1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/gfp.h> 37 #include <linux/pci.h> 38 #include <linux/module.h> 39 #include <linux/libata.h> 40 #include <linux/highmem.h> 41 42 #include "libata.h" 43 44 static struct workqueue_struct *ata_sff_wq; 45 46 const struct ata_port_operations ata_sff_port_ops = { 47 .inherits = &ata_base_port_ops, 48 49 .qc_prep = ata_noop_qc_prep, 50 .qc_issue = ata_sff_qc_issue, 51 .qc_fill_rtf = ata_sff_qc_fill_rtf, 52 53 .freeze = ata_sff_freeze, 54 .thaw = ata_sff_thaw, 55 .prereset = ata_sff_prereset, 56 .softreset = ata_sff_softreset, 57 .hardreset = sata_sff_hardreset, 58 .postreset = ata_sff_postreset, 59 .error_handler = ata_sff_error_handler, 60 61 .sff_dev_select = ata_sff_dev_select, 62 .sff_check_status = ata_sff_check_status, 63 .sff_tf_load = ata_sff_tf_load, 64 .sff_tf_read = ata_sff_tf_read, 65 .sff_exec_command = ata_sff_exec_command, 66 .sff_data_xfer = ata_sff_data_xfer, 67 .sff_drain_fifo = ata_sff_drain_fifo, 68 69 .lost_interrupt = ata_sff_lost_interrupt, 70 }; 71 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 72 73 /** 74 * ata_sff_check_status - Read device status reg & clear interrupt 75 * @ap: port where the device is 76 * 77 * Reads ATA taskfile status register for currently-selected device 78 * and return its value. This also clears pending interrupts 79 * from this device 80 * 81 * LOCKING: 82 * Inherited from caller. 83 */ 84 u8 ata_sff_check_status(struct ata_port *ap) 85 { 86 return ioread8(ap->ioaddr.status_addr); 87 } 88 EXPORT_SYMBOL_GPL(ata_sff_check_status); 89 90 /** 91 * ata_sff_altstatus - Read device alternate status reg 92 * @ap: port where the device is 93 * 94 * Reads ATA taskfile alternate status register for 95 * currently-selected device and return its value. 96 * 97 * Note: may NOT be used as the check_altstatus() entry in 98 * ata_port_operations. 99 * 100 * LOCKING: 101 * Inherited from caller. 102 */ 103 static u8 ata_sff_altstatus(struct ata_port *ap) 104 { 105 if (ap->ops->sff_check_altstatus) 106 return ap->ops->sff_check_altstatus(ap); 107 108 return ioread8(ap->ioaddr.altstatus_addr); 109 } 110 111 /** 112 * ata_sff_irq_status - Check if the device is busy 113 * @ap: port where the device is 114 * 115 * Determine if the port is currently busy. Uses altstatus 116 * if available in order to avoid clearing shared IRQ status 117 * when finding an IRQ source. Non ctl capable devices don't 118 * share interrupt lines fortunately for us. 119 * 120 * LOCKING: 121 * Inherited from caller. 122 */ 123 static u8 ata_sff_irq_status(struct ata_port *ap) 124 { 125 u8 status; 126 127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 128 status = ata_sff_altstatus(ap); 129 /* Not us: We are busy */ 130 if (status & ATA_BUSY) 131 return status; 132 } 133 /* Clear INTRQ latch */ 134 status = ap->ops->sff_check_status(ap); 135 return status; 136 } 137 138 /** 139 * ata_sff_sync - Flush writes 140 * @ap: Port to wait for. 141 * 142 * CAUTION: 143 * If we have an mmio device with no ctl and no altstatus 144 * method this will fail. No such devices are known to exist. 145 * 146 * LOCKING: 147 * Inherited from caller. 148 */ 149 150 static void ata_sff_sync(struct ata_port *ap) 151 { 152 if (ap->ops->sff_check_altstatus) 153 ap->ops->sff_check_altstatus(ap); 154 else if (ap->ioaddr.altstatus_addr) 155 ioread8(ap->ioaddr.altstatus_addr); 156 } 157 158 /** 159 * ata_sff_pause - Flush writes and wait 400nS 160 * @ap: Port to pause for. 161 * 162 * CAUTION: 163 * If we have an mmio device with no ctl and no altstatus 164 * method this will fail. No such devices are known to exist. 165 * 166 * LOCKING: 167 * Inherited from caller. 168 */ 169 170 void ata_sff_pause(struct ata_port *ap) 171 { 172 ata_sff_sync(ap); 173 ndelay(400); 174 } 175 EXPORT_SYMBOL_GPL(ata_sff_pause); 176 177 /** 178 * ata_sff_dma_pause - Pause before commencing DMA 179 * @ap: Port to pause for. 180 * 181 * Perform I/O fencing and ensure sufficient cycle delays occur 182 * for the HDMA1:0 transition 183 */ 184 185 void ata_sff_dma_pause(struct ata_port *ap) 186 { 187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 188 /* An altstatus read will cause the needed delay without 189 messing up the IRQ status */ 190 ata_sff_altstatus(ap); 191 return; 192 } 193 /* There are no DMA controllers without ctl. BUG here to ensure 194 we never violate the HDMA1:0 transition timing and risk 195 corruption. */ 196 BUG(); 197 } 198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 199 200 /** 201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 202 * @ap: port containing status register to be polled 203 * @tmout_pat: impatience timeout in msecs 204 * @tmout: overall timeout in msecs 205 * 206 * Sleep until ATA Status register bit BSY clears, 207 * or a timeout occurs. 208 * 209 * LOCKING: 210 * Kernel thread context (may sleep). 211 * 212 * RETURNS: 213 * 0 on success, -errno otherwise. 214 */ 215 int ata_sff_busy_sleep(struct ata_port *ap, 216 unsigned long tmout_pat, unsigned long tmout) 217 { 218 unsigned long timer_start, timeout; 219 u8 status; 220 221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 222 timer_start = jiffies; 223 timeout = ata_deadline(timer_start, tmout_pat); 224 while (status != 0xff && (status & ATA_BUSY) && 225 time_before(jiffies, timeout)) { 226 ata_msleep(ap, 50); 227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 228 } 229 230 if (status != 0xff && (status & ATA_BUSY)) 231 ata_port_warn(ap, 232 "port is slow to respond, please be patient (Status 0x%x)\n", 233 status); 234 235 timeout = ata_deadline(timer_start, tmout); 236 while (status != 0xff && (status & ATA_BUSY) && 237 time_before(jiffies, timeout)) { 238 ata_msleep(ap, 50); 239 status = ap->ops->sff_check_status(ap); 240 } 241 242 if (status == 0xff) 243 return -ENODEV; 244 245 if (status & ATA_BUSY) { 246 ata_port_err(ap, 247 "port failed to respond (%lu secs, Status 0x%x)\n", 248 DIV_ROUND_UP(tmout, 1000), status); 249 return -EBUSY; 250 } 251 252 return 0; 253 } 254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 255 256 static int ata_sff_check_ready(struct ata_link *link) 257 { 258 u8 status = link->ap->ops->sff_check_status(link->ap); 259 260 return ata_check_ready(status); 261 } 262 263 /** 264 * ata_sff_wait_ready - sleep until BSY clears, or timeout 265 * @link: SFF link to wait ready status for 266 * @deadline: deadline jiffies for the operation 267 * 268 * Sleep until ATA Status register bit BSY clears, or timeout 269 * occurs. 270 * 271 * LOCKING: 272 * Kernel thread context (may sleep). 273 * 274 * RETURNS: 275 * 0 on success, -errno otherwise. 276 */ 277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 278 { 279 return ata_wait_ready(link, deadline, ata_sff_check_ready); 280 } 281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 282 283 /** 284 * ata_sff_set_devctl - Write device control reg 285 * @ap: port where the device is 286 * @ctl: value to write 287 * 288 * Writes ATA taskfile device control register. 289 * 290 * Note: may NOT be used as the sff_set_devctl() entry in 291 * ata_port_operations. 292 * 293 * LOCKING: 294 * Inherited from caller. 295 */ 296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 297 { 298 if (ap->ops->sff_set_devctl) 299 ap->ops->sff_set_devctl(ap, ctl); 300 else 301 iowrite8(ctl, ap->ioaddr.ctl_addr); 302 } 303 304 /** 305 * ata_sff_dev_select - Select device 0/1 on ATA bus 306 * @ap: ATA channel to manipulate 307 * @device: ATA device (numbered from zero) to select 308 * 309 * Use the method defined in the ATA specification to 310 * make either device 0, or device 1, active on the 311 * ATA channel. Works with both PIO and MMIO. 312 * 313 * May be used as the dev_select() entry in ata_port_operations. 314 * 315 * LOCKING: 316 * caller. 317 */ 318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 319 { 320 u8 tmp; 321 322 if (device == 0) 323 tmp = ATA_DEVICE_OBS; 324 else 325 tmp = ATA_DEVICE_OBS | ATA_DEV1; 326 327 iowrite8(tmp, ap->ioaddr.device_addr); 328 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 329 } 330 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 331 332 /** 333 * ata_dev_select - Select device 0/1 on ATA bus 334 * @ap: ATA channel to manipulate 335 * @device: ATA device (numbered from zero) to select 336 * @wait: non-zero to wait for Status register BSY bit to clear 337 * @can_sleep: non-zero if context allows sleeping 338 * 339 * Use the method defined in the ATA specification to 340 * make either device 0, or device 1, active on the 341 * ATA channel. 342 * 343 * This is a high-level version of ata_sff_dev_select(), which 344 * additionally provides the services of inserting the proper 345 * pauses and status polling, where needed. 346 * 347 * LOCKING: 348 * caller. 349 */ 350 static void ata_dev_select(struct ata_port *ap, unsigned int device, 351 unsigned int wait, unsigned int can_sleep) 352 { 353 if (ata_msg_probe(ap)) 354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n", 355 device, wait); 356 357 if (wait) 358 ata_wait_idle(ap); 359 360 ap->ops->sff_dev_select(ap, device); 361 362 if (wait) { 363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 364 ata_msleep(ap, 150); 365 ata_wait_idle(ap); 366 } 367 } 368 369 /** 370 * ata_sff_irq_on - Enable interrupts on a port. 371 * @ap: Port on which interrupts are enabled. 372 * 373 * Enable interrupts on a legacy IDE device using MMIO or PIO, 374 * wait for idle, clear any pending interrupts. 375 * 376 * Note: may NOT be used as the sff_irq_on() entry in 377 * ata_port_operations. 378 * 379 * LOCKING: 380 * Inherited from caller. 381 */ 382 void ata_sff_irq_on(struct ata_port *ap) 383 { 384 struct ata_ioports *ioaddr = &ap->ioaddr; 385 386 if (ap->ops->sff_irq_on) { 387 ap->ops->sff_irq_on(ap); 388 return; 389 } 390 391 ap->ctl &= ~ATA_NIEN; 392 ap->last_ctl = ap->ctl; 393 394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 395 ata_sff_set_devctl(ap, ap->ctl); 396 ata_wait_idle(ap); 397 398 if (ap->ops->sff_irq_clear) 399 ap->ops->sff_irq_clear(ap); 400 } 401 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 402 403 /** 404 * ata_sff_tf_load - send taskfile registers to host controller 405 * @ap: Port to which output is sent 406 * @tf: ATA taskfile register set 407 * 408 * Outputs ATA taskfile to standard ATA host controller. 409 * 410 * LOCKING: 411 * Inherited from caller. 412 */ 413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 414 { 415 struct ata_ioports *ioaddr = &ap->ioaddr; 416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 417 418 if (tf->ctl != ap->last_ctl) { 419 if (ioaddr->ctl_addr) 420 iowrite8(tf->ctl, ioaddr->ctl_addr); 421 ap->last_ctl = tf->ctl; 422 ata_wait_idle(ap); 423 } 424 425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 426 WARN_ON_ONCE(!ioaddr->ctl_addr); 427 iowrite8(tf->hob_feature, ioaddr->feature_addr); 428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 433 tf->hob_feature, 434 tf->hob_nsect, 435 tf->hob_lbal, 436 tf->hob_lbam, 437 tf->hob_lbah); 438 } 439 440 if (is_addr) { 441 iowrite8(tf->feature, ioaddr->feature_addr); 442 iowrite8(tf->nsect, ioaddr->nsect_addr); 443 iowrite8(tf->lbal, ioaddr->lbal_addr); 444 iowrite8(tf->lbam, ioaddr->lbam_addr); 445 iowrite8(tf->lbah, ioaddr->lbah_addr); 446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 447 tf->feature, 448 tf->nsect, 449 tf->lbal, 450 tf->lbam, 451 tf->lbah); 452 } 453 454 if (tf->flags & ATA_TFLAG_DEVICE) { 455 iowrite8(tf->device, ioaddr->device_addr); 456 VPRINTK("device 0x%X\n", tf->device); 457 } 458 459 ata_wait_idle(ap); 460 } 461 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 462 463 /** 464 * ata_sff_tf_read - input device's ATA taskfile shadow registers 465 * @ap: Port from which input is read 466 * @tf: ATA taskfile register set for storing input 467 * 468 * Reads ATA taskfile registers for currently-selected device 469 * into @tf. Assumes the device has a fully SFF compliant task file 470 * layout and behaviour. If you device does not (eg has a different 471 * status method) then you will need to provide a replacement tf_read 472 * 473 * LOCKING: 474 * Inherited from caller. 