1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/gfp.h> 37 #include <linux/pci.h> 38 #include <linux/module.h> 39 #include <linux/libata.h> 40 #include <linux/highmem.h> 41 42 #include "libata.h" 43 44 static struct workqueue_struct *ata_sff_wq; 45 46 const struct ata_port_operations ata_sff_port_ops = { 47 .inherits = &ata_base_port_ops, 48 49 .qc_prep = ata_noop_qc_prep, 50 .qc_issue = ata_sff_qc_issue, 51 .qc_fill_rtf = ata_sff_qc_fill_rtf, 52 53 .freeze = ata_sff_freeze, 54 .thaw = ata_sff_thaw, 55 .prereset = ata_sff_prereset, 56 .softreset = ata_sff_softreset, 57 .hardreset = sata_sff_hardreset, 58 .postreset = ata_sff_postreset, 59 .error_handler = ata_sff_error_handler, 60 61 .sff_dev_select = ata_sff_dev_select, 62 .sff_check_status = ata_sff_check_status, 63 .sff_tf_load = ata_sff_tf_load, 64 .sff_tf_read = ata_sff_tf_read, 65 .sff_exec_command = ata_sff_exec_command, 66 .sff_data_xfer = ata_sff_data_xfer, 67 .sff_drain_fifo = ata_sff_drain_fifo, 68 69 .lost_interrupt = ata_sff_lost_interrupt, 70 }; 71 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 72 73 /** 74 * ata_sff_check_status - Read device status reg & clear interrupt 75 * @ap: port where the device is 76 * 77 * Reads ATA taskfile status register for currently-selected device 78 * and return its value. This also clears pending interrupts 79 * from this device 80 * 81 * LOCKING: 82 * Inherited from caller. 83 */ 84 u8 ata_sff_check_status(struct ata_port *ap) 85 { 86 return ioread8(ap->ioaddr.status_addr); 87 } 88 EXPORT_SYMBOL_GPL(ata_sff_check_status); 89 90 /** 91 * ata_sff_altstatus - Read device alternate status reg 92 * @ap: port where the device is 93 * 94 * Reads ATA taskfile alternate status register for 95 * currently-selected device and return its value. 96 * 97 * Note: may NOT be used as the check_altstatus() entry in 98 * ata_port_operations. 99 * 100 * LOCKING: 101 * Inherited from caller. 102 */ 103 static u8 ata_sff_altstatus(struct ata_port *ap) 104 { 105 if (ap->ops->sff_check_altstatus) 106 return ap->ops->sff_check_altstatus(ap); 107 108 return ioread8(ap->ioaddr.altstatus_addr); 109 } 110 111 /** 112 * ata_sff_irq_status - Check if the device is busy 113 * @ap: port where the device is 114 * 115 * Determine if the port is currently busy. Uses altstatus 116 * if available in order to avoid clearing shared IRQ status 117 * when finding an IRQ source. Non ctl capable devices don't 118 * share interrupt lines fortunately for us. 119 * 120 * LOCKING: 121 * Inherited from caller. 122 */ 123 static u8 ata_sff_irq_status(struct ata_port *ap) 124 { 125 u8 status; 126 127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 128 status = ata_sff_altstatus(ap); 129 /* Not us: We are busy */ 130 if (status & ATA_BUSY) 131 return status; 132 } 133 /* Clear INTRQ latch */ 134 status = ap->ops->sff_check_status(ap); 135 return status; 136 } 137 138 /** 139 * ata_sff_sync - Flush writes 140 * @ap: Port to wait for. 141 * 142 * CAUTION: 143 * If we have an mmio device with no ctl and no altstatus 144 * method this will fail. No such devices are known to exist. 145 * 146 * LOCKING: 147 * Inherited from caller. 148 */ 149 150 static void ata_sff_sync(struct ata_port *ap) 151 { 152 if (ap->ops->sff_check_altstatus) 153 ap->ops->sff_check_altstatus(ap); 154 else if (ap->ioaddr.altstatus_addr) 155 ioread8(ap->ioaddr.altstatus_addr); 156 } 157 158 /** 159 * ata_sff_pause - Flush writes and wait 400nS 160 * @ap: Port to pause for. 161 * 162 * CAUTION: 163 * If we have an mmio device with no ctl and no altstatus 164 * method this will fail. No such devices are known to exist. 165 * 166 * LOCKING: 167 * Inherited from caller. 168 */ 169 170 void ata_sff_pause(struct ata_port *ap) 171 { 172 ata_sff_sync(ap); 173 ndelay(400); 174 } 175 EXPORT_SYMBOL_GPL(ata_sff_pause); 176 177 /** 178 * ata_sff_dma_pause - Pause before commencing DMA 179 * @ap: Port to pause for. 180 * 181 * Perform I/O fencing and ensure sufficient cycle delays occur 182 * for the HDMA1:0 transition 183 */ 184 185 void ata_sff_dma_pause(struct ata_port *ap) 186 { 187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 188 /* An altstatus read will cause the needed delay without 189 messing up the IRQ status */ 190 ata_sff_altstatus(ap); 191 return; 192 } 193 /* There are no DMA controllers without ctl. BUG here to ensure 194 we never violate the HDMA1:0 transition timing and risk 195 corruption. */ 196 BUG(); 197 } 198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 199 200 /** 201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 202 * @ap: port containing status register to be polled 203 * @tmout_pat: impatience timeout in msecs 204 * @tmout: overall timeout in msecs 205 * 206 * Sleep until ATA Status register bit BSY clears, 207 * or a timeout occurs. 208 * 209 * LOCKING: 210 * Kernel thread context (may sleep). 211 * 212 * RETURNS: 213 * 0 on success, -errno otherwise. 214 */ 215 int ata_sff_busy_sleep(struct ata_port *ap, 216 unsigned long tmout_pat, unsigned long tmout) 217 { 218 unsigned long timer_start, timeout; 219 u8 status; 220 221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 222 timer_start = jiffies; 223 timeout = ata_deadline(timer_start, tmout_pat); 224 while (status != 0xff && (status & ATA_BUSY) && 225 time_before(jiffies, timeout)) { 226 ata_msleep(ap, 50); 227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 228 } 229 230 if (status != 0xff && (status & ATA_BUSY)) 231 ata_port_warn(ap, 232 "port is slow to respond, please be patient (Status 0x%x)\n", 233 status); 234 235 timeout = ata_deadline(timer_start, tmout); 236 while (status != 0xff && (status & ATA_BUSY) && 237 time_before(jiffies, timeout)) { 238 ata_msleep(ap, 50); 239 status = ap->ops->sff_check_status(ap); 240 } 241 242 if (status == 0xff) 243 return -ENODEV; 244 245 if (status & ATA_BUSY) { 246 ata_port_err(ap, 247 "port failed to respond (%lu secs, Status 0x%x)\n", 248 DIV_ROUND_UP(tmout, 1000), status); 249 return -EBUSY; 250 } 251 252 return 0; 253 } 254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 255 256 static int ata_sff_check_ready(struct ata_link *link) 257 { 258 u8 status = link->ap->ops->sff_check_status(link->ap); 259 260 return ata_check_ready(status); 261 } 262 263 /** 264 * ata_sff_wait_ready - sleep until BSY clears, or timeout 265 * @link: SFF link to wait ready status for 266 * @deadline: deadline jiffies for the operation 267 * 268 * Sleep until ATA Status register bit BSY clears, or timeout 269 * occurs. 270 * 271 * LOCKING: 272 * Kernel thread context (may sleep). 273 * 274 * RETURNS: 275 * 0 on success, -errno otherwise. 276 */ 277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 278 { 279 return ata_wait_ready(link, deadline, ata_sff_check_ready); 280 } 281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 282 283 /** 284 * ata_sff_set_devctl - Write device control reg 285 * @ap: port where the device is 286 * @ctl: value to write 287 * 288 * Writes ATA taskfile device control register. 289 * 290 * Note: may NOT be used as the sff_set_devctl() entry in 291 * ata_port_operations. 292 * 293 * LOCKING: 294 * Inherited from caller. 295 */ 296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 297 { 298 if (ap->ops->sff_set_devctl) 299 ap->ops->sff_set_devctl(ap, ctl); 300 else 301 iowrite8(ctl, ap->ioaddr.ctl_addr); 302 } 303 304 /** 305 * ata_sff_dev_select - Select device 0/1 on ATA bus 306 * @ap: ATA channel to manipulate 307 * @device: ATA device (numbered from zero) to select 308 * 309 * Use the method defined in the ATA specification to 310 * make either device 0, or device 1, active on the 311 * ATA channel. Works with both PIO and MMIO. 312 * 313 * May be used as the dev_select() entry in ata_port_operations. 314 * 315 * LOCKING: 316 * caller. 317 */ 318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 319 { 320 u8 tmp; 321 322 if (device == 0) 323 tmp = ATA_DEVICE_OBS; 324 else 325 tmp = ATA_DEVICE_OBS | ATA_DEV1; 326 327 iowrite8(tmp, ap->ioaddr.device_addr); 328 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 329 } 330 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 331 332 /** 333 * ata_dev_select - Select device 0/1 on ATA bus 334 * @ap: ATA channel to manipulate 335 * @device: ATA device (numbered from zero) to select 336 * @wait: non-zero to wait for Status register BSY bit to clear 337 * @can_sleep: non-zero if context allows sleeping 338 * 339 * Use the method defined in the ATA specification to 340 * make either device 0, or device 1, active on the 341 * ATA channel. 342 * 343 * This is a high-level version of ata_sff_dev_select(), which 344 * additionally provides the services of inserting the proper 345 * pauses and status polling, where needed. 346 * 347 * LOCKING: 348 * caller. 349 */ 350 static void ata_dev_select(struct ata_port *ap, unsigned int device, 351 unsigned int wait, unsigned int can_sleep) 352 { 353 if (ata_msg_probe(ap)) 354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n", 355 device, wait); 356 357 if (wait) 358 ata_wait_idle(ap); 359 360 ap->ops->sff_dev_select(ap, device); 361 362 if (wait) { 363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 364 ata_msleep(ap, 150); 365 ata_wait_idle(ap); 366 } 367 } 368 369 /** 370 * ata_sff_irq_on - Enable interrupts on a port. 371 * @ap: Port on which interrupts are enabled. 372 * 373 * Enable interrupts on a legacy IDE device using MMIO or PIO, 374 * wait for idle, clear any pending interrupts. 375 * 376 * Note: may NOT be used as the sff_irq_on() entry in 377 * ata_port_operations. 378 * 379 * LOCKING: 380 * Inherited from caller. 381 */ 382 void ata_sff_irq_on(struct ata_port *ap) 383 { 384 struct ata_ioports *ioaddr = &ap->ioaddr; 385 386 if (ap->ops->sff_irq_on) { 387 ap->ops->sff_irq_on(ap); 388 return; 389 } 390 391 ap->ctl &= ~ATA_NIEN; 392 ap->last_ctl = ap->ctl; 393 394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 395 ata_sff_set_devctl(ap, ap->ctl); 396 ata_wait_idle(ap); 397 398 if (ap->ops->sff_irq_clear) 399 ap->ops->sff_irq_clear(ap); 400 } 401 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 402 403 /** 404 * ata_sff_tf_load - send taskfile registers to host controller 405 * @ap: Port to which output is sent 406 * @tf: ATA taskfile register set 407 * 408 * Outputs ATA taskfile to standard ATA host controller. 409 * 410 * LOCKING: 411 * Inherited from caller. 412 */ 413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 414 { 415 struct ata_ioports *ioaddr = &ap->ioaddr; 416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 417 418 if (tf->ctl != ap->last_ctl) { 419 if (ioaddr->ctl_addr) 420 iowrite8(tf->ctl, ioaddr->ctl_addr); 421 ap->last_ctl = tf->ctl; 422 ata_wait_idle(ap); 423 } 424 425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 426 WARN_ON_ONCE(!ioaddr->ctl_addr); 427 iowrite8(tf->hob_feature, ioaddr->feature_addr); 428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 433 tf->hob_feature, 434 tf->hob_nsect, 435 tf->hob_lbal, 436 tf->hob_lbam, 437 tf->hob_lbah); 438 } 439 440 if (is_addr) { 441 iowrite8(tf->feature, ioaddr->feature_addr); 442 iowrite8(tf->nsect, ioaddr->nsect_addr); 443 iowrite8(tf->lbal, ioaddr->lbal_addr); 444 iowrite8(tf->lbam, ioaddr->lbam_addr); 445 iowrite8(tf->lbah, ioaddr->lbah_addr); 446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 447 tf->feature, 448 tf->nsect, 449 tf->lbal, 450 tf->lbam, 451 tf->lbah); 452 } 453 454 if (tf->flags & ATA_TFLAG_DEVICE) { 455 iowrite8(tf->device, ioaddr->device_addr); 456 VPRINTK("device 0x%X\n", tf->device); 457 } 458 459 ata_wait_idle(ap); 460 } 461 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 462 463 /** 464 * ata_sff_tf_read - input device's ATA taskfile shadow registers 465 * @ap: Port from which input is read 466 * @tf: ATA taskfile register set for storing input 467 * 468 * Reads ATA taskfile registers for currently-selected device 469 * into @tf. Assumes the device has a fully SFF compliant task file 470 * layout and behaviour. If you device does not (eg has a different 471 * status method) then you will need to provide a replacement tf_read 472 * 473 * LOCKING: 474 * Inherited from caller. 