xref: /openbmc/linux/drivers/ata/libata-sff.c (revision ff8072d5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-sff.c - helper library for PCI IDE BMDMA
4  *
5  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2006 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/module.h>
19 #include <linux/libata.h>
20 #include <linux/highmem.h>
21 #include <trace/events/libata.h>
22 #include "libata.h"
23 
24 static struct workqueue_struct *ata_sff_wq;
25 
26 const struct ata_port_operations ata_sff_port_ops = {
27 	.inherits		= &ata_base_port_ops,
28 
29 	.qc_prep		= ata_noop_qc_prep,
30 	.qc_issue		= ata_sff_qc_issue,
31 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
32 
33 	.freeze			= ata_sff_freeze,
34 	.thaw			= ata_sff_thaw,
35 	.prereset		= ata_sff_prereset,
36 	.softreset		= ata_sff_softreset,
37 	.hardreset		= sata_sff_hardreset,
38 	.postreset		= ata_sff_postreset,
39 	.error_handler		= ata_sff_error_handler,
40 
41 	.sff_dev_select		= ata_sff_dev_select,
42 	.sff_check_status	= ata_sff_check_status,
43 	.sff_tf_load		= ata_sff_tf_load,
44 	.sff_tf_read		= ata_sff_tf_read,
45 	.sff_exec_command	= ata_sff_exec_command,
46 	.sff_data_xfer		= ata_sff_data_xfer,
47 	.sff_drain_fifo		= ata_sff_drain_fifo,
48 
49 	.lost_interrupt		= ata_sff_lost_interrupt,
50 };
51 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
52 
53 /**
54  *	ata_sff_check_status - Read device status reg & clear interrupt
55  *	@ap: port where the device is
56  *
57  *	Reads ATA taskfile status register for currently-selected device
58  *	and return its value. This also clears pending interrupts
59  *      from this device
60  *
61  *	LOCKING:
62  *	Inherited from caller.
63  */
ata_sff_check_status(struct ata_port * ap)64 u8 ata_sff_check_status(struct ata_port *ap)
65 {
66 	return ioread8(ap->ioaddr.status_addr);
67 }
68 EXPORT_SYMBOL_GPL(ata_sff_check_status);
69 
70 /**
71  *	ata_sff_altstatus - Read device alternate status reg
72  *	@ap: port where the device is
73  *	@status: pointer to a status value
74  *
75  *	Reads ATA alternate status register for currently-selected device
76  *	and return its value.
77  *
78  *	RETURN:
79  *	true if the register exists, false if not.
80  *
81  *	LOCKING:
82  *	Inherited from caller.
83  */
ata_sff_altstatus(struct ata_port * ap,u8 * status)84 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
85 {
86 	u8 tmp;
87 
88 	if (ap->ops->sff_check_altstatus) {
89 		tmp = ap->ops->sff_check_altstatus(ap);
90 		goto read;
91 	}
92 	if (ap->ioaddr.altstatus_addr) {
93 		tmp = ioread8(ap->ioaddr.altstatus_addr);
94 		goto read;
95 	}
96 	return false;
97 
98 read:
99 	if (status)
100 		*status = tmp;
101 	return true;
102 }
103 
104 /**
105  *	ata_sff_irq_status - Check if the device is busy
106  *	@ap: port where the device is
107  *
108  *	Determine if the port is currently busy. Uses altstatus
109  *	if available in order to avoid clearing shared IRQ status
110  *	when finding an IRQ source. Non ctl capable devices don't
111  *	share interrupt lines fortunately for us.
112  *
113  *	LOCKING:
114  *	Inherited from caller.
115  */
ata_sff_irq_status(struct ata_port * ap)116 static u8 ata_sff_irq_status(struct ata_port *ap)
117 {
118 	u8 status;
119 
120 	/* Not us: We are busy */
121 	if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
122 		return status;
123 	/* Clear INTRQ latch */
124 	status = ap->ops->sff_check_status(ap);
125 	return status;
126 }
127 
128 /**
129  *	ata_sff_sync - Flush writes
130  *	@ap: Port to wait for.
131  *
132  *	CAUTION:
133  *	If we have an mmio device with no ctl and no altstatus
134  *	method this will fail. No such devices are known to exist.
135  *
136  *	LOCKING:
137  *	Inherited from caller.
138  */
139 
ata_sff_sync(struct ata_port * ap)140 static void ata_sff_sync(struct ata_port *ap)
141 {
142 	ata_sff_altstatus(ap, NULL);
143 }
144 
145 /**
146  *	ata_sff_pause		-	Flush writes and wait 400nS
147  *	@ap: Port to pause for.
148  *
149  *	CAUTION:
150  *	If we have an mmio device with no ctl and no altstatus
151  *	method this will fail. No such devices are known to exist.
152  *
153  *	LOCKING:
154  *	Inherited from caller.
155  */
156 
ata_sff_pause(struct ata_port * ap)157 void ata_sff_pause(struct ata_port *ap)
158 {
159 	ata_sff_sync(ap);
160 	ndelay(400);
161 }
162 EXPORT_SYMBOL_GPL(ata_sff_pause);
163 
164 /**
165  *	ata_sff_dma_pause	-	Pause before commencing DMA
166  *	@ap: Port to pause for.
167  *
168  *	Perform I/O fencing and ensure sufficient cycle delays occur
169  *	for the HDMA1:0 transition
170  */
171 
ata_sff_dma_pause(struct ata_port * ap)172 void ata_sff_dma_pause(struct ata_port *ap)
173 {
174 	/*
175 	 * An altstatus read will cause the needed delay without
176 	 * messing up the IRQ status
177 	 */
178 	if (ata_sff_altstatus(ap, NULL))
179 		return;
180 	/* There are no DMA controllers without ctl. BUG here to ensure
181 	   we never violate the HDMA1:0 transition timing and risk
182 	   corruption. */
183 	BUG();
184 }
185 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
186 
ata_sff_check_ready(struct ata_link * link)187 static int ata_sff_check_ready(struct ata_link *link)
188 {
189 	u8 status = link->ap->ops->sff_check_status(link->ap);
190 
191 	return ata_check_ready(status);
192 }
193 
194 /**
195  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
196  *	@link: SFF link to wait ready status for
197  *	@deadline: deadline jiffies for the operation
198  *
199  *	Sleep until ATA Status register bit BSY clears, or timeout
200  *	occurs.
201  *
202  *	LOCKING:
203  *	Kernel thread context (may sleep).
204  *
205  *	RETURNS:
206  *	0 on success, -errno otherwise.
207  */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)208 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
209 {
210 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
211 }
212 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
213 
214 /**
215  *	ata_sff_set_devctl - Write device control reg
216  *	@ap: port where the device is
217  *	@ctl: value to write
218  *
219  *	Writes ATA device control register.
220  *
221  *	RETURN:
222  *	true if the register exists, false if not.
223  *
224  *	LOCKING:
225  *	Inherited from caller.
226  */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)227 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
228 {
229 	if (ap->ops->sff_set_devctl) {
230 		ap->ops->sff_set_devctl(ap, ctl);
231 		return true;
232 	}
233 	if (ap->ioaddr.ctl_addr) {
234 		iowrite8(ctl, ap->ioaddr.ctl_addr);
235 		return true;
236 	}
237 
238 	return false;
239 }
240 
241 /**
242  *	ata_sff_dev_select - Select device 0/1 on ATA bus
243  *	@ap: ATA channel to manipulate
244  *	@device: ATA device (numbered from zero) to select
245  *
246  *	Use the method defined in the ATA specification to
247  *	make either device 0, or device 1, active on the
248  *	ATA channel.  Works with both PIO and MMIO.
249  *
250  *	May be used as the dev_select() entry in ata_port_operations.
251  *
252  *	LOCKING:
253  *	caller.
254  */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)255 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
256 {
257 	u8 tmp;
258 
259 	if (device == 0)
260 		tmp = ATA_DEVICE_OBS;
261 	else
262 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
263 
264 	iowrite8(tmp, ap->ioaddr.device_addr);
265 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
266 }
267 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
268 
269 /**
270  *	ata_dev_select - Select device 0/1 on ATA bus
271  *	@ap: ATA channel to manipulate
272  *	@device: ATA device (numbered from zero) to select
273  *	@wait: non-zero to wait for Status register BSY bit to clear
274  *	@can_sleep: non-zero if context allows sleeping
275  *
276  *	Use the method defined in the ATA specification to
277  *	make either device 0, or device 1, active on the
278  *	ATA channel.
279  *
280  *	This is a high-level version of ata_sff_dev_select(), which
281  *	additionally provides the services of inserting the proper
282  *	pauses and status polling, where needed.
283  *
284  *	LOCKING:
285  *	caller.
286  */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)287 static void ata_dev_select(struct ata_port *ap, unsigned int device,
288 			   unsigned int wait, unsigned int can_sleep)
289 {
290 	if (wait)
291 		ata_wait_idle(ap);
292 
293 	ap->ops->sff_dev_select(ap, device);
294 
295 	if (wait) {
296 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
297 			ata_msleep(ap, 150);
298 		ata_wait_idle(ap);
299 	}
300 }
301 
302 /**
303  *	ata_sff_irq_on - Enable interrupts on a port.
304  *	@ap: Port on which interrupts are enabled.
305  *
306  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
307  *	wait for idle, clear any pending interrupts.
308  *
309  *	Note: may NOT be used as the sff_irq_on() entry in
310  *	ata_port_operations.
311  *
312  *	LOCKING:
313  *	Inherited from caller.
314  */
ata_sff_irq_on(struct ata_port * ap)315 void ata_sff_irq_on(struct ata_port *ap)
316 {
317 	if (ap->ops->sff_irq_on) {
318 		ap->ops->sff_irq_on(ap);
319 		return;
320 	}
321 
322 	ap->ctl &= ~ATA_NIEN;
323 	ap->last_ctl = ap->ctl;
324 
325 	ata_sff_set_devctl(ap, ap->ctl);
326 	ata_wait_idle(ap);
327 
328 	if (ap->ops->sff_irq_clear)
329 		ap->ops->sff_irq_clear(ap);
330 }
331 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
332 
333 /**
334  *	ata_sff_tf_load - send taskfile registers to host controller
335  *	@ap: Port to which output is sent
336  *	@tf: ATA taskfile register set
337  *
338  *	Outputs ATA taskfile to standard ATA host controller.
339  *
340  *	LOCKING:
341  *	Inherited from caller.
342  */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)343 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
344 {
345 	struct ata_ioports *ioaddr = &ap->ioaddr;
346 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
347 
348 	if (tf->ctl != ap->last_ctl) {
349 		if (ioaddr->ctl_addr)
350 			iowrite8(tf->ctl, ioaddr->ctl_addr);
351 		ap->last_ctl = tf->ctl;
352 		ata_wait_idle(ap);
353 	}
354 
355 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
356 		WARN_ON_ONCE(!ioaddr->ctl_addr);
357 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
358 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
359 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
360 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
361 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
362 	}
363 
364 	if (is_addr) {
365 		iowrite8(tf->feature, ioaddr->feature_addr);
366 		iowrite8(tf->nsect, ioaddr->nsect_addr);
367 		iowrite8(tf->lbal, ioaddr->lbal_addr);
368 		iowrite8(tf->lbam, ioaddr->lbam_addr);
369 		iowrite8(tf->lbah, ioaddr->lbah_addr);
370 	}
371 
372 	if (tf->flags & ATA_TFLAG_DEVICE)
373 		iowrite8(tf->device, ioaddr->device_addr);
374 
375 	ata_wait_idle(ap);
376 }
377 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
378 
379 /**
380  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
381  *	@ap: Port from which input is read
382  *	@tf: ATA taskfile register set for storing input
383  *
384  *	Reads ATA taskfile registers for currently-selected device
385  *	into @tf. Assumes the device has a fully SFF compliant task file
386  *	layout and behaviour. If you device does not (eg has a different
387  *	status method) then you will need to provide a replacement tf_read
388  *
389  *	LOCKING:
390  *	Inherited from caller.
391  */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)392 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
393 {
394 	struct ata_ioports *ioaddr = &ap->ioaddr;
395 
396 	tf->status = ata_sff_check_status(ap);
397 	tf->error = ioread8(ioaddr->error_addr);
398 	tf->nsect = ioread8(ioaddr->nsect_addr);
399 	tf->lbal = ioread8(ioaddr->lbal_addr);
400 	tf->lbam = ioread8(ioaddr->lbam_addr);
401 	tf->lbah = ioread8(ioaddr->lbah_addr);
402 	tf->device = ioread8(ioaddr->device_addr);
403 
404 	if (tf->flags & ATA_TFLAG_LBA48) {
405 		if (likely(ioaddr->ctl_addr)) {
406 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
407 			tf->hob_feature = ioread8(ioaddr->error_addr);
408 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
409 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
410 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
411 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
412 			iowrite8(tf->ctl, ioaddr->ctl_addr);
413 			ap->last_ctl = tf->ctl;
414 		} else
415 			WARN_ON_ONCE(1);
416 	}
417 }
418 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
419 
420 /**
421  *	ata_sff_exec_command - issue ATA command to host controller
422  *	@ap: port to which command is being issued
423  *	@tf: ATA taskfile register set
424  *
425  *	Issues ATA command, with proper synchronization with interrupt
426  *	handler / other threads.
