1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-sff.c - helper library for PCI IDE BMDMA 4 * 5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2006 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/gfp.h> 17 #include <linux/pci.h> 18 #include <linux/module.h> 19 #include <linux/libata.h> 20 #include <linux/highmem.h> 21 #include <trace/events/libata.h> 22 #include "libata.h" 23 24 static struct workqueue_struct *ata_sff_wq; 25 26 const struct ata_port_operations ata_sff_port_ops = { 27 .inherits = &ata_base_port_ops, 28 29 .qc_prep = ata_noop_qc_prep, 30 .qc_issue = ata_sff_qc_issue, 31 .qc_fill_rtf = ata_sff_qc_fill_rtf, 32 33 .freeze = ata_sff_freeze, 34 .thaw = ata_sff_thaw, 35 .prereset = ata_sff_prereset, 36 .softreset = ata_sff_softreset, 37 .hardreset = sata_sff_hardreset, 38 .postreset = ata_sff_postreset, 39 .error_handler = ata_sff_error_handler, 40 41 .sff_dev_select = ata_sff_dev_select, 42 .sff_check_status = ata_sff_check_status, 43 .sff_tf_load = ata_sff_tf_load, 44 .sff_tf_read = ata_sff_tf_read, 45 .sff_exec_command = ata_sff_exec_command, 46 .sff_data_xfer = ata_sff_data_xfer, 47 .sff_drain_fifo = ata_sff_drain_fifo, 48 49 .lost_interrupt = ata_sff_lost_interrupt, 50 }; 51 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 52 53 /** 54 * ata_sff_check_status - Read device status reg & clear interrupt 55 * @ap: port where the device is 56 * 57 * Reads ATA taskfile status register for currently-selected device 58 * and return its value. This also clears pending interrupts 59 * from this device 60 * 61 * LOCKING: 62 * Inherited from caller. 63 */ 64 u8 ata_sff_check_status(struct ata_port *ap) 65 { 66 return ioread8(ap->ioaddr.status_addr); 67 } 68 EXPORT_SYMBOL_GPL(ata_sff_check_status); 69 70 /** 71 * ata_sff_altstatus - Read device alternate status reg 72 * @ap: port where the device is 73 * 74 * Reads ATA taskfile alternate status register for 75 * currently-selected device and return its value. 76 * 77 * Note: may NOT be used as the check_altstatus() entry in 78 * ata_port_operations. 79 * 80 * LOCKING: 81 * Inherited from caller. 82 */ 83 static u8 ata_sff_altstatus(struct ata_port *ap) 84 { 85 if (ap->ops->sff_check_altstatus) 86 return ap->ops->sff_check_altstatus(ap); 87 88 return ioread8(ap->ioaddr.altstatus_addr); 89 } 90 91 /** 92 * ata_sff_irq_status - Check if the device is busy 93 * @ap: port where the device is 94 * 95 * Determine if the port is currently busy. Uses altstatus 96 * if available in order to avoid clearing shared IRQ status 97 * when finding an IRQ source. Non ctl capable devices don't 98 * share interrupt lines fortunately for us. 99 * 100 * LOCKING: 101 * Inherited from caller. 102 */ 103 static u8 ata_sff_irq_status(struct ata_port *ap) 104 { 105 u8 status; 106 107 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 108 status = ata_sff_altstatus(ap); 109 /* Not us: We are busy */ 110 if (status & ATA_BUSY) 111 return status; 112 } 113 /* Clear INTRQ latch */ 114 status = ap->ops->sff_check_status(ap); 115 return status; 116 } 117 118 /** 119 * ata_sff_sync - Flush writes 120 * @ap: Port to wait for. 121 * 122 * CAUTION: 123 * If we have an mmio device with no ctl and no altstatus 124 * method this will fail. No such devices are known to exist. 125 * 126 * LOCKING: 127 * Inherited from caller. 128 */ 129 130 static void ata_sff_sync(struct ata_port *ap) 131 { 132 if (ap->ops->sff_check_altstatus) 133 ap->ops->sff_check_altstatus(ap); 134 else if (ap->ioaddr.altstatus_addr) 135 ioread8(ap->ioaddr.altstatus_addr); 136 } 137 138 /** 139 * ata_sff_pause - Flush writes and wait 400nS 140 * @ap: Port to pause for. 141 * 142 * CAUTION: 143 * If we have an mmio device with no ctl and no altstatus 144 * method this will fail. No such devices are known to exist. 145 * 146 * LOCKING: 147 * Inherited from caller. 148 */ 149 150 void ata_sff_pause(struct ata_port *ap) 151 { 152 ata_sff_sync(ap); 153 ndelay(400); 154 } 155 EXPORT_SYMBOL_GPL(ata_sff_pause); 156 157 /** 158 * ata_sff_dma_pause - Pause before commencing DMA 159 * @ap: Port to pause for. 160 * 161 * Perform I/O fencing and ensure sufficient cycle delays occur 162 * for the HDMA1:0 transition 163 */ 164 165 void ata_sff_dma_pause(struct ata_port *ap) 166 { 167 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 168 /* An altstatus read will cause the needed delay without 169 messing up the IRQ status */ 170 ata_sff_altstatus(ap); 171 return; 172 } 173 /* There are no DMA controllers without ctl. BUG here to ensure 174 we never violate the HDMA1:0 transition timing and risk 175 corruption. */ 176 BUG(); 177 } 178 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 179 180 /** 181 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 182 * @ap: port containing status register to be polled 183 * @tmout_pat: impatience timeout in msecs 184 * @tmout: overall timeout in msecs 185 * 186 * Sleep until ATA Status register bit BSY clears, 187 * or a timeout occurs. 188 * 189 * LOCKING: 190 * Kernel thread context (may sleep). 191 * 192 * RETURNS: 193 * 0 on success, -errno otherwise. 194 */ 195 int ata_sff_busy_sleep(struct ata_port *ap, 196 unsigned long tmout_pat, unsigned long tmout) 197 { 198 unsigned long timer_start, timeout; 199 u8 status; 200 201 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 202 timer_start = jiffies; 203 timeout = ata_deadline(timer_start, tmout_pat); 204 while (status != 0xff && (status & ATA_BUSY) && 205 time_before(jiffies, timeout)) { 206 ata_msleep(ap, 50); 207 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 208 } 209 210 if (status != 0xff && (status & ATA_BUSY)) 211 ata_port_warn(ap, 212 "port is slow to respond, please be patient (Status 0x%x)\n", 213 status); 214 215 timeout = ata_deadline(timer_start, tmout); 216 while (status != 0xff && (status & ATA_BUSY) && 217 time_before(jiffies, timeout)) { 218 ata_msleep(ap, 50); 219 status = ap->ops->sff_check_status(ap); 220 } 221 222 if (status == 0xff) 223 return -ENODEV; 224 225 if (status & ATA_BUSY) { 226 ata_port_err(ap, 227 "port failed to respond (%lu secs, Status 0x%x)\n", 228 DIV_ROUND_UP(tmout, 1000), status); 229 return -EBUSY; 230 } 231 232 return 0; 233 } 234 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 235 236 static int ata_sff_check_ready(struct ata_link *link) 237 { 238 u8 status = link->ap->ops->sff_check_status(link->ap); 239 240 return ata_check_ready(status); 241 } 242 243 /** 244 * ata_sff_wait_ready - sleep until BSY clears, or timeout 245 * @link: SFF link to wait ready status for 246 * @deadline: deadline jiffies for the operation 247 * 248 * Sleep until ATA Status register bit BSY clears, or timeout 249 * occurs. 250 * 251 * LOCKING: 252 * Kernel thread context (may sleep). 253 * 254 * RETURNS: 255 * 0 on success, -errno otherwise. 256 */ 257 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 258 { 259 return ata_wait_ready(link, deadline, ata_sff_check_ready); 260 } 261 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 262 263 /** 264 * ata_sff_set_devctl - Write device control reg 265 * @ap: port where the device is 266 * @ctl: value to write 267 * 268 * Writes ATA taskfile device control register. 269 * 270 * Note: may NOT be used as the sff_set_devctl() entry in 271 * ata_port_operations. 272 * 273 * LOCKING: 274 * Inherited from caller. 275 */ 276 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 277 { 278 if (ap->ops->sff_set_devctl) 279 ap->ops->sff_set_devctl(ap, ctl); 280 else 281 iowrite8(ctl, ap->ioaddr.ctl_addr); 282 } 283 284 /** 285 * ata_sff_dev_select - Select device 0/1 on ATA bus 286 * @ap: ATA channel to manipulate 287 * @device: ATA device (numbered from zero) to select 288 * 289 * Use the method defined in the ATA specification to 290 * make either device 0, or device 1, active on the 291 * ATA channel. Works with both PIO and MMIO. 292 * 293 * May be used as the dev_select() entry in ata_port_operations. 294 * 295 * LOCKING: 296 * caller. 297 */ 298 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 299 { 300 u8 tmp; 301 302 if (device == 0) 303 tmp = ATA_DEVICE_OBS; 304 else 305 tmp = ATA_DEVICE_OBS | ATA_DEV1; 306 307 iowrite8(tmp, ap->ioaddr.device_addr); 308 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 309 } 310 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 311 312 /** 313 * ata_dev_select - Select device 0/1 on ATA bus 314 * @ap: ATA channel to manipulate 315 * @device: ATA device (numbered from zero) to select 316 * @wait: non-zero to wait for Status register BSY bit to clear 317 * @can_sleep: non-zero if context allows sleeping 318 * 319 * Use the method defined in the ATA specification to 320 * make either device 0, or device 1, active on the 321 * ATA channel. 322 * 323 * This is a high-level version of ata_sff_dev_select(), which 324 * additionally provides the services of inserting the proper 325 * pauses and status polling, where needed. 326 * 327 * LOCKING: 328 * caller. 329 */ 330 static void ata_dev_select(struct ata_port *ap, unsigned int device, 331 unsigned int wait, unsigned int can_sleep) 332 { 333 if (wait) 334 ata_wait_idle(ap); 335 336 ap->ops->sff_dev_select(ap, device); 337 338 if (wait) { 339 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 340 ata_msleep(ap, 150); 341 ata_wait_idle(ap); 342 } 343 } 344 345 /** 346 * ata_sff_irq_on - Enable interrupts on a port. 347 * @ap: Port on which interrupts are enabled. 348 * 349 * Enable interrupts on a legacy IDE device using MMIO or PIO, 350 * wait for idle, clear any pending interrupts. 351 * 352 * Note: may NOT be used as the sff_irq_on() entry in 353 * ata_port_operations. 354 * 355 * LOCKING: 356 * Inherited from caller. 357 */ 358 void ata_sff_irq_on(struct ata_port *ap) 359 { 360 struct ata_ioports *ioaddr = &ap->ioaddr; 361 362 if (ap->ops->sff_irq_on) { 363 ap->ops->sff_irq_on(ap); 364 return; 365 } 366 367 ap->ctl &= ~ATA_NIEN; 368 ap->last_ctl = ap->ctl; 369 370 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 371 ata_sff_set_devctl(ap, ap->ctl); 372 ata_wait_idle(ap); 373 374 if (ap->ops->sff_irq_clear) 375 ap->ops->sff_irq_clear(ap); 376 } 377 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 378 379 /** 380 * ata_sff_tf_load - send taskfile registers to host controller 381 * @ap: Port to which output is sent 382 * @tf: ATA taskfile register set 383 * 384 * Outputs ATA taskfile to standard ATA host controller. 385 * 386 * LOCKING: 387 * Inherited from caller. 388 */ 389 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 390 { 391 struct ata_ioports *ioaddr = &ap->ioaddr; 392 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 393 394 if (tf->ctl != ap->last_ctl) { 395 if (ioaddr->ctl_addr) 396 iowrite8(tf->ctl, ioaddr->ctl_addr); 397 ap->last_ctl = tf->ctl; 398 ata_wait_idle(ap); 399 } 400 401 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 402 WARN_ON_ONCE(!ioaddr->ctl_addr); 403 iowrite8(tf->hob_feature, ioaddr->feature_addr); 404 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 405 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 406 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 407 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 408 } 409 410 if (is_addr) { 411 iowrite8(tf->feature, ioaddr->feature_addr); 412 iowrite8(tf->nsect, ioaddr->nsect_addr); 413 iowrite8(tf->lbal, ioaddr->lbal_addr); 414 iowrite8(tf->lbam, ioaddr->lbam_addr); 415 iowrite8(tf->lbah, ioaddr->lbah_addr); 416 } 417 418 if (tf->flags & ATA_TFLAG_DEVICE) 419 iowrite8(tf->device, ioaddr->device_addr); 420 421 ata_wait_idle(ap); 422 } 423 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 424 425 /** 426 * ata_sff_tf_read - input device's ATA taskfile shadow registers 427 * @ap: Port from which input is read 428 * @tf: ATA taskfile register set for storing input 429 * 430 * Reads ATA taskfile registers for currently-selected device 431 * into @tf. Assumes the device has a fully SFF compliant task file 432 * layout and behaviour. If you device does not (eg has a different 433 * status method) then you will need to provide a replacement tf_read 434 * 435 * LOCKING: 436 * Inherited from caller. 