xref: /openbmc/linux/drivers/ata/libata-core.c (revision fe4d0d5d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned long	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags;
100 };
101 
102 struct ata_force_ent {
103 	int			port;
104 	int			device;
105 	struct ata_force_param	param;
106 };
107 
108 static struct ata_force_ent *ata_force_tbl;
109 static int ata_force_tbl_size;
110 
111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112 /* param_buf is thrown away after initialization, disallow read */
113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115 #endif
116 
117 static int atapi_enabled = 1;
118 module_param(atapi_enabled, int, 0444);
119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120 
121 static int atapi_dmadir = 0;
122 module_param(atapi_dmadir, int, 0444);
123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124 
125 int atapi_passthru16 = 1;
126 module_param(atapi_passthru16, int, 0444);
127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128 
129 int libata_fua = 0;
130 module_param_named(fua, libata_fua, int, 0444);
131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132 
133 static int ata_ignore_hpa;
134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136 
137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138 module_param_named(dma, libata_dma_mask, int, 0444);
139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140 
141 static int ata_probe_timeout;
142 module_param(ata_probe_timeout, int, 0444);
143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144 
145 int libata_noacpi = 0;
146 module_param_named(noacpi, libata_noacpi, int, 0444);
147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148 
149 int libata_allow_tpm = 0;
150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152 
153 static int atapi_an;
154 module_param(atapi_an, int, 0444);
155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156 
157 MODULE_AUTHOR("Jeff Garzik");
158 MODULE_DESCRIPTION("Library module for ATA devices");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION);
161 
162 static inline bool ata_dev_print_info(struct ata_device *dev)
163 {
164 	struct ata_eh_context *ehc = &dev->link->eh_context;
165 
166 	return ehc->i.flags & ATA_EHI_PRINTINFO;
167 }
168 
169 static bool ata_sstatus_online(u32 sstatus)
170 {
171 	return (sstatus & 0xf) == 0x3;
172 }
173 
174 /**
175  *	ata_link_next - link iteration helper
176  *	@link: the previous link, NULL to start
177  *	@ap: ATA port containing links to iterate
178  *	@mode: iteration mode, one of ATA_LITER_*
179  *
180  *	LOCKING:
181  *	Host lock or EH context.
182  *
183  *	RETURNS:
184  *	Pointer to the next link.
185  */
186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 			       enum ata_link_iter_mode mode)
188 {
189 	BUG_ON(mode != ATA_LITER_EDGE &&
190 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191 
192 	/* NULL link indicates start of iteration */
193 	if (!link)
194 		switch (mode) {
195 		case ATA_LITER_EDGE:
196 		case ATA_LITER_PMP_FIRST:
197 			if (sata_pmp_attached(ap))
198 				return ap->pmp_link;
199 			fallthrough;
200 		case ATA_LITER_HOST_FIRST:
201 			return &ap->link;
202 		}
203 
204 	/* we just iterated over the host link, what's next? */
205 	if (link == &ap->link)
206 		switch (mode) {
207 		case ATA_LITER_HOST_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			fallthrough;
211 		case ATA_LITER_PMP_FIRST:
212 			if (unlikely(ap->slave_link))
213 				return ap->slave_link;
214 			fallthrough;
215 		case ATA_LITER_EDGE:
216 			return NULL;
217 		}
218 
219 	/* slave_link excludes PMP */
220 	if (unlikely(link == ap->slave_link))
221 		return NULL;
222 
223 	/* we were over a PMP link */
224 	if (++link < ap->pmp_link + ap->nr_pmp_links)
225 		return link;
226 
227 	if (mode == ATA_LITER_PMP_FIRST)
228 		return &ap->link;
229 
230 	return NULL;
231 }
232 EXPORT_SYMBOL_GPL(ata_link_next);
233 
234 /**
235  *	ata_dev_next - device iteration helper
236  *	@dev: the previous device, NULL to start
237  *	@link: ATA link containing devices to iterate
238  *	@mode: iteration mode, one of ATA_DITER_*
239  *
240  *	LOCKING:
241  *	Host lock or EH context.
242  *
243  *	RETURNS:
244  *	Pointer to the next device.
245  */
246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 				enum ata_dev_iter_mode mode)
248 {
249 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251 
252 	/* NULL dev indicates start of iteration */
253 	if (!dev)
254 		switch (mode) {
255 		case ATA_DITER_ENABLED:
256 		case ATA_DITER_ALL:
257 			dev = link->device;
258 			goto check;
259 		case ATA_DITER_ENABLED_REVERSE:
260 		case ATA_DITER_ALL_REVERSE:
261 			dev = link->device + ata_link_max_devices(link) - 1;
262 			goto check;
263 		}
264 
265  next:
266 	/* move to the next one */
267 	switch (mode) {
268 	case ATA_DITER_ENABLED:
269 	case ATA_DITER_ALL:
270 		if (++dev < link->device + ata_link_max_devices(link))
271 			goto check;
272 		return NULL;
273 	case ATA_DITER_ENABLED_REVERSE:
274 	case ATA_DITER_ALL_REVERSE:
275 		if (--dev >= link->device)
276 			goto check;
277 		return NULL;
278 	}
279 
280  check:
281 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 	    !ata_dev_enabled(dev))
283 		goto next;
284 	return dev;
285 }
286 EXPORT_SYMBOL_GPL(ata_dev_next);
287 
288 /**
289  *	ata_dev_phys_link - find physical link for a device
290  *	@dev: ATA device to look up physical link for
291  *
292  *	Look up physical link which @dev is attached to.  Note that
293  *	this is different from @dev->link only when @dev is on slave
294  *	link.  For all other cases, it's the same as @dev->link.
295  *
296  *	LOCKING:
297  *	Don't care.
298  *
299  *	RETURNS:
300  *	Pointer to the found physical link.
301  */
302 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
303 {
304 	struct ata_port *ap = dev->link->ap;
305 
306 	if (!ap->slave_link)
307 		return dev->link;
308 	if (!dev->devno)
309 		return &ap->link;
310 	return ap->slave_link;
311 }
312 
313 #ifdef CONFIG_ATA_FORCE
314 /**
315  *	ata_force_cbl - force cable type according to libata.force
316  *	@ap: ATA port of interest
317  *
318  *	Force cable type according to libata.force and whine about it.
319  *	The last entry which has matching port number is used, so it
320  *	can be specified as part of device force parameters.  For
321  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322  *	same effect.
323  *
324  *	LOCKING:
325  *	EH context.
326  */
327 void ata_force_cbl(struct ata_port *ap)
328 {
329 	int i;
330 
331 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 		const struct ata_force_ent *fe = &ata_force_tbl[i];
333 
334 		if (fe->port != -1 && fe->port != ap->print_id)
335 			continue;
336 
337 		if (fe->param.cbl == ATA_CBL_NONE)
338 			continue;
339 
340 		ap->cbl = fe->param.cbl;
341 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
342 		return;
343 	}
344 }
345 
346 /**
347  *	ata_force_link_limits - force link limits according to libata.force
348  *	@link: ATA link of interest
349  *
350  *	Force link flags and SATA spd limit according to libata.force
351  *	and whine about it.  When only the port part is specified
352  *	(e.g. 1:), the limit applies to all links connected to both
353  *	the host link and all fan-out ports connected via PMP.  If the
354  *	device part is specified as 0 (e.g. 1.00:), it specifies the
355  *	first fan-out link not the host link.  Device number 15 always
356  *	points to the host link whether PMP is attached or not.  If the
357  *	controller has slave link, device number 16 points to it.
358  *
359  *	LOCKING:
360  *	EH context.
361  */
362 static void ata_force_link_limits(struct ata_link *link)
363 {
364 	bool did_spd = false;
365 	int linkno = link->pmp;
366 	int i;
367 
368 	if (ata_is_host_link(link))
369 		linkno += 15;
370 
371 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 		const struct ata_force_ent *fe = &ata_force_tbl[i];
373 
374 		if (fe->port != -1 && fe->port != link->ap->print_id)
375 			continue;
376 
377 		if (fe->device != -1 && fe->device != linkno)
378 			continue;
379 
380 		/* only honor the first spd limit */
381 		if (!did_spd && fe->param.spd_limit) {
382 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
384 					fe->param.name);
385 			did_spd = true;
386 		}
387 
388 		/* let lflags stack */
389 		if (fe->param.lflags) {
390 			link->flags |= fe->param.lflags;
391 			ata_link_notice(link,
392 					"FORCE: link flag 0x%x forced -> 0x%x\n",
393 					fe->param.lflags, link->flags);
394 		}
395 	}
396 }
397 
398 /**
399  *	ata_force_xfermask - force xfermask according to libata.force
400  *	@dev: ATA device of interest
401  *
402  *	Force xfer_mask according to libata.force and whine about it.
403  *	For consistency with link selection, device number 15 selects
404  *	the first device connected to the host link.
405  *
406  *	LOCKING:
407  *	EH context.
408  */
409 static void ata_force_xfermask(struct ata_device *dev)
410 {
411 	int devno = dev->link->pmp + dev->devno;
412 	int alt_devno = devno;
413 	int i;
414 
415 	/* allow n.15/16 for devices attached to host port */
416 	if (ata_is_host_link(dev->link))
417 		alt_devno += 15;
418 
419 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 		const struct ata_force_ent *fe = &ata_force_tbl[i];
421 		unsigned long pio_mask, mwdma_mask, udma_mask;
422 
423 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 			continue;
425 
426 		if (fe->device != -1 && fe->device != devno &&
427 		    fe->device != alt_devno)
428 			continue;
429 
430 		if (!fe->param.xfer_mask)
431 			continue;
432 
433 		ata_unpack_xfermask(fe->param.xfer_mask,
434 				    &pio_mask, &mwdma_mask, &udma_mask);
435 		if (udma_mask)
436 			dev->udma_mask = udma_mask;
437 		else if (mwdma_mask) {
438 			dev->udma_mask = 0;
439 			dev->mwdma_mask = mwdma_mask;
440 		} else {
441 			dev->udma_mask = 0;
442 			dev->mwdma_mask = 0;
443 			dev->pio_mask = pio_mask;
444 		}
445 
446 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
447 			       fe->param.name);
448 		return;
449 	}
450 }
451 
452 /**
453  *	ata_force_horkage - force horkage according to libata.force
454  *	@dev: ATA device of interest
455  *
456  *	Force horkage according to libata.force and whine about it.
457  *	For consistency with link selection, device number 15 selects
458  *	the first device connected to the host link.
459  *
460  *	LOCKING:
461  *	EH context.
462  */
463 static void ata_force_horkage(struct ata_device *dev)
464 {
465 	int devno = dev->link->pmp + dev->devno;
466 	int alt_devno = devno;
467 	int i;
468 
469 	/* allow n.15/16 for devices attached to host port */
470 	if (ata_is_host_link(dev->link))
471 		alt_devno += 15;
472 
473 	for (i = 0; i < ata_force_tbl_size; i++) {
474 		const struct ata_force_ent *fe = &ata_force_tbl[i];
475 
476 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 			continue;
478 
479 		if (fe->device != -1 && fe->device != devno &&
480 		    fe->device != alt_devno)
481 			continue;
482 
483 		if (!(~dev->horkage & fe->param.horkage_on) &&
484 		    !(dev->horkage & fe->param.horkage_off))
485 			continue;
486 
487 		dev->horkage |= fe->param.horkage_on;
488 		dev->horkage &= ~fe->param.horkage_off;
489 
490 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
491 			       fe->param.name);
492 	}
493 }
494 #else
495 static inline void ata_force_link_limits(struct ata_link *link) { }
496 static inline void ata_force_xfermask(struct ata_device *dev) { }
497 static inline void ata_force_horkage(struct ata_device *dev) { }
498 #endif
499 
500 /**
501  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502  *	@opcode: SCSI opcode
503  *
504  *	Determine ATAPI command type from @opcode.
505  *
506  *	LOCKING:
507  *	None.
508  *
509  *	RETURNS:
510  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
511  */
512 int atapi_cmd_type(u8 opcode)
513 {
514 	switch (opcode) {
515 	case GPCMD_READ_10:
516 	case GPCMD_READ_12:
517 		return ATAPI_READ;
518 
519 	case GPCMD_WRITE_10:
520 	case GPCMD_WRITE_12:
521 	case GPCMD_WRITE_AND_VERIFY_10:
522 		return ATAPI_WRITE;
523 
524 	case GPCMD_READ_CD:
525 	case GPCMD_READ_CD_MSF:
526 		return ATAPI_READ_CD;
527 
528 	case ATA_16:
529 	case ATA_12:
530 		if (atapi_passthru16)
531 			return ATAPI_PASS_THRU;
532 		fallthrough;
533 	default:
534 		return ATAPI_MISC;
535 	}
536 }
537 EXPORT_SYMBOL_GPL(atapi_cmd_type);
538 
539 static const u8 ata_rw_cmds[] = {
540 	/* pio multi */
541 	ATA_CMD_READ_MULTI,
542 	ATA_CMD_WRITE_MULTI,
543 	ATA_CMD_READ_MULTI_EXT,
544 	ATA_CMD_WRITE_MULTI_EXT,
545 	0,
546 	0,
547 	0,
548 	ATA_CMD_WRITE_MULTI_FUA_EXT,
549 	/* pio */
550 	ATA_CMD_PIO_READ,
551 	ATA_CMD_PIO_WRITE,
552 	ATA_CMD_PIO_READ_EXT,
553 	ATA_CMD_PIO_WRITE_EXT,
554 	0,
555 	0,
556 	0,
557 	0,
558 	/* dma */
559 	ATA_CMD_READ,
560 	ATA_CMD_WRITE,
561 	ATA_CMD_READ_EXT,
562 	ATA_CMD_WRITE_EXT,
563 	0,
564 	0,
565 	0,
566 	ATA_CMD_WRITE_FUA_EXT
567 };
568 
569 /**
570  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
571  *	@tf: command to examine and configure
572  *	@dev: device tf belongs to
573  *
574  *	Examine the device configuration and tf->flags to calculate
575  *	the proper read/write commands and protocol to use.
576  *
577  *	LOCKING:
578  *	caller.
579  */
580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
581 {
582 	u8 cmd;
583 
584 	int index, fua, lba48, write;
585 
586 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
587 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
588 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
589 
590 	if (dev->flags & ATA_DFLAG_PIO) {
591 		tf->protocol = ATA_PROT_PIO;
592 		index = dev->multi_count ? 0 : 8;
593 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
594 		/* Unable to use DMA due to host limitation */
595 		tf->protocol = ATA_PROT_PIO;
596 		index = dev->multi_count ? 0 : 8;
597 	} else {
598 		tf->protocol = ATA_PROT_DMA;
599 		index = 16;
600 	}
601 
602 	cmd = ata_rw_cmds[index + fua + lba48 + write];
603 	if (cmd) {
604 		tf->command = cmd;
605 		return 0;
606 	}
607 	return -1;
608 }
609 
610 /**
611  *	ata_tf_read_block - Read block address from ATA taskfile
612  *	@tf: ATA taskfile of interest
613  *	@dev: ATA device @tf belongs to
614  *
615  *	LOCKING:
616  *	None.
617  *
618  *	Read block address from @tf.  This function can handle all
619  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
620  *	flags select the address format to use.
621  *
622  *	RETURNS:
623  *	Block address read from @tf.
624  */
625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
626 {
627 	u64 block = 0;
628 
629 	if (tf->flags & ATA_TFLAG_LBA) {
630 		if (tf->flags & ATA_TFLAG_LBA48) {
631 			block |= (u64)tf->hob_lbah << 40;
632 			block |= (u64)tf->hob_lbam << 32;
633 			block |= (u64)tf->hob_lbal << 24;
634 		} else
635 			block |= (tf->device & 0xf) << 24;
636 
637 		block |= tf->lbah << 16;
638 		block |= tf->lbam << 8;
639 		block |= tf->lbal;
640 	} else {
641 		u32 cyl, head, sect;
642 
643 		cyl = tf->lbam | (tf->lbah << 8);
644 		head = tf->device & 0xf;
645 		sect = tf->lbal;
646 
647 		if (!sect) {
648 			ata_dev_warn(dev,
649 				     "device reported invalid CHS sector 0\n");
650 			return U64_MAX;
651 		}
652 
653 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
654 	}
655 
656 	return block;
657 }
658 
659 /**
660  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
661  *	@tf: Target ATA taskfile
662  *	@dev: ATA device @tf belongs to
663  *	@block: Block address
664  *	@n_block: Number of blocks
665  *	@tf_flags: RW/FUA etc...
666  *	@tag: tag
667  *	@class: IO priority class
668  *
669  *	LOCKING:
670  *	None.
671  *
672  *	Build ATA taskfile @tf for read/write request described by
673  *	@block, @n_block, @tf_flags and @tag on @dev.
674  *
675  *	RETURNS:
676  *
677  *	0 on success, -ERANGE if the request is too large for @dev,
678  *	-EINVAL if the request is invalid.
679  */
680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
681 		    u64 block, u32 n_block, unsigned int tf_flags,
682 		    unsigned int tag, int class)
683 {
684 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
685 	tf->flags |= tf_flags;
686 
687 	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
688 		/* yay, NCQ */
689 		if (!lba_48_ok(block, n_block))
690 			return -ERANGE;
691 
692 		tf->protocol = ATA_PROT_NCQ;
693 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
694 
695 		if (tf->flags & ATA_TFLAG_WRITE)
696 			tf->command = ATA_CMD_FPDMA_WRITE;
697 		else
698 			tf->command = ATA_CMD_FPDMA_READ;
699 
700 		tf->nsect = tag << 3;
701 		tf->hob_feature = (n_block >> 8) & 0xff;
702 		tf->feature = n_block & 0xff;
703 
704 		tf->hob_lbah = (block >> 40) & 0xff;
705 		tf->hob_lbam = (block >> 32) & 0xff;
706 		tf->hob_lbal = (block >> 24) & 0xff;
707 		tf->lbah = (block >> 16) & 0xff;
708 		tf->lbam = (block >> 8) & 0xff;
709 		tf->lbal = block & 0xff;
710 
711 		tf->device = ATA_LBA;
712 		if (tf->flags & ATA_TFLAG_FUA)
713 			tf->device |= 1 << 7;
714 
715 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE &&
716 		    class == IOPRIO_CLASS_RT)
717 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
718 	} else if (dev->flags & ATA_DFLAG_LBA) {
719 		tf->flags |= ATA_TFLAG_LBA;
720 
721 		if (lba_28_ok(block, n_block)) {
722 			/* use LBA28 */
723 			tf->device |= (block >> 24) & 0xf;
724 		} else if (lba_48_ok(block, n_block)) {
725 			if (!(dev->flags & ATA_DFLAG_LBA48))
726 				return -ERANGE;
727 
728 			/* use LBA48 */
729 			tf->flags |= ATA_TFLAG_LBA48;
730 
731 			tf->hob_nsect = (n_block >> 8) & 0xff;
732 
733 			tf->hob_lbah = (block >> 40) & 0xff;
734 			tf->hob_lbam = (block >> 32) & 0xff;
735 			tf->hob_lbal = (block >> 24) & 0xff;
736 		} else
737 			/* request too large even for LBA48 */
738 			return -ERANGE;
739 
740 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
741 			return -EINVAL;
742 
743 		tf->nsect = n_block & 0xff;
744 
745 		tf->lbah = (block >> 16) & 0xff;
746 		tf->lbam = (block >> 8) & 0xff;
747 		tf->lbal = block & 0xff;
748 
749 		tf->device |= ATA_LBA;
750 	} else {
751 		/* CHS */
752 		u32 sect, head, cyl, track;
753 
754 		/* The request -may- be too large for CHS addressing. */
755 		if (!lba_28_ok(block, n_block))
756 			return -ERANGE;
757 
758 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
759 			return -EINVAL;
760 
761 		/* Convert LBA to CHS */
762 		track = (u32)block / dev->sectors;
763 		cyl   = track / dev->heads;
764 		head  = track % dev->heads;
765 		sect  = (u32)block % dev->sectors + 1;
766 
767 		/* Check whether the converted CHS can fit.
768 		   Cylinder: 0-65535
769 		   Head: 0-15
770 		   Sector: 1-255*/
771 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
772 			return -ERANGE;
773 
774 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
775 		tf->lbal = sect;
776 		tf->lbam = cyl;
777 		tf->lbah = cyl >> 8;
778 		tf->device |= head;
779 	}
780 
781 	return 0;
782 }
783 
784 /**
785  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
786  *	@pio_mask: pio_mask
787  *	@mwdma_mask: mwdma_mask
788  *	@udma_mask: udma_mask
789  *
790  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
791  *	unsigned int xfer_mask.
792  *
793  *	LOCKING:
794  *	None.
795  *
796  *	RETURNS:
797  *	Packed xfer_mask.
798  */
799 unsigned long ata_pack_xfermask(unsigned long pio_mask,
800 				unsigned long mwdma_mask,
801 				unsigned long udma_mask)
802 {
803 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
804 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
805 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
806 }
807 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
808 
809 /**
810  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
811  *	@xfer_mask: xfer_mask to unpack
812  *	@pio_mask: resulting pio_mask
813  *	@mwdma_mask: resulting mwdma_mask
814  *	@udma_mask: resulting udma_mask
815  *
816  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
817  *	Any NULL destination masks will be ignored.
818  */
819 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
820 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
821 {
822 	if (pio_mask)
823 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
824 	if (mwdma_mask)
825 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
826 	if (udma_mask)
827 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
828 }
829 
830 static const struct ata_xfer_ent {
831 	int shift, bits;
832 	u8 base;
833 } ata_xfer_tbl[] = {
834 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
835 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
836 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
837 	{ -1, },
838 };
839 
840 /**
841  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
842  *	@xfer_mask: xfer_mask of interest
843  *
844  *	Return matching XFER_* value for @xfer_mask.  Only the highest
845  *	bit of @xfer_mask is considered.
846  *
847  *	LOCKING:
848  *	None.
849  *
850  *	RETURNS:
851  *	Matching XFER_* value, 0xff if no match found.
852  */
853 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
854 {
855 	int highbit = fls(xfer_mask) - 1;
856 	const struct ata_xfer_ent *ent;
857 
858 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
859 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
860 			return ent->base + highbit - ent->shift;
861 	return 0xff;
862 }
863 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
864 
865 /**
866  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
867  *	@xfer_mode: XFER_* of interest
868  *
869  *	Return matching xfer_mask for @xfer_mode.
870  *
871  *	LOCKING:
872  *	None.
873  *
874  *	RETURNS:
875  *	Matching xfer_mask, 0 if no match found.
876  */
877 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
878 {
879 	const struct ata_xfer_ent *ent;
880 
881 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
882 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
883 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
884 				& ~((1 << ent->shift) - 1);
885 	return 0;
886 }
887 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
888 
889 /**
890  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
891  *	@xfer_mode: XFER_* of interest
892  *
893  *	Return matching xfer_shift for @xfer_mode.
894  *
895  *	LOCKING:
896  *	None.
897  *
898  *	RETURNS:
899  *	Matching xfer_shift, -1 if no match found.
900  */
901 int ata_xfer_mode2shift(unsigned long xfer_mode)
902 {
903 	const struct ata_xfer_ent *ent;
904 
905 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
906 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
907 			return ent->shift;
908 	return -1;
909 }
910 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
911 
912 /**
913  *	ata_mode_string - convert xfer_mask to string
914  *	@xfer_mask: mask of bits supported; only highest bit counts.
915  *
916  *	Determine string which represents the highest speed
917  *	(highest bit in @modemask).
918  *
919  *	LOCKING:
920  *	None.
921  *
922  *	RETURNS:
923  *	Constant C string representing highest speed listed in
924  *	@mode_mask, or the constant C string "<n/a>".
