1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-sff.c - helper library for PCI IDE BMDMA 4 * 5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2006 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/gfp.h> 17 #include <linux/pci.h> 18 #include <linux/module.h> 19 #include <linux/libata.h> 20 #include <linux/highmem.h> 21 #include <trace/events/libata.h> 22 #include "libata.h" 23 24 static struct workqueue_struct *ata_sff_wq; 25 26 const struct ata_port_operations ata_sff_port_ops = { 27 .inherits = &ata_base_port_ops, 28 29 .qc_prep = ata_noop_qc_prep, 30 .qc_issue = ata_sff_qc_issue, 31 .qc_fill_rtf = ata_sff_qc_fill_rtf, 32 33 .freeze = ata_sff_freeze, 34 .thaw = ata_sff_thaw, 35 .prereset = ata_sff_prereset, 36 .softreset = ata_sff_softreset, 37 .hardreset = sata_sff_hardreset, 38 .postreset = ata_sff_postreset, 39 .error_handler = ata_sff_error_handler, 40 41 .sff_dev_select = ata_sff_dev_select, 42 .sff_check_status = ata_sff_check_status, 43 .sff_tf_load = ata_sff_tf_load, 44 .sff_tf_read = ata_sff_tf_read, 45 .sff_exec_command = ata_sff_exec_command, 46 .sff_data_xfer = ata_sff_data_xfer, 47 .sff_drain_fifo = ata_sff_drain_fifo, 48 49 .lost_interrupt = ata_sff_lost_interrupt, 50 }; 51 EXPORT_SYMBOL_GPL(ata_sff_port_ops); 52 53 /** 54 * ata_sff_check_status - Read device status reg & clear interrupt 55 * @ap: port where the device is 56 * 57 * Reads ATA taskfile status register for currently-selected device 58 * and return its value. This also clears pending interrupts 59 * from this device 60 * 61 * LOCKING: 62 * Inherited from caller. 63 */ 64 u8 ata_sff_check_status(struct ata_port *ap) 65 { 66 return ioread8(ap->ioaddr.status_addr); 67 } 68 EXPORT_SYMBOL_GPL(ata_sff_check_status); 69 70 /** 71 * ata_sff_altstatus - Read device alternate status reg 72 * @ap: port where the device is 73 * @status: pointer to a status value 74 * 75 * Reads ATA alternate status register for currently-selected device 76 * and return its value. 77 * 78 * RETURN: 79 * true if the register exists, false if not. 80 * 81 * LOCKING: 82 * Inherited from caller. 83 */ 84 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status) 85 { 86 u8 tmp; 87 88 if (ap->ops->sff_check_altstatus) { 89 tmp = ap->ops->sff_check_altstatus(ap); 90 goto read; 91 } 92 if (ap->ioaddr.altstatus_addr) { 93 tmp = ioread8(ap->ioaddr.altstatus_addr); 94 goto read; 95 } 96 return false; 97 98 read: 99 if (status) 100 *status = tmp; 101 return true; 102 } 103 104 /** 105 * ata_sff_irq_status - Check if the device is busy 106 * @ap: port where the device is 107 * 108 * Determine if the port is currently busy. Uses altstatus 109 * if available in order to avoid clearing shared IRQ status 110 * when finding an IRQ source. Non ctl capable devices don't 111 * share interrupt lines fortunately for us. 112 * 113 * LOCKING: 114 * Inherited from caller. 115 */ 116 static u8 ata_sff_irq_status(struct ata_port *ap) 117 { 118 u8 status; 119 120 /* Not us: We are busy */ 121 if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY)) 122 return status; 123 /* Clear INTRQ latch */ 124 status = ap->ops->sff_check_status(ap); 125 return status; 126 } 127 128 /** 129 * ata_sff_sync - Flush writes 130 * @ap: Port to wait for. 131 * 132 * CAUTION: 133 * If we have an mmio device with no ctl and no altstatus 134 * method this will fail. No such devices are known to exist. 135 * 136 * LOCKING: 137 * Inherited from caller. 138 */ 139 140 static void ata_sff_sync(struct ata_port *ap) 141 { 142 ata_sff_altstatus(ap, NULL); 143 } 144 145 /** 146 * ata_sff_pause - Flush writes and wait 400nS 147 * @ap: Port to pause for. 148 * 149 * CAUTION: 150 * If we have an mmio device with no ctl and no altstatus 151 * method this will fail. No such devices are known to exist. 152 * 153 * LOCKING: 154 * Inherited from caller. 155 */ 156 157 void ata_sff_pause(struct ata_port *ap) 158 { 159 ata_sff_sync(ap); 160 ndelay(400); 161 } 162 EXPORT_SYMBOL_GPL(ata_sff_pause); 163 164 /** 165 * ata_sff_dma_pause - Pause before commencing DMA 166 * @ap: Port to pause for. 167 * 168 * Perform I/O fencing and ensure sufficient cycle delays occur 169 * for the HDMA1:0 transition 170 */ 171 172 void ata_sff_dma_pause(struct ata_port *ap) 173 { 174 /* 175 * An altstatus read will cause the needed delay without 176 * messing up the IRQ status 177 */ 178 if (ata_sff_altstatus(ap, NULL)) 179 return; 180 /* There are no DMA controllers without ctl. BUG here to ensure 181 we never violate the HDMA1:0 transition timing and risk 182 corruption. */ 183 BUG(); 184 } 185 EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 186 187 static int ata_sff_check_ready(struct ata_link *link) 188 { 189 u8 status = link->ap->ops->sff_check_status(link->ap); 190 191 return ata_check_ready(status); 192 } 193 194 /** 195 * ata_sff_wait_ready - sleep until BSY clears, or timeout 196 * @link: SFF link to wait ready status for 197 * @deadline: deadline jiffies for the operation 198 * 199 * Sleep until ATA Status register bit BSY clears, or timeout 200 * occurs. 201 * 202 * LOCKING: 203 * Kernel thread context (may sleep). 204 * 205 * RETURNS: 206 * 0 on success, -errno otherwise. 207 */ 208 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 209 { 210 return ata_wait_ready(link, deadline, ata_sff_check_ready); 211 } 212 EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 213 214 /** 215 * ata_sff_set_devctl - Write device control reg 216 * @ap: port where the device is 217 * @ctl: value to write 218 * 219 * Writes ATA device control register. 220 * 221 * RETURN: 222 * true if the register exists, false if not. 223 * 224 * LOCKING: 225 * Inherited from caller. 226 */ 227 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 228 { 229 if (ap->ops->sff_set_devctl) { 230 ap->ops->sff_set_devctl(ap, ctl); 231 return true; 232 } 233 if (ap->ioaddr.ctl_addr) { 234 iowrite8(ctl, ap->ioaddr.ctl_addr); 235 return true; 236 } 237 238 return false; 239 } 240 241 /** 242 * ata_sff_dev_select - Select device 0/1 on ATA bus 243 * @ap: ATA channel to manipulate 244 * @device: ATA device (numbered from zero) to select 245 * 246 * Use the method defined in the ATA specification to 247 * make either device 0, or device 1, active on the 248 * ATA channel. Works with both PIO and MMIO. 249 * 250 * May be used as the dev_select() entry in ata_port_operations. 251 * 252 * LOCKING: 253 * caller. 254 */ 255 void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 256 { 257 u8 tmp; 258 259 if (device == 0) 260 tmp = ATA_DEVICE_OBS; 261 else 262 tmp = ATA_DEVICE_OBS | ATA_DEV1; 263 264 iowrite8(tmp, ap->ioaddr.device_addr); 265 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 266 } 267 EXPORT_SYMBOL_GPL(ata_sff_dev_select); 268 269 /** 270 * ata_dev_select - Select device 0/1 on ATA bus 271 * @ap: ATA channel to manipulate 272 * @device: ATA device (numbered from zero) to select 273 * @wait: non-zero to wait for Status register BSY bit to clear 274 * @can_sleep: non-zero if context allows sleeping 275 * 276 * Use the method defined in the ATA specification to 277 * make either device 0, or device 1, active on the 278 * ATA channel. 279 * 280 * This is a high-level version of ata_sff_dev_select(), which 281 * additionally provides the services of inserting the proper 282 * pauses and status polling, where needed. 283 * 284 * LOCKING: 285 * caller. 286 */ 287 static void ata_dev_select(struct ata_port *ap, unsigned int device, 288 unsigned int wait, unsigned int can_sleep) 289 { 290 if (wait) 291 ata_wait_idle(ap); 292 293 ap->ops->sff_dev_select(ap, device); 294 295 if (wait) { 296 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 297 ata_msleep(ap, 150); 298 ata_wait_idle(ap); 299 } 300 } 301 302 /** 303 * ata_sff_irq_on - Enable interrupts on a port. 304 * @ap: Port on which interrupts are enabled. 305 * 306 * Enable interrupts on a legacy IDE device using MMIO or PIO, 307 * wait for idle, clear any pending interrupts. 308 * 309 * Note: may NOT be used as the sff_irq_on() entry in 310 * ata_port_operations. 311 * 312 * LOCKING: 313 * Inherited from caller. 314 */ 315 void ata_sff_irq_on(struct ata_port *ap) 316 { 317 if (ap->ops->sff_irq_on) { 318 ap->ops->sff_irq_on(ap); 319 return; 320 } 321 322 ap->ctl &= ~ATA_NIEN; 323 ap->last_ctl = ap->ctl; 324 325 ata_sff_set_devctl(ap, ap->ctl); 326 ata_wait_idle(ap); 327 328 if (ap->ops->sff_irq_clear) 329 ap->ops->sff_irq_clear(ap); 330 } 331 EXPORT_SYMBOL_GPL(ata_sff_irq_on); 332 333 /** 334 * ata_sff_tf_load - send taskfile registers to host controller 335 * @ap: Port to which output is sent 336 * @tf: ATA taskfile register set 337 * 338 * Outputs ATA taskfile to standard ATA host controller. 339 * 340 * LOCKING: 341 * Inherited from caller. 342 */ 343 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 344 { 345 struct ata_ioports *ioaddr = &ap->ioaddr; 346 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 347 348 if (tf->ctl != ap->last_ctl) { 349 if (ioaddr->ctl_addr) 350 iowrite8(tf->ctl, ioaddr->ctl_addr); 351 ap->last_ctl = tf->ctl; 352 ata_wait_idle(ap); 353 } 354 355 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 356 WARN_ON_ONCE(!ioaddr->ctl_addr); 357 iowrite8(tf->hob_feature, ioaddr->feature_addr); 358 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 359 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 360 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 361 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 362 } 363 364 if (is_addr) { 365 iowrite8(tf->feature, ioaddr->feature_addr); 366 iowrite8(tf->nsect, ioaddr->nsect_addr); 367 iowrite8(tf->lbal, ioaddr->lbal_addr); 368 iowrite8(tf->lbam, ioaddr->lbam_addr); 369 iowrite8(tf->lbah, ioaddr->lbah_addr); 370 } 371 372 if (tf->flags & ATA_TFLAG_DEVICE) 373 iowrite8(tf->device, ioaddr->device_addr); 374 375 ata_wait_idle(ap); 376 } 377 EXPORT_SYMBOL_GPL(ata_sff_tf_load); 378 379 /** 380 * ata_sff_tf_read - input device's ATA taskfile shadow registers 381 * @ap: Port from which input is read 382 * @tf: ATA taskfile register set for storing input 383 * 384 * Reads ATA taskfile registers for currently-selected device 385 * into @tf. Assumes the device has a fully SFF compliant task file 386 * layout and behaviour. If you device does not (eg has a different 387 * status method) then you will need to provide a replacement tf_read 388 * 389 * LOCKING: 390 * Inherited from caller. 391 */ 392 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 393 { 394 struct ata_ioports *ioaddr = &ap->ioaddr; 395 396 tf->status = ata_sff_check_status(ap); 397 tf->error = ioread8(ioaddr->error_addr); 398 tf->nsect = ioread8(ioaddr->nsect_addr); 399 tf->lbal = ioread8(ioaddr->lbal_addr); 400 tf->lbam = ioread8(ioaddr->lbam_addr); 401 tf->lbah = ioread8(ioaddr->lbah_addr); 402 tf->device = ioread8(ioaddr->device_addr); 403 404 if (tf->flags & ATA_TFLAG_LBA48) { 405 if (likely(ioaddr->ctl_addr)) { 406 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 407 tf->hob_feature = ioread8(ioaddr->error_addr); 408 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 409 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 410 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 411 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 412 iowrite8(tf->ctl, ioaddr->ctl_addr); 413 ap->last_ctl = tf->ctl; 414 } else 415 WARN_ON_ONCE(1); 416 } 417 } 418 EXPORT_SYMBOL_GPL(ata_sff_tf_read); 419 420 /** 421 * ata_sff_exec_command - issue ATA command to host controller 422 * @ap: port to which command is being issued 423 * @tf: ATA taskfile register set 424 * 425 * Issues ATA command, with proper synchronization with interrupt 426 * handler / other threads. 