1 /* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35 #include <linux/kernel.h> 36 #include <linux/pci.h> 37 #include <linux/libata.h> 38 #include <linux/highmem.h> 39 40 #include "libata.h" 41 42 const struct ata_port_operations ata_sff_port_ops = { 43 .inherits = &ata_base_port_ops, 44 45 .qc_prep = ata_sff_qc_prep, 46 .qc_issue = ata_sff_qc_issue, 47 .qc_fill_rtf = ata_sff_qc_fill_rtf, 48 49 .freeze = ata_sff_freeze, 50 .thaw = ata_sff_thaw, 51 .prereset = ata_sff_prereset, 52 .softreset = ata_sff_softreset, 53 .hardreset = sata_sff_hardreset, 54 .postreset = ata_sff_postreset, 55 .error_handler = ata_sff_error_handler, 56 .post_internal_cmd = ata_sff_post_internal_cmd, 57 58 .sff_dev_select = ata_sff_dev_select, 59 .sff_check_status = ata_sff_check_status, 60 .sff_tf_load = ata_sff_tf_load, 61 .sff_tf_read = ata_sff_tf_read, 62 .sff_exec_command = ata_sff_exec_command, 63 .sff_data_xfer = ata_sff_data_xfer, 64 .sff_irq_on = ata_sff_irq_on, 65 .sff_irq_clear = ata_sff_irq_clear, 66 67 .port_start = ata_sff_port_start, 68 }; 69 70 const struct ata_port_operations ata_bmdma_port_ops = { 71 .inherits = &ata_sff_port_ops, 72 73 .mode_filter = ata_bmdma_mode_filter, 74 75 .bmdma_setup = ata_bmdma_setup, 76 .bmdma_start = ata_bmdma_start, 77 .bmdma_stop = ata_bmdma_stop, 78 .bmdma_status = ata_bmdma_status, 79 }; 80 81 /** 82 * ata_fill_sg - Fill PCI IDE PRD table 83 * @qc: Metadata associated with taskfile to be transferred 84 * 85 * Fill PCI IDE PRD (scatter-gather) table with segments 86 * associated with the current disk command. 87 * 88 * LOCKING: 89 * spin_lock_irqsave(host lock) 90 * 91 */ 92 static void ata_fill_sg(struct ata_queued_cmd *qc) 93 { 94 struct ata_port *ap = qc->ap; 95 struct scatterlist *sg; 96 unsigned int si, pi; 97 98 pi = 0; 99 for_each_sg(qc->sg, sg, qc->n_elem, si) { 100 u32 addr, offset; 101 u32 sg_len, len; 102 103 /* determine if physical DMA addr spans 64K boundary. 104 * Note h/w doesn't support 64-bit, so we unconditionally 105 * truncate dma_addr_t to u32. 106 */ 107 addr = (u32) sg_dma_address(sg); 108 sg_len = sg_dma_len(sg); 109 110 while (sg_len) { 111 offset = addr & 0xffff; 112 len = sg_len; 113 if ((offset + sg_len) > 0x10000) 114 len = 0x10000 - offset; 115 116 ap->prd[pi].addr = cpu_to_le32(addr); 117 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff); 118 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 119 120 pi++; 121 sg_len -= len; 122 addr += len; 123 } 124 } 125 126 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 127 } 128 129 /** 130 * ata_fill_sg_dumb - Fill PCI IDE PRD table 131 * @qc: Metadata associated with taskfile to be transferred 132 * 133 * Fill PCI IDE PRD (scatter-gather) table with segments 134 * associated with the current disk command. Perform the fill 135 * so that we avoid writing any length 64K records for 136 * controllers that don't follow the spec. 137 * 138 * LOCKING: 139 * spin_lock_irqsave(host lock) 140 * 141 */ 142 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc) 143 { 144 struct ata_port *ap = qc->ap; 145 struct scatterlist *sg; 146 unsigned int si, pi; 147 148 pi = 0; 149 for_each_sg(qc->sg, sg, qc->n_elem, si) { 150 u32 addr, offset; 151 u32 sg_len, len, blen; 152 153 /* determine if physical DMA addr spans 64K boundary. 154 * Note h/w doesn't support 64-bit, so we unconditionally 155 * truncate dma_addr_t to u32. 156 */ 157 addr = (u32) sg_dma_address(sg); 158 sg_len = sg_dma_len(sg); 159 160 while (sg_len) { 161 offset = addr & 0xffff; 162 len = sg_len; 163 if ((offset + sg_len) > 0x10000) 164 len = 0x10000 - offset; 165 166 blen = len & 0xffff; 167 ap->prd[pi].addr = cpu_to_le32(addr); 168 if (blen == 0) { 169 /* Some PATA chipsets like the CS5530 can't 170 cope with 0x0000 meaning 64K as the spec says */ 171 ap->prd[pi].flags_len = cpu_to_le32(0x8000); 172 blen = 0x8000; 173 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000); 174 } 175 ap->prd[pi].flags_len = cpu_to_le32(blen); 176 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 177 178 pi++; 179 sg_len -= len; 180 addr += len; 181 } 182 } 183 184 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 185 } 186 187 /** 188 * ata_sff_qc_prep - Prepare taskfile for submission 189 * @qc: Metadata associated with taskfile to be prepared 190 * 191 * Prepare ATA taskfile for submission. 192 * 193 * LOCKING: 194 * spin_lock_irqsave(host lock) 195 */ 196 void ata_sff_qc_prep(struct ata_queued_cmd *qc) 197 { 198 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 199 return; 200 201 ata_fill_sg(qc); 202 } 203 204 /** 205 * ata_sff_dumb_qc_prep - Prepare taskfile for submission 206 * @qc: Metadata associated with taskfile to be prepared 207 * 208 * Prepare ATA taskfile for submission. 209 * 210 * LOCKING: 211 * spin_lock_irqsave(host lock) 212 */ 213 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc) 214 { 215 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 216 return; 217 218 ata_fill_sg_dumb(qc); 219 } 220 221 /** 222 * ata_sff_check_status - Read device status reg & clear interrupt 223 * @ap: port where the device is 224 * 225 * Reads ATA taskfile status register for currently-selected device 226 * and return its value. This also clears pending interrupts 227 * from this device 228 * 229 * LOCKING: 230 * Inherited from caller. 231 */ 232 u8 ata_sff_check_status(struct ata_port *ap) 233 { 234 return ioread8(ap->ioaddr.status_addr); 235 } 236 237 /** 238 * ata_sff_altstatus - Read device alternate status reg 239 * @ap: port where the device is 240 * 241 * Reads ATA taskfile alternate status register for 242 * currently-selected device and return its value. 243 * 244 * Note: may NOT be used as the check_altstatus() entry in 245 * ata_port_operations. 246 * 247 * LOCKING: 248 * Inherited from caller. 249 */ 250 u8 ata_sff_altstatus(struct ata_port *ap) 251 { 252 if (ap->ops->sff_check_altstatus) 253 return ap->ops->sff_check_altstatus(ap); 254 255 return ioread8(ap->ioaddr.altstatus_addr); 256 } 257 258 /** 259 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 260 * @ap: port containing status register to be polled 261 * @tmout_pat: impatience timeout 262 * @tmout: overall timeout 263 * 264 * Sleep until ATA Status register bit BSY clears, 265 * or a timeout occurs. 266 * 267 * LOCKING: 268 * Kernel thread context (may sleep). 269 * 270 * RETURNS: 271 * 0 on success, -errno otherwise. 272 */ 273 int ata_sff_busy_sleep(struct ata_port *ap, 274 unsigned long tmout_pat, unsigned long tmout) 275 { 276 unsigned long timer_start, timeout; 277 u8 status; 278 279 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 280 timer_start = jiffies; 281 timeout = timer_start + tmout_pat; 282 while (status != 0xff && (status & ATA_BUSY) && 283 time_before(jiffies, timeout)) { 284 msleep(50); 285 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 286 } 287 288 if (status != 0xff && (status & ATA_BUSY)) 289 ata_port_printk(ap, KERN_WARNING, 290 "port is slow to respond, please be patient " 291 "(Status 0x%x)\n", status); 292 293 timeout = timer_start + tmout; 294 while (status != 0xff && (status & ATA_BUSY) && 295 time_before(jiffies, timeout)) { 296 msleep(50); 297 status = ap->ops->sff_check_status(ap); 298 } 299 300 if (status == 0xff) 301 return -ENODEV; 302 303 if (status & ATA_BUSY) { 304 ata_port_printk(ap, KERN_ERR, "port failed to respond " 305 "(%lu secs, Status 0x%x)\n", 306 tmout / HZ, status); 307 return -EBUSY; 308 } 309 310 return 0; 311 } 312 313 static int ata_sff_check_ready(struct ata_link *link) 314 { 315 u8 status = link->ap->ops->sff_check_status(link->ap); 316 317 return ata_check_ready(status); 318 } 319 320 /** 321 * ata_sff_wait_ready - sleep until BSY clears, or timeout 322 * @link: SFF link to wait ready status for 323 * @deadline: deadline jiffies for the operation 324 * 325 * Sleep until ATA Status register bit BSY clears, or timeout 326 * occurs. 327 * 328 * LOCKING: 329 * Kernel thread context (may sleep). 330 * 331 * RETURNS: 332 * 0 on success, -errno otherwise. 333 */ 334 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 335 { 336 return ata_wait_ready(link, deadline, ata_sff_check_ready); 337 } 338 339 /** 340 * ata_sff_dev_select - Select device 0/1 on ATA bus 341 * @ap: ATA channel to manipulate 342 * @device: ATA device (numbered from zero) to select 343 * 344 * Use the method defined in the ATA specification to 345 * make either device 0, or device 1, active on the 346 * ATA channel. Works with both PIO and MMIO. 347 * 348 * May be used as the dev_select() entry in ata_port_operations. 349 * 350 * LOCKING: 351 * caller. 352 */ 353 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 354 { 355 u8 tmp; 356 357 if (device == 0) 358 tmp = ATA_DEVICE_OBS; 359 else 360 tmp = ATA_DEVICE_OBS | ATA_DEV1; 361 362 iowrite8(tmp, ap->ioaddr.device_addr); 363 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 364 } 365 366 /** 367 * ata_dev_select - Select device 0/1 on ATA bus 368 * @ap: ATA channel to manipulate 369 * @device: ATA device (numbered from zero) to select 370 * @wait: non-zero to wait for Status register BSY bit to clear 371 * @can_sleep: non-zero if context allows sleeping 372 * 373 * Use the method defined in the ATA specification to 374 * make either device 0, or device 1, active on the 375 * ATA channel. 376 * 377 * This is a high-level version of ata_sff_dev_select(), which 378 * additionally provides the services of inserting the proper 379 * pauses and status polling, where needed. 380 * 381 * LOCKING: 382 * caller. 383 */ 384 void ata_dev_select(struct ata_port *ap, unsigned int device, 385 unsigned int wait, unsigned int can_sleep) 386 { 387 if (ata_msg_probe(ap)) 388 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, " 389 "device %u, wait %u\n", device, wait); 390 391 if (wait) 392 ata_wait_idle(ap); 393 394 ap->ops->sff_dev_select(ap, device); 395 396 if (wait) { 397 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 398 msleep(150); 399 ata_wait_idle(ap); 400 } 401 } 402 403 /** 404 * ata_sff_irq_on - Enable interrupts on a port. 405 * @ap: Port on which interrupts are enabled. 