xref: /openbmc/linux/drivers/ata/libata-sff.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *  libata-sff.c - helper library for PCI IDE BMDMA
4   *
5   *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
6   *  Copyright 2003-2006 Jeff Garzik
7   *
8   *  libata documentation is available via 'make {ps|pdf}docs',
9   *  as Documentation/driver-api/libata.rst
10   *
11   *  Hardware documentation available from http://www.t13.org/ and
12   *  http://www.sata-io.org/
13   */
14  
15  #include <linux/kernel.h>
16  #include <linux/gfp.h>
17  #include <linux/pci.h>
18  #include <linux/module.h>
19  #include <linux/libata.h>
20  #include <linux/highmem.h>
21  #include <trace/events/libata.h>
22  #include "libata.h"
23  
24  static struct workqueue_struct *ata_sff_wq;
25  
26  const struct ata_port_operations ata_sff_port_ops = {
27  	.inherits		= &ata_base_port_ops,
28  
29  	.qc_prep		= ata_noop_qc_prep,
30  	.qc_issue		= ata_sff_qc_issue,
31  	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
32  
33  	.freeze			= ata_sff_freeze,
34  	.thaw			= ata_sff_thaw,
35  	.prereset		= ata_sff_prereset,
36  	.softreset		= ata_sff_softreset,
37  	.hardreset		= sata_sff_hardreset,
38  	.postreset		= ata_sff_postreset,
39  	.error_handler		= ata_sff_error_handler,
40  
41  	.sff_dev_select		= ata_sff_dev_select,
42  	.sff_check_status	= ata_sff_check_status,
43  	.sff_tf_load		= ata_sff_tf_load,
44  	.sff_tf_read		= ata_sff_tf_read,
45  	.sff_exec_command	= ata_sff_exec_command,
46  	.sff_data_xfer		= ata_sff_data_xfer,
47  	.sff_drain_fifo		= ata_sff_drain_fifo,
48  
49  	.lost_interrupt		= ata_sff_lost_interrupt,
50  };
51  EXPORT_SYMBOL_GPL(ata_sff_port_ops);
52  
53  /**
54   *	ata_sff_check_status - Read device status reg & clear interrupt
55   *	@ap: port where the device is
56   *
57   *	Reads ATA taskfile status register for currently-selected device
58   *	and return its value. This also clears pending interrupts
59   *      from this device
60   *
61   *	LOCKING:
62   *	Inherited from caller.
63   */
64  u8 ata_sff_check_status(struct ata_port *ap)
65  {
66  	return ioread8(ap->ioaddr.status_addr);
67  }
68  EXPORT_SYMBOL_GPL(ata_sff_check_status);
69  
70  /**
71   *	ata_sff_altstatus - Read device alternate status reg
72   *	@ap: port where the device is
73   *	@status: pointer to a status value
74   *
75   *	Reads ATA alternate status register for currently-selected device
76   *	and return its value.
77   *
78   *	RETURN:
79   *	true if the register exists, false if not.
80   *
81   *	LOCKING:
82   *	Inherited from caller.
83   */
84  static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
85  {
86  	u8 tmp;
87  
88  	if (ap->ops->sff_check_altstatus) {
89  		tmp = ap->ops->sff_check_altstatus(ap);
90  		goto read;
91  	}
92  	if (ap->ioaddr.altstatus_addr) {
93  		tmp = ioread8(ap->ioaddr.altstatus_addr);
94  		goto read;
95  	}
96  	return false;
97  
98  read:
99  	if (status)
100  		*status = tmp;
101  	return true;
102  }
103  
104  /**
105   *	ata_sff_irq_status - Check if the device is busy
106   *	@ap: port where the device is
107   *
108   *	Determine if the port is currently busy. Uses altstatus
109   *	if available in order to avoid clearing shared IRQ status
110   *	when finding an IRQ source. Non ctl capable devices don't
111   *	share interrupt lines fortunately for us.
112   *
113   *	LOCKING:
114   *	Inherited from caller.
115   */
116  static u8 ata_sff_irq_status(struct ata_port *ap)
117  {
118  	u8 status;
119  
120  	/* Not us: We are busy */
121  	if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
122  		return status;
123  	/* Clear INTRQ latch */
124  	status = ap->ops->sff_check_status(ap);
125  	return status;
126  }
127  
128  /**
129   *	ata_sff_sync - Flush writes
130   *	@ap: Port to wait for.
131   *
132   *	CAUTION:
133   *	If we have an mmio device with no ctl and no altstatus
134   *	method this will fail. No such devices are known to exist.
135   *
136   *	LOCKING:
137   *	Inherited from caller.
138   */
139  
140  static void ata_sff_sync(struct ata_port *ap)
141  {
142  	ata_sff_altstatus(ap, NULL);
143  }
144  
145  /**
146   *	ata_sff_pause		-	Flush writes and wait 400nS
147   *	@ap: Port to pause for.
148   *
149   *	CAUTION:
150   *	If we have an mmio device with no ctl and no altstatus
151   *	method this will fail. No such devices are known to exist.
152   *
153   *	LOCKING:
154   *	Inherited from caller.
155   */
156  
157  void ata_sff_pause(struct ata_port *ap)
158  {
159  	ata_sff_sync(ap);
160  	ndelay(400);
161  }
162  EXPORT_SYMBOL_GPL(ata_sff_pause);
163  
164  /**
165   *	ata_sff_dma_pause	-	Pause before commencing DMA
166   *	@ap: Port to pause for.
167   *
168   *	Perform I/O fencing and ensure sufficient cycle delays occur
169   *	for the HDMA1:0 transition
170   */
171  
172  void ata_sff_dma_pause(struct ata_port *ap)
173  {
174  	/*
175  	 * An altstatus read will cause the needed delay without
176  	 * messing up the IRQ status
177  	 */
178  	if (ata_sff_altstatus(ap, NULL))
179  		return;
180  	/* There are no DMA controllers without ctl. BUG here to ensure
181  	   we never violate the HDMA1:0 transition timing and risk
182  	   corruption. */
183  	BUG();
184  }
185  EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
186  
187  static int ata_sff_check_ready(struct ata_link *link)
188  {
189  	u8 status = link->ap->ops->sff_check_status(link->ap);
190  
191  	return ata_check_ready(status);
192  }
193  
194  /**
195   *	ata_sff_wait_ready - sleep until BSY clears, or timeout
196   *	@link: SFF link to wait ready status for
197   *	@deadline: deadline jiffies for the operation
198   *
199   *	Sleep until ATA Status register bit BSY clears, or timeout
200   *	occurs.
201   *
202   *	LOCKING:
203   *	Kernel thread context (may sleep).
204   *
205   *	RETURNS:
206   *	0 on success, -errno otherwise.
207   */
208  int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
209  {
210  	return ata_wait_ready(link, deadline, ata_sff_check_ready);
211  }
212  EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
213  
214  /**
215   *	ata_sff_set_devctl - Write device control reg
216   *	@ap: port where the device is
217   *	@ctl: value to write
218   *
219   *	Writes ATA device control register.
220   *
221   *	RETURN:
222   *	true if the register exists, false if not.
223   *
224   *	LOCKING:
225   *	Inherited from caller.
226   */
227  static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
228  {
229  	if (ap->ops->sff_set_devctl) {
230  		ap->ops->sff_set_devctl(ap, ctl);
231  		return true;
232  	}
233  	if (ap->ioaddr.ctl_addr) {
234  		iowrite8(ctl, ap->ioaddr.ctl_addr);
235  		return true;
236  	}
237  
238  	return false;
239  }
240  
241  /**
242   *	ata_sff_dev_select - Select device 0/1 on ATA bus
243   *	@ap: ATA channel to manipulate
244   *	@device: ATA device (numbered from zero) to select
245   *
246   *	Use the method defined in the ATA specification to
247   *	make either device 0, or device 1, active on the
248   *	ATA channel.  Works with both PIO and MMIO.
249   *
250   *	May be used as the dev_select() entry in ata_port_operations.
251   *
252   *	LOCKING:
253   *	caller.
254   */
255  void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
256  {
257  	u8 tmp;
258  
259  	if (device == 0)
260  		tmp = ATA_DEVICE_OBS;
261  	else
262  		tmp = ATA_DEVICE_OBS | ATA_DEV1;
263  
264  	iowrite8(tmp, ap->ioaddr.device_addr);
265  	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
266  }
267  EXPORT_SYMBOL_GPL(ata_sff_dev_select);
268  
269  /**
270   *	ata_dev_select - Select device 0/1 on ATA bus
271   *	@ap: ATA channel to manipulate
272   *	@device: ATA device (numbered from zero) to select
273   *	@wait: non-zero to wait for Status register BSY bit to clear
274   *	@can_sleep: non-zero if context allows sleeping
275   *
276   *	Use the method defined in the ATA specification to
277   *	make either device 0, or device 1, active on the
278   *	ATA channel.
279   *
280   *	This is a high-level version of ata_sff_dev_select(), which
281   *	additionally provides the services of inserting the proper
282   *	pauses and status polling, where needed.
283   *
284   *	LOCKING:
285   *	caller.
286   */
287  static void ata_dev_select(struct ata_port *ap, unsigned int device,
288  			   unsigned int wait, unsigned int can_sleep)
289  {
290  	if (wait)
291  		ata_wait_idle(ap);
292  
293  	ap->ops->sff_dev_select(ap, device);
294  
295  	if (wait) {
296  		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
297  			ata_msleep(ap, 150);
298  		ata_wait_idle(ap);
299  	}
300  }
301  
302  /**
303   *	ata_sff_irq_on - Enable interrupts on a port.
304   *	@ap: Port on which interrupts are enabled.
305   *
306   *	Enable interrupts on a legacy IDE device using MMIO or PIO,
307   *	wait for idle, clear any pending interrupts.
308   *
309   *	Note: may NOT be used as the sff_irq_on() entry in
310   *	ata_port_operations.
311   *
312   *	LOCKING:
313   *	Inherited from caller.
314   */
315  void ata_sff_irq_on(struct ata_port *ap)
316  {
317  	if (ap->ops->sff_irq_on) {
318  		ap->ops->sff_irq_on(ap);
319  		return;
320  	}
321  
322  	ap->ctl &= ~ATA_NIEN;
323  	ap->last_ctl = ap->ctl;
324  
325  	ata_sff_set_devctl(ap, ap->ctl);
326  	ata_wait_idle(ap);
327  
328  	if (ap->ops->sff_irq_clear)
329  		ap->ops->sff_irq_clear(ap);
330  }
331  EXPORT_SYMBOL_GPL(ata_sff_irq_on);
332  
333  /**
334   *	ata_sff_tf_load - send taskfile registers to host controller
335   *	@ap: Port to which output is sent
336   *	@tf: ATA taskfile register set
337   *
338   *	Outputs ATA taskfile to standard ATA host controller.
339   *
340   *	LOCKING:
341   *	Inherited from caller.
342   */
343  void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
344  {
345  	struct ata_ioports *ioaddr = &ap->ioaddr;
346  	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
347  
348  	if (tf->ctl != ap->last_ctl) {
349  		if (ioaddr->ctl_addr)
350  			iowrite8(tf->ctl, ioaddr->ctl_addr);
351  		ap->last_ctl = tf->ctl;
352  		ata_wait_idle(ap);
353  	}
354  
355  	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
356  		WARN_ON_ONCE(!ioaddr->ctl_addr);
357  		iowrite8(tf->hob_feature, ioaddr->feature_addr);
358  		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
359  		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
360  		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
361  		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
362  	}
363  
364  	if (is_addr) {
365  		iowrite8(tf->feature, ioaddr->feature_addr);
366  		iowrite8(tf->nsect, ioaddr->nsect_addr);
367  		iowrite8(tf->lbal, ioaddr->lbal_addr);
368  		iowrite8(tf->lbam, ioaddr->lbam_addr);
369  		iowrite8(tf->lbah, ioaddr->lbah_addr);
370  	}
371  
372  	if (tf->flags & ATA_TFLAG_DEVICE)
373  		iowrite8(tf->device, ioaddr->device_addr);
374  
375  	ata_wait_idle(ap);
376  }
377  EXPORT_SYMBOL_GPL(ata_sff_tf_load);
378  
379  /**
380   *	ata_sff_tf_read - input device's ATA taskfile shadow registers
381   *	@ap: Port from which input is read
382   *	@tf: ATA taskfile register set for storing input
383   *
384   *	Reads ATA taskfile registers for currently-selected device
385   *	into @tf. Assumes the device has a fully SFF compliant task file
386   *	layout and behaviour. If you device does not (eg has a different
387   *	status method) then you will need to provide a replacement tf_read
388   *
389   *	LOCKING:
390   *	Inherited from caller.
