1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-sff.c - helper library for PCI IDE BMDMA
4 *
5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2006 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/module.h>
19 #include <linux/libata.h>
20 #include <linux/highmem.h>
21 #include <trace/events/libata.h>
22 #include "libata.h"
23
24 static struct workqueue_struct *ata_sff_wq;
25
26 const struct ata_port_operations ata_sff_port_ops = {
27 .inherits = &ata_base_port_ops,
28
29 .qc_prep = ata_noop_qc_prep,
30 .qc_issue = ata_sff_qc_issue,
31 .qc_fill_rtf = ata_sff_qc_fill_rtf,
32
33 .freeze = ata_sff_freeze,
34 .thaw = ata_sff_thaw,
35 .prereset = ata_sff_prereset,
36 .softreset = ata_sff_softreset,
37 .hardreset = sata_sff_hardreset,
38 .postreset = ata_sff_postreset,
39 .error_handler = ata_sff_error_handler,
40
41 .sff_dev_select = ata_sff_dev_select,
42 .sff_check_status = ata_sff_check_status,
43 .sff_tf_load = ata_sff_tf_load,
44 .sff_tf_read = ata_sff_tf_read,
45 .sff_exec_command = ata_sff_exec_command,
46 .sff_data_xfer = ata_sff_data_xfer,
47 .sff_drain_fifo = ata_sff_drain_fifo,
48
49 .lost_interrupt = ata_sff_lost_interrupt,
50 };
51 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
52
53 /**
54 * ata_sff_check_status - Read device status reg & clear interrupt
55 * @ap: port where the device is
56 *
57 * Reads ATA taskfile status register for currently-selected device
58 * and return its value. This also clears pending interrupts
59 * from this device
60 *
61 * LOCKING:
62 * Inherited from caller.
63 */
ata_sff_check_status(struct ata_port * ap)64 u8 ata_sff_check_status(struct ata_port *ap)
65 {
66 return ioread8(ap->ioaddr.status_addr);
67 }
68 EXPORT_SYMBOL_GPL(ata_sff_check_status);
69
70 /**
71 * ata_sff_altstatus - Read device alternate status reg
72 * @ap: port where the device is
73 * @status: pointer to a status value
74 *
75 * Reads ATA alternate status register for currently-selected device
76 * and return its value.
77 *
78 * RETURN:
79 * true if the register exists, false if not.
80 *
81 * LOCKING:
82 * Inherited from caller.
83 */
ata_sff_altstatus(struct ata_port * ap,u8 * status)84 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
85 {
86 u8 tmp;
87
88 if (ap->ops->sff_check_altstatus) {
89 tmp = ap->ops->sff_check_altstatus(ap);
90 goto read;
91 }
92 if (ap->ioaddr.altstatus_addr) {
93 tmp = ioread8(ap->ioaddr.altstatus_addr);
94 goto read;
95 }
96 return false;
97
98 read:
99 if (status)
100 *status = tmp;
101 return true;
102 }
103
104 /**
105 * ata_sff_irq_status - Check if the device is busy
106 * @ap: port where the device is
107 *
108 * Determine if the port is currently busy. Uses altstatus
109 * if available in order to avoid clearing shared IRQ status
110 * when finding an IRQ source. Non ctl capable devices don't
111 * share interrupt lines fortunately for us.
112 *
113 * LOCKING:
114 * Inherited from caller.
115 */
ata_sff_irq_status(struct ata_port * ap)116 static u8 ata_sff_irq_status(struct ata_port *ap)
117 {
118 u8 status;
119
120 /* Not us: We are busy */
121 if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
122 return status;
123 /* Clear INTRQ latch */
124 status = ap->ops->sff_check_status(ap);
125 return status;
126 }
127
128 /**
129 * ata_sff_sync - Flush writes
130 * @ap: Port to wait for.
131 *
132 * CAUTION:
133 * If we have an mmio device with no ctl and no altstatus
134 * method this will fail. No such devices are known to exist.
135 *
136 * LOCKING:
137 * Inherited from caller.
138 */
139
ata_sff_sync(struct ata_port * ap)140 static void ata_sff_sync(struct ata_port *ap)
141 {
142 ata_sff_altstatus(ap, NULL);
143 }
144
145 /**
146 * ata_sff_pause - Flush writes and wait 400nS
147 * @ap: Port to pause for.
148 *
149 * CAUTION:
150 * If we have an mmio device with no ctl and no altstatus
151 * method this will fail. No such devices are known to exist.
152 *
153 * LOCKING:
154 * Inherited from caller.
155 */
156
ata_sff_pause(struct ata_port * ap)157 void ata_sff_pause(struct ata_port *ap)
158 {
159 ata_sff_sync(ap);
160 ndelay(400);
161 }
162 EXPORT_SYMBOL_GPL(ata_sff_pause);
163
164 /**
165 * ata_sff_dma_pause - Pause before commencing DMA
166 * @ap: Port to pause for.
167 *
168 * Perform I/O fencing and ensure sufficient cycle delays occur
169 * for the HDMA1:0 transition
170 */
171
ata_sff_dma_pause(struct ata_port * ap)172 void ata_sff_dma_pause(struct ata_port *ap)
173 {
174 /*
175 * An altstatus read will cause the needed delay without
176 * messing up the IRQ status
177 */
178 if (ata_sff_altstatus(ap, NULL))
179 return;
180 /* There are no DMA controllers without ctl. BUG here to ensure
181 we never violate the HDMA1:0 transition timing and risk
182 corruption. */
183 BUG();
184 }
185 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
186
ata_sff_check_ready(struct ata_link * link)187 static int ata_sff_check_ready(struct ata_link *link)
188 {
189 u8 status = link->ap->ops->sff_check_status(link->ap);
190
191 return ata_check_ready(status);
192 }
193
194 /**
195 * ata_sff_wait_ready - sleep until BSY clears, or timeout
196 * @link: SFF link to wait ready status for
197 * @deadline: deadline jiffies for the operation
198 *
199 * Sleep until ATA Status register bit BSY clears, or timeout
200 * occurs.
201 *
202 * LOCKING:
203 * Kernel thread context (may sleep).
204 *
205 * RETURNS:
206 * 0 on success, -errno otherwise.
207 */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)208 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
209 {
210 return ata_wait_ready(link, deadline, ata_sff_check_ready);
211 }
212 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
213
214 /**
215 * ata_sff_set_devctl - Write device control reg
216 * @ap: port where the device is
217 * @ctl: value to write
218 *
219 * Writes ATA device control register.
220 *
221 * RETURN:
222 * true if the register exists, false if not.
223 *
224 * LOCKING:
225 * Inherited from caller.
226 */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)227 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
228 {
229 if (ap->ops->sff_set_devctl) {
230 ap->ops->sff_set_devctl(ap, ctl);
231 return true;
232 }
233 if (ap->ioaddr.ctl_addr) {
234 iowrite8(ctl, ap->ioaddr.ctl_addr);
235 return true;
236 }
237
238 return false;
239 }
240
241 /**
242 * ata_sff_dev_select - Select device 0/1 on ATA bus
243 * @ap: ATA channel to manipulate
244 * @device: ATA device (numbered from zero) to select
245 *
246 * Use the method defined in the ATA specification to
247 * make either device 0, or device 1, active on the
248 * ATA channel. Works with both PIO and MMIO.
249 *
250 * May be used as the dev_select() entry in ata_port_operations.
251 *
252 * LOCKING:
253 * caller.
254 */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)255 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
256 {
257 u8 tmp;
258
259 if (device == 0)
260 tmp = ATA_DEVICE_OBS;
261 else
262 tmp = ATA_DEVICE_OBS | ATA_DEV1;
263
264 iowrite8(tmp, ap->ioaddr.device_addr);
265 ata_sff_pause(ap); /* needed; also flushes, for mmio */
266 }
267 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
268
269 /**
270 * ata_dev_select - Select device 0/1 on ATA bus
271 * @ap: ATA channel to manipulate
272 * @device: ATA device (numbered from zero) to select
273 * @wait: non-zero to wait for Status register BSY bit to clear
274 * @can_sleep: non-zero if context allows sleeping
275 *
276 * Use the method defined in the ATA specification to
277 * make either device 0, or device 1, active on the
278 * ATA channel.
279 *
280 * This is a high-level version of ata_sff_dev_select(), which
281 * additionally provides the services of inserting the proper
282 * pauses and status polling, where needed.
283 *
284 * LOCKING:
285 * caller.
286 */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)287 static void ata_dev_select(struct ata_port *ap, unsigned int device,
288 unsigned int wait, unsigned int can_sleep)
289 {
290 if (wait)
291 ata_wait_idle(ap);
292
293 ap->ops->sff_dev_select(ap, device);
294
295 if (wait) {
296 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
297 ata_msleep(ap, 150);
298 ata_wait_idle(ap);
299 }
300 }
301
302 /**
303 * ata_sff_irq_on - Enable interrupts on a port.
304 * @ap: Port on which interrupts are enabled.
305 *
306 * Enable interrupts on a legacy IDE device using MMIO or PIO,
307 * wait for idle, clear any pending interrupts.
308 *
309 * Note: may NOT be used as the sff_irq_on() entry in
310 * ata_port_operations.
311 *
312 * LOCKING:
313 * Inherited from caller.
314 */
ata_sff_irq_on(struct ata_port * ap)315 void ata_sff_irq_on(struct ata_port *ap)
316 {
317 if (ap->ops->sff_irq_on) {
318 ap->ops->sff_irq_on(ap);
319 return;
320 }
321
322 ap->ctl &= ~ATA_NIEN;
323 ap->last_ctl = ap->ctl;
324
325 ata_sff_set_devctl(ap, ap->ctl);
326 ata_wait_idle(ap);
327
328 if (ap->ops->sff_irq_clear)
329 ap->ops->sff_irq_clear(ap);
330 }
331 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
332
333 /**
334 * ata_sff_tf_load - send taskfile registers to host controller
335 * @ap: Port to which output is sent
336 * @tf: ATA taskfile register set
337 *
338 * Outputs ATA taskfile to standard ATA host controller.
339 *
340 * LOCKING:
341 * Inherited from caller.
342 */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)343 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
344 {
345 struct ata_ioports *ioaddr = &ap->ioaddr;
346 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
347
348 if (tf->ctl != ap->last_ctl) {
349 if (ioaddr->ctl_addr)
350 iowrite8(tf->ctl, ioaddr->ctl_addr);
351 ap->last_ctl = tf->ctl;
352 ata_wait_idle(ap);
353 }
354
355 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
356 WARN_ON_ONCE(!ioaddr->ctl_addr);
357 iowrite8(tf->hob_feature, ioaddr->feature_addr);
358 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
359 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
360 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
361 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
362 }
363
364 if (is_addr) {
365 iowrite8(tf->feature, ioaddr->feature_addr);
366 iowrite8(tf->nsect, ioaddr->nsect_addr);
367 iowrite8(tf->lbal, ioaddr->lbal_addr);
368 iowrite8(tf->lbam, ioaddr->lbam_addr);
369 iowrite8(tf->lbah, ioaddr->lbah_addr);
370 }
371
372 if (tf->flags & ATA_TFLAG_DEVICE)
373 iowrite8(tf->device, ioaddr->device_addr);
374
375 ata_wait_idle(ap);
376 }
377 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
378
379 /**
380 * ata_sff_tf_read - input device's ATA taskfile shadow registers
381 * @ap: Port from which input is read
382 * @tf: ATA taskfile register set for storing input
383 *
384 * Reads ATA taskfile registers for currently-selected device
385 * into @tf. Assumes the device has a fully SFF compliant task file
386 * layout and behaviour. If you device does not (eg has a different
387 * status method) then you will need to provide a replacement tf_read
388 *
389 * LOCKING:
390 * Inherited from caller.
391 */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)392 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
393 {
394 struct ata_ioports *ioaddr = &ap->ioaddr;
395
396 tf->status = ata_sff_check_status(ap);
397 tf->error = ioread8(ioaddr->error_addr);
398 tf->nsect = ioread8(ioaddr->nsect_addr);
399 tf->lbal = ioread8(ioaddr->lbal_addr);
400 tf->lbam = ioread8(ioaddr->lbam_addr);
401 tf->lbah = ioread8(ioaddr->lbah_addr);
402 tf->device = ioread8(ioaddr->device_addr);
403
404 if (tf->flags & ATA_TFLAG_LBA48) {
405 if (likely(ioaddr->ctl_addr)) {
406 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
407 tf->hob_feature = ioread8(ioaddr->error_addr);
408 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
409 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
410 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
411 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
412 iowrite8(tf->ctl, ioaddr->ctl_addr);
413 ap->last_ctl = tf->ctl;
414 } else
415 WARN_ON_ONCE(1);
416 }
417 }
418 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
419
420 /**
421 * ata_sff_exec_command - issue ATA command to host controller
422 * @ap: port to which command is being issued
423 * @tf: ATA taskfile register set
424 *
425 * Issues ATA command, with proper synchronization with interrupt
426 * handler / other threads.
