1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SATA specific part of ATA helper library 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * Copyright 2006 Tejun Heo <htejun@gmail.com> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <scsi/scsi_cmnd.h> 13 #include <scsi/scsi_device.h> 14 #include <scsi/scsi_eh.h> 15 #include <linux/libata.h> 16 #include <asm/unaligned.h> 17 18 #include "libata.h" 19 #include "libata-transport.h" 20 21 /* debounce timing parameters in msecs { interval, duration, timeout } */ 22 const unsigned int sata_deb_timing_normal[] = { 5, 100, 2000 }; 23 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 24 const unsigned int sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 25 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 26 const unsigned int sata_deb_timing_long[] = { 100, 2000, 5000 }; 27 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 28 29 /** 30 * sata_scr_valid - test whether SCRs are accessible 31 * @link: ATA link to test SCR accessibility for 32 * 33 * Test whether SCRs are accessible for @link. 34 * 35 * LOCKING: 36 * None. 37 * 38 * RETURNS: 39 * 1 if SCRs are accessible, 0 otherwise. 40 */ 41 int sata_scr_valid(struct ata_link *link) 42 { 43 struct ata_port *ap = link->ap; 44 45 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 46 } 47 EXPORT_SYMBOL_GPL(sata_scr_valid); 48 49 /** 50 * sata_scr_read - read SCR register of the specified port 51 * @link: ATA link to read SCR for 52 * @reg: SCR to read 53 * @val: Place to store read value 54 * 55 * Read SCR register @reg of @link into *@val. This function is 56 * guaranteed to succeed if @link is ap->link, the cable type of 57 * the port is SATA and the port implements ->scr_read. 58 * 59 * LOCKING: 60 * None if @link is ap->link. Kernel thread context otherwise. 61 * 62 * RETURNS: 63 * 0 on success, negative errno on failure. 64 */ 65 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 66 { 67 if (ata_is_host_link(link)) { 68 if (sata_scr_valid(link)) 69 return link->ap->ops->scr_read(link, reg, val); 70 return -EOPNOTSUPP; 71 } 72 73 return sata_pmp_scr_read(link, reg, val); 74 } 75 EXPORT_SYMBOL_GPL(sata_scr_read); 76 77 /** 78 * sata_scr_write - write SCR register of the specified port 79 * @link: ATA link to write SCR for 80 * @reg: SCR to write 81 * @val: value to write 82 * 83 * Write @val to SCR register @reg of @link. This function is 84 * guaranteed to succeed if @link is ap->link, the cable type of 85 * the port is SATA and the port implements ->scr_read. 86 * 87 * LOCKING: 88 * None if @link is ap->link. Kernel thread context otherwise. 89 * 90 * RETURNS: 91 * 0 on success, negative errno on failure. 92 */ 93 int sata_scr_write(struct ata_link *link, int reg, u32 val) 94 { 95 if (ata_is_host_link(link)) { 96 if (sata_scr_valid(link)) 97 return link->ap->ops->scr_write(link, reg, val); 98 return -EOPNOTSUPP; 99 } 100 101 return sata_pmp_scr_write(link, reg, val); 102 } 103 EXPORT_SYMBOL_GPL(sata_scr_write); 104 105 /** 106 * sata_scr_write_flush - write SCR register of the specified port and flush 107 * @link: ATA link to write SCR for 108 * @reg: SCR to write 109 * @val: value to write 110 * 111 * This function is identical to sata_scr_write() except that this 112 * function performs flush after writing to the register. 113 * 114 * LOCKING: 115 * None if @link is ap->link. Kernel thread context otherwise. 116 * 117 * RETURNS: 118 * 0 on success, negative errno on failure. 119 */ 120 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 121 { 122 if (ata_is_host_link(link)) { 123 int rc; 124 125 if (sata_scr_valid(link)) { 126 rc = link->ap->ops->scr_write(link, reg, val); 127 if (rc == 0) 128 rc = link->ap->ops->scr_read(link, reg, &val); 129 return rc; 130 } 131 return -EOPNOTSUPP; 132 } 133 134 return sata_pmp_scr_write(link, reg, val); 135 } 136 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 137 138 /** 139 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 140 * @tf: Taskfile to convert 141 * @pmp: Port multiplier port 142 * @is_cmd: This FIS is for command 143 * @fis: Buffer into which data will output 144 * 145 * Converts a standard ATA taskfile to a Serial ATA 146 * FIS structure (Register - Host to Device). 147 * 148 * LOCKING: 149 * Inherited from caller. 150 */ 151 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 152 { 153 fis[0] = 0x27; /* Register - Host to Device FIS */ 154 fis[1] = pmp & 0xf; /* Port multiplier number*/ 155 if (is_cmd) 156 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 157 158 fis[2] = tf->command; 159 fis[3] = tf->feature; 160 161 fis[4] = tf->lbal; 162 fis[5] = tf->lbam; 163 fis[6] = tf->lbah; 164 fis[7] = tf->device; 165 166 fis[8] = tf->hob_lbal; 167 fis[9] = tf->hob_lbam; 168 fis[10] = tf->hob_lbah; 169 fis[11] = tf->hob_feature; 170 171 fis[12] = tf->nsect; 172 fis[13] = tf->hob_nsect; 173 fis[14] = 0; 174 fis[15] = tf->ctl; 175 176 fis[16] = tf->auxiliary & 0xff; 177 fis[17] = (tf->auxiliary >> 8) & 0xff; 178 fis[18] = (tf->auxiliary >> 16) & 0xff; 179 fis[19] = (tf->auxiliary >> 24) & 0xff; 180 } 181 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 182 183 /** 184 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 185 * @fis: Buffer from which data will be input 186 * @tf: Taskfile to output 187 * 188 * Converts a serial ATA FIS structure to a standard ATA taskfile. 189 * 190 * LOCKING: 191 * Inherited from caller. 