1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Helper library for PATA timings 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/libata.h> 12 13 /* 14 * This mode timing computation functionality is ported over from 15 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 16 */ 17 /* 18 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 19 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 20 * for UDMA6, which is currently supported only by Maxtor drives. 21 * 22 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 23 */ 24 25 static const struct ata_timing ata_timing[] = { 26 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 27 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 28 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 29 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 30 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 31 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 32 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 33 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 34 35 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 36 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 37 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 38 39 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 40 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 41 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 42 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 43 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 44 45 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 46 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 47 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 48 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 49 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 50 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 51 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 52 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 53 54 { 0xFF } 55 }; 56 57 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 58 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0) 59 60 static void ata_timing_quantize(const struct ata_timing *t, 61 struct ata_timing *q, int T, int UT) 62 { 63 q->setup = EZ(t->setup, T); 64 q->act8b = EZ(t->act8b, T); 65 q->rec8b = EZ(t->rec8b, T); 66 q->cyc8b = EZ(t->cyc8b, T); 67 q->active = EZ(t->active, T); 68 q->recover = EZ(t->recover, T); 69 q->dmack_hold = EZ(t->dmack_hold, T); 70 q->cycle = EZ(t->cycle, T); 71 q->udma = EZ(t->udma, UT); 72 } 73 74 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 75 struct ata_timing *m, unsigned int what) 76 { 77 if (what & ATA_TIMING_SETUP) 78 m->setup = max(a->setup, b->setup); 79 if (what & ATA_TIMING_ACT8B) 80 m->act8b = max(a->act8b, b->act8b); 81 if (what & ATA_TIMING_REC8B) 82 m->rec8b = max(a->rec8b, b->rec8b); 83 if (what & ATA_TIMING_CYC8B) 84 m->cyc8b = max(a->cyc8b, b->cyc8b); 85 if (what & ATA_TIMING_ACTIVE) 86 m->active = max(a->active, b->active); 87 if (what & ATA_TIMING_RECOVER) 88 m->recover = max(a->recover, b->recover); 89 if (what & ATA_TIMING_DMACK_HOLD) 90 m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 91 if (what & ATA_TIMING_CYCLE) 92 m->cycle = max(a->cycle, b->cycle); 93 if (what & ATA_TIMING_UDMA) 94 m->udma = max(a->udma, b->udma); 95 } 96 EXPORT_SYMBOL_GPL(ata_timing_merge); 97 98 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 99 { 100 const struct ata_timing *t = ata_timing; 101 102 while (xfer_mode > t->mode) 103 t++; 104 105 if (xfer_mode == t->mode) 106 return t; 107 108 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 109 __func__, xfer_mode); 110 111 return NULL; 112 } 113 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 114 115 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 116 struct ata_timing *t, int T, int UT) 117 { 118 const u16 *id = adev->id; 119 const struct ata_timing *s; 120 struct ata_timing p; 121 122 /* 123 * Find the mode. 124 */ 125 s = ata_timing_find_mode(speed); 126 if (!s) 127 return -EINVAL; 128 129 memcpy(t, s, sizeof(*s)); 130 131 /* 132 * If the drive is an EIDE drive, it can tell us it needs extended 133 * PIO/MW_DMA cycle timing. 134 */ 135 136 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 137 memset(&p, 0, sizeof(p)); 138 139 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 140 if (speed <= XFER_PIO_2) 141 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 142 else if ((speed <= XFER_PIO_4) || 143 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 144 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 145 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 146 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 147 148 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 149 } 150 151 /* 152 * Convert the timing to bus clock counts. 153 */ 154 155 ata_timing_quantize(t, t, T, UT); 156 157 /* 158 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 159 * S.M.A.R.T * and some other commands. We have to ensure that the 160 * DMA cycle timing is slower/equal than the fastest PIO timing. 161 */ 162 163 if (speed > XFER_PIO_6) { 164 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 165 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 166 } 167 168 /* 169 * Lengthen active & recovery time so that cycle time is correct. 170 */ 171 172 if (t->act8b + t->rec8b < t->cyc8b) { 173 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 174 t->rec8b = t->cyc8b - t->act8b; 175 } 176 177 if (t->active + t->recover < t->cycle) { 178 t->active += (t->cycle - (t->active + t->recover)) / 2; 179 t->recover = t->cycle - t->active; 180 } 181 182 /* 183 * In a few cases quantisation may produce enough errors to 184 * leave t->cycle too low for the sum of active and recovery 185 * if so we must correct this. 186 */ 187 if (t->active + t->recover > t->cycle) 188 t->cycle = t->active + t->recover; 189 190 return 0; 191 } 192 EXPORT_SYMBOL_GPL(ata_timing_compute); 193