437 */ 438 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 439 { 440 struct ata_ioports *ioaddr = &ap->ioaddr; 441 442 tf->command = ata_sff_check_status(ap); 443 tf->feature = ioread8(ioaddr->error_addr); 444 tf->nsect = ioread8(ioaddr->nsect_addr); 445 tf->lbal = ioread8(ioaddr->lbal_addr); 446 tf->lbam = ioread8(ioaddr->lbam_addr); 447 tf->lbah = ioread8(ioaddr->lbah_addr); 448 tf->device = ioread8(ioaddr->device_addr); 449 450 if (tf->flags & ATA_TFLAG_LBA48) { 451 if (likely(ioaddr->ctl_addr)) { 452 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 453 tf->hob_feature = ioread8(ioaddr->error_addr); 454 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 455 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 456 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 457 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 458 iowrite8(tf->ctl, ioaddr->ctl_addr); 459 ap->last_ctl = tf->ctl; 460 } else 461 WARN_ON_ONCE(1); 462 } 463 } 464 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 465 466 /** 467 * ata_sff_exec_command - issue ATA command to host controller 468 * @ap: port to which command is being issued 469 * @tf: ATA taskfile register set 470 * 471 * Issues ATA command, with proper synchronization with interrupt 472 * handler / other threads. 473 * 474 * LOCKING: 475 * spin_lock_irqsave(host lock) 476 */ 477 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 478 { 479 iowrite8(tf->command, ap->ioaddr.command_addr); 480 ata_sff_pause(ap); 481 } 482 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 483 484 /** 485 * ata_tf_to_host - issue ATA taskfile to host controller 486 * @ap: port to which command is being issued 487 * @tf: ATA taskfile register set 488 * @tag: tag of the associated command 489 * 490 * Issues ATA taskfile register set to ATA host controller, 491 * with proper synchronization with interrupt handler and 492 * other threads. 493 * 494 * LOCKING: 495 * spin_lock_irqsave(host lock) 496 */ 497 static inline void ata_tf_to_host(struct ata_port *ap, 498 const struct ata_taskfile *tf, 499 unsigned int tag) 500 { 501 trace_ata_tf_load(ap, tf); 502 ap->ops->sff_tf_load(ap, tf); 503 trace_ata_exec_command(ap, tf, tag); 504 ap->ops->sff_exec_command(ap, tf); 505 } 506 507 /** 508 * ata_sff_data_xfer - Transfer data by PIO 509 * @qc: queued command 510 * @buf: data buffer 511 * @buflen: buffer length 512 * @rw: read/write 513 * 514 * Transfer data from/to the device data register by PIO. 515 * 516 * LOCKING: 517 * Inherited from caller. 518 * 519 * RETURNS: 520 * Bytes consumed. 521 */ 522 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, 523 unsigned int buflen, int rw) 524 { 525 struct ata_port *ap = qc->dev->link->ap; 526 void __iomem *data_addr = ap->ioaddr.data_addr; 527 unsigned int words = buflen >> 1; 528 529 /* Transfer multiple of 2 bytes */ 530 if (rw == READ) 531 ioread16_rep(data_addr, buf, words); 532 else 533 iowrite16_rep(data_addr, buf, words); 534 535 /* Transfer trailing byte, if any. */ 536 if (unlikely(buflen & 0x01)) { 537 unsigned char pad[2] = { }; 538 539 /* Point buf to the tail of buffer */ 540 buf += buflen - 1; 541 542 /* 543 * Use io*16_rep() accessors here as well to avoid pointlessly 544 * swapping bytes to and from on the big endian machines... 545 */ 546 if (rw == READ) { 547 ioread16_rep(data_addr, pad, 1); 548 *buf = pad[0]; 549 } else { 550 pad[0] = *buf; 551 iowrite16_rep(data_addr, pad, 1); 552 } 553 words++; 554 } 555 556 return words << 1; 557 } 558 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 559 560 /** 561 * ata_sff_data_xfer32 - Transfer data by PIO 562 * @qc: queued command 563 * @buf: data buffer 564 * @buflen: buffer length 565 * @rw: read/write 566 * 567 * Transfer data from/to the device data register by PIO using 32bit 568 * I/O operations. 569 * 570 * LOCKING: 571 * Inherited from caller. 572 * 573 * RETURNS: 574 * Bytes consumed. 575 */ 576 577 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, 578 unsigned int buflen, int rw) 579 { 580 struct ata_device *dev = qc->dev; 581 struct ata_port *ap = dev->link->ap; 582 void __iomem *data_addr = ap->ioaddr.data_addr; 583 unsigned int words = buflen >> 2; 584 int slop = buflen & 3; 585 586 if (!(ap->pflags & ATA_PFLAG_PIO32)) 587 return ata_sff_data_xfer(qc, buf, buflen, rw); 588 589 /* Transfer multiple of 4 bytes */ 590 if (rw == READ) 591 ioread32_rep(data_addr, buf, words); 592 else 593 iowrite32_rep(data_addr, buf, words); 594 595 /* Transfer trailing bytes, if any */ 596 if (unlikely(slop)) { 597 unsigned char pad[4] = { }; 598 599 /* Point buf to the tail of buffer */ 600 buf += buflen - slop; 601 602 /* 603 * Use io*_rep() accessors here as well to avoid pointlessly 604 * swapping bytes to and from on the big endian machines... 605 */ 606 if (rw == READ) { 607 if (slop < 3) 608 ioread16_rep(data_addr, pad, 1); 609 else 610 ioread32_rep(data_addr, pad, 1); 611 memcpy(buf, pad, slop); 612 } else { 613 memcpy(pad, buf, slop); 614 if (slop < 3) 615 iowrite16_rep(data_addr, pad, 1); 616 else 617 iowrite32_rep(data_addr, pad, 1); 618 } 619 } 620 return (buflen + 1) & ~1; 621 } 622 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 623 624 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page, 625 unsigned int offset, size_t xfer_size) 626 { 627 bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 628 unsigned char *buf; 629 630 buf = kmap_atomic(page); 631 qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write); 632 kunmap_atomic(buf); 633 634 if (!do_write && !PageSlab(page)) 635 flush_dcache_page(page); 636 } 637 638 /** 639 * ata_pio_sector - Transfer a sector of data. 640 * @qc: Command on going 641 * 642 * Transfer qc->sect_size bytes of data from/to the ATA device. 643 * 644 * LOCKING: 645 * Inherited from caller. 646 */ 647 static void ata_pio_sector(struct ata_queued_cmd *qc) 648 { 649 struct ata_port *ap = qc->ap; 650 struct page *page; 651 unsigned int offset; 652 653 if (!qc->cursg) { 654 qc->curbytes = qc->nbytes; 655 return; 656 } 657 if (qc->curbytes == qc->nbytes - qc->sect_size) 658 ap->hsm_task_state = HSM_ST_LAST; 659 660 page = sg_page(qc->cursg); 661 offset = qc->cursg->offset + qc->cursg_ofs; 662 663 /* get the current page and offset */ 664 page = nth_page(page, (offset >> PAGE_SHIFT)); 665 offset %= PAGE_SIZE; 666 667 trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size); 668 669 /* 670 * Split the transfer when it splits a page boundary. Note that the 671 * split still has to be dword aligned like all ATA data transfers. 672 */ 673 WARN_ON_ONCE(offset % 4); 674 if (offset + qc->sect_size > PAGE_SIZE) { 675 unsigned int split_len = PAGE_SIZE - offset; 676 677 ata_pio_xfer(qc, page, offset, split_len); 678 ata_pio_xfer(qc, nth_page(page, 1), 0, 679 qc->sect_size - split_len); 680 } else { 681 ata_pio_xfer(qc, page, offset, qc->sect_size); 682 } 683 684 qc->curbytes += qc->sect_size; 685 qc->cursg_ofs += qc->sect_size; 686 687 if (qc->cursg_ofs == qc->cursg->length) { 688 qc->cursg = sg_next(qc->cursg); 689 if (!qc->cursg) 690 ap->hsm_task_state = HSM_ST_LAST; 691 qc->cursg_ofs = 0; 692 } 693 } 694 695 /** 696 * ata_pio_sectors - Transfer one or many sectors. 697 * @qc: Command on going 698 * 699 * Transfer one or many sectors of data from/to the 700 * ATA device for the DRQ request. 701 * 702 * LOCKING: 703 * Inherited from caller. 704 */ 705 static void ata_pio_sectors(struct ata_queued_cmd *qc) 706 { 707 if (is_multi_taskfile(&qc->tf)) { 708 /* READ/WRITE MULTIPLE */ 709 unsigned int nsect; 710 711 WARN_ON_ONCE(qc->dev->multi_count == 0); 712 713 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 714 qc->dev->multi_count); 715 while (nsect--) 716 ata_pio_sector(qc); 717 } else 718 ata_pio_sector(qc); 719 720 ata_sff_sync(qc->ap); /* flush */ 721 } 722 723 /** 724 * atapi_send_cdb - Write CDB bytes to hardware 725 * @ap: Port to which ATAPI device is attached. 726 * @qc: Taskfile currently active 727 * 728 * When device has indicated its readiness to accept 729 * a CDB, this function is called. Send the CDB. 730 * 731 * LOCKING: 732 * caller. 733 */ 734 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 735 { 736 /* send SCSI cdb */ 737 trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len); 738 WARN_ON_ONCE(qc->dev->cdb_len < 12); 739 740 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); 741 ata_sff_sync(ap); 742 /* FIXME: If the CDB is for DMA do we need to do the transition delay 743 or is bmdma_start guaranteed to do it ? */ 744 switch (qc->tf.protocol) { 745 case ATAPI_PROT_PIO: 746 ap->hsm_task_state = HSM_ST; 747 break; 748 case ATAPI_PROT_NODATA: 749 ap->hsm_task_state = HSM_ST_LAST; 750 break; 751 #ifdef CONFIG_ATA_BMDMA 752 case ATAPI_PROT_DMA: 753 ap->hsm_task_state = HSM_ST_LAST; 754 /* initiate bmdma */ 755 trace_ata_bmdma_start(ap, &qc->tf, qc->tag); 756 ap->ops->bmdma_start(qc); 757 break; 758 #endif /* CONFIG_ATA_BMDMA */ 759 default: 760 BUG(); 761 } 762 } 763 764 /** 765 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 766 * @qc: Command on going 767 * @bytes: number of bytes 768 * 769 * Transfer Transfer data from/to the ATAPI device. 770 * 771 * LOCKING: 772 * Inherited from caller. 773 * 774 */ 775 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 776 { 777 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 778 struct ata_port *ap = qc->ap; 779 struct ata_device *dev = qc->dev; 780 struct ata_eh_info *ehi = &dev->link->eh_info; 781 struct scatterlist *sg; 782 struct page *page; 783 unsigned char *buf; 784 unsigned int offset, count, consumed; 785 786 next_sg: 787 sg = qc->cursg; 788 if (unlikely(!sg)) { 789 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 790 "buf=%u cur=%u bytes=%u", 791 qc->nbytes, qc->curbytes, bytes); 792 return -1; 793 } 794 795 page = sg_page(sg); 796 offset = sg->offset + qc->cursg_ofs; 797 798 /* get the current page and offset */ 799 page = nth_page(page, (offset >> PAGE_SHIFT)); 800 offset %= PAGE_SIZE; 801 802 /* don't overrun current sg */ 803 count = min(sg->length - qc->cursg_ofs, bytes); 804 805 /* don't cross page boundaries */ 806 count = min(count, (unsigned int)PAGE_SIZE - offset); 807 808 trace_atapi_pio_transfer_data(qc, offset, count); 809 810 /* do the actual data transfer */ 811 buf = kmap_atomic(page); 812 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw); 813 kunmap_atomic(buf); 814 815 bytes -= min(bytes, consumed); 816 qc->curbytes += count; 817 qc->cursg_ofs += count; 818 819 if (qc->cursg_ofs == sg->length) { 820 qc->cursg = sg_next(qc->cursg); 821 qc->cursg_ofs = 0; 822 } 823 824 /* 825 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 826 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 827 * check correctly as it doesn't know if it is the last request being 828 * made. Somebody should implement a proper sanity check. 829 */ 830 if (bytes) 831 goto next_sg; 832 return 0; 833 } 834 835 /** 836 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 837 * @qc: Command on going 838 * 839 * Transfer Transfer data from/to the ATAPI device. 840 * 841 * LOCKING: 842 * Inherited from caller. 843 */ 844 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 845 { 846 struct ata_port *ap = qc->ap; 847 struct ata_device *dev = qc->dev; 848 struct ata_eh_info *ehi = &dev->link->eh_info; 849 unsigned int ireason, bc_lo, bc_hi, bytes; 850 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 851 852 /* Abuse qc->result_tf for temp storage of intermediate TF 853 * here to save some kernel stack usage. 