406 * 407 * Enable interrupts on a legacy IDE device using MMIO or PIO, 408 * wait for idle, clear any pending interrupts. 409 * 410 * LOCKING: 411 * Inherited from caller. 412 */ 413 u8 ata_sff_irq_on(struct ata_port *ap) 414 { 415 struct ata_ioports *ioaddr = &ap->ioaddr; 416 u8 tmp; 417 418 ap->ctl &= ~ATA_NIEN; 419 ap->last_ctl = ap->ctl; 420 421 if (ioaddr->ctl_addr) 422 iowrite8(ap->ctl, ioaddr->ctl_addr); 423 tmp = ata_wait_idle(ap); 424 425 ap->ops->sff_irq_clear(ap); 426 427 return tmp; 428 } 429 430 /** 431 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt. 432 * @ap: Port associated with this ATA transaction. 433 * 434 * Clear interrupt and error flags in DMA status register. 435 * 436 * May be used as the irq_clear() entry in ata_port_operations. 437 * 438 * LOCKING: 439 * spin_lock_irqsave(host lock) 440 */ 441 void ata_sff_irq_clear(struct ata_port *ap) 442 { 443 void __iomem *mmio = ap->ioaddr.bmdma_addr; 444 445 if (!mmio) 446 return; 447 448 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 449 } 450 451 /** 452 * ata_sff_tf_load - send taskfile registers to host controller 453 * @ap: Port to which output is sent 454 * @tf: ATA taskfile register set 455 * 456 * Outputs ATA taskfile to standard ATA host controller. 457 * 458 * LOCKING: 459 * Inherited from caller. 460 */ 461 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 462 { 463 struct ata_ioports *ioaddr = &ap->ioaddr; 464 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 465 466 if (tf->ctl != ap->last_ctl) { 467 if (ioaddr->ctl_addr) 468 iowrite8(tf->ctl, ioaddr->ctl_addr); 469 ap->last_ctl = tf->ctl; 470 ata_wait_idle(ap); 471 } 472 473 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 474 WARN_ON(!ioaddr->ctl_addr); 475 iowrite8(tf->hob_feature, ioaddr->feature_addr); 476 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 477 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 478 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 479 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 480 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 481 tf->hob_feature, 482 tf->hob_nsect, 483 tf->hob_lbal, 484 tf->hob_lbam, 485 tf->hob_lbah); 486 } 487 488 if (is_addr) { 489 iowrite8(tf->feature, ioaddr->feature_addr); 490 iowrite8(tf->nsect, ioaddr->nsect_addr); 491 iowrite8(tf->lbal, ioaddr->lbal_addr); 492 iowrite8(tf->lbam, ioaddr->lbam_addr); 493 iowrite8(tf->lbah, ioaddr->lbah_addr); 494 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 495 tf->feature, 496 tf->nsect, 497 tf->lbal, 498 tf->lbam, 499 tf->lbah); 500 } 501 502 if (tf->flags & ATA_TFLAG_DEVICE) { 503 iowrite8(tf->device, ioaddr->device_addr); 504 VPRINTK("device 0x%X\n", tf->device); 505 } 506 507 ata_wait_idle(ap); 508 } 509 510 /** 511 * ata_sff_tf_read - input device's ATA taskfile shadow registers 512 * @ap: Port from which input is read 513 * @tf: ATA taskfile register set for storing input 514 * 515 * Reads ATA taskfile registers for currently-selected device 516 * into @tf. Assumes the device has a fully SFF compliant task file 517 * layout and behaviour. If you device does not (eg has a different 518 * status method) then you will need to provide a replacement tf_read 519 * 520 * LOCKING: 521 * Inherited from caller. 522 */ 523 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 524 { 525 struct ata_ioports *ioaddr = &ap->ioaddr; 526 527 tf->command = ata_sff_check_status(ap); 528 tf->feature = ioread8(ioaddr->error_addr); 529 tf->nsect = ioread8(ioaddr->nsect_addr); 530 tf->lbal = ioread8(ioaddr->lbal_addr); 531 tf->lbam = ioread8(ioaddr->lbam_addr); 532 tf->lbah = ioread8(ioaddr->lbah_addr); 533 tf->device = ioread8(ioaddr->device_addr); 534 535 if (tf->flags & ATA_TFLAG_LBA48) { 536 if (likely(ioaddr->ctl_addr)) { 537 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 538 tf->hob_feature = ioread8(ioaddr->error_addr); 539 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 540 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 541 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 542 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 543 iowrite8(tf->ctl, ioaddr->ctl_addr); 544 ap->last_ctl = tf->ctl; 545 } else 546 WARN_ON(1); 547 } 548 } 549 550 /** 551 * ata_sff_exec_command - issue ATA command to host controller 552 * @ap: port to which command is being issued 553 * @tf: ATA taskfile register set 554 * 555 * Issues ATA command, with proper synchronization with interrupt 556 * handler / other threads. 557 * 558 * LOCKING: 559 * spin_lock_irqsave(host lock) 560 */ 561 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 562 { 563 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 564 565 iowrite8(tf->command, ap->ioaddr.command_addr); 566 ata_sff_pause(ap); 567 } 568 569 /** 570 * ata_tf_to_host - issue ATA taskfile to host controller 571 * @ap: port to which command is being issued 572 * @tf: ATA taskfile register set 573 * 574 * Issues ATA taskfile register set to ATA host controller, 575 * with proper synchronization with interrupt handler and 576 * other threads. 577 * 578 * LOCKING: 579 * spin_lock_irqsave(host lock) 580 */ 581 static inline void ata_tf_to_host(struct ata_port *ap, 582 const struct ata_taskfile *tf) 583 { 584 ap->ops->sff_tf_load(ap, tf); 585 ap->ops->sff_exec_command(ap, tf); 586 } 587 588 /** 589 * ata_sff_data_xfer - Transfer data by PIO 590 * @dev: device to target 591 * @buf: data buffer 592 * @buflen: buffer length 593 * @rw: read/write 594 * 595 * Transfer data from/to the device data register by PIO. 596 * 597 * LOCKING: 598 * Inherited from caller. 599 * 600 * RETURNS: 601 * Bytes consumed. 602 */ 603 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 604 unsigned int buflen, int rw) 605 { 606 struct ata_port *ap = dev->link->ap; 607 void __iomem *data_addr = ap->ioaddr.data_addr; 608 unsigned int words = buflen >> 1; 609 610 /* Transfer multiple of 2 bytes */ 611 if (rw == READ) 612 ioread16_rep(data_addr, buf, words); 613 else 614 iowrite16_rep(data_addr, buf, words); 615 616 /* Transfer trailing 1 byte, if any. */ 617 if (unlikely(buflen & 0x01)) { 618 __le16 align_buf[1] = { 0 }; 619 unsigned char *trailing_buf = buf + buflen - 1; 620 621 if (rw == READ) { 622 align_buf[0] = cpu_to_le16(ioread16(data_addr)); 623 memcpy(trailing_buf, align_buf, 1); 624 } else { 625 memcpy(align_buf, trailing_buf, 1); 626 iowrite16(le16_to_cpu(align_buf[0]), data_addr); 627 } 628 words++; 629 } 630 631 return words << 1; 632 } 633 634 /** 635 * ata_sff_data_xfer_noirq - Transfer data by PIO 636 * @dev: device to target 637 * @buf: data buffer 638 * @buflen: buffer length 639 * @rw: read/write 640 * 641 * Transfer data from/to the device data register by PIO. Do the 642 * transfer with interrupts disabled. 643 * 644 * LOCKING: 645 * Inherited from caller. 646 * 647 * RETURNS: 648 * Bytes consumed. 649 */ 650 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 651 unsigned int buflen, int rw) 652 { 653 unsigned long flags; 654 unsigned int consumed; 655 656 local_irq_save(flags); 657 consumed = ata_sff_data_xfer(dev, buf, buflen, rw); 658 local_irq_restore(flags); 659 660 return consumed; 661 } 662 663 /** 664 * ata_pio_sector - Transfer a sector of data. 665 * @qc: Command on going 666 * 667 * Transfer qc->sect_size bytes of data from/to the ATA device. 668 * 669 * LOCKING: 670 * Inherited from caller. 671 */ 672 static void ata_pio_sector(struct ata_queued_cmd *qc) 673 { 674 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 675 struct ata_port *ap = qc->ap; 676 struct page *page; 677 unsigned int offset; 678 unsigned char *buf; 679 680 if (qc->curbytes == qc->nbytes - qc->sect_size) 681 ap->hsm_task_state = HSM_ST_LAST; 682 683 page = sg_page(qc->cursg); 684 offset = qc->cursg->offset + qc->cursg_ofs; 685 686 /* get the current page and offset */ 687 page = nth_page(page, (offset >> PAGE_SHIFT)); 688 offset %= PAGE_SIZE; 689 690 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 691 692 if (PageHighMem(page)) { 693 unsigned long flags; 694 695 /* FIXME: use a bounce buffer */ 696 local_irq_save(flags); 697 buf = kmap_atomic(page, KM_IRQ0); 698 699 /* do the actual data transfer */ 700 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 701 do_write); 702 703 kunmap_atomic(buf, KM_IRQ0); 704 local_irq_restore(flags); 705 } else { 706 buf = page_address(page); 707 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 708 do_write); 709 } 710 711 qc->curbytes += qc->sect_size; 712 qc->cursg_ofs += qc->sect_size; 713 714 if (qc->cursg_ofs == qc->cursg->length) { 715 qc->cursg = sg_next(qc->cursg); 716 qc->cursg_ofs = 0; 717 } 718 } 719 720 /** 721 * ata_pio_sectors - Transfer one or many sectors. 722 * @qc: Command on going 723 * 724 * Transfer one or many sectors of data from/to the 725 * ATA device for the DRQ request. 726 * 727 * LOCKING: 728 * Inherited from caller. 729 */ 730 static void ata_pio_sectors(struct ata_queued_cmd *qc) 731 { 732 if (is_multi_taskfile(&qc->tf)) { 733 /* READ/WRITE MULTIPLE */ 734 unsigned int nsect; 735 736 WARN_ON(qc->dev->multi_count == 0); 737 738 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 739 qc->dev->multi_count); 740 while (nsect--) 741 ata_pio_sector(qc); 742 } else 743 ata_pio_sector(qc); 744 745 ata_sff_altstatus(qc->ap); /* flush */ 746 } 747 748 /** 749 * atapi_send_cdb - Write CDB bytes to hardware 750 * @ap: Port to which ATAPI device is attached. 751 * @qc: Taskfile currently active 752 * 753 * When device has indicated its readiness to accept 754 * a CDB, this function is called. Send the CDB. 755 * 756 * LOCKING: 757 * caller. 