1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned long xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags; 100 }; 101 102 struct ata_force_ent { 103 int port; 104 int device; 105 struct ata_force_param param; 106 }; 107 108 static struct ata_force_ent *ata_force_tbl; 109 static int ata_force_tbl_size; 110 111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 112 /* param_buf is thrown away after initialization, disallow read */ 113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 115 #endif 116 117 static int atapi_enabled = 1; 118 module_param(atapi_enabled, int, 0444); 119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 120 121 static int atapi_dmadir = 0; 122 module_param(atapi_dmadir, int, 0444); 123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 124 125 int atapi_passthru16 = 1; 126 module_param(atapi_passthru16, int, 0444); 127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 128 129 int libata_fua = 0; 130 module_param_named(fua, libata_fua, int, 0444); 131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 132 133 static int ata_ignore_hpa; 134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 136 137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 138 module_param_named(dma, libata_dma_mask, int, 0444); 139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 140 141 static int ata_probe_timeout; 142 module_param(ata_probe_timeout, int, 0444); 143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 144 145 int libata_noacpi = 0; 146 module_param_named(noacpi, libata_noacpi, int, 0444); 147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 148 149 int libata_allow_tpm = 0; 150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 152 153 static int atapi_an; 154 module_param(atapi_an, int, 0444); 155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 156 157 MODULE_AUTHOR("Jeff Garzik"); 158 MODULE_DESCRIPTION("Library module for ATA devices"); 159 MODULE_LICENSE("GPL"); 160 MODULE_VERSION(DRV_VERSION); 161 162 static inline bool ata_dev_print_info(struct ata_device *dev) 163 { 164 struct ata_eh_context *ehc = &dev->link->eh_context; 165 166 return ehc->i.flags & ATA_EHI_PRINTINFO; 167 } 168 169 static bool ata_sstatus_online(u32 sstatus) 170 { 171 return (sstatus & 0xf) == 0x3; 172 } 173 174 /** 175 * ata_link_next - link iteration helper 176 * @link: the previous link, NULL to start 177 * @ap: ATA port containing links to iterate 178 * @mode: iteration mode, one of ATA_LITER_* 179 * 180 * LOCKING: 181 * Host lock or EH context. 182 * 183 * RETURNS: 184 * Pointer to the next link. 185 */ 186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 187 enum ata_link_iter_mode mode) 188 { 189 BUG_ON(mode != ATA_LITER_EDGE && 190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 191 192 /* NULL link indicates start of iteration */ 193 if (!link) 194 switch (mode) { 195 case ATA_LITER_EDGE: 196 case ATA_LITER_PMP_FIRST: 197 if (sata_pmp_attached(ap)) 198 return ap->pmp_link; 199 fallthrough; 200 case ATA_LITER_HOST_FIRST: 201 return &ap->link; 202 } 203 204 /* we just iterated over the host link, what's next? */ 205 if (link == &ap->link) 206 switch (mode) { 207 case ATA_LITER_HOST_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 fallthrough; 211 case ATA_LITER_PMP_FIRST: 212 if (unlikely(ap->slave_link)) 213 return ap->slave_link; 214 fallthrough; 215 case ATA_LITER_EDGE: 216 return NULL; 217 } 218 219 /* slave_link excludes PMP */ 220 if (unlikely(link == ap->slave_link)) 221 return NULL; 222 223 /* we were over a PMP link */ 224 if (++link < ap->pmp_link + ap->nr_pmp_links) 225 return link; 226 227 if (mode == ATA_LITER_PMP_FIRST) 228 return &ap->link; 229 230 return NULL; 231 } 232 EXPORT_SYMBOL_GPL(ata_link_next); 233 234 /** 235 * ata_dev_next - device iteration helper 236 * @dev: the previous device, NULL to start 237 * @link: ATA link containing devices to iterate 238 * @mode: iteration mode, one of ATA_DITER_* 239 * 240 * LOCKING: 241 * Host lock or EH context. 242 * 243 * RETURNS: 244 * Pointer to the next device. 245 */ 246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 247 enum ata_dev_iter_mode mode) 248 { 249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 251 252 /* NULL dev indicates start of iteration */ 253 if (!dev) 254 switch (mode) { 255 case ATA_DITER_ENABLED: 256 case ATA_DITER_ALL: 257 dev = link->device; 258 goto check; 259 case ATA_DITER_ENABLED_REVERSE: 260 case ATA_DITER_ALL_REVERSE: 261 dev = link->device + ata_link_max_devices(link) - 1; 262 goto check; 263 } 264 265 next: 266 /* move to the next one */ 267 switch (mode) { 268 case ATA_DITER_ENABLED: 269 case ATA_DITER_ALL: 270 if (++dev < link->device + ata_link_max_devices(link)) 271 goto check; 272 return NULL; 273 case ATA_DITER_ENABLED_REVERSE: 274 case ATA_DITER_ALL_REVERSE: 275 if (--dev >= link->device) 276 goto check; 277 return NULL; 278 } 279 280 check: 281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 282 !ata_dev_enabled(dev)) 283 goto next; 284 return dev; 285 } 286 EXPORT_SYMBOL_GPL(ata_dev_next); 287 288 /** 289 * ata_dev_phys_link - find physical link for a device 290 * @dev: ATA device to look up physical link for 291 * 292 * Look up physical link which @dev is attached to. Note that 293 * this is different from @dev->link only when @dev is on slave 294 * link. For all other cases, it's the same as @dev->link. 295 * 296 * LOCKING: 297 * Don't care. 298 * 299 * RETURNS: 300 * Pointer to the found physical link. 301 */ 302 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 303 { 304 struct ata_port *ap = dev->link->ap; 305 306 if (!ap->slave_link) 307 return dev->link; 308 if (!dev->devno) 309 return &ap->link; 310 return ap->slave_link; 311 } 312 313 #ifdef CONFIG_ATA_FORCE 314 /** 315 * ata_force_cbl - force cable type according to libata.force 316 * @ap: ATA port of interest 317 * 318 * Force cable type according to libata.force and whine about it. 319 * The last entry which has matching port number is used, so it 320 * can be specified as part of device force parameters. For 321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 322 * same effect. 323 * 324 * LOCKING: 325 * EH context. 326 */ 327 void ata_force_cbl(struct ata_port *ap) 328 { 329 int i; 330 331 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 332 const struct ata_force_ent *fe = &ata_force_tbl[i]; 333 334 if (fe->port != -1 && fe->port != ap->print_id) 335 continue; 336 337 if (fe->param.cbl == ATA_CBL_NONE) 338 continue; 339 340 ap->cbl = fe->param.cbl; 341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 342 return; 343 } 344 } 345 346 /** 347 * ata_force_link_limits - force link limits according to libata.force 348 * @link: ATA link of interest 349 * 350 * Force link flags and SATA spd limit according to libata.force 351 * and whine about it. When only the port part is specified 352 * (e.g. 1:), the limit applies to all links connected to both 353 * the host link and all fan-out ports connected via PMP. If the 354 * device part is specified as 0 (e.g. 1.00:), it specifies the 355 * first fan-out link not the host link. Device number 15 always 356 * points to the host link whether PMP is attached or not. If the 357 * controller has slave link, device number 16 points to it. 358 * 359 * LOCKING: 360 * EH context. 361 */ 362 static void ata_force_link_limits(struct ata_link *link) 363 { 364 bool did_spd = false; 365 int linkno = link->pmp; 366 int i; 367 368 if (ata_is_host_link(link)) 369 linkno += 15; 370 371 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 372 const struct ata_force_ent *fe = &ata_force_tbl[i]; 373 374 if (fe->port != -1 && fe->port != link->ap->print_id) 375 continue; 376 377 if (fe->device != -1 && fe->device != linkno) 378 continue; 379 380 /* only honor the first spd limit */ 381 if (!did_spd && fe->param.spd_limit) { 382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 384 fe->param.name); 385 did_spd = true; 386 } 387 388 /* let lflags stack */ 389 if (fe->param.lflags) { 390 link->flags |= fe->param.lflags; 391 ata_link_notice(link, 392 "FORCE: link flag 0x%x forced -> 0x%x\n", 393 fe->param.lflags, link->flags); 394 } 395 } 396 } 397 398 /** 399 * ata_force_xfermask - force xfermask according to libata.force 400 * @dev: ATA device of interest 401 * 402 * Force xfer_mask according to libata.force and whine about it. 403 * For consistency with link selection, device number 15 selects 404 * the first device connected to the host link. 405 * 406 * LOCKING: 407 * EH context. 408 */ 409 static void ata_force_xfermask(struct ata_device *dev) 410 { 411 int devno = dev->link->pmp + dev->devno; 412 int alt_devno = devno; 413 int i; 414 415 /* allow n.15/16 for devices attached to host port */ 416 if (ata_is_host_link(dev->link)) 417 alt_devno += 15; 418 419 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 420 const struct ata_force_ent *fe = &ata_force_tbl[i]; 421 unsigned long pio_mask, mwdma_mask, udma_mask; 422 423 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 424 continue; 425 426 if (fe->device != -1 && fe->device != devno && 427 fe->device != alt_devno) 428 continue; 429 430 if (!fe->param.xfer_mask) 431 continue; 432 433 ata_unpack_xfermask(fe->param.xfer_mask, 434 &pio_mask, &mwdma_mask, &udma_mask); 435 if (udma_mask) 436 dev->udma_mask = udma_mask; 437 else if (mwdma_mask) { 438 dev->udma_mask = 0; 439 dev->mwdma_mask = mwdma_mask; 440 } else { 441 dev->udma_mask = 0; 442 dev->mwdma_mask = 0; 443 dev->pio_mask = pio_mask; 444 } 445 446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 447 fe->param.name); 448 return; 449 } 450 } 451 452 /** 453 * ata_force_horkage - force horkage according to libata.force 454 * @dev: ATA device of interest 455 * 456 * Force horkage according to libata.force and whine about it. 457 * For consistency with link selection, device number 15 selects 458 * the first device connected to the host link. 459 * 460 * LOCKING: 461 * EH context. 462 */ 463 static void ata_force_horkage(struct ata_device *dev) 464 { 465 int devno = dev->link->pmp + dev->devno; 466 int alt_devno = devno; 467 int i; 468 469 /* allow n.15/16 for devices attached to host port */ 470 if (ata_is_host_link(dev->link)) 471 alt_devno += 15; 472 473 for (i = 0; i < ata_force_tbl_size; i++) { 474 const struct ata_force_ent *fe = &ata_force_tbl[i]; 475 476 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 477 continue; 478 479 if (fe->device != -1 && fe->device != devno && 480 fe->device != alt_devno) 481 continue; 482 483 if (!(~dev->horkage & fe->param.horkage_on) && 484 !(dev->horkage & fe->param.horkage_off)) 485 continue; 486 487 dev->horkage |= fe->param.horkage_on; 488 dev->horkage &= ~fe->param.horkage_off; 489 490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 491 fe->param.name); 492 } 493 } 494 #else 495 static inline void ata_force_link_limits(struct ata_link *link) { } 496 static inline void ata_force_xfermask(struct ata_device *dev) { } 497 static inline void ata_force_horkage(struct ata_device *dev) { } 498 #endif 499 500 /** 501 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 502 * @opcode: SCSI opcode 503 * 504 * Determine ATAPI command type from @opcode. 505 * 506 * LOCKING: 507 * None. 508 * 509 * RETURNS: 510 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 511 */ 512 int atapi_cmd_type(u8 opcode) 513 { 514 switch (opcode) { 515 case GPCMD_READ_10: 516 case GPCMD_READ_12: 517 return ATAPI_READ; 518 519 case GPCMD_WRITE_10: 520 case GPCMD_WRITE_12: 521 case GPCMD_WRITE_AND_VERIFY_10: 522 return ATAPI_WRITE; 523 524 case GPCMD_READ_CD: 525 case GPCMD_READ_CD_MSF: 526 return ATAPI_READ_CD; 527 528 case ATA_16: 529 case ATA_12: 530 if (atapi_passthru16) 531 return ATAPI_PASS_THRU; 532 fallthrough; 533 default: 534 return ATAPI_MISC; 535 } 536 } 537 EXPORT_SYMBOL_GPL(atapi_cmd_type); 538 539 static const u8 ata_rw_cmds[] = { 540 /* pio multi */ 541 ATA_CMD_READ_MULTI, 542 ATA_CMD_WRITE_MULTI, 543 ATA_CMD_READ_MULTI_EXT, 544 ATA_CMD_WRITE_MULTI_EXT, 545 0, 546 0, 547 0, 548 ATA_CMD_WRITE_MULTI_FUA_EXT, 549 /* pio */ 550 ATA_CMD_PIO_READ, 551 ATA_CMD_PIO_WRITE, 552 ATA_CMD_PIO_READ_EXT, 553 ATA_CMD_PIO_WRITE_EXT, 554 0, 555 0, 556 0, 557 0, 558 /* dma */ 559 ATA_CMD_READ, 560 ATA_CMD_WRITE, 561 ATA_CMD_READ_EXT, 562 ATA_CMD_WRITE_EXT, 563 0, 564 0, 565 0, 566 ATA_CMD_WRITE_FUA_EXT 567 }; 568 569 /** 570 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 571 * @tf: command to examine and configure 572 * @dev: device tf belongs to 573 * 574 * Examine the device configuration and tf->flags to calculate 575 * the proper read/write commands and protocol to use. 576 * 577 * LOCKING: 578 * caller. 579 */ 580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 581 { 582 u8 cmd; 583 584 int index, fua, lba48, write; 585 586 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 587 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 588 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 589 590 if (dev->flags & ATA_DFLAG_PIO) { 591 tf->protocol = ATA_PROT_PIO; 592 index = dev->multi_count ? 0 : 8; 593 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 594 /* Unable to use DMA due to host limitation */ 595 tf->protocol = ATA_PROT_PIO; 596 index = dev->multi_count ? 0 : 8; 597 } else { 598 tf->protocol = ATA_PROT_DMA; 599 index = 16; 600 } 601 602 cmd = ata_rw_cmds[index + fua + lba48 + write]; 603 if (cmd) { 604 tf->command = cmd; 605 return 0; 606 } 607 return -1; 608 } 609 610 /** 611 * ata_tf_read_block - Read block address from ATA taskfile 612 * @tf: ATA taskfile of interest 613 * @dev: ATA device @tf belongs to 614 * 615 * LOCKING: 616 * None. 617 * 618 * Read block address from @tf. This function can handle all 619 * three address formats - LBA, LBA48 and CHS. tf->protocol and 620 * flags select the address format to use. 621 * 622 * RETURNS: 623 * Block address read from @tf. 624 */ 625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 626 { 627 u64 block = 0; 628 629 if (tf->flags & ATA_TFLAG_LBA) { 630 if (tf->flags & ATA_TFLAG_LBA48) { 631 block |= (u64)tf->hob_lbah << 40; 632 block |= (u64)tf->hob_lbam << 32; 633 block |= (u64)tf->hob_lbal << 24; 634 } else 635 block |= (tf->device & 0xf) << 24; 636 637 block |= tf->lbah << 16; 638 block |= tf->lbam << 8; 639 block |= tf->lbal; 640 } else { 641 u32 cyl, head, sect; 642 643 cyl = tf->lbam | (tf->lbah << 8); 644 head = tf->device & 0xf; 645 sect = tf->lbal; 646 647 if (!sect) { 648 ata_dev_warn(dev, 649 "device reported invalid CHS sector 0\n"); 650 return U64_MAX; 651 } 652 653 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 654 } 655 656 return block; 657 } 658 659 /** 660 * ata_build_rw_tf - Build ATA taskfile for given read/write request 661 * @tf: Target ATA taskfile 662 * @dev: ATA device @tf belongs to 663 * @block: Block address 664 * @n_block: Number of blocks 665 * @tf_flags: RW/FUA etc... 666 * @tag: tag 667 * @class: IO priority class 668 * 669 * LOCKING: 670 * None. 671 * 672 * Build ATA taskfile @tf for read/write request described by 673 * @block, @n_block, @tf_flags and @tag on @dev. 674 * 675 * RETURNS: 676 * 677 * 0 on success, -ERANGE if the request is too large for @dev, 678 * -EINVAL if the request is invalid. 679 */ 680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 681 u64 block, u32 n_block, unsigned int tf_flags, 682 unsigned int tag, int class) 683 { 684 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 685 tf->flags |= tf_flags; 686 687 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { 688 /* yay, NCQ */ 689 if (!lba_48_ok(block, n_block)) 690 return -ERANGE; 691 692 tf->protocol = ATA_PROT_NCQ; 693 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 694 695 if (tf->flags & ATA_TFLAG_WRITE) 696 tf->command = ATA_CMD_FPDMA_WRITE; 697 else 698 tf->command = ATA_CMD_FPDMA_READ; 699 700 tf->nsect = tag << 3; 701 tf->hob_feature = (n_block >> 8) & 0xff; 702 tf->feature = n_block & 0xff; 703 704 tf->hob_lbah = (block >> 40) & 0xff; 705 tf->hob_lbam = (block >> 32) & 0xff; 706 tf->hob_lbal = (block >> 24) & 0xff; 707 tf->lbah = (block >> 16) & 0xff; 708 tf->lbam = (block >> 8) & 0xff; 709 tf->lbal = block & 0xff; 710 711 tf->device = ATA_LBA; 712 if (tf->flags & ATA_TFLAG_FUA) 713 tf->device |= 1 << 7; 714 715 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE && 716 class == IOPRIO_CLASS_RT) 717 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 718 } else if (dev->flags & ATA_DFLAG_LBA) { 719 tf->flags |= ATA_TFLAG_LBA; 720 721 if (lba_28_ok(block, n_block)) { 722 /* use LBA28 */ 723 tf->device |= (block >> 24) & 0xf; 724 } else if (lba_48_ok(block, n_block)) { 725 if (!(dev->flags & ATA_DFLAG_LBA48)) 726 return -ERANGE; 727 728 /* use LBA48 */ 729 tf->flags |= ATA_TFLAG_LBA48; 730 731 tf->hob_nsect = (n_block >> 8) & 0xff; 732 733 tf->hob_lbah = (block >> 40) & 0xff; 734 tf->hob_lbam = (block >> 32) & 0xff; 735 tf->hob_lbal = (block >> 24) & 0xff; 736 } else 737 /* request too large even for LBA48 */ 738 return -ERANGE; 739 740 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 741 return -EINVAL; 742 743 tf->nsect = n_block & 0xff; 744 745 tf->lbah = (block >> 16) & 0xff; 746 tf->lbam = (block >> 8) & 0xff; 747 tf->lbal = block & 0xff; 748 749 tf->device |= ATA_LBA; 750 } else { 751 /* CHS */ 752 u32 sect, head, cyl, track; 753 754 /* The request -may- be too large for CHS addressing. */ 755 if (!lba_28_ok(block, n_block)) 756 return -ERANGE; 757 758 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 759 return -EINVAL; 760 761 /* Convert LBA to CHS */ 762 track = (u32)block / dev->sectors; 763 cyl = track / dev->heads; 764 head = track % dev->heads; 765 sect = (u32)block % dev->sectors + 1; 766 767 /* Check whether the converted CHS can fit. 768 Cylinder: 0-65535 769 Head: 0-15 770 Sector: 1-255*/ 771 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 772 return -ERANGE; 773 774 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 775 tf->lbal = sect; 776 tf->lbam = cyl; 777 tf->lbah = cyl >> 8; 778 tf->device |= head; 779 } 780 781 return 0; 782 } 783 784 /** 785 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 786 * @pio_mask: pio_mask 787 * @mwdma_mask: mwdma_mask 788 * @udma_mask: udma_mask 789 * 790 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 791 * unsigned int xfer_mask. 792 * 793 * LOCKING: 794 * None. 795 * 796 * RETURNS: 797 * Packed xfer_mask. 798 */ 799 unsigned long ata_pack_xfermask(unsigned long pio_mask, 800 unsigned long mwdma_mask, 801 unsigned long udma_mask) 802 { 803 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 804 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 805 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 806 } 807 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 808 809 /** 810 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 811 * @xfer_mask: xfer_mask to unpack 812 * @pio_mask: resulting pio_mask 813 * @mwdma_mask: resulting mwdma_mask 814 * @udma_mask: resulting udma_mask 815 * 816 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 817 * Any NULL destination masks will be ignored. 818 */ 819 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 820 unsigned long *mwdma_mask, unsigned long *udma_mask) 821 { 822 if (pio_mask) 823 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 824 if (mwdma_mask) 825 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 826 if (udma_mask) 827 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 828 } 829 830 static const struct ata_xfer_ent { 831 int shift, bits; 832 u8 base; 833 } ata_xfer_tbl[] = { 834 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 835 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 836 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 837 { -1, }, 838 }; 839 840 /** 841 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 842 * @xfer_mask: xfer_mask of interest 843 * 844 * Return matching XFER_* value for @xfer_mask. Only the highest 845 * bit of @xfer_mask is considered. 846 * 847 * LOCKING: 848 * None. 849 * 850 * RETURNS: 851 * Matching XFER_* value, 0xff if no match found. 852 */ 853 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 854 { 855 int highbit = fls(xfer_mask) - 1; 856 const struct ata_xfer_ent *ent; 857 858 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 859 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 860 return ent->base + highbit - ent->shift; 861 return 0xff; 862 } 863 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 864 865 /** 866 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 867 * @xfer_mode: XFER_* of interest 868 * 869 * Return matching xfer_mask for @xfer_mode. 870 * 871 * LOCKING: 872 * None. 873 * 874 * RETURNS: 875 * Matching xfer_mask, 0 if no match found. 876 */ 877 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 878 { 879 const struct ata_xfer_ent *ent; 880 881 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 882 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 883 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 884 & ~((1 << ent->shift) - 1); 885 return 0; 886 } 887 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 888 889 /** 890 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 891 * @xfer_mode: XFER_* of interest 892 * 893 * Return matching xfer_shift for @xfer_mode. 894 * 895 * LOCKING: 896 * None. 897 * 898 * RETURNS: 899 * Matching xfer_shift, -1 if no match found. 900 */ 901 int ata_xfer_mode2shift(unsigned long xfer_mode) 902 { 903 const struct ata_xfer_ent *ent; 904 905 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 906 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 907 return ent->shift; 908 return -1; 909 } 910 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 911 912 /** 913 * ata_mode_string - convert xfer_mask to string 914 * @xfer_mask: mask of bits supported; only highest bit counts. 915 * 916 * Determine string which represents the highest speed 917 * (highest bit in @modemask). 918 * 919 * LOCKING: 920 * None. 921 * 922 * RETURNS: 923 * Constant C string representing highest speed listed in 924 * @mode_mask, or the constant C string "<n/a>". 925 */ 926 const char *ata_mode_string(unsigned long xfer_mask) 927 { 928 static const char * const xfer_mode_str[] = { 929 "PIO0", 930 "PIO1", 931 "PIO2", 932 "PIO3", 933 "PIO4", 934 "PIO5", 935 "PIO6", 936 "MWDMA0", 937 "MWDMA1", 938 "MWDMA2", 939 "MWDMA3", 940 "MWDMA4", 941 "UDMA/16", 942 "UDMA/25", 943 "UDMA/33", 944 "UDMA/44", 945 "UDMA/66", 946 "UDMA/100", 947 "UDMA/133", 948 "UDMA7", 949 }; 950 int highbit; 951 952 highbit = fls(xfer_mask) - 1; 953 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 954 return xfer_mode_str[highbit]; 955 return "<n/a>"; 956 } 957 EXPORT_SYMBOL_GPL(ata_mode_string); 958 959 const char *sata_spd_string(unsigned int spd) 960 { 961 static const char * const spd_str[] = { 962 "1.5 Gbps", 963 "3.0 Gbps", 964 "6.0 Gbps", 965 }; 966 967 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 968 return "<unknown>"; 969 return spd_str[spd - 1]; 970 } 971 972 /** 973 * ata_dev_classify - determine device type based on ATA-spec signature 974 * @tf: ATA taskfile register set for device to be identified 975 * 976 * Determine from taskfile register contents whether a device is 977 * ATA or ATAPI, as per "Signature and persistence" section 978 * of ATA/PI spec (volume 1, sect 5.14). 