427  *
428  *	LOCKING:
429  *	spin_lock_irqsave(host lock)
430  */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)431 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
432 {
433 	iowrite8(tf->command, ap->ioaddr.command_addr);
434 	ata_sff_pause(ap);
435 }
436 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
437 
438 /**
439  *	ata_tf_to_host - issue ATA taskfile to host controller
440  *	@ap: port to which command is being issued
441  *	@tf: ATA taskfile register set
442  *	@tag: tag of the associated command
443  *
444  *	Issues ATA taskfile register set to ATA host controller,
445  *	with proper synchronization with interrupt handler and
446  *	other threads.
447  *
448  *	LOCKING:
449  *	spin_lock_irqsave(host lock)
450  */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf,unsigned int tag)451 static inline void ata_tf_to_host(struct ata_port *ap,
452 				  const struct ata_taskfile *tf,
453 				  unsigned int tag)
454 {
455 	trace_ata_tf_load(ap, tf);
456 	ap->ops->sff_tf_load(ap, tf);
457 	trace_ata_exec_command(ap, tf, tag);
458 	ap->ops->sff_exec_command(ap, tf);
459 }
460 
461 /**
462  *	ata_sff_data_xfer - Transfer data by PIO
463  *	@qc: queued command
464  *	@buf: data buffer
465  *	@buflen: buffer length
466  *	@rw: read/write
467  *
468  *	Transfer data from/to the device data register by PIO.
469  *
470  *	LOCKING:
471  *	Inherited from caller.
472  *
473  *	RETURNS:
474  *	Bytes consumed.
475  */
ata_sff_data_xfer(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)476 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
477 			       unsigned int buflen, int rw)
478 {
479 	struct ata_port *ap = qc->dev->link->ap;
480 	void __iomem *data_addr = ap->ioaddr.data_addr;
481 	unsigned int words = buflen >> 1;
482 
483 	/* Transfer multiple of 2 bytes */
484 	if (rw == READ)
485 		ioread16_rep(data_addr, buf, words);
486 	else
487 		iowrite16_rep(data_addr, buf, words);
488 
489 	/* Transfer trailing byte, if any. */
490 	if (unlikely(buflen & 0x01)) {
491 		unsigned char pad[2] = { };
492 
493 		/* Point buf to the tail of buffer */
494 		buf += buflen - 1;
495 
496 		/*
497 		 * Use io*16_rep() accessors here as well to avoid pointlessly
498 		 * swapping bytes to and from on the big endian machines...
499 		 */
500 		if (rw == READ) {
501 			ioread16_rep(data_addr, pad, 1);
502 			*buf = pad[0];
503 		} else {
504 			pad[0] = *buf;
505 			iowrite16_rep(data_addr, pad, 1);
506 		}
507 		words++;
508 	}
509 
510 	return words << 1;
511 }
512 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
513 
514 /**
515  *	ata_sff_data_xfer32 - Transfer data by PIO
516  *	@qc: queued command
517  *	@buf: data buffer
518  *	@buflen: buffer length
519  *	@rw: read/write
520  *
521  *	Transfer data from/to the device data register by PIO using 32bit
522  *	I/O operations.
523  *
524  *	LOCKING:
525  *	Inherited from caller.
526  *
527  *	RETURNS:
528  *	Bytes consumed.
529  */
530 
ata_sff_data_xfer32(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)531 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
532 			       unsigned int buflen, int rw)
533 {
534 	struct ata_device *dev = qc->dev;
535 	struct ata_port *ap = dev->link->ap;
536 	void __iomem *data_addr = ap->ioaddr.data_addr;
537 	unsigned int words = buflen >> 2;
538 	int slop = buflen & 3;
539 
540 	if (!(ap->pflags & ATA_PFLAG_PIO32))
541 		return ata_sff_data_xfer(qc, buf, buflen, rw);
542 
543 	/* Transfer multiple of 4 bytes */
544 	if (rw == READ)
545 		ioread32_rep(data_addr, buf, words);
546 	else
547 		iowrite32_rep(data_addr, buf, words);
548 
549 	/* Transfer trailing bytes, if any */
550 	if (unlikely(slop)) {
551 		unsigned char pad[4] = { };
552 
553 		/* Point buf to the tail of buffer */
554 		buf += buflen - slop;
555 
556 		/*
557 		 * Use io*_rep() accessors here as well to avoid pointlessly
558 		 * swapping bytes to and from on the big endian machines...
559 		 */
560 		if (rw == READ) {
561 			if (slop < 3)
562 				ioread16_rep(data_addr, pad, 1);
563 			else
564 				ioread32_rep(data_addr, pad, 1);
565 			memcpy(buf, pad, slop);
566 		} else {
567 			memcpy(pad, buf, slop);
568 			if (slop < 3)
569 				iowrite16_rep(data_addr, pad, 1);
570 			else
571 				iowrite32_rep(data_addr, pad, 1);
572 		}
573 	}
574 	return (buflen + 1) & ~1;
575 }
576 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
577 
ata_pio_xfer(struct ata_queued_cmd * qc,struct page * page,unsigned int offset,size_t xfer_size)578 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
579 		unsigned int offset, size_t xfer_size)
580 {
581 	bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
582 	unsigned char *buf;
583 
584 	buf = kmap_atomic(page);
585 	qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
586 	kunmap_atomic(buf);
587 
588 	if (!do_write && !PageSlab(page))
589 		flush_dcache_page(page);
590 }
591 
592 /**
593  *	ata_pio_sector - Transfer a sector of data.
594  *	@qc: Command on going
595  *
596  *	Transfer qc->sect_size bytes of data from/to the ATA device.
597  *
598  *	LOCKING:
599  *	Inherited from caller.
600  */
ata_pio_sector(struct ata_queued_cmd * qc)601 static void ata_pio_sector(struct ata_queued_cmd *qc)
602 {
603 	struct ata_port *ap = qc->ap;
604 	struct page *page;
605 	unsigned int offset;
606 
607 	if (!qc->cursg) {
608 		qc->curbytes = qc->nbytes;
609 		return;
610 	}
611 	if (qc->curbytes == qc->nbytes - qc->sect_size)
612 		ap->hsm_task_state = HSM_ST_LAST;
613 
614 	page = sg_page(qc->cursg);
615 	offset = qc->cursg->offset + qc->cursg_ofs;
616 
617 	/* get the current page and offset */
618 	page = nth_page(page, (offset >> PAGE_SHIFT));
619 	offset %= PAGE_SIZE;
620 
621 	trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
622 
623 	/*
624 	 * Split the transfer when it splits a page boundary.  Note that the
625 	 * split still has to be dword aligned like all ATA data transfers.
626 	 */
627 	WARN_ON_ONCE(offset % 4);
628 	if (offset + qc->sect_size > PAGE_SIZE) {
629 		unsigned int split_len = PAGE_SIZE - offset;
630 
631 		ata_pio_xfer(qc, page, offset, split_len);
632 		ata_pio_xfer(qc, nth_page(page, 1), 0,
633 			     qc->sect_size - split_len);
634 	} else {
635 		ata_pio_xfer(qc, page, offset, qc->sect_size);
636 	}
637 
638 	qc->curbytes += qc->sect_size;
639 	qc->cursg_ofs += qc->sect_size;
640 
641 	if (qc->cursg_ofs == qc->cursg->length) {
642 		qc->cursg = sg_next(qc->cursg);
643 		if (!qc->cursg)
644 			ap->hsm_task_state = HSM_ST_LAST;
645 		qc->cursg_ofs = 0;
646 	}
647 }
648 
649 /**
650  *	ata_pio_sectors - Transfer one or many sectors.
651  *	@qc: Command on going
652  *
653  *	Transfer one or many sectors of data from/to the
654  *	ATA device for the DRQ request.
655  *
656  *	LOCKING:
657  *	Inherited from caller.
658  */
ata_pio_sectors(struct ata_queued_cmd * qc)659 static void ata_pio_sectors(struct ata_queued_cmd *qc)
660 {
661 	if (is_multi_taskfile(&qc->tf)) {
662 		/* READ/WRITE MULTIPLE */
663 		unsigned int nsect;
664 
665 		WARN_ON_ONCE(qc->dev->multi_count == 0);
666 
667 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
668 			    qc->dev->multi_count);
669 		while (nsect--)
670 			ata_pio_sector(qc);
671 	} else
672 		ata_pio_sector(qc);
673 
674 	ata_sff_sync(qc->ap); /* flush */
675 }
676 
677 /**
678  *	atapi_send_cdb - Write CDB bytes to hardware
679  *	@ap: Port to which ATAPI device is attached.
680  *	@qc: Taskfile currently active
681  *
682  *	When device has indicated its readiness to accept
683  *	a CDB, this function is called.  Send the CDB.
684  *
685  *	LOCKING:
686  *	caller.
687  */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)688 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
689 {
690 	/* send SCSI cdb */
691 	trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
692 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
693 
694 	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
695 	ata_sff_sync(ap);
696 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
697 	   or is bmdma_start guaranteed to do it ? */
698 	switch (qc->tf.protocol) {
699 	case ATAPI_PROT_PIO:
700 		ap->hsm_task_state = HSM_ST;
701 		break;
702 	case ATAPI_PROT_NODATA:
703 		ap->hsm_task_state = HSM_ST_LAST;
704 		break;
705 #ifdef CONFIG_ATA_BMDMA
706 	case ATAPI_PROT_DMA:
707 		ap->hsm_task_state = HSM_ST_LAST;
708 		/* initiate bmdma */
709 		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
710 		ap->ops->bmdma_start(qc);
711 		break;
712 #endif /* CONFIG_ATA_BMDMA */
713 	default:
714 		BUG();
715 	}
716 }
717 
718 /**
719  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
720  *	@qc: Command on going
721  *	@bytes: number of bytes
722  *
723  *	Transfer data from/to the ATAPI device.
724  *
725  *	LOCKING:
726  *	Inherited from caller.
727  *
728  */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)729 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
730 {
731 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
732 	struct ata_port *ap = qc->ap;
733 	struct ata_device *dev = qc->dev;
734 	struct ata_eh_info *ehi = &dev->link->eh_info;
735 	struct scatterlist *sg;
736 	struct page *page;
737 	unsigned char *buf;
738 	unsigned int offset, count, consumed;
739 
740 next_sg:
741 	sg = qc->cursg;
742 	if (unlikely(!sg)) {
743 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
744 				  "buf=%u cur=%u bytes=%u",
745 				  qc->nbytes, qc->curbytes, bytes);
746 		return -1;
747 	}
748 
749 	page = sg_page(sg);
750 	offset = sg->offset + qc->cursg_ofs;
751 
752 	/* get the current page and offset */
753 	page = nth_page(page, (offset >> PAGE_SHIFT));
754 	offset %= PAGE_SIZE;
755 
756 	/* don't overrun current sg */
757 	count = min(sg->length - qc->cursg_ofs, bytes);
758 
759 	/* don't cross page boundaries */
760 	count = min(count, (unsigned int)PAGE_SIZE - offset);
761 
762 	trace_atapi_pio_transfer_data(qc, offset, count);
763 
764 	/* do the actual data transfer */
765 	buf = kmap_atomic(page);
766 	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
767 	kunmap_atomic(buf);
768 
769 	bytes -= min(bytes, consumed);
770 	qc->curbytes += count;
771 	qc->cursg_ofs += count;
772 
773 	if (qc->cursg_ofs == sg->length) {
774 		qc->cursg = sg_next(qc->cursg);
775 		qc->cursg_ofs = 0;
776 	}
777 
778 	/*
779 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
780 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
781 	 * check correctly as it doesn't know if it is the last request being
782 	 * made. Somebody should implement a proper sanity check.
783 	 */
784 	if (bytes)
785 		goto next_sg;
786 	return 0;
787 }
788 
789 /**
790  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
791  *	@qc: Command on going
792  *
793  *	Transfer Transfer data from/to the ATAPI device.
794  *
795  *	LOCKING:
796  *	Inherited from caller.
797  */
atapi_pio_bytes(struct ata_queued_cmd * qc)798 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
799 {
800 	struct ata_port *ap = qc->ap;
801 	struct ata_device *dev = qc->dev;
802 	struct ata_eh_info *ehi = &dev->link->eh_info;
803 	unsigned int ireason, bc_lo, bc_hi, bytes;
804 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
805 
806 	/* Abuse qc->result_tf for temp storage of intermediate TF
807 	 * here to save some kernel stack usage.