925  */
926 const char *ata_mode_string(unsigned long xfer_mask)
927 {
928 	static const char * const xfer_mode_str[] = {
929 		"PIO0",
930 		"PIO1",
931 		"PIO2",
932 		"PIO3",
933 		"PIO4",
934 		"PIO5",
935 		"PIO6",
936 		"MWDMA0",
937 		"MWDMA1",
938 		"MWDMA2",
939 		"MWDMA3",
940 		"MWDMA4",
941 		"UDMA/16",
942 		"UDMA/25",
943 		"UDMA/33",
944 		"UDMA/44",
945 		"UDMA/66",
946 		"UDMA/100",
947 		"UDMA/133",
948 		"UDMA7",
949 	};
950 	int highbit;
951 
952 	highbit = fls(xfer_mask) - 1;
953 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
954 		return xfer_mode_str[highbit];
955 	return "<n/a>";
956 }
957 EXPORT_SYMBOL_GPL(ata_mode_string);
958 
959 const char *sata_spd_string(unsigned int spd)
960 {
961 	static const char * const spd_str[] = {
962 		"1.5 Gbps",
963 		"3.0 Gbps",
964 		"6.0 Gbps",
965 	};
966 
967 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
968 		return "<unknown>";
969 	return spd_str[spd - 1];
970 }
971 
972 /**
973  *	ata_dev_classify - determine device type based on ATA-spec signature
974  *	@tf: ATA taskfile register set for device to be identified
975  *
976  *	Determine from taskfile register contents whether a device is
977  *	ATA or ATAPI, as per "Signature and persistence" section
978  *	of ATA/PI spec (volume 1, sect 5.14).
979  *
980  *	LOCKING:
981  *	None.
982  *
983  *	RETURNS:
984  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
985  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
986  */
987 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
988 {
989 	/* Apple's open source Darwin code hints that some devices only
990 	 * put a proper signature into the LBA mid/high registers,
991 	 * So, we only check those.  It's sufficient for uniqueness.
992 	 *
993 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
994 	 * signatures for ATA and ATAPI devices attached on SerialATA,
995 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
996 	 * spec has never mentioned about using different signatures
997 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
998 	 * Multiplier specification began to use 0x69/0x96 to identify
999 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1000 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1001 	 * 0x69/0x96 shortly and described them as reserved for
1002 	 * SerialATA.
1003 	 *
1004 	 * We follow the current spec and consider that 0x69/0x96
1005 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1006 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1007 	 * SEMB signature.  This is worked around in
1008 	 * ata_dev_read_id().
1009 	 */
1010 	if (tf->lbam == 0 && tf->lbah == 0)
1011 		return ATA_DEV_ATA;
1012 
1013 	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1014 		return ATA_DEV_ATAPI;
1015 
1016 	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1017 		return ATA_DEV_PMP;
1018 
1019 	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1020 		return ATA_DEV_SEMB;
1021 
1022 	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1023 		return ATA_DEV_ZAC;
1024 
1025 	return ATA_DEV_UNKNOWN;
1026 }
1027 EXPORT_SYMBOL_GPL(ata_dev_classify);
1028 
1029 /**
1030  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1031  *	@id: IDENTIFY DEVICE results we will examine
1032  *	@s: string into which data is output
1033  *	@ofs: offset into identify device page
1034  *	@len: length of string to return. must be an even number.
1035  *
1036  *	The strings in the IDENTIFY DEVICE page are broken up into
1037  *	16-bit chunks.  Run through the string, and output each
1038  *	8-bit chunk linearly, regardless of platform.
1039  *
1040  *	LOCKING:
1041  *	caller.
1042  */
1043 
1044 void ata_id_string(const u16 *id, unsigned char *s,
1045 		   unsigned int ofs, unsigned int len)
1046 {
1047 	unsigned int c;
1048 
1049 	BUG_ON(len & 1);
1050 
1051 	while (len > 0) {
1052 		c = id[ofs] >> 8;
1053 		*s = c;
1054 		s++;
1055 
1056 		c = id[ofs] & 0xff;
1057 		*s = c;
1058 		s++;
1059 
1060 		ofs++;
1061 		len -= 2;
1062 	}
1063 }
1064 EXPORT_SYMBOL_GPL(ata_id_string);
1065 
1066 /**
1067  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1068  *	@id: IDENTIFY DEVICE results we will examine
1069  *	@s: string into which data is output
1070  *	@ofs: offset into identify device page
1071  *	@len: length of string to return. must be an odd number.
1072  *
1073  *	This function is identical to ata_id_string except that it
1074  *	trims trailing spaces and terminates the resulting string with
1075  *	null.  @len must be actual maximum length (even number) + 1.
1076  *
1077  *	LOCKING:
1078  *	caller.
1079  */
1080 void ata_id_c_string(const u16 *id, unsigned char *s,
1081 		     unsigned int ofs, unsigned int len)
1082 {
1083 	unsigned char *p;
1084 
1085 	ata_id_string(id, s, ofs, len - 1);
1086 
1087 	p = s + strnlen(s, len - 1);
1088 	while (p > s && p[-1] == ' ')
1089 		p--;
1090 	*p = '\0';
1091 }
1092 EXPORT_SYMBOL_GPL(ata_id_c_string);
1093 
1094 static u64 ata_id_n_sectors(const u16 *id)
1095 {
1096 	if (ata_id_has_lba(id)) {
1097 		if (ata_id_has_lba48(id))
1098 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1099 		else
1100 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1101 	} else {
1102 		if (ata_id_current_chs_valid(id))
1103 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1104 			       id[ATA_ID_CUR_SECTORS];
1105 		else
1106 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1107 			       id[ATA_ID_SECTORS];
1108 	}
1109 }
1110 
1111 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1112 {
1113 	u64 sectors = 0;
1114 
1115 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1116 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1117 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1118 	sectors |= (tf->lbah & 0xff) << 16;
1119 	sectors |= (tf->lbam & 0xff) << 8;
1120 	sectors |= (tf->lbal & 0xff);
1121 
1122 	return sectors;
1123 }
1124 
1125 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1126 {
1127 	u64 sectors = 0;
1128 
1129 	sectors |= (tf->device & 0x0f) << 24;
1130 	sectors |= (tf->lbah & 0xff) << 16;
1131 	sectors |= (tf->lbam & 0xff) << 8;
1132 	sectors |= (tf->lbal & 0xff);
1133 
1134 	return sectors;
1135 }
1136 
1137 /**
1138  *	ata_read_native_max_address - Read native max address
1139  *	@dev: target device
1140  *	@max_sectors: out parameter for the result native max address
1141  *
1142  *	Perform an LBA48 or LBA28 native size query upon the device in
1143  *	question.
1144  *
1145  *	RETURNS:
1146  *	0 on success, -EACCES if command is aborted by the drive.
1147  *	-EIO on other errors.
1148  */
1149 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1150 {
1151 	unsigned int err_mask;
1152 	struct ata_taskfile tf;
1153 	int lba48 = ata_id_has_lba48(dev->id);
1154 
1155 	ata_tf_init(dev, &tf);
1156 
1157 	/* always clear all address registers */
1158 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1159 
1160 	if (lba48) {
1161 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1162 		tf.flags |= ATA_TFLAG_LBA48;
1163 	} else
1164 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1165 
1166 	tf.protocol = ATA_PROT_NODATA;
1167 	tf.device |= ATA_LBA;
1168 
1169 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1170 	if (err_mask) {
1171 		ata_dev_warn(dev,
1172 			     "failed to read native max address (err_mask=0x%x)\n",
1173 			     err_mask);
1174 		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1175 			return -EACCES;
1176 		return -EIO;
1177 	}
1178 
1179 	if (lba48)
1180 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1181 	else
1182 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1183 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1184 		(*max_sectors)--;
1185 	return 0;
1186 }
1187 
1188 /**
1189  *	ata_set_max_sectors - Set max sectors
1190  *	@dev: target device
1191  *	@new_sectors: new max sectors value to set for the device
1192  *
1193  *	Set max sectors of @dev to @new_sectors.
1194  *
1195  *	RETURNS:
1196  *	0 on success, -EACCES if command is aborted or denied (due to
1197  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1198  *	errors.
1199  */
1200 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1201 {
1202 	unsigned int err_mask;
1203 	struct ata_taskfile tf;
1204 	int lba48 = ata_id_has_lba48(dev->id);
1205 
1206 	new_sectors--;
1207 
1208 	ata_tf_init(dev, &tf);
1209 
1210 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1211 
1212 	if (lba48) {
1213 		tf.command = ATA_CMD_SET_MAX_EXT;
1214 		tf.flags |= ATA_TFLAG_LBA48;
1215 
1216 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1217 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1218 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1219 	} else {
1220 		tf.command = ATA_CMD_SET_MAX;
1221 
1222 		tf.device |= (new_sectors >> 24) & 0xf;
1223 	}
1224 
1225 	tf.protocol = ATA_PROT_NODATA;
1226 	tf.device |= ATA_LBA;
1227 
1228 	tf.lbal = (new_sectors >> 0) & 0xff;
1229 	tf.lbam = (new_sectors >> 8) & 0xff;
1230 	tf.lbah = (new_sectors >> 16) & 0xff;
1231 
1232 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1233 	if (err_mask) {
1234 		ata_dev_warn(dev,
1235 			     "failed to set max address (err_mask=0x%x)\n",
1236 			     err_mask);
1237 		if (err_mask == AC_ERR_DEV &&
1238 		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1239 			return -EACCES;
1240 		return -EIO;
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 /**
1247  *	ata_hpa_resize		-	Resize a device with an HPA set
1248  *	@dev: Device to resize
1249  *
1250  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1251  *	it if required to the full size of the media. The caller must check
1252  *	the drive has the HPA feature set enabled.
1253  *
1254  *	RETURNS:
1255  *	0 on success, -errno on failure.
1256  */
1257 static int ata_hpa_resize(struct ata_device *dev)
1258 {
1259 	bool print_info = ata_dev_print_info(dev);
1260 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1261 	u64 sectors = ata_id_n_sectors(dev->id);
1262 	u64 native_sectors;
1263 	int rc;
1264 
1265 	/* do we need to do it? */
1266 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1267 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1268 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1269 		return 0;
1270 
1271 	/* read native max address */
1272 	rc = ata_read_native_max_address(dev, &native_sectors);
1273 	if (rc) {
1274 		/* If device aborted the command or HPA isn't going to
1275 		 * be unlocked, skip HPA resizing.
1276 		 */
1277 		if (rc == -EACCES || !unlock_hpa) {
1278 			ata_dev_warn(dev,
1279 				     "HPA support seems broken, skipping HPA handling\n");
1280 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1281 
1282 			/* we can continue if device aborted the command */
1283 			if (rc == -EACCES)
1284 				rc = 0;
1285 		}
1286 
1287 		return rc;
1288 	}
1289 	dev->n_native_sectors = native_sectors;
1290 
1291 	/* nothing to do? */
1292 	if (native_sectors <= sectors || !unlock_hpa) {
1293 		if (!print_info || native_sectors == sectors)
1294 			return 0;
1295 
1296 		if (native_sectors > sectors)
1297 			ata_dev_info(dev,
1298 				"HPA detected: current %llu, native %llu\n",
1299 				(unsigned long long)sectors,
1300 				(unsigned long long)native_sectors);
1301 		else if (native_sectors < sectors)
1302 			ata_dev_warn(dev,
1303 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1304 				(unsigned long long)native_sectors,
1305 				(unsigned long long)sectors);
1306 		return 0;
1307 	}
1308 
1309 	/* let's unlock HPA */
1310 	rc = ata_set_max_sectors(dev, native_sectors);
1311 	if (rc == -EACCES) {
1312 		/* if device aborted the command, skip HPA resizing */
1313 		ata_dev_warn(dev,
1314 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1315 			     (unsigned long long)sectors,
1316 			     (unsigned long long)native_sectors);
1317 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1318 		return 0;
1319 	} else if (rc)
1320 		return rc;
1321 
1322 	/* re-read IDENTIFY data */
1323 	rc = ata_dev_reread_id(dev, 0);
1324 	if (rc) {
1325 		ata_dev_err(dev,
1326 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1327 		return rc;
1328 	}
1329 
1330 	if (print_info) {
1331 		u64 new_sectors = ata_id_n_sectors(dev->id);
1332 		ata_dev_info(dev,
1333 			"HPA unlocked: %llu -> %llu, native %llu\n",
1334 			(unsigned long long)sectors,
1335 			(unsigned long long)new_sectors,
1336 			(unsigned long long)native_sectors);
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 /**
1343  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1344  *	@dev: device from which the information is fetched
1345  *	@id: IDENTIFY DEVICE page to dump
1346  *
1347  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1348  *	page.
1349  *
1350  *	LOCKING:
1351  *	caller.
1352  */
1353 
1354 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1355 {
1356 	ata_dev_dbg(dev,
1357 		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1358 		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1359 		"88==0x%04x  93==0x%04x\n",
1360 		id[49], id[53], id[63], id[64], id[75], id[80],
1361 		id[81], id[82], id[83], id[84], id[88], id[93]);
1362 }
1363 
1364 /**
1365  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1366  *	@id: IDENTIFY data to compute xfer mask from
1367  *
1368  *	Compute the xfermask for this device. This is not as trivial
1369  *	as it seems if we must consider early devices correctly.
1370  *
1371  *	FIXME: pre IDE drive timing (do we care ?).
1372  *
1373  *	LOCKING:
1374  *	None.
1375  *
1376  *	RETURNS:
1377  *	Computed xfermask
1378  */
1379 unsigned long ata_id_xfermask(const u16 *id)
1380 {
1381 	unsigned long pio_mask, mwdma_mask, udma_mask;
1382 
1383 	/* Usual case. Word 53 indicates word 64 is valid */
1384 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1385 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1386 		pio_mask <<= 3;
1387 		pio_mask |= 0x7;
1388 	} else {
1389 		/* If word 64 isn't valid then Word 51 high byte holds
1390 		 * the PIO timing number for the maximum. Turn it into
1391 		 * a mask.
1392 		 */
1393 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1394 		if (mode < 5)	/* Valid PIO range */
1395 			pio_mask = (2 << mode) - 1;
1396 		else
1397 			pio_mask = 1;
1398 
1399 		/* But wait.. there's more. Design your standards by
1400 		 * committee and you too can get a free iordy field to
1401 		 * process. However its the speeds not the modes that
1402 		 * are supported... Note drivers using the timing API
1403 		 * will get this right anyway
1404 		 */
1405 	}
1406 
1407 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1408 
1409 	if (ata_id_is_cfa(id)) {
1410 		/*
1411 		 *	Process compact flash extended modes
1412 		 */
1413 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1414 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1415 
1416 		if (pio)
1417 			pio_mask |= (1 << 5);
1418 		if (pio > 1)
1419 			pio_mask |= (1 << 6);
1420 		if (dma)
1421 			mwdma_mask |= (1 << 3);
1422 		if (dma > 1)
1423 			mwdma_mask |= (1 << 4);
1424 	}
1425 
1426 	udma_mask = 0;
1427 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1428 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1429 
1430 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1431 }
1432 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1433 
1434 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1435 {
1436 	struct completion *waiting = qc->private_data;
1437 
1438 	complete(waiting);
1439 }
1440 
1441 /**
1442  *	ata_exec_internal_sg - execute libata internal command
1443  *	@dev: Device to which the command is sent
1444  *	@tf: Taskfile registers for the command and the result
1445  *	@cdb: CDB for packet command
1446  *	@dma_dir: Data transfer direction of the command
1447  *	@sgl: sg list for the data buffer of the command
1448  *	@n_elem: Number of sg entries
1449  *	@timeout: Timeout in msecs (0 for default)
1450  *
1451  *	Executes libata internal command with timeout.  @tf contains
1452  *	command on entry and result on return.  Timeout and error
1453  *	conditions are reported via return value.  No recovery action
1454  *	is taken after a command times out.  It's caller's duty to
1455  *	clean up after timeout.
1456  *
1457  *	LOCKING:
1458  *	None.  Should be called with kernel context, might sleep.
1459  *
1460  *	RETURNS:
1461  *	Zero on success, AC_ERR_* mask on failure
1462  */
1463 unsigned ata_exec_internal_sg(struct ata_device *dev,
1464 			      struct ata_taskfile *tf, const u8 *cdb,
1465 			      int dma_dir, struct scatterlist *sgl,
1466 			      unsigned int n_elem, unsigned long timeout)
1467 {
1468 	struct ata_link *link = dev->link;
1469 	struct ata_port *ap = link->ap;
1470 	u8 command = tf->command;
1471 	int auto_timeout = 0;
1472 	struct ata_queued_cmd *qc;
1473 	unsigned int preempted_tag;
1474 	u32 preempted_sactive;
1475 	u64 preempted_qc_active;
1476 	int preempted_nr_active_links;
1477 	DECLARE_COMPLETION_ONSTACK(wait);
1478 	unsigned long flags;
1479 	unsigned int err_mask;
1480 	int rc;
1481 
1482 	spin_lock_irqsave(ap->lock, flags);
1483 
1484 	/* no internal command while frozen */
1485 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1486 		spin_unlock_irqrestore(ap->lock, flags);
1487 		return AC_ERR_SYSTEM;
1488 	}
1489 
1490 	/* initialize internal qc */
1491 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1492 
1493 	qc->tag = ATA_TAG_INTERNAL;
1494 	qc->hw_tag = 0;
1495 	qc->scsicmd = NULL;
1496 	qc->ap = ap;
1497 	qc->dev = dev;
1498 	ata_qc_reinit(qc);
1499 
1500 	preempted_tag = link->active_tag;
1501 	preempted_sactive = link->sactive;
1502 	preempted_qc_active = ap->qc_active;
1503 	preempted_nr_active_links = ap->nr_active_links;
1504 	link->active_tag = ATA_TAG_POISON;
1505 	link->sactive = 0;
1506 	ap->qc_active = 0;
1507 	ap->nr_active_links = 0;
1508 
1509 	/* prepare & issue qc */
1510 	qc->tf = *tf;
1511 	if (cdb)
1512 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1513 
1514 	/* some SATA bridges need us to indicate data xfer direction */
1515 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1516 	    dma_dir == DMA_FROM_DEVICE)
1517 		qc->tf.feature |= ATAPI_DMADIR;
1518 
1519 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1520 	qc->dma_dir = dma_dir;
1521 	if (dma_dir != DMA_NONE) {
1522 		unsigned int i, buflen = 0;
1523 		struct scatterlist *sg;
1524 
1525 		for_each_sg(sgl, sg, n_elem, i)
1526 			buflen += sg->length;
1527 
1528 		ata_sg_init(qc, sgl, n_elem);
1529 		qc->nbytes = buflen;
1530 	}
1531 
1532 	qc->private_data = &wait;
1533 	qc->complete_fn = ata_qc_complete_internal;
1534 
1535 	ata_qc_issue(qc);
1536 
1537 	spin_unlock_irqrestore(ap->lock, flags);
1538 
1539 	if (!timeout) {
1540 		if (ata_probe_timeout)
1541 			timeout = ata_probe_timeout * 1000;
1542 		else {
1543 			timeout = ata_internal_cmd_timeout(dev, command);
1544 			auto_timeout = 1;
1545 		}
1546 	}
1547 
1548 	if (ap->ops->error_handler)
1549 		ata_eh_release(ap);
1550 
1551 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1552 
1553 	if (ap->ops->error_handler)
1554 		ata_eh_acquire(ap);
1555 
1556 	ata_sff_flush_pio_task(ap);
1557 
1558 	if (!rc) {
1559 		spin_lock_irqsave(ap->lock, flags);
1560 
1561 		/* We're racing with irq here.  If we lose, the
1562 		 * following test prevents us from completing the qc
1563 		 * twice.  If we win, the port is frozen and will be
1564 		 * cleaned up by ->post_internal_cmd().
1565 		 */
1566 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1567 			qc->err_mask |= AC_ERR_TIMEOUT;
1568 
1569 			if (ap->ops->error_handler)
1570 				ata_port_freeze(ap);
1571 			else
1572 				ata_qc_complete(qc);
1573 
1574 			ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1575 				     command);
1576 		}
1577 
1578 		spin_unlock_irqrestore(ap->lock, flags);
1579 	}
1580 
1581 	/* do post_internal_cmd */
1582 	if (ap->ops->post_internal_cmd)
1583 		ap->ops->post_internal_cmd(qc);
1584 
1585 	/* perform minimal error analysis */
1586 	if (qc->flags & ATA_QCFLAG_FAILED) {
1587 		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1588 			qc->err_mask |= AC_ERR_DEV;
1589 
1590 		if (!qc->err_mask)
1591 			qc->err_mask |= AC_ERR_OTHER;
1592 
1593 		if (qc->err_mask & ~AC_ERR_OTHER)
1594 			qc->err_mask &= ~AC_ERR_OTHER;
1595 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1596 		qc->result_tf.status |= ATA_SENSE;
1597 	}
1598 
1599 	/* finish up */
1600 	spin_lock_irqsave(ap->lock, flags);
1601 
1602 	*tf = qc->result_tf;
1603 	err_mask = qc->err_mask;
1604 
1605 	ata_qc_free(qc);
1606 	link->active_tag = preempted_tag;
1607 	link->sactive = preempted_sactive;
1608 	ap->qc_active = preempted_qc_active;
1609 	ap->nr_active_links = preempted_nr_active_links;
1610 
1611 	spin_unlock_irqrestore(ap->lock, flags);
1612 
1613 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1614 		ata_internal_cmd_timed_out(dev, command);
1615 
1616 	return err_mask;
1617 }
1618 
1619 /**
1620  *	ata_exec_internal - execute libata internal command
1621  *	@dev: Device to which the command is sent
1622  *	@tf: Taskfile registers for the command and the result
1623  *	@cdb: CDB for packet command
1624  *	@dma_dir: Data transfer direction of the command
1625  *	@buf: Data buffer of the command
1626  *	@buflen: Length of data buffer
1627  *	@timeout: Timeout in msecs (0 for default)
1628  *
1629  *	Wrapper around ata_exec_internal_sg() which takes simple
1630  *	buffer instead of sg list.
1631  *
1632  *	LOCKING:
1633  *	None.  Should be called with kernel context, might sleep.
1634  *
1635  *	RETURNS:
1636  *	Zero on success, AC_ERR_* mask on failure
1637  */
1638 unsigned ata_exec_internal(struct ata_device *dev,
1639 			   struct ata_taskfile *tf, const u8 *cdb,
1640 			   int dma_dir, void *buf, unsigned int buflen,
1641 			   unsigned long timeout)
1642 {
1643 	struct scatterlist *psg = NULL, sg;
1644 	unsigned int n_elem = 0;
1645 
1646 	if (dma_dir != DMA_NONE) {
1647 		WARN_ON(!buf);
1648 		sg_init_one(&sg, buf, buflen);
1649 		psg = &sg;
1650 		n_elem++;
1651 	}
1652 
1653 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1654 				    timeout);
1655 }
1656 
1657 /**
1658  *	ata_pio_need_iordy	-	check if iordy needed
1659  *	@adev: ATA device
1660  *
1661  *	Check if the current speed of the device requires IORDY. Used
1662  *	by various controllers for chip configuration.
1663  */
1664 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1665 {
1666 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1667 	 * lead to controller lock up on certain controllers if the
1668 	 * port is not occupied.  See bko#11703 for details.
1669 	 */
1670 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1671 		return 0;
1672 	/* Controller doesn't support IORDY.  Probably a pointless
1673 	 * check as the caller should know this.
1674 	 */
1675 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1676 		return 0;
1677 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1678 	if (ata_id_is_cfa(adev->id)
1679 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1680 		return 0;
1681 	/* PIO3 and higher it is mandatory */
1682 	if (adev->pio_mode > XFER_PIO_2)
1683 		return 1;
1684 	/* We turn it on when possible */
1685 	if (ata_id_has_iordy(adev->id))
1686 		return 1;
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1690 
1691 /**
1692  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1693  *	@adev: ATA device
1694  *
1695  *	Compute the highest mode possible if we are not using iordy. Return
1696  *	-1 if no iordy mode is available.