192 */ 193 194 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 195 { 196 tf->status = fis[2]; 197 tf->error = fis[3]; 198 199 tf->lbal = fis[4]; 200 tf->lbam = fis[5]; 201 tf->lbah = fis[6]; 202 tf->device = fis[7]; 203 204 tf->hob_lbal = fis[8]; 205 tf->hob_lbam = fis[9]; 206 tf->hob_lbah = fis[10]; 207 208 tf->nsect = fis[12]; 209 tf->hob_nsect = fis[13]; 210 } 211 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 212 213 /** 214 * sata_link_debounce - debounce SATA phy status 215 * @link: ATA link to debounce SATA phy status for 216 * @params: timing parameters { interval, duration, timeout } in msec 217 * @deadline: deadline jiffies for the operation 218 * 219 * Make sure SStatus of @link reaches stable state, determined by 220 * holding the same value where DET is not 1 for @duration polled 221 * every @interval, before @timeout. Timeout constraints the 222 * beginning of the stable state. Because DET gets stuck at 1 on 223 * some controllers after hot unplugging, this functions waits 224 * until timeout then returns 0 if DET is stable at 1. 225 * 226 * @timeout is further limited by @deadline. The sooner of the 227 * two is used. 228 * 229 * LOCKING: 230 * Kernel thread context (may sleep) 231 * 232 * RETURNS: 233 * 0 on success, -errno on failure. 234 */ 235 int sata_link_debounce(struct ata_link *link, const unsigned int *params, 236 unsigned long deadline) 237 { 238 unsigned int interval = params[0]; 239 unsigned int duration = params[1]; 240 unsigned long last_jiffies, t; 241 u32 last, cur; 242 int rc; 243 244 t = ata_deadline(jiffies, params[2]); 245 if (time_before(t, deadline)) 246 deadline = t; 247 248 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 249 return rc; 250 cur &= 0xf; 251 252 last = cur; 253 last_jiffies = jiffies; 254 255 while (1) { 256 ata_msleep(link->ap, interval); 257 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 258 return rc; 259 cur &= 0xf; 260 261 /* DET stable? */ 262 if (cur == last) { 263 if (cur == 1 && time_before(jiffies, deadline)) 264 continue; 265 if (time_after(jiffies, 266 ata_deadline(last_jiffies, duration))) 267 return 0; 268 continue; 269 } 270 271 /* unstable, start over */ 272 last = cur; 273 last_jiffies = jiffies; 274 275 /* Check deadline. If debouncing failed, return 276 * -EPIPE to tell upper layer to lower link speed. 277 */ 278 if (time_after(jiffies, deadline)) 279 return -EPIPE; 280 } 281 } 282 EXPORT_SYMBOL_GPL(sata_link_debounce); 283 284 /** 285 * sata_link_resume - resume SATA link 286 * @link: ATA link to resume SATA 287 * @params: timing parameters { interval, duration, timeout } in msec 288 * @deadline: deadline jiffies for the operation 289 * 290 * Resume SATA phy @link and debounce it. 291 * 292 * LOCKING: 293 * Kernel thread context (may sleep) 294 * 295 * RETURNS: 296 * 0 on success, -errno on failure. 297 */ 298 int sata_link_resume(struct ata_link *link, const unsigned int *params, 299 unsigned long deadline) 300 { 301 int tries = ATA_LINK_RESUME_TRIES; 302 u32 scontrol, serror; 303 int rc; 304 305 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 306 return rc; 307 308 /* 309 * Writes to SControl sometimes get ignored under certain 310 * controllers (ata_piix SIDPR). Make sure DET actually is 311 * cleared. 312 */ 313 do { 314 scontrol = (scontrol & 0x0f0) | 0x300; 315 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 316 return rc; 317 /* 318 * Some PHYs react badly if SStatus is pounded 319 * immediately after resuming. Delay 200ms before 320 * debouncing. 321 */ 322 if (!(link->flags & ATA_LFLAG_NO_DEBOUNCE_DELAY)) 323 ata_msleep(link->ap, 200); 324 325 /* is SControl restored correctly? */ 326 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 327 return rc; 328 } while ((scontrol & 0xf0f) != 0x300 && --tries); 329 330 if ((scontrol & 0xf0f) != 0x300) { 331 ata_link_warn(link, "failed to resume link (SControl %X)\n", 332 scontrol); 333 return 0; 334 } 335 336 if (tries < ATA_LINK_RESUME_TRIES) 337 ata_link_warn(link, "link resume succeeded after %d retries\n", 338 ATA_LINK_RESUME_TRIES - tries); 339 340 if ((rc = sata_link_debounce(link, params, deadline))) 341 return rc; 342 343 /* clear SError, some PHYs require this even for SRST to work */ 344 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 345 rc = sata_scr_write(link, SCR_ERROR, serror); 346 347 return rc != -EINVAL ? rc : 0; 348 } 349 EXPORT_SYMBOL_GPL(sata_link_resume); 350 351 /** 352 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 353 * @link: ATA link to manipulate SControl for 354 * @policy: LPM policy to configure 355 * @spm_wakeup: initiate LPM transition to active state 356 * 357 * Manipulate the IPM field of the SControl register of @link 358 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 359 * @spm_wakeup is %true, the SPM field is manipulated to wake up 360 * the link. This function also clears PHYRDY_CHG before 361 * returning. 362 * 363 * LOCKING: 364 * EH context. 365 * 366 * RETURNS: 367 * 0 on success, -errno otherwise. 368 */ 369 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 370 bool spm_wakeup) 371 { 372 struct ata_eh_context *ehc = &link->eh_context; 373 bool woken_up = false; 374 u32 scontrol; 375 int rc; 376 377 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 378 if (rc) 379 return rc; 380 381 switch (policy) { 382 case ATA_LPM_MAX_POWER: 383 /* disable all LPM transitions */ 384 scontrol |= (0x7 << 8); 385 /* initiate transition to active state */ 386 if (spm_wakeup) { 387 scontrol |= (0x4 << 12); 388 woken_up = true; 389 } 390 break; 391 case ATA_LPM_MED_POWER: 392 /* allow LPM to PARTIAL */ 393 scontrol &= ~(0x1 << 8); 394 scontrol |= (0x6 << 8); 395 break; 396 case ATA_LPM_MED_POWER_WITH_DIPM: 397 case ATA_LPM_MIN_POWER_WITH_PARTIAL: 398 case ATA_LPM_MIN_POWER: 399 if (ata_link_nr_enabled(link) > 0) { 400 /* assume no restrictions on LPM transitions */ 401 scontrol &= ~(0x7 << 8); 402 403 /* 404 * If the controller does not support partial, slumber, 405 * or devsleep, then disallow these transitions. 