1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SATA specific part of ATA helper library 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * Copyright 2006 Tejun Heo <htejun@gmail.com> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <scsi/scsi_cmnd.h> 13 #include <scsi/scsi_device.h> 14 #include <linux/libata.h> 15 16 #include "libata.h" 17 #include "libata-transport.h" 18 19 /* debounce timing parameters in msecs { interval, duration, timeout } */ 20 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 21 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 22 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 23 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 24 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 25 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 26 27 /** 28 * sata_scr_valid - test whether SCRs are accessible 29 * @link: ATA link to test SCR accessibility for 30 * 31 * Test whether SCRs are accessible for @link. 32 * 33 * LOCKING: 34 * None. 35 * 36 * RETURNS: 37 * 1 if SCRs are accessible, 0 otherwise. 38 */ 39 int sata_scr_valid(struct ata_link *link) 40 { 41 struct ata_port *ap = link->ap; 42 43 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 44 } 45 EXPORT_SYMBOL_GPL(sata_scr_valid); 46 47 /** 48 * sata_scr_read - read SCR register of the specified port 49 * @link: ATA link to read SCR for 50 * @reg: SCR to read 51 * @val: Place to store read value 52 * 53 * Read SCR register @reg of @link into *@val. This function is 54 * guaranteed to succeed if @link is ap->link, the cable type of 55 * the port is SATA and the port implements ->scr_read. 56 * 57 * LOCKING: 58 * None if @link is ap->link. Kernel thread context otherwise. 59 * 60 * RETURNS: 61 * 0 on success, negative errno on failure. 62 */ 63 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 64 { 65 if (ata_is_host_link(link)) { 66 if (sata_scr_valid(link)) 67 return link->ap->ops->scr_read(link, reg, val); 68 return -EOPNOTSUPP; 69 } 70 71 return sata_pmp_scr_read(link, reg, val); 72 } 73 EXPORT_SYMBOL_GPL(sata_scr_read); 74 75 /** 76 * sata_scr_write - write SCR register of the specified port 77 * @link: ATA link to write SCR for 78 * @reg: SCR to write 79 * @val: value to write 80 * 81 * Write @val to SCR register @reg of @link. This function is 82 * guaranteed to succeed if @link is ap->link, the cable type of 83 * the port is SATA and the port implements ->scr_read. 84 * 85 * LOCKING: 86 * None if @link is ap->link. Kernel thread context otherwise. 87 * 88 * RETURNS: 89 * 0 on success, negative errno on failure. 90 */ 91 int sata_scr_write(struct ata_link *link, int reg, u32 val) 92 { 93 if (ata_is_host_link(link)) { 94 if (sata_scr_valid(link)) 95 return link->ap->ops->scr_write(link, reg, val); 96 return -EOPNOTSUPP; 97 } 98 99 return sata_pmp_scr_write(link, reg, val); 100 } 101 EXPORT_SYMBOL_GPL(sata_scr_write); 102 103 /** 104 * sata_scr_write_flush - write SCR register of the specified port and flush 105 * @link: ATA link to write SCR for 106 * @reg: SCR to write 107 * @val: value to write 108 * 109 * This function is identical to sata_scr_write() except that this 110 * function performs flush after writing to the register. 111 * 112 * LOCKING: 113 * None if @link is ap->link. Kernel thread context otherwise. 114 * 115 * RETURNS: 116 * 0 on success, negative errno on failure. 117 */ 118 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 119 { 120 if (ata_is_host_link(link)) { 121 int rc; 122 123 if (sata_scr_valid(link)) { 124 rc = link->ap->ops->scr_write(link, reg, val); 125 if (rc == 0) 126 rc = link->ap->ops->scr_read(link, reg, &val); 127 return rc; 128 } 129 return -EOPNOTSUPP; 130 } 131 132 return sata_pmp_scr_write(link, reg, val); 133 } 134 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 135 136 /** 137 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 138 * @tf: Taskfile to convert 139 * @pmp: Port multiplier port 140 * @is_cmd: This FIS is for command 141 * @fis: Buffer into which data will output 142 * 143 * Converts a standard ATA taskfile to a Serial ATA 144 * FIS structure (Register - Host to Device). 145 * 146 * LOCKING: 147 * Inherited from caller. 148 */ 149 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 150 { 151 fis[0] = 0x27; /* Register - Host to Device FIS */ 152 fis[1] = pmp & 0xf; /* Port multiplier number*/ 153 if (is_cmd) 154 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 155 156 fis[2] = tf->command; 157 fis[3] = tf->feature; 158 159 fis[4] = tf->lbal; 160 fis[5] = tf->lbam; 161 fis[6] = tf->lbah; 162 fis[7] = tf->device; 163 164 fis[8] = tf->hob_lbal; 165 fis[9] = tf->hob_lbam; 166 fis[10] = tf->hob_lbah; 167 fis[11] = tf->hob_feature; 168 169 fis[12] = tf->nsect; 170 fis[13] = tf->hob_nsect; 171 fis[14] = 0; 172 fis[15] = tf->ctl; 173 174 fis[16] = tf->auxiliary & 0xff; 175 fis[17] = (tf->auxiliary >> 8) & 0xff; 176 fis[18] = (tf->auxiliary >> 16) & 0xff; 177 fis[19] = (tf->auxiliary >> 24) & 0xff; 178 } 179 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 180 181 /** 182 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 183 * @fis: Buffer from which data will be input 184 * @tf: Taskfile to output 185 * 186 * Converts a serial ATA FIS structure to a standard ATA taskfile. 187 * 188 * LOCKING: 189 * Inherited from caller. 