  *	LOCKING:
1649  *	Obtains host lock during operation.
1650  *
1651  *	RETURNS:
1652  *	IRQ_NONE or IRQ_HANDLED.
1653  */
1654 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1655 {
1656 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1657 }
1658 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1659 
1660 /**
1661  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1662  *	@ap: port that appears to have timed out
1663  *
1664  *	Called from the libata error handlers when the core code suspects
1665  *	an interrupt has been lost. If it has complete anything we can and
1666  *	then return. Interface must support altstatus for this faster
1667  *	recovery to occur.
1668  *
1669  *	Locking:
1670  *	Caller holds host lock
1671  */
1672 
1673 void ata_sff_lost_interrupt(struct ata_port *ap)
1674 {
1675 	u8 status;
1676 	struct ata_queued_cmd *qc;
1677 
1678 	/* Only one outstanding command per SFF channel */
1679 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1680 	/* We cannot lose an interrupt on a non-existent or polled command */
1681 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1682 		return;
1683 	/* See if the controller thinks it is still busy - if so the command
1684 	   isn't a lost IRQ but is still in progress */
1685 	status = ata_sff_altstatus(ap);
1686 	if (status & ATA_BUSY)
1687 		return;
1688 
1689 	/* There was a command running, we are no longer busy and we have
1690 	   no interrupt. */
1691 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1692 								status);
1693 	/* Run the host interrupt logic as if the interrupt had not been
1694 	   lost */
1695 	ata_sff_port_intr(ap, qc);
1696 }
1697 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1698 
1699 /**
1700  *	ata_sff_freeze - Freeze SFF controller port
1701  *	@ap: port to freeze
1702  *
1703  *	Freeze SFF controller port.
1704  *
1705  *	LOCKING:
1706  *	Inherited from caller.
1707  */
1708 void ata_sff_freeze(struct ata_port *ap)
1709 {
1710 	ap->ctl |= ATA_NIEN;
1711 	ap->last_ctl = ap->ctl;
1712 
1713 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1714 		ata_sff_set_devctl(ap, ap->ctl);
1715 
1716 	/* Under certain circumstances, some controllers raise IRQ on
1717 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1718 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1719 	 */
1720 	ap->ops->sff_check_status(ap);
1721 
1722 	if (ap->ops->sff_irq_clear)
1723 		ap->ops->sff_irq_clear(ap);
1724 }
1725 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1726 
1727 /**
1728  *	ata_sff_thaw - Thaw SFF controller port
1729  *	@ap: port to thaw
1730  *
1731  *	Thaw SFF controller port.
1732  *
1733  *	LOCKING:
1734  *	Inherited from caller.
1735  */
1736 void ata_sff_thaw(struct ata_port *ap)
1737 {
1738 	/* clear & re-enable interrupts */
1739 	ap->ops->sff_check_status(ap);
1740 	if (ap->ops->sff_irq_clear)
1741 		ap->ops->sff_irq_clear(ap);
1742 	ata_sff_irq_on(ap);
1743 }
1744 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1745 
1746 /**
1747  *	ata_sff_prereset - prepare SFF link for reset
1748  *	@link: SFF link to be reset
1749  *	@deadline: deadline jiffies for the operation
1750  *
1751  *	SFF link @link is about to be reset.  Initialize it.  It first
1752  *	calls ata_std_prereset() and wait for !BSY if the port is
1753  *	being softreset.
1754  *
1755  *	LOCKING:
1756  *	Kernel thread context (may sleep)
1757  *
1758  *	RETURNS:
1759  *	0 on success, -errno otherwise.
1760  */
1761 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1762 {
1763 	struct ata_eh_context *ehc = &link->eh_context;
1764 	int rc;
1765 
1766 	rc = ata_std_prereset(link, deadline);
1767 	if (rc)
1768 		return rc;
1769 
1770 	/* if we're about to do hardreset, nothing more to do */
1771 	if (ehc->i.action & ATA_EH_HARDRESET)
1772 		return 0;
1773 
1774 	/* wait for !BSY if we don't know that no device is attached */
1775 	if (!ata_link_offline(link)) {
1776 		rc = ata_sff_wait_ready(link, deadline);
1777 		if (rc && rc != -ENODEV) {
1778 			ata_link_warn(link,
1779 				      "device not ready (errno=%d), forcing hardreset\n",
1780 				      rc);
1781 			ehc->i.action |= ATA_EH_HARDRESET;
1782 		}
1783 	}
1784 
1785 	return 0;
1786 }
1787 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1788 
1789 /**
1790  *	ata_devchk - PATA device presence detection
1791  *	@ap: ATA channel to examine
1792  *	@device: Device to examine (starting at zero)
1793  *
1794  *	This technique was originally described in
1795  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1796  *	later found its way into the ATA/ATAPI spec.
1797  *
1798  *	Write a pattern to the ATA shadow registers,
1799  *	and if a device is present, it will respond by
1800  *	correctly storing and echoing back the
1801  *	ATA shadow register contents.
1802  *
1803  *	LOCKING:
1804  *	caller.
1805  */
1806 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1807 {
1808 	struct ata_ioports *ioaddr = &ap->ioaddr;
1809 	u8 nsect, lbal;
1810 
1811 	ap->ops->sff_dev_select(ap, device);
1812 
1813 	iowrite8(0x55, ioaddr->nsect_addr);
1814 	iowrite8(0xaa, ioaddr->lbal_addr);
1815 
1816 	iowrite8(0xaa, ioaddr->nsect_addr);
1817 	iowrite8(0x55, ioaddr->lbal_addr);
1818 
1819 	iowrite8(0x55, ioaddr->nsect_addr);
1820 	iowrite8(0xaa, ioaddr->lbal_addr);
1821 
1822 	nsect = ioread8(ioaddr->nsect_addr);
1823 	lbal = ioread8(ioaddr->lbal_addr);
1824 
1825 	if ((nsect == 0x55) && (lbal == 0xaa))
1826 		return 1;	/* we found a device */
1827 
1828 	return 0;		/* nothing found */
1829 }
1830 
1831 /**
1832  *	ata_sff_dev_classify - Parse returned ATA device signature
1833  *	@dev: ATA device to classify (starting at zero)
1834  *	@present: device seems present
1835  *	@r_err: Value of error register on completion
1836  *
1837  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1838  *	an ATA/ATAPI-defined set of values is placed in the ATA
1839  *	shadow registers, indicating the results of device detection
1840  *	and diagnostics.
