xref: /openbmc/linux/drivers/ata/libata-core.c (revision f35e839a)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 #include <linux/platform_device.h>
71 
72 #include "libata.h"
73 #include "libata-transport.h"
74 
75 /* debounce timing parameters in msecs { interval, duration, timeout } */
76 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
77 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
78 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
79 
80 const struct ata_port_operations ata_base_port_ops = {
81 	.prereset		= ata_std_prereset,
82 	.postreset		= ata_std_postreset,
83 	.error_handler		= ata_std_error_handler,
84 	.sched_eh		= ata_std_sched_eh,
85 	.end_eh			= ata_std_end_eh,
86 };
87 
88 const struct ata_port_operations sata_port_ops = {
89 	.inherits		= &ata_base_port_ops,
90 
91 	.qc_defer		= ata_std_qc_defer,
92 	.hardreset		= sata_std_hardreset,
93 };
94 
95 static unsigned int ata_dev_init_params(struct ata_device *dev,
96 					u16 heads, u16 sectors);
97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
98 static void ata_dev_xfermask(struct ata_device *dev);
99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
100 
101 atomic_t ata_print_id = ATOMIC_INIT(0);
102 
103 struct ata_force_param {
104 	const char	*name;
105 	unsigned int	cbl;
106 	int		spd_limit;
107 	unsigned long	xfer_mask;
108 	unsigned int	horkage_on;
109 	unsigned int	horkage_off;
110 	unsigned int	lflags;
111 };
112 
113 struct ata_force_ent {
114 	int			port;
115 	int			device;
116 	struct ata_force_param	param;
117 };
118 
119 static struct ata_force_ent *ata_force_tbl;
120 static int ata_force_tbl_size;
121 
122 static char ata_force_param_buf[PAGE_SIZE] __initdata;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126 
127 static int atapi_enabled = 1;
128 module_param(atapi_enabled, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130 
131 static int atapi_dmadir = 0;
132 module_param(atapi_dmadir, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134 
135 int atapi_passthru16 = 1;
136 module_param(atapi_passthru16, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138 
139 int libata_fua = 0;
140 module_param_named(fua, libata_fua, int, 0444);
141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142 
143 static int ata_ignore_hpa;
144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146 
147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148 module_param_named(dma, libata_dma_mask, int, 0444);
149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150 
151 static int ata_probe_timeout;
152 module_param(ata_probe_timeout, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154 
155 int libata_noacpi = 0;
156 module_param_named(noacpi, libata_noacpi, int, 0444);
157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158 
159 int libata_allow_tpm = 0;
160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162 
163 static int atapi_an;
164 module_param(atapi_an, int, 0444);
165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166 
167 MODULE_AUTHOR("Jeff Garzik");
168 MODULE_DESCRIPTION("Library module for ATA devices");
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION);
171 
172 
173 static bool ata_sstatus_online(u32 sstatus)
174 {
175 	return (sstatus & 0xf) == 0x3;
176 }
177 
178 /**
179  *	ata_link_next - link iteration helper
180  *	@link: the previous link, NULL to start
181  *	@ap: ATA port containing links to iterate
182  *	@mode: iteration mode, one of ATA_LITER_*
183  *
184  *	LOCKING:
185  *	Host lock or EH context.
186  *
187  *	RETURNS:
188  *	Pointer to the next link.
189  */
190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 			       enum ata_link_iter_mode mode)
192 {
193 	BUG_ON(mode != ATA_LITER_EDGE &&
194 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195 
196 	/* NULL link indicates start of iteration */
197 	if (!link)
198 		switch (mode) {
199 		case ATA_LITER_EDGE:
200 		case ATA_LITER_PMP_FIRST:
201 			if (sata_pmp_attached(ap))
202 				return ap->pmp_link;
203 			/* fall through */
204 		case ATA_LITER_HOST_FIRST:
205 			return &ap->link;
206 		}
207 
208 	/* we just iterated over the host link, what's next? */
209 	if (link == &ap->link)
210 		switch (mode) {
211 		case ATA_LITER_HOST_FIRST:
212 			if (sata_pmp_attached(ap))
213 				return ap->pmp_link;
214 			/* fall through */
215 		case ATA_LITER_PMP_FIRST:
216 			if (unlikely(ap->slave_link))
217 				return ap->slave_link;
218 			/* fall through */
219 		case ATA_LITER_EDGE:
220 			return NULL;
221 		}
222 
223 	/* slave_link excludes PMP */
224 	if (unlikely(link == ap->slave_link))
225 		return NULL;
226 
227 	/* we were over a PMP link */
228 	if (++link < ap->pmp_link + ap->nr_pmp_links)
229 		return link;
230 
231 	if (mode == ATA_LITER_PMP_FIRST)
232 		return &ap->link;
233 
234 	return NULL;
235 }
236 
237 /**
238  *	ata_dev_next - device iteration helper
239  *	@dev: the previous device, NULL to start
240  *	@link: ATA link containing devices to iterate
241  *	@mode: iteration mode, one of ATA_DITER_*
242  *
243  *	LOCKING:
244  *	Host lock or EH context.