979 * 980 * LOCKING: 981 * None. 982 * 983 * RETURNS: 984 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 985 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 986 */ 987 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 988 { 989 /* Apple's open source Darwin code hints that some devices only 990 * put a proper signature into the LBA mid/high registers, 991 * So, we only check those. It's sufficient for uniqueness. 992 * 993 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 994 * signatures for ATA and ATAPI devices attached on SerialATA, 995 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 996 * spec has never mentioned about using different signatures 997 * for ATA/ATAPI devices. Then, Serial ATA II: Port 998 * Multiplier specification began to use 0x69/0x96 to identify 999 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1000 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1001 * 0x69/0x96 shortly and described them as reserved for 1002 * SerialATA. 1003 * 1004 * We follow the current spec and consider that 0x69/0x96 1005 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1006 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1007 * SEMB signature. This is worked around in 1008 * ata_dev_read_id(). 1009 */ 1010 if (tf->lbam == 0 && tf->lbah == 0) 1011 return ATA_DEV_ATA; 1012 1013 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1014 return ATA_DEV_ATAPI; 1015 1016 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1017 return ATA_DEV_PMP; 1018 1019 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1020 return ATA_DEV_SEMB; 1021 1022 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1023 return ATA_DEV_ZAC; 1024 1025 return ATA_DEV_UNKNOWN; 1026 } 1027 EXPORT_SYMBOL_GPL(ata_dev_classify); 1028 1029 /** 1030 * ata_id_string - Convert IDENTIFY DEVICE page into string 1031 * @id: IDENTIFY DEVICE results we will examine 1032 * @s: string into which data is output 1033 * @ofs: offset into identify device page 1034 * @len: length of string to return. must be an even number. 1035 * 1036 * The strings in the IDENTIFY DEVICE page are broken up into 1037 * 16-bit chunks. Run through the string, and output each 1038 * 8-bit chunk linearly, regardless of platform. 1039 * 1040 * LOCKING: 1041 * caller. 1042 */ 1043 1044 void ata_id_string(const u16 *id, unsigned char *s, 1045 unsigned int ofs, unsigned int len) 1046 { 1047 unsigned int c; 1048 1049 BUG_ON(len & 1); 1050 1051 while (len > 0) { 1052 c = id[ofs] >> 8; 1053 *s = c; 1054 s++; 1055 1056 c = id[ofs] & 0xff; 1057 *s = c; 1058 s++; 1059 1060 ofs++; 1061 len -= 2; 1062 } 1063 } 1064 EXPORT_SYMBOL_GPL(ata_id_string); 1065 1066 /** 1067 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1068 * @id: IDENTIFY DEVICE results we will examine 1069 * @s: string into which data is output 1070 * @ofs: offset into identify device page 1071 * @len: length of string to return. must be an odd number. 1072 * 1073 * This function is identical to ata_id_string except that it 1074 * trims trailing spaces and terminates the resulting string with 1075 * null. @len must be actual maximum length (even number) + 1. 1076 * 1077 * LOCKING: 1078 * caller. 1079 */ 1080 void ata_id_c_string(const u16 *id, unsigned char *s, 1081 unsigned int ofs, unsigned int len) 1082 { 1083 unsigned char *p; 1084 1085 ata_id_string(id, s, ofs, len - 1); 1086 1087 p = s + strnlen(s, len - 1); 1088 while (p > s && p[-1] == ' ') 1089 p--; 1090 *p = '\0'; 1091 } 1092 EXPORT_SYMBOL_GPL(ata_id_c_string); 1093 1094 static u64 ata_id_n_sectors(const u16 *id) 1095 { 1096 if (ata_id_has_lba(id)) { 1097 if (ata_id_has_lba48(id)) 1098 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1099 else 1100 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1101 } else { 1102 if (ata_id_current_chs_valid(id)) 1103 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1104 id[ATA_ID_CUR_SECTORS]; 1105 else 1106 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1107 id[ATA_ID_SECTORS]; 1108 } 1109 } 1110 1111 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1112 { 1113 u64 sectors = 0; 1114 1115 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1116 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1117 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1118 sectors |= (tf->lbah & 0xff) << 16; 1119 sectors |= (tf->lbam & 0xff) << 8; 1120 sectors |= (tf->lbal & 0xff); 1121 1122 return sectors; 1123 } 1124 1125 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1126 { 1127 u64 sectors = 0; 1128 1129 sectors |= (tf->device & 0x0f) << 24; 1130 sectors |= (tf->lbah & 0xff) << 16; 1131 sectors |= (tf->lbam & 0xff) << 8; 1132 sectors |= (tf->lbal & 0xff); 1133 1134 return sectors; 1135 } 1136 1137 /** 1138 * ata_read_native_max_address - Read native max address 1139 * @dev: target device 1140 * @max_sectors: out parameter for the result native max address 1141 * 1142 * Perform an LBA48 or LBA28 native size query upon the device in 1143 * question. 1144 * 1145 * RETURNS: 1146 * 0 on success, -EACCES if command is aborted by the drive. 1147 * -EIO on other errors. 1148 */ 1149 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1150 { 1151 unsigned int err_mask; 1152 struct ata_taskfile tf; 1153 int lba48 = ata_id_has_lba48(dev->id); 1154 1155 ata_tf_init(dev, &tf); 1156 1157 /* always clear all address registers */ 1158 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1159 1160 if (lba48) { 1161 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1162 tf.flags |= ATA_TFLAG_LBA48; 1163 } else 1164 tf.command = ATA_CMD_READ_NATIVE_MAX; 1165 1166 tf.protocol = ATA_PROT_NODATA; 1167 tf.device |= ATA_LBA; 1168 1169 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1170 if (err_mask) { 1171 ata_dev_warn(dev, 1172 "failed to read native max address (err_mask=0x%x)\n", 1173 err_mask); 1174 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1175 return -EACCES; 1176 return -EIO; 1177 } 1178 1179 if (lba48) 1180 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1181 else 1182 *max_sectors = ata_tf_to_lba(&tf) + 1; 1183 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1184 (*max_sectors)--; 1185 return 0; 1186 } 1187 1188 /** 1189 * ata_set_max_sectors - Set max sectors 1190 * @dev: target device 1191 * @new_sectors: new max sectors value to set for the device 1192 * 1193 * Set max sectors of @dev to @new_sectors. 1194 * 1195 * RETURNS: 1196 * 0 on success, -EACCES if command is aborted or denied (due to 1197 * previous non-volatile SET_MAX) by the drive. -EIO on other 1198 * errors. 1199 */ 1200 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1201 { 1202 unsigned int err_mask; 1203 struct ata_taskfile tf; 1204 int lba48 = ata_id_has_lba48(dev->id); 1205 1206 new_sectors--; 1207 1208 ata_tf_init(dev, &tf); 1209 1210 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1211 1212 if (lba48) { 1213 tf.command = ATA_CMD_SET_MAX_EXT; 1214 tf.flags |= ATA_TFLAG_LBA48; 1215 1216 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1217 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1218 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1219 } else { 1220 tf.command = ATA_CMD_SET_MAX; 1221 1222 tf.device |= (new_sectors >> 24) & 0xf; 1223 } 1224 1225 tf.protocol = ATA_PROT_NODATA; 1226 tf.device |= ATA_LBA; 1227 1228 tf.lbal = (new_sectors >> 0) & 0xff; 1229 tf.lbam = (new_sectors >> 8) & 0xff; 1230 tf.lbah = (new_sectors >> 16) & 0xff; 1231 1232 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1233 if (err_mask) { 1234 ata_dev_warn(dev, 1235 "failed to set max address (err_mask=0x%x)\n", 1236 err_mask); 1237 if (err_mask == AC_ERR_DEV && 1238 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1239 return -EACCES; 1240 return -EIO; 1241 } 1242 1243 return 0; 1244 } 1245 1246 /** 1247 * ata_hpa_resize - Resize a device with an HPA set 1248 * @dev: Device to resize 1249 * 1250 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1251 * it if required to the full size of the media. The caller must check 1252 * the drive has the HPA feature set enabled. 1253 * 1254 * RETURNS: 1255 * 0 on success, -errno on failure. 1256 */ 1257 static int ata_hpa_resize(struct ata_device *dev) 1258 { 1259 bool print_info = ata_dev_print_info(dev); 1260 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1261 u64 sectors = ata_id_n_sectors(dev->id); 1262 u64 native_sectors; 1263 int rc; 1264 1265 /* do we need to do it? */ 1266 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1267 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1268 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1269 return 0; 1270 1271 /* read native max address */ 1272 rc = ata_read_native_max_address(dev, &native_sectors); 1273 if (rc) { 1274 /* If device aborted the command or HPA isn't going to 1275 * be unlocked, skip HPA resizing. 1276 */ 1277 if (rc == -EACCES || !unlock_hpa) { 1278 ata_dev_warn(dev, 1279 "HPA support seems broken, skipping HPA handling\n"); 1280 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1281 1282 /* we can continue if device aborted the command */ 1283 if (rc == -EACCES) 1284 rc = 0; 1285 } 1286 1287 return rc; 1288 } 1289 dev->n_native_sectors = native_sectors; 1290 1291 /* nothing to do? */ 1292 if (native_sectors <= sectors || !unlock_hpa) { 1293 if (!print_info || native_sectors == sectors) 1294 return 0; 1295 1296 if (native_sectors > sectors) 1297 ata_dev_info(dev, 1298 "HPA detected: current %llu, native %llu\n", 1299 (unsigned long long)sectors, 1300 (unsigned long long)native_sectors); 1301 else if (native_sectors < sectors) 1302 ata_dev_warn(dev, 1303 "native sectors (%llu) is smaller than sectors (%llu)\n", 1304 (unsigned long long)native_sectors, 1305 (unsigned long long)sectors); 1306 return 0; 1307 } 1308 1309 /* let's unlock HPA */ 1310 rc = ata_set_max_sectors(dev, native_sectors); 1311 if (rc == -EACCES) { 1312 /* if device aborted the command, skip HPA resizing */ 1313 ata_dev_warn(dev, 1314 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1315 (unsigned long long)sectors, 1316 (unsigned long long)native_sectors); 1317 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1318 return 0; 1319 } else if (rc) 1320 return rc; 1321 1322 /* re-read IDENTIFY data */ 1323 rc = ata_dev_reread_id(dev, 0); 1324 if (rc) { 1325 ata_dev_err(dev, 1326 "failed to re-read IDENTIFY data after HPA resizing\n"); 1327 return rc; 1328 } 1329 1330 if (print_info) { 1331 u64 new_sectors = ata_id_n_sectors(dev->id); 1332 ata_dev_info(dev, 1333 "HPA unlocked: %llu -> %llu, native %llu\n", 1334 (unsigned long long)sectors, 1335 (unsigned long long)new_sectors, 1336 (unsigned long long)native_sectors); 1337 } 1338 1339 return 0; 1340 } 1341 1342 /** 1343 * ata_dump_id - IDENTIFY DEVICE info debugging output 1344 * @dev: device from which the information is fetched 1345 * @id: IDENTIFY DEVICE page to dump 1346 * 1347 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1348 * page. 1349 * 1350 * LOCKING: 1351 * caller. 1352 */ 1353 1354 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1355 { 1356 ata_dev_dbg(dev, 1357 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1358 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1359 "88==0x%04x 93==0x%04x\n", 1360 id[49], id[53], id[63], id[64], id[75], id[80], 1361 id[81], id[82], id[83], id[84], id[88], id[93]); 1362 } 1363 1364 /** 1365 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1366 * @id: IDENTIFY data to compute xfer mask from 1367 * 1368 * Compute the xfermask for this device. This is not as trivial 1369 * as it seems if we must consider early devices correctly. 1370 * 1371 * FIXME: pre IDE drive timing (do we care ?). 1372 * 1373 * LOCKING: 1374 * None. 1375 * 1376 * RETURNS: 1377 * Computed xfermask 1378 */ 1379 unsigned long ata_id_xfermask(const u16 *id) 1380 { 1381 unsigned long pio_mask, mwdma_mask, udma_mask; 1382 1383 /* Usual case. Word 53 indicates word 64 is valid */ 1384 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1385 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1386 pio_mask <<= 3; 1387 pio_mask |= 0x7; 1388 } else { 1389 /* If word 64 isn't valid then Word 51 high byte holds 1390 * the PIO timing number for the maximum. Turn it into 1391 * a mask. 1392 */ 1393 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1394 if (mode < 5) /* Valid PIO range */ 1395 pio_mask = (2 << mode) - 1; 1396 else 1397 pio_mask = 1; 1398 1399 /* But wait.. there's more. Design your standards by 1400 * committee and you too can get a free iordy field to 1401 * process. However its the speeds not the modes that 1402 * are supported... Note drivers using the timing API 1403 * will get this right anyway 1404 */ 1405 } 1406 1407 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1408 1409 if (ata_id_is_cfa(id)) { 1410 /* 1411 * Process compact flash extended modes 1412 */ 1413 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1414 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1415 1416 if (pio) 1417 pio_mask |= (1 << 5); 1418 if (pio > 1) 1419 pio_mask |= (1 << 6); 1420 if (dma) 1421 mwdma_mask |= (1 << 3); 1422 if (dma > 1) 1423 mwdma_mask |= (1 << 4); 1424 } 1425 1426 udma_mask = 0; 1427 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1428 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1429 1430 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1431 } 1432 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1433 1434 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1435 { 1436 struct completion *waiting = qc->private_data; 1437 1438 complete(waiting); 1439 } 1440 1441 /** 1442 * ata_exec_internal_sg - execute libata internal command 1443 * @dev: Device to which the command is sent 1444 * @tf: Taskfile registers for the command and the result 1445 * @cdb: CDB for packet command 1446 * @dma_dir: Data transfer direction of the command 1447 * @sgl: sg list for the data buffer of the command 1448 * @n_elem: Number of sg entries 1449 * @timeout: Timeout in msecs (0 for default) 1450 * 1451 * Executes libata internal command with timeout. @tf contains 1452 * command on entry and result on return. Timeout and error 1453 * conditions are reported via return value. No recovery action 1454 * is taken after a command times out. It's caller's duty to 1455 * clean up after timeout. 1456 * 1457 * LOCKING: 1458 * None. Should be called with kernel context, might sleep. 1459 * 1460 * RETURNS: 1461 * Zero on success, AC_ERR_* mask on failure 1462 */ 1463 unsigned ata_exec_internal_sg(struct ata_device *dev, 1464 struct ata_taskfile *tf, const u8 *cdb, 1465 int dma_dir, struct scatterlist *sgl, 1466 unsigned int n_elem, unsigned long timeout) 1467 { 1468 struct ata_link *link = dev->link; 1469 struct ata_port *ap = link->ap; 1470 u8 command = tf->command; 1471 int auto_timeout = 0; 1472 struct ata_queued_cmd *qc; 1473 unsigned int preempted_tag; 1474 u32 preempted_sactive; 1475 u64 preempted_qc_active; 1476 int preempted_nr_active_links; 1477 DECLARE_COMPLETION_ONSTACK(wait); 1478 unsigned long flags; 1479 unsigned int err_mask; 1480 int rc; 1481 1482 spin_lock_irqsave(ap->lock, flags); 1483 1484 /* no internal command while frozen */ 1485 if (ap->pflags & ATA_PFLAG_FROZEN) { 1486 spin_unlock_irqrestore(ap->lock, flags); 1487 return AC_ERR_SYSTEM; 1488 } 1489 1490 /* initialize internal qc */ 1491 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1492 1493 qc->tag = ATA_TAG_INTERNAL; 1494 qc->hw_tag = 0; 1495 qc->scsicmd = NULL; 1496 qc->ap = ap; 1497 qc->dev = dev; 1498 ata_qc_reinit(qc); 1499 1500 preempted_tag = link->active_tag; 1501 preempted_sactive = link->sactive; 1502 preempted_qc_active = ap->qc_active; 1503 preempted_nr_active_links = ap->nr_active_links; 1504 link->active_tag = ATA_TAG_POISON; 1505 link->sactive = 0; 1506 ap->qc_active = 0; 1507 ap->nr_active_links = 0; 1508 1509 /* prepare & issue qc */ 1510 qc->tf = *tf; 1511 if (cdb) 1512 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1513 1514 /* some SATA bridges need us to indicate data xfer direction */ 1515 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1516 dma_dir == DMA_FROM_DEVICE) 1517 qc->tf.feature |= ATAPI_DMADIR; 1518 1519 qc->flags |= ATA_QCFLAG_RESULT_TF; 1520 qc->dma_dir = dma_dir; 1521 if (dma_dir != DMA_NONE) { 1522 unsigned int i, buflen = 0; 1523 struct scatterlist *sg; 1524 1525 for_each_sg(sgl, sg, n_elem, i) 1526 buflen += sg->length; 1527 1528 ata_sg_init(qc, sgl, n_elem); 1529 qc->nbytes = buflen; 1530 } 1531 1532 qc->private_data = &wait; 1533 qc->complete_fn = ata_qc_complete_internal; 1534 1535 ata_qc_issue(qc); 1536 1537 spin_unlock_irqrestore(ap->lock, flags); 1538 1539 if (!timeout) { 1540 if (ata_probe_timeout) 1541 timeout = ata_probe_timeout * 1000; 1542 else { 1543 timeout = ata_internal_cmd_timeout(dev, command); 1544 auto_timeout = 1; 1545 } 1546 } 1547 1548 if (ap->ops->error_handler) 1549 ata_eh_release(ap); 1550 1551 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1552 1553 if (ap->ops->error_handler) 1554 ata_eh_acquire(ap); 1555 1556 ata_sff_flush_pio_task(ap); 1557 1558 if (!rc) { 1559 spin_lock_irqsave(ap->lock, flags); 1560 1561 /* We're racing with irq here. If we lose, the 1562 * following test prevents us from completing the qc 1563 * twice. If we win, the port is frozen and will be 1564 * cleaned up by ->post_internal_cmd(). 1565 */ 1566 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1567 qc->err_mask |= AC_ERR_TIMEOUT; 1568 1569 if (ap->ops->error_handler) 1570 ata_port_freeze(ap); 1571 else 1572 ata_qc_complete(qc); 1573 1574 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1575 command); 1576 } 1577 1578 spin_unlock_irqrestore(ap->lock, flags); 1579 } 1580 1581 /* do post_internal_cmd */ 1582 if (ap->ops->post_internal_cmd) 1583 ap->ops->post_internal_cmd(qc); 1584 1585 /* perform minimal error analysis */ 1586 if (qc->flags & ATA_QCFLAG_FAILED) { 1587 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1588 qc->err_mask |= AC_ERR_DEV; 1589 1590 if (!qc->err_mask) 1591 qc->err_mask |= AC_ERR_OTHER; 1592 1593 if (qc->err_mask & ~AC_ERR_OTHER) 1594 qc->err_mask &= ~AC_ERR_OTHER; 1595 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1596 qc->result_tf.command |= ATA_SENSE; 1597 } 1598 1599 /* finish up */ 1600 spin_lock_irqsave(ap->lock, flags); 1601 1602 *tf = qc->result_tf; 1603 err_mask = qc->err_mask; 1604 1605 ata_qc_free(qc); 1606 link->active_tag = preempted_tag; 1607 link->sactive = preempted_sactive; 1608 ap->qc_active = preempted_qc_active; 1609 ap->nr_active_links = preempted_nr_active_links; 1610 1611 spin_unlock_irqrestore(ap->lock, flags); 1612 1613 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1614 ata_internal_cmd_timed_out(dev, command); 1615 1616 return err_mask; 1617 } 1618 1619 /** 1620 * ata_exec_internal - execute libata internal command 1621 * @dev: Device to which the command is sent 1622 * @tf: Taskfile registers for the command and the result 1623 * @cdb: CDB for packet command 1624 * @dma_dir: Data transfer direction of the command 1625 * @buf: Data buffer of the command 1626 * @buflen: Length of data buffer 1627 * @timeout: Timeout in msecs (0 for default) 1628 * 1629 * Wrapper around ata_exec_internal_sg() which takes simple 1630 * buffer instead of sg list. 1631 * 1632 * LOCKING: 1633 * None. Should be called with kernel context, might sleep. 1634 * 1635 * RETURNS: 1636 * Zero on success, AC_ERR_* mask on failure 1637 */ 1638 unsigned ata_exec_internal(struct ata_device *dev, 1639 struct ata_taskfile *tf, const u8 *cdb, 1640 int dma_dir, void *buf, unsigned int buflen, 1641 unsigned long timeout) 1642 { 1643 struct scatterlist *psg = NULL, sg; 1644 unsigned int n_elem = 0; 1645 1646 if (dma_dir != DMA_NONE) { 1647 WARN_ON(!buf); 1648 sg_init_one(&sg, buf, buflen); 1649 psg = &sg; 1650 n_elem++; 1651 } 1652 1653 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1654 timeout); 1655 } 1656 1657 /** 1658 * ata_pio_need_iordy - check if iordy needed 1659 * @adev: ATA device 1660 * 1661 * Check if the current speed of the device requires IORDY. Used 1662 * by various controllers for chip configuration. 1663 */ 1664 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1665 { 1666 /* Don't set IORDY if we're preparing for reset. IORDY may 1667 * lead to controller lock up on certain controllers if the 1668 * port is not occupied. See bko#11703 for details. 1669 */ 1670 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1671 return 0; 1672 /* Controller doesn't support IORDY. Probably a pointless 1673 * check as the caller should know this. 1674 */ 1675 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1676 return 0; 1677 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1678 if (ata_id_is_cfa(adev->id) 1679 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1680 return 0; 1681 /* PIO3 and higher it is mandatory */ 1682 if (adev->pio_mode > XFER_PIO_2) 1683 return 1; 1684 /* We turn it on when possible */ 1685 if (ata_id_has_iordy(adev->id)) 1686 return 1; 1687 return 0; 1688 } 1689 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1690 1691 /** 1692 * ata_pio_mask_no_iordy - Return the non IORDY mask 1693 * @adev: ATA device 1694 * 1695 * Compute the highest mode possible if we are not using iordy. Return 1696 * -1 if no iordy mode is available. 1697 */ 1698 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1699 { 1700 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1701 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1702 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1703 /* Is the speed faster than the drive allows non IORDY ? */ 1704 if (pio) { 1705 /* This is cycle times not frequency - watch the logic! */ 1706 if (pio > 240) /* PIO2 is 240nS per cycle */ 1707 return 3 << ATA_SHIFT_PIO; 1708 return 7 << ATA_SHIFT_PIO; 1709 } 1710 } 1711 return 3 << ATA_SHIFT_PIO; 1712 } 1713 1714 /** 1715 * ata_do_dev_read_id - default ID read method 1716 * @dev: device 1717 * @tf: proposed taskfile 1718 * @id: data buffer 1719 * 1720 * Issue the identify taskfile and hand back the buffer containing 1721 * identify data. For some RAID controllers and for pre ATA devices 1722 * this function is wrapped or replaced by the driver 1723 */ 1724 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1725 struct ata_taskfile *tf, __le16 *id) 1726 { 1727 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1728 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1729 } 1730 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1731 1732 /** 1733 * ata_dev_read_id - Read ID data from the specified device 1734 * @dev: target device 1735 * @p_class: pointer to class of the target device (may be changed) 1736 * @flags: ATA_READID_* flags 1737 * @id: buffer to read IDENTIFY data into 1738 * 1739 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1740 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1741 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1742 * for pre-ATA4 drives. 1743 * 1744 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1745 * now we abort if we hit that case. 1746 * 1747 * LOCKING: 1748 * Kernel thread context (may sleep) 1749 * 1750 * RETURNS: 1751 * 0 on success, -errno otherwise. 