1841  *
1842  *	Select the ATA device, and read the values from the ATA shadow
1843  *	registers.  Then parse according to the Error register value,
1844  *	and the spec-defined values examined by ata_dev_classify().
1845  *
1846  *	LOCKING:
1847  *	caller.
1848  *
1849  *	RETURNS:
1850  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1851  */
1852 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1853 				  u8 *r_err)
1854 {
1855 	struct ata_port *ap = dev->link->ap;
1856 	struct ata_taskfile tf;
1857 	unsigned int class;
1858 	u8 err;
1859 
1860 	ap->ops->sff_dev_select(ap, dev->devno);
1861 
1862 	memset(&tf, 0, sizeof(tf));
1863 
1864 	ap->ops->sff_tf_read(ap, &tf);
1865 	err = tf.feature;
1866 	if (r_err)
1867 		*r_err = err;
1868 
1869 	/* see if device passed diags: continue and warn later */
1870 	if (err == 0)
1871 		/* diagnostic fail : do nothing _YET_ */
1872 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1873 	else if (err == 1)
1874 		/* do nothing */ ;
1875 	else if ((dev->devno == 0) && (err == 0x81))
1876 		/* do nothing */ ;
1877 	else
1878 		return ATA_DEV_NONE;
1879 
1880 	/* determine if device is ATA or ATAPI */
1881 	class = ata_dev_classify(&tf);
1882 
1883 	if (class == ATA_DEV_UNKNOWN) {
1884 		/* If the device failed diagnostic, it's likely to
1885 		 * have reported incorrect device signature too.
1886 		 * Assume ATA device if the device seems present but
1887 		 * device signature is invalid with diagnostic
1888 		 * failure.
1889 		 */
1890 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1891 			class = ATA_DEV_ATA;
1892 		else
1893 			class = ATA_DEV_NONE;
1894 	} else if ((class == ATA_DEV_ATA) &&
1895 		   (ap->ops->sff_check_status(ap) == 0))
1896 		class = ATA_DEV_NONE;
1897 
1898 	return class;
1899 }
1900 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1901 
1902 /**
1903  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1904  *	@link: SFF link which is just reset
1905  *	@devmask: mask of present devices
1906  *	@deadline: deadline jiffies for the operation
1907  *
1908  *	Wait devices attached to SFF @link to become ready after
1909  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1910  *	status register too early.
1911  *
1912  *	LOCKING:
1913  *	Kernel thread context (may sleep).
1914  *
1915  *	RETURNS:
1916  *	0 on success, -ENODEV if some or all of devices in @devmask
1917  *	don't seem to exist.  -errno on other errors.
1918  */
1919 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1920 			     unsigned long deadline)
1921 {
1922 	struct ata_port *ap = link->ap;
1923 	struct ata_ioports *ioaddr = &ap->ioaddr;
1924 	unsigned int dev0 = devmask & (1 << 0);
1925 	unsigned int dev1 = devmask & (1 << 1);
1926 	int rc, ret = 0;
1927 
1928 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1929 
1930 	/* always check readiness of the master device */
1931 	rc = ata_sff_wait_ready(link, deadline);
1932 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1933 	 * and TF status is 0xff, bail out on it too.
1934 	 */
1935 	if (rc)
1936 		return rc;
1937 
1938 	/* if device 1 was found in ata_devchk, wait for register
1939 	 * access briefly, then wait for BSY to clear.
1940 	 */
1941 	if (dev1) {
1942 		int i;
1943 
1944 		ap->ops->sff_dev_select(ap, 1);
1945 
1946 		/* Wait for register access.  Some ATAPI devices fail
1947 		 * to set nsect/lbal after reset, so don't waste too
1948 		 * much time on it.  We're gonna wait for !BSY anyway.
1949 		 */
1950 		for (i = 0; i < 2; i++) {
1951 			u8 nsect, lbal;
1952 
1953 			nsect = ioread8(ioaddr->nsect_addr);
1954 			lbal = ioread8(ioaddr->lbal_addr);
1955 			if ((nsect == 1) && (lbal == 1))
1956 				break;
1957 			ata_msleep(ap, 50);	/* give drive a breather */
1958 		}
1959 
1960 		rc = ata_sff_wait_ready(link, deadline);
1961 		if (rc) {
1962 			if (rc != -ENODEV)
1963 				return rc;
1964 			ret = rc;
1965 		}
1966 	}
1967 
1968 	/* is all this really necessary? */
1969 	ap->ops->sff_dev_select(ap, 0);
1970 	if (dev1)
1971 		ap->ops->sff_dev_select(ap, 1);
1972 	if (dev0)
1973 		ap->ops->sff_dev_select(ap, 0);
1974 
1975 	return ret;
1976 }
1977 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1978 
1979 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1980 			     unsigned long deadline)
1981 {
1982 	struct ata_ioports *ioaddr = &ap->ioaddr;
1983 
1984 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1985 
1986 	if (ap->ioaddr.ctl_addr) {
1987 		/* software reset.  causes dev0 to be selected */
1988 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1989 		udelay(20);	/* FIXME: flush */
1990 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1991 		udelay(20);	/* FIXME: flush */
1992 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1993 		ap->last_ctl = ap->ctl;
1994 	}
1995 
1996 	/* wait the port to become ready */
1997 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1998 }
1999 
2000 /**
2001  *	ata_sff_softreset - reset host port via ATA SRST
2002  *	@link: ATA link to reset
2003  *	@classes: resulting classes of attached devices
2004  *	@deadline: deadline jiffies for the operation
2005  *
2006  *	Reset host port using ATA SRST.
2007  *
2008  *	LOCKING:
2009  *	Kernel thread context (may sleep)
2010  *
2011  *	RETURNS:
2012  *	0 on success, -errno otherwise.