475 */ 476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 477 { 478 struct ata_ioports *ioaddr = &ap->ioaddr; 479 480 tf->command = ata_sff_check_status(ap); 481 tf->feature = ioread8(ioaddr->error_addr); 482 tf->nsect = ioread8(ioaddr->nsect_addr); 483 tf->lbal = ioread8(ioaddr->lbal_addr); 484 tf->lbam = ioread8(ioaddr->lbam_addr); 485 tf->lbah = ioread8(ioaddr->lbah_addr); 486 tf->device = ioread8(ioaddr->device_addr); 487 488 if (tf->flags & ATA_TFLAG_LBA48) { 489 if (likely(ioaddr->ctl_addr)) { 490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 491 tf->hob_feature = ioread8(ioaddr->error_addr); 492 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 493 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 494 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 495 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 496 iowrite8(tf->ctl, ioaddr->ctl_addr); 497 ap->last_ctl = tf->ctl; 498 } else 499 WARN_ON_ONCE(1); 500 } 501 } 502 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 503 504 /** 505 * ata_sff_exec_command - issue ATA command to host controller 506 * @ap: port to which command is being issued 507 * @tf: ATA taskfile register set 508 * 509 * Issues ATA command, with proper synchronization with interrupt 510 * handler / other threads. 511 * 512 * LOCKING: 513 * spin_lock_irqsave(host lock) 514 */ 515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 516 { 517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 518 519 iowrite8(tf->command, ap->ioaddr.command_addr); 520 ata_sff_pause(ap); 521 } 522 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 523 524 /** 525 * ata_tf_to_host - issue ATA taskfile to host controller 526 * @ap: port to which command is being issued 527 * @tf: ATA taskfile register set 528 * 529 * Issues ATA taskfile register set to ATA host controller, 530 * with proper synchronization with interrupt handler and 531 * other threads. 532 * 533 * LOCKING: 534 * spin_lock_irqsave(host lock) 535 */ 536 static inline void ata_tf_to_host(struct ata_port *ap, 537 const struct ata_taskfile *tf) 538 { 539 ap->ops->sff_tf_load(ap, tf); 540 ap->ops->sff_exec_command(ap, tf); 541 } 542 543 /** 544 * ata_sff_data_xfer - Transfer data by PIO 545 * @dev: device to target 546 * @buf: data buffer 547 * @buflen: buffer length 548 * @rw: read/write 549 * 550 * Transfer data from/to the device data register by PIO. 551 * 552 * LOCKING: 553 * Inherited from caller. 554 * 555 * RETURNS: 556 * Bytes consumed. 557 */ 558 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 559 unsigned int buflen, int rw) 560 { 561 struct ata_port *ap = dev->link->ap; 562 void __iomem *data_addr = ap->ioaddr.data_addr; 563 unsigned int words = buflen >> 1; 564 565 /* Transfer multiple of 2 bytes */ 566 if (rw == READ) 567 ioread16_rep(data_addr, buf, words); 568 else 569 iowrite16_rep(data_addr, buf, words); 570 571 /* Transfer trailing byte, if any. */ 572 if (unlikely(buflen & 0x01)) { 573 unsigned char pad[2] = { }; 574 575 /* Point buf to the tail of buffer */ 576 buf += buflen - 1; 577 578 /* 579 * Use io*16_rep() accessors here as well to avoid pointlessly 580 * swapping bytes to and from on the big endian machines... 581 */ 582 if (rw == READ) { 583 ioread16_rep(data_addr, pad, 1); 584 *buf = pad[0]; 585 } else { 586 pad[0] = *buf; 587 iowrite16_rep(data_addr, pad, 1); 588 } 589 words++; 590 } 591 592 return words << 1; 593 } 594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 595 596 /** 597 * ata_sff_data_xfer32 - Transfer data by PIO 598 * @dev: device to target 599 * @buf: data buffer 600 * @buflen: buffer length 601 * @rw: read/write 602 * 603 * Transfer data from/to the device data register by PIO using 32bit 604 * I/O operations. 605 * 606 * LOCKING: 607 * Inherited from caller. 608 * 609 * RETURNS: 610 * Bytes consumed. 611 */ 612 613 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, 614 unsigned int buflen, int rw) 615 { 616 struct ata_port *ap = dev->link->ap; 617 void __iomem *data_addr = ap->ioaddr.data_addr; 618 unsigned int words = buflen >> 2; 619 int slop = buflen & 3; 620 621 if (!(ap->pflags & ATA_PFLAG_PIO32)) 622 return ata_sff_data_xfer(dev, buf, buflen, rw); 623 624 /* Transfer multiple of 4 bytes */ 625 if (rw == READ) 626 ioread32_rep(data_addr, buf, words); 627 else 628 iowrite32_rep(data_addr, buf, words); 629 630 /* Transfer trailing bytes, if any */ 631 if (unlikely(slop)) { 632 unsigned char pad[4] = { }; 633 634 /* Point buf to the tail of buffer */ 635 buf += buflen - slop; 636 637 /* 638 * Use io*_rep() accessors here as well to avoid pointlessly 639 * swapping bytes to and from on the big endian machines... 640 */ 641 if (rw == READ) { 642 if (slop < 3) 643 ioread16_rep(data_addr, pad, 1); 644 else 645 ioread32_rep(data_addr, pad, 1); 646 memcpy(buf, pad, slop); 647 } else { 648 memcpy(pad, buf, slop); 649 if (slop < 3) 650 iowrite16_rep(data_addr, pad, 1); 651 else 652 iowrite32_rep(data_addr, pad, 1); 653 } 654 } 655 return (buflen + 1) & ~1; 656 } 657 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 658 659 /** 660 * ata_sff_data_xfer_noirq - Transfer data by PIO 661 * @dev: device to target 662 * @buf: data buffer 663 * @buflen: buffer length 664 * @rw: read/write 665 * 666 * Transfer data from/to the device data register by PIO. Do the 667 * transfer with interrupts disabled. 668 * 669 * LOCKING: 670 * Inherited from caller. 671 * 672 * RETURNS: 673 * Bytes consumed. 674 */ 675 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 676 unsigned int buflen, int rw) 677 { 678 unsigned long flags; 679 unsigned int consumed; 680 681 local_irq_save(flags); 682 consumed = ata_sff_data_xfer32(dev, buf, buflen, rw); 683 local_irq_restore(flags); 684 685 return consumed; 686 } 687 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 688 689 /** 690 * ata_pio_sector - Transfer a sector of data. 691 * @qc: Command on going 692 * 693 * Transfer qc->sect_size bytes of data from/to the ATA device. 694 * 695 * LOCKING: 696 * Inherited from caller. 697 */ 698 static void ata_pio_sector(struct ata_queued_cmd *qc) 699 { 700 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 701 struct ata_port *ap = qc->ap; 702 struct page *page; 703 unsigned int offset; 704 unsigned char *buf; 705 706 if (qc->curbytes == qc->nbytes - qc->sect_size) 707 ap->hsm_task_state = HSM_ST_LAST; 708 709 page = sg_page(qc->cursg); 710 offset = qc->cursg->offset + qc->cursg_ofs; 711 712 /* get the current page and offset */ 713 page = nth_page(page, (offset >> PAGE_SHIFT)); 714 offset %= PAGE_SIZE; 715 716 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 717 718 if (PageHighMem(page)) { 719 unsigned long flags; 720 721 /* FIXME: use a bounce buffer */ 722 local_irq_save(flags); 723 buf = kmap_atomic(page); 724 725 /* do the actual data transfer */ 726 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 727 do_write); 728 729 kunmap_atomic(buf); 730 local_irq_restore(flags); 731 } else { 732 buf = page_address(page); 733 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 734 do_write); 735 } 736 737 if (!do_write && !PageSlab(page)) 738 flush_dcache_page(page); 739 740 qc->curbytes += qc->sect_size; 741 qc->cursg_ofs += qc->sect_size; 742 743 if (qc->cursg_ofs == qc->cursg->length) { 744 qc->cursg = sg_next(qc->cursg); 745 qc->cursg_ofs = 0; 746 } 747 } 748 749 /** 750 * ata_pio_sectors - Transfer one or many sectors. 751 * @qc: Command on going 752 * 753 * Transfer one or many sectors of data from/to the 754 * ATA device for the DRQ request. 755 * 756 * LOCKING: 757 * Inherited from caller. 758 */ 759 static void ata_pio_sectors(struct ata_queued_cmd *qc) 760 { 761 if (is_multi_taskfile(&qc->tf)) { 762 /* READ/WRITE MULTIPLE */ 763 unsigned int nsect; 764 765 WARN_ON_ONCE(qc->dev->multi_count == 0); 766 767 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 768 qc->dev->multi_count); 769 while (nsect--) 770 ata_pio_sector(qc); 771 } else 772 ata_pio_sector(qc); 773 774 ata_sff_sync(qc->ap); /* flush */ 775 } 776 777 /** 778 * atapi_send_cdb - Write CDB bytes to hardware 779 * @ap: Port to which ATAPI device is attached. 780 * @qc: Taskfile currently active 781 * 782 * When device has indicated its readiness to accept 783 * a CDB, this function is called. Send the CDB. 784 * 785 * LOCKING: 786 * caller. 787 */ 788 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 789 { 790 /* send SCSI cdb */ 791 DPRINTK("send cdb\n"); 792 WARN_ON_ONCE(qc->dev->cdb_len < 12); 793 794 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 795 ata_sff_sync(ap); 796 /* FIXME: If the CDB is for DMA do we need to do the transition delay 797 or is bmdma_start guaranteed to do it ? */ 798 switch (qc->tf.protocol) { 799 case ATAPI_PROT_PIO: 800 ap->hsm_task_state = HSM_ST; 801 break; 802 case ATAPI_PROT_NODATA: 803 ap->hsm_task_state = HSM_ST_LAST; 804 break; 805 #ifdef CONFIG_ATA_BMDMA 806 case ATAPI_PROT_DMA: 807 ap->hsm_task_state = HSM_ST_LAST; 808 /* initiate bmdma */ 809 ap->ops->bmdma_start(qc); 810 break; 811 #endif /* CONFIG_ATA_BMDMA */ 812 default: 813 BUG(); 814 } 815 } 816 817 /** 818 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 819 * @qc: Command on going 820 * @bytes: number of bytes 821 * 822 * Transfer Transfer data from/to the ATAPI device. 823 * 824 * LOCKING: 825 * Inherited from caller. 826 * 827 */ 828 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 829 { 830 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 831 struct ata_port *ap = qc->ap; 832 struct ata_device *dev = qc->dev; 833 struct ata_eh_info *ehi = &dev->link->eh_info; 834 struct scatterlist *sg; 835 struct page *page; 836 unsigned char *buf; 837 unsigned int offset, count, consumed; 838 839 next_sg: 840 sg = qc->cursg; 841 if (unlikely(!sg)) { 842 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 843 "buf=%u cur=%u bytes=%u", 844 qc->nbytes, qc->curbytes, bytes); 845 return -1; 846 } 847 848 page = sg_page(sg); 849 offset = sg->offset + qc->cursg_ofs; 850 851 /* get the current page and offset */ 852 page = nth_page(page, (offset >> PAGE_SHIFT)); 853 offset %= PAGE_SIZE; 854 855 /* don't overrun current sg */ 856 count = min(sg->length - qc->cursg_ofs, bytes); 857 858 /* don't cross page boundaries */ 859 count = min(count, (unsigned int)PAGE_SIZE - offset); 860 861 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 862 863 if (PageHighMem(page)) { 864 unsigned long flags; 865 866 /* FIXME: use bounce buffer */ 867 local_irq_save(flags); 868 buf = kmap_atomic(page); 869 870 /* do the actual data transfer */ 871 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 872 count, rw); 873 874 kunmap_atomic(buf); 875 local_irq_restore(flags); 876 } else { 877 buf = page_address(page); 878 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 879 count, rw); 880 } 881 882 bytes -= min(bytes, consumed); 883 qc->curbytes += count; 884 qc->cursg_ofs += count; 885 886 if (qc->cursg_ofs == sg->length) { 887 qc->cursg = sg_next(qc->cursg); 888 qc->cursg_ofs = 0; 889 } 890 891 /* 892 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 893 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 894 * check correctly as it doesn't know if it is the last request being 895 * made. Somebody should implement a proper sanity check. 896 */ 897 if (bytes) 898 goto next_sg; 899 return 0; 900 } 901 902 /** 903 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 904 * @qc: Command on going 905 * 906 * Transfer Transfer data from/to the ATAPI device. 