427 *
428 * LOCKING:
429 * spin_lock_irqsave(host lock)
430 */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)431 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
432 {
433 iowrite8(tf->command, ap->ioaddr.command_addr);
434 ata_sff_pause(ap);
435 }
436 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
437
438 /**
439 * ata_tf_to_host - issue ATA taskfile to host controller
440 * @ap: port to which command is being issued
441 * @tf: ATA taskfile register set
442 * @tag: tag of the associated command
443 *
444 * Issues ATA taskfile register set to ATA host controller,
445 * with proper synchronization with interrupt handler and
446 * other threads.
447 *
448 * LOCKING:
449 * spin_lock_irqsave(host lock)
450 */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf,unsigned int tag)451 static inline void ata_tf_to_host(struct ata_port *ap,
452 const struct ata_taskfile *tf,
453 unsigned int tag)
454 {
455 trace_ata_tf_load(ap, tf);
456 ap->ops->sff_tf_load(ap, tf);
457 trace_ata_exec_command(ap, tf, tag);
458 ap->ops->sff_exec_command(ap, tf);
459 }
460
461 /**
462 * ata_sff_data_xfer - Transfer data by PIO
463 * @qc: queued command
464 * @buf: data buffer
465 * @buflen: buffer length
466 * @rw: read/write
467 *
468 * Transfer data from/to the device data register by PIO.
469 *
470 * LOCKING:
471 * Inherited from caller.
472 *
473 * RETURNS:
474 * Bytes consumed.
475 */
ata_sff_data_xfer(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)476 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
477 unsigned int buflen, int rw)
478 {
479 struct ata_port *ap = qc->dev->link->ap;
480 void __iomem *data_addr = ap->ioaddr.data_addr;
481 unsigned int words = buflen >> 1;
482
483 /* Transfer multiple of 2 bytes */
484 if (rw == READ)
485 ioread16_rep(data_addr, buf, words);
486 else
487 iowrite16_rep(data_addr, buf, words);
488
489 /* Transfer trailing byte, if any. */
490 if (unlikely(buflen & 0x01)) {
491 unsigned char pad[2] = { };
492
493 /* Point buf to the tail of buffer */
494 buf += buflen - 1;
495
496 /*
497 * Use io*16_rep() accessors here as well to avoid pointlessly
498 * swapping bytes to and from on the big endian machines...
499 */
500 if (rw == READ) {
501 ioread16_rep(data_addr, pad, 1);
502 *buf = pad[0];
503 } else {
504 pad[0] = *buf;
505 iowrite16_rep(data_addr, pad, 1);
506 }
507 words++;
508 }
509
510 return words << 1;
511 }
512 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
513
514 /**
515 * ata_sff_data_xfer32 - Transfer data by PIO
516 * @qc: queued command
517 * @buf: data buffer
518 * @buflen: buffer length
519 * @rw: read/write
520 *
521 * Transfer data from/to the device data register by PIO using 32bit
522 * I/O operations.
523 *
524 * LOCKING:
525 * Inherited from caller.
526 *
527 * RETURNS:
528 * Bytes consumed.
529 */
530
ata_sff_data_xfer32(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)531 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
532 unsigned int buflen, int rw)
533 {
534 struct ata_device *dev = qc->dev;
535 struct ata_port *ap = dev->link->ap;
536 void __iomem *data_addr = ap->ioaddr.data_addr;
537 unsigned int words = buflen >> 2;
538 int slop = buflen & 3;
539
540 if (!(ap->pflags & ATA_PFLAG_PIO32))
541 return ata_sff_data_xfer(qc, buf, buflen, rw);
542
543 /* Transfer multiple of 4 bytes */
544 if (rw == READ)
545 ioread32_rep(data_addr, buf, words);
546 else
547 iowrite32_rep(data_addr, buf, words);
548
549 /* Transfer trailing bytes, if any */
550 if (unlikely(slop)) {
551 unsigned char pad[4] = { };
552
553 /* Point buf to the tail of buffer */
554 buf += buflen - slop;
555
556 /*
557 * Use io*_rep() accessors here as well to avoid pointlessly
558 * swapping bytes to and from on the big endian machines...
559 */
560 if (rw == READ) {
561 if (slop < 3)
562 ioread16_rep(data_addr, pad, 1);
563 else
564 ioread32_rep(data_addr, pad, 1);
565 memcpy(buf, pad, slop);
566 } else {
567 memcpy(pad, buf, slop);
568 if (slop < 3)
569 iowrite16_rep(data_addr, pad, 1);
570 else
571 iowrite32_rep(data_addr, pad, 1);
572 }
573 }
574 return (buflen + 1) & ~1;
575 }
576 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
577
ata_pio_xfer(struct ata_queued_cmd * qc,struct page * page,unsigned int offset,size_t xfer_size)578 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
579 unsigned int offset, size_t xfer_size)
580 {
581 bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
582 unsigned char *buf;
583
584 buf = kmap_atomic(page);
585 qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
586 kunmap_atomic(buf);
587
588 if (!do_write && !PageSlab(page))
589 flush_dcache_page(page);
590 }
591
592 /**
593 * ata_pio_sector - Transfer a sector of data.
594 * @qc: Command on going
595 *
596 * Transfer qc->sect_size bytes of data from/to the ATA device.
597 *
598 * LOCKING:
599 * Inherited from caller.
600 */
ata_pio_sector(struct ata_queued_cmd * qc)601 static void ata_pio_sector(struct ata_queued_cmd *qc)
602 {
603 struct ata_port *ap = qc->ap;
604 struct page *page;
605 unsigned int offset;
606
607 if (!qc->cursg) {
608 qc->curbytes = qc->nbytes;
609 return;
610 }
611 if (qc->curbytes == qc->nbytes - qc->sect_size)
612 ap->hsm_task_state = HSM_ST_LAST;
613
614 page = sg_page(qc->cursg);
615 offset = qc->cursg->offset + qc->cursg_ofs;
616
617 /* get the current page and offset */
618 page = nth_page(page, (offset >> PAGE_SHIFT));
619 offset %= PAGE_SIZE;
620
621 trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
622
623 /*
624 * Split the transfer when it splits a page boundary. Note that the
625 * split still has to be dword aligned like all ATA data transfers.
626 */
627 WARN_ON_ONCE(offset % 4);
628 if (offset + qc->sect_size > PAGE_SIZE) {
629 unsigned int split_len = PAGE_SIZE - offset;
630
631 ata_pio_xfer(qc, page, offset, split_len);
632 ata_pio_xfer(qc, nth_page(page, 1), 0,
633 qc->sect_size - split_len);
634 } else {
635 ata_pio_xfer(qc, page, offset, qc->sect_size);
636 }
637
638 qc->curbytes += qc->sect_size;
639 qc->cursg_ofs += qc->sect_size;
640
641 if (qc->cursg_ofs == qc->cursg->length) {
642 qc->cursg = sg_next(qc->cursg);
643 if (!qc->cursg)
644 ap->hsm_task_state = HSM_ST_LAST;
645 qc->cursg_ofs = 0;
646 }
647 }
648
649 /**
650 * ata_pio_sectors - Transfer one or many sectors.
651 * @qc: Command on going
652 *
653 * Transfer one or many sectors of data from/to the
654 * ATA device for the DRQ request.
655 *
656 * LOCKING:
657 * Inherited from caller.
658 */
ata_pio_sectors(struct ata_queued_cmd * qc)659 static void ata_pio_sectors(struct ata_queued_cmd *qc)
660 {
661 if (is_multi_taskfile(&qc->tf)) {
662 /* READ/WRITE MULTIPLE */
663 unsigned int nsect;
664
665 WARN_ON_ONCE(qc->dev->multi_count == 0);
666
667 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
668 qc->dev->multi_count);
669 while (nsect--)
670 ata_pio_sector(qc);
671 } else
672 ata_pio_sector(qc);
673
674 ata_sff_sync(qc->ap); /* flush */
675 }
676
677 /**
678 * atapi_send_cdb - Write CDB bytes to hardware
679 * @ap: Port to which ATAPI device is attached.
680 * @qc: Taskfile currently active
681 *
682 * When device has indicated its readiness to accept
683 * a CDB, this function is called. Send the CDB.
684 *
685 * LOCKING:
686 * caller.
687 */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)688 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
689 {
690 /* send SCSI cdb */
691 trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
692 WARN_ON_ONCE(qc->dev->cdb_len < 12);
693
694 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
695 ata_sff_sync(ap);
696 /* FIXME: If the CDB is for DMA do we need to do the transition delay
697 or is bmdma_start guaranteed to do it ? */
698 switch (qc->tf.protocol) {
699 case ATAPI_PROT_PIO:
700 ap->hsm_task_state = HSM_ST;
701 break;
702 case ATAPI_PROT_NODATA:
703 ap->hsm_task_state = HSM_ST_LAST;
704 break;
705 #ifdef CONFIG_ATA_BMDMA
706 case ATAPI_PROT_DMA:
707 ap->hsm_task_state = HSM_ST_LAST;
708 /* initiate bmdma */
709 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
710 ap->ops->bmdma_start(qc);
711 break;
712 #endif /* CONFIG_ATA_BMDMA */
713 default:
714 BUG();
715 }
716 }
717
718 /**
719 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
720 * @qc: Command on going
721 * @bytes: number of bytes
722 *
723 * Transfer data from/to the ATAPI device.
724 *
725 * LOCKING:
726 * Inherited from caller.
727 *
728 */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)729 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
730 {
731 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
732 struct ata_port *ap = qc->ap;
733 struct ata_device *dev = qc->dev;
734 struct ata_eh_info *ehi = &dev->link->eh_info;
735 struct scatterlist *sg;
736 struct page *page;
737 unsigned char *buf;
738 unsigned int offset, count, consumed;
739
740 next_sg:
741 sg = qc->cursg;
742 if (unlikely(!sg)) {
743 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
744 "buf=%u cur=%u bytes=%u",
745 qc->nbytes, qc->curbytes, bytes);
746 return -1;
747 }
748
749 page = sg_page(sg);
750 offset = sg->offset + qc->cursg_ofs;
751
752 /* get the current page and offset */
753 page = nth_page(page, (offset >> PAGE_SHIFT));
754 offset %= PAGE_SIZE;
755
756 /* don't overrun current sg */
757 count = min(sg->length - qc->cursg_ofs, bytes);
758
759 /* don't cross page boundaries */
760 count = min(count, (unsigned int)PAGE_SIZE - offset);
761
762 trace_atapi_pio_transfer_data(qc, offset, count);
763
764 /* do the actual data transfer */
765 buf = kmap_atomic(page);
766 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
767 kunmap_atomic(buf);
768
769 bytes -= min(bytes, consumed);
770 qc->curbytes += count;
771 qc->cursg_ofs += count;
772
773 if (qc->cursg_ofs == sg->length) {
774 qc->cursg = sg_next(qc->cursg);
775 qc->cursg_ofs = 0;
776 }
777
778 /*
779 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
780 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
781 * check correctly as it doesn't know if it is the last request being
782 * made. Somebody should implement a proper sanity check.
783 */
784 if (bytes)
785 goto next_sg;
786 return 0;
787 }
788
789 /**
790 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
791 * @qc: Command on going
792 *
793 * Transfer Transfer data from/to the ATAPI device.
794 *
795 * LOCKING:
796 * Inherited from caller.
797 */
atapi_pio_bytes(struct ata_queued_cmd * qc)798 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
799 {
800 struct ata_port *ap = qc->ap;
801 struct ata_device *dev = qc->dev;
802 struct ata_eh_info *ehi = &dev->link->eh_info;
803 unsigned int ireason, bc_lo, bc_hi, bytes;
804 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
805
806 /* Abuse qc->result_tf for temp storage of intermediate TF
807 * here to save some kernel stack usage.