245  *
246  *	RETURNS:
247  *	Pointer to the next device.
248  */
249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 				enum ata_dev_iter_mode mode)
251 {
252 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254 
255 	/* NULL dev indicates start of iteration */
256 	if (!dev)
257 		switch (mode) {
258 		case ATA_DITER_ENABLED:
259 		case ATA_DITER_ALL:
260 			dev = link->device;
261 			goto check;
262 		case ATA_DITER_ENABLED_REVERSE:
263 		case ATA_DITER_ALL_REVERSE:
264 			dev = link->device + ata_link_max_devices(link) - 1;
265 			goto check;
266 		}
267 
268  next:
269 	/* move to the next one */
270 	switch (mode) {
271 	case ATA_DITER_ENABLED:
272 	case ATA_DITER_ALL:
273 		if (++dev < link->device + ata_link_max_devices(link))
274 			goto check;
275 		return NULL;
276 	case ATA_DITER_ENABLED_REVERSE:
277 	case ATA_DITER_ALL_REVERSE:
278 		if (--dev >= link->device)
279 			goto check;
280 		return NULL;
281 	}
282 
283  check:
284 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 	    !ata_dev_enabled(dev))
286 		goto next;
287 	return dev;
288 }
289 
290 /**
291  *	ata_dev_phys_link - find physical link for a device
292  *	@dev: ATA device to look up physical link for
293  *
294  *	Look up physical link which @dev is attached to.  Note that
295  *	this is different from @dev->link only when @dev is on slave
296  *	link.  For all other cases, it's the same as @dev->link.
297  *
298  *	LOCKING:
299  *	Don't care.
300  *
301  *	RETURNS:
302  *	Pointer to the found physical link.
303  */
304 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305 {
306 	struct ata_port *ap = dev->link->ap;
307 
308 	if (!ap->slave_link)
309 		return dev->link;
310 	if (!dev->devno)
311 		return &ap->link;
312 	return ap->slave_link;
313 }
314 
315 /**
316  *	ata_force_cbl - force cable type according to libata.force
317  *	@ap: ATA port of interest
318  *
319  *	Force cable type according to libata.force and whine about it.
320  *	The last entry which has matching port number is used, so it
321  *	can be specified as part of device force parameters.  For
322  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323  *	same effect.
324  *
325  *	LOCKING:
326  *	EH context.
327  */
328 void ata_force_cbl(struct ata_port *ap)
329 {
330 	int i;
331 
332 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 		const struct ata_force_ent *fe = &ata_force_tbl[i];
334 
335 		if (fe->port != -1 && fe->port != ap->print_id)
336 			continue;
337 
338 		if (fe->param.cbl == ATA_CBL_NONE)
339 			continue;
340 
341 		ap->cbl = fe->param.cbl;
342 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 		return;
344 	}
345 }
346 
347 /**
348  *	ata_force_link_limits - force link limits according to libata.force
349  *	@link: ATA link of interest
350  *
351  *	Force link flags and SATA spd limit according to libata.force
352  *	and whine about it.  When only the port part is specified
353  *	(e.g. 1:), the limit applies to all links connected to both
354  *	the host link and all fan-out ports connected via PMP.  If the
355  *	device part is specified as 0 (e.g. 1.00:), it specifies the
356  *	first fan-out link not the host link.  Device number 15 always
357  *	points to the host link whether PMP is attached or not.  If the
358  *	controller has slave link, device number 16 points to it.