1697  */
1698 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1699 {
1700 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1701 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1702 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1703 		/* Is the speed faster than the drive allows non IORDY ? */
1704 		if (pio) {
1705 			/* This is cycle times not frequency - watch the logic! */
1706 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1707 				return 3 << ATA_SHIFT_PIO;
1708 			return 7 << ATA_SHIFT_PIO;
1709 		}
1710 	}
1711 	return 3 << ATA_SHIFT_PIO;
1712 }
1713 
1714 /**
1715  *	ata_do_dev_read_id		-	default ID read method
1716  *	@dev: device
1717  *	@tf: proposed taskfile
1718  *	@id: data buffer
1719  *
1720  *	Issue the identify taskfile and hand back the buffer containing
1721  *	identify data. For some RAID controllers and for pre ATA devices
1722  *	this function is wrapped or replaced by the driver
1723  */
1724 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1725 				struct ata_taskfile *tf, __le16 *id)
1726 {
1727 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1728 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1729 }
1730 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1731 
1732 /**
1733  *	ata_dev_read_id - Read ID data from the specified device
1734  *	@dev: target device
1735  *	@p_class: pointer to class of the target device (may be changed)
1736  *	@flags: ATA_READID_* flags
1737  *	@id: buffer to read IDENTIFY data into
1738  *
1739  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1740  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1741  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1742  *	for pre-ATA4 drives.
1743  *
1744  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1745  *	now we abort if we hit that case.
1746  *
1747  *	LOCKING:
1748  *	Kernel thread context (may sleep)
1749  *
1750  *	RETURNS:
1751  *	0 on success, -errno otherwise.
1752  */
1753 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1754 		    unsigned int flags, u16 *id)
1755 {
1756 	struct ata_port *ap = dev->link->ap;
1757 	unsigned int class = *p_class;
1758 	struct ata_taskfile tf;
1759 	unsigned int err_mask = 0;
1760 	const char *reason;
1761 	bool is_semb = class == ATA_DEV_SEMB;
1762 	int may_fallback = 1, tried_spinup = 0;
1763 	int rc;
1764 
1765 retry:
1766 	ata_tf_init(dev, &tf);
1767 
1768 	switch (class) {
1769 	case ATA_DEV_SEMB:
1770 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1771 		fallthrough;
1772 	case ATA_DEV_ATA:
1773 	case ATA_DEV_ZAC:
1774 		tf.command = ATA_CMD_ID_ATA;
1775 		break;
1776 	case ATA_DEV_ATAPI:
1777 		tf.command = ATA_CMD_ID_ATAPI;
1778 		break;
1779 	default:
1780 		rc = -ENODEV;
1781 		reason = "unsupported class";
1782 		goto err_out;
1783 	}
1784 
1785 	tf.protocol = ATA_PROT_PIO;
1786 
1787 	/* Some devices choke if TF registers contain garbage.  Make
1788 	 * sure those are properly initialized.
1789 	 */
1790 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1791 
1792 	/* Device presence detection is unreliable on some
1793 	 * controllers.  Always poll IDENTIFY if available.
1794 	 */
1795 	tf.flags |= ATA_TFLAG_POLLING;
1796 
1797 	if (ap->ops->read_id)
1798 		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1799 	else
1800 		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1801 
1802 	if (err_mask) {
1803 		if (err_mask & AC_ERR_NODEV_HINT) {
1804 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1805 			return -ENOENT;
1806 		}
1807 
1808 		if (is_semb) {
1809 			ata_dev_info(dev,
1810 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1811 			/* SEMB is not supported yet */
1812 			*p_class = ATA_DEV_SEMB_UNSUP;
1813 			return 0;
1814 		}
1815 
1816 		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1817 			/* Device or controller might have reported
1818 			 * the wrong device class.  Give a shot at the
1819 			 * other IDENTIFY if the current one is
1820 			 * aborted by the device.
1821 			 */
1822 			if (may_fallback) {
1823 				may_fallback = 0;
1824 
1825 				if (class == ATA_DEV_ATA)
1826 					class = ATA_DEV_ATAPI;
1827 				else
1828 					class = ATA_DEV_ATA;
1829 				goto retry;
1830 			}
1831 
1832 			/* Control reaches here iff the device aborted
1833 			 * both flavors of IDENTIFYs which happens
1834 			 * sometimes with phantom devices.
1835 			 */
1836 			ata_dev_dbg(dev,
1837 				    "both IDENTIFYs aborted, assuming NODEV\n");
1838 			return -ENOENT;
1839 		}
1840 
1841 		rc = -EIO;
1842 		reason = "I/O error";
1843 		goto err_out;
1844 	}
1845 
1846 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1847 		ata_dev_info(dev, "dumping IDENTIFY data, "
1848 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1849 			    class, may_fallback, tried_spinup);
1850 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1851 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1852 	}
1853 
1854 	/* Falling back doesn't make sense if ID data was read
1855 	 * successfully at least once.
1856 	 */
1857 	may_fallback = 0;
1858 
1859 	swap_buf_le16(id, ATA_ID_WORDS);
1860 
1861 	/* sanity check */
1862 	rc = -EINVAL;
1863 	reason = "device reports invalid type";
1864 
1865 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1866 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1867 			goto err_out;
1868 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1869 							ata_id_is_ata(id)) {
1870 			ata_dev_dbg(dev,
1871 				"host indicates ignore ATA devices, ignored\n");
1872 			return -ENOENT;
1873 		}
1874 	} else {
1875 		if (ata_id_is_ata(id))
1876 			goto err_out;
1877 	}
1878 
1879 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1880 		tried_spinup = 1;
1881 		/*
1882 		 * Drive powered-up in standby mode, and requires a specific
1883 		 * SET_FEATURES spin-up subcommand before it will accept
1884 		 * anything other than the original IDENTIFY command.
1885 		 */
1886 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1887 		if (err_mask && id[2] != 0x738c) {
1888 			rc = -EIO;
1889 			reason = "SPINUP failed";
1890 			goto err_out;
1891 		}
1892 		/*
1893 		 * If the drive initially returned incomplete IDENTIFY info,
1894 		 * we now must reissue the IDENTIFY command.
1895 		 */
1896 		if (id[2] == 0x37c8)
1897 			goto retry;
1898 	}
1899 
1900 	if ((flags & ATA_READID_POSTRESET) &&
1901 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1902 		/*
1903 		 * The exact sequence expected by certain pre-ATA4 drives is:
1904 		 * SRST RESET
1905 		 * IDENTIFY (optional in early ATA)
1906 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1907 		 * anything else..
1908 		 * Some drives were very specific about that exact sequence.
1909 		 *
1910 		 * Note that ATA4 says lba is mandatory so the second check
1911 		 * should never trigger.
1912 		 */
1913 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1914 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1915 			if (err_mask) {
1916 				rc = -EIO;
1917 				reason = "INIT_DEV_PARAMS failed";
1918 				goto err_out;
1919 			}
1920 
1921 			/* current CHS translation info (id[53-58]) might be
1922 			 * changed. reread the identify device info.
1923 			 */
1924 			flags &= ~ATA_READID_POSTRESET;
1925 			goto retry;
1926 		}
1927 	}
1928 
1929 	*p_class = class;
1930 
1931 	return 0;
1932 
1933  err_out:
1934 	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1935 		     reason, err_mask);
1936 	return rc;
1937 }
1938 
1939 /**
1940  *	ata_read_log_page - read a specific log page
1941  *	@dev: target device
1942  *	@log: log to read
1943  *	@page: page to read
1944  *	@buf: buffer to store read page
1945  *	@sectors: number of sectors to read
1946  *
1947  *	Read log page using READ_LOG_EXT command.
1948  *
1949  *	LOCKING:
1950  *	Kernel thread context (may sleep).
1951  *
1952  *	RETURNS:
1953  *	0 on success, AC_ERR_* mask otherwise.
1954  */
1955 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1956 			       u8 page, void *buf, unsigned int sectors)
1957 {
1958 	unsigned long ap_flags = dev->link->ap->flags;
1959 	struct ata_taskfile tf;
1960 	unsigned int err_mask;
1961 	bool dma = false;
1962 
1963 	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
1964 
1965 	/*
1966 	 * Return error without actually issuing the command on controllers
1967 	 * which e.g. lockup on a read log page.
1968 	 */
1969 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
1970 		return AC_ERR_DEV;
1971 
1972 retry:
1973 	ata_tf_init(dev, &tf);
1974 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
1975 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
1976 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
1977 		tf.protocol = ATA_PROT_DMA;
1978 		dma = true;
1979 	} else {
1980 		tf.command = ATA_CMD_READ_LOG_EXT;
1981 		tf.protocol = ATA_PROT_PIO;
1982 		dma = false;
1983 	}
1984 	tf.lbal = log;
1985 	tf.lbam = page;
1986 	tf.nsect = sectors;
1987 	tf.hob_nsect = sectors >> 8;
1988 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
1989 
1990 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1991 				     buf, sectors * ATA_SECT_SIZE, 0);
1992 
1993 	if (err_mask) {
1994 		if (dma) {
1995 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
1996 			goto retry;
1997 		}
1998 		ata_dev_err(dev,
1999 			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2000 			    (unsigned int)log, (unsigned int)page, err_mask);
2001 	}
2002 
2003 	return err_mask;
2004 }
2005 
2006 static bool ata_log_supported(struct ata_device *dev, u8 log)
2007 {
2008 	struct ata_port *ap = dev->link->ap;
2009 
2010 	if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2011 		return false;
2012 
2013 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2014 		return false;
2015 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2016 }
2017 
2018 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2019 {
2020 	struct ata_port *ap = dev->link->ap;
2021 	unsigned int err, i;
2022 
2023 	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2024 		return false;
2025 
2026 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2027 		/*
2028 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2029 		 * with ACS-3 (ATA version 10). Warn about the missing log
2030 		 * for drives which implement this ATA level or above.
2031 		 */
2032 		if (ata_id_major_version(dev->id) >= 10)
2033 			ata_dev_warn(dev,
2034 				"ATA Identify Device Log not supported\n");
2035 		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2036 		return false;
2037 	}
2038 
2039 	/*
2040 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2041 	 * supported.
2042 	 */
2043 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2044 				1);
2045 	if (err)
2046 		return false;
2047 
2048 	for (i = 0; i < ap->sector_buf[8]; i++) {
2049 		if (ap->sector_buf[9 + i] == page)
2050 			return true;
2051 	}
2052 
2053 	return false;
2054 }
2055 
2056 static int ata_do_link_spd_horkage(struct ata_device *dev)
2057 {
2058 	struct ata_link *plink = ata_dev_phys_link(dev);
2059 	u32 target, target_limit;
2060 
2061 	if (!sata_scr_valid(plink))
2062 		return 0;
2063 
2064 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065 		target = 1;
2066 	else
2067 		return 0;
2068 
2069 	target_limit = (1 << target) - 1;
2070 
2071 	/* if already on stricter limit, no need to push further */
2072 	if (plink->sata_spd_limit <= target_limit)
2073 		return 0;
2074 
2075 	plink->sata_spd_limit = target_limit;
2076 
2077 	/* Request another EH round by returning -EAGAIN if link is
2078 	 * going faster than the target speed.  Forward progress is
2079 	 * guaranteed by setting sata_spd_limit to target_limit above.
2080 	 */
2081 	if (plink->sata_spd > target) {
2082 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083 			     sata_spd_string(target));
2084 		return -EAGAIN;
2085 	}
2086 	return 0;
2087 }
2088 
2089 static inline u8 ata_dev_knobble(struct ata_device *dev)
2090 {
2091 	struct ata_port *ap = dev->link->ap;
2092 
2093 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094 		return 0;
2095 
2096 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2097 }
2098 
2099 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2100 {
2101 	struct ata_port *ap = dev->link->ap;
2102 	unsigned int err_mask;
2103 
2104 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2105 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2106 		return;
2107 	}
2108 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2109 				     0, ap->sector_buf, 1);
2110 	if (!err_mask) {
2111 		u8 *cmds = dev->ncq_send_recv_cmds;
2112 
2113 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2114 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2115 
2116 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2117 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2118 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2119 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2120 		}
2121 	}
2122 }
2123 
2124 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2125 {
2126 	struct ata_port *ap = dev->link->ap;
2127 	unsigned int err_mask;
2128 
2129 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2130 		ata_dev_warn(dev,
2131 			     "NCQ Send/Recv Log not supported\n");
2132 		return;
2133 	}
2134 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2135 				     0, ap->sector_buf, 1);
2136 	if (!err_mask) {
2137 		u8 *cmds = dev->ncq_non_data_cmds;
2138 
2139 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2140 	}
2141 }
2142 
2143 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2144 {
2145 	struct ata_port *ap = dev->link->ap;
2146 	unsigned int err_mask;
2147 
2148 	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2149 		return;
2150 
2151 	err_mask = ata_read_log_page(dev,
2152 				     ATA_LOG_IDENTIFY_DEVICE,
2153 				     ATA_LOG_SATA_SETTINGS,
2154 				     ap->sector_buf,
2155 				     1);
2156 	if (err_mask)
2157 		goto not_supported;
2158 
2159 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2160 		goto not_supported;
2161 
2162 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2163 
2164 	return;
2165 
2166 not_supported:
2167 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
2168 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2169 }
2170 
2171 static bool ata_dev_check_adapter(struct ata_device *dev,
2172 				  unsigned short vendor_id)
2173 {
2174 	struct pci_dev *pcidev = NULL;
2175 	struct device *parent_dev = NULL;
2176 
2177 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2178 	     parent_dev = parent_dev->parent) {
2179 		if (dev_is_pci(parent_dev)) {
2180 			pcidev = to_pci_dev(parent_dev);
2181 			if (pcidev->vendor == vendor_id)
2182 				return true;
2183 			break;
2184 		}
2185 	}
2186 
2187 	return false;
2188 }
2189 
2190 static int ata_dev_config_ncq(struct ata_device *dev,
2191 			       char *desc, size_t desc_sz)
2192 {
2193 	struct ata_port *ap = dev->link->ap;
2194 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2195 	unsigned int err_mask;
2196 	char *aa_desc = "";
2197 
2198 	if (!ata_id_has_ncq(dev->id)) {
2199 		desc[0] = '\0';
2200 		return 0;
2201 	}
2202 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2203 		return 0;
2204 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2205 		snprintf(desc, desc_sz, "NCQ (not used)");
2206 		return 0;
2207 	}
2208 
2209 	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2210 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2211 		snprintf(desc, desc_sz, "NCQ (not used)");
2212 		return 0;
2213 	}
2214 
2215 	if (ap->flags & ATA_FLAG_NCQ) {
2216 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2217 		dev->flags |= ATA_DFLAG_NCQ;
2218 	}
2219 
2220 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2221 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2222 		ata_id_has_fpdma_aa(dev->id)) {
2223 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2224 			SATA_FPDMA_AA);
2225 		if (err_mask) {
2226 			ata_dev_err(dev,
2227 				    "failed to enable AA (error_mask=0x%x)\n",
2228 				    err_mask);
2229 			if (err_mask != AC_ERR_DEV) {
2230 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2231 				return -EIO;
2232 			}
2233 		} else
2234 			aa_desc = ", AA";
2235 	}
2236 
2237 	if (hdepth >= ddepth)
2238 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2239 	else
2240 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2241 			ddepth, aa_desc);
2242 
2243 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2244 		if (ata_id_has_ncq_send_and_recv(dev->id))
2245 			ata_dev_config_ncq_send_recv(dev);
2246 		if (ata_id_has_ncq_non_data(dev->id))
2247 			ata_dev_config_ncq_non_data(dev);
2248 		if (ata_id_has_ncq_prio(dev->id))
2249 			ata_dev_config_ncq_prio(dev);
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2256 {
2257 	unsigned int err_mask;
2258 
2259 	if (!ata_id_has_sense_reporting(dev->id))
2260 		return;
2261 
2262 	if (ata_id_sense_reporting_enabled(dev->id))
2263 		return;
2264 
2265 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2266 	if (err_mask) {
2267 		ata_dev_dbg(dev,
2268 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2269 			    err_mask);
2270 	}
2271 }
2272 
2273 static void ata_dev_config_zac(struct ata_device *dev)
2274 {
2275 	struct ata_port *ap = dev->link->ap;
2276 	unsigned int err_mask;
2277 	u8 *identify_buf = ap->sector_buf;
2278 
2279 	dev->zac_zones_optimal_open = U32_MAX;
2280 	dev->zac_zones_optimal_nonseq = U32_MAX;
2281 	dev->zac_zones_max_open = U32_MAX;
2282 
2283 	/*
2284 	 * Always set the 'ZAC' flag for Host-managed devices.
2285 	 */
2286 	if (dev->class == ATA_DEV_ZAC)
2287 		dev->flags |= ATA_DFLAG_ZAC;
2288 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2289 		/*
2290 		 * Check for host-aware devices.
2291 		 */
2292 		dev->flags |= ATA_DFLAG_ZAC;
2293 
2294 	if (!(dev->flags & ATA_DFLAG_ZAC))
2295 		return;
2296 
2297 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2298 		ata_dev_warn(dev,
2299 			     "ATA Zoned Information Log not supported\n");
2300 		return;
2301 	}
2302 
2303 	/*
2304 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2305 	 */
2306 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2307 				     ATA_LOG_ZONED_INFORMATION,
2308 				     identify_buf, 1);
2309 	if (!err_mask) {
2310 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2311 
2312 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2313 		if ((zoned_cap >> 63))
2314 			dev->zac_zoned_cap = (zoned_cap & 1);
2315 		opt_open = get_unaligned_le64(&identify_buf[24]);
2316 		if ((opt_open >> 63))
2317 			dev->zac_zones_optimal_open = (u32)opt_open;
2318 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2319 		if ((opt_nonseq >> 63))
2320 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2321 		max_open = get_unaligned_le64(&identify_buf[40]);
2322 		if ((max_open >> 63))
2323 			dev->zac_zones_max_open = (u32)max_open;
2324 	}
2325 }
2326 
2327 static void ata_dev_config_trusted(struct ata_device *dev)
2328 {
2329 	struct ata_port *ap = dev->link->ap;
2330 	u64 trusted_cap;
2331 	unsigned int err;
2332 
2333 	if (!ata_id_has_trusted(dev->id))
2334 		return;
2335 
2336 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2337 		ata_dev_warn(dev,
2338 			     "Security Log not supported\n");
2339 		return;
2340 	}
2341 
2342 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2343 			ap->sector_buf, 1);
2344 	if (err)
2345 		return;
2346 
2347 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2348 	if (!(trusted_cap & (1ULL << 63))) {
2349 		ata_dev_dbg(dev,
2350 			    "Trusted Computing capability qword not valid!\n");
2351 		return;
2352 	}
2353 
2354 	if (trusted_cap & (1 << 0))
2355 		dev->flags |= ATA_DFLAG_TRUSTED;
2356 }
2357 
2358 static int ata_dev_config_lba(struct ata_device *dev)
2359 {
2360 	const u16 *id = dev->id;
2361 	const char *lba_desc;
2362 	char ncq_desc[24];
2363 	int ret;
2364 
2365 	dev->flags |= ATA_DFLAG_LBA;
2366 
2367 	if (ata_id_has_lba48(id)) {
2368 		lba_desc = "LBA48";
2369 		dev->flags |= ATA_DFLAG_LBA48;
2370 		if (dev->n_sectors >= (1UL << 28) &&
2371 		    ata_id_has_flush_ext(id))
2372 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2373 	} else {
2374 		lba_desc = "LBA";
2375 	}
2376 
2377 	/* config NCQ */
2378 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2379 
2380 	/* print device info to dmesg */
2381 	if (ata_dev_print_info(dev))
2382 		ata_dev_info(dev,
2383 			     "%llu sectors, multi %u: %s %s\n",
2384 			     (unsigned long long)dev->n_sectors,
2385 			     dev->multi_count, lba_desc, ncq_desc);
2386 
2387 	return ret;
2388 }
2389 
2390 static void ata_dev_config_chs(struct ata_device *dev)
2391 {
2392 	const u16 *id = dev->id;
2393 
2394 	if (ata_id_current_chs_valid(id)) {
2395 		/* Current CHS translation is valid. */
2396 		dev->cylinders = id[54];
2397 		dev->heads     = id[55];
2398 		dev->sectors   = id[56];
2399 	} else {
2400 		/* Default translation */
2401 		dev->cylinders	= id[1];
2402 		dev->heads	= id[3];
2403 		dev->sectors	= id[6];
2404 	}
2405 
2406 	/* print device info to dmesg */
2407 	if (ata_dev_print_info(dev))
2408 		ata_dev_info(dev,
2409 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2410 			     (unsigned long long)dev->n_sectors,
2411 			     dev->multi_count, dev->cylinders,
2412 			     dev->heads, dev->sectors);
2413 }
2414 
2415 static void ata_dev_config_devslp(struct ata_device *dev)
2416 {
2417 	u8 *sata_setting = dev->link->ap->sector_buf;
2418 	unsigned int err_mask;
2419 	int i, j;
2420 
2421 	/*
2422 	 * Check device sleep capability. Get DevSlp timing variables
2423 	 * from SATA Settings page of Identify Device Data Log.
2424 	 */
2425 	if (!ata_id_has_devslp(dev->id) ||
2426 	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2427 		return;
2428 
2429 	err_mask = ata_read_log_page(dev,
2430 				     ATA_LOG_IDENTIFY_DEVICE,
2431 				     ATA_LOG_SATA_SETTINGS,
2432 				     sata_setting, 1);
2433 	if (err_mask)
2434 		return;
2435 
2436 	dev->flags |= ATA_DFLAG_DEVSLP;
2437 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2438 		j = ATA_LOG_DEVSLP_OFFSET + i;
2439 		dev->devslp_timing[i] = sata_setting[j];
2440 	}
2441 }
2442 
2443 static void ata_dev_config_cpr(struct ata_device *dev)
2444 {
2445 	unsigned int err_mask;
2446 	size_t buf_len;
2447 	int i, nr_cpr = 0;
2448 	struct ata_cpr_log *cpr_log = NULL;
2449 	u8 *desc, *buf = NULL;
2450 
2451 	if (ata_id_major_version(dev->id) < 11 ||
2452 	    !ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES))
2453 		goto out;
2454 
2455 	/*
2456 	 * Read the concurrent positioning ranges log (0x47). We can have at
2457 	 * most 255 32B range descriptors plus a 64B header.
2458 	 */
2459 	buf_len = (64 + 255 * 32 + 511) & ~511;
2460 	buf = kzalloc(buf_len, GFP_KERNEL);
2461 	if (!buf)
2462 		goto out;
2463 
2464 	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2465 				     0, buf, buf_len >> 9);
2466 	if (err_mask)
2467 		goto out;
2468 
2469 	nr_cpr = buf[0];
2470 	if (!nr_cpr)
2471 		goto out;
2472 
2473 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2474 	if (!cpr_log)
2475 		goto out;
2476 
2477 	cpr_log->nr_cpr = nr_cpr;
2478 	desc = &buf[64];
2479 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2480 		cpr_log->cpr[i].num = desc[0];
2481 		cpr_log->cpr[i].num_storage_elements = desc[1];
2482 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2483 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2484 	}
2485 
2486 out:
2487 	swap(dev->cpr_log, cpr_log);
2488 	kfree(cpr_log);
2489 	kfree(buf);
2490 }
2491 
2492 static void ata_dev_print_features(struct ata_device *dev)
2493 {
2494 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2495 		return;
2496 
2497 	ata_dev_info(dev,
2498 		     "Features:%s%s%s%s%s%s\n",
2499 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2500 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2501 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2502 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2503 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2504 		     dev->cpr_log ? " CPR" : "");
2505 }
2506 
2507 /**
2508  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2509  *	@dev: Target device to configure
2510  *
2511  *	Configure @dev according to @dev->id.  Generic and low-level
2512  *	driver specific fixups are also applied.