1752 */ 1753 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1754 unsigned int flags, u16 *id) 1755 { 1756 struct ata_port *ap = dev->link->ap; 1757 unsigned int class = *p_class; 1758 struct ata_taskfile tf; 1759 unsigned int err_mask = 0; 1760 const char *reason; 1761 bool is_semb = class == ATA_DEV_SEMB; 1762 int may_fallback = 1, tried_spinup = 0; 1763 int rc; 1764 1765 retry: 1766 ata_tf_init(dev, &tf); 1767 1768 switch (class) { 1769 case ATA_DEV_SEMB: 1770 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1771 fallthrough; 1772 case ATA_DEV_ATA: 1773 case ATA_DEV_ZAC: 1774 tf.command = ATA_CMD_ID_ATA; 1775 break; 1776 case ATA_DEV_ATAPI: 1777 tf.command = ATA_CMD_ID_ATAPI; 1778 break; 1779 default: 1780 rc = -ENODEV; 1781 reason = "unsupported class"; 1782 goto err_out; 1783 } 1784 1785 tf.protocol = ATA_PROT_PIO; 1786 1787 /* Some devices choke if TF registers contain garbage. Make 1788 * sure those are properly initialized. 1789 */ 1790 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1791 1792 /* Device presence detection is unreliable on some 1793 * controllers. Always poll IDENTIFY if available. 1794 */ 1795 tf.flags |= ATA_TFLAG_POLLING; 1796 1797 if (ap->ops->read_id) 1798 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1799 else 1800 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1801 1802 if (err_mask) { 1803 if (err_mask & AC_ERR_NODEV_HINT) { 1804 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1805 return -ENOENT; 1806 } 1807 1808 if (is_semb) { 1809 ata_dev_info(dev, 1810 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1811 /* SEMB is not supported yet */ 1812 *p_class = ATA_DEV_SEMB_UNSUP; 1813 return 0; 1814 } 1815 1816 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1817 /* Device or controller might have reported 1818 * the wrong device class. Give a shot at the 1819 * other IDENTIFY if the current one is 1820 * aborted by the device. 1821 */ 1822 if (may_fallback) { 1823 may_fallback = 0; 1824 1825 if (class == ATA_DEV_ATA) 1826 class = ATA_DEV_ATAPI; 1827 else 1828 class = ATA_DEV_ATA; 1829 goto retry; 1830 } 1831 1832 /* Control reaches here iff the device aborted 1833 * both flavors of IDENTIFYs which happens 1834 * sometimes with phantom devices. 1835 */ 1836 ata_dev_dbg(dev, 1837 "both IDENTIFYs aborted, assuming NODEV\n"); 1838 return -ENOENT; 1839 } 1840 1841 rc = -EIO; 1842 reason = "I/O error"; 1843 goto err_out; 1844 } 1845 1846 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1847 ata_dev_info(dev, "dumping IDENTIFY data, " 1848 "class=%d may_fallback=%d tried_spinup=%d\n", 1849 class, may_fallback, tried_spinup); 1850 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1851 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1852 } 1853 1854 /* Falling back doesn't make sense if ID data was read 1855 * successfully at least once. 1856 */ 1857 may_fallback = 0; 1858 1859 swap_buf_le16(id, ATA_ID_WORDS); 1860 1861 /* sanity check */ 1862 rc = -EINVAL; 1863 reason = "device reports invalid type"; 1864 1865 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1866 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1867 goto err_out; 1868 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1869 ata_id_is_ata(id)) { 1870 ata_dev_dbg(dev, 1871 "host indicates ignore ATA devices, ignored\n"); 1872 return -ENOENT; 1873 } 1874 } else { 1875 if (ata_id_is_ata(id)) 1876 goto err_out; 1877 } 1878 1879 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1880 tried_spinup = 1; 1881 /* 1882 * Drive powered-up in standby mode, and requires a specific 1883 * SET_FEATURES spin-up subcommand before it will accept 1884 * anything other than the original IDENTIFY command. 1885 */ 1886 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1887 if (err_mask && id[2] != 0x738c) { 1888 rc = -EIO; 1889 reason = "SPINUP failed"; 1890 goto err_out; 1891 } 1892 /* 1893 * If the drive initially returned incomplete IDENTIFY info, 1894 * we now must reissue the IDENTIFY command. 1895 */ 1896 if (id[2] == 0x37c8) 1897 goto retry; 1898 } 1899 1900 if ((flags & ATA_READID_POSTRESET) && 1901 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1902 /* 1903 * The exact sequence expected by certain pre-ATA4 drives is: 1904 * SRST RESET 1905 * IDENTIFY (optional in early ATA) 1906 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1907 * anything else.. 1908 * Some drives were very specific about that exact sequence. 1909 * 1910 * Note that ATA4 says lba is mandatory so the second check 1911 * should never trigger. 1912 */ 1913 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1914 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1915 if (err_mask) { 1916 rc = -EIO; 1917 reason = "INIT_DEV_PARAMS failed"; 1918 goto err_out; 1919 } 1920 1921 /* current CHS translation info (id[53-58]) might be 1922 * changed. reread the identify device info. 1923 */ 1924 flags &= ~ATA_READID_POSTRESET; 1925 goto retry; 1926 } 1927 } 1928 1929 *p_class = class; 1930 1931 return 0; 1932 1933 err_out: 1934 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1935 reason, err_mask); 1936 return rc; 1937 } 1938 1939 /** 1940 * ata_read_log_page - read a specific log page 1941 * @dev: target device 1942 * @log: log to read 1943 * @page: page to read 1944 * @buf: buffer to store read page 1945 * @sectors: number of sectors to read 1946 * 1947 * Read log page using READ_LOG_EXT command. 1948 * 1949 * LOCKING: 1950 * Kernel thread context (may sleep). 1951 * 1952 * RETURNS: 1953 * 0 on success, AC_ERR_* mask otherwise. 1954 */ 1955 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1956 u8 page, void *buf, unsigned int sectors) 1957 { 1958 unsigned long ap_flags = dev->link->ap->flags; 1959 struct ata_taskfile tf; 1960 unsigned int err_mask; 1961 bool dma = false; 1962 1963 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 1964 1965 /* 1966 * Return error without actually issuing the command on controllers 1967 * which e.g. lockup on a read log page. 1968 */ 1969 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 1970 return AC_ERR_DEV; 1971 1972 retry: 1973 ata_tf_init(dev, &tf); 1974 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 1975 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 1976 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 1977 tf.protocol = ATA_PROT_DMA; 1978 dma = true; 1979 } else { 1980 tf.command = ATA_CMD_READ_LOG_EXT; 1981 tf.protocol = ATA_PROT_PIO; 1982 dma = false; 1983 } 1984 tf.lbal = log; 1985 tf.lbam = page; 1986 tf.nsect = sectors; 1987 tf.hob_nsect = sectors >> 8; 1988 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 1989 1990 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1991 buf, sectors * ATA_SECT_SIZE, 0); 1992 1993 if (err_mask) { 1994 if (dma) { 1995 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 1996 goto retry; 1997 } 1998 ata_dev_err(dev, 1999 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2000 (unsigned int)log, (unsigned int)page, err_mask); 2001 } 2002 2003 return err_mask; 2004 } 2005 2006 static bool ata_log_supported(struct ata_device *dev, u8 log) 2007 { 2008 struct ata_port *ap = dev->link->ap; 2009 2010 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR) 2011 return false; 2012 2013 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2014 return false; 2015 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; 2016 } 2017 2018 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2019 { 2020 struct ata_port *ap = dev->link->ap; 2021 unsigned int err, i; 2022 2023 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2024 return false; 2025 2026 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2027 /* 2028 * IDENTIFY DEVICE data log is defined as mandatory starting 2029 * with ACS-3 (ATA version 10). Warn about the missing log 2030 * for drives which implement this ATA level or above. 2031 */ 2032 if (ata_id_major_version(dev->id) >= 10) 2033 ata_dev_warn(dev, 2034 "ATA Identify Device Log not supported\n"); 2035 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2036 return false; 2037 } 2038 2039 /* 2040 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2041 * supported. 2042 */ 2043 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2044 1); 2045 if (err) 2046 return false; 2047 2048 for (i = 0; i < ap->sector_buf[8]; i++) { 2049 if (ap->sector_buf[9 + i] == page) 2050 return true; 2051 } 2052 2053 return false; 2054 } 2055 2056 static int ata_do_link_spd_horkage(struct ata_device *dev) 2057 { 2058 struct ata_link *plink = ata_dev_phys_link(dev); 2059 u32 target, target_limit; 2060 2061 if (!sata_scr_valid(plink)) 2062 return 0; 2063 2064 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2065 target = 1; 2066 else 2067 return 0; 2068 2069 target_limit = (1 << target) - 1; 2070 2071 /* if already on stricter limit, no need to push further */ 2072 if (plink->sata_spd_limit <= target_limit) 2073 return 0; 2074 2075 plink->sata_spd_limit = target_limit; 2076 2077 /* Request another EH round by returning -EAGAIN if link is 2078 * going faster than the target speed. Forward progress is 2079 * guaranteed by setting sata_spd_limit to target_limit above. 2080 */ 2081 if (plink->sata_spd > target) { 2082 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2083 sata_spd_string(target)); 2084 return -EAGAIN; 2085 } 2086 return 0; 2087 } 2088 2089 static inline u8 ata_dev_knobble(struct ata_device *dev) 2090 { 2091 struct ata_port *ap = dev->link->ap; 2092 2093 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2094 return 0; 2095 2096 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2097 } 2098 2099 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2100 { 2101 struct ata_port *ap = dev->link->ap; 2102 unsigned int err_mask; 2103 2104 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2105 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2106 return; 2107 } 2108 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2109 0, ap->sector_buf, 1); 2110 if (!err_mask) { 2111 u8 *cmds = dev->ncq_send_recv_cmds; 2112 2113 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2114 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2115 2116 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2117 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2118 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2119 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2120 } 2121 } 2122 } 2123 2124 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2125 { 2126 struct ata_port *ap = dev->link->ap; 2127 unsigned int err_mask; 2128 2129 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2130 ata_dev_warn(dev, 2131 "NCQ Send/Recv Log not supported\n"); 2132 return; 2133 } 2134 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2135 0, ap->sector_buf, 1); 2136 if (!err_mask) { 2137 u8 *cmds = dev->ncq_non_data_cmds; 2138 2139 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2140 } 2141 } 2142 2143 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2144 { 2145 struct ata_port *ap = dev->link->ap; 2146 unsigned int err_mask; 2147 2148 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2149 return; 2150 2151 err_mask = ata_read_log_page(dev, 2152 ATA_LOG_IDENTIFY_DEVICE, 2153 ATA_LOG_SATA_SETTINGS, 2154 ap->sector_buf, 2155 1); 2156 if (err_mask) 2157 goto not_supported; 2158 2159 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2160 goto not_supported; 2161 2162 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2163 2164 return; 2165 2166 not_supported: 2167 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE; 2168 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2169 } 2170 2171 static bool ata_dev_check_adapter(struct ata_device *dev, 2172 unsigned short vendor_id) 2173 { 2174 struct pci_dev *pcidev = NULL; 2175 struct device *parent_dev = NULL; 2176 2177 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2178 parent_dev = parent_dev->parent) { 2179 if (dev_is_pci(parent_dev)) { 2180 pcidev = to_pci_dev(parent_dev); 2181 if (pcidev->vendor == vendor_id) 2182 return true; 2183 break; 2184 } 2185 } 2186 2187 return false; 2188 } 2189 2190 static int ata_dev_config_ncq(struct ata_device *dev, 2191 char *desc, size_t desc_sz) 2192 { 2193 struct ata_port *ap = dev->link->ap; 2194 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2195 unsigned int err_mask; 2196 char *aa_desc = ""; 2197 2198 if (!ata_id_has_ncq(dev->id)) { 2199 desc[0] = '\0'; 2200 return 0; 2201 } 2202 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2203 return 0; 2204 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2205 snprintf(desc, desc_sz, "NCQ (not used)"); 2206 return 0; 2207 } 2208 2209 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2210 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2211 snprintf(desc, desc_sz, "NCQ (not used)"); 2212 return 0; 2213 } 2214 2215 if (ap->flags & ATA_FLAG_NCQ) { 2216 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2217 dev->flags |= ATA_DFLAG_NCQ; 2218 } 2219 2220 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2221 (ap->flags & ATA_FLAG_FPDMA_AA) && 2222 ata_id_has_fpdma_aa(dev->id)) { 2223 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2224 SATA_FPDMA_AA); 2225 if (err_mask) { 2226 ata_dev_err(dev, 2227 "failed to enable AA (error_mask=0x%x)\n", 2228 err_mask); 2229 if (err_mask != AC_ERR_DEV) { 2230 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2231 return -EIO; 2232 } 2233 } else 2234 aa_desc = ", AA"; 2235 } 2236 2237 if (hdepth >= ddepth) 2238 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2239 else 2240 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2241 ddepth, aa_desc); 2242 2243 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2244 if (ata_id_has_ncq_send_and_recv(dev->id)) 2245 ata_dev_config_ncq_send_recv(dev); 2246 if (ata_id_has_ncq_non_data(dev->id)) 2247 ata_dev_config_ncq_non_data(dev); 2248 if (ata_id_has_ncq_prio(dev->id)) 2249 ata_dev_config_ncq_prio(dev); 2250 } 2251 2252 return 0; 2253 } 2254 2255 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2256 { 2257 unsigned int err_mask; 2258 2259 if (!ata_id_has_sense_reporting(dev->id)) 2260 return; 2261 2262 if (ata_id_sense_reporting_enabled(dev->id)) 2263 return; 2264 2265 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2266 if (err_mask) { 2267 ata_dev_dbg(dev, 2268 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2269 err_mask); 2270 } 2271 } 2272 2273 static void ata_dev_config_zac(struct ata_device *dev) 2274 { 2275 struct ata_port *ap = dev->link->ap; 2276 unsigned int err_mask; 2277 u8 *identify_buf = ap->sector_buf; 2278 2279 dev->zac_zones_optimal_open = U32_MAX; 2280 dev->zac_zones_optimal_nonseq = U32_MAX; 2281 dev->zac_zones_max_open = U32_MAX; 2282 2283 /* 2284 * Always set the 'ZAC' flag for Host-managed devices. 2285 */ 2286 if (dev->class == ATA_DEV_ZAC) 2287 dev->flags |= ATA_DFLAG_ZAC; 2288 else if (ata_id_zoned_cap(dev->id) == 0x01) 2289 /* 2290 * Check for host-aware devices. 2291 */ 2292 dev->flags |= ATA_DFLAG_ZAC; 2293 2294 if (!(dev->flags & ATA_DFLAG_ZAC)) 2295 return; 2296 2297 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2298 ata_dev_warn(dev, 2299 "ATA Zoned Information Log not supported\n"); 2300 return; 2301 } 2302 2303 /* 2304 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2305 */ 2306 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2307 ATA_LOG_ZONED_INFORMATION, 2308 identify_buf, 1); 2309 if (!err_mask) { 2310 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2311 2312 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2313 if ((zoned_cap >> 63)) 2314 dev->zac_zoned_cap = (zoned_cap & 1); 2315 opt_open = get_unaligned_le64(&identify_buf[24]); 2316 if ((opt_open >> 63)) 2317 dev->zac_zones_optimal_open = (u32)opt_open; 2318 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2319 if ((opt_nonseq >> 63)) 2320 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2321 max_open = get_unaligned_le64(&identify_buf[40]); 2322 if ((max_open >> 63)) 2323 dev->zac_zones_max_open = (u32)max_open; 2324 } 2325 } 2326 2327 static void ata_dev_config_trusted(struct ata_device *dev) 2328 { 2329 struct ata_port *ap = dev->link->ap; 2330 u64 trusted_cap; 2331 unsigned int err; 2332 2333 if (!ata_id_has_trusted(dev->id)) 2334 return; 2335 2336 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2337 ata_dev_warn(dev, 2338 "Security Log not supported\n"); 2339 return; 2340 } 2341 2342 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2343 ap->sector_buf, 1); 2344 if (err) 2345 return; 2346 2347 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2348 if (!(trusted_cap & (1ULL << 63))) { 2349 ata_dev_dbg(dev, 2350 "Trusted Computing capability qword not valid!\n"); 2351 return; 2352 } 2353 2354 if (trusted_cap & (1 << 0)) 2355 dev->flags |= ATA_DFLAG_TRUSTED; 2356 } 2357 2358 static int ata_dev_config_lba(struct ata_device *dev) 2359 { 2360 const u16 *id = dev->id; 2361 const char *lba_desc; 2362 char ncq_desc[24]; 2363 int ret; 2364 2365 dev->flags |= ATA_DFLAG_LBA; 2366 2367 if (ata_id_has_lba48(id)) { 2368 lba_desc = "LBA48"; 2369 dev->flags |= ATA_DFLAG_LBA48; 2370 if (dev->n_sectors >= (1UL << 28) && 2371 ata_id_has_flush_ext(id)) 2372 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2373 } else { 2374 lba_desc = "LBA"; 2375 } 2376 2377 /* config NCQ */ 2378 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2379 2380 /* print device info to dmesg */ 2381 if (ata_dev_print_info(dev)) 2382 ata_dev_info(dev, 2383 "%llu sectors, multi %u: %s %s\n", 2384 (unsigned long long)dev->n_sectors, 2385 dev->multi_count, lba_desc, ncq_desc); 2386 2387 return ret; 2388 } 2389 2390 static void ata_dev_config_chs(struct ata_device *dev) 2391 { 2392 const u16 *id = dev->id; 2393 2394 if (ata_id_current_chs_valid(id)) { 2395 /* Current CHS translation is valid. */ 2396 dev->cylinders = id[54]; 2397 dev->heads = id[55]; 2398 dev->sectors = id[56]; 2399 } else { 2400 /* Default translation */ 2401 dev->cylinders = id[1]; 2402 dev->heads = id[3]; 2403 dev->sectors = id[6]; 2404 } 2405 2406 /* print device info to dmesg */ 2407 if (ata_dev_print_info(dev)) 2408 ata_dev_info(dev, 2409 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2410 (unsigned long long)dev->n_sectors, 2411 dev->multi_count, dev->cylinders, 2412 dev->heads, dev->sectors); 2413 } 2414 2415 static void ata_dev_config_devslp(struct ata_device *dev) 2416 { 2417 u8 *sata_setting = dev->link->ap->sector_buf; 2418 unsigned int err_mask; 2419 int i, j; 2420 2421 /* 2422 * Check device sleep capability. Get DevSlp timing variables 2423 * from SATA Settings page of Identify Device Data Log. 2424 */ 2425 if (!ata_id_has_devslp(dev->id) || 2426 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2427 return; 2428 2429 err_mask = ata_read_log_page(dev, 2430 ATA_LOG_IDENTIFY_DEVICE, 2431 ATA_LOG_SATA_SETTINGS, 2432 sata_setting, 1); 2433 if (err_mask) 2434 return; 2435 2436 dev->flags |= ATA_DFLAG_DEVSLP; 2437 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2438 j = ATA_LOG_DEVSLP_OFFSET + i; 2439 dev->devslp_timing[i] = sata_setting[j]; 2440 } 2441 } 2442 2443 static void ata_dev_config_cpr(struct ata_device *dev) 2444 { 2445 unsigned int err_mask; 2446 size_t buf_len; 2447 int i, nr_cpr = 0; 2448 struct ata_cpr_log *cpr_log = NULL; 2449 u8 *desc, *buf = NULL; 2450 2451 if (!ata_identify_page_supported(dev, 2452 ATA_LOG_CONCURRENT_POSITIONING_RANGES)) 2453 goto out; 2454 2455 /* 2456 * Read IDENTIFY DEVICE data log, page 0x47 2457 * (concurrent positioning ranges). We can have at most 255 32B range 2458 * descriptors plus a 64B header. 2459 */ 2460 buf_len = (64 + 255 * 32 + 511) & ~511; 2461 buf = kzalloc(buf_len, GFP_KERNEL); 2462 if (!buf) 2463 goto out; 2464 2465 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2466 ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2467 buf, buf_len >> 9); 2468 if (err_mask) 2469 goto out; 2470 2471 nr_cpr = buf[0]; 2472 if (!nr_cpr) 2473 goto out; 2474 2475 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2476 if (!cpr_log) 2477 goto out; 2478 2479 cpr_log->nr_cpr = nr_cpr; 2480 desc = &buf[64]; 2481 for (i = 0; i < nr_cpr; i++, desc += 32) { 2482 cpr_log->cpr[i].num = desc[0]; 2483 cpr_log->cpr[i].num_storage_elements = desc[1]; 2484 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2485 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2486 } 2487 2488 out: 2489 swap(dev->cpr_log, cpr_log); 2490 kfree(cpr_log); 2491 kfree(buf); 2492 } 2493 2494 static void ata_dev_print_features(struct ata_device *dev) 2495 { 2496 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2497 return; 2498 2499 ata_dev_info(dev, 2500 "Features:%s%s%s%s%s%s\n", 2501 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2502 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2503 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2504 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2505 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2506 dev->cpr_log ? " CPR" : ""); 2507 } 2508 2509 /** 2510 * ata_dev_configure - Configure the specified ATA/ATAPI device 2511 * @dev: Target device to configure 2512 * 2513 * Configure @dev according to @dev->id. Generic and low-level 2514 * driver specific fixups are also applied. 