359  *
360  *	LOCKING:
361  *	EH context.
362  */
363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 	bool did_spd = false;
366 	int linkno = link->pmp;
367 	int i;
368 
369 	if (ata_is_host_link(link))
370 		linkno += 15;
371 
372 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 		const struct ata_force_ent *fe = &ata_force_tbl[i];
374 
375 		if (fe->port != -1 && fe->port != link->ap->print_id)
376 			continue;
377 
378 		if (fe->device != -1 && fe->device != linkno)
379 			continue;
380 
381 		/* only honor the first spd limit */
382 		if (!did_spd && fe->param.spd_limit) {
383 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 					fe->param.name);
386 			did_spd = true;
387 		}
388 
389 		/* let lflags stack */
390 		if (fe->param.lflags) {
391 			link->flags |= fe->param.lflags;
392 			ata_link_notice(link,
393 					"FORCE: link flag 0x%x forced -> 0x%x\n",
394 					fe->param.lflags, link->flags);
395 		}
396 	}
397 }
398 
399 /**
400  *	ata_force_xfermask - force xfermask according to libata.force
401  *	@dev: ATA device of interest
402  *
403  *	Force xfer_mask according to libata.force and whine about it.
404  *	For consistency with link selection, device number 15 selects
405  *	the first device connected to the host link.
406  *
407  *	LOCKING:
408  *	EH context.
409  */
410 static void ata_force_xfermask(struct ata_device *dev)
411 {
412 	int devno = dev->link->pmp + dev->devno;
413 	int alt_devno = devno;
414 	int i;
415 
416 	/* allow n.15/16 for devices attached to host port */
417 	if (ata_is_host_link(dev->link))
418 		alt_devno += 15;
419 
420 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
421 		const struct ata_force_ent *fe = &ata_force_tbl[i];
422 		unsigned long pio_mask, mwdma_mask, udma_mask;
423 
424 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
425 			continue;
426 
427 		if (fe->device != -1 && fe->device != devno &&
428 		    fe->device != alt_devno)
429 			continue;
430 
431 		if (!fe->param.xfer_mask)
432 			continue;
433 
434 		ata_unpack_xfermask(fe->param.xfer_mask,
435 				    &pio_mask, &mwdma_mask, &udma_mask);
436 		if (udma_mask)
437 			dev->udma_mask = udma_mask;
438 		else if (mwdma_mask) {
439 			dev->udma_mask = 0;
440 			dev->mwdma_mask = mwdma_mask;
441 		} else {
442 			dev->udma_mask = 0;
443 			dev->mwdma_mask = 0;
444 			dev->pio_mask = pio_mask;
445 		}
446 
447 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
448 			       fe->param.name);
449 		return;
450 	}
451 }
452 
453 /**
454  *	ata_force_horkage - force horkage according to libata.force
455  *	@dev: ATA device of interest
456  *
457  *	Force horkage according to libata.force and whine about it.
458  *	For consistency with link selection, device number 15 selects
459  *	the first device connected to the host link.
460  *
461  *	LOCKING:
462  *	EH context.
463  */
464 static void ata_force_horkage(struct ata_device *dev)
465 {
466 	int devno = dev->link->pmp + dev->devno;
467 	int alt_devno = devno;
468 	int i;
469 
470 	/* allow n.15/16 for devices attached to host port */
471 	if (ata_is_host_link(dev->link))
472 		alt_devno += 15;
473 
474 	for (i = 0; i < ata_force_tbl_size; i++) {
475 		const struct ata_force_ent *fe = &ata_force_tbl[i];
476 
477 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
478 			continue;
479 
480 		if (fe->device != -1 && fe->device != devno &&
481 		    fe->device != alt_devno)
482 			continue;
483 
484 		if (!(~dev->horkage & fe->param.horkage_on) &&
485 		    !(dev->horkage & fe->param.horkage_off))
486 			continue;
487 
488 		dev->horkage |= fe->param.horkage_on;
489 		dev->horkage &= ~fe->param.horkage_off;
490 
491 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
492 			       fe->param.name);
493 	}
494 }
495 
496 /**
497  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
498  *	@opcode: SCSI opcode
499  *
500  *	Determine ATAPI command type from @opcode.