475 */ 476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 477 { 478 struct ata_ioports *ioaddr = &ap->ioaddr; 479 480 tf->command = ata_sff_check_status(ap); 481 tf->feature = ioread8(ioaddr->error_addr); 482 tf->nsect = ioread8(ioaddr->nsect_addr); 483 tf->lbal = ioread8(ioaddr->lbal_addr); 484 tf->lbam = ioread8(ioaddr->lbam_addr); 485 tf->lbah = ioread8(ioaddr->lbah_addr); 486 tf->device = ioread8(ioaddr->device_addr); 487 488 if (tf->flags & ATA_TFLAG_LBA48) { 489 if (likely(ioaddr->ctl_addr)) { 490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 491 tf->hob_feature = ioread8(ioaddr->error_addr); 492 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 493 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 494 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 495 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 496 iowrite8(tf->ctl, ioaddr->ctl_addr); 497 ap->last_ctl = tf->ctl; 498 } else 499 WARN_ON_ONCE(1); 500 } 501 } 502 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 503 504 /** 505 * ata_sff_exec_command - issue ATA command to host controller 506 * @ap: port to which command is being issued 507 * @tf: ATA taskfile register set 508 * 509 * Issues ATA command, with proper synchronization with interrupt 510 * handler / other threads. 511 * 512 * LOCKING: 513 * spin_lock_irqsave(host lock) 514 */ 515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 516 { 517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 518 519 iowrite8(tf->command, ap->ioaddr.command_addr); 520 ata_sff_pause(ap); 521 } 522 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 523 524 /** 525 * ata_tf_to_host - issue ATA taskfile to host controller 526 * @ap: port to which command is being issued 527 * @tf: ATA taskfile register set 528 * 529 * Issues ATA taskfile register set to ATA host controller, 530 * with proper synchronization with interrupt handler and 531 * other threads. 532 * 533 * LOCKING: 534 * spin_lock_irqsave(host lock) 535 */ 536 static inline void ata_tf_to_host(struct ata_port *ap, 537 const struct ata_taskfile *tf) 538 { 539 ap->ops->sff_tf_load(ap, tf); 540 ap->ops->sff_exec_command(ap, tf); 541 } 542 543 /** 544 * ata_sff_data_xfer - Transfer data by PIO 545 * @qc: queued command 546 * @buf: data buffer 547 * @buflen: buffer length 548 * @rw: read/write 549 * 550 * Transfer data from/to the device data register by PIO. 551 * 552 * LOCKING: 553 * Inherited from caller. 554 * 555 * RETURNS: 556 * Bytes consumed. 557 */ 558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, 559 unsigned int buflen, int rw) 560 { 561 struct ata_port *ap = qc->dev->link->ap; 562 void __iomem *data_addr = ap->ioaddr.data_addr; 563 unsigned int words = buflen >> 1; 564 565 /* Transfer multiple of 2 bytes */ 566 if (rw == READ) 567 ioread16_rep(data_addr, buf, words); 568 else 569 iowrite16_rep(data_addr, buf, words); 570 571 /* Transfer trailing byte, if any. */ 572 if (unlikely(buflen & 0x01)) { 573 unsigned char pad[2] = { }; 574 575 /* Point buf to the tail of buffer */ 576 buf += buflen - 1; 577 578 /* 579 * Use io*16_rep() accessors here as well to avoid pointlessly 580 * swapping bytes to and from on the big endian machines... 581 */ 582 if (rw == READ) { 583 ioread16_rep(data_addr, pad, 1); 584 *buf = pad[0]; 585 } else { 586 pad[0] = *buf; 587 iowrite16_rep(data_addr, pad, 1); 588 } 589 words++; 590 } 591 592 return words << 1; 593 } 594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 595 596 /** 597 * ata_sff_data_xfer32 - Transfer data by PIO 598 * @qc: queued command 599 * @buf: data buffer 600 * @buflen: buffer length 601 * @rw: read/write 602 * 603 * Transfer data from/to the device data register by PIO using 32bit 604 * I/O operations. 605 * 606 * LOCKING: 607 * Inherited from caller. 608 * 609 * RETURNS: 610 * Bytes consumed. 611 */ 612 613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, 614 unsigned int buflen, int rw) 615 { 616 struct ata_device *dev = qc->dev; 617 struct ata_port *ap = dev->link->ap; 618 void __iomem *data_addr = ap->ioaddr.data_addr; 619 unsigned int words = buflen >> 2; 620 int slop = buflen & 3; 621 622 if (!(ap->pflags & ATA_PFLAG_PIO32)) 623 return ata_sff_data_xfer(qc, buf, buflen, rw); 624 625 /* Transfer multiple of 4 bytes */ 626 if (rw == READ) 627 ioread32_rep(data_addr, buf, words); 628 else 629 iowrite32_rep(data_addr, buf, words); 630 631 /* Transfer trailing bytes, if any */ 632 if (unlikely(slop)) { 633 unsigned char pad[4] = { }; 634 635 /* Point buf to the tail of buffer */ 636 buf += buflen - slop; 637 638 /* 639 * Use io*_rep() accessors here as well to avoid pointlessly 640 * swapping bytes to and from on the big endian machines... 641 */ 642 if (rw == READ) { 643 if (slop < 3) 644 ioread16_rep(data_addr, pad, 1); 645 else 646 ioread32_rep(data_addr, pad, 1); 647 memcpy(buf, pad, slop); 648 } else { 649 memcpy(pad, buf, slop); 650 if (slop < 3) 651 iowrite16_rep(data_addr, pad, 1); 652 else 653 iowrite32_rep(data_addr, pad, 1); 654 } 655 } 656 return (buflen + 1) & ~1; 657 } 658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 659 660 /** 661 * ata_sff_data_xfer_noirq - Transfer data by PIO 662 * @qc: queued command 663 * @buf: data buffer 664 * @buflen: buffer length 665 * @rw: read/write 666 * 667 * Transfer data from/to the device data register by PIO. Do the 668 * transfer with interrupts disabled. 669 * 670 * LOCKING: 671 * Inherited from caller. 672 * 673 * RETURNS: 674 * Bytes consumed. 675 */ 676 unsigned int ata_sff_data_xfer_noirq(struct ata_queued_cmd *qc, unsigned char *buf, 677 unsigned int buflen, int rw) 678 { 679 unsigned long flags; 680 unsigned int consumed; 681 682 local_irq_save(flags); 683 consumed = ata_sff_data_xfer32(qc, buf, buflen, rw); 684 local_irq_restore(flags); 685 686 return consumed; 687 } 688 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 689 690 /** 691 * ata_pio_sector - Transfer a sector of data. 692 * @qc: Command on going 693 * 694 * Transfer qc->sect_size bytes of data from/to the ATA device. 695 * 696 * LOCKING: 697 * Inherited from caller. 698 */ 699 static void ata_pio_sector(struct ata_queued_cmd *qc) 700 { 701 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 702 struct ata_port *ap = qc->ap; 703 struct page *page; 704 unsigned int offset; 705 unsigned char *buf; 706 707 if (qc->curbytes == qc->nbytes - qc->sect_size) 708 ap->hsm_task_state = HSM_ST_LAST; 709 710 page = sg_page(qc->cursg); 711 offset = qc->cursg->offset + qc->cursg_ofs; 712 713 /* get the current page and offset */ 714 page = nth_page(page, (offset >> PAGE_SHIFT)); 715 offset %= PAGE_SIZE; 716 717 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 718 719 if (PageHighMem(page)) { 720 unsigned long flags; 721 722 /* FIXME: use a bounce buffer */ 723 local_irq_save(flags); 724 buf = kmap_atomic(page); 725 726 /* do the actual data transfer */ 727 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, 728 do_write); 729 730 kunmap_atomic(buf); 731 local_irq_restore(flags); 732 } else { 733 buf = page_address(page); 734 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, 735 do_write); 736 } 737 738 if (!do_write && !PageSlab(page)) 739 flush_dcache_page(page); 740 741 qc->curbytes += qc->sect_size; 742 qc->cursg_ofs += qc->sect_size; 743 744 if (qc->cursg_ofs == qc->cursg->length) { 745 qc->cursg = sg_next(qc->cursg); 746 qc->cursg_ofs = 0; 747 } 748 } 749 750 /** 751 * ata_pio_sectors - Transfer one or many sectors. 752 * @qc: Command on going 753 * 754 * Transfer one or many sectors of data from/to the 755 * ATA device for the DRQ request. 756 * 757 * LOCKING: 758 * Inherited from caller. 759 */ 760 static void ata_pio_sectors(struct ata_queued_cmd *qc) 761 { 762 if (is_multi_taskfile(&qc->tf)) { 763 /* READ/WRITE MULTIPLE */ 764 unsigned int nsect; 765 766 WARN_ON_ONCE(qc->dev->multi_count == 0); 767 768 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 769 qc->dev->multi_count); 770 while (nsect--) 771 ata_pio_sector(qc); 772 } else 773 ata_pio_sector(qc); 774 775 ata_sff_sync(qc->ap); /* flush */ 776 } 777 778 /** 779 * atapi_send_cdb - Write CDB bytes to hardware 780 * @ap: Port to which ATAPI device is attached. 781 * @qc: Taskfile currently active 782 * 783 * When device has indicated its readiness to accept 784 * a CDB, this function is called. Send the CDB. 785 * 786 * LOCKING: 787 * caller. 788 */ 789 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 790 { 791 /* send SCSI cdb */ 792 DPRINTK("send cdb\n"); 793 WARN_ON_ONCE(qc->dev->cdb_len < 12); 794 795 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); 796 ata_sff_sync(ap); 797 /* FIXME: If the CDB is for DMA do we need to do the transition delay 798 or is bmdma_start guaranteed to do it ? */ 799 switch (qc->tf.protocol) { 800 case ATAPI_PROT_PIO: 801 ap->hsm_task_state = HSM_ST; 802 break; 803 case ATAPI_PROT_NODATA: 804 ap->hsm_task_state = HSM_ST_LAST; 805 break; 806 #ifdef CONFIG_ATA_BMDMA 807 case ATAPI_PROT_DMA: 808 ap->hsm_task_state = HSM_ST_LAST; 809 /* initiate bmdma */ 810 ap->ops->bmdma_start(qc); 811 break; 812 #endif /* CONFIG_ATA_BMDMA */ 813 default: 814 BUG(); 815 } 816 } 817 818 /** 819 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 820 * @qc: Command on going 821 * @bytes: number of bytes 822 * 823 * Transfer Transfer data from/to the ATAPI device. 824 * 825 * LOCKING: 826 * Inherited from caller. 827 * 828 */ 829 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 830 { 831 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 832 struct ata_port *ap = qc->ap; 833 struct ata_device *dev = qc->dev; 834 struct ata_eh_info *ehi = &dev->link->eh_info; 835 struct scatterlist *sg; 836 struct page *page; 837 unsigned char *buf; 838 unsigned int offset, count, consumed; 839 840 next_sg: 841 sg = qc->cursg; 842 if (unlikely(!sg)) { 843 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 844 "buf=%u cur=%u bytes=%u", 845 qc->nbytes, qc->curbytes, bytes); 846 return -1; 847 } 848 849 page = sg_page(sg); 850 offset = sg->offset + qc->cursg_ofs; 851 852 /* get the current page and offset */ 853 page = nth_page(page, (offset >> PAGE_SHIFT)); 854 offset %= PAGE_SIZE; 855 856 /* don't overrun current sg */ 857 count = min(sg->length - qc->cursg_ofs, bytes); 858 859 /* don't cross page boundaries */ 860 count = min(count, (unsigned int)PAGE_SIZE - offset); 861 862 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 863 864 if (PageHighMem(page)) { 865 unsigned long flags; 866 867 /* FIXME: use bounce buffer */ 868 local_irq_save(flags); 869 buf = kmap_atomic(page); 870 871 /* do the actual data transfer */ 872 consumed = ap->ops->sff_data_xfer(qc, buf + offset, 873 count, rw); 874 875 kunmap_atomic(buf); 876 local_irq_restore(flags); 877 } else { 878 buf = page_address(page); 879 consumed = ap->ops->sff_data_xfer(qc, buf + offset, 880 count, rw); 881 } 882 883 bytes -= min(bytes, consumed); 884 qc->curbytes += count; 885 qc->cursg_ofs += count; 886 887 if (qc->cursg_ofs == sg->length) { 888 qc->cursg = sg_next(qc->cursg); 889 qc->cursg_ofs = 0; 890 } 891 892 /* 893 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 894 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 895 * check correctly as it doesn't know if it is the last request being 896 * made. Somebody should implement a proper sanity check. 897 */ 898 if (bytes) 899 goto next_sg; 900 return 0; 901 } 902 903 /** 904 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 905 * @qc: Command on going 906 * 907 * Transfer Transfer data from/to the ATAPI device. 908 * 909 * LOCKING: 910 * Inherited from caller. 