406 */ 407 if (link->ap->host->flags & ATA_HOST_NO_PART) 408 scontrol |= (0x1 << 8); 409 410 if (link->ap->host->flags & ATA_HOST_NO_SSC) 411 scontrol |= (0x2 << 8); 412 413 if (link->ap->host->flags & ATA_HOST_NO_DEVSLP) 414 scontrol |= (0x4 << 8); 415 } else { 416 /* empty port, power off */ 417 scontrol &= ~0xf; 418 scontrol |= (0x1 << 2); 419 } 420 break; 421 default: 422 WARN_ON(1); 423 } 424 425 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 426 if (rc) 427 return rc; 428 429 /* give the link time to transit out of LPM state */ 430 if (woken_up) 431 msleep(10); 432 433 /* clear PHYRDY_CHG from SError */ 434 ehc->i.serror &= ~SERR_PHYRDY_CHG; 435 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 436 } 437 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 438 439 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 440 { 441 struct ata_link *host_link = &link->ap->link; 442 u32 limit, target, spd; 443 444 limit = link->sata_spd_limit; 445 446 /* Don't configure downstream link faster than upstream link. 447 * It doesn't speed up anything and some PMPs choke on such 448 * configuration. 449 */ 450 if (!ata_is_host_link(link) && host_link->sata_spd) 451 limit &= (1 << host_link->sata_spd) - 1; 452 453 if (limit == UINT_MAX) 454 target = 0; 455 else 456 target = fls(limit); 457 458 spd = (*scontrol >> 4) & 0xf; 459 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 460 461 return spd != target; 462 } 463 464 /** 465 * sata_set_spd_needed - is SATA spd configuration needed 466 * @link: Link in question 467 * 468 * Test whether the spd limit in SControl matches 469 * @link->sata_spd_limit. This function is used to determine 470 * whether hardreset is necessary to apply SATA spd 471 * configuration. 472 * 473 * LOCKING: 474 * Inherited from caller. 475 * 476 * RETURNS: 477 * 1 if SATA spd configuration is needed, 0 otherwise. 478 */ 479 static int sata_set_spd_needed(struct ata_link *link) 480 { 481 u32 scontrol; 482 483 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 484 return 1; 485 486 return __sata_set_spd_needed(link, &scontrol); 487 } 488 489 /** 490 * sata_set_spd - set SATA spd according to spd limit 491 * @link: Link to set SATA spd for 492 * 493 * Set SATA spd of @link according to sata_spd_limit. 494 * 495 * LOCKING: 496 * Inherited from caller. 497 * 498 * RETURNS: 499 * 0 if spd doesn't need to be changed, 1 if spd has been 500 * changed. Negative errno if SCR registers are inaccessible. 501 */ 502 int sata_set_spd(struct ata_link *link) 503 { 504 u32 scontrol; 505 int rc; 506 507 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 508 return rc; 509 510 if (!__sata_set_spd_needed(link, &scontrol)) 511 return 0; 512 513 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 514 return rc; 515 516 return 1; 517 } 518 EXPORT_SYMBOL_GPL(sata_set_spd); 519 520 /** 521 * sata_link_hardreset - reset link via SATA phy reset 522 * @link: link to reset 523 * @timing: timing parameters { interval, duration, timeout } in msec 524 * @deadline: deadline jiffies for the operation 525 * @online: optional out parameter indicating link onlineness 526 * @check_ready: optional callback to check link readiness 527 * 528 * SATA phy-reset @link using DET bits of SControl register. 529 * After hardreset, link readiness is waited upon using 530 * ata_wait_ready() if @check_ready is specified. LLDs are 531 * allowed to not specify @check_ready and wait itself after this 532 * function returns. Device classification is LLD's 533 * responsibility. 534 * 535 * *@online is set to one iff reset succeeded and @link is online 536 * after reset. 537 * 538 * LOCKING: 539 * Kernel thread context (may sleep) 540 * 541 * RETURNS: 542 * 0 on success, -errno otherwise. 543 */ 544 int sata_link_hardreset(struct ata_link *link, const unsigned int *timing, 545 unsigned long deadline, 546 bool *online, int (*check_ready)(struct ata_link *)) 547 { 548 u32 scontrol; 549 int rc; 550 551 if (online) 552 *online = false; 553 554 if (sata_set_spd_needed(link)) { 555 /* SATA spec says nothing about how to reconfigure 556 * spd. To be on the safe side, turn off phy during 557 * reconfiguration. This works for at least ICH7 AHCI 558 * and Sil3124. 559 */ 560 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 561 goto out; 562 563 scontrol = (scontrol & 0x0f0) | 0x304; 564 565 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 566 goto out; 567 568 sata_set_spd(link); 569 } 570 571 /* issue phy wake/reset */ 572 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 573 goto out; 574 575 scontrol = (scontrol & 0x0f0) | 0x301; 576 577 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 578 goto out; 579 580 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 581 * 10.4.2 says at least 1 ms. 582 */ 583 ata_msleep(link->ap, 1); 584 585 /* bring link back */ 586 rc = sata_link_resume(link, timing, deadline); 587 if (rc) 588 goto out; 589 /* if link is offline nothing more to do */ 590 if (ata_phys_link_offline(link)) 591 goto out; 592 593 /* Link is online. From this point, -ENODEV too is an error. */ 594 if (online) 595 *online = true; 596 597 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 598 /* If PMP is supported, we have to do follow-up SRST. 599 * Some PMPs don't send D2H Reg FIS after hardreset if 600 * the first port is empty. Wait only for 601 * ATA_TMOUT_PMP_SRST_WAIT. 602 */ 603 if (check_ready) { 604 unsigned long