2513  *
2514  *	LOCKING:
2515  *	Kernel thread context (may sleep)
2516  *
2517  *	RETURNS:
2518  *	0 on success, -errno otherwise
2519  */
2520 int ata_dev_configure(struct ata_device *dev)
2521 {
2522 	struct ata_port *ap = dev->link->ap;
2523 	bool print_info = ata_dev_print_info(dev);
2524 	const u16 *id = dev->id;
2525 	unsigned long xfer_mask;
2526 	unsigned int err_mask;
2527 	char revbuf[7];		/* XYZ-99\0 */
2528 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2529 	char modelbuf[ATA_ID_PROD_LEN+1];
2530 	int rc;
2531 
2532 	if (!ata_dev_enabled(dev)) {
2533 		ata_dev_dbg(dev, "no device\n");
2534 		return 0;
2535 	}
2536 
2537 	/* set horkage */
2538 	dev->horkage |= ata_dev_blacklisted(dev);
2539 	ata_force_horkage(dev);
2540 
2541 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2542 		ata_dev_info(dev, "unsupported device, disabling\n");
2543 		ata_dev_disable(dev);
2544 		return 0;
2545 	}
2546 
2547 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2548 	    dev->class == ATA_DEV_ATAPI) {
2549 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2550 			     atapi_enabled ? "not supported with this driver"
2551 			     : "disabled");
2552 		ata_dev_disable(dev);
2553 		return 0;
2554 	}
2555 
2556 	rc = ata_do_link_spd_horkage(dev);
2557 	if (rc)
2558 		return rc;
2559 
2560 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2561 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2562 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2563 		dev->horkage |= ATA_HORKAGE_NOLPM;
2564 
2565 	if (ap->flags & ATA_FLAG_NO_LPM)
2566 		dev->horkage |= ATA_HORKAGE_NOLPM;
2567 
2568 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2569 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2570 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2571 	}
2572 
2573 	/* let ACPI work its magic */
2574 	rc = ata_acpi_on_devcfg(dev);
2575 	if (rc)
2576 		return rc;
2577 
2578 	/* massage HPA, do it early as it might change IDENTIFY data */
2579 	rc = ata_hpa_resize(dev);
2580 	if (rc)
2581 		return rc;
2582 
2583 	/* print device capabilities */
2584 	ata_dev_dbg(dev,
2585 		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2586 		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2587 		    __func__,
2588 		    id[49], id[82], id[83], id[84],
2589 		    id[85], id[86], id[87], id[88]);
2590 
2591 	/* initialize to-be-configured parameters */
2592 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2593 	dev->max_sectors = 0;
2594 	dev->cdb_len = 0;
2595 	dev->n_sectors = 0;
2596 	dev->cylinders = 0;
2597 	dev->heads = 0;
2598 	dev->sectors = 0;
2599 	dev->multi_count = 0;
2600 
2601 	/*
2602 	 * common ATA, ATAPI feature tests
2603 	 */
2604 
2605 	/* find max transfer mode; for printk only */
2606 	xfer_mask = ata_id_xfermask(id);
2607 
2608 	ata_dump_id(dev, id);
2609 
2610 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2611 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2612 			sizeof(fwrevbuf));
2613 
2614 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2615 			sizeof(modelbuf));
2616 
2617 	/* ATA-specific feature tests */
2618 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2619 		if (ata_id_is_cfa(id)) {
2620 			/* CPRM may make this media unusable */
2621 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2622 				ata_dev_warn(dev,
2623 	"supports DRM functions and may not be fully accessible\n");
2624 			snprintf(revbuf, 7, "CFA");
2625 		} else {
2626 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2627 			/* Warn the user if the device has TPM extensions */
2628 			if (ata_id_has_tpm(id))
2629 				ata_dev_warn(dev,
2630 	"supports DRM functions and may not be fully accessible\n");
2631 		}
2632 
2633 		dev->n_sectors = ata_id_n_sectors(id);
2634 
2635 		/* get current R/W Multiple count setting */
2636 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2637 			unsigned int max = dev->id[47] & 0xff;
2638 			unsigned int cnt = dev->id[59] & 0xff;
2639 			/* only recognize/allow powers of two here */
2640 			if (is_power_of_2(max) && is_power_of_2(cnt))
2641 				if (cnt <= max)
2642 					dev->multi_count = cnt;
2643 		}
2644 
2645 		/* print device info to dmesg */
2646 		if (print_info)
2647 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2648 				     revbuf, modelbuf, fwrevbuf,
2649 				     ata_mode_string(xfer_mask));
2650 
2651 		if (ata_id_has_lba(id)) {
2652 			rc = ata_dev_config_lba(dev);
2653 			if (rc)
2654 				return rc;
2655 		} else {
2656 			ata_dev_config_chs(dev);
2657 		}
2658 
2659 		ata_dev_config_devslp(dev);
2660 		ata_dev_config_sense_reporting(dev);
2661 		ata_dev_config_zac(dev);
2662 		ata_dev_config_trusted(dev);
2663 		ata_dev_config_cpr(dev);
2664 		dev->cdb_len = 32;
2665 
2666 		if (print_info)
2667 			ata_dev_print_features(dev);
2668 	}
2669 
2670 	/* ATAPI-specific feature tests */
2671 	else if (dev->class == ATA_DEV_ATAPI) {
2672 		const char *cdb_intr_string = "";
2673 		const char *atapi_an_string = "";
2674 		const char *dma_dir_string = "";
2675 		u32 sntf;
2676 
2677 		rc = atapi_cdb_len(id);
2678 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2679 			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2680 			rc = -EINVAL;
2681 			goto err_out_nosup;
2682 		}
2683 		dev->cdb_len = (unsigned int) rc;
2684 
2685 		/* Enable ATAPI AN if both the host and device have
2686 		 * the support.  If PMP is attached, SNTF is required
2687 		 * to enable ATAPI AN to discern between PHY status
2688 		 * changed notifications and ATAPI ANs.
2689 		 */
2690 		if (atapi_an &&
2691 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2692 		    (!sata_pmp_attached(ap) ||
2693 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2694 			/* issue SET feature command to turn this on */
2695 			err_mask = ata_dev_set_feature(dev,
2696 					SETFEATURES_SATA_ENABLE, SATA_AN);
2697 			if (err_mask)
2698 				ata_dev_err(dev,
2699 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2700 					    err_mask);
2701 			else {
2702 				dev->flags |= ATA_DFLAG_AN;
2703 				atapi_an_string = ", ATAPI AN";
2704 			}
2705 		}
2706 
2707 		if (ata_id_cdb_intr(dev->id)) {
2708 			dev->flags |= ATA_DFLAG_CDB_INTR;
2709 			cdb_intr_string = ", CDB intr";
2710 		}
2711 
2712 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2713 			dev->flags |= ATA_DFLAG_DMADIR;
2714 			dma_dir_string = ", DMADIR";
2715 		}
2716 
2717 		if (ata_id_has_da(dev->id)) {
2718 			dev->flags |= ATA_DFLAG_DA;
2719 			zpodd_init(dev);
2720 		}
2721 
2722 		/* print device info to dmesg */
2723 		if (print_info)
2724 			ata_dev_info(dev,
2725 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2726 				     modelbuf, fwrevbuf,
2727 				     ata_mode_string(xfer_mask),
2728 				     cdb_intr_string, atapi_an_string,
2729 				     dma_dir_string);
2730 	}
2731 
2732 	/* determine max_sectors */
2733 	dev->max_sectors = ATA_MAX_SECTORS;
2734 	if (dev->flags & ATA_DFLAG_LBA48)
2735 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2736 
2737 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2738 	   200 sectors */
2739 	if (ata_dev_knobble(dev)) {
2740 		if (print_info)
2741 			ata_dev_info(dev, "applying bridge limits\n");
2742 		dev->udma_mask &= ATA_UDMA5;
2743 		dev->max_sectors = ATA_MAX_SECTORS;
2744 	}
2745 
2746 	if ((dev->class == ATA_DEV_ATAPI) &&
2747 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2748 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2749 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2750 	}
2751 
2752 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2753 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2754 					 dev->max_sectors);
2755 
2756 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2757 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2758 					 dev->max_sectors);
2759 
2760 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2761 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2762 
2763 	if (ap->ops->dev_config)
2764 		ap->ops->dev_config(dev);
2765 
2766 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2767 		/* Let the user know. We don't want to disallow opens for
2768 		   rescue purposes, or in case the vendor is just a blithering
2769 		   idiot. Do this after the dev_config call as some controllers
2770 		   with buggy firmware may want to avoid reporting false device
2771 		   bugs */
2772 
2773 		if (print_info) {
2774 			ata_dev_warn(dev,
2775 "Drive reports diagnostics failure. This may indicate a drive\n");
2776 			ata_dev_warn(dev,
2777 "fault or invalid emulation. Contact drive vendor for information.\n");
2778 		}
2779 	}
2780 
2781 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2782 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2783 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2784 	}
2785 
2786 	return 0;
2787 
2788 err_out_nosup:
2789 	return rc;
2790 }
2791 
2792 /**
2793  *	ata_cable_40wire	-	return 40 wire cable type
2794  *	@ap: port
2795  *
2796  *	Helper method for drivers which want to hardwire 40 wire cable
2797  *	detection.
2798  */
2799 
2800 int ata_cable_40wire(struct ata_port *ap)
2801 {
2802 	return ATA_CBL_PATA40;
2803 }
2804 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2805 
2806 /**
2807  *	ata_cable_80wire	-	return 80 wire cable type
2808  *	@ap: port
2809  *
2810  *	Helper method for drivers which want to hardwire 80 wire cable
2811  *	detection.
2812  */
2813 
2814 int ata_cable_80wire(struct ata_port *ap)
2815 {
2816 	return ATA_CBL_PATA80;
2817 }
2818 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2819 
2820 /**
2821  *	ata_cable_unknown	-	return unknown PATA cable.
2822  *	@ap: port
2823  *
2824  *	Helper method for drivers which have no PATA cable detection.
2825  */
2826 
2827 int ata_cable_unknown(struct ata_port *ap)
2828 {
2829 	return ATA_CBL_PATA_UNK;
2830 }
2831 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2832 
2833 /**
2834  *	ata_cable_ignore	-	return ignored PATA cable.
2835  *	@ap: port
2836  *
2837  *	Helper method for drivers which don't use cable type to limit
2838  *	transfer mode.
2839  */
2840 int ata_cable_ignore(struct ata_port *ap)
2841 {
2842 	return ATA_CBL_PATA_IGN;
2843 }
2844 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2845 
2846 /**
2847  *	ata_cable_sata	-	return SATA cable type
2848  *	@ap: port
2849  *
2850  *	Helper method for drivers which have SATA cables
2851  */
2852 
2853 int ata_cable_sata(struct ata_port *ap)
2854 {
2855 	return ATA_CBL_SATA;
2856 }
2857 EXPORT_SYMBOL_GPL(ata_cable_sata);
2858 
2859 /**
2860  *	ata_bus_probe - Reset and probe ATA bus
2861  *	@ap: Bus to probe
2862  *
2863  *	Master ATA bus probing function.  Initiates a hardware-dependent
2864  *	bus reset, then attempts to identify any devices found on
2865  *	the bus.
2866  *
2867  *	LOCKING:
2868  *	PCI/etc. bus probe sem.
2869  *
2870  *	RETURNS:
2871  *	Zero on success, negative errno otherwise.
2872  */
2873 
2874 int ata_bus_probe(struct ata_port *ap)
2875 {
2876 	unsigned int classes[ATA_MAX_DEVICES];
2877 	int tries[ATA_MAX_DEVICES];
2878 	int rc;
2879 	struct ata_device *dev;
2880 
2881 	ata_for_each_dev(dev, &ap->link, ALL)
2882 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2883 
2884  retry:
2885 	ata_for_each_dev(dev, &ap->link, ALL) {
2886 		/* If we issue an SRST then an ATA drive (not ATAPI)
2887 		 * may change configuration and be in PIO0 timing. If
2888 		 * we do a hard reset (or are coming from power on)
2889 		 * this is true for ATA or ATAPI. Until we've set a
2890 		 * suitable controller mode we should not touch the
2891 		 * bus as we may be talking too fast.
2892 		 */
2893 		dev->pio_mode = XFER_PIO_0;
2894 		dev->dma_mode = 0xff;
2895 
2896 		/* If the controller has a pio mode setup function
2897 		 * then use it to set the chipset to rights. Don't
2898 		 * touch the DMA setup as that will be dealt with when
2899 		 * configuring devices.
2900 		 */
2901 		if (ap->ops->set_piomode)
2902 			ap->ops->set_piomode(ap, dev);
2903 	}
2904 
2905 	/* reset and determine device classes */
2906 	ap->ops->phy_reset(ap);
2907 
2908 	ata_for_each_dev(dev, &ap->link, ALL) {
2909 		if (dev->class != ATA_DEV_UNKNOWN)
2910 			classes[dev->devno] = dev->class;
2911 		else
2912 			classes[dev->devno] = ATA_DEV_NONE;
2913 
2914 		dev->class = ATA_DEV_UNKNOWN;
2915 	}
2916 
2917 	/* read IDENTIFY page and configure devices. We have to do the identify
2918 	   specific sequence bass-ackwards so that PDIAG- is released by
2919 	   the slave device */
2920 
2921 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2922 		if (tries[dev->devno])
2923 			dev->class = classes[dev->devno];
2924 
2925 		if (!ata_dev_enabled(dev))
2926 			continue;
2927 
2928 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2929 				     dev->id);
2930 		if (rc)
2931 			goto fail;
2932 	}
2933 
2934 	/* Now ask for the cable type as PDIAG- should have been released */
2935 	if (ap->ops->cable_detect)
2936 		ap->cbl = ap->ops->cable_detect(ap);
2937 
2938 	/* We may have SATA bridge glue hiding here irrespective of
2939 	 * the reported cable types and sensed types.  When SATA
2940 	 * drives indicate we have a bridge, we don't know which end
2941 	 * of the link the bridge is which is a problem.
2942 	 */
2943 	ata_for_each_dev(dev, &ap->link, ENABLED)
2944 		if (ata_id_is_sata(dev->id))
2945 			ap->cbl = ATA_CBL_SATA;
2946 
2947 	/* After the identify sequence we can now set up the devices. We do
2948 	   this in the normal order so that the user doesn't get confused */
2949 
2950 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2951 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2952 		rc = ata_dev_configure(dev);
2953 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2954 		if (rc)
2955 			goto fail;
2956 	}
2957 
2958 	/* configure transfer mode */
2959 	rc = ata_set_mode(&ap->link, &dev);
2960 	if (rc)
2961 		goto fail;
2962 
2963 	ata_for_each_dev(dev, &ap->link, ENABLED)
2964 		return 0;
2965 
2966 	return -ENODEV;
2967 
2968  fail:
2969 	tries[dev->devno]--;
2970 
2971 	switch (rc) {
2972 	case -EINVAL:
2973 		/* eeek, something went very wrong, give up */
2974 		tries[dev->devno] = 0;
2975 		break;
2976 
2977 	case -ENODEV:
2978 		/* give it just one more chance */
2979 		tries[dev->devno] = min(tries[dev->devno], 1);
2980 		fallthrough;
2981 	case -EIO:
2982 		if (tries[dev->devno] == 1) {
2983 			/* This is the last chance, better to slow
2984 			 * down than lose it.
2985 			 */
2986 			sata_down_spd_limit(&ap->link, 0);
2987 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2988 		}
2989 	}
2990 
2991 	if (!tries[dev->devno])
2992 		ata_dev_disable(dev);
2993 
2994 	goto retry;
2995 }
2996 
2997 /**
2998  *	sata_print_link_status - Print SATA link status
2999  *	@link: SATA link to printk link status about
3000  *
3001  *	This function prints link speed and status of a SATA link.
3002  *
3003  *	LOCKING:
3004  *	None.
3005  */
3006 static void sata_print_link_status(struct ata_link *link)
3007 {
3008 	u32 sstatus, scontrol, tmp;
3009 
3010 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3011 		return;
3012 	sata_scr_read(link, SCR_CONTROL, &scontrol);
3013 
3014 	if (ata_phys_link_online(link)) {
3015 		tmp = (sstatus >> 4) & 0xf;
3016 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3017 			      sata_spd_string(tmp), sstatus, scontrol);
3018 	} else {
3019 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3020 			      sstatus, scontrol);
3021 	}
3022 }
3023 
3024 /**
3025  *	ata_dev_pair		-	return other device on cable
3026  *	@adev: device
3027  *
3028  *	Obtain the other device on the same cable, or if none is
3029  *	present NULL is returned
3030  */
3031 
3032 struct ata_device *ata_dev_pair(struct ata_device *adev)
3033 {
3034 	struct ata_link *link = adev->link;
3035 	struct ata_device *pair = &link->device[1 - adev->devno];
3036 	if (!ata_dev_enabled(pair))
3037 		return NULL;
3038 	return pair;
3039 }
3040 EXPORT_SYMBOL_GPL(ata_dev_pair);
3041 
3042 /**
3043  *	sata_down_spd_limit - adjust SATA spd limit downward
3044  *	@link: Link to adjust SATA spd limit for
3045  *	@spd_limit: Additional limit
3046  *
3047  *	Adjust SATA spd limit of @link downward.  Note that this
3048  *	function only adjusts the limit.  The change must be applied
3049  *	using sata_set_spd().
3050  *
3051  *	If @spd_limit is non-zero, the speed is limited to equal to or
3052  *	lower than @spd_limit if such speed is supported.  If
3053  *	@spd_limit is slower than any supported speed, only the lowest
3054  *	supported speed is allowed.
3055  *
3056  *	LOCKING:
3057  *	Inherited from caller.
3058  *
3059  *	RETURNS:
3060  *	0 on success, negative errno on failure
3061  */
3062 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3063 {
3064 	u32 sstatus, spd, mask;
3065 	int rc, bit;
3066 
3067 	if (!sata_scr_valid(link))
3068 		return -EOPNOTSUPP;
3069 
3070 	/* If SCR can be read, use it to determine the current SPD.
3071 	 * If not, use cached value in link->sata_spd.
3072 	 */
3073 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3074 	if (rc == 0 && ata_sstatus_online(sstatus))
3075 		spd = (sstatus >> 4) & 0xf;
3076 	else
3077 		spd = link->sata_spd;
3078 
3079 	mask = link->sata_spd_limit;
3080 	if (mask <= 1)
3081 		return -EINVAL;
3082 
3083 	/* unconditionally mask off the highest bit */
3084 	bit = fls(mask) - 1;
3085 	mask &= ~(1 << bit);
3086 
3087 	/*
3088 	 * Mask off all speeds higher than or equal to the current one.  At
3089 	 * this point, if current SPD is not available and we previously
3090 	 * recorded the link speed from SStatus, the driver has already
3091 	 * masked off the highest bit so mask should already be 1 or 0.
3092 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3093 	 * not previously recorded speed from SStatus.  Just return in this
3094 	 * case.
3095 	 */
3096 	if (spd > 1)
3097 		mask &= (1 << (spd - 1)) - 1;
3098 	else
3099 		return -EINVAL;
3100 
3101 	/* were we already at the bottom? */
3102 	if (!mask)
3103 		return -EINVAL;
3104 
3105 	if (spd_limit) {
3106 		if (mask & ((1 << spd_limit) - 1))
3107 			mask &= (1 << spd_limit) - 1;
3108 		else {
3109 			bit = ffs(mask) - 1;
3110 			mask = 1 << bit;
3111 		}
3112 	}
3113 
3114 	link->sata_spd_limit = mask;
3115 
3116 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3117 		      sata_spd_string(fls(mask)));
3118 
3119 	return 0;
3120 }
3121 
3122 #ifdef CONFIG_ATA_ACPI
3123 /**
3124  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3125  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3126  *	@cycle: cycle duration in ns
3127  *
3128  *	Return matching xfer mode for @cycle.  The returned mode is of
3129  *	the transfer type specified by @xfer_shift.  If @cycle is too
3130  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3131  *	than the fastest known mode, the fasted mode is returned.
3132  *
3133  *	LOCKING:
3134  *	None.
3135  *
3136  *	RETURNS:
3137  *	Matching xfer_mode, 0xff if no match found.
3138  */
3139 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3140 {
3141 	u8 base_mode = 0xff, last_mode = 0xff;
3142 	const struct ata_xfer_ent *ent;
3143 	const struct ata_timing *t;
3144 
3145 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3146 		if (ent->shift == xfer_shift)
3147 			base_mode = ent->base;
3148 
3149 	for (t = ata_timing_find_mode(base_mode);
3150 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3151 		unsigned short this_cycle;
3152 
3153 		switch (xfer_shift) {
3154 		case ATA_SHIFT_PIO:
3155 		case ATA_SHIFT_MWDMA:
3156 			this_cycle = t->cycle;
3157 			break;
3158 		case ATA_SHIFT_UDMA:
3159 			this_cycle = t->udma;
3160 			break;
3161 		default:
3162 			return 0xff;
3163 		}
3164 
3165 		if (cycle > this_cycle)
3166 			break;
3167 
3168 		last_mode = t->mode;
3169 	}
3170 
3171 	return last_mode;
3172 }
3173 #endif
3174 
3175 /**
3176  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3177  *	@dev: Device to adjust xfer masks
3178  *	@sel: ATA_DNXFER_* selector
3179  *
3180  *	Adjust xfer masks of @dev downward.  Note that this function
3181  *	does not apply the change.  Invoking ata_set_mode() afterwards
3182  *	will apply the limit.
3183  *
3184  *	LOCKING:
3185  *	Inherited from caller.
3186  *
3187  *	RETURNS:
3188  *	0 on success, negative errno on failure
3189  */
3190 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3191 {
3192 	char buf[32];
3193 	unsigned long orig_mask, xfer_mask;
3194 	unsigned long pio_mask, mwdma_mask, udma_mask;
3195 	int quiet, highbit;
3196 
3197 	quiet = !!(sel & ATA_DNXFER_QUIET);
3198 	sel &= ~ATA_DNXFER_QUIET;
3199 
3200 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3201 						  dev->mwdma_mask,
3202 						  dev->udma_mask);
3203 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3204 
3205 	switch (sel) {
3206 	case ATA_DNXFER_PIO:
3207 		highbit = fls(pio_mask) - 1;
3208 		pio_mask &= ~(1 << highbit);
3209 		break;
3210 
3211 	case ATA_DNXFER_DMA:
3212 		if (udma_mask) {
3213 			highbit = fls(udma_mask) - 1;
3214 			udma_mask &= ~(1 << highbit);
3215 			if (!udma_mask)
3216 				return -ENOENT;
3217 		} else if (mwdma_mask) {
3218 			highbit = fls(mwdma_mask) - 1;
3219 			mwdma_mask &= ~(1 << highbit);
3220 			if (!mwdma_mask)
3221 				return -ENOENT;
3222 		}
3223 		break;
3224 
3225 	case ATA_DNXFER_40C:
3226 		udma_mask &= ATA_UDMA_MASK_40C;
3227 		break;
3228 
3229 	case ATA_DNXFER_FORCE_PIO0:
3230 		pio_mask &= 1;
3231 		fallthrough;
3232 	case ATA_DNXFER_FORCE_PIO:
3233 		mwdma_mask = 0;
3234 		udma_mask = 0;
3235 		break;
3236 
3237 	default:
3238 		BUG();
3239 	}
3240 
3241 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3242 
3243 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3244 		return -ENOENT;
3245 
3246 	if (!quiet) {
3247 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3248 			snprintf(buf, sizeof(buf), "%s:%s",
3249 				 ata_mode_string(xfer_mask),
3250 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3251 		else
3252 			snprintf(buf, sizeof(buf), "%s",
3253 				 ata_mode_string(xfer_mask));
3254 
3255 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3256 	}
3257 
3258 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3259 			    &dev->udma_mask);
3260 
3261 	return 0;
3262 }
3263 
3264 static int ata_dev_set_mode(struct ata_device *dev)
3265 {
3266 	struct ata_port *ap = dev->link->ap;
3267 	struct ata_eh_context *ehc = &dev->link->eh_context;
3268 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3269 	const char *dev_err_whine = "";
3270 	int ign_dev_err = 0;
3271 	unsigned int err_mask = 0;
3272 	int rc;
3273 
3274 	dev->flags &= ~ATA_DFLAG_PIO;
3275 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3276 		dev->flags |= ATA_DFLAG_PIO;
3277 
3278 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3279 		dev_err_whine = " (SET_XFERMODE skipped)";
3280 	else {
3281 		if (nosetxfer)
3282 			ata_dev_warn(dev,
3283 				     "NOSETXFER but PATA detected - can't "
3284 				     "skip SETXFER, might malfunction\n");
3285 		err_mask = ata_dev_set_xfermode(dev);
3286 	}
3287 
3288 	if (err_mask & ~AC_ERR_DEV)
3289 		goto fail;
3290 
3291 	/* revalidate */
3292 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3293 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3294 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3295 	if (rc)
3296 		return rc;
3297 
3298 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3299 		/* Old CFA may refuse this command, which is just fine */
3300 		if (ata_id_is_cfa(dev->id))
3301 			ign_dev_err = 1;
3302 		/* Catch several broken garbage emulations plus some pre
3303 		   ATA devices */
3304 		if (ata_id_major_version(dev->id) == 0 &&
3305 					dev->pio_mode <= XFER_PIO_2)
3306 			ign_dev_err = 1;
3307 		/* Some very old devices and some bad newer ones fail
3308 		   any kind of SET_XFERMODE request but support PIO0-2
3309 		   timings and no IORDY */
3310 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3311 			ign_dev_err = 1;
3312 	}
3313 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3314 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3315 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3316 	    dev->dma_mode == XFER_MW_DMA_0 &&
3317 	    (dev->id[63] >> 8) & 1)
3318 		ign_dev_err = 1;
3319 
3320 	/* if the device is actually configured correctly, ignore dev err */
3321 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3322 		ign_dev_err = 1;
3323 
3324 	if (err_mask & AC_ERR_DEV) {
3325 		if (!ign_dev_err)
3326 			goto fail;
3327 		else
3328 			dev_err_whine = " (device error ignored)";
3329 	}
3330 
3331 	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3332 		    dev->xfer_shift, (int)dev->xfer_mode);
3333 
3334 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3335 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3336 		ata_dev_info(dev, "configured for %s%s\n",
3337 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3338 			     dev_err_whine);
3339 
3340 	return 0;
3341 
3342  fail:
3343 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3344 	return -EIO;
3345 }
3346 
3347 /**
3348  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3349  *	@link: link on which timings will be programmed
3350  *	@r_failed_dev: out parameter for failed device
3351  *
3352  *	Standard implementation of the function used to tune and set
3353  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3354  *	ata_dev_set_mode() fails, pointer to the failing device is
3355  *	returned in @r_failed_dev.