911 */ 912 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 913 { 914 struct ata_port *ap = qc->ap; 915 struct ata_device *dev = qc->dev; 916 struct ata_eh_info *ehi = &dev->link->eh_info; 917 unsigned int ireason, bc_lo, bc_hi, bytes; 918 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 919 920 /* Abuse qc->result_tf for temp storage of intermediate TF 921 * here to save some kernel stack usage. 922 * For normal completion, qc->result_tf is not relevant. For 923 * error, qc->result_tf is later overwritten by ata_qc_complete(). 924 * So, the correctness of qc->result_tf is not affected. 925 */ 926 ap->ops->sff_tf_read(ap, &qc->result_tf); 927 ireason = qc->result_tf.nsect; 928 bc_lo = qc->result_tf.lbam; 929 bc_hi = qc->result_tf.lbah; 930 bytes = (bc_hi << 8) | bc_lo; 931 932 /* shall be cleared to zero, indicating xfer of data */ 933 if (unlikely(ireason & ATAPI_COD)) 934 goto atapi_check; 935 936 /* make sure transfer direction matches expected */ 937 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 938 if (unlikely(do_write != i_write)) 939 goto atapi_check; 940 941 if (unlikely(!bytes)) 942 goto atapi_check; 943 944 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 945 946 if (unlikely(__atapi_pio_bytes(qc, bytes))) 947 goto err_out; 948 ata_sff_sync(ap); /* flush */ 949 950 return; 951 952 atapi_check: 953 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 954 ireason, bytes); 955 err_out: 956 qc->err_mask |= AC_ERR_HSM; 957 ap->hsm_task_state = HSM_ST_ERR; 958 } 959 960 /** 961 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 962 * @ap: the target ata_port 963 * @qc: qc on going 964 * 965 * RETURNS: 966 * 1 if ok in workqueue, 0 otherwise. 967 */ 968 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 969 struct ata_queued_cmd *qc) 970 { 971 if (qc->tf.flags & ATA_TFLAG_POLLING) 972 return 1; 973 974 if (ap->hsm_task_state == HSM_ST_FIRST) { 975 if (qc->tf.protocol == ATA_PROT_PIO && 976 (qc->tf.flags & ATA_TFLAG_WRITE)) 977 return 1; 978 979 if (ata_is_atapi(qc->tf.protocol) && 980 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 981 return 1; 982 } 983 984 return 0; 985 } 986 987 /** 988 * ata_hsm_qc_complete - finish a qc running on standard HSM 989 * @qc: Command to complete 990 * @in_wq: 1 if called from workqueue, 0 otherwise 991 * 992 * Finish @qc which is running on standard HSM. 993 * 994 * LOCKING: 995 * If @in_wq is zero, spin_lock_irqsave(host lock). 996 * Otherwise, none on entry and grabs host lock. 997 */ 998 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 999 { 1000 struct ata_port *ap = qc->ap; 1001 1002 if (ap->ops->error_handler) { 1003 if (in_wq) { 1004 /* EH might have kicked in while host lock is 1005 * released. 1006 */ 1007 qc = ata_qc_from_tag(ap, qc->tag); 1008 if (qc) { 1009 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1010 ata_sff_irq_on(ap); 1011 ata_qc_complete(qc); 1012 } else 1013 ata_port_freeze(ap); 1014 } 1015 } else { 1016 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1017 ata_qc_complete(qc); 1018 else 1019 ata_port_freeze(ap); 1020 } 1021 } else { 1022 if (in_wq) { 1023 ata_sff_irq_on(ap); 1024 ata_qc_complete(qc); 1025 } else 1026 ata_qc_complete(qc); 1027 } 1028 } 1029 1030 /** 1031 * ata_sff_hsm_move - move the HSM to the next state. 1032 * @ap: the target ata_port 1033 * @qc: qc on going 1034 * @status: current device status 1035 * @in_wq: 1 if called from workqueue, 0 otherwise 1036 * 1037 * RETURNS: 1038 * 1 when poll next status needed, 0 otherwise. 1039 */ 1040 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1041 u8 status, int in_wq) 1042 { 1043 struct ata_link *link = qc->dev->link; 1044 struct ata_eh_info *ehi = &link->eh_info; 1045 int poll_next; 1046 1047 lockdep_assert_held(ap->lock); 1048 1049 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1050 1051 /* Make sure ata_sff_qc_issue() does not throw things 1052 * like DMA polling into the workqueue. Notice that 1053 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1054 */ 1055 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1056 1057 fsm_start: 1058 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1059 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1060 1061 switch (ap->hsm_task_state) { 1062 case HSM_ST_FIRST: 1063 /* Send first data block or PACKET CDB */ 1064 1065 /* If polling, we will stay in the work queue after 1066 * sending the data. Otherwise, interrupt handler 1067 * takes over after sending the data. 1068 */ 1069 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1070 1071 /* check device status */ 1072 if (unlikely((status & ATA_DRQ) == 0)) { 1073 /* handle BSY=0, DRQ=0 as error */ 1074 if (likely(status & (ATA_ERR | ATA_DF))) 1075 /* device stops HSM for abort/error */ 1076 qc->err_mask |= AC_ERR_DEV; 1077 else { 1078 /* HSM violation. Let EH handle this */ 1079 ata_ehi_push_desc(ehi, 1080 "ST_FIRST: !(DRQ|ERR|DF)"); 1081 qc->err_mask |= AC_ERR_HSM; 1082 } 1083 1084 ap->hsm_task_state = HSM_ST_ERR; 1085 goto fsm_start; 1086 } 1087 1088 /* Device should not ask for data transfer (DRQ=1) 1089 * when it finds something wrong. 1090 * We ignore DRQ here and stop the HSM by 1091 * changing hsm_task_state to HSM_ST_ERR and 1092 * let the EH abort the command or reset the device. 1093 */ 1094 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1095 /* Some ATAPI tape drives forget to clear the ERR bit 1096 * when doing the next command (mostly request sense). 1097 * We ignore ERR here to workaround and proceed sending 1098 * the CDB. 1099 */ 1100 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1101 ata_ehi_push_desc(ehi, "ST_FIRST: " 1102 "DRQ=1 with device error, " 1103 "dev_stat 0x%X", status); 1104 qc->err_mask |= AC_ERR_HSM; 1105 ap->hsm_task_state = HSM_ST_ERR; 1106 goto fsm_start; 1107 } 1108 } 1109 1110 if (qc->tf.protocol == ATA_PROT_PIO) { 1111 /* PIO data out protocol. 1112 * send first data block. 1113 */ 1114 1115 /* ata_pio_sectors() might change the state 1116 * to HSM_ST_LAST. so, the state is changed here 1117 * before ata_pio_sectors(). 1118 */ 1119 ap->hsm_task_state = HSM_ST; 1120 ata_pio_sectors(qc); 1121 } else 1122 /* send CDB */ 1123 atapi_send_cdb(ap, qc); 1124 1125 /* if polling, ata_sff_pio_task() handles the rest. 1126 * otherwise, interrupt handler takes over from here. 1127 */ 1128 break; 1129 1130 case HSM_ST: 1131 /* complete command or read/write the data register */ 1132 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1133 /* ATAPI PIO protocol */ 1134 if ((status & ATA_DRQ) == 0) { 1135 /* No more data to transfer or device error. 1136 * Device error will be tagged in HSM_ST_LAST. 1137 */ 1138 ap->hsm_task_state = HSM_ST_LAST; 1139 goto fsm_start; 1140 } 1141 1142 /* Device should not ask for data transfer (DRQ=1) 1143 * when it finds something wrong. 1144 * We ignore DRQ here and stop the HSM by 1145 * changing hsm_task_state to HSM_ST_ERR and 1146 * let the EH abort the command or reset the device. 1147 */ 1148 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1149 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1150 "DRQ=1 with device error, " 1151 "dev_stat 0x%X", status); 1152 qc->err_mask |= AC_ERR_HSM; 1153 ap->hsm_task_state = HSM_ST_ERR; 1154 goto fsm_start; 1155 } 1156 1157 atapi_pio_bytes(qc); 1158 1159 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1160 /* bad ireason reported by device */ 1161 goto fsm_start; 1162 1163 } else { 1164 /* ATA PIO protocol */ 1165 if (unlikely((status & ATA_DRQ) == 0)) { 1166 /* handle BSY=0, DRQ=0 as error */ 1167 if (likely(status & (ATA_ERR | ATA_DF))) { 1168 /* device stops HSM for abort/error */ 1169 qc->err_mask |= AC_ERR_DEV; 1170 1171 /* If diagnostic failed and this is 1172 * IDENTIFY, it's likely a phantom 1173 * device. Mark hint. 1174 */ 1175 if (qc->dev->horkage & 1176 ATA_HORKAGE_DIAGNOSTIC) 1177 qc->err_mask |= 1178 AC_ERR_NODEV_HINT; 1179 } else { 1180 /* HSM violation. Let EH handle this. 1181 * Phantom devices also trigger this 1182 * condition. Mark hint. 1183 */ 1184 ata_ehi_push_desc(ehi, "ST-ATA: " 1185 "DRQ=0 without device error, " 1186 "dev_stat 0x%X", status); 1187 qc->err_mask |= AC_ERR_HSM | 1188 AC_ERR_NODEV_HINT; 1189 } 1190 1191 ap->hsm_task_state = HSM_ST_ERR; 1192 goto fsm_start; 1193 } 1194 1195 /* For PIO reads, some devices may ask for 1196 * data transfer (DRQ=1) alone with ERR=1. 1197 * We respect DRQ here and transfer one 1198 * block of junk data before changing the 1199 * hsm_task_state to HSM_ST_ERR. 1200 * 1201 * For PIO writes, ERR=1 DRQ=1 doesn't make 1202 * sense since the data block has been 1203 * transferred to the device. 1204 */ 1205 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1206 /* data might be corrputed */ 1207 qc->err_mask |= AC_ERR_DEV; 1208 1209 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1210 ata_pio_sectors(qc); 1211 status = ata_wait_idle(ap); 1212 } 1213 1214 if (status & (ATA_BUSY | ATA_DRQ)) { 1215 ata_ehi_push_desc(ehi, "ST-ATA: " 1216 "BUSY|DRQ persists on ERR|DF, " 1217 "dev_stat 0x%X", status); 1218 qc->err_mask |= AC_ERR_HSM; 1219 } 1220 1221 /* There are oddball controllers with 1222 * status register stuck at 0x7f and 1223 * lbal/m/h at zero which makes it 1224 * pass all other presence detection 1225 * mechanisms we have. Set NODEV_HINT 1226 * for it. Kernel bz#7241. 1227 */ 1228 if (status == 0x7f) 1229 qc->err_mask |= AC_ERR_NODEV_HINT; 1230 1231 /* ata_pio_sectors() might change the 1232 * state to HSM_ST_LAST. so, the state 1233 * is changed after ata_pio_sectors(). 1234 */ 1235 ap->hsm_task_state = HSM_ST_ERR; 1236 goto fsm_start; 1237 } 1238 1239 ata_pio_sectors(qc); 1240 1241 if (ap->hsm_task_state == HSM_ST_LAST && 1242 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1243 /* all data read */ 1244 status = ata_wait_idle(ap); 1245 goto fsm_start; 1246 } 1247 } 1248 1249 poll_next = 1; 1250 break; 1251 1252 case HSM_ST_LAST: 1253 if (unlikely(!ata_ok(status))) { 1254 qc->err_mask |= __ac_err_mask(status); 1255 ap->hsm_task_state = HSM_ST_ERR; 1256 goto fsm_start; 1257 } 1258 1259 /* no more data to transfer */ 1260 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1261 ap->print_id, qc->dev->devno, status); 1262 1263 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1264 1265 ap->hsm_task_state = HSM_ST_IDLE; 1266 1267 /* complete taskfile transaction */ 1268 ata_hsm_qc_complete(qc, in_wq); 1269 1270 poll_next = 0; 1271 break; 1272 1273 case HSM_ST_ERR: 1274 ap->hsm_task_state = HSM_ST_IDLE; 1275 1276 /* complete taskfile transaction */ 1277 ata_hsm_qc_complete(qc, in_wq); 1278 1279 poll_next = 0; 1280 break; 1281 default: 1282 poll_next = 0; 1283 WARN(true, "ata%d: SFF host state machine in invalid state %d", 1284 ap->print_id, ap->hsm_task_state); 1285 } 1286 1287 return poll_next; 1288 } 1289 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1290 1291 void ata_sff_queue_work(struct work_struct *work) 1292 { 1293 queue_work(ata_sff_wq, work); 1294 } 1295 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1296 1297 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1298 { 1299 queue_delayed_work(ata_sff_wq, dwork, delay); 1300 } 1301 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1302 1303 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1304 { 1305 struct ata_port *ap = link->ap; 1306 1307 WARN_ON((ap->sff_pio_task_link != NULL) && 1308 (ap->sff_pio_task_link != link)); 1309 ap->sff_pio_task_link = link; 1310 1311 /* may fail if ata_sff_flush_pio_task() in progress */ 1312 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1313 } 1314 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1315 1316 void ata_sff_flush_pio_task(struct ata_port *ap) 1317 { 1318 DPRINTK("ENTER\n"); 1319 1320 cancel_delayed_work_sync(&ap->sff_pio_task); 1321 1322 /* 1323 * We wanna reset the HSM state to IDLE. If we do so without 1324 * grabbing the port lock, critical sections protected by it which 1325 * expect the HSM state to stay stable may get surprised. For 1326 * example, we may set IDLE in between the time 1327 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1328 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1329 */ 1330 spin_lock_irq(ap->lock); 1331 ap->hsm_task_state = HSM_ST_IDLE; 1332 spin_unlock_irq(ap->lock); 1333 1334 ap->sff_pio_task_link = NULL; 1335 1336 if (ata_msg_ctl(ap)) 1337 ata_port_dbg(ap, "%s: EXIT\n", __func__); 1338 } 1339 1340 static void ata_sff_pio_task(struct work_struct *work) 1341 { 1342 struct ata_port *ap = 1343 container_of(work, struct ata_port, sff_pio_task.work); 1344 struct ata_link *link = ap->sff_pio_task_link; 1345 struct ata_queued_cmd *qc; 1346 u8 status; 1347 int poll_next; 1348 1349 spin_lock_irq(ap->lock); 1350 1351 BUG_ON(ap->sff_pio_task_link == NULL); 1352 /* qc can be NULL if timeout occurred */ 1353 qc = ata_qc_from_tag(ap, link->active_tag); 1354 if (!qc) { 1355 ap->sff_pio_task_link = NULL; 1356 goto out_unlock; 1357 } 1358 1359 fsm_start: 1360 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1361 1362 /* 1363 * This is purely heuristic. This is a fast path. 1364 * Sometimes when we enter, BSY will be cleared in 1365 * a chk-status or two. If not, the drive is probably seeking 1366 * or something. Snooze for a couple msecs, then 1367 * chk-status again. If still busy, queue delayed work. 1368 */ 1369 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1370 if (status & ATA_BUSY) { 1371 spin_unlock_irq(ap->lock); 1372 ata_msleep(ap, 2); 1373 spin_lock_irq(ap->lock); 1374 1375 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1376 if (status & ATA_BUSY) { 1377 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1378 goto out_unlock; 1379 } 1380 } 1381 1382 /* 1383 * hsm_move() may trigger another command to be processed. 1384 * clean the link beforehand. 1385 */ 1386 ap->sff_pio_task_link = NULL; 1387 /* move the HSM */ 1388 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1389 1390 /* another command or interrupt handler 1391 * may be running at this point. 1392 */ 1393 if (poll_next) 1394 goto fsm_start; 1395 out_unlock: 1396 spin_unlock_irq(ap->lock); 1397 } 1398 1399 /** 1400 * ata_sff_qc_issue - issue taskfile to a SFF controller 1401 * @qc: command to issue to device 1402 * 1403 * This function issues a PIO or NODATA command to a SFF 1404 * controller. 1405 * 1406 * LOCKING: 1407 * spin_lock_irqsave(host lock) 1408 * 1409 * RETURNS: 1410 * Zero on success, AC_ERR_* mask on failure 1411 */ 1412 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1413 { 1414 struct ata_port *ap = qc->ap; 1415 struct ata_link *link = qc->dev->link; 1416 1417 /* Use polling pio if the LLD doesn't handle 1418 * interrupt driven pio and atapi CDB interrupt. 1419 */ 1420 if (ap->flags & ATA_FLAG_PIO_POLLING) 1421 qc->tf.flags |= ATA_TFLAG_POLLING; 1422 1423 /* select the device */ 1424 ata_dev_select(ap, qc->dev->devno, 1, 0); 1425 1426 /* start the command */ 1427 switch (qc->tf.protocol) { 1428 case ATA_PROT_NODATA: 1429 if (qc->tf.flags & ATA_TFLAG_POLLING) 1430 ata_qc_set_polling(qc); 1431 1432 ata_tf_to_host(ap, &qc->tf); 1433 ap->hsm_task_state = HSM_ST_LAST; 1434 1435 if (qc->tf.flags & ATA_TFLAG_POLLING) 1436 ata_sff_queue_pio_task(link, 0); 1437 1438 break; 1439 1440 case ATA_PROT_PIO: 1441 if (qc->tf.flags & ATA_TFLAG_POLLING) 1442 ata_qc_set_polling(qc); 1443 1444 ata_tf_to_host(ap, &qc->tf); 1445 1446 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1447 /* PIO data out protocol */ 1448 ap->hsm_task_state = HSM_ST_FIRST; 1449 ata_sff_queue_pio_task(link, 0); 1450 1451 /* always send first data block using the 1452 * ata_sff_pio_task() codepath. 1453 */ 1454 } else { 1455 /* PIO data in protocol */ 1456 ap->hsm_task_state = HSM_ST; 1457 1458 if (qc->tf.flags & ATA_TFLAG_POLLING) 1459 ata_sff_queue_pio_task(link, 0); 1460 1461 /* if polling, ata_sff_pio_task() handles the 1462 * rest. otherwise, interrupt handler takes 1463 * over from here. 1464 */ 1465 } 1466 1467 break; 1468 1469 case ATAPI_PROT_PIO: 1470 case ATAPI_PROT_NODATA: 1471 if (qc->tf.flags & ATA_TFLAG_POLLING) 1472 ata_qc_set_polling(qc); 1473 1474 ata_tf_to_host(ap, &qc->tf); 1475 1476 ap->hsm_task_state = HSM_ST_FIRST; 1477 1478 /* send cdb by polling if no cdb interrupt */ 1479 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1480 (qc->tf.flags & ATA_TFLAG_POLLING)) 1481 ata_sff_queue_pio_task(link, 0); 1482 break; 1483 1484 default: 1485 WARN_ON_ONCE(1); 1486 return AC_ERR_SYSTEM; 1487 } 1488 1489 return 0; 1490 } 1491 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1492 1493 /** 1494 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1495 * @qc: qc to fill result TF for 1496 * 1497 * @qc is finished and result TF needs to be filled. Fill it 1498 * using ->sff_tf_read. 1499 * 1500 * LOCKING: 1501 * spin_lock_irqsave(host lock) 1502 * 1503 * RETURNS: 1504 * true indicating that result TF is successfully filled. 1505 */ 1506 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1507 { 1508 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1509 return true; 1510 } 1511 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1512 1513 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1514 { 1515 ap->stats.idle_irq++; 1516 1517 #ifdef ATA_IRQ_TRAP 1518 if ((ap->stats.idle_irq % 1000) == 0) { 1519 ap->ops->sff_check_status(ap); 1520 if (ap->ops->sff_irq_clear) 1521 ap->ops->sff_irq_clear(ap); 1522 ata_port_warn(ap, "irq trap\n"); 1523 return 1; 1524 } 1525 #endif 1526 return 0; /* irq not handled */ 1527 } 1528 1529 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1530 struct ata_queued_cmd *qc, 1531 bool hsmv_on_idle) 1532 { 1533 u8 status; 1534 1535 VPRINTK("ata%u: protocol %d task_state %d\n", 1536 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1537 1538 /* Check whether we are expecting interrupt in this state */ 1539 switch (ap->hsm_task_state) { 1540 case HSM_ST_FIRST: 1541 /* Some pre-ATAPI-4 devices assert INTRQ 1542 * at this state when ready to receive CDB. 1543 */ 1544 1545 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1546 * The flag was turned on only for atapi devices. No 1547 * need to check ata_is_atapi(qc->tf.protocol) again. 1548 */ 1549 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1550 return ata_sff_idle_irq(ap); 1551 break; 1552 case HSM_ST_IDLE: 1553 return ata_sff_idle_irq(ap); 1554 default: 1555 break; 1556 } 1557 1558 /* check main status, clearing INTRQ if needed */ 1559 status = ata_sff_irq_status(ap); 1560 if (status & ATA_BUSY) { 1561 if (hsmv_on_idle) { 1562 /* BMDMA engine is already stopped, we're screwed */ 1563 qc->err_mask |= AC_ERR_HSM; 1564 ap->hsm_task_state = HSM_ST_ERR; 1565 } else 1566 return ata_sff_idle_irq(ap); 1567 } 1568 1569 /* clear irq events */ 1570 if (ap->ops->sff_irq_clear) 1571 ap->ops->sff_irq_clear(ap); 1572 1573 ata_sff_hsm_move(ap, qc, status, 0); 1574 1575 return 1; /* irq handled */ 1576 } 1577 1578 /** 1579 * ata_sff_port_intr - Handle SFF port interrupt 1580 * @ap: Port on which interrupt arrived (possibly...) 1581 * @qc: Taskfile currently active in engine 1582 * 1583 * Handle port interrupt for given queued command. 1584 * 1585 * LOCKING: 1586 * spin_lock_irqsave(host lock) 1587 * 1588 * RETURNS: 1589 * One if interrupt was handled, zero if not (shared irq). 1590 */ 1591 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1592 { 1593 return __ata_sff_port_intr(ap, qc, false); 1594 } 1595 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1596 1597 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1598 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1599 { 1600 struct ata_host *host = dev_instance; 1601 bool retried = false; 1602 unsigned int i; 1603 unsigned int handled, idle, polling; 1604 unsigned long flags; 1605 1606 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1607 spin_lock_irqsave(&host->lock, flags); 1608 1609 retry: 1610 handled = idle = polling = 0; 1611 for (i = 0; i < host->n_ports; i++) { 1612 struct ata_port *ap = host->ports[i]; 1613 struct ata_queued_cmd *qc; 1614 1615 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1616 if (qc) { 1617 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1618 handled |= port_intr(ap, qc); 1619 else 1620 polling |= 1 << i; 1621 } else 1622 idle |= 1 << i; 1623 } 1624 1625 /* 1626 * If no port was expecting IRQ but the controller is actually 1627 * asserting IRQ line, nobody cared will ensue. Check IRQ 1628 * pending status if available and clear spurious IRQ. 1629 */ 1630 if (!handled && !retried) { 1631 bool retry = false; 1632 1633 for (i = 0; i < host->n_ports; i++) { 1634 struct ata_port *ap = host->ports[i]; 1635 1636 if (polling & (1 << i)) 1637 continue; 1638 1639 if (!ap->ops->sff_irq_check || 1640 !ap->ops->sff_irq_check(ap)) 1641 continue; 1642 1643 if (idle & (1 << i)) { 1644 ap->ops->sff_check_status(ap); 1645 if (ap->ops->sff_irq_clear) 1646 ap->ops->sff_irq_clear(ap); 1647 } else { 1648 /* clear INTRQ and check if BUSY cleared */ 1649 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1650 retry |= true; 1651 /* 1652 * With command in flight, we can't do 1653 * sff_irq_clear() w/o racing with completion. 1654 */ 1655 } 1656 } 1657 1658 if (retry) { 1659 retried = true; 1660 goto retry; 1661 } 1662 } 1663 1664 spin_unlock_irqrestore(&host->lock, flags); 1665 1666 return IRQ_RETVAL(handled); 1667 } 1668 1669 /** 1670 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1671 * @irq: irq line (unused) 1672 * @dev_instance: pointer to our ata_host information structure 1673 * 1674 * Default interrupt handler for PCI IDE devices. Calls 1675 * ata_sff_port_intr() for each port that is not disabled. 1676 * 1677 * LOCKING: 1678 * Obtains host lock during operation. 1679 * 1680 * RETURNS: 1681 * IRQ_NONE or IRQ_HANDLED. 1682 */ 1683 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1684 { 1685 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1686 } 1687 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1688 1689 /** 1690 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1691 * @ap: port that appears to have timed out 1692 * 1693 * Called from the libata error handlers when the core code suspects 1694 * an interrupt has been lost. If it has complete anything we can and 1695 * then return. Interface must support altstatus for this faster 1696 * recovery to occur. 1697 * 1698 * Locking: 1699 * Caller holds host lock 1700 */ 1701 1702 void ata_sff_lost_interrupt(struct ata_port *ap) 1703 { 1704 u8 status; 1705 struct ata_queued_cmd *qc; 1706 1707 /* Only one outstanding command per SFF channel */ 1708 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1709 /* We cannot lose an interrupt on a non-existent or polled command */ 1710 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1711 return; 1712 /* See if the controller thinks it is still busy - if so the command 1713 isn't a lost IRQ but is still in progress */ 1714 status = ata_sff_altstatus(ap); 1715 if (status & ATA_BUSY) 1716 return; 1717 1718 /* There was a command running, we are no longer busy and we have 1719 no interrupt. */ 1720 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", 1721 status); 1722 /* Run the host interrupt logic as if the interrupt had not been 1723 lost */ 1724 ata_sff_port_intr(ap, qc); 1725 } 1726 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1727 1728 /** 1729 * ata_sff_freeze - Freeze SFF controller port 1730 * @ap: port to freeze 1731 * 1732 * Freeze SFF controller port. 1733 * 1734 * LOCKING: 1735 * Inherited from caller. 