1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned int xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags_on; 100 u16 lflags_off; 101 }; 102 103 struct ata_force_ent { 104 int port; 105 int device; 106 struct ata_force_param param; 107 }; 108 109 static struct ata_force_ent *ata_force_tbl; 110 static int ata_force_tbl_size; 111 112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 113 /* param_buf is thrown away after initialization, disallow read */ 114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 116 #endif 117 118 static int atapi_enabled = 1; 119 module_param(atapi_enabled, int, 0444); 120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 121 122 static int atapi_dmadir = 0; 123 module_param(atapi_dmadir, int, 0444); 124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 125 126 int atapi_passthru16 = 1; 127 module_param(atapi_passthru16, int, 0444); 128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 129 130 int libata_fua = 0; 131 module_param_named(fua, libata_fua, int, 0444); 132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 133 134 static int ata_ignore_hpa; 135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 137 138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 139 module_param_named(dma, libata_dma_mask, int, 0444); 140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 141 142 static int ata_probe_timeout; 143 module_param(ata_probe_timeout, int, 0444); 144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 145 146 int libata_noacpi = 0; 147 module_param_named(noacpi, libata_noacpi, int, 0444); 148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 149 150 int libata_allow_tpm = 0; 151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 153 154 static int atapi_an; 155 module_param(atapi_an, int, 0444); 156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 157 158 MODULE_AUTHOR("Jeff Garzik"); 159 MODULE_DESCRIPTION("Library module for ATA devices"); 160 MODULE_LICENSE("GPL"); 161 MODULE_VERSION(DRV_VERSION); 162 163 static inline bool ata_dev_print_info(struct ata_device *dev) 164 { 165 struct ata_eh_context *ehc = &dev->link->eh_context; 166 167 return ehc->i.flags & ATA_EHI_PRINTINFO; 168 } 169 170 static bool ata_sstatus_online(u32 sstatus) 171 { 172 return (sstatus & 0xf) == 0x3; 173 } 174 175 /** 176 * ata_link_next - link iteration helper 177 * @link: the previous link, NULL to start 178 * @ap: ATA port containing links to iterate 179 * @mode: iteration mode, one of ATA_LITER_* 180 * 181 * LOCKING: 182 * Host lock or EH context. 183 * 184 * RETURNS: 185 * Pointer to the next link. 186 */ 187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 188 enum ata_link_iter_mode mode) 189 { 190 BUG_ON(mode != ATA_LITER_EDGE && 191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 192 193 /* NULL link indicates start of iteration */ 194 if (!link) 195 switch (mode) { 196 case ATA_LITER_EDGE: 197 case ATA_LITER_PMP_FIRST: 198 if (sata_pmp_attached(ap)) 199 return ap->pmp_link; 200 fallthrough; 201 case ATA_LITER_HOST_FIRST: 202 return &ap->link; 203 } 204 205 /* we just iterated over the host link, what's next? */ 206 if (link == &ap->link) 207 switch (mode) { 208 case ATA_LITER_HOST_FIRST: 209 if (sata_pmp_attached(ap)) 210 return ap->pmp_link; 211 fallthrough; 212 case ATA_LITER_PMP_FIRST: 213 if (unlikely(ap->slave_link)) 214 return ap->slave_link; 215 fallthrough; 216 case ATA_LITER_EDGE: 217 return NULL; 218 } 219 220 /* slave_link excludes PMP */ 221 if (unlikely(link == ap->slave_link)) 222 return NULL; 223 224 /* we were over a PMP link */ 225 if (++link < ap->pmp_link + ap->nr_pmp_links) 226 return link; 227 228 if (mode == ATA_LITER_PMP_FIRST) 229 return &ap->link; 230 231 return NULL; 232 } 233 EXPORT_SYMBOL_GPL(ata_link_next); 234 235 /** 236 * ata_dev_next - device iteration helper 237 * @dev: the previous device, NULL to start 238 * @link: ATA link containing devices to iterate 239 * @mode: iteration mode, one of ATA_DITER_* 240 * 241 * LOCKING: 242 * Host lock or EH context. 243 * 244 * RETURNS: 245 * Pointer to the next device. 246 */ 247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 248 enum ata_dev_iter_mode mode) 249 { 250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 252 253 /* NULL dev indicates start of iteration */ 254 if (!dev) 255 switch (mode) { 256 case ATA_DITER_ENABLED: 257 case ATA_DITER_ALL: 258 dev = link->device; 259 goto check; 260 case ATA_DITER_ENABLED_REVERSE: 261 case ATA_DITER_ALL_REVERSE: 262 dev = link->device + ata_link_max_devices(link) - 1; 263 goto check; 264 } 265 266 next: 267 /* move to the next one */ 268 switch (mode) { 269 case ATA_DITER_ENABLED: 270 case ATA_DITER_ALL: 271 if (++dev < link->device + ata_link_max_devices(link)) 272 goto check; 273 return NULL; 274 case ATA_DITER_ENABLED_REVERSE: 275 case ATA_DITER_ALL_REVERSE: 276 if (--dev >= link->device) 277 goto check; 278 return NULL; 279 } 280 281 check: 282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 283 !ata_dev_enabled(dev)) 284 goto next; 285 return dev; 286 } 287 EXPORT_SYMBOL_GPL(ata_dev_next); 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 #ifdef CONFIG_ATA_FORCE 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags_on) { 391 link->flags |= fe->param.lflags_on; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags_on, link->flags); 395 } 396 if (fe->param.lflags_off) { 397 link->flags &= ~fe->param.lflags_off; 398 ata_link_notice(link, 399 "FORCE: link flag 0x%x cleared -> 0x%x\n", 400 fe->param.lflags_off, link->flags); 401 } 402 } 403 } 404 405 /** 406 * ata_force_xfermask - force xfermask according to libata.force 407 * @dev: ATA device of interest 408 * 409 * Force xfer_mask according to libata.force and whine about it. 410 * For consistency with link selection, device number 15 selects 411 * the first device connected to the host link. 412 * 413 * LOCKING: 414 * EH context. 415 */ 416 static void ata_force_xfermask(struct ata_device *dev) 417 { 418 int devno = dev->link->pmp + dev->devno; 419 int alt_devno = devno; 420 int i; 421 422 /* allow n.15/16 for devices attached to host port */ 423 if (ata_is_host_link(dev->link)) 424 alt_devno += 15; 425 426 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 427 const struct ata_force_ent *fe = &ata_force_tbl[i]; 428 unsigned int pio_mask, mwdma_mask, udma_mask; 429 430 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 431 continue; 432 433 if (fe->device != -1 && fe->device != devno && 434 fe->device != alt_devno) 435 continue; 436 437 if (!fe->param.xfer_mask) 438 continue; 439 440 ata_unpack_xfermask(fe->param.xfer_mask, 441 &pio_mask, &mwdma_mask, &udma_mask); 442 if (udma_mask) 443 dev->udma_mask = udma_mask; 444 else if (mwdma_mask) { 445 dev->udma_mask = 0; 446 dev->mwdma_mask = mwdma_mask; 447 } else { 448 dev->udma_mask = 0; 449 dev->mwdma_mask = 0; 450 dev->pio_mask = pio_mask; 451 } 452 453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 454 fe->param.name); 455 return; 456 } 457 } 458 459 /** 460 * ata_force_horkage - force horkage according to libata.force 461 * @dev: ATA device of interest 462 * 463 * Force horkage according to libata.force and whine about it. 464 * For consistency with link selection, device number 15 selects 465 * the first device connected to the host link. 466 * 467 * LOCKING: 468 * EH context. 469 */ 470 static void ata_force_horkage(struct ata_device *dev) 471 { 472 int devno = dev->link->pmp + dev->devno; 473 int alt_devno = devno; 474 int i; 475 476 /* allow n.15/16 for devices attached to host port */ 477 if (ata_is_host_link(dev->link)) 478 alt_devno += 15; 479 480 for (i = 0; i < ata_force_tbl_size; i++) { 481 const struct ata_force_ent *fe = &ata_force_tbl[i]; 482 483 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 484 continue; 485 486 if (fe->device != -1 && fe->device != devno && 487 fe->device != alt_devno) 488 continue; 489 490 if (!(~dev->horkage & fe->param.horkage_on) && 491 !(dev->horkage & fe->param.horkage_off)) 492 continue; 493 494 dev->horkage |= fe->param.horkage_on; 495 dev->horkage &= ~fe->param.horkage_off; 496 497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 498 fe->param.name); 499 } 500 } 501 #else 502 static inline void ata_force_link_limits(struct ata_link *link) { } 503 static inline void ata_force_xfermask(struct ata_device *dev) { } 504 static inline void ata_force_horkage(struct ata_device *dev) { } 505 #endif 506 507 /** 508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 509 * @opcode: SCSI opcode 510 * 511 * Determine ATAPI command type from @opcode. 512 * 513 * LOCKING: 514 * None. 515 * 516 * RETURNS: 517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 518 */ 519 int atapi_cmd_type(u8 opcode) 520 { 521 switch (opcode) { 522 case GPCMD_READ_10: 523 case GPCMD_READ_12: 524 return ATAPI_READ; 525 526 case GPCMD_WRITE_10: 527 case GPCMD_WRITE_12: 528 case GPCMD_WRITE_AND_VERIFY_10: 529 return ATAPI_WRITE; 530 531 case GPCMD_READ_CD: 532 case GPCMD_READ_CD_MSF: 533 return ATAPI_READ_CD; 534 535 case ATA_16: 536 case ATA_12: 537 if (atapi_passthru16) 538 return ATAPI_PASS_THRU; 539 fallthrough; 540 default: 541 return ATAPI_MISC; 542 } 543 } 544 EXPORT_SYMBOL_GPL(atapi_cmd_type); 545 546 static const u8 ata_rw_cmds[] = { 547 /* pio multi */ 548 ATA_CMD_READ_MULTI, 549 ATA_CMD_WRITE_MULTI, 550 ATA_CMD_READ_MULTI_EXT, 551 ATA_CMD_WRITE_MULTI_EXT, 552 0, 553 0, 554 0, 555 0, 556 /* pio */ 557 ATA_CMD_PIO_READ, 558 ATA_CMD_PIO_WRITE, 559 ATA_CMD_PIO_READ_EXT, 560 ATA_CMD_PIO_WRITE_EXT, 561 0, 562 0, 563 0, 564 0, 565 /* dma */ 566 ATA_CMD_READ, 567 ATA_CMD_WRITE, 568 ATA_CMD_READ_EXT, 569 ATA_CMD_WRITE_EXT, 570 0, 571 0, 572 0, 573 ATA_CMD_WRITE_FUA_EXT 574 }; 575 576 /** 577 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol 578 * @dev: target device for the taskfile 579 * @tf: taskfile to examine and configure 580 * 581 * Examine the device configuration and tf->flags to determine 582 * the proper read/write command and protocol to use for @tf. 583 * 584 * LOCKING: 585 * caller. 586 */ 587 static bool ata_set_rwcmd_protocol(struct ata_device *dev, 588 struct ata_taskfile *tf) 589 { 590 u8 cmd; 591 592 int index, fua, lba48, write; 593 594 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 595 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 596 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 597 598 if (dev->flags & ATA_DFLAG_PIO) { 599 tf->protocol = ATA_PROT_PIO; 600 index = dev->multi_count ? 0 : 8; 601 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 602 /* Unable to use DMA due to host limitation */ 603 tf->protocol = ATA_PROT_PIO; 604 index = dev->multi_count ? 0 : 8; 605 } else { 606 tf->protocol = ATA_PROT_DMA; 607 index = 16; 608 } 609 610 cmd = ata_rw_cmds[index + fua + lba48 + write]; 611 if (!cmd) 612 return false; 613 614 tf->command = cmd; 615 616 return true; 617 } 618 619 /** 620 * ata_tf_read_block - Read block address from ATA taskfile 621 * @tf: ATA taskfile of interest 622 * @dev: ATA device @tf belongs to 623 * 624 * LOCKING: 625 * None. 626 * 627 * Read block address from @tf. This function can handle all 628 * three address formats - LBA, LBA48 and CHS. tf->protocol and 629 * flags select the address format to use. 630 * 631 * RETURNS: 632 * Block address read from @tf. 633 */ 634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 635 { 636 u64 block = 0; 637 638 if (tf->flags & ATA_TFLAG_LBA) { 639 if (tf->flags & ATA_TFLAG_LBA48) { 640 block |= (u64)tf->hob_lbah << 40; 641 block |= (u64)tf->hob_lbam << 32; 642 block |= (u64)tf->hob_lbal << 24; 643 } else 644 block |= (tf->device & 0xf) << 24; 645 646 block |= tf->lbah << 16; 647 block |= tf->lbam << 8; 648 block |= tf->lbal; 649 } else { 650 u32 cyl, head, sect; 651 652 cyl = tf->lbam | (tf->lbah << 8); 653 head = tf->device & 0xf; 654 sect = tf->lbal; 655 656 if (!sect) { 657 ata_dev_warn(dev, 658 "device reported invalid CHS sector 0\n"); 659 return U64_MAX; 660 } 661 662 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 663 } 664 665 return block; 666 } 667 668 /* 669 * Set a taskfile command duration limit index. 670 */ 671 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl) 672 { 673 struct ata_taskfile *tf = &qc->tf; 674 675 if (tf->protocol == ATA_PROT_NCQ) 676 tf->auxiliary |= cdl; 677 else 678 tf->feature |= cdl; 679 680 /* 681 * Mark this command as having a CDL and request the result 682 * task file so that we can inspect the sense data available 683 * bit on completion. 684 */ 685 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF; 686 } 687 688 /** 689 * ata_build_rw_tf - Build ATA taskfile for given read/write request 690 * @qc: Metadata associated with the taskfile to build 691 * @block: Block address 692 * @n_block: Number of blocks 693 * @tf_flags: RW/FUA etc... 694 * @cdl: Command duration limit index 695 * @class: IO priority class 696 * 697 * LOCKING: 698 * None. 699 * 700 * Build ATA taskfile for the command @qc for read/write request described 701 * by @block, @n_block, @tf_flags and @class. 702 * 703 * RETURNS: 704 * 705 * 0 on success, -ERANGE if the request is too large for @dev, 706 * -EINVAL if the request is invalid. 707 */ 708 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block, 709 unsigned int tf_flags, int cdl, int class) 710 { 711 struct ata_taskfile *tf = &qc->tf; 712 struct ata_device *dev = qc->dev; 713 714 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 715 tf->flags |= tf_flags; 716 717 if (ata_ncq_enabled(dev)) { 718 /* yay, NCQ */ 719 if (!lba_48_ok(block, n_block)) 720 return -ERANGE; 721 722 tf->protocol = ATA_PROT_NCQ; 723 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 724 725 if (tf->flags & ATA_TFLAG_WRITE) 726 tf->command = ATA_CMD_FPDMA_WRITE; 727 else 728 tf->command = ATA_CMD_FPDMA_READ; 729 730 tf->nsect = qc->hw_tag << 3; 731 tf->hob_feature = (n_block >> 8) & 0xff; 732 tf->feature = n_block & 0xff; 733 734 tf->hob_lbah = (block >> 40) & 0xff; 735 tf->hob_lbam = (block >> 32) & 0xff; 736 tf->hob_lbal = (block >> 24) & 0xff; 737 tf->lbah = (block >> 16) & 0xff; 738 tf->lbam = (block >> 8) & 0xff; 739 tf->lbal = block & 0xff; 740 741 tf->device = ATA_LBA; 742 if (tf->flags & ATA_TFLAG_FUA) 743 tf->device |= 1 << 7; 744 745 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED && 746 class == IOPRIO_CLASS_RT) 747 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 748 749 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 750 ata_set_tf_cdl(qc, cdl); 751 752 } else if (dev->flags & ATA_DFLAG_LBA) { 753 tf->flags |= ATA_TFLAG_LBA; 754 755 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 756 ata_set_tf_cdl(qc, cdl); 757 758 /* Both FUA writes and a CDL index require 48-bit commands */ 759 if (!(tf->flags & ATA_TFLAG_FUA) && 760 !(qc->flags & ATA_QCFLAG_HAS_CDL) && 761 lba_28_ok(block, n_block)) { 762 /* use LBA28 */ 763 tf->device |= (block >> 24) & 0xf; 764 } else if (lba_48_ok(block, n_block)) { 765 if (!(dev->flags & ATA_DFLAG_LBA48)) 766 return -ERANGE; 767 768 /* use LBA48 */ 769 tf->flags |= ATA_TFLAG_LBA48; 770 771 tf->hob_nsect = (n_block >> 8) & 0xff; 772 773 tf->hob_lbah = (block >> 40) & 0xff; 774 tf->hob_lbam = (block >> 32) & 0xff; 775 tf->hob_lbal = (block >> 24) & 0xff; 776 } else { 777 /* request too large even for LBA48 */ 778 return -ERANGE; 779 } 780 781 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 782 return -EINVAL; 783 784 tf->nsect = n_block & 0xff; 785 786 tf->lbah = (block >> 16) & 0xff; 787 tf->lbam = (block >> 8) & 0xff; 788 tf->lbal = block & 0xff; 789 790 tf->device |= ATA_LBA; 791 } else { 792 /* CHS */ 793 u32 sect, head, cyl, track; 794 795 /* The request -may- be too large for CHS addressing. */ 796 if (!lba_28_ok(block, n_block)) 797 return -ERANGE; 798 799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 800 return -EINVAL; 801 802 /* Convert LBA to CHS */ 803 track = (u32)block / dev->sectors; 804 cyl = track / dev->heads; 805 head = track % dev->heads; 806 sect = (u32)block % dev->sectors + 1; 807 808 /* Check whether the converted CHS can fit. 809 Cylinder: 0-65535 810 Head: 0-15 811 Sector: 1-255*/ 812 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 813 return -ERANGE; 814 815 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 816 tf->lbal = sect; 817 tf->lbam = cyl; 818 tf->lbah = cyl >> 8; 819 tf->device |= head; 820 } 821 822 return 0; 823 } 824 825 /** 826 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 827 * @pio_mask: pio_mask 828 * @mwdma_mask: mwdma_mask 829 * @udma_mask: udma_mask 830 * 831 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 832 * unsigned int xfer_mask. 833 * 834 * LOCKING: 835 * None. 836 * 837 * RETURNS: 838 * Packed xfer_mask. 839 */ 840 unsigned int ata_pack_xfermask(unsigned int pio_mask, 841 unsigned int mwdma_mask, 842 unsigned int udma_mask) 843 { 844 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 845 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 846 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 847 } 848 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 849 850 /** 851 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 852 * @xfer_mask: xfer_mask to unpack 853 * @pio_mask: resulting pio_mask 854 * @mwdma_mask: resulting mwdma_mask 855 * @udma_mask: resulting udma_mask 856 * 857 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 858 * Any NULL destination masks will be ignored. 859 */ 860 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 861 unsigned int *mwdma_mask, unsigned int *udma_mask) 862 { 863 if (pio_mask) 864 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 865 if (mwdma_mask) 866 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 867 if (udma_mask) 868 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 869 } 870 871 static const struct ata_xfer_ent { 872 int shift, bits; 873 u8 base; 874 } ata_xfer_tbl[] = { 875 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 876 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 877 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 878 { -1, }, 879 }; 880 881 /** 882 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 883 * @xfer_mask: xfer_mask of interest 884 * 885 * Return matching XFER_* value for @xfer_mask. Only the highest 886 * bit of @xfer_mask is considered. 887 * 888 * LOCKING: 889 * None. 890 * 891 * RETURNS: 892 * Matching XFER_* value, 0xff if no match found. 893 */ 894 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 895 { 896 int highbit = fls(xfer_mask) - 1; 897 const struct ata_xfer_ent *ent; 898 899 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 900 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 901 return ent->base + highbit - ent->shift; 902 return 0xff; 903 } 904 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 905 906 /** 907 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 908 * @xfer_mode: XFER_* of interest 909 * 910 * Return matching xfer_mask for @xfer_mode. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching xfer_mask, 0 if no match found. 917 */ 918 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 919 { 920 const struct ata_xfer_ent *ent; 921 922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 923 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 924 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 925 & ~((1 << ent->shift) - 1); 926 return 0; 927 } 928 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 929 930 /** 931 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 932 * @xfer_mode: XFER_* of interest 933 * 934 * Return matching xfer_shift for @xfer_mode. 935 * 936 * LOCKING: 937 * None. 938 * 939 * RETURNS: 940 * Matching xfer_shift, -1 if no match found. 941 */ 942 int ata_xfer_mode2shift(u8 xfer_mode) 943 { 944 const struct ata_xfer_ent *ent; 945 946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 948 return ent->shift; 949 return -1; 950 } 951 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 952 953 /** 954 * ata_mode_string - convert xfer_mask to string 955 * @xfer_mask: mask of bits supported; only highest bit counts. 956 * 957 * Determine string which represents the highest speed 958 * (highest bit in @modemask). 959 * 960 * LOCKING: 961 * None. 962 * 963 * RETURNS: 964 * Constant C string representing highest speed listed in 965 * @mode_mask, or the constant C string "<n/a>". 966 */ 967 const char *ata_mode_string(unsigned int xfer_mask) 968 { 969 static const char * const xfer_mode_str[] = { 970 "PIO0", 971 "PIO1", 972 "PIO2", 973 "PIO3", 974 "PIO4", 975 "PIO5", 976 "PIO6", 977 "MWDMA0", 978 "MWDMA1", 979 "MWDMA2", 980 "MWDMA3", 981 "MWDMA4", 982 "UDMA/16", 983 "UDMA/25", 984 "UDMA/33", 985 "UDMA/44", 986 "UDMA/66", 987 "UDMA/100", 988 "UDMA/133", 989 "UDMA7", 990 }; 991 int highbit; 992 993 highbit = fls(xfer_mask) - 1; 994 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 995 return xfer_mode_str[highbit]; 996 return "<n/a>"; 997 } 998 EXPORT_SYMBOL_GPL(ata_mode_string); 999 1000 const char *sata_spd_string(unsigned int spd) 1001 { 1002 static const char * const spd_str[] = { 1003 "1.5 Gbps", 1004 "3.0 Gbps", 1005 "6.0 Gbps", 1006 }; 1007 1008 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1009 return "<unknown>"; 1010 return spd_str[spd - 1]; 1011 } 1012 1013 /** 1014 * ata_dev_classify - determine device type based on ATA-spec signature 1015 * @tf: ATA taskfile register set for device to be identified 1016 * 1017 * Determine from taskfile register contents whether a device is 1018 * ATA or ATAPI, as per "Signature and persistence" section 1019 * of ATA/PI spec (volume 1, sect 5.14). 1020 * 1021 * LOCKING: 1022 * None. 1023 * 1024 * RETURNS: 1025 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1026 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1027 */ 1028 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1029 { 1030 /* Apple's open source Darwin code hints that some devices only 1031 * put a proper signature into the LBA mid/high registers, 1032 * So, we only check those. It's sufficient for uniqueness. 1033 * 1034 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1035 * signatures for ATA and ATAPI devices attached on SerialATA, 1036 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1037 * spec has never mentioned about using different signatures 1038 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1039 * Multiplier specification began to use 0x69/0x96 to identify 1040 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1041 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1042 * 0x69/0x96 shortly and described them as reserved for 1043 * SerialATA. 1044 * 1045 * We follow the current spec and consider that 0x69/0x96 1046 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1047 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1048 * SEMB signature. This is worked around in 1049 * ata_dev_read_id(). 1050 */ 1051 if (tf->lbam == 0 && tf->lbah == 0) 1052 return ATA_DEV_ATA; 1053 1054 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1055 return ATA_DEV_ATAPI; 1056 1057 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1058 return ATA_DEV_PMP; 1059 1060 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1061 return ATA_DEV_SEMB; 1062 1063 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1064 return ATA_DEV_ZAC; 1065 1066 return ATA_DEV_UNKNOWN; 1067 } 1068 EXPORT_SYMBOL_GPL(ata_dev_classify); 1069 1070 /** 1071 * ata_id_string - Convert IDENTIFY DEVICE page into string 1072 * @id: IDENTIFY DEVICE results we will examine 1073 * @s: string into which data is output 1074 * @ofs: offset into identify device page 1075 * @len: length of string to return. must be an even number. 1076 * 1077 * The strings in the IDENTIFY DEVICE page are broken up into 1078 * 16-bit chunks. Run through the string, and output each 1079 * 8-bit chunk linearly, regardless of platform. 