pmp_deadline; 605 606 pmp_deadline = ata_deadline(jiffies, 607 ATA_TMOUT_PMP_SRST_WAIT); 608 if (time_after(pmp_deadline, deadline)) 609 pmp_deadline = deadline; 610 ata_wait_ready(link, pmp_deadline, check_ready); 611 } 612 rc = -EAGAIN; 613 goto out; 614 } 615 616 rc = 0; 617 if (check_ready) 618 rc = ata_wait_ready(link, deadline, check_ready); 619 out: 620 if (rc && rc != -EAGAIN) { 621 /* online is set iff link is online && reset succeeded */ 622 if (online) 623 *online = false; 624 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 625 } 626 return rc; 627 } 628 EXPORT_SYMBOL_GPL(sata_link_hardreset); 629 630 /** 631 * ata_qc_complete_multiple - Complete multiple qcs successfully 632 * @ap: port in question 633 * @qc_active: new qc_active mask 634 * 635 * Complete in-flight commands. This functions is meant to be 636 * called from low-level driver's interrupt routine to complete 637 * requests normally. ap->qc_active and @qc_active is compared 638 * and commands are completed accordingly. 639 * 640 * Always use this function when completing multiple NCQ commands 641 * from IRQ handlers instead of calling ata_qc_complete() 642 * multiple times to keep IRQ expect status properly in sync. 643 * 644 * LOCKING: 645 * spin_lock_irqsave(host lock) 646 * 647 * RETURNS: 648 * Number of completed commands on success, -errno otherwise. 649 */ 650 int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active) 651 { 652 u64 done_mask, ap_qc_active = ap->qc_active; 653 int nr_done = 0; 654 655 /* 656 * If the internal tag is set on ap->qc_active, then we care about 657 * bit0 on the passed in qc_active mask. Move that bit up to match 658 * the internal tag. 659 */ 660 if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) { 661 qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL; 662 qc_active ^= qc_active & 0x01; 663 } 664 665 done_mask = ap_qc_active ^ qc_active; 666 667 if (unlikely(done_mask & qc_active)) { 668 ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n", 669 ap->qc_active, qc_active); 670 return -EINVAL; 671 } 672 673 if (ap->ops->qc_ncq_fill_rtf) 674 ap->ops->qc_ncq_fill_rtf(ap, done_mask); 675 676 while (done_mask) { 677 struct ata_queued_cmd *qc; 678 unsigned int tag = __ffs64(done_mask); 679 680 qc = ata_qc_from_tag(ap, tag); 681 if (qc) { 682 ata_qc_complete(qc); 683 nr_done++; 684 } 685 done_mask &= ~(1ULL << tag); 686 } 687 688 return nr_done; 689 } 690 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 691 692 /** 693 * ata_slave_link_init - initialize slave link 694 * @ap: port to initialize slave link for 695 * 696 * Create and initialize slave link for @ap. This enables slave 697 * link handling on the port. 698 * 699 * In libata, a port contains links and a link contains devices. 700 * There is single host link but if a PMP is attached to it, 701 * there can be multiple fan-out links. On SATA, there's usually 702 * a single device connected to a link but PATA and SATA 703 * controllers emulating TF based interface can have two - master 704 * and slave. 705 * 706 * However, there are a few controllers which don't fit into this 707 * abstraction too well - SATA controllers which emulate TF 708 * interface with both master and slave devices but also have 709 * separate SCR register sets for each device. These controllers 710 * need separate links for physical link handling 711 * (e.g. onlineness, link speed) but should be treated like a 712 * traditional M/S controller for everything else (e.g. command 713 * issue, softreset). 714 * 715 * slave_link is libata's way of handling this class of 716 * controllers without impacting core layer too much. For 717 * anything other than physical link handling, the default host 718 * link is used for both master and slave. For physical link 719 * handling, separate @ap->slave_link is used. All dirty details 720 * are implemented inside libata core layer. From LLD's POV, the 721 * only difference is that prereset, hardreset and postreset are 722 * called once more for the slave link, so the reset sequence 723 * looks like the following. 724 * 725 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 726 * softreset(M) -> postreset(M) -> postreset(S) 727 * 728 * Note that softreset is called only for the master. Softreset 729 * resets both M/S by definition, so SRST on master should handle 730 * both (the standard method will work just fine). 731 * 732 * LOCKING: 733 * Should be called before host is registered. 734 * 735 * RETURNS: 736 * 0 on success, -errno on failure. 737 */ 738 int ata_slave_link_init(struct ata_port *ap) 739 { 740 struct ata_link *link; 741 742 WARN_ON(ap->slave_link); 743 WARN_ON(ap->flags & ATA_FLAG_PMP); 744 745 link = kzalloc(sizeof(*link), GFP_KERNEL); 746 if (!link) 747 return -ENOMEM; 748 749 ata_link_init(ap, link, 1); 750 ap->slave_link = link; 751 return 0; 752 } 753 EXPORT_SYMBOL_GPL(ata_slave_link_init); 754 755 /** 756 * sata_lpm_ignore_phy_events - test if PHY event should be ignored 757 * @link: Link receiving the event 758 * 759 * Test whether the received PHY event has to be ignored or not. 760 * 761 * LOCKING: 762 * None: 763 * 764 * RETURNS: 765 * True if the event has to be ignored. 