391   */
392  void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
393  {
394  	struct ata_ioports *ioaddr = &ap->ioaddr;
395  
396  	tf->status = ata_sff_check_status(ap);
397  	tf->error = ioread8(ioaddr->error_addr);
398  	tf->nsect = ioread8(ioaddr->nsect_addr);
399  	tf->lbal = ioread8(ioaddr->lbal_addr);
400  	tf->lbam = ioread8(ioaddr->lbam_addr);
401  	tf->lbah = ioread8(ioaddr->lbah_addr);
402  	tf->device = ioread8(ioaddr->device_addr);
403  
404  	if (tf->flags & ATA_TFLAG_LBA48) {
405  		if (likely(ioaddr->ctl_addr)) {
406  			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
407  			tf->hob_feature = ioread8(ioaddr->error_addr);
408  			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
409  			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
410  			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
411  			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
412  			iowrite8(tf->ctl, ioaddr->ctl_addr);
413  			ap->last_ctl = tf->ctl;
414  		} else
415  			WARN_ON_ONCE(1);
416  	}
417  }
418  EXPORT_SYMBOL_GPL(ata_sff_tf_read);
419  
420  /**
421   *	ata_sff_exec_command - issue ATA command to host controller
422   *	@ap: port to which command is being issued
423   *	@tf: ATA taskfile register set
424   *
425   *	Issues ATA command, with proper synchronization with interrupt
426   *	handler / other threads.
427   *
428   *	LOCKING:
429   *	spin_lock_irqsave(host lock)
430   */
431  void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
432  {
433  	iowrite8(tf->command, ap->ioaddr.command_addr);
434  	ata_sff_pause(ap);
435  }
436  EXPORT_SYMBOL_GPL(ata_sff_exec_command);
437  
438  /**
439   *	ata_tf_to_host - issue ATA taskfile to host controller
440   *	@ap: port to which command is being issued
441   *	@tf: ATA taskfile register set
442   *	@tag: tag of the associated command
443   *
444   *	Issues ATA taskfile register set to ATA host controller,
445   *	with proper synchronization with interrupt handler and
446   *	other threads.
447   *
448   *	LOCKING:
449   *	spin_lock_irqsave(host lock)
450   */
451  static inline void ata_tf_to_host(struct ata_port *ap,
452  				  const struct ata_taskfile *tf,
453  				  unsigned int tag)
454  {
455  	trace_ata_tf_load(ap, tf);
456  	ap->ops->sff_tf_load(ap, tf);
457  	trace_ata_exec_command(ap, tf, tag);
458  	ap->ops->sff_exec_command(ap, tf);
459  }
460  
461  /**
462   *	ata_sff_data_xfer - Transfer data by PIO
463   *	@qc: queued command
464   *	@buf: data buffer
465   *	@buflen: buffer length
466   *	@rw: read/write
467   *
468   *	Transfer data from/to the device data register by PIO.
469   *
470   *	LOCKING:
471   *	Inherited from caller.
472   *
473   *	RETURNS:
474   *	Bytes consumed.
475   */
476  unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
477  			       unsigned int buflen, int rw)
478  {
479  	struct ata_port *ap = qc->dev->link->ap;
480  	void __iomem *data_addr = ap->ioaddr.data_addr;
481  	unsigned int words = buflen >> 1;
482  
483  	/* Transfer multiple of 2 bytes */
484  	if (rw == READ)
485  		ioread16_rep(data_addr, buf, words);
486  	else
487  		iowrite16_rep(data_addr, buf, words);
488  
489  	/* Transfer trailing byte, if any. */
490  	if (unlikely(buflen & 0x01)) {
491  		unsigned char pad[2] = { };
492  
493  		/* Point buf to the tail of buffer */
494  		buf += buflen - 1;
495  
496  		/*
497  		 * Use io*16_rep() accessors here as well to avoid pointlessly
498  		 * swapping bytes to and from on the big endian machines...
499  		 */
500  		if (rw == READ) {
501  			ioread16_rep(data_addr, pad, 1);
502  			*buf = pad[0];
503  		} else {
504  			pad[0] = *buf;
505  			iowrite16_rep(data_addr, pad, 1);
506  		}
507  		words++;
508  	}
509  
510  	return words << 1;
511  }
512  EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
513  
514  /**
515   *	ata_sff_data_xfer32 - Transfer data by PIO
516   *	@qc: queued command
517   *	@buf: data buffer
518   *	@buflen: buffer length
519   *	@rw: read/write
520   *
521   *	Transfer data from/to the device data register by PIO using 32bit
522   *	I/O operations.
523   *
524   *	LOCKING:
525   *	Inherited from caller.
526   *
527   *	RETURNS:
528   *	Bytes consumed.
529   */
530  
531  unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
532  			       unsigned int buflen, int rw)
533  {
534  	struct ata_device *dev = qc->dev;
535  	struct ata_port *ap = dev->link->ap;
536  	void __iomem *data_addr = ap->ioaddr.data_addr;
537  	unsigned int words = buflen >> 2;
538  	int slop = buflen & 3;
539  
540  	if (!(ap->pflags & ATA_PFLAG_PIO32))
541  		return ata_sff_data_xfer(qc, buf, buflen, rw);
542  
543  	/* Transfer multiple of 4 bytes */
544  	if (rw == READ)
545  		ioread32_rep(data_addr, buf, words);
546  	else
547  		iowrite32_rep(data_addr, buf, words);
548  
549  	/* Transfer trailing bytes, if any */
550  	if (unlikely(slop)) {
551  		unsigned char pad[4] = { };
552  
553  		/* Point buf to the tail of buffer */
554  		buf += buflen - slop;
555  
556  		/*
557  		 * Use io*_rep() accessors here as well to avoid pointlessly
558  		 * swapping bytes to and from on the big endian machines...
559  		 */
560  		if (rw == READ) {
561  			if (slop < 3)
562  				ioread16_rep(data_addr, pad, 1);
563  			else
564  				ioread32_rep(data_addr, pad, 1);
565  			memcpy(buf, pad, slop);
566  		} else {
567  			memcpy(pad, buf, slop);
568  			if (slop < 3)
569  				iowrite16_rep(data_addr, pad, 1);
570  			else
571  				iowrite32_rep(data_addr, pad, 1);
572  		}
573  	}
574  	return (buflen + 1) & ~1;
575  }
576  EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
577  
578  static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
579  		unsigned int offset, size_t xfer_size)
580  {
581  	bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
582  	unsigned char *buf;
583  
584  	buf = kmap_atomic(page);
585  	qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
586  	kunmap_atomic(buf);
587  
588  	if (!do_write && !PageSlab(page))
589  		flush_dcache_page(page);
590  }
591  
592  /**
593   *	ata_pio_sector - Transfer a sector of data.
594   *	@qc: Command on going
595   *
596   *	Transfer qc->sect_size bytes of data from/to the ATA device.
597   *
598   *	LOCKING:
599   *	Inherited from caller.
600   */
601  static void ata_pio_sector(struct ata_queued_cmd *qc)
602  {
603  	struct ata_port *ap = qc->ap;
604  	struct page *page;
605  	unsigned int offset;
606  
607  	if (!qc->cursg) {
608  		qc->curbytes = qc->nbytes;
609  		return;
610  	}
611  	if (qc->curbytes == qc->nbytes - qc->sect_size)
612  		ap->hsm_task_state = HSM_ST_LAST;
613  
614  	page = sg_page(qc->cursg);
615  	offset = qc->cursg->offset + qc->cursg_ofs;
616  
617  	/* get the current page and offset */
618  	page = nth_page(page, (offset >> PAGE_SHIFT));
619  	offset %= PAGE_SIZE;
620  
621  	trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
622  
623  	/*
624  	 * Split the transfer when it splits a page boundary.  Note that the
625  	 * split still has to be dword aligned like all ATA data transfers.
626  	 */
627  	WARN_ON_ONCE(offset % 4);
628  	if (offset + qc->sect_size > PAGE_SIZE) {
629  		unsigned int split_len = PAGE_SIZE - offset;
630  
631  		ata_pio_xfer(qc, page, offset, split_len);
632  		ata_pio_xfer(qc, nth_page(page, 1), 0,
633  			     qc->sect_size - split_len);
634  	} else {
635  		ata_pio_xfer(qc, page, offset, qc->sect_size);
636  	}
637  
638  	qc->curbytes += qc->sect_size;
639  	qc->cursg_ofs += qc->sect_size;
640  
641  	if (qc->cursg_ofs == qc->cursg->length) {
642  		qc->cursg = sg_next(qc->cursg);
643  		if (!qc->cursg)
644  			ap->hsm_task_state = HSM_ST_LAST;
645  		qc->cursg_ofs = 0;
646  	}
647  }
648  
649  /**
650   *	ata_pio_sectors - Transfer one or many sectors.
651   *	@qc: Command on going
652   *
653   *	Transfer one or many sectors of data from/to the
654   *	ATA device for the DRQ request.
655   *
656   *	LOCKING:
657   *	Inherited from caller.
658   */
659  static void ata_pio_sectors(struct ata_queued_cmd *qc)
660  {
661  	if (is_multi_taskfile(&qc->tf)) {
662  		/* READ/WRITE MULTIPLE */
663  		unsigned int nsect;
664  
665  		WARN_ON_ONCE(qc->dev->multi_count == 0);
666  
667  		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
668  			    qc->dev->multi_count);
669  		while (nsect--)
670  			ata_pio_sector(qc);
671  	} else
672  		ata_pio_sector(qc);
673  
674  	ata_sff_sync(qc->ap); /* flush */
675  }
676  
677  /**
678   *	atapi_send_cdb - Write CDB bytes to hardware
679   *	@ap: Port to which ATAPI device is attached.
680   *	@qc: Taskfile currently active
681   *
682   *	When device has indicated its readiness to accept
683   *	a CDB, this function is called.  Send the CDB.
684   *
685   *	LOCKING:
686   *	caller.
687   */
688  static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
689  {
690  	/* send SCSI cdb */
691  	trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
692  	WARN_ON_ONCE(qc->dev->cdb_len < 12);
693  
694  	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
695  	ata_sff_sync(ap);
696  	/* FIXME: If the CDB is for DMA do we need to do the transition delay
697  	   or is bmdma_start guaranteed to do it ? */
698  	switch (qc->tf.protocol) {
699  	case ATAPI_PROT_PIO:
700  		ap->hsm_task_state = HSM_ST;
701  		break;
702  	case ATAPI_PROT_NODATA:
703  		ap->hsm_task_state = HSM_ST_LAST;
704  		break;
705  #ifdef CONFIG_ATA_BMDMA
706  	case ATAPI_PROT_DMA:
707  		ap->hsm_task_state = HSM_ST_LAST;
708  		/* initiate bmdma */
709  		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
710  		ap->ops->bmdma_start(qc);
711  		break;
712  #endif /* CONFIG_ATA_BMDMA */
713  	default:
714  		BUG();
715  	}
716  }
717  
718  /**
719   *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
720   *	@qc: Command on going
721   *	@bytes: number of bytes
722   *
723   *	Transfer data from/to the ATAPI device.
724   *
725   *	LOCKING:
726   *	Inherited from caller.
727   *
728   */
729  static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
730  {
731  	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
732  	struct ata_port *ap = qc->ap;
733  	struct ata_device *dev = qc->dev;
734  	struct ata_eh_info *ehi = &dev->link->eh_info;
735  	struct scatterlist *sg;
736  	struct page *page;
737  	unsigned char *buf;
738  	unsigned int offset, count, consumed;
739  
740  next_sg:
741  	sg = qc->cursg;
742  	if (unlikely(!sg)) {
743  		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
744  				  "buf=%u cur=%u bytes=%u",
745  				  qc->nbytes, qc->curbytes, bytes);
746  		return -1;
747  	}
748  
749  	page = sg_page(sg);
750  	offset = sg->offset + qc->cursg_ofs;
751  
752  	/* get the current page and offset */
753  	page = nth_page(page, (offset >> PAGE_SHIFT));
754  	offset %= PAGE_SIZE;
755  
756  	/* don't overrun current sg */
757  	count = min(sg->length - qc->cursg_ofs, bytes);
758  
759  	/* don't cross page boundaries */
760  	count = min(count, (unsigned int)PAGE_SIZE - offset);
761  
762  	trace_atapi_pio_transfer_data(qc, offset, count);
763  
764  	/* do the actual data transfer */
765  	buf = kmap_atomic(page);
766  	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
767  	kunmap_atomic(buf);
768  
769  	bytes -= min(bytes, consumed);
770  	qc->curbytes += count;
771  	qc->cursg_ofs += count;
772  
773  	if (qc->cursg_ofs == sg->length) {
774  		qc->cursg = sg_next(qc->cursg);
775  		qc->cursg_ofs = 0;
776  	}
777  
778  	/*
779  	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
780  	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
781  	 * check correctly as it doesn't know if it is the last request being
782  	 * made. Somebody should implement a proper sanity check.
783  	 */
784  	if (bytes)
785  		goto next_sg;
786  	return 0;
787  }
788  
789  /**
790   *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
791   *	@qc: Command on going
792   *
793   *	Transfer Transfer data from/to the ATAPI device.
794   *
795   *	LOCKING:
796   *	Inherited from caller.
797   */
798  static void atapi_pio_bytes(struct ata_queued_cmd *qc)
799  {
800  	struct ata_port *ap = qc->ap;
801  	struct ata_device *dev = qc->dev;
802  	struct ata_eh_info *ehi = &dev->link->eh_info;
803  	unsigned int ireason, bc_lo, bc_hi, bytes;
804  	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
805  
806  	/* Abuse qc->result_tf for temp storage of intermediate TF
807  	 * here to save some kernel stack usage.