907 * 908 * LOCKING: 909 * Inherited from caller. 910 */ 911 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 912 { 913 struct ata_port *ap = qc->ap; 914 struct ata_device *dev = qc->dev; 915 struct ata_eh_info *ehi = &dev->link->eh_info; 916 unsigned int ireason, bc_lo, bc_hi, bytes; 917 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 918 919 /* Abuse qc->result_tf for temp storage of intermediate TF 920 * here to save some kernel stack usage. 921 * For normal completion, qc->result_tf is not relevant. For 922 * error, qc->result_tf is later overwritten by ata_qc_complete(). 923 * So, the correctness of qc->result_tf is not affected. 924 */ 925 ap->ops->sff_tf_read(ap, &qc->result_tf); 926 ireason = qc->result_tf.nsect; 927 bc_lo = qc->result_tf.lbam; 928 bc_hi = qc->result_tf.lbah; 929 bytes = (bc_hi << 8) | bc_lo; 930 931 /* shall be cleared to zero, indicating xfer of data */ 932 if (unlikely(ireason & ATAPI_COD)) 933 goto atapi_check; 934 935 /* make sure transfer direction matches expected */ 936 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 937 if (unlikely(do_write != i_write)) 938 goto atapi_check; 939 940 if (unlikely(!bytes)) 941 goto atapi_check; 942 943 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 944 945 if (unlikely(__atapi_pio_bytes(qc, bytes))) 946 goto err_out; 947 ata_sff_sync(ap); /* flush */ 948 949 return; 950 951 atapi_check: 952 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 953 ireason, bytes); 954 err_out: 955 qc->err_mask |= AC_ERR_HSM; 956 ap->hsm_task_state = HSM_ST_ERR; 957 } 958 959 /** 960 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 961 * @ap: the target ata_port 962 * @qc: qc on going 963 * 964 * RETURNS: 965 * 1 if ok in workqueue, 0 otherwise. 966 */ 967 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 968 struct ata_queued_cmd *qc) 969 { 970 if (qc->tf.flags & ATA_TFLAG_POLLING) 971 return 1; 972 973 if (ap->hsm_task_state == HSM_ST_FIRST) { 974 if (qc->tf.protocol == ATA_PROT_PIO && 975 (qc->tf.flags & ATA_TFLAG_WRITE)) 976 return 1; 977 978 if (ata_is_atapi(qc->tf.protocol) && 979 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 980 return 1; 981 } 982 983 return 0; 984 } 985 986 /** 987 * ata_hsm_qc_complete - finish a qc running on standard HSM 988 * @qc: Command to complete 989 * @in_wq: 1 if called from workqueue, 0 otherwise 990 * 991 * Finish @qc which is running on standard HSM. 992 * 993 * LOCKING: 994 * If @in_wq is zero, spin_lock_irqsave(host lock). 995 * Otherwise, none on entry and grabs host lock. 996 */ 997 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 998 { 999 struct ata_port *ap = qc->ap; 1000 1001 if (ap->ops->error_handler) { 1002 if (in_wq) { 1003 /* EH might have kicked in while host lock is 1004 * released. 1005 */ 1006 qc = ata_qc_from_tag(ap, qc->tag); 1007 if (qc) { 1008 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1009 ata_sff_irq_on(ap); 1010 ata_qc_complete(qc); 1011 } else 1012 ata_port_freeze(ap); 1013 } 1014 } else { 1015 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1016 ata_qc_complete(qc); 1017 else 1018 ata_port_freeze(ap); 1019 } 1020 } else { 1021 if (in_wq) { 1022 ata_sff_irq_on(ap); 1023 ata_qc_complete(qc); 1024 } else 1025 ata_qc_complete(qc); 1026 } 1027 } 1028 1029 /** 1030 * ata_sff_hsm_move - move the HSM to the next state. 1031 * @ap: the target ata_port 1032 * @qc: qc on going 1033 * @status: current device status 1034 * @in_wq: 1 if called from workqueue, 0 otherwise 1035 * 1036 * RETURNS: 1037 * 1 when poll next status needed, 0 otherwise. 1038 */ 1039 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1040 u8 status, int in_wq) 1041 { 1042 struct ata_link *link = qc->dev->link; 1043 struct ata_eh_info *ehi = &link->eh_info; 1044 int poll_next; 1045 1046 lockdep_assert_held(ap->lock); 1047 1048 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1049 1050 /* Make sure ata_sff_qc_issue() does not throw things 1051 * like DMA polling into the workqueue. Notice that 1052 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1053 */ 1054 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1055 1056 fsm_start: 1057 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1058 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1059 1060 switch (ap->hsm_task_state) { 1061 case HSM_ST_FIRST: 1062 /* Send first data block or PACKET CDB */ 1063 1064 /* If polling, we will stay in the work queue after 1065 * sending the data. Otherwise, interrupt handler 1066 * takes over after sending the data. 1067 */ 1068 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1069 1070 /* check device status */ 1071 if (unlikely((status & ATA_DRQ) == 0)) { 1072 /* handle BSY=0, DRQ=0 as error */ 1073 if (likely(status & (ATA_ERR | ATA_DF))) 1074 /* device stops HSM for abort/error */ 1075 qc->err_mask |= AC_ERR_DEV; 1076 else { 1077 /* HSM violation. Let EH handle this */ 1078 ata_ehi_push_desc(ehi, 1079 "ST_FIRST: !(DRQ|ERR|DF)"); 1080 qc->err_mask |= AC_ERR_HSM; 1081 } 1082 1083 ap->hsm_task_state = HSM_ST_ERR; 1084 goto fsm_start; 1085 } 1086 1087 /* Device should not ask for data transfer (DRQ=1) 1088 * when it finds something wrong. 1089 * We ignore DRQ here and stop the HSM by 1090 * changing hsm_task_state to HSM_ST_ERR and 1091 * let the EH abort the command or reset the device. 1092 */ 1093 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1094 /* Some ATAPI tape drives forget to clear the ERR bit 1095 * when doing the next command (mostly request sense). 1096 * We ignore ERR here to workaround and proceed sending 1097 * the CDB. 1098 */ 1099 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1100 ata_ehi_push_desc(ehi, "ST_FIRST: " 1101 "DRQ=1 with device error, " 1102 "dev_stat 0x%X", status); 1103 qc->err_mask |= AC_ERR_HSM; 1104 ap->hsm_task_state = HSM_ST_ERR; 1105 goto fsm_start; 1106 } 1107 } 1108 1109 if (qc->tf.protocol == ATA_PROT_PIO) { 1110 /* PIO data out protocol. 1111 * send first data block. 1112 */ 1113 1114 /* ata_pio_sectors() might change the state 1115 * to HSM_ST_LAST. so, the state is changed here 1116 * before ata_pio_sectors(). 1117 */ 1118 ap->hsm_task_state = HSM_ST; 1119 ata_pio_sectors(qc); 1120 } else 1121 /* send CDB */ 1122 atapi_send_cdb(ap, qc); 1123 1124 /* if polling, ata_sff_pio_task() handles the rest. 1125 * otherwise, interrupt handler takes over from here. 1126 */ 1127 break; 1128 1129 case HSM_ST: 1130 /* complete command or read/write the data register */ 1131 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1132 /* ATAPI PIO protocol */ 1133 if ((status & ATA_DRQ) == 0) { 1134 /* No more data to transfer or device error. 1135 * Device error will be tagged in HSM_ST_LAST. 1136 */ 1137 ap->hsm_task_state = HSM_ST_LAST; 1138 goto fsm_start; 1139 } 1140 1141 /* Device should not ask for data transfer (DRQ=1) 1142 * when it finds something wrong. 1143 * We ignore DRQ here and stop the HSM by 1144 * changing hsm_task_state to HSM_ST_ERR and 1145 * let the EH abort the command or reset the device. 1146 */ 1147 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1148 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1149 "DRQ=1 with device error, " 1150 "dev_stat 0x%X", status); 1151 qc->err_mask |= AC_ERR_HSM; 1152 ap->hsm_task_state = HSM_ST_ERR; 1153 goto fsm_start; 1154 } 1155 1156 atapi_pio_bytes(qc); 1157 1158 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1159 /* bad ireason reported by device */ 1160 goto fsm_start; 1161 1162 } else { 1163 /* ATA PIO protocol */ 1164 if (unlikely((status & ATA_DRQ) == 0)) { 1165 /* handle BSY=0, DRQ=0 as error */ 1166 if (likely(status & (ATA_ERR | ATA_DF))) { 1167 /* device stops HSM for abort/error */ 1168 qc->err_mask |= AC_ERR_DEV; 1169 1170 /* If diagnostic failed and this is 1171 * IDENTIFY, it's likely a phantom 1172 * device. Mark hint. 1173 */ 1174 if (qc->dev->horkage & 1175 ATA_HORKAGE_DIAGNOSTIC) 1176 qc->err_mask |= 1177 AC_ERR_NODEV_HINT; 1178 } else { 1179 /* HSM violation. Let EH handle this. 1180 * Phantom devices also trigger this 1181 * condition. Mark hint. 1182 */ 1183 ata_ehi_push_desc(ehi, "ST-ATA: " 1184 "DRQ=0 without device error, " 1185 "dev_stat 0x%X", status); 1186 qc->err_mask |= AC_ERR_HSM | 1187 AC_ERR_NODEV_HINT; 1188 } 1189 1190 ap->hsm_task_state = HSM_ST_ERR; 1191 goto fsm_start; 1192 } 1193 1194 /* For PIO reads, some devices may ask for 1195 * data transfer (DRQ=1) alone with ERR=1. 1196 * We respect DRQ here and transfer one 1197 * block of junk data before changing the 1198 * hsm_task_state to HSM_ST_ERR. 1199 * 1200 * For PIO writes, ERR=1 DRQ=1 doesn't make 1201 * sense since the data block has been 1202 * transferred to the device. 1203 */ 1204 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1205 /* data might be corrputed */ 1206 qc->err_mask |= AC_ERR_DEV; 1207 1208 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1209 ata_pio_sectors(qc); 1210 status = ata_wait_idle(ap); 1211 } 1212 1213 if (status & (ATA_BUSY | ATA_DRQ)) { 1214 ata_ehi_push_desc(ehi, "ST-ATA: " 1215 "BUSY|DRQ persists on ERR|DF, " 1216 "dev_stat 0x%X", status); 1217 qc->err_mask |= AC_ERR_HSM; 1218 } 1219 1220 /* There are oddball controllers with 1221 * status register stuck at 0x7f and 1222 * lbal/m/h at zero which makes it 1223 * pass all other presence detection 1224 * mechanisms we have. Set NODEV_HINT 1225 * for it. Kernel bz#7241. 1226 */ 1227 if (status == 0x7f) 1228 qc->err_mask |= AC_ERR_NODEV_HINT; 1229 1230 /* ata_pio_sectors() might change the 1231 * state to HSM_ST_LAST. so, the state 1232 * is changed after ata_pio_sectors(). 1233 */ 1234 ap->hsm_task_state = HSM_ST_ERR; 1235 goto fsm_start; 1236 } 1237 1238 ata_pio_sectors(qc); 1239 1240 if (ap->hsm_task_state == HSM_ST_LAST && 1241 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1242 /* all data read */ 1243 status = ata_wait_idle(ap); 1244 goto fsm_start; 1245 } 1246 } 1247 1248 poll_next = 1; 1249 break; 1250 1251 case HSM_ST_LAST: 1252 if (unlikely(!ata_ok(status))) { 1253 qc->err_mask |= __ac_err_mask(status); 1254 ap->hsm_task_state = HSM_ST_ERR; 1255 goto fsm_start; 1256 } 1257 1258 /* no more data to transfer */ 1259 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1260 ap->print_id, qc->dev->devno, status); 1261 1262 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1263 1264 ap->hsm_task_state = HSM_ST_IDLE; 1265 1266 /* complete taskfile transaction */ 1267 ata_hsm_qc_complete(qc, in_wq); 1268 1269 poll_next = 0; 1270 break; 1271 1272 case HSM_ST_ERR: 1273 ap->hsm_task_state = HSM_ST_IDLE; 1274 1275 /* complete taskfile transaction */ 1276 ata_hsm_qc_complete(qc, in_wq); 1277 1278 poll_next = 0; 1279 break; 1280 default: 1281 poll_next = 0; 1282 WARN(true, "ata%d: SFF host state machine in invalid state %d", 1283 ap->print_id, ap->hsm_task_state); 1284 } 1285 1286 return poll_next; 1287 } 1288 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1289 1290 void ata_sff_queue_work(struct work_struct *work) 1291 { 1292 queue_work(ata_sff_wq, work); 1293 } 1294 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1295 1296 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1297 { 1298 queue_delayed_work(ata_sff_wq, dwork, delay); 1299 } 1300 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1301 1302 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1303 { 1304 struct ata_port *ap = link->ap; 1305 1306 WARN_ON((ap->sff_pio_task_link != NULL) && 1307 (ap->sff_pio_task_link != link)); 1308 ap->sff_pio_task_link = link; 1309 1310 /* may fail if ata_sff_flush_pio_task() in progress */ 1311 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1312 } 1313 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1314 1315 void ata_sff_flush_pio_task(struct ata_port *ap) 1316 { 1317 DPRINTK("ENTER\n"); 1318 1319 cancel_delayed_work_sync(&ap->sff_pio_task); 