766 */ 767 bool sata_lpm_ignore_phy_events(struct ata_link *link) 768 { 769 unsigned long lpm_timeout = link->last_lpm_change + 770 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY); 771 772 /* if LPM is enabled, PHYRDY doesn't mean anything */ 773 if (link->lpm_policy > ATA_LPM_MAX_POWER) 774 return true; 775 776 /* ignore the first PHY event after the LPM policy changed 777 * as it is might be spurious 778 */ 779 if ((link->flags & ATA_LFLAG_CHANGED) && 780 time_before(jiffies, lpm_timeout)) 781 return true; 782 783 return false; 784 } 785 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events); 786 787 static const char *ata_lpm_policy_names[] = { 788 [ATA_LPM_UNKNOWN] = "max_performance", 789 [ATA_LPM_MAX_POWER] = "max_performance", 790 [ATA_LPM_MED_POWER] = "medium_power", 791 [ATA_LPM_MED_POWER_WITH_DIPM] = "med_power_with_dipm", 792 [ATA_LPM_MIN_POWER_WITH_PARTIAL] = "min_power_with_partial", 793 [ATA_LPM_MIN_POWER] = "min_power", 794 }; 795 796 static ssize_t ata_scsi_lpm_store(struct device *device, 797 struct device_attribute *attr, 798 const char *buf, size_t count) 799 { 800 struct Scsi_Host *shost = class_to_shost(device); 801 struct ata_port *ap = ata_shost_to_port(shost); 802 struct ata_link *link; 803 struct ata_device *dev; 804 enum ata_lpm_policy policy; 805 unsigned long flags; 806 807 /* UNKNOWN is internal state, iterate from MAX_POWER */ 808 for (policy = ATA_LPM_MAX_POWER; 809 policy < ARRAY_SIZE(ata_lpm_policy_names); policy++) { 810 const char *name = ata_lpm_policy_names[policy]; 811 812 if (strncmp(name, buf, strlen(name)) == 0) 813 break; 814 } 815 if (policy == ARRAY_SIZE(ata_lpm_policy_names)) 816 return -EINVAL; 817 818 spin_lock_irqsave(ap->lock, flags); 819 820 ata_for_each_link(link, ap, EDGE) { 821 ata_for_each_dev(dev, &ap->link, ENABLED) { 822 if (dev->horkage & ATA_HORKAGE_NOLPM) { 823 count = -EOPNOTSUPP; 824 goto out_unlock; 825 } 826 } 827 } 828 829 ap->target_lpm_policy = policy; 830 ata_port_schedule_eh(ap); 831 out_unlock: 832 spin_unlock_irqrestore(ap->lock, flags); 833 return count; 834 } 835 836 static ssize_t ata_scsi_lpm_show(struct device *dev, 837 struct device_attribute *attr, char *buf) 838 { 839 struct Scsi_Host *shost = class_to_shost(dev); 840 struct ata_port *ap = ata_shost_to_port(shost); 841 842 if (ap->target_lpm_policy >= ARRAY_SIZE(ata_lpm_policy_names)) 843 return -EINVAL; 844 845 return sysfs_emit(buf, "%s\n", 846 ata_lpm_policy_names[ap->target_lpm_policy]); 847 } 848 DEVICE_ATTR(link_power_management_policy, S_IRUGO | S_IWUSR, 849 ata_scsi_lpm_show, ata_scsi_lpm_store); 850 EXPORT_SYMBOL_GPL(dev_attr_link_power_management_policy); 851 852 static ssize_t ata_ncq_prio_supported_show(struct device *device, 853 struct device_attribute *attr, 854 char *buf) 855 { 856 struct scsi_device *sdev = to_scsi_device(device); 857 struct ata_port *ap = ata_shost_to_port(sdev->host); 858 struct ata_device *dev; 859 bool ncq_prio_supported; 860 int rc = 0; 861 862 spin_lock_irq(ap->lock); 863 dev = ata_scsi_find_dev(ap, sdev); 864 if (!dev) 865 rc = -ENODEV; 866 else 867 ncq_prio_supported = dev->flags & ATA_DFLAG_NCQ_PRIO; 868 spin_unlock_irq(ap->lock); 869 870 return rc ? rc : sysfs_emit(buf, "%u\n", ncq_prio_supported); 871 } 872 873 DEVICE_ATTR(ncq_prio_supported, S_IRUGO, ata_ncq_prio_supported_show, NULL); 874 EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_supported); 875 876 static ssize_t ata_ncq_prio_enable_show(struct device *device, 877 struct device_attribute *attr, 878 char *buf) 879 { 880 struct scsi_device *sdev = to_scsi_device(device); 881 struct ata_port *ap = ata_shost_to_port(sdev->host); 882 struct ata_device *dev; 883 bool ncq_prio_enable; 884 int rc = 0; 885 886 spin_lock_irq(ap->lock); 887 dev = ata_scsi_find_dev(ap, sdev); 888 if (!dev) 889 rc = -ENODEV; 890 else 891 ncq_prio_enable = dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED; 892 spin_unlock_irq(ap->lock); 893 894 return rc ? rc : sysfs_emit(buf, "%u\n", ncq_prio_enable); 895 } 896 897 static ssize_t ata_ncq_prio_enable_store(struct device *device, 898 struct device_attribute *attr, 899 const char *buf, size_t len) 900 { 901 struct scsi_device *sdev = to_scsi_device(device); 902 struct ata_port *ap; 903 struct ata_device *dev; 904 long int input; 905 int rc = 0; 906 907 rc = kstrtol(buf, 10, &input); 908 if (rc) 909 return rc; 910 if ((input < 0) || (input > 1)) 911 return -EINVAL; 912 913 ap = ata_shost_to_port(sdev->host); 914 dev = ata_scsi_find_dev(ap, sdev); 915 if (unlikely(!dev)) 916 return -ENODEV; 917 918 spin_lock_irq(ap->lock); 919 920 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO)) { 921 rc = -EINVAL; 922 goto unlock; 923 } 924 925 if (input) { 926 if (dev->flags & ATA_DFLAG_CDL_ENABLED) { 927 ata_dev_err(dev, 928 "CDL must be disabled to enable NCQ priority\n"); 929 rc = -EINVAL; 930 goto unlock; 931 } 932 dev->flags |= ATA_DFLAG_NCQ_PRIO_ENABLED; 933 } else { 934 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 935 } 936 937 unlock: 938 spin_unlock_irq(ap->lock); 939 940 return rc ? rc : len; 941 } 942 943 DEVICE_ATTR(ncq_prio_enable, S_IRUGO | S_IWUSR, 944 ata_ncq_prio_enable_show, ata_ncq_prio_enable_store); 945 EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_enable); 946 947 static struct attribute *ata_ncq_sdev_attrs[] = { 948 &dev_attr_unload_heads.attr, 949 &dev_attr_ncq_prio_enable.attr, 950 &dev_attr_ncq_prio_supported.attr, 951 NULL 952 }; 953 954 static const struct attribute_group ata_ncq_sdev_attr_group = { 955 .attrs = ata_ncq_sdev_attrs 956 }; 957 958 const struct attribute_group *ata_ncq_sdev_groups[] = { 959 &ata_ncq_sdev_attr_group, 960 NULL 961 }; 962 EXPORT_SYMBOL_GPL(ata_ncq_sdev_groups); 963 964 static ssize_t 965 ata_scsi_em_message_store(struct device *dev, struct device_attribute *attr, 966 const char *buf, size_t count) 967 { 968 struct Scsi_Host *shost = class_to_shost(dev); 969 struct ata_port *ap = ata_shost_to_port(shost); 970 if (ap->ops->em_store && (ap->flags & ATA_FLAG_EM)) 971 return ap->ops->em_store(ap, buf, count); 972 return -EINVAL; 973 } 974 975 static ssize_t 976 ata_scsi_em_message_show(struct device *dev, struct device_attribute *attr, 977 char *buf) 978 { 979 struct Scsi_Host *shost = class_to_shost(dev); 980 struct ata_port *ap = ata_shost_to_port(shost); 981 982 if (ap->ops->em_show && (ap->flags & ATA_FLAG_EM)) 983 return ap->ops->em_show(ap, buf); 984 return -EINVAL; 985 } 986 DEVICE_ATTR(em_message, S_IRUGO | S_IWUSR, 987 ata_scsi_em_message_show, ata_scsi_em_message_store); 988 EXPORT_SYMBOL_GPL(dev_attr_em_message); 989 990 static ssize_t 991 ata_scsi_em_message_type_show(struct device *dev, struct device_attribute *attr, 992 char *buf) 993 { 994 struct Scsi_Host *shost = class_to_shost(dev); 995 struct ata_port *ap = ata_shost_to_port(shost); 996 997 return sysfs_emit(buf, "%d\n", ap->em_message_type); 998 } 999 DEVICE_ATTR(em_message_type, S_IRUGO, 1000 ata_scsi_em_message_type_show, NULL); 1001 EXPORT_SYMBOL_GPL(dev_attr_em_message_type); 1002 1003 static ssize_t 1004 ata_scsi_activity_show(struct device *dev, struct device_attribute *attr, 1005 char *buf) 1006 { 1007 struct scsi_device *sdev = to_scsi_device(dev); 1008 struct ata_port *ap = ata_shost_to_port(sdev->host); 1009 struct ata_device *atadev = ata_scsi_find_dev(ap, sdev); 1010 1011 if (atadev && ap->ops->sw_activity_show && 1012 (ap->flags & ATA_FLAG_SW_ACTIVITY)) 1013 return ap->ops->sw_activity_show(atadev, buf); 1014 return -EINVAL; 1015 } 1016 1017 static ssize_t 1018 ata_scsi_activity_store(struct device *dev, struct device_attribute *attr, 1019 const char *buf, size_t count) 1020 { 1021 struct scsi_device *sdev = to_scsi_device(dev); 1022 struct ata_port *ap = ata_shost_to_port(sdev->host); 1023 struct ata_device *atadev = ata_scsi_find_dev(ap, sdev); 1024 enum sw_activity val; 1025 int rc; 1026 1027 if (atadev && ap->ops->sw_activity_store && 1028 (ap->flags & ATA_FLAG_SW_ACTIVITY)) { 1029 val = simple_strtoul(buf, NULL, 0); 1030 switch (val) { 1031 case OFF: case BLINK_ON: case BLINK_OFF: 1032 rc = ap->ops->sw_activity_store(atadev, val); 1033 if (!rc) 1034 return count; 1035 else 1036 return rc; 1037 } 1038 } 1039 return -EINVAL; 1040 } 1041 DEVICE_ATTR(sw_activity, S_IWUSR | S_IRUGO, ata_scsi_activity_show, 1042 ata_scsi_activity_store); 1043 EXPORT_SYMBOL_GPL(dev_attr_sw_activity); 1044 1045 /** 1046 * ata_change_queue_depth - Set a device maximum queue depth 1047 * @ap: ATA port of the target device 1048 * @sdev: SCSI device to configure queue depth for 1049 * @queue_depth: new queue depth 1050 * 1051 * Helper to set a device maximum queue depth, usable with both libsas 1052 * and libata. 1053 * 1054 */ 1055 int ata_change_queue_depth(struct ata_port *ap, struct scsi_device *sdev, 1056 int queue_depth) 1057 { 1058 struct ata_device *dev; 1059 unsigned long flags; 1060 int max_queue_depth; 1061 1062 spin_lock_irqsave(ap->lock, flags); 1063 1064 dev = ata_scsi_find_dev(ap, sdev); 1065 if (!dev || queue_depth < 1 || queue_depth == sdev->queue_depth) { 1066 spin_unlock_irqrestore(ap->lock, flags); 1067 return sdev->queue_depth; 1068 } 1069 1070 /* 1071 * Make sure that the queue depth requested does not exceed the device 1072 * capabilities. 1073 */ 1074 max_queue_depth = min(ATA_MAX_QUEUE, sdev->host->can_queue); 1075 max_queue_depth = min(max_queue_depth, ata_id_queue_depth(dev->id)); 1076 if (queue_depth > max_queue_depth) { 1077 spin_unlock_irqrestore(ap->lock, flags); 1078 return -EINVAL; 1079 } 1080 1081 /* 1082 * If NCQ is not supported by the device or if the target queue depth 1083 * is 1 (to disable drive side command queueing), turn off NCQ. 1084 */ 1085 if (queue_depth == 1 || !ata_ncq_supported(dev)) { 1086 dev->flags |= ATA_DFLAG_NCQ_OFF; 1087 queue_depth = 1; 1088 } else { 1089 dev->flags &= ~ATA_DFLAG_NCQ_OFF; 1090 } 1091 1092 spin_unlock_irqrestore(ap->lock, flags); 1093 1094 if (queue_depth == sdev->queue_depth) 1095 return sdev->queue_depth; 1096 1097 return scsi_change_queue_depth(sdev, queue_depth); 1098 } 1099 EXPORT_SYMBOL_GPL(ata_change_queue_depth); 1100 1101 /** 1102 * ata_scsi_change_queue_depth - SCSI callback for queue depth config 1103 * @sdev: SCSI device to configure queue depth for 1104 * @queue_depth: new queue depth 1105 * 1106 * This is libata standard hostt->change_queue_depth callback. 1107 * SCSI will call into this callback when user tries to set queue 1108 * depth via sysfs. 1109 * 1110 * LOCKING: 1111 * SCSI layer (we don't care) 1112 * 1113 * RETURNS: 1114 * Newly configured queue depth. 1115 */ 1116 int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth) 1117 { 1118 struct ata_port *ap = ata_shost_to_port(sdev->host); 1119 1120 return ata_change_queue_depth(ap, sdev, queue_depth); 1121 } 1122 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 1123 1124 /** 1125 * ata_sas_port_alloc - Allocate port for a SAS attached SATA device 1126 * @host: ATA host container for all SAS ports 1127 * @port_info: Information from low-level host driver 1128 * @shost: SCSI host that the scsi device is attached to 1129 * 1130 * LOCKING: 1131 * PCI/etc. bus probe sem. 1132 * 1133 * RETURNS: 1134 * ata_port pointer on success / NULL on failure. 