758 */ 759 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 760 { 761 /* send SCSI cdb */ 762 DPRINTK("send cdb\n"); 763 WARN_ON(qc->dev->cdb_len < 12); 764 765 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 766 ata_sff_altstatus(ap); /* flush */ 767 768 switch (qc->tf.protocol) { 769 case ATAPI_PROT_PIO: 770 ap->hsm_task_state = HSM_ST; 771 break; 772 case ATAPI_PROT_NODATA: 773 ap->hsm_task_state = HSM_ST_LAST; 774 break; 775 case ATAPI_PROT_DMA: 776 ap->hsm_task_state = HSM_ST_LAST; 777 /* initiate bmdma */ 778 ap->ops->bmdma_start(qc); 779 break; 780 } 781 } 782 783 /** 784 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 785 * @qc: Command on going 786 * @bytes: number of bytes 787 * 788 * Transfer Transfer data from/to the ATAPI device. 789 * 790 * LOCKING: 791 * Inherited from caller. 792 * 793 */ 794 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 795 { 796 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 797 struct ata_port *ap = qc->ap; 798 struct ata_device *dev = qc->dev; 799 struct ata_eh_info *ehi = &dev->link->eh_info; 800 struct scatterlist *sg; 801 struct page *page; 802 unsigned char *buf; 803 unsigned int offset, count, consumed; 804 805 next_sg: 806 sg = qc->cursg; 807 if (unlikely(!sg)) { 808 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 809 "buf=%u cur=%u bytes=%u", 810 qc->nbytes, qc->curbytes, bytes); 811 return -1; 812 } 813 814 page = sg_page(sg); 815 offset = sg->offset + qc->cursg_ofs; 816 817 /* get the current page and offset */ 818 page = nth_page(page, (offset >> PAGE_SHIFT)); 819 offset %= PAGE_SIZE; 820 821 /* don't overrun current sg */ 822 count = min(sg->length - qc->cursg_ofs, bytes); 823 824 /* don't cross page boundaries */ 825 count = min(count, (unsigned int)PAGE_SIZE - offset); 826 827 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 828 829 if (PageHighMem(page)) { 830 unsigned long flags; 831 832 /* FIXME: use bounce buffer */ 833 local_irq_save(flags); 834 buf = kmap_atomic(page, KM_IRQ0); 835 836 /* do the actual data transfer */ 837 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw); 838 839 kunmap_atomic(buf, KM_IRQ0); 840 local_irq_restore(flags); 841 } else { 842 buf = page_address(page); 843 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw); 844 } 845 846 bytes -= min(bytes, consumed); 847 qc->curbytes += count; 848 qc->cursg_ofs += count; 849 850 if (qc->cursg_ofs == sg->length) { 851 qc->cursg = sg_next(qc->cursg); 852 qc->cursg_ofs = 0; 853 } 854 855 /* consumed can be larger than count only for the last transfer */ 856 WARN_ON(qc->cursg && count != consumed); 857 858 if (bytes) 859 goto next_sg; 860 return 0; 861 } 862 863 /** 864 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 865 * @qc: Command on going 866 * 867 * Transfer Transfer data from/to the ATAPI device. 868 * 869 * LOCKING: 870 * Inherited from caller. 871 */ 872 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 873 { 874 struct ata_port *ap = qc->ap; 875 struct ata_device *dev = qc->dev; 876 struct ata_eh_info *ehi = &dev->link->eh_info; 877 unsigned int ireason, bc_lo, bc_hi, bytes; 878 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 879 880 /* Abuse qc->result_tf for temp storage of intermediate TF 881 * here to save some kernel stack usage. 882 * For normal completion, qc->result_tf is not relevant. For 883 * error, qc->result_tf is later overwritten by ata_qc_complete(). 884 * So, the correctness of qc->result_tf is not affected. 885 */ 886 ap->ops->sff_tf_read(ap, &qc->result_tf); 887 ireason = qc->result_tf.nsect; 888 bc_lo = qc->result_tf.lbam; 889 bc_hi = qc->result_tf.lbah; 890 bytes = (bc_hi << 8) | bc_lo; 891 892 /* shall be cleared to zero, indicating xfer of data */ 893 if (unlikely(ireason & (1 << 0))) 894 goto atapi_check; 895 896 /* make sure transfer direction matches expected */ 897 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; 898 if (unlikely(do_write != i_write)) 899 goto atapi_check; 900 901 if (unlikely(!bytes)) 902 goto atapi_check; 903 904 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 905 906 if (unlikely(__atapi_pio_bytes(qc, bytes))) 907 goto err_out; 908 ata_sff_altstatus(ap); /* flush */ 909 910 return; 911 912 atapi_check: 913 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 914 ireason, bytes); 915 err_out: 916 qc->err_mask |= AC_ERR_HSM; 917 ap->hsm_task_state = HSM_ST_ERR; 918 } 919 920 /** 921 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 922 * @ap: the target ata_port 923 * @qc: qc on going 924 * 925 * RETURNS: 926 * 1 if ok in workqueue, 0 otherwise. 927 */ 928 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc) 929 { 930 if (qc->tf.flags & ATA_TFLAG_POLLING) 931 return 1; 932 933 if (ap->hsm_task_state == HSM_ST_FIRST) { 934 if (qc->tf.protocol == ATA_PROT_PIO && 935 (qc->tf.flags & ATA_TFLAG_WRITE)) 936 return 1; 937 938 if (ata_is_atapi(qc->tf.protocol) && 939 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 940 return 1; 941 } 942 943 return 0; 944 } 945 946 /** 947 * ata_hsm_qc_complete - finish a qc running on standard HSM 948 * @qc: Command to complete 949 * @in_wq: 1 if called from workqueue, 0 otherwise 950 * 951 * Finish @qc which is running on standard HSM. 952 * 953 * LOCKING: 954 * If @in_wq is zero, spin_lock_irqsave(host lock). 955 * Otherwise, none on entry and grabs host lock. 956 */ 957 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 958 { 959 struct ata_port *ap = qc->ap; 960 unsigned long flags; 961 962 if (ap->ops->error_handler) { 963 if (in_wq) { 964 spin_lock_irqsave(ap->lock, flags); 965 966 /* EH might have kicked in while host lock is 967 * released. 968 */ 969 qc = ata_qc_from_tag(ap, qc->tag); 970 if (qc) { 971 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 972 ap->ops->sff_irq_on(ap); 973 ata_qc_complete(qc); 974 } else 975 ata_port_freeze(ap); 976 } 977 978 spin_unlock_irqrestore(ap->lock, flags); 979 } else { 980 if (likely(!(qc->err_mask & AC_ERR_HSM))) 981 ata_qc_complete(qc); 982 else 983 ata_port_freeze(ap); 984 } 985 } else { 986 if (in_wq) { 987 spin_lock_irqsave(ap->lock, flags); 988 ap->ops->sff_irq_on(ap); 989 ata_qc_complete(qc); 990 spin_unlock_irqrestore(ap->lock, flags); 991 } else 992 ata_qc_complete(qc); 993 } 994 } 995 996 /** 997 * ata_sff_hsm_move - move the HSM to the next state. 998 * @ap: the target ata_port 999 * @qc: qc on going 1000 * @status: current device status 1001 * @in_wq: 1 if called from workqueue, 0 otherwise 1002 * 1003 * RETURNS: 1004 * 1 when poll next status needed, 0 otherwise. 1005 */ 1006 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1007 u8 status, int in_wq) 1008 { 1009 unsigned long flags = 0; 1010 int poll_next; 1011 1012 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1013 1014 /* Make sure ata_sff_qc_issue() does not throw things 1015 * like DMA polling into the workqueue. Notice that 1016 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1017 */ 1018 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1019 1020 fsm_start: 1021 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1022 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1023 1024 switch (ap->hsm_task_state) { 1025 case HSM_ST_FIRST: 1026 /* Send first data block or PACKET CDB */ 1027 1028 /* If polling, we will stay in the work queue after 1029 * sending the data. Otherwise, interrupt handler 1030 * takes over after sending the data. 1031 */ 1032 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1033 1034 /* check device status */ 1035 if (unlikely((status & ATA_DRQ) == 0)) { 1036 /* handle BSY=0, DRQ=0 as error */ 1037 if (likely(status & (ATA_ERR | ATA_DF))) 1038 /* device stops HSM for abort/error */ 1039 qc->err_mask |= AC_ERR_DEV; 1040 else 1041 /* HSM violation. Let EH handle this */ 1042 qc->err_mask |= AC_ERR_HSM; 1043 1044 ap->hsm_task_state = HSM_ST_ERR; 1045 goto fsm_start; 1046 } 1047 1048 /* Device should not ask for data transfer (DRQ=1) 1049 * when it finds something wrong. 1050 * We ignore DRQ here and stop the HSM by 1051 * changing hsm_task_state to HSM_ST_ERR and 1052 * let the EH abort the command or reset the device. 1053 */ 1054 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1055 /* Some ATAPI tape drives forget to clear the ERR bit 1056 * when doing the next command (mostly request sense). 1057 * We ignore ERR here to workaround and proceed sending 1058 * the CDB. 1059 */ 1060 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1061 ata_port_printk(ap, KERN_WARNING, 1062 "DRQ=1 with device error, " 1063 "dev_stat 0x%X\n", status); 1064 qc->err_mask |= AC_ERR_HSM; 1065 ap->hsm_task_state = HSM_ST_ERR; 1066 goto fsm_start; 1067 } 1068 } 1069 1070 /* Send the CDB (atapi) or the first data block (ata pio out). 1071 * During the state transition, interrupt handler shouldn't 1072 * be invoked before the data transfer is complete and 1073 * hsm_task_state is changed. Hence, the following locking. 1074 */ 1075 if (in_wq) 1076 spin_lock_irqsave(ap->lock, flags); 1077 1078 if (qc->tf.protocol == ATA_PROT_PIO) { 1079 /* PIO data out protocol. 1080 * send first data block. 1081 */ 1082 1083 /* ata_pio_sectors() might change the state 1084 * to HSM_ST_LAST. so, the state is changed here 1085 * before ata_pio_sectors(). 1086 */ 1087 ap->hsm_task_state = HSM_ST; 1088 ata_pio_sectors(qc); 1089 } else 1090 /* send CDB */ 1091 atapi_send_cdb(ap, qc); 1092 1093 if (in_wq) 1094 spin_unlock_irqrestore(ap->lock, flags); 1095 1096 /* if polling, ata_pio_task() handles the rest. 1097 * otherwise, interrupt handler takes over from here. 1098 */ 1099 break; 1100 1101 case HSM_ST: 1102 /* complete command or read/write the data register */ 1103 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1104 /* ATAPI PIO protocol */ 1105 if ((status & ATA_DRQ) == 0) { 1106 /* No more data to transfer or device error. 