427 * 428 * LOCKING: 429 * spin_lock_irqsave(host lock) 430 */ 431 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 432 { 433 iowrite8(tf->command, ap->ioaddr.command_addr); 434 ata_sff_pause(ap); 435 } 436 EXPORT_SYMBOL_GPL(ata_sff_exec_command); 437 438 /** 439 * ata_tf_to_host - issue ATA taskfile to host controller 440 * @ap: port to which command is being issued 441 * @tf: ATA taskfile register set 442 * @tag: tag of the associated command 443 * 444 * Issues ATA taskfile register set to ATA host controller, 445 * with proper synchronization with interrupt handler and 446 * other threads. 447 * 448 * LOCKING: 449 * spin_lock_irqsave(host lock) 450 */ 451 static inline void ata_tf_to_host(struct ata_port *ap, 452 const struct ata_taskfile *tf, 453 unsigned int tag) 454 { 455 trace_ata_tf_load(ap, tf); 456 ap->ops->sff_tf_load(ap, tf); 457 trace_ata_exec_command(ap, tf, tag); 458 ap->ops->sff_exec_command(ap, tf); 459 } 460 461 /** 462 * ata_sff_data_xfer - Transfer data by PIO 463 * @qc: queued command 464 * @buf: data buffer 465 * @buflen: buffer length 466 * @rw: read/write 467 * 468 * Transfer data from/to the device data register by PIO. 469 * 470 * LOCKING: 471 * Inherited from caller. 472 * 473 * RETURNS: 474 * Bytes consumed. 475 */ 476 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, 477 unsigned int buflen, int rw) 478 { 479 struct ata_port *ap = qc->dev->link->ap; 480 void __iomem *data_addr = ap->ioaddr.data_addr; 481 unsigned int words = buflen >> 1; 482 483 /* Transfer multiple of 2 bytes */ 484 if (rw == READ) 485 ioread16_rep(data_addr, buf, words); 486 else 487 iowrite16_rep(data_addr, buf, words); 488 489 /* Transfer trailing byte, if any. */ 490 if (unlikely(buflen & 0x01)) { 491 unsigned char pad[2] = { }; 492 493 /* Point buf to the tail of buffer */ 494 buf += buflen - 1; 495 496 /* 497 * Use io*16_rep() accessors here as well to avoid pointlessly 498 * swapping bytes to and from on the big endian machines... 499 */ 500 if (rw == READ) { 501 ioread16_rep(data_addr, pad, 1); 502 *buf = pad[0]; 503 } else { 504 pad[0] = *buf; 505 iowrite16_rep(data_addr, pad, 1); 506 } 507 words++; 508 } 509 510 return words << 1; 511 } 512 EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 513 514 /** 515 * ata_sff_data_xfer32 - Transfer data by PIO 516 * @qc: queued command 517 * @buf: data buffer 518 * @buflen: buffer length 519 * @rw: read/write 520 * 521 * Transfer data from/to the device data register by PIO using 32bit 522 * I/O operations. 523 * 524 * LOCKING: 525 * Inherited from caller. 526 * 527 * RETURNS: 528 * Bytes consumed. 529 */ 530 531 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, 532 unsigned int buflen, int rw) 533 { 534 struct ata_device *dev = qc->dev; 535 struct ata_port *ap = dev->link->ap; 536 void __iomem *data_addr = ap->ioaddr.data_addr; 537 unsigned int words = buflen >> 2; 538 int slop = buflen & 3; 539 540 if (!(ap->pflags & ATA_PFLAG_PIO32)) 541 return ata_sff_data_xfer(qc, buf, buflen, rw); 542 543 /* Transfer multiple of 4 bytes */ 544 if (rw == READ) 545 ioread32_rep(data_addr, buf, words); 546 else 547 iowrite32_rep(data_addr, buf, words); 548 549 /* Transfer trailing bytes, if any */ 550 if (unlikely(slop)) { 551 unsigned char pad[4] = { }; 552 553 /* Point buf to the tail of buffer */ 554 buf += buflen - slop; 555 556 /* 557 * Use io*_rep() accessors here as well to avoid pointlessly 558 * swapping bytes to and from on the big endian machines... 559 */ 560 if (rw == READ) { 561 if (slop < 3) 562 ioread16_rep(data_addr, pad, 1); 563 else 564 ioread32_rep(data_addr, pad, 1); 565 memcpy(buf, pad, slop); 566 } else { 567 memcpy(pad, buf, slop); 568 if (slop < 3) 569 iowrite16_rep(data_addr, pad, 1); 570 else 571 iowrite32_rep(data_addr, pad, 1); 572 } 573 } 574 return (buflen + 1) & ~1; 575 } 576 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 577 578 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page, 579 unsigned int offset, size_t xfer_size) 580 { 581 bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 582 unsigned char *buf; 583 584 buf = kmap_atomic(page); 585 qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write); 586 kunmap_atomic(buf); 587 588 if (!do_write && !PageSlab(page)) 589 flush_dcache_page(page); 590 } 591 592 /** 593 * ata_pio_sector - Transfer a sector of data. 594 * @qc: Command on going 595 * 596 * Transfer qc->sect_size bytes of data from/to the ATA device. 597 * 598 * LOCKING: 599 * Inherited from caller. 600 */ 601 static void ata_pio_sector(struct ata_queued_cmd *qc) 602 { 603 struct ata_port *ap = qc->ap; 604 struct page *page; 605 unsigned int offset; 606 607 if (!qc->cursg) { 608 qc->curbytes = qc->nbytes; 609 return; 610 } 611 if (qc->curbytes == qc->nbytes - qc->sect_size) 612 ap->hsm_task_state = HSM_ST_LAST; 613 614 page = sg_page(qc->cursg); 615 offset = qc->cursg->offset + qc->cursg_ofs; 616 617 /* get the current page and offset */ 618 page = nth_page(page, (offset >> PAGE_SHIFT)); 619 offset %= PAGE_SIZE; 620 621 trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size); 622 623 /* 624 * Split the transfer when it splits a page boundary. Note that the 625 * split still has to be dword aligned like all ATA data transfers. 626 */ 627 WARN_ON_ONCE(offset % 4); 628 if (offset + qc->sect_size > PAGE_SIZE) { 629 unsigned int split_len = PAGE_SIZE - offset; 630 631 ata_pio_xfer(qc, page, offset, split_len); 632 ata_pio_xfer(qc, nth_page(page, 1), 0, 633 qc->sect_size - split_len); 634 } else { 635 ata_pio_xfer(qc, page, offset, qc->sect_size); 636 } 637 638 qc->curbytes += qc->sect_size; 639 qc->cursg_ofs += qc->sect_size; 640 641 if (qc->cursg_ofs == qc->cursg->length) { 642 qc->cursg = sg_next(qc->cursg); 643 if (!qc->cursg) 644 ap->hsm_task_state = HSM_ST_LAST; 645 qc->cursg_ofs = 0; 646 } 647 } 648 649 /** 650 * ata_pio_sectors - Transfer one or many sectors. 651 * @qc: Command on going 652 * 653 * Transfer one or many sectors of data from/to the 654 * ATA device for the DRQ request. 655 * 656 * LOCKING: 657 * Inherited from caller. 658 */ 659 static void ata_pio_sectors(struct ata_queued_cmd *qc) 660 { 661 if (is_multi_taskfile(&qc->tf)) { 662 /* READ/WRITE MULTIPLE */ 663 unsigned int nsect; 664 665 WARN_ON_ONCE(qc->dev->multi_count == 0); 666 667 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 668 qc->dev->multi_count); 669 while (nsect--) 670 ata_pio_sector(qc); 671 } else 672 ata_pio_sector(qc); 673 674 ata_sff_sync(qc->ap); /* flush */ 675 } 676 677 /** 678 * atapi_send_cdb - Write CDB bytes to hardware 679 * @ap: Port to which ATAPI device is attached. 680 * @qc: Taskfile currently active 681 * 682 * When device has indicated its readiness to accept 683 * a CDB, this function is called. Send the CDB. 684 * 685 * LOCKING: 686 * caller. 687 */ 688 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 689 { 690 /* send SCSI cdb */ 691 trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len); 692 WARN_ON_ONCE(qc->dev->cdb_len < 12); 693 694 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); 695 ata_sff_sync(ap); 696 /* FIXME: If the CDB is for DMA do we need to do the transition delay 697 or is bmdma_start guaranteed to do it ? */ 698 switch (qc->tf.protocol) { 699 case ATAPI_PROT_PIO: 700 ap->hsm_task_state = HSM_ST; 701 break; 702 case ATAPI_PROT_NODATA: 703 ap->hsm_task_state = HSM_ST_LAST; 704 break; 705 #ifdef CONFIG_ATA_BMDMA 706 case ATAPI_PROT_DMA: 707 ap->hsm_task_state = HSM_ST_LAST; 708 /* initiate bmdma */ 709 trace_ata_bmdma_start(ap, &qc->tf, qc->tag); 710 ap->ops->bmdma_start(qc); 711 break; 712 #endif /* CONFIG_ATA_BMDMA */ 713 default: 714 BUG(); 715 } 716 } 717 718 /** 719 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 720 * @qc: Command on going 721 * @bytes: number of bytes 722 * 723 * Transfer data from/to the ATAPI device. 724 * 725 * LOCKING: 726 * Inherited from caller. 727 * 728 */ 729 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 730 { 731 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 732 struct ata_port *ap = qc->ap; 733 struct ata_device *dev = qc->dev; 734 struct ata_eh_info *ehi = &dev->link->eh_info; 735 struct scatterlist *sg; 736 struct page *page; 737 unsigned char *buf; 738 unsigned int offset, count, consumed; 739 740 next_sg: 741 sg = qc->cursg; 742 if (unlikely(!sg)) { 743 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 744 "buf=%u cur=%u bytes=%u", 745 qc->nbytes, qc->curbytes, bytes); 746 return -1; 747 } 748 749 page = sg_page(sg); 750 offset = sg->offset + qc->cursg_ofs; 751 752 /* get the current page and offset */ 753 page = nth_page(page, (offset >> PAGE_SHIFT)); 754 offset %= PAGE_SIZE; 755 756 /* don't overrun current sg */ 757 count = min(sg->length - qc->cursg_ofs, bytes); 758 759 /* don't cross page boundaries */ 760 count = min(count, (unsigned int)PAGE_SIZE - offset); 761 762 trace_atapi_pio_transfer_data(qc, offset, count); 763 764 /* do the actual data transfer */ 765 buf = kmap_atomic(page); 766 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw); 767 kunmap_atomic(buf); 768 769 bytes -= min(bytes, consumed); 770 qc->curbytes += count; 771 qc->cursg_ofs += count; 772 773 if (qc->cursg_ofs == sg->length) { 774 qc->cursg = sg_next(qc->cursg); 775 qc->cursg_ofs = 0; 776 } 777 778 /* 779 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 780 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 781 * check correctly as it doesn't know if it is the last request being 782 * made. Somebody should implement a proper sanity check. 783 */ 784 if (bytes) 785 goto next_sg; 786 return 0; 787 } 788 789 /** 790 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 791 * @qc: Command on going 792 * 793 * Transfer Transfer data from/to the ATAPI device. 794 * 795 * LOCKING: 796 * Inherited from caller. 797 */ 798 static void atapi_pio_bytes(struct ata_queued_cmd *qc) 799 { 800 struct ata_port *ap = qc->ap; 801 struct ata_device *dev = qc->dev; 802 struct ata_eh_info *ehi = &dev->link->eh_info; 803 unsigned int ireason, bc_lo, bc_hi, bytes; 804 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 805 806 /* Abuse qc->result_tf for temp storage of intermediate TF 807 * here to save some kernel stack usage. 808 * For normal completion, qc->result_tf is not relevant. For 809 * error, qc->result_tf is later overwritten by ata_qc_complete(). 810 * So, the correctness of qc->result_tf is not affected. 811 */ 812 ap->ops->sff_tf_read(ap, &qc->result_tf); 813 ireason = qc->result_tf.nsect; 814 bc_lo = qc->result_tf.lbam; 815 bc_hi = qc->result_tf.lbah; 816 bytes = (bc_hi << 8) | bc_lo; 817 818 /* shall be cleared to zero, indicating xfer of data */ 819 if (unlikely(ireason & ATAPI_COD)) 820 goto atapi_check; 821 822 /* make sure transfer direction matches expected */ 823 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 824 if (unlikely(do_write != i_write)) 825 goto atapi_check; 826 827 if (unlikely(!bytes)) 828 goto atapi_check; 829 830 if (unlikely(__atapi_pio_bytes(qc, bytes))) 831 goto err_out; 832 ata_sff_sync(ap); /* flush */ 833 834 return; 835 836 atapi_check: 837 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 838 ireason, bytes); 839 err_out: 840 qc->err_mask |= AC_ERR_HSM; 841 ap->hsm_task_state = HSM_ST_ERR; 842 } 843 844 /** 845 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 846 * @ap: the target ata_port 847 * @qc: qc on going 848 * 849 * RETURNS: 850 * 1 if ok in workqueue, 0 otherwise. 