808 	 * For normal completion, qc->result_tf is not relevant. For
809 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
810 	 * So, the correctness of qc->result_tf is not affected.
811 	 */
812 	ap->ops->sff_tf_read(ap, &qc->result_tf);
813 	ireason = qc->result_tf.nsect;
814 	bc_lo = qc->result_tf.lbam;
815 	bc_hi = qc->result_tf.lbah;
816 	bytes = (bc_hi << 8) | bc_lo;
817 
818 	/* shall be cleared to zero, indicating xfer of data */
819 	if (unlikely(ireason & ATAPI_COD))
820 		goto atapi_check;
821 
822 	/* make sure transfer direction matches expected */
823 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
824 	if (unlikely(do_write != i_write))
825 		goto atapi_check;
826 
827 	if (unlikely(!bytes))
828 		goto atapi_check;
829 
830 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
831 		goto err_out;
832 	ata_sff_sync(ap); /* flush */
833 
834 	return;
835 
836  atapi_check:
837 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
838 			  ireason, bytes);
839  err_out:
840 	qc->err_mask |= AC_ERR_HSM;
841 	ap->hsm_task_state = HSM_ST_ERR;
842 }
843 
844 /**
845  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
846  *	@ap: the target ata_port
847  *	@qc: qc on going
848  *
849  *	RETURNS:
850  *	1 if ok in workqueue, 0 otherwise.
851  */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)852 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
853 						struct ata_queued_cmd *qc)
854 {
855 	if (qc->tf.flags & ATA_TFLAG_POLLING)
856 		return 1;
857 
858 	if (ap->hsm_task_state == HSM_ST_FIRST) {
859 		if (qc->tf.protocol == ATA_PROT_PIO &&
860 		   (qc->tf.flags & ATA_TFLAG_WRITE))
861 		    return 1;
862 
863 		if (ata_is_atapi(qc->tf.protocol) &&
864 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
865 			return 1;
866 	}
867 
868 	return 0;
869 }
870 
871 /**
872  *	ata_hsm_qc_complete - finish a qc running on standard HSM
873  *	@qc: Command to complete
874  *	@in_wq: 1 if called from workqueue, 0 otherwise
875  *
876  *	Finish @qc which is running on standard HSM.
877  *
878  *	LOCKING:
879  *	If @in_wq is zero, spin_lock_irqsave(host lock).
880  *	Otherwise, none on entry and grabs host lock.
881  */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)882 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
883 {
884 	struct ata_port *ap = qc->ap;
885 
886 	if (in_wq) {
887 		/* EH might have kicked in while host lock is released. */
888 		qc = ata_qc_from_tag(ap, qc->tag);
889 		if (qc) {
890 			if (likely(!(qc->err_mask & AC_ERR_HSM))) {
891 				ata_sff_irq_on(ap);
892 				ata_qc_complete(qc);
893 			} else
894 				ata_port_freeze(ap);
895 		}
896 	} else {
897 		if (likely(!(qc->err_mask & AC_ERR_HSM)))
898 			ata_qc_complete(qc);
899 		else
900 			ata_port_freeze(ap);
901 	}
902 }
903 
904 /**
905  *	ata_sff_hsm_move - move the HSM to the next state.
906  *	@ap: the target ata_port
907  *	@qc: qc on going
908  *	@status: current device status
909  *	@in_wq: 1 if called from workqueue, 0 otherwise
910  *
911  *	RETURNS:
912  *	1 when poll next status needed, 0 otherwise.
913  */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)914 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
915 		     u8 status, int in_wq)
916 {
917 	struct ata_link *link = qc->dev->link;
918 	struct ata_eh_info *ehi = &link->eh_info;
919 	int poll_next;
920 
921 	lockdep_assert_held(ap->lock);
922 
923 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
924 
925 	/* Make sure ata_sff_qc_issue() does not throw things
926 	 * like DMA polling into the workqueue. Notice that
927 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
928 	 */
929 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
930 
931 fsm_start:
932 	trace_ata_sff_hsm_state(qc, status);
933 
934 	switch (ap->hsm_task_state) {
935 	case HSM_ST_FIRST:
936 		/* Send first data block or PACKET CDB */
937 
938 		/* If polling, we will stay in the work queue after
939 		 * sending the data. Otherwise, interrupt handler
940 		 * takes over after sending the data.
941 		 */
942 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
943 
944 		/* check device status */
945 		if (unlikely((status & ATA_DRQ) == 0)) {
946 			/* handle BSY=0, DRQ=0 as error */
947 			if (likely(status & (ATA_ERR | ATA_DF)))
948 				/* device stops HSM for abort/error */
949 				qc->err_mask |= AC_ERR_DEV;
950 			else {
951 				/* HSM violation. Let EH handle this */
952 				ata_ehi_push_desc(ehi,
953 					"ST_FIRST: !(DRQ|ERR|DF)");
954 				qc->err_mask |= AC_ERR_HSM;
955 			}
956 
957 			ap->hsm_task_state = HSM_ST_ERR;
958 			goto fsm_start;
959 		}
960 
961 		/* Device should not ask for data transfer (DRQ=1)
962 		 * when it finds something wrong.
963 		 * We ignore DRQ here and stop the HSM by
964 		 * changing hsm_task_state to HSM_ST_ERR and
965 		 * let the EH abort the command or reset the device.
966 		 */
967 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
968 			/* Some ATAPI tape drives forget to clear the ERR bit
969 			 * when doing the next command (mostly request sense).
970 			 * We ignore ERR here to workaround and proceed sending
971 			 * the CDB.
972 			 */
973 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
974 				ata_ehi_push_desc(ehi, "ST_FIRST: "
975 					"DRQ=1 with device error, "
976 					"dev_stat 0x%X", status);
977 				qc->err_mask |= AC_ERR_HSM;
978 				ap->hsm_task_state = HSM_ST_ERR;
979 				goto fsm_start;
980 			}
981 		}
982 
983 		if (qc->tf.protocol == ATA_PROT_PIO) {
984 			/* PIO data out protocol.
985 			 * send first data block.
986 			 */
987 
988 			/* ata_pio_sectors() might change the state
989 			 * to HSM_ST_LAST. so, the state is changed here
990 			 * before ata_pio_sectors().
991 			 */
992 			ap->hsm_task_state = HSM_ST;
993 			ata_pio_sectors(qc);
994 		} else
995 			/* send CDB */
996 			atapi_send_cdb(ap, qc);
997 
998 		/* if polling, ata_sff_pio_task() handles the rest.
999 		 * otherwise, interrupt handler takes over from here.
1000 		 */
1001 		break;
1002 
1003 	case HSM_ST:
1004 		/* complete command or read/write the data register */
1005 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1006 			/* ATAPI PIO protocol */
1007 			if ((status & ATA_DRQ) == 0) {
1008 				/* No more data to transfer or device error.
1009 				 * Device error will be tagged in HSM_ST_LAST.
1010 				 */
1011 				ap->hsm_task_state = HSM_ST_LAST;
1012 				goto fsm_start;
1013 			}
1014 
1015 			/* Device should not ask for data transfer (DRQ=1)
1016 			 * when it finds something wrong.
1017 			 * We ignore DRQ here and stop the HSM by
1018 			 * changing hsm_task_state to HSM_ST_ERR and
1019 			 * let the EH abort the command or reset the device.
1020 			 */
1021 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1022 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1023 					"DRQ=1 with device error, "
1024 					"dev_stat 0x%X", status);
1025 				qc->err_mask |= AC_ERR_HSM;
1026 				ap->hsm_task_state = HSM_ST_ERR;
1027 				goto fsm_start;
1028 			}
1029 
1030 			atapi_pio_bytes(qc);
1031 
1032 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1033 				/* bad ireason reported by device */
1034 				goto fsm_start;
1035 
1036 		} else {
1037 			/* ATA PIO protocol */
1038 			if (unlikely((status & ATA_DRQ) == 0)) {
1039 				/* handle BSY=0, DRQ=0 as error */
1040 				if (likely(status & (ATA_ERR | ATA_DF))) {
1041 					/* device stops HSM for abort/error */
1042 					qc->err_mask |= AC_ERR_DEV;
1043 
1044 					/* If diagnostic failed and this is
1045 					 * IDENTIFY, it's likely a phantom
1046 					 * device.  Mark hint.
1047 					 */
1048 					if (qc->dev->horkage &
1049 					    ATA_HORKAGE_DIAGNOSTIC)
1050 						qc->err_mask |=
1051 							AC_ERR_NODEV_HINT;
1052 				} else {
1053 					/* HSM violation. Let EH handle this.
1054 					 * Phantom devices also trigger this
1055 					 * condition.  Mark hint.
1056 					 */
1057 					ata_ehi_push_desc(ehi, "ST-ATA: "
1058 						"DRQ=0 without device error, "
1059 						"dev_stat 0x%X", status);
1060 					qc->err_mask |= AC_ERR_HSM |
1061 							AC_ERR_NODEV_HINT;
1062 				}
1063 
1064 				ap->hsm_task_state = HSM_ST_ERR;
1065 				goto fsm_start;
1066 			}
1067 
1068 			/* For PIO reads, some devices may ask for
1069 			 * data transfer (DRQ=1) alone with ERR=1.
1070 			 * We respect DRQ here and transfer one
1071 			 * block of junk data before changing the
1072 			 * hsm_task_state to HSM_ST_ERR.
1073 			 *
1074 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1075 			 * sense since the data block has been
1076 			 * transferred to the device.
1077 			 */
1078 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1079 				/* data might be corrputed */
1080 				qc->err_mask |= AC_ERR_DEV;
1081 
1082 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1083 					ata_pio_sectors(qc);
1084 					status = ata_wait_idle(ap);
1085 				}
1086 
1087 				if (status & (ATA_BUSY | ATA_DRQ)) {
1088 					ata_ehi_push_desc(ehi, "ST-ATA: "
1089 						"BUSY|DRQ persists on ERR|DF, "
1090 						"dev_stat 0x%X", status);
1091 					qc->err_mask |= AC_ERR_HSM;
1092 				}
1093 
1094 				/* There are oddball controllers with
1095 				 * status register stuck at 0x7f and
1096 				 * lbal/m/h at zero which makes it
1097 				 * pass all other presence detection
1098 				 * mechanisms we have.  Set NODEV_HINT
1099 				 * for it.  Kernel bz#7241.
1100 				 */
1101 				if (status == 0x7f)
1102 					qc->err_mask |= AC_ERR_NODEV_HINT;
1103 
1104 				/* ata_pio_sectors() might change the
1105 				 * state to HSM_ST_LAST. so, the state
1106 				 * is changed after ata_pio_sectors().
1107 				 */
1108 				ap->hsm_task_state = HSM_ST_ERR;
1109 				goto fsm_start;
1110 			}
1111 
1112 			ata_pio_sectors(qc);
1113 
1114 			if (ap->hsm_task_state == HSM_ST_LAST &&
1115 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1116 				/* all data read */
1117 				status = ata_wait_idle(ap);
1118 				goto fsm_start;
1119 			}
1120 		}
1121 
1122 		poll_next = 1;
1123 		break;
1124 
1125 	case HSM_ST_LAST:
1126 		if (unlikely(!ata_ok(status))) {
1127 			qc->err_mask |= __ac_err_mask(status);
1128 			ap->hsm_task_state = HSM_ST_ERR;
1129 			goto fsm_start;
1130 		}
1131 
1132 		/* no more data to transfer */
1133 		trace_ata_sff_hsm_command_complete(qc, status);
1134 
1135 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1136 
1137 		ap->hsm_task_state = HSM_ST_IDLE;
1138 
1139 		/* complete taskfile transaction */
1140 		ata_hsm_qc_complete(qc, in_wq);
1141 
1142 		poll_next = 0;
1143 		break;
1144 
1145 	case HSM_ST_ERR:
1146 		ap->hsm_task_state = HSM_ST_IDLE;
1147 
1148 		/* complete taskfile transaction */
1149 		ata_hsm_qc_complete(qc, in_wq);
1150 
1151 		poll_next = 0;
1152 		break;
1153 	default:
1154 		poll_next = 0;
1155 		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1156 		     ap->print_id, ap->hsm_task_state);
1157 	}
1158 
1159 	return poll_next;
1160 }
1161 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1162 
ata_sff_queue_work(struct work_struct * work)1163 void ata_sff_queue_work(struct work_struct *work)
1164 {
1165 	queue_work(ata_sff_wq, work);
1166 }
1167 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1168 
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1169 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1170 {
1171 	queue_delayed_work(ata_sff_wq, dwork, delay);
1172 }
1173 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1174 
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1175 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1176 {
1177 	struct ata_port *ap = link->ap;
1178 
1179 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1180 		(ap->sff_pio_task_link != link));
1181 	ap->sff_pio_task_link = link;
1182 
1183 	/* may fail if ata_sff_flush_pio_task() in progress */
1184 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1185 }
1186 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1187 
ata_sff_flush_pio_task(struct ata_port * ap)1188 void ata_sff_flush_pio_task(struct ata_port *ap)
1189 {
1190 	trace_ata_sff_flush_pio_task(ap);
1191 
1192 	cancel_delayed_work_sync(&ap->sff_pio_task);
1193 
1194 	/*
1195 	 * We wanna reset the HSM state to IDLE.  If we do so without
1196 	 * grabbing the port lock, critical sections protected by it which
1197 	 * expect the HSM state to stay stable may get surprised.  For
1198 	 * example, we may set IDLE in between the time
1199 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1200 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1201 	 */
1202 	spin_lock_irq(ap->lock);
1203 	ap->hsm_task_state = HSM_ST_IDLE;
1204 	spin_unlock_irq(ap->lock);
1205 
1206 	ap->sff_pio_task_link = NULL;
1207 }
1208 
ata_sff_pio_task(struct work_struct * work)1209 static void ata_sff_pio_task(struct work_struct *work)
1210 {
1211 	struct ata_port *ap =
1212 		container_of(work, struct ata_port, sff_pio_task.work);
1213 	struct ata_link *link = ap->sff_pio_task_link;
1214 	struct ata_queued_cmd *qc;
1215 	u8 status;
1216 	int poll_next;
1217 
1218 	spin_lock_irq(ap->lock);
1219 
1220 	BUG_ON(ap->sff_pio_task_link == NULL);
1221 	/* qc can be NULL if timeout occurred */
1222 	qc = ata_qc_from_tag(ap, link->active_tag);
1223 	if (!qc) {
1224 		ap->sff_pio_task_link = NULL;
1225 		goto out_unlock;
1226 	}
1227 
1228 fsm_start:
1229 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1230 
1231 	/*
1232 	 * This is purely heuristic.  This is a fast path.