808 * For normal completion, qc->result_tf is not relevant. For
809 * error, qc->result_tf is later overwritten by ata_qc_complete().
810 * So, the correctness of qc->result_tf is not affected.
811 */
812 ap->ops->sff_tf_read(ap, &qc->result_tf);
813 ireason = qc->result_tf.nsect;
814 bc_lo = qc->result_tf.lbam;
815 bc_hi = qc->result_tf.lbah;
816 bytes = (bc_hi << 8) | bc_lo;
817
818 /* shall be cleared to zero, indicating xfer of data */
819 if (unlikely(ireason & ATAPI_COD))
820 goto atapi_check;
821
822 /* make sure transfer direction matches expected */
823 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
824 if (unlikely(do_write != i_write))
825 goto atapi_check;
826
827 if (unlikely(!bytes))
828 goto atapi_check;
829
830 if (unlikely(__atapi_pio_bytes(qc, bytes)))
831 goto err_out;
832 ata_sff_sync(ap); /* flush */
833
834 return;
835
836 atapi_check:
837 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
838 ireason, bytes);
839 err_out:
840 qc->err_mask |= AC_ERR_HSM;
841 ap->hsm_task_state = HSM_ST_ERR;
842 }
843
844 /**
845 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
846 * @ap: the target ata_port
847 * @qc: qc on going
848 *
849 * RETURNS:
850 * 1 if ok in workqueue, 0 otherwise.
851 */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)852 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
853 struct ata_queued_cmd *qc)
854 {
855 if (qc->tf.flags & ATA_TFLAG_POLLING)
856 return 1;
857
858 if (ap->hsm_task_state == HSM_ST_FIRST) {
859 if (qc->tf.protocol == ATA_PROT_PIO &&
860 (qc->tf.flags & ATA_TFLAG_WRITE))
861 return 1;
862
863 if (ata_is_atapi(qc->tf.protocol) &&
864 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
865 return 1;
866 }
867
868 return 0;
869 }
870
871 /**
872 * ata_hsm_qc_complete - finish a qc running on standard HSM
873 * @qc: Command to complete
874 * @in_wq: 1 if called from workqueue, 0 otherwise
875 *
876 * Finish @qc which is running on standard HSM.
877 *
878 * LOCKING:
879 * If @in_wq is zero, spin_lock_irqsave(host lock).
880 * Otherwise, none on entry and grabs host lock.
881 */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)882 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
883 {
884 struct ata_port *ap = qc->ap;
885
886 if (in_wq) {
887 /* EH might have kicked in while host lock is released. */
888 qc = ata_qc_from_tag(ap, qc->tag);
889 if (qc) {
890 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
891 ata_sff_irq_on(ap);
892 ata_qc_complete(qc);
893 } else
894 ata_port_freeze(ap);
895 }
896 } else {
897 if (likely(!(qc->err_mask & AC_ERR_HSM)))
898 ata_qc_complete(qc);
899 else
900 ata_port_freeze(ap);
901 }
902 }
903
904 /**
905 * ata_sff_hsm_move - move the HSM to the next state.
906 * @ap: the target ata_port
907 * @qc: qc on going
908 * @status: current device status
909 * @in_wq: 1 if called from workqueue, 0 otherwise
910 *
911 * RETURNS:
912 * 1 when poll next status needed, 0 otherwise.
913 */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)914 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
915 u8 status, int in_wq)
916 {
917 struct ata_link *link = qc->dev->link;
918 struct ata_eh_info *ehi = &link->eh_info;
919 int poll_next;
920
921 lockdep_assert_held(ap->lock);
922
923 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
924
925 /* Make sure ata_sff_qc_issue() does not throw things
926 * like DMA polling into the workqueue. Notice that
927 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
928 */
929 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
930
931 fsm_start:
932 trace_ata_sff_hsm_state(qc, status);
933
934 switch (ap->hsm_task_state) {
935 case HSM_ST_FIRST:
936 /* Send first data block or PACKET CDB */
937
938 /* If polling, we will stay in the work queue after
939 * sending the data. Otherwise, interrupt handler
940 * takes over after sending the data.
941 */
942 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
943
944 /* check device status */
945 if (unlikely((status & ATA_DRQ) == 0)) {
946 /* handle BSY=0, DRQ=0 as error */
947 if (likely(status & (ATA_ERR | ATA_DF)))
948 /* device stops HSM for abort/error */
949 qc->err_mask |= AC_ERR_DEV;
950 else {
951 /* HSM violation. Let EH handle this */
952 ata_ehi_push_desc(ehi,
953 "ST_FIRST: !(DRQ|ERR|DF)");
954 qc->err_mask |= AC_ERR_HSM;
955 }
956
957 ap->hsm_task_state = HSM_ST_ERR;
958 goto fsm_start;
959 }
960
961 /* Device should not ask for data transfer (DRQ=1)
962 * when it finds something wrong.
963 * We ignore DRQ here and stop the HSM by
964 * changing hsm_task_state to HSM_ST_ERR and
965 * let the EH abort the command or reset the device.
966 */
967 if (unlikely(status & (ATA_ERR | ATA_DF))) {
968 /* Some ATAPI tape drives forget to clear the ERR bit
969 * when doing the next command (mostly request sense).
970 * We ignore ERR here to workaround and proceed sending
971 * the CDB.
972 */
973 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
974 ata_ehi_push_desc(ehi, "ST_FIRST: "
975 "DRQ=1 with device error, "
976 "dev_stat 0x%X", status);
977 qc->err_mask |= AC_ERR_HSM;
978 ap->hsm_task_state = HSM_ST_ERR;
979 goto fsm_start;
980 }
981 }
982
983 if (qc->tf.protocol == ATA_PROT_PIO) {
984 /* PIO data out protocol.
985 * send first data block.
986 */
987
988 /* ata_pio_sectors() might change the state
989 * to HSM_ST_LAST. so, the state is changed here
990 * before ata_pio_sectors().
991 */
992 ap->hsm_task_state = HSM_ST;
993 ata_pio_sectors(qc);
994 } else
995 /* send CDB */
996 atapi_send_cdb(ap, qc);
997
998 /* if polling, ata_sff_pio_task() handles the rest.
999 * otherwise, interrupt handler takes over from here.
1000 */
1001 break;
1002
1003 case HSM_ST:
1004 /* complete command or read/write the data register */
1005 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1006 /* ATAPI PIO protocol */
1007 if ((status & ATA_DRQ) == 0) {
1008 /* No more data to transfer or device error.
1009 * Device error will be tagged in HSM_ST_LAST.
1010 */
1011 ap->hsm_task_state = HSM_ST_LAST;
1012 goto fsm_start;
1013 }
1014
1015 /* Device should not ask for data transfer (DRQ=1)
1016 * when it finds something wrong.
1017 * We ignore DRQ here and stop the HSM by
1018 * changing hsm_task_state to HSM_ST_ERR and
1019 * let the EH abort the command or reset the device.
1020 */
1021 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1022 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1023 "DRQ=1 with device error, "
1024 "dev_stat 0x%X", status);
1025 qc->err_mask |= AC_ERR_HSM;
1026 ap->hsm_task_state = HSM_ST_ERR;
1027 goto fsm_start;
1028 }
1029
1030 atapi_pio_bytes(qc);
1031
1032 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1033 /* bad ireason reported by device */
1034 goto fsm_start;
1035
1036 } else {
1037 /* ATA PIO protocol */
1038 if (unlikely((status & ATA_DRQ) == 0)) {
1039 /* handle BSY=0, DRQ=0 as error */
1040 if (likely(status & (ATA_ERR | ATA_DF))) {
1041 /* device stops HSM for abort/error */
1042 qc->err_mask |= AC_ERR_DEV;
1043
1044 /* If diagnostic failed and this is
1045 * IDENTIFY, it's likely a phantom
1046 * device. Mark hint.
1047 */
1048 if (qc->dev->horkage &
1049 ATA_HORKAGE_DIAGNOSTIC)
1050 qc->err_mask |=
1051 AC_ERR_NODEV_HINT;
1052 } else {
1053 /* HSM violation. Let EH handle this.
1054 * Phantom devices also trigger this
1055 * condition. Mark hint.
1056 */
1057 ata_ehi_push_desc(ehi, "ST-ATA: "
1058 "DRQ=0 without device error, "
1059 "dev_stat 0x%X", status);
1060 qc->err_mask |= AC_ERR_HSM |
1061 AC_ERR_NODEV_HINT;
1062 }
1063
1064 ap->hsm_task_state = HSM_ST_ERR;
1065 goto fsm_start;
1066 }
1067
1068 /* For PIO reads, some devices may ask for
1069 * data transfer (DRQ=1) alone with ERR=1.
1070 * We respect DRQ here and transfer one
1071 * block of junk data before changing the
1072 * hsm_task_state to HSM_ST_ERR.
1073 *
1074 * For PIO writes, ERR=1 DRQ=1 doesn't make
1075 * sense since the data block has been
1076 * transferred to the device.
1077 */
1078 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1079 /* data might be corrputed */
1080 qc->err_mask |= AC_ERR_DEV;
1081
1082 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1083 ata_pio_sectors(qc);
1084 status = ata_wait_idle(ap);
1085 }
1086
1087 if (status & (ATA_BUSY | ATA_DRQ)) {
1088 ata_ehi_push_desc(ehi, "ST-ATA: "
1089 "BUSY|DRQ persists on ERR|DF, "
1090 "dev_stat 0x%X", status);
1091 qc->err_mask |= AC_ERR_HSM;
1092 }
1093
1094 /* There are oddball controllers with
1095 * status register stuck at 0x7f and
1096 * lbal/m/h at zero which makes it
1097 * pass all other presence detection
1098 * mechanisms we have. Set NODEV_HINT
1099 * for it. Kernel bz#7241.
1100 */
1101 if (status == 0x7f)
1102 qc->err_mask |= AC_ERR_NODEV_HINT;
1103
1104 /* ata_pio_sectors() might change the
1105 * state to HSM_ST_LAST. so, the state
1106 * is changed after ata_pio_sectors().
1107 */
1108 ap->hsm_task_state = HSM_ST_ERR;
1109 goto fsm_start;
1110 }
1111
1112 ata_pio_sectors(qc);
1113
1114 if (ap->hsm_task_state == HSM_ST_LAST &&
1115 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1116 /* all data read */
1117 status = ata_wait_idle(ap);
1118 goto fsm_start;
1119 }
1120 }
1121
1122 poll_next = 1;
1123 break;
1124
1125 case HSM_ST_LAST:
1126 if (unlikely(!ata_ok(status))) {
1127 qc->err_mask |= __ac_err_mask(status);
1128 ap->hsm_task_state = HSM_ST_ERR;
1129 goto fsm_start;
1130 }
1131
1132 /* no more data to transfer */
1133 trace_ata_sff_hsm_command_complete(qc, status);
1134
1135 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1136
1137 ap->hsm_task_state = HSM_ST_IDLE;
1138
1139 /* complete taskfile transaction */
1140 ata_hsm_qc_complete(qc, in_wq);
1141
1142 poll_next = 0;
1143 break;
1144
1145 case HSM_ST_ERR:
1146 ap->hsm_task_state = HSM_ST_IDLE;
1147
1148 /* complete taskfile transaction */
1149 ata_hsm_qc_complete(qc, in_wq);
1150
1151 poll_next = 0;
1152 break;
1153 default:
1154 poll_next = 0;
1155 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1156 ap->print_id, ap->hsm_task_state);
1157 }
1158
1159 return poll_next;
1160 }
1161 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1162
ata_sff_queue_work(struct work_struct * work)1163 void ata_sff_queue_work(struct work_struct *work)
1164 {
1165 queue_work(ata_sff_wq, work);
1166 }
1167 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1168
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1169 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1170 {
1171 queue_delayed_work(ata_sff_wq, dwork, delay);
1172 }
1173 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1174
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1175 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1176 {
1177 struct ata_port *ap = link->ap;
1178
1179 WARN_ON((ap->sff_pio_task_link != NULL) &&
1180 (ap->sff_pio_task_link != link));
1181 ap->sff_pio_task_link = link;
1182
1183 /* may fail if ata_sff_flush_pio_task() in progress */
1184 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1185 }
1186 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1187
ata_sff_flush_pio_task(struct ata_port * ap)1188 void ata_sff_flush_pio_task(struct ata_port *ap)
1189 {
1190 trace_ata_sff_flush_pio_task(ap);
1191
1192 cancel_delayed_work_sync(&ap->sff_pio_task);
1193
1194 /*
1195 * We wanna reset the HSM state to IDLE. If we do so without
1196 * grabbing the port lock, critical sections protected by it which
1197 * expect the HSM state to stay stable may get surprised. For
1198 * example, we may set IDLE in between the time
1199 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1200 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1201 */
1202 spin_lock_irq(ap->lock);
1203 ap->hsm_task_state = HSM_ST_IDLE;
1204 spin_unlock_irq(ap->lock);
1205
1206 ap->sff_pio_task_link = NULL;
1207 }
1208
ata_sff_pio_task(struct work_struct * work)1209 static void ata_sff_pio_task(struct work_struct *work)
1210 {
1211 struct ata_port *ap =
1212 container_of(work, struct ata_port, sff_pio_task.work);
1213 struct ata_link *link = ap->sff_pio_task_link;
1214 struct ata_queued_cmd *qc;
1215 u8 status;
1216 int poll_next;
1217
1218 spin_lock_irq(ap->lock);
1219
1220 BUG_ON(ap->sff_pio_task_link == NULL);
1221 /* qc can be NULL if timeout occurred */
1222 qc = ata_qc_from_tag(ap, link->active_tag);
1223 if (!qc) {
1224 ap->sff_pio_task_link = NULL;
1225 goto out_unlock;
1226 }
1227
1228 fsm_start:
1229 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1230
1231 /*
1232 * This is purely heuristic. This is a fast path.