501  *
502  *	LOCKING:
503  *	None.
504  *
505  *	RETURNS:
506  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
507  */
508 int atapi_cmd_type(u8 opcode)
509 {
510 	switch (opcode) {
511 	case GPCMD_READ_10:
512 	case GPCMD_READ_12:
513 		return ATAPI_READ;
514 
515 	case GPCMD_WRITE_10:
516 	case GPCMD_WRITE_12:
517 	case GPCMD_WRITE_AND_VERIFY_10:
518 		return ATAPI_WRITE;
519 
520 	case GPCMD_READ_CD:
521 	case GPCMD_READ_CD_MSF:
522 		return ATAPI_READ_CD;
523 
524 	case ATA_16:
525 	case ATA_12:
526 		if (atapi_passthru16)
527 			return ATAPI_PASS_THRU;
528 		/* fall thru */
529 	default:
530 		return ATAPI_MISC;
531 	}
532 }
533 
534 /**
535  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
536  *	@tf: Taskfile to convert
537  *	@pmp: Port multiplier port
538  *	@is_cmd: This FIS is for command
539  *	@fis: Buffer into which data will output
540  *
541  *	Converts a standard ATA taskfile to a Serial ATA
542  *	FIS structure (Register - Host to Device).
543  *
544  *	LOCKING:
545  *	Inherited from caller.
546  */
547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
548 {
549 	fis[0] = 0x27;			/* Register - Host to Device FIS */
550 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
551 	if (is_cmd)
552 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
553 
554 	fis[2] = tf->command;
555 	fis[3] = tf->feature;
556 
557 	fis[4] = tf->lbal;
558 	fis[5] = tf->lbam;
559 	fis[6] = tf->lbah;
560 	fis[7] = tf->device;
561 
562 	fis[8] = tf->hob_lbal;
563 	fis[9] = tf->hob_lbam;
564 	fis[10] = tf->hob_lbah;
565 	fis[11] = tf->hob_feature;
566 
567 	fis[12] = tf->nsect;
568 	fis[13] = tf->hob_nsect;
569 	fis[14] = 0;
570 	fis[15] = tf->ctl;
571 
572 	fis[16] = 0;
573 	fis[17] = 0;
574 	fis[18] = 0;
575 	fis[19] = 0;
576 }
577 
578 /**
579  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
580  *	@fis: Buffer from which data will be input
581  *	@tf: Taskfile to output
582  *
583  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
584  *
585  *	LOCKING:
586  *	Inherited from caller.
587  */
588 
589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
590 {
591 	tf->command	= fis[2];	/* status */
592 	tf->feature	= fis[3];	/* error */
593 
594 	tf->lbal	= fis[4];
595 	tf->lbam	= fis[5];
596 	tf->lbah	= fis[6];
597 	tf->device	= fis[7];
598 
599 	tf->hob_lbal	= fis[8];
600 	tf->hob_lbam	= fis[9];
601 	tf->hob_lbah	= fis[10];
602 
603 	tf->nsect	= fis[12];
604 	tf->hob_nsect	= fis[13];
605 }
606 
607 static const u8 ata_rw_cmds[] = {
608 	/* pio multi */
609 	ATA_CMD_READ_MULTI,
610 	ATA_CMD_WRITE_MULTI,
611 	ATA_CMD_READ_MULTI_EXT,
612 	ATA_CMD_WRITE_MULTI_EXT,
613 	0,
614 	0,
615 	0,
616 	ATA_CMD_WRITE_MULTI_FUA_EXT,
617 	/* pio */
618 	ATA_CMD_PIO_READ,
619 	ATA_CMD_PIO_WRITE,
620 	ATA_CMD_PIO_READ_EXT,
621 	ATA_CMD_PIO_WRITE_EXT,
622 	0,
623 	0,
624 	0,
625 	0,
626 	/* dma */
627 	ATA_CMD_READ,
628 	ATA_CMD_WRITE,
629 	ATA_CMD_READ_EXT,
630 	ATA_CMD_WRITE_EXT,
631 	0,
632 	0,
633 	0,
634 	ATA_CMD_WRITE_FUA_EXT
635 };
636 
637 /**
638  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
639  *	@tf: command to examine and configure
640  *	@dev: device tf belongs to
641  *
642  *	Examine the device configuration and tf->flags to calculate
643  *	the proper read/write commands and protocol to use.