854 * For normal completion, qc->result_tf is not relevant. For 855 * error, qc->result_tf is later overwritten by ata_qc_complete(). 856 * So, the correctness of qc->result_tf is not affected. 857 */ 858 ap->ops->sff_tf_read(ap, &qc->result_tf); 859 ireason = qc->result_tf.nsect; 860 bc_lo = qc->result_tf.lbam; 861 bc_hi = qc->result_tf.lbah; 862 bytes = (bc_hi << 8) | bc_lo; 863 864 /* shall be cleared to zero, indicating xfer of data */ 865 if (unlikely(ireason & ATAPI_COD)) 866 goto atapi_check; 867 868 /* make sure transfer direction matches expected */ 869 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 870 if (unlikely(do_write != i_write)) 871 goto atapi_check; 872 873 if (unlikely(!bytes)) 874 goto atapi_check; 875 876 if (unlikely(__atapi_pio_bytes(qc, bytes))) 877 goto err_out; 878 ata_sff_sync(ap); /* flush */ 879 880 return; 881 882 atapi_check: 883 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 884 ireason, bytes); 885 err_out: 886 qc->err_mask |= AC_ERR_HSM; 887 ap->hsm_task_state = HSM_ST_ERR; 888 } 889 890 /** 891 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 892 * @ap: the target ata_port 893 * @qc: qc on going 894 * 895 * RETURNS: 896 * 1 if ok in workqueue, 0 otherwise. 897 */ 898 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 899 struct ata_queued_cmd *qc) 900 { 901 if (qc->tf.flags & ATA_TFLAG_POLLING) 902 return 1; 903 904 if (ap->hsm_task_state == HSM_ST_FIRST) { 905 if (qc->tf.protocol == ATA_PROT_PIO && 906 (qc->tf.flags & ATA_TFLAG_WRITE)) 907 return 1; 908 909 if (ata_is_atapi(qc->tf.protocol) && 910 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 911 return 1; 912 } 913 914 return 0; 915 } 916 917 /** 918 * ata_hsm_qc_complete - finish a qc running on standard HSM 919 * @qc: Command to complete 920 * @in_wq: 1 if called from workqueue, 0 otherwise 921 * 922 * Finish @qc which is running on standard HSM. 923 * 924 * LOCKING: 925 * If @in_wq is zero, spin_lock_irqsave(host lock). 926 * Otherwise, none on entry and grabs host lock. 927 */ 928 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 929 { 930 struct ata_port *ap = qc->ap; 931 932 if (ap->ops->error_handler) { 933 if (in_wq) { 934 /* EH might have kicked in while host lock is 935 * released. 936 */ 937 qc = ata_qc_from_tag(ap, qc->tag); 938 if (qc) { 939 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 940 ata_sff_irq_on(ap); 941 ata_qc_complete(qc); 942 } else 943 ata_port_freeze(ap); 944 } 945 } else { 946 if (likely(!(qc->err_mask & AC_ERR_HSM))) 947 ata_qc_complete(qc); 948 else 949 ata_port_freeze(ap); 950 } 951 } else { 952 if (in_wq) { 953 ata_sff_irq_on(ap); 954 ata_qc_complete(qc); 955 } else 956 ata_qc_complete(qc); 957 } 958 } 959 960 /** 961 * ata_sff_hsm_move - move the HSM to the next state. 962 * @ap: the target ata_port 963 * @qc: qc on going 964 * @status: current device status 965 * @in_wq: 1 if called from workqueue, 0 otherwise 966 * 967 * RETURNS: 968 * 1 when poll next status needed, 0 otherwise. 969 */ 970 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 971 u8 status, int in_wq) 972 { 973 struct ata_link *link = qc->dev->link; 974 struct ata_eh_info *ehi = &link->eh_info; 975 int poll_next; 976 977 lockdep_assert_held(ap->lock); 978 979 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 980 981 /* Make sure ata_sff_qc_issue() does not throw things 982 * like DMA polling into the workqueue. Notice that 983 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 984 */ 985 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 986 987 fsm_start: 988 trace_ata_sff_hsm_state(qc, status); 989 990 switch (ap->hsm_task_state) { 991 case HSM_ST_FIRST: 992 /* Send first data block or PACKET CDB */ 993 994 /* If polling, we will stay in the work queue after 995 * sending the data. Otherwise, interrupt handler 996 * takes over after sending the data. 997 */ 998 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 999 1000 /* check device status */ 1001 if (unlikely((status & ATA_DRQ) == 0)) { 1002 /* handle BSY=0, DRQ=0 as error */ 1003 if (likely(status & (ATA_ERR | ATA_DF))) 1004 /* device stops HSM for abort/error */ 1005 qc->err_mask |= AC_ERR_DEV; 1006 else { 1007 /* HSM violation. Let EH handle this */ 1008 ata_ehi_push_desc(ehi, 1009 "ST_FIRST: !(DRQ|ERR|DF)"); 1010 qc->err_mask |= AC_ERR_HSM; 1011 } 1012 1013 ap->hsm_task_state = HSM_ST_ERR; 1014 goto fsm_start; 1015 } 1016 1017 /* Device should not ask for data transfer (DRQ=1) 1018 * when it finds something wrong. 1019 * We ignore DRQ here and stop the HSM by 1020 * changing hsm_task_state to HSM_ST_ERR and 1021 * let the EH abort the command or reset the device. 1022 */ 1023 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1024 /* Some ATAPI tape drives forget to clear the ERR bit 1025 * when doing the next command (mostly request sense). 1026 * We ignore ERR here to workaround and proceed sending 1027 * the CDB. 1028 */ 1029 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1030 ata_ehi_push_desc(ehi, "ST_FIRST: " 1031 "DRQ=1 with device error, " 1032 "dev_stat 0x%X", status); 1033 qc->err_mask |= AC_ERR_HSM; 1034 ap->hsm_task_state = HSM_ST_ERR; 1035 goto fsm_start; 1036 } 1037 } 1038 1039 if (qc->tf.protocol == ATA_PROT_PIO) { 1040 /* PIO data out protocol. 1041 * send first data block. 1042 */ 1043 1044 /* ata_pio_sectors() might change the state 1045 * to HSM_ST_LAST. so, the state is changed here 1046 * before ata_pio_sectors(). 1047 */ 1048 ap->hsm_task_state = HSM_ST; 1049 ata_pio_sectors(qc); 1050 } else 1051 /* send CDB */ 1052 atapi_send_cdb(ap, qc); 1053 1054 /* if polling, ata_sff_pio_task() handles the rest. 1055 * otherwise, interrupt handler takes over from here. 1056 */ 1057 break; 1058 1059 case HSM_ST: 1060 /* complete command or read/write the data register */ 1061 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1062 /* ATAPI PIO protocol */ 1063 if ((status & ATA_DRQ) == 0) { 1064 /* No more data to transfer or device error. 1065 * Device error will be tagged in HSM_ST_LAST. 1066 */ 1067 ap->hsm_task_state = HSM_ST_LAST; 1068 goto fsm_start; 1069 } 1070 1071 /* Device should not ask for data transfer (DRQ=1) 1072 * when it finds something wrong. 1073 * We ignore DRQ here and stop the HSM by 1074 * changing hsm_task_state to HSM_ST_ERR and 1075 * let the EH abort the command or reset the device. 1076 */ 1077 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1078 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1079 "DRQ=1 with device error, " 1080 "dev_stat 0x%X", status); 1081 qc->err_mask |= AC_ERR_HSM; 1082 ap->hsm_task_state = HSM_ST_ERR; 1083 goto fsm_start; 1084 } 1085 1086 atapi_pio_bytes(qc); 1087 1088 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1089 /* bad ireason reported by device */ 1090 goto fsm_start; 1091 1092 } else { 1093 /* ATA PIO protocol */ 1094 if (unlikely((status & ATA_DRQ) == 0)) { 1095 /* handle BSY=0, DRQ=0 as error */ 1096 if (likely(status & (ATA_ERR | ATA_DF))) { 1097 /* device stops HSM for abort/error */ 1098 qc->err_mask |= AC_ERR_DEV; 1099 1100 /* If diagnostic failed and this is 1101 * IDENTIFY, it's likely a phantom 1102 * device. Mark hint. 1103 */ 1104 if (qc->dev->horkage & 1105 ATA_HORKAGE_DIAGNOSTIC) 1106 qc->err_mask |= 1107 AC_ERR_NODEV_HINT; 1108 } else { 1109 /* HSM violation. Let EH handle this. 1110 * Phantom devices also trigger this 1111 * condition. Mark hint. 1112 */ 1113 ata_ehi_push_desc(ehi, "ST-ATA: " 1114 "DRQ=0 without device error, " 1115 "dev_stat 0x%X", status); 1116 qc->err_mask |= AC_ERR_HSM | 1117 AC_ERR_NODEV_HINT; 1118 } 1119 1120 ap->hsm_task_state = HSM_ST_ERR; 1121 goto fsm_start; 1122 } 1123 1124 /* For PIO reads, some devices may ask for 1125 * data transfer (DRQ=1) alone with ERR=1. 1126 * We respect DRQ here and transfer one 1127 * block of junk data before changing the 1128 * hsm_task_state to HSM_ST_ERR. 1129 * 1130 * For PIO writes, ERR=1 DRQ=1 doesn't make 1131 * sense since the data block has been 1132 * transferred to the device. 1133 */ 1134 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1135 /* data might be corrputed */ 1136 qc->err_mask |= AC_ERR_DEV; 1137 1138 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1139 ata_pio_sectors(qc); 1140 status = ata_wait_idle(ap); 1141 } 1142 1143 if (status & (ATA_BUSY | ATA_DRQ)) { 1144 ata_ehi_push_desc(ehi, "ST-ATA: " 1145 "BUSY|DRQ persists on ERR|DF, " 1146 "dev_stat 0x%X", status); 1147 qc->err_mask |= AC_ERR_HSM; 1148 } 1149 1150 /* There are oddball controllers with 1151 * status register stuck at 0x7f and 1152 * lbal/m/h at zero which makes it 1153 * pass all other presence detection 1154 * mechanisms we have. Set NODEV_HINT 1155 * for it. Kernel bz#7241. 1156 */ 1157 if (status == 0x7f) 1158 qc->err_mask |= AC_ERR_NODEV_HINT; 1159 1160 /* ata_pio_sectors() might change the 1161 * state to HSM_ST_LAST. so, the state 1162 * is changed after ata_pio_sectors(). 1163 */ 1164 ap->hsm_task_state = HSM_ST_ERR; 1165 goto fsm_start; 1166 } 1167 1168 ata_pio_sectors(qc); 1169 1170 if (ap->hsm_task_state == HSM_ST_LAST && 1171 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1172 /* all data read */ 1173 status = ata_wait_idle(ap); 1174 goto fsm_start; 1175 } 1176 } 1177 1178 poll_next = 1; 1179 break; 1180 1181 case HSM_ST_LAST: 1182 if (unlikely(!ata_ok(status))) { 1183 qc->err_mask |= __ac_err_mask(status); 1184 ap->hsm_task_state = HSM_ST_ERR; 1185 goto fsm_start; 1186 } 1187 1188 /* no more data to transfer */ 1189 trace_ata_sff_hsm_command_complete(qc, status); 1190 1191 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1192 1193 ap->hsm_task_state = HSM_ST_IDLE; 1194 1195 /* complete taskfile transaction */ 1196 ata_hsm_qc_complete(qc, in_wq); 1197 1198 poll_next = 0; 1199 break; 1200 1201 case HSM_ST_ERR: 1202 ap->hsm_task_state = HSM_ST_IDLE; 1203 1204 /* complete taskfile transaction */ 1205 ata_hsm_qc_complete(qc, in_wq); 1206 1207 poll_next = 0; 1208 break; 1209 default: 1210 poll_next = 0; 1211 WARN(true, "ata%d: SFF host state machine in invalid state %d", 1212 ap->print_id, ap->hsm_task_state); 1213 } 1214 1215 return poll_next; 1216 } 1217 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1218 1219 void ata_sff_queue_work(struct work_struct *work) 1220 { 1221 queue_work(ata_sff_wq, work); 1222 } 1223 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1224 1225 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1226 { 1227 queue_delayed_work(ata_sff_wq, dwork, delay); 1228 } 1229 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1230 1231 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1232 { 1233 struct ata_port *ap = link->ap; 1234 1235 WARN_ON((ap->sff_pio_task_link != NULL) && 1236 (ap->sff_pio_task_link != link)); 1237 ap->sff_pio_task_link = link; 1238 1239 /* may fail if ata_sff_flush_pio_task() in progress */ 1240 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1241 } 1242 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1243 1244 void ata_sff_flush_pio_task(struct ata_port *ap) 1245 { 1246 trace_ata_sff_flush_pio_task(ap); 1247 1248 cancel_delayed_work_sync(&ap->sff_pio_task); 1249 1250 /* 1251 * We wanna reset the HSM state to IDLE. If we do so without 1252 * grabbing the port lock, critical sections protected by it which 1253 * expect the HSM state to stay stable may get surprised. For 1254 * example, we may set IDLE in between the time 1255 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1256 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1257 */ 1258 spin_lock_irq(ap->lock); 1259 ap->hsm_task_state = HSM_ST_IDLE; 1260 spin_unlock_irq(ap->lock); 1261 1262 ap->sff_pio_task_link = NULL; 1263 } 1264 1265 static void ata_sff_pio_task(struct work_struct *work) 1266 { 1267 struct ata_port *ap = 1268 container_of(work, struct ata_port, sff_pio_task.work); 1269 struct ata_link *link = ap->sff_pio_task_link; 1270 struct ata_queued_cmd *qc; 1271 u8 status; 1272 int poll_next; 1273 1274 spin_lock_irq(ap->lock); 1275 1276 BUG_ON(ap->sff_pio_task_link == NULL); 1277 /* qc can be NULL if timeout occurred */ 1278 qc = ata_qc_from_tag(ap, link->active_tag); 1279 if (!qc) { 1280 ap->sff_pio_task_link = NULL; 1281 goto out_unlock; 1282 } 1283 1284 fsm_start: 1285 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1286 1287 /* 1288 * This is purely heuristic. This is a fast path. 1289 * Sometimes when we enter, BSY will be cleared in 1290 * a chk-status or two. If not, the drive is probably seeking 1291 * or something. Snooze for a couple msecs, then 1292 * chk-status again. If still busy, queue delayed work. 1293 */ 1294 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1295 if (status & ATA_BUSY) { 1296 spin_unlock_irq(ap->lock); 1297 ata_msleep(ap, 2); 1298 spin_lock_irq(ap->lock); 1299 1300 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1301 if (status & ATA_BUSY) { 1302 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1303 goto out_unlock; 1304 } 1305 } 1306 1307 /* 1308 * hsm_move() may trigger another command to be processed. 