2515 * 2516 * LOCKING: 2517 * Kernel thread context (may sleep) 2518 * 2519 * RETURNS: 2520 * 0 on success, -errno otherwise 2521 */ 2522 int ata_dev_configure(struct ata_device *dev) 2523 { 2524 struct ata_port *ap = dev->link->ap; 2525 bool print_info = ata_dev_print_info(dev); 2526 const u16 *id = dev->id; 2527 unsigned long xfer_mask; 2528 unsigned int err_mask; 2529 char revbuf[7]; /* XYZ-99\0 */ 2530 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2531 char modelbuf[ATA_ID_PROD_LEN+1]; 2532 int rc; 2533 2534 if (!ata_dev_enabled(dev)) { 2535 ata_dev_dbg(dev, "no device\n"); 2536 return 0; 2537 } 2538 2539 /* set horkage */ 2540 dev->horkage |= ata_dev_blacklisted(dev); 2541 ata_force_horkage(dev); 2542 2543 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2544 ata_dev_info(dev, "unsupported device, disabling\n"); 2545 ata_dev_disable(dev); 2546 return 0; 2547 } 2548 2549 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2550 dev->class == ATA_DEV_ATAPI) { 2551 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2552 atapi_enabled ? "not supported with this driver" 2553 : "disabled"); 2554 ata_dev_disable(dev); 2555 return 0; 2556 } 2557 2558 rc = ata_do_link_spd_horkage(dev); 2559 if (rc) 2560 return rc; 2561 2562 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2563 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2564 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2565 dev->horkage |= ATA_HORKAGE_NOLPM; 2566 2567 if (ap->flags & ATA_FLAG_NO_LPM) 2568 dev->horkage |= ATA_HORKAGE_NOLPM; 2569 2570 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2571 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2572 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2573 } 2574 2575 /* let ACPI work its magic */ 2576 rc = ata_acpi_on_devcfg(dev); 2577 if (rc) 2578 return rc; 2579 2580 /* massage HPA, do it early as it might change IDENTIFY data */ 2581 rc = ata_hpa_resize(dev); 2582 if (rc) 2583 return rc; 2584 2585 /* print device capabilities */ 2586 ata_dev_dbg(dev, 2587 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2588 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2589 __func__, 2590 id[49], id[82], id[83], id[84], 2591 id[85], id[86], id[87], id[88]); 2592 2593 /* initialize to-be-configured parameters */ 2594 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2595 dev->max_sectors = 0; 2596 dev->cdb_len = 0; 2597 dev->n_sectors = 0; 2598 dev->cylinders = 0; 2599 dev->heads = 0; 2600 dev->sectors = 0; 2601 dev->multi_count = 0; 2602 2603 /* 2604 * common ATA, ATAPI feature tests 2605 */ 2606 2607 /* find max transfer mode; for printk only */ 2608 xfer_mask = ata_id_xfermask(id); 2609 2610 ata_dump_id(dev, id); 2611 2612 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2613 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2614 sizeof(fwrevbuf)); 2615 2616 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2617 sizeof(modelbuf)); 2618 2619 /* ATA-specific feature tests */ 2620 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2621 if (ata_id_is_cfa(id)) { 2622 /* CPRM may make this media unusable */ 2623 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2624 ata_dev_warn(dev, 2625 "supports DRM functions and may not be fully accessible\n"); 2626 snprintf(revbuf, 7, "CFA"); 2627 } else { 2628 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2629 /* Warn the user if the device has TPM extensions */ 2630 if (ata_id_has_tpm(id)) 2631 ata_dev_warn(dev, 2632 "supports DRM functions and may not be fully accessible\n"); 2633 } 2634 2635 dev->n_sectors = ata_id_n_sectors(id); 2636 2637 /* get current R/W Multiple count setting */ 2638 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2639 unsigned int max = dev->id[47] & 0xff; 2640 unsigned int cnt = dev->id[59] & 0xff; 2641 /* only recognize/allow powers of two here */ 2642 if (is_power_of_2(max) && is_power_of_2(cnt)) 2643 if (cnt <= max) 2644 dev->multi_count = cnt; 2645 } 2646 2647 /* print device info to dmesg */ 2648 if (print_info) 2649 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2650 revbuf, modelbuf, fwrevbuf, 2651 ata_mode_string(xfer_mask)); 2652 2653 if (ata_id_has_lba(id)) { 2654 rc = ata_dev_config_lba(dev); 2655 if (rc) 2656 return rc; 2657 } else { 2658 ata_dev_config_chs(dev); 2659 } 2660 2661 ata_dev_config_devslp(dev); 2662 ata_dev_config_sense_reporting(dev); 2663 ata_dev_config_zac(dev); 2664 ata_dev_config_trusted(dev); 2665 ata_dev_config_cpr(dev); 2666 dev->cdb_len = 32; 2667 2668 if (print_info) 2669 ata_dev_print_features(dev); 2670 } 2671 2672 /* ATAPI-specific feature tests */ 2673 else if (dev->class == ATA_DEV_ATAPI) { 2674 const char *cdb_intr_string = ""; 2675 const char *atapi_an_string = ""; 2676 const char *dma_dir_string = ""; 2677 u32 sntf; 2678 2679 rc = atapi_cdb_len(id); 2680 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2681 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 2682 rc = -EINVAL; 2683 goto err_out_nosup; 2684 } 2685 dev->cdb_len = (unsigned int) rc; 2686 2687 /* Enable ATAPI AN if both the host and device have 2688 * the support. If PMP is attached, SNTF is required 2689 * to enable ATAPI AN to discern between PHY status 2690 * changed notifications and ATAPI ANs. 2691 */ 2692 if (atapi_an && 2693 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2694 (!sata_pmp_attached(ap) || 2695 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2696 /* issue SET feature command to turn this on */ 2697 err_mask = ata_dev_set_feature(dev, 2698 SETFEATURES_SATA_ENABLE, SATA_AN); 2699 if (err_mask) 2700 ata_dev_err(dev, 2701 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2702 err_mask); 2703 else { 2704 dev->flags |= ATA_DFLAG_AN; 2705 atapi_an_string = ", ATAPI AN"; 2706 } 2707 } 2708 2709 if (ata_id_cdb_intr(dev->id)) { 2710 dev->flags |= ATA_DFLAG_CDB_INTR; 2711 cdb_intr_string = ", CDB intr"; 2712 } 2713 2714 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2715 dev->flags |= ATA_DFLAG_DMADIR; 2716 dma_dir_string = ", DMADIR"; 2717 } 2718 2719 if (ata_id_has_da(dev->id)) { 2720 dev->flags |= ATA_DFLAG_DA; 2721 zpodd_init(dev); 2722 } 2723 2724 /* print device info to dmesg */ 2725 if (print_info) 2726 ata_dev_info(dev, 2727 "ATAPI: %s, %s, max %s%s%s%s\n", 2728 modelbuf, fwrevbuf, 2729 ata_mode_string(xfer_mask), 2730 cdb_intr_string, atapi_an_string, 2731 dma_dir_string); 2732 } 2733 2734 /* determine max_sectors */ 2735 dev->max_sectors = ATA_MAX_SECTORS; 2736 if (dev->flags & ATA_DFLAG_LBA48) 2737 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2738 2739 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2740 200 sectors */ 2741 if (ata_dev_knobble(dev)) { 2742 if (print_info) 2743 ata_dev_info(dev, "applying bridge limits\n"); 2744 dev->udma_mask &= ATA_UDMA5; 2745 dev->max_sectors = ATA_MAX_SECTORS; 2746 } 2747 2748 if ((dev->class == ATA_DEV_ATAPI) && 2749 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2750 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2751 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2752 } 2753 2754 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2755 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2756 dev->max_sectors); 2757 2758 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2759 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2760 dev->max_sectors); 2761 2762 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2763 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2764 2765 if (ap->ops->dev_config) 2766 ap->ops->dev_config(dev); 2767 2768 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2769 /* Let the user know. We don't want to disallow opens for 2770 rescue purposes, or in case the vendor is just a blithering 2771 idiot. Do this after the dev_config call as some controllers 2772 with buggy firmware may want to avoid reporting false device 2773 bugs */ 2774 2775 if (print_info) { 2776 ata_dev_warn(dev, 2777 "Drive reports diagnostics failure. This may indicate a drive\n"); 2778 ata_dev_warn(dev, 2779 "fault or invalid emulation. Contact drive vendor for information.\n"); 2780 } 2781 } 2782 2783 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2784 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2785 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2786 } 2787 2788 return 0; 2789 2790 err_out_nosup: 2791 return rc; 2792 } 2793 2794 /** 2795 * ata_cable_40wire - return 40 wire cable type 2796 * @ap: port 2797 * 2798 * Helper method for drivers which want to hardwire 40 wire cable 2799 * detection. 2800 */ 2801 2802 int ata_cable_40wire(struct ata_port *ap) 2803 { 2804 return ATA_CBL_PATA40; 2805 } 2806 EXPORT_SYMBOL_GPL(ata_cable_40wire); 2807 2808 /** 2809 * ata_cable_80wire - return 80 wire cable type 2810 * @ap: port 2811 * 2812 * Helper method for drivers which want to hardwire 80 wire cable 2813 * detection. 2814 */ 2815 2816 int ata_cable_80wire(struct ata_port *ap) 2817 { 2818 return ATA_CBL_PATA80; 2819 } 2820 EXPORT_SYMBOL_GPL(ata_cable_80wire); 2821 2822 /** 2823 * ata_cable_unknown - return unknown PATA cable. 2824 * @ap: port 2825 * 2826 * Helper method for drivers which have no PATA cable detection. 2827 */ 2828 2829 int ata_cable_unknown(struct ata_port *ap) 2830 { 2831 return ATA_CBL_PATA_UNK; 2832 } 2833 EXPORT_SYMBOL_GPL(ata_cable_unknown); 2834 2835 /** 2836 * ata_cable_ignore - return ignored PATA cable. 2837 * @ap: port 2838 * 2839 * Helper method for drivers which don't use cable type to limit 2840 * transfer mode. 2841 */ 2842 int ata_cable_ignore(struct ata_port *ap) 2843 { 2844 return ATA_CBL_PATA_IGN; 2845 } 2846 EXPORT_SYMBOL_GPL(ata_cable_ignore); 2847 2848 /** 2849 * ata_cable_sata - return SATA cable type 2850 * @ap: port 2851 * 2852 * Helper method for drivers which have SATA cables 2853 */ 2854 2855 int ata_cable_sata(struct ata_port *ap) 2856 { 2857 return ATA_CBL_SATA; 2858 } 2859 EXPORT_SYMBOL_GPL(ata_cable_sata); 2860 2861 /** 2862 * ata_bus_probe - Reset and probe ATA bus 2863 * @ap: Bus to probe 2864 * 2865 * Master ATA bus probing function. Initiates a hardware-dependent 2866 * bus reset, then attempts to identify any devices found on 2867 * the bus. 2868 * 2869 * LOCKING: 2870 * PCI/etc. bus probe sem. 2871 * 2872 * RETURNS: 2873 * Zero on success, negative errno otherwise. 2874 */ 2875 2876 int ata_bus_probe(struct ata_port *ap) 2877 { 2878 unsigned int classes[ATA_MAX_DEVICES]; 2879 int tries[ATA_MAX_DEVICES]; 2880 int rc; 2881 struct ata_device *dev; 2882 2883 ata_for_each_dev(dev, &ap->link, ALL) 2884 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2885 2886 retry: 2887 ata_for_each_dev(dev, &ap->link, ALL) { 2888 /* If we issue an SRST then an ATA drive (not ATAPI) 2889 * may change configuration and be in PIO0 timing. If 2890 * we do a hard reset (or are coming from power on) 2891 * this is true for ATA or ATAPI. Until we've set a 2892 * suitable controller mode we should not touch the 2893 * bus as we may be talking too fast. 2894 */ 2895 dev->pio_mode = XFER_PIO_0; 2896 dev->dma_mode = 0xff; 2897 2898 /* If the controller has a pio mode setup function 2899 * then use it to set the chipset to rights. Don't 2900 * touch the DMA setup as that will be dealt with when 2901 * configuring devices. 2902 */ 2903 if (ap->ops->set_piomode) 2904 ap->ops->set_piomode(ap, dev); 2905 } 2906 2907 /* reset and determine device classes */ 2908 ap->ops->phy_reset(ap); 2909 2910 ata_for_each_dev(dev, &ap->link, ALL) { 2911 if (dev->class != ATA_DEV_UNKNOWN) 2912 classes[dev->devno] = dev->class; 2913 else 2914 classes[dev->devno] = ATA_DEV_NONE; 2915 2916 dev->class = ATA_DEV_UNKNOWN; 2917 } 2918 2919 /* read IDENTIFY page and configure devices. We have to do the identify 2920 specific sequence bass-ackwards so that PDIAG- is released by 2921 the slave device */ 2922 2923 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2924 if (tries[dev->devno]) 2925 dev->class = classes[dev->devno]; 2926 2927 if (!ata_dev_enabled(dev)) 2928 continue; 2929 2930 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2931 dev->id); 2932 if (rc) 2933 goto fail; 2934 } 2935 2936 /* Now ask for the cable type as PDIAG- should have been released */ 2937 if (ap->ops->cable_detect) 2938 ap->cbl = ap->ops->cable_detect(ap); 2939 2940 /* We may have SATA bridge glue hiding here irrespective of 2941 * the reported cable types and sensed types. When SATA 2942 * drives indicate we have a bridge, we don't know which end 2943 * of the link the bridge is which is a problem. 2944 */ 2945 ata_for_each_dev(dev, &ap->link, ENABLED) 2946 if (ata_id_is_sata(dev->id)) 2947 ap->cbl = ATA_CBL_SATA; 2948 2949 /* After the identify sequence we can now set up the devices. We do 2950 this in the normal order so that the user doesn't get confused */ 2951 2952 ata_for_each_dev(dev, &ap->link, ENABLED) { 2953 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2954 rc = ata_dev_configure(dev); 2955 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2956 if (rc) 2957 goto fail; 2958 } 2959 2960 /* configure transfer mode */ 2961 rc = ata_set_mode(&ap->link, &dev); 2962 if (rc) 2963 goto fail; 2964 2965 ata_for_each_dev(dev, &ap->link, ENABLED) 2966 return 0; 2967 2968 return -ENODEV; 2969 2970 fail: 2971 tries[dev->devno]--; 2972 2973 switch (rc) { 2974 case -EINVAL: 2975 /* eeek, something went very wrong, give up */ 2976 tries[dev->devno] = 0; 2977 break; 2978 2979 case -ENODEV: 2980 /* give it just one more chance */ 2981 tries[dev->devno] = min(tries[dev->devno], 1); 2982 fallthrough; 2983 case -EIO: 2984 if (tries[dev->devno] == 1) { 2985 /* This is the last chance, better to slow 2986 * down than lose it. 2987 */ 2988 sata_down_spd_limit(&ap->link, 0); 2989 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2990 } 2991 } 2992 2993 if (!tries[dev->devno]) 2994 ata_dev_disable(dev); 2995 2996 goto retry; 2997 } 2998 2999 /** 3000 * sata_print_link_status - Print SATA link status 3001 * @link: SATA link to printk link status about 3002 * 3003 * This function prints link speed and status of a SATA link. 3004 * 3005 * LOCKING: 3006 * None. 3007 */ 3008 static void sata_print_link_status(struct ata_link *link) 3009 { 3010 u32 sstatus, scontrol, tmp; 3011 3012 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3013 return; 3014 sata_scr_read(link, SCR_CONTROL, &scontrol); 3015 3016 if (ata_phys_link_online(link)) { 3017 tmp = (sstatus >> 4) & 0xf; 3018 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3019 sata_spd_string(tmp), sstatus, scontrol); 3020 } else { 3021 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3022 sstatus, scontrol); 3023 } 3024 } 3025 3026 /** 3027 * ata_dev_pair - return other device on cable 3028 * @adev: device 3029 * 3030 * Obtain the other device on the same cable, or if none is 3031 * present NULL is returned 3032 */ 3033 3034 struct ata_device *ata_dev_pair(struct ata_device *adev) 3035 { 3036 struct ata_link *link = adev->link; 3037 struct ata_device *pair = &link->device[1 - adev->devno]; 3038 if (!ata_dev_enabled(pair)) 3039 return NULL; 3040 return pair; 3041 } 3042 EXPORT_SYMBOL_GPL(ata_dev_pair); 3043 3044 /** 3045 * sata_down_spd_limit - adjust SATA spd limit downward 3046 * @link: Link to adjust SATA spd limit for 3047 * @spd_limit: Additional limit 3048 * 3049 * Adjust SATA spd limit of @link downward. Note that this 3050 * function only adjusts the limit. The change must be applied 3051 * using sata_set_spd(). 3052 * 3053 * If @spd_limit is non-zero, the speed is limited to equal to or 3054 * lower than @spd_limit if such speed is supported. If 3055 * @spd_limit is slower than any supported speed, only the lowest 3056 * supported speed is allowed. 3057 * 3058 * LOCKING: 3059 * Inherited from caller. 3060 * 3061 * RETURNS: 3062 * 0 on success, negative errno on failure 3063 */ 3064 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3065 { 3066 u32 sstatus, spd, mask; 3067 int rc, bit; 3068 3069 if (!sata_scr_valid(link)) 3070 return -EOPNOTSUPP; 3071 3072 /* If SCR can be read, use it to determine the current SPD. 3073 * If not, use cached value in link->sata_spd. 3074 */ 3075 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3076 if (rc == 0 && ata_sstatus_online(sstatus)) 3077 spd = (sstatus >> 4) & 0xf; 3078 else 3079 spd = link->sata_spd; 3080 3081 mask = link->sata_spd_limit; 3082 if (mask <= 1) 3083 return -EINVAL; 3084 3085 /* unconditionally mask off the highest bit */ 3086 bit = fls(mask) - 1; 3087 mask &= ~(1 << bit); 3088 3089 /* 3090 * Mask off all speeds higher than or equal to the current one. At 3091 * this point, if current SPD is not available and we previously 3092 * recorded the link speed from SStatus, the driver has already 3093 * masked off the highest bit so mask should already be 1 or 0. 3094 * Otherwise, we should not force 1.5Gbps on a link where we have 3095 * not previously recorded speed from SStatus. Just return in this 3096 * case. 3097 */ 3098 if (spd > 1) 3099 mask &= (1 << (spd - 1)) - 1; 3100 else 3101 return -EINVAL; 3102 3103 /* were we already at the bottom? */ 3104 if (!mask) 3105 return -EINVAL; 3106 3107 if (spd_limit) { 3108 if (mask & ((1 << spd_limit) - 1)) 3109 mask &= (1 << spd_limit) - 1; 3110 else { 3111 bit = ffs(mask) - 1; 3112 mask = 1 << bit; 3113 } 3114 } 3115 3116 link->sata_spd_limit = mask; 3117 3118 ata_link_warn(link, "limiting SATA link speed to %s\n", 3119 sata_spd_string(fls(mask))); 3120 3121 return 0; 3122 } 3123 3124 #ifdef CONFIG_ATA_ACPI 3125 /** 3126 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3127 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3128 * @cycle: cycle duration in ns 3129 * 3130 * Return matching xfer mode for @cycle. The returned mode is of 3131 * the transfer type specified by @xfer_shift. If @cycle is too 3132 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3133 * than the fastest known mode, the fasted mode is returned. 3134 * 3135 * LOCKING: 3136 * None. 3137 * 3138 * RETURNS: 3139 * Matching xfer_mode, 0xff if no match found. 3140 */ 3141 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3142 { 3143 u8 base_mode = 0xff, last_mode = 0xff; 3144 const struct ata_xfer_ent *ent; 3145 const struct ata_timing *t; 3146 3147 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3148 if (ent->shift == xfer_shift) 3149 base_mode = ent->base; 3150 3151 for (t = ata_timing_find_mode(base_mode); 3152 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3153 unsigned short this_cycle; 3154 3155 switch (xfer_shift) { 3156 case ATA_SHIFT_PIO: 3157 case ATA_SHIFT_MWDMA: 3158 this_cycle = t->cycle; 3159 break; 3160 case ATA_SHIFT_UDMA: 3161 this_cycle = t->udma; 3162 break; 3163 default: 3164 return 0xff; 3165 } 3166 3167 if (cycle > this_cycle) 3168 break; 3169 3170 last_mode = t->mode; 3171 } 3172 3173 return last_mode; 3174 } 3175 #endif 3176 3177 /** 3178 * ata_down_xfermask_limit - adjust dev xfer masks downward 3179 * @dev: Device to adjust xfer masks 3180 * @sel: ATA_DNXFER_* selector 3181 * 3182 * Adjust xfer masks of @dev downward. Note that this function 3183 * does not apply the change. Invoking ata_set_mode() afterwards 3184 * will apply the limit. 3185 * 3186 * LOCKING: 3187 * Inherited from caller. 3188 * 3189 * RETURNS: 3190 * 0 on success, negative errno on failure 3191 */ 3192 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3193 { 3194 char buf[32]; 3195 unsigned long orig_mask, xfer_mask; 3196 unsigned long pio_mask, mwdma_mask, udma_mask; 3197 int quiet, highbit; 3198 3199 quiet = !!(sel & ATA_DNXFER_QUIET); 3200 sel &= ~ATA_DNXFER_QUIET; 3201 3202 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3203 dev->mwdma_mask, 3204 dev->udma_mask); 3205 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3206 3207 switch (sel) { 3208 case ATA_DNXFER_PIO: 3209 highbit = fls(pio_mask) - 1; 3210 pio_mask &= ~(1 << highbit); 3211 break; 3212 3213 case ATA_DNXFER_DMA: 3214 if (udma_mask) { 3215 highbit = fls(udma_mask) - 1; 3216 udma_mask &= ~(1 << highbit); 3217 if (!udma_mask) 3218 return -ENOENT; 3219 } else if (mwdma_mask) { 3220 highbit = fls(mwdma_mask) - 1; 3221 mwdma_mask &= ~(1 << highbit); 3222 if (!mwdma_mask) 3223 return -ENOENT; 3224 } 3225 break; 3226 3227 case ATA_DNXFER_40C: 3228 udma_mask &= ATA_UDMA_MASK_40C; 3229 break; 3230 3231 case ATA_DNXFER_FORCE_PIO0: 3232 pio_mask &= 1; 3233 fallthrough; 3234 case ATA_DNXFER_FORCE_PIO: 3235 mwdma_mask = 0; 3236 udma_mask = 0; 3237 break; 3238 3239 default: 3240 BUG(); 3241 } 3242 3243 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3244 3245 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3246 return -ENOENT; 3247 3248 if (!quiet) { 3249 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3250 snprintf(buf, sizeof(buf), "%s:%s", 3251 ata_mode_string(xfer_mask), 3252 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3253 else 3254 snprintf(buf, sizeof(buf), "%s", 3255 ata_mode_string(xfer_mask)); 3256 3257 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3258 } 3259 3260 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3261 &dev->udma_mask); 3262 3263 return 0; 3264 } 3265 3266 static int ata_dev_set_mode(struct ata_device *dev) 3267 { 3268 struct ata_port *ap = dev->link->ap; 3269 struct ata_eh_context *ehc = &dev->link->eh_context; 3270 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3271 const char *dev_err_whine = ""; 3272 int ign_dev_err = 0; 3273 unsigned int err_mask = 0; 3274 int rc; 3275 3276 dev->flags &= ~ATA_DFLAG_PIO; 3277 if (dev->xfer_shift == ATA_SHIFT_PIO) 3278 dev->flags |= ATA_DFLAG_PIO; 3279 3280 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3281 dev_err_whine = " (SET_XFERMODE skipped)"; 3282 else { 3283 if (nosetxfer) 3284 ata_dev_warn(dev, 3285 "NOSETXFER but PATA detected - can't " 3286 "skip SETXFER, might malfunction\n"); 3287 err_mask = ata_dev_set_xfermode(dev); 3288 } 3289 3290 if (err_mask & ~AC_ERR_DEV) 3291 goto fail; 3292 3293 /* revalidate */ 3294 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3295 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3296 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3297 if (rc) 3298 return rc; 3299 3300 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3301 /* Old CFA may refuse this command, which is just fine */ 3302 if (ata_id_is_cfa(dev->id)) 3303 ign_dev_err = 1; 3304 /* Catch several broken garbage emulations plus some pre 3305 ATA devices */ 3306 if (ata_id_major_version(dev->id) == 0 && 3307 dev->pio_mode <= XFER_PIO_2) 3308 ign_dev_err = 1; 3309 /* Some very old devices and some bad newer ones fail 3310 any kind of SET_XFERMODE request but support PIO0-2 3311 timings and no IORDY */ 3312 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3313 ign_dev_err = 1; 3314 } 3315 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3316 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3317 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3318 dev->dma_mode == XFER_MW_DMA_0 && 3319 (dev->id[63] >> 8) & 1) 3320 ign_dev_err = 1; 3321 3322 /* if the device is actually configured correctly, ignore dev err */ 3323 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3324 ign_dev_err = 1; 3325 3326 if (err_mask & AC_ERR_DEV) { 3327 if (!ign_dev_err) 3328 goto fail; 3329 else 3330 dev_err_whine = " (device error ignored)"; 3331 } 3332 3333 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3334 dev->xfer_shift, (int)dev->xfer_mode); 3335 3336 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3337 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3338 ata_dev_info(dev, "configured for %s%s\n", 3339 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3340 dev_err_whine); 3341 3342 return 0; 3343 3344 fail: 3345 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3346 return -EIO; 3347 } 3348 3349 /** 3350 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3351 * @link: link on which timings will be programmed 3352 * @r_failed_dev: out parameter for failed device 3353 * 3354 * Standard implementation of the function used to tune and set 3355 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3356 * ata_dev_set_mode() fails, pointer to the failing device is 3357 * returned in @r_failed_dev. 3358 * 3359 * LOCKING: 3360 * PCI/etc. bus probe sem. 3361 * 3362 * RETURNS: 3363 * 0 on success, negative errno otherwise 3364 */ 3365 3366 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3367 { 3368 struct ata_port *ap = link->ap; 3369 struct ata_device *dev; 3370 int rc = 0, used_dma = 0, found = 0; 3371 3372 /* step 1: calculate xfer_mask */ 3373 ata_for_each_dev(dev, link, ENABLED) { 3374 unsigned long pio_mask, dma_mask; 3375 unsigned int mode_mask; 3376 3377 mode_mask = ATA_DMA_MASK_ATA; 3378 if (dev->class == ATA_DEV_ATAPI) 3379 mode_mask = ATA_DMA_MASK_ATAPI; 3380 else if (ata_id_is_cfa(dev->id)) 3381 mode_mask = ATA_DMA_MASK_CFA; 3382 3383 ata_dev_xfermask(dev); 3384 ata_force_xfermask(dev); 3385 3386 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3387 3388 if (libata_dma_mask & mode_mask) 3389 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3390 dev->udma_mask); 3391 else 3392 dma_mask = 0; 3393 3394 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3395 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3396 3397 found = 1; 3398 if (ata_dma_enabled(dev)) 3399 used_dma = 1; 3400 } 3401 if (!found) 3402 goto out; 3403 3404 /* step 2: always set host PIO timings */ 3405 ata_for_each_dev(dev, link, ENABLED) { 3406 if (dev->pio_mode == 0xff) { 3407 ata_dev_warn(dev, "no PIO support\n"); 3408 rc = -EINVAL; 3409 goto out; 3410 } 3411 3412 dev->xfer_mode = dev->pio_mode; 3413 dev->xfer_shift = ATA_SHIFT_PIO; 3414 if (ap->ops->set_piomode) 3415 ap->ops->set_piomode(ap, dev); 3416 } 3417 3418 /* step 3: set host DMA timings */ 3419 ata_for_each_dev(dev, link, ENABLED) { 3420 if (!ata_dma_enabled(dev)) 3421 continue; 3422 3423 dev->xfer_mode = dev->dma_mode; 3424 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3425 if (ap->ops->set_dmamode) 3426 ap->ops->set_dmamode(ap, dev); 3427 } 3428 3429 /* step 4: update devices' xfer mode */ 3430 ata_for_each_dev(dev, link, ENABLED) { 3431 rc = ata_dev_set_mode(dev); 3432 if (rc) 3433 goto out; 3434 } 3435 3436 /* Record simplex status. If we selected DMA then the other 3437 * host channels are not permitted to do so. 3438 */ 3439 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3440 ap->host->simplex_claimed = ap; 3441 3442 out: 3443 if (rc) 3444 *r_failed_dev = dev; 3445 return rc; 3446 } 3447 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3448 3449 /** 3450 * ata_wait_ready - wait for link to become ready 3451 * @link: link to be waited on 3452 * @deadline: deadline jiffies for the operation 3453 * @check_ready: callback to check link readiness 3454 * 3455 * Wait for @link to become ready. @check_ready should return 3456 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3457 * link doesn't seem to be occupied, other errno for other error 3458 * conditions. 