644  *
645  *	LOCKING:
646  *	caller.
647  */
648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
649 {
650 	u8 cmd;
651 
652 	int index, fua, lba48, write;
653 
654 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
655 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
656 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
657 
658 	if (dev->flags & ATA_DFLAG_PIO) {
659 		tf->protocol = ATA_PROT_PIO;
660 		index = dev->multi_count ? 0 : 8;
661 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
662 		/* Unable to use DMA due to host limitation */
663 		tf->protocol = ATA_PROT_PIO;
664 		index = dev->multi_count ? 0 : 8;
665 	} else {
666 		tf->protocol = ATA_PROT_DMA;
667 		index = 16;
668 	}
669 
670 	cmd = ata_rw_cmds[index + fua + lba48 + write];
671 	if (cmd) {
672 		tf->command = cmd;
673 		return 0;
674 	}
675 	return -1;
676 }
677 
678 /**
679  *	ata_tf_read_block - Read block address from ATA taskfile
680  *	@tf: ATA taskfile of interest
681  *	@dev: ATA device @tf belongs to
682  *
683  *	LOCKING:
684  *	None.
685  *
686  *	Read block address from @tf.  This function can handle all
687  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
688  *	flags select the address format to use.
689  *
690  *	RETURNS:
691  *	Block address read from @tf.
692  */
693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
694 {
695 	u64 block = 0;
696 
697 	if (tf->flags & ATA_TFLAG_LBA) {
698 		if (tf->flags & ATA_TFLAG_LBA48) {
699 			block |= (u64)tf->hob_lbah << 40;
700 			block |= (u64)tf->hob_lbam << 32;
701 			block |= (u64)tf->hob_lbal << 24;
702 		} else
703 			block |= (tf->device & 0xf) << 24;
704 
705 		block |= tf->lbah << 16;
706 		block |= tf->lbam << 8;
707 		block |= tf->lbal;
708 	} else {
709 		u32 cyl, head, sect;
710 
711 		cyl = tf->lbam | (tf->lbah << 8);
712 		head = tf->device & 0xf;
713 		sect = tf->lbal;
714 
715 		if (!sect) {
716 			ata_dev_warn(dev,
717 				     "device reported invalid CHS sector 0\n");
718 			sect = 1; /* oh well */
719 		}
720 
721 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
722 	}
723 
724 	return block;
725 }
726 
727 /**
728  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
729  *	@tf: Target ATA taskfile
730  *	@dev: ATA device @tf belongs to
731  *	@block: Block address
732  *	@n_block: Number of blocks
733  *	@tf_flags: RW/FUA etc...
734  *	@tag: tag
735  *
736  *	LOCKING:
737  *	None.
738  *
739  *	Build ATA taskfile @tf for read/write request described by
740  *	@block, @n_block, @tf_flags and @tag on @dev.
741  *
742  *	RETURNS:
743  *
744  *	0 on success, -ERANGE if the request is too large for @dev,
745  *	-EINVAL if the request is invalid.