1320 1321 /* 1322 * We wanna reset the HSM state to IDLE. If we do so without 1323 * grabbing the port lock, critical sections protected by it which 1324 * expect the HSM state to stay stable may get surprised. For 1325 * example, we may set IDLE in between the time 1326 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1327 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1328 */ 1329 spin_lock_irq(ap->lock); 1330 ap->hsm_task_state = HSM_ST_IDLE; 1331 spin_unlock_irq(ap->lock); 1332 1333 ap->sff_pio_task_link = NULL; 1334 1335 if (ata_msg_ctl(ap)) 1336 ata_port_dbg(ap, "%s: EXIT\n", __func__); 1337 } 1338 1339 static void ata_sff_pio_task(struct work_struct *work) 1340 { 1341 struct ata_port *ap = 1342 container_of(work, struct ata_port, sff_pio_task.work); 1343 struct ata_link *link = ap->sff_pio_task_link; 1344 struct ata_queued_cmd *qc; 1345 u8 status; 1346 int poll_next; 1347 1348 spin_lock_irq(ap->lock); 1349 1350 BUG_ON(ap->sff_pio_task_link == NULL); 1351 /* qc can be NULL if timeout occurred */ 1352 qc = ata_qc_from_tag(ap, link->active_tag); 1353 if (!qc) { 1354 ap->sff_pio_task_link = NULL; 1355 goto out_unlock; 1356 } 1357 1358 fsm_start: 1359 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1360 1361 /* 1362 * This is purely heuristic. This is a fast path. 1363 * Sometimes when we enter, BSY will be cleared in 1364 * a chk-status or two. If not, the drive is probably seeking 1365 * or something. Snooze for a couple msecs, then 1366 * chk-status again. If still busy, queue delayed work. 1367 */ 1368 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1369 if (status & ATA_BUSY) { 1370 spin_unlock_irq(ap->lock); 1371 ata_msleep(ap, 2); 1372 spin_lock_irq(ap->lock); 1373 1374 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1375 if (status & ATA_BUSY) { 1376 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1377 goto out_unlock; 1378 } 1379 } 1380 1381 /* 1382 * hsm_move() may trigger another command to be processed. 1383 * clean the link beforehand. 1384 */ 1385 ap->sff_pio_task_link = NULL; 1386 /* move the HSM */ 1387 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1388 1389 /* another command or interrupt handler 1390 * may be running at this point. 1391 */ 1392 if (poll_next) 1393 goto fsm_start; 1394 out_unlock: 1395 spin_unlock_irq(ap->lock); 1396 } 1397 1398 /** 1399 * ata_sff_qc_issue - issue taskfile to a SFF controller 1400 * @qc: command to issue to device 1401 * 1402 * This function issues a PIO or NODATA command to a SFF 1403 * controller. 1404 * 1405 * LOCKING: 1406 * spin_lock_irqsave(host lock) 1407 * 1408 * RETURNS: 1409 * Zero on success, AC_ERR_* mask on failure 1410 */ 1411 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1412 { 1413 struct ata_port *ap = qc->ap; 1414 struct ata_link *link = qc->dev->link; 1415 1416 /* Use polling pio if the LLD doesn't handle 1417 * interrupt driven pio and atapi CDB interrupt. 1418 */ 1419 if (ap->flags & ATA_FLAG_PIO_POLLING) 1420 qc->tf.flags |= ATA_TFLAG_POLLING; 1421 1422 /* select the device */ 1423 ata_dev_select(ap, qc->dev->devno, 1, 0); 1424 1425 /* start the command */ 1426 switch (qc->tf.protocol) { 1427 case ATA_PROT_NODATA: 1428 if (qc->tf.flags & ATA_TFLAG_POLLING) 1429 ata_qc_set_polling(qc); 1430 1431 ata_tf_to_host(ap, &qc->tf); 1432 ap->hsm_task_state = HSM_ST_LAST; 1433 1434 if (qc->tf.flags & ATA_TFLAG_POLLING) 1435 ata_sff_queue_pio_task(link, 0); 1436 1437 break; 1438 1439 case ATA_PROT_PIO: 1440 if (qc->tf.flags & ATA_TFLAG_POLLING) 1441 ata_qc_set_polling(qc); 1442 1443 ata_tf_to_host(ap, &qc->tf); 1444 1445 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1446 /* PIO data out protocol */ 1447 ap->hsm_task_state = HSM_ST_FIRST; 1448 ata_sff_queue_pio_task(link, 0); 1449 1450 /* always send first data block using the 1451 * ata_sff_pio_task() codepath. 1452 */ 1453 } else { 1454 /* PIO data in protocol */ 1455 ap->hsm_task_state = HSM_ST; 1456 1457 if (qc->tf.flags & ATA_TFLAG_POLLING) 1458 ata_sff_queue_pio_task(link, 0); 1459 1460 /* if polling, ata_sff_pio_task() handles the 1461 * rest. otherwise, interrupt handler takes 1462 * over from here. 1463 */ 1464 } 1465 1466 break; 1467 1468 case ATAPI_PROT_PIO: 1469 case ATAPI_PROT_NODATA: 1470 if (qc->tf.flags & ATA_TFLAG_POLLING) 1471 ata_qc_set_polling(qc); 1472 1473 ata_tf_to_host(ap, &qc->tf); 1474 1475 ap->hsm_task_state = HSM_ST_FIRST; 1476 1477 /* send cdb by polling if no cdb interrupt */ 1478 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1479 (qc->tf.flags & ATA_TFLAG_POLLING)) 1480 ata_sff_queue_pio_task(link, 0); 1481 break; 1482 1483 default: 1484 WARN_ON_ONCE(1); 1485 return AC_ERR_SYSTEM; 1486 } 1487 1488 return 0; 1489 } 1490 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1491 1492 /** 1493 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1494 * @qc: qc to fill result TF for 1495 * 1496 * @qc is finished and result TF needs to be filled. Fill it 1497 * using ->sff_tf_read. 1498 * 1499 * LOCKING: 1500 * spin_lock_irqsave(host lock) 1501 * 1502 * RETURNS: 1503 * true indicating that result TF is successfully filled. 1504 */ 1505 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1506 { 1507 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1508 return true; 1509 } 1510 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1511 1512 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1513 { 1514 ap->stats.idle_irq++; 1515 1516 #ifdef ATA_IRQ_TRAP 1517 if ((ap->stats.idle_irq % 1000) == 0) { 1518 ap->ops->sff_check_status(ap); 1519 if (ap->ops->sff_irq_clear) 1520 ap->ops->sff_irq_clear(ap); 1521 ata_port_warn(ap, "irq trap\n"); 1522 return 1; 1523 } 1524 #endif 1525 return 0; /* irq not handled */ 1526 } 1527 1528 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1529 struct ata_queued_cmd *qc, 1530 bool hsmv_on_idle) 1531 { 1532 u8 status; 1533 1534 VPRINTK("ata%u: protocol %d task_state %d\n", 1535 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1536 1537 /* Check whether we are expecting interrupt in this state */ 1538 switch (ap->hsm_task_state) { 1539 case HSM_ST_FIRST: 1540 /* Some pre-ATAPI-4 devices assert INTRQ 1541 * at this state when ready to receive CDB. 1542 */ 1543 1544 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1545 * The flag was turned on only for atapi devices. No 1546 * need to check ata_is_atapi(qc->tf.protocol) again. 1547 */ 1548 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1549 return ata_sff_idle_irq(ap); 1550 break; 1551 case HSM_ST_IDLE: 1552 return ata_sff_idle_irq(ap); 1553 default: 1554 break; 1555 } 1556 1557 /* check main status, clearing INTRQ if needed */ 1558 status = ata_sff_irq_status(ap); 1559 if (status & ATA_BUSY) { 1560 if (hsmv_on_idle) { 1561 /* BMDMA engine is already stopped, we're screwed */ 1562 qc->err_mask |= AC_ERR_HSM; 1563 ap->hsm_task_state = HSM_ST_ERR; 1564 } else 1565 return ata_sff_idle_irq(ap); 1566 } 1567 1568 /* clear irq events */ 1569 if (ap->ops->sff_irq_clear) 1570 ap->ops->sff_irq_clear(ap); 1571 1572 ata_sff_hsm_move(ap, qc, status, 0); 1573 1574 return 1; /* irq handled */ 1575 } 1576 1577 /** 1578 * ata_sff_port_intr - Handle SFF port interrupt 1579 * @ap: Port on which interrupt arrived (possibly...) 1580 * @qc: Taskfile currently active in engine 1581 * 1582 * Handle port interrupt for given queued command. 1583 * 1584 * LOCKING: 1585 * spin_lock_irqsave(host lock) 1586 * 1587 * RETURNS: 1588 * One if interrupt was handled, zero if not (shared irq). 1589 */ 1590 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1591 { 1592 return __ata_sff_port_intr(ap, qc, false); 1593 } 1594 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1595 1596 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1597 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1598 { 1599 struct ata_host *host = dev_instance; 1600 bool retried = false; 1601 unsigned int i; 1602 unsigned int handled, idle, polling; 1603 unsigned long flags; 1604 1605 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1606 spin_lock_irqsave(&host->lock, flags); 1607 1608 retry: 1609 handled = idle = polling = 0; 1610 for (i = 0; i < host->n_ports; i++) { 1611 struct ata_port *ap = host->ports[i]; 1612 struct ata_queued_cmd *qc; 1613 1614 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1615 if (qc) { 1616 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1617 handled |= port_intr(ap, qc); 1618 else 1619 polling |= 1 << i; 1620 } else 1621 idle |= 1 << i; 1622 } 1623 1624 /* 1625 * If no port was expecting IRQ but the controller is actually 1626 * asserting IRQ line, nobody cared will ensue. Check IRQ 1627 * pending status if available and clear spurious IRQ. 1628 */ 1629 if (!handled && !retried) { 1630 bool retry = false; 1631 1632 for (i = 0; i < host->n_ports; i++) { 1633 struct ata_port *ap = host->ports[i]; 1634 1635 if (polling & (1 << i)) 1636 continue; 1637 1638 if (!ap->ops->sff_irq_check || 1639 !ap->ops->sff_irq_check(ap)) 1640 continue; 1641 1642 if (idle & (1 << i)) { 1643 ap->ops->sff_check_status(ap); 1644 if (ap->ops->sff_irq_clear) 1645 ap->ops->sff_irq_clear(ap); 1646 } else { 1647 /* clear INTRQ and check if BUSY cleared */ 1648 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1649 retry |= true; 1650 /* 1651 * With command in flight, we can't do 1652 * sff_irq_clear() w/o racing with completion. 1653 */ 1654 } 1655 } 1656 1657 if (retry) { 1658 retried = true; 1659 goto retry; 1660 } 1661 } 1662 1663 spin_unlock_irqrestore(&host->lock, flags); 1664 1665 return IRQ_RETVAL(handled); 1666 } 1667 1668 /** 1669 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1670 * @irq: irq line (unused) 1671 * @dev_instance: pointer to our ata_host information structure 1672 * 1673 * Default interrupt handler for PCI IDE devices. Calls 1674 * ata_sff_port_intr() for each port that is not disabled. 1675 * 1676 * LOCKING: 1677 * Obtains host lock during operation. 1678 * 1679 * RETURNS: 1680 * IRQ_NONE or IRQ_HANDLED. 1681 */ 1682 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1683 { 1684 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1685 } 1686 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1687 1688 /** 1689 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1690 * @ap: port that appears to have timed out 1691 * 1692 * Called from the libata error handlers when the core code suspects 1693 * an interrupt has been lost. If it has complete anything we can and 1694 * then return. Interface must support altstatus for this faster 1695 * recovery to occur. 1696 * 1697 * Locking: 1698 * Caller holds host lock 1699 */ 1700 1701 void ata_sff_lost_interrupt(struct ata_port *ap) 1702 { 1703 u8 status; 1704 struct ata_queued_cmd *qc; 1705 1706 /* Only one outstanding command per SFF channel */ 1707 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1708 /* We cannot lose an interrupt on a non-existent or polled command */ 1709 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1710 return; 1711 /* See if the controller thinks it is still busy - if so the command 1712 isn't a lost IRQ but is still in progress */ 1713 status = ata_sff_altstatus(ap); 1714 if (status & ATA_BUSY) 1715 return; 1716 1717 /* There was a command running, we are no longer busy and we have 1718 no interrupt. */ 1719 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", 1720 status); 1721 /* Run the host interrupt logic as if the interrupt had not been 1722 lost */ 1723 ata_sff_port_intr(ap, qc); 1724 } 1725 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1726 1727 /** 1728 * ata_sff_freeze - Freeze SFF controller port 1729 * @ap: port to freeze 1730 * 1731 * Freeze SFF controller port. 1732 * 1733 * LOCKING: 1734 * Inherited from caller. 