2013  */
2014 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2015 		      unsigned long deadline)
2016 {
2017 	struct ata_port *ap = link->ap;
2018 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2019 	unsigned int devmask = 0;
2020 	int rc;
2021 	u8 err;
2022 
2023 	DPRINTK("ENTER\n");
2024 
2025 	/* determine if device 0/1 are present */
2026 	if (ata_devchk(ap, 0))
2027 		devmask |= (1 << 0);
2028 	if (slave_possible && ata_devchk(ap, 1))
2029 		devmask |= (1 << 1);
2030 
2031 	/* select device 0 again */
2032 	ap->ops->sff_dev_select(ap, 0);
2033 
2034 	/* issue bus reset */
2035 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2036 	rc = ata_bus_softreset(ap, devmask, deadline);
2037 	/* if link is occupied, -ENODEV too is an error */
2038 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2039 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2040 		return rc;
2041 	}
2042 
2043 	/* determine by signature whether we have ATA or ATAPI devices */
2044 	classes[0] = ata_sff_dev_classify(&link->device[0],
2045 					  devmask & (1 << 0), &err);
2046 	if (slave_possible && err != 0x81)
2047 		classes[1] = ata_sff_dev_classify(&link->device[1],
2048 						  devmask & (1 << 1), &err);
2049 
2050 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2051 	return 0;
2052 }
2053 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2054 
2055 /**
2056  *	sata_sff_hardreset - reset host port via SATA phy reset
2057  *	@link: link to reset
2058  *	@class: resulting class of attached device
2059  *	@deadline: deadline jiffies for the operation
2060  *
2061  *	SATA phy-reset host port using DET bits of SControl register,
2062  *	wait for !BSY and classify the attached device.
2063  *
2064  *	LOCKING:
2065  *	Kernel thread context (may sleep)
2066  *
2067  *	RETURNS:
2068  *	0 on success, -errno otherwise.
2069  */
2070 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2071 		       unsigned long deadline)
2072 {
2073 	struct ata_eh_context *ehc = &link->eh_context;
2074 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2075 	bool online;
2076 	int rc;
2077 
2078 	rc = sata_link_hardreset(link, timing, deadline, &online,
2079 				 ata_sff_check_ready);
2080 	if (online)
2081 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2082 
2083 	DPRINTK("EXIT, class=%u\n", *class);
2084 	return rc;
2085 }
2086 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2087 
2088 /**
2089  *	ata_sff_postreset - SFF postreset callback
2090  *	@link: the target SFF ata_link
2091  *	@classes: classes of attached devices
2092  *
2093  *	This function is invoked after a successful reset.  It first
2094  *	calls ata_std_postreset() and performs SFF specific postreset
2095  *	processing.
2096  *
2097  *	LOCKING:
2098  *	Kernel thread context (may sleep)
2099  */
2100 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2101 {
2102 	struct ata_port *ap = link->ap;
2103 
2104 	ata_std_postreset(link, classes);
2105 
2106 	/* is double-select really necessary? */
2107 	if (classes[0] != ATA_DEV_NONE)
2108 		ap->ops->sff_dev_select(ap, 1);
2109 	if (classes[1] != ATA_DEV_NONE)
2110 		ap->ops->sff_dev_select(ap, 0);
2111 
2112 	/* bail out if no device is present */
2113 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2114 		DPRINTK("EXIT, no device\n");
2115 		return;
2116 	}
2117 
2118 	/* set up device control */
2119 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2120 		ata_sff_set_devctl(ap, ap->ctl);
2121 		ap->last_ctl = ap->ctl;
2122 	}
2123 }
2124 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2125 
2126 /**
2127  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2128  *	@qc: command
2129  *
2130  *	Drain the FIFO and device of any stuck data following a command
2131  *	failing to complete. In some cases this is necessary before a
2132  *	reset will recover the device.
2133  *
2134  */
2135 
2136 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2137 {
2138 	int count;
2139 	struct ata_port *ap;
2140 
2141 	/* We only need to flush incoming data when a command was running */
2142 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2143 		return;
2144 
2145 	ap = qc->ap;
2146 	/* Drain up to 64K of data before we give up this recovery method */
2147 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2148 						&& count < 65536; count += 2)
2149 		ioread16(ap->ioaddr.data_addr);
2150 
2151 	/* Can become DEBUG later */
2152 	if (count)
2153 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2154 
2155 }
2156 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2157 
2158 /**
2159  *	ata_sff_error_handler - Stock error handler for SFF controller
2160  *	@ap: port to handle error for
2161  *
2162  *	Stock error handler for SFF controller.  It can handle both
2163  *	PATA and SATA controllers.  Many controllers should be able to
2164  *	use this EH as-is or with some added handling before and
2165  *	after.
2166  *
2167  *	LOCKING:
2168  *	Kernel thread context (may sleep)
2169  */
2170 void ata_sff_error_handler(struct ata_port *ap)
2171 {
2172 	ata_reset_fn_t softreset = ap->ops->softreset;
2173 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2174 	struct ata_queued_cmd *qc;
2175 	unsigned long flags;
2176 
2177 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2178 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2179 		qc = NULL;
2180 
2181 	spin_lock_irqsave(ap->lock, flags);
2182 
2183 	/*
2184 	 * We *MUST* do FIFO draining before we issue a reset as
2185 	 * several devices helpfully clear their internal state and
2186 	 * will lock solid if we touch the data port post reset. Pass
2187 	 * qc in case anyone wants to do different PIO/DMA recovery or
2188 	 * has per command fixups
2189 	 */
2190 	if (ap->ops->sff_drain_fifo)
2191 		ap->ops->sff_drain_fifo(qc);
2192 
2193 	spin_unlock_irqrestore(ap->lock, flags);
2194 
2195 	/* ignore built-in hardresets if SCR access is not available */
2196 	if ((hardreset == sata_std_hardreset ||
2197 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2198 		hardreset = NULL;
2199 
2200 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2201 		  ap->ops->postreset);
2202 }
2203 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2204 
2205 /**
2206  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2207  *	@ioaddr: IO address structure to be initialized
2208  *
2209  *	Utility function which initializes data_addr, error_addr,
2210  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2211  *	device_addr, status_addr, and command_addr to standard offsets
2212  *	relative to cmd_addr.
2213  *
2214  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2215  */
2216 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2217 {
2218 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2219 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2220 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2221 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2222 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2223 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2224 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2225 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2226 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2227 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2228 }
2229 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2230 
2231 #ifdef CONFIG_PCI
2232 
2233 static int ata_resources_present(struct pci_dev *pdev, int port)
2234 {
2235 	int i;
2236 
2237 	/* Check the PCI resources for this channel are enabled */
2238 	port = port * 2;
2239 	for (i = 0; i < 2; i++) {
2240 		if (pci_resource_start(pdev, port + i) == 0 ||
2241 		    pci_resource_len(pdev, port + i) == 0)
2242 			return 0;
2243 	}
2244 	return 1;
2245 }
2246 
2247 /**
2248  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2249  *	@host: target ATA host
2250  *
2251  *	Acquire native PCI ATA resources for @host and initialize the
2252  *	first two ports of @host accordingly.  Ports marked dummy are
2253  *	skipped and allocation failure makes the port dummy.