3459 * 3460 * Transient -ENODEV conditions are allowed for 3461 * ATA_TMOUT_FF_WAIT. 3462 * 3463 * LOCKING: 3464 * EH context. 3465 * 3466 * RETURNS: 3467 * 0 if @link is ready before @deadline; otherwise, -errno. 3468 */ 3469 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3470 int (*check_ready)(struct ata_link *link)) 3471 { 3472 unsigned long start = jiffies; 3473 unsigned long nodev_deadline; 3474 int warned = 0; 3475 3476 /* choose which 0xff timeout to use, read comment in libata.h */ 3477 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3478 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3479 else 3480 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3481 3482 /* Slave readiness can't be tested separately from master. On 3483 * M/S emulation configuration, this function should be called 3484 * only on the master and it will handle both master and slave. 3485 */ 3486 WARN_ON(link == link->ap->slave_link); 3487 3488 if (time_after(nodev_deadline, deadline)) 3489 nodev_deadline = deadline; 3490 3491 while (1) { 3492 unsigned long now = jiffies; 3493 int ready, tmp; 3494 3495 ready = tmp = check_ready(link); 3496 if (ready > 0) 3497 return 0; 3498 3499 /* 3500 * -ENODEV could be transient. Ignore -ENODEV if link 3501 * is online. Also, some SATA devices take a long 3502 * time to clear 0xff after reset. Wait for 3503 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3504 * offline. 3505 * 3506 * Note that some PATA controllers (pata_ali) explode 3507 * if status register is read more than once when 3508 * there's no device attached. 3509 */ 3510 if (ready == -ENODEV) { 3511 if (ata_link_online(link)) 3512 ready = 0; 3513 else if ((link->ap->flags & ATA_FLAG_SATA) && 3514 !ata_link_offline(link) && 3515 time_before(now, nodev_deadline)) 3516 ready = 0; 3517 } 3518 3519 if (ready) 3520 return ready; 3521 if (time_after(now, deadline)) 3522 return -EBUSY; 3523 3524 if (!warned && time_after(now, start + 5 * HZ) && 3525 (deadline - now > 3 * HZ)) { 3526 ata_link_warn(link, 3527 "link is slow to respond, please be patient " 3528 "(ready=%d)\n", tmp); 3529 warned = 1; 3530 } 3531 3532 ata_msleep(link->ap, 50); 3533 } 3534 } 3535 3536 /** 3537 * ata_wait_after_reset - wait for link to become ready after reset 3538 * @link: link to be waited on 3539 * @deadline: deadline jiffies for the operation 3540 * @check_ready: callback to check link readiness 3541 * 3542 * Wait for @link to become ready after reset. 3543 * 3544 * LOCKING: 3545 * EH context. 3546 * 3547 * RETURNS: 3548 * 0 if @link is ready before @deadline; otherwise, -errno. 3549 */ 3550 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3551 int (*check_ready)(struct ata_link *link)) 3552 { 3553 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3554 3555 return ata_wait_ready(link, deadline, check_ready); 3556 } 3557 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3558 3559 /** 3560 * ata_std_prereset - prepare for reset 3561 * @link: ATA link to be reset 3562 * @deadline: deadline jiffies for the operation 3563 * 3564 * @link is about to be reset. Initialize it. Failure from 3565 * prereset makes libata abort whole reset sequence and give up 3566 * that port, so prereset should be best-effort. It does its 3567 * best to prepare for reset sequence but if things go wrong, it 3568 * should just whine, not fail. 3569 * 3570 * LOCKING: 3571 * Kernel thread context (may sleep) 3572 * 3573 * RETURNS: 3574 * 0 on success, -errno otherwise. 3575 */ 3576 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3577 { 3578 struct ata_port *ap = link->ap; 3579 struct ata_eh_context *ehc = &link->eh_context; 3580 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3581 int rc; 3582 3583 /* if we're about to do hardreset, nothing more to do */ 3584 if (ehc->i.action & ATA_EH_HARDRESET) 3585 return 0; 3586 3587 /* if SATA, resume link */ 3588 if (ap->flags & ATA_FLAG_SATA) { 3589 rc = sata_link_resume(link, timing, deadline); 3590 /* whine about phy resume failure but proceed */ 3591 if (rc && rc != -EOPNOTSUPP) 3592 ata_link_warn(link, 3593 "failed to resume link for reset (errno=%d)\n", 3594 rc); 3595 } 3596 3597 /* no point in trying softreset on offline link */ 3598 if (ata_phys_link_offline(link)) 3599 ehc->i.action &= ~ATA_EH_SOFTRESET; 3600 3601 return 0; 3602 } 3603 EXPORT_SYMBOL_GPL(ata_std_prereset); 3604 3605 /** 3606 * sata_std_hardreset - COMRESET w/o waiting or classification 3607 * @link: link to reset 3608 * @class: resulting class of attached device 3609 * @deadline: deadline jiffies for the operation 3610 * 3611 * Standard SATA COMRESET w/o waiting or classification. 3612 * 3613 * LOCKING: 3614 * Kernel thread context (may sleep) 3615 * 3616 * RETURNS: 3617 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3618 */ 3619 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3620 unsigned long deadline) 3621 { 3622 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3623 bool online; 3624 int rc; 3625 3626 /* do hardreset */ 3627 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3628 return online ? -EAGAIN : rc; 3629 } 3630 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3631 3632 /** 3633 * ata_std_postreset - standard postreset callback 3634 * @link: the target ata_link 3635 * @classes: classes of attached devices 3636 * 3637 * This function is invoked after a successful reset. Note that 3638 * the device might have been reset more than once using 3639 * different reset methods before postreset is invoked. 3640 * 3641 * LOCKING: 3642 * Kernel thread context (may sleep) 3643 */ 3644 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3645 { 3646 u32 serror; 3647 3648 /* reset complete, clear SError */ 3649 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3650 sata_scr_write(link, SCR_ERROR, serror); 3651 3652 /* print link status */ 3653 sata_print_link_status(link); 3654 } 3655 EXPORT_SYMBOL_GPL(ata_std_postreset); 3656 3657 /** 3658 * ata_dev_same_device - Determine whether new ID matches configured device 3659 * @dev: device to compare against 3660 * @new_class: class of the new device 3661 * @new_id: IDENTIFY page of the new device 3662 * 3663 * Compare @new_class and @new_id against @dev and determine 3664 * whether @dev is the device indicated by @new_class and 3665 * @new_id. 3666 * 3667 * LOCKING: 3668 * None. 3669 * 3670 * RETURNS: 3671 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3672 */ 3673 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3674 const u16 *new_id) 3675 { 3676 const u16 *old_id = dev->id; 3677 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3678 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3679 3680 if (dev->class != new_class) { 3681 ata_dev_info(dev, "class mismatch %d != %d\n", 3682 dev->class, new_class); 3683 return 0; 3684 } 3685 3686 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3687 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3688 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3689 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3690 3691 if (strcmp(model[0], model[1])) { 3692 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3693 model[0], model[1]); 3694 return 0; 3695 } 3696 3697 if (strcmp(serial[0], serial[1])) { 3698 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3699 serial[0], serial[1]); 3700 return 0; 3701 } 3702 3703 return 1; 3704 } 3705 3706 /** 3707 * ata_dev_reread_id - Re-read IDENTIFY data 3708 * @dev: target ATA device 3709 * @readid_flags: read ID flags 3710 * 3711 * Re-read IDENTIFY page and make sure @dev is still attached to 3712 * the port. 3713 * 3714 * LOCKING: 3715 * Kernel thread context (may sleep) 3716 * 3717 * RETURNS: 3718 * 0 on success, negative errno otherwise 3719 */ 3720 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3721 { 3722 unsigned int class = dev->class; 3723 u16 *id = (void *)dev->link->ap->sector_buf; 3724 int rc; 3725 3726 /* read ID data */ 3727 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3728 if (rc) 3729 return rc; 3730 3731 /* is the device still there? */ 3732 if (!ata_dev_same_device(dev, class, id)) 3733 return -ENODEV; 3734 3735 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3736 return 0; 3737 } 3738 3739 /** 3740 * ata_dev_revalidate - Revalidate ATA device 3741 * @dev: device to revalidate 3742 * @new_class: new class code 3743 * @readid_flags: read ID flags 3744 * 3745 * Re-read IDENTIFY page, make sure @dev is still attached to the 3746 * port and reconfigure it according to the new IDENTIFY page. 3747 * 3748 * LOCKING: 3749 * Kernel thread context (may sleep) 3750 * 3751 * RETURNS: 3752 * 0 on success, negative errno otherwise 3753 */ 3754 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3755 unsigned int readid_flags) 3756 { 3757 u64 n_sectors = dev->n_sectors; 3758 u64 n_native_sectors = dev->n_native_sectors; 3759 int rc; 3760 3761 if (!ata_dev_enabled(dev)) 3762 return -ENODEV; 3763 3764 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3765 if (ata_class_enabled(new_class) && 3766 new_class != ATA_DEV_ATA && 3767 new_class != ATA_DEV_ATAPI && 3768 new_class != ATA_DEV_ZAC && 3769 new_class != ATA_DEV_SEMB) { 3770 ata_dev_info(dev, "class mismatch %u != %u\n", 3771 dev->class, new_class); 3772 rc = -ENODEV; 3773 goto fail; 3774 } 3775 3776 /* re-read ID */ 3777 rc = ata_dev_reread_id(dev, readid_flags); 3778 if (rc) 3779 goto fail; 3780 3781 /* configure device according to the new ID */ 3782 rc = ata_dev_configure(dev); 3783 if (rc) 3784 goto fail; 3785 3786 /* verify n_sectors hasn't changed */ 3787 if (dev->class != ATA_DEV_ATA || !n_sectors || 3788 dev->n_sectors == n_sectors) 3789 return 0; 3790 3791 /* n_sectors has changed */ 3792 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3793 (unsigned long long)n_sectors, 3794 (unsigned long long)dev->n_sectors); 3795 3796 /* 3797 * Something could have caused HPA to be unlocked 3798 * involuntarily. If n_native_sectors hasn't changed and the 3799 * new size matches it, keep the device. 3800 */ 3801 if (dev->n_native_sectors == n_native_sectors && 3802 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3803 ata_dev_warn(dev, 3804 "new n_sectors matches native, probably " 3805 "late HPA unlock, n_sectors updated\n"); 3806 /* use the larger n_sectors */ 3807 return 0; 3808 } 3809 3810 /* 3811 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3812 * unlocking HPA in those cases. 3813 * 3814 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3815 */ 3816 if (dev->n_native_sectors == n_native_sectors && 3817 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3818 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3819 ata_dev_warn(dev, 3820 "old n_sectors matches native, probably " 3821 "late HPA lock, will try to unlock HPA\n"); 3822 /* try unlocking HPA */ 3823 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3824 rc = -EIO; 3825 } else 3826 rc = -ENODEV; 3827 3828 /* restore original n_[native_]sectors and fail */ 3829 dev->n_native_sectors = n_native_sectors; 3830 dev->n_sectors = n_sectors; 3831 fail: 3832 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3833 return rc; 3834 } 3835 3836 struct ata_blacklist_entry { 3837 const char *model_num; 3838 const char *model_rev; 3839 unsigned long horkage; 3840 }; 3841 3842 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3843 /* Devices with DMA related problems under Linux */ 3844 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3845 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3846 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3847 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3848 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3849 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3850 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3851 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3852 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3853 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 3854 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3855 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3856 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3857 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3858 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3859 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 3860 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3861 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3862 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3863 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3864 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3865 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3866 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3867 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3868 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3869 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3870 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3871 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3872 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 3873 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 3874 /* Odd clown on sil3726/4726 PMPs */ 3875 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3876 /* Similar story with ASMedia 1092 */ 3877 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 3878 3879 /* Weird ATAPI devices */ 3880 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3881 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 3882 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3883 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3884 3885 /* 3886 * Causes silent data corruption with higher max sects. 3887 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3888 */ 3889 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 3890 3891 /* 3892 * These devices time out with higher max sects. 3893 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3894 */ 3895 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3896 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3897 3898 /* Devices we expect to fail diagnostics */ 3899 3900 /* Devices where NCQ should be avoided */ 3901 /* NCQ is slow */ 3902 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3903 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3904 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3905 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3906 /* NCQ is broken */ 3907 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3908 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3909 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3910 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3911 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 3912 3913 /* Seagate NCQ + FLUSH CACHE firmware bug */ 3914 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3915 ATA_HORKAGE_FIRMWARE_WARN }, 3916 3917 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3918 ATA_HORKAGE_FIRMWARE_WARN }, 3919 3920 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3921 ATA_HORKAGE_FIRMWARE_WARN }, 3922 3923 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3924 ATA_HORKAGE_FIRMWARE_WARN }, 3925 3926 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 3927 the ST disks also have LPM issues */ 3928 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 3929 ATA_HORKAGE_NOLPM, }, 3930 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 3931 3932 /* Blacklist entries taken from Silicon Image 3124/3132 3933 Windows driver .inf file - also several Linux problem reports */ 3934 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3935 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3936 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3937 3938 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 3939 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 3940 3941 /* Sandisk SD7/8/9s lock up hard on large trims */ 3942 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M, }, 3943 3944 /* devices which puke on READ_NATIVE_MAX */ 3945 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3946 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3947 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3948 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3949 3950 /* this one allows HPA unlocking but fails IOs on the area */ 3951 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 3952 3953 /* Devices which report 1 sector over size HPA */ 3954 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3955 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3956 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3957 3958 /* Devices which get the IVB wrong */ 3959 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 3960 /* Maybe we should just blacklist TSSTcorp... */ 3961 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 3962 3963 /* Devices that do not need bridging limits applied */ 3964 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 3965 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 3966 3967 /* Devices which aren't very happy with higher link speeds */ 3968 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 3969 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 3970 3971 /* 3972 * Devices which choke on SETXFER. Applies only if both the 3973 * device and controller are SATA. 3974 */ 3975 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 3976 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 3977 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 3978 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 3979 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 3980 3981 /* Crucial BX100 SSD 500GB has broken LPM support */ 3982 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 3983 3984 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 3985 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3986 ATA_HORKAGE_ZERO_AFTER_TRIM | 3987 ATA_HORKAGE_NOLPM, }, 3988 /* 512GB MX100 with newer firmware has only LPM issues */ 3989 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 3990 ATA_HORKAGE_NOLPM, }, 3991 3992 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 3993 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3994 ATA_HORKAGE_ZERO_AFTER_TRIM | 3995 ATA_HORKAGE_NOLPM, }, 3996 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3997 ATA_HORKAGE_ZERO_AFTER_TRIM | 3998 ATA_HORKAGE_NOLPM, }, 3999 4000 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4001 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, }, 4002 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, }, 4003 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, }, 4004 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, }, 4005 4006 /* devices that don't properly handle queued TRIM commands */ 4007 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4008 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4009 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4010 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4011 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4012 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4013 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4014 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4015 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4016 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4017 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4018 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4019 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4020 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4021 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4022 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4023 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4024 ATA_HORKAGE_ZERO_AFTER_TRIM | 4025 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4026 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4027 ATA_HORKAGE_ZERO_AFTER_TRIM | 4028 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4029 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4030 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4031 4032 /* devices that don't properly handle TRIM commands */ 4033 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 4034 4035 /* 4036 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4037 * (Return Zero After Trim) flags in the ATA Command Set are 4038 * unreliable in the sense that they only define what happens if 4039 * the device successfully executed the DSM TRIM command. TRIM 4040 * is only advisory, however, and the device is free to silently 4041 * ignore all or parts of the request. 4042 * 4043 * Whitelist drives that are known to reliably return zeroes 4044 * after TRIM. 4045 */ 4046 4047 /* 4048 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4049 * that model before whitelisting all other intel SSDs. 4050 */ 4051 { "INTEL*SSDSC2MH*", NULL, 0, }, 4052 4053 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4054 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4055 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4056 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4057 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4058 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4059 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4060 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4061 4062 /* 4063 * Some WD SATA-I drives spin up and down erratically when the link 4064 * is put into the slumber mode. We don't have full list of the 4065 * affected devices. Disable LPM if the device matches one of the 4066 * known prefixes and is SATA-1. As a side effect LPM partial is 4067 * lost too. 4068 * 4069 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4070 */ 4071 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4072 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4073 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4074 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4075 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4076 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4077 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4078 4079 /* 4080 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4081 * log page is accessed. Ensure we never ask for this log page with 4082 * these devices. 