1309 * clean the link beforehand. 1310 */ 1311 ap->sff_pio_task_link = NULL; 1312 /* move the HSM */ 1313 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1314 1315 /* another command or interrupt handler 1316 * may be running at this point. 1317 */ 1318 if (poll_next) 1319 goto fsm_start; 1320 out_unlock: 1321 spin_unlock_irq(ap->lock); 1322 } 1323 1324 /** 1325 * ata_sff_qc_issue - issue taskfile to a SFF controller 1326 * @qc: command to issue to device 1327 * 1328 * This function issues a PIO or NODATA command to a SFF 1329 * controller. 1330 * 1331 * LOCKING: 1332 * spin_lock_irqsave(host lock) 1333 * 1334 * RETURNS: 1335 * Zero on success, AC_ERR_* mask on failure 1336 */ 1337 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1338 { 1339 struct ata_port *ap = qc->ap; 1340 struct ata_link *link = qc->dev->link; 1341 1342 /* Use polling pio if the LLD doesn't handle 1343 * interrupt driven pio and atapi CDB interrupt. 1344 */ 1345 if (ap->flags & ATA_FLAG_PIO_POLLING) 1346 qc->tf.flags |= ATA_TFLAG_POLLING; 1347 1348 /* select the device */ 1349 ata_dev_select(ap, qc->dev->devno, 1, 0); 1350 1351 /* start the command */ 1352 switch (qc->tf.protocol) { 1353 case ATA_PROT_NODATA: 1354 if (qc->tf.flags & ATA_TFLAG_POLLING) 1355 ata_qc_set_polling(qc); 1356 1357 ata_tf_to_host(ap, &qc->tf, qc->tag); 1358 ap->hsm_task_state = HSM_ST_LAST; 1359 1360 if (qc->tf.flags & ATA_TFLAG_POLLING) 1361 ata_sff_queue_pio_task(link, 0); 1362 1363 break; 1364 1365 case ATA_PROT_PIO: 1366 if (qc->tf.flags & ATA_TFLAG_POLLING) 1367 ata_qc_set_polling(qc); 1368 1369 ata_tf_to_host(ap, &qc->tf, qc->tag); 1370 1371 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1372 /* PIO data out protocol */ 1373 ap->hsm_task_state = HSM_ST_FIRST; 1374 ata_sff_queue_pio_task(link, 0); 1375 1376 /* always send first data block using the 1377 * ata_sff_pio_task() codepath. 1378 */ 1379 } else { 1380 /* PIO data in protocol */ 1381 ap->hsm_task_state = HSM_ST; 1382 1383 if (qc->tf.flags & ATA_TFLAG_POLLING) 1384 ata_sff_queue_pio_task(link, 0); 1385 1386 /* if polling, ata_sff_pio_task() handles the 1387 * rest. otherwise, interrupt handler takes 1388 * over from here. 1389 */ 1390 } 1391 1392 break; 1393 1394 case ATAPI_PROT_PIO: 1395 case ATAPI_PROT_NODATA: 1396 if (qc->tf.flags & ATA_TFLAG_POLLING) 1397 ata_qc_set_polling(qc); 1398 1399 ata_tf_to_host(ap, &qc->tf, qc->tag); 1400 1401 ap->hsm_task_state = HSM_ST_FIRST; 1402 1403 /* send cdb by polling if no cdb interrupt */ 1404 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1405 (qc->tf.flags & ATA_TFLAG_POLLING)) 1406 ata_sff_queue_pio_task(link, 0); 1407 break; 1408 1409 default: 1410 return AC_ERR_SYSTEM; 1411 } 1412 1413 return 0; 1414 } 1415 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1416 1417 /** 1418 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1419 * @qc: qc to fill result TF for 1420 * 1421 * @qc is finished and result TF needs to be filled. Fill it 1422 * using ->sff_tf_read. 1423 * 1424 * LOCKING: 1425 * spin_lock_irqsave(host lock) 1426 * 1427 * RETURNS: 1428 * true indicating that result TF is successfully filled. 1429 */ 1430 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1431 { 1432 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1433 return true; 1434 } 1435 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1436 1437 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1438 { 1439 ap->stats.idle_irq++; 1440 1441 #ifdef ATA_IRQ_TRAP 1442 if ((ap->stats.idle_irq % 1000) == 0) { 1443 ap->ops->sff_check_status(ap); 1444 if (ap->ops->sff_irq_clear) 1445 ap->ops->sff_irq_clear(ap); 1446 ata_port_warn(ap, "irq trap\n"); 1447 return 1; 1448 } 1449 #endif 1450 return 0; /* irq not handled */ 1451 } 1452 1453 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1454 struct ata_queued_cmd *qc, 1455 bool hsmv_on_idle) 1456 { 1457 u8 status; 1458 1459 trace_ata_sff_port_intr(qc, hsmv_on_idle); 1460 1461 /* Check whether we are expecting interrupt in this state */ 1462 switch (ap->hsm_task_state) { 1463 case HSM_ST_FIRST: 1464 /* Some pre-ATAPI-4 devices assert INTRQ 1465 * at this state when ready to receive CDB. 1466 */ 1467 1468 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1469 * The flag was turned on only for atapi devices. No 1470 * need to check ata_is_atapi(qc->tf.protocol) again. 1471 */ 1472 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1473 return ata_sff_idle_irq(ap); 1474 break; 1475 case HSM_ST_IDLE: 1476 return ata_sff_idle_irq(ap); 1477 default: 1478 break; 1479 } 1480 1481 /* check main status, clearing INTRQ if needed */ 1482 status = ata_sff_irq_status(ap); 1483 if (status & ATA_BUSY) { 1484 if (hsmv_on_idle) { 1485 /* BMDMA engine is already stopped, we're screwed */ 1486 qc->err_mask |= AC_ERR_HSM; 1487 ap->hsm_task_state = HSM_ST_ERR; 1488 } else 1489 return ata_sff_idle_irq(ap); 1490 } 1491 1492 /* clear irq events */ 1493 if (ap->ops->sff_irq_clear) 1494 ap->ops->sff_irq_clear(ap); 1495 1496 ata_sff_hsm_move(ap, qc, status, 0); 1497 1498 return 1; /* irq handled */ 1499 } 1500 1501 /** 1502 * ata_sff_port_intr - Handle SFF port interrupt 1503 * @ap: Port on which interrupt arrived (possibly...) 1504 * @qc: Taskfile currently active in engine 1505 * 1506 * Handle port interrupt for given queued command. 1507 * 1508 * LOCKING: 1509 * spin_lock_irqsave(host lock) 1510 * 1511 * RETURNS: 1512 * One if interrupt was handled, zero if not (shared irq). 1513 */ 1514 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1515 { 1516 return __ata_sff_port_intr(ap, qc, false); 1517 } 1518 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1519 1520 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1521 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1522 { 1523 struct ata_host *host = dev_instance; 1524 bool retried = false; 1525 unsigned int i; 1526 unsigned int handled, idle, polling; 1527 unsigned long flags; 1528 1529 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1530 spin_lock_irqsave(&host->lock, flags); 1531 1532 retry: 1533 handled = idle = polling = 0; 1534 for (i = 0; i < host->n_ports; i++) { 1535 struct ata_port *ap = host->ports[i]; 1536 struct ata_queued_cmd *qc; 1537 1538 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1539 if (qc) { 1540 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1541 handled |= port_intr(ap, qc); 1542 else 1543 polling |= 1 << i; 1544 } else 1545 idle |= 1 << i; 1546 } 1547 1548 /* 1549 * If no port was expecting IRQ but the controller is actually 1550 * asserting IRQ line, nobody cared will ensue. Check IRQ 1551 * pending status if available and clear spurious IRQ. 1552 */ 1553 if (!handled && !retried) { 1554 bool retry = false; 1555 1556 for (i = 0; i < host->n_ports; i++) { 1557 struct ata_port *ap = host->ports[i]; 1558 1559 if (polling & (1 << i)) 1560 continue; 1561 1562 if (!ap->ops->sff_irq_check || 1563 !ap->ops->sff_irq_check(ap)) 1564 continue; 1565 1566 if (idle & (1 << i)) { 1567 ap->ops->sff_check_status(ap); 1568 if (ap->ops->sff_irq_clear) 1569 ap->ops->sff_irq_clear(ap); 1570 } else { 1571 /* clear INTRQ and check if BUSY cleared */ 1572 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1573 retry |= true; 1574 /* 1575 * With command in flight, we can't do 1576 * sff_irq_clear() w/o racing with completion. 1577 */ 1578 } 1579 } 1580 1581 if (retry) { 1582 retried = true; 1583 goto retry; 1584 } 1585 } 1586 1587 spin_unlock_irqrestore(&host->lock, flags); 1588 1589 return IRQ_RETVAL(handled); 1590 } 1591 1592 /** 1593 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1594 * @irq: irq line (unused) 1595 * @dev_instance: pointer to our ata_host information structure 1596 * 1597 * Default interrupt handler for PCI IDE devices. Calls 1598 * ata_sff_port_intr() for each port that is not disabled. 1599 * 1600 * LOCKING: 1601 * Obtains host lock during operation. 1602 * 1603 * RETURNS: 1604 * IRQ_NONE or IRQ_HANDLED. 1605 */ 1606 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1607 { 1608 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1609 } 1610 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1611 1612 /** 1613 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1614 * @ap: port that appears to have timed out 1615 * 1616 * Called from the libata error handlers when the core code suspects 1617 * an interrupt has been lost. If it has complete anything we can and 1618 * then return. Interface must support altstatus for this faster 1619 * recovery to occur. 1620 * 1621 * Locking: 1622 * Caller holds host lock 1623 */ 1624 1625 void ata_sff_lost_interrupt(struct ata_port *ap) 1626 { 1627 u8 status; 1628 struct ata_queued_cmd *qc; 1629 1630 /* Only one outstanding command per SFF channel */ 1631 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1632 /* We cannot lose an interrupt on a non-existent or polled command */ 1633 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1634 return; 1635 /* See if the controller thinks it is still busy - if so the command 1636 isn't a lost IRQ but is still in progress */ 1637 status = ata_sff_altstatus(ap); 1638 if (status & ATA_BUSY) 1639 return; 1640 1641 /* There was a command running, we are no longer busy and we have 1642 no interrupt. */ 1643 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", 1644 status); 1645 /* Run the host interrupt logic as if the interrupt had not been 1646 lost */ 1647 ata_sff_port_intr(ap, qc); 1648 } 1649 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1650 1651 /** 1652 * ata_sff_freeze - Freeze SFF controller port 1653 * @ap: port to freeze 1654 * 1655 * Freeze SFF controller port. 1656 * 1657 * LOCKING: 1658 * Inherited from caller. 1659 */ 1660 void ata_sff_freeze(struct ata_port *ap) 1661 { 1662 ap->ctl |= ATA_NIEN; 1663 ap->last_ctl = ap->ctl; 1664 1665 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1666 ata_sff_set_devctl(ap, ap->ctl); 1667 1668 /* Under certain circumstances, some controllers raise IRQ on 1669 * ATA_NIEN manipulation. Also, many controllers fail to mask 1670 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1671 */ 1672 ap->ops->sff_check_status(ap); 1673 1674 if (ap->ops->sff_irq_clear) 1675 ap->ops->sff_irq_clear(ap); 1676 } 1677 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1678 1679 /** 1680 * ata_sff_thaw - Thaw SFF controller port 1681 * @ap: port to thaw 1682 * 1683 * Thaw SFF controller port. 1684 * 1685 * LOCKING: 1686 * Inherited from caller. 