851 */ 852 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 853 struct ata_queued_cmd *qc) 854 { 855 if (qc->tf.flags & ATA_TFLAG_POLLING) 856 return 1; 857 858 if (ap->hsm_task_state == HSM_ST_FIRST) { 859 if (qc->tf.protocol == ATA_PROT_PIO && 860 (qc->tf.flags & ATA_TFLAG_WRITE)) 861 return 1; 862 863 if (ata_is_atapi(qc->tf.protocol) && 864 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 865 return 1; 866 } 867 868 return 0; 869 } 870 871 /** 872 * ata_hsm_qc_complete - finish a qc running on standard HSM 873 * @qc: Command to complete 874 * @in_wq: 1 if called from workqueue, 0 otherwise 875 * 876 * Finish @qc which is running on standard HSM. 877 * 878 * LOCKING: 879 * If @in_wq is zero, spin_lock_irqsave(host lock). 880 * Otherwise, none on entry and grabs host lock. 881 */ 882 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 883 { 884 struct ata_port *ap = qc->ap; 885 886 if (ap->ops->error_handler) { 887 if (in_wq) { 888 /* EH might have kicked in while host lock is 889 * released. 890 */ 891 qc = ata_qc_from_tag(ap, qc->tag); 892 if (qc) { 893 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 894 ata_sff_irq_on(ap); 895 ata_qc_complete(qc); 896 } else 897 ata_port_freeze(ap); 898 } 899 } else { 900 if (likely(!(qc->err_mask & AC_ERR_HSM))) 901 ata_qc_complete(qc); 902 else 903 ata_port_freeze(ap); 904 } 905 } else { 906 if (in_wq) { 907 ata_sff_irq_on(ap); 908 ata_qc_complete(qc); 909 } else 910 ata_qc_complete(qc); 911 } 912 } 913 914 /** 915 * ata_sff_hsm_move - move the HSM to the next state. 916 * @ap: the target ata_port 917 * @qc: qc on going 918 * @status: current device status 919 * @in_wq: 1 if called from workqueue, 0 otherwise 920 * 921 * RETURNS: 922 * 1 when poll next status needed, 0 otherwise. 923 */ 924 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 925 u8 status, int in_wq) 926 { 927 struct ata_link *link = qc->dev->link; 928 struct ata_eh_info *ehi = &link->eh_info; 929 int poll_next; 930 931 lockdep_assert_held(ap->lock); 932 933 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 934 935 /* Make sure ata_sff_qc_issue() does not throw things 936 * like DMA polling into the workqueue. Notice that 937 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 938 */ 939 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 940 941 fsm_start: 942 trace_ata_sff_hsm_state(qc, status); 943 944 switch (ap->hsm_task_state) { 945 case HSM_ST_FIRST: 946 /* Send first data block or PACKET CDB */ 947 948 /* If polling, we will stay in the work queue after 949 * sending the data. Otherwise, interrupt handler 950 * takes over after sending the data. 951 */ 952 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 953 954 /* check device status */ 955 if (unlikely((status & ATA_DRQ) == 0)) { 956 /* handle BSY=0, DRQ=0 as error */ 957 if (likely(status & (ATA_ERR | ATA_DF))) 958 /* device stops HSM for abort/error */ 959 qc->err_mask |= AC_ERR_DEV; 960 else { 961 /* HSM violation. Let EH handle this */ 962 ata_ehi_push_desc(ehi, 963 "ST_FIRST: !(DRQ|ERR|DF)"); 964 qc->err_mask |= AC_ERR_HSM; 965 } 966 967 ap->hsm_task_state = HSM_ST_ERR; 968 goto fsm_start; 969 } 970 971 /* Device should not ask for data transfer (DRQ=1) 972 * when it finds something wrong. 973 * We ignore DRQ here and stop the HSM by 974 * changing hsm_task_state to HSM_ST_ERR and 975 * let the EH abort the command or reset the device. 976 */ 977 if (unlikely(status & (ATA_ERR | ATA_DF))) { 978 /* Some ATAPI tape drives forget to clear the ERR bit 979 * when doing the next command (mostly request sense). 980 * We ignore ERR here to workaround and proceed sending 981 * the CDB. 982 */ 983 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 984 ata_ehi_push_desc(ehi, "ST_FIRST: " 985 "DRQ=1 with device error, " 986 "dev_stat 0x%X", status); 987 qc->err_mask |= AC_ERR_HSM; 988 ap->hsm_task_state = HSM_ST_ERR; 989 goto fsm_start; 990 } 991 } 992 993 if (qc->tf.protocol == ATA_PROT_PIO) { 994 /* PIO data out protocol. 995 * send first data block. 996 */ 997 998 /* ata_pio_sectors() might change the state 999 * to HSM_ST_LAST. so, the state is changed here 1000 * before ata_pio_sectors(). 1001 */ 1002 ap->hsm_task_state = HSM_ST; 1003 ata_pio_sectors(qc); 1004 } else 1005 /* send CDB */ 1006 atapi_send_cdb(ap, qc); 1007 1008 /* if polling, ata_sff_pio_task() handles the rest. 1009 * otherwise, interrupt handler takes over from here. 1010 */ 1011 break; 1012 1013 case HSM_ST: 1014 /* complete command or read/write the data register */ 1015 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1016 /* ATAPI PIO protocol */ 1017 if ((status & ATA_DRQ) == 0) { 1018 /* No more data to transfer or device error. 1019 * Device error will be tagged in HSM_ST_LAST. 1020 */ 1021 ap->hsm_task_state = HSM_ST_LAST; 1022 goto fsm_start; 1023 } 1024 1025 /* Device should not ask for data transfer (DRQ=1) 1026 * when it finds something wrong. 1027 * We ignore DRQ here and stop the HSM by 1028 * changing hsm_task_state to HSM_ST_ERR and 1029 * let the EH abort the command or reset the device. 1030 */ 1031 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1032 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1033 "DRQ=1 with device error, " 1034 "dev_stat 0x%X", status); 1035 qc->err_mask |= AC_ERR_HSM; 1036 ap->hsm_task_state = HSM_ST_ERR; 1037 goto fsm_start; 1038 } 1039 1040 atapi_pio_bytes(qc); 1041 1042 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1043 /* bad ireason reported by device */ 1044 goto fsm_start; 1045 1046 } else { 1047 /* ATA PIO protocol */ 1048 if (unlikely((status & ATA_DRQ) == 0)) { 1049 /* handle BSY=0, DRQ=0 as error */ 1050 if (likely(status & (ATA_ERR | ATA_DF))) { 1051 /* device stops HSM for abort/error */ 1052 qc->err_mask |= AC_ERR_DEV; 1053 1054 /* If diagnostic failed and this is 1055 * IDENTIFY, it's likely a phantom 1056 * device. Mark hint. 1057 */ 1058 if (qc->dev->horkage & 1059 ATA_HORKAGE_DIAGNOSTIC) 1060 qc->err_mask |= 1061 AC_ERR_NODEV_HINT; 1062 } else { 1063 /* HSM violation. Let EH handle this. 1064 * Phantom devices also trigger this 1065 * condition. Mark hint. 1066 */ 1067 ata_ehi_push_desc(ehi, "ST-ATA: " 1068 "DRQ=0 without device error, " 1069 "dev_stat 0x%X", status); 1070 qc->err_mask |= AC_ERR_HSM | 1071 AC_ERR_NODEV_HINT; 1072 } 1073 1074 ap->hsm_task_state = HSM_ST_ERR; 1075 goto fsm_start; 1076 } 1077 1078 /* For PIO reads, some devices may ask for 1079 * data transfer (DRQ=1) alone with ERR=1. 1080 * We respect DRQ here and transfer one 1081 * block of junk data before changing the 1082 * hsm_task_state to HSM_ST_ERR. 1083 * 1084 * For PIO writes, ERR=1 DRQ=1 doesn't make 1085 * sense since the data block has been 1086 * transferred to the device. 1087 */ 1088 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1089 /* data might be corrputed */ 1090 qc->err_mask |= AC_ERR_DEV; 1091 1092 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1093 ata_pio_sectors(qc); 1094 status = ata_wait_idle(ap); 1095 } 1096 1097 if (status & (ATA_BUSY | ATA_DRQ)) { 1098 ata_ehi_push_desc(ehi, "ST-ATA: " 1099 "BUSY|DRQ persists on ERR|DF, " 1100 "dev_stat 0x%X", status); 1101 qc->err_mask |= AC_ERR_HSM; 1102 } 1103 1104 /* There are oddball controllers with 1105 * status register stuck at 0x7f and 1106 * lbal/m/h at zero which makes it 1107 * pass all other presence detection 1108 * mechanisms we have. Set NODEV_HINT 1109 * for it. Kernel bz#7241. 1110 */ 1111 if (status == 0x7f) 1112 qc->err_mask |= AC_ERR_NODEV_HINT; 1113 1114 /* ata_pio_sectors() might change the 1115 * state to HSM_ST_LAST. so, the state 1116 * is changed after ata_pio_sectors(). 1117 */ 1118 ap->hsm_task_state = HSM_ST_ERR; 1119 goto fsm_start; 1120 } 1121 1122 ata_pio_sectors(qc); 1123 1124 if (ap->hsm_task_state == HSM_ST_LAST && 1125 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1126 /* all data read */ 1127 status = ata_wait_idle(ap); 1128 goto fsm_start; 1129 } 1130 } 1131 1132 poll_next = 1; 1133 break; 1134 1135 case HSM_ST_LAST: 1136 if (unlikely(!ata_ok(status))) { 1137 qc->err_mask |= __ac_err_mask(status); 1138 ap->hsm_task_state = HSM_ST_ERR; 1139 goto fsm_start; 1140 } 1141 1142 /* no more data to transfer */ 1143 trace_ata_sff_hsm_command_complete(qc, status); 1144 1145 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1146 1147 ap->hsm_task_state = HSM_ST_IDLE; 1148 1149 /* complete taskfile transaction */ 1150 ata_hsm_qc_complete(qc, in_wq); 1151 1152 poll_next = 0; 1153 break; 1154 1155 case HSM_ST_ERR: 1156 ap->hsm_task_state = HSM_ST_IDLE; 1157 1158 /* complete taskfile transaction */ 1159 ata_hsm_qc_complete(qc, in_wq); 1160 1161 poll_next = 0; 1162 break; 1163 default: 1164 poll_next = 0; 1165 WARN(true, "ata%d: SFF host state machine in invalid state %d", 1166 ap->print_id, ap->hsm_task_state); 1167 } 1168 1169 return poll_next; 1170 } 1171 EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1172 1173 void ata_sff_queue_work(struct work_struct *work) 1174 { 1175 queue_work(ata_sff_wq, work); 1176 } 1177 EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1178 1179 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1180 { 1181 queue_delayed_work(ata_sff_wq, dwork, delay); 1182 } 1183 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1184 1185 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1186 { 1187 struct ata_port *ap = link->ap; 1188 1189 WARN_ON((ap->sff_pio_task_link != NULL) && 1190 (ap->sff_pio_task_link != link)); 1191 ap->sff_pio_task_link = link; 1192 1193 /* may fail if ata_sff_flush_pio_task() in progress */ 1194 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1195 } 1196 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1197 1198 void ata_sff_flush_pio_task(struct ata_port *ap) 1199 { 1200 trace_ata_sff_flush_pio_task(ap); 1201 1202 cancel_delayed_work_sync(&ap->sff_pio_task); 1203 1204 /* 1205 * We wanna reset the HSM state to IDLE. If we do so without 1206 * grabbing the port lock, critical sections protected by it which 1207 * expect the HSM state to stay stable may get surprised. For 1208 * example, we may set IDLE in between the time 1209 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1210 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1211 */ 1212 spin_lock_irq(ap->lock); 1213 ap->hsm_task_state = HSM_ST_IDLE; 1214 spin_unlock_irq(ap->lock); 1215 1216 ap->sff_pio_task_link = NULL; 1217 } 1218 1219 static void ata_sff_pio_task(struct work_struct *work) 1220 { 1221 struct ata_port *ap = 1222 container_of(work, struct ata_port, sff_pio_task.work); 1223 struct ata_link *link = ap->sff_pio_task_link; 1224 struct ata_queued_cmd *qc; 1225 u8 status; 1226 int poll_next; 1227 1228 spin_lock_irq(ap->lock); 1229 1230 BUG_ON(ap->sff_pio_task_link == NULL); 1231 /* qc can be NULL if timeout occurred */ 1232 qc = ata_qc_from_tag(ap, link->active_tag); 1233 if (!qc) { 1234 ap->sff_pio_task_link = NULL; 1235 goto out_unlock; 1236 } 1237 1238 fsm_start: 1239 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1240 1241 /* 1242 * This is purely heuristic. This is a fast path. 1243 * Sometimes when we enter, BSY will be cleared in 1244 * a chk-status or two. If not, the drive is probably seeking 1245 * or something. Snooze for a couple msecs, then 1246 * chk-status again. If still busy, queue delayed work. 1247 */ 1248 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1249 if (status & ATA_BUSY) { 1250 spin_unlock_irq(ap->lock); 1251 ata_msleep(ap, 2); 1252 spin_lock_irq(ap->lock); 1253 1254 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1255 if (status & ATA_BUSY) { 1256 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1257 goto out_unlock; 1258 } 1259 } 1260 1261 /* 1262 * hsm_move() may trigger another command to be processed. 