190 */ 191 192 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 193 { 194 tf->command = fis[2]; /* status */ 195 tf->feature = fis[3]; /* error */ 196 197 tf->lbal = fis[4]; 198 tf->lbam = fis[5]; 199 tf->lbah = fis[6]; 200 tf->device = fis[7]; 201 202 tf->hob_lbal = fis[8]; 203 tf->hob_lbam = fis[9]; 204 tf->hob_lbah = fis[10]; 205 206 tf->nsect = fis[12]; 207 tf->hob_nsect = fis[13]; 208 } 209 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 210 211 /** 212 * sata_link_debounce - debounce SATA phy status 213 * @link: ATA link to debounce SATA phy status for 214 * @params: timing parameters { interval, duration, timeout } in msec 215 * @deadline: deadline jiffies for the operation 216 * 217 * Make sure SStatus of @link reaches stable state, determined by 218 * holding the same value where DET is not 1 for @duration polled 219 * every @interval, before @timeout. Timeout constraints the 220 * beginning of the stable state. Because DET gets stuck at 1 on 221 * some controllers after hot unplugging, this functions waits 222 * until timeout then returns 0 if DET is stable at 1. 223 * 224 * @timeout is further limited by @deadline. The sooner of the 225 * two is used. 226 * 227 * LOCKING: 228 * Kernel thread context (may sleep) 229 * 230 * RETURNS: 231 * 0 on success, -errno on failure. 232 */ 233 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 234 unsigned long deadline) 235 { 236 unsigned long interval = params[0]; 237 unsigned long duration = params[1]; 238 unsigned long last_jiffies, t; 239 u32 last, cur; 240 int rc; 241 242 t = ata_deadline(jiffies, params[2]); 243 if (time_before(t, deadline)) 244 deadline = t; 245 246 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 247 return rc; 248 cur &= 0xf; 249 250 last = cur; 251 last_jiffies = jiffies; 252 253 while (1) { 254 ata_msleep(link->ap, interval); 255 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 256 return rc; 257 cur &= 0xf; 258 259 /* DET stable? */ 260 if (cur == last) { 261 if (cur == 1 && time_before(jiffies, deadline)) 262 continue; 263 if (time_after(jiffies, 264 ata_deadline(last_jiffies, duration))) 265 return 0; 266 continue; 267 } 268 269 /* unstable, start over */ 270 last = cur; 271 last_jiffies = jiffies; 272 273 /* Check deadline. If debouncing failed, return 274 * -EPIPE to tell upper layer to lower link speed. 275 */ 276 if (time_after(jiffies, deadline)) 277 return -EPIPE; 278 } 279 } 280 EXPORT_SYMBOL_GPL(sata_link_debounce); 281 282 /** 283 * sata_link_resume - resume SATA link 284 * @link: ATA link to resume SATA 285 * @params: timing parameters { interval, duration, timeout } in msec 286 * @deadline: deadline jiffies for the operation 287 * 288 * Resume SATA phy @link and debounce it. 289 * 290 * LOCKING: 291 * Kernel thread context (may sleep) 292 * 293 * RETURNS: 294 * 0 on success, -errno on failure. 295 */ 296 int sata_link_resume(struct ata_link *link, const unsigned long *params, 297 unsigned long deadline) 298 { 299 int tries = ATA_LINK_RESUME_TRIES; 300 u32 scontrol, serror; 301 int rc; 302 303 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 304 return rc; 305 306 /* 307 * Writes to SControl sometimes get ignored under certain 308 * controllers (ata_piix SIDPR). Make sure DET actually is 309 * cleared. 310 */ 311 do { 312 scontrol = (scontrol & 0x0f0) | 0x300; 313 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 314 return rc; 315 /* 316 * Some PHYs react badly if SStatus is pounded 317 * immediately after resuming. Delay 200ms before 318 * debouncing. 319 */ 320 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY)) 321 ata_msleep(link->ap, 200); 322 323 /* is SControl restored correctly? */ 324 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 325 return rc; 326 } while ((scontrol & 0xf0f) != 0x300 && --tries); 327 328 if ((scontrol & 0xf0f) != 0x300) { 329 ata_link_warn(link, "failed to resume link (SControl %X)\n", 330 scontrol); 331 return 0; 332 } 333 334 if (tries < ATA_LINK_RESUME_TRIES) 335 ata_link_warn(link, "link resume succeeded after %d retries\n", 336 ATA_LINK_RESUME_TRIES - tries); 337 338 if ((rc = sata_link_debounce(link, params, deadline))) 339 return rc; 340 341 /* clear SError, some PHYs require this even for SRST to work */ 342 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 343 rc = sata_scr_write(link, SCR_ERROR, serror); 344 345 return rc != -EINVAL ? rc : 0; 346 } 347 EXPORT_SYMBOL_GPL(sata_link_resume); 348 349 /** 350 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 351 * @link: ATA link to manipulate SControl for 352 * @policy: LPM policy to configure 353 * @spm_wakeup: initiate LPM transition to active state 354 * 355 * Manipulate the IPM field of the SControl register of @link 356 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 357 * @spm_wakeup is %true, the SPM field is manipulated to wake up 358 * the link. This function also clears PHYRDY_CHG before 359 * returning. 360 * 361 * LOCKING: 362 * EH context. 363 * 364 * RETURNS: 365 * 0 on success, -errno otherwise. 