808  	 * For normal completion, qc->result_tf is not relevant. For
809  	 * error, qc->result_tf is later overwritten by ata_qc_complete().
810  	 * So, the correctness of qc->result_tf is not affected.
811  	 */
812  	ap->ops->sff_tf_read(ap, &qc->result_tf);
813  	ireason = qc->result_tf.nsect;
814  	bc_lo = qc->result_tf.lbam;
815  	bc_hi = qc->result_tf.lbah;
816  	bytes = (bc_hi << 8) | bc_lo;
817  
818  	/* shall be cleared to zero, indicating xfer of data */
819  	if (unlikely(ireason & ATAPI_COD))
820  		goto atapi_check;
821  
822  	/* make sure transfer direction matches expected */
823  	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
824  	if (unlikely(do_write != i_write))
825  		goto atapi_check;
826  
827  	if (unlikely(!bytes))
828  		goto atapi_check;
829  
830  	if (unlikely(__atapi_pio_bytes(qc, bytes)))
831  		goto err_out;
832  	ata_sff_sync(ap); /* flush */
833  
834  	return;
835  
836   atapi_check:
837  	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
838  			  ireason, bytes);
839   err_out:
840  	qc->err_mask |= AC_ERR_HSM;
841  	ap->hsm_task_state = HSM_ST_ERR;
842  }
843  
844  /**
845   *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
846   *	@ap: the target ata_port
847   *	@qc: qc on going
848   *
849   *	RETURNS:
850   *	1 if ok in workqueue, 0 otherwise.
851   */
852  static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
853  						struct ata_queued_cmd *qc)
854  {
855  	if (qc->tf.flags & ATA_TFLAG_POLLING)
856  		return 1;
857  
858  	if (ap->hsm_task_state == HSM_ST_FIRST) {
859  		if (qc->tf.protocol == ATA_PROT_PIO &&
860  		   (qc->tf.flags & ATA_TFLAG_WRITE))
861  		    return 1;
862  
863  		if (ata_is_atapi(qc->tf.protocol) &&
864  		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
865  			return 1;
866  	}
867  
868  	return 0;
869  }
870  
871  /**
872   *	ata_hsm_qc_complete - finish a qc running on standard HSM
873   *	@qc: Command to complete
874   *	@in_wq: 1 if called from workqueue, 0 otherwise
875   *
876   *	Finish @qc which is running on standard HSM.
877   *
878   *	LOCKING:
879   *	If @in_wq is zero, spin_lock_irqsave(host lock).
880   *	Otherwise, none on entry and grabs host lock.
881   */
882  static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
883  {
884  	struct ata_port *ap = qc->ap;
885  
886  	if (in_wq) {
887  		/* EH might have kicked in while host lock is released. */
888  		qc = ata_qc_from_tag(ap, qc->tag);
889  		if (qc) {
890  			if (likely(!(qc->err_mask & AC_ERR_HSM))) {
891  				ata_sff_irq_on(ap);
892  				ata_qc_complete(qc);
893  			} else
894  				ata_port_freeze(ap);
895  		}
896  	} else {
897  		if (likely(!(qc->err_mask & AC_ERR_HSM)))
898  			ata_qc_complete(qc);
899  		else
900  			ata_port_freeze(ap);
901  	}
902  }
903  
904  /**
905   *	ata_sff_hsm_move - move the HSM to the next state.
906   *	@ap: the target ata_port
907   *	@qc: qc on going
908   *	@status: current device status
909   *	@in_wq: 1 if called from workqueue, 0 otherwise
910   *
911   *	RETURNS:
912   *	1 when poll next status needed, 0 otherwise.
913   */
914  int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
915  		     u8 status, int in_wq)
916  {
917  	struct ata_link *link = qc->dev->link;
918  	struct ata_eh_info *ehi = &link->eh_info;
919  	int poll_next;
920  
921  	lockdep_assert_held(ap->lock);
922  
923  	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
924  
925  	/* Make sure ata_sff_qc_issue() does not throw things
926  	 * like DMA polling into the workqueue. Notice that
927  	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
928  	 */
929  	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
930  
931  fsm_start:
932  	trace_ata_sff_hsm_state(qc, status);
933  
934  	switch (ap->hsm_task_state) {
935  	case HSM_ST_FIRST:
936  		/* Send first data block or PACKET CDB */
937  
938  		/* If polling, we will stay in the work queue after
939  		 * sending the data. Otherwise, interrupt handler
940  		 * takes over after sending the data.
941  		 */
942  		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
943  
944  		/* check device status */
945  		if (unlikely((status & ATA_DRQ) == 0)) {
946  			/* handle BSY=0, DRQ=0 as error */
947  			if (likely(status & (ATA_ERR | ATA_DF)))
948  				/* device stops HSM for abort/error */
949  				qc->err_mask |= AC_ERR_DEV;
950  			else {
951  				/* HSM violation. Let EH handle this */
952  				ata_ehi_push_desc(ehi,
953  					"ST_FIRST: !(DRQ|ERR|DF)");
954  				qc->err_mask |= AC_ERR_HSM;
955  			}
956  
957  			ap->hsm_task_state = HSM_ST_ERR;
958  			goto fsm_start;
959  		}
960  
961  		/* Device should not ask for data transfer (DRQ=1)
962  		 * when it finds something wrong.
963  		 * We ignore DRQ here and stop the HSM by
964  		 * changing hsm_task_state to HSM_ST_ERR and
965  		 * let the EH abort the command or reset the device.
966  		 */
967  		if (unlikely(status & (ATA_ERR | ATA_DF))) {
968  			/* Some ATAPI tape drives forget to clear the ERR bit
969  			 * when doing the next command (mostly request sense).
970  			 * We ignore ERR here to workaround and proceed sending
971  			 * the CDB.
972  			 */
973  			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
974  				ata_ehi_push_desc(ehi, "ST_FIRST: "
975  					"DRQ=1 with device error, "
976  					"dev_stat 0x%X", status);
977  				qc->err_mask |= AC_ERR_HSM;
978  				ap->hsm_task_state = HSM_ST_ERR;
979  				goto fsm_start;
980  			}
981  		}
982  
983  		if (qc->tf.protocol == ATA_PROT_PIO) {
984  			/* PIO data out protocol.
985  			 * send first data block.
986  			 */
987  
988  			/* ata_pio_sectors() might change the state
989  			 * to HSM_ST_LAST. so, the state is changed here
990  			 * before ata_pio_sectors().
991  			 */
992  			ap->hsm_task_state = HSM_ST;
993  			ata_pio_sectors(qc);
994  		} else
995  			/* send CDB */
996  			atapi_send_cdb(ap, qc);
997  
998  		/* if polling, ata_sff_pio_task() handles the rest.
999  		 * otherwise, interrupt handler takes over from here.
1000  		 */
1001  		break;
1002  
1003  	case HSM_ST:
1004  		/* complete command or read/write the data register */
1005  		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1006  			/* ATAPI PIO protocol */
1007  			if ((status & ATA_DRQ) == 0) {
1008  				/* No more data to transfer or device error.
1009  				 * Device error will be tagged in HSM_ST_LAST.
1010  				 */
1011  				ap->hsm_task_state = HSM_ST_LAST;
1012  				goto fsm_start;
1013  			}
1014  
1015  			/* Device should not ask for data transfer (DRQ=1)
1016  			 * when it finds something wrong.
1017  			 * We ignore DRQ here and stop the HSM by
1018  			 * changing hsm_task_state to HSM_ST_ERR and
1019  			 * let the EH abort the command or reset the device.
1020  			 */
1021  			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1022  				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1023  					"DRQ=1 with device error, "
1024  					"dev_stat 0x%X", status);
1025  				qc->err_mask |= AC_ERR_HSM;
1026  				ap->hsm_task_state = HSM_ST_ERR;
1027  				goto fsm_start;
1028  			}
1029  
1030  			atapi_pio_bytes(qc);
1031  
1032  			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1033  				/* bad ireason reported by device */
1034  				goto fsm_start;
1035  
1036  		} else {
1037  			/* ATA PIO protocol */
1038  			if (unlikely((status & ATA_DRQ) == 0)) {
1039  				/* handle BSY=0, DRQ=0 as error */
1040  				if (likely(status & (ATA_ERR | ATA_DF))) {
1041  					/* device stops HSM for abort/error */
1042  					qc->err_mask |= AC_ERR_DEV;
1043  
1044  					/* If diagnostic failed and this is
1045  					 * IDENTIFY, it's likely a phantom
1046  					 * device.  Mark hint.
1047  					 */
1048  					if (qc->dev->horkage &
1049  					    ATA_HORKAGE_DIAGNOSTIC)
1050  						qc->err_mask |=
1051  							AC_ERR_NODEV_HINT;
1052  				} else {
1053  					/* HSM violation. Let EH handle this.
1054  					 * Phantom devices also trigger this
1055  					 * condition.  Mark hint.
1056  					 */
1057  					ata_ehi_push_desc(ehi, "ST-ATA: "
1058  						"DRQ=0 without device error, "
1059  						"dev_stat 0x%X", status);
1060  					qc->err_mask |= AC_ERR_HSM |
1061  							AC_ERR_NODEV_HINT;
1062  				}
1063  
1064  				ap->hsm_task_state = HSM_ST_ERR;
1065  				goto fsm_start;
1066  			}
1067  
1068  			/* For PIO reads, some devices may ask for
1069  			 * data transfer (DRQ=1) alone with ERR=1.
1070  			 * We respect DRQ here and transfer one
1071  			 * block of junk data before changing the
1072  			 * hsm_task_state to HSM_ST_ERR.
1073  			 *
1074  			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1075  			 * sense since the data block has been
1076  			 * transferred to the device.
1077  			 */
1078  			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1079  				/* data might be corrputed */
1080  				qc->err_mask |= AC_ERR_DEV;
1081  
1082  				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1083  					ata_pio_sectors(qc);
1084  					status = ata_wait_idle(ap);
1085  				}
1086  
1087  				if (status & (ATA_BUSY | ATA_DRQ)) {
1088  					ata_ehi_push_desc(ehi, "ST-ATA: "
1089  						"BUSY|DRQ persists on ERR|DF, "
1090  						"dev_stat 0x%X", status);
1091  					qc->err_mask |= AC_ERR_HSM;
1092  				}
1093  
1094  				/* There are oddball controllers with
1095  				 * status register stuck at 0x7f and
1096  				 * lbal/m/h at zero which makes it
1097  				 * pass all other presence detection
1098  				 * mechanisms we have.  Set NODEV_HINT
1099  				 * for it.  Kernel bz#7241.
1100  				 */
1101  				if (status == 0x7f)
1102  					qc->err_mask |= AC_ERR_NODEV_HINT;
1103  
1104  				/* ata_pio_sectors() might change the
1105  				 * state to HSM_ST_LAST. so, the state
1106  				 * is changed after ata_pio_sectors().
1107  				 */
1108  				ap->hsm_task_state = HSM_ST_ERR;
1109  				goto fsm_start;
1110  			}
1111  
1112  			ata_pio_sectors(qc);
1113  
1114  			if (ap->hsm_task_state == HSM_ST_LAST &&
1115  			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1116  				/* all data read */
1117  				status = ata_wait_idle(ap);
1118  				goto fsm_start;
1119  			}
1120  		}
1121  
1122  		poll_next = 1;
1123  		break;
1124  
1125  	case HSM_ST_LAST:
1126  		if (unlikely(!ata_ok(status))) {
1127  			qc->err_mask |= __ac_err_mask(status);
1128  			ap->hsm_task_state = HSM_ST_ERR;
1129  			goto fsm_start;
1130  		}
1131  
1132  		/* no more data to transfer */
1133  		trace_ata_sff_hsm_command_complete(qc, status);
1134  
1135  		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1136  
1137  		ap->hsm_task_state = HSM_ST_IDLE;
1138  
1139  		/* complete taskfile transaction */
1140  		ata_hsm_qc_complete(qc, in_wq);
1141  
1142  		poll_next = 0;
1143  		break;
1144  
1145  	case HSM_ST_ERR:
1146  		ap->hsm_task_state = HSM_ST_IDLE;
1147  
1148  		/* complete taskfile transaction */
1149  		ata_hsm_qc_complete(qc, in_wq);
1150  
1151  		poll_next = 0;
1152  		break;
1153  	default:
1154  		poll_next = 0;
1155  		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1156  		     ap->print_id, ap->hsm_task_state);
1157  	}
1158  
1159  	return poll_next;
1160  }
1161  EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1162  
1163  void ata_sff_queue_work(struct work_struct *work)
1164  {
1165  	queue_work(ata_sff_wq, work);
1166  }
1167  EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1168  
1169  void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1170  {
1171  	queue_delayed_work(ata_sff_wq, dwork, delay);
1172  }
1173  EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1174  
1175  void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1176  {
1177  	struct ata_port *ap = link->ap;
1178  
1179  	WARN_ON((ap->sff_pio_task_link != NULL) &&
1180  		(ap->sff_pio_task_link != link));
1181  	ap->sff_pio_task_link = link;
1182  
1183  	/* may fail if ata_sff_flush_pio_task() in progress */
1184  	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1185  }
1186  EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1187  
1188  void ata_sff_flush_pio_task(struct ata_port *ap)
1189  {
1190  	trace_ata_sff_flush_pio_task(ap);
1191  
1192  	cancel_delayed_work_sync(&ap->sff_pio_task);
1193  
1194  	/*
1195  	 * We wanna reset the HSM state to IDLE.  If we do so without
1196  	 * grabbing the port lock, critical sections protected by it which
1197  	 * expect the HSM state to stay stable may get surprised.  For
1198  	 * example, we may set IDLE in between the time
1199  	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1200  	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1201  	 */
1202  	spin_lock_irq(ap->lock);
1203  	ap->hsm_task_state = HSM_ST_IDLE;
1204  	spin_unlock_irq(ap->lock);
1205  
1206  	ap->sff_pio_task_link = NULL;
1207  }
1208  
1209  static void ata_sff_pio_task(struct work_struct *work)
1210  {
1211  	struct ata_port *ap =
1212  		container_of(work, struct ata_port, sff_pio_task.work);
1213  	struct ata_link *link = ap->sff_pio_task_link;
1214  	struct ata_queued_cmd *qc;
1215  	u8 status;
1216  	int poll_next;
1217  
1218  	spin_lock_irq(ap->lock);
1219  
1220  	BUG_ON(ap->sff_pio_task_link == NULL);
1221  	/* qc can be NULL if timeout occurred */
1222  	qc = ata_qc_from_tag(ap, link->active_tag);
1223  	if (!qc) {
1224  		ap->sff_pio_task_link = NULL;
1225  		goto out_unlock;
1226  	}
1227  
1228  fsm_start:
1229  	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1230  
1231  	/*
1232  	 * This is purely heuristic.  This is a fast path.