1735 */ 1736 void ata_sff_freeze(struct ata_port *ap) 1737 { 1738 ap->ctl |= ATA_NIEN; 1739 ap->last_ctl = ap->ctl; 1740 1741 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1742 ata_sff_set_devctl(ap, ap->ctl); 1743 1744 /* Under certain circumstances, some controllers raise IRQ on 1745 * ATA_NIEN manipulation. Also, many controllers fail to mask 1746 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1747 */ 1748 ap->ops->sff_check_status(ap); 1749 1750 if (ap->ops->sff_irq_clear) 1751 ap->ops->sff_irq_clear(ap); 1752 } 1753 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1754 1755 /** 1756 * ata_sff_thaw - Thaw SFF controller port 1757 * @ap: port to thaw 1758 * 1759 * Thaw SFF controller port. 1760 * 1761 * LOCKING: 1762 * Inherited from caller. 1763 */ 1764 void ata_sff_thaw(struct ata_port *ap) 1765 { 1766 /* clear & re-enable interrupts */ 1767 ap->ops->sff_check_status(ap); 1768 if (ap->ops->sff_irq_clear) 1769 ap->ops->sff_irq_clear(ap); 1770 ata_sff_irq_on(ap); 1771 } 1772 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1773 1774 /** 1775 * ata_sff_prereset - prepare SFF link for reset 1776 * @link: SFF link to be reset 1777 * @deadline: deadline jiffies for the operation 1778 * 1779 * SFF link @link is about to be reset. Initialize it. It first 1780 * calls ata_std_prereset() and wait for !BSY if the port is 1781 * being softreset. 1782 * 1783 * LOCKING: 1784 * Kernel thread context (may sleep) 1785 * 1786 * RETURNS: 1787 * 0 on success, -errno otherwise. 1788 */ 1789 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1790 { 1791 struct ata_eh_context *ehc = &link->eh_context; 1792 int rc; 1793 1794 rc = ata_std_prereset(link, deadline); 1795 if (rc) 1796 return rc; 1797 1798 /* if we're about to do hardreset, nothing more to do */ 1799 if (ehc->i.action & ATA_EH_HARDRESET) 1800 return 0; 1801 1802 /* wait for !BSY if we don't know that no device is attached */ 1803 if (!ata_link_offline(link)) { 1804 rc = ata_sff_wait_ready(link, deadline); 1805 if (rc && rc != -ENODEV) { 1806 ata_link_warn(link, 1807 "device not ready (errno=%d), forcing hardreset\n", 1808 rc); 1809 ehc->i.action |= ATA_EH_HARDRESET; 1810 } 1811 } 1812 1813 return 0; 1814 } 1815 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1816 1817 /** 1818 * ata_devchk - PATA device presence detection 1819 * @ap: ATA channel to examine 1820 * @device: Device to examine (starting at zero) 1821 * 1822 * This technique was originally described in 1823 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1824 * later found its way into the ATA/ATAPI spec. 1825 * 1826 * Write a pattern to the ATA shadow registers, 1827 * and if a device is present, it will respond by 1828 * correctly storing and echoing back the 1829 * ATA shadow register contents. 1830 * 1831 * LOCKING: 1832 * caller. 1833 */ 1834 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1835 { 1836 struct ata_ioports *ioaddr = &ap->ioaddr; 1837 u8 nsect, lbal; 1838 1839 ap->ops->sff_dev_select(ap, device); 1840 1841 iowrite8(0x55, ioaddr->nsect_addr); 1842 iowrite8(0xaa, ioaddr->lbal_addr); 1843 1844 iowrite8(0xaa, ioaddr->nsect_addr); 1845 iowrite8(0x55, ioaddr->lbal_addr); 1846 1847 iowrite8(0x55, ioaddr->nsect_addr); 1848 iowrite8(0xaa, ioaddr->lbal_addr); 1849 1850 nsect = ioread8(ioaddr->nsect_addr); 1851 lbal = ioread8(ioaddr->lbal_addr); 1852 1853 if ((nsect == 0x55) && (lbal == 0xaa)) 1854 return 1; /* we found a device */ 1855 1856 return 0; /* nothing found */ 1857 } 1858 1859 /** 1860 * ata_sff_dev_classify - Parse returned ATA device signature 1861 * @dev: ATA device to classify (starting at zero) 1862 * @present: device seems present 1863 * @r_err: Value of error register on completion 1864 * 1865 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1866 * an ATA/ATAPI-defined set of values is placed in the ATA 1867 * shadow registers, indicating the results of device detection 1868 * and diagnostics. 1869 * 1870 * Select the ATA device, and read the values from the ATA shadow 1871 * registers. Then parse according to the Error register value, 1872 * and the spec-defined values examined by ata_dev_classify(). 1873 * 1874 * LOCKING: 1875 * caller. 1876 * 1877 * RETURNS: 1878 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1879 */ 1880 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1881 u8 *r_err) 1882 { 1883 struct ata_port *ap = dev->link->ap; 1884 struct ata_taskfile tf; 1885 unsigned int class; 1886 u8 err; 1887 1888 ap->ops->sff_dev_select(ap, dev->devno); 1889 1890 memset(&tf, 0, sizeof(tf)); 1891 1892 ap->ops->sff_tf_read(ap, &tf); 1893 err = tf.feature; 1894 if (r_err) 1895 *r_err = err; 1896 1897 /* see if device passed diags: continue and warn later */ 1898 if (err == 0) 1899 /* diagnostic fail : do nothing _YET_ */ 1900 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1901 else if (err == 1) 1902 /* do nothing */ ; 1903 else if ((dev->devno == 0) && (err == 0x81)) 1904 /* do nothing */ ; 1905 else 1906 return ATA_DEV_NONE; 1907 1908 /* determine if device is ATA or ATAPI */ 1909 class = ata_dev_classify(&tf); 1910 1911 if (class == ATA_DEV_UNKNOWN) { 1912 /* If the device failed diagnostic, it's likely to 1913 * have reported incorrect device signature too. 1914 * Assume ATA device if the device seems present but 1915 * device signature is invalid with diagnostic 1916 * failure. 1917 */ 1918 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1919 class = ATA_DEV_ATA; 1920 else 1921 class = ATA_DEV_NONE; 1922 } else if ((class == ATA_DEV_ATA) && 1923 (ap->ops->sff_check_status(ap) == 0)) 1924 class = ATA_DEV_NONE; 1925 1926 return class; 1927 } 1928 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1929 1930 /** 1931 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1932 * @link: SFF link which is just reset 1933 * @devmask: mask of present devices 1934 * @deadline: deadline jiffies for the operation 1935 * 1936 * Wait devices attached to SFF @link to become ready after 1937 * reset. It contains preceding 150ms wait to avoid accessing TF 1938 * status register too early. 1939 * 1940 * LOCKING: 1941 * Kernel thread context (may sleep). 1942 * 1943 * RETURNS: 1944 * 0 on success, -ENODEV if some or all of devices in @devmask 1945 * don't seem to exist. -errno on other errors. 1946 */ 1947 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1948 unsigned long deadline) 1949 { 1950 struct ata_port *ap = link->ap; 1951 struct ata_ioports *ioaddr = &ap->ioaddr; 1952 unsigned int dev0 = devmask & (1 << 0); 1953 unsigned int dev1 = devmask & (1 << 1); 1954 int rc, ret = 0; 1955 1956 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1957 1958 /* always check readiness of the master device */ 1959 rc = ata_sff_wait_ready(link, deadline); 1960 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1961 * and TF status is 0xff, bail out on it too. 1962 */ 1963 if (rc) 1964 return rc; 1965 1966 /* if device 1 was found in ata_devchk, wait for register 1967 * access briefly, then wait for BSY to clear. 1968 */ 1969 if (dev1) { 1970 int i; 1971 1972 ap->ops->sff_dev_select(ap, 1); 1973 1974 /* Wait for register access. Some ATAPI devices fail 1975 * to set nsect/lbal after reset, so don't waste too 1976 * much time on it. We're gonna wait for !BSY anyway. 1977 */ 1978 for (i = 0; i < 2; i++) { 1979 u8 nsect, lbal; 1980 1981 nsect = ioread8(ioaddr->nsect_addr); 1982 lbal = ioread8(ioaddr->lbal_addr); 1983 if ((nsect == 1) && (lbal == 1)) 1984 break; 1985 ata_msleep(ap, 50); /* give drive a breather */ 1986 } 1987 1988 rc = ata_sff_wait_ready(link, deadline); 1989 if (rc) { 1990 if (rc != -ENODEV) 1991 return rc; 1992 ret = rc; 1993 } 1994 } 1995 1996 /* is all this really necessary? */ 1997 ap->ops->sff_dev_select(ap, 0); 1998 if (dev1) 1999 ap->ops->sff_dev_select(ap, 1); 2000 if (dev0) 2001 ap->ops->sff_dev_select(ap, 0); 2002 2003 return ret; 2004 } 2005 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2006 2007 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 2008 unsigned long deadline) 2009 { 2010 struct ata_ioports *ioaddr = &ap->ioaddr; 2011 2012 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2013 2014 if (ap->ioaddr.ctl_addr) { 2015 /* software reset. causes dev0 to be selected */ 2016 iowrite8(ap->ctl, ioaddr->ctl_addr); 2017 udelay(20); /* FIXME: flush */ 2018 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2019 udelay(20); /* FIXME: flush */ 2020 iowrite8(ap->ctl, ioaddr->ctl_addr); 2021 ap->last_ctl = ap->ctl; 2022 } 2023 2024 /* wait the port to become ready */ 2025 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2026 } 2027 2028 /** 2029 * ata_sff_softreset - reset host port via ATA SRST 2030 * @link: ATA link to reset 2031 * @classes: resulting classes of attached devices 2032 * @deadline: deadline jiffies for the operation 2033 * 2034 * Reset host port using ATA SRST. 2035 * 2036 * LOCKING: 2037 * Kernel thread context (may sleep) 2038 * 2039 * RETURNS: 2040 * 0 on success, -errno otherwise. 2041 */ 2042 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2043 unsigned long deadline) 2044 { 2045 struct ata_port *ap = link->ap; 2046 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2047 unsigned int devmask = 0; 2048 int rc; 2049 u8 err; 2050 2051 DPRINTK("ENTER\n"); 2052 2053 /* determine if device 0/1 are present */ 2054 if (ata_devchk(ap, 0)) 2055 devmask |= (1 << 0); 2056 if (slave_possible && ata_devchk(ap, 1)) 2057 devmask |= (1 << 1); 2058 2059 /* select device 0 again */ 2060 ap->ops->sff_dev_select(ap, 0); 2061 2062 /* issue bus reset */ 2063 DPRINTK("about to softreset, devmask=%x\n", devmask); 2064 rc = ata_bus_softreset(ap, devmask, deadline); 2065 /* if link is occupied, -ENODEV too is an error */ 2066 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2067 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 2068 return rc; 2069 } 2070 2071 /* determine by signature whether we have ATA or ATAPI devices */ 2072 classes[0] = ata_sff_dev_classify(&link->device[0], 2073 devmask & (1 << 0), &err); 2074 if (slave_possible && err != 0x81) 2075 classes[1] = ata_sff_dev_classify(&link->device[1], 2076 devmask & (1 << 1), &err); 2077 2078 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2079 return 0; 2080 } 2081 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2082 2083 /** 2084 * sata_sff_hardreset - reset host port via SATA phy reset 2085 * @link: link to reset 2086 * @class: resulting class of attached device 2087 * @deadline: deadline jiffies for the operation 2088 * 2089 * SATA phy-reset host port using DET bits of SControl register, 2090 * wait for !BSY and classify the attached device. 2091 * 2092 * LOCKING: 2093 * Kernel thread context (may sleep) 2094 * 2095 * RETURNS: 2096 * 0 on success, -errno otherwise. 2097 */ 2098 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2099 unsigned long deadline) 2100 { 2101 struct ata_eh_context *ehc = &link->eh_context; 2102 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2103 bool online; 2104 int rc; 2105 2106 rc = sata_link_hardreset(link, timing, deadline, &online, 2107 ata_sff_check_ready); 2108 if (online) 2109 *class = ata_sff_dev_classify(link->device, 1, NULL); 2110 2111 DPRINTK("EXIT, class=%u\n", *class); 2112 return rc; 2113 } 2114 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2115 2116 /** 2117 * ata_sff_postreset - SFF postreset callback 2118 * @link: the target SFF ata_link 2119 * @classes: classes of attached devices 2120 * 2121 * This function is invoked after a successful reset. It first 2122 * calls ata_std_postreset() and performs SFF specific postreset 2123 * processing. 