1233 	 * Sometimes when we enter, BSY will be cleared in
1234 	 * a chk-status or two.  If not, the drive is probably seeking
1235 	 * or something.  Snooze for a couple msecs, then
1236 	 * chk-status again.  If still busy, queue delayed work.
1237 	 */
1238 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1239 	if (status & ATA_BUSY) {
1240 		spin_unlock_irq(ap->lock);
1241 		ata_msleep(ap, 2);
1242 		spin_lock_irq(ap->lock);
1243 
1244 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1245 		if (status & ATA_BUSY) {
1246 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1247 			goto out_unlock;
1248 		}
1249 	}
1250 
1251 	/*
1252 	 * hsm_move() may trigger another command to be processed.
1253 	 * clean the link beforehand.
1254 	 */
1255 	ap->sff_pio_task_link = NULL;
1256 	/* move the HSM */
1257 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1258 
1259 	/* another command or interrupt handler
1260 	 * may be running at this point.
1261 	 */
1262 	if (poll_next)
1263 		goto fsm_start;
1264 out_unlock:
1265 	spin_unlock_irq(ap->lock);
1266 }
1267 
1268 /**
1269  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1270  *	@qc: command to issue to device
1271  *
1272  *	This function issues a PIO or NODATA command to a SFF
1273  *	controller.
1274  *
1275  *	LOCKING:
1276  *	spin_lock_irqsave(host lock)
1277  *
1278  *	RETURNS:
1279  *	Zero on success, AC_ERR_* mask on failure
1280  */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1281 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1282 {
1283 	struct ata_port *ap = qc->ap;
1284 	struct ata_link *link = qc->dev->link;
1285 
1286 	/* Use polling pio if the LLD doesn't handle
1287 	 * interrupt driven pio and atapi CDB interrupt.
1288 	 */
1289 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1290 		qc->tf.flags |= ATA_TFLAG_POLLING;
1291 
1292 	/* select the device */
1293 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1294 
1295 	/* start the command */
1296 	switch (qc->tf.protocol) {
1297 	case ATA_PROT_NODATA:
1298 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1299 			ata_qc_set_polling(qc);
1300 
1301 		ata_tf_to_host(ap, &qc->tf, qc->tag);
1302 		ap->hsm_task_state = HSM_ST_LAST;
1303 
1304 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1305 			ata_sff_queue_pio_task(link, 0);
1306 
1307 		break;
1308 
1309 	case ATA_PROT_PIO:
1310 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1311 			ata_qc_set_polling(qc);
1312 
1313 		ata_tf_to_host(ap, &qc->tf, qc->tag);
1314 
1315 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1316 			/* PIO data out protocol */
1317 			ap->hsm_task_state = HSM_ST_FIRST;
1318 			ata_sff_queue_pio_task(link, 0);
1319 
1320 			/* always send first data block using the
1321 			 * ata_sff_pio_task() codepath.
1322 			 */
1323 		} else {
1324 			/* PIO data in protocol */
1325 			ap->hsm_task_state = HSM_ST;
1326 
1327 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1328 				ata_sff_queue_pio_task(link, 0);
1329 
1330 			/* if polling, ata_sff_pio_task() handles the
1331 			 * rest.  otherwise, interrupt handler takes
1332 			 * over from here.
1333 			 */
1334 		}
1335 
1336 		break;
1337 
1338 	case ATAPI_PROT_PIO:
1339 	case ATAPI_PROT_NODATA:
1340 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1341 			ata_qc_set_polling(qc);
1342 
1343 		ata_tf_to_host(ap, &qc->tf, qc->tag);
1344 
1345 		ap->hsm_task_state = HSM_ST_FIRST;
1346 
1347 		/* send cdb by polling if no cdb interrupt */
1348 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1349 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1350 			ata_sff_queue_pio_task(link, 0);
1351 		break;
1352 
1353 	default:
1354 		return AC_ERR_SYSTEM;
1355 	}
1356 
1357 	return 0;
1358 }
1359 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1360 
1361 /**
1362  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1363  *	@qc: qc to fill result TF for
1364  *
1365  *	@qc is finished and result TF needs to be filled.  Fill it
1366  *	using ->sff_tf_read.
1367  *
1368  *	LOCKING:
1369  *	spin_lock_irqsave(host lock)
1370  */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1371 void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1372 {
1373 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1374 }
1375 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1376 
ata_sff_idle_irq(struct ata_port * ap)1377 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1378 {
1379 	ap->stats.idle_irq++;
1380 
1381 #ifdef ATA_IRQ_TRAP
1382 	if ((ap->stats.idle_irq % 1000) == 0) {
1383 		ap->ops->sff_check_status(ap);
1384 		if (ap->ops->sff_irq_clear)
1385 			ap->ops->sff_irq_clear(ap);
1386 		ata_port_warn(ap, "irq trap\n");
1387 		return 1;
1388 	}
1389 #endif
1390 	return 0;	/* irq not handled */
1391 }
1392 
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1393 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1394 					struct ata_queued_cmd *qc,
1395 					bool hsmv_on_idle)
1396 {
1397 	u8 status;
1398 
1399 	trace_ata_sff_port_intr(qc, hsmv_on_idle);
1400 
1401 	/* Check whether we are expecting interrupt in this state */
1402 	switch (ap->hsm_task_state) {
1403 	case HSM_ST_FIRST:
1404 		/* Some pre-ATAPI-4 devices assert INTRQ
1405 		 * at this state when ready to receive CDB.
1406 		 */
1407 
1408 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1409 		 * The flag was turned on only for atapi devices.  No
1410 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1411 		 */
1412 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1413 			return ata_sff_idle_irq(ap);
1414 		break;
1415 	case HSM_ST_IDLE:
1416 		return ata_sff_idle_irq(ap);
1417 	default:
1418 		break;
1419 	}
1420 
1421 	/* check main status, clearing INTRQ if needed */
1422 	status = ata_sff_irq_status(ap);
1423 	if (status & ATA_BUSY) {
1424 		if (hsmv_on_idle) {
1425 			/* BMDMA engine is already stopped, we're screwed */
1426 			qc->err_mask |= AC_ERR_HSM;
1427 			ap->hsm_task_state = HSM_ST_ERR;
1428 		} else
1429 			return ata_sff_idle_irq(ap);
1430 	}
1431 
1432 	/* clear irq events */
1433 	if (ap->ops->sff_irq_clear)
1434 		ap->ops->sff_irq_clear(ap);
1435 
1436 	ata_sff_hsm_move(ap, qc, status, 0);
1437 
1438 	return 1;	/* irq handled */
1439 }
1440 
1441 /**
1442  *	ata_sff_port_intr - Handle SFF port interrupt
1443  *	@ap: Port on which interrupt arrived (possibly...)
1444  *	@qc: Taskfile currently active in engine
1445  *
1446  *	Handle port interrupt for given queued command.
1447  *
1448  *	LOCKING:
1449  *	spin_lock_irqsave(host lock)
1450  *
1451  *	RETURNS:
1452  *	One if interrupt was handled, zero if not (shared irq).
1453  */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1454 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1455 {
1456 	return __ata_sff_port_intr(ap, qc, false);
1457 }
1458 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1459 
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1460 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1461 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1462 {
1463 	struct ata_host *host = dev_instance;
1464 	bool retried = false;
1465 	unsigned int i;
1466 	unsigned int handled, idle, polling;
1467 	unsigned long flags;
1468 
1469 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1470 	spin_lock_irqsave(&host->lock, flags);
1471 
1472 retry:
1473 	handled = idle = polling = 0;
1474 	for (i = 0; i < host->n_ports; i++) {
1475 		struct ata_port *ap = host->ports[i];
1476 		struct ata_queued_cmd *qc;
1477 
1478 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1479 		if (qc) {
1480 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1481 				handled |= port_intr(ap, qc);
1482 			else
1483 				polling |= 1 << i;
1484 		} else
1485 			idle |= 1 << i;
1486 	}
1487 
1488 	/*
1489 	 * If no port was expecting IRQ but the controller is actually
1490 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1491 	 * pending status if available and clear spurious IRQ.
1492 	 */
1493 	if (!handled && !retried) {
1494 		bool retry = false;
1495 
1496 		for (i = 0; i < host->n_ports; i++) {
1497 			struct ata_port *ap = host->ports[i];
1498 
1499 			if (polling & (1 << i))
1500 				continue;
1501 
1502 			if (!ap->ops->sff_irq_check ||
1503 			    !ap->ops->sff_irq_check(ap))
1504 				continue;
1505 
1506 			if (idle & (1 << i)) {
1507 				ap->ops->sff_check_status(ap);
1508 				if (ap->ops->sff_irq_clear)
1509 					ap->ops->sff_irq_clear(ap);
1510 			} else {
1511 				/* clear INTRQ and check if BUSY cleared */
1512 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1513 					retry |= true;
1514 				/*
1515 				 * With command in flight, we can't do
1516 				 * sff_irq_clear() w/o racing with completion.
1517 				 */
1518 			}
1519 		}
1520 
1521 		if (retry) {
1522 			retried = true;
1523 			goto retry;
1524 		}
1525 	}
1526 
1527 	spin_unlock_irqrestore(&host->lock, flags);
1528 
1529 	return IRQ_RETVAL(handled);
1530 }
1531 
1532 /**
1533  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1534  *	@irq: irq line (unused)
1535  *	@dev_instance: pointer to our ata_host information structure
1536  *
1537  *	Default interrupt handler for PCI IDE devices.  Calls
1538  *	ata_sff_port_intr() for each port that is not disabled.
1539  *
1540  *	LOCKING:
1541  *	Obtains host lock during operation.
1542  *
1543  *	RETURNS:
1544  *	IRQ_NONE or IRQ_HANDLED.
1545  */
ata_sff_interrupt(int irq,void * dev_instance)1546 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1547 {
1548 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1549 }
1550 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1551 
1552 /**
1553  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1554  *	@ap: port that appears to have timed out
1555  *
1556  *	Called from the libata error handlers when the core code suspects
1557  *	an interrupt has been lost. If it has complete anything we can and
1558  *	then return. Interface must support altstatus for this faster
1559  *	recovery to occur.
1560  *
1561  *	Locking:
1562  *	Caller holds host lock
1563  */
1564 
ata_sff_lost_interrupt(struct ata_port * ap)1565 void ata_sff_lost_interrupt(struct ata_port *ap)
1566 {
1567 	u8 status = 0;
1568 	struct ata_queued_cmd *qc;
1569 
1570 	/* Only one outstanding command per SFF channel */
1571 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1572 	/* We cannot lose an interrupt on a non-existent or polled command */
1573 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1574 		return;
1575 	/* See if the controller thinks it is still busy - if so the command
1576 	   isn't a lost IRQ but is still in progress */
1577 	if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1578 		return;
1579 	if (status & ATA_BUSY)
1580 		return;
1581 
1582 	/* There was a command running, we are no longer busy and we have
1583 	   no interrupt. */
1584 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
1585 	/* Run the host interrupt logic as if the interrupt had not been
1586 	   lost */
1587 	ata_sff_port_intr(ap, qc);
1588 }
1589 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1590 
1591 /**
1592  *	ata_sff_freeze - Freeze SFF controller port
1593  *	@ap: port to freeze
1594  *
1595  *	Freeze SFF controller port.