4083 */ 4084 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR }, 4085 4086 /* End Marker */ 4087 { } 4088 }; 4089 4090 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4091 { 4092 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4093 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4094 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4095 4096 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4097 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4098 4099 while (ad->model_num) { 4100 if (glob_match(ad->model_num, model_num)) { 4101 if (ad->model_rev == NULL) 4102 return ad->horkage; 4103 if (glob_match(ad->model_rev, model_rev)) 4104 return ad->horkage; 4105 } 4106 ad++; 4107 } 4108 return 0; 4109 } 4110 4111 static int ata_dma_blacklisted(const struct ata_device *dev) 4112 { 4113 /* We don't support polling DMA. 4114 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4115 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4116 */ 4117 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4118 (dev->flags & ATA_DFLAG_CDB_INTR)) 4119 return 1; 4120 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4121 } 4122 4123 /** 4124 * ata_is_40wire - check drive side detection 4125 * @dev: device 4126 * 4127 * Perform drive side detection decoding, allowing for device vendors 4128 * who can't follow the documentation. 4129 */ 4130 4131 static int ata_is_40wire(struct ata_device *dev) 4132 { 4133 if (dev->horkage & ATA_HORKAGE_IVB) 4134 return ata_drive_40wire_relaxed(dev->id); 4135 return ata_drive_40wire(dev->id); 4136 } 4137 4138 /** 4139 * cable_is_40wire - 40/80/SATA decider 4140 * @ap: port to consider 4141 * 4142 * This function encapsulates the policy for speed management 4143 * in one place. At the moment we don't cache the result but 4144 * there is a good case for setting ap->cbl to the result when 4145 * we are called with unknown cables (and figuring out if it 4146 * impacts hotplug at all). 4147 * 4148 * Return 1 if the cable appears to be 40 wire. 4149 */ 4150 4151 static int cable_is_40wire(struct ata_port *ap) 4152 { 4153 struct ata_link *link; 4154 struct ata_device *dev; 4155 4156 /* If the controller thinks we are 40 wire, we are. */ 4157 if (ap->cbl == ATA_CBL_PATA40) 4158 return 1; 4159 4160 /* If the controller thinks we are 80 wire, we are. */ 4161 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4162 return 0; 4163 4164 /* If the system is known to be 40 wire short cable (eg 4165 * laptop), then we allow 80 wire modes even if the drive 4166 * isn't sure. 4167 */ 4168 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4169 return 0; 4170 4171 /* If the controller doesn't know, we scan. 4172 * 4173 * Note: We look for all 40 wire detects at this point. Any 4174 * 80 wire detect is taken to be 80 wire cable because 4175 * - in many setups only the one drive (slave if present) will 4176 * give a valid detect 4177 * - if you have a non detect capable drive you don't want it 4178 * to colour the choice 4179 */ 4180 ata_for_each_link(link, ap, EDGE) { 4181 ata_for_each_dev(dev, link, ENABLED) { 4182 if (!ata_is_40wire(dev)) 4183 return 0; 4184 } 4185 } 4186 return 1; 4187 } 4188 4189 /** 4190 * ata_dev_xfermask - Compute supported xfermask of the given device 4191 * @dev: Device to compute xfermask for 4192 * 4193 * Compute supported xfermask of @dev and store it in 4194 * dev->*_mask. This function is responsible for applying all 4195 * known limits including host controller limits, device 4196 * blacklist, etc... 4197 * 4198 * LOCKING: 4199 * None. 4200 */ 4201 static void ata_dev_xfermask(struct ata_device *dev) 4202 { 4203 struct ata_link *link = dev->link; 4204 struct ata_port *ap = link->ap; 4205 struct ata_host *host = ap->host; 4206 unsigned long xfer_mask; 4207 4208 /* controller modes available */ 4209 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4210 ap->mwdma_mask, ap->udma_mask); 4211 4212 /* drive modes available */ 4213 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4214 dev->mwdma_mask, dev->udma_mask); 4215 xfer_mask &= ata_id_xfermask(dev->id); 4216 4217 /* 4218 * CFA Advanced TrueIDE timings are not allowed on a shared 4219 * cable 4220 */ 4221 if (ata_dev_pair(dev)) { 4222 /* No PIO5 or PIO6 */ 4223 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4224 /* No MWDMA3 or MWDMA 4 */ 4225 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4226 } 4227 4228 if (ata_dma_blacklisted(dev)) { 4229 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4230 ata_dev_warn(dev, 4231 "device is on DMA blacklist, disabling DMA\n"); 4232 } 4233 4234 if ((host->flags & ATA_HOST_SIMPLEX) && 4235 host->simplex_claimed && host->simplex_claimed != ap) { 4236 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4237 ata_dev_warn(dev, 4238 "simplex DMA is claimed by other device, disabling DMA\n"); 4239 } 4240 4241 if (ap->flags & ATA_FLAG_NO_IORDY) 4242 xfer_mask &= ata_pio_mask_no_iordy(dev); 4243 4244 if (ap->ops->mode_filter) 4245 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4246 4247 /* Apply cable rule here. Don't apply it early because when 4248 * we handle hot plug the cable type can itself change. 4249 * Check this last so that we know if the transfer rate was 4250 * solely limited by the cable. 4251 * Unknown or 80 wire cables reported host side are checked 4252 * drive side as well. Cases where we know a 40wire cable 4253 * is used safely for 80 are not checked here. 4254 */ 4255 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4256 /* UDMA/44 or higher would be available */ 4257 if (cable_is_40wire(ap)) { 4258 ata_dev_warn(dev, 4259 "limited to UDMA/33 due to 40-wire cable\n"); 4260 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4261 } 4262 4263 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4264 &dev->mwdma_mask, &dev->udma_mask); 4265 } 4266 4267 /** 4268 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4269 * @dev: Device to which command will be sent 4270 * 4271 * Issue SET FEATURES - XFER MODE command to device @dev 4272 * on port @ap. 4273 * 4274 * LOCKING: 4275 * PCI/etc. bus probe sem. 4276 * 4277 * RETURNS: 4278 * 0 on success, AC_ERR_* mask otherwise. 4279 */ 4280 4281 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4282 { 4283 struct ata_taskfile tf; 4284 unsigned int err_mask; 4285 4286 /* set up set-features taskfile */ 4287 ata_dev_dbg(dev, "set features - xfer mode\n"); 4288 4289 /* Some controllers and ATAPI devices show flaky interrupt 4290 * behavior after setting xfer mode. Use polling instead. 4291 */ 4292 ata_tf_init(dev, &tf); 4293 tf.command = ATA_CMD_SET_FEATURES; 4294 tf.feature = SETFEATURES_XFER; 4295 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4296 tf.protocol = ATA_PROT_NODATA; 4297 /* If we are using IORDY we must send the mode setting command */ 4298 if (ata_pio_need_iordy(dev)) 4299 tf.nsect = dev->xfer_mode; 4300 /* If the device has IORDY and the controller does not - turn it off */ 4301 else if (ata_id_has_iordy(dev->id)) 4302 tf.nsect = 0x01; 4303 else /* In the ancient relic department - skip all of this */ 4304 return 0; 4305 4306 /* On some disks, this command causes spin-up, so we need longer timeout */ 4307 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4308 4309 return err_mask; 4310 } 4311 4312 /** 4313 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4314 * @dev: Device to which command will be sent 4315 * @enable: Whether to enable or disable the feature 4316 * @feature: The sector count represents the feature to set 4317 * 4318 * Issue SET FEATURES - SATA FEATURES command to device @dev 4319 * on port @ap with sector count 4320 * 4321 * LOCKING: 4322 * PCI/etc. bus probe sem. 4323 * 4324 * RETURNS: 4325 * 0 on success, AC_ERR_* mask otherwise. 4326 */ 4327 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4328 { 4329 struct ata_taskfile tf; 4330 unsigned int err_mask; 4331 unsigned long timeout = 0; 4332 4333 /* set up set-features taskfile */ 4334 ata_dev_dbg(dev, "set features - SATA features\n"); 4335 4336 ata_tf_init(dev, &tf); 4337 tf.command = ATA_CMD_SET_FEATURES; 4338 tf.feature = enable; 4339 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4340 tf.protocol = ATA_PROT_NODATA; 4341 tf.nsect = feature; 4342 4343 if (enable == SETFEATURES_SPINUP) 4344 timeout = ata_probe_timeout ? 4345 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4346 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4347 4348 return err_mask; 4349 } 4350 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4351 4352 /** 4353 * ata_dev_init_params - Issue INIT DEV PARAMS command 4354 * @dev: Device to which command will be sent 4355 * @heads: Number of heads (taskfile parameter) 4356 * @sectors: Number of sectors (taskfile parameter) 4357 * 4358 * LOCKING: 4359 * Kernel thread context (may sleep) 4360 * 4361 * RETURNS: 4362 * 0 on success, AC_ERR_* mask otherwise. 4363 */ 4364 static unsigned int ata_dev_init_params(struct ata_device *dev, 4365 u16 heads, u16 sectors) 4366 { 4367 struct ata_taskfile tf; 4368 unsigned int err_mask; 4369 4370 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4371 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4372 return AC_ERR_INVALID; 4373 4374 /* set up init dev params taskfile */ 4375 ata_dev_dbg(dev, "init dev params \n"); 4376 4377 ata_tf_init(dev, &tf); 4378 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4379 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4380 tf.protocol = ATA_PROT_NODATA; 4381 tf.nsect = sectors; 4382 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4383 4384 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4385 /* A clean abort indicates an original or just out of spec drive 4386 and we should continue as we issue the setup based on the 4387 drive reported working geometry */ 4388 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4389 err_mask = 0; 4390 4391 return err_mask; 4392 } 4393 4394 /** 4395 * atapi_check_dma - Check whether ATAPI DMA can be supported 4396 * @qc: Metadata associated with taskfile to check 4397 * 4398 * Allow low-level driver to filter ATA PACKET commands, returning 4399 * a status indicating whether or not it is OK to use DMA for the 4400 * supplied PACKET command. 4401 * 4402 * LOCKING: 4403 * spin_lock_irqsave(host lock) 4404 * 4405 * RETURNS: 0 when ATAPI DMA can be used 4406 * nonzero otherwise 4407 */ 4408 int atapi_check_dma(struct ata_queued_cmd *qc) 4409 { 4410 struct ata_port *ap = qc->ap; 4411 4412 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4413 * few ATAPI devices choke on such DMA requests. 4414 */ 4415 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4416 unlikely(qc->nbytes & 15)) 4417 return 1; 4418 4419 if (ap->ops->check_atapi_dma) 4420 return ap->ops->check_atapi_dma(qc); 4421 4422 return 0; 4423 } 4424 4425 /** 4426 * ata_std_qc_defer - Check whether a qc needs to be deferred 4427 * @qc: ATA command in question 4428 * 4429 * Non-NCQ commands cannot run with any other command, NCQ or 4430 * not. As upper layer only knows the queue depth, we are 4431 * responsible for maintaining exclusion. This function checks 4432 * whether a new command @qc can be issued. 4433 * 4434 * LOCKING: 4435 * spin_lock_irqsave(host lock) 4436 * 4437 * RETURNS: 4438 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4439 */ 4440 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4441 { 4442 struct ata_link *link = qc->dev->link; 4443 4444 if (ata_is_ncq(qc->tf.protocol)) { 4445 if (!ata_tag_valid(link->active_tag)) 4446 return 0; 4447 } else { 4448 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4449 return 0; 4450 } 4451 4452 return ATA_DEFER_LINK; 4453 } 4454 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4455 4456 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4457 { 4458 return AC_ERR_OK; 4459 } 4460 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4461 4462 /** 4463 * ata_sg_init - Associate command with scatter-gather table. 4464 * @qc: Command to be associated 4465 * @sg: Scatter-gather table. 4466 * @n_elem: Number of elements in s/g table. 4467 * 4468 * Initialize the data-related elements of queued_cmd @qc 4469 * to point to a scatter-gather table @sg, containing @n_elem 4470 * elements. 4471 * 4472 * LOCKING: 4473 * spin_lock_irqsave(host lock) 4474 */ 4475 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4476 unsigned int n_elem) 4477 { 4478 qc->sg = sg; 4479 qc->n_elem = n_elem; 4480 qc->cursg = qc->sg; 4481 } 4482 4483 #ifdef CONFIG_HAS_DMA 4484 4485 /** 4486 * ata_sg_clean - Unmap DMA memory associated with command 4487 * @qc: Command containing DMA memory to be released 4488 * 4489 * Unmap all mapped DMA memory associated with this command. 4490 * 4491 * LOCKING: 4492 * spin_lock_irqsave(host lock) 4493 */ 4494 static void ata_sg_clean(struct ata_queued_cmd *qc) 4495 { 4496 struct ata_port *ap = qc->ap; 4497 struct scatterlist *sg = qc->sg; 4498 int dir = qc->dma_dir; 4499 4500 WARN_ON_ONCE(sg == NULL); 4501 4502 if (qc->n_elem) 4503 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4504 4505 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4506 qc->sg = NULL; 4507 } 4508 4509 /** 4510 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4511 * @qc: Command with scatter-gather table to be mapped. 4512 * 4513 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4514 * 4515 * LOCKING: 4516 * spin_lock_irqsave(host lock) 4517 * 4518 * RETURNS: 4519 * Zero on success, negative on error. 4520 * 4521 */ 4522 static int ata_sg_setup(struct ata_queued_cmd *qc) 4523 { 4524 struct ata_port *ap = qc->ap; 4525 unsigned int n_elem; 4526 4527 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4528 if (n_elem < 1) 4529 return -1; 4530 4531 qc->orig_n_elem = qc->n_elem; 4532 qc->n_elem = n_elem; 4533 qc->flags |= ATA_QCFLAG_DMAMAP; 4534 4535 return 0; 4536 } 4537 4538 #else /* !CONFIG_HAS_DMA */ 4539 4540 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4541 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4542 4543 #endif /* !CONFIG_HAS_DMA */ 4544 4545 /** 4546 * swap_buf_le16 - swap halves of 16-bit words in place 4547 * @buf: Buffer to swap 4548 * @buf_words: Number of 16-bit words in buffer. 4549 * 4550 * Swap halves of 16-bit words if needed to convert from 4551 * little-endian byte order to native cpu byte order, or 4552 * vice-versa. 4553 * 4554 * LOCKING: 4555 * Inherited from caller. 4556 */ 4557 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4558 { 4559 #ifdef __BIG_ENDIAN 4560 unsigned int i; 4561 4562 for (i = 0; i < buf_words; i++) 4563 buf[i] = le16_to_cpu(buf[i]); 4564 #endif /* __BIG_ENDIAN */ 4565 } 4566 4567 /** 4568 * ata_qc_new_init - Request an available ATA command, and initialize it 4569 * @dev: Device from whom we request an available command structure 4570 * @tag: tag 4571 * 4572 * LOCKING: 4573 * None. 4574 */ 4575 4576 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 4577 { 4578 struct ata_port *ap = dev->link->ap; 4579 struct ata_queued_cmd *qc; 4580 4581 /* no command while frozen */ 4582 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4583 return NULL; 4584 4585 /* libsas case */ 4586 if (ap->flags & ATA_FLAG_SAS_HOST) { 4587 tag = ata_sas_allocate_tag(ap); 4588 if (tag < 0) 4589 return NULL; 4590 } 4591 4592 qc = __ata_qc_from_tag(ap, tag); 4593 qc->tag = qc->hw_tag = tag; 4594 qc->scsicmd = NULL; 4595 qc->ap = ap; 4596 qc->dev = dev; 4597 4598 ata_qc_reinit(qc); 4599 4600 return qc; 4601 } 4602 4603 /** 4604 * ata_qc_free - free unused ata_queued_cmd 4605 * @qc: Command to complete 4606 * 4607 * Designed to free unused ata_queued_cmd object 4608 * in case something prevents using it. 4609 * 4610 * LOCKING: 4611 * spin_lock_irqsave(host lock) 4612 */ 4613 void ata_qc_free(struct ata_queued_cmd *qc) 4614 { 4615 struct ata_port *ap; 4616 unsigned int tag; 4617 4618 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4619 ap = qc->ap; 4620 4621 qc->flags = 0; 4622 tag = qc->tag; 4623 if (ata_tag_valid(tag)) { 4624 qc->tag = ATA_TAG_POISON; 4625 if (ap->flags & ATA_FLAG_SAS_HOST) 4626 ata_sas_free_tag(tag, ap); 4627 } 4628 } 4629 4630 void __ata_qc_complete(struct ata_queued_cmd *qc) 4631 { 4632 struct ata_port *ap; 4633 struct ata_link *link; 4634 4635 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4636 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4637 ap = qc->ap; 4638 link = qc->dev->link; 4639 4640 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4641 ata_sg_clean(qc); 4642 4643 /* command should be marked inactive atomically with qc completion */ 4644 if (ata_is_ncq(qc->tf.protocol)) { 4645 link->sactive &= ~(1 << qc->hw_tag); 4646 if (!link->sactive) 4647 ap->nr_active_links--; 4648 } else { 4649 link->active_tag = ATA_TAG_POISON; 4650 ap->nr_active_links--; 4651 } 4652 4653 /* clear exclusive status */ 4654 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4655 ap->excl_link == link)) 4656 ap->excl_link = NULL; 4657 4658 /* atapi: mark qc as inactive to prevent the interrupt handler 4659 * from completing the command twice later, before the error handler 4660 * is called. (when rc != 0 and atapi request sense is needed) 4661 */ 4662 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4663 ap->qc_active &= ~(1ULL << qc->tag); 4664 4665 /* call completion callback */ 4666 qc->complete_fn(qc); 4667 } 4668 4669 static void fill_result_tf(struct ata_queued_cmd *qc) 4670 { 4671 struct ata_port *ap = qc->ap; 4672 4673 qc->result_tf.flags = qc->tf.flags; 4674 ap->ops->qc_fill_rtf(qc); 4675 } 4676 4677 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4678 { 4679 struct ata_device *dev = qc->dev; 4680 4681 if (!ata_is_data(qc->tf.protocol)) 4682 return; 4683 4684 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4685 return; 4686 4687 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4688 } 4689 4690 /** 4691 * ata_qc_complete - Complete an active ATA command 4692 * @qc: Command to complete 4693 * 4694 * Indicate to the mid and upper layers that an ATA command has 4695 * completed, with either an ok or not-ok status. 4696 * 4697 * Refrain from calling this function multiple times when 4698 * successfully completing multiple NCQ commands. 4699 * ata_qc_complete_multiple() should be used instead, which will 4700 * properly update IRQ expect state. 4701 * 4702 * LOCKING: 4703 * spin_lock_irqsave(host lock) 4704 */ 4705 void ata_qc_complete(struct ata_queued_cmd *qc) 4706 { 4707 struct ata_port *ap = qc->ap; 4708 4709 /* Trigger the LED (if available) */ 4710 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4711 4712 /* XXX: New EH and old EH use different mechanisms to 4713 * synchronize EH with regular execution path. 4714 * 4715 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4716 * Normal execution path is responsible for not accessing a 4717 * failed qc. libata core enforces the rule by returning NULL 4718 * from ata_qc_from_tag() for failed qcs. 4719 * 4720 * Old EH depends on ata_qc_complete() nullifying completion 4721 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4722 * not synchronize with interrupt handler. Only PIO task is 4723 * taken care of. 4724 */ 4725 if (ap->ops->error_handler) { 4726 struct ata_device *dev = qc->dev; 4727 struct ata_eh_info *ehi = &dev->link->eh_info; 4728 4729 if (unlikely(qc->err_mask)) 4730 qc->flags |= ATA_QCFLAG_FAILED; 4731 4732 /* 4733 * Finish internal commands without any further processing 4734 * and always with the result TF filled. 4735 */ 4736 if (unlikely(ata_tag_internal(qc->tag))) { 4737 fill_result_tf(qc); 4738 trace_ata_qc_complete_internal(qc); 4739 __ata_qc_complete(qc); 4740 return; 4741 } 4742 4743 /* 4744 * Non-internal qc has failed. Fill the result TF and 4745 * summon EH. 4746 */ 4747 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4748 fill_result_tf(qc); 4749 trace_ata_qc_complete_failed(qc); 4750 ata_qc_schedule_eh(qc); 4751 return; 4752 } 4753 4754 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4755 4756 /* read result TF if requested */ 4757 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4758 fill_result_tf(qc); 4759 4760 trace_ata_qc_complete_done(qc); 4761 /* Some commands need post-processing after successful 4762 * completion. 4763 */ 4764 switch (qc->tf.command) { 4765 case ATA_CMD_SET_FEATURES: 4766 if (qc->tf.feature != SETFEATURES_WC_ON && 4767 qc->tf.feature != SETFEATURES_WC_OFF && 4768 qc->tf.feature != SETFEATURES_RA_ON && 4769 qc->tf.feature != SETFEATURES_RA_OFF) 4770 break; 4771 fallthrough; 4772 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4773 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4774 /* revalidate device */ 4775 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4776 ata_port_schedule_eh(ap); 4777 break; 4778 4779 case ATA_CMD_SLEEP: 4780 dev->flags |= ATA_DFLAG_SLEEPING; 4781 break; 4782 } 4783 4784 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4785 ata_verify_xfer(qc); 4786 4787 __ata_qc_complete(qc); 4788 } else { 4789 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4790 return; 4791 4792 /* read result TF if failed or requested */ 4793 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4794 fill_result_tf(qc); 4795 4796 __ata_qc_complete(qc); 4797 } 4798 } 4799 EXPORT_SYMBOL_GPL(ata_qc_complete); 4800 4801 /** 4802 * ata_qc_get_active - get bitmask of active qcs 4803 * @ap: port in question 4804 * 4805 * LOCKING: 4806 * spin_lock_irqsave(host lock) 4807 * 4808 * RETURNS: 4809 * Bitmask of active qcs 4810 */ 4811 u64 ata_qc_get_active(struct ata_port *ap) 4812 { 4813 u64 qc_active = ap->qc_active; 4814 4815 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4816 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4817 qc_active |= (1 << 0); 4818 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4819 } 4820 4821 return qc_active; 4822 } 4823 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4824 4825 /** 4826 * ata_qc_issue - issue taskfile to device 4827 * @qc: command to issue to device 4828 * 4829 * Prepare an ATA command to submission to device. 4830 * This includes mapping the data into a DMA-able 4831 * area, filling in the S/G table, and finally 4832 * writing the taskfile to hardware, starting the command. 4833 * 4834 * LOCKING: 4835 * spin_lock_irqsave(host lock) 4836 */ 4837 void ata_qc_issue(struct ata_queued_cmd *qc) 4838 { 4839 struct ata_port *ap = qc->ap; 4840 struct ata_link *link = qc->dev->link; 4841 u8 prot = qc->tf.protocol; 4842 4843 /* Make sure only one non-NCQ command is outstanding. The 4844 * check is skipped for old EH because it reuses active qc to 4845 * request ATAPI sense. 