1233 * Sometimes when we enter, BSY will be cleared in
1234 * a chk-status or two. If not, the drive is probably seeking
1235 * or something. Snooze for a couple msecs, then
1236 * chk-status again. If still busy, queue delayed work.
1237 */
1238 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1239 if (status & ATA_BUSY) {
1240 spin_unlock_irq(ap->lock);
1241 ata_msleep(ap, 2);
1242 spin_lock_irq(ap->lock);
1243
1244 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1245 if (status & ATA_BUSY) {
1246 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1247 goto out_unlock;
1248 }
1249 }
1250
1251 /*
1252 * hsm_move() may trigger another command to be processed.
1253 * clean the link beforehand.
1254 */
1255 ap->sff_pio_task_link = NULL;
1256 /* move the HSM */
1257 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1258
1259 /* another command or interrupt handler
1260 * may be running at this point.
1261 */
1262 if (poll_next)
1263 goto fsm_start;
1264 out_unlock:
1265 spin_unlock_irq(ap->lock);
1266 }
1267
1268 /**
1269 * ata_sff_qc_issue - issue taskfile to a SFF controller
1270 * @qc: command to issue to device
1271 *
1272 * This function issues a PIO or NODATA command to a SFF
1273 * controller.
1274 *
1275 * LOCKING:
1276 * spin_lock_irqsave(host lock)
1277 *
1278 * RETURNS:
1279 * Zero on success, AC_ERR_* mask on failure
1280 */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1281 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1282 {
1283 struct ata_port *ap = qc->ap;
1284 struct ata_link *link = qc->dev->link;
1285
1286 /* Use polling pio if the LLD doesn't handle
1287 * interrupt driven pio and atapi CDB interrupt.
1288 */
1289 if (ap->flags & ATA_FLAG_PIO_POLLING)
1290 qc->tf.flags |= ATA_TFLAG_POLLING;
1291
1292 /* select the device */
1293 ata_dev_select(ap, qc->dev->devno, 1, 0);
1294
1295 /* start the command */
1296 switch (qc->tf.protocol) {
1297 case ATA_PROT_NODATA:
1298 if (qc->tf.flags & ATA_TFLAG_POLLING)
1299 ata_qc_set_polling(qc);
1300
1301 ata_tf_to_host(ap, &qc->tf, qc->tag);
1302 ap->hsm_task_state = HSM_ST_LAST;
1303
1304 if (qc->tf.flags & ATA_TFLAG_POLLING)
1305 ata_sff_queue_pio_task(link, 0);
1306
1307 break;
1308
1309 case ATA_PROT_PIO:
1310 if (qc->tf.flags & ATA_TFLAG_POLLING)
1311 ata_qc_set_polling(qc);
1312
1313 ata_tf_to_host(ap, &qc->tf, qc->tag);
1314
1315 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1316 /* PIO data out protocol */
1317 ap->hsm_task_state = HSM_ST_FIRST;
1318 ata_sff_queue_pio_task(link, 0);
1319
1320 /* always send first data block using the
1321 * ata_sff_pio_task() codepath.
1322 */
1323 } else {
1324 /* PIO data in protocol */
1325 ap->hsm_task_state = HSM_ST;
1326
1327 if (qc->tf.flags & ATA_TFLAG_POLLING)
1328 ata_sff_queue_pio_task(link, 0);
1329
1330 /* if polling, ata_sff_pio_task() handles the
1331 * rest. otherwise, interrupt handler takes
1332 * over from here.
1333 */
1334 }
1335
1336 break;
1337
1338 case ATAPI_PROT_PIO:
1339 case ATAPI_PROT_NODATA:
1340 if (qc->tf.flags & ATA_TFLAG_POLLING)
1341 ata_qc_set_polling(qc);
1342
1343 ata_tf_to_host(ap, &qc->tf, qc->tag);
1344
1345 ap->hsm_task_state = HSM_ST_FIRST;
1346
1347 /* send cdb by polling if no cdb interrupt */
1348 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1349 (qc->tf.flags & ATA_TFLAG_POLLING))
1350 ata_sff_queue_pio_task(link, 0);
1351 break;
1352
1353 default:
1354 return AC_ERR_SYSTEM;
1355 }
1356
1357 return 0;
1358 }
1359 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1360
1361 /**
1362 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1363 * @qc: qc to fill result TF for
1364 *
1365 * @qc is finished and result TF needs to be filled. Fill it
1366 * using ->sff_tf_read.
1367 *
1368 * LOCKING:
1369 * spin_lock_irqsave(host lock)
1370 */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1371 void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1372 {
1373 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1374 }
1375 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1376
ata_sff_idle_irq(struct ata_port * ap)1377 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1378 {
1379 ap->stats.idle_irq++;
1380
1381 #ifdef ATA_IRQ_TRAP
1382 if ((ap->stats.idle_irq % 1000) == 0) {
1383 ap->ops->sff_check_status(ap);
1384 if (ap->ops->sff_irq_clear)
1385 ap->ops->sff_irq_clear(ap);
1386 ata_port_warn(ap, "irq trap\n");
1387 return 1;
1388 }
1389 #endif
1390 return 0; /* irq not handled */
1391 }
1392
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1393 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1394 struct ata_queued_cmd *qc,
1395 bool hsmv_on_idle)
1396 {
1397 u8 status;
1398
1399 trace_ata_sff_port_intr(qc, hsmv_on_idle);
1400
1401 /* Check whether we are expecting interrupt in this state */
1402 switch (ap->hsm_task_state) {
1403 case HSM_ST_FIRST:
1404 /* Some pre-ATAPI-4 devices assert INTRQ
1405 * at this state when ready to receive CDB.
1406 */
1407
1408 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1409 * The flag was turned on only for atapi devices. No
1410 * need to check ata_is_atapi(qc->tf.protocol) again.
1411 */
1412 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1413 return ata_sff_idle_irq(ap);
1414 break;
1415 case HSM_ST_IDLE:
1416 return ata_sff_idle_irq(ap);
1417 default:
1418 break;
1419 }
1420
1421 /* check main status, clearing INTRQ if needed */
1422 status = ata_sff_irq_status(ap);
1423 if (status & ATA_BUSY) {
1424 if (hsmv_on_idle) {
1425 /* BMDMA engine is already stopped, we're screwed */
1426 qc->err_mask |= AC_ERR_HSM;
1427 ap->hsm_task_state = HSM_ST_ERR;
1428 } else
1429 return ata_sff_idle_irq(ap);
1430 }
1431
1432 /* clear irq events */
1433 if (ap->ops->sff_irq_clear)
1434 ap->ops->sff_irq_clear(ap);
1435
1436 ata_sff_hsm_move(ap, qc, status, 0);
1437
1438 return 1; /* irq handled */
1439 }
1440
1441 /**
1442 * ata_sff_port_intr - Handle SFF port interrupt
1443 * @ap: Port on which interrupt arrived (possibly...)
1444 * @qc: Taskfile currently active in engine
1445 *
1446 * Handle port interrupt for given queued command.
1447 *
1448 * LOCKING:
1449 * spin_lock_irqsave(host lock)
1450 *
1451 * RETURNS:
1452 * One if interrupt was handled, zero if not (shared irq).
1453 */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1454 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1455 {
1456 return __ata_sff_port_intr(ap, qc, false);
1457 }
1458 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1459
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1460 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1461 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1462 {
1463 struct ata_host *host = dev_instance;
1464 bool retried = false;
1465 unsigned int i;
1466 unsigned int handled, idle, polling;
1467 unsigned long flags;
1468
1469 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1470 spin_lock_irqsave(&host->lock, flags);
1471
1472 retry:
1473 handled = idle = polling = 0;
1474 for (i = 0; i < host->n_ports; i++) {
1475 struct ata_port *ap = host->ports[i];
1476 struct ata_queued_cmd *qc;
1477
1478 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1479 if (qc) {
1480 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1481 handled |= port_intr(ap, qc);
1482 else
1483 polling |= 1 << i;
1484 } else
1485 idle |= 1 << i;
1486 }
1487
1488 /*
1489 * If no port was expecting IRQ but the controller is actually
1490 * asserting IRQ line, nobody cared will ensue. Check IRQ
1491 * pending status if available and clear spurious IRQ.
1492 */
1493 if (!handled && !retried) {
1494 bool retry = false;
1495
1496 for (i = 0; i < host->n_ports; i++) {
1497 struct ata_port *ap = host->ports[i];
1498
1499 if (polling & (1 << i))
1500 continue;
1501
1502 if (!ap->ops->sff_irq_check ||
1503 !ap->ops->sff_irq_check(ap))
1504 continue;
1505
1506 if (idle & (1 << i)) {
1507 ap->ops->sff_check_status(ap);
1508 if (ap->ops->sff_irq_clear)
1509 ap->ops->sff_irq_clear(ap);
1510 } else {
1511 /* clear INTRQ and check if BUSY cleared */
1512 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1513 retry |= true;
1514 /*
1515 * With command in flight, we can't do
1516 * sff_irq_clear() w/o racing with completion.
1517 */
1518 }
1519 }
1520
1521 if (retry) {
1522 retried = true;
1523 goto retry;
1524 }
1525 }
1526
1527 spin_unlock_irqrestore(&host->lock, flags);
1528
1529 return IRQ_RETVAL(handled);
1530 }
1531
1532 /**
1533 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1534 * @irq: irq line (unused)
1535 * @dev_instance: pointer to our ata_host information structure
1536 *
1537 * Default interrupt handler for PCI IDE devices. Calls
1538 * ata_sff_port_intr() for each port that is not disabled.
1539 *
1540 * LOCKING:
1541 * Obtains host lock during operation.
1542 *
1543 * RETURNS:
1544 * IRQ_NONE or IRQ_HANDLED.
1545 */
ata_sff_interrupt(int irq,void * dev_instance)1546 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1547 {
1548 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1549 }
1550 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1551
1552 /**
1553 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1554 * @ap: port that appears to have timed out
1555 *
1556 * Called from the libata error handlers when the core code suspects
1557 * an interrupt has been lost. If it has complete anything we can and
1558 * then return. Interface must support altstatus for this faster
1559 * recovery to occur.
1560 *
1561 * Locking:
1562 * Caller holds host lock
1563 */
1564
ata_sff_lost_interrupt(struct ata_port * ap)1565 void ata_sff_lost_interrupt(struct ata_port *ap)
1566 {
1567 u8 status = 0;
1568 struct ata_queued_cmd *qc;
1569
1570 /* Only one outstanding command per SFF channel */
1571 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1572 /* We cannot lose an interrupt on a non-existent or polled command */
1573 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1574 return;
1575 /* See if the controller thinks it is still busy - if so the command
1576 isn't a lost IRQ but is still in progress */
1577 if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1578 return;
1579 if (status & ATA_BUSY)
1580 return;
1581
1582 /* There was a command running, we are no longer busy and we have
1583 no interrupt. */
1584 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
1585 /* Run the host interrupt logic as if the interrupt had not been
1586 lost */
1587 ata_sff_port_intr(ap, qc);
1588 }
1589 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1590
1591 /**
1592 * ata_sff_freeze - Freeze SFF controller port
1593 * @ap: port to freeze
1594 *
1595 * Freeze SFF controller port.