1263 * clean the link beforehand. 1264 */ 1265 ap->sff_pio_task_link = NULL; 1266 /* move the HSM */ 1267 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1268 1269 /* another command or interrupt handler 1270 * may be running at this point. 1271 */ 1272 if (poll_next) 1273 goto fsm_start; 1274 out_unlock: 1275 spin_unlock_irq(ap->lock); 1276 } 1277 1278 /** 1279 * ata_sff_qc_issue - issue taskfile to a SFF controller 1280 * @qc: command to issue to device 1281 * 1282 * This function issues a PIO or NODATA command to a SFF 1283 * controller. 1284 * 1285 * LOCKING: 1286 * spin_lock_irqsave(host lock) 1287 * 1288 * RETURNS: 1289 * Zero on success, AC_ERR_* mask on failure 1290 */ 1291 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1292 { 1293 struct ata_port *ap = qc->ap; 1294 struct ata_link *link = qc->dev->link; 1295 1296 /* Use polling pio if the LLD doesn't handle 1297 * interrupt driven pio and atapi CDB interrupt. 1298 */ 1299 if (ap->flags & ATA_FLAG_PIO_POLLING) 1300 qc->tf.flags |= ATA_TFLAG_POLLING; 1301 1302 /* select the device */ 1303 ata_dev_select(ap, qc->dev->devno, 1, 0); 1304 1305 /* start the command */ 1306 switch (qc->tf.protocol) { 1307 case ATA_PROT_NODATA: 1308 if (qc->tf.flags & ATA_TFLAG_POLLING) 1309 ata_qc_set_polling(qc); 1310 1311 ata_tf_to_host(ap, &qc->tf, qc->tag); 1312 ap->hsm_task_state = HSM_ST_LAST; 1313 1314 if (qc->tf.flags & ATA_TFLAG_POLLING) 1315 ata_sff_queue_pio_task(link, 0); 1316 1317 break; 1318 1319 case ATA_PROT_PIO: 1320 if (qc->tf.flags & ATA_TFLAG_POLLING) 1321 ata_qc_set_polling(qc); 1322 1323 ata_tf_to_host(ap, &qc->tf, qc->tag); 1324 1325 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1326 /* PIO data out protocol */ 1327 ap->hsm_task_state = HSM_ST_FIRST; 1328 ata_sff_queue_pio_task(link, 0); 1329 1330 /* always send first data block using the 1331 * ata_sff_pio_task() codepath. 1332 */ 1333 } else { 1334 /* PIO data in protocol */ 1335 ap->hsm_task_state = HSM_ST; 1336 1337 if (qc->tf.flags & ATA_TFLAG_POLLING) 1338 ata_sff_queue_pio_task(link, 0); 1339 1340 /* if polling, ata_sff_pio_task() handles the 1341 * rest. otherwise, interrupt handler takes 1342 * over from here. 1343 */ 1344 } 1345 1346 break; 1347 1348 case ATAPI_PROT_PIO: 1349 case ATAPI_PROT_NODATA: 1350 if (qc->tf.flags & ATA_TFLAG_POLLING) 1351 ata_qc_set_polling(qc); 1352 1353 ata_tf_to_host(ap, &qc->tf, qc->tag); 1354 1355 ap->hsm_task_state = HSM_ST_FIRST; 1356 1357 /* send cdb by polling if no cdb interrupt */ 1358 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1359 (qc->tf.flags & ATA_TFLAG_POLLING)) 1360 ata_sff_queue_pio_task(link, 0); 1361 break; 1362 1363 default: 1364 return AC_ERR_SYSTEM; 1365 } 1366 1367 return 0; 1368 } 1369 EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1370 1371 /** 1372 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1373 * @qc: qc to fill result TF for 1374 * 1375 * @qc is finished and result TF needs to be filled. Fill it 1376 * using ->sff_tf_read. 1377 * 1378 * LOCKING: 1379 * spin_lock_irqsave(host lock) 1380 */ 1381 void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1382 { 1383 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1384 } 1385 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1386 1387 static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1388 { 1389 ap->stats.idle_irq++; 1390 1391 #ifdef ATA_IRQ_TRAP 1392 if ((ap->stats.idle_irq % 1000) == 0) { 1393 ap->ops->sff_check_status(ap); 1394 if (ap->ops->sff_irq_clear) 1395 ap->ops->sff_irq_clear(ap); 1396 ata_port_warn(ap, "irq trap\n"); 1397 return 1; 1398 } 1399 #endif 1400 return 0; /* irq not handled */ 1401 } 1402 1403 static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1404 struct ata_queued_cmd *qc, 1405 bool hsmv_on_idle) 1406 { 1407 u8 status; 1408 1409 trace_ata_sff_port_intr(qc, hsmv_on_idle); 1410 1411 /* Check whether we are expecting interrupt in this state */ 1412 switch (ap->hsm_task_state) { 1413 case HSM_ST_FIRST: 1414 /* Some pre-ATAPI-4 devices assert INTRQ 1415 * at this state when ready to receive CDB. 1416 */ 1417 1418 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1419 * The flag was turned on only for atapi devices. No 1420 * need to check ata_is_atapi(qc->tf.protocol) again. 1421 */ 1422 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1423 return ata_sff_idle_irq(ap); 1424 break; 1425 case HSM_ST_IDLE: 1426 return ata_sff_idle_irq(ap); 1427 default: 1428 break; 1429 } 1430 1431 /* check main status, clearing INTRQ if needed */ 1432 status = ata_sff_irq_status(ap); 1433 if (status & ATA_BUSY) { 1434 if (hsmv_on_idle) { 1435 /* BMDMA engine is already stopped, we're screwed */ 1436 qc->err_mask |= AC_ERR_HSM; 1437 ap->hsm_task_state = HSM_ST_ERR; 1438 } else 1439 return ata_sff_idle_irq(ap); 1440 } 1441 1442 /* clear irq events */ 1443 if (ap->ops->sff_irq_clear) 1444 ap->ops->sff_irq_clear(ap); 1445 1446 ata_sff_hsm_move(ap, qc, status, 0); 1447 1448 return 1; /* irq handled */ 1449 } 1450 1451 /** 1452 * ata_sff_port_intr - Handle SFF port interrupt 1453 * @ap: Port on which interrupt arrived (possibly...) 1454 * @qc: Taskfile currently active in engine 1455 * 1456 * Handle port interrupt for given queued command. 1457 * 1458 * LOCKING: 1459 * spin_lock_irqsave(host lock) 1460 * 1461 * RETURNS: 1462 * One if interrupt was handled, zero if not (shared irq). 1463 */ 1464 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1465 { 1466 return __ata_sff_port_intr(ap, qc, false); 1467 } 1468 EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1469 1470 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1471 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1472 { 1473 struct ata_host *host = dev_instance; 1474 bool retried = false; 1475 unsigned int i; 1476 unsigned int handled, idle, polling; 1477 unsigned long flags; 1478 1479 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1480 spin_lock_irqsave(&host->lock, flags); 1481 1482 retry: 1483 handled = idle = polling = 0; 1484 for (i = 0; i < host->n_ports; i++) { 1485 struct ata_port *ap = host->ports[i]; 1486 struct ata_queued_cmd *qc; 1487 1488 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1489 if (qc) { 1490 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1491 handled |= port_intr(ap, qc); 1492 else 1493 polling |= 1 << i; 1494 } else 1495 idle |= 1 << i; 1496 } 1497 1498 /* 1499 * If no port was expecting IRQ but the controller is actually 1500 * asserting IRQ line, nobody cared will ensue. Check IRQ 1501 * pending status if available and clear spurious IRQ. 1502 */ 1503 if (!handled && !retried) { 1504 bool retry = false; 1505 1506 for (i = 0; i < host->n_ports; i++) { 1507 struct ata_port *ap = host->ports[i]; 1508 1509 if (polling & (1 << i)) 1510 continue; 1511 1512 if (!ap->ops->sff_irq_check || 1513 !ap->ops->sff_irq_check(ap)) 1514 continue; 1515 1516 if (idle & (1 << i)) { 1517 ap->ops->sff_check_status(ap); 1518 if (ap->ops->sff_irq_clear) 1519 ap->ops->sff_irq_clear(ap); 1520 } else { 1521 /* clear INTRQ and check if BUSY cleared */ 1522 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1523 retry |= true; 1524 /* 1525 * With command in flight, we can't do 1526 * sff_irq_clear() w/o racing with completion. 1527 */ 1528 } 1529 } 1530 1531 if (retry) { 1532 retried = true; 1533 goto retry; 1534 } 1535 } 1536 1537 spin_unlock_irqrestore(&host->lock, flags); 1538 1539 return IRQ_RETVAL(handled); 1540 } 1541 1542 /** 1543 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1544 * @irq: irq line (unused) 1545 * @dev_instance: pointer to our ata_host information structure 1546 * 1547 * Default interrupt handler for PCI IDE devices. Calls 1548 * ata_sff_port_intr() for each port that is not disabled. 1549 * 1550 * LOCKING: 1551 * Obtains host lock during operation. 1552 * 1553 * RETURNS: 1554 * IRQ_NONE or IRQ_HANDLED. 1555 */ 1556 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1557 { 1558 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1559 } 1560 EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1561 1562 /** 1563 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1564 * @ap: port that appears to have timed out 1565 * 1566 * Called from the libata error handlers when the core code suspects 1567 * an interrupt has been lost. If it has complete anything we can and 1568 * then return. Interface must support altstatus for this faster 1569 * recovery to occur. 1570 * 1571 * Locking: 1572 * Caller holds host lock 1573 */ 1574 1575 void ata_sff_lost_interrupt(struct ata_port *ap) 1576 { 1577 u8 status = 0; 1578 struct ata_queued_cmd *qc; 1579 1580 /* Only one outstanding command per SFF channel */ 1581 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1582 /* We cannot lose an interrupt on a non-existent or polled command */ 1583 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1584 return; 1585 /* See if the controller thinks it is still busy - if so the command 1586 isn't a lost IRQ but is still in progress */ 1587 if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status))) 1588 return; 1589 if (status & ATA_BUSY) 1590 return; 1591 1592 /* There was a command running, we are no longer busy and we have 1593 no interrupt. */ 1594 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status); 1595 /* Run the host interrupt logic as if the interrupt had not been 1596 lost */ 1597 ata_sff_port_intr(ap, qc); 1598 } 1599 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1600 1601 /** 1602 * ata_sff_freeze - Freeze SFF controller port 1603 * @ap: port to freeze 1604 * 1605 * Freeze SFF controller port. 1606 * 1607 * LOCKING: 1608 * Inherited from caller. 1609 */ 1610 void ata_sff_freeze(struct ata_port *ap) 1611 { 1612 ap->ctl |= ATA_NIEN; 1613 ap->last_ctl = ap->ctl; 1614 1615 ata_sff_set_devctl(ap, ap->ctl); 1616 1617 /* Under certain circumstances, some controllers raise IRQ on 1618 * ATA_NIEN manipulation. Also, many controllers fail to mask 1619 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1620 */ 1621 ap->ops->sff_check_status(ap); 1622 1623 if (ap->ops->sff_irq_clear) 1624 ap->ops->sff_irq_clear(ap); 1625 } 1626 EXPORT_SYMBOL_GPL(ata_sff_freeze); 1627 1628 /** 1629 * ata_sff_thaw - Thaw SFF controller port 1630 * @ap: port to thaw 1631 * 1632 * Thaw SFF controller port. 1633 * 1634 * LOCKING: 1635 * Inherited from caller. 1636 */ 1637 void ata_sff_thaw(struct ata_port *ap) 1638 { 1639 /* clear & re-enable interrupts */ 1640 ap->ops->sff_check_status(ap); 1641 if (ap->ops->sff_irq_clear) 1642 ap->ops->sff_irq_clear(ap); 1643 ata_sff_irq_on(ap); 1644 } 1645 EXPORT_SYMBOL_GPL(ata_sff_thaw); 1646 1647 /** 1648 * ata_sff_prereset - prepare SFF link for reset 1649 * @link: SFF link to be reset 1650 * @deadline: deadline jiffies for the operation 1651 * 1652 * SFF link @link is about to be reset. Initialize it. It first 1653 * calls ata_std_prereset() and wait for !BSY if the port is 1654 * being softreset. 1655 * 1656 * LOCKING: 1657 * Kernel thread context (may sleep) 1658 * 1659 * RETURNS: 1660 * Always 0. 