1135 */ 1136 1137 struct ata_port *ata_sas_port_alloc(struct ata_host *host, 1138 struct ata_port_info *port_info, 1139 struct Scsi_Host *shost) 1140 { 1141 struct ata_port *ap; 1142 1143 ap = ata_port_alloc(host); 1144 if (!ap) 1145 return NULL; 1146 1147 ap->port_no = 0; 1148 ap->lock = &host->lock; 1149 ap->pio_mask = port_info->pio_mask; 1150 ap->mwdma_mask = port_info->mwdma_mask; 1151 ap->udma_mask = port_info->udma_mask; 1152 ap->flags |= port_info->flags; 1153 ap->ops = port_info->port_ops; 1154 ap->cbl = ATA_CBL_SATA; 1155 ap->print_id = atomic_inc_return(&ata_print_id); 1156 1157 return ap; 1158 } 1159 EXPORT_SYMBOL_GPL(ata_sas_port_alloc); 1160 1161 int ata_sas_tport_add(struct device *parent, struct ata_port *ap) 1162 { 1163 return ata_tport_add(parent, ap); 1164 } 1165 EXPORT_SYMBOL_GPL(ata_sas_tport_add); 1166 1167 void ata_sas_tport_delete(struct ata_port *ap) 1168 { 1169 ata_tport_delete(ap); 1170 } 1171 EXPORT_SYMBOL_GPL(ata_sas_tport_delete); 1172 1173 /** 1174 * ata_sas_slave_configure - Default slave_config routine for libata devices 1175 * @sdev: SCSI device to configure 1176 * @ap: ATA port to which SCSI device is attached 1177 * 1178 * RETURNS: 1179 * Zero. 1180 */ 1181 1182 int ata_sas_slave_configure(struct scsi_device *sdev, struct ata_port *ap) 1183 { 1184 ata_scsi_sdev_config(sdev); 1185 ata_scsi_dev_config(sdev, ap->link.device); 1186 return 0; 1187 } 1188 EXPORT_SYMBOL_GPL(ata_sas_slave_configure); 1189 1190 /** 1191 * ata_sas_queuecmd - Issue SCSI cdb to libata-managed device 1192 * @cmd: SCSI command to be sent 1193 * @ap: ATA port to which the command is being sent 1194 * 1195 * RETURNS: 1196 * Return value from __ata_scsi_queuecmd() if @cmd can be queued, 1197 * 0 otherwise. 1198 */ 1199 1200 int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap) 1201 { 1202 int rc = 0; 1203 1204 if (likely(ata_dev_enabled(ap->link.device))) 1205 rc = __ata_scsi_queuecmd(cmd, ap->link.device); 1206 else { 1207 cmd->result = (DID_BAD_TARGET << 16); 1208 scsi_done(cmd); 1209 } 1210 return rc; 1211 } 1212 EXPORT_SYMBOL_GPL(ata_sas_queuecmd); 1213 1214 /** 1215 * sata_async_notification - SATA async notification handler 1216 * @ap: ATA port where async notification is received 1217 * 1218 * Handler to be called when async notification via SDB FIS is 1219 * received. This function schedules EH if necessary. 1220 * 1221 * LOCKING: 1222 * spin_lock_irqsave(host lock) 1223 * 1224 * RETURNS: 1225 * 1 if EH is scheduled, 0 otherwise. 1226 */ 1227 int sata_async_notification(struct ata_port *ap) 1228 { 1229 u32 sntf; 1230 int rc; 1231 1232 if (!(ap->flags & ATA_FLAG_AN)) 1233 return 0; 1234 1235 rc = sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf); 1236 if (rc == 0) 1237 sata_scr_write(&ap->link, SCR_NOTIFICATION, sntf); 1238 1239 if (!sata_pmp_attached(ap) || rc) { 1240 /* PMP is not attached or SNTF is not available */ 1241 if (!sata_pmp_attached(ap)) { 1242 /* PMP is not attached. Check whether ATAPI 1243 * AN is configured. If so, notify media 1244 * change. 1245 */ 1246 struct ata_device *dev = ap->link.device; 1247 1248 if ((dev->class == ATA_DEV_ATAPI) && 1249 (dev->flags & ATA_DFLAG_AN)) 1250 ata_scsi_media_change_notify(dev); 1251 return 0; 1252 } else { 1253 /* PMP is attached but SNTF is not available. 1254 * ATAPI async media change notification is 1255 * not used. The PMP must be reporting PHY 1256 * status change, schedule EH. 1257 */ 1258 ata_port_schedule_eh(ap); 1259 return 1; 1260 } 1261 } else { 1262 /* PMP is attached and SNTF is available */ 1263 struct ata_link *link; 1264 1265 /* check and notify ATAPI AN */ 1266 ata_for_each_link(link, ap, EDGE) { 1267 if (!(sntf & (1 << link->pmp))) 1268 continue; 1269 1270 if ((link->device->class == ATA_DEV_ATAPI) && 1271 (link->device->flags & ATA_DFLAG_AN)) 1272 ata_scsi_media_change_notify(link->device); 1273 } 1274 1275 /* If PMP is reporting that PHY status of some 1276 * downstream ports has changed, schedule EH. 1277 */ 1278 if (sntf & (1 << SATA_PMP_CTRL_PORT)) { 1279 ata_port_schedule_eh(ap); 1280 return 1; 1281 } 1282 1283 return 0; 1284 } 1285 } 1286 EXPORT_SYMBOL_GPL(sata_async_notification); 1287 1288 /** 1289 * ata_eh_read_log_10h - Read log page 10h for NCQ error details 1290 * @dev: Device to read log page 10h from 1291 * @tag: Resulting tag of the failed command 1292 * @tf: Resulting taskfile registers of the failed command 1293 * 1294 * Read log page 10h to obtain NCQ error details and clear error 1295 * condition. 1296 * 1297 * LOCKING: 1298 * Kernel thread context (may sleep). 1299 * 1300 * RETURNS: 1301 * 0 on success, -errno otherwise. 1302 */ 1303 static int ata_eh_read_log_10h(struct ata_device *dev, 1304 int *tag, struct ata_taskfile *tf) 1305 { 1306 u8 *buf = dev->link->ap->sector_buf; 1307 unsigned int err_mask; 1308 u8 csum; 1309 int i; 1310 1311 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_NCQ, 0, buf, 1); 1312 if (err_mask) 1313 return -EIO; 1314 1315 csum = 0; 1316 for (i = 0; i < ATA_SECT_SIZE; i++) 1317 csum += buf[i]; 1318 if (csum) 1319 ata_dev_warn(dev, "invalid checksum 0x%x on log page 10h\n", 1320 csum); 1321 1322 if (buf[0] & 0x80) 1323 return -ENOENT; 1324 1325 *tag = buf[0] & 0x1f; 1326 1327 tf->status = buf[2]; 1328 tf->error = buf[3]; 1329 tf->lbal = buf[4]; 1330 tf->lbam = buf[5]; 1331 tf->lbah = buf[6]; 1332 tf->device = buf[7]; 1333 tf->hob_lbal = buf[8]; 1334 tf->hob_lbam = buf[9]; 1335 tf->hob_lbah = buf[10]; 1336 tf->nsect = buf[12]; 1337 tf->hob_nsect = buf[13]; 1338 if (ata_id_has_ncq_autosense(dev->id) && (tf->status & ATA_SENSE)) 1339 tf->auxiliary = buf[14] << 16 | buf[15] << 8 | buf[16]; 1340 1341 return 0; 1342 } 1343 1344 /** 1345 * ata_eh_read_sense_success_ncq_log - Read the sense data for successful 1346 * NCQ commands log 1347 * @link: ATA link to get sense data for 1348 * 1349 * Read the sense data for successful NCQ commands log page to obtain 1350 * sense data for all NCQ commands that completed successfully with 1351 * the sense data available bit set. 1352 * 1353 * LOCKING: 1354 * Kernel thread context (may sleep). 1355 * 1356 * RETURNS: 1357 * 0 on success, -errno otherwise. 