1233  	 * Sometimes when we enter, BSY will be cleared in
1234  	 * a chk-status or two.  If not, the drive is probably seeking
1235  	 * or something.  Snooze for a couple msecs, then
1236  	 * chk-status again.  If still busy, queue delayed work.
1237  	 */
1238  	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1239  	if (status & ATA_BUSY) {
1240  		spin_unlock_irq(ap->lock);
1241  		ata_msleep(ap, 2);
1242  		spin_lock_irq(ap->lock);
1243  
1244  		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1245  		if (status & ATA_BUSY) {
1246  			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1247  			goto out_unlock;
1248  		}
1249  	}
1250  
1251  	/*
1252  	 * hsm_move() may trigger another command to be processed.
1253  	 * clean the link beforehand.
1254  	 */
1255  	ap->sff_pio_task_link = NULL;
1256  	/* move the HSM */
1257  	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1258  
1259  	/* another command or interrupt handler
1260  	 * may be running at this point.
1261  	 */
1262  	if (poll_next)
1263  		goto fsm_start;
1264  out_unlock:
1265  	spin_unlock_irq(ap->lock);
1266  }
1267  
1268  /**
1269   *	ata_sff_qc_issue - issue taskfile to a SFF controller
1270   *	@qc: command to issue to device
1271   *
1272   *	This function issues a PIO or NODATA command to a SFF
1273   *	controller.
1274   *
1275   *	LOCKING:
1276   *	spin_lock_irqsave(host lock)
1277   *
1278   *	RETURNS:
1279   *	Zero on success, AC_ERR_* mask on failure
1280   */
1281  unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1282  {
1283  	struct ata_port *ap = qc->ap;
1284  	struct ata_link *link = qc->dev->link;
1285  
1286  	/* Use polling pio if the LLD doesn't handle
1287  	 * interrupt driven pio and atapi CDB interrupt.
1288  	 */
1289  	if (ap->flags & ATA_FLAG_PIO_POLLING)
1290  		qc->tf.flags |= ATA_TFLAG_POLLING;
1291  
1292  	/* select the device */
1293  	ata_dev_select(ap, qc->dev->devno, 1, 0);
1294  
1295  	/* start the command */
1296  	switch (qc->tf.protocol) {
1297  	case ATA_PROT_NODATA:
1298  		if (qc->tf.flags & ATA_TFLAG_POLLING)
1299  			ata_qc_set_polling(qc);
1300  
1301  		ata_tf_to_host(ap, &qc->tf, qc->tag);
1302  		ap->hsm_task_state = HSM_ST_LAST;
1303  
1304  		if (qc->tf.flags & ATA_TFLAG_POLLING)
1305  			ata_sff_queue_pio_task(link, 0);
1306  
1307  		break;
1308  
1309  	case ATA_PROT_PIO:
1310  		if (qc->tf.flags & ATA_TFLAG_POLLING)
1311  			ata_qc_set_polling(qc);
1312  
1313  		ata_tf_to_host(ap, &qc->tf, qc->tag);
1314  
1315  		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1316  			/* PIO data out protocol */
1317  			ap->hsm_task_state = HSM_ST_FIRST;
1318  			ata_sff_queue_pio_task(link, 0);
1319  
1320  			/* always send first data block using the
1321  			 * ata_sff_pio_task() codepath.
1322  			 */
1323  		} else {
1324  			/* PIO data in protocol */
1325  			ap->hsm_task_state = HSM_ST;
1326  
1327  			if (qc->tf.flags & ATA_TFLAG_POLLING)
1328  				ata_sff_queue_pio_task(link, 0);
1329  
1330  			/* if polling, ata_sff_pio_task() handles the
1331  			 * rest.  otherwise, interrupt handler takes
1332  			 * over from here.
1333  			 */
1334  		}
1335  
1336  		break;
1337  
1338  	case ATAPI_PROT_PIO:
1339  	case ATAPI_PROT_NODATA:
1340  		if (qc->tf.flags & ATA_TFLAG_POLLING)
1341  			ata_qc_set_polling(qc);
1342  
1343  		ata_tf_to_host(ap, &qc->tf, qc->tag);
1344  
1345  		ap->hsm_task_state = HSM_ST_FIRST;
1346  
1347  		/* send cdb by polling if no cdb interrupt */
1348  		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1349  		    (qc->tf.flags & ATA_TFLAG_POLLING))
1350  			ata_sff_queue_pio_task(link, 0);
1351  		break;
1352  
1353  	default:
1354  		return AC_ERR_SYSTEM;
1355  	}
1356  
1357  	return 0;
1358  }
1359  EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1360  
1361  /**
1362   *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1363   *	@qc: qc to fill result TF for
1364   *
1365   *	@qc is finished and result TF needs to be filled.  Fill it
1366   *	using ->sff_tf_read.
1367   *
1368   *	LOCKING:
1369   *	spin_lock_irqsave(host lock)
1370   */
1371  void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1372  {
1373  	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1374  }
1375  EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1376  
1377  static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1378  {
1379  	ap->stats.idle_irq++;
1380  
1381  #ifdef ATA_IRQ_TRAP
1382  	if ((ap->stats.idle_irq % 1000) == 0) {
1383  		ap->ops->sff_check_status(ap);
1384  		if (ap->ops->sff_irq_clear)
1385  			ap->ops->sff_irq_clear(ap);
1386  		ata_port_warn(ap, "irq trap\n");
1387  		return 1;
1388  	}
1389  #endif
1390  	return 0;	/* irq not handled */
1391  }
1392  
1393  static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1394  					struct ata_queued_cmd *qc,
1395  					bool hsmv_on_idle)
1396  {
1397  	u8 status;
1398  
1399  	trace_ata_sff_port_intr(qc, hsmv_on_idle);
1400  
1401  	/* Check whether we are expecting interrupt in this state */
1402  	switch (ap->hsm_task_state) {
1403  	case HSM_ST_FIRST:
1404  		/* Some pre-ATAPI-4 devices assert INTRQ
1405  		 * at this state when ready to receive CDB.
1406  		 */
1407  
1408  		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1409  		 * The flag was turned on only for atapi devices.  No
1410  		 * need to check ata_is_atapi(qc->tf.protocol) again.
1411  		 */
1412  		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1413  			return ata_sff_idle_irq(ap);
1414  		break;
1415  	case HSM_ST_IDLE:
1416  		return ata_sff_idle_irq(ap);
1417  	default:
1418  		break;
1419  	}
1420  
1421  	/* check main status, clearing INTRQ if needed */
1422  	status = ata_sff_irq_status(ap);
1423  	if (status & ATA_BUSY) {
1424  		if (hsmv_on_idle) {
1425  			/* BMDMA engine is already stopped, we're screwed */
1426  			qc->err_mask |= AC_ERR_HSM;
1427  			ap->hsm_task_state = HSM_ST_ERR;
1428  		} else
1429  			return ata_sff_idle_irq(ap);
1430  	}
1431  
1432  	/* clear irq events */
1433  	if (ap->ops->sff_irq_clear)
1434  		ap->ops->sff_irq_clear(ap);
1435  
1436  	ata_sff_hsm_move(ap, qc, status, 0);
1437  
1438  	return 1;	/* irq handled */
1439  }
1440  
1441  /**
1442   *	ata_sff_port_intr - Handle SFF port interrupt
1443   *	@ap: Port on which interrupt arrived (possibly...)
1444   *	@qc: Taskfile currently active in engine
1445   *
1446   *	Handle port interrupt for given queued command.
1447   *
1448   *	LOCKING:
1449   *	spin_lock_irqsave(host lock)
1450   *
1451   *	RETURNS:
1452   *	One if interrupt was handled, zero if not (shared irq).
1453   */
1454  unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1455  {
1456  	return __ata_sff_port_intr(ap, qc, false);
1457  }
1458  EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1459  
1460  static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1461  	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1462  {
1463  	struct ata_host *host = dev_instance;
1464  	bool retried = false;
1465  	unsigned int i;
1466  	unsigned int handled, idle, polling;
1467  	unsigned long flags;
1468  
1469  	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1470  	spin_lock_irqsave(&host->lock, flags);
1471  
1472  retry:
1473  	handled = idle = polling = 0;
1474  	for (i = 0; i < host->n_ports; i++) {
1475  		struct ata_port *ap = host->ports[i];
1476  		struct ata_queued_cmd *qc;
1477  
1478  		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1479  		if (qc) {
1480  			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1481  				handled |= port_intr(ap, qc);
1482  			else
1483  				polling |= 1 << i;
1484  		} else
1485  			idle |= 1 << i;
1486  	}
1487  
1488  	/*
1489  	 * If no port was expecting IRQ but the controller is actually
1490  	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1491  	 * pending status if available and clear spurious IRQ.
1492  	 */
1493  	if (!handled && !retried) {
1494  		bool retry = false;
1495  
1496  		for (i = 0; i < host->n_ports; i++) {
1497  			struct ata_port *ap = host->ports[i];
1498  
1499  			if (polling & (1 << i))
1500  				continue;
1501  
1502  			if (!ap->ops->sff_irq_check ||
1503  			    !ap->ops->sff_irq_check(ap))
1504  				continue;
1505  
1506  			if (idle & (1 << i)) {
1507  				ap->ops->sff_check_status(ap);
1508  				if (ap->ops->sff_irq_clear)
1509  					ap->ops->sff_irq_clear(ap);
1510  			} else {
1511  				/* clear INTRQ and check if BUSY cleared */
1512  				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1513  					retry |= true;
1514  				/*
1515  				 * With command in flight, we can't do
1516  				 * sff_irq_clear() w/o racing with completion.
1517  				 */
1518  			}
1519  		}
1520  
1521  		if (retry) {
1522  			retried = true;
1523  			goto retry;
1524  		}
1525  	}
1526  
1527  	spin_unlock_irqrestore(&host->lock, flags);
1528  
1529  	return IRQ_RETVAL(handled);
1530  }
1531  
1532  /**
1533   *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1534   *	@irq: irq line (unused)
1535   *	@dev_instance: pointer to our ata_host information structure
1536   *
1537   *	Default interrupt handler for PCI IDE devices.  Calls
1538   *	ata_sff_port_intr() for each port that is not disabled.
1539   *
1540   *	LOCKING:
1541   *	Obtains host lock during operation.
1542   *
1543   *	RETURNS:
1544   *	IRQ_NONE or IRQ_HANDLED.
1545   */
1546  irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1547  {
1548  	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1549  }
1550  EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1551  
1552  /**
1553   *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1554   *	@ap: port that appears to have timed out
1555   *
1556   *	Called from the libata error handlers when the core code suspects
1557   *	an interrupt has been lost. If it has complete anything we can and
1558   *	then return. Interface must support altstatus for this faster
1559   *	recovery to occur.