1661 */ 1662 int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1663 { 1664 struct ata_eh_context *ehc = &link->eh_context; 1665 int rc; 1666 1667 /* The standard prereset is best-effort and always returns 0 */ 1668 ata_std_prereset(link, deadline); 1669 1670 /* if we're about to do hardreset, nothing more to do */ 1671 if (ehc->i.action & ATA_EH_HARDRESET) 1672 return 0; 1673 1674 /* wait for !BSY if we don't know that no device is attached */ 1675 if (!ata_link_offline(link)) { 1676 rc = ata_sff_wait_ready(link, deadline); 1677 if (rc && rc != -ENODEV) { 1678 ata_link_warn(link, 1679 "device not ready (errno=%d), forcing hardreset\n", 1680 rc); 1681 ehc->i.action |= ATA_EH_HARDRESET; 1682 } 1683 } 1684 1685 return 0; 1686 } 1687 EXPORT_SYMBOL_GPL(ata_sff_prereset); 1688 1689 /** 1690 * ata_devchk - PATA device presence detection 1691 * @ap: ATA channel to examine 1692 * @device: Device to examine (starting at zero) 1693 * 1694 * This technique was originally described in 1695 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1696 * later found its way into the ATA/ATAPI spec. 1697 * 1698 * Write a pattern to the ATA shadow registers, 1699 * and if a device is present, it will respond by 1700 * correctly storing and echoing back the 1701 * ATA shadow register contents. 1702 * 1703 * RETURN: 1704 * true if device is present, false if not. 1705 * 1706 * LOCKING: 1707 * caller. 1708 */ 1709 static bool ata_devchk(struct ata_port *ap, unsigned int device) 1710 { 1711 struct ata_ioports *ioaddr = &ap->ioaddr; 1712 u8 nsect, lbal; 1713 1714 ap->ops->sff_dev_select(ap, device); 1715 1716 iowrite8(0x55, ioaddr->nsect_addr); 1717 iowrite8(0xaa, ioaddr->lbal_addr); 1718 1719 iowrite8(0xaa, ioaddr->nsect_addr); 1720 iowrite8(0x55, ioaddr->lbal_addr); 1721 1722 iowrite8(0x55, ioaddr->nsect_addr); 1723 iowrite8(0xaa, ioaddr->lbal_addr); 1724 1725 nsect = ioread8(ioaddr->nsect_addr); 1726 lbal = ioread8(ioaddr->lbal_addr); 1727 1728 if ((nsect == 0x55) && (lbal == 0xaa)) 1729 return true; /* we found a device */ 1730 1731 return false; /* nothing found */ 1732 } 1733 1734 /** 1735 * ata_sff_dev_classify - Parse returned ATA device signature 1736 * @dev: ATA device to classify (starting at zero) 1737 * @present: device seems present 1738 * @r_err: Value of error register on completion 1739 * 1740 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1741 * an ATA/ATAPI-defined set of values is placed in the ATA 1742 * shadow registers, indicating the results of device detection 1743 * and diagnostics. 1744 * 1745 * Select the ATA device, and read the values from the ATA shadow 1746 * registers. Then parse according to the Error register value, 1747 * and the spec-defined values examined by ata_dev_classify(). 1748 * 1749 * LOCKING: 1750 * caller. 1751 * 1752 * RETURNS: 1753 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1754 */ 1755 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1756 u8 *r_err) 1757 { 1758 struct ata_port *ap = dev->link->ap; 1759 struct ata_taskfile tf; 1760 unsigned int class; 1761 u8 err; 1762 1763 ap->ops->sff_dev_select(ap, dev->devno); 1764 1765 memset(&tf, 0, sizeof(tf)); 1766 1767 ap->ops->sff_tf_read(ap, &tf); 1768 err = tf.error; 1769 if (r_err) 1770 *r_err = err; 1771 1772 /* see if device passed diags: continue and warn later */ 1773 if (err == 0) 1774 /* diagnostic fail : do nothing _YET_ */ 1775 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1776 else if (err == 1) 1777 /* do nothing */ ; 1778 else if ((dev->devno == 0) && (err == 0x81)) 1779 /* do nothing */ ; 1780 else 1781 return ATA_DEV_NONE; 1782 1783 /* determine if device is ATA or ATAPI */ 1784 class = ata_port_classify(ap, &tf); 1785 switch (class) { 1786 case ATA_DEV_UNKNOWN: 1787 /* 1788 * If the device failed diagnostic, it's likely to 1789 * have reported incorrect device signature too. 1790 * Assume ATA device if the device seems present but 1791 * device signature is invalid with diagnostic 1792 * failure. 1793 */ 1794 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1795 class = ATA_DEV_ATA; 1796 else 1797 class = ATA_DEV_NONE; 1798 break; 1799 case ATA_DEV_ATA: 1800 if (ap->ops->sff_check_status(ap) == 0) 1801 class = ATA_DEV_NONE; 1802 break; 1803 } 1804 return class; 1805 } 1806 EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1807 1808 /** 1809 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1810 * @link: SFF link which is just reset 1811 * @devmask: mask of present devices 1812 * @deadline: deadline jiffies for the operation 1813 * 1814 * Wait devices attached to SFF @link to become ready after 1815 * reset. It contains preceding 150ms wait to avoid accessing TF 1816 * status register too early. 1817 * 1818 * LOCKING: 1819 * Kernel thread context (may sleep). 1820 * 1821 * RETURNS: 1822 * 0 on success, -ENODEV if some or all of devices in @devmask 1823 * don't seem to exist. -errno on other errors. 1824 */ 1825 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1826 unsigned long deadline) 1827 { 1828 struct ata_port *ap = link->ap; 1829 struct ata_ioports *ioaddr = &ap->ioaddr; 1830 unsigned int dev0 = devmask & (1 << 0); 1831 unsigned int dev1 = devmask & (1 << 1); 1832 int rc, ret = 0; 1833 1834 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1835 1836 /* always check readiness of the master device */ 1837 rc = ata_sff_wait_ready(link, deadline); 1838 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1839 * and TF status is 0xff, bail out on it too. 1840 */ 1841 if (rc) 1842 return rc; 1843 1844 /* if device 1 was found in ata_devchk, wait for register 1845 * access briefly, then wait for BSY to clear. 1846 */ 1847 if (dev1) { 1848 int i; 1849 1850 ap->ops->sff_dev_select(ap, 1); 1851 1852 /* Wait for register access. Some ATAPI devices fail 1853 * to set nsect/lbal after reset, so don't waste too 1854 * much time on it. We're gonna wait for !BSY anyway. 1855 */ 1856 for (i = 0; i < 2; i++) { 1857 u8 nsect, lbal; 1858 1859 nsect = ioread8(ioaddr->nsect_addr); 1860 lbal = ioread8(ioaddr->lbal_addr); 1861 if ((nsect == 1) && (lbal == 1)) 1862 break; 1863 ata_msleep(ap, 50); /* give drive a breather */ 1864 } 1865 1866 rc = ata_sff_wait_ready(link, deadline); 1867 if (rc) { 1868 if (rc != -ENODEV) 1869 return rc; 1870 ret = rc; 1871 } 1872 } 1873 1874 /* is all this really necessary? */ 1875 ap->ops->sff_dev_select(ap, 0); 1876 if (dev1) 1877 ap->ops->sff_dev_select(ap, 1); 1878 if (dev0) 1879 ap->ops->sff_dev_select(ap, 0); 1880 1881 return ret; 1882 } 1883 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 1884 1885 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 1886 unsigned long deadline) 1887 { 1888 struct ata_ioports *ioaddr = &ap->ioaddr; 1889 1890 if (ap->ioaddr.ctl_addr) { 1891 /* software reset. causes dev0 to be selected */ 1892 iowrite8(ap->ctl, ioaddr->ctl_addr); 1893 udelay(20); /* FIXME: flush */ 1894 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 1895 udelay(20); /* FIXME: flush */ 1896 iowrite8(ap->ctl, ioaddr->ctl_addr); 1897 ap->last_ctl = ap->ctl; 1898 } 1899 1900 /* wait the port to become ready */ 1901 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 1902 } 1903 1904 /** 1905 * ata_sff_softreset - reset host port via ATA SRST 1906 * @link: ATA link to reset 1907 * @classes: resulting classes of attached devices 1908 * @deadline: deadline jiffies for the operation 1909 * 1910 * Reset host port using ATA SRST. 1911 * 1912 * LOCKING: 1913 * Kernel thread context (may sleep) 1914 * 1915 * RETURNS: 1916 * 0 on success, -errno otherwise. 1917 */ 1918 int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 1919 unsigned long deadline) 1920 { 1921 struct ata_port *ap = link->ap; 1922 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 1923 unsigned int devmask = 0; 1924 int rc; 1925 u8 err; 1926 1927 /* determine if device 0/1 are present */ 1928 if (ata_devchk(ap, 0)) 1929 devmask |= (1 << 0); 1930 if (slave_possible && ata_devchk(ap, 1)) 1931 devmask |= (1 << 1); 1932 1933 /* select device 0 again */ 1934 ap->ops->sff_dev_select(ap, 0); 1935 1936 /* issue bus reset */ 1937 rc = ata_bus_softreset(ap, devmask, deadline); 1938 /* if link is occupied, -ENODEV too is an error */ 1939 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 1940 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 1941 return rc; 1942 } 1943 1944 /* determine by signature whether we have ATA or ATAPI devices */ 1945 classes[0] = ata_sff_dev_classify(&link->device[0], 1946 devmask & (1 << 0), &err); 1947 if (slave_possible && err != 0x81) 1948 classes[1] = ata_sff_dev_classify(&link->device[1], 1949 devmask & (1 << 1), &err); 1950 1951 return 0; 1952 } 1953 EXPORT_SYMBOL_GPL(ata_sff_softreset); 1954 1955 /** 1956 * sata_sff_hardreset - reset host port via SATA phy reset 1957 * @link: link to reset 1958 * @class: resulting class of attached device 1959 * @deadline: deadline jiffies for the operation 1960 * 1961 * SATA phy-reset host port using DET bits of SControl register, 1962 * wait for !BSY and classify the attached device. 1963 * 1964 * LOCKING: 1965 * Kernel thread context (may sleep) 1966 * 1967 * RETURNS: 1968 * 0 on success, -errno otherwise. 1969 */ 1970 int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 1971 unsigned long deadline) 1972 { 1973 struct ata_eh_context *ehc = &link->eh_context; 1974 const unsigned long *timing = sata_ehc_deb_timing(ehc); 1975 bool online; 1976 int rc; 1977 1978 rc = sata_link_hardreset(link, timing, deadline, &online, 1979 ata_sff_check_ready); 1980 if (online) 1981 *class = ata_sff_dev_classify(link->device, 1, NULL); 1982 1983 return rc; 1984 } 1985 EXPORT_SYMBOL_GPL(sata_sff_hardreset); 1986 1987 /** 1988 * ata_sff_postreset - SFF postreset callback 1989 * @link: the target SFF ata_link 1990 * @classes: classes of attached devices 1991 * 1992 * This function is invoked after a successful reset. It first 1993 * calls ata_std_postreset() and performs SFF specific postreset 1994 * processing. 1995 * 1996 * LOCKING: 1997 * Kernel thread context (may sleep) 1998 */ 1999 void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2000 { 2001 struct ata_port *ap = link->ap; 2002 2003 ata_std_postreset(link, classes); 2004 2005 /* is double-select really necessary? */ 2006 if (classes[0] != ATA_DEV_NONE) 2007 ap->ops->sff_dev_select(ap, 1); 2008 if (classes[1] != ATA_DEV_NONE) 2009 ap->ops->sff_dev_select(ap, 0); 2010 2011 /* bail out if no device is present */ 2012 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) 2013 return; 2014 2015 /* set up device control */ 2016 if (ata_sff_set_devctl(ap, ap->ctl)) 2017 ap->last_ctl = ap->ctl; 2018 } 2019 EXPORT_SYMBOL_GPL(ata_sff_postreset); 2020 2021 /** 2022 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2023 * @qc: command 2024 * 2025 * Drain the FIFO and device of any stuck data following a command 2026 * failing to complete. In some cases this is necessary before a 2027 * reset will recover the device. 2028 * 2029 */ 2030 2031 void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2032 { 2033 int count; 2034 struct ata_port *ap; 2035 2036 /* We only need to flush incoming data when a command was running */ 2037 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2038 return; 2039 2040 ap = qc->ap; 2041 /* Drain up to 64K of data before we give up this recovery method */ 2042 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2043 && count < 65536; count += 2) 2044 ioread16(ap->ioaddr.data_addr); 2045 2046 if (count) 2047 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2048 2049 } 2050 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2051 2052 /** 2053 * ata_sff_error_handler - Stock error handler for SFF controller 2054 * @ap: port to handle error for 2055 * 2056 * Stock error handler for SFF controller. It can handle both 2057 * PATA and SATA controllers. Many controllers should be able to 2058 * use this EH as-is or with some added handling before and 2059 * after. 