1736 */ 1737 void ata_sff_freeze(struct ata_port *ap) 1738 { 1739 ap->ctl |= ATA_NIEN; 1740 ap->last_ctl = ap->ctl; 1741 1742 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1743 ata_sff_set_devctl(ap, ap->ctl); 1744 1745 /* Under certain circumstances, some controllers raise IRQ on 1746 * ATA_NIEN manipulation. Also, many controllers fail to mask 1747 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1748 */ 1749 ap->ops->sff_check_status(ap); 1750 1751 if (ap->ops->sff_irq_clear) 1752 ap->ops->sff_irq_clear(ap); 1753 } 1754 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1755 1756 /** 1757 * ata_sff_thaw - Thaw SFF controller port 1758 * @ap: port to thaw 1759 * 1760 * Thaw SFF controller port. 1761 * 1762 * LOCKING: 1763 * Inherited from caller. 1764 */ 1765 void ata_sff_thaw(struct ata_port *ap) 1766 { 1767 /* clear & re-enable interrupts */ 1768 ap->ops->sff_check_status(ap); 1769 if (ap->ops->sff_irq_clear) 1770 ap->ops->sff_irq_clear(ap); 1771 ata_sff_irq_on(ap); 1772 } 1773 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1774 1775 /** 1776 * ata_sff_prereset - prepare SFF link for reset 1777 * @link: SFF link to be reset 1778 * @deadline: deadline jiffies for the operation 1779 * 1780 * SFF link @link is about to be reset. Initialize it. It first 1781 * calls ata_std_prereset() and wait for !BSY if the port is 1782 * being softreset. 1783 * 1784 * LOCKING: 1785 * Kernel thread context (may sleep) 1786 * 1787 * RETURNS: 1788 * 0 on success, -errno otherwise. 1789 */ 1790 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1791 { 1792 struct ata_eh_context *ehc = &link->eh_context; 1793 int rc; 1794 1795 rc = ata_std_prereset(link, deadline); 1796 if (rc) 1797 return rc; 1798 1799 /* if we're about to do hardreset, nothing more to do */ 1800 if (ehc->i.action & ATA_EH_HARDRESET) 1801 return 0; 1802 1803 /* wait for !BSY if we don't know that no device is attached */ 1804 if (!ata_link_offline(link)) { 1805 rc = ata_sff_wait_ready(link, deadline); 1806 if (rc && rc != -ENODEV) { 1807 ata_link_warn(link, 1808 "device not ready (errno=%d), forcing hardreset\n", 1809 rc); 1810 ehc->i.action |= ATA_EH_HARDRESET; 1811 } 1812 } 1813 1814 return 0; 1815 } 1816 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1817 1818 /** 1819 * ata_devchk - PATA device presence detection 1820 * @ap: ATA channel to examine 1821 * @device: Device to examine (starting at zero) 1822 * 1823 * This technique was originally described in 1824 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1825 * later found its way into the ATA/ATAPI spec. 1826 * 1827 * Write a pattern to the ATA shadow registers, 1828 * and if a device is present, it will respond by 1829 * correctly storing and echoing back the 1830 * ATA shadow register contents. 1831 * 1832 * LOCKING: 1833 * caller. 1834 */ 1835 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1836 { 1837 struct ata_ioports *ioaddr = &ap->ioaddr; 1838 u8 nsect, lbal; 1839 1840 ap->ops->sff_dev_select(ap, device); 1841 1842 iowrite8(0x55, ioaddr->nsect_addr); 1843 iowrite8(0xaa, ioaddr->lbal_addr); 1844 1845 iowrite8(0xaa, ioaddr->nsect_addr); 1846 iowrite8(0x55, ioaddr->lbal_addr); 1847 1848 iowrite8(0x55, ioaddr->nsect_addr); 1849 iowrite8(0xaa, ioaddr->lbal_addr); 1850 1851 nsect = ioread8(ioaddr->nsect_addr); 1852 lbal = ioread8(ioaddr->lbal_addr); 1853 1854 if ((nsect == 0x55) && (lbal == 0xaa)) 1855 return 1; /* we found a device */ 1856 1857 return 0; /* nothing found */ 1858 } 1859 1860 /** 1861 * ata_sff_dev_classify - Parse returned ATA device signature 1862 * @dev: ATA device to classify (starting at zero) 1863 * @present: device seems present 1864 * @r_err: Value of error register on completion 1865 * 1866 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1867 * an ATA/ATAPI-defined set of values is placed in the ATA 1868 * shadow registers, indicating the results of device detection 1869 * and diagnostics. 1870 * 1871 * Select the ATA device, and read the values from the ATA shadow 1872 * registers. Then parse according to the Error register value, 1873 * and the spec-defined values examined by ata_dev_classify(). 1874 * 1875 * LOCKING: 1876 * caller. 1877 * 1878 * RETURNS: 1879 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1880 */ 1881 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1882 u8 *r_err) 1883 { 1884 struct ata_port *ap = dev->link->ap; 1885 struct ata_taskfile tf; 1886 unsigned int class; 1887 u8 err; 1888 1889 ap->ops->sff_dev_select(ap, dev->devno); 1890 1891 memset(&tf, 0, sizeof(tf)); 1892 1893 ap->ops->sff_tf_read(ap, &tf); 1894 err = tf.feature; 1895 if (r_err) 1896 *r_err = err; 1897 1898 /* see if device passed diags: continue and warn later */ 1899 if (err == 0) 1900 /* diagnostic fail : do nothing _YET_ */ 1901 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1902 else if (err == 1) 1903 /* do nothing */ ; 1904 else if ((dev->devno == 0) && (err == 0x81)) 1905 /* do nothing */ ; 1906 else 1907 return ATA_DEV_NONE; 1908 1909 /* determine if device is ATA or ATAPI */ 1910 class = ata_dev_classify(&tf); 1911 1912 if (class == ATA_DEV_UNKNOWN) { 1913 /* If the device failed diagnostic, it's likely to 1914 * have reported incorrect device signature too. 1915 * Assume ATA device if the device seems present but 1916 * device signature is invalid with diagnostic 1917 * failure. 1918 */ 1919 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1920 class = ATA_DEV_ATA; 1921 else 1922 class = ATA_DEV_NONE; 1923 } else if ((class == ATA_DEV_ATA) && 1924 (ap->ops->sff_check_status(ap) == 0)) 1925 class = ATA_DEV_NONE; 1926 1927 return class; 1928 } 1929 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1930 1931 /** 1932 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1933 * @link: SFF link which is just reset 1934 * @devmask: mask of present devices 1935 * @deadline: deadline jiffies for the operation 1936 * 1937 * Wait devices attached to SFF @link to become ready after 1938 * reset. It contains preceding 150ms wait to avoid accessing TF 1939 * status register too early. 1940 * 1941 * LOCKING: 1942 * Kernel thread context (may sleep). 1943 * 1944 * RETURNS: 1945 * 0 on success, -ENODEV if some or all of devices in @devmask 1946 * don't seem to exist. -errno on other errors. 1947 */ 1948 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1949 unsigned long deadline) 1950 { 1951 struct ata_port *ap = link->ap; 1952 struct ata_ioports *ioaddr = &ap->ioaddr; 1953 unsigned int dev0 = devmask & (1 << 0); 1954 unsigned int dev1 = devmask & (1 << 1); 1955 int rc, ret = 0; 1956 1957 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1958 1959 /* always check readiness of the master device */ 1960 rc = ata_sff_wait_ready(link, deadline); 1961 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1962 * and TF status is 0xff, bail out on it too. 1963 */ 1964 if (rc) 1965 return rc; 1966 1967 /* if device 1 was found in ata_devchk, wait for register 1968 * access briefly, then wait for BSY to clear. 1969 */ 1970 if (dev1) { 1971 int i; 1972 1973 ap->ops->sff_dev_select(ap, 1); 1974 1975 /* Wait for register access. Some ATAPI devices fail 1976 * to set nsect/lbal after reset, so don't waste too 1977 * much time on it. We're gonna wait for !BSY anyway. 1978 */ 1979 for (i = 0; i < 2; i++) { 1980 u8 nsect, lbal; 1981 1982 nsect = ioread8(ioaddr->nsect_addr); 1983 lbal = ioread8(ioaddr->lbal_addr); 1984 if ((nsect == 1) && (lbal == 1)) 1985 break; 1986 ata_msleep(ap, 50); /* give drive a breather */ 1987 } 1988 1989 rc = ata_sff_wait_ready(link, deadline); 1990 if (rc) { 1991 if (rc != -ENODEV) 1992 return rc; 1993 ret = rc; 1994 } 1995 } 1996 1997 /* is all this really necessary? */ 1998 ap->ops->sff_dev_select(ap, 0); 1999 if (dev1) 2000 ap->ops->sff_dev_select(ap, 1); 2001 if (dev0) 2002 ap->ops->sff_dev_select(ap, 0); 2003 2004 return ret; 2005 } 2006 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2007 2008 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 2009 unsigned long deadline) 2010 { 2011 struct ata_ioports *ioaddr = &ap->ioaddr; 2012 2013 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2014 2015 if (ap->ioaddr.ctl_addr) { 2016 /* software reset. causes dev0 to be selected */ 2017 iowrite8(ap->ctl, ioaddr->ctl_addr); 2018 udelay(20); /* FIXME: flush */ 2019 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2020 udelay(20); /* FIXME: flush */ 2021 iowrite8(ap->ctl, ioaddr->ctl_addr); 2022 ap->last_ctl = ap->ctl; 2023 } 2024 2025 /* wait the port to become ready */ 2026 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2027 } 2028 2029 /** 2030 * ata_sff_softreset - reset host port via ATA SRST 2031 * @link: ATA link to reset 2032 * @classes: resulting classes of attached devices 2033 * @deadline: deadline jiffies for the operation 2034 * 2035 * Reset host port using ATA SRST. 2036 * 2037 * LOCKING: 2038 * Kernel thread context (may sleep) 2039 * 2040 * RETURNS: 2041 * 0 on success, -errno otherwise. 2042 */ 2043 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2044 unsigned long deadline) 2045 { 2046 struct ata_port *ap = link->ap; 2047 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2048 unsigned int devmask = 0; 2049 int rc; 2050 u8 err; 2051 2052 DPRINTK("ENTER\n"); 2053 2054 /* determine if device 0/1 are present */ 2055 if (ata_devchk(ap, 0)) 2056 devmask |= (1 << 0); 2057 if (slave_possible && ata_devchk(ap, 1)) 2058 devmask |= (1 << 1); 2059 2060 /* select device 0 again */ 2061 ap->ops->sff_dev_select(ap, 0); 2062 2063 /* issue bus reset */ 2064 DPRINTK("about to softreset, devmask=%x\n", devmask); 2065 rc = ata_bus_softreset(ap, devmask, deadline); 2066 /* if link is occupied, -ENODEV too is an error */ 2067 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2068 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 2069 return rc; 2070 } 2071 2072 /* determine by signature whether we have ATA or ATAPI devices */ 2073 classes[0] = ata_sff_dev_classify(&link->device[0], 2074 devmask & (1 << 0), &err); 2075 if (slave_possible && err != 0x81) 2076 classes[1] = ata_sff_dev_classify(&link->device[1], 2077 devmask & (1 << 1), &err); 2078 2079 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2080 return 0; 2081 } 2082 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2083 2084 /** 2085 * sata_sff_hardreset - reset host port via SATA phy reset 2086 * @link: link to reset 2087 * @class: resulting class of attached device 2088 * @deadline: deadline jiffies for the operation 2089 * 2090 * SATA phy-reset host port using DET bits of SControl register, 2091 * wait for !BSY and classify the attached device. 2092 * 2093 * LOCKING: 2094 * Kernel thread context (may sleep) 2095 * 2096 * RETURNS: 2097 * 0 on success, -errno otherwise. 2098 */ 2099 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2100 unsigned long deadline) 2101 { 2102 struct ata_eh_context *ehc = &link->eh_context; 2103 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2104 bool online; 2105 int rc; 2106 2107 rc = sata_link_hardreset(link, timing, deadline, &online, 2108 ata_sff_check_ready); 2109 if (online) 2110 *class = ata_sff_dev_classify(link->device, 1, NULL); 2111 2112 DPRINTK("EXIT, class=%u\n", *class); 2113 return rc; 2114 } 2115 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2116 2117 /** 2118 * ata_sff_postreset - SFF postreset callback 2119 * @link: the target SFF ata_link 2120 * @classes: classes of attached devices 2121 * 2122 * This function is invoked after a successful reset. It first 2123 * calls ata_std_postreset() and performs SFF specific postreset 2124 * processing. 