1596 *
1597 * LOCKING:
1598 * Inherited from caller.
1599 */
ata_sff_freeze(struct ata_port * ap)1600 void ata_sff_freeze(struct ata_port *ap)
1601 {
1602 ap->ctl |= ATA_NIEN;
1603 ap->last_ctl = ap->ctl;
1604
1605 ata_sff_set_devctl(ap, ap->ctl);
1606
1607 /* Under certain circumstances, some controllers raise IRQ on
1608 * ATA_NIEN manipulation. Also, many controllers fail to mask
1609 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1610 */
1611 ap->ops->sff_check_status(ap);
1612
1613 if (ap->ops->sff_irq_clear)
1614 ap->ops->sff_irq_clear(ap);
1615 }
1616 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1617
1618 /**
1619 * ata_sff_thaw - Thaw SFF controller port
1620 * @ap: port to thaw
1621 *
1622 * Thaw SFF controller port.
1623 *
1624 * LOCKING:
1625 * Inherited from caller.
1626 */
ata_sff_thaw(struct ata_port * ap)1627 void ata_sff_thaw(struct ata_port *ap)
1628 {
1629 /* clear & re-enable interrupts */
1630 ap->ops->sff_check_status(ap);
1631 if (ap->ops->sff_irq_clear)
1632 ap->ops->sff_irq_clear(ap);
1633 ata_sff_irq_on(ap);
1634 }
1635 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1636
1637 /**
1638 * ata_sff_prereset - prepare SFF link for reset
1639 * @link: SFF link to be reset
1640 * @deadline: deadline jiffies for the operation
1641 *
1642 * SFF link @link is about to be reset. Initialize it. It first
1643 * calls ata_std_prereset() and wait for !BSY if the port is
1644 * being softreset.
1645 *
1646 * LOCKING:
1647 * Kernel thread context (may sleep)
1648 *
1649 * RETURNS:
1650 * Always 0.
1651 */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1652 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1653 {
1654 struct ata_eh_context *ehc = &link->eh_context;
1655 int rc;
1656
1657 /* The standard prereset is best-effort and always returns 0 */
1658 ata_std_prereset(link, deadline);
1659
1660 /* if we're about to do hardreset, nothing more to do */
1661 if (ehc->i.action & ATA_EH_HARDRESET)
1662 return 0;
1663
1664 /* wait for !BSY if we don't know that no device is attached */
1665 if (!ata_link_offline(link)) {
1666 rc = ata_sff_wait_ready(link, deadline);
1667 if (rc && rc != -ENODEV) {
1668 ata_link_warn(link,
1669 "device not ready (errno=%d), forcing hardreset\n",
1670 rc);
1671 ehc->i.action |= ATA_EH_HARDRESET;
1672 }
1673 }
1674
1675 return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1678
1679 /**
1680 * ata_devchk - PATA device presence detection
1681 * @ap: ATA channel to examine
1682 * @device: Device to examine (starting at zero)
1683 *
1684 * This technique was originally described in
1685 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1686 * later found its way into the ATA/ATAPI spec.
1687 *
1688 * Write a pattern to the ATA shadow registers,
1689 * and if a device is present, it will respond by
1690 * correctly storing and echoing back the
1691 * ATA shadow register contents.
1692 *
1693 * RETURN:
1694 * true if device is present, false if not.
1695 *
1696 * LOCKING:
1697 * caller.
1698 */
ata_devchk(struct ata_port * ap,unsigned int device)1699 static bool ata_devchk(struct ata_port *ap, unsigned int device)
1700 {
1701 struct ata_ioports *ioaddr = &ap->ioaddr;
1702 u8 nsect, lbal;
1703
1704 ap->ops->sff_dev_select(ap, device);
1705
1706 iowrite8(0x55, ioaddr->nsect_addr);
1707 iowrite8(0xaa, ioaddr->lbal_addr);
1708
1709 iowrite8(0xaa, ioaddr->nsect_addr);
1710 iowrite8(0x55, ioaddr->lbal_addr);
1711
1712 iowrite8(0x55, ioaddr->nsect_addr);
1713 iowrite8(0xaa, ioaddr->lbal_addr);
1714
1715 nsect = ioread8(ioaddr->nsect_addr);
1716 lbal = ioread8(ioaddr->lbal_addr);
1717
1718 if ((nsect == 0x55) && (lbal == 0xaa))
1719 return true; /* we found a device */
1720
1721 return false; /* nothing found */
1722 }
1723
1724 /**
1725 * ata_sff_dev_classify - Parse returned ATA device signature
1726 * @dev: ATA device to classify (starting at zero)
1727 * @present: device seems present
1728 * @r_err: Value of error register on completion
1729 *
1730 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1731 * an ATA/ATAPI-defined set of values is placed in the ATA
1732 * shadow registers, indicating the results of device detection
1733 * and diagnostics.
1734 *
1735 * Select the ATA device, and read the values from the ATA shadow
1736 * registers. Then parse according to the Error register value,
1737 * and the spec-defined values examined by ata_dev_classify().
1738 *
1739 * LOCKING:
1740 * caller.
1741 *
1742 * RETURNS:
1743 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1744 */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1745 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1746 u8 *r_err)
1747 {
1748 struct ata_port *ap = dev->link->ap;
1749 struct ata_taskfile tf;
1750 unsigned int class;
1751 u8 err;
1752
1753 ap->ops->sff_dev_select(ap, dev->devno);
1754
1755 memset(&tf, 0, sizeof(tf));
1756
1757 ap->ops->sff_tf_read(ap, &tf);
1758 err = tf.error;
1759 if (r_err)
1760 *r_err = err;
1761
1762 /* see if device passed diags: continue and warn later */
1763 if (err == 0)
1764 /* diagnostic fail : do nothing _YET_ */
1765 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1766 else if (err == 1)
1767 /* do nothing */ ;
1768 else if ((dev->devno == 0) && (err == 0x81))
1769 /* do nothing */ ;
1770 else
1771 return ATA_DEV_NONE;
1772
1773 /* determine if device is ATA or ATAPI */
1774 class = ata_port_classify(ap, &tf);
1775 switch (class) {
1776 case ATA_DEV_UNKNOWN:
1777 /*
1778 * If the device failed diagnostic, it's likely to
1779 * have reported incorrect device signature too.
1780 * Assume ATA device if the device seems present but
1781 * device signature is invalid with diagnostic
1782 * failure.
1783 */
1784 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1785 class = ATA_DEV_ATA;
1786 else
1787 class = ATA_DEV_NONE;
1788 break;
1789 case ATA_DEV_ATA:
1790 if (ap->ops->sff_check_status(ap) == 0)
1791 class = ATA_DEV_NONE;
1792 break;
1793 }
1794 return class;
1795 }
1796 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1797
1798 /**
1799 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1800 * @link: SFF link which is just reset
1801 * @devmask: mask of present devices
1802 * @deadline: deadline jiffies for the operation
1803 *
1804 * Wait devices attached to SFF @link to become ready after
1805 * reset. It contains preceding 150ms wait to avoid accessing TF
1806 * status register too early.
1807 *
1808 * LOCKING:
1809 * Kernel thread context (may sleep).
1810 *
1811 * RETURNS:
1812 * 0 on success, -ENODEV if some or all of devices in @devmask
1813 * don't seem to exist. -errno on other errors.
1814 */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1815 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1816 unsigned long deadline)
1817 {
1818 struct ata_port *ap = link->ap;
1819 struct ata_ioports *ioaddr = &ap->ioaddr;
1820 unsigned int dev0 = devmask & (1 << 0);
1821 unsigned int dev1 = devmask & (1 << 1);
1822 int rc, ret = 0;
1823
1824 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1825
1826 /* always check readiness of the master device */
1827 rc = ata_sff_wait_ready(link, deadline);
1828 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1829 * and TF status is 0xff, bail out on it too.
1830 */
1831 if (rc)
1832 return rc;
1833
1834 /* if device 1 was found in ata_devchk, wait for register
1835 * access briefly, then wait for BSY to clear.
1836 */
1837 if (dev1) {
1838 int i;
1839
1840 ap->ops->sff_dev_select(ap, 1);
1841
1842 /* Wait for register access. Some ATAPI devices fail
1843 * to set nsect/lbal after reset, so don't waste too
1844 * much time on it. We're gonna wait for !BSY anyway.
1845 */
1846 for (i = 0; i < 2; i++) {
1847 u8 nsect, lbal;
1848
1849 nsect = ioread8(ioaddr->nsect_addr);
1850 lbal = ioread8(ioaddr->lbal_addr);
1851 if ((nsect == 1) && (lbal == 1))
1852 break;
1853 ata_msleep(ap, 50); /* give drive a breather */
1854 }
1855
1856 rc = ata_sff_wait_ready(link, deadline);
1857 if (rc) {
1858 if (rc != -ENODEV)
1859 return rc;
1860 ret = rc;
1861 }
1862 }
1863
1864 /* is all this really necessary? */
1865 ap->ops->sff_dev_select(ap, 0);
1866 if (dev1)
1867 ap->ops->sff_dev_select(ap, 1);
1868 if (dev0)
1869 ap->ops->sff_dev_select(ap, 0);
1870
1871 return ret;
1872 }
1873 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1874
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)1875 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1876 unsigned long deadline)
1877 {
1878 struct ata_ioports *ioaddr = &ap->ioaddr;
1879
1880 if (ap->ioaddr.ctl_addr) {
1881 /* software reset. causes dev0 to be selected */
1882 iowrite8(ap->ctl, ioaddr->ctl_addr);
1883 udelay(20); /* FIXME: flush */
1884 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1885 udelay(20); /* FIXME: flush */
1886 iowrite8(ap->ctl, ioaddr->ctl_addr);
1887 ap->last_ctl = ap->ctl;
1888 }
1889
1890 /* wait the port to become ready */
1891 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1892 }
1893
1894 /**
1895 * ata_sff_softreset - reset host port via ATA SRST
1896 * @link: ATA link to reset
1897 * @classes: resulting classes of attached devices
1898 * @deadline: deadline jiffies for the operation
1899 *
1900 * Reset host port using ATA SRST.
1901 *
1902 * LOCKING:
1903 * Kernel thread context (may sleep)
1904 *
1905 * RETURNS:
1906 * 0 on success, -errno otherwise.
1907 */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)1908 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1909 unsigned long deadline)
1910 {
1911 struct ata_port *ap = link->ap;
1912 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1913 unsigned int devmask = 0;
1914 int rc;
1915 u8 err;
1916
1917 /* determine if device 0/1 are present */
1918 if (ata_devchk(ap, 0))
1919 devmask |= (1 << 0);
1920 if (slave_possible && ata_devchk(ap, 1))
1921 devmask |= (1 << 1);
1922
1923 /* select device 0 again */
1924 ap->ops->sff_dev_select(ap, 0);
1925
1926 /* issue bus reset */
1927 rc = ata_bus_softreset(ap, devmask, deadline);
1928 /* if link is occupied, -ENODEV too is an error */
1929 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1930 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1931 return rc;
1932 }
1933
1934 /* determine by signature whether we have ATA or ATAPI devices */
1935 classes[0] = ata_sff_dev_classify(&link->device[0],
1936 devmask & (1 << 0), &err);
1937 if (slave_possible && err != 0x81)
1938 classes[1] = ata_sff_dev_classify(&link->device[1],
1939 devmask & (1 << 1), &err);
1940
1941 return 0;
1942 }
1943 EXPORT_SYMBOL_GPL(ata_sff_softreset);
1944
1945 /**
1946 * sata_sff_hardreset - reset host port via SATA phy reset
1947 * @link: link to reset
1948 * @class: resulting class of attached device
1949 * @deadline: deadline jiffies for the operation
1950 *
1951 * SATA phy-reset host port using DET bits of SControl register,
1952 * wait for !BSY and classify the attached device.
1953 *
1954 * LOCKING:
1955 * Kernel thread context (may sleep)
1956 *
1957 * RETURNS:
1958 * 0 on success, -errno otherwise.