1687 */ 1688 void ata_sff_thaw(struct ata_port *ap) 1689 { 1690 /* clear & re-enable interrupts */ 1691 ap->ops->sff_check_status(ap); 1692 if (ap->ops->sff_irq_clear) 1693 ap->ops->sff_irq_clear(ap); 1694 ata_sff_irq_on(ap); 1695 } 1696 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1697 1698 /** 1699 * ata_sff_prereset - prepare SFF link for reset 1700 * @link: SFF link to be reset 1701 * @deadline: deadline jiffies for the operation 1702 * 1703 * SFF link @link is about to be reset. Initialize it. It first 1704 * calls ata_std_prereset() and wait for !BSY if the port is 1705 * being softreset. 1706 * 1707 * LOCKING: 1708 * Kernel thread context (may sleep) 1709 * 1710 * RETURNS: 1711 * 0 on success, -errno otherwise. 1712 */ 1713 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1714 { 1715 struct ata_eh_context *ehc = &link->eh_context; 1716 int rc; 1717 1718 rc = ata_std_prereset(link, deadline); 1719 if (rc) 1720 return rc; 1721 1722 /* if we're about to do hardreset, nothing more to do */ 1723 if (ehc->i.action & ATA_EH_HARDRESET) 1724 return 0; 1725 1726 /* wait for !BSY if we don't know that no device is attached */ 1727 if (!ata_link_offline(link)) { 1728 rc = ata_sff_wait_ready(link, deadline); 1729 if (rc && rc != -ENODEV) { 1730 ata_link_warn(link, 1731 "device not ready (errno=%d), forcing hardreset\n", 1732 rc); 1733 ehc->i.action |= ATA_EH_HARDRESET; 1734 } 1735 } 1736 1737 return 0; 1738 } 1739 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1740 1741 /** 1742 * ata_devchk - PATA device presence detection 1743 * @ap: ATA channel to examine 1744 * @device: Device to examine (starting at zero) 1745 * 1746 * This technique was originally described in 1747 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1748 * later found its way into the ATA/ATAPI spec. 1749 * 1750 * Write a pattern to the ATA shadow registers, 1751 * and if a device is present, it will respond by 1752 * correctly storing and echoing back the 1753 * ATA shadow register contents. 1754 * 1755 * LOCKING: 1756 * caller. 1757 */ 1758 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1759 { 1760 struct ata_ioports *ioaddr = &ap->ioaddr; 1761 u8 nsect, lbal; 1762 1763 ap->ops->sff_dev_select(ap, device); 1764 1765 iowrite8(0x55, ioaddr->nsect_addr); 1766 iowrite8(0xaa, ioaddr->lbal_addr); 1767 1768 iowrite8(0xaa, ioaddr->nsect_addr); 1769 iowrite8(0x55, ioaddr->lbal_addr); 1770 1771 iowrite8(0x55, ioaddr->nsect_addr); 1772 iowrite8(0xaa, ioaddr->lbal_addr); 1773 1774 nsect = ioread8(ioaddr->nsect_addr); 1775 lbal = ioread8(ioaddr->lbal_addr); 1776 1777 if ((nsect == 0x55) && (lbal == 0xaa)) 1778 return 1; /* we found a device */ 1779 1780 return 0; /* nothing found */ 1781 } 1782 1783 /** 1784 * ata_sff_dev_classify - Parse returned ATA device signature 1785 * @dev: ATA device to classify (starting at zero) 1786 * @present: device seems present 1787 * @r_err: Value of error register on completion 1788 * 1789 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1790 * an ATA/ATAPI-defined set of values is placed in the ATA 1791 * shadow registers, indicating the results of device detection 1792 * and diagnostics. 1793 * 1794 * Select the ATA device, and read the values from the ATA shadow 1795 * registers. Then parse according to the Error register value, 1796 * and the spec-defined values examined by ata_dev_classify(). 1797 * 1798 * LOCKING: 1799 * caller. 1800 * 1801 * RETURNS: 1802 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1803 */ 1804 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1805 u8 *r_err) 1806 { 1807 struct ata_port *ap = dev->link->ap; 1808 struct ata_taskfile tf; 1809 unsigned int class; 1810 u8 err; 1811 1812 ap->ops->sff_dev_select(ap, dev->devno); 1813 1814 memset(&tf, 0, sizeof(tf)); 1815 1816 ap->ops->sff_tf_read(ap, &tf); 1817 err = tf.feature; 1818 if (r_err) 1819 *r_err = err; 1820 1821 /* see if device passed diags: continue and warn later */ 1822 if (err == 0) 1823 /* diagnostic fail : do nothing _YET_ */ 1824 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1825 else if (err == 1) 1826 /* do nothing */ ; 1827 else if ((dev->devno == 0) && (err == 0x81)) 1828 /* do nothing */ ; 1829 else 1830 return ATA_DEV_NONE; 1831 1832 /* determine if device is ATA or ATAPI */ 1833 class = ata_port_classify(ap, &tf); 1834 1835 if (class == ATA_DEV_UNKNOWN) { 1836 /* If the device failed diagnostic, it's likely to 1837 * have reported incorrect device signature too. 1838 * Assume ATA device if the device seems present but 1839 * device signature is invalid with diagnostic 1840 * failure. 1841 */ 1842 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1843 class = ATA_DEV_ATA; 1844 else 1845 class = ATA_DEV_NONE; 1846 } else if ((class == ATA_DEV_ATA) && 1847 (ap->ops->sff_check_status(ap) == 0)) 1848 class = ATA_DEV_NONE; 1849 1850 return class; 1851 } 1852 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1853 1854 /** 1855 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1856 * @link: SFF link which is just reset 1857 * @devmask: mask of present devices 1858 * @deadline: deadline jiffies for the operation 1859 * 1860 * Wait devices attached to SFF @link to become ready after 1861 * reset. It contains preceding 150ms wait to avoid accessing TF 1862 * status register too early. 1863 * 1864 * LOCKING: 1865 * Kernel thread context (may sleep). 1866 * 1867 * RETURNS: 1868 * 0 on success, -ENODEV if some or all of devices in @devmask 1869 * don't seem to exist. -errno on other errors. 1870 */ 1871 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1872 unsigned long deadline) 1873 { 1874 struct ata_port *ap = link->ap; 1875 struct ata_ioports *ioaddr = &ap->ioaddr; 1876 unsigned int dev0 = devmask & (1 << 0); 1877 unsigned int dev1 = devmask & (1 << 1); 1878 int rc, ret = 0; 1879 1880 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1881 1882 /* always check readiness of the master device */ 1883 rc = ata_sff_wait_ready(link, deadline); 1884 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1885 * and TF status is 0xff, bail out on it too. 1886 */ 1887 if (rc) 1888 return rc; 1889 1890 /* if device 1 was found in ata_devchk, wait for register 1891 * access briefly, then wait for BSY to clear. 1892 */ 1893 if (dev1) { 1894 int i; 1895 1896 ap->ops->sff_dev_select(ap, 1); 1897 1898 /* Wait for register access. Some ATAPI devices fail 1899 * to set nsect/lbal after reset, so don't waste too 1900 * much time on it. We're gonna wait for !BSY anyway. 1901 */ 1902 for (i = 0; i < 2; i++) { 1903 u8 nsect, lbal; 1904 1905 nsect = ioread8(ioaddr->nsect_addr); 1906 lbal = ioread8(ioaddr->lbal_addr); 1907 if ((nsect == 1) && (lbal == 1)) 1908 break; 1909 ata_msleep(ap, 50); /* give drive a breather */ 1910 } 1911 1912 rc = ata_sff_wait_ready(link, deadline); 1913 if (rc) { 1914 if (rc != -ENODEV) 1915 return rc; 1916 ret = rc; 1917 } 1918 } 1919 1920 /* is all this really necessary? */ 1921 ap->ops->sff_dev_select(ap, 0); 1922 if (dev1) 1923 ap->ops->sff_dev_select(ap, 1); 1924 if (dev0) 1925 ap->ops->sff_dev_select(ap, 0); 1926 1927 return ret; 1928 } 1929 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 1930 1931 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1932 unsigned long deadline) 1933 { 1934 struct ata_ioports *ioaddr = &ap->ioaddr; 1935 1936 if (ap->ioaddr.ctl_addr) { 1937 /* software reset. causes dev0 to be selected */ 1938 iowrite8(ap->ctl, ioaddr->ctl_addr); 1939 udelay(20); /* FIXME: flush */ 1940 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 1941 udelay(20); /* FIXME: flush */ 1942 iowrite8(ap->ctl, ioaddr->ctl_addr); 1943 ap->last_ctl = ap->ctl; 1944 } 1945 1946 /* wait the port to become ready */ 1947 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 1948 } 1949 1950 /** 1951 * ata_sff_softreset - reset host port via ATA SRST 1952 * @link: ATA link to reset 1953 * @classes: resulting classes of attached devices 1954 * @deadline: deadline jiffies for the operation 1955 * 1956 * Reset host port using ATA SRST. 1957 * 1958 * LOCKING: 1959 * Kernel thread context (may sleep) 1960 * 1961 * RETURNS: 1962 * 0 on success, -errno otherwise. 1963 */ 1964 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 1965 unsigned long deadline) 1966 { 1967 struct ata_port *ap = link->ap; 1968 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 1969 unsigned int devmask = 0; 1970 int rc; 1971 u8 err; 1972 1973 /* determine if device 0/1 are present */ 1974 if (ata_devchk(ap, 0)) 1975 devmask |= (1 << 0); 1976 if (slave_possible && ata_devchk(ap, 1)) 1977 devmask |= (1 << 1); 1978 1979 /* select device 0 again */ 1980 ap->ops->sff_dev_select(ap, 0); 1981 1982 /* issue bus reset */ 1983 rc = ata_bus_softreset(ap, devmask, deadline); 1984 /* if link is occupied, -ENODEV too is an error */ 1985 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 1986 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 1987 return rc; 1988 } 1989 1990 /* determine by signature whether we have ATA or ATAPI devices */ 1991 classes[0] = ata_sff_dev_classify(&link->device[0], 1992 devmask & (1 << 0), &err); 1993 if (slave_possible && err != 0x81) 1994 classes[1] = ata_sff_dev_classify(&link->device[1], 1995 devmask & (1 << 1), &err); 1996 1997 return 0; 1998 } 1999 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2000 2001 /** 2002 * sata_sff_hardreset - reset host port via SATA phy reset 2003 * @link: link to reset 2004 * @class: resulting class of attached device 2005 * @deadline: deadline jiffies for the operation 2006 * 2007 * SATA phy-reset host port using DET bits of SControl register, 2008 * wait for !BSY and classify the attached device. 2009 * 2010 * LOCKING: 2011 * Kernel thread context (may sleep) 2012 * 2013 * RETURNS: 2014 * 0 on success, -errno otherwise. 2015 */ 2016 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2017 unsigned long deadline) 2018 { 2019 struct ata_eh_context *ehc = &link->eh_context; 2020 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2021 bool online; 2022 int rc; 2023 2024 rc = sata_link_hardreset(link, timing, deadline, &online, 2025 ata_sff_check_ready); 2026 if (online) 2027 *class = ata_sff_dev_classify(link->device, 1, NULL); 2028 2029 return rc; 2030 } 2031 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2032 2033 /** 2034 * ata_sff_postreset - SFF postreset callback 2035 * @link: the target SFF ata_link 2036 * @classes: classes of attached devices 2037 * 2038 * This function is invoked after a successful reset. It first 2039 * calls ata_std_postreset() and performs SFF specific postreset 2040 * processing. 2041 * 2042 * LOCKING: 2043 * Kernel thread context (may sleep) 2044 */ 2045 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2046 { 2047 struct ata_port *ap = link->ap; 2048 2049 ata_std_postreset(link, classes); 2050 2051 /* is double-select really necessary? */ 2052 if (classes[0] != ATA_DEV_NONE) 2053 ap->ops->sff_dev_select(ap, 1); 2054 if (classes[1] != ATA_DEV_NONE) 2055 ap->ops->sff_dev_select(ap, 0); 2056 2057 /* bail out if no device is present */ 2058 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) 2059 return; 2060 2061 /* set up device control */ 2062 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2063 ata_sff_set_devctl(ap, ap->ctl); 2064 ap->last_ctl = ap->ctl; 2065 } 2066 } 2067 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2068 2069 /** 2070 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2071 * @qc: command 2072 * 2073 * Drain the FIFO and device of any stuck data following a command 2074 * failing to complete. In some cases this is necessary before a 2075 * reset will recover the device. 