1596  *
1597  *	LOCKING:
1598  *	Inherited from caller.
1599  */
ata_sff_freeze(struct ata_port * ap)1600 void ata_sff_freeze(struct ata_port *ap)
1601 {
1602 	ap->ctl |= ATA_NIEN;
1603 	ap->last_ctl = ap->ctl;
1604 
1605 	ata_sff_set_devctl(ap, ap->ctl);
1606 
1607 	/* Under certain circumstances, some controllers raise IRQ on
1608 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1609 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1610 	 */
1611 	ap->ops->sff_check_status(ap);
1612 
1613 	if (ap->ops->sff_irq_clear)
1614 		ap->ops->sff_irq_clear(ap);
1615 }
1616 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1617 
1618 /**
1619  *	ata_sff_thaw - Thaw SFF controller port
1620  *	@ap: port to thaw
1621  *
1622  *	Thaw SFF controller port.
1623  *
1624  *	LOCKING:
1625  *	Inherited from caller.
1626  */
ata_sff_thaw(struct ata_port * ap)1627 void ata_sff_thaw(struct ata_port *ap)
1628 {
1629 	/* clear & re-enable interrupts */
1630 	ap->ops->sff_check_status(ap);
1631 	if (ap->ops->sff_irq_clear)
1632 		ap->ops->sff_irq_clear(ap);
1633 	ata_sff_irq_on(ap);
1634 }
1635 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1636 
1637 /**
1638  *	ata_sff_prereset - prepare SFF link for reset
1639  *	@link: SFF link to be reset
1640  *	@deadline: deadline jiffies for the operation
1641  *
1642  *	SFF link @link is about to be reset.  Initialize it.  It first
1643  *	calls ata_std_prereset() and wait for !BSY if the port is
1644  *	being softreset.
1645  *
1646  *	LOCKING:
1647  *	Kernel thread context (may sleep)
1648  *
1649  *	RETURNS:
1650  *	Always 0.
1651  */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1652 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1653 {
1654 	struct ata_eh_context *ehc = &link->eh_context;
1655 	int rc;
1656 
1657 	/* The standard prereset is best-effort and always returns 0 */
1658 	ata_std_prereset(link, deadline);
1659 
1660 	/* if we're about to do hardreset, nothing more to do */
1661 	if (ehc->i.action & ATA_EH_HARDRESET)
1662 		return 0;
1663 
1664 	/* wait for !BSY if we don't know that no device is attached */
1665 	if (!ata_link_offline(link)) {
1666 		rc = ata_sff_wait_ready(link, deadline);
1667 		if (rc && rc != -ENODEV) {
1668 			ata_link_warn(link,
1669 				      "device not ready (errno=%d), forcing hardreset\n",
1670 				      rc);
1671 			ehc->i.action |= ATA_EH_HARDRESET;
1672 		}
1673 	}
1674 
1675 	return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1678 
1679 /**
1680  *	ata_devchk - PATA device presence detection
1681  *	@ap: ATA channel to examine
1682  *	@device: Device to examine (starting at zero)
1683  *
1684  *	This technique was originally described in
1685  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1686  *	later found its way into the ATA/ATAPI spec.
1687  *
1688  *	Write a pattern to the ATA shadow registers,
1689  *	and if a device is present, it will respond by
1690  *	correctly storing and echoing back the
1691  *	ATA shadow register contents.
1692  *
1693  *	RETURN:
1694  *	true if device is present, false if not.
1695  *
1696  *	LOCKING:
1697  *	caller.
1698  */
ata_devchk(struct ata_port * ap,unsigned int device)1699 static bool ata_devchk(struct ata_port *ap, unsigned int device)
1700 {
1701 	struct ata_ioports *ioaddr = &ap->ioaddr;
1702 	u8 nsect, lbal;
1703 
1704 	ap->ops->sff_dev_select(ap, device);
1705 
1706 	iowrite8(0x55, ioaddr->nsect_addr);
1707 	iowrite8(0xaa, ioaddr->lbal_addr);
1708 
1709 	iowrite8(0xaa, ioaddr->nsect_addr);
1710 	iowrite8(0x55, ioaddr->lbal_addr);
1711 
1712 	iowrite8(0x55, ioaddr->nsect_addr);
1713 	iowrite8(0xaa, ioaddr->lbal_addr);
1714 
1715 	nsect = ioread8(ioaddr->nsect_addr);
1716 	lbal = ioread8(ioaddr->lbal_addr);
1717 
1718 	if ((nsect == 0x55) && (lbal == 0xaa))
1719 		return true;	/* we found a device */
1720 
1721 	return false;		/* nothing found */
1722 }
1723 
1724 /**
1725  *	ata_sff_dev_classify - Parse returned ATA device signature
1726  *	@dev: ATA device to classify (starting at zero)
1727  *	@present: device seems present
1728  *	@r_err: Value of error register on completion
1729  *
1730  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1731  *	an ATA/ATAPI-defined set of values is placed in the ATA
1732  *	shadow registers, indicating the results of device detection
1733  *	and diagnostics.
1734  *
1735  *	Select the ATA device, and read the values from the ATA shadow
1736  *	registers.  Then parse according to the Error register value,
1737  *	and the spec-defined values examined by ata_dev_classify().
1738  *
1739  *	LOCKING:
1740  *	caller.
1741  *
1742  *	RETURNS:
1743  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1744  */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1745 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1746 				  u8 *r_err)
1747 {
1748 	struct ata_port *ap = dev->link->ap;
1749 	struct ata_taskfile tf;
1750 	unsigned int class;
1751 	u8 err;
1752 
1753 	ap->ops->sff_dev_select(ap, dev->devno);
1754 
1755 	memset(&tf, 0, sizeof(tf));
1756 
1757 	ap->ops->sff_tf_read(ap, &tf);
1758 	err = tf.error;
1759 	if (r_err)
1760 		*r_err = err;
1761 
1762 	/* see if device passed diags: continue and warn later */
1763 	if (err == 0)
1764 		/* diagnostic fail : do nothing _YET_ */
1765 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1766 	else if (err == 1)
1767 		/* do nothing */ ;
1768 	else if ((dev->devno == 0) && (err == 0x81))
1769 		/* do nothing */ ;
1770 	else
1771 		return ATA_DEV_NONE;
1772 
1773 	/* determine if device is ATA or ATAPI */
1774 	class = ata_port_classify(ap, &tf);
1775 	switch (class) {
1776 	case ATA_DEV_UNKNOWN:
1777 		/*
1778 		 * If the device failed diagnostic, it's likely to
1779 		 * have reported incorrect device signature too.
1780 		 * Assume ATA device if the device seems present but
1781 		 * device signature is invalid with diagnostic
1782 		 * failure.
1783 		 */
1784 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1785 			class = ATA_DEV_ATA;
1786 		else
1787 			class = ATA_DEV_NONE;
1788 		break;
1789 	case ATA_DEV_ATA:
1790 		if (ap->ops->sff_check_status(ap) == 0)
1791 			class = ATA_DEV_NONE;
1792 		break;
1793 	}
1794 	return class;
1795 }
1796 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1797 
1798 /**
1799  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1800  *	@link: SFF link which is just reset
1801  *	@devmask: mask of present devices
1802  *	@deadline: deadline jiffies for the operation
1803  *
1804  *	Wait devices attached to SFF @link to become ready after
1805  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1806  *	status register too early.
1807  *
1808  *	LOCKING:
1809  *	Kernel thread context (may sleep).
1810  *
1811  *	RETURNS:
1812  *	0 on success, -ENODEV if some or all of devices in @devmask
1813  *	don't seem to exist.  -errno on other errors.
1814  */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1815 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1816 			     unsigned long deadline)
1817 {
1818 	struct ata_port *ap = link->ap;
1819 	struct ata_ioports *ioaddr = &ap->ioaddr;
1820 	unsigned int dev0 = devmask & (1 << 0);
1821 	unsigned int dev1 = devmask & (1 << 1);
1822 	int rc, ret = 0;
1823 
1824 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1825 
1826 	/* always check readiness of the master device */
1827 	rc = ata_sff_wait_ready(link, deadline);
1828 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1829 	 * and TF status is 0xff, bail out on it too.
1830 	 */
1831 	if (rc)
1832 		return rc;
1833 
1834 	/* if device 1 was found in ata_devchk, wait for register
1835 	 * access briefly, then wait for BSY to clear.
1836 	 */
1837 	if (dev1) {
1838 		int i;
1839 
1840 		ap->ops->sff_dev_select(ap, 1);
1841 
1842 		/* Wait for register access.  Some ATAPI devices fail
1843 		 * to set nsect/lbal after reset, so don't waste too
1844 		 * much time on it.  We're gonna wait for !BSY anyway.
1845 		 */
1846 		for (i = 0; i < 2; i++) {
1847 			u8 nsect, lbal;
1848 
1849 			nsect = ioread8(ioaddr->nsect_addr);
1850 			lbal = ioread8(ioaddr->lbal_addr);
1851 			if ((nsect == 1) && (lbal == 1))
1852 				break;
1853 			ata_msleep(ap, 50);	/* give drive a breather */
1854 		}
1855 
1856 		rc = ata_sff_wait_ready(link, deadline);
1857 		if (rc) {
1858 			if (rc != -ENODEV)
1859 				return rc;
1860 			ret = rc;
1861 		}
1862 	}
1863 
1864 	/* is all this really necessary? */
1865 	ap->ops->sff_dev_select(ap, 0);
1866 	if (dev1)
1867 		ap->ops->sff_dev_select(ap, 1);
1868 	if (dev0)
1869 		ap->ops->sff_dev_select(ap, 0);
1870 
1871 	return ret;
1872 }
1873 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1874 
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)1875 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1876 			     unsigned long deadline)
1877 {
1878 	struct ata_ioports *ioaddr = &ap->ioaddr;
1879 
1880 	if (ap->ioaddr.ctl_addr) {
1881 		/* software reset.  causes dev0 to be selected */
1882 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1883 		udelay(20);	/* FIXME: flush */
1884 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1885 		udelay(20);	/* FIXME: flush */
1886 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1887 		ap->last_ctl = ap->ctl;
1888 	}
1889 
1890 	/* wait the port to become ready */
1891 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1892 }
1893 
1894 /**
1895  *	ata_sff_softreset - reset host port via ATA SRST
1896  *	@link: ATA link to reset
1897  *	@classes: resulting classes of attached devices
1898  *	@deadline: deadline jiffies for the operation
1899  *
1900  *	Reset host port using ATA SRST.
1901  *
1902  *	LOCKING:
1903  *	Kernel thread context (may sleep)
1904  *
1905  *	RETURNS:
1906  *	0 on success, -errno otherwise.
1907  */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)1908 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1909 		      unsigned long deadline)
1910 {
1911 	struct ata_port *ap = link->ap;
1912 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1913 	unsigned int devmask = 0;
1914 	int rc;
1915 	u8 err;
1916 
1917 	/* determine if device 0/1 are present */
1918 	if (ata_devchk(ap, 0))
1919 		devmask |= (1 << 0);
1920 	if (slave_possible && ata_devchk(ap, 1))
1921 		devmask |= (1 << 1);
1922 
1923 	/* select device 0 again */
1924 	ap->ops->sff_dev_select(ap, 0);
1925 
1926 	/* issue bus reset */
1927 	rc = ata_bus_softreset(ap, devmask, deadline);
1928 	/* if link is occupied, -ENODEV too is an error */
1929 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1930 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1931 		return rc;
1932 	}
1933 
1934 	/* determine by signature whether we have ATA or ATAPI devices */
1935 	classes[0] = ata_sff_dev_classify(&link->device[0],
1936 					  devmask & (1 << 0), &err);
1937 	if (slave_possible && err != 0x81)
1938 		classes[1] = ata_sff_dev_classify(&link->device[1],
1939 						  devmask & (1 << 1), &err);
1940 
1941 	return 0;
1942 }
1943 EXPORT_SYMBOL_GPL(ata_sff_softreset);
1944 
1945 /**
1946  *	sata_sff_hardreset - reset host port via SATA phy reset
1947  *	@link: link to reset
1948  *	@class: resulting class of attached device
1949  *	@deadline: deadline jiffies for the operation
1950  *
1951  *	SATA phy-reset host port using DET bits of SControl register,
1952  *	wait for !BSY and classify the attached device.
1953  *
1954  *	LOCKING:
1955  *	Kernel thread context (may sleep)
1956  *
1957  *	RETURNS:
1958  *	0 on success, -errno otherwise.