1107 * Device error will be tagged in HSM_ST_LAST. 1108 */ 1109 ap->hsm_task_state = HSM_ST_LAST; 1110 goto fsm_start; 1111 } 1112 1113 /* Device should not ask for data transfer (DRQ=1) 1114 * when it finds something wrong. 1115 * We ignore DRQ here and stop the HSM by 1116 * changing hsm_task_state to HSM_ST_ERR and 1117 * let the EH abort the command or reset the device. 1118 */ 1119 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1120 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with " 1121 "device error, dev_stat 0x%X\n", 1122 status); 1123 qc->err_mask |= AC_ERR_HSM; 1124 ap->hsm_task_state = HSM_ST_ERR; 1125 goto fsm_start; 1126 } 1127 1128 atapi_pio_bytes(qc); 1129 1130 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1131 /* bad ireason reported by device */ 1132 goto fsm_start; 1133 1134 } else { 1135 /* ATA PIO protocol */ 1136 if (unlikely((status & ATA_DRQ) == 0)) { 1137 /* handle BSY=0, DRQ=0 as error */ 1138 if (likely(status & (ATA_ERR | ATA_DF))) 1139 /* device stops HSM for abort/error */ 1140 qc->err_mask |= AC_ERR_DEV; 1141 else 1142 /* HSM violation. Let EH handle this. 1143 * Phantom devices also trigger this 1144 * condition. Mark hint. 1145 */ 1146 qc->err_mask |= AC_ERR_HSM | 1147 AC_ERR_NODEV_HINT; 1148 1149 ap->hsm_task_state = HSM_ST_ERR; 1150 goto fsm_start; 1151 } 1152 1153 /* For PIO reads, some devices may ask for 1154 * data transfer (DRQ=1) alone with ERR=1. 1155 * We respect DRQ here and transfer one 1156 * block of junk data before changing the 1157 * hsm_task_state to HSM_ST_ERR. 1158 * 1159 * For PIO writes, ERR=1 DRQ=1 doesn't make 1160 * sense since the data block has been 1161 * transferred to the device. 1162 */ 1163 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1164 /* data might be corrputed */ 1165 qc->err_mask |= AC_ERR_DEV; 1166 1167 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1168 ata_pio_sectors(qc); 1169 status = ata_wait_idle(ap); 1170 } 1171 1172 if (status & (ATA_BUSY | ATA_DRQ)) 1173 qc->err_mask |= AC_ERR_HSM; 1174 1175 /* ata_pio_sectors() might change the 1176 * state to HSM_ST_LAST. so, the state 1177 * is changed after ata_pio_sectors(). 1178 */ 1179 ap->hsm_task_state = HSM_ST_ERR; 1180 goto fsm_start; 1181 } 1182 1183 ata_pio_sectors(qc); 1184 1185 if (ap->hsm_task_state == HSM_ST_LAST && 1186 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1187 /* all data read */ 1188 status = ata_wait_idle(ap); 1189 goto fsm_start; 1190 } 1191 } 1192 1193 poll_next = 1; 1194 break; 1195 1196 case HSM_ST_LAST: 1197 if (unlikely(!ata_ok(status))) { 1198 qc->err_mask |= __ac_err_mask(status); 1199 ap->hsm_task_state = HSM_ST_ERR; 1200 goto fsm_start; 1201 } 1202 1203 /* no more data to transfer */ 1204 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1205 ap->print_id, qc->dev->devno, status); 1206 1207 WARN_ON(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1208 1209 ap->hsm_task_state = HSM_ST_IDLE; 1210 1211 /* complete taskfile transaction */ 1212 ata_hsm_qc_complete(qc, in_wq); 1213 1214 poll_next = 0; 1215 break; 1216 1217 case HSM_ST_ERR: 1218 /* make sure qc->err_mask is available to 1219 * know what's wrong and recover 1220 */ 1221 WARN_ON(!(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM))); 1222 1223 ap->hsm_task_state = HSM_ST_IDLE; 1224 1225 /* complete taskfile transaction */ 1226 ata_hsm_qc_complete(qc, in_wq); 1227 1228 poll_next = 0; 1229 break; 1230 default: 1231 poll_next = 0; 1232 BUG(); 1233 } 1234 1235 return poll_next; 1236 } 1237 1238 void ata_pio_task(struct work_struct *work) 1239 { 1240 struct ata_port *ap = 1241 container_of(work, struct ata_port, port_task.work); 1242 struct ata_queued_cmd *qc = ap->port_task_data; 1243 u8 status; 1244 int poll_next; 1245 1246 fsm_start: 1247 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE); 1248 1249 /* 1250 * This is purely heuristic. This is a fast path. 1251 * Sometimes when we enter, BSY will be cleared in 1252 * a chk-status or two. If not, the drive is probably seeking 1253 * or something. Snooze for a couple msecs, then 1254 * chk-status again. If still busy, queue delayed work. 1255 */ 1256 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1257 if (status & ATA_BUSY) { 1258 msleep(2); 1259 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1260 if (status & ATA_BUSY) { 1261 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE); 1262 return; 1263 } 1264 } 1265 1266 /* move the HSM */ 1267 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1268 1269 /* another command or interrupt handler 1270 * may be running at this point. 1271 */ 1272 if (poll_next) 1273 goto fsm_start; 1274 } 1275 1276 /** 1277 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner 1278 * @qc: command to issue to device 1279 * 1280 * Using various libata functions and hooks, this function 1281 * starts an ATA command. ATA commands are grouped into 1282 * classes called "protocols", and issuing each type of protocol 1283 * is slightly different. 1284 * 1285 * May be used as the qc_issue() entry in ata_port_operations. 1286 * 1287 * LOCKING: 1288 * spin_lock_irqsave(host lock) 1289 * 1290 * RETURNS: 1291 * Zero on success, AC_ERR_* mask on failure 1292 */ 1293 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1294 { 1295 struct ata_port *ap = qc->ap; 1296 1297 /* Use polling pio if the LLD doesn't handle 1298 * interrupt driven pio and atapi CDB interrupt. 1299 */ 1300 if (ap->flags & ATA_FLAG_PIO_POLLING) { 1301 switch (qc->tf.protocol) { 1302 case ATA_PROT_PIO: 1303 case ATA_PROT_NODATA: 1304 case ATAPI_PROT_PIO: 1305 case ATAPI_PROT_NODATA: 1306 qc->tf.flags |= ATA_TFLAG_POLLING; 1307 break; 1308 case ATAPI_PROT_DMA: 1309 if (qc->dev->flags & ATA_DFLAG_CDB_INTR) 1310 /* see ata_dma_blacklisted() */ 1311 BUG(); 1312 break; 1313 default: 1314 break; 1315 } 1316 } 1317 1318 /* select the device */ 1319 ata_dev_select(ap, qc->dev->devno, 1, 0); 1320 1321 /* start the command */ 1322 switch (qc->tf.protocol) { 1323 case ATA_PROT_NODATA: 1324 if (qc->tf.flags & ATA_TFLAG_POLLING) 1325 ata_qc_set_polling(qc); 1326 1327 ata_tf_to_host(ap, &qc->tf); 1328 ap->hsm_task_state = HSM_ST_LAST; 1329 1330 if (qc->tf.flags & ATA_TFLAG_POLLING) 1331 ata_pio_queue_task(ap, qc, 0); 1332 1333 break; 1334 1335 case ATA_PROT_DMA: 1336 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 1337 1338 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1339 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1340 ap->ops->bmdma_start(qc); /* initiate bmdma */ 1341 ap->hsm_task_state = HSM_ST_LAST; 1342 break; 1343 1344 case ATA_PROT_PIO: 1345 if (qc->tf.flags & ATA_TFLAG_POLLING) 1346 ata_qc_set_polling(qc); 1347 1348 ata_tf_to_host(ap, &qc->tf); 1349 1350 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1351 /* PIO data out protocol */ 1352 ap->hsm_task_state = HSM_ST_FIRST; 1353 ata_pio_queue_task(ap, qc, 0); 1354 1355 /* always send first data block using 1356 * the ata_pio_task() codepath. 1357 */ 1358 } else { 1359 /* PIO data in protocol */ 1360 ap->hsm_task_state = HSM_ST; 1361 1362 if (qc->tf.flags & ATA_TFLAG_POLLING) 1363 ata_pio_queue_task(ap, qc, 0); 1364 1365 /* if polling, ata_pio_task() handles the rest. 1366 * otherwise, interrupt handler takes over from here. 1367 */ 1368 } 1369 1370 break; 1371 1372 case ATAPI_PROT_PIO: 1373 case ATAPI_PROT_NODATA: 1374 if (qc->tf.flags & ATA_TFLAG_POLLING) 1375 ata_qc_set_polling(qc); 1376 1377 ata_tf_to_host(ap, &qc->tf); 1378 1379 ap->hsm_task_state = HSM_ST_FIRST; 1380 1381 /* send cdb by polling if no cdb interrupt */ 1382 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1383 (qc->tf.flags & ATA_TFLAG_POLLING)) 1384 ata_pio_queue_task(ap, qc, 0); 1385 break; 1386 1387 case ATAPI_PROT_DMA: 1388 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); 1389 1390 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 1391 ap->ops->bmdma_setup(qc); /* set up bmdma */ 1392 ap->hsm_task_state = HSM_ST_FIRST; 1393 1394 /* send cdb by polling if no cdb interrupt */ 1395 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1396 ata_pio_queue_task(ap, qc, 0); 1397 break; 1398 1399 default: 1400 WARN_ON(1); 1401 return AC_ERR_SYSTEM; 1402 } 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1409 * @qc: qc to fill result TF for 1410 * 1411 * @qc is finished and result TF needs to be filled. Fill it 1412 * using ->sff_tf_read. 1413 * 1414 * LOCKING: 1415 * spin_lock_irqsave(host lock) 1416 * 1417 * RETURNS: 1418 * true indicating that result TF is successfully filled. 1419 */ 1420 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1421 { 1422 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1423 return true; 1424 } 1425 1426 /** 1427 * ata_sff_host_intr - Handle host interrupt for given (port, task) 1428 * @ap: Port on which interrupt arrived (possibly...) 1429 * @qc: Taskfile currently active in engine 1430 * 1431 * Handle host interrupt for given queued command. Currently, 1432 * only DMA interrupts are handled. All other commands are 1433 * handled via polling with interrupts disabled (nIEN bit). 1434 * 1435 * LOCKING: 1436 * spin_lock_irqsave(host lock) 1437 * 1438 * RETURNS: 1439 * One if interrupt was handled, zero if not (shared irq). 1440 */ 1441 inline unsigned int ata_sff_host_intr(struct ata_port *ap, 1442 struct ata_queued_cmd *qc) 1443 { 1444 struct ata_eh_info *ehi = &ap->link.eh_info; 1445 u8 status, host_stat = 0; 1446 1447 VPRINTK("ata%u: protocol %d task_state %d\n", 1448 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1449 1450 /* Check whether we are expecting interrupt in this state */ 1451 switch (ap->hsm_task_state) { 1452 case HSM_ST_FIRST: 1453 /* Some pre-ATAPI-4 devices assert INTRQ 1454 * at this state when ready to receive CDB. 1455 */ 1456 1457 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1458 * The flag was turned on only for atapi devices. No 1459 * need to check ata_is_atapi(qc->tf.protocol) again. 