366 */ 367 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 368 bool spm_wakeup) 369 { 370 struct ata_eh_context *ehc = &link->eh_context; 371 bool woken_up = false; 372 u32 scontrol; 373 int rc; 374 375 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 376 if (rc) 377 return rc; 378 379 switch (policy) { 380 case ATA_LPM_MAX_POWER: 381 /* disable all LPM transitions */ 382 scontrol |= (0x7 << 8); 383 /* initiate transition to active state */ 384 if (spm_wakeup) { 385 scontrol |= (0x4 << 12); 386 woken_up = true; 387 } 388 break; 389 case ATA_LPM_MED_POWER: 390 /* allow LPM to PARTIAL */ 391 scontrol &= ~(0x1 << 8); 392 scontrol |= (0x6 << 8); 393 break; 394 case ATA_LPM_MED_POWER_WITH_DIPM: 395 case ATA_LPM_MIN_POWER_WITH_PARTIAL: 396 case ATA_LPM_MIN_POWER: 397 if (ata_link_nr_enabled(link) > 0) 398 /* no restrictions on LPM transitions */ 399 scontrol &= ~(0x7 << 8); 400 else { 401 /* empty port, power off */ 402 scontrol &= ~0xf; 403 scontrol |= (0x1 << 2); 404 } 405 break; 406 default: 407 WARN_ON(1); 408 } 409 410 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 411 if (rc) 412 return rc; 413 414 /* give the link time to transit out of LPM state */ 415 if (woken_up) 416 msleep(10); 417 418 /* clear PHYRDY_CHG from SError */ 419 ehc->i.serror &= ~SERR_PHYRDY_CHG; 420 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 421 } 422 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 423 424 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 425 { 426 struct ata_link *host_link = &link->ap->link; 427 u32 limit, target, spd; 428 429 limit = link->sata_spd_limit; 430 431 /* Don't configure downstream link faster than upstream link. 432 * It doesn't speed up anything and some PMPs choke on such 433 * configuration. 434 */ 435 if (!ata_is_host_link(link) && host_link->sata_spd) 436 limit &= (1 << host_link->sata_spd) - 1; 437 438 if (limit == UINT_MAX) 439 target = 0; 440 else 441 target = fls(limit); 442 443 spd = (*scontrol >> 4) & 0xf; 444 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 445 446 return spd != target; 447 } 448 449 /** 450 * sata_set_spd_needed - is SATA spd configuration needed 451 * @link: Link in question 452 * 453 * Test whether the spd limit in SControl matches 454 * @link->sata_spd_limit. This function is used to determine 455 * whether hardreset is necessary to apply SATA spd 456 * configuration. 457 * 458 * LOCKING: 459 * Inherited from caller. 460 * 461 * RETURNS: 462 * 1 if SATA spd configuration is needed, 0 otherwise. 463 */ 464 static int sata_set_spd_needed(struct ata_link *link) 465 { 466 u32 scontrol; 467 468 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 469 return 1; 470 471 return __sata_set_spd_needed(link, &scontrol); 472 } 473 474 /** 475 * sata_set_spd - set SATA spd according to spd limit 476 * @link: Link to set SATA spd for 477 * 478 * Set SATA spd of @link according to sata_spd_limit. 479 * 480 * LOCKING: 481 * Inherited from caller. 482 * 483 * RETURNS: 484 * 0 if spd doesn't need to be changed, 1 if spd has been 485 * changed. Negative errno if SCR registers are inaccessible. 486 */ 487 int sata_set_spd(struct ata_link *link) 488 { 489 u32 scontrol; 490 int rc; 491 492 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 493 return rc; 494 495 if (!__sata_set_spd_needed(link, &scontrol)) 496 return 0; 497 498 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 499 return rc; 500 501 return 1; 502 } 503 EXPORT_SYMBOL_GPL(sata_set_spd); 504 505 /** 506 * sata_link_hardreset - reset link via SATA phy reset 507 * @link: link to reset 508 * @timing: timing parameters { interval, duration, timeout } in msec 509 * @deadline: deadline jiffies for the operation 510 * @online: optional out parameter indicating link onlineness 511 * @check_ready: optional callback to check link readiness 512 * 513 * SATA phy-reset @link using DET bits of SControl register. 514 * After hardreset, link readiness is waited upon using 515 * ata_wait_ready() if @check_ready is specified. LLDs are 516 * allowed to not specify @check_ready and wait itself after this 517 * function returns. Device classification is LLD's 518 * responsibility. 519 * 520 * *@online is set to one iff reset succeeded and @link is online 521 * after reset. 522 * 523 * LOCKING: 524 * Kernel thread context (may sleep) 525 * 526 * RETURNS: 527 * 0 on success, -errno otherwise. 528 */ 529 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 530 unsigned long deadline, 531 bool *online, int (*check_ready)(struct ata_link *)) 532 { 533 u32 scontrol; 534 int rc; 535 536 DPRINTK("ENTER\n"); 537 538 if (online) 539 *online = false; 540 541 if (sata_set_spd_needed(link)) { 542 /* SATA spec says nothing about how to reconfigure 543 * spd. To be on the safe side, turn off phy during 544 * reconfiguration. This works for at least ICH7 AHCI 545 * and Sil3124. 