1959  */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)1960 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1961 		       unsigned long deadline)
1962 {
1963 	struct ata_eh_context *ehc = &link->eh_context;
1964 	const unsigned int *timing = sata_ehc_deb_timing(ehc);
1965 	bool online;
1966 	int rc;
1967 
1968 	rc = sata_link_hardreset(link, timing, deadline, &online,
1969 				 ata_sff_check_ready);
1970 	if (online)
1971 		*class = ata_sff_dev_classify(link->device, 1, NULL);
1972 
1973 	return rc;
1974 }
1975 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
1976 
1977 /**
1978  *	ata_sff_postreset - SFF postreset callback
1979  *	@link: the target SFF ata_link
1980  *	@classes: classes of attached devices
1981  *
1982  *	This function is invoked after a successful reset.  It first
1983  *	calls ata_std_postreset() and performs SFF specific postreset
1984  *	processing.
1985  *
1986  *	LOCKING:
1987  *	Kernel thread context (may sleep)
1988  */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)1989 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
1990 {
1991 	struct ata_port *ap = link->ap;
1992 
1993 	ata_std_postreset(link, classes);
1994 
1995 	/* is double-select really necessary? */
1996 	if (classes[0] != ATA_DEV_NONE)
1997 		ap->ops->sff_dev_select(ap, 1);
1998 	if (classes[1] != ATA_DEV_NONE)
1999 		ap->ops->sff_dev_select(ap, 0);
2000 
2001 	/* bail out if no device is present */
2002 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
2003 		return;
2004 
2005 	/* set up device control */
2006 	if (ata_sff_set_devctl(ap, ap->ctl))
2007 		ap->last_ctl = ap->ctl;
2008 }
2009 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2010 
2011 /**
2012  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2013  *	@qc: command
2014  *
2015  *	Drain the FIFO and device of any stuck data following a command
2016  *	failing to complete. In some cases this is necessary before a
2017  *	reset will recover the device.
2018  *
2019  */
2020 
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2021 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2022 {
2023 	int count;
2024 	struct ata_port *ap;
2025 
2026 	/* We only need to flush incoming data when a command was running */
2027 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2028 		return;
2029 
2030 	ap = qc->ap;
2031 	/* Drain up to 64K of data before we give up this recovery method */
2032 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2033 						&& count < 65536; count += 2)
2034 		ioread16(ap->ioaddr.data_addr);
2035 
2036 	if (count)
2037 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2038 
2039 }
2040 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2041 
2042 /**
2043  *	ata_sff_error_handler - Stock error handler for SFF controller
2044  *	@ap: port to handle error for
2045  *
2046  *	Stock error handler for SFF controller.  It can handle both
2047  *	PATA and SATA controllers.  Many controllers should be able to
2048  *	use this EH as-is or with some added handling before and
2049  *	after.
2050  *
2051  *	LOCKING:
2052  *	Kernel thread context (may sleep)
2053  */
ata_sff_error_handler(struct ata_port * ap)2054 void ata_sff_error_handler(struct ata_port *ap)
2055 {
2056 	ata_reset_fn_t softreset = ap->ops->softreset;
2057 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2058 	struct ata_queued_cmd *qc;
2059 	unsigned long flags;
2060 
2061 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2062 	if (qc && !(qc->flags & ATA_QCFLAG_EH))
2063 		qc = NULL;
2064 
2065 	spin_lock_irqsave(ap->lock, flags);
2066 
2067 	/*
2068 	 * We *MUST* do FIFO draining before we issue a reset as
2069 	 * several devices helpfully clear their internal state and
2070 	 * will lock solid if we touch the data port post reset. Pass
2071 	 * qc in case anyone wants to do different PIO/DMA recovery or
2072 	 * has per command fixups
2073 	 */
2074 	if (ap->ops->sff_drain_fifo)
2075 		ap->ops->sff_drain_fifo(qc);
2076 
2077 	spin_unlock_irqrestore(ap->lock, flags);
2078 
2079 	/* ignore built-in hardresets if SCR access is not available */
2080 	if ((hardreset == sata_std_hardreset ||
2081 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2082 		hardreset = NULL;
2083 
2084 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2085 		  ap->ops->postreset);
2086 }
2087 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2088 
2089 /**
2090  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2091  *	@ioaddr: IO address structure to be initialized
2092  *
2093  *	Utility function which initializes data_addr, error_addr,
2094  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2095  *	device_addr, status_addr, and command_addr to standard offsets
2096  *	relative to cmd_addr.
2097  *
2098  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2099  */
ata_sff_std_ports(struct ata_ioports * ioaddr)2100 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2101 {
2102 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2103 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2104 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2105 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2106 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2107 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2108 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2109 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2110 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2111 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2112 }
2113 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2114 
2115 #ifdef CONFIG_PCI
2116 
ata_resources_present(struct pci_dev * pdev,int port)2117 static bool ata_resources_present(struct pci_dev *pdev, int port)
2118 {
2119 	int i;
2120 
2121 	/* Check the PCI resources for this channel are enabled */
2122 	port *= 2;
2123 	for (i = 0; i < 2; i++) {
2124 		if (pci_resource_start(pdev, port + i) == 0 ||
2125 		    pci_resource_len(pdev, port + i) == 0)
2126 			return false;
2127 	}
2128 	return true;
2129 }
2130 
2131 /**
2132  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2133  *	@host: target ATA host
2134  *
2135  *	Acquire native PCI ATA resources for @host and initialize the
2136  *	first two ports of @host accordingly.  Ports marked dummy are
2137  *	skipped and allocation failure makes the port dummy.
2138  *
2139  *	Note that native PCI resources are valid even for legacy hosts
2140  *	as we fix up pdev resources array early in boot, so this
2141  *	function can be used for both native and legacy SFF hosts.
2142  *
2143  *	LOCKING:
2144  *	Inherited from calling layer (may sleep).
2145  *
2146  *	RETURNS:
2147  *	0 if at least one port is initialized, -ENODEV if no port is
2148  *	available.
2149  */
ata_pci_sff_init_host(struct ata_host * host)2150 int ata_pci_sff_init_host(struct ata_host *host)
2151 {
2152 	struct device *gdev = host->dev;
2153 	struct pci_dev *pdev = to_pci_dev(gdev);
2154 	unsigned int mask = 0;
2155 	int i, rc;
2156 
2157 	/* request, iomap BARs and init port addresses accordingly */
2158 	for (i = 0; i < 2; i++) {
2159 		struct ata_port *ap = host->ports[i];
2160 		int base = i * 2;
2161 		void __iomem * const *iomap;
2162 
2163 		if (ata_port_is_dummy(ap))
2164 			continue;
2165 
2166 		/* Discard disabled ports.  Some controllers show
2167 		 * their unused channels this way.  Disabled ports are
2168 		 * made dummy.
2169 		 */
2170 		if (!ata_resources_present(pdev, i)) {
2171 			ap->ops = &ata_dummy_port_ops;
2172 			continue;
2173 		}
2174 
2175 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2176 					dev_driver_string(gdev));
2177 		if (rc) {
2178 			dev_warn(gdev,
2179 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2180 				 i, rc);
2181 			if (rc == -EBUSY)
2182 				pcim_pin_device(pdev);
2183 			ap->ops = &ata_dummy_port_ops;
2184 			continue;
2185 		}
2186 		host->iomap = iomap = pcim_iomap_table(pdev);
2187 
2188 		ap->ioaddr.cmd_addr = iomap[base];
2189 		ap->ioaddr.altstatus_addr =
2190 		ap->ioaddr.ctl_addr = (void __iomem *)
2191 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2192 		ata_sff_std_ports(&ap->ioaddr);
2193 
2194 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2195 			(unsigned long long)pci_resource_start(pdev, base),
2196 			(unsigned long long)pci_resource_start(pdev, base + 1));
2197 
2198 		mask |= 1 << i;
2199 	}
2200 
2201 	if (!mask) {
2202 		dev_err(gdev, "no available native port\n");
2203 		return -ENODEV;
2204 	}
2205 
2206 	return 0;
2207 }
2208 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2209 
2210 /**
2211  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2212  *	@pdev: target PCI device
2213  *	@ppi: array of port_info, must be enough for two ports
2214  *	@r_host: out argument for the initialized ATA host
2215  *
2216  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2217  *	all PCI resources and initialize it accordingly in one go.
2218  *
2219  *	LOCKING:
2220  *	Inherited from calling layer (may sleep).
2221  *
2222  *	RETURNS:
2223  *	0 on success, -errno otherwise.
2224  */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2225 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2226 			     const struct ata_port_info * const *ppi,
2227 			     struct ata_host **r_host)
2228 {
2229 	struct ata_host *host;
2230 	int rc;
2231 
2232 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2233 		return -ENOMEM;
2234 
2235 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2236 	if (!host) {
2237 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2238 		rc = -ENOMEM;
2239 		goto err_out;
2240 	}
2241 
2242 	rc = ata_pci_sff_init_host(host);
2243 	if (rc)
2244 		goto err_out;
2245 
2246 	devres_remove_group(&pdev->dev, NULL);
2247 	*r_host = host;
2248 	return 0;
2249 
2250 err_out:
2251 	devres_release_group(&pdev->dev, NULL);
2252 	return rc;
2253 }
2254 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2255 
2256 /**
2257  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2258  *	@host: target SFF ATA host
2259  *	@irq_handler: irq_handler used when requesting IRQ(s)
2260  *	@sht: scsi_host_template to use when registering the host
2261  *
2262  *	This is the counterpart of ata_host_activate() for SFF ATA
2263  *	hosts.  This separate helper is necessary because SFF hosts
2264  *	use two separate interrupts in legacy mode.
2265  *
2266  *	LOCKING:
2267  *	Inherited from calling layer (may sleep).
2268  *
2269  *	RETURNS:
2270  *	0 on success, -errno otherwise.
2271  */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,const struct scsi_host_template * sht)2272 int ata_pci_sff_activate_host(struct ata_host *host,
2273 			      irq_handler_t irq_handler,
2274 			      const struct scsi_host_template *sht)
2275 {
2276 	struct device *dev = host->dev;
2277 	struct pci_dev *pdev = to_pci_dev(dev);
2278 	const char *drv_name = dev_driver_string(host->dev);
2279 	int legacy_mode = 0, rc;
2280 
2281 	rc = ata_host_start(host);
2282 	if (rc)
2283 		return rc;
2284 
2285 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2286 		u8 tmp8, mask = 0;
2287 
2288 		/*
2289 		 * ATA spec says we should use legacy mode when one
2290 		 * port is in legacy mode, but disabled ports on some
2291 		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2292 		 * on which the secondary port is not wired, so
2293 		 * ignore ports that are marked as 'dummy' during
2294 		 * this check
2295 		 */
2296 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2297 		if (!ata_port_is_dummy(host->ports[0]))
2298 			mask |= (1 << 0);
2299 		if (!ata_port_is_dummy(host->ports[1]))
2300 			mask |= (1 << 2);
2301 		if ((tmp8 & mask) != mask)
2302 			legacy_mode = 1;
2303 	}
2304 
2305 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2306 		return -ENOMEM;
2307 
2308 	if (!legacy_mode && pdev->irq) {
2309 		int i;
2310 
2311 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2312 				      IRQF_SHARED, drv_name, host);
2313 		if (rc)
2314 			goto out;
2315 
2316 		for (i = 0; i < 2; i++) {
2317 			if (ata_port_is_dummy(host->ports[i]))
2318 				continue;
2319 			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2320 		}
2321 	} else if (legacy_mode) {
2322 		if (!ata_port_is_dummy(host->ports[0])) {
2323 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2324 					      irq_handler, IRQF_SHARED,
2325 					      drv_name, host);
2326 			if (rc)
2327 				goto out;
2328 
2329 			ata_port_desc(host->ports[0], "irq %d",
2330 				      ATA_PRIMARY_IRQ(pdev));
2331 		}
2332 
2333 		if (!ata_port_is_dummy(host->ports[1])) {
2334 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2335 					      irq_handler, IRQF_SHARED,
2336 					      drv_name, host);
2337 			if (rc)
2338 				goto out;
2339 
2340 			ata_port_desc(host->ports[1], "irq %d",
2341 				      ATA_SECONDARY_IRQ(pdev));
2342 		}
2343 	}
2344 
2345 	rc = ata_host_register(host, sht);
2346 out:
2347 	if (rc == 0)
2348 		devres_remove_group(dev, NULL);
2349 	else
2350 		devres_release_group(dev, NULL);
2351 
2352 	return rc;
2353 }
2354 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2355 
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2356 static const struct ata_port_info *ata_sff_find_valid_pi(
2357 					const struct ata_port_info * const *ppi)
2358 {
2359 	int i;
2360 
2361 	/* look up the first valid port_info */
2362 	for (i = 0; i < 2 && ppi[i]; i++)
2363 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2364 			return ppi[i];
2365 
2366 	return NULL;
2367 }
2368 
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,const struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2369 static int ata_pci_init_one(struct pci_dev *pdev,
2370 		const struct ata_port_info * const *ppi,
2371 		const struct scsi_host_template *sht, void *host_priv,
2372 		int hflags, bool bmdma)
2373 {
2374 	struct device *dev = &pdev->dev;
2375 	const struct ata_port_info *pi;
2376 	struct ata_host *host = NULL;
2377 	int rc;
2378 
2379 	pi = ata_sff_find_valid_pi(ppi);
2380 	if (!pi) {
2381 		dev_err(&pdev->dev, "no valid port_info specified\n");
2382 		return -EINVAL;
2383 	}
2384 
2385 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2386 		return -ENOMEM;
2387 
2388 	rc = pcim_enable_device(pdev);
2389 	if (rc)
2390 		goto out;
2391 
2392 #ifdef CONFIG_ATA_BMDMA
2393 	if (bmdma)
2394 		/* prepare and activate BMDMA host */
2395 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2396 	else
2397 #endif
2398 		/* prepare and activate SFF host */
2399 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2400 	if (rc)
2401 		goto out;
2402 	host->private_data = host_priv;
2403 	host->flags |= hflags;
2404 
2405 #ifdef CONFIG_ATA_BMDMA
2406 	if (bmdma) {
2407 		pci_set_master(pdev);
2408 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2409 	} else
2410 #endif
2411 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2412 out:
2413 	if (rc == 0)
2414 		devres_remove_group(&pdev->dev, NULL);
2415 	else
2416 		devres_release_group(&pdev->dev, NULL);
2417 
2418 	return rc;
2419 }
2420 
2421 /**
2422  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2423  *	@pdev: Controller to be initialized
2424  *	@ppi: array of port_info, must be enough for two ports
2425  *	@sht: scsi_host_template to use when registering the host
2426  *	@host_priv: host private_data
2427  *	@hflag: host flags
2428  *
2429  *	This is a helper function which can be called from a driver's
2430  *	xxx_init_one() probe function if the hardware uses traditional
2431  *	IDE taskfile registers and is PIO only.