1460 */ 1461 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1462 goto idle_irq; 1463 break; 1464 case HSM_ST_LAST: 1465 if (qc->tf.protocol == ATA_PROT_DMA || 1466 qc->tf.protocol == ATAPI_PROT_DMA) { 1467 /* check status of DMA engine */ 1468 host_stat = ap->ops->bmdma_status(ap); 1469 VPRINTK("ata%u: host_stat 0x%X\n", 1470 ap->print_id, host_stat); 1471 1472 /* if it's not our irq... */ 1473 if (!(host_stat & ATA_DMA_INTR)) 1474 goto idle_irq; 1475 1476 /* before we do anything else, clear DMA-Start bit */ 1477 ap->ops->bmdma_stop(qc); 1478 1479 if (unlikely(host_stat & ATA_DMA_ERR)) { 1480 /* error when transfering data to/from memory */ 1481 qc->err_mask |= AC_ERR_HOST_BUS; 1482 ap->hsm_task_state = HSM_ST_ERR; 1483 } 1484 } 1485 break; 1486 case HSM_ST: 1487 break; 1488 default: 1489 goto idle_irq; 1490 } 1491 1492 /* check altstatus */ 1493 status = ata_sff_altstatus(ap); 1494 if (status & ATA_BUSY) 1495 goto idle_irq; 1496 1497 /* check main status, clearing INTRQ */ 1498 status = ap->ops->sff_check_status(ap); 1499 if (unlikely(status & ATA_BUSY)) 1500 goto idle_irq; 1501 1502 /* ack bmdma irq events */ 1503 ap->ops->sff_irq_clear(ap); 1504 1505 ata_sff_hsm_move(ap, qc, status, 0); 1506 1507 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA || 1508 qc->tf.protocol == ATAPI_PROT_DMA)) 1509 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 1510 1511 return 1; /* irq handled */ 1512 1513 idle_irq: 1514 ap->stats.idle_irq++; 1515 1516 #ifdef ATA_IRQ_TRAP 1517 if ((ap->stats.idle_irq % 1000) == 0) { 1518 ap->ops->sff_check_status(ap); 1519 ap->ops->sff_irq_clear(ap); 1520 ata_port_printk(ap, KERN_WARNING, "irq trap\n"); 1521 return 1; 1522 } 1523 #endif 1524 return 0; /* irq not handled */ 1525 } 1526 1527 /** 1528 * ata_sff_interrupt - Default ATA host interrupt handler 1529 * @irq: irq line (unused) 1530 * @dev_instance: pointer to our ata_host information structure 1531 * 1532 * Default interrupt handler for PCI IDE devices. Calls 1533 * ata_sff_host_intr() for each port that is not disabled. 1534 * 1535 * LOCKING: 1536 * Obtains host lock during operation. 1537 * 1538 * RETURNS: 1539 * IRQ_NONE or IRQ_HANDLED. 1540 */ 1541 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1542 { 1543 struct ata_host *host = dev_instance; 1544 unsigned int i; 1545 unsigned int handled = 0; 1546 unsigned long flags; 1547 1548 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1549 spin_lock_irqsave(&host->lock, flags); 1550 1551 for (i = 0; i < host->n_ports; i++) { 1552 struct ata_port *ap; 1553 1554 ap = host->ports[i]; 1555 if (ap && 1556 !(ap->flags & ATA_FLAG_DISABLED)) { 1557 struct ata_queued_cmd *qc; 1558 1559 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1560 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && 1561 (qc->flags & ATA_QCFLAG_ACTIVE)) 1562 handled |= ata_sff_host_intr(ap, qc); 1563 } 1564 } 1565 1566 spin_unlock_irqrestore(&host->lock, flags); 1567 1568 return IRQ_RETVAL(handled); 1569 } 1570 1571 /** 1572 * ata_sff_freeze - Freeze SFF controller port 1573 * @ap: port to freeze 1574 * 1575 * Freeze BMDMA controller port. 1576 * 1577 * LOCKING: 1578 * Inherited from caller. 1579 */ 1580 void ata_sff_freeze(struct ata_port *ap) 1581 { 1582 struct ata_ioports *ioaddr = &ap->ioaddr; 1583 1584 ap->ctl |= ATA_NIEN; 1585 ap->last_ctl = ap->ctl; 1586 1587 if (ioaddr->ctl_addr) 1588 iowrite8(ap->ctl, ioaddr->ctl_addr); 1589 1590 /* Under certain circumstances, some controllers raise IRQ on 1591 * ATA_NIEN manipulation. Also, many controllers fail to mask 1592 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1593 */ 1594 ap->ops->sff_check_status(ap); 1595 1596 ap->ops->sff_irq_clear(ap); 1597 } 1598 1599 /** 1600 * ata_sff_thaw - Thaw SFF controller port 1601 * @ap: port to thaw 1602 * 1603 * Thaw SFF controller port. 1604 * 1605 * LOCKING: 1606 * Inherited from caller. 1607 */ 1608 void ata_sff_thaw(struct ata_port *ap) 1609 { 1610 /* clear & re-enable interrupts */ 1611 ap->ops->sff_check_status(ap); 1612 ap->ops->sff_irq_clear(ap); 1613 ap->ops->sff_irq_on(ap); 1614 } 1615 1616 /** 1617 * ata_sff_prereset - prepare SFF link for reset 1618 * @link: SFF link to be reset 1619 * @deadline: deadline jiffies for the operation 1620 * 1621 * SFF link @link is about to be reset. Initialize it. It first 1622 * calls ata_std_prereset() and wait for !BSY if the port is 1623 * being softreset. 1624 * 1625 * LOCKING: 1626 * Kernel thread context (may sleep) 1627 * 1628 * RETURNS: 1629 * 0 on success, -errno otherwise. 1630 */ 1631 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1632 { 1633 struct ata_eh_context *ehc = &link->eh_context; 1634 int rc; 1635 1636 rc = ata_std_prereset(link, deadline); 1637 if (rc) 1638 return rc; 1639 1640 /* if we're about to do hardreset, nothing more to do */ 1641 if (ehc->i.action & ATA_EH_HARDRESET) 1642 return 0; 1643 1644 /* wait for !BSY if we don't know that no device is attached */ 1645 if (!ata_link_offline(link)) { 1646 rc = ata_sff_wait_ready(link, deadline); 1647 if (rc && rc != -ENODEV) { 1648 ata_link_printk(link, KERN_WARNING, "device not ready " 1649 "(errno=%d), forcing hardreset\n", rc); 1650 ehc->i.action |= ATA_EH_HARDRESET; 1651 } 1652 } 1653 1654 return 0; 1655 } 1656 1657 /** 1658 * ata_devchk - PATA device presence detection 1659 * @ap: ATA channel to examine 1660 * @device: Device to examine (starting at zero) 1661 * 1662 * This technique was originally described in 1663 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1664 * later found its way into the ATA/ATAPI spec. 1665 * 1666 * Write a pattern to the ATA shadow registers, 1667 * and if a device is present, it will respond by 1668 * correctly storing and echoing back the 1669 * ATA shadow register contents. 1670 * 1671 * LOCKING: 1672 * caller. 1673 */ 1674 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1675 { 1676 struct ata_ioports *ioaddr = &ap->ioaddr; 1677 u8 nsect, lbal; 1678 1679 ap->ops->sff_dev_select(ap, device); 1680 1681 iowrite8(0x55, ioaddr->nsect_addr); 1682 iowrite8(0xaa, ioaddr->lbal_addr); 1683 1684 iowrite8(0xaa, ioaddr->nsect_addr); 1685 iowrite8(0x55, ioaddr->lbal_addr); 1686 1687 iowrite8(0x55, ioaddr->nsect_addr); 1688 iowrite8(0xaa, ioaddr->lbal_addr); 1689 1690 nsect = ioread8(ioaddr->nsect_addr); 1691 lbal = ioread8(ioaddr->lbal_addr); 1692 1693 if ((nsect == 0x55) && (lbal == 0xaa)) 1694 return 1; /* we found a device */ 1695 1696 return 0; /* nothing found */ 1697 } 1698 1699 /** 1700 * ata_sff_dev_classify - Parse returned ATA device signature 1701 * @dev: ATA device to classify (starting at zero) 1702 * @present: device seems present 1703 * @r_err: Value of error register on completion 1704 * 1705 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1706 * an ATA/ATAPI-defined set of values is placed in the ATA 1707 * shadow registers, indicating the results of device detection 1708 * and diagnostics. 1709 * 1710 * Select the ATA device, and read the values from the ATA shadow 1711 * registers. Then parse according to the Error register value, 1712 * and the spec-defined values examined by ata_dev_classify(). 1713 * 1714 * LOCKING: 1715 * caller. 1716 * 1717 * RETURNS: 1718 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1719 */ 1720 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1721 u8 *r_err) 1722 { 1723 struct ata_port *ap = dev->link->ap; 1724 struct ata_taskfile tf; 1725 unsigned int class; 1726 u8 err; 1727 1728 ap->ops->sff_dev_select(ap, dev->devno); 1729 1730 memset(&tf, 0, sizeof(tf)); 1731 1732 ap->ops->sff_tf_read(ap, &tf); 1733 err = tf.feature; 1734 if (r_err) 1735 *r_err = err; 1736 1737 /* see if device passed diags: continue and warn later */ 1738 if (err == 0) 1739 /* diagnostic fail : do nothing _YET_ */ 1740 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1741 else if (err == 1) 1742 /* do nothing */ ; 1743 else if ((dev->devno == 0) && (err == 0x81)) 1744 /* do nothing */ ; 1745 else 1746 return ATA_DEV_NONE; 1747 1748 /* determine if device is ATA or ATAPI */ 1749 class = ata_dev_classify(&tf); 1750 1751 if (class == ATA_DEV_UNKNOWN) { 1752 /* If the device failed diagnostic, it's likely to 1753 * have reported incorrect device signature too. 1754 * Assume ATA device if the device seems present but 1755 * device signature is invalid with diagnostic 1756 * failure. 1757 */ 1758 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1759 class = ATA_DEV_ATA; 1760 else 1761 class = ATA_DEV_NONE; 1762 } else if ((class == ATA_DEV_ATA) && 1763 (ap->ops->sff_check_status(ap) == 0)) 1764 class = ATA_DEV_NONE; 1765 1766 return class; 1767 } 1768 1769 /** 1770 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1771 * @link: SFF link which is just reset 1772 * @devmask: mask of present devices 1773 * @deadline: deadline jiffies for the operation 1774 * 1775 * Wait devices attached to SFF @link to become ready after 1776 * reset. It contains preceding 150ms wait to avoid accessing TF 1777 * status register too early. 1778 * 1779 * LOCKING: 1780 * Kernel thread context (may sleep). 1781 * 1782 * RETURNS: 1783 * 0 on success, -ENODEV if some or all of devices in @devmask 1784 * don't seem to exist. -errno on other errors. 1785 */ 1786 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1787 unsigned long deadline) 1788 { 1789 struct ata_port *ap = link->ap; 1790 struct ata_ioports *ioaddr = &ap->ioaddr; 1791 unsigned int dev0 = devmask & (1 << 0); 1792 unsigned int dev1 = devmask & (1 << 1); 1793 int rc, ret = 0; 1794 1795 msleep(ATA_WAIT_AFTER_RESET_MSECS); 1796 1797 /* always check readiness of the master device */ 1798 rc = ata_sff_wait_ready(link, deadline); 1799 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1800 * and TF status is 0xff, bail out on it too. 1801 */ 1802 if (rc) 1803 return rc; 1804 1805 /* if device 1 was found in ata_devchk, wait for register 1806 * access briefly, then wait for BSY to clear. 