546 */ 547 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 548 goto out; 549 550 scontrol = (scontrol & 0x0f0) | 0x304; 551 552 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 553 goto out; 554 555 sata_set_spd(link); 556 } 557 558 /* issue phy wake/reset */ 559 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 560 goto out; 561 562 scontrol = (scontrol & 0x0f0) | 0x301; 563 564 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 565 goto out; 566 567 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 568 * 10.4.2 says at least 1 ms. 569 */ 570 ata_msleep(link->ap, 1); 571 572 /* bring link back */ 573 rc = sata_link_resume(link, timing, deadline); 574 if (rc) 575 goto out; 576 /* if link is offline nothing more to do */ 577 if (ata_phys_link_offline(link)) 578 goto out; 579 580 /* Link is online. From this point, -ENODEV too is an error. */ 581 if (online) 582 *online = true; 583 584 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 585 /* If PMP is supported, we have to do follow-up SRST. 586 * Some PMPs don't send D2H Reg FIS after hardreset if 587 * the first port is empty. Wait only for 588 * ATA_TMOUT_PMP_SRST_WAIT. 589 */ 590 if (check_ready) { 591 unsigned long pmp_deadline; 592 593 pmp_deadline = ata_deadline(jiffies, 594 ATA_TMOUT_PMP_SRST_WAIT); 595 if (time_after(pmp_deadline, deadline)) 596 pmp_deadline = deadline; 597 ata_wait_ready(link, pmp_deadline, check_ready); 598 } 599 rc = -EAGAIN; 600 goto out; 601 } 602 603 rc = 0; 604 if (check_ready) 605 rc = ata_wait_ready(link, deadline, check_ready); 606 out: 607 if (rc && rc != -EAGAIN) { 608 /* online is set iff link is online && reset succeeded */ 609 if (online) 610 *online = false; 611 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 612 } 613 DPRINTK("EXIT, rc=%d\n", rc); 614 return rc; 615 } 616 EXPORT_SYMBOL_GPL(sata_link_hardreset); 617 618 /** 619 * ata_qc_complete_multiple - Complete multiple qcs successfully 620 * @ap: port in question 621 * @qc_active: new qc_active mask 622 * 623 * Complete in-flight commands. This functions is meant to be 624 * called from low-level driver's interrupt routine to complete 625 * requests normally. ap->qc_active and @qc_active is compared 626 * and commands are completed accordingly. 627 * 628 * Always use this function when completing multiple NCQ commands 629 * from IRQ handlers instead of calling ata_qc_complete() 630 * multiple times to keep IRQ expect status properly in sync. 631 * 632 * LOCKING: 633 * spin_lock_irqsave(host lock) 634 * 635 * RETURNS: 636 * Number of completed commands on success, -errno otherwise. 637 */ 638 int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active) 639 { 640 u64 done_mask, ap_qc_active = ap->qc_active; 641 int nr_done = 0; 642 643 /* 644 * If the internal tag is set on ap->qc_active, then we care about 645 * bit0 on the passed in qc_active mask. Move that bit up to match 646 * the internal tag. 647 */ 648 if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) { 649 qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL; 650 qc_active ^= qc_active & 0x01; 651 } 652 653 done_mask = ap_qc_active ^ qc_active; 654 655 if (unlikely(done_mask & qc_active)) { 656 ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n", 657 ap->qc_active, qc_active); 658 return -EINVAL; 659 } 660 661 while (done_mask) { 662 struct ata_queued_cmd *qc; 663 unsigned int tag = __ffs64(done_mask); 664 665 qc = ata_qc_from_tag(ap, tag); 666 if (qc) { 667 ata_qc_complete(qc); 668 nr_done++; 669 } 670 done_mask &= ~(1ULL << tag); 671 } 672 673 return nr_done; 674 } 675 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 676 677 /** 678 * ata_slave_link_init - initialize slave link 679 * @ap: port to initialize slave link for 680 * 681 * Create and initialize slave link for @ap. This enables slave 682 * link handling on the port. 683 * 684 * In libata, a port contains links and a link contains devices. 685 * There is single host link but if a PMP is attached to it, 686 * there can be multiple fan-out links. On SATA, there's usually 687 * a single device connected to a link but PATA and SATA 688 * controllers emulating TF based interface can have two - master 689 * and slave. 690 * 691 * However, there are a few controllers which don't fit into this 692 * abstraction too well - SATA controllers which emulate TF 693 * interface with both master and slave devices but also have 694 * separate SCR register sets for each device. These controllers 695 * need separate links for physical link handling 696 * (e.g. onlineness, link speed) but should be treated like a 697 * traditional M/S controller for everything else (e.g. command 698 * issue, softreset). 699 * 700 * slave_link is libata's way of handling this class of 701 * controllers without impacting core layer too much. For 702 * anything other than physical link handling, the default host 703 * link is used for both master and slave. For physical link 704 * handling, separate @ap->slave_link is used. All dirty details 705 * are implemented inside libata core layer. From LLD's POV, the 706 * only difference is that prereset, hardreset and postreset are 707 * called once more for the slave link, so the reset sequence 708 * looks like the following. 709 * 710 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 711 * softreset(M) -> postreset(M) -> postreset(S) 712 * 713 * Note that softreset is called only for the master. Softreset 714 * resets both M/S by definition, so SRST on master should handle 715 * both (the standard method will work just fine). 716 * 717 * LOCKING: 718 * Should be called before host is registered. 719 * 720 * RETURNS: 721 * 0 on success, -errno on failure. 722 */ 723 int ata_slave_link_init(struct ata_port *ap) 724 { 725 struct ata_link *link; 726 727 WARN_ON(ap->slave_link); 728 WARN_ON(ap->flags & ATA_FLAG_PMP); 729 730 link = kzalloc(sizeof(*link), GFP_KERNEL); 731 if (!link) 732 return -ENOMEM; 733 734 ata_link_init(ap, link, 1); 735 ap->slave_link = link; 736 return 0; 737 } 738 EXPORT_SYMBOL_GPL(ata_slave_link_init); 739 740 /** 741 * sata_lpm_ignore_phy_events - test if PHY event should be ignored 742 * @link: Link receiving the event 743 * 744 * Test whether the received PHY event has to be ignored or not. 745 * 746 * LOCKING: 747 * None: 748 * 749 * RETURNS: 750 * True if the event has to be ignored. 