746  */
747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
748 		    u64 block, u32 n_block, unsigned int tf_flags,
749 		    unsigned int tag)
750 {
751 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
752 	tf->flags |= tf_flags;
753 
754 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
755 		/* yay, NCQ */
756 		if (!lba_48_ok(block, n_block))
757 			return -ERANGE;
758 
759 		tf->protocol = ATA_PROT_NCQ;
760 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
761 
762 		if (tf->flags & ATA_TFLAG_WRITE)
763 			tf->command = ATA_CMD_FPDMA_WRITE;
764 		else
765 			tf->command = ATA_CMD_FPDMA_READ;
766 
767 		tf->nsect = tag << 3;
768 		tf->hob_feature = (n_block >> 8) & 0xff;
769 		tf->feature = n_block & 0xff;
770 
771 		tf->hob_lbah = (block >> 40) & 0xff;
772 		tf->hob_lbam = (block >> 32) & 0xff;
773 		tf->hob_lbal = (block >> 24) & 0xff;
774 		tf->lbah = (block >> 16) & 0xff;
775 		tf->lbam = (block >> 8) & 0xff;
776 		tf->lbal = block & 0xff;
777 
778 		tf->device = ATA_LBA;
779 		if (tf->flags & ATA_TFLAG_FUA)
780 			tf->device |= 1 << 7;
781 	} else if (dev->flags & ATA_DFLAG_LBA) {
782 		tf->flags |= ATA_TFLAG_LBA;
783 
784 		if (lba_28_ok(block, n_block)) {
785 			/* use LBA28 */
786 			tf->device |= (block >> 24) & 0xf;
787 		} else if (lba_48_ok(block, n_block)) {
788 			if (!(dev->flags & ATA_DFLAG_LBA48))
789 				return -ERANGE;
790 
791 			/* use LBA48 */
792 			tf->flags |= ATA_TFLAG_LBA48;
793 
794 			tf->hob_nsect = (n_block >> 8) & 0xff;
795 
796 			tf->hob_lbah = (block >> 40) & 0xff;
797 			tf->hob_lbam = (block >> 32) & 0xff;
798 			tf->hob_lbal = (block >> 24) & 0xff;
799 		} else
800 			/* request too large even for LBA48 */
801 			return -ERANGE;
802 
803 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
804 			return -EINVAL;
805 
806 		tf->nsect = n_block & 0xff;
807 
808 		tf->lbah = (block >> 16) & 0xff;
809 		tf->lbam = (block >> 8) & 0xff;
810 		tf->lbal = block & 0xff;
811 
812 		tf->device |= ATA_LBA;
813 	} else {
814 		/* CHS */
815 		u32 sect, head, cyl, track;
816 
817 		/* The request -may- be too large for CHS addressing. */
818 		if (!lba_28_ok(block, n_block))
819 			return -ERANGE;
820 
821 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
822 			return -EINVAL;
823 
824 		/* Convert LBA to CHS */
825 		track = (u32)block / dev->sectors;
826 		cyl   = track / dev->heads;
827 		head  = track % dev->heads;
828 		sect  = (u32)block % dev->sectors + 1;
829 
830 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
831 			(u32)block, track, cyl, head, sect);
832 
833 		/* Check whether the converted CHS can fit.
834 		   Cylinder: 0-65535
835 		   Head: 0-15
836 		   Sector: 1-255*/
837 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
838 			return -ERANGE;
839 
840 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
841 		tf->lbal = sect;
842 		tf->lbam = cyl;
843 		tf->lbah = cyl >> 8;
844 		tf->device |= head;
845 	}
846 
847 	return 0;
848 }
849 
850 /**
851  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
852  *	@pio_mask: pio_mask
853  *	@mwdma_mask: mwdma_mask
854  *	@udma_mask: udma_mask
855  *
856  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
857  *	unsigned int xfer_mask.
858  *
859  *	LOCKING:
860  *	None.
861  *
862  *	RETURNS:
863  *	Packed xfer_mask.
864  */
865 unsigned long ata_pack_xfermask(unsigned long pio_mask,
866 				unsigned long mwdma_mask,
867 				unsigned long udma_mask)
868 {
869 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
870 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
871 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
872 }
873 
874 /**
875  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
876  *	@xfer_mask: xfer_mask to unpack
877  *	@pio_mask: resulting pio_mask
878  *	@mwdma_mask: resulting mwdma_mask
879  *	@udma_mask: resulting udma_mask
880  *
881  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
882  *	Any NULL distination masks will be ignored.
883  */
884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
885 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
886 {
887 	if (pio_mask)
888 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
889 	if (mwdma_mask)
890 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
891 	if (udma_mask)
892 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893 }
894 
895 static const struct ata_xfer_ent {
896 	int shift, bits;
897 	u8 base;
898 } ata_xfer_tbl[] = {
899 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
900 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
901 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
902 	{ -1, },
903 };
904 
905 /**
906  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
907  *	@xfer_mask: xfer_mask of interest
908  *
909  *	Return matching XFER_* value for @xfer_mask.  Only the highest
910  *	bit of @xfer_mask is considered.
911  *
912  *	LOCKING:
913  *	None.
914  *
915  *	RETURNS:
916  *	Matching XFER_* value, 0xff if no match found.