1807 */ 1808 if (dev1) { 1809 int i; 1810 1811 ap->ops->sff_dev_select(ap, 1); 1812 1813 /* Wait for register access. Some ATAPI devices fail 1814 * to set nsect/lbal after reset, so don't waste too 1815 * much time on it. We're gonna wait for !BSY anyway. 1816 */ 1817 for (i = 0; i < 2; i++) { 1818 u8 nsect, lbal; 1819 1820 nsect = ioread8(ioaddr->nsect_addr); 1821 lbal = ioread8(ioaddr->lbal_addr); 1822 if ((nsect == 1) && (lbal == 1)) 1823 break; 1824 msleep(50); /* give drive a breather */ 1825 } 1826 1827 rc = ata_sff_wait_ready(link, deadline); 1828 if (rc) { 1829 if (rc != -ENODEV) 1830 return rc; 1831 ret = rc; 1832 } 1833 } 1834 1835 /* is all this really necessary? */ 1836 ap->ops->sff_dev_select(ap, 0); 1837 if (dev1) 1838 ap->ops->sff_dev_select(ap, 1); 1839 if (dev0) 1840 ap->ops->sff_dev_select(ap, 0); 1841 1842 return ret; 1843 } 1844 1845 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1846 unsigned long deadline) 1847 { 1848 struct ata_ioports *ioaddr = &ap->ioaddr; 1849 1850 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 1851 1852 /* software reset. causes dev0 to be selected */ 1853 iowrite8(ap->ctl, ioaddr->ctl_addr); 1854 udelay(20); /* FIXME: flush */ 1855 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 1856 udelay(20); /* FIXME: flush */ 1857 iowrite8(ap->ctl, ioaddr->ctl_addr); 1858 1859 /* wait the port to become ready */ 1860 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 1861 } 1862 1863 /** 1864 * ata_sff_softreset - reset host port via ATA SRST 1865 * @link: ATA link to reset 1866 * @classes: resulting classes of attached devices 1867 * @deadline: deadline jiffies for the operation 1868 * 1869 * Reset host port using ATA SRST. 1870 * 1871 * LOCKING: 1872 * Kernel thread context (may sleep) 1873 * 1874 * RETURNS: 1875 * 0 on success, -errno otherwise. 1876 */ 1877 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 1878 unsigned long deadline) 1879 { 1880 struct ata_port *ap = link->ap; 1881 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 1882 unsigned int devmask = 0; 1883 int rc; 1884 u8 err; 1885 1886 DPRINTK("ENTER\n"); 1887 1888 /* determine if device 0/1 are present */ 1889 if (ata_devchk(ap, 0)) 1890 devmask |= (1 << 0); 1891 if (slave_possible && ata_devchk(ap, 1)) 1892 devmask |= (1 << 1); 1893 1894 /* select device 0 again */ 1895 ap->ops->sff_dev_select(ap, 0); 1896 1897 /* issue bus reset */ 1898 DPRINTK("about to softreset, devmask=%x\n", devmask); 1899 rc = ata_bus_softreset(ap, devmask, deadline); 1900 /* if link is occupied, -ENODEV too is an error */ 1901 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 1902 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); 1903 return rc; 1904 } 1905 1906 /* determine by signature whether we have ATA or ATAPI devices */ 1907 classes[0] = ata_sff_dev_classify(&link->device[0], 1908 devmask & (1 << 0), &err); 1909 if (slave_possible && err != 0x81) 1910 classes[1] = ata_sff_dev_classify(&link->device[1], 1911 devmask & (1 << 1), &err); 1912 1913 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 1914 return 0; 1915 } 1916 1917 /** 1918 * sata_sff_hardreset - reset host port via SATA phy reset 1919 * @link: link to reset 1920 * @class: resulting class of attached device 1921 * @deadline: deadline jiffies for the operation 1922 * 1923 * SATA phy-reset host port using DET bits of SControl register, 1924 * wait for !BSY and classify the attached device. 1925 * 1926 * LOCKING: 1927 * Kernel thread context (may sleep) 1928 * 1929 * RETURNS: 1930 * 0 on success, -errno otherwise. 1931 */ 1932 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 1933 unsigned long deadline) 1934 { 1935 struct ata_eh_context *ehc = &link->eh_context; 1936 const unsigned long *timing = sata_ehc_deb_timing(ehc); 1937 bool online; 1938 int rc; 1939 1940 rc = sata_link_hardreset(link, timing, deadline, &online, 1941 ata_sff_check_ready); 1942 if (online) 1943 *class = ata_sff_dev_classify(link->device, 1, NULL); 1944 1945 DPRINTK("EXIT, class=%u\n", *class); 1946 return rc; 1947 } 1948 1949 /** 1950 * ata_sff_postreset - SFF postreset callback 1951 * @link: the target SFF ata_link 1952 * @classes: classes of attached devices 1953 * 1954 * This function is invoked after a successful reset. It first 1955 * calls ata_std_postreset() and performs SFF specific postreset 1956 * processing. 1957 * 1958 * LOCKING: 1959 * Kernel thread context (may sleep) 1960 */ 1961 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 1962 { 1963 struct ata_port *ap = link->ap; 1964 1965 ata_std_postreset(link, classes); 1966 1967 /* is double-select really necessary? */ 1968 if (classes[0] != ATA_DEV_NONE) 1969 ap->ops->sff_dev_select(ap, 1); 1970 if (classes[1] != ATA_DEV_NONE) 1971 ap->ops->sff_dev_select(ap, 0); 1972 1973 /* bail out if no device is present */ 1974 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 1975 DPRINTK("EXIT, no device\n"); 1976 return; 1977 } 1978 1979 /* set up device control */ 1980 if (ap->ioaddr.ctl_addr) 1981 iowrite8(ap->ctl, ap->ioaddr.ctl_addr); 1982 } 1983 1984 /** 1985 * ata_sff_error_handler - Stock error handler for BMDMA controller 1986 * @ap: port to handle error for 1987 * 1988 * Stock error handler for SFF controller. It can handle both 1989 * PATA and SATA controllers. Many controllers should be able to 1990 * use this EH as-is or with some added handling before and 1991 * after. 1992 * 1993 * LOCKING: 1994 * Kernel thread context (may sleep) 1995 */ 1996 void ata_sff_error_handler(struct ata_port *ap) 1997 { 1998 ata_reset_fn_t softreset = ap->ops->softreset; 1999 ata_reset_fn_t hardreset = ap->ops->hardreset; 2000 struct ata_queued_cmd *qc; 2001 unsigned long flags; 2002 int thaw = 0; 2003 2004 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2005 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2006 qc = NULL; 2007 2008 /* reset PIO HSM and stop DMA engine */ 2009 spin_lock_irqsave(ap->lock, flags); 2010 2011 ap->hsm_task_state = HSM_ST_IDLE; 2012 2013 if (ap->ioaddr.bmdma_addr && 2014 qc && (qc->tf.protocol == ATA_PROT_DMA || 2015 qc->tf.protocol == ATAPI_PROT_DMA)) { 2016 u8 host_stat; 2017 2018 host_stat = ap->ops->bmdma_status(ap); 2019 2020 /* BMDMA controllers indicate host bus error by 2021 * setting DMA_ERR bit and timing out. As it wasn't 2022 * really a timeout event, adjust error mask and 2023 * cancel frozen state. 2024 */ 2025 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2026 qc->err_mask = AC_ERR_HOST_BUS; 2027 thaw = 1; 2028 } 2029 2030 ap->ops->bmdma_stop(qc); 2031 } 2032 2033 ata_sff_altstatus(ap); 2034 ap->ops->sff_check_status(ap); 2035 ap->ops->sff_irq_clear(ap); 2036 2037 spin_unlock_irqrestore(ap->lock, flags); 2038 2039 if (thaw) 2040 ata_eh_thaw_port(ap); 2041 2042 /* PIO and DMA engines have been stopped, perform recovery */ 2043 2044 /* Ignore ata_sff_softreset if ctl isn't accessible and 2045 * built-in hardresets if SCR access isn't available. 2046 */ 2047 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr) 2048 softreset = NULL; 2049 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link)) 2050 hardreset = NULL; 2051 2052 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2053 ap->ops->postreset); 2054 } 2055 2056 /** 2057 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller 2058 * @qc: internal command to clean up 2059 * 2060 * LOCKING: 2061 * Kernel thread context (may sleep) 2062 */ 2063 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc) 2064 { 2065 if (qc->ap->ioaddr.bmdma_addr) 2066 ata_bmdma_stop(qc); 2067 } 2068 2069 /** 2070 * ata_sff_port_start - Set port up for dma. 2071 * @ap: Port to initialize 2072 * 2073 * Called just after data structures for each port are 2074 * initialized. Allocates space for PRD table if the device 2075 * is DMA capable SFF. 2076 * 2077 * May be used as the port_start() entry in ata_port_operations. 2078 * 2079 * LOCKING: 2080 * Inherited from caller. 2081 */ 2082 int ata_sff_port_start(struct ata_port *ap) 2083 { 2084 if (ap->ioaddr.bmdma_addr) 2085 return ata_port_start(ap); 2086 return 0; 2087 } 2088 2089 /** 2090 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2091 * @ioaddr: IO address structure to be initialized 2092 * 2093 * Utility function which initializes data_addr, error_addr, 2094 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2095 * device_addr, status_addr, and command_addr to standard offsets 2096 * relative to cmd_addr. 2097 * 2098 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2099 */ 2100 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2101 { 2102 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2103 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2104 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2105 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2106 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2107 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2108 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2109 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2110 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2111 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2112 } 2113 2114 unsigned long ata_bmdma_mode_filter(struct ata_device *adev, 2115 unsigned long xfer_mask) 2116 { 2117 /* Filter out DMA modes if the device has been configured by 2118 the BIOS as PIO only */ 2119 2120 if (adev->link->ap->ioaddr.bmdma_addr == NULL) 2121 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 2122 return xfer_mask; 2123 } 2124 2125 /** 2126 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2127 * @qc: Info associated with this ATA transaction. 