2125 * 2126 * LOCKING: 2127 * Kernel thread context (may sleep) 2128 */ 2129 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2130 { 2131 struct ata_port *ap = link->ap; 2132 2133 ata_std_postreset(link, classes); 2134 2135 /* is double-select really necessary? */ 2136 if (classes[0] != ATA_DEV_NONE) 2137 ap->ops->sff_dev_select(ap, 1); 2138 if (classes[1] != ATA_DEV_NONE) 2139 ap->ops->sff_dev_select(ap, 0); 2140 2141 /* bail out if no device is present */ 2142 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2143 DPRINTK("EXIT, no device\n"); 2144 return; 2145 } 2146 2147 /* set up device control */ 2148 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2149 ata_sff_set_devctl(ap, ap->ctl); 2150 ap->last_ctl = ap->ctl; 2151 } 2152 } 2153 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2154 2155 /** 2156 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2157 * @qc: command 2158 * 2159 * Drain the FIFO and device of any stuck data following a command 2160 * failing to complete. In some cases this is necessary before a 2161 * reset will recover the device. 2162 * 2163 */ 2164 2165 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2166 { 2167 int count; 2168 struct ata_port *ap; 2169 2170 /* We only need to flush incoming data when a command was running */ 2171 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2172 return; 2173 2174 ap = qc->ap; 2175 /* Drain up to 64K of data before we give up this recovery method */ 2176 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2177 && count < 65536; count += 2) 2178 ioread16(ap->ioaddr.data_addr); 2179 2180 /* Can become DEBUG later */ 2181 if (count) 2182 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2183 2184 } 2185 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2186 2187 /** 2188 * ata_sff_error_handler - Stock error handler for SFF controller 2189 * @ap: port to handle error for 2190 * 2191 * Stock error handler for SFF controller. It can handle both 2192 * PATA and SATA controllers. Many controllers should be able to 2193 * use this EH as-is or with some added handling before and 2194 * after. 2195 * 2196 * LOCKING: 2197 * Kernel thread context (may sleep) 2198 */ 2199 void ata_sff_error_handler(struct ata_port *ap) 2200 { 2201 ata_reset_fn_t softreset = ap->ops->softreset; 2202 ata_reset_fn_t hardreset = ap->ops->hardreset; 2203 struct ata_queued_cmd *qc; 2204 unsigned long flags; 2205 2206 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2207 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2208 qc = NULL; 2209 2210 spin_lock_irqsave(ap->lock, flags); 2211 2212 /* 2213 * We *MUST* do FIFO draining before we issue a reset as 2214 * several devices helpfully clear their internal state and 2215 * will lock solid if we touch the data port post reset. Pass 2216 * qc in case anyone wants to do different PIO/DMA recovery or 2217 * has per command fixups 2218 */ 2219 if (ap->ops->sff_drain_fifo) 2220 ap->ops->sff_drain_fifo(qc); 2221 2222 spin_unlock_irqrestore(ap->lock, flags); 2223 2224 /* ignore built-in hardresets if SCR access is not available */ 2225 if ((hardreset == sata_std_hardreset || 2226 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2227 hardreset = NULL; 2228 2229 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2230 ap->ops->postreset); 2231 } 2232 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2233 2234 /** 2235 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2236 * @ioaddr: IO address structure to be initialized 2237 * 2238 * Utility function which initializes data_addr, error_addr, 2239 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2240 * device_addr, status_addr, and command_addr to standard offsets 2241 * relative to cmd_addr. 2242 * 2243 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2244 */ 2245 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2246 { 2247 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2248 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2249 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2250 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2251 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2252 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2253 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2254 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2255 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2256 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2257 } 2258 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2259 2260 #ifdef CONFIG_PCI 2261 2262 static int ata_resources_present(struct pci_dev *pdev, int port) 2263 { 2264 int i; 2265 2266 /* Check the PCI resources for this channel are enabled */ 2267 port = port * 2; 2268 for (i = 0; i < 2; i++) { 2269 if (pci_resource_start(pdev, port + i) == 0 || 2270 pci_resource_len(pdev, port + i) == 0) 2271 return 0; 2272 } 2273 return 1; 2274 } 2275 2276 /** 2277 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2278 * @host: target ATA host 2279 * 2280 * Acquire native PCI ATA resources for @host and initialize the 2281 * first two ports of @host accordingly. Ports marked dummy are 2282 * skipped and allocation failure makes the port dummy. 2283 * 2284 * Note that native PCI resources are valid even for legacy hosts 2285 * as we fix up pdev resources array early in boot, so this 2286 * function can be used for both native and legacy SFF hosts. 2287 * 2288 * LOCKING: 2289 * Inherited from calling layer (may sleep). 2290 * 2291 * RETURNS: 2292 * 0 if at least one port is initialized, -ENODEV if no port is 2293 * available. 2294 */ 2295 int ata_pci_sff_init_host(struct ata_host *host) 2296 { 2297 struct device *gdev = host->dev; 2298 struct pci_dev *pdev = to_pci_dev(gdev); 2299 unsigned int mask = 0; 2300 int i, rc; 2301 2302 /* request, iomap BARs and init port addresses accordingly */ 2303 for (i = 0; i < 2; i++) { 2304 struct ata_port *ap = host->ports[i]; 2305 int base = i * 2; 2306 void __iomem * const *iomap; 2307 2308 if (ata_port_is_dummy(ap)) 2309 continue; 2310 2311 /* Discard disabled ports. Some controllers show 2312 * their unused channels this way. Disabled ports are 2313 * made dummy. 2314 */ 2315 if (!ata_resources_present(pdev, i)) { 2316 ap->ops = &ata_dummy_port_ops; 2317 continue; 2318 } 2319 2320 rc = pcim_iomap_regions(pdev, 0x3 << base, 2321 dev_driver_string(gdev)); 2322 if (rc) { 2323 dev_warn(gdev, 2324 "failed to request/iomap BARs for port %d (errno=%d)\n", 2325 i, rc); 2326 if (rc == -EBUSY) 2327 pcim_pin_device(pdev); 2328 ap->ops = &ata_dummy_port_ops; 2329 continue; 2330 } 2331 host->iomap = iomap = pcim_iomap_table(pdev); 2332 2333 ap->ioaddr.cmd_addr = iomap[base]; 2334 ap->ioaddr.altstatus_addr = 2335 ap->ioaddr.ctl_addr = (void __iomem *) 2336 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2337 ata_sff_std_ports(&ap->ioaddr); 2338 2339 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2340 (unsigned long long)pci_resource_start(pdev, base), 2341 (unsigned long long)pci_resource_start(pdev, base + 1)); 2342 2343 mask |= 1 << i; 2344 } 2345 2346 if (!mask) { 2347 dev_err(gdev, "no available native port\n"); 2348 return -ENODEV; 2349 } 2350 2351 return 0; 2352 } 2353 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2354 2355 /** 2356 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2357 * @pdev: target PCI device 2358 * @ppi: array of port_info, must be enough for two ports 2359 * @r_host: out argument for the initialized ATA host 2360 * 2361 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2362 * all PCI resources and initialize it accordingly in one go. 2363 * 2364 * LOCKING: 2365 * Inherited from calling layer (may sleep). 2366 * 2367 * RETURNS: 2368 * 0 on success, -errno otherwise. 2369 */ 2370 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2371 const struct ata_port_info * const *ppi, 2372 struct ata_host **r_host) 2373 { 2374 struct ata_host *host; 2375 int rc; 2376 2377 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2378 return -ENOMEM; 2379 2380 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2381 if (!host) { 2382 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2383 rc = -ENOMEM; 2384 goto err_out; 2385 } 2386 2387 rc = ata_pci_sff_init_host(host); 2388 if (rc) 2389 goto err_out; 2390 2391 devres_remove_group(&pdev->dev, NULL); 2392 *r_host = host; 2393 return 0; 2394 2395 err_out: 2396 devres_release_group(&pdev->dev, NULL); 2397 return rc; 2398 } 2399 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2400 2401 /** 2402 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2403 * @host: target SFF ATA host 2404 * @irq_handler: irq_handler used when requesting IRQ(s) 2405 * @sht: scsi_host_template to use when registering the host 2406 * 2407 * This is the counterpart of ata_host_activate() for SFF ATA 2408 * hosts. This separate helper is necessary because SFF hosts 2409 * use two separate interrupts in legacy mode. 2410 * 2411 * LOCKING: 2412 * Inherited from calling layer (may sleep). 2413 * 2414 * RETURNS: 2415 * 0 on success, -errno otherwise. 2416 */ 2417 int ata_pci_sff_activate_host(struct ata_host *host, 2418 irq_handler_t irq_handler, 2419 struct scsi_host_template *sht) 2420 { 2421 struct device *dev = host->dev; 2422 struct pci_dev *pdev = to_pci_dev(dev); 2423 const char *drv_name = dev_driver_string(host->dev); 2424 int legacy_mode = 0, rc; 2425 2426 rc = ata_host_start(host); 2427 if (rc) 2428 return rc; 2429 2430 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2431 u8 tmp8, mask = 0; 2432 2433 /* 2434 * ATA spec says we should use legacy mode when one 2435 * port is in legacy mode, but disabled ports on some 2436 * PCI hosts appear as fixed legacy ports, e.g SB600/700 2437 * on which the secondary port is not wired, so 2438 * ignore ports that are marked as 'dummy' during 2439 * this check 2440 */ 2441 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2442 if (!ata_port_is_dummy(host->ports[0])) 2443 mask |= (1 << 0); 2444 if (!ata_port_is_dummy(host->ports[1])) 2445 mask |= (1 << 2); 2446 if ((tmp8 & mask) != mask) 2447 legacy_mode = 1; 2448 } 2449 2450 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2451 return -ENOMEM; 2452 2453 if (!legacy_mode && pdev->irq) { 2454 int i; 2455 2456 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2457 IRQF_SHARED, drv_name, host); 2458 if (rc) 2459 goto out; 2460 2461 for (i = 0; i < 2; i++) { 2462 if (ata_port_is_dummy(host->ports[i])) 2463 continue; 2464 ata_port_desc(host->ports[i], "irq %d", pdev->irq); 2465 } 2466 } else if (legacy_mode) { 2467 if (!ata_port_is_dummy(host->ports[0])) { 2468 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2469 irq_handler, IRQF_SHARED, 2470 drv_name, host); 2471 if (rc) 2472 goto out; 2473 2474 ata_port_desc(host->ports[0], "irq %d", 2475 ATA_PRIMARY_IRQ(pdev)); 2476 } 2477 2478 if (!ata_port_is_dummy(host->ports[1])) { 2479 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2480 irq_handler, IRQF_SHARED, 2481 drv_name, host); 2482 if (rc) 2483 goto out; 2484 2485 ata_port_desc(host->ports[1], "irq %d", 2486 ATA_SECONDARY_IRQ(pdev)); 2487 } 2488 } 2489 2490 rc = ata_host_register(host, sht); 2491 out: 2492 if (rc == 0) 2493 devres_remove_group(dev, NULL); 2494 else 2495 devres_release_group(dev, NULL); 2496 2497 return rc; 2498 } 2499 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2500 2501 static const struct ata_port_info *ata_sff_find_valid_pi( 2502 const struct ata_port_info * const *ppi) 2503 { 2504 int i; 2505 2506 /* look up the first valid port_info */ 2507 for (i = 0; i < 2 && ppi[i]; i++) 2508 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2509 return ppi[i]; 2510 2511 return NULL; 2512 } 2513 2514 static int ata_pci_init_one(struct pci_dev *pdev, 2515 const struct ata_port_info * const *ppi, 2516 struct scsi_host_template *sht, void *host_priv, 2517 int hflags, bool bmdma) 2518 { 2519 struct device *dev = &pdev->dev; 2520 const struct ata_port_info *pi; 2521 struct ata_host *host = NULL; 2522 int rc; 2523 2524 DPRINTK("ENTER\n"); 2525 2526 pi = ata_sff_find_valid_pi(ppi); 2527 if (!pi) { 2528 dev_err(&pdev->dev, "no valid port_info specified\n"); 2529 return -EINVAL; 2530 } 2531 2532 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2533 return -ENOMEM; 2534 2535 rc = pcim_enable_device(pdev); 2536 if (rc) 2537 goto out; 2538 2539 #ifdef CONFIG_ATA_BMDMA 2540 if (bmdma) 2541 /* prepare and activate BMDMA host */ 2542 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2543 else 2544 #endif 2545 /* prepare and activate SFF host */ 2546 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2547 if (rc) 2548 goto out; 2549 host->private_data = host_priv; 2550 host->flags |= hflags; 2551 2552 #ifdef CONFIG_ATA_BMDMA 2553 if (bmdma) { 2554 pci_set_master(pdev); 2555 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2556 } else 2557 #endif 2558 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2559 out: 2560 if (rc == 0) 2561 devres_remove_group(&pdev->dev, NULL); 2562 else 2563 devres_release_group(&pdev->dev, NULL); 2564 2565 return rc; 2566 } 2567 2568 /** 2569 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2570 * @pdev: Controller to be initialized 2571 * @ppi: array of port_info, must be enough for two ports 2572 * @sht: scsi_host_template to use when registering the host 2573 * @host_priv: host private_data 2574 * @hflag: host flags 2575 * 2576 * This is a helper function which can be called from a driver's 2577 * xxx_init_one() probe function if the hardware uses traditional 2578 * IDE taskfile registers and is PIO only. 2579 * 2580 * ASSUMPTION: 2581 * Nobody makes a single channel controller that appears solely as 2582 * the secondary legacy port on PCI. 2583 * 2584 * LOCKING: 2585 * Inherited from PCI layer (may sleep). 