1080 * 1081 * LOCKING: 1082 * caller. 1083 */ 1084 1085 void ata_id_string(const u16 *id, unsigned char *s, 1086 unsigned int ofs, unsigned int len) 1087 { 1088 unsigned int c; 1089 1090 BUG_ON(len & 1); 1091 1092 while (len > 0) { 1093 c = id[ofs] >> 8; 1094 *s = c; 1095 s++; 1096 1097 c = id[ofs] & 0xff; 1098 *s = c; 1099 s++; 1100 1101 ofs++; 1102 len -= 2; 1103 } 1104 } 1105 EXPORT_SYMBOL_GPL(ata_id_string); 1106 1107 /** 1108 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1109 * @id: IDENTIFY DEVICE results we will examine 1110 * @s: string into which data is output 1111 * @ofs: offset into identify device page 1112 * @len: length of string to return. must be an odd number. 1113 * 1114 * This function is identical to ata_id_string except that it 1115 * trims trailing spaces and terminates the resulting string with 1116 * null. @len must be actual maximum length (even number) + 1. 1117 * 1118 * LOCKING: 1119 * caller. 1120 */ 1121 void ata_id_c_string(const u16 *id, unsigned char *s, 1122 unsigned int ofs, unsigned int len) 1123 { 1124 unsigned char *p; 1125 1126 ata_id_string(id, s, ofs, len - 1); 1127 1128 p = s + strnlen(s, len - 1); 1129 while (p > s && p[-1] == ' ') 1130 p--; 1131 *p = '\0'; 1132 } 1133 EXPORT_SYMBOL_GPL(ata_id_c_string); 1134 1135 static u64 ata_id_n_sectors(const u16 *id) 1136 { 1137 if (ata_id_has_lba(id)) { 1138 if (ata_id_has_lba48(id)) 1139 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1140 1141 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1142 } 1143 1144 if (ata_id_current_chs_valid(id)) 1145 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1146 (u32)id[ATA_ID_CUR_SECTORS]; 1147 1148 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1149 (u32)id[ATA_ID_SECTORS]; 1150 } 1151 1152 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1153 { 1154 u64 sectors = 0; 1155 1156 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1157 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1158 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1159 sectors |= (tf->lbah & 0xff) << 16; 1160 sectors |= (tf->lbam & 0xff) << 8; 1161 sectors |= (tf->lbal & 0xff); 1162 1163 return sectors; 1164 } 1165 1166 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1167 { 1168 u64 sectors = 0; 1169 1170 sectors |= (tf->device & 0x0f) << 24; 1171 sectors |= (tf->lbah & 0xff) << 16; 1172 sectors |= (tf->lbam & 0xff) << 8; 1173 sectors |= (tf->lbal & 0xff); 1174 1175 return sectors; 1176 } 1177 1178 /** 1179 * ata_read_native_max_address - Read native max address 1180 * @dev: target device 1181 * @max_sectors: out parameter for the result native max address 1182 * 1183 * Perform an LBA48 or LBA28 native size query upon the device in 1184 * question. 1185 * 1186 * RETURNS: 1187 * 0 on success, -EACCES if command is aborted by the drive. 1188 * -EIO on other errors. 1189 */ 1190 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1191 { 1192 unsigned int err_mask; 1193 struct ata_taskfile tf; 1194 int lba48 = ata_id_has_lba48(dev->id); 1195 1196 ata_tf_init(dev, &tf); 1197 1198 /* always clear all address registers */ 1199 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1200 1201 if (lba48) { 1202 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1203 tf.flags |= ATA_TFLAG_LBA48; 1204 } else 1205 tf.command = ATA_CMD_READ_NATIVE_MAX; 1206 1207 tf.protocol = ATA_PROT_NODATA; 1208 tf.device |= ATA_LBA; 1209 1210 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1211 if (err_mask) { 1212 ata_dev_warn(dev, 1213 "failed to read native max address (err_mask=0x%x)\n", 1214 err_mask); 1215 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1216 return -EACCES; 1217 return -EIO; 1218 } 1219 1220 if (lba48) 1221 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1222 else 1223 *max_sectors = ata_tf_to_lba(&tf) + 1; 1224 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1225 (*max_sectors)--; 1226 return 0; 1227 } 1228 1229 /** 1230 * ata_set_max_sectors - Set max sectors 1231 * @dev: target device 1232 * @new_sectors: new max sectors value to set for the device 1233 * 1234 * Set max sectors of @dev to @new_sectors. 1235 * 1236 * RETURNS: 1237 * 0 on success, -EACCES if command is aborted or denied (due to 1238 * previous non-volatile SET_MAX) by the drive. -EIO on other 1239 * errors. 1240 */ 1241 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1242 { 1243 unsigned int err_mask; 1244 struct ata_taskfile tf; 1245 int lba48 = ata_id_has_lba48(dev->id); 1246 1247 new_sectors--; 1248 1249 ata_tf_init(dev, &tf); 1250 1251 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1252 1253 if (lba48) { 1254 tf.command = ATA_CMD_SET_MAX_EXT; 1255 tf.flags |= ATA_TFLAG_LBA48; 1256 1257 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1258 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1259 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1260 } else { 1261 tf.command = ATA_CMD_SET_MAX; 1262 1263 tf.device |= (new_sectors >> 24) & 0xf; 1264 } 1265 1266 tf.protocol = ATA_PROT_NODATA; 1267 tf.device |= ATA_LBA; 1268 1269 tf.lbal = (new_sectors >> 0) & 0xff; 1270 tf.lbam = (new_sectors >> 8) & 0xff; 1271 tf.lbah = (new_sectors >> 16) & 0xff; 1272 1273 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1274 if (err_mask) { 1275 ata_dev_warn(dev, 1276 "failed to set max address (err_mask=0x%x)\n", 1277 err_mask); 1278 if (err_mask == AC_ERR_DEV && 1279 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1280 return -EACCES; 1281 return -EIO; 1282 } 1283 1284 return 0; 1285 } 1286 1287 /** 1288 * ata_hpa_resize - Resize a device with an HPA set 1289 * @dev: Device to resize 1290 * 1291 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1292 * it if required to the full size of the media. The caller must check 1293 * the drive has the HPA feature set enabled. 1294 * 1295 * RETURNS: 1296 * 0 on success, -errno on failure. 1297 */ 1298 static int ata_hpa_resize(struct ata_device *dev) 1299 { 1300 bool print_info = ata_dev_print_info(dev); 1301 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1302 u64 sectors = ata_id_n_sectors(dev->id); 1303 u64 native_sectors; 1304 int rc; 1305 1306 /* do we need to do it? */ 1307 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1308 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1309 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1310 return 0; 1311 1312 /* read native max address */ 1313 rc = ata_read_native_max_address(dev, &native_sectors); 1314 if (rc) { 1315 /* If device aborted the command or HPA isn't going to 1316 * be unlocked, skip HPA resizing. 1317 */ 1318 if (rc == -EACCES || !unlock_hpa) { 1319 ata_dev_warn(dev, 1320 "HPA support seems broken, skipping HPA handling\n"); 1321 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1322 1323 /* we can continue if device aborted the command */ 1324 if (rc == -EACCES) 1325 rc = 0; 1326 } 1327 1328 return rc; 1329 } 1330 dev->n_native_sectors = native_sectors; 1331 1332 /* nothing to do? */ 1333 if (native_sectors <= sectors || !unlock_hpa) { 1334 if (!print_info || native_sectors == sectors) 1335 return 0; 1336 1337 if (native_sectors > sectors) 1338 ata_dev_info(dev, 1339 "HPA detected: current %llu, native %llu\n", 1340 (unsigned long long)sectors, 1341 (unsigned long long)native_sectors); 1342 else if (native_sectors < sectors) 1343 ata_dev_warn(dev, 1344 "native sectors (%llu) is smaller than sectors (%llu)\n", 1345 (unsigned long long)native_sectors, 1346 (unsigned long long)sectors); 1347 return 0; 1348 } 1349 1350 /* let's unlock HPA */ 1351 rc = ata_set_max_sectors(dev, native_sectors); 1352 if (rc == -EACCES) { 1353 /* if device aborted the command, skip HPA resizing */ 1354 ata_dev_warn(dev, 1355 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1356 (unsigned long long)sectors, 1357 (unsigned long long)native_sectors); 1358 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1359 return 0; 1360 } else if (rc) 1361 return rc; 1362 1363 /* re-read IDENTIFY data */ 1364 rc = ata_dev_reread_id(dev, 0); 1365 if (rc) { 1366 ata_dev_err(dev, 1367 "failed to re-read IDENTIFY data after HPA resizing\n"); 1368 return rc; 1369 } 1370 1371 if (print_info) { 1372 u64 new_sectors = ata_id_n_sectors(dev->id); 1373 ata_dev_info(dev, 1374 "HPA unlocked: %llu -> %llu, native %llu\n", 1375 (unsigned long long)sectors, 1376 (unsigned long long)new_sectors, 1377 (unsigned long long)native_sectors); 1378 } 1379 1380 return 0; 1381 } 1382 1383 /** 1384 * ata_dump_id - IDENTIFY DEVICE info debugging output 1385 * @dev: device from which the information is fetched 1386 * @id: IDENTIFY DEVICE page to dump 1387 * 1388 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1389 * page. 1390 * 1391 * LOCKING: 1392 * caller. 1393 */ 1394 1395 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1396 { 1397 ata_dev_dbg(dev, 1398 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1399 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1400 "88==0x%04x 93==0x%04x\n", 1401 id[49], id[53], id[63], id[64], id[75], id[80], 1402 id[81], id[82], id[83], id[84], id[88], id[93]); 1403 } 1404 1405 /** 1406 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1407 * @id: IDENTIFY data to compute xfer mask from 1408 * 1409 * Compute the xfermask for this device. This is not as trivial 1410 * as it seems if we must consider early devices correctly. 1411 * 1412 * FIXME: pre IDE drive timing (do we care ?). 1413 * 1414 * LOCKING: 1415 * None. 1416 * 1417 * RETURNS: 1418 * Computed xfermask 1419 */ 1420 unsigned int ata_id_xfermask(const u16 *id) 1421 { 1422 unsigned int pio_mask, mwdma_mask, udma_mask; 1423 1424 /* Usual case. Word 53 indicates word 64 is valid */ 1425 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1426 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1427 pio_mask <<= 3; 1428 pio_mask |= 0x7; 1429 } else { 1430 /* If word 64 isn't valid then Word 51 high byte holds 1431 * the PIO timing number for the maximum. Turn it into 1432 * a mask. 1433 */ 1434 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1435 if (mode < 5) /* Valid PIO range */ 1436 pio_mask = (2 << mode) - 1; 1437 else 1438 pio_mask = 1; 1439 1440 /* But wait.. there's more. Design your standards by 1441 * committee and you too can get a free iordy field to 1442 * process. However it is the speeds not the modes that 1443 * are supported... Note drivers using the timing API 1444 * will get this right anyway 1445 */ 1446 } 1447 1448 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1449 1450 if (ata_id_is_cfa(id)) { 1451 /* 1452 * Process compact flash extended modes 1453 */ 1454 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1455 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1456 1457 if (pio) 1458 pio_mask |= (1 << 5); 1459 if (pio > 1) 1460 pio_mask |= (1 << 6); 1461 if (dma) 1462 mwdma_mask |= (1 << 3); 1463 if (dma > 1) 1464 mwdma_mask |= (1 << 4); 1465 } 1466 1467 udma_mask = 0; 1468 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1469 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1470 1471 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1472 } 1473 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1474 1475 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1476 { 1477 struct completion *waiting = qc->private_data; 1478 1479 complete(waiting); 1480 } 1481 1482 /** 1483 * ata_exec_internal_sg - execute libata internal command 1484 * @dev: Device to which the command is sent 1485 * @tf: Taskfile registers for the command and the result 1486 * @cdb: CDB for packet command 1487 * @dma_dir: Data transfer direction of the command 1488 * @sgl: sg list for the data buffer of the command 1489 * @n_elem: Number of sg entries 1490 * @timeout: Timeout in msecs (0 for default) 1491 * 1492 * Executes libata internal command with timeout. @tf contains 1493 * command on entry and result on return. Timeout and error 1494 * conditions are reported via return value. No recovery action 1495 * is taken after a command times out. It's caller's duty to 1496 * clean up after timeout. 1497 * 1498 * LOCKING: 1499 * None. Should be called with kernel context, might sleep. 1500 * 1501 * RETURNS: 1502 * Zero on success, AC_ERR_* mask on failure 1503 */ 1504 static unsigned ata_exec_internal_sg(struct ata_device *dev, 1505 struct ata_taskfile *tf, const u8 *cdb, 1506 int dma_dir, struct scatterlist *sgl, 1507 unsigned int n_elem, unsigned int timeout) 1508 { 1509 struct ata_link *link = dev->link; 1510 struct ata_port *ap = link->ap; 1511 u8 command = tf->command; 1512 int auto_timeout = 0; 1513 struct ata_queued_cmd *qc; 1514 unsigned int preempted_tag; 1515 u32 preempted_sactive; 1516 u64 preempted_qc_active; 1517 int preempted_nr_active_links; 1518 DECLARE_COMPLETION_ONSTACK(wait); 1519 unsigned long flags; 1520 unsigned int err_mask; 1521 int rc; 1522 1523 spin_lock_irqsave(ap->lock, flags); 1524 1525 /* no internal command while frozen */ 1526 if (ata_port_is_frozen(ap)) { 1527 spin_unlock_irqrestore(ap->lock, flags); 1528 return AC_ERR_SYSTEM; 1529 } 1530 1531 /* initialize internal qc */ 1532 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1533 1534 qc->tag = ATA_TAG_INTERNAL; 1535 qc->hw_tag = 0; 1536 qc->scsicmd = NULL; 1537 qc->ap = ap; 1538 qc->dev = dev; 1539 ata_qc_reinit(qc); 1540 1541 preempted_tag = link->active_tag; 1542 preempted_sactive = link->sactive; 1543 preempted_qc_active = ap->qc_active; 1544 preempted_nr_active_links = ap->nr_active_links; 1545 link->active_tag = ATA_TAG_POISON; 1546 link->sactive = 0; 1547 ap->qc_active = 0; 1548 ap->nr_active_links = 0; 1549 1550 /* prepare & issue qc */ 1551 qc->tf = *tf; 1552 if (cdb) 1553 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1554 1555 /* some SATA bridges need us to indicate data xfer direction */ 1556 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1557 dma_dir == DMA_FROM_DEVICE) 1558 qc->tf.feature |= ATAPI_DMADIR; 1559 1560 qc->flags |= ATA_QCFLAG_RESULT_TF; 1561 qc->dma_dir = dma_dir; 1562 if (dma_dir != DMA_NONE) { 1563 unsigned int i, buflen = 0; 1564 struct scatterlist *sg; 1565 1566 for_each_sg(sgl, sg, n_elem, i) 1567 buflen += sg->length; 1568 1569 ata_sg_init(qc, sgl, n_elem); 1570 qc->nbytes = buflen; 1571 } 1572 1573 qc->private_data = &wait; 1574 qc->complete_fn = ata_qc_complete_internal; 1575 1576 ata_qc_issue(qc); 1577 1578 spin_unlock_irqrestore(ap->lock, flags); 1579 1580 if (!timeout) { 1581 if (ata_probe_timeout) 1582 timeout = ata_probe_timeout * 1000; 1583 else { 1584 timeout = ata_internal_cmd_timeout(dev, command); 1585 auto_timeout = 1; 1586 } 1587 } 1588 1589 ata_eh_release(ap); 1590 1591 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1592 1593 ata_eh_acquire(ap); 1594 1595 ata_sff_flush_pio_task(ap); 1596 1597 if (!rc) { 1598 spin_lock_irqsave(ap->lock, flags); 1599 1600 /* We're racing with irq here. If we lose, the 1601 * following test prevents us from completing the qc 1602 * twice. If we win, the port is frozen and will be 1603 * cleaned up by ->post_internal_cmd(). 1604 */ 1605 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1606 qc->err_mask |= AC_ERR_TIMEOUT; 1607 1608 ata_port_freeze(ap); 1609 1610 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n", 1611 timeout, command); 1612 } 1613 1614 spin_unlock_irqrestore(ap->lock, flags); 1615 } 1616 1617 /* do post_internal_cmd */ 1618 if (ap->ops->post_internal_cmd) 1619 ap->ops->post_internal_cmd(qc); 1620 1621 /* perform minimal error analysis */ 1622 if (qc->flags & ATA_QCFLAG_EH) { 1623 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1624 qc->err_mask |= AC_ERR_DEV; 1625 1626 if (!qc->err_mask) 1627 qc->err_mask |= AC_ERR_OTHER; 1628 1629 if (qc->err_mask & ~AC_ERR_OTHER) 1630 qc->err_mask &= ~AC_ERR_OTHER; 1631 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1632 qc->result_tf.status |= ATA_SENSE; 1633 } 1634 1635 /* finish up */ 1636 spin_lock_irqsave(ap->lock, flags); 1637 1638 *tf = qc->result_tf; 1639 err_mask = qc->err_mask; 1640 1641 ata_qc_free(qc); 1642 link->active_tag = preempted_tag; 1643 link->sactive = preempted_sactive; 1644 ap->qc_active = preempted_qc_active; 1645 ap->nr_active_links = preempted_nr_active_links; 1646 1647 spin_unlock_irqrestore(ap->lock, flags); 1648 1649 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1650 ata_internal_cmd_timed_out(dev, command); 1651 1652 return err_mask; 1653 } 1654 1655 /** 1656 * ata_exec_internal - execute libata internal command 1657 * @dev: Device to which the command is sent 1658 * @tf: Taskfile registers for the command and the result 1659 * @cdb: CDB for packet command 1660 * @dma_dir: Data transfer direction of the command 1661 * @buf: Data buffer of the command 1662 * @buflen: Length of data buffer 1663 * @timeout: Timeout in msecs (0 for default) 1664 * 1665 * Wrapper around ata_exec_internal_sg() which takes simple 1666 * buffer instead of sg list. 1667 * 1668 * LOCKING: 1669 * None. Should be called with kernel context, might sleep. 1670 * 1671 * RETURNS: 1672 * Zero on success, AC_ERR_* mask on failure 1673 */ 1674 unsigned ata_exec_internal(struct ata_device *dev, 1675 struct ata_taskfile *tf, const u8 *cdb, 1676 int dma_dir, void *buf, unsigned int buflen, 1677 unsigned int timeout) 1678 { 1679 struct scatterlist *psg = NULL, sg; 1680 unsigned int n_elem = 0; 1681 1682 if (dma_dir != DMA_NONE) { 1683 WARN_ON(!buf); 1684 sg_init_one(&sg, buf, buflen); 1685 psg = &sg; 1686 n_elem++; 1687 } 1688 1689 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1690 timeout); 1691 } 1692 1693 /** 1694 * ata_pio_need_iordy - check if iordy needed 1695 * @adev: ATA device 1696 * 1697 * Check if the current speed of the device requires IORDY. Used 1698 * by various controllers for chip configuration. 1699 */ 1700 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1701 { 1702 /* Don't set IORDY if we're preparing for reset. IORDY may 1703 * lead to controller lock up on certain controllers if the 1704 * port is not occupied. See bko#11703 for details. 1705 */ 1706 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1707 return 0; 1708 /* Controller doesn't support IORDY. Probably a pointless 1709 * check as the caller should know this. 1710 */ 1711 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1712 return 0; 1713 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1714 if (ata_id_is_cfa(adev->id) 1715 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1716 return 0; 1717 /* PIO3 and higher it is mandatory */ 1718 if (adev->pio_mode > XFER_PIO_2) 1719 return 1; 1720 /* We turn it on when possible */ 1721 if (ata_id_has_iordy(adev->id)) 1722 return 1; 1723 return 0; 1724 } 1725 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1726 1727 /** 1728 * ata_pio_mask_no_iordy - Return the non IORDY mask 1729 * @adev: ATA device 1730 * 1731 * Compute the highest mode possible if we are not using iordy. Return 1732 * -1 if no iordy mode is available. 1733 */ 1734 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1735 { 1736 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1737 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1738 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1739 /* Is the speed faster than the drive allows non IORDY ? */ 1740 if (pio) { 1741 /* This is cycle times not frequency - watch the logic! */ 1742 if (pio > 240) /* PIO2 is 240nS per cycle */ 1743 return 3 << ATA_SHIFT_PIO; 1744 return 7 << ATA_SHIFT_PIO; 1745 } 1746 } 1747 return 3 << ATA_SHIFT_PIO; 1748 } 1749 1750 /** 1751 * ata_do_dev_read_id - default ID read method 1752 * @dev: device 1753 * @tf: proposed taskfile 1754 * @id: data buffer 1755 * 1756 * Issue the identify taskfile and hand back the buffer containing 1757 * identify data. For some RAID controllers and for pre ATA devices 1758 * this function is wrapped or replaced by the driver 1759 */ 1760 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1761 struct ata_taskfile *tf, __le16 *id) 1762 { 1763 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1764 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1765 } 1766 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1767 1768 /** 1769 * ata_dev_read_id - Read ID data from the specified device 1770 * @dev: target device 1771 * @p_class: pointer to class of the target device (may be changed) 1772 * @flags: ATA_READID_* flags 1773 * @id: buffer to read IDENTIFY data into 1774 * 1775 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1776 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1777 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1778 * for pre-ATA4 drives. 1779 * 1780 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1781 * now we abort if we hit that case. 1782 * 1783 * LOCKING: 1784 * Kernel thread context (may sleep) 1785 * 1786 * RETURNS: 1787 * 0 on success, -errno otherwise. 1788 */ 1789 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1790 unsigned int flags, u16 *id) 1791 { 1792 struct ata_port *ap = dev->link->ap; 1793 unsigned int class = *p_class; 1794 struct ata_taskfile tf; 1795 unsigned int err_mask = 0; 1796 const char *reason; 1797 bool is_semb = class == ATA_DEV_SEMB; 1798 int may_fallback = 1, tried_spinup = 0; 1799 int rc; 1800 1801 retry: 1802 ata_tf_init(dev, &tf); 1803 1804 switch (class) { 1805 case ATA_DEV_SEMB: 1806 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1807 fallthrough; 1808 case ATA_DEV_ATA: 1809 case ATA_DEV_ZAC: 1810 tf.command = ATA_CMD_ID_ATA; 1811 break; 1812 case ATA_DEV_ATAPI: 1813 tf.command = ATA_CMD_ID_ATAPI; 1814 break; 1815 default: 1816 rc = -ENODEV; 1817 reason = "unsupported class"; 1818 goto err_out; 1819 } 1820 1821 tf.protocol = ATA_PROT_PIO; 1822 1823 /* Some devices choke if TF registers contain garbage. Make 1824 * sure those are properly initialized. 1825 */ 1826 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1827 1828 /* Device presence detection is unreliable on some 1829 * controllers. Always poll IDENTIFY if available. 1830 */ 1831 tf.flags |= ATA_TFLAG_POLLING; 1832 1833 if (ap->ops->read_id) 1834 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1835 else 1836 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1837 1838 if (err_mask) { 1839 if (err_mask & AC_ERR_NODEV_HINT) { 1840 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1841 return -ENOENT; 1842 } 1843 1844 if (is_semb) { 1845 ata_dev_info(dev, 1846 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1847 /* SEMB is not supported yet */ 1848 *p_class = ATA_DEV_SEMB_UNSUP; 1849 return 0; 1850 } 1851 1852 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1853 /* Device or controller might have reported 1854 * the wrong device class. Give a shot at the 1855 * other IDENTIFY if the current one is 1856 * aborted by the device. 1857 */ 1858 if (may_fallback) { 1859 may_fallback = 0; 1860 1861 if (class == ATA_DEV_ATA) 1862 class = ATA_DEV_ATAPI; 1863 else 1864 class = ATA_DEV_ATA; 1865 goto retry; 1866 } 1867 1868 /* Control reaches here iff the device aborted 1869 * both flavors of IDENTIFYs which happens 1870 * sometimes with phantom devices. 1871 */ 1872 ata_dev_dbg(dev, 1873 "both IDENTIFYs aborted, assuming NODEV\n"); 1874 return -ENOENT; 1875 } 1876 1877 rc = -EIO; 1878 reason = "I/O error"; 1879 goto err_out; 1880 } 1881 1882 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1883 ata_dev_info(dev, "dumping IDENTIFY data, " 1884 "class=%d may_fallback=%d tried_spinup=%d\n", 1885 class, may_fallback, tried_spinup); 1886 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1887 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1888 } 1889 1890 /* Falling back doesn't make sense if ID data was read 1891 * successfully at least once. 1892 */ 1893 may_fallback = 0; 1894 1895 swap_buf_le16(id, ATA_ID_WORDS); 1896 1897 /* sanity check */ 1898 rc = -EINVAL; 1899 reason = "device reports invalid type"; 1900 1901 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1902 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1903 goto err_out; 1904 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1905 ata_id_is_ata(id)) { 1906 ata_dev_dbg(dev, 1907 "host indicates ignore ATA devices, ignored\n"); 1908 return -ENOENT; 1909 } 1910 } else { 1911 if (ata_id_is_ata(id)) 1912 goto err_out; 1913 } 1914 1915 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1916 tried_spinup = 1; 1917 /* 1918 * Drive powered-up in standby mode, and requires a specific 1919 * SET_FEATURES spin-up subcommand before it will accept 1920 * anything other than the original IDENTIFY command. 