2128 * 2129 * LOCKING: 2130 * spin_lock_irqsave(host lock) 2131 */ 2132 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2133 { 2134 struct ata_port *ap = qc->ap; 2135 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2136 u8 dmactl; 2137 2138 /* load PRD table addr. */ 2139 mb(); /* make sure PRD table writes are visible to controller */ 2140 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2141 2142 /* specify data direction, triple-check start bit is clear */ 2143 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2144 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2145 if (!rw) 2146 dmactl |= ATA_DMA_WR; 2147 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2148 2149 /* issue r/w command */ 2150 ap->ops->sff_exec_command(ap, &qc->tf); 2151 } 2152 2153 /** 2154 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2155 * @qc: Info associated with this ATA transaction. 2156 * 2157 * LOCKING: 2158 * spin_lock_irqsave(host lock) 2159 */ 2160 void ata_bmdma_start(struct ata_queued_cmd *qc) 2161 { 2162 struct ata_port *ap = qc->ap; 2163 u8 dmactl; 2164 2165 /* start host DMA transaction */ 2166 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2167 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2168 2169 /* Strictly, one may wish to issue an ioread8() here, to 2170 * flush the mmio write. However, control also passes 2171 * to the hardware at this point, and it will interrupt 2172 * us when we are to resume control. So, in effect, 2173 * we don't care when the mmio write flushes. 2174 * Further, a read of the DMA status register _immediately_ 2175 * following the write may not be what certain flaky hardware 2176 * is expected, so I think it is best to not add a readb() 2177 * without first all the MMIO ATA cards/mobos. 2178 * Or maybe I'm just being paranoid. 2179 * 2180 * FIXME: The posting of this write means I/O starts are 2181 * unneccessarily delayed for MMIO 2182 */ 2183 } 2184 2185 /** 2186 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2187 * @qc: Command we are ending DMA for 2188 * 2189 * Clears the ATA_DMA_START flag in the dma control register 2190 * 2191 * May be used as the bmdma_stop() entry in ata_port_operations. 2192 * 2193 * LOCKING: 2194 * spin_lock_irqsave(host lock) 2195 */ 2196 void ata_bmdma_stop(struct ata_queued_cmd *qc) 2197 { 2198 struct ata_port *ap = qc->ap; 2199 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2200 2201 /* clear start/stop bit */ 2202 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 2203 mmio + ATA_DMA_CMD); 2204 2205 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 2206 ata_sff_altstatus(ap); /* dummy read */ 2207 } 2208 2209 /** 2210 * ata_bmdma_status - Read PCI IDE BMDMA status 2211 * @ap: Port associated with this ATA transaction. 2212 * 2213 * Read and return BMDMA status register. 2214 * 2215 * May be used as the bmdma_status() entry in ata_port_operations. 2216 * 2217 * LOCKING: 2218 * spin_lock_irqsave(host lock) 2219 */ 2220 u8 ata_bmdma_status(struct ata_port *ap) 2221 { 2222 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 2223 } 2224 2225 /** 2226 * ata_bus_reset - reset host port and associated ATA channel 2227 * @ap: port to reset 2228 * 2229 * This is typically the first time we actually start issuing 2230 * commands to the ATA channel. We wait for BSY to clear, then 2231 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its 2232 * result. Determine what devices, if any, are on the channel 2233 * by looking at the device 0/1 error register. Look at the signature 2234 * stored in each device's taskfile registers, to determine if 2235 * the device is ATA or ATAPI. 2236 * 2237 * LOCKING: 2238 * PCI/etc. bus probe sem. 2239 * Obtains host lock. 2240 * 2241 * SIDE EFFECTS: 2242 * Sets ATA_FLAG_DISABLED if bus reset fails. 2243 * 2244 * DEPRECATED: 2245 * This function is only for drivers which still use old EH and 2246 * will be removed soon. 2247 */ 2248 void ata_bus_reset(struct ata_port *ap) 2249 { 2250 struct ata_device *device = ap->link.device; 2251 struct ata_ioports *ioaddr = &ap->ioaddr; 2252 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2253 u8 err; 2254 unsigned int dev0, dev1 = 0, devmask = 0; 2255 int rc; 2256 2257 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no); 2258 2259 /* determine if device 0/1 are present */ 2260 if (ap->flags & ATA_FLAG_SATA_RESET) 2261 dev0 = 1; 2262 else { 2263 dev0 = ata_devchk(ap, 0); 2264 if (slave_possible) 2265 dev1 = ata_devchk(ap, 1); 2266 } 2267 2268 if (dev0) 2269 devmask |= (1 << 0); 2270 if (dev1) 2271 devmask |= (1 << 1); 2272 2273 /* select device 0 again */ 2274 ap->ops->sff_dev_select(ap, 0); 2275 2276 /* issue bus reset */ 2277 if (ap->flags & ATA_FLAG_SRST) { 2278 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ); 2279 if (rc && rc != -ENODEV) 2280 goto err_out; 2281 } 2282 2283 /* 2284 * determine by signature whether we have ATA or ATAPI devices 2285 */ 2286 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err); 2287 if ((slave_possible) && (err != 0x81)) 2288 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err); 2289 2290 /* is double-select really necessary? */ 2291 if (device[1].class != ATA_DEV_NONE) 2292 ap->ops->sff_dev_select(ap, 1); 2293 if (device[0].class != ATA_DEV_NONE) 2294 ap->ops->sff_dev_select(ap, 0); 2295 2296 /* if no devices were detected, disable this port */ 2297 if ((device[0].class == ATA_DEV_NONE) && 2298 (device[1].class == ATA_DEV_NONE)) 2299 goto err_out; 2300 2301 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { 2302 /* set up device control for ATA_FLAG_SATA_RESET */ 2303 iowrite8(ap->ctl, ioaddr->ctl_addr); 2304 } 2305 2306 DPRINTK("EXIT\n"); 2307 return; 2308 2309 err_out: 2310 ata_port_printk(ap, KERN_ERR, "disabling port\n"); 2311 ata_port_disable(ap); 2312 2313 DPRINTK("EXIT\n"); 2314 } 2315 2316 #ifdef CONFIG_PCI 2317 2318 /** 2319 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 2320 * @pdev: PCI device 2321 * 2322 * Some PCI ATA devices report simplex mode but in fact can be told to 2323 * enter non simplex mode. This implements the necessary logic to 2324 * perform the task on such devices. Calling it on other devices will 2325 * have -undefined- behaviour. 2326 */ 2327 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 2328 { 2329 unsigned long bmdma = pci_resource_start(pdev, 4); 2330 u8 simplex; 2331 2332 if (bmdma == 0) 2333 return -ENOENT; 2334 2335 simplex = inb(bmdma + 0x02); 2336 outb(simplex & 0x60, bmdma + 0x02); 2337 simplex = inb(bmdma + 0x02); 2338 if (simplex & 0x80) 2339 return -EOPNOTSUPP; 2340 return 0; 2341 } 2342 2343 /** 2344 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 2345 * @host: target ATA host 2346 * 2347 * Acquire PCI BMDMA resources and initialize @host accordingly. 2348 * 2349 * LOCKING: 2350 * Inherited from calling layer (may sleep). 2351 * 2352 * RETURNS: 2353 * 0 on success, -errno otherwise. 2354 */ 2355 int ata_pci_bmdma_init(struct ata_host *host) 2356 { 2357 struct device *gdev = host->dev; 2358 struct pci_dev *pdev = to_pci_dev(gdev); 2359 int i, rc; 2360 2361 /* No BAR4 allocation: No DMA */ 2362 if (pci_resource_start(pdev, 4) == 0) 2363 return 0; 2364 2365 /* TODO: If we get no DMA mask we should fall back to PIO */ 2366 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); 2367 if (rc) 2368 return rc; 2369 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); 2370 if (rc) 2371 return rc; 2372 2373 /* request and iomap DMA region */ 2374 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 2375 if (rc) { 2376 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n"); 2377 return -ENOMEM; 2378 } 2379 host->iomap = pcim_iomap_table(pdev); 2380 2381 for (i = 0; i < 2; i++) { 2382 struct ata_port *ap = host->ports[i]; 2383 void __iomem *bmdma = host->iomap[4] + 8 * i; 2384 2385 if (ata_port_is_dummy(ap)) 2386 continue; 2387 2388 ap->ioaddr.bmdma_addr = bmdma; 2389 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 2390 (ioread8(bmdma + 2) & 0x80)) 2391 host->flags |= ATA_HOST_SIMPLEX; 2392 2393 ata_port_desc(ap, "bmdma 0x%llx", 2394 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 2395 } 2396 2397 return 0; 2398 } 2399 2400 static int ata_resources_present(struct pci_dev *pdev, int port) 2401 { 2402 int i; 2403 2404 /* Check the PCI resources for this channel are enabled */ 2405 port = port * 2; 2406 for (i = 0; i < 2; i ++) { 2407 if (pci_resource_start(pdev, port + i) == 0 || 2408 pci_resource_len(pdev, port + i) == 0) 2409 return 0; 2410 } 2411 return 1; 2412 } 2413 2414 /** 2415 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2416 * @host: target ATA host 2417 * 2418 * Acquire native PCI ATA resources for @host and initialize the 2419 * first two ports of @host accordingly. Ports marked dummy are 2420 * skipped and allocation failure makes the port dummy. 2421 * 2422 * Note that native PCI resources are valid even for legacy hosts 2423 * as we fix up pdev resources array early in boot, so this 2424 * function can be used for both native and legacy SFF hosts. 2425 * 2426 * LOCKING: 2427 * Inherited from calling layer (may sleep). 2428 * 2429 * RETURNS: 2430 * 0 if at least one port is initialized, -ENODEV if no port is 2431 * available. 2432 */ 2433 int ata_pci_sff_init_host(struct ata_host *host) 2434 { 2435 struct device *gdev = host->dev; 2436 struct pci_dev *pdev = to_pci_dev(gdev); 2437 unsigned int mask = 0; 2438 int i, rc; 2439 2440 /* request, iomap BARs and init port addresses accordingly */ 2441 for (i = 0; i < 2; i++) { 2442 struct ata_port *ap = host->ports[i]; 2443 int base = i * 2; 2444 void __iomem * const *iomap; 2445 2446 if (ata_port_is_dummy(ap)) 2447 continue; 2448 2449 /* Discard disabled ports. Some controllers show 2450 * their unused channels this way. Disabled ports are 2451 * made dummy. 