751 */ 752 bool sata_lpm_ignore_phy_events(struct ata_link *link) 753 { 754 unsigned long lpm_timeout = link->last_lpm_change + 755 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY); 756 757 /* if LPM is enabled, PHYRDY doesn't mean anything */ 758 if (link->lpm_policy > ATA_LPM_MAX_POWER) 759 return true; 760 761 /* ignore the first PHY event after the LPM policy changed 762 * as it is might be spurious 763 */ 764 if ((link->flags & ATA_LFLAG_CHANGED) && 765 time_before(jiffies, lpm_timeout)) 766 return true; 767 768 return false; 769 } 770 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events); 771 772 static const char *ata_lpm_policy_names[] = { 773 [ATA_LPM_UNKNOWN] = "max_performance", 774 [ATA_LPM_MAX_POWER] = "max_performance", 775 [ATA_LPM_MED_POWER] = "medium_power", 776 [ATA_LPM_MED_POWER_WITH_DIPM] = "med_power_with_dipm", 777 [ATA_LPM_MIN_POWER_WITH_PARTIAL] = "min_power_with_partial", 778 [ATA_LPM_MIN_POWER] = "min_power", 779 }; 780 781 static ssize_t ata_scsi_lpm_store(struct device *device, 782 struct device_attribute *attr, 783 const char *buf, size_t count) 784 { 785 struct Scsi_Host *shost = class_to_shost(device); 786 struct ata_port *ap = ata_shost_to_port(shost); 787 struct ata_link *link; 788 struct ata_device *dev; 789 enum ata_lpm_policy policy; 790 unsigned long flags; 791 792 /* UNKNOWN is internal state, iterate from MAX_POWER */ 793 for (policy = ATA_LPM_MAX_POWER; 794 policy < ARRAY_SIZE(ata_lpm_policy_names); policy++) { 795 const char *name = ata_lpm_policy_names[policy]; 796 797 if (strncmp(name, buf, strlen(name)) == 0) 798 break; 799 } 800 if (policy == ARRAY_SIZE(ata_lpm_policy_names)) 801 return -EINVAL; 802 803 spin_lock_irqsave(ap->lock, flags); 804 805 ata_for_each_link(link, ap, EDGE) { 806 ata_for_each_dev(dev, &ap->link, ENABLED) { 807 if (dev->horkage & ATA_HORKAGE_NOLPM) { 808 count = -EOPNOTSUPP; 809 goto out_unlock; 810 } 811 } 812 } 813 814 ap->target_lpm_policy = policy; 815 ata_port_schedule_eh(ap); 816 out_unlock: 817 spin_unlock_irqrestore(ap->lock, flags); 818 return count; 819 } 820 821 static ssize_t ata_scsi_lpm_show(struct device *dev, 822 struct device_attribute *attr, char *buf) 823 { 824 struct Scsi_Host *shost = class_to_shost(dev); 825 struct ata_port *ap = ata_shost_to_port(shost); 826 827 if (ap->target_lpm_policy >= ARRAY_SIZE(ata_lpm_policy_names)) 828 return -EINVAL; 829 830 return snprintf(buf, PAGE_SIZE, "%s\n", 831 ata_lpm_policy_names[ap->target_lpm_policy]); 832 } 833 DEVICE_ATTR(link_power_management_policy, S_IRUGO | S_IWUSR, 834 ata_scsi_lpm_show, ata_scsi_lpm_store); 835 EXPORT_SYMBOL_GPL(dev_attr_link_power_management_policy); 836 837 static ssize_t ata_ncq_prio_enable_show(struct device *device, 838 struct device_attribute *attr, 839 char *buf) 840 { 841 struct scsi_device *sdev = to_scsi_device(device); 842 struct ata_port *ap; 843 struct ata_device *dev; 844 bool ncq_prio_enable; 845 int rc = 0; 846 847 ap = ata_shost_to_port(sdev->host); 848 849 spin_lock_irq(ap->lock); 850 dev = ata_scsi_find_dev(ap, sdev); 851 if (!dev) { 852 rc = -ENODEV; 853 goto unlock; 854 } 855 856 ncq_prio_enable = dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE; 857 858 unlock: 859 spin_unlock_irq(ap->lock); 860 861 return rc ? rc : snprintf(buf, 20, "%u\n", ncq_prio_enable); 862 } 863 864 static ssize_t ata_ncq_prio_enable_store(struct device *device, 865 struct device_attribute *attr, 866 const char *buf, size_t len) 867 { 868 struct scsi_device *sdev = to_scsi_device(device); 869 struct ata_port *ap; 870 struct ata_device *dev; 871 long int input; 872 int rc; 873 874 rc = kstrtol(buf, 10, &input); 875 if (rc) 876 return rc; 877 if ((input < 0) || (input > 1)) 878 return -EINVAL; 879 880 ap = ata_shost_to_port(sdev->host); 881 dev = ata_scsi_find_dev(ap, sdev); 882 if (unlikely(!dev)) 883 return -ENODEV; 884 885 spin_lock_irq(ap->lock); 886 if (input) 887 dev->flags |= ATA_DFLAG_NCQ_PRIO_ENABLE; 888 else 889 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE; 890 891 dev->link->eh_info.action |= ATA_EH_REVALIDATE; 892 dev->link->eh_info.flags |= ATA_EHI_QUIET; 893 ata_port_schedule_eh(ap); 894 spin_unlock_irq(ap->lock); 895 896 ata_port_wait_eh(ap); 897 898 if (input) { 899 spin_lock_irq(ap->lock); 900 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO)) { 901 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE; 902 rc = -EIO; 903 } 904 spin_unlock_irq(ap->lock); 905 } 906 907 return rc ? rc : len; 908 } 909 910 DEVICE_ATTR(ncq_prio_enable, S_IRUGO | S_IWUSR, 911 ata_ncq_prio_enable_show, ata_ncq_prio_enable_store); 912 EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_enable); 913 914 struct device_attribute *ata_ncq_sdev_attrs[] = { 915 &dev_attr_unload_heads, 916 &dev_attr_ncq_prio_enable, 917 NULL 918 }; 919 EXPORT_SYMBOL_GPL(ata_ncq_sdev_attrs); 920 921 static ssize_t 922 ata_scsi_em_message_store(struct device *dev, struct device_attribute *attr, 923 const char *buf, size_t count) 924 { 925 struct Scsi_Host *shost = class_to_shost(dev); 926 struct