2254  *
2255  *	Note that native PCI resources are valid even for legacy hosts
2256  *	as we fix up pdev resources array early in boot, so this
2257  *	function can be used for both native and legacy SFF hosts.
2258  *
2259  *	LOCKING:
2260  *	Inherited from calling layer (may sleep).
2261  *
2262  *	RETURNS:
2263  *	0 if at least one port is initialized, -ENODEV if no port is
2264  *	available.
2265  */
2266 int ata_pci_sff_init_host(struct ata_host *host)
2267 {
2268 	struct device *gdev = host->dev;
2269 	struct pci_dev *pdev = to_pci_dev(gdev);
2270 	unsigned int mask = 0;
2271 	int i, rc;
2272 
2273 	/* request, iomap BARs and init port addresses accordingly */
2274 	for (i = 0; i < 2; i++) {
2275 		struct ata_port *ap = host->ports[i];
2276 		int base = i * 2;
2277 		void __iomem * const *iomap;
2278 
2279 		if (ata_port_is_dummy(ap))
2280 			continue;
2281 
2282 		/* Discard disabled ports.  Some controllers show
2283 		 * their unused channels this way.  Disabled ports are
2284 		 * made dummy.
2285 		 */
2286 		if (!ata_resources_present(pdev, i)) {
2287 			ap->ops = &ata_dummy_port_ops;
2288 			continue;
2289 		}
2290 
2291 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2292 					dev_driver_string(gdev));
2293 		if (rc) {
2294 			dev_warn(gdev,
2295 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2296 				 i, rc);
2297 			if (rc == -EBUSY)
2298 				pcim_pin_device(pdev);
2299 			ap->ops = &ata_dummy_port_ops;
2300 			continue;
2301 		}
2302 		host->iomap = iomap = pcim_iomap_table(pdev);
2303 
2304 		ap->ioaddr.cmd_addr = iomap[base];
2305 		ap->ioaddr.altstatus_addr =
2306 		ap->ioaddr.ctl_addr = (void __iomem *)
2307 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2308 		ata_sff_std_ports(&ap->ioaddr);
2309 
2310 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2311 			(unsigned long long)pci_resource_start(pdev, base),
2312 			(unsigned long long)pci_resource_start(pdev, base + 1));
2313 
2314 		mask |= 1 << i;
2315 	}
2316 
2317 	if (!mask) {
2318 		dev_err(gdev, "no available native port\n");
2319 		return -ENODEV;
2320 	}
2321 
2322 	return 0;
2323 }
2324 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2325 
2326 /**
2327  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2328  *	@pdev: target PCI device
2329  *	@ppi: array of port_info, must be enough for two ports
2330  *	@r_host: out argument for the initialized ATA host
2331  *
2332  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2333  *	all PCI resources and initialize it accordingly in one go.
2334  *
2335  *	LOCKING:
2336  *	Inherited from calling layer (may sleep).
2337  *
2338  *	RETURNS:
2339  *	0 on success, -errno otherwise.
2340  */
2341 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2342 			     const struct ata_port_info * const *ppi,
2343 			     struct ata_host **r_host)
2344 {
2345 	struct ata_host *host;
2346 	int rc;
2347 
2348 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2349 		return -ENOMEM;
2350 
2351 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2352 	if (!host) {
2353 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2354 		rc = -ENOMEM;
2355 		goto err_out;
2356 	}
2357 
2358 	rc = ata_pci_sff_init_host(host);
2359 	if (rc)
2360 		goto err_out;
2361 
2362 	devres_remove_group(&pdev->dev, NULL);
2363 	*r_host = host;
2364 	return 0;
2365 
2366 err_out:
2367 	devres_release_group(&pdev->dev, NULL);
2368 	return rc;
2369 }
2370 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2371 
2372 /**
2373  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2374  *	@host: target SFF ATA host
2375  *	@irq_handler: irq_handler used when requesting IRQ(s)
2376  *	@sht: scsi_host_template to use when registering the host
2377  *
2378  *	This is the counterpart of ata_host_activate() for SFF ATA
2379  *	hosts.  This separate helper is necessary because SFF hosts
2380  *	use two separate interrupts in legacy mode.
2381  *
2382  *	LOCKING:
2383  *	Inherited from calling layer (may sleep).
2384  *
2385  *	RETURNS:
2386  *	0 on success, -errno otherwise.
2387  */
2388 int ata_pci_sff_activate_host(struct ata_host *host,
2389 			      irq_handler_t irq_handler,
2390 			      struct scsi_host_template *sht)
2391 {
2392 	struct device *dev = host->dev;
2393 	struct pci_dev *pdev = to_pci_dev(dev);
2394 	const char *drv_name = dev_driver_string(host->dev);
2395 	int legacy_mode = 0, rc;
2396 
2397 	rc = ata_host_start(host);
2398 	if (rc)
2399 		return rc;
2400 
2401 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2402 		u8 tmp8, mask = 0;
2403 
2404 		/*
2405 		 * ATA spec says we should use legacy mode when one
2406 		 * port is in legacy mode, but disabled ports on some
2407 		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2408 		 * on which the secondary port is not wired, so
2409 		 * ignore ports that are marked as 'dummy' during
2410 		 * this check
2411 		 */
2412 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2413 		if (!ata_port_is_dummy(host->ports[0]))
2414 			mask |= (1 << 0);
2415 		if (!ata_port_is_dummy(host->ports[1]))
2416 			mask |= (1 << 2);
2417 		if ((tmp8 & mask) != mask)
2418 			legacy_mode = 1;
2419 	}
2420 
2421 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2422 		return -ENOMEM;
2423 
2424 	if (!legacy_mode && pdev->irq) {
2425 		int i;
2426 
2427 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2428 				      IRQF_SHARED, drv_name, host);
2429 		if (rc)
2430 			goto out;
2431 
2432 		for (i = 0; i < 2; i++) {
2433 			if (ata_port_is_dummy(host->ports[i]))
2434 				continue;
2435 			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2436 		}
2437 	} else if (legacy_mode) {
2438 		if (!ata_port_is_dummy(host->ports[0])) {
2439 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2440 					      irq_handler, IRQF_SHARED,
2441 					      drv_name, host);
2442 			if (rc)
2443 				goto out;
2444 
2445 			ata_port_desc(host->ports[0], "irq %d",
2446 				      ATA_PRIMARY_IRQ(pdev));
2447 		}
2448 
2449 		if (!ata_port_is_dummy(host->ports[1])) {
2450 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2451 					      irq_handler, IRQF_SHARED,