2124 * 2125 * LOCKING: 2126 * Kernel thread context (may sleep) 2127 */ 2128 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2129 { 2130 struct ata_port *ap = link->ap; 2131 2132 ata_std_postreset(link, classes); 2133 2134 /* is double-select really necessary? */ 2135 if (classes[0] != ATA_DEV_NONE) 2136 ap->ops->sff_dev_select(ap, 1); 2137 if (classes[1] != ATA_DEV_NONE) 2138 ap->ops->sff_dev_select(ap, 0); 2139 2140 /* bail out if no device is present */ 2141 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2142 DPRINTK("EXIT, no device\n"); 2143 return; 2144 } 2145 2146 /* set up device control */ 2147 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2148 ata_sff_set_devctl(ap, ap->ctl); 2149 ap->last_ctl = ap->ctl; 2150 } 2151 } 2152 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2153 2154 /** 2155 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2156 * @qc: command 2157 * 2158 * Drain the FIFO and device of any stuck data following a command 2159 * failing to complete. In some cases this is necessary before a 2160 * reset will recover the device. 2161 * 2162 */ 2163 2164 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2165 { 2166 int count; 2167 struct ata_port *ap; 2168 2169 /* We only need to flush incoming data when a command was running */ 2170 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2171 return; 2172 2173 ap = qc->ap; 2174 /* Drain up to 64K of data before we give up this recovery method */ 2175 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2176 && count < 65536; count += 2) 2177 ioread16(ap->ioaddr.data_addr); 2178 2179 /* Can become DEBUG later */ 2180 if (count) 2181 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2182 2183 } 2184 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2185 2186 /** 2187 * ata_sff_error_handler - Stock error handler for SFF controller 2188 * @ap: port to handle error for 2189 * 2190 * Stock error handler for SFF controller. It can handle both 2191 * PATA and SATA controllers. Many controllers should be able to 2192 * use this EH as-is or with some added handling before and 2193 * after. 2194 * 2195 * LOCKING: 2196 * Kernel thread context (may sleep) 2197 */ 2198 void ata_sff_error_handler(struct ata_port *ap) 2199 { 2200 ata_reset_fn_t softreset = ap->ops->softreset; 2201 ata_reset_fn_t hardreset = ap->ops->hardreset; 2202 struct ata_queued_cmd *qc; 2203 unsigned long flags; 2204 2205 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2206 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2207 qc = NULL; 2208 2209 spin_lock_irqsave(ap->lock, flags); 2210 2211 /* 2212 * We *MUST* do FIFO draining before we issue a reset as 2213 * several devices helpfully clear their internal state and 2214 * will lock solid if we touch the data port post reset. Pass 2215 * qc in case anyone wants to do different PIO/DMA recovery or 2216 * has per command fixups 2217 */ 2218 if (ap->ops->sff_drain_fifo) 2219 ap->ops->sff_drain_fifo(qc); 2220 2221 spin_unlock_irqrestore(ap->lock, flags); 2222 2223 /* ignore built-in hardresets if SCR access is not available */ 2224 if ((hardreset == sata_std_hardreset || 2225 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2226 hardreset = NULL; 2227 2228 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2229 ap->ops->postreset); 2230 } 2231 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2232 2233 /** 2234 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2235 * @ioaddr: IO address structure to be initialized 2236 * 2237 * Utility function which initializes data_addr, error_addr, 2238 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2239 * device_addr, status_addr, and command_addr to standard offsets 2240 * relative to cmd_addr. 2241 * 2242 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2243 */ 2244 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2245 { 2246 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2247 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2248 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2249 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2250 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2251 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2252 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2253 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2254 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2255 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2256 } 2257 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2258 2259 #ifdef CONFIG_PCI 2260 2261 static int ata_resources_present(struct pci_dev *pdev, int port) 2262 { 2263 int i; 2264 2265 /* Check the PCI resources for this channel are enabled */ 2266 port = port * 2; 2267 for (i = 0; i < 2; i++) { 2268 if (pci_resource_start(pdev, port + i) == 0 || 2269 pci_resource_len(pdev, port + i) == 0) 2270 return 0; 2271 } 2272 return 1; 2273 } 2274 2275 /** 2276 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2277 * @host: target ATA host 2278 * 2279 * Acquire native PCI ATA resources for @host and initialize the 2280 * first two ports of @host accordingly. Ports marked dummy are 2281 * skipped and allocation failure makes the port dummy. 2282 * 2283 * Note that native PCI resources are valid even for legacy hosts 2284 * as we fix up pdev resources array early in boot, so this 2285 * function can be used for both native and legacy SFF hosts. 2286 * 2287 * LOCKING: 2288 * Inherited from calling layer (may sleep). 2289 * 2290 * RETURNS: 2291 * 0 if at least one port is initialized, -ENODEV if no port is 2292 * available. 2293 */ 2294 int ata_pci_sff_init_host(struct ata_host *host) 2295 { 2296 struct device *gdev = host->dev; 2297 struct pci_dev *pdev = to_pci_dev(gdev); 2298 unsigned int mask = 0; 2299 int i, rc; 2300 2301 /* request, iomap BARs and init port addresses accordingly */ 2302 for (i = 0; i < 2; i++) { 2303 struct ata_port *ap = host->ports[i]; 2304 int base = i * 2; 2305 void __iomem * const *iomap; 2306 2307 if (ata_port_is_dummy(ap)) 2308 continue; 2309 2310 /* Discard disabled ports. Some controllers show 2311 * their unused channels this way. Disabled ports are 2312 * made dummy. 2313 */ 2314 if (!ata_resources_present(pdev, i)) { 2315 ap->ops = &ata_dummy_port_ops; 2316 continue; 2317 } 2318 2319 rc = pcim_iomap_regions(pdev, 0x3 << base, 2320 dev_driver_string(gdev)); 2321 if (rc) { 2322 dev_warn(gdev, 2323 "failed to request/iomap BARs for port %d (errno=%d)\n", 2324 i, rc); 2325 if (rc == -EBUSY) 2326 pcim_pin_device(pdev); 2327 ap->ops = &ata_dummy_port_ops; 2328 continue; 2329 } 2330 host->iomap = iomap = pcim_iomap_table(pdev); 2331 2332 ap->ioaddr.cmd_addr = iomap[base]; 2333 ap->ioaddr.altstatus_addr = 2334 ap->ioaddr.ctl_addr = (void __iomem *) 2335 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2336 ata_sff_std_ports(&ap->ioaddr); 2337 2338 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2339 (unsigned long long)pci_resource_start(pdev, base), 2340 (unsigned long long)pci_resource_start(pdev, base + 1)); 2341 2342 mask |= 1 << i; 2343 } 2344 2345 if (!mask) { 2346 dev_err(gdev, "no available native port\n"); 2347 return -ENODEV; 2348 } 2349 2350 return 0; 2351 } 2352 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2353 2354 /** 2355 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2356 * @pdev: target PCI device 2357 * @ppi: array of port_info, must be enough for two ports 2358 * @r_host: out argument for the initialized ATA host 2359 * 2360 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2361 * all PCI resources and initialize it accordingly in one go. 2362 * 2363 * LOCKING: 2364 * Inherited from calling layer (may sleep). 2365 * 2366 * RETURNS: 2367 * 0 on success, -errno otherwise. 2368 */ 2369 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2370 const struct ata_port_info * const *ppi, 2371 struct ata_host **r_host) 2372 { 2373 struct ata_host *host; 2374 int rc; 2375 2376 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2377 return -ENOMEM; 2378 2379 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2380 if (!host) { 2381 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2382 rc = -ENOMEM; 2383 goto err_out; 2384 } 2385 2386 rc = ata_pci_sff_init_host(host); 2387 if (rc) 2388 goto err_out; 2389 2390 devres_remove_group(&pdev->dev, NULL); 2391 *r_host = host; 2392 return 0; 2393 2394 err_out: 2395 devres_release_group(&pdev->dev, NULL); 2396 return rc; 2397 } 2398 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2399 2400 /** 2401 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2402 * @host: target SFF ATA host 2403 * @irq_handler: irq_handler used when requesting IRQ(s) 2404 * @sht: scsi_host_template to use when registering the host 2405 * 2406 * This is the counterpart of ata_host_activate() for SFF ATA 2407 * hosts. This separate helper is necessary because SFF hosts 2408 * use two separate interrupts in legacy mode. 2409 * 2410 * LOCKING: 2411 * Inherited from calling layer (may sleep). 2412 * 2413 * RETURNS: 2414 * 0 on success, -errno otherwise. 2415 */ 2416 int ata_pci_sff_activate_host(struct ata_host *host, 2417 irq_handler_t irq_handler, 2418 struct scsi_host_template *sht) 2419 { 2420 struct device *dev = host->dev; 2421 struct pci_dev *pdev = to_pci_dev(dev); 2422 const char *drv_name = dev_driver_string(host->dev); 2423 int legacy_mode = 0, rc; 2424 2425 rc = ata_host_start(host); 2426 if (rc) 2427 return rc; 2428 2429 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2430 u8 tmp8, mask; 2431 2432 /* TODO: What if one channel is in native mode ... */ 2433 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2434 mask = (1 << 2) | (1 << 0); 2435 if ((tmp8 & mask) != mask) 2436 legacy_mode = 1; 2437 } 2438 2439 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2440 return -ENOMEM; 2441 2442 if (!legacy_mode && pdev->irq) { 2443 int i; 2444 2445 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2446 IRQF_SHARED, drv_name, host); 2447 if (rc) 2448 goto out; 2449 2450 for (i = 0; i < 2; i++) { 2451 if (ata_port_is_dummy(host->ports[i])) 2452 continue; 2453 ata_port_desc(host->ports[i], "irq %d", pdev->irq); 2454 } 2455 } else if (legacy_mode) { 2456 if (!ata_port_is_dummy(host->ports[0])) { 2457 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2458 irq_handler, IRQF_SHARED, 2459 drv_name, host); 2460 if (rc) 2461 goto out; 2462 2463 ata_port_desc(host->ports[0], "irq %d", 2464 ATA_PRIMARY_IRQ(pdev)); 2465 } 2466 2467 if (!ata_port_is_dummy(host->ports[1])) { 2468 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2469 irq_handler, IRQF_SHARED, 2470 drv_name, host); 2471 if (rc) 2472 goto out; 2473 2474 ata_port_desc(host->ports[1], "irq %d", 2475 ATA_SECONDARY_IRQ(pdev)); 2476 } 2477 } 2478 2479 rc = ata_host_register(host, sht); 2480 out: 2481 if (rc == 0) 2482 devres_remove_group(dev, NULL); 2483 else 2484 devres_release_group(dev, NULL); 2485 2486 return rc; 2487 } 2488 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2489 2490 static const struct ata_port_info *ata_sff_find_valid_pi( 2491 const struct ata_port_info * const *ppi) 2492 { 2493 int i; 2494 2495 /* look up the first valid port_info */ 2496 for (i = 0; i < 2 && ppi[i]; i++) 2497 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2498 return ppi[i]; 2499 2500 return NULL; 2501 } 2502 2503 static int ata_pci_init_one(struct pci_dev *pdev, 2504 const struct ata_port_info * const *ppi, 2505 struct scsi_host_template *sht, void *host_priv, 2506 int hflags, bool bmdma) 2507 { 2508 struct device *dev = &pdev->dev; 2509 const struct ata_port_info *pi; 2510 struct ata_host *host = NULL; 2511 int rc; 2512 2513 DPRINTK("ENTER\n"); 2514 2515 pi = ata_sff_find_valid_pi(ppi); 2516 if (!pi) { 2517 dev_err(&pdev->dev, "no valid port_info specified\n"); 2518 return -EINVAL; 2519 } 2520 2521 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2522 return -ENOMEM; 2523 2524 rc = pcim_enable_device(pdev); 2525 if (rc) 2526 goto out; 2527 2528 #ifdef CONFIG_ATA_BMDMA 2529 if (bmdma) 2530 /* prepare and activate BMDMA host */ 2531 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2532 else 2533 #endif 2534 /* prepare and activate SFF host */ 2535 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2536 if (rc) 2537 goto out; 2538 host->private_data = host_priv; 2539 host->flags |= hflags; 2540 2541 #ifdef CONFIG_ATA_BMDMA 2542 if (bmdma) { 2543 pci_set_master(pdev); 2544 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2545 } else 2546 #endif 2547 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2548 out: 2549 if (rc == 0) 2550 devres_remove_group(&pdev->dev, NULL); 2551 else 2552 devres_release_group(&pdev->dev, NULL); 2553 2554 return rc; 2555 } 2556 2557 /** 2558 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2559 * @pdev: Controller to be initialized 2560 * @ppi: array of port_info, must be enough for two ports 2561 * @sht: scsi_host_template to use when registering the host 2562 * @host_priv: host private_data 2563 * @hflag: host flags 2564 * 2565 * This is a helper function which can be called from a driver's 2566 * xxx_init_one() probe function if the hardware uses traditional 2567 * IDE taskfile registers and is PIO only. 2568 * 2569 * ASSUMPTION: 2570 * Nobody makes a single channel controller that appears solely as 2571 * the secondary legacy port on PCI. 2572 * 2573 * LOCKING: 2574 * Inherited from PCI layer (may sleep). 