1921 */ 1922 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1923 if (err_mask && id[2] != 0x738c) { 1924 rc = -EIO; 1925 reason = "SPINUP failed"; 1926 goto err_out; 1927 } 1928 /* 1929 * If the drive initially returned incomplete IDENTIFY info, 1930 * we now must reissue the IDENTIFY command. 1931 */ 1932 if (id[2] == 0x37c8) 1933 goto retry; 1934 } 1935 1936 if ((flags & ATA_READID_POSTRESET) && 1937 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1938 /* 1939 * The exact sequence expected by certain pre-ATA4 drives is: 1940 * SRST RESET 1941 * IDENTIFY (optional in early ATA) 1942 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1943 * anything else.. 1944 * Some drives were very specific about that exact sequence. 1945 * 1946 * Note that ATA4 says lba is mandatory so the second check 1947 * should never trigger. 1948 */ 1949 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1950 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1951 if (err_mask) { 1952 rc = -EIO; 1953 reason = "INIT_DEV_PARAMS failed"; 1954 goto err_out; 1955 } 1956 1957 /* current CHS translation info (id[53-58]) might be 1958 * changed. reread the identify device info. 1959 */ 1960 flags &= ~ATA_READID_POSTRESET; 1961 goto retry; 1962 } 1963 } 1964 1965 *p_class = class; 1966 1967 return 0; 1968 1969 err_out: 1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1971 reason, err_mask); 1972 return rc; 1973 } 1974 1975 /** 1976 * ata_dev_power_set_standby - Set a device power mode to standby 1977 * @dev: target device 1978 * 1979 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby. 1980 * For an HDD device, this spins down the disks. 1981 * 1982 * LOCKING: 1983 * Kernel thread context (may sleep). 1984 */ 1985 void ata_dev_power_set_standby(struct ata_device *dev) 1986 { 1987 unsigned long ap_flags = dev->link->ap->flags; 1988 struct ata_taskfile tf; 1989 unsigned int err_mask; 1990 1991 /* Issue STANDBY IMMEDIATE command only if supported by the device */ 1992 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) 1993 return; 1994 1995 /* 1996 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5) 1997 * causing some drives to spin up and down again. For these, do nothing 1998 * if we are being called on shutdown. 1999 */ 2000 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) && 2001 system_state == SYSTEM_POWER_OFF) 2002 return; 2003 2004 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) && 2005 system_entering_hibernation()) 2006 return; 2007 2008 ata_tf_init(dev, &tf); 2009 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 2010 tf.protocol = ATA_PROT_NODATA; 2011 tf.command = ATA_CMD_STANDBYNOW1; 2012 2013 ata_dev_notice(dev, "Entering standby power mode\n"); 2014 2015 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2016 if (err_mask) 2017 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n", 2018 err_mask); 2019 } 2020 2021 /** 2022 * ata_dev_power_set_active - Set a device power mode to active 2023 * @dev: target device 2024 * 2025 * Issue a VERIFY command to enter to ensure that the device is in the 2026 * active power mode. For a spun-down HDD (standby or idle power mode), 2027 * the VERIFY command will complete after the disk spins up. 2028 * 2029 * LOCKING: 2030 * Kernel thread context (may sleep). 2031 */ 2032 void ata_dev_power_set_active(struct ata_device *dev) 2033 { 2034 struct ata_taskfile tf; 2035 unsigned int err_mask; 2036 2037 /* If the device is already sleeping, do nothing. */ 2038 if (dev->flags & ATA_DFLAG_SLEEPING) 2039 return; 2040 2041 /* 2042 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only 2043 * if supported by the device. 2044 */ 2045 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) 2046 return; 2047 2048 ata_tf_init(dev, &tf); 2049 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 2050 tf.protocol = ATA_PROT_NODATA; 2051 tf.command = ATA_CMD_VERIFY; 2052 tf.nsect = 1; 2053 if (dev->flags & ATA_DFLAG_LBA) { 2054 tf.flags |= ATA_TFLAG_LBA; 2055 tf.device |= ATA_LBA; 2056 } else { 2057 /* CHS */ 2058 tf.lbal = 0x1; /* sect */ 2059 } 2060 2061 ata_dev_notice(dev, "Entering active power mode\n"); 2062 2063 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2064 if (err_mask) 2065 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n", 2066 err_mask); 2067 } 2068 2069 /** 2070 * ata_read_log_page - read a specific log page 2071 * @dev: target device 2072 * @log: log to read 2073 * @page: page to read 2074 * @buf: buffer to store read page 2075 * @sectors: number of sectors to read 2076 * 2077 * Read log page using READ_LOG_EXT command. 2078 * 2079 * LOCKING: 2080 * Kernel thread context (may sleep). 2081 * 2082 * RETURNS: 2083 * 0 on success, AC_ERR_* mask otherwise. 2084 */ 2085 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 2086 u8 page, void *buf, unsigned int sectors) 2087 { 2088 unsigned long ap_flags = dev->link->ap->flags; 2089 struct ata_taskfile tf; 2090 unsigned int err_mask; 2091 bool dma = false; 2092 2093 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 2094 2095 /* 2096 * Return error without actually issuing the command on controllers 2097 * which e.g. lockup on a read log page. 2098 */ 2099 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2100 return AC_ERR_DEV; 2101 2102 retry: 2103 ata_tf_init(dev, &tf); 2104 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2105 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2106 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2107 tf.protocol = ATA_PROT_DMA; 2108 dma = true; 2109 } else { 2110 tf.command = ATA_CMD_READ_LOG_EXT; 2111 tf.protocol = ATA_PROT_PIO; 2112 dma = false; 2113 } 2114 tf.lbal = log; 2115 tf.lbam = page; 2116 tf.nsect = sectors; 2117 tf.hob_nsect = sectors >> 8; 2118 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2119 2120 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2121 buf, sectors * ATA_SECT_SIZE, 0); 2122 2123 if (err_mask) { 2124 if (dma) { 2125 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2126 if (!ata_port_is_frozen(dev->link->ap)) 2127 goto retry; 2128 } 2129 ata_dev_err(dev, 2130 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2131 (unsigned int)log, (unsigned int)page, err_mask); 2132 } 2133 2134 return err_mask; 2135 } 2136 2137 static int ata_log_supported(struct ata_device *dev, u8 log) 2138 { 2139 struct ata_port *ap = dev->link->ap; 2140 2141 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR) 2142 return 0; 2143 2144 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2145 return 0; 2146 return get_unaligned_le16(&ap->sector_buf[log * 2]); 2147 } 2148 2149 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2150 { 2151 struct ata_port *ap = dev->link->ap; 2152 unsigned int err, i; 2153 2154 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2155 return false; 2156 2157 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2158 /* 2159 * IDENTIFY DEVICE data log is defined as mandatory starting 2160 * with ACS-3 (ATA version 10). Warn about the missing log 2161 * for drives which implement this ATA level or above. 2162 */ 2163 if (ata_id_major_version(dev->id) >= 10) 2164 ata_dev_warn(dev, 2165 "ATA Identify Device Log not supported\n"); 2166 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2167 return false; 2168 } 2169 2170 /* 2171 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2172 * supported. 2173 */ 2174 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2175 1); 2176 if (err) 2177 return false; 2178 2179 for (i = 0; i < ap->sector_buf[8]; i++) { 2180 if (ap->sector_buf[9 + i] == page) 2181 return true; 2182 } 2183 2184 return false; 2185 } 2186 2187 static int ata_do_link_spd_horkage(struct ata_device *dev) 2188 { 2189 struct ata_link *plink = ata_dev_phys_link(dev); 2190 u32 target, target_limit; 2191 2192 if (!sata_scr_valid(plink)) 2193 return 0; 2194 2195 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2196 target = 1; 2197 else 2198 return 0; 2199 2200 target_limit = (1 << target) - 1; 2201 2202 /* if already on stricter limit, no need to push further */ 2203 if (plink->sata_spd_limit <= target_limit) 2204 return 0; 2205 2206 plink->sata_spd_limit = target_limit; 2207 2208 /* Request another EH round by returning -EAGAIN if link is 2209 * going faster than the target speed. Forward progress is 2210 * guaranteed by setting sata_spd_limit to target_limit above. 2211 */ 2212 if (plink->sata_spd > target) { 2213 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2214 sata_spd_string(target)); 2215 return -EAGAIN; 2216 } 2217 return 0; 2218 } 2219 2220 static inline u8 ata_dev_knobble(struct ata_device *dev) 2221 { 2222 struct ata_port *ap = dev->link->ap; 2223 2224 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2225 return 0; 2226 2227 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2228 } 2229 2230 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2231 { 2232 struct ata_port *ap = dev->link->ap; 2233 unsigned int err_mask; 2234 2235 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2236 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2237 return; 2238 } 2239 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2240 0, ap->sector_buf, 1); 2241 if (!err_mask) { 2242 u8 *cmds = dev->ncq_send_recv_cmds; 2243 2244 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2245 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2246 2247 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2248 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2249 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2250 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2251 } 2252 } 2253 } 2254 2255 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2256 { 2257 struct ata_port *ap = dev->link->ap; 2258 unsigned int err_mask; 2259 2260 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2261 ata_dev_warn(dev, 2262 "NCQ Send/Recv Log not supported\n"); 2263 return; 2264 } 2265 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2266 0, ap->sector_buf, 1); 2267 if (!err_mask) { 2268 u8 *cmds = dev->ncq_non_data_cmds; 2269 2270 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2271 } 2272 } 2273 2274 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2275 { 2276 struct ata_port *ap = dev->link->ap; 2277 unsigned int err_mask; 2278 2279 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2280 return; 2281 2282 err_mask = ata_read_log_page(dev, 2283 ATA_LOG_IDENTIFY_DEVICE, 2284 ATA_LOG_SATA_SETTINGS, 2285 ap->sector_buf, 2286 1); 2287 if (err_mask) 2288 goto not_supported; 2289 2290 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2291 goto not_supported; 2292 2293 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2294 2295 return; 2296 2297 not_supported: 2298 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 2299 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2300 } 2301 2302 static bool ata_dev_check_adapter(struct ata_device *dev, 2303 unsigned short vendor_id) 2304 { 2305 struct pci_dev *pcidev = NULL; 2306 struct device *parent_dev = NULL; 2307 2308 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2309 parent_dev = parent_dev->parent) { 2310 if (dev_is_pci(parent_dev)) { 2311 pcidev = to_pci_dev(parent_dev); 2312 if (pcidev->vendor == vendor_id) 2313 return true; 2314 break; 2315 } 2316 } 2317 2318 return false; 2319 } 2320 2321 static int ata_dev_config_ncq(struct ata_device *dev, 2322 char *desc, size_t desc_sz) 2323 { 2324 struct ata_port *ap = dev->link->ap; 2325 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2326 unsigned int err_mask; 2327 char *aa_desc = ""; 2328 2329 if (!ata_id_has_ncq(dev->id)) { 2330 desc[0] = '\0'; 2331 return 0; 2332 } 2333 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2334 return 0; 2335 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2336 snprintf(desc, desc_sz, "NCQ (not used)"); 2337 return 0; 2338 } 2339 2340 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2341 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2342 snprintf(desc, desc_sz, "NCQ (not used)"); 2343 return 0; 2344 } 2345 2346 if (ap->flags & ATA_FLAG_NCQ) { 2347 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2348 dev->flags |= ATA_DFLAG_NCQ; 2349 } 2350 2351 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2352 (ap->flags & ATA_FLAG_FPDMA_AA) && 2353 ata_id_has_fpdma_aa(dev->id)) { 2354 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2355 SATA_FPDMA_AA); 2356 if (err_mask) { 2357 ata_dev_err(dev, 2358 "failed to enable AA (error_mask=0x%x)\n", 2359 err_mask); 2360 if (err_mask != AC_ERR_DEV) { 2361 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2362 return -EIO; 2363 } 2364 } else 2365 aa_desc = ", AA"; 2366 } 2367 2368 if (hdepth >= ddepth) 2369 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2370 else 2371 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2372 ddepth, aa_desc); 2373 2374 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2375 if (ata_id_has_ncq_send_and_recv(dev->id)) 2376 ata_dev_config_ncq_send_recv(dev); 2377 if (ata_id_has_ncq_non_data(dev->id)) 2378 ata_dev_config_ncq_non_data(dev); 2379 if (ata_id_has_ncq_prio(dev->id)) 2380 ata_dev_config_ncq_prio(dev); 2381 } 2382 2383 return 0; 2384 } 2385 2386 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2387 { 2388 unsigned int err_mask; 2389 2390 if (!ata_id_has_sense_reporting(dev->id)) 2391 return; 2392 2393 if (ata_id_sense_reporting_enabled(dev->id)) 2394 return; 2395 2396 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2397 if (err_mask) { 2398 ata_dev_dbg(dev, 2399 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2400 err_mask); 2401 } 2402 } 2403 2404 static void ata_dev_config_zac(struct ata_device *dev) 2405 { 2406 struct ata_port *ap = dev->link->ap; 2407 unsigned int err_mask; 2408 u8 *identify_buf = ap->sector_buf; 2409 2410 dev->zac_zones_optimal_open = U32_MAX; 2411 dev->zac_zones_optimal_nonseq = U32_MAX; 2412 dev->zac_zones_max_open = U32_MAX; 2413 2414 /* 2415 * Always set the 'ZAC' flag for Host-managed devices. 2416 */ 2417 if (dev->class == ATA_DEV_ZAC) 2418 dev->flags |= ATA_DFLAG_ZAC; 2419 else if (ata_id_zoned_cap(dev->id) == 0x01) 2420 /* 2421 * Check for host-aware devices. 2422 */ 2423 dev->flags |= ATA_DFLAG_ZAC; 2424 2425 if (!(dev->flags & ATA_DFLAG_ZAC)) 2426 return; 2427 2428 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2429 ata_dev_warn(dev, 2430 "ATA Zoned Information Log not supported\n"); 2431 return; 2432 } 2433 2434 /* 2435 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2436 */ 2437 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2438 ATA_LOG_ZONED_INFORMATION, 2439 identify_buf, 1); 2440 if (!err_mask) { 2441 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2442 2443 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2444 if ((zoned_cap >> 63)) 2445 dev->zac_zoned_cap = (zoned_cap & 1); 2446 opt_open = get_unaligned_le64(&identify_buf[24]); 2447 if ((opt_open >> 63)) 2448 dev->zac_zones_optimal_open = (u32)opt_open; 2449 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2450 if ((opt_nonseq >> 63)) 2451 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2452 max_open = get_unaligned_le64(&identify_buf[40]); 2453 if ((max_open >> 63)) 2454 dev->zac_zones_max_open = (u32)max_open; 2455 } 2456 } 2457 2458 static void ata_dev_config_trusted(struct ata_device *dev) 2459 { 2460 struct ata_port *ap = dev->link->ap; 2461 u64 trusted_cap; 2462 unsigned int err; 2463 2464 if (!ata_id_has_trusted(dev->id)) 2465 return; 2466 2467 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2468 ata_dev_warn(dev, 2469 "Security Log not supported\n"); 2470 return; 2471 } 2472 2473 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2474 ap->sector_buf, 1); 2475 if (err) 2476 return; 2477 2478 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2479 if (!(trusted_cap & (1ULL << 63))) { 2480 ata_dev_dbg(dev, 2481 "Trusted Computing capability qword not valid!\n"); 2482 return; 2483 } 2484 2485 if (trusted_cap & (1 << 0)) 2486 dev->flags |= ATA_DFLAG_TRUSTED; 2487 } 2488 2489 static void ata_dev_config_cdl(struct ata_device *dev) 2490 { 2491 struct ata_port *ap = dev->link->ap; 2492 unsigned int err_mask; 2493 bool cdl_enabled; 2494 u64 val; 2495 2496 if (ata_id_major_version(dev->id) < 11) 2497 goto not_supported; 2498 2499 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) || 2500 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) || 2501 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS)) 2502 goto not_supported; 2503 2504 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2505 ATA_LOG_SUPPORTED_CAPABILITIES, 2506 ap->sector_buf, 1); 2507 if (err_mask) 2508 goto not_supported; 2509 2510 /* Check Command Duration Limit Supported bits */ 2511 val = get_unaligned_le64(&ap->sector_buf[168]); 2512 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0))) 2513 goto not_supported; 2514 2515 /* Warn the user if command duration guideline is not supported */ 2516 if (!(val & BIT_ULL(1))) 2517 ata_dev_warn(dev, 2518 "Command duration guideline is not supported\n"); 2519 2520 /* 2521 * We must have support for the sense data for successful NCQ commands 2522 * log indicated by the successful NCQ command sense data supported bit. 2523 */ 2524 val = get_unaligned_le64(&ap->sector_buf[8]); 2525 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) { 2526 ata_dev_warn(dev, 2527 "CDL supported but Successful NCQ Command Sense Data is not supported\n"); 2528 goto not_supported; 2529 } 2530 2531 /* Without NCQ autosense, the successful NCQ commands log is useless. */ 2532 if (!ata_id_has_ncq_autosense(dev->id)) { 2533 ata_dev_warn(dev, 2534 "CDL supported but NCQ autosense is not supported\n"); 2535 goto not_supported; 2536 } 2537 2538 /* 2539 * If CDL is marked as enabled, make sure the feature is enabled too. 2540 * Conversely, if CDL is disabled, make sure the feature is turned off. 2541 */ 2542 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2543 ATA_LOG_CURRENT_SETTINGS, 2544 ap->sector_buf, 1); 2545 if (err_mask) 2546 goto not_supported; 2547 2548 val = get_unaligned_le64(&ap->sector_buf[8]); 2549 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21); 2550 if (dev->flags & ATA_DFLAG_CDL_ENABLED) { 2551 if (!cdl_enabled) { 2552 /* Enable CDL on the device */ 2553 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1); 2554 if (err_mask) { 2555 ata_dev_err(dev, 2556 "Enable CDL feature failed\n"); 2557 goto not_supported; 2558 } 2559 } 2560 } else { 2561 if (cdl_enabled) { 2562 /* Disable CDL on the device */ 2563 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0); 2564 if (err_mask) { 2565 ata_dev_err(dev, 2566 "Disable CDL feature failed\n"); 2567 goto not_supported; 2568 } 2569 } 2570 } 2571 2572 /* 2573 * While CDL itself has to be enabled using sysfs, CDL requires that 2574 * sense data for successful NCQ commands is enabled to work properly. 2575 * Just like ata_dev_config_sense_reporting(), enable it unconditionally 2576 * if supported. 2577 */ 2578 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) { 2579 err_mask = ata_dev_set_feature(dev, 2580 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1); 2581 if (err_mask) { 2582 ata_dev_warn(dev, 2583 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n", 2584 err_mask); 2585 goto not_supported; 2586 } 2587 } 2588 2589 /* 2590 * Allocate a buffer to handle reading the sense data for successful 2591 * NCQ Commands log page for commands using a CDL with one of the limit 2592 * policy set to 0xD (successful completion with sense data available 2593 * bit set). 2594 */ 2595 if (!ap->ncq_sense_buf) { 2596 ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL); 2597 if (!ap->ncq_sense_buf) 2598 goto not_supported; 2599 } 2600 2601 /* 2602 * Command duration limits is supported: cache the CDL log page 18h 2603 * (command duration descriptors). 2604 */ 2605 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1); 2606 if (err_mask) { 2607 ata_dev_warn(dev, "Read Command Duration Limits log failed\n"); 2608 goto not_supported; 2609 } 2610 2611 memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE); 2612 dev->flags |= ATA_DFLAG_CDL; 2613 2614 return; 2615 2616 not_supported: 2617 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED); 2618 kfree(ap->ncq_sense_buf); 2619 ap->ncq_sense_buf = NULL; 2620 } 2621 2622 static int ata_dev_config_lba(struct ata_device *dev) 2623 { 2624 const u16 *id = dev->id; 2625 const char *lba_desc; 2626 char ncq_desc[32]; 2627 int ret; 2628 2629 dev->flags |= ATA_DFLAG_LBA; 2630 2631 if (ata_id_has_lba48(id)) { 2632 lba_desc = "LBA48"; 2633 dev->flags |= ATA_DFLAG_LBA48; 2634 if (dev->n_sectors >= (1UL << 28) && 2635 ata_id_has_flush_ext(id)) 2636 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2637 } else { 2638 lba_desc = "LBA"; 2639 } 2640 2641 /* config NCQ */ 2642 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2643 2644 /* print device info to dmesg */ 2645 if (ata_dev_print_info(dev)) 2646 ata_dev_info(dev, 2647 "%llu sectors, multi %u: %s %s\n", 2648 (unsigned long long)dev->n_sectors, 2649 dev->multi_count, lba_desc, ncq_desc); 2650 2651 return ret; 2652 } 2653 2654 static void ata_dev_config_chs(struct ata_device *dev) 2655 { 2656 const u16 *id = dev->id; 2657 2658 if (ata_id_current_chs_valid(id)) { 2659 /* Current CHS translation is valid. */ 2660 dev->cylinders = id[54]; 2661 dev->heads = id[55]; 2662 dev->sectors = id[56]; 2663 } else { 2664 /* Default translation */ 2665 dev->cylinders = id[1]; 2666 dev->heads = id[3]; 2667 dev->sectors = id[6]; 2668 } 2669 2670 /* print device info to dmesg */ 2671 if (ata_dev_print_info(dev)) 2672 ata_dev_info(dev, 2673 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2674 (unsigned long long)dev->n_sectors, 2675 dev->multi_count, dev->cylinders, 2676 dev->heads, dev->sectors); 2677 } 2678 2679 static void ata_dev_config_fua(struct ata_device *dev) 2680 { 2681 /* Ignore FUA support if its use is disabled globally */ 2682 if (!libata_fua) 2683 goto nofua; 2684 2685 /* Ignore devices without support for WRITE DMA FUA EXT */ 2686 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id)) 2687 goto nofua; 2688 2689 /* Ignore known bad devices and devices that lack NCQ support */ 2690 if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA)) 2691 goto nofua; 2692 2693 dev->flags |= ATA_DFLAG_FUA; 2694 2695 return; 2696 2697 nofua: 2698 dev->flags &= ~ATA_DFLAG_FUA; 2699 } 2700 2701 static void ata_dev_config_devslp(struct ata_device *dev) 2702 { 2703 u8 *sata_setting = dev->link->ap->sector_buf; 2704 unsigned int err_mask; 2705 int i, j; 2706 2707 /* 2708 * Check device sleep capability. Get DevSlp timing variables 2709 * from SATA Settings page of Identify Device Data Log. 2710 */ 2711 if (!ata_id_has_devslp(dev->id) || 2712 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2713 return; 2714 2715 err_mask = ata_read_log_page(dev, 2716 ATA_LOG_IDENTIFY_DEVICE, 2717 ATA_LOG_SATA_SETTINGS, 2718 sata_setting, 1); 2719 if (err_mask) 2720 return; 2721 2722 dev->flags |= ATA_DFLAG_DEVSLP; 2723 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2724 j = ATA_LOG_DEVSLP_OFFSET + i; 2725 dev->devslp_timing[i] = sata_setting[j]; 2726 } 2727 } 2728 2729 static void ata_dev_config_cpr(struct ata_device *dev) 2730 { 2731 unsigned int err_mask; 2732 size_t buf_len; 2733 int i, nr_cpr = 0; 2734 struct ata_cpr_log *cpr_log = NULL; 2735 u8 *desc, *buf = NULL; 2736 2737 if (ata_id_major_version(dev->id) < 11) 2738 goto out; 2739 2740 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2741 if (buf_len == 0) 2742 goto out; 2743 2744 /* 2745 * Read the concurrent positioning ranges log (0x47). We can have at 2746 * most 255 32B range descriptors plus a 64B header. This log varies in 2747 * size, so use the size reported in the GPL directory. Reading beyond 2748 * the supported length will result in an error. 