ata_port *ap = ata_shost_to_port(shost); 927 if (ap->ops->em_store && (ap->flags & ATA_FLAG_EM)) 928 return ap->ops->em_store(ap, buf, count); 929 return -EINVAL; 930 } 931 932 static ssize_t 933 ata_scsi_em_message_show(struct device *dev, struct device_attribute *attr, 934 char *buf) 935 { 936 struct Scsi_Host *shost = class_to_shost(dev); 937 struct ata_port *ap = ata_shost_to_port(shost); 938 939 if (ap->ops->em_show && (ap->flags & ATA_FLAG_EM)) 940 return ap->ops->em_show(ap, buf); 941 return -EINVAL; 942 } 943 DEVICE_ATTR(em_message, S_IRUGO | S_IWUSR, 944 ata_scsi_em_message_show, ata_scsi_em_message_store); 945 EXPORT_SYMBOL_GPL(dev_attr_em_message); 946 947 static ssize_t 948 ata_scsi_em_message_type_show(struct device *dev, struct device_attribute *attr, 949 char *buf) 950 { 951 struct Scsi_Host *shost = class_to_shost(dev); 952 struct ata_port *ap = ata_shost_to_port(shost); 953 954 return snprintf(buf, 23, "%d\n", ap->em_message_type); 955 } 956 DEVICE_ATTR(em_message_type, S_IRUGO, 957 ata_scsi_em_message_type_show, NULL); 958 EXPORT_SYMBOL_GPL(dev_attr_em_message_type); 959 960 static ssize_t 961 ata_scsi_activity_show(struct device *dev, struct device_attribute *attr, 962 char *buf) 963 { 964 struct scsi_device *sdev = to_scsi_device(dev); 965 struct ata_port *ap = ata_shost_to_port(sdev->host); 966 struct ata_device *atadev = ata_scsi_find_dev(ap, sdev); 967 968 if (atadev && ap->ops->sw_activity_show && 969 (ap->flags & ATA_FLAG_SW_ACTIVITY)) 970 return ap->ops->sw_activity_show(atadev, buf); 971 return -EINVAL; 972 } 973 974 static ssize_t 975 ata_scsi_activity_store(struct device *dev, struct device_attribute *attr, 976 const char *buf, size_t count) 977 { 978 struct scsi_device *sdev = to_scsi_device(dev); 979 struct ata_port *ap = ata_shost_to_port(sdev->host); 980 struct ata_device *atadev = ata_scsi_find_dev(ap, sdev); 981 enum sw_activity val; 982 int rc; 983 984 if (atadev && ap->ops->sw_activity_store && 985 (ap->flags & ATA_FLAG_SW_ACTIVITY)) { 986 val = simple_strtoul(buf, NULL, 0); 987 switch (val) { 988 case OFF: case BLINK_ON: case BLINK_OFF: 989 rc = ap->ops->sw_activity_store(atadev, val); 990 if (!rc) 991 return count; 992 else 993 return rc; 994 } 995 } 996 return -EINVAL; 997 } 998 DEVICE_ATTR(sw_activity, S_IWUSR | S_IRUGO, ata_scsi_activity_show, 999 ata_scsi_activity_store); 1000 EXPORT_SYMBOL_GPL(dev_attr_sw_activity); 1001 1002 /** 1003 * __ata_change_queue_depth - helper for ata_scsi_change_queue_depth 1004 * @ap: ATA port to which the device change the queue depth 1005 * @sdev: SCSI device to configure queue depth for 1006 * @queue_depth: new queue depth 1007 * 1008 * libsas and libata have different approaches for associating a sdev to 1009 * its ata_port. 1010 * 1011 */ 1012 int __ata_change_queue_depth(struct ata_port *ap, struct scsi_device *sdev, 1013 int queue_depth) 1014 { 1015 struct ata_device *dev; 1016 unsigned long flags; 1017 1018 if (queue_depth < 1 || queue_depth == sdev->queue_depth) 1019 return sdev->queue_depth; 1020 1021 dev = ata_scsi_find_dev(ap, sdev); 1022 if (!dev || !ata_dev_enabled(dev)) 1023 return sdev->queue_depth; 1024 1025 /* NCQ enabled? */ 1026 spin_lock_irqsave(ap->lock, flags); 1027 dev->flags &= ~ATA_DFLAG_NCQ_OFF; 1028 if (queue_depth == 1 || !ata_ncq_enabled(dev)) { 1029 dev->flags |= ATA_DFLAG_NCQ_OFF; 1030 queue_depth = 1; 1031 } 1032 spin_unlock_irqrestore(ap->lock, flags); 1033 1034 /* limit and apply queue depth */ 1035 queue_depth = min(queue_depth, sdev->host->can_queue); 1036 queue_depth = min(queue_depth, ata_id_queue_depth(dev->id)); 1037 queue_depth = min(queue_depth, ATA_MAX_QUEUE); 1038 1039 if (sdev->queue_depth == queue_depth) 1040 return -EINVAL; 1041 1042 return scsi_change_queue_depth(sdev, queue_depth); 1043 } 1044 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 1045 1046 /** 1047 * ata_scsi_change_queue_depth - SCSI callback for queue depth config 1048 * @sdev: SCSI device to configure queue depth for 1049 * @queue_depth: new queue depth 1050 * 1051 * This is libata standard hostt->change_queue_depth callback. 1052 * SCSI will call into this callback when user tries to set queue 1053 * depth via sysfs. 1054 * 1055 * LOCKING: 1056 * SCSI layer (we don't care) 1057 * 1058 * RETURNS: 1059 * Newly configured queue depth. 1060 */ 1061 int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth) 1062 { 1063 struct ata_port *ap = ata_shost_to_port(sdev->host); 1064 1065 return __ata_change_queue_depth(ap, sdev, queue_depth); 1066 } 1067 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 1068 1069 /** 1070 * ata_sas_port_alloc - Allocate port for a SAS attached SATA device 1071 * @host: ATA host container for all SAS ports 1072 * @port_info: Information from low-level host driver 1073 * @shost: SCSI host that the scsi device is attached to 1074 * 1075 * LOCKING: 1076 * PCI/etc. bus probe sem. 1077 * 1078 * RETURNS: 1079 * ata_port pointer on success / NULL on failure. 