xref: /openbmc/linux/drivers/ata/libata-pata-timings.c (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Helper library for PATA timings
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/libata.h>
12 
13 /*
14  * This mode timing computation functionality is ported over from
15  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
16  */
17 /*
18  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
19  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
20  * for UDMA6, which is currently supported only by Maxtor drives.
21  *
22  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
23  */
24 
25 static const struct ata_timing ata_timing[] = {
26 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
27 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
28 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
29 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
30 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
31 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
32 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
33 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
34 
35 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
36 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
37 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
38 
39 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
40 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
41 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
42 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
43 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
44 
45 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
46 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
47 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
48 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
49 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
50 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
51 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
52 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
53 
54 	{ 0xFF }
55 };
56 
57 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
58 #define EZ(v, unit)		((v)?ENOUGH(((v) * 1000), unit):0)
59 
60 static void ata_timing_quantize(const struct ata_timing *t,
61 				struct ata_timing *q, int T, int UT)
62 {
63 	q->setup	= EZ(t->setup,       T);
64 	q->act8b	= EZ(t->act8b,       T);
65 	q->rec8b	= EZ(t->rec8b,       T);
66 	q->cyc8b	= EZ(t->cyc8b,       T);
67 	q->active	= EZ(t->active,      T);
68 	q->recover	= EZ(t->recover,     T);
69 	q->dmack_hold	= EZ(t->dmack_hold,  T);
70 	q->cycle	= EZ(t->cycle,       T);
71 	q->udma		= EZ(t->udma,       UT);
72 }
73 
74 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
75 		      struct ata_timing *m, unsigned int what)
76 {
77 	if (what & ATA_TIMING_SETUP)
78 		m->setup = max(a->setup, b->setup);
79 	if (what & ATA_TIMING_ACT8B)
80 		m->act8b = max(a->act8b, b->act8b);
81 	if (what & ATA_TIMING_REC8B)
82 		m->rec8b = max(a->rec8b, b->rec8b);
83 	if (what & ATA_TIMING_CYC8B)
84 		m->cyc8b = max(a->cyc8b, b->cyc8b);
85 	if (what & ATA_TIMING_ACTIVE)
86 		m->active = max(a->active, b->active);
87 	if (what & ATA_TIMING_RECOVER)
88 		m->recover = max(a->recover, b->recover);
89 	if (what & ATA_TIMING_DMACK_HOLD)
90 		m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
91 	if (what & ATA_TIMING_CYCLE)
92 		m->cycle = max(a->cycle, b->cycle);
93 	if (what & ATA_TIMING_UDMA)
94 		m->udma = max(a->udma, b->udma);
95 }
96 EXPORT_SYMBOL_GPL(ata_timing_merge);
97 
98 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
99 {
100 	const struct ata_timing *t = ata_timing;
101 
102 	while (xfer_mode > t->mode)
103 		t++;
104 
105 	if (xfer_mode == t->mode)
106 		return t;
107 
108 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
109 			__func__, xfer_mode);
110 
111 	return NULL;
112 }
113 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
114 
115 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
116 		       struct ata_timing *t, int T, int UT)
117 {
118 	const u16 *id = adev->id;
119 	const struct ata_timing *s;
120 	struct ata_timing p;
121 
122 	/*
123 	 * Find the mode.
124 	 */
125 	s = ata_timing_find_mode(speed);
126 	if (!s)
127 		return -EINVAL;
128 
129 	memcpy(t, s, sizeof(*s));
130 
131 	/*
132 	 * If the drive is an EIDE drive, it can tell us it needs extended
133 	 * PIO/MW_DMA cycle timing.
134 	 */
135 
136 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
137 		memset(&p, 0, sizeof(p));
138 
139 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
140 			if (speed <= XFER_PIO_2)
141 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
142 			else if ((speed <= XFER_PIO_4) ||
143 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
144 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
145 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
146 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
147 
148 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
149 	}
150 
151 	/*
152 	 * Convert the timing to bus clock counts.
153 	 */
154 
155 	ata_timing_quantize(t, t, T, UT);
156 
157 	/*
158 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
159 	 * S.M.A.R.T * and some other commands. We have to ensure that the
160 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
161 	 */
162 
163 	if (speed > XFER_PIO_6) {
164 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
165 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
166 	}
167 
168 	/*
169 	 * Lengthen active & recovery time so that cycle time is correct.
170 	 */
171 
172 	if (t->act8b + t->rec8b < t->cyc8b) {
173 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
174 		t->rec8b = t->cyc8b - t->act8b;
175 	}
176 
177 	if (t->active + t->recover < t->cycle) {
178 		t->active += (t->cycle - (t->active + t->recover)) / 2;
179 		t->recover = t->cycle - t->active;
180 	}
181 
182 	/*
183 	 * In a few cases quantisation may produce enough errors to
184 	 * leave t->cycle too low for the sum of active and recovery
185 	 * if so we must correct this.
186 	 */
187 	if (t->active + t->recover > t->cycle)
188 		t->cycle = t->active + t->recover;
189 
190 	return 0;
191 }
192 EXPORT_SYMBOL_GPL(ata_timing_compute);
193