2749 */ 2750 buf_len <<= 9; 2751 buf = kzalloc(buf_len, GFP_KERNEL); 2752 if (!buf) 2753 goto out; 2754 2755 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2756 0, buf, buf_len >> 9); 2757 if (err_mask) 2758 goto out; 2759 2760 nr_cpr = buf[0]; 2761 if (!nr_cpr) 2762 goto out; 2763 2764 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2765 if (!cpr_log) 2766 goto out; 2767 2768 cpr_log->nr_cpr = nr_cpr; 2769 desc = &buf[64]; 2770 for (i = 0; i < nr_cpr; i++, desc += 32) { 2771 cpr_log->cpr[i].num = desc[0]; 2772 cpr_log->cpr[i].num_storage_elements = desc[1]; 2773 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2774 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2775 } 2776 2777 out: 2778 swap(dev->cpr_log, cpr_log); 2779 kfree(cpr_log); 2780 kfree(buf); 2781 } 2782 2783 static void ata_dev_print_features(struct ata_device *dev) 2784 { 2785 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2786 return; 2787 2788 ata_dev_info(dev, 2789 "Features:%s%s%s%s%s%s%s%s\n", 2790 dev->flags & ATA_DFLAG_FUA ? " FUA" : "", 2791 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2792 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2793 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2794 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2795 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2796 dev->flags & ATA_DFLAG_CDL ? " CDL" : "", 2797 dev->cpr_log ? " CPR" : ""); 2798 } 2799 2800 /** 2801 * ata_dev_configure - Configure the specified ATA/ATAPI device 2802 * @dev: Target device to configure 2803 * 2804 * Configure @dev according to @dev->id. Generic and low-level 2805 * driver specific fixups are also applied. 2806 * 2807 * LOCKING: 2808 * Kernel thread context (may sleep) 2809 * 2810 * RETURNS: 2811 * 0 on success, -errno otherwise 2812 */ 2813 int ata_dev_configure(struct ata_device *dev) 2814 { 2815 struct ata_port *ap = dev->link->ap; 2816 bool print_info = ata_dev_print_info(dev); 2817 const u16 *id = dev->id; 2818 unsigned int xfer_mask; 2819 unsigned int err_mask; 2820 char revbuf[7]; /* XYZ-99\0 */ 2821 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2822 char modelbuf[ATA_ID_PROD_LEN+1]; 2823 int rc; 2824 2825 if (!ata_dev_enabled(dev)) { 2826 ata_dev_dbg(dev, "no device\n"); 2827 return 0; 2828 } 2829 2830 /* set horkage */ 2831 dev->horkage |= ata_dev_blacklisted(dev); 2832 ata_force_horkage(dev); 2833 2834 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2835 ata_dev_info(dev, "unsupported device, disabling\n"); 2836 ata_dev_disable(dev); 2837 return 0; 2838 } 2839 2840 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2841 dev->class == ATA_DEV_ATAPI) { 2842 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2843 atapi_enabled ? "not supported with this driver" 2844 : "disabled"); 2845 ata_dev_disable(dev); 2846 return 0; 2847 } 2848 2849 rc = ata_do_link_spd_horkage(dev); 2850 if (rc) 2851 return rc; 2852 2853 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2854 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2855 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2856 dev->horkage |= ATA_HORKAGE_NOLPM; 2857 2858 if (ap->flags & ATA_FLAG_NO_LPM) 2859 dev->horkage |= ATA_HORKAGE_NOLPM; 2860 2861 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2862 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2863 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2864 } 2865 2866 /* let ACPI work its magic */ 2867 rc = ata_acpi_on_devcfg(dev); 2868 if (rc) 2869 return rc; 2870 2871 /* massage HPA, do it early as it might change IDENTIFY data */ 2872 rc = ata_hpa_resize(dev); 2873 if (rc) 2874 return rc; 2875 2876 /* print device capabilities */ 2877 ata_dev_dbg(dev, 2878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2879 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2880 __func__, 2881 id[49], id[82], id[83], id[84], 2882 id[85], id[86], id[87], id[88]); 2883 2884 /* initialize to-be-configured parameters */ 2885 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2886 dev->max_sectors = 0; 2887 dev->cdb_len = 0; 2888 dev->n_sectors = 0; 2889 dev->cylinders = 0; 2890 dev->heads = 0; 2891 dev->sectors = 0; 2892 dev->multi_count = 0; 2893 2894 /* 2895 * common ATA, ATAPI feature tests 2896 */ 2897 2898 /* find max transfer mode; for printk only */ 2899 xfer_mask = ata_id_xfermask(id); 2900 2901 ata_dump_id(dev, id); 2902 2903 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2904 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2905 sizeof(fwrevbuf)); 2906 2907 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2908 sizeof(modelbuf)); 2909 2910 /* ATA-specific feature tests */ 2911 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2912 if (ata_id_is_cfa(id)) { 2913 /* CPRM may make this media unusable */ 2914 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2915 ata_dev_warn(dev, 2916 "supports DRM functions and may not be fully accessible\n"); 2917 snprintf(revbuf, 7, "CFA"); 2918 } else { 2919 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2920 /* Warn the user if the device has TPM extensions */ 2921 if (ata_id_has_tpm(id)) 2922 ata_dev_warn(dev, 2923 "supports DRM functions and may not be fully accessible\n"); 2924 } 2925 2926 dev->n_sectors = ata_id_n_sectors(id); 2927 2928 /* get current R/W Multiple count setting */ 2929 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2930 unsigned int max = dev->id[47] & 0xff; 2931 unsigned int cnt = dev->id[59] & 0xff; 2932 /* only recognize/allow powers of two here */ 2933 if (is_power_of_2(max) && is_power_of_2(cnt)) 2934 if (cnt <= max) 2935 dev->multi_count = cnt; 2936 } 2937 2938 /* print device info to dmesg */ 2939 if (print_info) 2940 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2941 revbuf, modelbuf, fwrevbuf, 2942 ata_mode_string(xfer_mask)); 2943 2944 if (ata_id_has_lba(id)) { 2945 rc = ata_dev_config_lba(dev); 2946 if (rc) 2947 return rc; 2948 } else { 2949 ata_dev_config_chs(dev); 2950 } 2951 2952 ata_dev_config_fua(dev); 2953 ata_dev_config_devslp(dev); 2954 ata_dev_config_sense_reporting(dev); 2955 ata_dev_config_zac(dev); 2956 ata_dev_config_trusted(dev); 2957 ata_dev_config_cpr(dev); 2958 ata_dev_config_cdl(dev); 2959 dev->cdb_len = 32; 2960 2961 if (print_info) 2962 ata_dev_print_features(dev); 2963 } 2964 2965 /* ATAPI-specific feature tests */ 2966 else if (dev->class == ATA_DEV_ATAPI) { 2967 const char *cdb_intr_string = ""; 2968 const char *atapi_an_string = ""; 2969 const char *dma_dir_string = ""; 2970 u32 sntf; 2971 2972 rc = atapi_cdb_len(id); 2973 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2974 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 2975 rc = -EINVAL; 2976 goto err_out_nosup; 2977 } 2978 dev->cdb_len = (unsigned int) rc; 2979 2980 /* Enable ATAPI AN if both the host and device have 2981 * the support. If PMP is attached, SNTF is required 2982 * to enable ATAPI AN to discern between PHY status 2983 * changed notifications and ATAPI ANs. 2984 */ 2985 if (atapi_an && 2986 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2987 (!sata_pmp_attached(ap) || 2988 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2989 /* issue SET feature command to turn this on */ 2990 err_mask = ata_dev_set_feature(dev, 2991 SETFEATURES_SATA_ENABLE, SATA_AN); 2992 if (err_mask) 2993 ata_dev_err(dev, 2994 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2995 err_mask); 2996 else { 2997 dev->flags |= ATA_DFLAG_AN; 2998 atapi_an_string = ", ATAPI AN"; 2999 } 3000 } 3001 3002 if (ata_id_cdb_intr(dev->id)) { 3003 dev->flags |= ATA_DFLAG_CDB_INTR; 3004 cdb_intr_string = ", CDB intr"; 3005 } 3006 3007 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 3008 dev->flags |= ATA_DFLAG_DMADIR; 3009 dma_dir_string = ", DMADIR"; 3010 } 3011 3012 if (ata_id_has_da(dev->id)) { 3013 dev->flags |= ATA_DFLAG_DA; 3014 zpodd_init(dev); 3015 } 3016 3017 /* print device info to dmesg */ 3018 if (print_info) 3019 ata_dev_info(dev, 3020 "ATAPI: %s, %s, max %s%s%s%s\n", 3021 modelbuf, fwrevbuf, 3022 ata_mode_string(xfer_mask), 3023 cdb_intr_string, atapi_an_string, 3024 dma_dir_string); 3025 } 3026 3027 /* determine max_sectors */ 3028 dev->max_sectors = ATA_MAX_SECTORS; 3029 if (dev->flags & ATA_DFLAG_LBA48) 3030 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3031 3032 /* Limit PATA drive on SATA cable bridge transfers to udma5, 3033 200 sectors */ 3034 if (ata_dev_knobble(dev)) { 3035 if (print_info) 3036 ata_dev_info(dev, "applying bridge limits\n"); 3037 dev->udma_mask &= ATA_UDMA5; 3038 dev->max_sectors = ATA_MAX_SECTORS; 3039 } 3040 3041 if ((dev->class == ATA_DEV_ATAPI) && 3042 (atapi_command_packet_set(id) == TYPE_TAPE)) { 3043 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 3044 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 3045 } 3046 3047 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 3048 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 3049 dev->max_sectors); 3050 3051 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 3052 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 3053 dev->max_sectors); 3054 3055 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 3056 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3057 3058 if (ap->ops->dev_config) 3059 ap->ops->dev_config(dev); 3060 3061 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 3062 /* Let the user know. We don't want to disallow opens for 3063 rescue purposes, or in case the vendor is just a blithering 3064 idiot. Do this after the dev_config call as some controllers 3065 with buggy firmware may want to avoid reporting false device 3066 bugs */ 3067 3068 if (print_info) { 3069 ata_dev_warn(dev, 3070 "Drive reports diagnostics failure. This may indicate a drive\n"); 3071 ata_dev_warn(dev, 3072 "fault or invalid emulation. Contact drive vendor for information.\n"); 3073 } 3074 } 3075 3076 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 3077 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 3078 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 3079 } 3080 3081 return 0; 3082 3083 err_out_nosup: 3084 return rc; 3085 } 3086 3087 /** 3088 * ata_cable_40wire - return 40 wire cable type 3089 * @ap: port 3090 * 3091 * Helper method for drivers which want to hardwire 40 wire cable 3092 * detection. 3093 */ 3094 3095 int ata_cable_40wire(struct ata_port *ap) 3096 { 3097 return ATA_CBL_PATA40; 3098 } 3099 EXPORT_SYMBOL_GPL(ata_cable_40wire); 3100 3101 /** 3102 * ata_cable_80wire - return 80 wire cable type 3103 * @ap: port 3104 * 3105 * Helper method for drivers which want to hardwire 80 wire cable 3106 * detection. 3107 */ 3108 3109 int ata_cable_80wire(struct ata_port *ap) 3110 { 3111 return ATA_CBL_PATA80; 3112 } 3113 EXPORT_SYMBOL_GPL(ata_cable_80wire); 3114 3115 /** 3116 * ata_cable_unknown - return unknown PATA cable. 3117 * @ap: port 3118 * 3119 * Helper method for drivers which have no PATA cable detection. 3120 */ 3121 3122 int ata_cable_unknown(struct ata_port *ap) 3123 { 3124 return ATA_CBL_PATA_UNK; 3125 } 3126 EXPORT_SYMBOL_GPL(ata_cable_unknown); 3127 3128 /** 3129 * ata_cable_ignore - return ignored PATA cable. 3130 * @ap: port 3131 * 3132 * Helper method for drivers which don't use cable type to limit 3133 * transfer mode. 3134 */ 3135 int ata_cable_ignore(struct ata_port *ap) 3136 { 3137 return ATA_CBL_PATA_IGN; 3138 } 3139 EXPORT_SYMBOL_GPL(ata_cable_ignore); 3140 3141 /** 3142 * ata_cable_sata - return SATA cable type 3143 * @ap: port 3144 * 3145 * Helper method for drivers which have SATA cables 3146 */ 3147 3148 int ata_cable_sata(struct ata_port *ap) 3149 { 3150 return ATA_CBL_SATA; 3151 } 3152 EXPORT_SYMBOL_GPL(ata_cable_sata); 3153 3154 /** 3155 * sata_print_link_status - Print SATA link status 3156 * @link: SATA link to printk link status about 3157 * 3158 * This function prints link speed and status of a SATA link. 3159 * 3160 * LOCKING: 3161 * None. 3162 */ 3163 static void sata_print_link_status(struct ata_link *link) 3164 { 3165 u32 sstatus, scontrol, tmp; 3166 3167 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3168 return; 3169 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3170 return; 3171 3172 if (ata_phys_link_online(link)) { 3173 tmp = (sstatus >> 4) & 0xf; 3174 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3175 sata_spd_string(tmp), sstatus, scontrol); 3176 } else { 3177 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3178 sstatus, scontrol); 3179 } 3180 } 3181 3182 /** 3183 * ata_dev_pair - return other device on cable 3184 * @adev: device 3185 * 3186 * Obtain the other device on the same cable, or if none is 3187 * present NULL is returned 3188 */ 3189 3190 struct ata_device *ata_dev_pair(struct ata_device *adev) 3191 { 3192 struct ata_link *link = adev->link; 3193 struct ata_device *pair = &link->device[1 - adev->devno]; 3194 if (!ata_dev_enabled(pair)) 3195 return NULL; 3196 return pair; 3197 } 3198 EXPORT_SYMBOL_GPL(ata_dev_pair); 3199 3200 /** 3201 * sata_down_spd_limit - adjust SATA spd limit downward 3202 * @link: Link to adjust SATA spd limit for 3203 * @spd_limit: Additional limit 3204 * 3205 * Adjust SATA spd limit of @link downward. Note that this 3206 * function only adjusts the limit. The change must be applied 3207 * using sata_set_spd(). 3208 * 3209 * If @spd_limit is non-zero, the speed is limited to equal to or 3210 * lower than @spd_limit if such speed is supported. If 3211 * @spd_limit is slower than any supported speed, only the lowest 3212 * supported speed is allowed. 3213 * 3214 * LOCKING: 3215 * Inherited from caller. 3216 * 3217 * RETURNS: 3218 * 0 on success, negative errno on failure 3219 */ 3220 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3221 { 3222 u32 sstatus, spd, mask; 3223 int rc, bit; 3224 3225 if (!sata_scr_valid(link)) 3226 return -EOPNOTSUPP; 3227 3228 /* If SCR can be read, use it to determine the current SPD. 3229 * If not, use cached value in link->sata_spd. 3230 */ 3231 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3232 if (rc == 0 && ata_sstatus_online(sstatus)) 3233 spd = (sstatus >> 4) & 0xf; 3234 else 3235 spd = link->sata_spd; 3236 3237 mask = link->sata_spd_limit; 3238 if (mask <= 1) 3239 return -EINVAL; 3240 3241 /* unconditionally mask off the highest bit */ 3242 bit = fls(mask) - 1; 3243 mask &= ~(1 << bit); 3244 3245 /* 3246 * Mask off all speeds higher than or equal to the current one. At 3247 * this point, if current SPD is not available and we previously 3248 * recorded the link speed from SStatus, the driver has already 3249 * masked off the highest bit so mask should already be 1 or 0. 3250 * Otherwise, we should not force 1.5Gbps on a link where we have 3251 * not previously recorded speed from SStatus. Just return in this 3252 * case. 3253 */ 3254 if (spd > 1) 3255 mask &= (1 << (spd - 1)) - 1; 3256 else if (link->sata_spd) 3257 return -EINVAL; 3258 3259 /* were we already at the bottom? */ 3260 if (!mask) 3261 return -EINVAL; 3262 3263 if (spd_limit) { 3264 if (mask & ((1 << spd_limit) - 1)) 3265 mask &= (1 << spd_limit) - 1; 3266 else { 3267 bit = ffs(mask) - 1; 3268 mask = 1 << bit; 3269 } 3270 } 3271 3272 link->sata_spd_limit = mask; 3273 3274 ata_link_warn(link, "limiting SATA link speed to %s\n", 3275 sata_spd_string(fls(mask))); 3276 3277 return 0; 3278 } 3279 3280 #ifdef CONFIG_ATA_ACPI 3281 /** 3282 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3283 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3284 * @cycle: cycle duration in ns 3285 * 3286 * Return matching xfer mode for @cycle. The returned mode is of 3287 * the transfer type specified by @xfer_shift. If @cycle is too 3288 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3289 * than the fastest known mode, the fasted mode is returned. 3290 * 3291 * LOCKING: 3292 * None. 3293 * 3294 * RETURNS: 3295 * Matching xfer_mode, 0xff if no match found. 3296 */ 3297 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3298 { 3299 u8 base_mode = 0xff, last_mode = 0xff; 3300 const struct ata_xfer_ent *ent; 3301 const struct ata_timing *t; 3302 3303 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3304 if (ent->shift == xfer_shift) 3305 base_mode = ent->base; 3306 3307 for (t = ata_timing_find_mode(base_mode); 3308 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3309 unsigned short this_cycle; 3310 3311 switch (xfer_shift) { 3312 case ATA_SHIFT_PIO: 3313 case ATA_SHIFT_MWDMA: 3314 this_cycle = t->cycle; 3315 break; 3316 case ATA_SHIFT_UDMA: 3317 this_cycle = t->udma; 3318 break; 3319 default: 3320 return 0xff; 3321 } 3322 3323 if (cycle > this_cycle) 3324 break; 3325 3326 last_mode = t->mode; 3327 } 3328 3329 return last_mode; 3330 } 3331 #endif 3332 3333 /** 3334 * ata_down_xfermask_limit - adjust dev xfer masks downward 3335 * @dev: Device to adjust xfer masks 3336 * @sel: ATA_DNXFER_* selector 3337 * 3338 * Adjust xfer masks of @dev downward. Note that this function 3339 * does not apply the change. Invoking ata_set_mode() afterwards 3340 * will apply the limit. 3341 * 3342 * LOCKING: 3343 * Inherited from caller. 3344 * 3345 * RETURNS: 3346 * 0 on success, negative errno on failure 3347 */ 3348 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3349 { 3350 char buf[32]; 3351 unsigned int orig_mask, xfer_mask; 3352 unsigned int pio_mask, mwdma_mask, udma_mask; 3353 int quiet, highbit; 3354 3355 quiet = !!(sel & ATA_DNXFER_QUIET); 3356 sel &= ~ATA_DNXFER_QUIET; 3357 3358 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3359 dev->mwdma_mask, 3360 dev->udma_mask); 3361 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3362 3363 switch (sel) { 3364 case ATA_DNXFER_PIO: 3365 highbit = fls(pio_mask) - 1; 3366 pio_mask &= ~(1 << highbit); 3367 break; 3368 3369 case ATA_DNXFER_DMA: 3370 if (udma_mask) { 3371 highbit = fls(udma_mask) - 1; 3372 udma_mask &= ~(1 << highbit); 3373 if (!udma_mask) 3374 return -ENOENT; 3375 } else if (mwdma_mask) { 3376 highbit = fls(mwdma_mask) - 1; 3377 mwdma_mask &= ~(1 << highbit); 3378 if (!mwdma_mask) 3379 return -ENOENT; 3380 } 3381 break; 3382 3383 case ATA_DNXFER_40C: 3384 udma_mask &= ATA_UDMA_MASK_40C; 3385 break; 3386 3387 case ATA_DNXFER_FORCE_PIO0: 3388 pio_mask &= 1; 3389 fallthrough; 3390 case ATA_DNXFER_FORCE_PIO: 3391 mwdma_mask = 0; 3392 udma_mask = 0; 3393 break; 3394 3395 default: 3396 BUG(); 3397 } 3398 3399 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3400 3401 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3402 return -ENOENT; 3403 3404 if (!quiet) { 3405 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3406 snprintf(buf, sizeof(buf), "%s:%s", 3407 ata_mode_string(xfer_mask), 3408 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3409 else 3410 snprintf(buf, sizeof(buf), "%s", 3411 ata_mode_string(xfer_mask)); 3412 3413 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3414 } 3415 3416 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3417 &dev->udma_mask); 3418 3419 return 0; 3420 } 3421 3422 static int ata_dev_set_mode(struct ata_device *dev) 3423 { 3424 struct ata_port *ap = dev->link->ap; 3425 struct ata_eh_context *ehc = &dev->link->eh_context; 3426 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3427 const char *dev_err_whine = ""; 3428 int ign_dev_err = 0; 3429 unsigned int err_mask = 0; 3430 int rc; 3431 3432 dev->flags &= ~ATA_DFLAG_PIO; 3433 if (dev->xfer_shift == ATA_SHIFT_PIO) 3434 dev->flags |= ATA_DFLAG_PIO; 3435 3436 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3437 dev_err_whine = " (SET_XFERMODE skipped)"; 3438 else { 3439 if (nosetxfer) 3440 ata_dev_warn(dev, 3441 "NOSETXFER but PATA detected - can't " 3442 "skip SETXFER, might malfunction\n"); 3443 err_mask = ata_dev_set_xfermode(dev); 3444 } 3445 3446 if (err_mask & ~AC_ERR_DEV) 3447 goto fail; 3448 3449 /* revalidate */ 3450 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3451 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3452 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3453 if (rc) 3454 return rc; 3455 3456 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3457 /* Old CFA may refuse this command, which is just fine */ 3458 if (ata_id_is_cfa(dev->id)) 3459 ign_dev_err = 1; 3460 /* Catch several broken garbage emulations plus some pre 3461 ATA devices */ 3462 if (ata_id_major_version(dev->id) == 0 && 3463 dev->pio_mode <= XFER_PIO_2) 3464 ign_dev_err = 1; 3465 /* Some very old devices and some bad newer ones fail 3466 any kind of SET_XFERMODE request but support PIO0-2 3467 timings and no IORDY */ 3468 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3469 ign_dev_err = 1; 3470 } 3471 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3472 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3473 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3474 dev->dma_mode == XFER_MW_DMA_0 && 3475 (dev->id[63] >> 8) & 1) 3476 ign_dev_err = 1; 3477 3478 /* if the device is actually configured correctly, ignore dev err */ 3479 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3480 ign_dev_err = 1; 3481 3482 if (err_mask & AC_ERR_DEV) { 3483 if (!ign_dev_err) 3484 goto fail; 3485 else 3486 dev_err_whine = " (device error ignored)"; 3487 } 3488 3489 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3490 dev->xfer_shift, (int)dev->xfer_mode); 3491 3492 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3493 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3494 ata_dev_info(dev, "configured for %s%s\n", 3495 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3496 dev_err_whine); 3497 3498 return 0; 3499 3500 fail: 3501 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3502 return -EIO; 3503 } 3504 3505 /** 3506 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3507 * @link: link on which timings will be programmed 3508 * @r_failed_dev: out parameter for failed device 3509 * 3510 * Standard implementation of the function used to tune and set 3511 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3512 * ata_dev_set_mode() fails, pointer to the failing device is 3513 * returned in @r_failed_dev. 3514 * 3515 * LOCKING: 3516 * PCI/etc. bus probe sem. 3517 * 3518 * RETURNS: 3519 * 0 on success, negative errno otherwise 3520 */ 3521 3522 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3523 { 3524 struct ata_port *ap = link->ap; 3525 struct ata_device *dev; 3526 int rc = 0, used_dma = 0, found = 0; 3527 3528 /* step 1: calculate xfer_mask */ 3529 ata_for_each_dev(dev, link, ENABLED) { 3530 unsigned int pio_mask, dma_mask; 3531 unsigned int mode_mask; 3532 3533 mode_mask = ATA_DMA_MASK_ATA; 3534 if (dev->class == ATA_DEV_ATAPI) 3535 mode_mask = ATA_DMA_MASK_ATAPI; 3536 else if (ata_id_is_cfa(dev->id)) 3537 mode_mask = ATA_DMA_MASK_CFA; 3538 3539 ata_dev_xfermask(dev); 3540 ata_force_xfermask(dev); 3541 3542 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3543 3544 if (libata_dma_mask & mode_mask) 3545 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3546 dev->udma_mask); 3547 else 3548 dma_mask = 0; 3549 3550 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3551 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3552 3553 found = 1; 3554 if (ata_dma_enabled(dev)) 3555 used_dma = 1; 3556 } 3557 if (!found) 3558 goto out; 3559 3560 /* step 2: always set host PIO timings */ 3561 ata_for_each_dev(dev, link, ENABLED) { 3562 if (dev->pio_mode == 0xff) { 3563 ata_dev_warn(dev, "no PIO support\n"); 3564 rc = -EINVAL; 3565 goto out; 3566 } 3567 3568 dev->xfer_mode = dev->pio_mode; 3569 dev->xfer_shift = ATA_SHIFT_PIO; 3570 if (ap->ops->set_piomode) 3571 ap->ops->set_piomode(ap, dev); 3572 } 3573 3574 /* step 3: set host DMA timings */ 3575 ata_for_each_dev(dev, link, ENABLED) { 3576 if (!ata_dma_enabled(dev)) 3577 continue; 3578 3579 dev->xfer_mode = dev->dma_mode; 3580 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3581 if (ap->ops->set_dmamode) 3582 ap->ops->set_dmamode(ap, dev); 3583 } 3584 3585 /* step 4: update devices' xfer mode */ 3586 ata_for_each_dev(dev, link, ENABLED) { 3587 rc = ata_dev_set_mode(dev); 3588 if (rc) 3589 goto out; 3590 } 3591 3592 /* Record simplex status. If we selected DMA then the other 3593 * host channels are not permitted to do so. 3594 */ 3595 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3596 ap->host->simplex_claimed = ap; 3597 3598 out: 3599 if (rc) 3600 *r_failed_dev = dev; 3601 return rc; 3602 } 3603 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3604 3605 /** 3606 * ata_wait_ready - wait for link to become ready 3607 * @link: link to be waited on 3608 * @deadline: deadline jiffies for the operation 3609 * @check_ready: callback to check link readiness 3610 * 3611 * Wait for @link to become ready. @check_ready should return 3612 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3613 * link doesn't seem to be occupied, other errno for other error 3614 * conditions. 