1560   *
1561   *	Locking:
1562   *	Caller holds host lock
1563   */
1564  
1565  void ata_sff_lost_interrupt(struct ata_port *ap)
1566  {
1567  	u8 status = 0;
1568  	struct ata_queued_cmd *qc;
1569  
1570  	/* Only one outstanding command per SFF channel */
1571  	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1572  	/* We cannot lose an interrupt on a non-existent or polled command */
1573  	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1574  		return;
1575  	/* See if the controller thinks it is still busy - if so the command
1576  	   isn't a lost IRQ but is still in progress */
1577  	if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1578  		return;
1579  	if (status & ATA_BUSY)
1580  		return;
1581  
1582  	/* There was a command running, we are no longer busy and we have
1583  	   no interrupt. */
1584  	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
1585  	/* Run the host interrupt logic as if the interrupt had not been
1586  	   lost */
1587  	ata_sff_port_intr(ap, qc);
1588  }
1589  EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1590  
1591  /**
1592   *	ata_sff_freeze - Freeze SFF controller port
1593   *	@ap: port to freeze
1594   *
1595   *	Freeze SFF controller port.
1596   *
1597   *	LOCKING:
1598   *	Inherited from caller.
1599   */
1600  void ata_sff_freeze(struct ata_port *ap)
1601  {
1602  	ap->ctl |= ATA_NIEN;
1603  	ap->last_ctl = ap->ctl;
1604  
1605  	ata_sff_set_devctl(ap, ap->ctl);
1606  
1607  	/* Under certain circumstances, some controllers raise IRQ on
1608  	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1609  	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1610  	 */
1611  	ap->ops->sff_check_status(ap);
1612  
1613  	if (ap->ops->sff_irq_clear)
1614  		ap->ops->sff_irq_clear(ap);
1615  }
1616  EXPORT_SYMBOL_GPL(ata_sff_freeze);
1617  
1618  /**
1619   *	ata_sff_thaw - Thaw SFF controller port
1620   *	@ap: port to thaw
1621   *
1622   *	Thaw SFF controller port.
1623   *
1624   *	LOCKING:
1625   *	Inherited from caller.
1626   */
1627  void ata_sff_thaw(struct ata_port *ap)
1628  {
1629  	/* clear & re-enable interrupts */
1630  	ap->ops->sff_check_status(ap);
1631  	if (ap->ops->sff_irq_clear)
1632  		ap->ops->sff_irq_clear(ap);
1633  	ata_sff_irq_on(ap);
1634  }
1635  EXPORT_SYMBOL_GPL(ata_sff_thaw);
1636  
1637  /**
1638   *	ata_sff_prereset - prepare SFF link for reset
1639   *	@link: SFF link to be reset
1640   *	@deadline: deadline jiffies for the operation
1641   *
1642   *	SFF link @link is about to be reset.  Initialize it.  It first
1643   *	calls ata_std_prereset() and wait for !BSY if the port is
1644   *	being softreset.
1645   *
1646   *	LOCKING:
1647   *	Kernel thread context (may sleep)
1648   *
1649   *	RETURNS:
1650   *	Always 0.
1651   */
1652  int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1653  {
1654  	struct ata_eh_context *ehc = &link->eh_context;
1655  	int rc;
1656  
1657  	/* The standard prereset is best-effort and always returns 0 */
1658  	ata_std_prereset(link, deadline);
1659  
1660  	/* if we're about to do hardreset, nothing more to do */
1661  	if (ehc->i.action & ATA_EH_HARDRESET)
1662  		return 0;
1663  
1664  	/* wait for !BSY if we don't know that no device is attached */
1665  	if (!ata_link_offline(link)) {
1666  		rc = ata_sff_wait_ready(link, deadline);
1667  		if (rc && rc != -ENODEV) {
1668  			ata_link_warn(link,
1669  				      "device not ready (errno=%d), forcing hardreset\n",
1670  				      rc);
1671  			ehc->i.action |= ATA_EH_HARDRESET;
1672  		}
1673  	}
1674  
1675  	return 0;
1676  }
1677  EXPORT_SYMBOL_GPL(ata_sff_prereset);
1678  
1679  /**
1680   *	ata_devchk - PATA device presence detection
1681   *	@ap: ATA channel to examine
1682   *	@device: Device to examine (starting at zero)
1683   *
1684   *	This technique was originally described in
1685   *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1686   *	later found its way into the ATA/ATAPI spec.
1687   *
1688   *	Write a pattern to the ATA shadow registers,
1689   *	and if a device is present, it will respond by
1690   *	correctly storing and echoing back the
1691   *	ATA shadow register contents.
1692   *
1693   *	RETURN:
1694   *	true if device is present, false if not.
1695   *
1696   *	LOCKING:
1697   *	caller.
1698   */
1699  static bool ata_devchk(struct ata_port *ap, unsigned int device)
1700  {
1701  	struct ata_ioports *ioaddr = &ap->ioaddr;
1702  	u8 nsect, lbal;
1703  
1704  	ap->ops->sff_dev_select(ap, device);
1705  
1706  	iowrite8(0x55, ioaddr->nsect_addr);
1707  	iowrite8(0xaa, ioaddr->lbal_addr);
1708  
1709  	iowrite8(0xaa, ioaddr->nsect_addr);
1710  	iowrite8(0x55, ioaddr->lbal_addr);
1711  
1712  	iowrite8(0x55, ioaddr->nsect_addr);
1713  	iowrite8(0xaa, ioaddr->lbal_addr);
1714  
1715  	nsect = ioread8(ioaddr->nsect_addr);
1716  	lbal = ioread8(ioaddr->lbal_addr);
1717  
1718  	if ((nsect == 0x55) && (lbal == 0xaa))
1719  		return true;	/* we found a device */
1720  
1721  	return false;		/* nothing found */
1722  }
1723  
1724  /**
1725   *	ata_sff_dev_classify - Parse returned ATA device signature
1726   *	@dev: ATA device to classify (starting at zero)
1727   *	@present: device seems present
1728   *	@r_err: Value of error register on completion
1729   *
1730   *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1731   *	an ATA/ATAPI-defined set of values is placed in the ATA
1732   *	shadow registers, indicating the results of device detection
1733   *	and diagnostics.
1734   *
1735   *	Select the ATA device, and read the values from the ATA shadow
1736   *	registers.  Then parse according to the Error register value,
1737   *	and the spec-defined values examined by ata_dev_classify().
1738   *
1739   *	LOCKING:
1740   *	caller.
1741   *
1742   *	RETURNS:
1743   *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1744   */
1745  unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1746  				  u8 *r_err)
1747  {
1748  	struct ata_port *ap = dev->link->ap;
1749  	struct ata_taskfile tf;
1750  	unsigned int class;
1751  	u8 err;
1752  
1753  	ap->ops->sff_dev_select(ap, dev->devno);
1754  
1755  	memset(&tf, 0, sizeof(tf));
1756  
1757  	ap->ops->sff_tf_read(ap, &tf);
1758  	err = tf.error;
1759  	if (r_err)
1760  		*r_err = err;
1761  
1762  	/* see if device passed diags: continue and warn later */
1763  	if (err == 0)
1764  		/* diagnostic fail : do nothing _YET_ */
1765  		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1766  	else if (err == 1)
1767  		/* do nothing */ ;
1768  	else if ((dev->devno == 0) && (err == 0x81))
1769  		/* do nothing */ ;
1770  	else
1771  		return ATA_DEV_NONE;
1772  
1773  	/* determine if device is ATA or ATAPI */
1774  	class = ata_port_classify(ap, &tf);
1775  	switch (class) {
1776  	case ATA_DEV_UNKNOWN:
1777  		/*
1778  		 * If the device failed diagnostic, it's likely to
1779  		 * have reported incorrect device signature too.
1780  		 * Assume ATA device if the device seems present but
1781  		 * device signature is invalid with diagnostic
1782  		 * failure.
1783  		 */
1784  		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1785  			class = ATA_DEV_ATA;
1786  		else
1787  			class = ATA_DEV_NONE;
1788  		break;
1789  	case ATA_DEV_ATA:
1790  		if (ap->ops->sff_check_status(ap) == 0)
1791  			class = ATA_DEV_NONE;
1792  		break;
1793  	}
1794  	return class;
1795  }
1796  EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1797  
1798  /**
1799   *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1800   *	@link: SFF link which is just reset
1801   *	@devmask: mask of present devices
1802   *	@deadline: deadline jiffies for the operation
1803   *
1804   *	Wait devices attached to SFF @link to become ready after
1805   *	reset.  It contains preceding 150ms wait to avoid accessing TF
1806   *	status register too early.
1807   *
1808   *	LOCKING:
1809   *	Kernel thread context (may sleep).
1810   *
1811   *	RETURNS:
1812   *	0 on success, -ENODEV if some or all of devices in @devmask
1813   *	don't seem to exist.  -errno on other errors.
1814   */
1815  int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1816  			     unsigned long deadline)
1817  {
1818  	struct ata_port *ap = link->ap;
1819  	struct ata_ioports *ioaddr = &ap->ioaddr;
1820  	unsigned int dev0 = devmask & (1 << 0);
1821  	unsigned int dev1 = devmask & (1 << 1);
1822  	int rc, ret = 0;
1823  
1824  	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1825  
1826  	/* always check readiness of the master device */
1827  	rc = ata_sff_wait_ready(link, deadline);
1828  	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1829  	 * and TF status is 0xff, bail out on it too.
1830  	 */
1831  	if (rc)
1832  		return rc;
1833  
1834  	/* if device 1 was found in ata_devchk, wait for register
1835  	 * access briefly, then wait for BSY to clear.
1836  	 */
1837  	if (dev1) {
1838  		int i;
1839  
1840  		ap->ops->sff_dev_select(ap, 1);
1841  
1842  		/* Wait for register access.  Some ATAPI devices fail
1843  		 * to set nsect/lbal after reset, so don't waste too
1844  		 * much time on it.  We're gonna wait for !BSY anyway.
1845  		 */
1846  		for (i = 0; i < 2; i++) {
1847  			u8 nsect, lbal;
1848  
1849  			nsect = ioread8(ioaddr->nsect_addr);
1850  			lbal = ioread8(ioaddr->lbal_addr);
1851  			if ((nsect == 1) && (lbal == 1))
1852  				break;
1853  			ata_msleep(ap, 50);	/* give drive a breather */
1854  		}
1855  
1856  		rc = ata_sff_wait_ready(link, deadline);
1857  		if (rc) {
1858  			if (rc != -ENODEV)
1859  				return rc;
1860  			ret = rc;
1861  		}
1862  	}
1863  
1864  	/* is all this really necessary? */
1865  	ap->ops->sff_dev_select(ap, 0);
1866  	if (dev1)
1867  		ap->ops->sff_dev_select(ap, 1);
1868  	if (dev0)
1869  		ap->ops->sff_dev_select(ap, 0);
1870  
1871  	return ret;
1872  }
1873  EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1874  
1875  static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1876  			     unsigned long deadline)
1877  {
1878  	struct ata_ioports *ioaddr = &ap->ioaddr;
1879  
1880  	if (ap->ioaddr.ctl_addr) {
1881  		/* software reset.  causes dev0 to be selected */
1882  		iowrite8(ap->ctl, ioaddr->ctl_addr);
1883  		udelay(20);	/* FIXME: flush */
1884  		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1885  		udelay(20);	/* FIXME: flush */
1886  		iowrite8(ap->ctl, ioaddr->ctl_addr);
1887  		ap->last_ctl = ap->ctl;
1888  	}
1889  
1890  	/* wait the port to become ready */
1891  	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1892  }
1893  
1894  /**
1895   *	ata_sff_softreset - reset host port via ATA SRST
1896   *	@link: ATA link to reset
1897   *	@classes: resulting classes of attached devices
1898   *	@deadline: deadline jiffies for the operation
1899   *
1900   *	Reset host port using ATA SRST.
1901   *
1902   *	LOCKING:
1903   *	Kernel thread context (may sleep)
1904   *
1905   *	RETURNS:
1906   *	0 on success, -errno otherwise.
1907   */
1908  int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1909  		      unsigned long deadline)
1910  {
1911  	struct ata_port *ap = link->ap;
1912  	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1913  	unsigned int devmask = 0;
1914  	int rc;
1915  	u8 err;
1916  
1917  	/* determine if device 0/1 are present */
1918  	if (ata_devchk(ap, 0))
1919  		devmask |= (1 << 0);
1920  	if (slave_possible && ata_devchk(ap, 1))
1921  		devmask |= (1 << 1);
1922  
1923  	/* select device 0 again */
1924  	ap->ops->sff_dev_select(ap, 0);
1925  
1926  	/* issue bus reset */
1927  	rc = ata_bus_softreset(ap, devmask, deadline);
1928  	/* if link is occupied, -ENODEV too is an error */
1929  	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1930  		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1931  		return rc;
1932  	}
1933  
1934  	/* determine by signature whether we have ATA or ATAPI devices */
1935  	classes[0] = ata_sff_dev_classify(&link->device[0],
1936  					  devmask & (1 << 0), &err);
1937  	if (slave_possible && err != 0x81)
1938  		classes[1] = ata_sff_dev_classify(&link->device[1],
1939  						  devmask & (1 << 1), &err);
1940  
1941  	return 0;
1942  }
1943  EXPORT_SYMBOL_GPL(ata_sff_softreset);
1944  
1945  /**
1946   *	sata_sff_hardreset - reset host port via SATA phy reset
1947   *	@link: link to reset
1948   *	@class: resulting class of attached device
1949   *	@deadline: deadline jiffies for the operation
1950   *
1951   *	SATA phy-reset host port using DET bits of SControl register,
1952   *	wait for !BSY and classify the attached device.