1959 */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)1960 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1961 unsigned long deadline)
1962 {
1963 struct ata_eh_context *ehc = &link->eh_context;
1964 const unsigned int *timing = sata_ehc_deb_timing(ehc);
1965 bool online;
1966 int rc;
1967
1968 rc = sata_link_hardreset(link, timing, deadline, &online,
1969 ata_sff_check_ready);
1970 if (online)
1971 *class = ata_sff_dev_classify(link->device, 1, NULL);
1972
1973 return rc;
1974 }
1975 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
1976
1977 /**
1978 * ata_sff_postreset - SFF postreset callback
1979 * @link: the target SFF ata_link
1980 * @classes: classes of attached devices
1981 *
1982 * This function is invoked after a successful reset. It first
1983 * calls ata_std_postreset() and performs SFF specific postreset
1984 * processing.
1985 *
1986 * LOCKING:
1987 * Kernel thread context (may sleep)
1988 */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)1989 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
1990 {
1991 struct ata_port *ap = link->ap;
1992
1993 ata_std_postreset(link, classes);
1994
1995 /* is double-select really necessary? */
1996 if (classes[0] != ATA_DEV_NONE)
1997 ap->ops->sff_dev_select(ap, 1);
1998 if (classes[1] != ATA_DEV_NONE)
1999 ap->ops->sff_dev_select(ap, 0);
2000
2001 /* bail out if no device is present */
2002 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
2003 return;
2004
2005 /* set up device control */
2006 if (ata_sff_set_devctl(ap, ap->ctl))
2007 ap->last_ctl = ap->ctl;
2008 }
2009 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2010
2011 /**
2012 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2013 * @qc: command
2014 *
2015 * Drain the FIFO and device of any stuck data following a command
2016 * failing to complete. In some cases this is necessary before a
2017 * reset will recover the device.
2018 *
2019 */
2020
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2021 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2022 {
2023 int count;
2024 struct ata_port *ap;
2025
2026 /* We only need to flush incoming data when a command was running */
2027 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2028 return;
2029
2030 ap = qc->ap;
2031 /* Drain up to 64K of data before we give up this recovery method */
2032 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2033 && count < 65536; count += 2)
2034 ioread16(ap->ioaddr.data_addr);
2035
2036 if (count)
2037 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2038
2039 }
2040 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2041
2042 /**
2043 * ata_sff_error_handler - Stock error handler for SFF controller
2044 * @ap: port to handle error for
2045 *
2046 * Stock error handler for SFF controller. It can handle both
2047 * PATA and SATA controllers. Many controllers should be able to
2048 * use this EH as-is or with some added handling before and
2049 * after.
2050 *
2051 * LOCKING:
2052 * Kernel thread context (may sleep)
2053 */
ata_sff_error_handler(struct ata_port * ap)2054 void ata_sff_error_handler(struct ata_port *ap)
2055 {
2056 ata_reset_fn_t softreset = ap->ops->softreset;
2057 ata_reset_fn_t hardreset = ap->ops->hardreset;
2058 struct ata_queued_cmd *qc;
2059 unsigned long flags;
2060
2061 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2062 if (qc && !(qc->flags & ATA_QCFLAG_EH))
2063 qc = NULL;
2064
2065 spin_lock_irqsave(ap->lock, flags);
2066
2067 /*
2068 * We *MUST* do FIFO draining before we issue a reset as
2069 * several devices helpfully clear their internal state and
2070 * will lock solid if we touch the data port post reset. Pass
2071 * qc in case anyone wants to do different PIO/DMA recovery or
2072 * has per command fixups
2073 */
2074 if (ap->ops->sff_drain_fifo)
2075 ap->ops->sff_drain_fifo(qc);
2076
2077 spin_unlock_irqrestore(ap->lock, flags);
2078
2079 /* ignore built-in hardresets if SCR access is not available */
2080 if ((hardreset == sata_std_hardreset ||
2081 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2082 hardreset = NULL;
2083
2084 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2085 ap->ops->postreset);
2086 }
2087 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2088
2089 /**
2090 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2091 * @ioaddr: IO address structure to be initialized
2092 *
2093 * Utility function which initializes data_addr, error_addr,
2094 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2095 * device_addr, status_addr, and command_addr to standard offsets
2096 * relative to cmd_addr.
2097 *
2098 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2099 */
ata_sff_std_ports(struct ata_ioports * ioaddr)2100 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2101 {
2102 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2103 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2104 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2105 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2106 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2107 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2108 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2109 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2110 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2111 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2112 }
2113 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2114
2115 #ifdef CONFIG_PCI
2116
ata_resources_present(struct pci_dev * pdev,int port)2117 static bool ata_resources_present(struct pci_dev *pdev, int port)
2118 {
2119 int i;
2120
2121 /* Check the PCI resources for this channel are enabled */
2122 port *= 2;
2123 for (i = 0; i < 2; i++) {
2124 if (pci_resource_start(pdev, port + i) == 0 ||
2125 pci_resource_len(pdev, port + i) == 0)
2126 return false;
2127 }
2128 return true;
2129 }
2130
2131 /**
2132 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2133 * @host: target ATA host
2134 *
2135 * Acquire native PCI ATA resources for @host and initialize the
2136 * first two ports of @host accordingly. Ports marked dummy are
2137 * skipped and allocation failure makes the port dummy.
2138 *
2139 * Note that native PCI resources are valid even for legacy hosts
2140 * as we fix up pdev resources array early in boot, so this
2141 * function can be used for both native and legacy SFF hosts.
2142 *
2143 * LOCKING:
2144 * Inherited from calling layer (may sleep).
2145 *
2146 * RETURNS:
2147 * 0 if at least one port is initialized, -ENODEV if no port is
2148 * available.
2149 */
ata_pci_sff_init_host(struct ata_host * host)2150 int ata_pci_sff_init_host(struct ata_host *host)
2151 {
2152 struct device *gdev = host->dev;
2153 struct pci_dev *pdev = to_pci_dev(gdev);
2154 unsigned int mask = 0;
2155 int i, rc;
2156
2157 /* request, iomap BARs and init port addresses accordingly */
2158 for (i = 0; i < 2; i++) {
2159 struct ata_port *ap = host->ports[i];
2160 int base = i * 2;
2161 void __iomem * const *iomap;
2162
2163 if (ata_port_is_dummy(ap))
2164 continue;
2165
2166 /* Discard disabled ports. Some controllers show
2167 * their unused channels this way. Disabled ports are
2168 * made dummy.
2169 */
2170 if (!ata_resources_present(pdev, i)) {
2171 ap->ops = &ata_dummy_port_ops;
2172 continue;
2173 }
2174
2175 rc = pcim_iomap_regions(pdev, 0x3 << base,
2176 dev_driver_string(gdev));
2177 if (rc) {
2178 dev_warn(gdev,
2179 "failed to request/iomap BARs for port %d (errno=%d)\n",
2180 i, rc);
2181 if (rc == -EBUSY)
2182 pcim_pin_device(pdev);
2183 ap->ops = &ata_dummy_port_ops;
2184 continue;
2185 }
2186 host->iomap = iomap = pcim_iomap_table(pdev);
2187
2188 ap->ioaddr.cmd_addr = iomap[base];
2189 ap->ioaddr.altstatus_addr =
2190 ap->ioaddr.ctl_addr = (void __iomem *)
2191 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2192 ata_sff_std_ports(&ap->ioaddr);
2193
2194 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2195 (unsigned long long)pci_resource_start(pdev, base),
2196 (unsigned long long)pci_resource_start(pdev, base + 1));
2197
2198 mask |= 1 << i;
2199 }
2200
2201 if (!mask) {
2202 dev_err(gdev, "no available native port\n");
2203 return -ENODEV;
2204 }
2205
2206 return 0;
2207 }
2208 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2209
2210 /**
2211 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2212 * @pdev: target PCI device
2213 * @ppi: array of port_info, must be enough for two ports
2214 * @r_host: out argument for the initialized ATA host
2215 *
2216 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2217 * all PCI resources and initialize it accordingly in one go.
2218 *
2219 * LOCKING:
2220 * Inherited from calling layer (may sleep).
2221 *
2222 * RETURNS:
2223 * 0 on success, -errno otherwise.
2224 */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2225 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2226 const struct ata_port_info * const *ppi,
2227 struct ata_host **r_host)
2228 {
2229 struct ata_host *host;
2230 int rc;
2231
2232 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2233 return -ENOMEM;
2234
2235 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2236 if (!host) {
2237 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2238 rc = -ENOMEM;
2239 goto err_out;
2240 }
2241
2242 rc = ata_pci_sff_init_host(host);
2243 if (rc)
2244 goto err_out;
2245
2246 devres_remove_group(&pdev->dev, NULL);
2247 *r_host = host;
2248 return 0;
2249
2250 err_out:
2251 devres_release_group(&pdev->dev, NULL);
2252 return rc;
2253 }
2254 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2255
2256 /**
2257 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2258 * @host: target SFF ATA host
2259 * @irq_handler: irq_handler used when requesting IRQ(s)
2260 * @sht: scsi_host_template to use when registering the host
2261 *
2262 * This is the counterpart of ata_host_activate() for SFF ATA
2263 * hosts. This separate helper is necessary because SFF hosts
2264 * use two separate interrupts in legacy mode.
2265 *
2266 * LOCKING:
2267 * Inherited from calling layer (may sleep).
2268 *
2269 * RETURNS:
2270 * 0 on success, -errno otherwise.
2271 */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,const struct scsi_host_template * sht)2272 int ata_pci_sff_activate_host(struct ata_host *host,
2273 irq_handler_t irq_handler,
2274 const struct scsi_host_template *sht)
2275 {
2276 struct device *dev = host->dev;
2277 struct pci_dev *pdev = to_pci_dev(dev);
2278 const char *drv_name = dev_driver_string(host->dev);
2279 int legacy_mode = 0, rc;
2280
2281 rc = ata_host_start(host);
2282 if (rc)
2283 return rc;
2284
2285 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2286 u8 tmp8, mask = 0;
2287
2288 /*
2289 * ATA spec says we should use legacy mode when one
2290 * port is in legacy mode, but disabled ports on some
2291 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2292 * on which the secondary port is not wired, so
2293 * ignore ports that are marked as 'dummy' during
2294 * this check
2295 */
2296 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2297 if (!ata_port_is_dummy(host->ports[0]))
2298 mask |= (1 << 0);
2299 if (!ata_port_is_dummy(host->ports[1]))
2300 mask |= (1 << 2);
2301 if ((tmp8 & mask) != mask)
2302 legacy_mode = 1;
2303 }
2304
2305 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2306 return -ENOMEM;
2307
2308 if (!legacy_mode && pdev->irq) {
2309 int i;
2310
2311 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2312 IRQF_SHARED, drv_name, host);
2313 if (rc)
2314 goto out;
2315
2316 for (i = 0; i < 2; i++) {
2317 if (ata_port_is_dummy(host->ports[i]))
2318 continue;
2319 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2320 }
2321 } else if (legacy_mode) {
2322 if (!ata_port_is_dummy(host->ports[0])) {
2323 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2324 irq_handler, IRQF_SHARED,
2325 drv_name, host);
2326 if (rc)
2327 goto out;
2328
2329 ata_port_desc(host->ports[0], "irq %d",
2330 ATA_PRIMARY_IRQ(pdev));
2331 }
2332
2333 if (!ata_port_is_dummy(host->ports[1])) {
2334 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2335 irq_handler, IRQF_SHARED,
2336 drv_name, host);
2337 if (rc)
2338 goto out;
2339
2340 ata_port_desc(host->ports[1], "irq %d",
2341 ATA_SECONDARY_IRQ(pdev));
2342 }
2343 }
2344
2345 rc = ata_host_register(host, sht);
2346 out:
2347 if (rc == 0)
2348 devres_remove_group(dev, NULL);
2349 else
2350 devres_release_group(dev, NULL);
2351
2352 return rc;
2353 }
2354 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2355
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2356 static const struct ata_port_info *ata_sff_find_valid_pi(
2357 const struct ata_port_info * const *ppi)
2358 {
2359 int i;
2360
2361 /* look up the first valid port_info */
2362 for (i = 0; i < 2 && ppi[i]; i++)
2363 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2364 return ppi[i];
2365
2366 return NULL;
2367 }
2368
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,const struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2369 static int ata_pci_init_one(struct pci_dev *pdev,
2370 const struct ata_port_info * const *ppi,
2371 const struct scsi_host_template *sht, void *host_priv,
2372 int hflags, bool bmdma)
2373 {
2374 struct device *dev = &pdev->dev;
2375 const struct ata_port_info *pi;
2376 struct ata_host *host = NULL;
2377 int rc;
2378
2379 pi = ata_sff_find_valid_pi(ppi);
2380 if (!pi) {
2381 dev_err(&pdev->dev, "no valid port_info specified\n");
2382 return -EINVAL;
2383 }
2384
2385 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2386 return -ENOMEM;
2387
2388 rc = pcim_enable_device(pdev);
2389 if (rc)
2390 goto out;
2391
2392 #ifdef CONFIG_ATA_BMDMA
2393 if (bmdma)
2394 /* prepare and activate BMDMA host */
2395 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2396 else
2397 #endif
2398 /* prepare and activate SFF host */
2399 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2400 if (rc)
2401 goto out;
2402 host->private_data = host_priv;
2403 host->flags |= hflags;
2404
2405 #ifdef CONFIG_ATA_BMDMA
2406 if (bmdma) {
2407 pci_set_master(pdev);
2408 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2409 } else
2410 #endif
2411 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2412 out:
2413 if (rc == 0)
2414 devres_remove_group(&pdev->dev, NULL);
2415 else
2416 devres_release_group(&pdev->dev, NULL);
2417
2418 return rc;
2419 }
2420
2421 /**
2422 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2423 * @pdev: Controller to be initialized
2424 * @ppi: array of port_info, must be enough for two ports
2425 * @sht: scsi_host_template to use when registering the host
2426 * @host_priv: host private_data
2427 * @hflag: host flags
2428 *
2429 * This is a helper function which can be called from a driver's
2430 * xxx_init_one() probe function if the hardware uses traditional
2431 * IDE taskfile registers and is PIO only.