3615 * 3616 * Transient -ENODEV conditions are allowed for 3617 * ATA_TMOUT_FF_WAIT. 3618 * 3619 * LOCKING: 3620 * EH context. 3621 * 3622 * RETURNS: 3623 * 0 if @link is ready before @deadline; otherwise, -errno. 3624 */ 3625 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3626 int (*check_ready)(struct ata_link *link)) 3627 { 3628 unsigned long start = jiffies; 3629 unsigned long nodev_deadline; 3630 int warned = 0; 3631 3632 /* choose which 0xff timeout to use, read comment in libata.h */ 3633 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3634 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3635 else 3636 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3637 3638 /* Slave readiness can't be tested separately from master. On 3639 * M/S emulation configuration, this function should be called 3640 * only on the master and it will handle both master and slave. 3641 */ 3642 WARN_ON(link == link->ap->slave_link); 3643 3644 if (time_after(nodev_deadline, deadline)) 3645 nodev_deadline = deadline; 3646 3647 while (1) { 3648 unsigned long now = jiffies; 3649 int ready, tmp; 3650 3651 ready = tmp = check_ready(link); 3652 if (ready > 0) 3653 return 0; 3654 3655 /* 3656 * -ENODEV could be transient. Ignore -ENODEV if link 3657 * is online. Also, some SATA devices take a long 3658 * time to clear 0xff after reset. Wait for 3659 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3660 * offline. 3661 * 3662 * Note that some PATA controllers (pata_ali) explode 3663 * if status register is read more than once when 3664 * there's no device attached. 3665 */ 3666 if (ready == -ENODEV) { 3667 if (ata_link_online(link)) 3668 ready = 0; 3669 else if ((link->ap->flags & ATA_FLAG_SATA) && 3670 !ata_link_offline(link) && 3671 time_before(now, nodev_deadline)) 3672 ready = 0; 3673 } 3674 3675 if (ready) 3676 return ready; 3677 if (time_after(now, deadline)) 3678 return -EBUSY; 3679 3680 if (!warned && time_after(now, start + 5 * HZ) && 3681 (deadline - now > 3 * HZ)) { 3682 ata_link_warn(link, 3683 "link is slow to respond, please be patient " 3684 "(ready=%d)\n", tmp); 3685 warned = 1; 3686 } 3687 3688 ata_msleep(link->ap, 50); 3689 } 3690 } 3691 3692 /** 3693 * ata_wait_after_reset - wait for link to become ready after reset 3694 * @link: link to be waited on 3695 * @deadline: deadline jiffies for the operation 3696 * @check_ready: callback to check link readiness 3697 * 3698 * Wait for @link to become ready after reset. 3699 * 3700 * LOCKING: 3701 * EH context. 3702 * 3703 * RETURNS: 3704 * 0 if @link is ready before @deadline; otherwise, -errno. 3705 */ 3706 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3707 int (*check_ready)(struct ata_link *link)) 3708 { 3709 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3710 3711 return ata_wait_ready(link, deadline, check_ready); 3712 } 3713 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3714 3715 /** 3716 * ata_std_prereset - prepare for reset 3717 * @link: ATA link to be reset 3718 * @deadline: deadline jiffies for the operation 3719 * 3720 * @link is about to be reset. Initialize it. Failure from 3721 * prereset makes libata abort whole reset sequence and give up 3722 * that port, so prereset should be best-effort. It does its 3723 * best to prepare for reset sequence but if things go wrong, it 3724 * should just whine, not fail. 3725 * 3726 * LOCKING: 3727 * Kernel thread context (may sleep) 3728 * 3729 * RETURNS: 3730 * Always 0. 3731 */ 3732 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3733 { 3734 struct ata_port *ap = link->ap; 3735 struct ata_eh_context *ehc = &link->eh_context; 3736 const unsigned int *timing = sata_ehc_deb_timing(ehc); 3737 int rc; 3738 3739 /* if we're about to do hardreset, nothing more to do */ 3740 if (ehc->i.action & ATA_EH_HARDRESET) 3741 return 0; 3742 3743 /* if SATA, resume link */ 3744 if (ap->flags & ATA_FLAG_SATA) { 3745 rc = sata_link_resume(link, timing, deadline); 3746 /* whine about phy resume failure but proceed */ 3747 if (rc && rc != -EOPNOTSUPP) 3748 ata_link_warn(link, 3749 "failed to resume link for reset (errno=%d)\n", 3750 rc); 3751 } 3752 3753 /* no point in trying softreset on offline link */ 3754 if (ata_phys_link_offline(link)) 3755 ehc->i.action &= ~ATA_EH_SOFTRESET; 3756 3757 return 0; 3758 } 3759 EXPORT_SYMBOL_GPL(ata_std_prereset); 3760 3761 /** 3762 * sata_std_hardreset - COMRESET w/o waiting or classification 3763 * @link: link to reset 3764 * @class: resulting class of attached device 3765 * @deadline: deadline jiffies for the operation 3766 * 3767 * Standard SATA COMRESET w/o waiting or classification. 3768 * 3769 * LOCKING: 3770 * Kernel thread context (may sleep) 3771 * 3772 * RETURNS: 3773 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3774 */ 3775 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3776 unsigned long deadline) 3777 { 3778 const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context); 3779 bool online; 3780 int rc; 3781 3782 /* do hardreset */ 3783 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3784 return online ? -EAGAIN : rc; 3785 } 3786 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3787 3788 /** 3789 * ata_std_postreset - standard postreset callback 3790 * @link: the target ata_link 3791 * @classes: classes of attached devices 3792 * 3793 * This function is invoked after a successful reset. Note that 3794 * the device might have been reset more than once using 3795 * different reset methods before postreset is invoked. 3796 * 3797 * LOCKING: 3798 * Kernel thread context (may sleep) 3799 */ 3800 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3801 { 3802 u32 serror; 3803 3804 /* reset complete, clear SError */ 3805 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3806 sata_scr_write(link, SCR_ERROR, serror); 3807 3808 /* print link status */ 3809 sata_print_link_status(link); 3810 } 3811 EXPORT_SYMBOL_GPL(ata_std_postreset); 3812 3813 /** 3814 * ata_dev_same_device - Determine whether new ID matches configured device 3815 * @dev: device to compare against 3816 * @new_class: class of the new device 3817 * @new_id: IDENTIFY page of the new device 3818 * 3819 * Compare @new_class and @new_id against @dev and determine 3820 * whether @dev is the device indicated by @new_class and 3821 * @new_id. 3822 * 3823 * LOCKING: 3824 * None. 3825 * 3826 * RETURNS: 3827 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3828 */ 3829 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3830 const u16 *new_id) 3831 { 3832 const u16 *old_id = dev->id; 3833 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3834 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3835 3836 if (dev->class != new_class) { 3837 ata_dev_info(dev, "class mismatch %d != %d\n", 3838 dev->class, new_class); 3839 return 0; 3840 } 3841 3842 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3843 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3844 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3845 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3846 3847 if (strcmp(model[0], model[1])) { 3848 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3849 model[0], model[1]); 3850 return 0; 3851 } 3852 3853 if (strcmp(serial[0], serial[1])) { 3854 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3855 serial[0], serial[1]); 3856 return 0; 3857 } 3858 3859 return 1; 3860 } 3861 3862 /** 3863 * ata_dev_reread_id - Re-read IDENTIFY data 3864 * @dev: target ATA device 3865 * @readid_flags: read ID flags 3866 * 3867 * Re-read IDENTIFY page and make sure @dev is still attached to 3868 * the port. 3869 * 3870 * LOCKING: 3871 * Kernel thread context (may sleep) 3872 * 3873 * RETURNS: 3874 * 0 on success, negative errno otherwise 3875 */ 3876 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3877 { 3878 unsigned int class = dev->class; 3879 u16 *id = (void *)dev->link->ap->sector_buf; 3880 int rc; 3881 3882 /* read ID data */ 3883 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3884 if (rc) 3885 return rc; 3886 3887 /* is the device still there? */ 3888 if (!ata_dev_same_device(dev, class, id)) 3889 return -ENODEV; 3890 3891 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3892 return 0; 3893 } 3894 3895 /** 3896 * ata_dev_revalidate - Revalidate ATA device 3897 * @dev: device to revalidate 3898 * @new_class: new class code 3899 * @readid_flags: read ID flags 3900 * 3901 * Re-read IDENTIFY page, make sure @dev is still attached to the 3902 * port and reconfigure it according to the new IDENTIFY page. 3903 * 3904 * LOCKING: 3905 * Kernel thread context (may sleep) 3906 * 3907 * RETURNS: 3908 * 0 on success, negative errno otherwise 3909 */ 3910 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3911 unsigned int readid_flags) 3912 { 3913 u64 n_sectors = dev->n_sectors; 3914 u64 n_native_sectors = dev->n_native_sectors; 3915 int rc; 3916 3917 if (!ata_dev_enabled(dev)) 3918 return -ENODEV; 3919 3920 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3921 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) { 3922 ata_dev_info(dev, "class mismatch %u != %u\n", 3923 dev->class, new_class); 3924 rc = -ENODEV; 3925 goto fail; 3926 } 3927 3928 /* re-read ID */ 3929 rc = ata_dev_reread_id(dev, readid_flags); 3930 if (rc) 3931 goto fail; 3932 3933 /* configure device according to the new ID */ 3934 rc = ata_dev_configure(dev); 3935 if (rc) 3936 goto fail; 3937 3938 /* verify n_sectors hasn't changed */ 3939 if (dev->class != ATA_DEV_ATA || !n_sectors || 3940 dev->n_sectors == n_sectors) 3941 return 0; 3942 3943 /* n_sectors has changed */ 3944 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3945 (unsigned long long)n_sectors, 3946 (unsigned long long)dev->n_sectors); 3947 3948 /* 3949 * Something could have caused HPA to be unlocked 3950 * involuntarily. If n_native_sectors hasn't changed and the 3951 * new size matches it, keep the device. 3952 */ 3953 if (dev->n_native_sectors == n_native_sectors && 3954 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3955 ata_dev_warn(dev, 3956 "new n_sectors matches native, probably " 3957 "late HPA unlock, n_sectors updated\n"); 3958 /* use the larger n_sectors */ 3959 return 0; 3960 } 3961 3962 /* 3963 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3964 * unlocking HPA in those cases. 3965 * 3966 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3967 */ 3968 if (dev->n_native_sectors == n_native_sectors && 3969 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3970 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3971 ata_dev_warn(dev, 3972 "old n_sectors matches native, probably " 3973 "late HPA lock, will try to unlock HPA\n"); 3974 /* try unlocking HPA */ 3975 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3976 rc = -EIO; 3977 } else 3978 rc = -ENODEV; 3979 3980 /* restore original n_[native_]sectors and fail */ 3981 dev->n_native_sectors = n_native_sectors; 3982 dev->n_sectors = n_sectors; 3983 fail: 3984 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3985 return rc; 3986 } 3987 3988 struct ata_blacklist_entry { 3989 const char *model_num; 3990 const char *model_rev; 3991 unsigned long horkage; 3992 }; 3993 3994 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3995 /* Devices with DMA related problems under Linux */ 3996 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3997 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3998 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3999 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4000 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4001 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4002 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4003 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4004 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4005 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4006 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4007 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4008 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4009 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4010 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4011 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4012 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4013 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4014 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4015 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4016 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4017 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4018 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4019 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4020 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4021 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4022 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4023 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4024 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4025 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 4026 /* Odd clown on sil3726/4726 PMPs */ 4027 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4028 /* Similar story with ASMedia 1092 */ 4029 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 4030 4031 /* Weird ATAPI devices */ 4032 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4033 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4034 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4035 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4036 4037 /* 4038 * Causes silent data corruption with higher max sects. 4039 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4040 */ 4041 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 4042 4043 /* 4044 * These devices time out with higher max sects. 4045 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4046 */ 4047 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4048 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4049 4050 /* Devices we expect to fail diagnostics */ 4051 4052 /* Devices where NCQ should be avoided */ 4053 /* NCQ is slow */ 4054 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4055 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ }, 4056 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4057 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4058 /* NCQ is broken */ 4059 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4060 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4061 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4062 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4063 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4064 4065 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4066 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4067 ATA_HORKAGE_FIRMWARE_WARN }, 4068 4069 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4070 ATA_HORKAGE_FIRMWARE_WARN }, 4071 4072 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4073 ATA_HORKAGE_FIRMWARE_WARN }, 4074 4075 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4076 ATA_HORKAGE_FIRMWARE_WARN }, 4077 4078 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 4079 the ST disks also have LPM issues */ 4080 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 4081 ATA_HORKAGE_NOLPM }, 4082 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4083 4084 /* Blacklist entries taken from Silicon Image 3124/3132 4085 Windows driver .inf file - also several Linux problem reports */ 4086 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ }, 4087 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ }, 4088 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ }, 4089 4090 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4091 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ }, 4092 4093 /* Sandisk SD7/8/9s lock up hard on large trims */ 4094 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M }, 4095 4096 /* devices which puke on READ_NATIVE_MAX */ 4097 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA }, 4098 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4099 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4100 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4101 4102 /* this one allows HPA unlocking but fails IOs on the area */ 4103 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4104 4105 /* Devices which report 1 sector over size HPA */ 4106 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE }, 4107 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE }, 4108 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE }, 4109 4110 /* Devices which get the IVB wrong */ 4111 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB }, 4112 /* Maybe we should just blacklist TSSTcorp... */ 4113 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB }, 4114 4115 /* Devices that do not need bridging limits applied */ 4116 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK }, 4117 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK }, 4118 4119 /* Devices which aren't very happy with higher link speeds */ 4120 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS }, 4121 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS }, 4122 4123 /* 4124 * Devices which choke on SETXFER. Applies only if both the 4125 * device and controller are SATA. 4126 */ 4127 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4128 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4129 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4130 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4131 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4132 4133 /* These specific Pioneer models have LPM issues */ 4134 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM }, 4135 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM }, 4136 4137 /* Crucial BX100 SSD 500GB has broken LPM support */ 4138 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 4139 4140 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4141 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4142 ATA_HORKAGE_ZERO_AFTER_TRIM | 4143 ATA_HORKAGE_NOLPM }, 4144 /* 512GB MX100 with newer firmware has only LPM issues */ 4145 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4146 ATA_HORKAGE_NOLPM }, 4147 4148 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4149 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4150 ATA_HORKAGE_ZERO_AFTER_TRIM | 4151 ATA_HORKAGE_NOLPM }, 4152 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4153 ATA_HORKAGE_ZERO_AFTER_TRIM | 4154 ATA_HORKAGE_NOLPM }, 4155 4156 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4157 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM }, 4158 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM }, 4159 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM }, 4160 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM }, 4161 4162 /* devices that don't properly handle queued TRIM commands */ 4163 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4164 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4165 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4166 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4167 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4168 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4169 { "Micron_1100_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4170 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4171 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4172 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4173 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4174 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4175 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4176 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4177 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4178 ATA_HORKAGE_NO_DMA_LOG | 4179 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4180 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4181 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4182 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4183 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4184 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4185 ATA_HORKAGE_ZERO_AFTER_TRIM | 4186 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4187 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4188 ATA_HORKAGE_ZERO_AFTER_TRIM | 4189 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4190 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4191 ATA_HORKAGE_ZERO_AFTER_TRIM | 4192 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4193 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4194 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4195 4196 /* devices that don't properly handle TRIM commands */ 4197 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM }, 4198 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM }, 4199 4200 /* 4201 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4202 * (Return Zero After Trim) flags in the ATA Command Set are 4203 * unreliable in the sense that they only define what happens if 4204 * the device successfully executed the DSM TRIM command. TRIM 4205 * is only advisory, however, and the device is free to silently 4206 * ignore all or parts of the request. 4207 * 4208 * Whitelist drives that are known to reliably return zeroes 4209 * after TRIM. 4210 */ 4211 4212 /* 4213 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4214 * that model before whitelisting all other intel SSDs. 4215 */ 4216 { "INTEL*SSDSC2MH*", NULL, 0 }, 4217 4218 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4219 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4220 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4221 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4222 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4223 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4224 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4225 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4226 4227 /* 4228 * Some WD SATA-I drives spin up and down erratically when the link 4229 * is put into the slumber mode. We don't have full list of the 4230 * affected devices. Disable LPM if the device matches one of the 4231 * known prefixes and is SATA-1. As a side effect LPM partial is 4232 * lost too. 4233 * 4234 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4235 */ 4236 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4237 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4238 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4239 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4240 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4241 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4242 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4243 4244 /* 4245 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4246 * log page is accessed. Ensure we never ask for this log page with 4247 * these devices. 