1358 */ 1359 int ata_eh_read_sense_success_ncq_log(struct ata_link *link) 1360 { 1361 struct ata_device *dev = link->device; 1362 struct ata_port *ap = dev->link->ap; 1363 u8 *buf = ap->ncq_sense_buf; 1364 struct ata_queued_cmd *qc; 1365 unsigned int err_mask, tag; 1366 u8 *sense, sk = 0, asc = 0, ascq = 0; 1367 u64 sense_valid, val; 1368 int ret = 0; 1369 1370 err_mask = ata_read_log_page(dev, ATA_LOG_SENSE_NCQ, 0, buf, 2); 1371 if (err_mask) { 1372 ata_dev_err(dev, 1373 "Failed to read Sense Data for Successful NCQ Commands log\n"); 1374 return -EIO; 1375 } 1376 1377 /* Check the log header */ 1378 val = get_unaligned_le64(&buf[0]); 1379 if ((val & 0xffff) != 1 || ((val >> 16) & 0xff) != 0x0f) { 1380 ata_dev_err(dev, 1381 "Invalid Sense Data for Successful NCQ Commands log\n"); 1382 return -EIO; 1383 } 1384 1385 sense_valid = (u64)buf[8] | ((u64)buf[9] << 8) | 1386 ((u64)buf[10] << 16) | ((u64)buf[11] << 24); 1387 1388 ata_qc_for_each_raw(ap, qc, tag) { 1389 if (!(qc->flags & ATA_QCFLAG_EH) || 1390 !(qc->flags & ATA_QCFLAG_EH_SUCCESS_CMD) || 1391 qc->err_mask || 1392 ata_dev_phys_link(qc->dev) != link) 1393 continue; 1394 1395 /* 1396 * If the command does not have any sense data, clear ATA_SENSE. 1397 * Keep ATA_QCFLAG_EH_SUCCESS_CMD so that command is finished. 1398 */ 1399 if (!(sense_valid & (1ULL << tag))) { 1400 qc->result_tf.status &= ~ATA_SENSE; 1401 continue; 1402 } 1403 1404 sense = &buf[32 + 24 * tag]; 1405 sk = sense[0]; 1406 asc = sense[1]; 1407 ascq = sense[2]; 1408 1409 if (!ata_scsi_sense_is_valid(sk, asc, ascq)) { 1410 ret = -EIO; 1411 continue; 1412 } 1413 1414 /* Set sense without also setting scsicmd->result */ 1415 scsi_build_sense_buffer(dev->flags & ATA_DFLAG_D_SENSE, 1416 qc->scsicmd->sense_buffer, sk, 1417 asc, ascq); 1418 qc->flags |= ATA_QCFLAG_SENSE_VALID; 1419 1420 /* 1421 * If we have sense data, call scsi_check_sense() in order to 1422 * set the correct SCSI ML byte (if any). No point in checking 1423 * the return value, since the command has already completed 1424 * successfully. 1425 */ 1426 scsi_check_sense(qc->scsicmd); 1427 } 1428 1429 return ret; 1430 } 1431 EXPORT_SYMBOL_GPL(ata_eh_read_sense_success_ncq_log); 1432 1433 /** 1434 * ata_eh_analyze_ncq_error - analyze NCQ error 1435 * @link: ATA link to analyze NCQ error for 1436 * 1437 * Read log page 10h, determine the offending qc and acquire 1438 * error status TF. For NCQ device errors, all LLDDs have to do 1439 * is setting AC_ERR_DEV in ehi->err_mask. This function takes 1440 * care of the rest. 1441 * 1442 * LOCKING: 1443 * Kernel thread context (may sleep). 1444 */ 1445 void ata_eh_analyze_ncq_error(struct ata_link *link) 1446 { 1447 struct ata_port *ap = link->ap; 1448 struct ata_eh_context *ehc = &link->eh_context; 1449 struct ata_device *dev = link->device; 1450 struct ata_queued_cmd *qc; 1451 struct ata_taskfile tf; 1452 int tag, rc; 1453 1454 /* if frozen, we can't do much */ 1455 if (ata_port_is_frozen(ap)) 1456 return; 1457 1458 /* is it NCQ device error? */ 1459 if (!link->sactive || !(ehc->i.err_mask & AC_ERR_DEV)) 1460 return; 1461 1462 /* has LLDD analyzed already? */ 1463 ata_qc_for_each_raw(ap, qc, tag) { 1464 if (!(qc->flags & ATA_QCFLAG_EH)) 1465 continue; 1466 1467 if (qc->err_mask) 1468 return; 1469 } 1470 1471 /* okay, this error is ours */ 1472 memset(&tf, 0, sizeof(tf)); 1473 rc = ata_eh_read_log_10h(dev, &tag, &tf); 1474 if (rc) { 1475 ata_link_err(link, "failed to read log page 10h (errno=%d)\n", 1476 rc); 1477 return; 1478 } 1479 1480 if (!(link->sactive & (1 << tag))) { 1481 ata_link_err(link, "log page 10h reported inactive tag %d\n", 1482 tag); 1483 return; 1484 } 1485 1486 /* we've got the perpetrator, condemn it */ 1487 qc = __ata_qc_from_tag(ap, tag); 1488 memcpy(&qc->result_tf, &tf, sizeof(tf)); 1489 qc->result_tf.flags = ATA_TFLAG_ISADDR | ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 1490 qc->err_mask |= AC_ERR_DEV | AC_ERR_NCQ; 1491 1492 /* 1493 * If the device supports NCQ autosense, ata_eh_read_log_10h() will have 1494 * stored the sense data in qc->result_tf.auxiliary. 1495 */ 1496 if (qc->result_tf.auxiliary) { 1497 char sense_key, asc, ascq; 1498 1499 sense_key = (qc->result_tf.auxiliary >> 16) & 0xff; 1500 asc = (qc->result_tf.auxiliary >> 8) & 0xff; 1501 ascq = qc->result_tf.auxiliary & 0xff; 1502 if (ata_scsi_sense_is_valid(sense_key, asc, ascq)) { 1503 ata_scsi_set_sense(dev, qc->scsicmd, sense_key, asc, 1504 ascq); 1505 ata_scsi_set_sense_information(dev, qc->scsicmd, 1506 &qc->result_tf); 1507 qc->flags |= ATA_QCFLAG_SENSE_VALID; 1508 } 1509 } 1510 1511 ata_qc_for_each_raw(ap, qc, tag) { 1512 if (!(qc->flags & ATA_QCFLAG_EH) || 1513 qc->flags & ATA_QCFLAG_EH_SUCCESS_CMD || 1514 ata_dev_phys_link(qc->dev) != link) 1515 continue; 1516 1517 /* Skip the single QC which caused the NCQ error. */ 1518 if (qc->err_mask) 1519 continue; 1520 1521 /* 1522 * For SATA, the STATUS and ERROR fields are shared for all NCQ 1523 * commands that were completed with the same SDB FIS. 1524 * Therefore, we have to clear the ATA_ERR bit for all QCs 1525 * except the one that caused the NCQ error. 1526 */ 1527 qc->result_tf.status &= ~ATA_ERR; 1528 qc->result_tf.error = 0; 1529 1530 /* 1531 * If we get a NCQ error, that means that a single command was 1532 * aborted. All other failed commands for our link should be 1533 * retried and has no business of going though further scrutiny 1534 * by ata_eh_link_autopsy(). 1535 */ 1536 qc->flags |= ATA_QCFLAG_RETRY; 1537 } 1538 1539 ehc->i.err_mask &= ~AC_ERR_DEV; 1540 } 1541 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 1542