2586 * 2587 * RETURNS: 2588 * Zero on success, negative on errno-based value on error. 2589 */ 2590 int ata_pci_sff_init_one(struct pci_dev *pdev, 2591 const struct ata_port_info * const *ppi, 2592 struct scsi_host_template *sht, void *host_priv, int hflag) 2593 { 2594 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2595 } 2596 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2597 2598 #endif /* CONFIG_PCI */ 2599 2600 /* 2601 * BMDMA support 2602 */ 2603 2604 #ifdef CONFIG_ATA_BMDMA 2605 2606 const struct ata_port_operations ata_bmdma_port_ops = { 2607 .inherits = &ata_sff_port_ops, 2608 2609 .error_handler = ata_bmdma_error_handler, 2610 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2611 2612 .qc_prep = ata_bmdma_qc_prep, 2613 .qc_issue = ata_bmdma_qc_issue, 2614 2615 .sff_irq_clear = ata_bmdma_irq_clear, 2616 .bmdma_setup = ata_bmdma_setup, 2617 .bmdma_start = ata_bmdma_start, 2618 .bmdma_stop = ata_bmdma_stop, 2619 .bmdma_status = ata_bmdma_status, 2620 2621 .port_start = ata_bmdma_port_start, 2622 }; 2623 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2624 2625 const struct ata_port_operations ata_bmdma32_port_ops = { 2626 .inherits = &ata_bmdma_port_ops, 2627 2628 .sff_data_xfer = ata_sff_data_xfer32, 2629 .port_start = ata_bmdma_port_start32, 2630 }; 2631 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2632 2633 /** 2634 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2635 * @qc: Metadata associated with taskfile to be transferred 2636 * 2637 * Fill PCI IDE PRD (scatter-gather) table with segments 2638 * associated with the current disk command. 2639 * 2640 * LOCKING: 2641 * spin_lock_irqsave(host lock) 2642 * 2643 */ 2644 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2645 { 2646 struct ata_port *ap = qc->ap; 2647 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2648 struct scatterlist *sg; 2649 unsigned int si, pi; 2650 2651 pi = 0; 2652 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2653 u32 addr, offset; 2654 u32 sg_len, len; 2655 2656 /* determine if physical DMA addr spans 64K boundary. 2657 * Note h/w doesn't support 64-bit, so we unconditionally 2658 * truncate dma_addr_t to u32. 2659 */ 2660 addr = (u32) sg_dma_address(sg); 2661 sg_len = sg_dma_len(sg); 2662 2663 while (sg_len) { 2664 offset = addr & 0xffff; 2665 len = sg_len; 2666 if ((offset + sg_len) > 0x10000) 2667 len = 0x10000 - offset; 2668 2669 prd[pi].addr = cpu_to_le32(addr); 2670 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2671 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2672 2673 pi++; 2674 sg_len -= len; 2675 addr += len; 2676 } 2677 } 2678 2679 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2680 } 2681 2682 /** 2683 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2684 * @qc: Metadata associated with taskfile to be transferred 2685 * 2686 * Fill PCI IDE PRD (scatter-gather) table with segments 2687 * associated with the current disk command. Perform the fill 2688 * so that we avoid writing any length 64K records for 2689 * controllers that don't follow the spec. 2690 * 2691 * LOCKING: 2692 * spin_lock_irqsave(host lock) 2693 * 2694 */ 2695 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2696 { 2697 struct ata_port *ap = qc->ap; 2698 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2699 struct scatterlist *sg; 2700 unsigned int si, pi; 2701 2702 pi = 0; 2703 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2704 u32 addr, offset; 2705 u32 sg_len, len, blen; 2706 2707 /* determine if physical DMA addr spans 64K boundary. 2708 * Note h/w doesn't support 64-bit, so we unconditionally 2709 * truncate dma_addr_t to u32. 2710 */ 2711 addr = (u32) sg_dma_address(sg); 2712 sg_len = sg_dma_len(sg); 2713 2714 while (sg_len) { 2715 offset = addr & 0xffff; 2716 len = sg_len; 2717 if ((offset + sg_len) > 0x10000) 2718 len = 0x10000 - offset; 2719 2720 blen = len & 0xffff; 2721 prd[pi].addr = cpu_to_le32(addr); 2722 if (blen == 0) { 2723 /* Some PATA chipsets like the CS5530 can't 2724 cope with 0x0000 meaning 64K as the spec 2725 says */ 2726 prd[pi].flags_len = cpu_to_le32(0x8000); 2727 blen = 0x8000; 2728 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2729 } 2730 prd[pi].flags_len = cpu_to_le32(blen); 2731 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2732 2733 pi++; 2734 sg_len -= len; 2735 addr += len; 2736 } 2737 } 2738 2739 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2740 } 2741 2742 /** 2743 * ata_bmdma_qc_prep - Prepare taskfile for submission 2744 * @qc: Metadata associated with taskfile to be prepared 2745 * 2746 * Prepare ATA taskfile for submission. 2747 * 2748 * LOCKING: 2749 * spin_lock_irqsave(host lock) 2750 */ 2751 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2752 { 2753 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2754 return; 2755 2756 ata_bmdma_fill_sg(qc); 2757 } 2758 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2759 2760 /** 2761 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2762 * @qc: Metadata associated with taskfile to be prepared 2763 * 2764 * Prepare ATA taskfile for submission. 2765 * 2766 * LOCKING: 2767 * spin_lock_irqsave(host lock) 2768 */ 2769 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2770 { 2771 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2772 return; 2773 2774 ata_bmdma_fill_sg_dumb(qc); 2775 } 2776 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2777 2778 /** 2779 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2780 * @qc: command to issue to device 2781 * 2782 * This function issues a PIO, NODATA or DMA command to a 2783 * SFF/BMDMA controller. PIO and NODATA are handled by 2784 * ata_sff_qc_issue(). 2785 * 2786 * LOCKING: 2787 * spin_lock_irqsave(host lock) 2788 * 2789 * RETURNS: 2790 * Zero on success, AC_ERR_* mask on failure 2791 */ 2792 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2793 { 2794 struct ata_port *ap = qc->ap; 2795 struct ata_link *link = qc->dev->link; 2796 2797 /* defer PIO handling to sff_qc_issue */ 2798 if (!ata_is_dma(qc->tf.protocol)) 2799 return ata_sff_qc_issue(qc); 2800 2801 /* select the device */ 2802 ata_dev_select(ap, qc->dev->devno, 1, 0); 2803 2804 /* start the command */ 2805 switch (qc->tf.protocol) { 2806 case ATA_PROT_DMA: 2807 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2808 2809 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2810 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2811 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2812 ap->hsm_task_state = HSM_ST_LAST; 2813 break; 2814 2815 case ATAPI_PROT_DMA: 2816 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2817 2818 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2819 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2820 ap->hsm_task_state = HSM_ST_FIRST; 2821 2822 /* send cdb by polling if no cdb interrupt */ 2823 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2824 ata_sff_queue_pio_task(link, 0); 2825 break; 2826 2827 default: 2828 WARN_ON(1); 2829 return AC_ERR_SYSTEM; 2830 } 2831 2832 return 0; 2833 } 2834 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2835 2836 /** 2837 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2838 * @ap: Port on which interrupt arrived (possibly...) 2839 * @qc: Taskfile currently active in engine 2840 * 2841 * Handle port interrupt for given queued command. 2842 * 2843 * LOCKING: 2844 * spin_lock_irqsave(host lock) 2845 * 2846 * RETURNS: 2847 * One if interrupt was handled, zero if not (shared irq). 2848 */ 2849 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2850 { 2851 struct ata_eh_info *ehi = &ap->link.eh_info; 2852 u8 host_stat = 0; 2853 bool bmdma_stopped = false; 2854 unsigned int handled; 2855 2856 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2857 /* check status of DMA engine */ 2858 host_stat = ap->ops->bmdma_status(ap); 2859 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); 2860 2861 /* if it's not our irq... */ 2862 if (!(host_stat & ATA_DMA_INTR)) 2863 return ata_sff_idle_irq(ap); 2864 2865 /* before we do anything else, clear DMA-Start bit */ 2866 ap->ops->bmdma_stop(qc); 2867 bmdma_stopped = true; 2868 2869 if (unlikely(host_stat & ATA_DMA_ERR)) { 2870 /* error when transferring data to/from memory */ 2871 qc->err_mask |= AC_ERR_HOST_BUS; 2872 ap->hsm_task_state = HSM_ST_ERR; 2873 } 2874 } 2875 2876 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2877 2878 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2879 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2880 2881 return handled; 2882 } 2883 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2884 2885 /** 2886 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2887 * @irq: irq line (unused) 2888 * @dev_instance: pointer to our ata_host information structure 2889 * 2890 * Default interrupt handler for PCI IDE devices. Calls 2891 * ata_bmdma_port_intr() for each port that is not disabled. 2892 * 2893 * LOCKING: 2894 * Obtains host lock during operation. 2895 * 2896 * RETURNS: 2897 * IRQ_NONE or IRQ_HANDLED. 2898 */ 2899 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2900 { 2901 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2902 } 2903 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2904 2905 /** 2906 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2907 * @ap: port to handle error for 2908 * 2909 * Stock error handler for BMDMA controller. It can handle both 2910 * PATA and SATA controllers. Most BMDMA controllers should be 2911 * able to use this EH as-is or with some added handling before 2912 * and after. 2913 * 2914 * LOCKING: 2915 * Kernel thread context (may sleep) 2916 */ 2917 void ata_bmdma_error_handler(struct ata_port *ap) 2918 { 2919 struct ata_queued_cmd *qc; 2920 unsigned long flags; 2921 bool thaw = false; 2922 2923 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2924 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2925 qc = NULL; 2926 2927 /* reset PIO HSM and stop DMA engine */ 2928 spin_lock_irqsave(ap->lock, flags); 2929 2930 if (qc && ata_is_dma(qc->tf.protocol)) { 2931 u8 host_stat; 2932 2933 host_stat = ap->ops->bmdma_status(ap); 2934 2935 /* BMDMA controllers indicate host bus error by 2936 * setting DMA_ERR bit and timing out. As it wasn't 2937 * really a timeout event, adjust error mask and 2938 * cancel frozen state. 