4248 */ 4249 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR }, 4250 4251 /* Buggy FUA */ 4252 { "Maxtor", "BANC1G10", ATA_HORKAGE_NO_FUA }, 4253 { "WDC*WD2500J*", NULL, ATA_HORKAGE_NO_FUA }, 4254 { "OCZ-VERTEX*", NULL, ATA_HORKAGE_NO_FUA }, 4255 { "INTEL*SSDSC2CT*", NULL, ATA_HORKAGE_NO_FUA }, 4256 4257 /* End Marker */ 4258 { } 4259 }; 4260 4261 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4262 { 4263 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4264 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4265 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4266 4267 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4268 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4269 4270 while (ad->model_num) { 4271 if (glob_match(ad->model_num, model_num)) { 4272 if (ad->model_rev == NULL) 4273 return ad->horkage; 4274 if (glob_match(ad->model_rev, model_rev)) 4275 return ad->horkage; 4276 } 4277 ad++; 4278 } 4279 return 0; 4280 } 4281 4282 static int ata_dma_blacklisted(const struct ata_device *dev) 4283 { 4284 /* We don't support polling DMA. 4285 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4286 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4287 */ 4288 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4289 (dev->flags & ATA_DFLAG_CDB_INTR)) 4290 return 1; 4291 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4292 } 4293 4294 /** 4295 * ata_is_40wire - check drive side detection 4296 * @dev: device 4297 * 4298 * Perform drive side detection decoding, allowing for device vendors 4299 * who can't follow the documentation. 4300 */ 4301 4302 static int ata_is_40wire(struct ata_device *dev) 4303 { 4304 if (dev->horkage & ATA_HORKAGE_IVB) 4305 return ata_drive_40wire_relaxed(dev->id); 4306 return ata_drive_40wire(dev->id); 4307 } 4308 4309 /** 4310 * cable_is_40wire - 40/80/SATA decider 4311 * @ap: port to consider 4312 * 4313 * This function encapsulates the policy for speed management 4314 * in one place. At the moment we don't cache the result but 4315 * there is a good case for setting ap->cbl to the result when 4316 * we are called with unknown cables (and figuring out if it 4317 * impacts hotplug at all). 4318 * 4319 * Return 1 if the cable appears to be 40 wire. 4320 */ 4321 4322 static int cable_is_40wire(struct ata_port *ap) 4323 { 4324 struct ata_link *link; 4325 struct ata_device *dev; 4326 4327 /* If the controller thinks we are 40 wire, we are. */ 4328 if (ap->cbl == ATA_CBL_PATA40) 4329 return 1; 4330 4331 /* If the controller thinks we are 80 wire, we are. */ 4332 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4333 return 0; 4334 4335 /* If the system is known to be 40 wire short cable (eg 4336 * laptop), then we allow 80 wire modes even if the drive 4337 * isn't sure. 4338 */ 4339 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4340 return 0; 4341 4342 /* If the controller doesn't know, we scan. 4343 * 4344 * Note: We look for all 40 wire detects at this point. Any 4345 * 80 wire detect is taken to be 80 wire cable because 4346 * - in many setups only the one drive (slave if present) will 4347 * give a valid detect 4348 * - if you have a non detect capable drive you don't want it 4349 * to colour the choice 4350 */ 4351 ata_for_each_link(link, ap, EDGE) { 4352 ata_for_each_dev(dev, link, ENABLED) { 4353 if (!ata_is_40wire(dev)) 4354 return 0; 4355 } 4356 } 4357 return 1; 4358 } 4359 4360 /** 4361 * ata_dev_xfermask - Compute supported xfermask of the given device 4362 * @dev: Device to compute xfermask for 4363 * 4364 * Compute supported xfermask of @dev and store it in 4365 * dev->*_mask. This function is responsible for applying all 4366 * known limits including host controller limits, device 4367 * blacklist, etc... 4368 * 4369 * LOCKING: 4370 * None. 4371 */ 4372 static void ata_dev_xfermask(struct ata_device *dev) 4373 { 4374 struct ata_link *link = dev->link; 4375 struct ata_port *ap = link->ap; 4376 struct ata_host *host = ap->host; 4377 unsigned int xfer_mask; 4378 4379 /* controller modes available */ 4380 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4381 ap->mwdma_mask, ap->udma_mask); 4382 4383 /* drive modes available */ 4384 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4385 dev->mwdma_mask, dev->udma_mask); 4386 xfer_mask &= ata_id_xfermask(dev->id); 4387 4388 /* 4389 * CFA Advanced TrueIDE timings are not allowed on a shared 4390 * cable 4391 */ 4392 if (ata_dev_pair(dev)) { 4393 /* No PIO5 or PIO6 */ 4394 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4395 /* No MWDMA3 or MWDMA 4 */ 4396 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4397 } 4398 4399 if (ata_dma_blacklisted(dev)) { 4400 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4401 ata_dev_warn(dev, 4402 "device is on DMA blacklist, disabling DMA\n"); 4403 } 4404 4405 if ((host->flags & ATA_HOST_SIMPLEX) && 4406 host->simplex_claimed && host->simplex_claimed != ap) { 4407 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4408 ata_dev_warn(dev, 4409 "simplex DMA is claimed by other device, disabling DMA\n"); 4410 } 4411 4412 if (ap->flags & ATA_FLAG_NO_IORDY) 4413 xfer_mask &= ata_pio_mask_no_iordy(dev); 4414 4415 if (ap->ops->mode_filter) 4416 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4417 4418 /* Apply cable rule here. Don't apply it early because when 4419 * we handle hot plug the cable type can itself change. 4420 * Check this last so that we know if the transfer rate was 4421 * solely limited by the cable. 4422 * Unknown or 80 wire cables reported host side are checked 4423 * drive side as well. Cases where we know a 40wire cable 4424 * is used safely for 80 are not checked here. 4425 */ 4426 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4427 /* UDMA/44 or higher would be available */ 4428 if (cable_is_40wire(ap)) { 4429 ata_dev_warn(dev, 4430 "limited to UDMA/33 due to 40-wire cable\n"); 4431 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4432 } 4433 4434 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4435 &dev->mwdma_mask, &dev->udma_mask); 4436 } 4437 4438 /** 4439 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4440 * @dev: Device to which command will be sent 4441 * 4442 * Issue SET FEATURES - XFER MODE command to device @dev 4443 * on port @ap. 4444 * 4445 * LOCKING: 4446 * PCI/etc. bus probe sem. 4447 * 4448 * RETURNS: 4449 * 0 on success, AC_ERR_* mask otherwise. 4450 */ 4451 4452 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4453 { 4454 struct ata_taskfile tf; 4455 4456 /* set up set-features taskfile */ 4457 ata_dev_dbg(dev, "set features - xfer mode\n"); 4458 4459 /* Some controllers and ATAPI devices show flaky interrupt 4460 * behavior after setting xfer mode. Use polling instead. 4461 */ 4462 ata_tf_init(dev, &tf); 4463 tf.command = ATA_CMD_SET_FEATURES; 4464 tf.feature = SETFEATURES_XFER; 4465 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4466 tf.protocol = ATA_PROT_NODATA; 4467 /* If we are using IORDY we must send the mode setting command */ 4468 if (ata_pio_need_iordy(dev)) 4469 tf.nsect = dev->xfer_mode; 4470 /* If the device has IORDY and the controller does not - turn it off */ 4471 else if (ata_id_has_iordy(dev->id)) 4472 tf.nsect = 0x01; 4473 else /* In the ancient relic department - skip all of this */ 4474 return 0; 4475 4476 /* 4477 * On some disks, this command causes spin-up, so we need longer 4478 * timeout. 4479 */ 4480 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4481 } 4482 4483 /** 4484 * ata_dev_set_feature - Issue SET FEATURES 4485 * @dev: Device to which command will be sent 4486 * @subcmd: The SET FEATURES subcommand to be sent 4487 * @action: The sector count represents a subcommand specific action 4488 * 4489 * Issue SET FEATURES command to device @dev on port @ap with sector count 4490 * 4491 * LOCKING: 4492 * PCI/etc. bus probe sem. 4493 * 4494 * RETURNS: 4495 * 0 on success, AC_ERR_* mask otherwise. 4496 */ 4497 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action) 4498 { 4499 struct ata_taskfile tf; 4500 unsigned int timeout = 0; 4501 4502 /* set up set-features taskfile */ 4503 ata_dev_dbg(dev, "set features\n"); 4504 4505 ata_tf_init(dev, &tf); 4506 tf.command = ATA_CMD_SET_FEATURES; 4507 tf.feature = subcmd; 4508 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4509 tf.protocol = ATA_PROT_NODATA; 4510 tf.nsect = action; 4511 4512 if (subcmd == SETFEATURES_SPINUP) 4513 timeout = ata_probe_timeout ? 4514 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4515 4516 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4517 } 4518 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4519 4520 /** 4521 * ata_dev_init_params - Issue INIT DEV PARAMS command 4522 * @dev: Device to which command will be sent 4523 * @heads: Number of heads (taskfile parameter) 4524 * @sectors: Number of sectors (taskfile parameter) 4525 * 4526 * LOCKING: 4527 * Kernel thread context (may sleep) 4528 * 4529 * RETURNS: 4530 * 0 on success, AC_ERR_* mask otherwise. 4531 */ 4532 static unsigned int ata_dev_init_params(struct ata_device *dev, 4533 u16 heads, u16 sectors) 4534 { 4535 struct ata_taskfile tf; 4536 unsigned int err_mask; 4537 4538 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4539 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4540 return AC_ERR_INVALID; 4541 4542 /* set up init dev params taskfile */ 4543 ata_dev_dbg(dev, "init dev params \n"); 4544 4545 ata_tf_init(dev, &tf); 4546 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4547 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4548 tf.protocol = ATA_PROT_NODATA; 4549 tf.nsect = sectors; 4550 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4551 4552 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4553 /* A clean abort indicates an original or just out of spec drive 4554 and we should continue as we issue the setup based on the 4555 drive reported working geometry */ 4556 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4557 err_mask = 0; 4558 4559 return err_mask; 4560 } 4561 4562 /** 4563 * atapi_check_dma - Check whether ATAPI DMA can be supported 4564 * @qc: Metadata associated with taskfile to check 4565 * 4566 * Allow low-level driver to filter ATA PACKET commands, returning 4567 * a status indicating whether or not it is OK to use DMA for the 4568 * supplied PACKET command. 4569 * 4570 * LOCKING: 4571 * spin_lock_irqsave(host lock) 4572 * 4573 * RETURNS: 0 when ATAPI DMA can be used 4574 * nonzero otherwise 4575 */ 4576 int atapi_check_dma(struct ata_queued_cmd *qc) 4577 { 4578 struct ata_port *ap = qc->ap; 4579 4580 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4581 * few ATAPI devices choke on such DMA requests. 4582 */ 4583 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4584 unlikely(qc->nbytes & 15)) 4585 return 1; 4586 4587 if (ap->ops->check_atapi_dma) 4588 return ap->ops->check_atapi_dma(qc); 4589 4590 return 0; 4591 } 4592 4593 /** 4594 * ata_std_qc_defer - Check whether a qc needs to be deferred 4595 * @qc: ATA command in question 4596 * 4597 * Non-NCQ commands cannot run with any other command, NCQ or 4598 * not. As upper layer only knows the queue depth, we are 4599 * responsible for maintaining exclusion. This function checks 4600 * whether a new command @qc can be issued. 4601 * 4602 * LOCKING: 4603 * spin_lock_irqsave(host lock) 4604 * 4605 * RETURNS: 4606 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4607 */ 4608 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4609 { 4610 struct ata_link *link = qc->dev->link; 4611 4612 if (ata_is_ncq(qc->tf.protocol)) { 4613 if (!ata_tag_valid(link->active_tag)) 4614 return 0; 4615 } else { 4616 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4617 return 0; 4618 } 4619 4620 return ATA_DEFER_LINK; 4621 } 4622 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4623 4624 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4625 { 4626 return AC_ERR_OK; 4627 } 4628 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4629 4630 /** 4631 * ata_sg_init - Associate command with scatter-gather table. 4632 * @qc: Command to be associated 4633 * @sg: Scatter-gather table. 4634 * @n_elem: Number of elements in s/g table. 4635 * 4636 * Initialize the data-related elements of queued_cmd @qc 4637 * to point to a scatter-gather table @sg, containing @n_elem 4638 * elements. 4639 * 4640 * LOCKING: 4641 * spin_lock_irqsave(host lock) 4642 */ 4643 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4644 unsigned int n_elem) 4645 { 4646 qc->sg = sg; 4647 qc->n_elem = n_elem; 4648 qc->cursg = qc->sg; 4649 } 4650 4651 #ifdef CONFIG_HAS_DMA 4652 4653 /** 4654 * ata_sg_clean - Unmap DMA memory associated with command 4655 * @qc: Command containing DMA memory to be released 4656 * 4657 * Unmap all mapped DMA memory associated with this command. 4658 * 4659 * LOCKING: 4660 * spin_lock_irqsave(host lock) 4661 */ 4662 static void ata_sg_clean(struct ata_queued_cmd *qc) 4663 { 4664 struct ata_port *ap = qc->ap; 4665 struct scatterlist *sg = qc->sg; 4666 int dir = qc->dma_dir; 4667 4668 WARN_ON_ONCE(sg == NULL); 4669 4670 if (qc->n_elem) 4671 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4672 4673 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4674 qc->sg = NULL; 4675 } 4676 4677 /** 4678 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4679 * @qc: Command with scatter-gather table to be mapped. 4680 * 4681 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4682 * 4683 * LOCKING: 4684 * spin_lock_irqsave(host lock) 4685 * 4686 * RETURNS: 4687 * Zero on success, negative on error. 4688 * 4689 */ 4690 static int ata_sg_setup(struct ata_queued_cmd *qc) 4691 { 4692 struct ata_port *ap = qc->ap; 4693 unsigned int n_elem; 4694 4695 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4696 if (n_elem < 1) 4697 return -1; 4698 4699 qc->orig_n_elem = qc->n_elem; 4700 qc->n_elem = n_elem; 4701 qc->flags |= ATA_QCFLAG_DMAMAP; 4702 4703 return 0; 4704 } 4705 4706 #else /* !CONFIG_HAS_DMA */ 4707 4708 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4709 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4710 4711 #endif /* !CONFIG_HAS_DMA */ 4712 4713 /** 4714 * swap_buf_le16 - swap halves of 16-bit words in place 4715 * @buf: Buffer to swap 4716 * @buf_words: Number of 16-bit words in buffer. 4717 * 4718 * Swap halves of 16-bit words if needed to convert from 4719 * little-endian byte order to native cpu byte order, or 4720 * vice-versa. 4721 * 4722 * LOCKING: 4723 * Inherited from caller. 4724 */ 4725 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4726 { 4727 #ifdef __BIG_ENDIAN 4728 unsigned int i; 4729 4730 for (i = 0; i < buf_words; i++) 4731 buf[i] = le16_to_cpu(buf[i]); 4732 #endif /* __BIG_ENDIAN */ 4733 } 4734 4735 /** 4736 * ata_qc_free - free unused ata_queued_cmd 4737 * @qc: Command to complete 4738 * 4739 * Designed to free unused ata_queued_cmd object 4740 * in case something prevents using it. 4741 * 4742 * LOCKING: 4743 * spin_lock_irqsave(host lock) 4744 */ 4745 void ata_qc_free(struct ata_queued_cmd *qc) 4746 { 4747 qc->flags = 0; 4748 if (ata_tag_valid(qc->tag)) 4749 qc->tag = ATA_TAG_POISON; 4750 } 4751 4752 void __ata_qc_complete(struct ata_queued_cmd *qc) 4753 { 4754 struct ata_port *ap; 4755 struct ata_link *link; 4756 4757 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4758 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4759 ap = qc->ap; 4760 link = qc->dev->link; 4761 4762 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4763 ata_sg_clean(qc); 4764 4765 /* command should be marked inactive atomically with qc completion */ 4766 if (ata_is_ncq(qc->tf.protocol)) { 4767 link->sactive &= ~(1 << qc->hw_tag); 4768 if (!link->sactive) 4769 ap->nr_active_links--; 4770 } else { 4771 link->active_tag = ATA_TAG_POISON; 4772 ap->nr_active_links--; 4773 } 4774 4775 /* clear exclusive status */ 4776 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4777 ap->excl_link == link)) 4778 ap->excl_link = NULL; 4779 4780 /* atapi: mark qc as inactive to prevent the interrupt handler 4781 * from completing the command twice later, before the error handler 4782 * is called. (when rc != 0 and atapi request sense is needed) 4783 */ 4784 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4785 ap->qc_active &= ~(1ULL << qc->tag); 4786 4787 /* call completion callback */ 4788 qc->complete_fn(qc); 4789 } 4790 4791 static void fill_result_tf(struct ata_queued_cmd *qc) 4792 { 4793 struct ata_port *ap = qc->ap; 4794 4795 qc->result_tf.flags = qc->tf.flags; 4796 ap->ops->qc_fill_rtf(qc); 4797 } 4798 4799 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4800 { 4801 struct ata_device *dev = qc->dev; 4802 4803 if (!ata_is_data(qc->tf.protocol)) 4804 return; 4805 4806 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4807 return; 4808 4809 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4810 } 4811 4812 /** 4813 * ata_qc_complete - Complete an active ATA command 4814 * @qc: Command to complete 4815 * 4816 * Indicate to the mid and upper layers that an ATA command has 4817 * completed, with either an ok or not-ok status. 4818 * 4819 * Refrain from calling this function multiple times when 4820 * successfully completing multiple NCQ commands. 4821 * ata_qc_complete_multiple() should be used instead, which will 4822 * properly update IRQ expect state. 4823 * 4824 * LOCKING: 4825 * spin_lock_irqsave(host lock) 4826 */ 4827 void ata_qc_complete(struct ata_queued_cmd *qc) 4828 { 4829 struct ata_port *ap = qc->ap; 4830 struct ata_device *dev = qc->dev; 4831 struct ata_eh_info *ehi = &dev->link->eh_info; 4832 4833 /* Trigger the LED (if available) */ 4834 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4835 4836 /* 4837 * In order to synchronize EH with the regular execution path, a qc that 4838 * is owned by EH is marked with ATA_QCFLAG_EH. 4839 * 4840 * The normal execution path is responsible for not accessing a qc owned 4841 * by EH. libata core enforces the rule by returning NULL from 4842 * ata_qc_from_tag() for qcs owned by EH. 4843 */ 4844 if (unlikely(qc->err_mask)) 4845 qc->flags |= ATA_QCFLAG_EH; 4846 4847 /* 4848 * Finish internal commands without any further processing and always 4849 * with the result TF filled. 4850 */ 4851 if (unlikely(ata_tag_internal(qc->tag))) { 4852 fill_result_tf(qc); 4853 trace_ata_qc_complete_internal(qc); 4854 __ata_qc_complete(qc); 4855 return; 4856 } 4857 4858 /* Non-internal qc has failed. Fill the result TF and summon EH. */ 4859 if (unlikely(qc->flags & ATA_QCFLAG_EH)) { 4860 fill_result_tf(qc); 4861 trace_ata_qc_complete_failed(qc); 4862 ata_qc_schedule_eh(qc); 4863 return; 4864 } 4865 4866 WARN_ON_ONCE(ata_port_is_frozen(ap)); 4867 4868 /* read result TF if requested */ 4869 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4870 fill_result_tf(qc); 4871 4872 trace_ata_qc_complete_done(qc); 4873 4874 /* 4875 * For CDL commands that completed without an error, check if we have 4876 * sense data (ATA_SENSE is set). If we do, then the command may have 4877 * been aborted by the device due to a limit timeout using the policy 4878 * 0xD. For these commands, invoke EH to get the command sense data. 4879 */ 4880 if (qc->flags & ATA_QCFLAG_HAS_CDL && 4881 qc->result_tf.status & ATA_SENSE) { 4882 /* 4883 * Tell SCSI EH to not overwrite scmd->result even if this 4884 * command is finished with result SAM_STAT_GOOD. 4885 */ 4886 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS; 4887 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD; 4888 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE; 4889 4890 /* 4891 * set pending so that ata_qc_schedule_eh() does not trigger 4892 * fast drain, and freeze the port. 4893 */ 4894 ap->pflags |= ATA_PFLAG_EH_PENDING; 4895 ata_qc_schedule_eh(qc); 4896 return; 4897 } 4898 4899 /* Some commands need post-processing after successful completion. */ 4900 switch (qc->tf.command) { 4901 case ATA_CMD_SET_FEATURES: 4902 if (qc->tf.feature != SETFEATURES_WC_ON && 4903 qc->tf.feature != SETFEATURES_WC_OFF && 4904 qc->tf.feature != SETFEATURES_RA_ON && 4905 qc->tf.feature != SETFEATURES_RA_OFF) 4906 break; 4907 fallthrough; 4908 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4909 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4910 /* revalidate device */ 4911 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4912 ata_port_schedule_eh(ap); 4913 break; 4914 4915 case ATA_CMD_SLEEP: 4916 dev->flags |= ATA_DFLAG_SLEEPING; 4917 break; 4918 } 4919 4920 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4921 ata_verify_xfer(qc); 4922 4923 __ata_qc_complete(qc); 4924 } 4925 EXPORT_SYMBOL_GPL(ata_qc_complete); 4926 4927 /** 4928 * ata_qc_get_active - get bitmask of active qcs 4929 * @ap: port in question 4930 * 4931 * LOCKING: 4932 * spin_lock_irqsave(host lock) 4933 * 4934 * RETURNS: 4935 * Bitmask of active qcs 4936 */ 4937 u64 ata_qc_get_active(struct ata_port *ap) 4938 { 4939 u64 qc_active = ap->qc_active; 4940 4941 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4942 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4943 qc_active |= (1 << 0); 4944 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4945 } 4946 4947 return qc_active; 4948 } 4949 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4950 4951 /** 4952 * ata_qc_issue - issue taskfile to device 4953 * @qc: command to issue to device 4954 * 4955 * Prepare an ATA command to submission to device. 4956 * This includes mapping the data into a DMA-able 4957 * area, filling in the S/G table, and finally 4958 * writing the taskfile to hardware, starting the command. 4959 * 4960 * LOCKING: 4961 * spin_lock_irqsave(host lock) 4962 */ 4963 void ata_qc_issue(struct ata_queued_cmd *qc) 4964 { 4965 struct ata_port *ap = qc->ap; 4966 struct ata_link *link = qc->dev->link; 4967 u8 prot = qc->tf.protocol; 4968 4969 /* Make sure only one non-NCQ command is outstanding. */ 4970 WARN_ON_ONCE(ata_tag_valid(link->active_tag)); 4971 4972 if (ata_is_ncq(prot)) { 4973 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4974 4975 if (!link->sactive) 4976 ap->nr_active_links++; 4977 link->sactive |= 1 << qc->hw_tag; 4978 } else { 4979 WARN_ON_ONCE(link->sactive); 4980 4981 ap->nr_active_links++; 4982 link->active_tag = qc->tag; 4983 } 4984 4985 qc->flags |= ATA_QCFLAG_ACTIVE; 4986 ap->qc_active |= 1ULL << qc->tag; 4987 4988 /* 4989 * We guarantee to LLDs that they will have at least one 4990 * non-zero sg if the command is a data command. 4991 */ 4992 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4993 goto sys_err; 4994 4995 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4996 (ap->flags & ATA_FLAG_PIO_DMA))) 4997 if (ata_sg_setup(qc)) 4998 goto sys_err; 4999 5000 /* if device is sleeping, schedule reset and abort the link */ 5001 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5002 link->eh_info.action |= ATA_EH_RESET; 5003 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5004 ata_link_abort(link); 5005 return; 5006 } 5007 5008 trace_ata_qc_prep(qc); 5009 qc->err_mask |= ap->ops->qc_prep(qc); 5010 if (unlikely(qc->err_mask)) 5011 goto err; 5012 trace_ata_qc_issue(qc); 5013 qc->err_mask |= ap->ops->qc_issue(qc); 5014 if (unlikely(qc->err_mask)) 5015 goto err; 5016 return; 5017 5018 sys_err: 5019 qc->err_mask |= AC_ERR_SYSTEM; 5020 err: 5021 ata_qc_complete(qc); 5022 } 5023 5024 /** 5025 * ata_phys_link_online - test whether the given link is online 5026 * @link: ATA link to test 5027 * 5028 * Test whether @link is online. Note that this function returns 5029 * 0 if online status of @link cannot be obtained, so 5030 * ata_link_online(link) != !ata_link_offline(link). 