2432  *
2433  *	ASSUMPTION:
2434  *	Nobody makes a single channel controller that appears solely as
2435  *	the secondary legacy port on PCI.
2436  *
2437  *	LOCKING:
2438  *	Inherited from PCI layer (may sleep).
2439  *
2440  *	RETURNS:
2441  *	Zero on success, negative on errno-based value on error.
2442  */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,const struct scsi_host_template * sht,void * host_priv,int hflag)2443 int ata_pci_sff_init_one(struct pci_dev *pdev,
2444 		 const struct ata_port_info * const *ppi,
2445 		 const struct scsi_host_template *sht, void *host_priv, int hflag)
2446 {
2447 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2448 }
2449 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2450 
2451 #endif /* CONFIG_PCI */
2452 
2453 /*
2454  *	BMDMA support
2455  */
2456 
2457 #ifdef CONFIG_ATA_BMDMA
2458 
2459 const struct ata_port_operations ata_bmdma_port_ops = {
2460 	.inherits		= &ata_sff_port_ops,
2461 
2462 	.error_handler		= ata_bmdma_error_handler,
2463 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2464 
2465 	.qc_prep		= ata_bmdma_qc_prep,
2466 	.qc_issue		= ata_bmdma_qc_issue,
2467 
2468 	.sff_irq_clear		= ata_bmdma_irq_clear,
2469 	.bmdma_setup		= ata_bmdma_setup,
2470 	.bmdma_start		= ata_bmdma_start,
2471 	.bmdma_stop		= ata_bmdma_stop,
2472 	.bmdma_status		= ata_bmdma_status,
2473 
2474 	.port_start		= ata_bmdma_port_start,
2475 };
2476 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2477 
2478 const struct ata_port_operations ata_bmdma32_port_ops = {
2479 	.inherits		= &ata_bmdma_port_ops,
2480 
2481 	.sff_data_xfer		= ata_sff_data_xfer32,
2482 	.port_start		= ata_bmdma_port_start32,
2483 };
2484 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2485 
2486 /**
2487  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2488  *	@qc: Metadata associated with taskfile to be transferred
2489  *
2490  *	Fill PCI IDE PRD (scatter-gather) table with segments
2491  *	associated with the current disk command.
2492  *
2493  *	LOCKING:
2494  *	spin_lock_irqsave(host lock)
2495  *
2496  */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2497 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2498 {
2499 	struct ata_port *ap = qc->ap;
2500 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2501 	struct scatterlist *sg;
2502 	unsigned int si, pi;
2503 
2504 	pi = 0;
2505 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2506 		u32 addr, offset;
2507 		u32 sg_len, len;
2508 
2509 		/* determine if physical DMA addr spans 64K boundary.
2510 		 * Note h/w doesn't support 64-bit, so we unconditionally
2511 		 * truncate dma_addr_t to u32.
2512 		 */
2513 		addr = (u32) sg_dma_address(sg);
2514 		sg_len = sg_dma_len(sg);
2515 
2516 		while (sg_len) {
2517 			offset = addr & 0xffff;
2518 			len = sg_len;
2519 			if ((offset + sg_len) > 0x10000)
2520 				len = 0x10000 - offset;
2521 
2522 			prd[pi].addr = cpu_to_le32(addr);
2523 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2524 
2525 			pi++;
2526 			sg_len -= len;
2527 			addr += len;
2528 		}
2529 	}
2530 
2531 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2532 }
2533 
2534 /**
2535  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2536  *	@qc: Metadata associated with taskfile to be transferred
2537  *
2538  *	Fill PCI IDE PRD (scatter-gather) table with segments
2539  *	associated with the current disk command. Perform the fill
2540  *	so that we avoid writing any length 64K records for
2541  *	controllers that don't follow the spec.
2542  *
2543  *	LOCKING:
2544  *	spin_lock_irqsave(host lock)
2545  *
2546  */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2547 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2548 {
2549 	struct ata_port *ap = qc->ap;
2550 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2551 	struct scatterlist *sg;
2552 	unsigned int si, pi;
2553 
2554 	pi = 0;
2555 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2556 		u32 addr, offset;
2557 		u32 sg_len, len, blen;
2558 
2559 		/* determine if physical DMA addr spans 64K boundary.
2560 		 * Note h/w doesn't support 64-bit, so we unconditionally
2561 		 * truncate dma_addr_t to u32.
2562 		 */
2563 		addr = (u32) sg_dma_address(sg);
2564 		sg_len = sg_dma_len(sg);
2565 
2566 		while (sg_len) {
2567 			offset = addr & 0xffff;
2568 			len = sg_len;
2569 			if ((offset + sg_len) > 0x10000)
2570 				len = 0x10000 - offset;
2571 
2572 			blen = len & 0xffff;
2573 			prd[pi].addr = cpu_to_le32(addr);
2574 			if (blen == 0) {
2575 				/* Some PATA chipsets like the CS5530 can't
2576 				   cope with 0x0000 meaning 64K as the spec
2577 				   says */
2578 				prd[pi].flags_len = cpu_to_le32(0x8000);
2579 				blen = 0x8000;
2580 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2581 			}
2582 			prd[pi].flags_len = cpu_to_le32(blen);
2583 
2584 			pi++;
2585 			sg_len -= len;
2586 			addr += len;
2587 		}
2588 	}
2589 
2590 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2591 }
2592 
2593 /**
2594  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2595  *	@qc: Metadata associated with taskfile to be prepared
2596  *
2597  *	Prepare ATA taskfile for submission.
2598  *
2599  *	LOCKING:
2600  *	spin_lock_irqsave(host lock)
2601  */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2602 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2603 {
2604 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2605 		return AC_ERR_OK;
2606 
2607 	ata_bmdma_fill_sg(qc);
2608 
2609 	return AC_ERR_OK;
2610 }
2611 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2612 
2613 /**
2614  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2615  *	@qc: Metadata associated with taskfile to be prepared
2616  *
2617  *	Prepare ATA taskfile for submission.
2618  *
2619  *	LOCKING:
2620  *	spin_lock_irqsave(host lock)
2621  */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2622 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2623 {
2624 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2625 		return AC_ERR_OK;
2626 
2627 	ata_bmdma_fill_sg_dumb(qc);
2628 
2629 	return AC_ERR_OK;
2630 }
2631 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2632 
2633 /**
2634  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2635  *	@qc: command to issue to device
2636  *
2637  *	This function issues a PIO, NODATA or DMA command to a
2638  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2639  *	ata_sff_qc_issue().
2640  *
2641  *	LOCKING:
2642  *	spin_lock_irqsave(host lock)
2643  *
2644  *	RETURNS:
2645  *	Zero on success, AC_ERR_* mask on failure
2646  */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2647 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2648 {
2649 	struct ata_port *ap = qc->ap;
2650 	struct ata_link *link = qc->dev->link;
2651 
2652 	/* defer PIO handling to sff_qc_issue */
2653 	if (!ata_is_dma(qc->tf.protocol))
2654 		return ata_sff_qc_issue(qc);
2655 
2656 	/* select the device */
2657 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2658 
2659 	/* start the command */
2660 	switch (qc->tf.protocol) {
2661 	case ATA_PROT_DMA:
2662 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2663 
2664 		trace_ata_tf_load(ap, &qc->tf);
2665 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2666 		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2667 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2668 		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2669 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2670 		ap->hsm_task_state = HSM_ST_LAST;
2671 		break;
2672 
2673 	case ATAPI_PROT_DMA:
2674 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2675 
2676 		trace_ata_tf_load(ap, &qc->tf);
2677 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2678 		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2679 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2680 		ap->hsm_task_state = HSM_ST_FIRST;
2681 
2682 		/* send cdb by polling if no cdb interrupt */
2683 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2684 			ata_sff_queue_pio_task(link, 0);
2685 		break;
2686 
2687 	default:
2688 		WARN_ON(1);
2689 		return AC_ERR_SYSTEM;
2690 	}
2691 
2692 	return 0;
2693 }
2694 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2695 
2696 /**
2697  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2698  *	@ap: Port on which interrupt arrived (possibly...)
2699  *	@qc: Taskfile currently active in engine
2700  *
2701  *	Handle port interrupt for given queued command.
2702  *
2703  *	LOCKING:
2704  *	spin_lock_irqsave(host lock)
2705  *
2706  *	RETURNS:
2707  *	One if interrupt was handled, zero if not (shared irq).
2708  */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2709 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2710 {
2711 	struct ata_eh_info *ehi = &ap->link.eh_info;
2712 	u8 host_stat = 0;
2713 	bool bmdma_stopped = false;
2714 	unsigned int handled;
2715 
2716 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2717 		/* check status of DMA engine */
2718 		host_stat = ap->ops->bmdma_status(ap);
2719 		trace_ata_bmdma_status(ap, host_stat);
2720 
2721 		/* if it's not our irq... */
2722 		if (!(host_stat & ATA_DMA_INTR))
2723 			return ata_sff_idle_irq(ap);
2724 
2725 		/* before we do anything else, clear DMA-Start bit */
2726 		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2727 		ap->ops->bmdma_stop(qc);
2728 		bmdma_stopped = true;
2729 
2730 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2731 			/* error when transferring data to/from memory */
2732 			qc->err_mask |= AC_ERR_HOST_BUS;
2733 			ap->hsm_task_state = HSM_ST_ERR;
2734 		}
2735 	}
2736 
2737 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2738 
2739 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2740 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2741 
2742 	return handled;
2743 }
2744 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2745 
2746 /**
2747  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2748  *	@irq: irq line (unused)
2749  *	@dev_instance: pointer to our ata_host information structure
2750  *
2751  *	Default interrupt handler for PCI IDE devices.  Calls
2752  *	ata_bmdma_port_intr() for each port that is not disabled.
2753  *
2754  *	LOCKING:
2755  *	Obtains host lock during operation.
2756  *
2757  *	RETURNS:
2758  *	IRQ_NONE or IRQ_HANDLED.
2759  */
ata_bmdma_interrupt(int irq,void * dev_instance)2760 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2761 {
2762 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2763 }
2764 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2765 
2766 /**
2767  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2768  *	@ap: port to handle error for
2769  *
2770  *	Stock error handler for BMDMA controller.  It can handle both
2771  *	PATA and SATA controllers.  Most BMDMA controllers should be
2772  *	able to use this EH as-is or with some added handling before
2773  *	and after.
2774  *
2775  *	LOCKING:
2776  *	Kernel thread context (may sleep)
2777  */
ata_bmdma_error_handler(struct ata_port * ap)2778 void ata_bmdma_error_handler(struct ata_port *ap)
2779 {
2780 	struct ata_queued_cmd *qc;
2781 	unsigned long flags;
2782 	bool thaw = false;
2783 
2784 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2785 	if (qc && !(qc->flags & ATA_QCFLAG_EH))
2786 		qc = NULL;
2787 
2788 	/* reset PIO HSM and stop DMA engine */
2789 	spin_lock_irqsave(ap->lock, flags);
2790 
2791 	if (qc && ata_is_dma(qc->tf.protocol)) {
2792 		u8 host_stat;
2793 
2794 		host_stat = ap->ops->bmdma_status(ap);
2795 		trace_ata_bmdma_status(ap, host_stat);
2796 
2797 		/* BMDMA controllers indicate host bus error by
2798 		 * setting DMA_ERR bit and timing out.  As it wasn't
2799 		 * really a timeout event, adjust error mask and
2800 		 * cancel frozen state.