2452 					      drv_name, host);
2453 			if (rc)
2454 				goto out;
2455 
2456 			ata_port_desc(host->ports[1], "irq %d",
2457 				      ATA_SECONDARY_IRQ(pdev));
2458 		}
2459 	}
2460 
2461 	rc = ata_host_register(host, sht);
2462 out:
2463 	if (rc == 0)
2464 		devres_remove_group(dev, NULL);
2465 	else
2466 		devres_release_group(dev, NULL);
2467 
2468 	return rc;
2469 }
2470 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2471 
2472 static const struct ata_port_info *ata_sff_find_valid_pi(
2473 					const struct ata_port_info * const *ppi)
2474 {
2475 	int i;
2476 
2477 	/* look up the first valid port_info */
2478 	for (i = 0; i < 2 && ppi[i]; i++)
2479 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2480 			return ppi[i];
2481 
2482 	return NULL;
2483 }
2484 
2485 static int ata_pci_init_one(struct pci_dev *pdev,
2486 		const struct ata_port_info * const *ppi,
2487 		struct scsi_host_template *sht, void *host_priv,
2488 		int hflags, bool bmdma)
2489 {
2490 	struct device *dev = &pdev->dev;
2491 	const struct ata_port_info *pi;
2492 	struct ata_host *host = NULL;
2493 	int rc;
2494 
2495 	DPRINTK("ENTER\n");
2496 
2497 	pi = ata_sff_find_valid_pi(ppi);
2498 	if (!pi) {
2499 		dev_err(&pdev->dev, "no valid port_info specified\n");
2500 		return -EINVAL;
2501 	}
2502 
2503 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2504 		return -ENOMEM;
2505 
2506 	rc = pcim_enable_device(pdev);
2507 	if (rc)
2508 		goto out;
2509 
2510 #ifdef CONFIG_ATA_BMDMA
2511 	if (bmdma)
2512 		/* prepare and activate BMDMA host */
2513 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2514 	else
2515 #endif
2516 		/* prepare and activate SFF host */
2517 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2518 	if (rc)
2519 		goto out;
2520 	host->private_data = host_priv;
2521 	host->flags |= hflags;
2522 
2523 #ifdef CONFIG_ATA_BMDMA
2524 	if (bmdma) {
2525 		pci_set_master(pdev);
2526 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2527 	} else
2528 #endif
2529 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2530 out:
2531 	if (rc == 0)
2532 		devres_remove_group(&pdev->dev, NULL);
2533 	else
2534 		devres_release_group(&pdev->dev, NULL);
2535 
2536 	return rc;
2537 }
2538 
2539 /**
2540  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2541  *	@pdev: Controller to be initialized
2542  *	@ppi: array of port_info, must be enough for two ports
2543  *	@sht: scsi_host_template to use when registering the host
2544  *	@host_priv: host private_data
2545  *	@hflag: host flags
2546  *
2547  *	This is a helper function which can be called from a driver's
2548  *	xxx_init_one() probe function if the hardware uses traditional
2549  *	IDE taskfile registers and is PIO only.
2550  *
2551  *	ASSUMPTION:
2552  *	Nobody makes a single channel controller that appears solely as
2553  *	the secondary legacy port on PCI.
2554  *
2555  *	LOCKING:
2556  *	Inherited from PCI layer (may sleep).
2557  *
2558  *	RETURNS:
2559  *	Zero on success, negative on errno-based value on error.
2560  */
2561 int ata_pci_sff_init_one(struct pci_dev *pdev,
2562 		 const struct ata_port_info * const *ppi,
2563 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2564 {
2565 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2566 }
2567 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2568 
2569 #endif /* CONFIG_PCI */
2570 
2571 /*
2572  *	BMDMA support
2573  */
2574 
2575 #ifdef CONFIG_ATA_BMDMA
2576 
2577 const struct ata_port_operations ata_bmdma_port_ops = {
2578 	.inherits		= &ata_sff_port_ops,
2579 
2580 	.error_handler		= ata_bmdma_error_handler,
2581 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2582 
2583 	.qc_prep		= ata_bmdma_qc_prep,
2584 	.qc_issue		= ata_bmdma_qc_issue,
2585 
2586 	.sff_irq_clear		= ata_bmdma_irq_clear,
2587 	.bmdma_setup		= ata_bmdma_setup,
2588 	.bmdma_start		= ata_bmdma_start,
2589 	.bmdma_stop		= ata_bmdma_stop,
2590 	.bmdma_status		= ata_bmdma_status,
2591 
2592 	.port_start		= ata_bmdma_port_start,
2593 };
2594 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2595 
2596 const struct ata_port_operations ata_bmdma32_port_ops = {
2597 	.inherits		= &ata_bmdma_port_ops,
2598 
2599 	.sff_data_xfer		= ata_sff_data_xfer32,
2600 	.port_start		= ata_bmdma_port_start32,
2601 };
2602 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2603 
2604 /**
2605  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2606  *	@qc: Metadata associated with taskfile to be transferred
2607  *
2608  *	Fill PCI IDE PRD (scatter-gather) table with segments
2609  *	associated with the current disk command.
2610  *
2611  *	LOCKING:
2612  *	spin_lock_irqsave(host lock)
2613  *
2614  */
2615 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2616 {
2617 	struct ata_port *ap = qc->ap;
2618 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2619 	struct scatterlist *sg;
2620 	unsigned int si, pi;
2621 
2622 	pi = 0;
2623 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2624 		u32 addr, offset;
2625 		u32 sg_len, len;
2626 
2627 		/* determine if physical DMA addr spans 64K boundary.
2628 		 * Note h/w doesn't support 64-bit, so we unconditionally
2629 		 * truncate dma_addr_t to u32.
2630 		 */
2631 		addr = (u32) sg_dma_address(sg);
2632 		sg_len = sg_dma_len(sg);
2633 
2634 		while (sg_len) {
2635 			offset = addr & 0xffff;
2636 			len = sg_len;
2637 			if ((offset + sg_len) > 0x10000)
2638 				len = 0x10000 - offset;
2639 
2640 			prd[pi].addr = cpu_to_le32(addr);
2641 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2642 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2643 
2644 			pi++;
2645 			sg_len -= len;
2646 			addr += len;
2647 		}
2648 	}
2649 
2650 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2651 }
2652 
2653 /**
2654  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2655  *	@qc: Metadata associated with taskfile to be transferred
2656  *
2657  *	Fill PCI IDE PRD (scatter-gather) table with segments
2658  *	associated with the current disk command. Perform the fill
2659  *	so that we avoid writing any length 64K records for
2660  *	controllers that don't follow the spec.