2432 *
2433 * ASSUMPTION:
2434 * Nobody makes a single channel controller that appears solely as
2435 * the secondary legacy port on PCI.
2436 *
2437 * LOCKING:
2438 * Inherited from PCI layer (may sleep).
2439 *
2440 * RETURNS:
2441 * Zero on success, negative on errno-based value on error.
2442 */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,const struct scsi_host_template * sht,void * host_priv,int hflag)2443 int ata_pci_sff_init_one(struct pci_dev *pdev,
2444 const struct ata_port_info * const *ppi,
2445 const struct scsi_host_template *sht, void *host_priv, int hflag)
2446 {
2447 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2448 }
2449 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2450
2451 #endif /* CONFIG_PCI */
2452
2453 /*
2454 * BMDMA support
2455 */
2456
2457 #ifdef CONFIG_ATA_BMDMA
2458
2459 const struct ata_port_operations ata_bmdma_port_ops = {
2460 .inherits = &ata_sff_port_ops,
2461
2462 .error_handler = ata_bmdma_error_handler,
2463 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2464
2465 .qc_prep = ata_bmdma_qc_prep,
2466 .qc_issue = ata_bmdma_qc_issue,
2467
2468 .sff_irq_clear = ata_bmdma_irq_clear,
2469 .bmdma_setup = ata_bmdma_setup,
2470 .bmdma_start = ata_bmdma_start,
2471 .bmdma_stop = ata_bmdma_stop,
2472 .bmdma_status = ata_bmdma_status,
2473
2474 .port_start = ata_bmdma_port_start,
2475 };
2476 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2477
2478 const struct ata_port_operations ata_bmdma32_port_ops = {
2479 .inherits = &ata_bmdma_port_ops,
2480
2481 .sff_data_xfer = ata_sff_data_xfer32,
2482 .port_start = ata_bmdma_port_start32,
2483 };
2484 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2485
2486 /**
2487 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2488 * @qc: Metadata associated with taskfile to be transferred
2489 *
2490 * Fill PCI IDE PRD (scatter-gather) table with segments
2491 * associated with the current disk command.
2492 *
2493 * LOCKING:
2494 * spin_lock_irqsave(host lock)
2495 *
2496 */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2497 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2498 {
2499 struct ata_port *ap = qc->ap;
2500 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2501 struct scatterlist *sg;
2502 unsigned int si, pi;
2503
2504 pi = 0;
2505 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2506 u32 addr, offset;
2507 u32 sg_len, len;
2508
2509 /* determine if physical DMA addr spans 64K boundary.
2510 * Note h/w doesn't support 64-bit, so we unconditionally
2511 * truncate dma_addr_t to u32.
2512 */
2513 addr = (u32) sg_dma_address(sg);
2514 sg_len = sg_dma_len(sg);
2515
2516 while (sg_len) {
2517 offset = addr & 0xffff;
2518 len = sg_len;
2519 if ((offset + sg_len) > 0x10000)
2520 len = 0x10000 - offset;
2521
2522 prd[pi].addr = cpu_to_le32(addr);
2523 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2524
2525 pi++;
2526 sg_len -= len;
2527 addr += len;
2528 }
2529 }
2530
2531 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2532 }
2533
2534 /**
2535 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2536 * @qc: Metadata associated with taskfile to be transferred
2537 *
2538 * Fill PCI IDE PRD (scatter-gather) table with segments
2539 * associated with the current disk command. Perform the fill
2540 * so that we avoid writing any length 64K records for
2541 * controllers that don't follow the spec.
2542 *
2543 * LOCKING:
2544 * spin_lock_irqsave(host lock)
2545 *
2546 */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2547 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2548 {
2549 struct ata_port *ap = qc->ap;
2550 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2551 struct scatterlist *sg;
2552 unsigned int si, pi;
2553
2554 pi = 0;
2555 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2556 u32 addr, offset;
2557 u32 sg_len, len, blen;
2558
2559 /* determine if physical DMA addr spans 64K boundary.
2560 * Note h/w doesn't support 64-bit, so we unconditionally
2561 * truncate dma_addr_t to u32.
2562 */
2563 addr = (u32) sg_dma_address(sg);
2564 sg_len = sg_dma_len(sg);
2565
2566 while (sg_len) {
2567 offset = addr & 0xffff;
2568 len = sg_len;
2569 if ((offset + sg_len) > 0x10000)
2570 len = 0x10000 - offset;
2571
2572 blen = len & 0xffff;
2573 prd[pi].addr = cpu_to_le32(addr);
2574 if (blen == 0) {
2575 /* Some PATA chipsets like the CS5530 can't
2576 cope with 0x0000 meaning 64K as the spec
2577 says */
2578 prd[pi].flags_len = cpu_to_le32(0x8000);
2579 blen = 0x8000;
2580 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2581 }
2582 prd[pi].flags_len = cpu_to_le32(blen);
2583
2584 pi++;
2585 sg_len -= len;
2586 addr += len;
2587 }
2588 }
2589
2590 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2591 }
2592
2593 /**
2594 * ata_bmdma_qc_prep - Prepare taskfile for submission
2595 * @qc: Metadata associated with taskfile to be prepared
2596 *
2597 * Prepare ATA taskfile for submission.
2598 *
2599 * LOCKING:
2600 * spin_lock_irqsave(host lock)
2601 */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2602 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2603 {
2604 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2605 return AC_ERR_OK;
2606
2607 ata_bmdma_fill_sg(qc);
2608
2609 return AC_ERR_OK;
2610 }
2611 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2612
2613 /**
2614 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2615 * @qc: Metadata associated with taskfile to be prepared
2616 *
2617 * Prepare ATA taskfile for submission.
2618 *
2619 * LOCKING:
2620 * spin_lock_irqsave(host lock)
2621 */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2622 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2623 {
2624 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2625 return AC_ERR_OK;
2626
2627 ata_bmdma_fill_sg_dumb(qc);
2628
2629 return AC_ERR_OK;
2630 }
2631 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2632
2633 /**
2634 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2635 * @qc: command to issue to device
2636 *
2637 * This function issues a PIO, NODATA or DMA command to a
2638 * SFF/BMDMA controller. PIO and NODATA are handled by
2639 * ata_sff_qc_issue().
2640 *
2641 * LOCKING:
2642 * spin_lock_irqsave(host lock)
2643 *
2644 * RETURNS:
2645 * Zero on success, AC_ERR_* mask on failure
2646 */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2647 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2648 {
2649 struct ata_port *ap = qc->ap;
2650 struct ata_link *link = qc->dev->link;
2651
2652 /* defer PIO handling to sff_qc_issue */
2653 if (!ata_is_dma(qc->tf.protocol))
2654 return ata_sff_qc_issue(qc);
2655
2656 /* select the device */
2657 ata_dev_select(ap, qc->dev->devno, 1, 0);
2658
2659 /* start the command */
2660 switch (qc->tf.protocol) {
2661 case ATA_PROT_DMA:
2662 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2663
2664 trace_ata_tf_load(ap, &qc->tf);
2665 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2666 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2667 ap->ops->bmdma_setup(qc); /* set up bmdma */
2668 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2669 ap->ops->bmdma_start(qc); /* initiate bmdma */
2670 ap->hsm_task_state = HSM_ST_LAST;
2671 break;
2672
2673 case ATAPI_PROT_DMA:
2674 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2675
2676 trace_ata_tf_load(ap, &qc->tf);
2677 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2678 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2679 ap->ops->bmdma_setup(qc); /* set up bmdma */
2680 ap->hsm_task_state = HSM_ST_FIRST;
2681
2682 /* send cdb by polling if no cdb interrupt */
2683 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2684 ata_sff_queue_pio_task(link, 0);
2685 break;
2686
2687 default:
2688 WARN_ON(1);
2689 return AC_ERR_SYSTEM;
2690 }
2691
2692 return 0;
2693 }
2694 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2695
2696 /**
2697 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2698 * @ap: Port on which interrupt arrived (possibly...)
2699 * @qc: Taskfile currently active in engine
2700 *
2701 * Handle port interrupt for given queued command.
2702 *
2703 * LOCKING:
2704 * spin_lock_irqsave(host lock)
2705 *
2706 * RETURNS:
2707 * One if interrupt was handled, zero if not (shared irq).
2708 */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2709 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2710 {
2711 struct ata_eh_info *ehi = &ap->link.eh_info;
2712 u8 host_stat = 0;
2713 bool bmdma_stopped = false;
2714 unsigned int handled;
2715
2716 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2717 /* check status of DMA engine */
2718 host_stat = ap->ops->bmdma_status(ap);
2719 trace_ata_bmdma_status(ap, host_stat);
2720
2721 /* if it's not our irq... */
2722 if (!(host_stat & ATA_DMA_INTR))
2723 return ata_sff_idle_irq(ap);
2724
2725 /* before we do anything else, clear DMA-Start bit */
2726 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2727 ap->ops->bmdma_stop(qc);
2728 bmdma_stopped = true;
2729
2730 if (unlikely(host_stat & ATA_DMA_ERR)) {
2731 /* error when transferring data to/from memory */
2732 qc->err_mask |= AC_ERR_HOST_BUS;
2733 ap->hsm_task_state = HSM_ST_ERR;
2734 }
2735 }
2736
2737 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2738
2739 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2740 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2741
2742 return handled;
2743 }
2744 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2745
2746 /**
2747 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2748 * @irq: irq line (unused)
2749 * @dev_instance: pointer to our ata_host information structure
2750 *
2751 * Default interrupt handler for PCI IDE devices. Calls
2752 * ata_bmdma_port_intr() for each port that is not disabled.
2753 *
2754 * LOCKING:
2755 * Obtains host lock during operation.
2756 *
2757 * RETURNS:
2758 * IRQ_NONE or IRQ_HANDLED.
2759 */
ata_bmdma_interrupt(int irq,void * dev_instance)2760 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2761 {
2762 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2763 }
2764 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2765
2766 /**
2767 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2768 * @ap: port to handle error for
2769 *
2770 * Stock error handler for BMDMA controller. It can handle both
2771 * PATA and SATA controllers. Most BMDMA controllers should be
2772 * able to use this EH as-is or with some added handling before
2773 * and after.
2774 *
2775 * LOCKING:
2776 * Kernel thread context (may sleep)
2777 */
ata_bmdma_error_handler(struct ata_port * ap)2778 void ata_bmdma_error_handler(struct ata_port *ap)
2779 {
2780 struct ata_queued_cmd *qc;
2781 unsigned long flags;
2782 bool thaw = false;
2783
2784 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2785 if (qc && !(qc->flags & ATA_QCFLAG_EH))
2786 qc = NULL;
2787
2788 /* reset PIO HSM and stop DMA engine */
2789 spin_lock_irqsave(ap->lock, flags);
2790
2791 if (qc && ata_is_dma(qc->tf.protocol)) {
2792 u8 host_stat;
2793
2794 host_stat = ap->ops->bmdma_status(ap);
2795 trace_ata_bmdma_status(ap, host_stat);
2796
2797 /* BMDMA controllers indicate host bus error by
2798 * setting DMA_ERR bit and timing out. As it wasn't
2799 * really a timeout event, adjust error mask and
2800 * cancel frozen state.