917  */
918 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
919 {
920 	int highbit = fls(xfer_mask) - 1;
921 	const struct ata_xfer_ent *ent;
922 
923 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
924 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
925 			return ent->base + highbit - ent->shift;
926 	return 0xff;
927 }
928 
929 /**
930  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
931  *	@xfer_mode: XFER_* of interest
932  *
933  *	Return matching xfer_mask for @xfer_mode.
934  *
935  *	LOCKING:
936  *	None.
937  *
938  *	RETURNS:
939  *	Matching xfer_mask, 0 if no match found.
940  */
941 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
942 {
943 	const struct ata_xfer_ent *ent;
944 
945 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
946 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
947 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
948 				& ~((1 << ent->shift) - 1);
949 	return 0;
950 }
951 
952 /**
953  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
954  *	@xfer_mode: XFER_* of interest
955  *
956  *	Return matching xfer_shift for @xfer_mode.
957  *
958  *	LOCKING:
959  *	None.
960  *
961  *	RETURNS:
962  *	Matching xfer_shift, -1 if no match found.
963  */
964 int ata_xfer_mode2shift(unsigned long xfer_mode)
965 {
966 	const struct ata_xfer_ent *ent;
967 
968 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
969 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
970 			return ent->shift;
971 	return -1;
972 }
973 
974 /**
975  *	ata_mode_string - convert xfer_mask to string
976  *	@xfer_mask: mask of bits supported; only highest bit counts.
977  *
978  *	Determine string which represents the highest speed
979  *	(highest bit in @modemask).
980  *
981  *	LOCKING:
982  *	None.
983  *
984  *	RETURNS:
985  *	Constant C string representing highest speed listed in
986  *	@mode_mask, or the constant C string "<n/a>".
987  */
988 const char *ata_mode_string(unsigned long xfer_mask)
989 {
990 	static const char * const xfer_mode_str[] = {
991 		"PIO0",
992 		"PIO1",
993 		"PIO2",
994 		"PIO3",
995 		"PIO4",
996 		"PIO5",
997 		"PIO6",
998 		"MWDMA0",
999 		"MWDMA1",
1000 		"MWDMA2",
1001 		"MWDMA3",
1002 		"MWDMA4",
1003 		"UDMA/16",
1004 		"UDMA/25",
1005 		"UDMA/33",
1006 		"UDMA/44",
1007 		"UDMA/66",
1008 		"UDMA/100",
1009 		"UDMA/133",
1010 		"UDMA7",
1011 	};
1012 	int highbit;
1013 
1014 	highbit = fls(xfer_mask) - 1;
1015 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016 		return xfer_mode_str[highbit];
1017 	return "<n/a>";
1018 }
1019 
1020 const char *sata_spd_string(unsigned int spd)
1021 {
1022 	static const char * const spd_str[] = {
1023 		"1.5 Gbps",
1024 		"3.0 Gbps",
1025 		"6.0 Gbps",
1026 	};
1027 
1028 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029 		return "<unknown>";
1030 	return spd_str[spd - 1];
1031 }
1032 
1033 /**
1034  *	ata_dev_classify - determine device type based on ATA-spec signature
1035  *	@tf: ATA taskfile register set for device to be identified
1036  *
1037  *	Determine from taskfile register contents whether a device is
1038  *	ATA or ATAPI, as per "Signature and persistence" section
1039  *	of ATA/PI spec (volume 1, sect 5.14).
1040  *
1041  *	LOCKING:
1042  *	None.
1043  *
1044  *	RETURNS:
1045  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046  *	%ATA_DEV_UNKNOWN the event of failure.
1047  */
1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049 {
1050 	/* Apple's open source Darwin code hints that some devices only
1051 	 * put a proper signature into the LBA mid/high registers,
1052 	 * So, we only check those.  It's sufficient for uniqueness.
1053 	 *
1054 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1056 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1057 	 * spec has never mentioned about using different signatures
1058 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1059 	 * Multiplier specification began to use 0x69/0x96 to identify
1060 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062 	 * 0x69/0x96 shortly and described them as reserved for
1063 	 * SerialATA.