5031 * 5032 * LOCKING: 5033 * None. 5034 * 5035 * RETURNS: 5036 * True if the port online status is available and online. 5037 */ 5038 bool ata_phys_link_online(struct ata_link *link) 5039 { 5040 u32 sstatus; 5041 5042 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5043 ata_sstatus_online(sstatus)) 5044 return true; 5045 return false; 5046 } 5047 5048 /** 5049 * ata_phys_link_offline - test whether the given link is offline 5050 * @link: ATA link to test 5051 * 5052 * Test whether @link is offline. Note that this function 5053 * returns 0 if offline status of @link cannot be obtained, so 5054 * ata_link_online(link) != !ata_link_offline(link). 5055 * 5056 * LOCKING: 5057 * None. 5058 * 5059 * RETURNS: 5060 * True if the port offline status is available and offline. 5061 */ 5062 bool ata_phys_link_offline(struct ata_link *link) 5063 { 5064 u32 sstatus; 5065 5066 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5067 !ata_sstatus_online(sstatus)) 5068 return true; 5069 return false; 5070 } 5071 5072 /** 5073 * ata_link_online - test whether the given link is online 5074 * @link: ATA link to test 5075 * 5076 * Test whether @link is online. This is identical to 5077 * ata_phys_link_online() when there's no slave link. When 5078 * there's a slave link, this function should only be called on 5079 * the master link and will return true if any of M/S links is 5080 * online. 5081 * 5082 * LOCKING: 5083 * None. 5084 * 5085 * RETURNS: 5086 * True if the port online status is available and online. 5087 */ 5088 bool ata_link_online(struct ata_link *link) 5089 { 5090 struct ata_link *slave = link->ap->slave_link; 5091 5092 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5093 5094 return ata_phys_link_online(link) || 5095 (slave && ata_phys_link_online(slave)); 5096 } 5097 EXPORT_SYMBOL_GPL(ata_link_online); 5098 5099 /** 5100 * ata_link_offline - test whether the given link is offline 5101 * @link: ATA link to test 5102 * 5103 * Test whether @link is offline. This is identical to 5104 * ata_phys_link_offline() when there's no slave link. When 5105 * there's a slave link, this function should only be called on 5106 * the master link and will return true if both M/S links are 5107 * offline. 5108 * 5109 * LOCKING: 5110 * None. 5111 * 5112 * RETURNS: 5113 * True if the port offline status is available and offline. 5114 */ 5115 bool ata_link_offline(struct ata_link *link) 5116 { 5117 struct ata_link *slave = link->ap->slave_link; 5118 5119 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5120 5121 return ata_phys_link_offline(link) && 5122 (!slave || ata_phys_link_offline(slave)); 5123 } 5124 EXPORT_SYMBOL_GPL(ata_link_offline); 5125 5126 #ifdef CONFIG_PM 5127 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5128 unsigned int action, unsigned int ehi_flags, 5129 bool async) 5130 { 5131 struct ata_link *link; 5132 unsigned long flags; 5133 5134 spin_lock_irqsave(ap->lock, flags); 5135 5136 /* 5137 * A previous PM operation might still be in progress. Wait for 5138 * ATA_PFLAG_PM_PENDING to clear. 5139 */ 5140 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5141 spin_unlock_irqrestore(ap->lock, flags); 5142 ata_port_wait_eh(ap); 5143 spin_lock_irqsave(ap->lock, flags); 5144 } 5145 5146 /* Request PM operation to EH */ 5147 ap->pm_mesg = mesg; 5148 ap->pflags |= ATA_PFLAG_PM_PENDING; 5149 ata_for_each_link(link, ap, HOST_FIRST) { 5150 link->eh_info.action |= action; 5151 link->eh_info.flags |= ehi_flags; 5152 } 5153 5154 ata_port_schedule_eh(ap); 5155 5156 spin_unlock_irqrestore(ap->lock, flags); 5157 5158 if (!async) 5159 ata_port_wait_eh(ap); 5160 } 5161 5162 /* 5163 * On some hardware, device fails to respond after spun down for suspend. As 5164 * the device won't be used before being resumed, we don't need to touch the 5165 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5166 * 5167 * http://thread.gmane.org/gmane.linux.ide/46764 5168 */ 5169 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5170 | ATA_EHI_NO_AUTOPSY 5171 | ATA_EHI_NO_RECOVERY; 5172 5173 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5174 { 5175 /* 5176 * We are about to suspend the port, so we do not care about 5177 * scsi_rescan_device() calls scheduled by previous resume operations. 5178 * The next resume will schedule the rescan again. So cancel any rescan 5179 * that is not done yet. 5180 */ 5181 cancel_delayed_work_sync(&ap->scsi_rescan_task); 5182 5183 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5184 } 5185 5186 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5187 { 5188 /* 5189 * We are about to suspend the port, so we do not care about 5190 * scsi_rescan_device() calls scheduled by previous resume operations. 5191 * The next resume will schedule the rescan again. So cancel any rescan 5192 * that is not done yet. 5193 */ 5194 cancel_delayed_work_sync(&ap->scsi_rescan_task); 5195 5196 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5197 } 5198 5199 static int ata_port_pm_suspend(struct device *dev) 5200 { 5201 struct ata_port *ap = to_ata_port(dev); 5202 5203 if (pm_runtime_suspended(dev)) 5204 return 0; 5205 5206 ata_port_suspend(ap, PMSG_SUSPEND); 5207 return 0; 5208 } 5209 5210 static int ata_port_pm_freeze(struct device *dev) 5211 { 5212 struct ata_port *ap = to_ata_port(dev); 5213 5214 if (pm_runtime_suspended(dev)) 5215 return 0; 5216 5217 ata_port_suspend(ap, PMSG_FREEZE); 5218 return 0; 5219 } 5220 5221 static int ata_port_pm_poweroff(struct device *dev) 5222 { 5223 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5224 return 0; 5225 } 5226 5227 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5228 | ATA_EHI_QUIET; 5229 5230 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5231 { 5232 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5233 } 5234 5235 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5236 { 5237 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5238 } 5239 5240 static int ata_port_pm_resume(struct device *dev) 5241 { 5242 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5243 pm_runtime_disable(dev); 5244 pm_runtime_set_active(dev); 5245 pm_runtime_enable(dev); 5246 return 0; 5247 } 5248 5249 /* 5250 * For ODDs, the upper layer will poll for media change every few seconds, 5251 * which will make it enter and leave suspend state every few seconds. And 5252 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5253 * is very little and the ODD may malfunction after constantly being reset. 5254 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5255 * ODD is attached to the port. 5256 */ 5257 static int ata_port_runtime_idle(struct device *dev) 5258 { 5259 struct ata_port *ap = to_ata_port(dev); 5260 struct ata_link *link; 5261 struct ata_device *adev; 5262 5263 ata_for_each_link(link, ap, HOST_FIRST) { 5264 ata_for_each_dev(adev, link, ENABLED) 5265 if (adev->class == ATA_DEV_ATAPI && 5266 !zpodd_dev_enabled(adev)) 5267 return -EBUSY; 5268 } 5269 5270 return 0; 5271 } 5272 5273 static int ata_port_runtime_suspend(struct device *dev) 5274 { 5275 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5276 return 0; 5277 } 5278 5279 static int ata_port_runtime_resume(struct device *dev) 5280 { 5281 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5282 return 0; 5283 } 5284 5285 static const struct dev_pm_ops ata_port_pm_ops = { 5286 .suspend = ata_port_pm_suspend, 5287 .resume = ata_port_pm_resume, 5288 .freeze = ata_port_pm_freeze, 5289 .thaw = ata_port_pm_resume, 5290 .poweroff = ata_port_pm_poweroff, 5291 .restore = ata_port_pm_resume, 5292 5293 .runtime_suspend = ata_port_runtime_suspend, 5294 .runtime_resume = ata_port_runtime_resume, 5295 .runtime_idle = ata_port_runtime_idle, 5296 }; 5297 5298 /* sas ports don't participate in pm runtime management of ata_ports, 5299 * and need to resume ata devices at the domain level, not the per-port 5300 * level. sas suspend/resume is async to allow parallel port recovery 5301 * since sas has multiple ata_port instances per Scsi_Host. 5302 */ 5303 void ata_sas_port_suspend(struct ata_port *ap) 5304 { 5305 ata_port_suspend_async(ap, PMSG_SUSPEND); 5306 } 5307 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5308 5309 void ata_sas_port_resume(struct ata_port *ap) 5310 { 5311 ata_port_resume_async(ap, PMSG_RESUME); 5312 } 5313 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5314 5315 /** 5316 * ata_host_suspend - suspend host 5317 * @host: host to suspend 5318 * @mesg: PM message 5319 * 5320 * Suspend @host. Actual operation is performed by port suspend. 5321 */ 5322 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5323 { 5324 host->dev->power.power_state = mesg; 5325 } 5326 EXPORT_SYMBOL_GPL(ata_host_suspend); 5327 5328 /** 5329 * ata_host_resume - resume host 5330 * @host: host to resume 5331 * 5332 * Resume @host. Actual operation is performed by port resume. 5333 */ 5334 void ata_host_resume(struct ata_host *host) 5335 { 5336 host->dev->power.power_state = PMSG_ON; 5337 } 5338 EXPORT_SYMBOL_GPL(ata_host_resume); 5339 #endif 5340 5341 const struct device_type ata_port_type = { 5342 .name = ATA_PORT_TYPE_NAME, 5343 #ifdef CONFIG_PM 5344 .pm = &ata_port_pm_ops, 5345 #endif 5346 }; 5347 5348 /** 5349 * ata_dev_init - Initialize an ata_device structure 5350 * @dev: Device structure to initialize 5351 * 5352 * Initialize @dev in preparation for probing. 5353 * 5354 * LOCKING: 5355 * Inherited from caller. 5356 */ 5357 void ata_dev_init(struct ata_device *dev) 5358 { 5359 struct ata_link *link = ata_dev_phys_link(dev); 5360 struct ata_port *ap = link->ap; 5361 unsigned long flags; 5362 5363 /* SATA spd limit is bound to the attached device, reset together */ 5364 link->sata_spd_limit = link->hw_sata_spd_limit; 5365 link->sata_spd = 0; 5366 5367 /* High bits of dev->flags are used to record warm plug 5368 * requests which occur asynchronously. Synchronize using 5369 * host lock. 5370 */ 5371 spin_lock_irqsave(ap->lock, flags); 5372 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5373 dev->horkage = 0; 5374 spin_unlock_irqrestore(ap->lock, flags); 5375 5376 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5377 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5378 dev->pio_mask = UINT_MAX; 5379 dev->mwdma_mask = UINT_MAX; 5380 dev->udma_mask = UINT_MAX; 5381 } 5382 5383 /** 5384 * ata_link_init - Initialize an ata_link structure 5385 * @ap: ATA port link is attached to 5386 * @link: Link structure to initialize 5387 * @pmp: Port multiplier port number 5388 * 5389 * Initialize @link. 5390 * 5391 * LOCKING: 5392 * Kernel thread context (may sleep) 5393 */ 5394 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5395 { 5396 int i; 5397 5398 /* clear everything except for devices */ 5399 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5400 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5401 5402 link->ap = ap; 5403 link->pmp = pmp; 5404 link->active_tag = ATA_TAG_POISON; 5405 link->hw_sata_spd_limit = UINT_MAX; 5406 5407 /* can't use iterator, ap isn't initialized yet */ 5408 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5409 struct ata_device *dev = &link->device[i]; 5410 5411 dev->link = link; 5412 dev->devno = dev - link->device; 5413 #ifdef CONFIG_ATA_ACPI 5414 dev->gtf_filter = ata_acpi_gtf_filter; 5415 #endif 5416 ata_dev_init(dev); 5417 } 5418 } 5419 5420 /** 5421 * sata_link_init_spd - Initialize link->sata_spd_limit 5422 * @link: Link to configure sata_spd_limit for 5423 * 5424 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5425 * configured value. 5426 * 5427 * LOCKING: 5428 * Kernel thread context (may sleep). 5429 * 5430 * RETURNS: 5431 * 0 on success, -errno on failure. 5432 */ 5433 int sata_link_init_spd(struct ata_link *link) 5434 { 5435 u8 spd; 5436 int rc; 5437 5438 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5439 if (rc) 5440 return rc; 5441 5442 spd = (link->saved_scontrol >> 4) & 0xf; 5443 if (spd) 5444 link->hw_sata_spd_limit &= (1 << spd) - 1; 5445 5446 ata_force_link_limits(link); 5447 5448 link->sata_spd_limit = link->hw_sata_spd_limit; 5449 5450 return 0; 5451 } 5452 5453 /** 5454 * ata_port_alloc - allocate and initialize basic ATA port resources 5455 * @host: ATA host this allocated port belongs to 5456 * 5457 * Allocate and initialize basic ATA port resources. 5458 * 5459 * RETURNS: 5460 * Allocate ATA port on success, NULL on failure. 5461 * 5462 * LOCKING: 5463 * Inherited from calling layer (may sleep). 5464 */ 5465 struct ata_port *ata_port_alloc(struct ata_host *host) 5466 { 5467 struct ata_port *ap; 5468 5469 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5470 if (!ap) 5471 return NULL; 5472 5473 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5474 ap->lock = &host->lock; 5475 ap->print_id = -1; 5476 ap->local_port_no = -1; 5477 ap->host = host; 5478 ap->dev = host->dev; 5479 5480 mutex_init(&ap->scsi_scan_mutex); 5481 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5482 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5483 INIT_LIST_HEAD(&ap->eh_done_q); 5484 init_waitqueue_head(&ap->eh_wait_q); 5485 init_completion(&ap->park_req_pending); 5486 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5487 TIMER_DEFERRABLE); 5488 5489 ap->cbl = ATA_CBL_NONE; 5490 5491 ata_link_init(ap, &ap->link, 0); 5492 5493 #ifdef ATA_IRQ_TRAP 5494 ap->stats.unhandled_irq = 1; 5495 ap->stats.idle_irq = 1; 5496 #endif 5497 ata_sff_port_init(ap); 5498 5499 return ap; 5500 } 5501 5502 static void ata_devres_release(struct device *gendev, void *res) 5503 { 5504 struct ata_host *host = dev_get_drvdata(gendev); 5505 int i; 5506 5507 for (i = 0; i < host->n_ports; i++) { 5508 struct ata_port *ap = host->ports[i]; 5509 5510 if (!ap) 5511 continue; 5512 5513 if (ap->scsi_host) 5514 scsi_host_put(ap->scsi_host); 5515 5516 } 5517 5518 dev_set_drvdata(gendev, NULL); 5519 ata_host_put(host); 5520 } 5521 5522 static void ata_host_release(struct kref *kref) 5523 { 5524 struct ata_host *host = container_of(kref, struct ata_host, kref); 5525 int i; 5526 5527 for (i = 0; i < host->n_ports; i++) { 5528 struct ata_port *ap = host->ports[i]; 5529 5530 kfree(ap->pmp_link); 5531 kfree(ap->slave_link); 5532 kfree(ap->ncq_sense_buf); 5533 kfree(ap); 5534 host->ports[i] = NULL; 5535 } 5536 kfree(host); 5537 } 5538 5539 void ata_host_get(struct ata_host *host) 5540 { 5541 kref_get(&host->kref); 5542 } 5543 5544 void ata_host_put(struct ata_host *host) 5545 { 5546 kref_put(&host->kref, ata_host_release); 5547 } 5548 EXPORT_SYMBOL_GPL(ata_host_put); 5549 5550 /** 5551 * ata_host_alloc - allocate and init basic ATA host resources 5552 * @dev: generic device this host is associated with 5553 * @max_ports: maximum number of ATA ports associated with this host 5554 * 5555 * Allocate and initialize basic ATA host resources. LLD calls 5556 * this function to allocate a host, initializes it fully and 5557 * attaches it using ata_host_register(). 5558 * 5559 * @max_ports ports are allocated and host->n_ports is 5560 * initialized to @max_ports. The caller is allowed to decrease 5561 * host->n_ports before calling ata_host_register(). The unused 5562 * ports will be automatically freed on registration. 5563 * 5564 * RETURNS: 5565 * Allocate ATA host on success, NULL on failure. 5566 * 5567 * LOCKING: 5568 * Inherited from calling layer (may sleep). 5569 */ 5570 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5571 { 5572 struct ata_host *host; 5573 size_t sz; 5574 int i; 5575 void *dr; 5576 5577 /* alloc a container for our list of ATA ports (buses) */ 5578 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5579 host = kzalloc(sz, GFP_KERNEL); 5580 if (!host) 5581 return NULL; 5582 5583 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5584 goto err_free; 5585 5586 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5587 if (!dr) 5588 goto err_out; 5589 5590 devres_add(dev, dr); 5591 dev_set_drvdata(dev, host); 5592 5593 spin_lock_init(&host->lock); 5594 mutex_init(&host->eh_mutex); 5595 host->dev = dev; 5596 host->n_ports = max_ports; 5597 kref_init(&host->kref); 5598 5599 /* allocate ports bound to this host */ 5600 for (i = 0; i < max_ports; i++) { 5601 struct ata_port *ap; 5602 5603 ap = ata_port_alloc(host); 5604 if (!ap) 5605 goto err_out; 5606 5607 ap->port_no = i; 5608 host->ports[i] = ap; 5609 } 5610 5611 devres_remove_group(dev, NULL); 5612 return host; 5613 5614 err_out: 5615 devres_release_group(dev, NULL); 5616 err_free: 5617 kfree(host); 5618 return NULL; 5619 } 5620 EXPORT_SYMBOL_GPL(ata_host_alloc); 5621 5622 /** 5623 * ata_host_alloc_pinfo - alloc host and init with port_info array 5624 * @dev: generic device this host is associated with 5625 * @ppi: array of ATA port_info to initialize host with 5626 * @n_ports: number of ATA ports attached to this host 5627 * 5628 * Allocate ATA host and initialize with info from @ppi. If NULL 5629 * terminated, @ppi may contain fewer entries than @n_ports. The 5630 * last entry will be used for the remaining ports. 5631 * 5632 * RETURNS: 5633 * Allocate ATA host on success, NULL on failure. 5634 * 5635 * LOCKING: 5636 * Inherited from calling layer (may sleep). 5637 */ 5638 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5639 const struct ata_port_info * const * ppi, 5640 int n_ports) 5641 { 5642 const struct ata_port_info *pi = &ata_dummy_port_info; 5643 struct ata_host *host; 5644 int i, j; 5645 5646 host = ata_host_alloc(dev, n_ports); 5647 if (!host) 5648 return NULL; 5649 5650 for (i = 0, j = 0; i < host->n_ports; i++) { 5651 struct ata_port *ap = host->ports[i]; 5652 5653 if (ppi[j]) 5654 pi = ppi[j++]; 5655 5656 ap->pio_mask = pi->pio_mask; 5657 ap->mwdma_mask = pi->mwdma_mask; 5658 ap->udma_mask = pi->udma_mask; 5659 ap->flags |= pi->flags; 5660 ap->link.flags |= pi->link_flags; 5661 ap->ops = pi->port_ops; 5662 5663 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5664 host->ops = pi->port_ops; 5665 } 5666 5667 return host; 5668 } 5669 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5670 5671 static void ata_host_stop(struct device *gendev, void *res) 5672 { 5673 struct ata_host *host = dev_get_drvdata(gendev); 5674 int i; 5675 5676 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5677 5678 for (i = 0; i < host->n_ports; i++) { 5679 struct ata_port *ap = host->ports[i]; 5680 5681 if (ap->ops->port_stop) 5682 ap->ops->port_stop(ap); 5683 } 5684 5685 if (host->ops->host_stop) 5686 host->ops->host_stop(host); 5687 } 5688 5689 /** 5690 * ata_finalize_port_ops - finalize ata_port_operations 5691 * @ops: ata_port_operations to finalize 5692 * 5693 * An ata_port_operations can inherit from another ops and that 5694 * ops can again inherit from another. This can go on as many 5695 * times as necessary as long as there is no loop in the 5696 * inheritance chain. 5697 * 5698 * Ops tables are finalized when the host is started. NULL or 5699 * unspecified entries are inherited from the closet ancestor 5700 * which has the method and the entry is populated with it. 5701 * After finalization, the ops table directly points to all the 5702 * methods and ->inherits is no longer necessary and cleared. 5703 * 5704 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5705 * 5706 * LOCKING: 5707 * None. 5708 */ 5709 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5710 { 5711 static DEFINE_SPINLOCK(lock); 5712 const struct ata_port_operations *cur; 5713 void **begin = (void **)ops; 5714 void **end = (void **)&ops->inherits; 5715 void **pp; 5716 5717 if (!ops || !ops->inherits) 5718 return; 5719 5720 spin_lock(&lock); 5721 5722 for (cur = ops->inherits; cur; cur = cur->inherits) { 5723 void **inherit = (void **)cur; 5724 5725 for (pp = begin; pp < end; pp++, inherit++) 5726 if (!*pp) 5727 *pp = *inherit; 5728 } 5729 5730 for (pp = begin; pp < end; pp++) 5731 if (IS_ERR(*pp)) 5732 *pp = NULL; 5733 5734 ops->inherits = NULL; 5735 5736 spin_unlock(&lock); 5737 } 5738 5739 /** 5740 * ata_host_start - start and freeze ports of an ATA host 5741 * @host: ATA host to start ports for 5742 * 5743 * Start and then freeze ports of @host. Started status is 5744 * recorded in host->flags, so this function can be called 5745 * multiple times. Ports are guaranteed to get started only 5746 * once. If host->ops is not initialized yet, it is set to the 5747 * first non-dummy port ops. 5748 * 5749 * LOCKING: 5750 * Inherited from calling layer (may sleep). 5751 * 5752 * RETURNS: 5753 * 0 if all ports are started successfully, -errno otherwise. 5754 */ 5755 int ata_host_start(struct ata_host *host) 5756 { 5757 int have_stop = 0; 5758 void *start_dr = NULL; 5759 int i, rc; 5760 5761 if (host->flags & ATA_HOST_STARTED) 5762 return 0; 5763 5764 ata_finalize_port_ops(host->ops); 5765 5766 for (i = 0; i < host->n_ports; i++) { 5767 struct ata_port *ap = host->ports[i]; 5768 5769 ata_finalize_port_ops(ap->ops); 5770 5771 if (!host->ops && !ata_port_is_dummy(ap)) 5772 host->ops = ap->ops; 5773 5774 if (ap->ops->port_stop) 5775 have_stop = 1; 5776 } 5777 5778 if (host->ops && host->ops->host_stop) 5779 have_stop = 1; 5780 5781 if (have_stop) { 5782 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5783 if (!start_dr) 5784 return -ENOMEM; 5785 } 5786 5787 for (i = 0; i < host->n_ports; i++) { 5788 struct ata_port *ap = host->ports[i]; 5789 5790 if (ap->ops->port_start) { 5791 rc = ap->ops->port_start(ap); 5792 if (rc) { 5793 if (rc != -ENODEV) 5794 dev_err(host->dev, 5795 "failed to start port %d (errno=%d)\n", 5796 i, rc); 5797 goto err_out; 5798 } 5799 } 5800 ata_eh_freeze_port(ap); 5801 } 5802 5803 if (start_dr) 5804 devres_add(host->dev, start_dr); 5805 host->flags |= ATA_HOST_STARTED; 5806 return 0; 5807 5808 err_out: 5809 while (--i >= 0) { 5810 struct ata_port *ap = host->ports[i]; 5811 5812 if (ap->ops->port_stop) 5813 ap->ops->port_stop(ap); 5814 } 5815 devres_free(start_dr); 5816 return rc; 5817 } 5818 EXPORT_SYMBOL_GPL(ata_host_start); 5819 5820 /** 5821 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5822 * @host: host to initialize 5823 * @dev: device host is attached to 5824 * @ops: port_ops 5825 * 5826 */ 5827 void ata_host_init(struct ata_host *host, struct device *dev, 5828 struct ata_port_operations *ops) 5829 { 5830 spin_lock_init(&host->lock); 5831 mutex_init(&host->eh_mutex); 5832 host->n_tags = ATA_MAX_QUEUE; 5833 host->dev = dev; 5834 host->ops = ops; 5835 kref_init(&host->kref); 5836 } 5837 EXPORT_SYMBOL_GPL(ata_host_init); 5838 5839 void ata_port_probe(struct ata_port *ap) 5840 { 5841 struct ata_eh_info *ehi = &ap->link.eh_info; 5842 unsigned long flags; 5843 5844 /* kick EH for boot probing */ 5845 spin_lock_irqsave(ap->lock, flags); 5846 5847 ehi->probe_mask |= ATA_ALL_DEVICES; 5848 ehi->action |= ATA_EH_RESET; 5849 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5850 5851 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5852 ap->pflags |= ATA_PFLAG_LOADING; 5853 ata_port_schedule_eh(ap); 5854 5855 spin_unlock_irqrestore(ap->lock, flags); 5856 } 5857 EXPORT_SYMBOL_GPL(ata_port_probe); 5858 5859 static void async_port_probe(void *data, async_cookie_t cookie) 5860 { 5861 struct ata_port *ap = data; 5862 5863 /* 5864 * If we're not allowed to scan this host in parallel, 5865 * we need to wait until all previous scans have completed 5866 * before going further. 5867 * Jeff Garzik says this is only within a controller, so we 5868 * don't need to wait for port 0, only for later ports. 