1080 */ 1081 1082 struct ata_port *ata_sas_port_alloc(struct ata_host *host, 1083 struct ata_port_info *port_info, 1084 struct Scsi_Host *shost) 1085 { 1086 struct ata_port *ap; 1087 1088 ap = ata_port_alloc(host); 1089 if (!ap) 1090 return NULL; 1091 1092 ap->port_no = 0; 1093 ap->lock = &host->lock; 1094 ap->pio_mask = port_info->pio_mask; 1095 ap->mwdma_mask = port_info->mwdma_mask; 1096 ap->udma_mask = port_info->udma_mask; 1097 ap->flags |= port_info->flags; 1098 ap->ops = port_info->port_ops; 1099 ap->cbl = ATA_CBL_SATA; 1100 1101 return ap; 1102 } 1103 EXPORT_SYMBOL_GPL(ata_sas_port_alloc); 1104 1105 /** 1106 * ata_sas_port_start - Set port up for dma. 1107 * @ap: Port to initialize 1108 * 1109 * Called just after data structures for each port are 1110 * initialized. 1111 * 1112 * May be used as the port_start() entry in ata_port_operations. 1113 * 1114 * LOCKING: 1115 * Inherited from caller. 1116 */ 1117 int ata_sas_port_start(struct ata_port *ap) 1118 { 1119 /* 1120 * the port is marked as frozen at allocation time, but if we don't 1121 * have new eh, we won't thaw it 1122 */ 1123 if (!ap->ops->error_handler) 1124 ap->pflags &= ~ATA_PFLAG_FROZEN; 1125 return 0; 1126 } 1127 EXPORT_SYMBOL_GPL(ata_sas_port_start); 1128 1129 /** 1130 * ata_sas_port_stop - Undo ata_sas_port_start() 1131 * @ap: Port to shut down 1132 * 1133 * May be used as the port_stop() entry in ata_port_operations. 1134 * 1135 * LOCKING: 1136 * Inherited from caller. 1137 */ 1138 1139 void ata_sas_port_stop(struct ata_port *ap) 1140 { 1141 } 1142 EXPORT_SYMBOL_GPL(ata_sas_port_stop); 1143 1144 /** 1145 * ata_sas_async_probe - simply schedule probing and return 1146 * @ap: Port to probe 1147 * 1148 * For batch scheduling of probe for sas attached ata devices, assumes 1149 * the port has already been through ata_sas_port_init() 1150 */ 1151 void ata_sas_async_probe(struct ata_port *ap) 1152 { 1153 __ata_port_probe(ap); 1154 } 1155 EXPORT_SYMBOL_GPL(ata_sas_async_probe); 1156 1157 int ata_sas_sync_probe(struct ata_port *ap) 1158 { 1159 return ata_port_probe(ap); 1160 } 1161 EXPORT_SYMBOL_GPL(ata_sas_sync_probe); 1162 1163 1164 /** 1165 * ata_sas_port_init - Initialize a SATA device 1166 * @ap: SATA port to initialize 1167 * 1168 * LOCKING: 1169 * PCI/etc. bus probe sem. 1170 * 1171 * RETURNS: 1172 * Zero on success, non-zero on error. 1173 */ 1174 1175 int ata_sas_port_init(struct ata_port *ap) 1176 { 1177 int rc = ap->ops->port_start(ap); 1178 1179 if (rc) 1180 return rc; 1181 ap->print_id = atomic_inc_return(&ata_print_id); 1182 return 0; 1183 } 1184 EXPORT_SYMBOL_GPL(ata_sas_port_init); 1185 1186 int ata_sas_tport_add(struct device *parent, struct ata_port *ap) 1187 { 1188 return ata_tport_add(parent, ap); 1189 } 1190 EXPORT_SYMBOL_GPL(ata_sas_tport_add); 1191 1192 void ata_sas_tport_delete(struct ata_port *ap) 1193 { 1194 ata_tport_delete(ap); 1195 } 1196 EXPORT_SYMBOL_GPL(ata_sas_tport_delete); 1197 1198 /** 1199 * ata_sas_port_destroy - Destroy a SATA port allocated by ata_sas_port_alloc 1200 * @ap: SATA port to destroy 1201 * 1202 */ 1203 1204 void ata_sas_port_destroy(struct ata_port *ap) 1205 { 1206 if (ap->ops->port_stop) 1207 ap->ops->port_stop(ap); 1208 kfree(ap); 1209 } 1210 EXPORT_SYMBOL_GPL(ata_sas_port_destroy); 1211 1212 /** 1213 * ata_sas_slave_configure - Default slave_config routine for libata devices 1214 * @sdev: SCSI device to configure 1215 * @ap: ATA port to which SCSI device is attached 1216 * 1217 * RETURNS: 1218 * Zero. 1219 */ 1220 1221 int ata_sas_slave_configure(struct scsi_device *sdev, struct ata_port *ap) 1222 { 1223 ata_scsi_sdev_config(sdev); 1224 ata_scsi_dev_config(sdev, ap->link.device); 1225 return 0; 1226 } 1227 EXPORT_SYMBOL_GPL(ata_sas_slave_configure); 1228 1229 /** 1230 * ata_sas_queuecmd - Issue SCSI cdb to libata-managed device 1231 * @cmd: SCSI command to be sent 1232 * @ap: ATA port to which the command is being sent 1233 * 1234 * RETURNS: 1235 * Return value from __ata_scsi_queuecmd() if @cmd can be queued, 1236 * 0 otherwise. 1237 */ 1238 1239 int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap) 1240 { 1241 int rc = 0; 1242 1243 ata_scsi_dump_cdb(ap, cmd); 1244 1245 if (likely(ata_dev_enabled(ap->link.device))) 1246 rc = __ata_scsi_queuecmd(cmd, ap->link.device); 1247 else { 1248 cmd->result = (DID_BAD_TARGET << 16); 1249 cmd->scsi_done(cmd); 1250 } 1251 return rc; 1252 } 1253 EXPORT_SYMBOL_GPL(ata_sas_queuecmd); 1254 1255 int ata_sas_allocate_tag(struct ata_port *ap) 1256 { 1257 unsigned int max_queue = ap->host->n_tags; 1258 unsigned int i, tag; 1259 1260 for (i = 0, tag = ap->sas_last_tag + 1; i < max_queue; i++, tag++) { 1261 tag = tag < max_queue ? tag : 0; 1262 1263 /* the last tag is reserved for internal command. */ 1264 if (ata_tag_internal(tag)) 1265 continue; 1266 1267 if (!test_and_set_bit(tag, &ap->sas_tag_allocated)) { 1268 ap->sas_last_tag = tag; 1269 return tag; 1270 } 1271 } 1272 return -1; 1273 } 1274 1275 void ata_sas_free_tag(unsigned int tag, struct ata_port *ap) 1276 { 1277 clear_bit(tag, &ap->sas_tag_allocated); 1278 } 1279 1280 /** 1281 * sata_async_notification - SATA async notification handler 1282 * @ap: ATA port where async notification is received 1283 * 1284 * Handler to be called when async notification via SDB FIS is 1285 * received. This function schedules EH if necessary. 1286 * 1287 * LOCKING: 1288 * spin_lock_irqsave(host lock) 1289 * 1290 * RETURNS: 1291 * 1 if EH is scheduled, 0 otherwise. 1292 */ 1293 int sata_async_notification(struct ata_port *ap) 1294 { 1295 u32 sntf; 1296 int rc; 1297 1298 if (!