2076 * 2077 */ 2078 2079 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2080 { 2081 int count; 2082 struct ata_port *ap; 2083 2084 /* We only need to flush incoming data when a command was running */ 2085 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2086 return; 2087 2088 ap = qc->ap; 2089 /* Drain up to 64K of data before we give up this recovery method */ 2090 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2091 && count < 65536; count += 2) 2092 ioread16(ap->ioaddr.data_addr); 2093 2094 if (count) 2095 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2096 2097 } 2098 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2099 2100 /** 2101 * ata_sff_error_handler - Stock error handler for SFF controller 2102 * @ap: port to handle error for 2103 * 2104 * Stock error handler for SFF controller. It can handle both 2105 * PATA and SATA controllers. Many controllers should be able to 2106 * use this EH as-is or with some added handling before and 2107 * after. 2108 * 2109 * LOCKING: 2110 * Kernel thread context (may sleep) 2111 */ 2112 void ata_sff_error_handler(struct ata_port *ap) 2113 { 2114 ata_reset_fn_t softreset = ap->ops->softreset; 2115 ata_reset_fn_t hardreset = ap->ops->hardreset; 2116 struct ata_queued_cmd *qc; 2117 unsigned long flags; 2118 2119 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2120 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2121 qc = NULL; 2122 2123 spin_lock_irqsave(ap->lock, flags); 2124 2125 /* 2126 * We *MUST* do FIFO draining before we issue a reset as 2127 * several devices helpfully clear their internal state and 2128 * will lock solid if we touch the data port post reset. Pass 2129 * qc in case anyone wants to do different PIO/DMA recovery or 2130 * has per command fixups 2131 */ 2132 if (ap->ops->sff_drain_fifo) 2133 ap->ops->sff_drain_fifo(qc); 2134 2135 spin_unlock_irqrestore(ap->lock, flags); 2136 2137 /* ignore built-in hardresets if SCR access is not available */ 2138 if ((hardreset == sata_std_hardreset || 2139 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2140 hardreset = NULL; 2141 2142 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2143 ap->ops->postreset); 2144 } 2145 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2146 2147 /** 2148 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2149 * @ioaddr: IO address structure to be initialized 2150 * 2151 * Utility function which initializes data_addr, error_addr, 2152 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2153 * device_addr, status_addr, and command_addr to standard offsets 2154 * relative to cmd_addr. 2155 * 2156 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2157 */ 2158 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2159 { 2160 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2161 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2162 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2163 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2164 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2165 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2166 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2167 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2168 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2169 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2170 } 2171 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2172 2173 #ifdef CONFIG_PCI 2174 2175 static int ata_resources_present(struct pci_dev *pdev, int port) 2176 { 2177 int i; 2178 2179 /* Check the PCI resources for this channel are enabled */ 2180 port = port * 2; 2181 for (i = 0; i < 2; i++) { 2182 if (pci_resource_start(pdev, port + i) == 0 || 2183 pci_resource_len(pdev, port + i) == 0) 2184 return 0; 2185 } 2186 return 1; 2187 } 2188 2189 /** 2190 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2191 * @host: target ATA host 2192 * 2193 * Acquire native PCI ATA resources for @host and initialize the 2194 * first two ports of @host accordingly. Ports marked dummy are 2195 * skipped and allocation failure makes the port dummy. 2196 * 2197 * Note that native PCI resources are valid even for legacy hosts 2198 * as we fix up pdev resources array early in boot, so this 2199 * function can be used for both native and legacy SFF hosts. 2200 * 2201 * LOCKING: 2202 * Inherited from calling layer (may sleep). 2203 * 2204 * RETURNS: 2205 * 0 if at least one port is initialized, -ENODEV if no port is 2206 * available. 2207 */ 2208 int ata_pci_sff_init_host(struct ata_host *host) 2209 { 2210 struct device *gdev = host->dev; 2211 struct pci_dev *pdev = to_pci_dev(gdev); 2212 unsigned int mask = 0; 2213 int i, rc; 2214 2215 /* request, iomap BARs and init port addresses accordingly */ 2216 for (i = 0; i < 2; i++) { 2217 struct ata_port *ap = host->ports[i]; 2218 int base = i * 2; 2219 void __iomem * const *iomap; 2220 2221 if (ata_port_is_dummy(ap)) 2222 continue; 2223 2224 /* Discard disabled ports. Some controllers show 2225 * their unused channels this way. Disabled ports are 2226 * made dummy. 2227 */ 2228 if (!ata_resources_present(pdev, i)) { 2229 ap->ops = &ata_dummy_port_ops; 2230 continue; 2231 } 2232 2233 rc = pcim_iomap_regions(pdev, 0x3 << base, 2234 dev_driver_string(gdev)); 2235 if (rc) { 2236 dev_warn(gdev, 2237 "failed to request/iomap BARs for port %d (errno=%d)\n", 2238 i, rc); 2239 if (rc == -EBUSY) 2240 pcim_pin_device(pdev); 2241 ap->ops = &ata_dummy_port_ops; 2242 continue; 2243 } 2244 host->iomap = iomap = pcim_iomap_table(pdev); 2245 2246 ap->ioaddr.cmd_addr = iomap[base]; 2247 ap->ioaddr.altstatus_addr = 2248 ap->ioaddr.ctl_addr = (void __iomem *) 2249 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2250 ata_sff_std_ports(&ap->ioaddr); 2251 2252 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2253 (unsigned long long)pci_resource_start(pdev, base), 2254 (unsigned long long)pci_resource_start(pdev, base + 1)); 2255 2256 mask |= 1 << i; 2257 } 2258 2259 if (!mask) { 2260 dev_err(gdev, "no available native port\n"); 2261 return -ENODEV; 2262 } 2263 2264 return 0; 2265 } 2266 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2267 2268 /** 2269 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2270 * @pdev: target PCI device 2271 * @ppi: array of port_info, must be enough for two ports 2272 * @r_host: out argument for the initialized ATA host 2273 * 2274 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2275 * all PCI resources and initialize it accordingly in one go. 2276 * 2277 * LOCKING: 2278 * Inherited from calling layer (may sleep). 2279 * 2280 * RETURNS: 2281 * 0 on success, -errno otherwise. 2282 */ 2283 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2284 const struct ata_port_info * const *ppi, 2285 struct ata_host **r_host) 2286 { 2287 struct ata_host *host; 2288 int rc; 2289 2290 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2291 return -ENOMEM; 2292 2293 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2294 if (!host) { 2295 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2296 rc = -ENOMEM; 2297 goto err_out; 2298 } 2299 2300 rc = ata_pci_sff_init_host(host); 2301 if (rc) 2302 goto err_out; 2303 2304 devres_remove_group(&pdev->dev, NULL); 2305 *r_host = host; 2306 return 0; 2307 2308 err_out: 2309 devres_release_group(&pdev->dev, NULL); 2310 return rc; 2311 } 2312 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2313 2314 /** 2315 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2316 * @host: target SFF ATA host 2317 * @irq_handler: irq_handler used when requesting IRQ(s) 2318 * @sht: scsi_host_template to use when registering the host 2319 * 2320 * This is the counterpart of ata_host_activate() for SFF ATA 2321 * hosts. This separate helper is necessary because SFF hosts 2322 * use two separate interrupts in legacy mode. 2323 * 2324 * LOCKING: 2325 * Inherited from calling layer (may sleep). 2326 * 2327 * RETURNS: 2328 * 0 on success, -errno otherwise. 2329 */ 2330 int ata_pci_sff_activate_host(struct ata_host *host, 2331 irq_handler_t irq_handler, 2332 struct scsi_host_template *sht) 2333 { 2334 struct device *dev = host->dev; 2335 struct pci_dev *pdev = to_pci_dev(dev); 2336 const char *drv_name = dev_driver_string(host->dev); 2337 int legacy_mode = 0, rc; 2338 2339 rc = ata_host_start(host); 2340 if (rc) 2341 return rc; 2342 2343 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2344 u8 tmp8, mask = 0; 2345 2346 /* 2347 * ATA spec says we should use legacy mode when one 2348 * port is in legacy mode, but disabled ports on some 2349 * PCI hosts appear as fixed legacy ports, e.g SB600/700 2350 * on which the secondary port is not wired, so 2351 * ignore ports that are marked as 'dummy' during 2352 * this check 2353 */ 2354 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2355 if (!ata_port_is_dummy(host->ports[0])) 2356 mask |= (1 << 0); 2357 if (!ata_port_is_dummy(host->ports[1])) 2358 mask |= (1 << 2); 2359 if ((tmp8 & mask) != mask) 2360 legacy_mode = 1; 2361 } 2362 2363 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2364 return -ENOMEM; 2365 2366 if (!legacy_mode && pdev->irq) { 2367 int i; 2368 2369 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2370 IRQF_SHARED, drv_name, host); 2371 if (rc) 2372 goto out; 2373 2374 for (i = 0; i < 2; i++) { 2375 if (ata_port_is_dummy(host->ports[i])) 2376 continue; 2377 ata_port_desc(host->ports[i], "irq %d", pdev->irq); 2378 } 2379 } else if (legacy_mode) { 2380 if (!ata_port_is_dummy(host->ports[0])) { 2381 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2382 irq_handler, IRQF_SHARED, 2383 drv_name, host); 2384 if (rc) 2385 goto out; 2386 2387 ata_port_desc(host->ports[0], "irq %d", 2388 ATA_PRIMARY_IRQ(pdev)); 2389 } 2390 2391 if (!ata_port_is_dummy(host->ports[1])) { 2392 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2393 irq_handler, IRQF_SHARED, 2394 drv_name, host); 2395 if (rc) 2396 goto out; 2397 2398 ata_port_desc(host->ports[1], "irq %d", 2399 ATA_SECONDARY_IRQ(pdev)); 2400 } 2401 } 2402 2403 rc = ata_host_register(host, sht); 2404 out: 2405 if (rc == 0) 2406 devres_remove_group(dev, NULL); 2407 else 2408 devres_release_group(dev, NULL); 2409 2410 return rc; 2411 } 2412 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2413 2414 static const struct ata_port_info *ata_sff_find_valid_pi( 2415 const struct ata_port_info * const *ppi) 2416 { 2417 int i; 2418 2419 /* look up the first valid port_info */ 2420 for (i = 0; i < 2 && ppi[i]; i++) 2421 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2422 return ppi[i]; 2423 2424 return NULL; 2425 } 2426 2427 static int ata_pci_init_one(struct pci_dev *pdev, 2428 const struct ata_port_info * const *ppi, 2429 struct scsi_host_template *sht, void *host_priv, 2430 int hflags, bool bmdma) 2431 { 2432 struct device *dev = &pdev->dev; 2433 const struct ata_port_info *pi; 2434 struct ata_host *host = NULL; 2435 int rc; 2436 2437 pi = ata_sff_find_valid_pi(ppi); 2438 if (!pi) { 2439 dev_err(&pdev->dev, "no valid port_info specified\n"); 2440 return -EINVAL; 2441 } 2442 2443 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2444 return -ENOMEM; 2445 2446 rc = pcim_enable_device(pdev); 2447 if (rc) 2448 goto out; 2449 2450 #ifdef CONFIG_ATA_BMDMA 2451 if (bmdma) 2452 /* prepare and activate BMDMA host */ 2453 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2454 else 2455 #endif 2456 /* prepare and activate SFF host */ 2457 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2458 if (rc) 2459 goto out; 2460 host->private_data = host_priv; 2461 host->flags |= hflags; 2462 2463 #ifdef CONFIG_ATA_BMDMA 2464 if (bmdma) { 2465 pci_set_master(pdev); 2466 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2467 } else 2468 #endif 2469 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2470 out: 2471 if (rc == 0) 2472 devres_remove_group(&pdev->dev, NULL); 2473 else 2474 devres_release_group(&pdev->dev, NULL); 2475 2476 return rc; 2477 } 2478 2479 /** 2480 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2481 * @pdev: Controller to be initialized 2482 * @ppi: array of port_info, must be enough for two ports 2483 * @sht: scsi_host_template to use when registering the host 2484 * @host_priv: host private_data 2485 * @hflag: host flags 2486 * 2487 * This is a helper function which can be called from a driver's 2488 * xxx_init_one() probe function if the hardware uses traditional 2489 * IDE taskfile registers and is PIO only. 2490 * 2491 * ASSUMPTION: 2492 * Nobody makes a single channel controller that appears solely as 2493 * the secondary legacy port on PCI. 2494 * 2495 * LOCKING: 2496 * Inherited from PCI layer (may sleep). 