1953   *
1954   *	LOCKING:
1955   *	Kernel thread context (may sleep)
1956   *
1957   *	RETURNS:
1958   *	0 on success, -errno otherwise.
1959   */
1960  int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1961  		       unsigned long deadline)
1962  {
1963  	struct ata_eh_context *ehc = &link->eh_context;
1964  	const unsigned int *timing = sata_ehc_deb_timing(ehc);
1965  	bool online;
1966  	int rc;
1967  
1968  	rc = sata_link_hardreset(link, timing, deadline, &online,
1969  				 ata_sff_check_ready);
1970  	if (online)
1971  		*class = ata_sff_dev_classify(link->device, 1, NULL);
1972  
1973  	return rc;
1974  }
1975  EXPORT_SYMBOL_GPL(sata_sff_hardreset);
1976  
1977  /**
1978   *	ata_sff_postreset - SFF postreset callback
1979   *	@link: the target SFF ata_link
1980   *	@classes: classes of attached devices
1981   *
1982   *	This function is invoked after a successful reset.  It first
1983   *	calls ata_std_postreset() and performs SFF specific postreset
1984   *	processing.
1985   *
1986   *	LOCKING:
1987   *	Kernel thread context (may sleep)
1988   */
1989  void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
1990  {
1991  	struct ata_port *ap = link->ap;
1992  
1993  	ata_std_postreset(link, classes);
1994  
1995  	/* is double-select really necessary? */
1996  	if (classes[0] != ATA_DEV_NONE)
1997  		ap->ops->sff_dev_select(ap, 1);
1998  	if (classes[1] != ATA_DEV_NONE)
1999  		ap->ops->sff_dev_select(ap, 0);
2000  
2001  	/* bail out if no device is present */
2002  	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
2003  		return;
2004  
2005  	/* set up device control */
2006  	if (ata_sff_set_devctl(ap, ap->ctl))
2007  		ap->last_ctl = ap->ctl;
2008  }
2009  EXPORT_SYMBOL_GPL(ata_sff_postreset);
2010  
2011  /**
2012   *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2013   *	@qc: command
2014   *
2015   *	Drain the FIFO and device of any stuck data following a command
2016   *	failing to complete. In some cases this is necessary before a
2017   *	reset will recover the device.
2018   *
2019   */
2020  
2021  void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2022  {
2023  	int count;
2024  	struct ata_port *ap;
2025  
2026  	/* We only need to flush incoming data when a command was running */
2027  	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2028  		return;
2029  
2030  	ap = qc->ap;
2031  	/* Drain up to 64K of data before we give up this recovery method */
2032  	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2033  						&& count < 65536; count += 2)
2034  		ioread16(ap->ioaddr.data_addr);
2035  
2036  	if (count)
2037  		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2038  
2039  }
2040  EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2041  
2042  /**
2043   *	ata_sff_error_handler - Stock error handler for SFF controller
2044   *	@ap: port to handle error for
2045   *
2046   *	Stock error handler for SFF controller.  It can handle both
2047   *	PATA and SATA controllers.  Many controllers should be able to
2048   *	use this EH as-is or with some added handling before and
2049   *	after.
2050   *
2051   *	LOCKING:
2052   *	Kernel thread context (may sleep)
2053   */
2054  void ata_sff_error_handler(struct ata_port *ap)
2055  {
2056  	ata_reset_fn_t softreset = ap->ops->softreset;
2057  	ata_reset_fn_t hardreset = ap->ops->hardreset;
2058  	struct ata_queued_cmd *qc;
2059  	unsigned long flags;
2060  
2061  	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2062  	if (qc && !(qc->flags & ATA_QCFLAG_EH))
2063  		qc = NULL;
2064  
2065  	spin_lock_irqsave(ap->lock, flags);
2066  
2067  	/*
2068  	 * We *MUST* do FIFO draining before we issue a reset as
2069  	 * several devices helpfully clear their internal state and
2070  	 * will lock solid if we touch the data port post reset. Pass
2071  	 * qc in case anyone wants to do different PIO/DMA recovery or
2072  	 * has per command fixups
2073  	 */
2074  	if (ap->ops->sff_drain_fifo)
2075  		ap->ops->sff_drain_fifo(qc);
2076  
2077  	spin_unlock_irqrestore(ap->lock, flags);
2078  
2079  	/* ignore built-in hardresets if SCR access is not available */
2080  	if ((hardreset == sata_std_hardreset ||
2081  	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2082  		hardreset = NULL;
2083  
2084  	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2085  		  ap->ops->postreset);
2086  }
2087  EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2088  
2089  /**
2090   *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2091   *	@ioaddr: IO address structure to be initialized
2092   *
2093   *	Utility function which initializes data_addr, error_addr,
2094   *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2095   *	device_addr, status_addr, and command_addr to standard offsets
2096   *	relative to cmd_addr.
2097   *
2098   *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2099   */
2100  void ata_sff_std_ports(struct ata_ioports *ioaddr)
2101  {
2102  	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2103  	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2104  	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2105  	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2106  	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2107  	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2108  	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2109  	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2110  	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2111  	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2112  }
2113  EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2114  
2115  #ifdef CONFIG_PCI
2116  
2117  static bool ata_resources_present(struct pci_dev *pdev, int port)
2118  {
2119  	int i;
2120  
2121  	/* Check the PCI resources for this channel are enabled */
2122  	port *= 2;
2123  	for (i = 0; i < 2; i++) {
2124  		if (pci_resource_start(pdev, port + i) == 0 ||
2125  		    pci_resource_len(pdev, port + i) == 0)
2126  			return false;
2127  	}
2128  	return true;
2129  }
2130  
2131  /**
2132   *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2133   *	@host: target ATA host
2134   *
2135   *	Acquire native PCI ATA resources for @host and initialize the
2136   *	first two ports of @host accordingly.  Ports marked dummy are
2137   *	skipped and allocation failure makes the port dummy.
2138   *
2139   *	Note that native PCI resources are valid even for legacy hosts
2140   *	as we fix up pdev resources array early in boot, so this
2141   *	function can be used for both native and legacy SFF hosts.
2142   *
2143   *	LOCKING:
2144   *	Inherited from calling layer (may sleep).
2145   *
2146   *	RETURNS:
2147   *	0 if at least one port is initialized, -ENODEV if no port is
2148   *	available.
2149   */
2150  int ata_pci_sff_init_host(struct ata_host *host)
2151  {
2152  	struct device *gdev = host->dev;
2153  	struct pci_dev *pdev = to_pci_dev(gdev);
2154  	unsigned int mask = 0;
2155  	int i, rc;
2156  
2157  	/* request, iomap BARs and init port addresses accordingly */
2158  	for (i = 0; i < 2; i++) {
2159  		struct ata_port *ap = host->ports[i];
2160  		int base = i * 2;
2161  		void __iomem * const *iomap;
2162  
2163  		if (ata_port_is_dummy(ap))
2164  			continue;
2165  
2166  		/* Discard disabled ports.  Some controllers show
2167  		 * their unused channels this way.  Disabled ports are
2168  		 * made dummy.
2169  		 */
2170  		if (!ata_resources_present(pdev, i)) {
2171  			ap->ops = &ata_dummy_port_ops;
2172  			continue;
2173  		}
2174  
2175  		rc = pcim_iomap_regions(pdev, 0x3 << base,
2176  					dev_driver_string(gdev));
2177  		if (rc) {
2178  			dev_warn(gdev,
2179  				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2180  				 i, rc);
2181  			if (rc == -EBUSY)
2182  				pcim_pin_device(pdev);
2183  			ap->ops = &ata_dummy_port_ops;
2184  			continue;
2185  		}
2186  		host->iomap = iomap = pcim_iomap_table(pdev);
2187  
2188  		ap->ioaddr.cmd_addr = iomap[base];
2189  		ap->ioaddr.altstatus_addr =
2190  		ap->ioaddr.ctl_addr = (void __iomem *)
2191  			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2192  		ata_sff_std_ports(&ap->ioaddr);
2193  
2194  		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2195  			(unsigned long long)pci_resource_start(pdev, base),
2196  			(unsigned long long)pci_resource_start(pdev, base + 1));
2197  
2198  		mask |= 1 << i;
2199  	}
2200  
2201  	if (!mask) {
2202  		dev_err(gdev, "no available native port\n");
2203  		return -ENODEV;
2204  	}
2205  
2206  	return 0;
2207  }
2208  EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2209  
2210  /**
2211   *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2212   *	@pdev: target PCI device
2213   *	@ppi: array of port_info, must be enough for two ports
2214   *	@r_host: out argument for the initialized ATA host
2215   *
2216   *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2217   *	all PCI resources and initialize it accordingly in one go.
2218   *
2219   *	LOCKING:
2220   *	Inherited from calling layer (may sleep).
2221   *
2222   *	RETURNS:
2223   *	0 on success, -errno otherwise.
2224   */
2225  int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2226  			     const struct ata_port_info * const *ppi,
2227  			     struct ata_host **r_host)
2228  {
2229  	struct ata_host *host;
2230  	int rc;
2231  
2232  	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2233  		return -ENOMEM;
2234  
2235  	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2236  	if (!host) {
2237  		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2238  		rc = -ENOMEM;
2239  		goto err_out;
2240  	}
2241  
2242  	rc = ata_pci_sff_init_host(host);
2243  	if (rc)
2244  		goto err_out;
2245  
2246  	devres_remove_group(&pdev->dev, NULL);
2247  	*r_host = host;
2248  	return 0;
2249  
2250  err_out:
2251  	devres_release_group(&pdev->dev, NULL);
2252  	return rc;
2253  }
2254  EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2255  
2256  /**
2257   *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2258   *	@host: target SFF ATA host
2259   *	@irq_handler: irq_handler used when requesting IRQ(s)
2260   *	@sht: scsi_host_template to use when registering the host
2261   *
2262   *	This is the counterpart of ata_host_activate() for SFF ATA
2263   *	hosts.  This separate helper is necessary because SFF hosts
2264   *	use two separate interrupts in legacy mode.
2265   *
2266   *	LOCKING:
2267   *	Inherited from calling layer (may sleep).
2268   *
2269   *	RETURNS:
2270   *	0 on success, -errno otherwise.
2271   */
2272  int ata_pci_sff_activate_host(struct ata_host *host,
2273  			      irq_handler_t irq_handler,
2274  			      const struct scsi_host_template *sht)
2275  {
2276  	struct device *dev = host->dev;
2277  	struct pci_dev *pdev = to_pci_dev(dev);
2278  	const char *drv_name = dev_driver_string(host->dev);
2279  	int legacy_mode = 0, rc;
2280  
2281  	rc = ata_host_start(host);
2282  	if (rc)
2283  		return rc;
2284  
2285  	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2286  		u8 tmp8, mask = 0;
2287  
2288  		/*
2289  		 * ATA spec says we should use legacy mode when one
2290  		 * port is in legacy mode, but disabled ports on some
2291  		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2292  		 * on which the secondary port is not wired, so
2293  		 * ignore ports that are marked as 'dummy' during
2294  		 * this check
2295  		 */
2296  		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2297  		if (!ata_port_is_dummy(host->ports[0]))
2298  			mask |= (1 << 0);
2299  		if (!ata_port_is_dummy(host->ports[1]))
2300  			mask |= (1 << 2);
2301  		if ((tmp8 & mask) != mask)
2302  			legacy_mode = 1;
2303  	}
2304  
2305  	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2306  		return -ENOMEM;
2307  
2308  	if (!legacy_mode && pdev->irq) {
2309  		int i;
2310  
2311  		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2312  				      IRQF_SHARED, drv_name, host);
2313  		if (rc)
2314  			goto out;
2315  
2316  		for (i = 0; i < 2; i++) {
2317  			if (ata_port_is_dummy(host->ports[i]))
2318  				continue;
2319  			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2320  		}
2321  	} else if (legacy_mode) {
2322  		if (!ata_port_is_dummy(host->ports[0])) {
2323  			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2324  					      irq_handler, IRQF_SHARED,
2325  					      drv_name, host);
2326  			if (rc)
2327  				goto out;
2328  
2329  			ata_port_desc(host->ports[0], "irq %d",
2330  				      ATA_PRIMARY_IRQ(pdev));
2331  		}
2332  
2333  		if (!ata_port_is_dummy(host->ports[1])) {
2334  			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2335  					      irq_handler, IRQF_SHARED,
2336  					      drv_name, host);
2337  			if (rc)
2338  				goto out;
2339  
2340  			ata_port_desc(host->ports[1], "irq %d",
2341  				      ATA_SECONDARY_IRQ(pdev));
2342  		}
2343  	}
2344  
2345  	rc = ata_host_register(host, sht);
2346  out:
2347  	if (rc == 0)
2348  		devres_remove_group(dev, NULL);
2349  	else
2350  		devres_release_group(dev, NULL);
2351  
2352  	return rc;
2353  }
2354  EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2355  
2356  static const struct ata_port_info *ata_sff_find_valid_pi(
2357  					const struct ata_port_info * const *ppi)
2358  {
2359  	int i;
2360  
2361  	/* look up the first valid port_info */
2362  	for (i = 0; i < 2 && ppi[i]; i++)
2363  		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2364  			return ppi[i];
2365  
2366  	return NULL;
2367  }
2368  
2369  static int ata_pci_init_one(struct pci_dev *pdev,
2370  		const struct ata_port_info * const *ppi,
2371  		const struct scsi_host_template *sht, void *host_priv,
2372  		int hflags, bool bmdma)
2373  {
2374  	struct device *dev = &pdev->dev;
2375  	const struct ata_port_info *pi;
2376  	struct ata_host *host = NULL;
2377  	int rc;
2378  
2379  	pi = ata_sff_find_valid_pi(ppi);
2380  	if (!pi) {
2381  		dev_err(&pdev->dev, "no valid port_info specified\n");
2382  		return -EINVAL;
2383  	}
2384  
2385  	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2386  		return -ENOMEM;
2387  
2388  	rc = pcim_enable_device(pdev);
2389  	if (rc)
2390  		goto out;
2391  
2392  #ifdef CONFIG_ATA_BMDMA
2393  	if (bmdma)
2394  		/* prepare and activate BMDMA host */
2395  		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2396  	else
2397  #endif
2398  		/* prepare and activate SFF host */
2399  		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2400  	if (rc)
2401  		goto out;
2402  	host->private_data = host_priv;
2403  	host->flags |= hflags;
2404  
2405  #ifdef CONFIG_ATA_BMDMA
2406  	if (bmdma) {
2407  		pci_set_master(pdev);
2408  		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2409  	} else
2410  #endif
2411  		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2412  out:
2413  	if (rc == 0)
2414  		devres_remove_group(&pdev->dev, NULL);
2415  	else
2416  		devres_release_group(&pdev->dev, NULL);
2417  
2418  	return rc;
2419  }
2420  
2421  /**
2422   *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2423   *	@pdev: Controller to be initialized
2424   *	@ppi: array of port_info, must be enough for two ports
2425   *	@sht: scsi_host_template to use when registering the host
2426   *	@host_priv: host private_data
2427   *	@hflag: host flags
2428   *
2429   *	This is a helper function which can be called from a driver's
2430   *	xxx_init_one() probe function if the hardware uses traditional
2431   *	IDE taskfile registers and is PIO only.