2939 */ 2940 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2941 qc->err_mask = AC_ERR_HOST_BUS; 2942 thaw = true; 2943 } 2944 2945 ap->ops->bmdma_stop(qc); 2946 2947 /* if we're gonna thaw, make sure IRQ is clear */ 2948 if (thaw) { 2949 ap->ops->sff_check_status(ap); 2950 if (ap->ops->sff_irq_clear) 2951 ap->ops->sff_irq_clear(ap); 2952 } 2953 } 2954 2955 spin_unlock_irqrestore(ap->lock, flags); 2956 2957 if (thaw) 2958 ata_eh_thaw_port(ap); 2959 2960 ata_sff_error_handler(ap); 2961 } 2962 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2963 2964 /** 2965 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2966 * @qc: internal command to clean up 2967 * 2968 * LOCKING: 2969 * Kernel thread context (may sleep) 2970 */ 2971 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2972 { 2973 struct ata_port *ap = qc->ap; 2974 unsigned long flags; 2975 2976 if (ata_is_dma(qc->tf.protocol)) { 2977 spin_lock_irqsave(ap->lock, flags); 2978 ap->ops->bmdma_stop(qc); 2979 spin_unlock_irqrestore(ap->lock, flags); 2980 } 2981 } 2982 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2983 2984 /** 2985 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2986 * @ap: Port associated with this ATA transaction. 2987 * 2988 * Clear interrupt and error flags in DMA status register. 2989 * 2990 * May be used as the irq_clear() entry in ata_port_operations. 2991 * 2992 * LOCKING: 2993 * spin_lock_irqsave(host lock) 2994 */ 2995 void ata_bmdma_irq_clear(struct ata_port *ap) 2996 { 2997 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2998 2999 if (!mmio) 3000 return; 3001 3002 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 3003 } 3004 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 3005 3006 /** 3007 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 3008 * @qc: Info associated with this ATA transaction. 3009 * 3010 * LOCKING: 3011 * spin_lock_irqsave(host lock) 3012 */ 3013 void ata_bmdma_setup(struct ata_queued_cmd *qc) 3014 { 3015 struct ata_port *ap = qc->ap; 3016 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 3017 u8 dmactl; 3018 3019 /* load PRD table addr. */ 3020 mb(); /* make sure PRD table writes are visible to controller */ 3021 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 3022 3023 /* specify data direction, triple-check start bit is clear */ 3024 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3025 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 3026 if (!rw) 3027 dmactl |= ATA_DMA_WR; 3028 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3029 3030 /* issue r/w command */ 3031 ap->ops->sff_exec_command(ap, &qc->tf); 3032 } 3033 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 3034 3035 /** 3036 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 3037 * @qc: Info associated with this ATA transaction. 3038 * 3039 * LOCKING: 3040 * spin_lock_irqsave(host lock) 3041 */ 3042 void ata_bmdma_start(struct ata_queued_cmd *qc) 3043 { 3044 struct ata_port *ap = qc->ap; 3045 u8 dmactl; 3046 3047 /* start host DMA transaction */ 3048 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3049 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3050 3051 /* Strictly, one may wish to issue an ioread8() here, to 3052 * flush the mmio write. However, control also passes 3053 * to the hardware at this point, and it will interrupt 3054 * us when we are to resume control. So, in effect, 3055 * we don't care when the mmio write flushes. 3056 * Further, a read of the DMA status register _immediately_ 3057 * following the write may not be what certain flaky hardware 3058 * is expected, so I think it is best to not add a readb() 3059 * without first all the MMIO ATA cards/mobos. 3060 * Or maybe I'm just being paranoid. 3061 * 3062 * FIXME: The posting of this write means I/O starts are 3063 * unnecessarily delayed for MMIO 3064 */ 3065 } 3066 EXPORT_SYMBOL_GPL(ata_bmdma_start); 3067 3068 /** 3069 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 3070 * @qc: Command we are ending DMA for 3071 * 3072 * Clears the ATA_DMA_START flag in the dma control register 3073 * 3074 * May be used as the bmdma_stop() entry in ata_port_operations. 3075 * 3076 * LOCKING: 3077 * spin_lock_irqsave(host lock) 3078 */ 3079 void ata_bmdma_stop(struct ata_queued_cmd *qc) 3080 { 3081 struct ata_port *ap = qc->ap; 3082 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3083 3084 /* clear start/stop bit */ 3085 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3086 mmio + ATA_DMA_CMD); 3087 3088 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3089 ata_sff_dma_pause(ap); 3090 } 3091 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3092 3093 /** 3094 * ata_bmdma_status - Read PCI IDE BMDMA status 3095 * @ap: Port associated with this ATA transaction. 3096 * 3097 * Read and return BMDMA status register. 3098 * 3099 * May be used as the bmdma_status() entry in ata_port_operations. 3100 * 3101 * LOCKING: 3102 * spin_lock_irqsave(host lock) 3103 */ 3104 u8 ata_bmdma_status(struct ata_port *ap) 3105 { 3106 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3107 } 3108 EXPORT_SYMBOL_GPL(ata_bmdma_status); 3109 3110 3111 /** 3112 * ata_bmdma_port_start - Set port up for bmdma. 3113 * @ap: Port to initialize 3114 * 3115 * Called just after data structures for each port are 3116 * initialized. Allocates space for PRD table. 3117 * 3118 * May be used as the port_start() entry in ata_port_operations. 3119 * 3120 * LOCKING: 3121 * Inherited from caller. 3122 */ 3123 int ata_bmdma_port_start(struct ata_port *ap) 3124 { 3125 if (ap->mwdma_mask || ap->udma_mask) { 3126 ap->bmdma_prd = 3127 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3128 &ap->bmdma_prd_dma, GFP_KERNEL); 3129 if (!ap->bmdma_prd) 3130 return -ENOMEM; 3131 } 3132 3133 return 0; 3134 } 3135 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3136 3137 /** 3138 * ata_bmdma_port_start32 - Set port up for dma. 3139 * @ap: Port to initialize 3140 * 3141 * Called just after data structures for each port are 3142 * initialized. Enables 32bit PIO and allocates space for PRD 3143 * table. 3144 * 3145 * May be used as the port_start() entry in ata_port_operations for 3146 * devices that are capable of 32bit PIO. 3147 * 3148 * LOCKING: 3149 * Inherited from caller. 3150 */ 3151 int ata_bmdma_port_start32(struct ata_port *ap) 3152 { 3153 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3154 return ata_bmdma_port_start(ap); 3155 } 3156 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3157 3158 #ifdef CONFIG_PCI 3159 3160 /** 3161 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3162 * @pdev: PCI device 3163 * 3164 * Some PCI ATA devices report simplex mode but in fact can be told to 3165 * enter non simplex mode. This implements the necessary logic to 3166 * perform the task on such devices. Calling it on other devices will 3167 * have -undefined- behaviour. 3168 */ 3169 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3170 { 3171 unsigned long bmdma = pci_resource_start(pdev, 4); 3172 u8 simplex; 3173 3174 if (bmdma == 0) 3175 return -ENOENT; 3176 3177 simplex = inb(bmdma + 0x02); 3178 outb(simplex & 0x60, bmdma + 0x02); 3179 simplex = inb(bmdma + 0x02); 3180 if (simplex & 0x80) 3181 return -EOPNOTSUPP; 3182 return 0; 3183 } 3184 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3185 3186 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3187 { 3188 int i; 3189 3190 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3191 3192 for (i = 0; i < 2; i++) { 3193 host->ports[i]->mwdma_mask = 0; 3194 host->ports[i]->udma_mask = 0; 3195 } 3196 } 3197 3198 /** 3199 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3200 * @host: target ATA host 3201 * 3202 * Acquire PCI BMDMA resources and initialize @host accordingly. 3203 * 3204 * LOCKING: 3205 * Inherited from calling layer (may sleep). 3206 */ 3207 void ata_pci_bmdma_init(struct ata_host *host) 3208 { 3209 struct device *gdev = host->dev; 3210 struct pci_dev *pdev = to_pci_dev(gdev); 3211 int i, rc; 3212 3213 /* No BAR4 allocation: No DMA */ 3214 if (pci_resource_start(pdev, 4) == 0) { 3215 ata_bmdma_nodma(host, "BAR4 is zero"); 3216 return; 3217 } 3218 3219 /* 3220 * Some controllers require BMDMA region to be initialized 3221 * even if DMA is not in use to clear IRQ status via 3222 * ->sff_irq_clear method. Try to initialize bmdma_addr 3223 * regardless of dma masks. 3224 */ 3225 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK); 3226 if (rc) 3227 ata_bmdma_nodma(host, "failed to set dma mask"); 3228 if (!rc) { 3229 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK); 3230 if (rc) 3231 ata_bmdma_nodma(host, 3232 "failed to set consistent dma mask"); 3233 } 3234 3235 /* request and iomap DMA region */ 3236 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3237 if (rc) { 3238 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3239 return; 3240 } 3241 host->iomap = pcim_iomap_table(pdev); 3242 3243 for (i = 0; i < 2; i++) { 3244 struct ata_port *ap = host->ports[i]; 3245 void __iomem *bmdma = host->iomap[4] + 8 * i; 3246 3247 if (ata_port_is_dummy(ap)) 3248 continue; 3249 3250 ap->ioaddr.bmdma_addr = bmdma; 3251 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3252 (ioread8(bmdma + 2) & 0x80)) 3253 host->flags |= ATA_HOST_SIMPLEX; 3254 3255 ata_port_desc(ap, "bmdma 0x%llx", 3256 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3257 } 3258 } 3259 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3260 3261 /** 3262 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3263 * @pdev: target PCI device 3264 * @ppi: array of port_info, must be enough for two ports 3265 * @r_host: out argument for the initialized ATA host 3266 * 3267 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3268 * resources and initialize it accordingly in one go. 3269 * 3270 * LOCKING: 3271 * Inherited from calling layer (may sleep). 3272 * 3273 * RETURNS: 3274 * 0 on success, -errno otherwise. 3275 */ 3276 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3277 const struct ata_port_info * const * ppi, 3278 struct ata_host **r_host) 3279 { 3280 int rc; 3281 3282 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3283 if (rc) 3284 return rc; 3285 3286 ata_pci_bmdma_init(*r_host); 3287 return 0; 3288 } 3289 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3290 3291 /** 3292 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3293 * @pdev: Controller to be initialized 3294 * @ppi: array of port_info, must be enough for two ports 3295 * @sht: scsi_host_template to use when registering the host 3296 * @host_priv: host private_data 3297 * @hflags: host flags 3298 * 3299 * This function is similar to ata_pci_sff_init_one() but also 3300 * takes care of BMDMA initialization. 3301 * 3302 * LOCKING: 3303 * Inherited from PCI layer (may sleep). 3304 * 3305 * RETURNS: 3306 * Zero on success, negative on errno-based value on error. 3307 */ 3308 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3309 const struct ata_port_info * const * ppi, 3310 struct scsi_host_template *sht, void *host_priv, 3311 int hflags) 3312 { 3313 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3314 } 3315 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3316 3317 #endif /* CONFIG_PCI */ 3318 #endif /* CONFIG_ATA_BMDMA */ 3319 3320 /** 3321 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3322 * @ap: Port to initialize 3323 * 3324 * Called on port allocation to initialize SFF/BMDMA specific 3325 * fields. 3326 * 3327 * LOCKING: 3328 * None. 3329 */ 3330 void ata_sff_port_init(struct ata_port *ap) 3331 { 3332 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3333 ap->ctl = ATA_DEVCTL_OBS; 3334 ap->last_ctl = 0xFF; 3335 } 3336 3337 int __init ata_sff_init(void) 3338 { 3339 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3340 if (!ata_sff_wq) 3341 return -ENOMEM; 3342 3343 return 0; 3344 } 3345 3346 void ata_sff_exit(void) 3347 { 3348 destroy_workqueue(ata_sff_wq); 3349 } 3350