4846 */ 4847 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4848 4849 if (ata_is_ncq(prot)) { 4850 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4851 4852 if (!link->sactive) 4853 ap->nr_active_links++; 4854 link->sactive |= 1 << qc->hw_tag; 4855 } else { 4856 WARN_ON_ONCE(link->sactive); 4857 4858 ap->nr_active_links++; 4859 link->active_tag = qc->tag; 4860 } 4861 4862 qc->flags |= ATA_QCFLAG_ACTIVE; 4863 ap->qc_active |= 1ULL << qc->tag; 4864 4865 /* 4866 * We guarantee to LLDs that they will have at least one 4867 * non-zero sg if the command is a data command. 4868 */ 4869 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4870 goto sys_err; 4871 4872 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4873 (ap->flags & ATA_FLAG_PIO_DMA))) 4874 if (ata_sg_setup(qc)) 4875 goto sys_err; 4876 4877 /* if device is sleeping, schedule reset and abort the link */ 4878 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4879 link->eh_info.action |= ATA_EH_RESET; 4880 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4881 ata_link_abort(link); 4882 return; 4883 } 4884 4885 trace_ata_qc_prep(qc); 4886 qc->err_mask |= ap->ops->qc_prep(qc); 4887 if (unlikely(qc->err_mask)) 4888 goto err; 4889 trace_ata_qc_issue(qc); 4890 qc->err_mask |= ap->ops->qc_issue(qc); 4891 if (unlikely(qc->err_mask)) 4892 goto err; 4893 return; 4894 4895 sys_err: 4896 qc->err_mask |= AC_ERR_SYSTEM; 4897 err: 4898 ata_qc_complete(qc); 4899 } 4900 4901 /** 4902 * ata_phys_link_online - test whether the given link is online 4903 * @link: ATA link to test 4904 * 4905 * Test whether @link is online. Note that this function returns 4906 * 0 if online status of @link cannot be obtained, so 4907 * ata_link_online(link) != !ata_link_offline(link). 4908 * 4909 * LOCKING: 4910 * None. 4911 * 4912 * RETURNS: 4913 * True if the port online status is available and online. 4914 */ 4915 bool ata_phys_link_online(struct ata_link *link) 4916 { 4917 u32 sstatus; 4918 4919 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4920 ata_sstatus_online(sstatus)) 4921 return true; 4922 return false; 4923 } 4924 4925 /** 4926 * ata_phys_link_offline - test whether the given link is offline 4927 * @link: ATA link to test 4928 * 4929 * Test whether @link is offline. Note that this function 4930 * returns 0 if offline status of @link cannot be obtained, so 4931 * ata_link_online(link) != !ata_link_offline(link). 4932 * 4933 * LOCKING: 4934 * None. 4935 * 4936 * RETURNS: 4937 * True if the port offline status is available and offline. 4938 */ 4939 bool ata_phys_link_offline(struct ata_link *link) 4940 { 4941 u32 sstatus; 4942 4943 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4944 !ata_sstatus_online(sstatus)) 4945 return true; 4946 return false; 4947 } 4948 4949 /** 4950 * ata_link_online - test whether the given link is online 4951 * @link: ATA link to test 4952 * 4953 * Test whether @link is online. This is identical to 4954 * ata_phys_link_online() when there's no slave link. When 4955 * there's a slave link, this function should only be called on 4956 * the master link and will return true if any of M/S links is 4957 * online. 4958 * 4959 * LOCKING: 4960 * None. 4961 * 4962 * RETURNS: 4963 * True if the port online status is available and online. 4964 */ 4965 bool ata_link_online(struct ata_link *link) 4966 { 4967 struct ata_link *slave = link->ap->slave_link; 4968 4969 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4970 4971 return ata_phys_link_online(link) || 4972 (slave && ata_phys_link_online(slave)); 4973 } 4974 EXPORT_SYMBOL_GPL(ata_link_online); 4975 4976 /** 4977 * ata_link_offline - test whether the given link is offline 4978 * @link: ATA link to test 4979 * 4980 * Test whether @link is offline. This is identical to 4981 * ata_phys_link_offline() when there's no slave link. When 4982 * there's a slave link, this function should only be called on 4983 * the master link and will return true if both M/S links are 4984 * offline. 4985 * 4986 * LOCKING: 4987 * None. 4988 * 4989 * RETURNS: 4990 * True if the port offline status is available and offline. 4991 */ 4992 bool ata_link_offline(struct ata_link *link) 4993 { 4994 struct ata_link *slave = link->ap->slave_link; 4995 4996 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4997 4998 return ata_phys_link_offline(link) && 4999 (!slave || ata_phys_link_offline(slave)); 5000 } 5001 EXPORT_SYMBOL_GPL(ata_link_offline); 5002 5003 #ifdef CONFIG_PM 5004 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5005 unsigned int action, unsigned int ehi_flags, 5006 bool async) 5007 { 5008 struct ata_link *link; 5009 unsigned long flags; 5010 5011 /* Previous resume operation might still be in 5012 * progress. Wait for PM_PENDING to clear. 5013 */ 5014 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5015 ata_port_wait_eh(ap); 5016 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5017 } 5018 5019 /* request PM ops to EH */ 5020 spin_lock_irqsave(ap->lock, flags); 5021 5022 ap->pm_mesg = mesg; 5023 ap->pflags |= ATA_PFLAG_PM_PENDING; 5024 ata_for_each_link(link, ap, HOST_FIRST) { 5025 link->eh_info.action |= action; 5026 link->eh_info.flags |= ehi_flags; 5027 } 5028 5029 ata_port_schedule_eh(ap); 5030 5031 spin_unlock_irqrestore(ap->lock, flags); 5032 5033 if (!async) { 5034 ata_port_wait_eh(ap); 5035 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5036 } 5037 } 5038 5039 /* 5040 * On some hardware, device fails to respond after spun down for suspend. As 5041 * the device won't be used before being resumed, we don't need to touch the 5042 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5043 * 5044 * http://thread.gmane.org/gmane.linux.ide/46764 5045 */ 5046 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5047 | ATA_EHI_NO_AUTOPSY 5048 | ATA_EHI_NO_RECOVERY; 5049 5050 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5051 { 5052 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5053 } 5054 5055 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5056 { 5057 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5058 } 5059 5060 static int ata_port_pm_suspend(struct device *dev) 5061 { 5062 struct ata_port *ap = to_ata_port(dev); 5063 5064 if (pm_runtime_suspended(dev)) 5065 return 0; 5066 5067 ata_port_suspend(ap, PMSG_SUSPEND); 5068 return 0; 5069 } 5070 5071 static int ata_port_pm_freeze(struct device *dev) 5072 { 5073 struct ata_port *ap = to_ata_port(dev); 5074 5075 if (pm_runtime_suspended(dev)) 5076 return 0; 5077 5078 ata_port_suspend(ap, PMSG_FREEZE); 5079 return 0; 5080 } 5081 5082 static int ata_port_pm_poweroff(struct device *dev) 5083 { 5084 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5085 return 0; 5086 } 5087 5088 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5089 | ATA_EHI_QUIET; 5090 5091 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5092 { 5093 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5094 } 5095 5096 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5097 { 5098 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5099 } 5100 5101 static int ata_port_pm_resume(struct device *dev) 5102 { 5103 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5104 pm_runtime_disable(dev); 5105 pm_runtime_set_active(dev); 5106 pm_runtime_enable(dev); 5107 return 0; 5108 } 5109 5110 /* 5111 * For ODDs, the upper layer will poll for media change every few seconds, 5112 * which will make it enter and leave suspend state every few seconds. And 5113 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5114 * is very little and the ODD may malfunction after constantly being reset. 5115 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5116 * ODD is attached to the port. 5117 */ 5118 static int ata_port_runtime_idle(struct device *dev) 5119 { 5120 struct ata_port *ap = to_ata_port(dev); 5121 struct ata_link *link; 5122 struct ata_device *adev; 5123 5124 ata_for_each_link(link, ap, HOST_FIRST) { 5125 ata_for_each_dev(adev, link, ENABLED) 5126 if (adev->class == ATA_DEV_ATAPI && 5127 !zpodd_dev_enabled(adev)) 5128 return -EBUSY; 5129 } 5130 5131 return 0; 5132 } 5133 5134 static int ata_port_runtime_suspend(struct device *dev) 5135 { 5136 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5137 return 0; 5138 } 5139 5140 static int ata_port_runtime_resume(struct device *dev) 5141 { 5142 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5143 return 0; 5144 } 5145 5146 static const struct dev_pm_ops ata_port_pm_ops = { 5147 .suspend = ata_port_pm_suspend, 5148 .resume = ata_port_pm_resume, 5149 .freeze = ata_port_pm_freeze, 5150 .thaw = ata_port_pm_resume, 5151 .poweroff = ata_port_pm_poweroff, 5152 .restore = ata_port_pm_resume, 5153 5154 .runtime_suspend = ata_port_runtime_suspend, 5155 .runtime_resume = ata_port_runtime_resume, 5156 .runtime_idle = ata_port_runtime_idle, 5157 }; 5158 5159 /* sas ports don't participate in pm runtime management of ata_ports, 5160 * and need to resume ata devices at the domain level, not the per-port 5161 * level. sas suspend/resume is async to allow parallel port recovery 5162 * since sas has multiple ata_port instances per Scsi_Host. 5163 */ 5164 void ata_sas_port_suspend(struct ata_port *ap) 5165 { 5166 ata_port_suspend_async(ap, PMSG_SUSPEND); 5167 } 5168 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5169 5170 void ata_sas_port_resume(struct ata_port *ap) 5171 { 5172 ata_port_resume_async(ap, PMSG_RESUME); 5173 } 5174 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5175 5176 /** 5177 * ata_host_suspend - suspend host 5178 * @host: host to suspend 5179 * @mesg: PM message 5180 * 5181 * Suspend @host. Actual operation is performed by port suspend. 5182 */ 5183 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5184 { 5185 host->dev->power.power_state = mesg; 5186 return 0; 5187 } 5188 EXPORT_SYMBOL_GPL(ata_host_suspend); 5189 5190 /** 5191 * ata_host_resume - resume host 5192 * @host: host to resume 5193 * 5194 * Resume @host. Actual operation is performed by port resume. 5195 */ 5196 void ata_host_resume(struct ata_host *host) 5197 { 5198 host->dev->power.power_state = PMSG_ON; 5199 } 5200 EXPORT_SYMBOL_GPL(ata_host_resume); 5201 #endif 5202 5203 const struct device_type ata_port_type = { 5204 .name = "ata_port", 5205 #ifdef CONFIG_PM 5206 .pm = &ata_port_pm_ops, 5207 #endif 5208 }; 5209 5210 /** 5211 * ata_dev_init - Initialize an ata_device structure 5212 * @dev: Device structure to initialize 5213 * 5214 * Initialize @dev in preparation for probing. 5215 * 5216 * LOCKING: 5217 * Inherited from caller. 5218 */ 5219 void ata_dev_init(struct ata_device *dev) 5220 { 5221 struct ata_link *link = ata_dev_phys_link(dev); 5222 struct ata_port *ap = link->ap; 5223 unsigned long flags; 5224 5225 /* SATA spd limit is bound to the attached device, reset together */ 5226 link->sata_spd_limit = link->hw_sata_spd_limit; 5227 link->sata_spd = 0; 5228 5229 /* High bits of dev->flags are used to record warm plug 5230 * requests which occur asynchronously. Synchronize using 5231 * host lock. 5232 */ 5233 spin_lock_irqsave(ap->lock, flags); 5234 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5235 dev->horkage = 0; 5236 spin_unlock_irqrestore(ap->lock, flags); 5237 5238 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5239 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5240 dev->pio_mask = UINT_MAX; 5241 dev->mwdma_mask = UINT_MAX; 5242 dev->udma_mask = UINT_MAX; 5243 } 5244 5245 /** 5246 * ata_link_init - Initialize an ata_link structure 5247 * @ap: ATA port link is attached to 5248 * @link: Link structure to initialize 5249 * @pmp: Port multiplier port number 5250 * 5251 * Initialize @link. 5252 * 5253 * LOCKING: 5254 * Kernel thread context (may sleep) 5255 */ 5256 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5257 { 5258 int i; 5259 5260 /* clear everything except for devices */ 5261 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5262 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5263 5264 link->ap = ap; 5265 link->pmp = pmp; 5266 link->active_tag = ATA_TAG_POISON; 5267 link->hw_sata_spd_limit = UINT_MAX; 5268 5269 /* can't use iterator, ap isn't initialized yet */ 5270 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5271 struct ata_device *dev = &link->device[i]; 5272 5273 dev->link = link; 5274 dev->devno = dev - link->device; 5275 #ifdef CONFIG_ATA_ACPI 5276 dev->gtf_filter = ata_acpi_gtf_filter; 5277 #endif 5278 ata_dev_init(dev); 5279 } 5280 } 5281 5282 /** 5283 * sata_link_init_spd - Initialize link->sata_spd_limit 5284 * @link: Link to configure sata_spd_limit for 5285 * 5286 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5287 * configured value. 5288 * 5289 * LOCKING: 5290 * Kernel thread context (may sleep). 5291 * 5292 * RETURNS: 5293 * 0 on success, -errno on failure. 5294 */ 5295 int sata_link_init_spd(struct ata_link *link) 5296 { 5297 u8 spd; 5298 int rc; 5299 5300 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5301 if (rc) 5302 return rc; 5303 5304 spd = (link->saved_scontrol >> 4) & 0xf; 5305 if (spd) 5306 link->hw_sata_spd_limit &= (1 << spd) - 1; 5307 5308 ata_force_link_limits(link); 5309 5310 link->sata_spd_limit = link->hw_sata_spd_limit; 5311 5312 return 0; 5313 } 5314 5315 /** 5316 * ata_port_alloc - allocate and initialize basic ATA port resources 5317 * @host: ATA host this allocated port belongs to 5318 * 5319 * Allocate and initialize basic ATA port resources. 5320 * 5321 * RETURNS: 5322 * Allocate ATA port on success, NULL on failure. 5323 * 5324 * LOCKING: 5325 * Inherited from calling layer (may sleep). 5326 */ 5327 struct ata_port *ata_port_alloc(struct ata_host *host) 5328 { 5329 struct ata_port *ap; 5330 5331 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5332 if (!ap) 5333 return NULL; 5334 5335 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5336 ap->lock = &host->lock; 5337 ap->print_id = -1; 5338 ap->local_port_no = -1; 5339 ap->host = host; 5340 ap->dev = host->dev; 5341 5342 mutex_init(&ap->scsi_scan_mutex); 5343 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5344 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5345 INIT_LIST_HEAD(&ap->eh_done_q); 5346 init_waitqueue_head(&ap->eh_wait_q); 5347 init_completion(&ap->park_req_pending); 5348 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5349 TIMER_DEFERRABLE); 5350 5351 ap->cbl = ATA_CBL_NONE; 5352 5353 ata_link_init(ap, &ap->link, 0); 5354 5355 #ifdef ATA_IRQ_TRAP 5356 ap->stats.unhandled_irq = 1; 5357 ap->stats.idle_irq = 1; 5358 #endif 5359 ata_sff_port_init(ap); 5360 5361 return ap; 5362 } 5363 5364 static void ata_devres_release(struct device *gendev, void *res) 5365 { 5366 struct ata_host *host = dev_get_drvdata(gendev); 5367 int i; 5368 5369 for (i = 0; i < host->n_ports; i++) { 5370 struct ata_port *ap = host->ports[i]; 5371 5372 if (!ap) 5373 continue; 5374 5375 if (ap->scsi_host) 5376 scsi_host_put(ap->scsi_host); 5377 5378 } 5379 5380 dev_set_drvdata(gendev, NULL); 5381 ata_host_put(host); 5382 } 5383 5384 static void ata_host_release(struct kref *kref) 5385 { 5386 struct ata_host *host = container_of(kref, struct ata_host, kref); 5387 int i; 5388 5389 for (i = 0; i < host->n_ports; i++) { 5390 struct ata_port *ap = host->ports[i]; 5391 5392 kfree(ap->pmp_link); 5393 kfree(ap->slave_link); 5394 kfree(ap); 5395 host->ports[i] = NULL; 5396 } 5397 kfree(host); 5398 } 5399 5400 void ata_host_get(struct ata_host *host) 5401 { 5402 kref_get(&host->kref); 5403 } 5404 5405 void ata_host_put(struct ata_host *host) 5406 { 5407 kref_put(&host->kref, ata_host_release); 5408 } 5409 EXPORT_SYMBOL_GPL(ata_host_put); 5410 5411 /** 5412 * ata_host_alloc - allocate and init basic ATA host resources 5413 * @dev: generic device this host is associated with 5414 * @max_ports: maximum number of ATA ports associated with this host 5415 * 5416 * Allocate and initialize basic ATA host resources. LLD calls 5417 * this function to allocate a host, initializes it fully and 5418 * attaches it using ata_host_register(). 5419 * 5420 * @max_ports ports are allocated and host->n_ports is 5421 * initialized to @max_ports. The caller is allowed to decrease 5422 * host->n_ports before calling ata_host_register(). The unused 5423 * ports will be automatically freed on registration. 5424 * 5425 * RETURNS: 5426 * Allocate ATA host on success, NULL on failure. 5427 * 5428 * LOCKING: 5429 * Inherited from calling layer (may sleep). 5430 */ 5431 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5432 { 5433 struct ata_host *host; 5434 size_t sz; 5435 int i; 5436 void *dr; 5437 5438 /* alloc a container for our list of ATA ports (buses) */ 5439 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5440 host = kzalloc(sz, GFP_KERNEL); 5441 if (!host) 5442 return NULL; 5443 5444 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5445 goto err_free; 5446 5447 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5448 if (!dr) 5449 goto err_out; 5450 5451 devres_add(dev, dr); 5452 dev_set_drvdata(dev, host); 5453 5454 spin_lock_init(&host->lock); 5455 mutex_init(&host->eh_mutex); 5456 host->dev = dev; 5457 host->n_ports = max_ports; 5458 kref_init(&host->kref); 5459 5460 /* allocate ports bound to this host */ 5461 for (i = 0; i < max_ports; i++) { 5462 struct ata_port *ap; 5463 5464 ap = ata_port_alloc(host); 5465 if (!ap) 5466 goto err_out; 5467 5468 ap->port_no = i; 5469 host->ports[i] = ap; 5470 } 5471 5472 devres_remove_group(dev, NULL); 5473 return host; 5474 5475 err_out: 5476 devres_release_group(dev, NULL); 5477 err_free: 5478 kfree(host); 5479 return NULL; 5480 } 5481 EXPORT_SYMBOL_GPL(ata_host_alloc); 5482 5483 /** 5484 * ata_host_alloc_pinfo - alloc host and init with port_info array 5485 * @dev: generic device this host is associated with 5486 * @ppi: array of ATA port_info to initialize host with 5487 * @n_ports: number of ATA ports attached to this host 5488 * 5489 * Allocate ATA host and initialize with info from @ppi. If NULL 5490 * terminated, @ppi may contain fewer entries than @n_ports. The 5491 * last entry will be used for the remaining ports. 5492 * 5493 * RETURNS: 5494 * Allocate ATA host on success, NULL on failure. 5495 * 5496 * LOCKING: 5497 * Inherited from calling layer (may sleep). 5498 */ 5499 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5500 const struct ata_port_info * const * ppi, 5501 int n_ports) 5502 { 5503 const struct ata_port_info *pi; 5504 struct ata_host *host; 5505 int i, j; 5506 5507 host = ata_host_alloc(dev, n_ports); 5508 if (!host) 5509 return NULL; 5510 5511 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5512 struct ata_port *ap = host->ports[i]; 5513 5514 if (ppi[j]) 5515 pi = ppi[j++]; 5516 5517 ap->pio_mask = pi->pio_mask; 5518 ap->mwdma_mask = pi->mwdma_mask; 5519 ap->udma_mask = pi->udma_mask; 5520 ap->flags |= pi->flags; 5521 ap->link.flags |= pi->link_flags; 5522 ap->ops = pi->port_ops; 5523 5524 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5525 host->ops = pi->port_ops; 5526 } 5527 5528 return host; 5529 } 5530 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5531 5532 static void ata_host_stop(struct device *gendev, void *res) 5533 { 5534 struct ata_host *host = dev_get_drvdata(gendev); 5535 int i; 5536 5537 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5538 5539 for (i = 0; i < host->n_ports; i++) { 5540 struct ata_port *ap = host->ports[i]; 5541 5542 if (ap->ops->port_stop) 5543 ap->ops->port_stop(ap); 5544 } 5545 5546 if (host->ops->host_stop) 5547 host->ops->host_stop(host); 5548 } 5549 5550 /** 5551 * ata_finalize_port_ops - finalize ata_port_operations 5552 * @ops: ata_port_operations to finalize 5553 * 5554 * An ata_port_operations can inherit from another ops and that 5555 * ops can again inherit from another. This can go on as many 5556 * times as necessary as long as there is no loop in the 5557 * inheritance chain. 5558 * 5559 * Ops tables are finalized when the host is started. NULL or 5560 * unspecified entries are inherited from the closet ancestor 5561 * which has the method and the entry is populated with it. 5562 * After finalization, the ops table directly points to all the 5563 * methods and ->inherits is no longer necessary and cleared. 5564 * 5565 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5566 * 5567 * LOCKING: 5568 * None. 5569 */ 5570 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5571 { 5572 static DEFINE_SPINLOCK(lock); 5573 const struct ata_port_operations *cur; 5574 void **begin = (void **)ops; 5575 void **end = (void **)&ops->inherits; 5576 void **pp; 5577 5578 if (!ops || !ops->inherits) 5579 return; 5580 5581 spin_lock(&lock); 5582 5583 for (cur = ops->inherits; cur; cur = cur->inherits) { 5584 void **inherit = (void **)cur; 5585 5586 for (pp = begin; pp < end; pp++, inherit++) 5587 if (!*pp) 5588 *pp = *inherit; 5589 } 5590 5591 for (pp = begin; pp < end; pp++) 5592 if (IS_ERR(*pp)) 5593 *pp = NULL; 5594 5595 ops->inherits = NULL; 5596 5597 spin_unlock(&lock); 5598 } 5599 5600 /** 5601 * ata_host_start - start and freeze ports of an ATA host 5602 * @host: ATA host to start ports for 5603 * 5604 * Start and then freeze ports of @host. Started status is 5605 * recorded in host->flags, so this function can be called 5606 * multiple times. Ports are guaranteed to get started only 5607 * once. If host->ops isn't initialized yet, its set to the 5608 * first non-dummy port ops. 5609 * 5610 * LOCKING: 5611 * Inherited from calling layer (may sleep). 5612 * 5613 * RETURNS: 5614 * 0 if all ports are started successfully, -errno otherwise. 5615 */ 5616 int ata_host_start(struct ata_host *host) 5617 { 5618 int have_stop = 0; 5619 void *start_dr = NULL; 5620 int i, rc; 5621 5622 if (host->flags & ATA_HOST_STARTED) 5623 return 0; 5624 5625 ata_finalize_port_ops(host->ops); 5626 5627 for (i = 0; i < host->n_ports; i++) { 5628 struct ata_port *ap = host->ports[i]; 5629 5630 ata_finalize_port_ops(ap->ops); 5631 5632 if (!host->ops && !ata_port_is_dummy(ap)) 5633 host->ops = ap->ops; 5634 5635 if (ap->ops->port_stop) 5636 have_stop = 1; 5637 } 5638 5639 if (host->ops && host->ops->host_stop) 5640 have_stop = 1; 5641 5642 if (have_stop) { 5643 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5644 if (!start_dr) 5645 return -ENOMEM; 5646 } 5647 5648 for (i = 0; i < host->n_ports; i++) { 5649 struct ata_port *ap = host->ports[i]; 5650 5651 if (ap->ops->port_start) { 5652 rc = ap->ops->port_start(ap); 5653 if (rc) { 5654 if (rc != -ENODEV) 5655 dev_err(host->dev, 5656 "failed to start port %d (errno=%d)\n", 5657 i, rc); 5658 goto err_out; 5659 } 5660 } 5661 ata_eh_freeze_port(ap); 5662 } 5663 5664 if (start_dr) 5665 devres_add(host->dev, start_dr); 5666 host->flags |= ATA_HOST_STARTED; 5667 return 0; 5668 5669 err_out: 5670 while (--i >= 0) { 5671 struct ata_port *ap = host->ports[i]; 5672 5673 if (ap->ops->port_stop) 5674 ap->ops->port_stop(ap); 5675 } 5676 devres_free(start_dr); 5677 return rc; 5678 } 5679 EXPORT_SYMBOL_GPL(ata_host_start); 5680 5681 /** 5682 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5683 * @host: host to initialize 5684 * @dev: device host is attached to 5685 * @ops: port_ops 5686 * 5687 */ 5688 void ata_host_init(struct ata_host *host, struct device *dev, 5689 struct ata_port_operations *ops) 5690 { 5691 spin_lock_init(&host->lock); 5692 mutex_init(&host->eh_mutex); 5693 host->n_tags = ATA_MAX_QUEUE; 5694 host->dev = dev; 5695 host->ops = ops; 5696 kref_init(&host->kref); 5697 } 5698 EXPORT_SYMBOL_GPL(ata_host_init); 5699 5700 void __ata_port_probe(struct ata_port *ap) 5701 { 5702 struct ata_eh_info *ehi = &ap->link.eh_info; 5703 unsigned long flags; 5704 5705 /* kick EH for boot probing */ 5706 spin_lock_irqsave(ap->lock, flags); 5707 5708 ehi->probe_mask |= ATA_ALL_DEVICES; 5709 ehi->action |= ATA_EH_RESET; 5710 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5711 5712 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5713 ap->pflags |= ATA_PFLAG_LOADING; 5714 ata_port_schedule_eh(ap); 5715 5716 spin_unlock_irqrestore(ap->lock, flags); 5717 } 5718 5719 int ata_port_probe(struct ata_port *ap) 5720 { 5721 int rc = 0; 5722 5723 if (ap->ops->error_handler) { 5724 __ata_port_probe(ap); 5725 ata_port_wait_eh(ap); 5726 } else { 5727 rc = ata_bus_probe(ap); 5728 } 5729 return rc; 5730 } 5731 5732 5733 static void async_port_probe(void *data, async_cookie_t cookie) 5734 { 5735 struct ata_port *ap = data; 5736 5737 /* 5738 * If we're not allowed to scan this host in parallel, 5739 * we need to wait until all previous scans have completed 5740 * before going further. 