2060 * 2061 * LOCKING: 2062 * Kernel thread context (may sleep) 2063 */ 2064 void ata_sff_error_handler(struct ata_port *ap) 2065 { 2066 ata_reset_fn_t softreset = ap->ops->softreset; 2067 ata_reset_fn_t hardreset = ap->ops->hardreset; 2068 struct ata_queued_cmd *qc; 2069 unsigned long flags; 2070 2071 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2072 if (qc && !(qc->flags & ATA_QCFLAG_EH)) 2073 qc = NULL; 2074 2075 spin_lock_irqsave(ap->lock, flags); 2076 2077 /* 2078 * We *MUST* do FIFO draining before we issue a reset as 2079 * several devices helpfully clear their internal state and 2080 * will lock solid if we touch the data port post reset. Pass 2081 * qc in case anyone wants to do different PIO/DMA recovery or 2082 * has per command fixups 2083 */ 2084 if (ap->ops->sff_drain_fifo) 2085 ap->ops->sff_drain_fifo(qc); 2086 2087 spin_unlock_irqrestore(ap->lock, flags); 2088 2089 /* ignore built-in hardresets if SCR access is not available */ 2090 if ((hardreset == sata_std_hardreset || 2091 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2092 hardreset = NULL; 2093 2094 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2095 ap->ops->postreset); 2096 } 2097 EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2098 2099 /** 2100 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2101 * @ioaddr: IO address structure to be initialized 2102 * 2103 * Utility function which initializes data_addr, error_addr, 2104 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2105 * device_addr, status_addr, and command_addr to standard offsets 2106 * relative to cmd_addr. 2107 * 2108 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2109 */ 2110 void ata_sff_std_ports(struct ata_ioports *ioaddr) 2111 { 2112 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2113 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2114 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2115 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2116 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2117 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2118 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2119 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2120 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2121 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2122 } 2123 EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2124 2125 #ifdef CONFIG_PCI 2126 2127 static bool ata_resources_present(struct pci_dev *pdev, int port) 2128 { 2129 int i; 2130 2131 /* Check the PCI resources for this channel are enabled */ 2132 port *= 2; 2133 for (i = 0; i < 2; i++) { 2134 if (pci_resource_start(pdev, port + i) == 0 || 2135 pci_resource_len(pdev, port + i) == 0) 2136 return false; 2137 } 2138 return true; 2139 } 2140 2141 /** 2142 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2143 * @host: target ATA host 2144 * 2145 * Acquire native PCI ATA resources for @host and initialize the 2146 * first two ports of @host accordingly. Ports marked dummy are 2147 * skipped and allocation failure makes the port dummy. 2148 * 2149 * Note that native PCI resources are valid even for legacy hosts 2150 * as we fix up pdev resources array early in boot, so this 2151 * function can be used for both native and legacy SFF hosts. 2152 * 2153 * LOCKING: 2154 * Inherited from calling layer (may sleep). 2155 * 2156 * RETURNS: 2157 * 0 if at least one port is initialized, -ENODEV if no port is 2158 * available. 2159 */ 2160 int ata_pci_sff_init_host(struct ata_host *host) 2161 { 2162 struct device *gdev = host->dev; 2163 struct pci_dev *pdev = to_pci_dev(gdev); 2164 unsigned int mask = 0; 2165 int i, rc; 2166 2167 /* request, iomap BARs and init port addresses accordingly */ 2168 for (i = 0; i < 2; i++) { 2169 struct ata_port *ap = host->ports[i]; 2170 int base = i * 2; 2171 void __iomem * const *iomap; 2172 2173 if (ata_port_is_dummy(ap)) 2174 continue; 2175 2176 /* Discard disabled ports. Some controllers show 2177 * their unused channels this way. Disabled ports are 2178 * made dummy. 2179 */ 2180 if (!ata_resources_present(pdev, i)) { 2181 ap->ops = &ata_dummy_port_ops; 2182 continue; 2183 } 2184 2185 rc = pcim_iomap_regions(pdev, 0x3 << base, 2186 dev_driver_string(gdev)); 2187 if (rc) { 2188 dev_warn(gdev, 2189 "failed to request/iomap BARs for port %d (errno=%d)\n", 2190 i, rc); 2191 if (rc == -EBUSY) 2192 pcim_pin_device(pdev); 2193 ap->ops = &ata_dummy_port_ops; 2194 continue; 2195 } 2196 host->iomap = iomap = pcim_iomap_table(pdev); 2197 2198 ap->ioaddr.cmd_addr = iomap[base]; 2199 ap->ioaddr.altstatus_addr = 2200 ap->ioaddr.ctl_addr = (void __iomem *) 2201 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2202 ata_sff_std_ports(&ap->ioaddr); 2203 2204 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2205 (unsigned long long)pci_resource_start(pdev, base), 2206 (unsigned long long)pci_resource_start(pdev, base + 1)); 2207 2208 mask |= 1 << i; 2209 } 2210 2211 if (!mask) { 2212 dev_err(gdev, "no available native port\n"); 2213 return -ENODEV; 2214 } 2215 2216 return 0; 2217 } 2218 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2219 2220 /** 2221 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2222 * @pdev: target PCI device 2223 * @ppi: array of port_info, must be enough for two ports 2224 * @r_host: out argument for the initialized ATA host 2225 * 2226 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2227 * all PCI resources and initialize it accordingly in one go. 2228 * 2229 * LOCKING: 2230 * Inherited from calling layer (may sleep). 2231 * 2232 * RETURNS: 2233 * 0 on success, -errno otherwise. 2234 */ 2235 int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2236 const struct ata_port_info * const *ppi, 2237 struct ata_host **r_host) 2238 { 2239 struct ata_host *host; 2240 int rc; 2241 2242 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2243 return -ENOMEM; 2244 2245 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2246 if (!host) { 2247 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2248 rc = -ENOMEM; 2249 goto err_out; 2250 } 2251 2252 rc = ata_pci_sff_init_host(host); 2253 if (rc) 2254 goto err_out; 2255 2256 devres_remove_group(&pdev->dev, NULL); 2257 *r_host = host; 2258 return 0; 2259 2260 err_out: 2261 devres_release_group(&pdev->dev, NULL); 2262 return rc; 2263 } 2264 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2265 2266 /** 2267 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2268 * @host: target SFF ATA host 2269 * @irq_handler: irq_handler used when requesting IRQ(s) 2270 * @sht: scsi_host_template to use when registering the host 2271 * 2272 * This is the counterpart of ata_host_activate() for SFF ATA 2273 * hosts. This separate helper is necessary because SFF hosts 2274 * use two separate interrupts in legacy mode. 2275 * 2276 * LOCKING: 2277 * Inherited from calling layer (may sleep). 2278 * 2279 * RETURNS: 2280 * 0 on success, -errno otherwise. 2281 */ 2282 int ata_pci_sff_activate_host(struct ata_host *host, 2283 irq_handler_t irq_handler, 2284 struct scsi_host_template *sht) 2285 { 2286 struct device *dev = host->dev; 2287 struct pci_dev *pdev = to_pci_dev(dev); 2288 const char *drv_name = dev_driver_string(host->dev); 2289 int legacy_mode = 0, rc; 2290 2291 rc = ata_host_start(host); 2292 if (rc) 2293 return rc; 2294 2295 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2296 u8 tmp8, mask = 0; 2297 2298 /* 2299 * ATA spec says we should use legacy mode when one 2300 * port is in legacy mode, but disabled ports on some 2301 * PCI hosts appear as fixed legacy ports, e.g SB600/700 2302 * on which the secondary port is not wired, so 2303 * ignore ports that are marked as 'dummy' during 2304 * this check 2305 */ 2306 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2307 if (!ata_port_is_dummy(host->ports[0])) 2308 mask |= (1 << 0); 2309 if (!ata_port_is_dummy(host->ports[1])) 2310 mask |= (1 << 2); 2311 if ((tmp8 & mask) != mask) 2312 legacy_mode = 1; 2313 } 2314 2315 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2316 return -ENOMEM; 2317 2318 if (!legacy_mode && pdev->irq) { 2319 int i; 2320 2321 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2322 IRQF_SHARED, drv_name, host); 2323 if (rc) 2324 goto out; 2325 2326 for (i = 0; i < 2; i++) { 2327 if (ata_port_is_dummy(host->ports[i])) 2328 continue; 2329 ata_port_desc(host->ports[i], "irq %d", pdev->irq); 2330 } 2331 } else if (legacy_mode) { 2332 if (!ata_port_is_dummy(host->ports[0])) { 2333 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2334 irq_handler, IRQF_SHARED, 2335 drv_name, host); 2336 if (rc) 2337 goto out; 2338 2339 ata_port_desc(host->ports[0], "irq %d", 2340 ATA_PRIMARY_IRQ(pdev)); 2341 } 2342 2343 if (!ata_port_is_dummy(host->ports[1])) { 2344 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2345 irq_handler, IRQF_SHARED, 2346 drv_name, host); 2347 if (rc) 2348 goto out; 2349 2350 ata_port_desc(host->ports[1], "irq %d", 2351 ATA_SECONDARY_IRQ(pdev)); 2352 } 2353 } 2354 2355 rc = ata_host_register(host, sht); 2356 out: 2357 if (rc == 0) 2358 devres_remove_group(dev, NULL); 2359 else 2360 devres_release_group(dev, NULL); 2361 2362 return rc; 2363 } 2364 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2365 2366 static const struct ata_port_info *ata_sff_find_valid_pi( 2367 const struct ata_port_info * const *ppi) 2368 { 2369 int i; 2370 2371 /* look up the first valid port_info */ 2372 for (i = 0; i < 2 && ppi[i]; i++) 2373 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2374 return ppi[i]; 2375 2376 return NULL; 2377 } 2378 2379 static int ata_pci_init_one(struct pci_dev *pdev, 2380 const struct ata_port_info * const *ppi, 2381 struct scsi_host_template *sht, void *host_priv, 2382 int hflags, bool bmdma) 2383 { 2384 struct device *dev = &pdev->dev; 2385 const struct ata_port_info *pi; 2386 struct ata_host *host = NULL; 2387 int rc; 2388 2389 pi = ata_sff_find_valid_pi(ppi); 2390 if (!pi) { 2391 dev_err(&pdev->dev, "no valid port_info specified\n"); 2392 return -EINVAL; 2393 } 2394 2395 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2396 return -ENOMEM; 2397 2398 rc = pcim_enable_device(pdev); 2399 if (rc) 2400 goto out; 2401 2402 #ifdef CONFIG_ATA_BMDMA 2403 if (bmdma) 2404 /* prepare and activate BMDMA host */ 2405 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2406 else 2407 #endif 2408 /* prepare and activate SFF host */ 2409 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2410 if (rc) 2411 goto out; 2412 host->private_data = host_priv; 2413 host->flags |= hflags; 2414 2415 #ifdef CONFIG_ATA_BMDMA 2416 if (bmdma) { 2417 pci_set_master(pdev); 2418 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2419 } else 2420 #endif 2421 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2422 out: 2423 if (rc == 0) 2424 devres_remove_group(&pdev->dev, NULL); 2425 else 2426 devres_release_group(&pdev->dev, NULL); 2427 2428 return rc; 2429 } 2430 2431 /** 2432 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2433 * @pdev: Controller to be initialized 2434 * @ppi: array of port_info, must be enough for two ports 2435 * @sht: scsi_host_template to use when registering the host 2436 * @host_priv: host private_data 2437 * @hflag: host flags 2438 * 2439 * This is a helper function which can be called from a driver's 2440 * xxx_init_one() probe function if the hardware uses traditional 2441 * IDE taskfile registers and is PIO only. 2442 * 2443 * ASSUMPTION: 2444 * Nobody makes a single channel controller that appears solely as 2445 * the secondary legacy port on PCI. 2446 * 2447 * LOCKING: 2448 * Inherited from PCI layer (may sleep). 