2432   *
2433   *	ASSUMPTION:
2434   *	Nobody makes a single channel controller that appears solely as
2435   *	the secondary legacy port on PCI.
2436   *
2437   *	LOCKING:
2438   *	Inherited from PCI layer (may sleep).
2439   *
2440   *	RETURNS:
2441   *	Zero on success, negative on errno-based value on error.
2442   */
2443  int ata_pci_sff_init_one(struct pci_dev *pdev,
2444  		 const struct ata_port_info * const *ppi,
2445  		 const struct scsi_host_template *sht, void *host_priv, int hflag)
2446  {
2447  	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2448  }
2449  EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2450  
2451  #endif /* CONFIG_PCI */
2452  
2453  /*
2454   *	BMDMA support
2455   */
2456  
2457  #ifdef CONFIG_ATA_BMDMA
2458  
2459  const struct ata_port_operations ata_bmdma_port_ops = {
2460  	.inherits		= &ata_sff_port_ops,
2461  
2462  	.error_handler		= ata_bmdma_error_handler,
2463  	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2464  
2465  	.qc_prep		= ata_bmdma_qc_prep,
2466  	.qc_issue		= ata_bmdma_qc_issue,
2467  
2468  	.sff_irq_clear		= ata_bmdma_irq_clear,
2469  	.bmdma_setup		= ata_bmdma_setup,
2470  	.bmdma_start		= ata_bmdma_start,
2471  	.bmdma_stop		= ata_bmdma_stop,
2472  	.bmdma_status		= ata_bmdma_status,
2473  
2474  	.port_start		= ata_bmdma_port_start,
2475  };
2476  EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2477  
2478  const struct ata_port_operations ata_bmdma32_port_ops = {
2479  	.inherits		= &ata_bmdma_port_ops,
2480  
2481  	.sff_data_xfer		= ata_sff_data_xfer32,
2482  	.port_start		= ata_bmdma_port_start32,
2483  };
2484  EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2485  
2486  /**
2487   *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2488   *	@qc: Metadata associated with taskfile to be transferred
2489   *
2490   *	Fill PCI IDE PRD (scatter-gather) table with segments
2491   *	associated with the current disk command.
2492   *
2493   *	LOCKING:
2494   *	spin_lock_irqsave(host lock)
2495   *
2496   */
2497  static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2498  {
2499  	struct ata_port *ap = qc->ap;
2500  	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2501  	struct scatterlist *sg;
2502  	unsigned int si, pi;
2503  
2504  	pi = 0;
2505  	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2506  		u32 addr, offset;
2507  		u32 sg_len, len;
2508  
2509  		/* determine if physical DMA addr spans 64K boundary.
2510  		 * Note h/w doesn't support 64-bit, so we unconditionally
2511  		 * truncate dma_addr_t to u32.
2512  		 */
2513  		addr = (u32) sg_dma_address(sg);
2514  		sg_len = sg_dma_len(sg);
2515  
2516  		while (sg_len) {
2517  			offset = addr & 0xffff;
2518  			len = sg_len;
2519  			if ((offset + sg_len) > 0x10000)
2520  				len = 0x10000 - offset;
2521  
2522  			prd[pi].addr = cpu_to_le32(addr);
2523  			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2524  
2525  			pi++;
2526  			sg_len -= len;
2527  			addr += len;
2528  		}
2529  	}
2530  
2531  	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2532  }
2533  
2534  /**
2535   *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2536   *	@qc: Metadata associated with taskfile to be transferred
2537   *
2538   *	Fill PCI IDE PRD (scatter-gather) table with segments
2539   *	associated with the current disk command. Perform the fill
2540   *	so that we avoid writing any length 64K records for
2541   *	controllers that don't follow the spec.
2542   *
2543   *	LOCKING:
2544   *	spin_lock_irqsave(host lock)
2545   *
2546   */
2547  static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2548  {
2549  	struct ata_port *ap = qc->ap;
2550  	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2551  	struct scatterlist *sg;
2552  	unsigned int si, pi;
2553  
2554  	pi = 0;
2555  	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2556  		u32 addr, offset;
2557  		u32 sg_len, len, blen;
2558  
2559  		/* determine if physical DMA addr spans 64K boundary.
2560  		 * Note h/w doesn't support 64-bit, so we unconditionally
2561  		 * truncate dma_addr_t to u32.
2562  		 */
2563  		addr = (u32) sg_dma_address(sg);
2564  		sg_len = sg_dma_len(sg);
2565  
2566  		while (sg_len) {
2567  			offset = addr & 0xffff;
2568  			len = sg_len;
2569  			if ((offset + sg_len) > 0x10000)
2570  				len = 0x10000 - offset;
2571  
2572  			blen = len & 0xffff;
2573  			prd[pi].addr = cpu_to_le32(addr);
2574  			if (blen == 0) {
2575  				/* Some PATA chipsets like the CS5530 can't
2576  				   cope with 0x0000 meaning 64K as the spec
2577  				   says */
2578  				prd[pi].flags_len = cpu_to_le32(0x8000);
2579  				blen = 0x8000;
2580  				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2581  			}
2582  			prd[pi].flags_len = cpu_to_le32(blen);
2583  
2584  			pi++;
2585  			sg_len -= len;
2586  			addr += len;
2587  		}
2588  	}
2589  
2590  	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2591  }
2592  
2593  /**
2594   *	ata_bmdma_qc_prep - Prepare taskfile for submission
2595   *	@qc: Metadata associated with taskfile to be prepared
2596   *
2597   *	Prepare ATA taskfile for submission.
2598   *
2599   *	LOCKING:
2600   *	spin_lock_irqsave(host lock)
2601   */
2602  enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2603  {
2604  	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2605  		return AC_ERR_OK;
2606  
2607  	ata_bmdma_fill_sg(qc);
2608  
2609  	return AC_ERR_OK;
2610  }
2611  EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2612  
2613  /**
2614   *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2615   *	@qc: Metadata associated with taskfile to be prepared
2616   *
2617   *	Prepare ATA taskfile for submission.
2618   *
2619   *	LOCKING:
2620   *	spin_lock_irqsave(host lock)
2621   */
2622  enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2623  {
2624  	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2625  		return AC_ERR_OK;
2626  
2627  	ata_bmdma_fill_sg_dumb(qc);
2628  
2629  	return AC_ERR_OK;
2630  }
2631  EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2632  
2633  /**
2634   *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2635   *	@qc: command to issue to device
2636   *
2637   *	This function issues a PIO, NODATA or DMA command to a
2638   *	SFF/BMDMA controller.  PIO and NODATA are handled by
2639   *	ata_sff_qc_issue().
2640   *
2641   *	LOCKING:
2642   *	spin_lock_irqsave(host lock)
2643   *
2644   *	RETURNS:
2645   *	Zero on success, AC_ERR_* mask on failure
2646   */
2647  unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2648  {
2649  	struct ata_port *ap = qc->ap;
2650  	struct ata_link *link = qc->dev->link;
2651  
2652  	/* defer PIO handling to sff_qc_issue */
2653  	if (!ata_is_dma(qc->tf.protocol))
2654  		return ata_sff_qc_issue(qc);
2655  
2656  	/* select the device */
2657  	ata_dev_select(ap, qc->dev->devno, 1, 0);
2658  
2659  	/* start the command */
2660  	switch (qc->tf.protocol) {
2661  	case ATA_PROT_DMA:
2662  		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2663  
2664  		trace_ata_tf_load(ap, &qc->tf);
2665  		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2666  		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2667  		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2668  		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2669  		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2670  		ap->hsm_task_state = HSM_ST_LAST;
2671  		break;
2672  
2673  	case ATAPI_PROT_DMA:
2674  		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2675  
2676  		trace_ata_tf_load(ap, &qc->tf);
2677  		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2678  		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2679  		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2680  		ap->hsm_task_state = HSM_ST_FIRST;
2681  
2682  		/* send cdb by polling if no cdb interrupt */
2683  		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2684  			ata_sff_queue_pio_task(link, 0);
2685  		break;
2686  
2687  	default:
2688  		WARN_ON(1);
2689  		return AC_ERR_SYSTEM;
2690  	}
2691  
2692  	return 0;
2693  }
2694  EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2695  
2696  /**
2697   *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2698   *	@ap: Port on which interrupt arrived (possibly...)
2699   *	@qc: Taskfile currently active in engine
2700   *
2701   *	Handle port interrupt for given queued command.
2702   *
2703   *	LOCKING:
2704   *	spin_lock_irqsave(host lock)
2705   *
2706   *	RETURNS:
2707   *	One if interrupt was handled, zero if not (shared irq).
2708   */
2709  unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2710  {
2711  	struct ata_eh_info *ehi = &ap->link.eh_info;
2712  	u8 host_stat = 0;
2713  	bool bmdma_stopped = false;
2714  	unsigned int handled;
2715  
2716  	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2717  		/* check status of DMA engine */
2718  		host_stat = ap->ops->bmdma_status(ap);
2719  		trace_ata_bmdma_status(ap, host_stat);
2720  
2721  		/* if it's not our irq... */
2722  		if (!(host_stat & ATA_DMA_INTR))
2723  			return ata_sff_idle_irq(ap);
2724  
2725  		/* before we do anything else, clear DMA-Start bit */
2726  		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2727  		ap->ops->bmdma_stop(qc);
2728  		bmdma_stopped = true;
2729  
2730  		if (unlikely(host_stat & ATA_DMA_ERR)) {
2731  			/* error when transferring data to/from memory */
2732  			qc->err_mask |= AC_ERR_HOST_BUS;
2733  			ap->hsm_task_state = HSM_ST_ERR;
2734  		}
2735  	}
2736  
2737  	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2738  
2739  	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2740  		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2741  
2742  	return handled;
2743  }
2744  EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2745  
2746  /**
2747   *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2748   *	@irq: irq line (unused)
2749   *	@dev_instance: pointer to our ata_host information structure
2750   *
2751   *	Default interrupt handler for PCI IDE devices.  Calls
2752   *	ata_bmdma_port_intr() for each port that is not disabled.
2753   *
2754   *	LOCKING:
2755   *	Obtains host lock during operation.
2756   *
2757   *	RETURNS:
2758   *	IRQ_NONE or IRQ_HANDLED.
2759   */
2760  irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2761  {
2762  	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2763  }
2764  EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2765  
2766  /**
2767   *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2768   *	@ap: port to handle error for
2769   *
2770   *	Stock error handler for BMDMA controller.  It can handle both
2771   *	PATA and SATA controllers.  Most BMDMA controllers should be
2772   *	able to use this EH as-is or with some added handling before
2773   *	and after.