2801 		 */
2802 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2803 			qc->err_mask = AC_ERR_HOST_BUS;
2804 			thaw = true;
2805 		}
2806 
2807 		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2808 		ap->ops->bmdma_stop(qc);
2809 
2810 		/* if we're gonna thaw, make sure IRQ is clear */
2811 		if (thaw) {
2812 			ap->ops->sff_check_status(ap);
2813 			if (ap->ops->sff_irq_clear)
2814 				ap->ops->sff_irq_clear(ap);
2815 		}
2816 	}
2817 
2818 	spin_unlock_irqrestore(ap->lock, flags);
2819 
2820 	if (thaw)
2821 		ata_eh_thaw_port(ap);
2822 
2823 	ata_sff_error_handler(ap);
2824 }
2825 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2826 
2827 /**
2828  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2829  *	@qc: internal command to clean up
2830  *
2831  *	LOCKING:
2832  *	Kernel thread context (may sleep)
2833  */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2834 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2835 {
2836 	struct ata_port *ap = qc->ap;
2837 	unsigned long flags;
2838 
2839 	if (ata_is_dma(qc->tf.protocol)) {
2840 		spin_lock_irqsave(ap->lock, flags);
2841 		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2842 		ap->ops->bmdma_stop(qc);
2843 		spin_unlock_irqrestore(ap->lock, flags);
2844 	}
2845 }
2846 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2847 
2848 /**
2849  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2850  *	@ap: Port associated with this ATA transaction.
2851  *
2852  *	Clear interrupt and error flags in DMA status register.
2853  *
2854  *	May be used as the irq_clear() entry in ata_port_operations.
2855  *
2856  *	LOCKING:
2857  *	spin_lock_irqsave(host lock)
2858  */
ata_bmdma_irq_clear(struct ata_port * ap)2859 void ata_bmdma_irq_clear(struct ata_port *ap)
2860 {
2861 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2862 
2863 	if (!mmio)
2864 		return;
2865 
2866 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2867 }
2868 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2869 
2870 /**
2871  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2872  *	@qc: Info associated with this ATA transaction.
2873  *
2874  *	LOCKING:
2875  *	spin_lock_irqsave(host lock)
2876  */
ata_bmdma_setup(struct ata_queued_cmd * qc)2877 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2878 {
2879 	struct ata_port *ap = qc->ap;
2880 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2881 	u8 dmactl;
2882 
2883 	/* load PRD table addr. */
2884 	mb();	/* make sure PRD table writes are visible to controller */
2885 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2886 
2887 	/* specify data direction, triple-check start bit is clear */
2888 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2889 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2890 	if (!rw)
2891 		dmactl |= ATA_DMA_WR;
2892 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2893 
2894 	/* issue r/w command */
2895 	ap->ops->sff_exec_command(ap, &qc->tf);
2896 }
2897 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2898 
2899 /**
2900  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2901  *	@qc: Info associated with this ATA transaction.
2902  *
2903  *	LOCKING:
2904  *	spin_lock_irqsave(host lock)
2905  */
ata_bmdma_start(struct ata_queued_cmd * qc)2906 void ata_bmdma_start(struct ata_queued_cmd *qc)
2907 {
2908 	struct ata_port *ap = qc->ap;
2909 	u8 dmactl;
2910 
2911 	/* start host DMA transaction */
2912 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2913 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2914 
2915 	/* Strictly, one may wish to issue an ioread8() here, to
2916 	 * flush the mmio write.  However, control also passes
2917 	 * to the hardware at this point, and it will interrupt
2918 	 * us when we are to resume control.  So, in effect,
2919 	 * we don't care when the mmio write flushes.
2920 	 * Further, a read of the DMA status register _immediately_
2921 	 * following the write may not be what certain flaky hardware
2922 	 * is expected, so I think it is best to not add a readb()
2923 	 * without first all the MMIO ATA cards/mobos.
2924 	 * Or maybe I'm just being paranoid.
2925 	 *
2926 	 * FIXME: The posting of this write means I/O starts are
2927 	 * unnecessarily delayed for MMIO
2928 	 */
2929 }
2930 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2931 
2932 /**
2933  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2934  *	@qc: Command we are ending DMA for
2935  *
2936  *	Clears the ATA_DMA_START flag in the dma control register
2937  *
2938  *	May be used as the bmdma_stop() entry in ata_port_operations.
2939  *
2940  *	LOCKING:
2941  *	spin_lock_irqsave(host lock)
2942  */
ata_bmdma_stop(struct ata_queued_cmd * qc)2943 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2944 {
2945 	struct ata_port *ap = qc->ap;
2946 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2947 
2948 	/* clear start/stop bit */
2949 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2950 		 mmio + ATA_DMA_CMD);
2951 
2952 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2953 	ata_sff_dma_pause(ap);
2954 }
2955 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2956 
2957 /**
2958  *	ata_bmdma_status - Read PCI IDE BMDMA status
2959  *	@ap: Port associated with this ATA transaction.
2960  *
2961  *	Read and return BMDMA status register.
2962  *
2963  *	May be used as the bmdma_status() entry in ata_port_operations.
2964  *
2965  *	LOCKING:
2966  *	spin_lock_irqsave(host lock)
2967  */
ata_bmdma_status(struct ata_port * ap)2968 u8 ata_bmdma_status(struct ata_port *ap)
2969 {
2970 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2971 }
2972 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2973 
2974 
2975 /**
2976  *	ata_bmdma_port_start - Set port up for bmdma.
2977  *	@ap: Port to initialize
2978  *
2979  *	Called just after data structures for each port are
2980  *	initialized.  Allocates space for PRD table.
2981  *
2982  *	May be used as the port_start() entry in ata_port_operations.
2983  *
2984  *	LOCKING:
2985  *	Inherited from caller.
2986  */
ata_bmdma_port_start(struct ata_port * ap)2987 int ata_bmdma_port_start(struct ata_port *ap)
2988 {
2989 	if (ap->mwdma_mask || ap->udma_mask) {
2990 		ap->bmdma_prd =
2991 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
2992 					    &ap->bmdma_prd_dma, GFP_KERNEL);
2993 		if (!ap->bmdma_prd)
2994 			return -ENOMEM;
2995 	}
2996 
2997 	return 0;
2998 }
2999 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3000 
3001 /**
3002  *	ata_bmdma_port_start32 - Set port up for dma.
3003  *	@ap: Port to initialize
3004  *
3005  *	Called just after data structures for each port are
3006  *	initialized.  Enables 32bit PIO and allocates space for PRD
3007  *	table.
3008  *
3009  *	May be used as the port_start() entry in ata_port_operations for
3010  *	devices that are capable of 32bit PIO.
3011  *
3012  *	LOCKING:
3013  *	Inherited from caller.
3014  */
ata_bmdma_port_start32(struct ata_port * ap)3015 int ata_bmdma_port_start32(struct ata_port *ap)
3016 {
3017 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3018 	return ata_bmdma_port_start(ap);
3019 }
3020 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3021 
3022 #ifdef CONFIG_PCI
3023 
3024 /**
3025  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3026  *	@pdev: PCI device
3027  *
3028  *	Some PCI ATA devices report simplex mode but in fact can be told to
3029  *	enter non simplex mode. This implements the necessary logic to
3030  *	perform the task on such devices. Calling it on other devices will
3031  *	have -undefined- behaviour.
3032  */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3033 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3034 {
3035 	unsigned long bmdma = pci_resource_start(pdev, 4);
3036 	u8 simplex;
3037 
3038 	if (bmdma == 0)
3039 		return -ENOENT;
3040 
3041 	simplex = inb(bmdma + 0x02);
3042 	outb(simplex & 0x60, bmdma + 0x02);
3043 	simplex = inb(bmdma + 0x02);
3044 	if (simplex & 0x80)
3045 		return -EOPNOTSUPP;
3046 	return 0;
3047 }
3048 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3049 
ata_bmdma_nodma(struct ata_host * host,const char * reason)3050 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3051 {
3052 	int i;
3053 
3054 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3055 
3056 	for (i = 0; i < 2; i++) {
3057 		host->ports[i]->mwdma_mask = 0;
3058 		host->ports[i]->udma_mask = 0;
3059 	}
3060 }
3061 
3062 /**
3063  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3064  *	@host: target ATA host
3065  *
3066  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3067  *
3068  *	LOCKING:
3069  *	Inherited from calling layer (may sleep).
3070  */
ata_pci_bmdma_init(struct ata_host * host)3071 void ata_pci_bmdma_init(struct ata_host *host)
3072 {
3073 	struct device *gdev = host->dev;
3074 	struct pci_dev *pdev = to_pci_dev(gdev);
3075 	int i, rc;
3076 
3077 	/* No BAR4 allocation: No DMA */
3078 	if (pci_resource_start(pdev, 4) == 0) {
3079 		ata_bmdma_nodma(host, "BAR4 is zero");
3080 		return;
3081 	}
3082 
3083 	/*
3084 	 * Some controllers require BMDMA region to be initialized
3085 	 * even if DMA is not in use to clear IRQ status via
3086 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3087 	 * regardless of dma masks.
3088 	 */
3089 	rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3090 	if (rc)
3091 		ata_bmdma_nodma(host, "failed to set dma mask");
3092 
3093 	/* request and iomap DMA region */
3094 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3095 	if (rc) {
3096 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3097 		return;
3098 	}
3099 	host->iomap = pcim_iomap_table(pdev);
3100 
3101 	for (i = 0; i < 2; i++) {
3102 		struct ata_port *ap = host->ports[i];
3103 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3104 
3105 		if (ata_port_is_dummy(ap))
3106 			continue;
3107 
3108 		ap->ioaddr.bmdma_addr = bmdma;
3109 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3110 		    (ioread8(bmdma + 2) & 0x80))
3111 			host->flags |= ATA_HOST_SIMPLEX;
3112 
3113 		ata_port_desc(ap, "bmdma 0x%llx",
3114 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3115 	}
3116 }
3117 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3118 
3119 /**
3120  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3121  *	@pdev: target PCI device
3122  *	@ppi: array of port_info, must be enough for two ports
3123  *	@r_host: out argument for the initialized ATA host
3124  *
3125  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3126  *	resources and initialize it accordingly in one go.
3127  *
3128  *	LOCKING:
3129  *	Inherited from calling layer (may sleep).
3130  *
3131  *	RETURNS:
3132  *	0 on success, -errno otherwise.
3133  */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3134 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3135 			       const struct ata_port_info * const * ppi,
3136 			       struct ata_host **r_host)
3137 {
3138 	int rc;
3139 
3140 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3141 	if (rc)
3142 		return rc;
3143 
3144 	ata_pci_bmdma_init(*r_host);
3145 	return 0;
3146 }
3147 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3148 
3149 /**
3150  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3151  *	@pdev: Controller to be initialized
3152  *	@ppi: array of port_info, must be enough for two ports
3153  *	@sht: scsi_host_template to use when registering the host
3154  *	@host_priv: host private_data
3155  *	@hflags: host flags
3156  *
3157  *	This function is similar to ata_pci_sff_init_one() but also
3158  *	takes care of BMDMA initialization.
3159  *
3160  *	LOCKING:
3161  *	Inherited from PCI layer (may sleep).
3162  *
3163  *	RETURNS:
3164  *	Zero on success, negative on errno-based value on error.
3165  */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,const struct scsi_host_template * sht,void * host_priv,int hflags)3166 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3167 			   const struct ata_port_info * const * ppi,
3168 			   const struct scsi_host_template *sht, void *host_priv,
3169 			   int hflags)
3170 {
3171 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3172 }
3173 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3174 
3175 #endif /* CONFIG_PCI */
3176 #endif /* CONFIG_ATA_BMDMA */
3177 
3178 /**
3179  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3180  *	@ap: Port to initialize
3181  *
3182  *	Called on port allocation to initialize SFF/BMDMA specific
3183  *	fields.
3184  *
3185  *	LOCKING:
3186  *	None.
3187  */
ata_sff_port_init(struct ata_port * ap)3188 void ata_sff_port_init(struct ata_port *ap)
3189 {
3190 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3191 	ap->ctl = ATA_DEVCTL_OBS;
3192 	ap->last_ctl = 0xFF;
3193 }
3194 
ata_sff_init(void)3195 int __init ata_sff_init(void)
3196 {
3197 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3198 	if (!ata_sff_wq)
3199 		return -ENOMEM;
3200 
3201 	return 0;
3202 }
3203 
ata_sff_exit(void)3204 void ata_sff_exit(void)
3205 {
3206 	destroy_workqueue(ata_sff_wq);
3207 }
3208