3356  *
3357  *	LOCKING:
3358  *	PCI/etc. bus probe sem.
3359  *
3360  *	RETURNS:
3361  *	0 on success, negative errno otherwise
3362  */
3363 
3364 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3365 {
3366 	struct ata_port *ap = link->ap;
3367 	struct ata_device *dev;
3368 	int rc = 0, used_dma = 0, found = 0;
3369 
3370 	/* step 1: calculate xfer_mask */
3371 	ata_for_each_dev(dev, link, ENABLED) {
3372 		unsigned long pio_mask, dma_mask;
3373 		unsigned int mode_mask;
3374 
3375 		mode_mask = ATA_DMA_MASK_ATA;
3376 		if (dev->class == ATA_DEV_ATAPI)
3377 			mode_mask = ATA_DMA_MASK_ATAPI;
3378 		else if (ata_id_is_cfa(dev->id))
3379 			mode_mask = ATA_DMA_MASK_CFA;
3380 
3381 		ata_dev_xfermask(dev);
3382 		ata_force_xfermask(dev);
3383 
3384 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3385 
3386 		if (libata_dma_mask & mode_mask)
3387 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3388 						     dev->udma_mask);
3389 		else
3390 			dma_mask = 0;
3391 
3392 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3393 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3394 
3395 		found = 1;
3396 		if (ata_dma_enabled(dev))
3397 			used_dma = 1;
3398 	}
3399 	if (!found)
3400 		goto out;
3401 
3402 	/* step 2: always set host PIO timings */
3403 	ata_for_each_dev(dev, link, ENABLED) {
3404 		if (dev->pio_mode == 0xff) {
3405 			ata_dev_warn(dev, "no PIO support\n");
3406 			rc = -EINVAL;
3407 			goto out;
3408 		}
3409 
3410 		dev->xfer_mode = dev->pio_mode;
3411 		dev->xfer_shift = ATA_SHIFT_PIO;
3412 		if (ap->ops->set_piomode)
3413 			ap->ops->set_piomode(ap, dev);
3414 	}
3415 
3416 	/* step 3: set host DMA timings */
3417 	ata_for_each_dev(dev, link, ENABLED) {
3418 		if (!ata_dma_enabled(dev))
3419 			continue;
3420 
3421 		dev->xfer_mode = dev->dma_mode;
3422 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3423 		if (ap->ops->set_dmamode)
3424 			ap->ops->set_dmamode(ap, dev);
3425 	}
3426 
3427 	/* step 4: update devices' xfer mode */
3428 	ata_for_each_dev(dev, link, ENABLED) {
3429 		rc = ata_dev_set_mode(dev);
3430 		if (rc)
3431 			goto out;
3432 	}
3433 
3434 	/* Record simplex status. If we selected DMA then the other
3435 	 * host channels are not permitted to do so.
3436 	 */
3437 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3438 		ap->host->simplex_claimed = ap;
3439 
3440  out:
3441 	if (rc)
3442 		*r_failed_dev = dev;
3443 	return rc;
3444 }
3445 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3446 
3447 /**
3448  *	ata_wait_ready - wait for link to become ready
3449  *	@link: link to be waited on
3450  *	@deadline: deadline jiffies for the operation
3451  *	@check_ready: callback to check link readiness
3452  *
3453  *	Wait for @link to become ready.  @check_ready should return
3454  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3455  *	link doesn't seem to be occupied, other errno for other error
3456  *	conditions.
3457  *
3458  *	Transient -ENODEV conditions are allowed for
3459  *	ATA_TMOUT_FF_WAIT.
3460  *
3461  *	LOCKING:
3462  *	EH context.
3463  *
3464  *	RETURNS:
3465  *	0 if @link is ready before @deadline; otherwise, -errno.
3466  */
3467 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3468 		   int (*check_ready)(struct ata_link *link))
3469 {
3470 	unsigned long start = jiffies;
3471 	unsigned long nodev_deadline;
3472 	int warned = 0;
3473 
3474 	/* choose which 0xff timeout to use, read comment in libata.h */
3475 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3476 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3477 	else
3478 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3479 
3480 	/* Slave readiness can't be tested separately from master.  On
3481 	 * M/S emulation configuration, this function should be called
3482 	 * only on the master and it will handle both master and slave.
3483 	 */
3484 	WARN_ON(link == link->ap->slave_link);
3485 
3486 	if (time_after(nodev_deadline, deadline))
3487 		nodev_deadline = deadline;
3488 
3489 	while (1) {
3490 		unsigned long now = jiffies;
3491 		int ready, tmp;
3492 
3493 		ready = tmp = check_ready(link);
3494 		if (ready > 0)
3495 			return 0;
3496 
3497 		/*
3498 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3499 		 * is online.  Also, some SATA devices take a long
3500 		 * time to clear 0xff after reset.  Wait for
3501 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3502 		 * offline.
3503 		 *
3504 		 * Note that some PATA controllers (pata_ali) explode
3505 		 * if status register is read more than once when
3506 		 * there's no device attached.
3507 		 */
3508 		if (ready == -ENODEV) {
3509 			if (ata_link_online(link))
3510 				ready = 0;
3511 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3512 				 !ata_link_offline(link) &&
3513 				 time_before(now, nodev_deadline))
3514 				ready = 0;
3515 		}
3516 
3517 		if (ready)
3518 			return ready;
3519 		if (time_after(now, deadline))
3520 			return -EBUSY;
3521 
3522 		if (!warned && time_after(now, start + 5 * HZ) &&
3523 		    (deadline - now > 3 * HZ)) {
3524 			ata_link_warn(link,
3525 				"link is slow to respond, please be patient "
3526 				"(ready=%d)\n", tmp);
3527 			warned = 1;
3528 		}
3529 
3530 		ata_msleep(link->ap, 50);
3531 	}
3532 }
3533 
3534 /**
3535  *	ata_wait_after_reset - wait for link to become ready after reset
3536  *	@link: link to be waited on
3537  *	@deadline: deadline jiffies for the operation
3538  *	@check_ready: callback to check link readiness
3539  *
3540  *	Wait for @link to become ready after reset.
3541  *
3542  *	LOCKING:
3543  *	EH context.
3544  *
3545  *	RETURNS:
3546  *	0 if @link is ready before @deadline; otherwise, -errno.
3547  */
3548 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3549 				int (*check_ready)(struct ata_link *link))
3550 {
3551 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3552 
3553 	return ata_wait_ready(link, deadline, check_ready);
3554 }
3555 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3556 
3557 /**
3558  *	ata_std_prereset - prepare for reset
3559  *	@link: ATA link to be reset
3560  *	@deadline: deadline jiffies for the operation
3561  *
3562  *	@link is about to be reset.  Initialize it.  Failure from
3563  *	prereset makes libata abort whole reset sequence and give up
3564  *	that port, so prereset should be best-effort.  It does its
3565  *	best to prepare for reset sequence but if things go wrong, it
3566  *	should just whine, not fail.
3567  *
3568  *	LOCKING:
3569  *	Kernel thread context (may sleep)
3570  *
3571  *	RETURNS:
3572  *	Always 0.
3573  */
3574 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3575 {
3576 	struct ata_port *ap = link->ap;
3577 	struct ata_eh_context *ehc = &link->eh_context;
3578 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3579 	int rc;
3580 
3581 	/* if we're about to do hardreset, nothing more to do */
3582 	if (ehc->i.action & ATA_EH_HARDRESET)
3583 		return 0;
3584 
3585 	/* if SATA, resume link */
3586 	if (ap->flags & ATA_FLAG_SATA) {
3587 		rc = sata_link_resume(link, timing, deadline);
3588 		/* whine about phy resume failure but proceed */
3589 		if (rc && rc != -EOPNOTSUPP)
3590 			ata_link_warn(link,
3591 				      "failed to resume link for reset (errno=%d)\n",
3592 				      rc);
3593 	}
3594 
3595 	/* no point in trying softreset on offline link */
3596 	if (ata_phys_link_offline(link))
3597 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3598 
3599 	return 0;
3600 }
3601 EXPORT_SYMBOL_GPL(ata_std_prereset);
3602 
3603 /**
3604  *	sata_std_hardreset - COMRESET w/o waiting or classification
3605  *	@link: link to reset
3606  *	@class: resulting class of attached device
3607  *	@deadline: deadline jiffies for the operation
3608  *
3609  *	Standard SATA COMRESET w/o waiting or classification.
3610  *
3611  *	LOCKING:
3612  *	Kernel thread context (may sleep)
3613  *
3614  *	RETURNS:
3615  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3616  */
3617 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3618 		       unsigned long deadline)
3619 {
3620 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3621 	bool online;
3622 	int rc;
3623 
3624 	/* do hardreset */
3625 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3626 	return online ? -EAGAIN : rc;
3627 }
3628 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3629 
3630 /**
3631  *	ata_std_postreset - standard postreset callback
3632  *	@link: the target ata_link
3633  *	@classes: classes of attached devices
3634  *
3635  *	This function is invoked after a successful reset.  Note that
3636  *	the device might have been reset more than once using
3637  *	different reset methods before postreset is invoked.
3638  *
3639  *	LOCKING:
3640  *	Kernel thread context (may sleep)
3641  */
3642 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3643 {
3644 	u32 serror;
3645 
3646 	/* reset complete, clear SError */
3647 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3648 		sata_scr_write(link, SCR_ERROR, serror);
3649 
3650 	/* print link status */
3651 	sata_print_link_status(link);
3652 }
3653 EXPORT_SYMBOL_GPL(ata_std_postreset);
3654 
3655 /**
3656  *	ata_dev_same_device - Determine whether new ID matches configured device
3657  *	@dev: device to compare against
3658  *	@new_class: class of the new device
3659  *	@new_id: IDENTIFY page of the new device
3660  *
3661  *	Compare @new_class and @new_id against @dev and determine
3662  *	whether @dev is the device indicated by @new_class and
3663  *	@new_id.
3664  *
3665  *	LOCKING:
3666  *	None.
3667  *
3668  *	RETURNS:
3669  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3670  */
3671 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3672 			       const u16 *new_id)
3673 {
3674 	const u16 *old_id = dev->id;
3675 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3676 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3677 
3678 	if (dev->class != new_class) {
3679 		ata_dev_info(dev, "class mismatch %d != %d\n",
3680 			     dev->class, new_class);
3681 		return 0;
3682 	}
3683 
3684 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3685 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3686 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3687 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3688 
3689 	if (strcmp(model[0], model[1])) {
3690 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3691 			     model[0], model[1]);
3692 		return 0;
3693 	}
3694 
3695 	if (strcmp(serial[0], serial[1])) {
3696 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3697 			     serial[0], serial[1]);
3698 		return 0;
3699 	}
3700 
3701 	return 1;
3702 }
3703 
3704 /**
3705  *	ata_dev_reread_id - Re-read IDENTIFY data
3706  *	@dev: target ATA device
3707  *	@readid_flags: read ID flags
3708  *
3709  *	Re-read IDENTIFY page and make sure @dev is still attached to
3710  *	the port.
3711  *
3712  *	LOCKING:
3713  *	Kernel thread context (may sleep)
3714  *
3715  *	RETURNS:
3716  *	0 on success, negative errno otherwise
3717  */
3718 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3719 {
3720 	unsigned int class = dev->class;
3721 	u16 *id = (void *)dev->link->ap->sector_buf;
3722 	int rc;
3723 
3724 	/* read ID data */
3725 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3726 	if (rc)
3727 		return rc;
3728 
3729 	/* is the device still there? */
3730 	if (!ata_dev_same_device(dev, class, id))
3731 		return -ENODEV;
3732 
3733 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3734 	return 0;
3735 }
3736 
3737 /**
3738  *	ata_dev_revalidate - Revalidate ATA device
3739  *	@dev: device to revalidate
3740  *	@new_class: new class code
3741  *	@readid_flags: read ID flags
3742  *
3743  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3744  *	port and reconfigure it according to the new IDENTIFY page.
3745  *
3746  *	LOCKING:
3747  *	Kernel thread context (may sleep)
3748  *
3749  *	RETURNS:
3750  *	0 on success, negative errno otherwise
3751  */
3752 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3753 		       unsigned int readid_flags)
3754 {
3755 	u64 n_sectors = dev->n_sectors;
3756 	u64 n_native_sectors = dev->n_native_sectors;
3757 	int rc;
3758 
3759 	if (!ata_dev_enabled(dev))
3760 		return -ENODEV;
3761 
3762 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3763 	if (ata_class_enabled(new_class) &&
3764 	    new_class != ATA_DEV_ATA &&
3765 	    new_class != ATA_DEV_ATAPI &&
3766 	    new_class != ATA_DEV_ZAC &&
3767 	    new_class != ATA_DEV_SEMB) {
3768 		ata_dev_info(dev, "class mismatch %u != %u\n",
3769 			     dev->class, new_class);
3770 		rc = -ENODEV;
3771 		goto fail;
3772 	}
3773 
3774 	/* re-read ID */
3775 	rc = ata_dev_reread_id(dev, readid_flags);
3776 	if (rc)
3777 		goto fail;
3778 
3779 	/* configure device according to the new ID */
3780 	rc = ata_dev_configure(dev);
3781 	if (rc)
3782 		goto fail;
3783 
3784 	/* verify n_sectors hasn't changed */
3785 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3786 	    dev->n_sectors == n_sectors)
3787 		return 0;
3788 
3789 	/* n_sectors has changed */
3790 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3791 		     (unsigned long long)n_sectors,
3792 		     (unsigned long long)dev->n_sectors);
3793 
3794 	/*
3795 	 * Something could have caused HPA to be unlocked
3796 	 * involuntarily.  If n_native_sectors hasn't changed and the
3797 	 * new size matches it, keep the device.
3798 	 */
3799 	if (dev->n_native_sectors == n_native_sectors &&
3800 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3801 		ata_dev_warn(dev,
3802 			     "new n_sectors matches native, probably "
3803 			     "late HPA unlock, n_sectors updated\n");
3804 		/* use the larger n_sectors */
3805 		return 0;
3806 	}
3807 
3808 	/*
3809 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3810 	 * unlocking HPA in those cases.
3811 	 *
3812 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3813 	 */
3814 	if (dev->n_native_sectors == n_native_sectors &&
3815 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3816 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3817 		ata_dev_warn(dev,
3818 			     "old n_sectors matches native, probably "
3819 			     "late HPA lock, will try to unlock HPA\n");
3820 		/* try unlocking HPA */
3821 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3822 		rc = -EIO;
3823 	} else
3824 		rc = -ENODEV;
3825 
3826 	/* restore original n_[native_]sectors and fail */
3827 	dev->n_native_sectors = n_native_sectors;
3828 	dev->n_sectors = n_sectors;
3829  fail:
3830 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3831 	return rc;
3832 }
3833 
3834 struct ata_blacklist_entry {
3835 	const char *model_num;
3836 	const char *model_rev;
3837 	unsigned long horkage;
3838 };
3839 
3840 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3841 	/* Devices with DMA related problems under Linux */
3842 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3843 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3844 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3845 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3846 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3847 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3848 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3849 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3850 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3851 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3852 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3853 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3854 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3855 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3856 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3857 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3858 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3859 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3860 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3861 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3862 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3863 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3864 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3865 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3866 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3867 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3868 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3869 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3870 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3871 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3872 	/* Odd clown on sil3726/4726 PMPs */
3873 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3874 	/* Similar story with ASMedia 1092 */
3875 	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
3876 
3877 	/* Weird ATAPI devices */
3878 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3879 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3880 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3881 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3882 
3883 	/*
3884 	 * Causes silent data corruption with higher max sects.
3885 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3886 	 */
3887 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3888 
3889 	/*
3890 	 * These devices time out with higher max sects.
3891 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3892 	 */
3893 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3894 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3895 
3896 	/* Devices we expect to fail diagnostics */
3897 
3898 	/* Devices where NCQ should be avoided */
3899 	/* NCQ is slow */
3900 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3901 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3902 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3903 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3904 	/* NCQ is broken */
3905 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3906 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3907 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3908 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3909 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3910 
3911 	/* Seagate NCQ + FLUSH CACHE firmware bug */
3912 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3913 						ATA_HORKAGE_FIRMWARE_WARN },
3914 
3915 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3916 						ATA_HORKAGE_FIRMWARE_WARN },
3917 
3918 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3919 						ATA_HORKAGE_FIRMWARE_WARN },
3920 
3921 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3922 						ATA_HORKAGE_FIRMWARE_WARN },
3923 
3924 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3925 	   the ST disks also have LPM issues */
3926 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3927 						ATA_HORKAGE_NOLPM, },
3928 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3929 
3930 	/* Blacklist entries taken from Silicon Image 3124/3132
3931 	   Windows driver .inf file - also several Linux problem reports */
3932 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3933 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3934 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3935 
3936 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3937 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
3938 
3939 	/* Sandisk SD7/8/9s lock up hard on large trims */
3940 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M, },
3941 
3942 	/* devices which puke on READ_NATIVE_MAX */
3943 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
3944 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3945 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3946 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3947 
3948 	/* this one allows HPA unlocking but fails IOs on the area */
3949 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3950 
3951 	/* Devices which report 1 sector over size HPA */
3952 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3953 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3954 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3955 
3956 	/* Devices which get the IVB wrong */
3957 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3958 	/* Maybe we should just blacklist TSSTcorp... */
3959 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
3960 
3961 	/* Devices that do not need bridging limits applied */
3962 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3963 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3964 
3965 	/* Devices which aren't very happy with higher link speeds */
3966 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
3967 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
3968 
3969 	/*
3970 	 * Devices which choke on SETXFER.  Applies only if both the
3971 	 * device and controller are SATA.
3972 	 */
3973 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
3974 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
3975 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
3976 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
3977 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
3978 
3979 	/* Crucial BX100 SSD 500GB has broken LPM support */
3980 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
3981 
3982 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3983 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3984 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3985 						ATA_HORKAGE_NOLPM, },
3986 	/* 512GB MX100 with newer firmware has only LPM issues */
3987 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
3988 						ATA_HORKAGE_NOLPM, },
3989 
3990 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3991 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3992 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3993 						ATA_HORKAGE_NOLPM, },
3994 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3995 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3996 						ATA_HORKAGE_NOLPM, },
3997 
3998 	/* These specific Samsung models/firmware-revs do not handle LPM well */
3999 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4000 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4001 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
4002 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
4003 
4004 	/* devices that don't properly handle queued TRIM commands */
4005 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4006 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4007 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4008 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4009 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4010 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4011 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4012 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4013 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4014 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4015 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4016 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4017 	{ "Samsung SSD 840 EVO*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4018 						ATA_HORKAGE_NO_DMA_LOG |
4019 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4020 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4021 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4022 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4023 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4024 	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4025 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4026 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4027 	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4028 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4029 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4030 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4031 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4032 
4033 	/* devices that don't properly handle TRIM commands */
4034 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4035 	{ "M88V29*",			NULL,	ATA_HORKAGE_NOTRIM, },
4036 
4037 	/*
4038 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4039 	 * (Return Zero After Trim) flags in the ATA Command Set are
4040 	 * unreliable in the sense that they only define what happens if
4041 	 * the device successfully executed the DSM TRIM command. TRIM
4042 	 * is only advisory, however, and the device is free to silently
4043 	 * ignore all or parts of the request.
4044 	 *
4045 	 * Whitelist drives that are known to reliably return zeroes
4046 	 * after TRIM.
4047 	 */
4048 
4049 	/*
4050 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4051 	 * that model before whitelisting all other intel SSDs.
4052 	 */
4053 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4054 
4055 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4056 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4057 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4058 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4059 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4060 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4061 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4062 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4063 
4064 	/*
4065 	 * Some WD SATA-I drives spin up and down erratically when the link
4066 	 * is put into the slumber mode.  We don't have full list of the
4067 	 * affected devices.  Disable LPM if the device matches one of the
4068 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4069 	 * lost too.
4070 	 *
4071 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4072 	 */
4073 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4074 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4075 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4076 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4077 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4078 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4079 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4080 
4081 	/*
4082 	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4083 	 * log page is accessed. Ensure we never ask for this log page with
4084 	 * these devices.
4085 	 */
4086 	{ "SATADOM-ML 3ME",		NULL,	ATA_HORKAGE_NO_LOG_DIR },
4087 
4088 	/* End Marker */
4089 	{ }
4090 };
4091 
4092 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4093 {
4094 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4095 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4096 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4097 
4098 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4099 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4100 
4101 	while (ad->model_num) {
4102 		if (glob_match(ad->model_num, model_num)) {
4103 			if (ad->model_rev == NULL)
4104 				return ad->horkage;
4105 			if (glob_match(ad->model_rev, model_rev))
4106 				return ad->horkage;
4107 		}
4108 		ad++;
4109 	}
4110 	return 0;
4111 }
4112 
4113 static int ata_dma_blacklisted(const struct ata_device *dev)
4114 {
4115 	/* We don't support polling DMA.
4116 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4117 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4118 	 */
4119 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4120 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4121 		return 1;
4122 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4123 }
4124 
4125 /**
4126  *	ata_is_40wire		-	check drive side detection
4127  *	@dev: device
4128  *
4129  *	Perform drive side detection decoding, allowing for device vendors
4130  *	who can't follow the documentation.
4131  */
4132 
4133 static int ata_is_40wire(struct ata_device *dev)
4134 {
4135 	if (dev->horkage & ATA_HORKAGE_IVB)
4136 		return ata_drive_40wire_relaxed(dev->id);
4137 	return ata_drive_40wire(dev->id);
4138 }
4139 
4140 /**
4141  *	cable_is_40wire		-	40/80/SATA decider
4142  *	@ap: port to consider
4143  *
4144  *	This function encapsulates the policy for speed management
4145  *	in one place. At the moment we don't cache the result but
4146  *	there is a good case for setting ap->cbl to the result when
4147  *	we are called with unknown cables (and figuring out if it
4148  *	impacts hotplug at all).
4149  *
4150  *	Return 1 if the cable appears to be 40 wire.