2497 * 2498 * RETURNS: 2499 * Zero on success, negative on errno-based value on error. 2500 */ 2501 int ata_pci_sff_init_one(struct pci_dev *pdev, 2502 const struct ata_port_info * const *ppi, 2503 struct scsi_host_template *sht, void *host_priv, int hflag) 2504 { 2505 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2506 } 2507 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2508 2509 #endif /* CONFIG_PCI */ 2510 2511 /* 2512 * BMDMA support 2513 */ 2514 2515 #ifdef CONFIG_ATA_BMDMA 2516 2517 const struct ata_port_operations ata_bmdma_port_ops = { 2518 .inherits = &ata_sff_port_ops, 2519 2520 .error_handler = ata_bmdma_error_handler, 2521 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2522 2523 .qc_prep = ata_bmdma_qc_prep, 2524 .qc_issue = ata_bmdma_qc_issue, 2525 2526 .sff_irq_clear = ata_bmdma_irq_clear, 2527 .bmdma_setup = ata_bmdma_setup, 2528 .bmdma_start = ata_bmdma_start, 2529 .bmdma_stop = ata_bmdma_stop, 2530 .bmdma_status = ata_bmdma_status, 2531 2532 .port_start = ata_bmdma_port_start, 2533 }; 2534 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2535 2536 const struct ata_port_operations ata_bmdma32_port_ops = { 2537 .inherits = &ata_bmdma_port_ops, 2538 2539 .sff_data_xfer = ata_sff_data_xfer32, 2540 .port_start = ata_bmdma_port_start32, 2541 }; 2542 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2543 2544 /** 2545 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2546 * @qc: Metadata associated with taskfile to be transferred 2547 * 2548 * Fill PCI IDE PRD (scatter-gather) table with segments 2549 * associated with the current disk command. 2550 * 2551 * LOCKING: 2552 * spin_lock_irqsave(host lock) 2553 * 2554 */ 2555 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2556 { 2557 struct ata_port *ap = qc->ap; 2558 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2559 struct scatterlist *sg; 2560 unsigned int si, pi; 2561 2562 pi = 0; 2563 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2564 u32 addr, offset; 2565 u32 sg_len, len; 2566 2567 /* determine if physical DMA addr spans 64K boundary. 2568 * Note h/w doesn't support 64-bit, so we unconditionally 2569 * truncate dma_addr_t to u32. 2570 */ 2571 addr = (u32) sg_dma_address(sg); 2572 sg_len = sg_dma_len(sg); 2573 2574 while (sg_len) { 2575 offset = addr & 0xffff; 2576 len = sg_len; 2577 if ((offset + sg_len) > 0x10000) 2578 len = 0x10000 - offset; 2579 2580 prd[pi].addr = cpu_to_le32(addr); 2581 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2582 2583 pi++; 2584 sg_len -= len; 2585 addr += len; 2586 } 2587 } 2588 2589 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2590 } 2591 2592 /** 2593 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2594 * @qc: Metadata associated with taskfile to be transferred 2595 * 2596 * Fill PCI IDE PRD (scatter-gather) table with segments 2597 * associated with the current disk command. Perform the fill 2598 * so that we avoid writing any length 64K records for 2599 * controllers that don't follow the spec. 2600 * 2601 * LOCKING: 2602 * spin_lock_irqsave(host lock) 2603 * 2604 */ 2605 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2606 { 2607 struct ata_port *ap = qc->ap; 2608 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2609 struct scatterlist *sg; 2610 unsigned int si, pi; 2611 2612 pi = 0; 2613 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2614 u32 addr, offset; 2615 u32 sg_len, len, blen; 2616 2617 /* determine if physical DMA addr spans 64K boundary. 2618 * Note h/w doesn't support 64-bit, so we unconditionally 2619 * truncate dma_addr_t to u32. 2620 */ 2621 addr = (u32) sg_dma_address(sg); 2622 sg_len = sg_dma_len(sg); 2623 2624 while (sg_len) { 2625 offset = addr & 0xffff; 2626 len = sg_len; 2627 if ((offset + sg_len) > 0x10000) 2628 len = 0x10000 - offset; 2629 2630 blen = len & 0xffff; 2631 prd[pi].addr = cpu_to_le32(addr); 2632 if (blen == 0) { 2633 /* Some PATA chipsets like the CS5530 can't 2634 cope with 0x0000 meaning 64K as the spec 2635 says */ 2636 prd[pi].flags_len = cpu_to_le32(0x8000); 2637 blen = 0x8000; 2638 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2639 } 2640 prd[pi].flags_len = cpu_to_le32(blen); 2641 2642 pi++; 2643 sg_len -= len; 2644 addr += len; 2645 } 2646 } 2647 2648 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2649 } 2650 2651 /** 2652 * ata_bmdma_qc_prep - Prepare taskfile for submission 2653 * @qc: Metadata associated with taskfile to be prepared 2654 * 2655 * Prepare ATA taskfile for submission. 2656 * 2657 * LOCKING: 2658 * spin_lock_irqsave(host lock) 2659 */ 2660 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2661 { 2662 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2663 return AC_ERR_OK; 2664 2665 ata_bmdma_fill_sg(qc); 2666 2667 return AC_ERR_OK; 2668 } 2669 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2670 2671 /** 2672 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2673 * @qc: Metadata associated with taskfile to be prepared 2674 * 2675 * Prepare ATA taskfile for submission. 2676 * 2677 * LOCKING: 2678 * spin_lock_irqsave(host lock) 2679 */ 2680 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2681 { 2682 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2683 return AC_ERR_OK; 2684 2685 ata_bmdma_fill_sg_dumb(qc); 2686 2687 return AC_ERR_OK; 2688 } 2689 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2690 2691 /** 2692 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2693 * @qc: command to issue to device 2694 * 2695 * This function issues a PIO, NODATA or DMA command to a 2696 * SFF/BMDMA controller. PIO and NODATA are handled by 2697 * ata_sff_qc_issue(). 2698 * 2699 * LOCKING: 2700 * spin_lock_irqsave(host lock) 2701 * 2702 * RETURNS: 2703 * Zero on success, AC_ERR_* mask on failure 2704 */ 2705 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2706 { 2707 struct ata_port *ap = qc->ap; 2708 struct ata_link *link = qc->dev->link; 2709 2710 /* defer PIO handling to sff_qc_issue */ 2711 if (!ata_is_dma(qc->tf.protocol)) 2712 return ata_sff_qc_issue(qc); 2713 2714 /* select the device */ 2715 ata_dev_select(ap, qc->dev->devno, 1, 0); 2716 2717 /* start the command */ 2718 switch (qc->tf.protocol) { 2719 case ATA_PROT_DMA: 2720 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2721 2722 trace_ata_tf_load(ap, &qc->tf); 2723 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2724 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); 2725 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2726 trace_ata_bmdma_start(ap, &qc->tf, qc->tag); 2727 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2728 ap->hsm_task_state = HSM_ST_LAST; 2729 break; 2730 2731 case ATAPI_PROT_DMA: 2732 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2733 2734 trace_ata_tf_load(ap, &qc->tf); 2735 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2736 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); 2737 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2738 ap->hsm_task_state = HSM_ST_FIRST; 2739 2740 /* send cdb by polling if no cdb interrupt */ 2741 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2742 ata_sff_queue_pio_task(link, 0); 2743 break; 2744 2745 default: 2746 WARN_ON(1); 2747 return AC_ERR_SYSTEM; 2748 } 2749 2750 return 0; 2751 } 2752 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2753 2754 /** 2755 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2756 * @ap: Port on which interrupt arrived (possibly...) 2757 * @qc: Taskfile currently active in engine 2758 * 2759 * Handle port interrupt for given queued command. 2760 * 2761 * LOCKING: 2762 * spin_lock_irqsave(host lock) 2763 * 2764 * RETURNS: 2765 * One if interrupt was handled, zero if not (shared irq). 2766 */ 2767 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2768 { 2769 struct ata_eh_info *ehi = &ap->link.eh_info; 2770 u8 host_stat = 0; 2771 bool bmdma_stopped = false; 2772 unsigned int handled; 2773 2774 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2775 /* check status of DMA engine */ 2776 host_stat = ap->ops->bmdma_status(ap); 2777 trace_ata_bmdma_status(ap, host_stat); 2778 2779 /* if it's not our irq... */ 2780 if (!(host_stat & ATA_DMA_INTR)) 2781 return ata_sff_idle_irq(ap); 2782 2783 /* before we do anything else, clear DMA-Start bit */ 2784 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2785 ap->ops->bmdma_stop(qc); 2786 bmdma_stopped = true; 2787 2788 if (unlikely(host_stat & ATA_DMA_ERR)) { 2789 /* error when transferring data to/from memory */ 2790 qc->err_mask |= AC_ERR_HOST_BUS; 2791 ap->hsm_task_state = HSM_ST_ERR; 2792 } 2793 } 2794 2795 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2796 2797 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2798 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2799 2800 return handled; 2801 } 2802 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2803 2804 /** 2805 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2806 * @irq: irq line (unused) 2807 * @dev_instance: pointer to our ata_host information structure 2808 * 2809 * Default interrupt handler for PCI IDE devices. Calls 2810 * ata_bmdma_port_intr() for each port that is not disabled. 2811 * 2812 * LOCKING: 2813 * Obtains host lock during operation. 2814 * 2815 * RETURNS: 2816 * IRQ_NONE or IRQ_HANDLED. 2817 */ 2818 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2819 { 2820 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2821 } 2822 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2823 2824 /** 2825 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2826 * @ap: port to handle error for 2827 * 2828 * Stock error handler for BMDMA controller. It can handle both 2829 * PATA and SATA controllers. Most BMDMA controllers should be 2830 * able to use this EH as-is or with some added handling before 2831 * and after. 2832 * 2833 * LOCKING: 2834 * Kernel thread context (may sleep) 2835 */ 2836 void ata_bmdma_error_handler(struct ata_port *ap) 2837 { 2838 struct ata_queued_cmd *qc; 2839 unsigned long flags; 2840 bool thaw = false; 2841 2842 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2843 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2844 qc = NULL; 2845 2846 /* reset PIO HSM and stop DMA engine */ 2847 spin_lock_irqsave(ap->lock, flags); 2848 2849 if (qc && ata_is_dma(qc->tf.protocol)) { 2850 u8 host_stat; 2851 2852 host_stat = ap->ops->bmdma_status(ap); 2853 trace_ata_bmdma_status(ap, host_stat); 2854 2855 /* BMDMA controllers indicate host bus error by 2856 * setting DMA_ERR bit and timing out. As it wasn't 2857 * really a timeout event, adjust error mask and 2858 * cancel frozen state. 