5869 */ 5870 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5871 async_synchronize_cookie(cookie); 5872 5873 ata_port_probe(ap); 5874 ata_port_wait_eh(ap); 5875 5876 /* in order to keep device order, we need to synchronize at this point */ 5877 async_synchronize_cookie(cookie); 5878 5879 ata_scsi_scan_host(ap, 1); 5880 } 5881 5882 /** 5883 * ata_host_register - register initialized ATA host 5884 * @host: ATA host to register 5885 * @sht: template for SCSI host 5886 * 5887 * Register initialized ATA host. @host is allocated using 5888 * ata_host_alloc() and fully initialized by LLD. This function 5889 * starts ports, registers @host with ATA and SCSI layers and 5890 * probe registered devices. 5891 * 5892 * LOCKING: 5893 * Inherited from calling layer (may sleep). 5894 * 5895 * RETURNS: 5896 * 0 on success, -errno otherwise. 5897 */ 5898 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht) 5899 { 5900 int i, rc; 5901 5902 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5903 5904 /* host must have been started */ 5905 if (!(host->flags & ATA_HOST_STARTED)) { 5906 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5907 WARN_ON(1); 5908 return -EINVAL; 5909 } 5910 5911 /* Blow away unused ports. This happens when LLD can't 5912 * determine the exact number of ports to allocate at 5913 * allocation time. 5914 */ 5915 for (i = host->n_ports; host->ports[i]; i++) 5916 kfree(host->ports[i]); 5917 5918 /* give ports names and add SCSI hosts */ 5919 for (i = 0; i < host->n_ports; i++) { 5920 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5921 host->ports[i]->local_port_no = i + 1; 5922 } 5923 5924 /* Create associated sysfs transport objects */ 5925 for (i = 0; i < host->n_ports; i++) { 5926 rc = ata_tport_add(host->dev,host->ports[i]); 5927 if (rc) { 5928 goto err_tadd; 5929 } 5930 } 5931 5932 rc = ata_scsi_add_hosts(host, sht); 5933 if (rc) 5934 goto err_tadd; 5935 5936 /* set cable, sata_spd_limit and report */ 5937 for (i = 0; i < host->n_ports; i++) { 5938 struct ata_port *ap = host->ports[i]; 5939 unsigned int xfer_mask; 5940 5941 /* set SATA cable type if still unset */ 5942 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5943 ap->cbl = ATA_CBL_SATA; 5944 5945 /* init sata_spd_limit to the current value */ 5946 sata_link_init_spd(&ap->link); 5947 if (ap->slave_link) 5948 sata_link_init_spd(ap->slave_link); 5949 5950 /* print per-port info to dmesg */ 5951 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5952 ap->udma_mask); 5953 5954 if (!ata_port_is_dummy(ap)) { 5955 ata_port_info(ap, "%cATA max %s %s\n", 5956 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5957 ata_mode_string(xfer_mask), 5958 ap->link.eh_info.desc); 5959 ata_ehi_clear_desc(&ap->link.eh_info); 5960 } else 5961 ata_port_info(ap, "DUMMY\n"); 5962 } 5963 5964 /* perform each probe asynchronously */ 5965 for (i = 0; i < host->n_ports; i++) { 5966 struct ata_port *ap = host->ports[i]; 5967 ap->cookie = async_schedule(async_port_probe, ap); 5968 } 5969 5970 return 0; 5971 5972 err_tadd: 5973 while (--i >= 0) { 5974 ata_tport_delete(host->ports[i]); 5975 } 5976 return rc; 5977 5978 } 5979 EXPORT_SYMBOL_GPL(ata_host_register); 5980 5981 /** 5982 * ata_host_activate - start host, request IRQ and register it 5983 * @host: target ATA host 5984 * @irq: IRQ to request 5985 * @irq_handler: irq_handler used when requesting IRQ 5986 * @irq_flags: irq_flags used when requesting IRQ 5987 * @sht: scsi_host_template to use when registering the host 5988 * 5989 * After allocating an ATA host and initializing it, most libata 5990 * LLDs perform three steps to activate the host - start host, 5991 * request IRQ and register it. This helper takes necessary 5992 * arguments and performs the three steps in one go. 5993 * 5994 * An invalid IRQ skips the IRQ registration and expects the host to 5995 * have set polling mode on the port. In this case, @irq_handler 5996 * should be NULL. 5997 * 5998 * LOCKING: 5999 * Inherited from calling layer (may sleep). 6000 * 6001 * RETURNS: 6002 * 0 on success, -errno otherwise. 6003 */ 6004 int ata_host_activate(struct ata_host *host, int irq, 6005 irq_handler_t irq_handler, unsigned long irq_flags, 6006 const struct scsi_host_template *sht) 6007 { 6008 int i, rc; 6009 char *irq_desc; 6010 6011 rc = ata_host_start(host); 6012 if (rc) 6013 return rc; 6014 6015 /* Special case for polling mode */ 6016 if (!irq) { 6017 WARN_ON(irq_handler); 6018 return ata_host_register(host, sht); 6019 } 6020 6021 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6022 dev_driver_string(host->dev), 6023 dev_name(host->dev)); 6024 if (!irq_desc) 6025 return -ENOMEM; 6026 6027 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6028 irq_desc, host); 6029 if (rc) 6030 return rc; 6031 6032 for (i = 0; i < host->n_ports; i++) 6033 ata_port_desc(host->ports[i], "irq %d", irq); 6034 6035 rc = ata_host_register(host, sht); 6036 /* if failed, just free the IRQ and leave ports alone */ 6037 if (rc) 6038 devm_free_irq(host->dev, irq, host); 6039 6040 return rc; 6041 } 6042 EXPORT_SYMBOL_GPL(ata_host_activate); 6043 6044 /** 6045 * ata_port_detach - Detach ATA port in preparation of device removal 6046 * @ap: ATA port to be detached 6047 * 6048 * Detach all ATA devices and the associated SCSI devices of @ap; 6049 * then, remove the associated SCSI host. @ap is guaranteed to 6050 * be quiescent on return from this function. 6051 * 6052 * LOCKING: 6053 * Kernel thread context (may sleep). 6054 */ 6055 static void ata_port_detach(struct ata_port *ap) 6056 { 6057 unsigned long flags; 6058 struct ata_link *link; 6059 struct ata_device *dev; 6060 6061 /* Wait for any ongoing EH */ 6062 ata_port_wait_eh(ap); 6063 6064 mutex_lock(&ap->scsi_scan_mutex); 6065 spin_lock_irqsave(ap->lock, flags); 6066 6067 /* Remove scsi devices */ 6068 ata_for_each_link(link, ap, HOST_FIRST) { 6069 ata_for_each_dev(dev, link, ALL) { 6070 if (dev->sdev) { 6071 spin_unlock_irqrestore(ap->lock, flags); 6072 scsi_remove_device(dev->sdev); 6073 spin_lock_irqsave(ap->lock, flags); 6074 dev->sdev = NULL; 6075 } 6076 } 6077 } 6078 6079 /* Tell EH to disable all devices */ 6080 ap->pflags |= ATA_PFLAG_UNLOADING; 6081 ata_port_schedule_eh(ap); 6082 6083 spin_unlock_irqrestore(ap->lock, flags); 6084 mutex_unlock(&ap->scsi_scan_mutex); 6085 6086 /* wait till EH commits suicide */ 6087 ata_port_wait_eh(ap); 6088 6089 /* it better be dead now */ 6090 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6091 6092 cancel_delayed_work_sync(&ap->hotplug_task); 6093 cancel_delayed_work_sync(&ap->scsi_rescan_task); 6094 6095 /* clean up zpodd on port removal */ 6096 ata_for_each_link(link, ap, HOST_FIRST) { 6097 ata_for_each_dev(dev, link, ALL) { 6098 if (zpodd_dev_enabled(dev)) 6099 zpodd_exit(dev); 6100 } 6101 } 6102 if (ap->pmp_link) { 6103 int i; 6104 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6105 ata_tlink_delete(&ap->pmp_link[i]); 6106 } 6107 /* remove the associated SCSI host */ 6108 scsi_remove_host(ap->scsi_host); 6109 ata_tport_delete(ap); 6110 } 6111 6112 /** 6113 * ata_host_detach - Detach all ports of an ATA host 6114 * @host: Host to detach 6115 * 6116 * Detach all ports of @host. 6117 * 6118 * LOCKING: 6119 * Kernel thread context (may sleep). 6120 */ 6121 void ata_host_detach(struct ata_host *host) 6122 { 6123 int i; 6124 6125 for (i = 0; i < host->n_ports; i++) { 6126 /* Ensure ata_port probe has completed */ 6127 async_synchronize_cookie(host->ports[i]->cookie + 1); 6128 ata_port_detach(host->ports[i]); 6129 } 6130 6131 /* the host is dead now, dissociate ACPI */ 6132 ata_acpi_dissociate(host); 6133 } 6134 EXPORT_SYMBOL_GPL(ata_host_detach); 6135 6136 #ifdef CONFIG_PCI 6137 6138 /** 6139 * ata_pci_remove_one - PCI layer callback for device removal 6140 * @pdev: PCI device that was removed 6141 * 6142 * PCI layer indicates to libata via this hook that hot-unplug or 6143 * module unload event has occurred. Detach all ports. Resource 6144 * release is handled via devres. 6145 * 6146 * LOCKING: 6147 * Inherited from PCI layer (may sleep). 6148 */ 6149 void ata_pci_remove_one(struct pci_dev *pdev) 6150 { 6151 struct ata_host *host = pci_get_drvdata(pdev); 6152 6153 ata_host_detach(host); 6154 } 6155 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6156 6157 void ata_pci_shutdown_one(struct pci_dev *pdev) 6158 { 6159 struct ata_host *host = pci_get_drvdata(pdev); 6160 int i; 6161 6162 for (i = 0; i < host->n_ports; i++) { 6163 struct ata_port *ap = host->ports[i]; 6164 6165 ap->pflags |= ATA_PFLAG_FROZEN; 6166 6167 /* Disable port interrupts */ 6168 if (ap->ops->freeze) 6169 ap->ops->freeze(ap); 6170 6171 /* Stop the port DMA engines */ 6172 if (ap->ops->port_stop) 6173 ap->ops->port_stop(ap); 6174 } 6175 } 6176 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6177 6178 /* move to PCI subsystem */ 6179 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6180 { 6181 unsigned long tmp = 0; 6182 6183 switch (bits->width) { 6184 case 1: { 6185 u8 tmp8 = 0; 6186 pci_read_config_byte(pdev, bits->reg, &tmp8); 6187 tmp = tmp8; 6188 break; 6189 } 6190 case 2: { 6191 u16 tmp16 = 0; 6192 pci_read_config_word(pdev, bits->reg, &tmp16); 6193 tmp = tmp16; 6194 break; 6195 } 6196 case 4: { 6197 u32 tmp32 = 0; 6198 pci_read_config_dword(pdev, bits->reg, &tmp32); 6199 tmp = tmp32; 6200 break; 6201 } 6202 6203 default: 6204 return -EINVAL; 6205 } 6206 6207 tmp &= bits->mask; 6208 6209 return (tmp == bits->val) ? 1 : 0; 6210 } 6211 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6212 6213 #ifdef CONFIG_PM 6214 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6215 { 6216 pci_save_state(pdev); 6217 pci_disable_device(pdev); 6218 6219 if (mesg.event & PM_EVENT_SLEEP) 6220 pci_set_power_state(pdev, PCI_D3hot); 6221 } 6222 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6223 6224 int ata_pci_device_do_resume(struct pci_dev *pdev) 6225 { 6226 int rc; 6227 6228 pci_set_power_state(pdev, PCI_D0); 6229 pci_restore_state(pdev); 6230 6231 rc = pcim_enable_device(pdev); 6232 if (rc) { 6233 dev_err(&pdev->dev, 6234 "failed to enable device after resume (%d)\n", rc); 6235 return rc; 6236 } 6237 6238 pci_set_master(pdev); 6239 return 0; 6240 } 6241 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6242 6243 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6244 { 6245 struct ata_host *host = pci_get_drvdata(pdev); 6246 6247 ata_host_suspend(host, mesg); 6248 6249 ata_pci_device_do_suspend(pdev, mesg); 6250 6251 return 0; 6252 } 6253 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6254 6255 int ata_pci_device_resume(struct pci_dev *pdev) 6256 { 6257 struct ata_host *host = pci_get_drvdata(pdev); 6258 int rc; 6259 6260 rc = ata_pci_device_do_resume(pdev); 6261 if (rc == 0) 6262 ata_host_resume(host); 6263 return rc; 6264 } 6265 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6266 #endif /* CONFIG_PM */ 6267 #endif /* CONFIG_PCI */ 6268 6269 /** 6270 * ata_platform_remove_one - Platform layer callback for device removal 6271 * @pdev: Platform device that was removed 6272 * 6273 * Platform layer indicates to libata via this hook that hot-unplug or 6274 * module unload event has occurred. Detach all ports. Resource 6275 * release is handled via devres. 6276 * 6277 * LOCKING: 6278 * Inherited from platform layer (may sleep). 6279 */ 6280 void ata_platform_remove_one(struct platform_device *pdev) 6281 { 6282 struct ata_host *host = platform_get_drvdata(pdev); 6283 6284 ata_host_detach(host); 6285 } 6286 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6287 6288 #ifdef CONFIG_ATA_FORCE 6289 6290 #define force_cbl(name, flag) \ 6291 { #name, .cbl = (flag) } 6292 6293 #define force_spd_limit(spd, val) \ 6294 { #spd, .spd_limit = (val) } 6295 6296 #define force_xfer(mode, shift) \ 6297 { #mode, .xfer_mask = (1UL << (shift)) } 6298 6299 #define force_lflag_on(name, flags) \ 6300 { #name, .lflags_on = (flags) } 6301 6302 #define force_lflag_onoff(name, flags) \ 6303 { "no" #name, .lflags_on = (flags) }, \ 6304 { #name, .lflags_off = (flags) } 6305 6306 #define force_horkage_on(name, flag) \ 6307 { #name, .horkage_on = (flag) } 6308 6309 #define force_horkage_onoff(name, flag) \ 6310 { "no" #name, .horkage_on = (flag) }, \ 6311 { #name, .horkage_off = (flag) } 6312 6313 static const struct ata_force_param force_tbl[] __initconst = { 6314 force_cbl(40c, ATA_CBL_PATA40), 6315 force_cbl(80c, ATA_CBL_PATA80), 6316 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6317 force_cbl(unk, ATA_CBL_PATA_UNK), 6318 force_cbl(ign, ATA_CBL_PATA_IGN), 6319 force_cbl(sata, ATA_CBL_SATA), 6320 6321 force_spd_limit(1.5Gbps, 1), 6322 force_spd_limit(3.0Gbps, 2), 6323 6324 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6325 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6326 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6327 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6328 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6329 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6330 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6331 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6332 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6333 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6334 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6335 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6336 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6337 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6338 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6339 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6340 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6341 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6342 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6343 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6344 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6345 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6346 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6347 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6348 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6349 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6350 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6351 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6352 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6353 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6354 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6355 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6356 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6357 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6358 6359 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6360 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6361 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6362 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6363 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6364 6365 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ), 6366 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM), 6367 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI), 6368 6369 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM), 6370 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM), 6371 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M), 6372 6373 force_horkage_onoff(dma, ATA_HORKAGE_NODMA), 6374 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR), 6375 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA), 6376 6377 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG), 6378 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG), 6379 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR), 6380 6381 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128), 6382 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024), 6383 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48), 6384 6385 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM), 6386 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER), 6387 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID), 6388 force_horkage_onoff(fua, ATA_HORKAGE_NO_FUA), 6389 6390 force_horkage_on(disable, ATA_HORKAGE_DISABLE), 6391 }; 6392 6393 static int __init ata_parse_force_one(char **cur, 6394 struct ata_force_ent *force_ent, 6395 const char **reason) 6396 { 6397 char *start = *cur, *p = *cur; 6398 char *id, *val, *endp; 6399 const struct ata_force_param *match_fp = NULL; 6400 int nr_matches = 0, i; 6401 6402 /* find where this param ends and update *cur */ 6403 while (*p != '\0' && *p != ',') 6404 p++; 6405 6406 if (*p == '\0') 6407 *cur = p; 6408 else 6409 *cur = p + 1; 6410 6411 *p = '\0'; 6412 6413 /* parse */ 6414 p = strchr(start, ':'); 6415 if (!p) { 6416 val = strstrip(start); 6417 goto parse_val; 6418 } 6419 *p = '\0'; 6420 6421 id = strstrip(start); 6422 val = strstrip(p + 1); 6423 6424 /* parse id */ 6425 p = strchr(id, '.'); 6426 if (p) { 6427 *p++ = '\0'; 6428 force_ent->device = simple_strtoul(p, &endp, 10); 6429 if (p == endp || *endp != '\0') { 6430 *reason = "invalid device"; 6431 return -EINVAL; 6432 } 6433 } 6434 6435 force_ent->port = simple_strtoul(id, &endp, 10); 6436 if (id == endp || *endp != '\0') { 6437 *reason = "invalid port/link"; 6438 return -EINVAL; 6439 } 6440 6441 parse_val: 6442 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6443 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6444 const struct ata_force_param *fp = &force_tbl[i]; 6445 6446 if (strncasecmp(val, fp->name, strlen(val))) 6447 continue; 6448 6449 nr_matches++; 6450 match_fp = fp; 6451 6452 if (strcasecmp(val, fp->name) == 0) { 6453 nr_matches = 1; 6454 break; 6455 } 6456 } 6457 6458 if (!nr_matches) { 6459 *reason = "unknown value"; 6460 return -EINVAL; 6461 } 6462 if (nr_matches > 1) { 6463 *reason = "ambiguous value"; 6464 return -EINVAL; 6465 } 6466 6467 force_ent->param = *match_fp; 6468 6469 return 0; 6470 } 6471 6472 static void __init ata_parse_force_param(void) 6473 { 6474 int idx = 0, size = 1; 6475 int last_port = -1, last_device = -1; 6476 char *p, *cur, *next; 6477 6478 /* Calculate maximum number of params and allocate ata_force_tbl */ 6479 for (p = ata_force_param_buf; *p; p++) 6480 if (*p == ',') 6481 size++; 6482 6483 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6484 if (!ata_force_tbl) { 6485 printk(KERN_WARNING "ata: failed to extend force table, " 6486 "libata.force ignored\n"); 6487 return; 6488 } 6489 6490 /* parse and populate the table */ 6491 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6492 const char *reason = ""; 6493 struct ata_force_ent te = { .port = -1, .device = -1 }; 6494 6495 next = cur; 6496 if (ata_parse_force_one(&next, &te, &reason)) { 6497 printk(KERN_WARNING "ata: failed to parse force " 6498 "parameter \"%s\" (%s)\n", 6499 cur, reason); 6500 continue; 6501 } 6502 6503 if (te.port == -1) { 6504 te.port = last_port; 6505 te.device = last_device; 6506 } 6507 6508 ata_force_tbl[idx++] = te; 6509 6510 last_port = te.port; 6511 last_device = te.device; 6512 } 6513 6514 ata_force_tbl_size = idx; 6515 } 6516 6517 static void ata_free_force_param(void) 6518 { 6519 kfree(ata_force_tbl); 6520 } 6521 #else 6522 static inline void ata_parse_force_param(void) { } 6523 static inline void ata_free_force_param(void) { } 6524 #endif 6525 6526 static int __init ata_init(void) 6527 { 6528 int rc; 6529 6530 ata_parse_force_param(); 6531 6532 rc = ata_sff_init(); 6533 if (rc) { 6534 ata_free_force_param(); 6535 return rc; 6536 } 6537 6538 libata_transport_init(); 6539 ata_scsi_transport_template = ata_attach_transport(); 6540 if (!ata_scsi_transport_template) { 6541 ata_sff_exit(); 6542 rc = -ENOMEM; 6543 goto err_out; 6544 } 6545 6546 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6547 return 0; 6548 6549 err_out: 6550 return rc; 6551 } 6552 6553 static void __exit ata_exit(void) 6554 { 6555 ata_release_transport(ata_scsi_transport_template); 6556 libata_transport_exit(); 6557 ata_sff_exit(); 6558 ata_free_force_param(); 6559 } 6560 6561 subsys_initcall(ata_init); 6562 module_exit(ata_exit); 6563 6564 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6565 6566 int ata_ratelimit(void) 6567 { 6568 return __ratelimit(&ratelimit); 6569 } 6570 EXPORT_SYMBOL_GPL(ata_ratelimit); 6571 6572 /** 6573 * ata_msleep - ATA EH owner aware msleep 6574 * @ap: ATA port to attribute the sleep to 6575 * @msecs: duration to sleep in milliseconds 6576 * 6577 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6578 * ownership is released before going to sleep and reacquired 6579 * after the sleep is complete. IOW, other ports sharing the 6580 * @ap->host will be allowed to own the EH while this task is 6581 * sleeping. 6582 * 6583 * LOCKING: 6584 * Might sleep. 6585 */ 6586 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6587 { 6588 bool owns_eh = ap && ap->host->eh_owner == current; 6589 6590 if (owns_eh) 6591 ata_eh_release(ap); 6592 6593 if (msecs < 20) { 6594 unsigned long usecs = msecs * USEC_PER_MSEC; 6595 usleep_range(usecs, usecs + 50); 6596 } else { 6597 msleep(msecs); 6598 } 6599 6600 if (owns_eh) 6601 ata_eh_acquire(ap); 6602 } 6603 EXPORT_SYMBOL_GPL(ata_msleep); 6604 6605 /** 6606 * ata_wait_register - wait until register value changes 6607 * @ap: ATA port to wait register for, can be NULL 6608 * @reg: IO-mapped register 6609 * @mask: Mask to apply to read register value 6610 * @val: Wait condition 6611 * @interval: polling interval in milliseconds 6612 * @timeout: timeout in milliseconds 6613 * 6614 * Waiting for some bits of register to change is a common 6615 * operation for ATA controllers. This function reads 32bit LE 6616 * IO-mapped register @reg and tests for the following condition. 6617 * 6618 * (*@reg & mask) != val 6619 * 6620 * If the condition is met, it returns; otherwise, the process is 6621 * repeated after @interval_msec until timeout. 6622 * 6623 * LOCKING: 6624 * Kernel thread context (may sleep) 6625 * 6626 * RETURNS: 6627 * The final register value. 6628 */ 6629 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6630 unsigned int interval, unsigned int timeout) 6631 { 6632 unsigned long deadline; 6633 u32 tmp; 6634 6635 tmp = ioread32(reg); 6636 6637 /* Calculate timeout _after_ the first read to make sure 6638 * preceding writes reach the controller before starting to 6639 * eat away the timeout. 6640 */ 6641 deadline = ata_deadline(jiffies, timeout); 6642 6643 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6644 ata_msleep(ap, interval); 6645 tmp = ioread32(reg); 6646 } 6647 6648 return tmp; 6649 } 6650 EXPORT_SYMBOL_GPL(ata_wait_register); 6651 6652 /* 6653 * Dummy port_ops 6654 */ 6655 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6656 { 6657 return AC_ERR_SYSTEM; 6658 } 6659 6660 static void ata_dummy_error_handler(struct ata_port *ap) 6661 { 6662 /* truly dummy */ 6663 } 6664 6665 struct ata_port_operations ata_dummy_port_ops = { 6666 .qc_prep = ata_noop_qc_prep, 6667 .qc_issue = ata_dummy_qc_issue, 6668 .error_handler = ata_dummy_error_handler, 6669 .sched_eh = ata_std_sched_eh, 6670 .end_eh = ata_std_end_eh, 6671 }; 6672 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6673 6674 const struct ata_port_info ata_dummy_port_info = { 6675 .port_ops = &ata_dummy_port_ops, 6676 }; 6677 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6678 6679 void ata_print_version(const struct device *dev, const char *version) 6680 { 6681 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6682 } 6683 EXPORT_SYMBOL(ata_print_version); 6684 6685 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6686 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6687 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6688 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6689 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6690