2661  *
2662  *	LOCKING:
2663  *	spin_lock_irqsave(host lock)
2664  *
2665  */
2666 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2667 {
2668 	struct ata_port *ap = qc->ap;
2669 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2670 	struct scatterlist *sg;
2671 	unsigned int si, pi;
2672 
2673 	pi = 0;
2674 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2675 		u32 addr, offset;
2676 		u32 sg_len, len, blen;
2677 
2678 		/* determine if physical DMA addr spans 64K boundary.
2679 		 * Note h/w doesn't support 64-bit, so we unconditionally
2680 		 * truncate dma_addr_t to u32.
2681 		 */
2682 		addr = (u32) sg_dma_address(sg);
2683 		sg_len = sg_dma_len(sg);
2684 
2685 		while (sg_len) {
2686 			offset = addr & 0xffff;
2687 			len = sg_len;
2688 			if ((offset + sg_len) > 0x10000)
2689 				len = 0x10000 - offset;
2690 
2691 			blen = len & 0xffff;
2692 			prd[pi].addr = cpu_to_le32(addr);
2693 			if (blen == 0) {
2694 				/* Some PATA chipsets like the CS5530 can't
2695 				   cope with 0x0000 meaning 64K as the spec
2696 				   says */
2697 				prd[pi].flags_len = cpu_to_le32(0x8000);
2698 				blen = 0x8000;
2699 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2700 			}
2701 			prd[pi].flags_len = cpu_to_le32(blen);
2702 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2703 
2704 			pi++;
2705 			sg_len -= len;
2706 			addr += len;
2707 		}
2708 	}
2709 
2710 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2711 }
2712 
2713 /**
2714  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2715  *	@qc: Metadata associated with taskfile to be prepared
2716  *
2717  *	Prepare ATA taskfile for submission.
2718  *
2719  *	LOCKING:
2720  *	spin_lock_irqsave(host lock)
2721  */
2722 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2723 {
2724 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2725 		return;
2726 
2727 	ata_bmdma_fill_sg(qc);
2728 }
2729 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2730 
2731 /**
2732  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2733  *	@qc: Metadata associated with taskfile to be prepared
2734  *
2735  *	Prepare ATA taskfile for submission.
2736  *
2737  *	LOCKING:
2738  *	spin_lock_irqsave(host lock)
2739  */
2740 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2741 {
2742 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2743 		return;
2744 
2745 	ata_bmdma_fill_sg_dumb(qc);
2746 }
2747 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2748 
2749 /**
2750  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2751  *	@qc: command to issue to device
2752  *
2753  *	This function issues a PIO, NODATA or DMA command to a
2754  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2755  *	ata_sff_qc_issue().
2756  *
2757  *	LOCKING:
2758  *	spin_lock_irqsave(host lock)
2759  *
2760  *	RETURNS:
2761  *	Zero on success, AC_ERR_* mask on failure
2762  */
2763 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2764 {
2765 	struct ata_port *ap = qc->ap;
2766 	struct ata_link *link = qc->dev->link;
2767 
2768 	/* defer PIO handling to sff_qc_issue */
2769 	if (!ata_is_dma(qc->tf.protocol))
2770 		return ata_sff_qc_issue(qc);
2771 
2772 	/* select the device */
2773 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2774 
2775 	/* start the command */
2776 	switch (qc->tf.protocol) {
2777 	case ATA_PROT_DMA:
2778 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2779 
2780 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2781 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2782 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2783 		ap->hsm_task_state = HSM_ST_LAST;
2784 		break;
2785 
2786 	case ATAPI_PROT_DMA:
2787 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2788 
2789 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2790 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2791 		ap->hsm_task_state = HSM_ST_FIRST;
2792 
2793 		/* send cdb by polling if no cdb interrupt */
2794 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2795 			ata_sff_queue_pio_task(link, 0);
2796 		break;
2797 
2798 	default:
2799 		WARN_ON(1);
2800 		return AC_ERR_SYSTEM;
2801 	}
2802 
2803 	return 0;
2804 }
2805 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2806 
2807 /**
2808  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2809  *	@ap: Port on which interrupt arrived (possibly...)
2810  *	@qc: Taskfile currently active in engine
2811  *
2812  *	Handle port interrupt for given queued command.
2813  *
2814  *	LOCKING:
2815  *	spin_lock_irqsave(host lock)
2816  *
2817  *	RETURNS:
2818  *	One if interrupt was handled, zero if not (shared irq).
2819  */
2820 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2821 {
2822 	struct ata_eh_info *ehi = &ap->link.eh_info;
2823 	u8 host_stat = 0;
2824 	bool bmdma_stopped = false;
2825 	unsigned int handled;
2826 
2827 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2828 		/* check status of DMA engine */
2829 		host_stat = ap->ops->bmdma_status(ap);
2830 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2831 
2832 		/* if it's not our irq... */
2833 		if (!(host_stat & ATA_DMA_INTR))
2834 			return ata_sff_idle_irq(ap);
2835 
2836 		/* before we do anything else, clear DMA-Start bit */
2837 		ap->ops->bmdma_stop(qc);
2838 		bmdma_stopped = true;
2839 
2840 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2841 			/* error when transferring data to/from memory */
2842 			qc->err_mask |= AC_ERR_HOST_BUS;
2843 			ap->hsm_task_state = HSM_ST_ERR;
2844 		}
2845 	}
2846 
2847 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2848 
2849 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2850 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2851 
2852 	return handled;
2853 }
2854 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2855 
2856 /**
2857  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2858  *	@irq: irq line (unused)
2859  *	@dev_instance: pointer to our ata_host information structure
2860  *
2861  *	Default interrupt handler for PCI IDE devices.  Calls
2862  *	ata_bmdma_port_intr() for each port that is not disabled.
2863  *
2864  *	LOCKING:
2865  *	Obtains host lock during operation.
2866  *
2867  *	RETURNS:
2868  *	IRQ_NONE or IRQ_HANDLED.
2869  */
2870 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2871 {
2872 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2873 }
2874 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2875 
2876 /**
2877  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2878  *	@ap: port to handle error for
2879  *
2880  *	Stock error handler for BMDMA controller.  It can handle both
2881  *	PATA and SATA controllers.  Most BMDMA controllers should be
2882  *	able to use this EH as-is or with some added handling before
2883  *	and after.