2449 * 2450 * RETURNS: 2451 * Zero on success, negative on errno-based value on error. 2452 */ 2453 int ata_pci_sff_init_one(struct pci_dev *pdev, 2454 const struct ata_port_info * const *ppi, 2455 struct scsi_host_template *sht, void *host_priv, int hflag) 2456 { 2457 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2458 } 2459 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2460 2461 #endif /* CONFIG_PCI */ 2462 2463 /* 2464 * BMDMA support 2465 */ 2466 2467 #ifdef CONFIG_ATA_BMDMA 2468 2469 const struct ata_port_operations ata_bmdma_port_ops = { 2470 .inherits = &ata_sff_port_ops, 2471 2472 .error_handler = ata_bmdma_error_handler, 2473 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2474 2475 .qc_prep = ata_bmdma_qc_prep, 2476 .qc_issue = ata_bmdma_qc_issue, 2477 2478 .sff_irq_clear = ata_bmdma_irq_clear, 2479 .bmdma_setup = ata_bmdma_setup, 2480 .bmdma_start = ata_bmdma_start, 2481 .bmdma_stop = ata_bmdma_stop, 2482 .bmdma_status = ata_bmdma_status, 2483 2484 .port_start = ata_bmdma_port_start, 2485 }; 2486 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2487 2488 const struct ata_port_operations ata_bmdma32_port_ops = { 2489 .inherits = &ata_bmdma_port_ops, 2490 2491 .sff_data_xfer = ata_sff_data_xfer32, 2492 .port_start = ata_bmdma_port_start32, 2493 }; 2494 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2495 2496 /** 2497 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2498 * @qc: Metadata associated with taskfile to be transferred 2499 * 2500 * Fill PCI IDE PRD (scatter-gather) table with segments 2501 * associated with the current disk command. 2502 * 2503 * LOCKING: 2504 * spin_lock_irqsave(host lock) 2505 * 2506 */ 2507 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2508 { 2509 struct ata_port *ap = qc->ap; 2510 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2511 struct scatterlist *sg; 2512 unsigned int si, pi; 2513 2514 pi = 0; 2515 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2516 u32 addr, offset; 2517 u32 sg_len, len; 2518 2519 /* determine if physical DMA addr spans 64K boundary. 2520 * Note h/w doesn't support 64-bit, so we unconditionally 2521 * truncate dma_addr_t to u32. 2522 */ 2523 addr = (u32) sg_dma_address(sg); 2524 sg_len = sg_dma_len(sg); 2525 2526 while (sg_len) { 2527 offset = addr & 0xffff; 2528 len = sg_len; 2529 if ((offset + sg_len) > 0x10000) 2530 len = 0x10000 - offset; 2531 2532 prd[pi].addr = cpu_to_le32(addr); 2533 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2534 2535 pi++; 2536 sg_len -= len; 2537 addr += len; 2538 } 2539 } 2540 2541 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2542 } 2543 2544 /** 2545 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2546 * @qc: Metadata associated with taskfile to be transferred 2547 * 2548 * Fill PCI IDE PRD (scatter-gather) table with segments 2549 * associated with the current disk command. Perform the fill 2550 * so that we avoid writing any length 64K records for 2551 * controllers that don't follow the spec. 2552 * 2553 * LOCKING: 2554 * spin_lock_irqsave(host lock) 2555 * 2556 */ 2557 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2558 { 2559 struct ata_port *ap = qc->ap; 2560 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2561 struct scatterlist *sg; 2562 unsigned int si, pi; 2563 2564 pi = 0; 2565 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2566 u32 addr, offset; 2567 u32 sg_len, len, blen; 2568 2569 /* determine if physical DMA addr spans 64K boundary. 2570 * Note h/w doesn't support 64-bit, so we unconditionally 2571 * truncate dma_addr_t to u32. 2572 */ 2573 addr = (u32) sg_dma_address(sg); 2574 sg_len = sg_dma_len(sg); 2575 2576 while (sg_len) { 2577 offset = addr & 0xffff; 2578 len = sg_len; 2579 if ((offset + sg_len) > 0x10000) 2580 len = 0x10000 - offset; 2581 2582 blen = len & 0xffff; 2583 prd[pi].addr = cpu_to_le32(addr); 2584 if (blen == 0) { 2585 /* Some PATA chipsets like the CS5530 can't 2586 cope with 0x0000 meaning 64K as the spec 2587 says */ 2588 prd[pi].flags_len = cpu_to_le32(0x8000); 2589 blen = 0x8000; 2590 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2591 } 2592 prd[pi].flags_len = cpu_to_le32(blen); 2593 2594 pi++; 2595 sg_len -= len; 2596 addr += len; 2597 } 2598 } 2599 2600 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2601 } 2602 2603 /** 2604 * ata_bmdma_qc_prep - Prepare taskfile for submission 2605 * @qc: Metadata associated with taskfile to be prepared 2606 * 2607 * Prepare ATA taskfile for submission. 2608 * 2609 * LOCKING: 2610 * spin_lock_irqsave(host lock) 2611 */ 2612 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2613 { 2614 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2615 return AC_ERR_OK; 2616 2617 ata_bmdma_fill_sg(qc); 2618 2619 return AC_ERR_OK; 2620 } 2621 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2622 2623 /** 2624 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2625 * @qc: Metadata associated with taskfile to be prepared 2626 * 2627 * Prepare ATA taskfile for submission. 2628 * 2629 * LOCKING: 2630 * spin_lock_irqsave(host lock) 2631 */ 2632 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2633 { 2634 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2635 return AC_ERR_OK; 2636 2637 ata_bmdma_fill_sg_dumb(qc); 2638 2639 return AC_ERR_OK; 2640 } 2641 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2642 2643 /** 2644 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2645 * @qc: command to issue to device 2646 * 2647 * This function issues a PIO, NODATA or DMA command to a 2648 * SFF/BMDMA controller. PIO and NODATA are handled by 2649 * ata_sff_qc_issue(). 2650 * 2651 * LOCKING: 2652 * spin_lock_irqsave(host lock) 2653 * 2654 * RETURNS: 2655 * Zero on success, AC_ERR_* mask on failure 2656 */ 2657 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2658 { 2659 struct ata_port *ap = qc->ap; 2660 struct ata_link *link = qc->dev->link; 2661 2662 /* defer PIO handling to sff_qc_issue */ 2663 if (!ata_is_dma(qc->tf.protocol)) 2664 return ata_sff_qc_issue(qc); 2665 2666 /* select the device */ 2667 ata_dev_select(ap, qc->dev->devno, 1, 0); 2668 2669 /* start the command */ 2670 switch (qc->tf.protocol) { 2671 case ATA_PROT_DMA: 2672 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2673 2674 trace_ata_tf_load(ap, &qc->tf); 2675 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2676 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); 2677 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2678 trace_ata_bmdma_start(ap, &qc->tf, qc->tag); 2679 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2680 ap->hsm_task_state = HSM_ST_LAST; 2681 break; 2682 2683 case ATAPI_PROT_DMA: 2684 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2685 2686 trace_ata_tf_load(ap, &qc->tf); 2687 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2688 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); 2689 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2690 ap->hsm_task_state = HSM_ST_FIRST; 2691 2692 /* send cdb by polling if no cdb interrupt */ 2693 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2694 ata_sff_queue_pio_task(link, 0); 2695 break; 2696 2697 default: 2698 WARN_ON(1); 2699 return AC_ERR_SYSTEM; 2700 } 2701 2702 return 0; 2703 } 2704 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2705 2706 /** 2707 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2708 * @ap: Port on which interrupt arrived (possibly...) 2709 * @qc: Taskfile currently active in engine 2710 * 2711 * Handle port interrupt for given queued command. 2712 * 2713 * LOCKING: 2714 * spin_lock_irqsave(host lock) 2715 * 2716 * RETURNS: 2717 * One if interrupt was handled, zero if not (shared irq). 2718 */ 2719 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2720 { 2721 struct ata_eh_info *ehi = &ap->link.eh_info; 2722 u8 host_stat = 0; 2723 bool bmdma_stopped = false; 2724 unsigned int handled; 2725 2726 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2727 /* check status of DMA engine */ 2728 host_stat = ap->ops->bmdma_status(ap); 2729 trace_ata_bmdma_status(ap, host_stat); 2730 2731 /* if it's not our irq... */ 2732 if (!(host_stat & ATA_DMA_INTR)) 2733 return ata_sff_idle_irq(ap); 2734 2735 /* before we do anything else, clear DMA-Start bit */ 2736 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2737 ap->ops->bmdma_stop(qc); 2738 bmdma_stopped = true; 2739 2740 if (unlikely(host_stat & ATA_DMA_ERR)) { 2741 /* error when transferring data to/from memory */ 2742 qc->err_mask |= AC_ERR_HOST_BUS; 2743 ap->hsm_task_state = HSM_ST_ERR; 2744 } 2745 } 2746 2747 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2748 2749 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2750 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2751 2752 return handled; 2753 } 2754 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2755 2756 /** 2757 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2758 * @irq: irq line (unused) 2759 * @dev_instance: pointer to our ata_host information structure 2760 * 2761 * Default interrupt handler for PCI IDE devices. Calls 2762 * ata_bmdma_port_intr() for each port that is not disabled. 2763 * 2764 * LOCKING: 2765 * Obtains host lock during operation. 2766 * 2767 * RETURNS: 2768 * IRQ_NONE or IRQ_HANDLED. 2769 */ 2770 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2771 { 2772 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2773 } 2774 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2775 2776 /** 2777 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2778 * @ap: port to handle error for 2779 * 2780 * Stock error handler for BMDMA controller. It can handle both 2781 * PATA and SATA controllers. Most BMDMA controllers should be 2782 * able to use this EH as-is or with some added handling before 2783 * and after. 2784 * 2785 * LOCKING: 2786 * Kernel thread context (may sleep) 2787 */ 2788 void ata_bmdma_error_handler(struct ata_port *ap) 2789 { 2790 struct ata_queued_cmd *qc; 2791 unsigned long flags; 2792 bool thaw = false; 2793 2794 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2795 if (qc && !(qc->flags & ATA_QCFLAG_EH)) 2796 qc = NULL; 2797 2798 /* reset PIO HSM and stop DMA engine */ 2799 spin_lock_irqsave(ap->lock, flags); 2800 2801 if (qc && ata_is_dma(qc->tf.protocol)) { 2802 u8 host_stat; 2803 2804 host_stat = ap->ops->bmdma_status(ap); 2805 trace_ata_bmdma_status(ap, host_stat); 2806 2807 /* BMDMA controllers indicate host bus error by 2808 * setting DMA_ERR bit and timing out. As it wasn't 2809 * really a timeout event, adjust error mask and 2810 * cancel frozen state. 