2859 */ 2860 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2861 qc->err_mask = AC_ERR_HOST_BUS; 2862 thaw = true; 2863 } 2864 2865 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2866 ap->ops->bmdma_stop(qc); 2867 2868 /* if we're gonna thaw, make sure IRQ is clear */ 2869 if (thaw) { 2870 ap->ops->sff_check_status(ap); 2871 if (ap->ops->sff_irq_clear) 2872 ap->ops->sff_irq_clear(ap); 2873 } 2874 } 2875 2876 spin_unlock_irqrestore(ap->lock, flags); 2877 2878 if (thaw) 2879 ata_eh_thaw_port(ap); 2880 2881 ata_sff_error_handler(ap); 2882 } 2883 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2884 2885 /** 2886 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2887 * @qc: internal command to clean up 2888 * 2889 * LOCKING: 2890 * Kernel thread context (may sleep) 2891 */ 2892 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2893 { 2894 struct ata_port *ap = qc->ap; 2895 unsigned long flags; 2896 2897 if (ata_is_dma(qc->tf.protocol)) { 2898 spin_lock_irqsave(ap->lock, flags); 2899 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2900 ap->ops->bmdma_stop(qc); 2901 spin_unlock_irqrestore(ap->lock, flags); 2902 } 2903 } 2904 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2905 2906 /** 2907 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2908 * @ap: Port associated with this ATA transaction. 2909 * 2910 * Clear interrupt and error flags in DMA status register. 2911 * 2912 * May be used as the irq_clear() entry in ata_port_operations. 2913 * 2914 * LOCKING: 2915 * spin_lock_irqsave(host lock) 2916 */ 2917 void ata_bmdma_irq_clear(struct ata_port *ap) 2918 { 2919 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2920 2921 if (!mmio) 2922 return; 2923 2924 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2925 } 2926 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2927 2928 /** 2929 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2930 * @qc: Info associated with this ATA transaction. 2931 * 2932 * LOCKING: 2933 * spin_lock_irqsave(host lock) 2934 */ 2935 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2936 { 2937 struct ata_port *ap = qc->ap; 2938 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2939 u8 dmactl; 2940 2941 /* load PRD table addr. */ 2942 mb(); /* make sure PRD table writes are visible to controller */ 2943 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2944 2945 /* specify data direction, triple-check start bit is clear */ 2946 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2947 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2948 if (!rw) 2949 dmactl |= ATA_DMA_WR; 2950 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2951 2952 /* issue r/w command */ 2953 ap->ops->sff_exec_command(ap, &qc->tf); 2954 } 2955 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2956 2957 /** 2958 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2959 * @qc: Info associated with this ATA transaction. 2960 * 2961 * LOCKING: 2962 * spin_lock_irqsave(host lock) 2963 */ 2964 void ata_bmdma_start(struct ata_queued_cmd *qc) 2965 { 2966 struct ata_port *ap = qc->ap; 2967 u8 dmactl; 2968 2969 /* start host DMA transaction */ 2970 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2971 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2972 2973 /* Strictly, one may wish to issue an ioread8() here, to 2974 * flush the mmio write. However, control also passes 2975 * to the hardware at this point, and it will interrupt 2976 * us when we are to resume control. So, in effect, 2977 * we don't care when the mmio write flushes. 2978 * Further, a read of the DMA status register _immediately_ 2979 * following the write may not be what certain flaky hardware 2980 * is expected, so I think it is best to not add a readb() 2981 * without first all the MMIO ATA cards/mobos. 2982 * Or maybe I'm just being paranoid. 2983 * 2984 * FIXME: The posting of this write means I/O starts are 2985 * unnecessarily delayed for MMIO 2986 */ 2987 } 2988 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2989 2990 /** 2991 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2992 * @qc: Command we are ending DMA for 2993 * 2994 * Clears the ATA_DMA_START flag in the dma control register 2995 * 2996 * May be used as the bmdma_stop() entry in ata_port_operations. 2997 * 2998 * LOCKING: 2999 * spin_lock_irqsave(host lock) 3000 */ 3001 void ata_bmdma_stop(struct ata_queued_cmd *qc) 3002 { 3003 struct ata_port *ap = qc->ap; 3004 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3005 3006 /* clear start/stop bit */ 3007 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3008 mmio + ATA_DMA_CMD); 3009 3010 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3011 ata_sff_dma_pause(ap); 3012 } 3013 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3014 3015 /** 3016 * ata_bmdma_status - Read PCI IDE BMDMA status 3017 * @ap: Port associated with this ATA transaction. 3018 * 3019 * Read and return BMDMA status register. 3020 * 3021 * May be used as the bmdma_status() entry in ata_port_operations. 3022 * 3023 * LOCKING: 3024 * spin_lock_irqsave(host lock) 3025 */ 3026 u8 ata_bmdma_status(struct ata_port *ap) 3027 { 3028 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3029 } 3030 EXPORT_SYMBOL_GPL(ata_bmdma_status); 3031 3032 3033 /** 3034 * ata_bmdma_port_start - Set port up for bmdma. 3035 * @ap: Port to initialize 3036 * 3037 * Called just after data structures for each port are 3038 * initialized. Allocates space for PRD table. 3039 * 3040 * May be used as the port_start() entry in ata_port_operations. 3041 * 3042 * LOCKING: 3043 * Inherited from caller. 3044 */ 3045 int ata_bmdma_port_start(struct ata_port *ap) 3046 { 3047 if (ap->mwdma_mask || ap->udma_mask) { 3048 ap->bmdma_prd = 3049 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3050 &ap->bmdma_prd_dma, GFP_KERNEL); 3051 if (!ap->bmdma_prd) 3052 return -ENOMEM; 3053 } 3054 3055 return 0; 3056 } 3057 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3058 3059 /** 3060 * ata_bmdma_port_start32 - Set port up for dma. 3061 * @ap: Port to initialize 3062 * 3063 * Called just after data structures for each port are 3064 * initialized. Enables 32bit PIO and allocates space for PRD 3065 * table. 3066 * 3067 * May be used as the port_start() entry in ata_port_operations for 3068 * devices that are capable of 32bit PIO. 3069 * 3070 * LOCKING: 3071 * Inherited from caller. 3072 */ 3073 int ata_bmdma_port_start32(struct ata_port *ap) 3074 { 3075 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3076 return ata_bmdma_port_start(ap); 3077 } 3078 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3079 3080 #ifdef CONFIG_PCI 3081 3082 /** 3083 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3084 * @pdev: PCI device 3085 * 3086 * Some PCI ATA devices report simplex mode but in fact can be told to 3087 * enter non simplex mode. This implements the necessary logic to 3088 * perform the task on such devices. Calling it on other devices will 3089 * have -undefined- behaviour. 3090 */ 3091 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3092 { 3093 unsigned long bmdma = pci_resource_start(pdev, 4); 3094 u8 simplex; 3095 3096 if (bmdma == 0) 3097 return -ENOENT; 3098 3099 simplex = inb(bmdma + 0x02); 3100 outb(simplex & 0x60, bmdma + 0x02); 3101 simplex = inb(bmdma + 0x02); 3102 if (simplex & 0x80) 3103 return -EOPNOTSUPP; 3104 return 0; 3105 } 3106 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3107 3108 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3109 { 3110 int i; 3111 3112 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3113 3114 for (i = 0; i < 2; i++) { 3115 host->ports[i]->mwdma_mask = 0; 3116 host->ports[i]->udma_mask = 0; 3117 } 3118 } 3119 3120 /** 3121 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3122 * @host: target ATA host 3123 * 3124 * Acquire PCI BMDMA resources and initialize @host accordingly. 3125 * 3126 * LOCKING: 3127 * Inherited from calling layer (may sleep). 3128 */ 3129 void ata_pci_bmdma_init(struct ata_host *host) 3130 { 3131 struct device *gdev = host->dev; 3132 struct pci_dev *pdev = to_pci_dev(gdev); 3133 int i, rc; 3134 3135 /* No BAR4 allocation: No DMA */ 3136 if (pci_resource_start(pdev, 4) == 0) { 3137 ata_bmdma_nodma(host, "BAR4 is zero"); 3138 return; 3139 } 3140 3141 /* 3142 * Some controllers require BMDMA region to be initialized 3143 * even if DMA is not in use to clear IRQ status via 3144 * ->sff_irq_clear method. Try to initialize bmdma_addr 3145 * regardless of dma masks. 3146 */ 3147 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK); 3148 if (rc) 3149 ata_bmdma_nodma(host, "failed to set dma mask"); 3150 3151 /* request and iomap DMA region */ 3152 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3153 if (rc) { 3154 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3155 return; 3156 } 3157 host->iomap = pcim_iomap_table(pdev); 3158 3159 for (i = 0; i < 2; i++) { 3160 struct ata_port *ap = host->ports[i]; 3161 void __iomem *bmdma = host->iomap[4] + 8 * i; 3162 3163 if (ata_port_is_dummy(ap)) 3164 continue; 3165 3166 ap->ioaddr.bmdma_addr = bmdma; 3167 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3168 (ioread8(bmdma + 2) & 0x80)) 3169 host->flags |= ATA_HOST_SIMPLEX; 3170 3171 ata_port_desc(ap, "bmdma 0x%llx", 3172 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3173 } 3174 } 3175 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3176 3177 /** 3178 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3179 * @pdev: target PCI device 3180 * @ppi: array of port_info, must be enough for two ports 3181 * @r_host: out argument for the initialized ATA host 3182 * 3183 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3184 * resources and initialize it accordingly in one go. 3185 * 3186 * LOCKING: 3187 * Inherited from calling layer (may sleep). 3188 * 3189 * RETURNS: 3190 * 0 on success, -errno otherwise. 3191 */ 3192 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3193 const struct ata_port_info * const * ppi, 3194 struct ata_host **r_host) 3195 { 3196 int rc; 3197 3198 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3199 if (rc) 3200 return rc; 3201 3202 ata_pci_bmdma_init(*r_host); 3203 return 0; 3204 } 3205 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3206 3207 /** 3208 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3209 * @pdev: Controller to be initialized 3210 * @ppi: array of port_info, must be enough for two ports 3211 * @sht: scsi_host_template to use when registering the host 3212 * @host_priv: host private_data 3213 * @hflags: host flags 3214 * 3215 * This function is similar to ata_pci_sff_init_one() but also 3216 * takes care of BMDMA initialization. 3217 * 3218 * LOCKING: 3219 * Inherited from PCI layer (may sleep). 3220 * 3221 * RETURNS: 3222 * Zero on success, negative on errno-based value on error. 3223 */ 3224 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3225 const struct ata_port_info * const * ppi, 3226 struct scsi_host_template *sht, void *host_priv, 3227 int hflags) 3228 { 3229 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3230 } 3231 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3232 3233 #endif /* CONFIG_PCI */ 3234 #endif /* CONFIG_ATA_BMDMA */ 3235 3236 /** 3237 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3238 * @ap: Port to initialize 3239 * 3240 * Called on port allocation to initialize SFF/BMDMA specific 3241 * fields. 3242 * 3243 * LOCKING: 3244 * None. 3245 */ 3246 void ata_sff_port_init(struct ata_port *ap) 3247 { 3248 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3249 ap->ctl = ATA_DEVCTL_OBS; 3250 ap->last_ctl = 0xFF; 3251 } 3252 3253 int __init ata_sff_init(void) 3254 { 3255 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3256 if (!ata_sff_wq) 3257 return -ENOMEM; 3258 3259 return 0; 3260 } 3261 3262 void ata_sff_exit(void) 3263 { 3264 destroy_workqueue(ata_sff_wq); 3265 } 3266