2884  *
2885  *	LOCKING:
2886  *	Kernel thread context (may sleep)
2887  */
2888 void ata_bmdma_error_handler(struct ata_port *ap)
2889 {
2890 	struct ata_queued_cmd *qc;
2891 	unsigned long flags;
2892 	bool thaw = false;
2893 
2894 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2895 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2896 		qc = NULL;
2897 
2898 	/* reset PIO HSM and stop DMA engine */
2899 	spin_lock_irqsave(ap->lock, flags);
2900 
2901 	if (qc && ata_is_dma(qc->tf.protocol)) {
2902 		u8 host_stat;
2903 
2904 		host_stat = ap->ops->bmdma_status(ap);
2905 
2906 		/* BMDMA controllers indicate host bus error by
2907 		 * setting DMA_ERR bit and timing out.  As it wasn't
2908 		 * really a timeout event, adjust error mask and
2909 		 * cancel frozen state.
2910 		 */
2911 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2912 			qc->err_mask = AC_ERR_HOST_BUS;
2913 			thaw = true;
2914 		}
2915 
2916 		ap->ops->bmdma_stop(qc);
2917 
2918 		/* if we're gonna thaw, make sure IRQ is clear */
2919 		if (thaw) {
2920 			ap->ops->sff_check_status(ap);
2921 			if (ap->ops->sff_irq_clear)
2922 				ap->ops->sff_irq_clear(ap);
2923 		}
2924 	}
2925 
2926 	spin_unlock_irqrestore(ap->lock, flags);
2927 
2928 	if (thaw)
2929 		ata_eh_thaw_port(ap);
2930 
2931 	ata_sff_error_handler(ap);
2932 }
2933 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2934 
2935 /**
2936  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2937  *	@qc: internal command to clean up
2938  *
2939  *	LOCKING:
2940  *	Kernel thread context (may sleep)
2941  */
2942 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2943 {
2944 	struct ata_port *ap = qc->ap;
2945 	unsigned long flags;
2946 
2947 	if (ata_is_dma(qc->tf.protocol)) {
2948 		spin_lock_irqsave(ap->lock, flags);
2949 		ap->ops->bmdma_stop(qc);
2950 		spin_unlock_irqrestore(ap->lock, flags);
2951 	}
2952 }
2953 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2954 
2955 /**
2956  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2957  *	@ap: Port associated with this ATA transaction.
2958  *
2959  *	Clear interrupt and error flags in DMA status register.
2960  *
2961  *	May be used as the irq_clear() entry in ata_port_operations.
2962  *
2963  *	LOCKING:
2964  *	spin_lock_irqsave(host lock)
2965  */
2966 void ata_bmdma_irq_clear(struct ata_port *ap)
2967 {
2968 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2969 
2970 	if (!mmio)
2971 		return;
2972 
2973 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2974 }
2975 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2976 
2977 /**
2978  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2979  *	@qc: Info associated with this ATA transaction.
2980  *
2981  *	LOCKING:
2982  *	spin_lock_irqsave(host lock)
2983  */
2984 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2985 {
2986 	struct ata_port *ap = qc->ap;
2987 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2988 	u8 dmactl;
2989 
2990 	/* load PRD table addr. */
2991 	mb();	/* make sure PRD table writes are visible to controller */
2992 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2993 
2994 	/* specify data direction, triple-check start bit is clear */
2995 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2996 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2997 	if (!rw)
2998 		dmactl |= ATA_DMA_WR;
2999 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3000 
3001 	/* issue r/w command */
3002 	ap->ops->sff_exec_command(ap, &qc->tf);
3003 }
3004 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3005 
3006 /**
3007  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
3008  *	@qc: Info associated with this ATA transaction.
3009  *
3010  *	LOCKING:
3011  *	spin_lock_irqsave(host lock)
3012  */
3013 void ata_bmdma_start(struct ata_queued_cmd *qc)
3014 {
3015 	struct ata_port *ap = qc->ap;
3016 	u8 dmactl;
3017 
3018 	/* start host DMA transaction */
3019 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3020 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3021 
3022 	/* Strictly, one may wish to issue an ioread8() here, to
3023 	 * flush the mmio write.  However, control also passes
3024 	 * to the hardware at this point, and it will interrupt
3025 	 * us when we are to resume control.  So, in effect,
3026 	 * we don't care when the mmio write flushes.
3027 	 * Further, a read of the DMA status register _immediately_
3028 	 * following the write may not be what certain flaky hardware
3029 	 * is expected, so I think it is best to not add a readb()
3030 	 * without first all the MMIO ATA cards/mobos.
3031 	 * Or maybe I'm just being paranoid.
3032 	 *
3033 	 * FIXME: The posting of this write means I/O starts are
3034 	 * unnecessarily delayed for MMIO
3035 	 */
3036 }
3037 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3038 
3039 /**
3040  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3041  *	@qc: Command we are ending DMA for
3042  *
3043  *	Clears the ATA_DMA_START flag in the dma control register
3044  *
3045  *	May be used as the bmdma_stop() entry in ata_port_operations.
3046  *
3047  *	LOCKING:
3048  *	spin_lock_irqsave(host lock)
3049  */
3050 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3051 {
3052 	struct ata_port *ap = qc->ap;
3053 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3054 
3055 	/* clear start/stop bit */
3056 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3057 		 mmio + ATA_DMA_CMD);
3058 
3059 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3060 	ata_sff_dma_pause(ap);
3061 }
3062 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3063 
3064 /**
3065  *	ata_bmdma_status - Read PCI IDE BMDMA status
3066  *	@ap: Port associated with this ATA transaction.
3067  *
3068  *	Read and return BMDMA status register.
3069  *
3070  *	May be used as the bmdma_status() entry in ata_port_operations.
3071  *
3072  *	LOCKING:
3073  *	spin_lock_irqsave(host lock)
3074  */
3075 u8 ata_bmdma_status(struct ata_port *ap)
3076 {
3077 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3078 }
3079 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3080 
3081 
3082 /**
3083  *	ata_bmdma_port_start - Set port up for bmdma.
3084  *	@ap: Port to initialize
3085  *
3086  *	Called just after data structures for each port are
3087  *	initialized.  Allocates space for PRD table.
3088  *
3089  *	May be used as the port_start() entry in ata_port_operations.
3090  *
3091  *	LOCKING:
3092  *	Inherited from caller.