4151  */
4152 
4153 static int cable_is_40wire(struct ata_port *ap)
4154 {
4155 	struct ata_link *link;
4156 	struct ata_device *dev;
4157 
4158 	/* If the controller thinks we are 40 wire, we are. */
4159 	if (ap->cbl == ATA_CBL_PATA40)
4160 		return 1;
4161 
4162 	/* If the controller thinks we are 80 wire, we are. */
4163 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4164 		return 0;
4165 
4166 	/* If the system is known to be 40 wire short cable (eg
4167 	 * laptop), then we allow 80 wire modes even if the drive
4168 	 * isn't sure.
4169 	 */
4170 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4171 		return 0;
4172 
4173 	/* If the controller doesn't know, we scan.
4174 	 *
4175 	 * Note: We look for all 40 wire detects at this point.  Any
4176 	 *       80 wire detect is taken to be 80 wire cable because
4177 	 * - in many setups only the one drive (slave if present) will
4178 	 *   give a valid detect
4179 	 * - if you have a non detect capable drive you don't want it
4180 	 *   to colour the choice
4181 	 */
4182 	ata_for_each_link(link, ap, EDGE) {
4183 		ata_for_each_dev(dev, link, ENABLED) {
4184 			if (!ata_is_40wire(dev))
4185 				return 0;
4186 		}
4187 	}
4188 	return 1;
4189 }
4190 
4191 /**
4192  *	ata_dev_xfermask - Compute supported xfermask of the given device
4193  *	@dev: Device to compute xfermask for
4194  *
4195  *	Compute supported xfermask of @dev and store it in
4196  *	dev->*_mask.  This function is responsible for applying all
4197  *	known limits including host controller limits, device
4198  *	blacklist, etc...
4199  *
4200  *	LOCKING:
4201  *	None.
4202  */
4203 static void ata_dev_xfermask(struct ata_device *dev)
4204 {
4205 	struct ata_link *link = dev->link;
4206 	struct ata_port *ap = link->ap;
4207 	struct ata_host *host = ap->host;
4208 	unsigned long xfer_mask;
4209 
4210 	/* controller modes available */
4211 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4212 				      ap->mwdma_mask, ap->udma_mask);
4213 
4214 	/* drive modes available */
4215 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4216 				       dev->mwdma_mask, dev->udma_mask);
4217 	xfer_mask &= ata_id_xfermask(dev->id);
4218 
4219 	/*
4220 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4221 	 *	cable
4222 	 */
4223 	if (ata_dev_pair(dev)) {
4224 		/* No PIO5 or PIO6 */
4225 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4226 		/* No MWDMA3 or MWDMA 4 */
4227 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4228 	}
4229 
4230 	if (ata_dma_blacklisted(dev)) {
4231 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4232 		ata_dev_warn(dev,
4233 			     "device is on DMA blacklist, disabling DMA\n");
4234 	}
4235 
4236 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4237 	    host->simplex_claimed && host->simplex_claimed != ap) {
4238 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4239 		ata_dev_warn(dev,
4240 			     "simplex DMA is claimed by other device, disabling DMA\n");
4241 	}
4242 
4243 	if (ap->flags & ATA_FLAG_NO_IORDY)
4244 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4245 
4246 	if (ap->ops->mode_filter)
4247 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4248 
4249 	/* Apply cable rule here.  Don't apply it early because when
4250 	 * we handle hot plug the cable type can itself change.
4251 	 * Check this last so that we know if the transfer rate was
4252 	 * solely limited by the cable.
4253 	 * Unknown or 80 wire cables reported host side are checked
4254 	 * drive side as well. Cases where we know a 40wire cable
4255 	 * is used safely for 80 are not checked here.
4256 	 */
4257 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4258 		/* UDMA/44 or higher would be available */
4259 		if (cable_is_40wire(ap)) {
4260 			ata_dev_warn(dev,
4261 				     "limited to UDMA/33 due to 40-wire cable\n");
4262 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4263 		}
4264 
4265 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4266 			    &dev->mwdma_mask, &dev->udma_mask);
4267 }
4268 
4269 /**
4270  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4271  *	@dev: Device to which command will be sent
4272  *
4273  *	Issue SET FEATURES - XFER MODE command to device @dev
4274  *	on port @ap.
4275  *
4276  *	LOCKING:
4277  *	PCI/etc. bus probe sem.
4278  *
4279  *	RETURNS:
4280  *	0 on success, AC_ERR_* mask otherwise.
4281  */
4282 
4283 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4284 {
4285 	struct ata_taskfile tf;
4286 	unsigned int err_mask;
4287 
4288 	/* set up set-features taskfile */
4289 	ata_dev_dbg(dev, "set features - xfer mode\n");
4290 
4291 	/* Some controllers and ATAPI devices show flaky interrupt
4292 	 * behavior after setting xfer mode.  Use polling instead.
4293 	 */
4294 	ata_tf_init(dev, &tf);
4295 	tf.command = ATA_CMD_SET_FEATURES;
4296 	tf.feature = SETFEATURES_XFER;
4297 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4298 	tf.protocol = ATA_PROT_NODATA;
4299 	/* If we are using IORDY we must send the mode setting command */
4300 	if (ata_pio_need_iordy(dev))
4301 		tf.nsect = dev->xfer_mode;
4302 	/* If the device has IORDY and the controller does not - turn it off */
4303  	else if (ata_id_has_iordy(dev->id))
4304 		tf.nsect = 0x01;
4305 	else /* In the ancient relic department - skip all of this */
4306 		return 0;
4307 
4308 	/* On some disks, this command causes spin-up, so we need longer timeout */
4309 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4310 
4311 	return err_mask;
4312 }
4313 
4314 /**
4315  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4316  *	@dev: Device to which command will be sent
4317  *	@enable: Whether to enable or disable the feature
4318  *	@feature: The sector count represents the feature to set
4319  *
4320  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4321  *	on port @ap with sector count
4322  *
4323  *	LOCKING:
4324  *	PCI/etc. bus probe sem.
4325  *
4326  *	RETURNS:
4327  *	0 on success, AC_ERR_* mask otherwise.
4328  */
4329 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4330 {
4331 	struct ata_taskfile tf;
4332 	unsigned int err_mask;
4333 	unsigned long timeout = 0;
4334 
4335 	/* set up set-features taskfile */
4336 	ata_dev_dbg(dev, "set features - SATA features\n");
4337 
4338 	ata_tf_init(dev, &tf);
4339 	tf.command = ATA_CMD_SET_FEATURES;
4340 	tf.feature = enable;
4341 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4342 	tf.protocol = ATA_PROT_NODATA;
4343 	tf.nsect = feature;
4344 
4345 	if (enable == SETFEATURES_SPINUP)
4346 		timeout = ata_probe_timeout ?
4347 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4348 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4349 
4350 	return err_mask;
4351 }
4352 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4353 
4354 /**
4355  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4356  *	@dev: Device to which command will be sent
4357  *	@heads: Number of heads (taskfile parameter)
4358  *	@sectors: Number of sectors (taskfile parameter)
4359  *
4360  *	LOCKING:
4361  *	Kernel thread context (may sleep)
4362  *
4363  *	RETURNS:
4364  *	0 on success, AC_ERR_* mask otherwise.
4365  */
4366 static unsigned int ata_dev_init_params(struct ata_device *dev,
4367 					u16 heads, u16 sectors)
4368 {
4369 	struct ata_taskfile tf;
4370 	unsigned int err_mask;
4371 
4372 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4373 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4374 		return AC_ERR_INVALID;
4375 
4376 	/* set up init dev params taskfile */
4377 	ata_dev_dbg(dev, "init dev params \n");
4378 
4379 	ata_tf_init(dev, &tf);
4380 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4381 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4382 	tf.protocol = ATA_PROT_NODATA;
4383 	tf.nsect = sectors;
4384 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4385 
4386 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4387 	/* A clean abort indicates an original or just out of spec drive
4388 	   and we should continue as we issue the setup based on the
4389 	   drive reported working geometry */
4390 	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4391 		err_mask = 0;
4392 
4393 	return err_mask;
4394 }
4395 
4396 /**
4397  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4398  *	@qc: Metadata associated with taskfile to check
4399  *
4400  *	Allow low-level driver to filter ATA PACKET commands, returning
4401  *	a status indicating whether or not it is OK to use DMA for the
4402  *	supplied PACKET command.
4403  *
4404  *	LOCKING:
4405  *	spin_lock_irqsave(host lock)
4406  *
4407  *	RETURNS: 0 when ATAPI DMA can be used
4408  *               nonzero otherwise
4409  */
4410 int atapi_check_dma(struct ata_queued_cmd *qc)
4411 {
4412 	struct ata_port *ap = qc->ap;
4413 
4414 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4415 	 * few ATAPI devices choke on such DMA requests.
4416 	 */
4417 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4418 	    unlikely(qc->nbytes & 15))
4419 		return 1;
4420 
4421 	if (ap->ops->check_atapi_dma)
4422 		return ap->ops->check_atapi_dma(qc);
4423 
4424 	return 0;
4425 }
4426 
4427 /**
4428  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4429  *	@qc: ATA command in question
4430  *
4431  *	Non-NCQ commands cannot run with any other command, NCQ or
4432  *	not.  As upper layer only knows the queue depth, we are
4433  *	responsible for maintaining exclusion.  This function checks
4434  *	whether a new command @qc can be issued.
4435  *
4436  *	LOCKING:
4437  *	spin_lock_irqsave(host lock)
4438  *
4439  *	RETURNS:
4440  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4441  */
4442 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4443 {
4444 	struct ata_link *link = qc->dev->link;
4445 
4446 	if (ata_is_ncq(qc->tf.protocol)) {
4447 		if (!ata_tag_valid(link->active_tag))
4448 			return 0;
4449 	} else {
4450 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4451 			return 0;
4452 	}
4453 
4454 	return ATA_DEFER_LINK;
4455 }
4456 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4457 
4458 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4459 {
4460 	return AC_ERR_OK;
4461 }
4462 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4463 
4464 /**
4465  *	ata_sg_init - Associate command with scatter-gather table.
4466  *	@qc: Command to be associated
4467  *	@sg: Scatter-gather table.
4468  *	@n_elem: Number of elements in s/g table.
4469  *
4470  *	Initialize the data-related elements of queued_cmd @qc
4471  *	to point to a scatter-gather table @sg, containing @n_elem
4472  *	elements.
4473  *
4474  *	LOCKING:
4475  *	spin_lock_irqsave(host lock)
4476  */
4477 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4478 		 unsigned int n_elem)
4479 {
4480 	qc->sg = sg;
4481 	qc->n_elem = n_elem;
4482 	qc->cursg = qc->sg;
4483 }
4484 
4485 #ifdef CONFIG_HAS_DMA
4486 
4487 /**
4488  *	ata_sg_clean - Unmap DMA memory associated with command
4489  *	@qc: Command containing DMA memory to be released
4490  *
4491  *	Unmap all mapped DMA memory associated with this command.
4492  *
4493  *	LOCKING:
4494  *	spin_lock_irqsave(host lock)
4495  */
4496 static void ata_sg_clean(struct ata_queued_cmd *qc)
4497 {
4498 	struct ata_port *ap = qc->ap;
4499 	struct scatterlist *sg = qc->sg;
4500 	int dir = qc->dma_dir;
4501 
4502 	WARN_ON_ONCE(sg == NULL);
4503 
4504 	if (qc->n_elem)
4505 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4506 
4507 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4508 	qc->sg = NULL;
4509 }
4510 
4511 /**
4512  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4513  *	@qc: Command with scatter-gather table to be mapped.
4514  *
4515  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4516  *
4517  *	LOCKING:
4518  *	spin_lock_irqsave(host lock)
4519  *
4520  *	RETURNS:
4521  *	Zero on success, negative on error.
4522  *
4523  */
4524 static int ata_sg_setup(struct ata_queued_cmd *qc)
4525 {
4526 	struct ata_port *ap = qc->ap;
4527 	unsigned int n_elem;
4528 
4529 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4530 	if (n_elem < 1)
4531 		return -1;
4532 
4533 	qc->orig_n_elem = qc->n_elem;
4534 	qc->n_elem = n_elem;
4535 	qc->flags |= ATA_QCFLAG_DMAMAP;
4536 
4537 	return 0;
4538 }
4539 
4540 #else /* !CONFIG_HAS_DMA */
4541 
4542 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4543 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4544 
4545 #endif /* !CONFIG_HAS_DMA */
4546 
4547 /**
4548  *	swap_buf_le16 - swap halves of 16-bit words in place
4549  *	@buf:  Buffer to swap
4550  *	@buf_words:  Number of 16-bit words in buffer.
4551  *
4552  *	Swap halves of 16-bit words if needed to convert from
4553  *	little-endian byte order to native cpu byte order, or
4554  *	vice-versa.
4555  *
4556  *	LOCKING:
4557  *	Inherited from caller.
4558  */
4559 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4560 {
4561 #ifdef __BIG_ENDIAN
4562 	unsigned int i;
4563 
4564 	for (i = 0; i < buf_words; i++)
4565 		buf[i] = le16_to_cpu(buf[i]);
4566 #endif /* __BIG_ENDIAN */
4567 }
4568 
4569 /**
4570  *	ata_qc_new_init - Request an available ATA command, and initialize it
4571  *	@dev: Device from whom we request an available command structure
4572  *	@tag: tag
4573  *
4574  *	LOCKING:
4575  *	None.
4576  */
4577 
4578 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4579 {
4580 	struct ata_port *ap = dev->link->ap;
4581 	struct ata_queued_cmd *qc;
4582 
4583 	/* no command while frozen */
4584 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4585 		return NULL;
4586 
4587 	/* libsas case */
4588 	if (ap->flags & ATA_FLAG_SAS_HOST) {
4589 		tag = ata_sas_allocate_tag(ap);
4590 		if (tag < 0)
4591 			return NULL;
4592 	}
4593 
4594 	qc = __ata_qc_from_tag(ap, tag);
4595 	qc->tag = qc->hw_tag = tag;
4596 	qc->scsicmd = NULL;
4597 	qc->ap = ap;
4598 	qc->dev = dev;
4599 
4600 	ata_qc_reinit(qc);
4601 
4602 	return qc;
4603 }
4604 
4605 /**
4606  *	ata_qc_free - free unused ata_queued_cmd
4607  *	@qc: Command to complete
4608  *
4609  *	Designed to free unused ata_queued_cmd object
4610  *	in case something prevents using it.
4611  *
4612  *	LOCKING:
4613  *	spin_lock_irqsave(host lock)
4614  */
4615 void ata_qc_free(struct ata_queued_cmd *qc)
4616 {
4617 	struct ata_port *ap;
4618 	unsigned int tag;
4619 
4620 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4621 	ap = qc->ap;
4622 
4623 	qc->flags = 0;
4624 	tag = qc->tag;
4625 	if (ata_tag_valid(tag)) {
4626 		qc->tag = ATA_TAG_POISON;
4627 		if (ap->flags & ATA_FLAG_SAS_HOST)
4628 			ata_sas_free_tag(tag, ap);
4629 	}
4630 }
4631 
4632 void __ata_qc_complete(struct ata_queued_cmd *qc)
4633 {
4634 	struct ata_port *ap;
4635 	struct ata_link *link;
4636 
4637 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4638 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4639 	ap = qc->ap;
4640 	link = qc->dev->link;
4641 
4642 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4643 		ata_sg_clean(qc);
4644 
4645 	/* command should be marked inactive atomically with qc completion */
4646 	if (ata_is_ncq(qc->tf.protocol)) {
4647 		link->sactive &= ~(1 << qc->hw_tag);
4648 		if (!link->sactive)
4649 			ap->nr_active_links--;
4650 	} else {
4651 		link->active_tag = ATA_TAG_POISON;
4652 		ap->nr_active_links--;
4653 	}
4654 
4655 	/* clear exclusive status */
4656 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4657 		     ap->excl_link == link))
4658 		ap->excl_link = NULL;
4659 
4660 	/* atapi: mark qc as inactive to prevent the interrupt handler
4661 	 * from completing the command twice later, before the error handler
4662 	 * is called. (when rc != 0 and atapi request sense is needed)
4663 	 */
4664 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4665 	ap->qc_active &= ~(1ULL << qc->tag);
4666 
4667 	/* call completion callback */
4668 	qc->complete_fn(qc);
4669 }
4670 
4671 static void fill_result_tf(struct ata_queued_cmd *qc)
4672 {
4673 	struct ata_port *ap = qc->ap;
4674 
4675 	qc->result_tf.flags = qc->tf.flags;
4676 	ap->ops->qc_fill_rtf(qc);
4677 }
4678 
4679 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4680 {
4681 	struct ata_device *dev = qc->dev;
4682 
4683 	if (!ata_is_data(qc->tf.protocol))
4684 		return;
4685 
4686 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4687 		return;
4688 
4689 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4690 }
4691 
4692 /**
4693  *	ata_qc_complete - Complete an active ATA command
4694  *	@qc: Command to complete
4695  *
4696  *	Indicate to the mid and upper layers that an ATA command has
4697  *	completed, with either an ok or not-ok status.
4698  *
4699  *	Refrain from calling this function multiple times when
4700  *	successfully completing multiple NCQ commands.
4701  *	ata_qc_complete_multiple() should be used instead, which will
4702  *	properly update IRQ expect state.
4703  *
4704  *	LOCKING:
4705  *	spin_lock_irqsave(host lock)
4706  */
4707 void ata_qc_complete(struct ata_queued_cmd *qc)
4708 {
4709 	struct ata_port *ap = qc->ap;
4710 
4711 	/* Trigger the LED (if available) */
4712 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4713 
4714 	/* XXX: New EH and old EH use different mechanisms to
4715 	 * synchronize EH with regular execution path.
4716 	 *
4717 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4718 	 * Normal execution path is responsible for not accessing a
4719 	 * failed qc.  libata core enforces the rule by returning NULL
4720 	 * from ata_qc_from_tag() for failed qcs.
4721 	 *
4722 	 * Old EH depends on ata_qc_complete() nullifying completion
4723 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4724 	 * not synchronize with interrupt handler.  Only PIO task is
4725 	 * taken care of.
4726 	 */
4727 	if (ap->ops->error_handler) {
4728 		struct ata_device *dev = qc->dev;
4729 		struct ata_eh_info *ehi = &dev->link->eh_info;
4730 
4731 		if (unlikely(qc->err_mask))
4732 			qc->flags |= ATA_QCFLAG_FAILED;
4733 
4734 		/*
4735 		 * Finish internal commands without any further processing
4736 		 * and always with the result TF filled.
4737 		 */
4738 		if (unlikely(ata_tag_internal(qc->tag))) {
4739 			fill_result_tf(qc);
4740 			trace_ata_qc_complete_internal(qc);
4741 			__ata_qc_complete(qc);
4742 			return;
4743 		}
4744 
4745 		/*
4746 		 * Non-internal qc has failed.  Fill the result TF and
4747 		 * summon EH.
4748 		 */
4749 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4750 			fill_result_tf(qc);
4751 			trace_ata_qc_complete_failed(qc);
4752 			ata_qc_schedule_eh(qc);
4753 			return;
4754 		}
4755 
4756 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4757 
4758 		/* read result TF if requested */
4759 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4760 			fill_result_tf(qc);
4761 
4762 		trace_ata_qc_complete_done(qc);
4763 		/* Some commands need post-processing after successful
4764 		 * completion.
4765 		 */
4766 		switch (qc->tf.command) {
4767 		case ATA_CMD_SET_FEATURES:
4768 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4769 			    qc->tf.feature != SETFEATURES_WC_OFF &&
4770 			    qc->tf.feature != SETFEATURES_RA_ON &&
4771 			    qc->tf.feature != SETFEATURES_RA_OFF)
4772 				break;
4773 			fallthrough;
4774 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4775 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4776 			/* revalidate device */
4777 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4778 			ata_port_schedule_eh(ap);
4779 			break;
4780 
4781 		case ATA_CMD_SLEEP:
4782 			dev->flags |= ATA_DFLAG_SLEEPING;
4783 			break;
4784 		}
4785 
4786 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4787 			ata_verify_xfer(qc);
4788 
4789 		__ata_qc_complete(qc);
4790 	} else {
4791 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4792 			return;
4793 
4794 		/* read result TF if failed or requested */
4795 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4796 			fill_result_tf(qc);
4797 
4798 		__ata_qc_complete(qc);
4799 	}
4800 }
4801 EXPORT_SYMBOL_GPL(ata_qc_complete);
4802 
4803 /**
4804  *	ata_qc_get_active - get bitmask of active qcs
4805  *	@ap: port in question
4806  *
4807  *	LOCKING:
4808  *	spin_lock_irqsave(host lock)
4809  *
4810  *	RETURNS:
4811  *	Bitmask of active qcs
4812  */
4813 u64 ata_qc_get_active(struct ata_port *ap)
4814 {
4815 	u64 qc_active = ap->qc_active;
4816 
4817 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4818 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4819 		qc_active |= (1 << 0);
4820 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4821 	}
4822 
4823 	return qc_active;
4824 }
4825 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4826 
4827 /**
4828  *	ata_qc_issue - issue taskfile to device
4829  *	@qc: command to issue to device
4830  *
4831  *	Prepare an ATA command to submission to device.
4832  *	This includes mapping the data into a DMA-able
4833  *	area, filling in the S/G table, and finally
4834  *	writing the taskfile to hardware, starting the command.
4835  *
4836  *	LOCKING:
4837  *	spin_lock_irqsave(host lock)
4838  */
4839 void ata_qc_issue(struct ata_queued_cmd *qc)
4840 {
4841 	struct ata_port *ap = qc->ap;
4842 	struct ata_link *link = qc->dev->link;
4843 	u8 prot = qc->tf.protocol;
4844 
4845 	/* Make sure only one non-NCQ command is outstanding.  The
4846 	 * check is skipped for old EH because it reuses active qc to
4847 	 * request ATAPI sense.
4848 	 */
4849 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4850 
4851 	if (ata_is_ncq(prot)) {
4852 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4853 
4854 		if (!link->sactive)
4855 			ap->nr_active_links++;
4856 		link->sactive |= 1 << qc->hw_tag;
4857 	} else {
4858 		WARN_ON_ONCE(link->sactive);
4859 
4860 		ap->nr_active_links++;
4861 		link->active_tag = qc->tag;
4862 	}
4863 
4864 	qc->flags |= ATA_QCFLAG_ACTIVE;
4865 	ap->qc_active |= 1ULL << qc->tag;
4866 
4867 	/*
4868 	 * We guarantee to LLDs that they will have at least one
4869 	 * non-zero sg if the command is a data command.
4870 	 */
4871 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4872 		goto sys_err;
4873 
4874 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4875 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4876 		if (ata_sg_setup(qc))
4877 			goto sys_err;
4878 
4879 	/* if device is sleeping, schedule reset and abort the link */
4880 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4881 		link->eh_info.action |= ATA_EH_RESET;
4882 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4883 		ata_link_abort(link);
4884 		return;
4885 	}
4886 
4887 	trace_ata_qc_prep(qc);
4888 	qc->err_mask |= ap->ops->qc_prep(qc);
4889 	if (unlikely(qc->err_mask))
4890 		goto err;
4891 	trace_ata_qc_issue(qc);
4892 	qc->err_mask |= ap->ops->qc_issue(qc);
4893 	if (unlikely(qc->err_mask))
4894 		goto err;
4895 	return;
4896 
4897 sys_err:
4898 	qc->err_mask |= AC_ERR_SYSTEM;
4899 err:
4900 	ata_qc_complete(qc);
4901 }
4902 
4903 /**
4904  *	ata_phys_link_online - test whether the given link is online
4905  *	@link: ATA link to test
4906  *
4907  *	Test whether @link is online.  Note that this function returns
4908  *	0 if online status of @link cannot be obtained, so
4909  *	ata_link_online(link) != !ata_link_offline(link).
4910  *
4911  *	LOCKING:
4912  *	None.
4913  *
4914  *	RETURNS:
4915  *	True if the port online status is available and online.