2575 * 2576 * RETURNS: 2577 * Zero on success, negative on errno-based value on error. 2578 */ 2579 int ata_pci_sff_init_one(struct pci_dev *pdev, 2580 const struct ata_port_info * const *ppi, 2581 struct scsi_host_template *sht, void *host_priv, int hflag) 2582 { 2583 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2584 } 2585 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2586 2587 #endif /* CONFIG_PCI */ 2588 2589 /* 2590 * BMDMA support 2591 */ 2592 2593 #ifdef CONFIG_ATA_BMDMA 2594 2595 const struct ata_port_operations ata_bmdma_port_ops = { 2596 .inherits = &ata_sff_port_ops, 2597 2598 .error_handler = ata_bmdma_error_handler, 2599 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2600 2601 .qc_prep = ata_bmdma_qc_prep, 2602 .qc_issue = ata_bmdma_qc_issue, 2603 2604 .sff_irq_clear = ata_bmdma_irq_clear, 2605 .bmdma_setup = ata_bmdma_setup, 2606 .bmdma_start = ata_bmdma_start, 2607 .bmdma_stop = ata_bmdma_stop, 2608 .bmdma_status = ata_bmdma_status, 2609 2610 .port_start = ata_bmdma_port_start, 2611 }; 2612 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2613 2614 const struct ata_port_operations ata_bmdma32_port_ops = { 2615 .inherits = &ata_bmdma_port_ops, 2616 2617 .sff_data_xfer = ata_sff_data_xfer32, 2618 .port_start = ata_bmdma_port_start32, 2619 }; 2620 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2621 2622 /** 2623 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2624 * @qc: Metadata associated with taskfile to be transferred 2625 * 2626 * Fill PCI IDE PRD (scatter-gather) table with segments 2627 * associated with the current disk command. 2628 * 2629 * LOCKING: 2630 * spin_lock_irqsave(host lock) 2631 * 2632 */ 2633 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2634 { 2635 struct ata_port *ap = qc->ap; 2636 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2637 struct scatterlist *sg; 2638 unsigned int si, pi; 2639 2640 pi = 0; 2641 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2642 u32 addr, offset; 2643 u32 sg_len, len; 2644 2645 /* determine if physical DMA addr spans 64K boundary. 2646 * Note h/w doesn't support 64-bit, so we unconditionally 2647 * truncate dma_addr_t to u32. 2648 */ 2649 addr = (u32) sg_dma_address(sg); 2650 sg_len = sg_dma_len(sg); 2651 2652 while (sg_len) { 2653 offset = addr & 0xffff; 2654 len = sg_len; 2655 if ((offset + sg_len) > 0x10000) 2656 len = 0x10000 - offset; 2657 2658 prd[pi].addr = cpu_to_le32(addr); 2659 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2660 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2661 2662 pi++; 2663 sg_len -= len; 2664 addr += len; 2665 } 2666 } 2667 2668 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2669 } 2670 2671 /** 2672 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2673 * @qc: Metadata associated with taskfile to be transferred 2674 * 2675 * Fill PCI IDE PRD (scatter-gather) table with segments 2676 * associated with the current disk command. Perform the fill 2677 * so that we avoid writing any length 64K records for 2678 * controllers that don't follow the spec. 2679 * 2680 * LOCKING: 2681 * spin_lock_irqsave(host lock) 2682 * 2683 */ 2684 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2685 { 2686 struct ata_port *ap = qc->ap; 2687 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2688 struct scatterlist *sg; 2689 unsigned int si, pi; 2690 2691 pi = 0; 2692 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2693 u32 addr, offset; 2694 u32 sg_len, len, blen; 2695 2696 /* determine if physical DMA addr spans 64K boundary. 2697 * Note h/w doesn't support 64-bit, so we unconditionally 2698 * truncate dma_addr_t to u32. 2699 */ 2700 addr = (u32) sg_dma_address(sg); 2701 sg_len = sg_dma_len(sg); 2702 2703 while (sg_len) { 2704 offset = addr & 0xffff; 2705 len = sg_len; 2706 if ((offset + sg_len) > 0x10000) 2707 len = 0x10000 - offset; 2708 2709 blen = len & 0xffff; 2710 prd[pi].addr = cpu_to_le32(addr); 2711 if (blen == 0) { 2712 /* Some PATA chipsets like the CS5530 can't 2713 cope with 0x0000 meaning 64K as the spec 2714 says */ 2715 prd[pi].flags_len = cpu_to_le32(0x8000); 2716 blen = 0x8000; 2717 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2718 } 2719 prd[pi].flags_len = cpu_to_le32(blen); 2720 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2721 2722 pi++; 2723 sg_len -= len; 2724 addr += len; 2725 } 2726 } 2727 2728 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2729 } 2730 2731 /** 2732 * ata_bmdma_qc_prep - Prepare taskfile for submission 2733 * @qc: Metadata associated with taskfile to be prepared 2734 * 2735 * Prepare ATA taskfile for submission. 2736 * 2737 * LOCKING: 2738 * spin_lock_irqsave(host lock) 2739 */ 2740 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2741 { 2742 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2743 return; 2744 2745 ata_bmdma_fill_sg(qc); 2746 } 2747 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2748 2749 /** 2750 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2751 * @qc: Metadata associated with taskfile to be prepared 2752 * 2753 * Prepare ATA taskfile for submission. 2754 * 2755 * LOCKING: 2756 * spin_lock_irqsave(host lock) 2757 */ 2758 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2759 { 2760 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2761 return; 2762 2763 ata_bmdma_fill_sg_dumb(qc); 2764 } 2765 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2766 2767 /** 2768 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2769 * @qc: command to issue to device 2770 * 2771 * This function issues a PIO, NODATA or DMA command to a 2772 * SFF/BMDMA controller. PIO and NODATA are handled by 2773 * ata_sff_qc_issue(). 2774 * 2775 * LOCKING: 2776 * spin_lock_irqsave(host lock) 2777 * 2778 * RETURNS: 2779 * Zero on success, AC_ERR_* mask on failure 2780 */ 2781 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2782 { 2783 struct ata_port *ap = qc->ap; 2784 struct ata_link *link = qc->dev->link; 2785 2786 /* defer PIO handling to sff_qc_issue */ 2787 if (!ata_is_dma(qc->tf.protocol)) 2788 return ata_sff_qc_issue(qc); 2789 2790 /* select the device */ 2791 ata_dev_select(ap, qc->dev->devno, 1, 0); 2792 2793 /* start the command */ 2794 switch (qc->tf.protocol) { 2795 case ATA_PROT_DMA: 2796 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2797 2798 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2799 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2800 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2801 ap->hsm_task_state = HSM_ST_LAST; 2802 break; 2803 2804 case ATAPI_PROT_DMA: 2805 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2806 2807 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2808 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2809 ap->hsm_task_state = HSM_ST_FIRST; 2810 2811 /* send cdb by polling if no cdb interrupt */ 2812 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2813 ata_sff_queue_pio_task(link, 0); 2814 break; 2815 2816 default: 2817 WARN_ON(1); 2818 return AC_ERR_SYSTEM; 2819 } 2820 2821 return 0; 2822 } 2823 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2824 2825 /** 2826 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2827 * @ap: Port on which interrupt arrived (possibly...) 2828 * @qc: Taskfile currently active in engine 2829 * 2830 * Handle port interrupt for given queued command. 2831 * 2832 * LOCKING: 2833 * spin_lock_irqsave(host lock) 2834 * 2835 * RETURNS: 2836 * One if interrupt was handled, zero if not (shared irq). 2837 */ 2838 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2839 { 2840 struct ata_eh_info *ehi = &ap->link.eh_info; 2841 u8 host_stat = 0; 2842 bool bmdma_stopped = false; 2843 unsigned int handled; 2844 2845 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2846 /* check status of DMA engine */ 2847 host_stat = ap->ops->bmdma_status(ap); 2848 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); 2849 2850 /* if it's not our irq... */ 2851 if (!(host_stat & ATA_DMA_INTR)) 2852 return ata_sff_idle_irq(ap); 2853 2854 /* before we do anything else, clear DMA-Start bit */ 2855 ap->ops->bmdma_stop(qc); 2856 bmdma_stopped = true; 2857 2858 if (unlikely(host_stat & ATA_DMA_ERR)) { 2859 /* error when transferring data to/from memory */ 2860 qc->err_mask |= AC_ERR_HOST_BUS; 2861 ap->hsm_task_state = HSM_ST_ERR; 2862 } 2863 } 2864 2865 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2866 2867 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2868 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2869 2870 return handled; 2871 } 2872 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2873 2874 /** 2875 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2876 * @irq: irq line (unused) 2877 * @dev_instance: pointer to our ata_host information structure 2878 * 2879 * Default interrupt handler for PCI IDE devices. Calls 2880 * ata_bmdma_port_intr() for each port that is not disabled. 2881 * 2882 * LOCKING: 2883 * Obtains host lock during operation. 2884 * 2885 * RETURNS: 2886 * IRQ_NONE or IRQ_HANDLED. 2887 */ 2888 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2889 { 2890 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2891 } 2892 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2893 2894 /** 2895 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2896 * @ap: port to handle error for 2897 * 2898 * Stock error handler for BMDMA controller. It can handle both 2899 * PATA and SATA controllers. Most BMDMA controllers should be 2900 * able to use this EH as-is or with some added handling before 2901 * and after. 2902 * 2903 * LOCKING: 2904 * Kernel thread context (may sleep) 2905 */ 2906 void ata_bmdma_error_handler(struct ata_port *ap) 2907 { 2908 struct ata_queued_cmd *qc; 2909 unsigned long flags; 2910 bool thaw = false; 2911 2912 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2913 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2914 qc = NULL; 2915 2916 /* reset PIO HSM and stop DMA engine */ 2917 spin_lock_irqsave(ap->lock, flags); 2918 2919 if (qc && ata_is_dma(qc->tf.protocol)) { 2920 u8 host_stat; 2921 2922 host_stat = ap->ops->bmdma_status(ap); 2923 2924 /* BMDMA controllers indicate host bus error by 2925 * setting DMA_ERR bit and timing out. As it wasn't 2926 * really a timeout event, adjust error mask and 2927 * cancel frozen state. 