2801 */
2802 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2803 qc->err_mask = AC_ERR_HOST_BUS;
2804 thaw = true;
2805 }
2806
2807 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2808 ap->ops->bmdma_stop(qc);
2809
2810 /* if we're gonna thaw, make sure IRQ is clear */
2811 if (thaw) {
2812 ap->ops->sff_check_status(ap);
2813 if (ap->ops->sff_irq_clear)
2814 ap->ops->sff_irq_clear(ap);
2815 }
2816 }
2817
2818 spin_unlock_irqrestore(ap->lock, flags);
2819
2820 if (thaw)
2821 ata_eh_thaw_port(ap);
2822
2823 ata_sff_error_handler(ap);
2824 }
2825 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2826
2827 /**
2828 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2829 * @qc: internal command to clean up
2830 *
2831 * LOCKING:
2832 * Kernel thread context (may sleep)
2833 */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2834 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2835 {
2836 struct ata_port *ap = qc->ap;
2837 unsigned long flags;
2838
2839 if (ata_is_dma(qc->tf.protocol)) {
2840 spin_lock_irqsave(ap->lock, flags);
2841 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2842 ap->ops->bmdma_stop(qc);
2843 spin_unlock_irqrestore(ap->lock, flags);
2844 }
2845 }
2846 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2847
2848 /**
2849 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2850 * @ap: Port associated with this ATA transaction.
2851 *
2852 * Clear interrupt and error flags in DMA status register.
2853 *
2854 * May be used as the irq_clear() entry in ata_port_operations.
2855 *
2856 * LOCKING:
2857 * spin_lock_irqsave(host lock)
2858 */
ata_bmdma_irq_clear(struct ata_port * ap)2859 void ata_bmdma_irq_clear(struct ata_port *ap)
2860 {
2861 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2862
2863 if (!mmio)
2864 return;
2865
2866 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2867 }
2868 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2869
2870 /**
2871 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2872 * @qc: Info associated with this ATA transaction.
2873 *
2874 * LOCKING:
2875 * spin_lock_irqsave(host lock)
2876 */
ata_bmdma_setup(struct ata_queued_cmd * qc)2877 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2878 {
2879 struct ata_port *ap = qc->ap;
2880 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2881 u8 dmactl;
2882
2883 /* load PRD table addr. */
2884 mb(); /* make sure PRD table writes are visible to controller */
2885 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2886
2887 /* specify data direction, triple-check start bit is clear */
2888 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2889 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2890 if (!rw)
2891 dmactl |= ATA_DMA_WR;
2892 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2893
2894 /* issue r/w command */
2895 ap->ops->sff_exec_command(ap, &qc->tf);
2896 }
2897 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2898
2899 /**
2900 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2901 * @qc: Info associated with this ATA transaction.
2902 *
2903 * LOCKING:
2904 * spin_lock_irqsave(host lock)
2905 */
ata_bmdma_start(struct ata_queued_cmd * qc)2906 void ata_bmdma_start(struct ata_queued_cmd *qc)
2907 {
2908 struct ata_port *ap = qc->ap;
2909 u8 dmactl;
2910
2911 /* start host DMA transaction */
2912 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2913 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2914
2915 /* Strictly, one may wish to issue an ioread8() here, to
2916 * flush the mmio write. However, control also passes
2917 * to the hardware at this point, and it will interrupt
2918 * us when we are to resume control. So, in effect,
2919 * we don't care when the mmio write flushes.
2920 * Further, a read of the DMA status register _immediately_
2921 * following the write may not be what certain flaky hardware
2922 * is expected, so I think it is best to not add a readb()
2923 * without first all the MMIO ATA cards/mobos.
2924 * Or maybe I'm just being paranoid.
2925 *
2926 * FIXME: The posting of this write means I/O starts are
2927 * unnecessarily delayed for MMIO
2928 */
2929 }
2930 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2931
2932 /**
2933 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2934 * @qc: Command we are ending DMA for
2935 *
2936 * Clears the ATA_DMA_START flag in the dma control register
2937 *
2938 * May be used as the bmdma_stop() entry in ata_port_operations.
2939 *
2940 * LOCKING:
2941 * spin_lock_irqsave(host lock)
2942 */
ata_bmdma_stop(struct ata_queued_cmd * qc)2943 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2944 {
2945 struct ata_port *ap = qc->ap;
2946 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2947
2948 /* clear start/stop bit */
2949 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2950 mmio + ATA_DMA_CMD);
2951
2952 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2953 ata_sff_dma_pause(ap);
2954 }
2955 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2956
2957 /**
2958 * ata_bmdma_status - Read PCI IDE BMDMA status
2959 * @ap: Port associated with this ATA transaction.
2960 *
2961 * Read and return BMDMA status register.
2962 *
2963 * May be used as the bmdma_status() entry in ata_port_operations.
2964 *
2965 * LOCKING:
2966 * spin_lock_irqsave(host lock)
2967 */
ata_bmdma_status(struct ata_port * ap)2968 u8 ata_bmdma_status(struct ata_port *ap)
2969 {
2970 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2971 }
2972 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2973
2974
2975 /**
2976 * ata_bmdma_port_start - Set port up for bmdma.
2977 * @ap: Port to initialize
2978 *
2979 * Called just after data structures for each port are
2980 * initialized. Allocates space for PRD table.
2981 *
2982 * May be used as the port_start() entry in ata_port_operations.
2983 *
2984 * LOCKING:
2985 * Inherited from caller.
2986 */
ata_bmdma_port_start(struct ata_port * ap)2987 int ata_bmdma_port_start(struct ata_port *ap)
2988 {
2989 if (ap->mwdma_mask || ap->udma_mask) {
2990 ap->bmdma_prd =
2991 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
2992 &ap->bmdma_prd_dma, GFP_KERNEL);
2993 if (!ap->bmdma_prd)
2994 return -ENOMEM;
2995 }
2996
2997 return 0;
2998 }
2999 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3000
3001 /**
3002 * ata_bmdma_port_start32 - Set port up for dma.
3003 * @ap: Port to initialize
3004 *
3005 * Called just after data structures for each port are
3006 * initialized. Enables 32bit PIO and allocates space for PRD
3007 * table.
3008 *
3009 * May be used as the port_start() entry in ata_port_operations for
3010 * devices that are capable of 32bit PIO.
3011 *
3012 * LOCKING:
3013 * Inherited from caller.
3014 */
ata_bmdma_port_start32(struct ata_port * ap)3015 int ata_bmdma_port_start32(struct ata_port *ap)
3016 {
3017 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3018 return ata_bmdma_port_start(ap);
3019 }
3020 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3021
3022 #ifdef CONFIG_PCI
3023
3024 /**
3025 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3026 * @pdev: PCI device
3027 *
3028 * Some PCI ATA devices report simplex mode but in fact can be told to
3029 * enter non simplex mode. This implements the necessary logic to
3030 * perform the task on such devices. Calling it on other devices will
3031 * have -undefined- behaviour.
3032 */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3033 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3034 {
3035 unsigned long bmdma = pci_resource_start(pdev, 4);
3036 u8 simplex;
3037
3038 if (bmdma == 0)
3039 return -ENOENT;
3040
3041 simplex = inb(bmdma + 0x02);
3042 outb(simplex & 0x60, bmdma + 0x02);
3043 simplex = inb(bmdma + 0x02);
3044 if (simplex & 0x80)
3045 return -EOPNOTSUPP;
3046 return 0;
3047 }
3048 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3049
ata_bmdma_nodma(struct ata_host * host,const char * reason)3050 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3051 {
3052 int i;
3053
3054 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3055
3056 for (i = 0; i < 2; i++) {
3057 host->ports[i]->mwdma_mask = 0;
3058 host->ports[i]->udma_mask = 0;
3059 }
3060 }
3061
3062 /**
3063 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3064 * @host: target ATA host
3065 *
3066 * Acquire PCI BMDMA resources and initialize @host accordingly.
3067 *
3068 * LOCKING:
3069 * Inherited from calling layer (may sleep).
3070 */
ata_pci_bmdma_init(struct ata_host * host)3071 void ata_pci_bmdma_init(struct ata_host *host)
3072 {
3073 struct device *gdev = host->dev;
3074 struct pci_dev *pdev = to_pci_dev(gdev);
3075 int i, rc;
3076
3077 /* No BAR4 allocation: No DMA */
3078 if (pci_resource_start(pdev, 4) == 0) {
3079 ata_bmdma_nodma(host, "BAR4 is zero");
3080 return;
3081 }
3082
3083 /*
3084 * Some controllers require BMDMA region to be initialized
3085 * even if DMA is not in use to clear IRQ status via
3086 * ->sff_irq_clear method. Try to initialize bmdma_addr
3087 * regardless of dma masks.
3088 */
3089 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3090 if (rc)
3091 ata_bmdma_nodma(host, "failed to set dma mask");
3092
3093 /* request and iomap DMA region */
3094 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3095 if (rc) {
3096 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3097 return;
3098 }
3099 host->iomap = pcim_iomap_table(pdev);
3100
3101 for (i = 0; i < 2; i++) {
3102 struct ata_port *ap = host->ports[i];
3103 void __iomem *bmdma = host->iomap[4] + 8 * i;
3104
3105 if (ata_port_is_dummy(ap))
3106 continue;
3107
3108 ap->ioaddr.bmdma_addr = bmdma;
3109 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3110 (ioread8(bmdma + 2) & 0x80))
3111 host->flags |= ATA_HOST_SIMPLEX;
3112
3113 ata_port_desc(ap, "bmdma 0x%llx",
3114 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3115 }
3116 }
3117 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3118
3119 /**
3120 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3121 * @pdev: target PCI device
3122 * @ppi: array of port_info, must be enough for two ports
3123 * @r_host: out argument for the initialized ATA host
3124 *
3125 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3126 * resources and initialize it accordingly in one go.
3127 *
3128 * LOCKING:
3129 * Inherited from calling layer (may sleep).
3130 *
3131 * RETURNS:
3132 * 0 on success, -errno otherwise.
3133 */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3134 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3135 const struct ata_port_info * const * ppi,
3136 struct ata_host **r_host)
3137 {
3138 int rc;
3139
3140 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3141 if (rc)
3142 return rc;
3143
3144 ata_pci_bmdma_init(*r_host);
3145 return 0;
3146 }
3147 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3148
3149 /**
3150 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3151 * @pdev: Controller to be initialized
3152 * @ppi: array of port_info, must be enough for two ports
3153 * @sht: scsi_host_template to use when registering the host
3154 * @host_priv: host private_data
3155 * @hflags: host flags
3156 *
3157 * This function is similar to ata_pci_sff_init_one() but also
3158 * takes care of BMDMA initialization.
3159 *
3160 * LOCKING:
3161 * Inherited from PCI layer (may sleep).
3162 *
3163 * RETURNS:
3164 * Zero on success, negative on errno-based value on error.
3165 */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,const struct scsi_host_template * sht,void * host_priv,int hflags)3166 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3167 const struct ata_port_info * const * ppi,
3168 const struct scsi_host_template *sht, void *host_priv,
3169 int hflags)
3170 {
3171 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3172 }
3173 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3174
3175 #endif /* CONFIG_PCI */
3176 #endif /* CONFIG_ATA_BMDMA */
3177
3178 /**
3179 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3180 * @ap: Port to initialize
3181 *
3182 * Called on port allocation to initialize SFF/BMDMA specific
3183 * fields.
3184 *
3185 * LOCKING:
3186 * None.
3187 */
ata_sff_port_init(struct ata_port * ap)3188 void ata_sff_port_init(struct ata_port *ap)
3189 {
3190 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3191 ap->ctl = ATA_DEVCTL_OBS;
3192 ap->last_ctl = 0xFF;
3193 }
3194
ata_sff_init(void)3195 int __init ata_sff_init(void)
3196 {
3197 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3198 if (!ata_sff_wq)
3199 return -ENOMEM;
3200
3201 return 0;
3202 }
3203
ata_sff_exit(void)3204 void ata_sff_exit(void)
3205 {
3206 destroy_workqueue(ata_sff_wq);
3207 }
3208