4916  */
4917 bool ata_phys_link_online(struct ata_link *link)
4918 {
4919 	u32 sstatus;
4920 
4921 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4922 	    ata_sstatus_online(sstatus))
4923 		return true;
4924 	return false;
4925 }
4926 
4927 /**
4928  *	ata_phys_link_offline - test whether the given link is offline
4929  *	@link: ATA link to test
4930  *
4931  *	Test whether @link is offline.  Note that this function
4932  *	returns 0 if offline status of @link cannot be obtained, so
4933  *	ata_link_online(link) != !ata_link_offline(link).
4934  *
4935  *	LOCKING:
4936  *	None.
4937  *
4938  *	RETURNS:
4939  *	True if the port offline status is available and offline.
4940  */
4941 bool ata_phys_link_offline(struct ata_link *link)
4942 {
4943 	u32 sstatus;
4944 
4945 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4946 	    !ata_sstatus_online(sstatus))
4947 		return true;
4948 	return false;
4949 }
4950 
4951 /**
4952  *	ata_link_online - test whether the given link is online
4953  *	@link: ATA link to test
4954  *
4955  *	Test whether @link is online.  This is identical to
4956  *	ata_phys_link_online() when there's no slave link.  When
4957  *	there's a slave link, this function should only be called on
4958  *	the master link and will return true if any of M/S links is
4959  *	online.
4960  *
4961  *	LOCKING:
4962  *	None.
4963  *
4964  *	RETURNS:
4965  *	True if the port online status is available and online.
4966  */
4967 bool ata_link_online(struct ata_link *link)
4968 {
4969 	struct ata_link *slave = link->ap->slave_link;
4970 
4971 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4972 
4973 	return ata_phys_link_online(link) ||
4974 		(slave && ata_phys_link_online(slave));
4975 }
4976 EXPORT_SYMBOL_GPL(ata_link_online);
4977 
4978 /**
4979  *	ata_link_offline - test whether the given link is offline
4980  *	@link: ATA link to test
4981  *
4982  *	Test whether @link is offline.  This is identical to
4983  *	ata_phys_link_offline() when there's no slave link.  When
4984  *	there's a slave link, this function should only be called on
4985  *	the master link and will return true if both M/S links are
4986  *	offline.
4987  *
4988  *	LOCKING:
4989  *	None.
4990  *
4991  *	RETURNS:
4992  *	True if the port offline status is available and offline.
4993  */
4994 bool ata_link_offline(struct ata_link *link)
4995 {
4996 	struct ata_link *slave = link->ap->slave_link;
4997 
4998 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4999 
5000 	return ata_phys_link_offline(link) &&
5001 		(!slave || ata_phys_link_offline(slave));
5002 }
5003 EXPORT_SYMBOL_GPL(ata_link_offline);
5004 
5005 #ifdef CONFIG_PM
5006 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5007 				unsigned int action, unsigned int ehi_flags,
5008 				bool async)
5009 {
5010 	struct ata_link *link;
5011 	unsigned long flags;
5012 
5013 	/* Previous resume operation might still be in
5014 	 * progress.  Wait for PM_PENDING to clear.
5015 	 */
5016 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5017 		ata_port_wait_eh(ap);
5018 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5019 	}
5020 
5021 	/* request PM ops to EH */
5022 	spin_lock_irqsave(ap->lock, flags);
5023 
5024 	ap->pm_mesg = mesg;
5025 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5026 	ata_for_each_link(link, ap, HOST_FIRST) {
5027 		link->eh_info.action |= action;
5028 		link->eh_info.flags |= ehi_flags;
5029 	}
5030 
5031 	ata_port_schedule_eh(ap);
5032 
5033 	spin_unlock_irqrestore(ap->lock, flags);
5034 
5035 	if (!async) {
5036 		ata_port_wait_eh(ap);
5037 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5038 	}
5039 }
5040 
5041 /*
5042  * On some hardware, device fails to respond after spun down for suspend.  As
5043  * the device won't be used before being resumed, we don't need to touch the
5044  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5045  *
5046  * http://thread.gmane.org/gmane.linux.ide/46764
5047  */
5048 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5049 						 | ATA_EHI_NO_AUTOPSY
5050 						 | ATA_EHI_NO_RECOVERY;
5051 
5052 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5053 {
5054 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5055 }
5056 
5057 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5058 {
5059 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5060 }
5061 
5062 static int ata_port_pm_suspend(struct device *dev)
5063 {
5064 	struct ata_port *ap = to_ata_port(dev);
5065 
5066 	if (pm_runtime_suspended(dev))
5067 		return 0;
5068 
5069 	ata_port_suspend(ap, PMSG_SUSPEND);
5070 	return 0;
5071 }
5072 
5073 static int ata_port_pm_freeze(struct device *dev)
5074 {
5075 	struct ata_port *ap = to_ata_port(dev);
5076 
5077 	if (pm_runtime_suspended(dev))
5078 		return 0;
5079 
5080 	ata_port_suspend(ap, PMSG_FREEZE);
5081 	return 0;
5082 }
5083 
5084 static int ata_port_pm_poweroff(struct device *dev)
5085 {
5086 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5087 	return 0;
5088 }
5089 
5090 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5091 						| ATA_EHI_QUIET;
5092 
5093 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5094 {
5095 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5096 }
5097 
5098 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5099 {
5100 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5101 }
5102 
5103 static int ata_port_pm_resume(struct device *dev)
5104 {
5105 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5106 	pm_runtime_disable(dev);
5107 	pm_runtime_set_active(dev);
5108 	pm_runtime_enable(dev);
5109 	return 0;
5110 }
5111 
5112 /*
5113  * For ODDs, the upper layer will poll for media change every few seconds,
5114  * which will make it enter and leave suspend state every few seconds. And
5115  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5116  * is very little and the ODD may malfunction after constantly being reset.
5117  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5118  * ODD is attached to the port.
5119  */
5120 static int ata_port_runtime_idle(struct device *dev)
5121 {
5122 	struct ata_port *ap = to_ata_port(dev);
5123 	struct ata_link *link;
5124 	struct ata_device *adev;
5125 
5126 	ata_for_each_link(link, ap, HOST_FIRST) {
5127 		ata_for_each_dev(adev, link, ENABLED)
5128 			if (adev->class == ATA_DEV_ATAPI &&
5129 			    !zpodd_dev_enabled(adev))
5130 				return -EBUSY;
5131 	}
5132 
5133 	return 0;
5134 }
5135 
5136 static int ata_port_runtime_suspend(struct device *dev)
5137 {
5138 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5139 	return 0;
5140 }
5141 
5142 static int ata_port_runtime_resume(struct device *dev)
5143 {
5144 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5145 	return 0;
5146 }
5147 
5148 static const struct dev_pm_ops ata_port_pm_ops = {
5149 	.suspend = ata_port_pm_suspend,
5150 	.resume = ata_port_pm_resume,
5151 	.freeze = ata_port_pm_freeze,
5152 	.thaw = ata_port_pm_resume,
5153 	.poweroff = ata_port_pm_poweroff,
5154 	.restore = ata_port_pm_resume,
5155 
5156 	.runtime_suspend = ata_port_runtime_suspend,
5157 	.runtime_resume = ata_port_runtime_resume,
5158 	.runtime_idle = ata_port_runtime_idle,
5159 };
5160 
5161 /* sas ports don't participate in pm runtime management of ata_ports,
5162  * and need to resume ata devices at the domain level, not the per-port
5163  * level. sas suspend/resume is async to allow parallel port recovery
5164  * since sas has multiple ata_port instances per Scsi_Host.
5165  */
5166 void ata_sas_port_suspend(struct ata_port *ap)
5167 {
5168 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5169 }
5170 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5171 
5172 void ata_sas_port_resume(struct ata_port *ap)
5173 {
5174 	ata_port_resume_async(ap, PMSG_RESUME);
5175 }
5176 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5177 
5178 /**
5179  *	ata_host_suspend - suspend host
5180  *	@host: host to suspend
5181  *	@mesg: PM message
5182  *
5183  *	Suspend @host.  Actual operation is performed by port suspend.
5184  */
5185 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5186 {
5187 	host->dev->power.power_state = mesg;
5188 }
5189 EXPORT_SYMBOL_GPL(ata_host_suspend);
5190 
5191 /**
5192  *	ata_host_resume - resume host
5193  *	@host: host to resume
5194  *
5195  *	Resume @host.  Actual operation is performed by port resume.
5196  */
5197 void ata_host_resume(struct ata_host *host)
5198 {
5199 	host->dev->power.power_state = PMSG_ON;
5200 }
5201 EXPORT_SYMBOL_GPL(ata_host_resume);
5202 #endif
5203 
5204 const struct device_type ata_port_type = {
5205 	.name = "ata_port",
5206 #ifdef CONFIG_PM
5207 	.pm = &ata_port_pm_ops,
5208 #endif
5209 };
5210 
5211 /**
5212  *	ata_dev_init - Initialize an ata_device structure
5213  *	@dev: Device structure to initialize
5214  *
5215  *	Initialize @dev in preparation for probing.
5216  *
5217  *	LOCKING:
5218  *	Inherited from caller.
5219  */
5220 void ata_dev_init(struct ata_device *dev)
5221 {
5222 	struct ata_link *link = ata_dev_phys_link(dev);
5223 	struct ata_port *ap = link->ap;
5224 	unsigned long flags;
5225 
5226 	/* SATA spd limit is bound to the attached device, reset together */
5227 	link->sata_spd_limit = link->hw_sata_spd_limit;
5228 	link->sata_spd = 0;
5229 
5230 	/* High bits of dev->flags are used to record warm plug
5231 	 * requests which occur asynchronously.  Synchronize using
5232 	 * host lock.
5233 	 */
5234 	spin_lock_irqsave(ap->lock, flags);
5235 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5236 	dev->horkage = 0;
5237 	spin_unlock_irqrestore(ap->lock, flags);
5238 
5239 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5240 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5241 	dev->pio_mask = UINT_MAX;
5242 	dev->mwdma_mask = UINT_MAX;
5243 	dev->udma_mask = UINT_MAX;
5244 }
5245 
5246 /**
5247  *	ata_link_init - Initialize an ata_link structure
5248  *	@ap: ATA port link is attached to
5249  *	@link: Link structure to initialize
5250  *	@pmp: Port multiplier port number
5251  *
5252  *	Initialize @link.
5253  *
5254  *	LOCKING:
5255  *	Kernel thread context (may sleep)
5256  */
5257 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5258 {
5259 	int i;
5260 
5261 	/* clear everything except for devices */
5262 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5263 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5264 
5265 	link->ap = ap;
5266 	link->pmp = pmp;
5267 	link->active_tag = ATA_TAG_POISON;
5268 	link->hw_sata_spd_limit = UINT_MAX;
5269 
5270 	/* can't use iterator, ap isn't initialized yet */
5271 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5272 		struct ata_device *dev = &link->device[i];
5273 
5274 		dev->link = link;
5275 		dev->devno = dev - link->device;
5276 #ifdef CONFIG_ATA_ACPI
5277 		dev->gtf_filter = ata_acpi_gtf_filter;
5278 #endif
5279 		ata_dev_init(dev);
5280 	}
5281 }
5282 
5283 /**
5284  *	sata_link_init_spd - Initialize link->sata_spd_limit
5285  *	@link: Link to configure sata_spd_limit for
5286  *
5287  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5288  *	configured value.
5289  *
5290  *	LOCKING:
5291  *	Kernel thread context (may sleep).
5292  *
5293  *	RETURNS:
5294  *	0 on success, -errno on failure.
5295  */
5296 int sata_link_init_spd(struct ata_link *link)
5297 {
5298 	u8 spd;
5299 	int rc;
5300 
5301 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5302 	if (rc)
5303 		return rc;
5304 
5305 	spd = (link->saved_scontrol >> 4) & 0xf;
5306 	if (spd)
5307 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5308 
5309 	ata_force_link_limits(link);
5310 
5311 	link->sata_spd_limit = link->hw_sata_spd_limit;
5312 
5313 	return 0;
5314 }
5315 
5316 /**
5317  *	ata_port_alloc - allocate and initialize basic ATA port resources
5318  *	@host: ATA host this allocated port belongs to
5319  *
5320  *	Allocate and initialize basic ATA port resources.
5321  *
5322  *	RETURNS:
5323  *	Allocate ATA port on success, NULL on failure.
5324  *
5325  *	LOCKING:
5326  *	Inherited from calling layer (may sleep).
5327  */
5328 struct ata_port *ata_port_alloc(struct ata_host *host)
5329 {
5330 	struct ata_port *ap;
5331 
5332 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5333 	if (!ap)
5334 		return NULL;
5335 
5336 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5337 	ap->lock = &host->lock;
5338 	ap->print_id = -1;
5339 	ap->local_port_no = -1;
5340 	ap->host = host;
5341 	ap->dev = host->dev;
5342 
5343 	mutex_init(&ap->scsi_scan_mutex);
5344 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5345 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5346 	INIT_LIST_HEAD(&ap->eh_done_q);
5347 	init_waitqueue_head(&ap->eh_wait_q);
5348 	init_completion(&ap->park_req_pending);
5349 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5350 		    TIMER_DEFERRABLE);
5351 
5352 	ap->cbl = ATA_CBL_NONE;
5353 
5354 	ata_link_init(ap, &ap->link, 0);
5355 
5356 #ifdef ATA_IRQ_TRAP
5357 	ap->stats.unhandled_irq = 1;
5358 	ap->stats.idle_irq = 1;
5359 #endif
5360 	ata_sff_port_init(ap);
5361 
5362 	return ap;
5363 }
5364 
5365 static void ata_devres_release(struct device *gendev, void *res)
5366 {
5367 	struct ata_host *host = dev_get_drvdata(gendev);
5368 	int i;
5369 
5370 	for (i = 0; i < host->n_ports; i++) {
5371 		struct ata_port *ap = host->ports[i];
5372 
5373 		if (!ap)
5374 			continue;
5375 
5376 		if (ap->scsi_host)
5377 			scsi_host_put(ap->scsi_host);
5378 
5379 	}
5380 
5381 	dev_set_drvdata(gendev, NULL);
5382 	ata_host_put(host);
5383 }
5384 
5385 static void ata_host_release(struct kref *kref)
5386 {
5387 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5388 	int i;
5389 
5390 	for (i = 0; i < host->n_ports; i++) {
5391 		struct ata_port *ap = host->ports[i];
5392 
5393 		kfree(ap->pmp_link);
5394 		kfree(ap->slave_link);
5395 		kfree(ap);
5396 		host->ports[i] = NULL;
5397 	}
5398 	kfree(host);
5399 }
5400 
5401 void ata_host_get(struct ata_host *host)
5402 {
5403 	kref_get(&host->kref);
5404 }
5405 
5406 void ata_host_put(struct ata_host *host)
5407 {
5408 	kref_put(&host->kref, ata_host_release);
5409 }
5410 EXPORT_SYMBOL_GPL(ata_host_put);
5411 
5412 /**
5413  *	ata_host_alloc - allocate and init basic ATA host resources
5414  *	@dev: generic device this host is associated with
5415  *	@max_ports: maximum number of ATA ports associated with this host
5416  *
5417  *	Allocate and initialize basic ATA host resources.  LLD calls
5418  *	this function to allocate a host, initializes it fully and
5419  *	attaches it using ata_host_register().
5420  *
5421  *	@max_ports ports are allocated and host->n_ports is
5422  *	initialized to @max_ports.  The caller is allowed to decrease
5423  *	host->n_ports before calling ata_host_register().  The unused
5424  *	ports will be automatically freed on registration.
5425  *
5426  *	RETURNS:
5427  *	Allocate ATA host on success, NULL on failure.
5428  *
5429  *	LOCKING:
5430  *	Inherited from calling layer (may sleep).
5431  */
5432 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5433 {
5434 	struct ata_host *host;
5435 	size_t sz;
5436 	int i;
5437 	void *dr;
5438 
5439 	/* alloc a container for our list of ATA ports (buses) */
5440 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5441 	host = kzalloc(sz, GFP_KERNEL);
5442 	if (!host)
5443 		return NULL;
5444 
5445 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5446 		goto err_free;
5447 
5448 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5449 	if (!dr)
5450 		goto err_out;
5451 
5452 	devres_add(dev, dr);
5453 	dev_set_drvdata(dev, host);
5454 
5455 	spin_lock_init(&host->lock);
5456 	mutex_init(&host->eh_mutex);
5457 	host->dev = dev;
5458 	host->n_ports = max_ports;
5459 	kref_init(&host->kref);
5460 
5461 	/* allocate ports bound to this host */
5462 	for (i = 0; i < max_ports; i++) {
5463 		struct ata_port *ap;
5464 
5465 		ap = ata_port_alloc(host);
5466 		if (!ap)
5467 			goto err_out;
5468 
5469 		ap->port_no = i;
5470 		host->ports[i] = ap;
5471 	}
5472 
5473 	devres_remove_group(dev, NULL);
5474 	return host;
5475 
5476  err_out:
5477 	devres_release_group(dev, NULL);
5478  err_free:
5479 	kfree(host);
5480 	return NULL;
5481 }
5482 EXPORT_SYMBOL_GPL(ata_host_alloc);
5483 
5484 /**
5485  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5486  *	@dev: generic device this host is associated with
5487  *	@ppi: array of ATA port_info to initialize host with
5488  *	@n_ports: number of ATA ports attached to this host
5489  *
5490  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5491  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5492  *	last entry will be used for the remaining ports.
5493  *
5494  *	RETURNS:
5495  *	Allocate ATA host on success, NULL on failure.
5496  *
5497  *	LOCKING:
5498  *	Inherited from calling layer (may sleep).
5499  */
5500 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5501 				      const struct ata_port_info * const * ppi,
5502 				      int n_ports)
5503 {
5504 	const struct ata_port_info *pi;
5505 	struct ata_host *host;
5506 	int i, j;
5507 
5508 	host = ata_host_alloc(dev, n_ports);
5509 	if (!host)
5510 		return NULL;
5511 
5512 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5513 		struct ata_port *ap = host->ports[i];
5514 
5515 		if (ppi[j])
5516 			pi = ppi[j++];
5517 
5518 		ap->pio_mask = pi->pio_mask;
5519 		ap->mwdma_mask = pi->mwdma_mask;
5520 		ap->udma_mask = pi->udma_mask;
5521 		ap->flags |= pi->flags;
5522 		ap->link.flags |= pi->link_flags;
5523 		ap->ops = pi->port_ops;
5524 
5525 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5526 			host->ops = pi->port_ops;
5527 	}
5528 
5529 	return host;
5530 }
5531 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5532 
5533 static void ata_host_stop(struct device *gendev, void *res)
5534 {
5535 	struct ata_host *host = dev_get_drvdata(gendev);
5536 	int i;
5537 
5538 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5539 
5540 	for (i = 0; i < host->n_ports; i++) {
5541 		struct ata_port *ap = host->ports[i];
5542 
5543 		if (ap->ops->port_stop)
5544 			ap->ops->port_stop(ap);
5545 	}
5546 
5547 	if (host->ops->host_stop)
5548 		host->ops->host_stop(host);
5549 }
5550 
5551 /**
5552  *	ata_finalize_port_ops - finalize ata_port_operations
5553  *	@ops: ata_port_operations to finalize
5554  *
5555  *	An ata_port_operations can inherit from another ops and that
5556  *	ops can again inherit from another.  This can go on as many
5557  *	times as necessary as long as there is no loop in the
5558  *	inheritance chain.
5559  *
5560  *	Ops tables are finalized when the host is started.  NULL or
5561  *	unspecified entries are inherited from the closet ancestor
5562  *	which has the method and the entry is populated with it.
5563  *	After finalization, the ops table directly points to all the
5564  *	methods and ->inherits is no longer necessary and cleared.
5565  *
5566  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5567  *
5568  *	LOCKING:
5569  *	None.
5570  */
5571 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5572 {
5573 	static DEFINE_SPINLOCK(lock);
5574 	const struct ata_port_operations *cur;
5575 	void **begin = (void **)ops;
5576 	void **end = (void **)&ops->inherits;
5577 	void **pp;
5578 
5579 	if (!ops || !ops->inherits)
5580 		return;
5581 
5582 	spin_lock(&lock);
5583 
5584 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5585 		void **inherit = (void **)cur;
5586 
5587 		for (pp = begin; pp < end; pp++, inherit++)
5588 			if (!*pp)
5589 				*pp = *inherit;
5590 	}
5591 
5592 	for (pp = begin; pp < end; pp++)
5593 		if (IS_ERR(*pp))
5594 			*pp = NULL;
5595 
5596 	ops->inherits = NULL;
5597 
5598 	spin_unlock(&lock);
5599 }
5600 
5601 /**
5602  *	ata_host_start - start and freeze ports of an ATA host
5603  *	@host: ATA host to start ports for
5604  *
5605  *	Start and then freeze ports of @host.  Started status is
5606  *	recorded in host->flags, so this function can be called
5607  *	multiple times.  Ports are guaranteed to get started only
5608  *	once.  If host->ops isn't initialized yet, its set to the
5609  *	first non-dummy port ops.
5610  *
5611  *	LOCKING:
5612  *	Inherited from calling layer (may sleep).
5613  *
5614  *	RETURNS:
5615  *	0 if all ports are started successfully, -errno otherwise.
5616  */
5617 int ata_host_start(struct ata_host *host)
5618 {
5619 	int have_stop = 0;
5620 	void *start_dr = NULL;
5621 	int i, rc;
5622 
5623 	if (host->flags & ATA_HOST_STARTED)
5624 		return 0;
5625 
5626 	ata_finalize_port_ops(host->ops);
5627 
5628 	for (i = 0; i < host->n_ports; i++) {
5629 		struct ata_port *ap = host->ports[i];
5630 
5631 		ata_finalize_port_ops(ap->ops);
5632 
5633 		if (!host->ops && !ata_port_is_dummy(ap))
5634 			host->ops = ap->ops;
5635 
5636 		if (ap->ops->port_stop)
5637 			have_stop = 1;
5638 	}
5639 
5640 	if (host->ops && host->ops->host_stop)
5641 		have_stop = 1;
5642 
5643 	if (have_stop) {
5644 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5645 		if (!start_dr)
5646 			return -ENOMEM;
5647 	}
5648 
5649 	for (i = 0; i < host->n_ports; i++) {
5650 		struct ata_port *ap = host->ports[i];
5651 
5652 		if (ap->ops->port_start) {
5653 			rc = ap->ops->port_start(ap);
5654 			if (rc) {
5655 				if (rc != -ENODEV)
5656 					dev_err(host->dev,
5657 						"failed to start port %d (errno=%d)\n",
5658 						i, rc);
5659 				goto err_out;
5660 			}
5661 		}
5662 		ata_eh_freeze_port(ap);
5663 	}
5664 
5665 	if (start_dr)
5666 		devres_add(host->dev, start_dr);
5667 	host->flags |= ATA_HOST_STARTED;
5668 	return 0;
5669 
5670  err_out:
5671 	while (--i >= 0) {
5672 		struct ata_port *ap = host->ports[i];
5673 
5674 		if (ap->ops->port_stop)
5675 			ap->ops->port_stop(ap);
5676 	}
5677 	devres_free(start_dr);
5678 	return rc;
5679 }
5680 EXPORT_SYMBOL_GPL(ata_host_start);
5681 
5682 /**
5683  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5684  *	@host:	host to initialize
5685  *	@dev:	device host is attached to
5686  *	@ops:	port_ops
5687  *
5688  */
5689 void ata_host_init(struct ata_host *host, struct device *dev,
5690 		   struct ata_port_operations *ops)
5691 {
5692 	spin_lock_init(&host->lock);
5693 	mutex_init(&host->eh_mutex);
5694 	host->n_tags = ATA_MAX_QUEUE;
5695 	host->dev = dev;
5696 	host->ops = ops;
5697 	kref_init(&host->kref);
5698 }
5699 EXPORT_SYMBOL_GPL(ata_host_init);
5700 
5701 void __ata_port_probe(struct ata_port *ap)
5702 {
5703 	struct ata_eh_info *ehi = &ap->link.eh_info;
5704 	unsigned long flags;
5705 
5706 	/* kick EH for boot probing */
5707 	spin_lock_irqsave(ap->lock, flags);
5708 
5709 	ehi->probe_mask |= ATA_ALL_DEVICES;
5710 	ehi->action |= ATA_EH_RESET;
5711 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5712 
5713 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5714 	ap->pflags |= ATA_PFLAG_LOADING;
5715 	ata_port_schedule_eh(ap);
5716 
5717 	spin_unlock_irqrestore(ap->lock, flags);
5718 }
5719 
5720 int ata_port_probe(struct ata_port *ap)
5721 {
5722 	int rc = 0;
5723 
5724 	if (ap->ops->error_handler) {
5725 		__ata_port_probe(ap);
5726 		ata_port_wait_eh(ap);
5727 	} else {
5728 		rc = ata_bus_probe(ap);
5729 	}
5730 	return rc;
5731 }
5732 
5733 
5734 static void async_port_probe(void *data, async_cookie_t cookie)
5735 {
5736 	struct ata_port *ap = data;
5737 
5738 	/*
5739 	 * If we're not allowed to scan this host in parallel,
5740 	 * we need to wait until all previous scans have completed
5741 	 * before going further.