5741 * Jeff Garzik says this is only within a controller, so we 5742 * don't need to wait for port 0, only for later ports. 5743 */ 5744 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5745 async_synchronize_cookie(cookie); 5746 5747 (void)ata_port_probe(ap); 5748 5749 /* in order to keep device order, we need to synchronize at this point */ 5750 async_synchronize_cookie(cookie); 5751 5752 ata_scsi_scan_host(ap, 1); 5753 } 5754 5755 /** 5756 * ata_host_register - register initialized ATA host 5757 * @host: ATA host to register 5758 * @sht: template for SCSI host 5759 * 5760 * Register initialized ATA host. @host is allocated using 5761 * ata_host_alloc() and fully initialized by LLD. This function 5762 * starts ports, registers @host with ATA and SCSI layers and 5763 * probe registered devices. 5764 * 5765 * LOCKING: 5766 * Inherited from calling layer (may sleep). 5767 * 5768 * RETURNS: 5769 * 0 on success, -errno otherwise. 5770 */ 5771 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5772 { 5773 int i, rc; 5774 5775 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5776 5777 /* host must have been started */ 5778 if (!(host->flags & ATA_HOST_STARTED)) { 5779 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5780 WARN_ON(1); 5781 return -EINVAL; 5782 } 5783 5784 /* Blow away unused ports. This happens when LLD can't 5785 * determine the exact number of ports to allocate at 5786 * allocation time. 5787 */ 5788 for (i = host->n_ports; host->ports[i]; i++) 5789 kfree(host->ports[i]); 5790 5791 /* give ports names and add SCSI hosts */ 5792 for (i = 0; i < host->n_ports; i++) { 5793 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5794 host->ports[i]->local_port_no = i + 1; 5795 } 5796 5797 /* Create associated sysfs transport objects */ 5798 for (i = 0; i < host->n_ports; i++) { 5799 rc = ata_tport_add(host->dev,host->ports[i]); 5800 if (rc) { 5801 goto err_tadd; 5802 } 5803 } 5804 5805 rc = ata_scsi_add_hosts(host, sht); 5806 if (rc) 5807 goto err_tadd; 5808 5809 /* set cable, sata_spd_limit and report */ 5810 for (i = 0; i < host->n_ports; i++) { 5811 struct ata_port *ap = host->ports[i]; 5812 unsigned long xfer_mask; 5813 5814 /* set SATA cable type if still unset */ 5815 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5816 ap->cbl = ATA_CBL_SATA; 5817 5818 /* init sata_spd_limit to the current value */ 5819 sata_link_init_spd(&ap->link); 5820 if (ap->slave_link) 5821 sata_link_init_spd(ap->slave_link); 5822 5823 /* print per-port info to dmesg */ 5824 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5825 ap->udma_mask); 5826 5827 if (!ata_port_is_dummy(ap)) { 5828 ata_port_info(ap, "%cATA max %s %s\n", 5829 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5830 ata_mode_string(xfer_mask), 5831 ap->link.eh_info.desc); 5832 ata_ehi_clear_desc(&ap->link.eh_info); 5833 } else 5834 ata_port_info(ap, "DUMMY\n"); 5835 } 5836 5837 /* perform each probe asynchronously */ 5838 for (i = 0; i < host->n_ports; i++) { 5839 struct ata_port *ap = host->ports[i]; 5840 ap->cookie = async_schedule(async_port_probe, ap); 5841 } 5842 5843 return 0; 5844 5845 err_tadd: 5846 while (--i >= 0) { 5847 ata_tport_delete(host->ports[i]); 5848 } 5849 return rc; 5850 5851 } 5852 EXPORT_SYMBOL_GPL(ata_host_register); 5853 5854 /** 5855 * ata_host_activate - start host, request IRQ and register it 5856 * @host: target ATA host 5857 * @irq: IRQ to request 5858 * @irq_handler: irq_handler used when requesting IRQ 5859 * @irq_flags: irq_flags used when requesting IRQ 5860 * @sht: scsi_host_template to use when registering the host 5861 * 5862 * After allocating an ATA host and initializing it, most libata 5863 * LLDs perform three steps to activate the host - start host, 5864 * request IRQ and register it. This helper takes necessary 5865 * arguments and performs the three steps in one go. 5866 * 5867 * An invalid IRQ skips the IRQ registration and expects the host to 5868 * have set polling mode on the port. In this case, @irq_handler 5869 * should be NULL. 5870 * 5871 * LOCKING: 5872 * Inherited from calling layer (may sleep). 5873 * 5874 * RETURNS: 5875 * 0 on success, -errno otherwise. 5876 */ 5877 int ata_host_activate(struct ata_host *host, int irq, 5878 irq_handler_t irq_handler, unsigned long irq_flags, 5879 struct scsi_host_template *sht) 5880 { 5881 int i, rc; 5882 char *irq_desc; 5883 5884 rc = ata_host_start(host); 5885 if (rc) 5886 return rc; 5887 5888 /* Special case for polling mode */ 5889 if (!irq) { 5890 WARN_ON(irq_handler); 5891 return ata_host_register(host, sht); 5892 } 5893 5894 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5895 dev_driver_string(host->dev), 5896 dev_name(host->dev)); 5897 if (!irq_desc) 5898 return -ENOMEM; 5899 5900 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5901 irq_desc, host); 5902 if (rc) 5903 return rc; 5904 5905 for (i = 0; i < host->n_ports; i++) 5906 ata_port_desc(host->ports[i], "irq %d", irq); 5907 5908 rc = ata_host_register(host, sht); 5909 /* if failed, just free the IRQ and leave ports alone */ 5910 if (rc) 5911 devm_free_irq(host->dev, irq, host); 5912 5913 return rc; 5914 } 5915 EXPORT_SYMBOL_GPL(ata_host_activate); 5916 5917 /** 5918 * ata_port_detach - Detach ATA port in preparation of device removal 5919 * @ap: ATA port to be detached 5920 * 5921 * Detach all ATA devices and the associated SCSI devices of @ap; 5922 * then, remove the associated SCSI host. @ap is guaranteed to 5923 * be quiescent on return from this function. 5924 * 5925 * LOCKING: 5926 * Kernel thread context (may sleep). 5927 */ 5928 static void ata_port_detach(struct ata_port *ap) 5929 { 5930 unsigned long flags; 5931 struct ata_link *link; 5932 struct ata_device *dev; 5933 5934 if (!ap->ops->error_handler) 5935 goto skip_eh; 5936 5937 /* tell EH we're leaving & flush EH */ 5938 spin_lock_irqsave(ap->lock, flags); 5939 ap->pflags |= ATA_PFLAG_UNLOADING; 5940 ata_port_schedule_eh(ap); 5941 spin_unlock_irqrestore(ap->lock, flags); 5942 5943 /* wait till EH commits suicide */ 5944 ata_port_wait_eh(ap); 5945 5946 /* it better be dead now */ 5947 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 5948 5949 cancel_delayed_work_sync(&ap->hotplug_task); 5950 5951 skip_eh: 5952 /* clean up zpodd on port removal */ 5953 ata_for_each_link(link, ap, HOST_FIRST) { 5954 ata_for_each_dev(dev, link, ALL) { 5955 if (zpodd_dev_enabled(dev)) 5956 zpodd_exit(dev); 5957 } 5958 } 5959 if (ap->pmp_link) { 5960 int i; 5961 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 5962 ata_tlink_delete(&ap->pmp_link[i]); 5963 } 5964 /* remove the associated SCSI host */ 5965 scsi_remove_host(ap->scsi_host); 5966 ata_tport_delete(ap); 5967 } 5968 5969 /** 5970 * ata_host_detach - Detach all ports of an ATA host 5971 * @host: Host to detach 5972 * 5973 * Detach all ports of @host. 5974 * 5975 * LOCKING: 5976 * Kernel thread context (may sleep). 5977 */ 5978 void ata_host_detach(struct ata_host *host) 5979 { 5980 int i; 5981 5982 for (i = 0; i < host->n_ports; i++) { 5983 /* Ensure ata_port probe has completed */ 5984 async_synchronize_cookie(host->ports[i]->cookie + 1); 5985 ata_port_detach(host->ports[i]); 5986 } 5987 5988 /* the host is dead now, dissociate ACPI */ 5989 ata_acpi_dissociate(host); 5990 } 5991 EXPORT_SYMBOL_GPL(ata_host_detach); 5992 5993 #ifdef CONFIG_PCI 5994 5995 /** 5996 * ata_pci_remove_one - PCI layer callback for device removal 5997 * @pdev: PCI device that was removed 5998 * 5999 * PCI layer indicates to libata via this hook that hot-unplug or 6000 * module unload event has occurred. Detach all ports. Resource 6001 * release is handled via devres. 6002 * 6003 * LOCKING: 6004 * Inherited from PCI layer (may sleep). 6005 */ 6006 void ata_pci_remove_one(struct pci_dev *pdev) 6007 { 6008 struct ata_host *host = pci_get_drvdata(pdev); 6009 6010 ata_host_detach(host); 6011 } 6012 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6013 6014 void ata_pci_shutdown_one(struct pci_dev *pdev) 6015 { 6016 struct ata_host *host = pci_get_drvdata(pdev); 6017 int i; 6018 6019 for (i = 0; i < host->n_ports; i++) { 6020 struct ata_port *ap = host->ports[i]; 6021 6022 ap->pflags |= ATA_PFLAG_FROZEN; 6023 6024 /* Disable port interrupts */ 6025 if (ap->ops->freeze) 6026 ap->ops->freeze(ap); 6027 6028 /* Stop the port DMA engines */ 6029 if (ap->ops->port_stop) 6030 ap->ops->port_stop(ap); 6031 } 6032 } 6033 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6034 6035 /* move to PCI subsystem */ 6036 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6037 { 6038 unsigned long tmp = 0; 6039 6040 switch (bits->width) { 6041 case 1: { 6042 u8 tmp8 = 0; 6043 pci_read_config_byte(pdev, bits->reg, &tmp8); 6044 tmp = tmp8; 6045 break; 6046 } 6047 case 2: { 6048 u16 tmp16 = 0; 6049 pci_read_config_word(pdev, bits->reg, &tmp16); 6050 tmp = tmp16; 6051 break; 6052 } 6053 case 4: { 6054 u32 tmp32 = 0; 6055 pci_read_config_dword(pdev, bits->reg, &tmp32); 6056 tmp = tmp32; 6057 break; 6058 } 6059 6060 default: 6061 return -EINVAL; 6062 } 6063 6064 tmp &= bits->mask; 6065 6066 return (tmp == bits->val) ? 1 : 0; 6067 } 6068 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6069 6070 #ifdef CONFIG_PM 6071 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6072 { 6073 pci_save_state(pdev); 6074 pci_disable_device(pdev); 6075 6076 if (mesg.event & PM_EVENT_SLEEP) 6077 pci_set_power_state(pdev, PCI_D3hot); 6078 } 6079 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6080 6081 int ata_pci_device_do_resume(struct pci_dev *pdev) 6082 { 6083 int rc; 6084 6085 pci_set_power_state(pdev, PCI_D0); 6086 pci_restore_state(pdev); 6087 6088 rc = pcim_enable_device(pdev); 6089 if (rc) { 6090 dev_err(&pdev->dev, 6091 "failed to enable device after resume (%d)\n", rc); 6092 return rc; 6093 } 6094 6095 pci_set_master(pdev); 6096 return 0; 6097 } 6098 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6099 6100 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6101 { 6102 struct ata_host *host = pci_get_drvdata(pdev); 6103 int rc = 0; 6104 6105 rc = ata_host_suspend(host, mesg); 6106 if (rc) 6107 return rc; 6108 6109 ata_pci_device_do_suspend(pdev, mesg); 6110 6111 return 0; 6112 } 6113 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6114 6115 int ata_pci_device_resume(struct pci_dev *pdev) 6116 { 6117 struct ata_host *host = pci_get_drvdata(pdev); 6118 int rc; 6119 6120 rc = ata_pci_device_do_resume(pdev); 6121 if (rc == 0) 6122 ata_host_resume(host); 6123 return rc; 6124 } 6125 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6126 #endif /* CONFIG_PM */ 6127 #endif /* CONFIG_PCI */ 6128 6129 /** 6130 * ata_platform_remove_one - Platform layer callback for device removal 6131 * @pdev: Platform device that was removed 6132 * 6133 * Platform layer indicates to libata via this hook that hot-unplug or 6134 * module unload event has occurred. Detach all ports. Resource 6135 * release is handled via devres. 6136 * 6137 * LOCKING: 6138 * Inherited from platform layer (may sleep). 6139 */ 6140 int ata_platform_remove_one(struct platform_device *pdev) 6141 { 6142 struct ata_host *host = platform_get_drvdata(pdev); 6143 6144 ata_host_detach(host); 6145 6146 return 0; 6147 } 6148 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6149 6150 #ifdef CONFIG_ATA_FORCE 6151 static int __init ata_parse_force_one(char **cur, 6152 struct ata_force_ent *force_ent, 6153 const char **reason) 6154 { 6155 static const struct ata_force_param force_tbl[] __initconst = { 6156 { "40c", .cbl = ATA_CBL_PATA40 }, 6157 { "80c", .cbl = ATA_CBL_PATA80 }, 6158 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6159 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6160 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6161 { "sata", .cbl = ATA_CBL_SATA }, 6162 { "1.5Gbps", .spd_limit = 1 }, 6163 { "3.0Gbps", .spd_limit = 2 }, 6164 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6165 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6166 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6167 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6168 { "noncqati", .horkage_on = ATA_HORKAGE_NO_NCQ_ON_ATI }, 6169 { "ncqati", .horkage_off = ATA_HORKAGE_NO_NCQ_ON_ATI }, 6170 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6171 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6172 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6173 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6174 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6175 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6176 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6177 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6178 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6179 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6180 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6181 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6182 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6183 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6184 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6185 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6186 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6187 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6188 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6189 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6190 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6191 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6192 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6193 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6194 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6195 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6196 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6197 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6198 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6199 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6200 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6201 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6202 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6203 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6204 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6205 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6206 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6207 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6208 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6209 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6210 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6211 }; 6212 char *start = *cur, *p = *cur; 6213 char *id, *val, *endp; 6214 const struct ata_force_param *match_fp = NULL; 6215 int nr_matches = 0, i; 6216 6217 /* find where this param ends and update *cur */ 6218 while (*p != '\0' && *p != ',') 6219 p++; 6220 6221 if (*p == '\0') 6222 *cur = p; 6223 else 6224 *cur = p + 1; 6225 6226 *p = '\0'; 6227 6228 /* parse */ 6229 p = strchr(start, ':'); 6230 if (!p) { 6231 val = strstrip(start); 6232 goto parse_val; 6233 } 6234 *p = '\0'; 6235 6236 id = strstrip(start); 6237 val = strstrip(p + 1); 6238 6239 /* parse id */ 6240 p = strchr(id, '.'); 6241 if (p) { 6242 *p++ = '\0'; 6243 force_ent->device = simple_strtoul(p, &endp, 10); 6244 if (p == endp || *endp != '\0') { 6245 *reason = "invalid device"; 6246 return -EINVAL; 6247 } 6248 } 6249 6250 force_ent->port = simple_strtoul(id, &endp, 10); 6251 if (id == endp || *endp != '\0') { 6252 *reason = "invalid port/link"; 6253 return -EINVAL; 6254 } 6255 6256 parse_val: 6257 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6258 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6259 const struct ata_force_param *fp = &force_tbl[i]; 6260 6261 if (strncasecmp(val, fp->name, strlen(val))) 6262 continue; 6263 6264 nr_matches++; 6265 match_fp = fp; 6266 6267 if (strcasecmp(val, fp->name) == 0) { 6268 nr_matches = 1; 6269 break; 6270 } 6271 } 6272 6273 if (!nr_matches) { 6274 *reason = "unknown value"; 6275 return -EINVAL; 6276 } 6277 if (nr_matches > 1) { 6278 *reason = "ambiguous value"; 6279 return -EINVAL; 6280 } 6281 6282 force_ent->param = *match_fp; 6283 6284 return 0; 6285 } 6286 6287 static void __init ata_parse_force_param(void) 6288 { 6289 int idx = 0, size = 1; 6290 int last_port = -1, last_device = -1; 6291 char *p, *cur, *next; 6292 6293 /* calculate maximum number of params and allocate force_tbl */ 6294 for (p = ata_force_param_buf; *p; p++) 6295 if (*p == ',') 6296 size++; 6297 6298 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6299 if (!ata_force_tbl) { 6300 printk(KERN_WARNING "ata: failed to extend force table, " 6301 "libata.force ignored\n"); 6302 return; 6303 } 6304 6305 /* parse and populate the table */ 6306 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6307 const char *reason = ""; 6308 struct ata_force_ent te = { .port = -1, .device = -1 }; 6309 6310 next = cur; 6311 if (ata_parse_force_one(&next, &te, &reason)) { 6312 printk(KERN_WARNING "ata: failed to parse force " 6313 "parameter \"%s\" (%s)\n", 6314 cur, reason); 6315 continue; 6316 } 6317 6318 if (te.port == -1) { 6319 te.port = last_port; 6320 te.device = last_device; 6321 } 6322 6323 ata_force_tbl[idx++] = te; 6324 6325 last_port = te.port; 6326 last_device = te.device; 6327 } 6328 6329 ata_force_tbl_size = idx; 6330 } 6331 6332 static void ata_free_force_param(void) 6333 { 6334 kfree(ata_force_tbl); 6335 } 6336 #else 6337 static inline void ata_parse_force_param(void) { } 6338 static inline void ata_free_force_param(void) { } 6339 #endif 6340 6341 static int __init ata_init(void) 6342 { 6343 int rc; 6344 6345 ata_parse_force_param(); 6346 6347 rc = ata_sff_init(); 6348 if (rc) { 6349 ata_free_force_param(); 6350 return rc; 6351 } 6352 6353 libata_transport_init(); 6354 ata_scsi_transport_template = ata_attach_transport(); 6355 if (!ata_scsi_transport_template) { 6356 ata_sff_exit(); 6357 rc = -ENOMEM; 6358 goto err_out; 6359 } 6360 6361 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6362 return 0; 6363 6364 err_out: 6365 return rc; 6366 } 6367 6368 static void __exit ata_exit(void) 6369 { 6370 ata_release_transport(ata_scsi_transport_template); 6371 libata_transport_exit(); 6372 ata_sff_exit(); 6373 ata_free_force_param(); 6374 } 6375 6376 subsys_initcall(ata_init); 6377 module_exit(ata_exit); 6378 6379 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6380 6381 int ata_ratelimit(void) 6382 { 6383 return __ratelimit(&ratelimit); 6384 } 6385 EXPORT_SYMBOL_GPL(ata_ratelimit); 6386 6387 /** 6388 * ata_msleep - ATA EH owner aware msleep 6389 * @ap: ATA port to attribute the sleep to 6390 * @msecs: duration to sleep in milliseconds 6391 * 6392 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6393 * ownership is released before going to sleep and reacquired 6394 * after the sleep is complete. IOW, other ports sharing the 6395 * @ap->host will be allowed to own the EH while this task is 6396 * sleeping. 6397 * 6398 * LOCKING: 6399 * Might sleep. 6400 */ 6401 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6402 { 6403 bool owns_eh = ap && ap->host->eh_owner == current; 6404 6405 if (owns_eh) 6406 ata_eh_release(ap); 6407 6408 if (msecs < 20) { 6409 unsigned long usecs = msecs * USEC_PER_MSEC; 6410 usleep_range(usecs, usecs + 50); 6411 } else { 6412 msleep(msecs); 6413 } 6414 6415 if (owns_eh) 6416 ata_eh_acquire(ap); 6417 } 6418 EXPORT_SYMBOL_GPL(ata_msleep); 6419 6420 /** 6421 * ata_wait_register - wait until register value changes 6422 * @ap: ATA port to wait register for, can be NULL 6423 * @reg: IO-mapped register 6424 * @mask: Mask to apply to read register value 6425 * @val: Wait condition 6426 * @interval: polling interval in milliseconds 6427 * @timeout: timeout in milliseconds 6428 * 6429 * Waiting for some bits of register to change is a common 6430 * operation for ATA controllers. This function reads 32bit LE 6431 * IO-mapped register @reg and tests for the following condition. 6432 * 6433 * (*@reg & mask) != val 6434 * 6435 * If the condition is met, it returns; otherwise, the process is 6436 * repeated after @interval_msec until timeout. 6437 * 6438 * LOCKING: 6439 * Kernel thread context (may sleep) 6440 * 6441 * RETURNS: 6442 * The final register value. 6443 */ 6444 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6445 unsigned long interval, unsigned long timeout) 6446 { 6447 unsigned long deadline; 6448 u32 tmp; 6449 6450 tmp = ioread32(reg); 6451 6452 /* Calculate timeout _after_ the first read to make sure 6453 * preceding writes reach the controller before starting to 6454 * eat away the timeout. 6455 */ 6456 deadline = ata_deadline(jiffies, timeout); 6457 6458 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6459 ata_msleep(ap, interval); 6460 tmp = ioread32(reg); 6461 } 6462 6463 return tmp; 6464 } 6465 EXPORT_SYMBOL_GPL(ata_wait_register); 6466 6467 /* 6468 * Dummy port_ops 6469 */ 6470 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6471 { 6472 return AC_ERR_SYSTEM; 6473 } 6474 6475 static void ata_dummy_error_handler(struct ata_port *ap) 6476 { 6477 /* truly dummy */ 6478 } 6479 6480 struct ata_port_operations ata_dummy_port_ops = { 6481 .qc_prep = ata_noop_qc_prep, 6482 .qc_issue = ata_dummy_qc_issue, 6483 .error_handler = ata_dummy_error_handler, 6484 .sched_eh = ata_std_sched_eh, 6485 .end_eh = ata_std_end_eh, 6486 }; 6487 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6488 6489 const struct ata_port_info ata_dummy_port_info = { 6490 .port_ops = &ata_dummy_port_ops, 6491 }; 6492 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6493 6494 void ata_print_version(const struct device *dev, const char *version) 6495 { 6496 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6497 } 6498 EXPORT_SYMBOL(ata_print_version); 6499 6500 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6501 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6502 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6503 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6504 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6505