2452 */ 2453 if (!ata_resources_present(pdev, i)) { 2454 ap->ops = &ata_dummy_port_ops; 2455 continue; 2456 } 2457 2458 rc = pcim_iomap_regions(pdev, 0x3 << base, 2459 dev_driver_string(gdev)); 2460 if (rc) { 2461 dev_printk(KERN_WARNING, gdev, 2462 "failed to request/iomap BARs for port %d " 2463 "(errno=%d)\n", i, rc); 2464 if (rc == -EBUSY) 2465 pcim_pin_device(pdev); 2466 ap->ops = &ata_dummy_port_ops; 2467 continue; 2468 } 2469 host->iomap = iomap = pcim_iomap_table(pdev); 2470 2471 ap->ioaddr.cmd_addr = iomap[base]; 2472 ap->ioaddr.altstatus_addr = 2473 ap->ioaddr.ctl_addr = (void __iomem *) 2474 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2475 ata_sff_std_ports(&ap->ioaddr); 2476 2477 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2478 (unsigned long long)pci_resource_start(pdev, base), 2479 (unsigned long long)pci_resource_start(pdev, base + 1)); 2480 2481 mask |= 1 << i; 2482 } 2483 2484 if (!mask) { 2485 dev_printk(KERN_ERR, gdev, "no available native port\n"); 2486 return -ENODEV; 2487 } 2488 2489 return 0; 2490 } 2491 2492 /** 2493 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host 2494 * @pdev: target PCI device 2495 * @ppi: array of port_info, must be enough for two ports 2496 * @r_host: out argument for the initialized ATA host 2497 * 2498 * Helper to allocate ATA host for @pdev, acquire all native PCI 2499 * resources and initialize it accordingly in one go. 2500 * 2501 * LOCKING: 2502 * Inherited from calling layer (may sleep). 2503 * 2504 * RETURNS: 2505 * 0 on success, -errno otherwise. 2506 */ 2507 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2508 const struct ata_port_info * const * ppi, 2509 struct ata_host **r_host) 2510 { 2511 struct ata_host *host; 2512 int rc; 2513 2514 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2515 return -ENOMEM; 2516 2517 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2518 if (!host) { 2519 dev_printk(KERN_ERR, &pdev->dev, 2520 "failed to allocate ATA host\n"); 2521 rc = -ENOMEM; 2522 goto err_out; 2523 } 2524 2525 rc = ata_pci_sff_init_host(host); 2526 if (rc) 2527 goto err_out; 2528 2529 /* init DMA related stuff */ 2530 rc = ata_pci_bmdma_init(host); 2531 if (rc) 2532 goto err_bmdma; 2533 2534 devres_remove_group(&pdev->dev, NULL); 2535 *r_host = host; 2536 return 0; 2537 2538 err_bmdma: 2539 /* This is necessary because PCI and iomap resources are 2540 * merged and releasing the top group won't release the 2541 * acquired resources if some of those have been acquired 2542 * before entering this function. 2543 */ 2544 pcim_iounmap_regions(pdev, 0xf); 2545 err_out: 2546 devres_release_group(&pdev->dev, NULL); 2547 return rc; 2548 } 2549 2550 /** 2551 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2552 * @host: target SFF ATA host 2553 * @irq_handler: irq_handler used when requesting IRQ(s) 2554 * @sht: scsi_host_template to use when registering the host 2555 * 2556 * This is the counterpart of ata_host_activate() for SFF ATA 2557 * hosts. This separate helper is necessary because SFF hosts 2558 * use two separate interrupts in legacy mode. 2559 * 2560 * LOCKING: 2561 * Inherited from calling layer (may sleep). 2562 * 2563 * RETURNS: 2564 * 0 on success, -errno otherwise. 2565 */ 2566 int ata_pci_sff_activate_host(struct ata_host *host, 2567 irq_handler_t irq_handler, 2568 struct scsi_host_template *sht) 2569 { 2570 struct device *dev = host->dev; 2571 struct pci_dev *pdev = to_pci_dev(dev); 2572 const char *drv_name = dev_driver_string(host->dev); 2573 int legacy_mode = 0, rc; 2574 2575 rc = ata_host_start(host); 2576 if (rc) 2577 return rc; 2578 2579 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2580 u8 tmp8, mask; 2581 2582 /* TODO: What if one channel is in native mode ... */ 2583 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2584 mask = (1 << 2) | (1 << 0); 2585 if ((tmp8 & mask) != mask) 2586 legacy_mode = 1; 2587 #if defined(CONFIG_NO_ATA_LEGACY) 2588 /* Some platforms with PCI limits cannot address compat 2589 port space. In that case we punt if their firmware has 2590 left a device in compatibility mode */ 2591 if (legacy_mode) { 2592 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); 2593 return -EOPNOTSUPP; 2594 } 2595 #endif 2596 } 2597 2598 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2599 return -ENOMEM; 2600 2601 if (!legacy_mode && pdev->irq) { 2602 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2603 IRQF_SHARED, drv_name, host); 2604 if (rc) 2605 goto out; 2606 2607 ata_port_desc(host->ports[0], "irq %d", pdev->irq); 2608 ata_port_desc(host->ports[1], "irq %d", pdev->irq); 2609 } else if (legacy_mode) { 2610 if (!ata_port_is_dummy(host->ports[0])) { 2611 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2612 irq_handler, IRQF_SHARED, 2613 drv_name, host); 2614 if (rc) 2615 goto out; 2616 2617 ata_port_desc(host->ports[0], "irq %d", 2618 ATA_PRIMARY_IRQ(pdev)); 2619 } 2620 2621 if (!ata_port_is_dummy(host->ports[1])) { 2622 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2623 irq_handler, IRQF_SHARED, 2624 drv_name, host); 2625 if (rc) 2626 goto out; 2627 2628 ata_port_desc(host->ports[1], "irq %d", 2629 ATA_SECONDARY_IRQ(pdev)); 2630 } 2631 } 2632 2633 rc = ata_host_register(host, sht); 2634 out: 2635 if (rc == 0) 2636 devres_remove_group(dev, NULL); 2637 else 2638 devres_release_group(dev, NULL); 2639 2640 return rc; 2641 } 2642 2643 /** 2644 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller 2645 * @pdev: Controller to be initialized 2646 * @ppi: array of port_info, must be enough for two ports 2647 * @sht: scsi_host_template to use when registering the host 2648 * @host_priv: host private_data 2649 * 2650 * This is a helper function which can be called from a driver's 2651 * xxx_init_one() probe function if the hardware uses traditional 2652 * IDE taskfile registers. 2653 * 2654 * This function calls pci_enable_device(), reserves its register 2655 * regions, sets the dma mask, enables bus master mode, and calls 2656 * ata_device_add() 2657 * 2658 * ASSUMPTION: 2659 * Nobody makes a single channel controller that appears solely as 2660 * the secondary legacy port on PCI. 2661 * 2662 * LOCKING: 2663 * Inherited from PCI layer (may sleep). 2664 * 2665 * RETURNS: 2666 * Zero on success, negative on errno-based value on error. 2667 */ 2668 int ata_pci_sff_init_one(struct pci_dev *pdev, 2669 const struct ata_port_info * const * ppi, 2670 struct scsi_host_template *sht, void *host_priv) 2671 { 2672 struct device *dev = &pdev->dev; 2673 const struct ata_port_info *pi = NULL; 2674 struct ata_host *host = NULL; 2675 int i, rc; 2676 2677 DPRINTK("ENTER\n"); 2678 2679 /* look up the first valid port_info */ 2680 for (i = 0; i < 2 && ppi[i]; i++) { 2681 if (ppi[i]->port_ops != &ata_dummy_port_ops) { 2682 pi = ppi[i]; 2683 break; 2684 } 2685 } 2686 2687 if (!pi) { 2688 dev_printk(KERN_ERR, &pdev->dev, 2689 "no valid port_info specified\n"); 2690 return -EINVAL; 2691 } 2692 2693 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2694 return -ENOMEM; 2695 2696 rc = pcim_enable_device(pdev); 2697 if (rc) 2698 goto out; 2699 2700 /* prepare and activate SFF host */ 2701 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2702 if (rc) 2703 goto out; 2704 host->private_data = host_priv; 2705 2706 pci_set_master(pdev); 2707 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2708 out: 2709 if (rc == 0) 2710 devres_remove_group(&pdev->dev, NULL); 2711 else 2712 devres_release_group(&pdev->dev, NULL); 2713 2714 return rc; 2715 } 2716 2717 #endif /* CONFIG_PCI */ 2718 2719 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 2720 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2721 EXPORT_SYMBOL_GPL(ata_sff_qc_prep); 2722 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep); 2723 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 2724 EXPORT_SYMBOL_GPL(ata_sff_check_status); 2725 EXPORT_SYMBOL_GPL(ata_sff_altstatus); 2726 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 2727 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 2728 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 2729 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 2730 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 2731 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 2732 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 2733 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 2734 EXPORT_SYMBOL_GPL(ata_sff_irq_clear); 2735 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 2736 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 2737 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 2738 EXPORT_SYMBOL_GPL(ata_sff_host_intr); 2739 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 2740 EXPORT_SYMBOL_GPL(ata_sff_freeze); 2741 EXPORT_SYMBOL_GPL(ata_sff_thaw); 2742 EXPORT_SYMBOL_GPL(ata_sff_prereset); 2743 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 2744 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2745 EXPORT_SYMBOL_GPL(ata_sff_softreset); 2746 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2747 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2748 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2749 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd); 2750 EXPORT_SYMBOL_GPL(ata_sff_port_start); 2751 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2752 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter); 2753 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2754 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2755 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 2756 EXPORT_SYMBOL_GPL(ata_bmdma_status); 2757 EXPORT_SYMBOL_GPL(ata_bus_reset); 2758 #ifdef CONFIG_PCI 2759 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 2760 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 2761 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2762 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2763 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2764 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2765 #endif /* CONFIG_PCI */ 2766