5742 	 * Jeff Garzik says this is only within a controller, so we
5743 	 * don't need to wait for port 0, only for later ports.
5744 	 */
5745 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5746 		async_synchronize_cookie(cookie);
5747 
5748 	(void)ata_port_probe(ap);
5749 
5750 	/* in order to keep device order, we need to synchronize at this point */
5751 	async_synchronize_cookie(cookie);
5752 
5753 	ata_scsi_scan_host(ap, 1);
5754 }
5755 
5756 /**
5757  *	ata_host_register - register initialized ATA host
5758  *	@host: ATA host to register
5759  *	@sht: template for SCSI host
5760  *
5761  *	Register initialized ATA host.  @host is allocated using
5762  *	ata_host_alloc() and fully initialized by LLD.  This function
5763  *	starts ports, registers @host with ATA and SCSI layers and
5764  *	probe registered devices.
5765  *
5766  *	LOCKING:
5767  *	Inherited from calling layer (may sleep).
5768  *
5769  *	RETURNS:
5770  *	0 on success, -errno otherwise.
5771  */
5772 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5773 {
5774 	int i, rc;
5775 
5776 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5777 
5778 	/* host must have been started */
5779 	if (!(host->flags & ATA_HOST_STARTED)) {
5780 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5781 		WARN_ON(1);
5782 		return -EINVAL;
5783 	}
5784 
5785 	/* Blow away unused ports.  This happens when LLD can't
5786 	 * determine the exact number of ports to allocate at
5787 	 * allocation time.
5788 	 */
5789 	for (i = host->n_ports; host->ports[i]; i++)
5790 		kfree(host->ports[i]);
5791 
5792 	/* give ports names and add SCSI hosts */
5793 	for (i = 0; i < host->n_ports; i++) {
5794 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5795 		host->ports[i]->local_port_no = i + 1;
5796 	}
5797 
5798 	/* Create associated sysfs transport objects  */
5799 	for (i = 0; i < host->n_ports; i++) {
5800 		rc = ata_tport_add(host->dev,host->ports[i]);
5801 		if (rc) {
5802 			goto err_tadd;
5803 		}
5804 	}
5805 
5806 	rc = ata_scsi_add_hosts(host, sht);
5807 	if (rc)
5808 		goto err_tadd;
5809 
5810 	/* set cable, sata_spd_limit and report */
5811 	for (i = 0; i < host->n_ports; i++) {
5812 		struct ata_port *ap = host->ports[i];
5813 		unsigned long xfer_mask;
5814 
5815 		/* set SATA cable type if still unset */
5816 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5817 			ap->cbl = ATA_CBL_SATA;
5818 
5819 		/* init sata_spd_limit to the current value */
5820 		sata_link_init_spd(&ap->link);
5821 		if (ap->slave_link)
5822 			sata_link_init_spd(ap->slave_link);
5823 
5824 		/* print per-port info to dmesg */
5825 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5826 					      ap->udma_mask);
5827 
5828 		if (!ata_port_is_dummy(ap)) {
5829 			ata_port_info(ap, "%cATA max %s %s\n",
5830 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5831 				      ata_mode_string(xfer_mask),
5832 				      ap->link.eh_info.desc);
5833 			ata_ehi_clear_desc(&ap->link.eh_info);
5834 		} else
5835 			ata_port_info(ap, "DUMMY\n");
5836 	}
5837 
5838 	/* perform each probe asynchronously */
5839 	for (i = 0; i < host->n_ports; i++) {
5840 		struct ata_port *ap = host->ports[i];
5841 		ap->cookie = async_schedule(async_port_probe, ap);
5842 	}
5843 
5844 	return 0;
5845 
5846  err_tadd:
5847 	while (--i >= 0) {
5848 		ata_tport_delete(host->ports[i]);
5849 	}
5850 	return rc;
5851 
5852 }
5853 EXPORT_SYMBOL_GPL(ata_host_register);
5854 
5855 /**
5856  *	ata_host_activate - start host, request IRQ and register it
5857  *	@host: target ATA host
5858  *	@irq: IRQ to request
5859  *	@irq_handler: irq_handler used when requesting IRQ
5860  *	@irq_flags: irq_flags used when requesting IRQ
5861  *	@sht: scsi_host_template to use when registering the host
5862  *
5863  *	After allocating an ATA host and initializing it, most libata
5864  *	LLDs perform three steps to activate the host - start host,
5865  *	request IRQ and register it.  This helper takes necessary
5866  *	arguments and performs the three steps in one go.
5867  *
5868  *	An invalid IRQ skips the IRQ registration and expects the host to
5869  *	have set polling mode on the port. In this case, @irq_handler
5870  *	should be NULL.
5871  *
5872  *	LOCKING:
5873  *	Inherited from calling layer (may sleep).
5874  *
5875  *	RETURNS:
5876  *	0 on success, -errno otherwise.
5877  */
5878 int ata_host_activate(struct ata_host *host, int irq,
5879 		      irq_handler_t irq_handler, unsigned long irq_flags,
5880 		      struct scsi_host_template *sht)
5881 {
5882 	int i, rc;
5883 	char *irq_desc;
5884 
5885 	rc = ata_host_start(host);
5886 	if (rc)
5887 		return rc;
5888 
5889 	/* Special case for polling mode */
5890 	if (!irq) {
5891 		WARN_ON(irq_handler);
5892 		return ata_host_register(host, sht);
5893 	}
5894 
5895 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5896 				  dev_driver_string(host->dev),
5897 				  dev_name(host->dev));
5898 	if (!irq_desc)
5899 		return -ENOMEM;
5900 
5901 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5902 			      irq_desc, host);
5903 	if (rc)
5904 		return rc;
5905 
5906 	for (i = 0; i < host->n_ports; i++)
5907 		ata_port_desc(host->ports[i], "irq %d", irq);
5908 
5909 	rc = ata_host_register(host, sht);
5910 	/* if failed, just free the IRQ and leave ports alone */
5911 	if (rc)
5912 		devm_free_irq(host->dev, irq, host);
5913 
5914 	return rc;
5915 }
5916 EXPORT_SYMBOL_GPL(ata_host_activate);
5917 
5918 /**
5919  *	ata_port_detach - Detach ATA port in preparation of device removal
5920  *	@ap: ATA port to be detached
5921  *
5922  *	Detach all ATA devices and the associated SCSI devices of @ap;
5923  *	then, remove the associated SCSI host.  @ap is guaranteed to
5924  *	be quiescent on return from this function.
5925  *
5926  *	LOCKING:
5927  *	Kernel thread context (may sleep).
5928  */
5929 static void ata_port_detach(struct ata_port *ap)
5930 {
5931 	unsigned long flags;
5932 	struct ata_link *link;
5933 	struct ata_device *dev;
5934 
5935 	if (!ap->ops->error_handler)
5936 		goto skip_eh;
5937 
5938 	/* tell EH we're leaving & flush EH */
5939 	spin_lock_irqsave(ap->lock, flags);
5940 	ap->pflags |= ATA_PFLAG_UNLOADING;
5941 	ata_port_schedule_eh(ap);
5942 	spin_unlock_irqrestore(ap->lock, flags);
5943 
5944 	/* wait till EH commits suicide */
5945 	ata_port_wait_eh(ap);
5946 
5947 	/* it better be dead now */
5948 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5949 
5950 	cancel_delayed_work_sync(&ap->hotplug_task);
5951 
5952  skip_eh:
5953 	/* clean up zpodd on port removal */
5954 	ata_for_each_link(link, ap, HOST_FIRST) {
5955 		ata_for_each_dev(dev, link, ALL) {
5956 			if (zpodd_dev_enabled(dev))
5957 				zpodd_exit(dev);
5958 		}
5959 	}
5960 	if (ap->pmp_link) {
5961 		int i;
5962 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5963 			ata_tlink_delete(&ap->pmp_link[i]);
5964 	}
5965 	/* remove the associated SCSI host */
5966 	scsi_remove_host(ap->scsi_host);
5967 	ata_tport_delete(ap);
5968 }
5969 
5970 /**
5971  *	ata_host_detach - Detach all ports of an ATA host
5972  *	@host: Host to detach
5973  *
5974  *	Detach all ports of @host.
5975  *
5976  *	LOCKING:
5977  *	Kernel thread context (may sleep).
5978  */
5979 void ata_host_detach(struct ata_host *host)
5980 {
5981 	int i;
5982 
5983 	for (i = 0; i < host->n_ports; i++) {
5984 		/* Ensure ata_port probe has completed */
5985 		async_synchronize_cookie(host->ports[i]->cookie + 1);
5986 		ata_port_detach(host->ports[i]);
5987 	}
5988 
5989 	/* the host is dead now, dissociate ACPI */
5990 	ata_acpi_dissociate(host);
5991 }
5992 EXPORT_SYMBOL_GPL(ata_host_detach);
5993 
5994 #ifdef CONFIG_PCI
5995 
5996 /**
5997  *	ata_pci_remove_one - PCI layer callback for device removal
5998  *	@pdev: PCI device that was removed
5999  *
6000  *	PCI layer indicates to libata via this hook that hot-unplug or
6001  *	module unload event has occurred.  Detach all ports.  Resource
6002  *	release is handled via devres.
6003  *
6004  *	LOCKING:
6005  *	Inherited from PCI layer (may sleep).
6006  */
6007 void ata_pci_remove_one(struct pci_dev *pdev)
6008 {
6009 	struct ata_host *host = pci_get_drvdata(pdev);
6010 
6011 	ata_host_detach(host);
6012 }
6013 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6014 
6015 void ata_pci_shutdown_one(struct pci_dev *pdev)
6016 {
6017 	struct ata_host *host = pci_get_drvdata(pdev);
6018 	int i;
6019 
6020 	for (i = 0; i < host->n_ports; i++) {
6021 		struct ata_port *ap = host->ports[i];
6022 
6023 		ap->pflags |= ATA_PFLAG_FROZEN;
6024 
6025 		/* Disable port interrupts */
6026 		if (ap->ops->freeze)
6027 			ap->ops->freeze(ap);
6028 
6029 		/* Stop the port DMA engines */
6030 		if (ap->ops->port_stop)
6031 			ap->ops->port_stop(ap);
6032 	}
6033 }
6034 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6035 
6036 /* move to PCI subsystem */
6037 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6038 {
6039 	unsigned long tmp = 0;
6040 
6041 	switch (bits->width) {
6042 	case 1: {
6043 		u8 tmp8 = 0;
6044 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6045 		tmp = tmp8;
6046 		break;
6047 	}
6048 	case 2: {
6049 		u16 tmp16 = 0;
6050 		pci_read_config_word(pdev, bits->reg, &tmp16);
6051 		tmp = tmp16;
6052 		break;
6053 	}
6054 	case 4: {
6055 		u32 tmp32 = 0;
6056 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6057 		tmp = tmp32;
6058 		break;
6059 	}
6060 
6061 	default:
6062 		return -EINVAL;
6063 	}
6064 
6065 	tmp &= bits->mask;
6066 
6067 	return (tmp == bits->val) ? 1 : 0;
6068 }
6069 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6070 
6071 #ifdef CONFIG_PM
6072 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6073 {
6074 	pci_save_state(pdev);
6075 	pci_disable_device(pdev);
6076 
6077 	if (mesg.event & PM_EVENT_SLEEP)
6078 		pci_set_power_state(pdev, PCI_D3hot);
6079 }
6080 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6081 
6082 int ata_pci_device_do_resume(struct pci_dev *pdev)
6083 {
6084 	int rc;
6085 
6086 	pci_set_power_state(pdev, PCI_D0);
6087 	pci_restore_state(pdev);
6088 
6089 	rc = pcim_enable_device(pdev);
6090 	if (rc) {
6091 		dev_err(&pdev->dev,
6092 			"failed to enable device after resume (%d)\n", rc);
6093 		return rc;
6094 	}
6095 
6096 	pci_set_master(pdev);
6097 	return 0;
6098 }
6099 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6100 
6101 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6102 {
6103 	struct ata_host *host = pci_get_drvdata(pdev);
6104 
6105 	ata_host_suspend(host, mesg);
6106 
6107 	ata_pci_device_do_suspend(pdev, mesg);
6108 
6109 	return 0;
6110 }
6111 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6112 
6113 int ata_pci_device_resume(struct pci_dev *pdev)
6114 {
6115 	struct ata_host *host = pci_get_drvdata(pdev);
6116 	int rc;
6117 
6118 	rc = ata_pci_device_do_resume(pdev);
6119 	if (rc == 0)
6120 		ata_host_resume(host);
6121 	return rc;
6122 }
6123 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6124 #endif /* CONFIG_PM */
6125 #endif /* CONFIG_PCI */
6126 
6127 /**
6128  *	ata_platform_remove_one - Platform layer callback for device removal
6129  *	@pdev: Platform device that was removed
6130  *
6131  *	Platform layer indicates to libata via this hook that hot-unplug or
6132  *	module unload event has occurred.  Detach all ports.  Resource
6133  *	release is handled via devres.
6134  *
6135  *	LOCKING:
6136  *	Inherited from platform layer (may sleep).
6137  */
6138 int ata_platform_remove_one(struct platform_device *pdev)
6139 {
6140 	struct ata_host *host = platform_get_drvdata(pdev);
6141 
6142 	ata_host_detach(host);
6143 
6144 	return 0;
6145 }
6146 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6147 
6148 #ifdef CONFIG_ATA_FORCE
6149 static int __init ata_parse_force_one(char **cur,
6150 				      struct ata_force_ent *force_ent,
6151 				      const char **reason)
6152 {
6153 	static const struct ata_force_param force_tbl[] __initconst = {
6154 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6155 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6156 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6157 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6158 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6159 		{ "sata",	.cbl		= ATA_CBL_SATA },
6160 		{ "1.5Gbps",	.spd_limit	= 1 },
6161 		{ "3.0Gbps",	.spd_limit	= 2 },
6162 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6163 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6164 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6165 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6166 		{ "noncqati",	.horkage_on	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6167 		{ "ncqati",	.horkage_off	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6168 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6169 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6170 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6171 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6172 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6173 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6174 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6175 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6176 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6177 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6178 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6179 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6180 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6181 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6182 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6183 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6184 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6185 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6186 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6187 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6188 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6189 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6190 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6191 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6192 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6193 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6194 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6195 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6196 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6197 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6198 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6199 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6200 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6201 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6202 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6203 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6204 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6205 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6206 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6207 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6208 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6209 	};
6210 	char *start = *cur, *p = *cur;
6211 	char *id, *val, *endp;
6212 	const struct ata_force_param *match_fp = NULL;
6213 	int nr_matches = 0, i;
6214 
6215 	/* find where this param ends and update *cur */
6216 	while (*p != '\0' && *p != ',')
6217 		p++;
6218 
6219 	if (*p == '\0')
6220 		*cur = p;
6221 	else
6222 		*cur = p + 1;
6223 
6224 	*p = '\0';
6225 
6226 	/* parse */
6227 	p = strchr(start, ':');
6228 	if (!p) {
6229 		val = strstrip(start);
6230 		goto parse_val;
6231 	}
6232 	*p = '\0';
6233 
6234 	id = strstrip(start);
6235 	val = strstrip(p + 1);
6236 
6237 	/* parse id */
6238 	p = strchr(id, '.');
6239 	if (p) {
6240 		*p++ = '\0';
6241 		force_ent->device = simple_strtoul(p, &endp, 10);
6242 		if (p == endp || *endp != '\0') {
6243 			*reason = "invalid device";
6244 			return -EINVAL;
6245 		}
6246 	}
6247 
6248 	force_ent->port = simple_strtoul(id, &endp, 10);
6249 	if (id == endp || *endp != '\0') {
6250 		*reason = "invalid port/link";
6251 		return -EINVAL;
6252 	}
6253 
6254  parse_val:
6255 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6256 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6257 		const struct ata_force_param *fp = &force_tbl[i];
6258 
6259 		if (strncasecmp(val, fp->name, strlen(val)))
6260 			continue;
6261 
6262 		nr_matches++;
6263 		match_fp = fp;
6264 
6265 		if (strcasecmp(val, fp->name) == 0) {
6266 			nr_matches = 1;
6267 			break;
6268 		}
6269 	}
6270 
6271 	if (!nr_matches) {
6272 		*reason = "unknown value";
6273 		return -EINVAL;
6274 	}
6275 	if (nr_matches > 1) {
6276 		*reason = "ambiguous value";
6277 		return -EINVAL;
6278 	}
6279 
6280 	force_ent->param = *match_fp;
6281 
6282 	return 0;
6283 }
6284 
6285 static void __init ata_parse_force_param(void)
6286 {
6287 	int idx = 0, size = 1;
6288 	int last_port = -1, last_device = -1;
6289 	char *p, *cur, *next;
6290 
6291 	/* calculate maximum number of params and allocate force_tbl */
6292 	for (p = ata_force_param_buf; *p; p++)
6293 		if (*p == ',')
6294 			size++;
6295 
6296 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6297 	if (!ata_force_tbl) {
6298 		printk(KERN_WARNING "ata: failed to extend force table, "
6299 		       "libata.force ignored\n");
6300 		return;
6301 	}
6302 
6303 	/* parse and populate the table */
6304 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6305 		const char *reason = "";
6306 		struct ata_force_ent te = { .port = -1, .device = -1 };
6307 
6308 		next = cur;
6309 		if (ata_parse_force_one(&next, &te, &reason)) {
6310 			printk(KERN_WARNING "ata: failed to parse force "
6311 			       "parameter \"%s\" (%s)\n",
6312 			       cur, reason);
6313 			continue;
6314 		}
6315 
6316 		if (te.port == -1) {
6317 			te.port = last_port;
6318 			te.device = last_device;
6319 		}
6320 
6321 		ata_force_tbl[idx++] = te;
6322 
6323 		last_port = te.port;
6324 		last_device = te.device;
6325 	}
6326 
6327 	ata_force_tbl_size = idx;
6328 }
6329 
6330 static void ata_free_force_param(void)
6331 {
6332 	kfree(ata_force_tbl);
6333 }
6334 #else
6335 static inline void ata_parse_force_param(void) { }
6336 static inline void ata_free_force_param(void) { }
6337 #endif
6338 
6339 static int __init ata_init(void)
6340 {
6341 	int rc;
6342 
6343 	ata_parse_force_param();
6344 
6345 	rc = ata_sff_init();
6346 	if (rc) {
6347 		ata_free_force_param();
6348 		return rc;
6349 	}
6350 
6351 	libata_transport_init();
6352 	ata_scsi_transport_template = ata_attach_transport();
6353 	if (!ata_scsi_transport_template) {
6354 		ata_sff_exit();
6355 		rc = -ENOMEM;
6356 		goto err_out;
6357 	}
6358 
6359 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6360 	return 0;
6361 
6362 err_out:
6363 	return rc;
6364 }
6365 
6366 static void __exit ata_exit(void)
6367 {
6368 	ata_release_transport(ata_scsi_transport_template);
6369 	libata_transport_exit();
6370 	ata_sff_exit();
6371 	ata_free_force_param();
6372 }
6373 
6374 subsys_initcall(ata_init);
6375 module_exit(ata_exit);
6376 
6377 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6378 
6379 int ata_ratelimit(void)
6380 {
6381 	return __ratelimit(&ratelimit);
6382 }
6383 EXPORT_SYMBOL_GPL(ata_ratelimit);
6384 
6385 /**
6386  *	ata_msleep - ATA EH owner aware msleep
6387  *	@ap: ATA port to attribute the sleep to
6388  *	@msecs: duration to sleep in milliseconds
6389  *
6390  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6391  *	ownership is released before going to sleep and reacquired
6392  *	after the sleep is complete.  IOW, other ports sharing the
6393  *	@ap->host will be allowed to own the EH while this task is
6394  *	sleeping.
6395  *
6396  *	LOCKING:
6397  *	Might sleep.
6398  */
6399 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6400 {
6401 	bool owns_eh = ap && ap->host->eh_owner == current;
6402 
6403 	if (owns_eh)
6404 		ata_eh_release(ap);
6405 
6406 	if (msecs < 20) {
6407 		unsigned long usecs = msecs * USEC_PER_MSEC;
6408 		usleep_range(usecs, usecs + 50);
6409 	} else {
6410 		msleep(msecs);
6411 	}
6412 
6413 	if (owns_eh)
6414 		ata_eh_acquire(ap);
6415 }
6416 EXPORT_SYMBOL_GPL(ata_msleep);
6417 
6418 /**
6419  *	ata_wait_register - wait until register value changes
6420  *	@ap: ATA port to wait register for, can be NULL
6421  *	@reg: IO-mapped register
6422  *	@mask: Mask to apply to read register value
6423  *	@val: Wait condition
6424  *	@interval: polling interval in milliseconds
6425  *	@timeout: timeout in milliseconds
6426  *
6427  *	Waiting for some bits of register to change is a common
6428  *	operation for ATA controllers.  This function reads 32bit LE
6429  *	IO-mapped register @reg and tests for the following condition.
6430  *
6431  *	(*@reg & mask) != val
6432  *
6433  *	If the condition is met, it returns; otherwise, the process is
6434  *	repeated after @interval_msec until timeout.
6435  *
6436  *	LOCKING:
6437  *	Kernel thread context (may sleep)
6438  *
6439  *	RETURNS:
6440  *	The final register value.
6441  */
6442 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6443 		      unsigned long interval, unsigned long timeout)
6444 {
6445 	unsigned long deadline;
6446 	u32 tmp;
6447 
6448 	tmp = ioread32(reg);
6449 
6450 	/* Calculate timeout _after_ the first read to make sure
6451 	 * preceding writes reach the controller before starting to
6452 	 * eat away the timeout.
6453 	 */
6454 	deadline = ata_deadline(jiffies, timeout);
6455 
6456 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6457 		ata_msleep(ap, interval);
6458 		tmp = ioread32(reg);
6459 	}
6460 
6461 	return tmp;
6462 }
6463 EXPORT_SYMBOL_GPL(ata_wait_register);
6464 
6465 /*
6466  * Dummy port_ops
6467  */
6468 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6469 {
6470 	return AC_ERR_SYSTEM;
6471 }
6472 
6473 static void ata_dummy_error_handler(struct ata_port *ap)
6474 {
6475 	/* truly dummy */
6476 }
6477 
6478 struct ata_port_operations ata_dummy_port_ops = {
6479 	.qc_prep		= ata_noop_qc_prep,
6480 	.qc_issue		= ata_dummy_qc_issue,
6481 	.error_handler		= ata_dummy_error_handler,
6482 	.sched_eh		= ata_std_sched_eh,
6483 	.end_eh			= ata_std_end_eh,
6484 };
6485 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6486 
6487 const struct ata_port_info ata_dummy_port_info = {
6488 	.port_ops		= &ata_dummy_port_ops,
6489 };
6490 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6491 
6492 void ata_print_version(const struct device *dev, const char *version)
6493 {
6494 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6495 }
6496 EXPORT_SYMBOL(ata_print_version);
6497 
6498 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6499 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6500 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6501 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6502 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6503