2928 */ 2929 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2930 qc->err_mask = AC_ERR_HOST_BUS; 2931 thaw = true; 2932 } 2933 2934 ap->ops->bmdma_stop(qc); 2935 2936 /* if we're gonna thaw, make sure IRQ is clear */ 2937 if (thaw) { 2938 ap->ops->sff_check_status(ap); 2939 if (ap->ops->sff_irq_clear) 2940 ap->ops->sff_irq_clear(ap); 2941 } 2942 } 2943 2944 spin_unlock_irqrestore(ap->lock, flags); 2945 2946 if (thaw) 2947 ata_eh_thaw_port(ap); 2948 2949 ata_sff_error_handler(ap); 2950 } 2951 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2952 2953 /** 2954 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2955 * @qc: internal command to clean up 2956 * 2957 * LOCKING: 2958 * Kernel thread context (may sleep) 2959 */ 2960 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2961 { 2962 struct ata_port *ap = qc->ap; 2963 unsigned long flags; 2964 2965 if (ata_is_dma(qc->tf.protocol)) { 2966 spin_lock_irqsave(ap->lock, flags); 2967 ap->ops->bmdma_stop(qc); 2968 spin_unlock_irqrestore(ap->lock, flags); 2969 } 2970 } 2971 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2972 2973 /** 2974 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2975 * @ap: Port associated with this ATA transaction. 2976 * 2977 * Clear interrupt and error flags in DMA status register. 2978 * 2979 * May be used as the irq_clear() entry in ata_port_operations. 2980 * 2981 * LOCKING: 2982 * spin_lock_irqsave(host lock) 2983 */ 2984 void ata_bmdma_irq_clear(struct ata_port *ap) 2985 { 2986 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2987 2988 if (!mmio) 2989 return; 2990 2991 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2992 } 2993 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2994 2995 /** 2996 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2997 * @qc: Info associated with this ATA transaction. 2998 * 2999 * LOCKING: 3000 * spin_lock_irqsave(host lock) 3001 */ 3002 void ata_bmdma_setup(struct ata_queued_cmd *qc) 3003 { 3004 struct ata_port *ap = qc->ap; 3005 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 3006 u8 dmactl; 3007 3008 /* load PRD table addr. */ 3009 mb(); /* make sure PRD table writes are visible to controller */ 3010 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 3011 3012 /* specify data direction, triple-check start bit is clear */ 3013 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3014 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 3015 if (!rw) 3016 dmactl |= ATA_DMA_WR; 3017 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3018 3019 /* issue r/w command */ 3020 ap->ops->sff_exec_command(ap, &qc->tf); 3021 } 3022 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 3023 3024 /** 3025 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 3026 * @qc: Info associated with this ATA transaction. 3027 * 3028 * LOCKING: 3029 * spin_lock_irqsave(host lock) 3030 */ 3031 void ata_bmdma_start(struct ata_queued_cmd *qc) 3032 { 3033 struct ata_port *ap = qc->ap; 3034 u8 dmactl; 3035 3036 /* start host DMA transaction */ 3037 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3038 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3039 3040 /* Strictly, one may wish to issue an ioread8() here, to 3041 * flush the mmio write. However, control also passes 3042 * to the hardware at this point, and it will interrupt 3043 * us when we are to resume control. So, in effect, 3044 * we don't care when the mmio write flushes. 3045 * Further, a read of the DMA status register _immediately_ 3046 * following the write may not be what certain flaky hardware 3047 * is expected, so I think it is best to not add a readb() 3048 * without first all the MMIO ATA cards/mobos. 3049 * Or maybe I'm just being paranoid. 3050 * 3051 * FIXME: The posting of this write means I/O starts are 3052 * unnecessarily delayed for MMIO 3053 */ 3054 } 3055 EXPORT_SYMBOL_GPL(ata_bmdma_start); 3056 3057 /** 3058 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 3059 * @qc: Command we are ending DMA for 3060 * 3061 * Clears the ATA_DMA_START flag in the dma control register 3062 * 3063 * May be used as the bmdma_stop() entry in ata_port_operations. 3064 * 3065 * LOCKING: 3066 * spin_lock_irqsave(host lock) 3067 */ 3068 void ata_bmdma_stop(struct ata_queued_cmd *qc) 3069 { 3070 struct ata_port *ap = qc->ap; 3071 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3072 3073 /* clear start/stop bit */ 3074 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3075 mmio + ATA_DMA_CMD); 3076 3077 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3078 ata_sff_dma_pause(ap); 3079 } 3080 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3081 3082 /** 3083 * ata_bmdma_status - Read PCI IDE BMDMA status 3084 * @ap: Port associated with this ATA transaction. 3085 * 3086 * Read and return BMDMA status register. 3087 * 3088 * May be used as the bmdma_status() entry in ata_port_operations. 3089 * 3090 * LOCKING: 3091 * spin_lock_irqsave(host lock) 3092 */ 3093 u8 ata_bmdma_status(struct ata_port *ap) 3094 { 3095 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3096 } 3097 EXPORT_SYMBOL_GPL(ata_bmdma_status); 3098 3099 3100 /** 3101 * ata_bmdma_port_start - Set port up for bmdma. 3102 * @ap: Port to initialize 3103 * 3104 * Called just after data structures for each port are 3105 * initialized. Allocates space for PRD table. 3106 * 3107 * May be used as the port_start() entry in ata_port_operations. 3108 * 3109 * LOCKING: 3110 * Inherited from caller. 3111 */ 3112 int ata_bmdma_port_start(struct ata_port *ap) 3113 { 3114 if (ap->mwdma_mask || ap->udma_mask) { 3115 ap->bmdma_prd = 3116 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3117 &ap->bmdma_prd_dma, GFP_KERNEL); 3118 if (!ap->bmdma_prd) 3119 return -ENOMEM; 3120 } 3121 3122 return 0; 3123 } 3124 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3125 3126 /** 3127 * ata_bmdma_port_start32 - Set port up for dma. 3128 * @ap: Port to initialize 3129 * 3130 * Called just after data structures for each port are 3131 * initialized. Enables 32bit PIO and allocates space for PRD 3132 * table. 3133 * 3134 * May be used as the port_start() entry in ata_port_operations for 3135 * devices that are capable of 32bit PIO. 3136 * 3137 * LOCKING: 3138 * Inherited from caller. 3139 */ 3140 int ata_bmdma_port_start32(struct ata_port *ap) 3141 { 3142 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3143 return ata_bmdma_port_start(ap); 3144 } 3145 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3146 3147 #ifdef CONFIG_PCI 3148 3149 /** 3150 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3151 * @pdev: PCI device 3152 * 3153 * Some PCI ATA devices report simplex mode but in fact can be told to 3154 * enter non simplex mode. This implements the necessary logic to 3155 * perform the task on such devices. Calling it on other devices will 3156 * have -undefined- behaviour. 3157 */ 3158 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3159 { 3160 unsigned long bmdma = pci_resource_start(pdev, 4); 3161 u8 simplex; 3162 3163 if (bmdma == 0) 3164 return -ENOENT; 3165 3166 simplex = inb(bmdma + 0x02); 3167 outb(simplex & 0x60, bmdma + 0x02); 3168 simplex = inb(bmdma + 0x02); 3169 if (simplex & 0x80) 3170 return -EOPNOTSUPP; 3171 return 0; 3172 } 3173 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3174 3175 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3176 { 3177 int i; 3178 3179 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3180 3181 for (i = 0; i < 2; i++) { 3182 host->ports[i]->mwdma_mask = 0; 3183 host->ports[i]->udma_mask = 0; 3184 } 3185 } 3186 3187 /** 3188 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3189 * @host: target ATA host 3190 * 3191 * Acquire PCI BMDMA resources and initialize @host accordingly. 3192 * 3193 * LOCKING: 3194 * Inherited from calling layer (may sleep). 3195 */ 3196 void ata_pci_bmdma_init(struct ata_host *host) 3197 { 3198 struct device *gdev = host->dev; 3199 struct pci_dev *pdev = to_pci_dev(gdev); 3200 int i, rc; 3201 3202 /* No BAR4 allocation: No DMA */ 3203 if (pci_resource_start(pdev, 4) == 0) { 3204 ata_bmdma_nodma(host, "BAR4 is zero"); 3205 return; 3206 } 3207 3208 /* 3209 * Some controllers require BMDMA region to be initialized 3210 * even if DMA is not in use to clear IRQ status via 3211 * ->sff_irq_clear method. Try to initialize bmdma_addr 3212 * regardless of dma masks. 3213 */ 3214 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK); 3215 if (rc) 3216 ata_bmdma_nodma(host, "failed to set dma mask"); 3217 if (!rc) { 3218 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK); 3219 if (rc) 3220 ata_bmdma_nodma(host, 3221 "failed to set consistent dma mask"); 3222 } 3223 3224 /* request and iomap DMA region */ 3225 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3226 if (rc) { 3227 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3228 return; 3229 } 3230 host->iomap = pcim_iomap_table(pdev); 3231 3232 for (i = 0; i < 2; i++) { 3233 struct ata_port *ap = host->ports[i]; 3234 void __iomem *bmdma = host->iomap[4] + 8 * i; 3235 3236 if (ata_port_is_dummy(ap)) 3237 continue; 3238 3239 ap->ioaddr.bmdma_addr = bmdma; 3240 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3241 (ioread8(bmdma + 2) & 0x80)) 3242 host->flags |= ATA_HOST_SIMPLEX; 3243 3244 ata_port_desc(ap, "bmdma 0x%llx", 3245 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3246 } 3247 } 3248 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3249 3250 /** 3251 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3252 * @pdev: target PCI device 3253 * @ppi: array of port_info, must be enough for two ports 3254 * @r_host: out argument for the initialized ATA host 3255 * 3256 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3257 * resources and initialize it accordingly in one go. 3258 * 3259 * LOCKING: 3260 * Inherited from calling layer (may sleep). 3261 * 3262 * RETURNS: 3263 * 0 on success, -errno otherwise. 3264 */ 3265 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3266 const struct ata_port_info * const * ppi, 3267 struct ata_host **r_host) 3268 { 3269 int rc; 3270 3271 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3272 if (rc) 3273 return rc; 3274 3275 ata_pci_bmdma_init(*r_host); 3276 return 0; 3277 } 3278 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3279 3280 /** 3281 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3282 * @pdev: Controller to be initialized 3283 * @ppi: array of port_info, must be enough for two ports 3284 * @sht: scsi_host_template to use when registering the host 3285 * @host_priv: host private_data 3286 * @hflags: host flags 3287 * 3288 * This function is similar to ata_pci_sff_init_one() but also 3289 * takes care of BMDMA initialization. 3290 * 3291 * LOCKING: 3292 * Inherited from PCI layer (may sleep). 3293 * 3294 * RETURNS: 3295 * Zero on success, negative on errno-based value on error. 3296 */ 3297 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3298 const struct ata_port_info * const * ppi, 3299 struct scsi_host_template *sht, void *host_priv, 3300 int hflags) 3301 { 3302 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3303 } 3304 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3305 3306 #endif /* CONFIG_PCI */ 3307 #endif /* CONFIG_ATA_BMDMA */ 3308 3309 /** 3310 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3311 * @ap: Port to initialize 3312 * 3313 * Called on port allocation to initialize SFF/BMDMA specific 3314 * fields. 3315 * 3316 * LOCKING: 3317 * None. 3318 */ 3319 void ata_sff_port_init(struct ata_port *ap) 3320 { 3321 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3322 ap->ctl = ATA_DEVCTL_OBS; 3323 ap->last_ctl = 0xFF; 3324 } 3325 3326 int __init ata_sff_init(void) 3327 { 3328 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3329 if (!ata_sff_wq) 3330 return -ENOMEM; 3331 3332 return 0; 3333 } 3334 3335 void ata_sff_exit(void) 3336 { 3337 destroy_workqueue(ata_sff_wq); 3338 } 3339