2774   *
2775   *	LOCKING:
2776   *	Kernel thread context (may sleep)
2777   */
2778  void ata_bmdma_error_handler(struct ata_port *ap)
2779  {
2780  	struct ata_queued_cmd *qc;
2781  	unsigned long flags;
2782  	bool thaw = false;
2783  
2784  	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2785  	if (qc && !(qc->flags & ATA_QCFLAG_EH))
2786  		qc = NULL;
2787  
2788  	/* reset PIO HSM and stop DMA engine */
2789  	spin_lock_irqsave(ap->lock, flags);
2790  
2791  	if (qc && ata_is_dma(qc->tf.protocol)) {
2792  		u8 host_stat;
2793  
2794  		host_stat = ap->ops->bmdma_status(ap);
2795  		trace_ata_bmdma_status(ap, host_stat);
2796  
2797  		/* BMDMA controllers indicate host bus error by
2798  		 * setting DMA_ERR bit and timing out.  As it wasn't
2799  		 * really a timeout event, adjust error mask and
2800  		 * cancel frozen state.
2801  		 */
2802  		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2803  			qc->err_mask = AC_ERR_HOST_BUS;
2804  			thaw = true;
2805  		}
2806  
2807  		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2808  		ap->ops->bmdma_stop(qc);
2809  
2810  		/* if we're gonna thaw, make sure IRQ is clear */
2811  		if (thaw) {
2812  			ap->ops->sff_check_status(ap);
2813  			if (ap->ops->sff_irq_clear)
2814  				ap->ops->sff_irq_clear(ap);
2815  		}
2816  	}
2817  
2818  	spin_unlock_irqrestore(ap->lock, flags);
2819  
2820  	if (thaw)
2821  		ata_eh_thaw_port(ap);
2822  
2823  	ata_sff_error_handler(ap);
2824  }
2825  EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2826  
2827  /**
2828   *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2829   *	@qc: internal command to clean up
2830   *
2831   *	LOCKING:
2832   *	Kernel thread context (may sleep)
2833   */
2834  void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2835  {
2836  	struct ata_port *ap = qc->ap;
2837  	unsigned long flags;
2838  
2839  	if (ata_is_dma(qc->tf.protocol)) {
2840  		spin_lock_irqsave(ap->lock, flags);
2841  		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2842  		ap->ops->bmdma_stop(qc);
2843  		spin_unlock_irqrestore(ap->lock, flags);
2844  	}
2845  }
2846  EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2847  
2848  /**
2849   *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2850   *	@ap: Port associated with this ATA transaction.
2851   *
2852   *	Clear interrupt and error flags in DMA status register.
2853   *
2854   *	May be used as the irq_clear() entry in ata_port_operations.
2855   *
2856   *	LOCKING:
2857   *	spin_lock_irqsave(host lock)
2858   */
2859  void ata_bmdma_irq_clear(struct ata_port *ap)
2860  {
2861  	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2862  
2863  	if (!mmio)
2864  		return;
2865  
2866  	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2867  }
2868  EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2869  
2870  /**
2871   *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2872   *	@qc: Info associated with this ATA transaction.
2873   *
2874   *	LOCKING:
2875   *	spin_lock_irqsave(host lock)
2876   */
2877  void ata_bmdma_setup(struct ata_queued_cmd *qc)
2878  {
2879  	struct ata_port *ap = qc->ap;
2880  	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2881  	u8 dmactl;
2882  
2883  	/* load PRD table addr. */
2884  	mb();	/* make sure PRD table writes are visible to controller */
2885  	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2886  
2887  	/* specify data direction, triple-check start bit is clear */
2888  	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2889  	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2890  	if (!rw)
2891  		dmactl |= ATA_DMA_WR;
2892  	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2893  
2894  	/* issue r/w command */
2895  	ap->ops->sff_exec_command(ap, &qc->tf);
2896  }
2897  EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2898  
2899  /**
2900   *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2901   *	@qc: Info associated with this ATA transaction.
2902   *
2903   *	LOCKING:
2904   *	spin_lock_irqsave(host lock)
2905   */
2906  void ata_bmdma_start(struct ata_queued_cmd *qc)
2907  {
2908  	struct ata_port *ap = qc->ap;
2909  	u8 dmactl;
2910  
2911  	/* start host DMA transaction */
2912  	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2913  	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2914  
2915  	/* Strictly, one may wish to issue an ioread8() here, to
2916  	 * flush the mmio write.  However, control also passes
2917  	 * to the hardware at this point, and it will interrupt
2918  	 * us when we are to resume control.  So, in effect,
2919  	 * we don't care when the mmio write flushes.
2920  	 * Further, a read of the DMA status register _immediately_
2921  	 * following the write may not be what certain flaky hardware
2922  	 * is expected, so I think it is best to not add a readb()
2923  	 * without first all the MMIO ATA cards/mobos.
2924  	 * Or maybe I'm just being paranoid.
2925  	 *
2926  	 * FIXME: The posting of this write means I/O starts are
2927  	 * unnecessarily delayed for MMIO
2928  	 */
2929  }
2930  EXPORT_SYMBOL_GPL(ata_bmdma_start);
2931  
2932  /**
2933   *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2934   *	@qc: Command we are ending DMA for
2935   *
2936   *	Clears the ATA_DMA_START flag in the dma control register
2937   *
2938   *	May be used as the bmdma_stop() entry in ata_port_operations.
2939   *
2940   *	LOCKING:
2941   *	spin_lock_irqsave(host lock)
2942   */
2943  void ata_bmdma_stop(struct ata_queued_cmd *qc)
2944  {
2945  	struct ata_port *ap = qc->ap;
2946  	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2947  
2948  	/* clear start/stop bit */
2949  	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2950  		 mmio + ATA_DMA_CMD);
2951  
2952  	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2953  	ata_sff_dma_pause(ap);
2954  }
2955  EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2956  
2957  /**
2958   *	ata_bmdma_status - Read PCI IDE BMDMA status
2959   *	@ap: Port associated with this ATA transaction.
2960   *
2961   *	Read and return BMDMA status register.
2962   *
2963   *	May be used as the bmdma_status() entry in ata_port_operations.
2964   *
2965   *	LOCKING:
2966   *	spin_lock_irqsave(host lock)
2967   */
2968  u8 ata_bmdma_status(struct ata_port *ap)
2969  {
2970  	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2971  }
2972  EXPORT_SYMBOL_GPL(ata_bmdma_status);
2973  
2974  
2975  /**
2976   *	ata_bmdma_port_start - Set port up for bmdma.
2977   *	@ap: Port to initialize
2978   *
2979   *	Called just after data structures for each port are
2980   *	initialized.  Allocates space for PRD table.
2981   *
2982   *	May be used as the port_start() entry in ata_port_operations.
2983   *
2984   *	LOCKING:
2985   *	Inherited from caller.
2986   */
2987  int ata_bmdma_port_start(struct ata_port *ap)
2988  {
2989  	if (ap->mwdma_mask || ap->udma_mask) {
2990  		ap->bmdma_prd =
2991  			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
2992  					    &ap->bmdma_prd_dma, GFP_KERNEL);
2993  		if (!ap->bmdma_prd)
2994  			return -ENOMEM;
2995  	}
2996  
2997  	return 0;
2998  }
2999  EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3000  
3001  /**
3002   *	ata_bmdma_port_start32 - Set port up for dma.
3003   *	@ap: Port to initialize
3004   *
3005   *	Called just after data structures for each port are
3006   *	initialized.  Enables 32bit PIO and allocates space for PRD
3007   *	table.
3008   *
3009   *	May be used as the port_start() entry in ata_port_operations for
3010   *	devices that are capable of 32bit PIO.
3011   *
3012   *	LOCKING:
3013   *	Inherited from caller.
3014   */
3015  int ata_bmdma_port_start32(struct ata_port *ap)
3016  {
3017  	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3018  	return ata_bmdma_port_start(ap);
3019  }
3020  EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3021  
3022  #ifdef CONFIG_PCI
3023  
3024  /**
3025   *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3026   *	@pdev: PCI device
3027   *
3028   *	Some PCI ATA devices report simplex mode but in fact can be told to
3029   *	enter non simplex mode. This implements the necessary logic to
3030   *	perform the task on such devices. Calling it on other devices will
3031   *	have -undefined- behaviour.
3032   */
3033  int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3034  {
3035  	unsigned long bmdma = pci_resource_start(pdev, 4);
3036  	u8 simplex;
3037  
3038  	if (bmdma == 0)
3039  		return -ENOENT;
3040  
3041  	simplex = inb(bmdma + 0x02);
3042  	outb(simplex & 0x60, bmdma + 0x02);
3043  	simplex = inb(bmdma + 0x02);
3044  	if (simplex & 0x80)
3045  		return -EOPNOTSUPP;
3046  	return 0;
3047  }
3048  EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3049  
3050  static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3051  {
3052  	int i;
3053  
3054  	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3055  
3056  	for (i = 0; i < 2; i++) {
3057  		host->ports[i]->mwdma_mask = 0;
3058  		host->ports[i]->udma_mask = 0;
3059  	}
3060  }
3061  
3062  /**
3063   *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3064   *	@host: target ATA host
3065   *
3066   *	Acquire PCI BMDMA resources and initialize @host accordingly.
3067   *
3068   *	LOCKING:
3069   *	Inherited from calling layer (may sleep).
3070   */
3071  void ata_pci_bmdma_init(struct ata_host *host)
3072  {
3073  	struct device *gdev = host->dev;
3074  	struct pci_dev *pdev = to_pci_dev(gdev);
3075  	int i, rc;
3076  
3077  	/* No BAR4 allocation: No DMA */
3078  	if (pci_resource_start(pdev, 4) == 0) {
3079  		ata_bmdma_nodma(host, "BAR4 is zero");
3080  		return;
3081  	}
3082  
3083  	/*
3084  	 * Some controllers require BMDMA region to be initialized
3085  	 * even if DMA is not in use to clear IRQ status via
3086  	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3087  	 * regardless of dma masks.
3088  	 */
3089  	rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3090  	if (rc)
3091  		ata_bmdma_nodma(host, "failed to set dma mask");
3092  
3093  	/* request and iomap DMA region */
3094  	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3095  	if (rc) {
3096  		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3097  		return;
3098  	}
3099  	host->iomap = pcim_iomap_table(pdev);
3100  
3101  	for (i = 0; i < 2; i++) {
3102  		struct ata_port *ap = host->ports[i];
3103  		void __iomem *bmdma = host->iomap[4] + 8 * i;
3104  
3105  		if (ata_port_is_dummy(ap))
3106  			continue;
3107  
3108  		ap->ioaddr.bmdma_addr = bmdma;
3109  		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3110  		    (ioread8(bmdma + 2) & 0x80))
3111  			host->flags |= ATA_HOST_SIMPLEX;
3112  
3113  		ata_port_desc(ap, "bmdma 0x%llx",
3114  		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3115  	}
3116  }
3117  EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3118  
3119  /**
3120   *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3121   *	@pdev: target PCI device
3122   *	@ppi: array of port_info, must be enough for two ports
3123   *	@r_host: out argument for the initialized ATA host
3124   *
3125   *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3126   *	resources and initialize it accordingly in one go.
3127   *
3128   *	LOCKING:
3129   *	Inherited from calling layer (may sleep).
3130   *
3131   *	RETURNS:
3132   *	0 on success, -errno otherwise.
3133   */
3134  int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3135  			       const struct ata_port_info * const * ppi,
3136  			       struct ata_host **r_host)
3137  {
3138  	int rc;
3139  
3140  	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3141  	if (rc)
3142  		return rc;
3143  
3144  	ata_pci_bmdma_init(*r_host);
3145  	return 0;
3146  }
3147  EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3148  
3149  /**
3150   *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3151   *	@pdev: Controller to be initialized
3152   *	@ppi: array of port_info, must be enough for two ports
3153   *	@sht: scsi_host_template to use when registering the host
3154   *	@host_priv: host private_data
3155   *	@hflags: host flags
3156   *
3157   *	This function is similar to ata_pci_sff_init_one() but also
3158   *	takes care of BMDMA initialization.
3159   *
3160   *	LOCKING:
3161   *	Inherited from PCI layer (may sleep).
3162   *
3163   *	RETURNS:
3164   *	Zero on success, negative on errno-based value on error.
3165   */
3166  int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3167  			   const struct ata_port_info * const * ppi,
3168  			   const struct scsi_host_template *sht, void *host_priv,
3169  			   int hflags)
3170  {
3171  	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3172  }
3173  EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3174  
3175  #endif /* CONFIG_PCI */
3176  #endif /* CONFIG_ATA_BMDMA */
3177  
3178  /**
3179   *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3180   *	@ap: Port to initialize
3181   *
3182   *	Called on port allocation to initialize SFF/BMDMA specific
3183   *	fields.
3184   *
3185   *	LOCKING:
3186   *	None.
3187   */
3188  void ata_sff_port_init(struct ata_port *ap)
3189  {
3190  	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3191  	ap->ctl = ATA_DEVCTL_OBS;
3192  	ap->last_ctl = 0xFF;
3193  }
3194  
3195  int __init ata_sff_init(void)
3196  {
3197  	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3198  	if (!ata_sff_wq)
3199  		return -ENOMEM;
3200  
3201  	return 0;
3202  }
3203  
3204  void ata_sff_exit(void)
3205  {
3206  	destroy_workqueue(ata_sff_wq);
3207  }
3208