2811 */ 2812 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2813 qc->err_mask = AC_ERR_HOST_BUS; 2814 thaw = true; 2815 } 2816 2817 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2818 ap->ops->bmdma_stop(qc); 2819 2820 /* if we're gonna thaw, make sure IRQ is clear */ 2821 if (thaw) { 2822 ap->ops->sff_check_status(ap); 2823 if (ap->ops->sff_irq_clear) 2824 ap->ops->sff_irq_clear(ap); 2825 } 2826 } 2827 2828 spin_unlock_irqrestore(ap->lock, flags); 2829 2830 if (thaw) 2831 ata_eh_thaw_port(ap); 2832 2833 ata_sff_error_handler(ap); 2834 } 2835 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2836 2837 /** 2838 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2839 * @qc: internal command to clean up 2840 * 2841 * LOCKING: 2842 * Kernel thread context (may sleep) 2843 */ 2844 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2845 { 2846 struct ata_port *ap = qc->ap; 2847 unsigned long flags; 2848 2849 if (ata_is_dma(qc->tf.protocol)) { 2850 spin_lock_irqsave(ap->lock, flags); 2851 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); 2852 ap->ops->bmdma_stop(qc); 2853 spin_unlock_irqrestore(ap->lock, flags); 2854 } 2855 } 2856 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2857 2858 /** 2859 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2860 * @ap: Port associated with this ATA transaction. 2861 * 2862 * Clear interrupt and error flags in DMA status register. 2863 * 2864 * May be used as the irq_clear() entry in ata_port_operations. 2865 * 2866 * LOCKING: 2867 * spin_lock_irqsave(host lock) 2868 */ 2869 void ata_bmdma_irq_clear(struct ata_port *ap) 2870 { 2871 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2872 2873 if (!mmio) 2874 return; 2875 2876 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2877 } 2878 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2879 2880 /** 2881 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2882 * @qc: Info associated with this ATA transaction. 2883 * 2884 * LOCKING: 2885 * spin_lock_irqsave(host lock) 2886 */ 2887 void ata_bmdma_setup(struct ata_queued_cmd *qc) 2888 { 2889 struct ata_port *ap = qc->ap; 2890 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 2891 u8 dmactl; 2892 2893 /* load PRD table addr. */ 2894 mb(); /* make sure PRD table writes are visible to controller */ 2895 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 2896 2897 /* specify data direction, triple-check start bit is clear */ 2898 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2899 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 2900 if (!rw) 2901 dmactl |= ATA_DMA_WR; 2902 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2903 2904 /* issue r/w command */ 2905 ap->ops->sff_exec_command(ap, &qc->tf); 2906 } 2907 EXPORT_SYMBOL_GPL(ata_bmdma_setup); 2908 2909 /** 2910 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 2911 * @qc: Info associated with this ATA transaction. 2912 * 2913 * LOCKING: 2914 * spin_lock_irqsave(host lock) 2915 */ 2916 void ata_bmdma_start(struct ata_queued_cmd *qc) 2917 { 2918 struct ata_port *ap = qc->ap; 2919 u8 dmactl; 2920 2921 /* start host DMA transaction */ 2922 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2923 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 2924 2925 /* Strictly, one may wish to issue an ioread8() here, to 2926 * flush the mmio write. However, control also passes 2927 * to the hardware at this point, and it will interrupt 2928 * us when we are to resume control. So, in effect, 2929 * we don't care when the mmio write flushes. 2930 * Further, a read of the DMA status register _immediately_ 2931 * following the write may not be what certain flaky hardware 2932 * is expected, so I think it is best to not add a readb() 2933 * without first all the MMIO ATA cards/mobos. 2934 * Or maybe I'm just being paranoid. 2935 * 2936 * FIXME: The posting of this write means I/O starts are 2937 * unnecessarily delayed for MMIO 2938 */ 2939 } 2940 EXPORT_SYMBOL_GPL(ata_bmdma_start); 2941 2942 /** 2943 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 2944 * @qc: Command we are ending DMA for 2945 * 2946 * Clears the ATA_DMA_START flag in the dma control register 2947 * 2948 * May be used as the bmdma_stop() entry in ata_port_operations. 2949 * 2950 * LOCKING: 2951 * spin_lock_irqsave(host lock) 2952 */ 2953 void ata_bmdma_stop(struct ata_queued_cmd *qc) 2954 { 2955 struct ata_port *ap = qc->ap; 2956 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2957 2958 /* clear start/stop bit */ 2959 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 2960 mmio + ATA_DMA_CMD); 2961 2962 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 2963 ata_sff_dma_pause(ap); 2964 } 2965 EXPORT_SYMBOL_GPL(ata_bmdma_stop); 2966 2967 /** 2968 * ata_bmdma_status - Read PCI IDE BMDMA status 2969 * @ap: Port associated with this ATA transaction. 2970 * 2971 * Read and return BMDMA status register. 2972 * 2973 * May be used as the bmdma_status() entry in ata_port_operations. 2974 * 2975 * LOCKING: 2976 * spin_lock_irqsave(host lock) 2977 */ 2978 u8 ata_bmdma_status(struct ata_port *ap) 2979 { 2980 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 2981 } 2982 EXPORT_SYMBOL_GPL(ata_bmdma_status); 2983 2984 2985 /** 2986 * ata_bmdma_port_start - Set port up for bmdma. 2987 * @ap: Port to initialize 2988 * 2989 * Called just after data structures for each port are 2990 * initialized. Allocates space for PRD table. 2991 * 2992 * May be used as the port_start() entry in ata_port_operations. 2993 * 2994 * LOCKING: 2995 * Inherited from caller. 2996 */ 2997 int ata_bmdma_port_start(struct ata_port *ap) 2998 { 2999 if (ap->mwdma_mask || ap->udma_mask) { 3000 ap->bmdma_prd = 3001 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3002 &ap->bmdma_prd_dma, GFP_KERNEL); 3003 if (!ap->bmdma_prd) 3004 return -ENOMEM; 3005 } 3006 3007 return 0; 3008 } 3009 EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3010 3011 /** 3012 * ata_bmdma_port_start32 - Set port up for dma. 3013 * @ap: Port to initialize 3014 * 3015 * Called just after data structures for each port are 3016 * initialized. Enables 32bit PIO and allocates space for PRD 3017 * table. 3018 * 3019 * May be used as the port_start() entry in ata_port_operations for 3020 * devices that are capable of 32bit PIO. 3021 * 3022 * LOCKING: 3023 * Inherited from caller. 3024 */ 3025 int ata_bmdma_port_start32(struct ata_port *ap) 3026 { 3027 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3028 return ata_bmdma_port_start(ap); 3029 } 3030 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3031 3032 #ifdef CONFIG_PCI 3033 3034 /** 3035 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3036 * @pdev: PCI device 3037 * 3038 * Some PCI ATA devices report simplex mode but in fact can be told to 3039 * enter non simplex mode. This implements the necessary logic to 3040 * perform the task on such devices. Calling it on other devices will 3041 * have -undefined- behaviour. 3042 */ 3043 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3044 { 3045 unsigned long bmdma = pci_resource_start(pdev, 4); 3046 u8 simplex; 3047 3048 if (bmdma == 0) 3049 return -ENOENT; 3050 3051 simplex = inb(bmdma + 0x02); 3052 outb(simplex & 0x60, bmdma + 0x02); 3053 simplex = inb(bmdma + 0x02); 3054 if (simplex & 0x80) 3055 return -EOPNOTSUPP; 3056 return 0; 3057 } 3058 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3059 3060 static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3061 { 3062 int i; 3063 3064 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3065 3066 for (i = 0; i < 2; i++) { 3067 host->ports[i]->mwdma_mask = 0; 3068 host->ports[i]->udma_mask = 0; 3069 } 3070 } 3071 3072 /** 3073 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3074 * @host: target ATA host 3075 * 3076 * Acquire PCI BMDMA resources and initialize @host accordingly. 3077 * 3078 * LOCKING: 3079 * Inherited from calling layer (may sleep). 3080 */ 3081 void ata_pci_bmdma_init(struct ata_host *host) 3082 { 3083 struct device *gdev = host->dev; 3084 struct pci_dev *pdev = to_pci_dev(gdev); 3085 int i, rc; 3086 3087 /* No BAR4 allocation: No DMA */ 3088 if (pci_resource_start(pdev, 4) == 0) { 3089 ata_bmdma_nodma(host, "BAR4 is zero"); 3090 return; 3091 } 3092 3093 /* 3094 * Some controllers require BMDMA region to be initialized 3095 * even if DMA is not in use to clear IRQ status via 3096 * ->sff_irq_clear method. Try to initialize bmdma_addr 3097 * regardless of dma masks. 3098 */ 3099 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK); 3100 if (rc) 3101 ata_bmdma_nodma(host, "failed to set dma mask"); 3102 3103 /* request and iomap DMA region */ 3104 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3105 if (rc) { 3106 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3107 return; 3108 } 3109 host->iomap = pcim_iomap_table(pdev); 3110 3111 for (i = 0; i < 2; i++) { 3112 struct ata_port *ap = host->ports[i]; 3113 void __iomem *bmdma = host->iomap[4] + 8 * i; 3114 3115 if (ata_port_is_dummy(ap)) 3116 continue; 3117 3118 ap->ioaddr.bmdma_addr = bmdma; 3119 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3120 (ioread8(bmdma + 2) & 0x80)) 3121 host->flags |= ATA_HOST_SIMPLEX; 3122 3123 ata_port_desc(ap, "bmdma 0x%llx", 3124 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3125 } 3126 } 3127 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3128 3129 /** 3130 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3131 * @pdev: target PCI device 3132 * @ppi: array of port_info, must be enough for two ports 3133 * @r_host: out argument for the initialized ATA host 3134 * 3135 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3136 * resources and initialize it accordingly in one go. 3137 * 3138 * LOCKING: 3139 * Inherited from calling layer (may sleep). 3140 * 3141 * RETURNS: 3142 * 0 on success, -errno otherwise. 3143 */ 3144 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3145 const struct ata_port_info * const * ppi, 3146 struct ata_host **r_host) 3147 { 3148 int rc; 3149 3150 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3151 if (rc) 3152 return rc; 3153 3154 ata_pci_bmdma_init(*r_host); 3155 return 0; 3156 } 3157 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3158 3159 /** 3160 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3161 * @pdev: Controller to be initialized 3162 * @ppi: array of port_info, must be enough for two ports 3163 * @sht: scsi_host_template to use when registering the host 3164 * @host_priv: host private_data 3165 * @hflags: host flags 3166 * 3167 * This function is similar to ata_pci_sff_init_one() but also 3168 * takes care of BMDMA initialization. 3169 * 3170 * LOCKING: 3171 * Inherited from PCI layer (may sleep). 3172 * 3173 * RETURNS: 3174 * Zero on success, negative on errno-based value on error. 3175 */ 3176 int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3177 const struct ata_port_info * const * ppi, 3178 struct scsi_host_template *sht, void *host_priv, 3179 int hflags) 3180 { 3181 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3182 } 3183 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3184 3185 #endif /* CONFIG_PCI */ 3186 #endif /* CONFIG_ATA_BMDMA */ 3187 3188 /** 3189 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3190 * @ap: Port to initialize 3191 * 3192 * Called on port allocation to initialize SFF/BMDMA specific 3193 * fields. 3194 * 3195 * LOCKING: 3196 * None. 3197 */ 3198 void ata_sff_port_init(struct ata_port *ap) 3199 { 3200 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3201 ap->ctl = ATA_DEVCTL_OBS; 3202 ap->last_ctl = 0xFF; 3203 } 3204 3205 int __init ata_sff_init(void) 3206 { 3207 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3208 if (!ata_sff_wq) 3209 return -ENOMEM; 3210 3211 return 0; 3212 } 3213 3214 void ata_sff_exit(void) 3215 { 3216 destroy_workqueue(ata_sff_wq); 3217 } 3218