3093  */
3094 int ata_bmdma_port_start(struct ata_port *ap)
3095 {
3096 	if (ap->mwdma_mask || ap->udma_mask) {
3097 		ap->bmdma_prd =
3098 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3099 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3100 		if (!ap->bmdma_prd)
3101 			return -ENOMEM;
3102 	}
3103 
3104 	return 0;
3105 }
3106 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3107 
3108 /**
3109  *	ata_bmdma_port_start32 - Set port up for dma.
3110  *	@ap: Port to initialize
3111  *
3112  *	Called just after data structures for each port are
3113  *	initialized.  Enables 32bit PIO and allocates space for PRD
3114  *	table.
3115  *
3116  *	May be used as the port_start() entry in ata_port_operations for
3117  *	devices that are capable of 32bit PIO.
3118  *
3119  *	LOCKING:
3120  *	Inherited from caller.
3121  */
3122 int ata_bmdma_port_start32(struct ata_port *ap)
3123 {
3124 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3125 	return ata_bmdma_port_start(ap);
3126 }
3127 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3128 
3129 #ifdef CONFIG_PCI
3130 
3131 /**
3132  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3133  *	@pdev: PCI device
3134  *
3135  *	Some PCI ATA devices report simplex mode but in fact can be told to
3136  *	enter non simplex mode. This implements the necessary logic to
3137  *	perform the task on such devices. Calling it on other devices will
3138  *	have -undefined- behaviour.
3139  */
3140 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3141 {
3142 	unsigned long bmdma = pci_resource_start(pdev, 4);
3143 	u8 simplex;
3144 
3145 	if (bmdma == 0)
3146 		return -ENOENT;
3147 
3148 	simplex = inb(bmdma + 0x02);
3149 	outb(simplex & 0x60, bmdma + 0x02);
3150 	simplex = inb(bmdma + 0x02);
3151 	if (simplex & 0x80)
3152 		return -EOPNOTSUPP;
3153 	return 0;
3154 }
3155 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3156 
3157 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3158 {
3159 	int i;
3160 
3161 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3162 
3163 	for (i = 0; i < 2; i++) {
3164 		host->ports[i]->mwdma_mask = 0;
3165 		host->ports[i]->udma_mask = 0;
3166 	}
3167 }
3168 
3169 /**
3170  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3171  *	@host: target ATA host
3172  *
3173  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3174  *
3175  *	LOCKING:
3176  *	Inherited from calling layer (may sleep).
3177  */
3178 void ata_pci_bmdma_init(struct ata_host *host)
3179 {
3180 	struct device *gdev = host->dev;
3181 	struct pci_dev *pdev = to_pci_dev(gdev);
3182 	int i, rc;
3183 
3184 	/* No BAR4 allocation: No DMA */
3185 	if (pci_resource_start(pdev, 4) == 0) {
3186 		ata_bmdma_nodma(host, "BAR4 is zero");
3187 		return;
3188 	}
3189 
3190 	/*
3191 	 * Some controllers require BMDMA region to be initialized
3192 	 * even if DMA is not in use to clear IRQ status via
3193 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3194 	 * regardless of dma masks.
3195 	 */
3196 	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3197 	if (rc)
3198 		ata_bmdma_nodma(host, "failed to set dma mask");
3199 	if (!rc) {
3200 		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3201 		if (rc)
3202 			ata_bmdma_nodma(host,
3203 					"failed to set consistent dma mask");
3204 	}
3205 
3206 	/* request and iomap DMA region */
3207 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3208 	if (rc) {
3209 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3210 		return;
3211 	}
3212 	host->iomap = pcim_iomap_table(pdev);
3213 
3214 	for (i = 0; i < 2; i++) {
3215 		struct ata_port *ap = host->ports[i];
3216 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3217 
3218 		if (ata_port_is_dummy(ap))
3219 			continue;
3220 
3221 		ap->ioaddr.bmdma_addr = bmdma;
3222 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3223 		    (ioread8(bmdma + 2) & 0x80))
3224 			host->flags |= ATA_HOST_SIMPLEX;
3225 
3226 		ata_port_desc(ap, "bmdma 0x%llx",
3227 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3228 	}
3229 }
3230 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3231 
3232 /**
3233  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3234  *	@pdev: target PCI device
3235  *	@ppi: array of port_info, must be enough for two ports
3236  *	@r_host: out argument for the initialized ATA host
3237  *
3238  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3239  *	resources and initialize it accordingly in one go.
3240  *
3241  *	LOCKING:
3242  *	Inherited from calling layer (may sleep).
3243  *
3244  *	RETURNS:
3245  *	0 on success, -errno otherwise.
3246  */
3247 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3248 			       const struct ata_port_info * const * ppi,
3249 			       struct ata_host **r_host)
3250 {
3251 	int rc;
3252 
3253 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3254 	if (rc)
3255 		return rc;
3256 
3257 	ata_pci_bmdma_init(*r_host);
3258 	return 0;
3259 }
3260 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3261 
3262 /**
3263  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3264  *	@pdev: Controller to be initialized
3265  *	@ppi: array of port_info, must be enough for two ports
3266  *	@sht: scsi_host_template to use when registering the host
3267  *	@host_priv: host private_data
3268  *	@hflags: host flags
3269  *
3270  *	This function is similar to ata_pci_sff_init_one() but also
3271  *	takes care of BMDMA initialization.
3272  *
3273  *	LOCKING:
3274  *	Inherited from PCI layer (may sleep).
3275  *
3276  *	RETURNS:
3277  *	Zero on success, negative on errno-based value on error.
3278  */
3279 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3280 			   const struct ata_port_info * const * ppi,
3281 			   struct scsi_host_template *sht, void *host_priv,
3282 			   int hflags)
3283 {
3284 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3285 }
3286 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3287 
3288 #endif /* CONFIG_PCI */
3289 #endif /* CONFIG_ATA_BMDMA */
3290 
3291 /**
3292  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3293  *	@ap: Port to initialize
3294  *
3295  *	Called on port allocation to initialize SFF/BMDMA specific
3296  *	fields.
3297  *
3298  *	LOCKING:
3299  *	None.
3300  */
3301 void ata_sff_port_init(struct ata_port *ap)
3302 {
3303 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3304 	ap->ctl = ATA_DEVCTL_OBS;
3305 	ap->last_ctl = 0xFF;
3306 }
3307 
3308 int __init ata_sff_init(void)
3309 {
3310 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3311 	if (!ata_sff_wq)
3312 		return -ENOMEM;
3313 
3314 	return 0;
3315 }
3316 
3317 void ata_sff_exit(void)
3318 {
3319 	destroy_workqueue(ata_sff_wq);
3320 }
3321