(ap->flags & ATA_FLAG_AN)) 1299 return 0; 1300 1301 rc = sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf); 1302 if (rc == 0) 1303 sata_scr_write(&ap->link, SCR_NOTIFICATION, sntf); 1304 1305 if (!sata_pmp_attached(ap) || rc) { 1306 /* PMP is not attached or SNTF is not available */ 1307 if (!sata_pmp_attached(ap)) { 1308 /* PMP is not attached. Check whether ATAPI 1309 * AN is configured. If so, notify media 1310 * change. 1311 */ 1312 struct ata_device *dev = ap->link.device; 1313 1314 if ((dev->class == ATA_DEV_ATAPI) && 1315 (dev->flags & ATA_DFLAG_AN)) 1316 ata_scsi_media_change_notify(dev); 1317 return 0; 1318 } else { 1319 /* PMP is attached but SNTF is not available. 1320 * ATAPI async media change notification is 1321 * not used. The PMP must be reporting PHY 1322 * status change, schedule EH. 1323 */ 1324 ata_port_schedule_eh(ap); 1325 return 1; 1326 } 1327 } else { 1328 /* PMP is attached and SNTF is available */ 1329 struct ata_link *link; 1330 1331 /* check and notify ATAPI AN */ 1332 ata_for_each_link(link, ap, EDGE) { 1333 if (!(sntf & (1 << link->pmp))) 1334 continue; 1335 1336 if ((link->device->class == ATA_DEV_ATAPI) && 1337 (link->device->flags & ATA_DFLAG_AN)) 1338 ata_scsi_media_change_notify(link->device); 1339 } 1340 1341 /* If PMP is reporting that PHY status of some 1342 * downstream ports has changed, schedule EH. 1343 */ 1344 if (sntf & (1 << SATA_PMP_CTRL_PORT)) { 1345 ata_port_schedule_eh(ap); 1346 return 1; 1347 } 1348 1349 return 0; 1350 } 1351 } 1352 EXPORT_SYMBOL_GPL(sata_async_notification); 1353 1354 /** 1355 * ata_eh_read_log_10h - Read log page 10h for NCQ error details 1356 * @dev: Device to read log page 10h from 1357 * @tag: Resulting tag of the failed command 1358 * @tf: Resulting taskfile registers of the failed command 1359 * 1360 * Read log page 10h to obtain NCQ error details and clear error 1361 * condition. 1362 * 1363 * LOCKING: 1364 * Kernel thread context (may sleep). 1365 * 1366 * RETURNS: 1367 * 0 on success, -errno otherwise. 1368 */ 1369 static int ata_eh_read_log_10h(struct ata_device *dev, 1370 int *tag, struct ata_taskfile *tf) 1371 { 1372 u8 *buf = dev->link->ap->sector_buf; 1373 unsigned int err_mask; 1374 u8 csum; 1375 int i; 1376 1377 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_NCQ, 0, buf, 1); 1378 if (err_mask) 1379 return -EIO; 1380 1381 csum = 0; 1382 for (i = 0; i < ATA_SECT_SIZE; i++) 1383 csum += buf[i]; 1384 if (csum) 1385 ata_dev_warn(dev, "invalid checksum 0x%x on log page 10h\n", 1386 csum); 1387 1388 if (buf[0] & 0x80) 1389 return -ENOENT; 1390 1391 *tag = buf[0] & 0x1f; 1392 1393 tf->command = buf[2]; 1394 tf->feature = buf[3]; 1395 tf->lbal = buf[4]; 1396 tf->lbam = buf[5]; 1397 tf->lbah = buf[6]; 1398 tf->device = buf[7]; 1399 tf->hob_lbal = buf[8]; 1400 tf->hob_lbam = buf[9]; 1401 tf->hob_lbah = buf[10]; 1402 tf->nsect = buf[12]; 1403 tf->hob_nsect = buf[13]; 1404 if (dev->class == ATA_DEV_ZAC && ata_id_has_ncq_autosense(dev->id)) 1405 tf->auxiliary = buf[14] << 16 | buf[15] << 8 | buf[16]; 1406 1407 return 0; 1408 } 1409 1410 /** 1411 * ata_eh_analyze_ncq_error - analyze NCQ error 1412 * @link: ATA link to analyze NCQ error for 1413 * 1414 * Read log page 10h, determine the offending qc and acquire 1415 * error status TF. For NCQ device errors, all LLDDs have to do 1416 * is setting AC_ERR_DEV in ehi->err_mask. This function takes 1417 * care of the rest. 1418 * 1419 * LOCKING: 1420 * Kernel thread context (may sleep). 1421 */ 1422 void ata_eh_analyze_ncq_error(struct ata_link *link) 1423 { 1424 struct ata_port *ap = link->ap; 1425 struct ata_eh_context *ehc = &link->eh_context; 1426 struct ata_device *dev = link->device; 1427 struct ata_queued_cmd *qc; 1428 struct ata_taskfile tf; 1429 int tag, rc; 1430 1431 /* if frozen, we can't do much */ 1432 if (ap->pflags & ATA_PFLAG_FROZEN) 1433 return; 1434 1435 /* is it NCQ device error? */ 1436 if (!link->sactive || !(ehc->i.err_mask & AC_ERR_DEV)) 1437 return; 1438 1439 /* has LLDD analyzed already? */ 1440 ata_qc_for_each_raw(ap, qc, tag) { 1441 if (!(qc->flags & ATA_QCFLAG_FAILED)) 1442 continue; 1443 1444 if (qc->err_mask) 1445 return; 1446 } 1447 1448 /* okay, this error is ours */ 1449 memset(&tf, 0, sizeof(tf)); 1450 rc = ata_eh_read_log_10h(dev, &tag, &tf); 1451 if (rc) { 1452 ata_link_err(link, "failed to read log page 10h (errno=%d)\n", 1453 rc); 1454 return; 1455 } 1456 1457 if (!(link->sactive & (1 << tag))) { 1458 ata_link_err(link, "log page 10h reported inactive tag %d\n", 1459 tag); 1460 return; 1461 } 1462 1463 /* we've got the perpetrator, condemn it */ 1464 qc = __ata_qc_from_tag(ap, tag); 1465 memcpy(&qc->result_tf, &tf, sizeof(tf)); 1466 qc->result_tf.flags = ATA_TFLAG_ISADDR | ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 1467 qc->err_mask |= AC_ERR_DEV | AC_ERR_NCQ; 1468 if (dev->class == ATA_DEV_ZAC && 1469 ((qc->result_tf.command & ATA_SENSE) || qc->result_tf.auxiliary)) { 1470 char sense_key, asc, ascq; 1471 1472 sense_key = (qc->result_tf.auxiliary >> 16) & 0xff; 1473 asc = (qc->result_tf.auxiliary >> 8) & 0xff; 1474 ascq = qc->result_tf.auxiliary & 0xff; 1475 ata_scsi_set_sense(dev, qc->scsicmd, sense_key, asc, ascq); 1476 ata_scsi_set_sense_information(dev, qc->scsicmd, 1477 &qc->result_tf); 1478 qc->flags |= ATA_QCFLAG_SENSE_VALID; 1479 } 1480 1481 ehc->i.err_mask &= ~AC_ERR_DEV; 1482 } 1483 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 1484