1064 	 *
1065 	 * We follow the current spec and consider that 0x69/0x96
1066 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068 	 * SEMB signature.  This is worked around in
1069 	 * ata_dev_read_id().
1070 	 */
1071 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072 		DPRINTK("found ATA device by sig\n");
1073 		return ATA_DEV_ATA;
1074 	}
1075 
1076 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077 		DPRINTK("found ATAPI device by sig\n");
1078 		return ATA_DEV_ATAPI;
1079 	}
1080 
1081 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082 		DPRINTK("found PMP device by sig\n");
1083 		return ATA_DEV_PMP;
1084 	}
1085 
1086 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088 		return ATA_DEV_SEMB;
1089 	}
1090 
1091 	DPRINTK("unknown device\n");
1092 	return ATA_DEV_UNKNOWN;
1093 }
1094 
1095 /**
1096  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1097  *	@id: IDENTIFY DEVICE results we will examine
1098  *	@s: string into which data is output
1099  *	@ofs: offset into identify device page
1100  *	@len: length of string to return. must be an even number.
1101  *
1102  *	The strings in the IDENTIFY DEVICE page are broken up into
1103  *	16-bit chunks.  Run through the string, and output each
1104  *	8-bit chunk linearly, regardless of platform.
1105  *
1106  *	LOCKING:
1107  *	caller.
1108  */
1109 
1110 void ata_id_string(const u16 *id, unsigned char *s,
1111 		   unsigned int ofs, unsigned int len)
1112 {
1113 	unsigned int c;
1114 
1115 	BUG_ON(len & 1);
1116 
1117 	while (len > 0) {
1118 		c = id[ofs] >> 8;
1119 		*s = c;
1120 		s++;
1121 
1122 		c = id[ofs] & 0xff;
1123 		*s = c;
1124 		s++;
1125 
1126 		ofs++;
1127 		len -= 2;
1128 	}
1129 }
1130 
1131 /**
1132  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133  *	@id: IDENTIFY DEVICE results we will examine
1134  *	@s: string into which data is output
1135  *	@ofs: offset into identify device page
1136  *	@len: length of string to return. must be an odd number.
1137  *
1138  *	This function is identical to ata_id_string except that it
1139  *	trims trailing spaces and terminates the resulting string with
1140  *	null.  @len must be actual maximum length (even number) + 1.
1141  *
1142  *	LOCKING:
1143  *	caller.
1144  */
1145 void ata_id_c_string(const u16 *id, unsigned char *s,
1146 		     unsigned int ofs, unsigned int len)
1147 {
1148 	unsigned char *p;
1149 
1150 	ata_id_string(id, s, ofs, len - 1);
1151 
1152 	p = s + strnlen(s, len - 1);
1153 	while (p > s && p[-1] == ' ')
1154 		p--;
1155 	*p = '\0';
1156 }
1157 
1158 static u64 ata_id_n_sectors(const u16 *id)
1159 {
1160 	if (ata_id_has_lba(id)) {
1161 		if (ata_id_has_lba48(id))
1162 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163 		else
1164 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165 	} else {
1166 		if (ata_id_current_chs_valid(id))
1167 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168 			       id[ATA_ID_CUR_SECTORS];
1169 		else
1170 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171 			       id[ATA_ID_SECTORS];
1172 	}
1173 }
1174 
1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176 {
1177 	u64 sectors = 0;
1178 
1179 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182 	sectors |= (tf->lbah & 0xff) << 16;
1183 	sectors |= (tf->lbam & 0xff) << 8;
1184 	sectors |= (tf->lbal & 0xff);
1185 
1186 	return sectors;
1187 }
1188 
1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190 {
1191 	u64 sectors = 0;
1192 
1193 	sectors |= (tf->device & 0x0f) << 24;
1194 	sectors |= (tf->lbah & 0xff) << 16;
1195 	sectors |= (tf->lbam & 0xff) << 8;
1196 	sectors |= (tf->lbal & 0xff);
1197 
1198 	return sectors;
1199 }
1200 
1201 /**
1202  *	ata_read_native_max_address - Read native max address
1203  *	@dev: target device
1204  *	@max_sectors: out parameter for the result native max address
1205  *
1206  *	Perform an LBA48 or LBA28 native size query upon the device in
1207  *	question.
1208  *
1209  *	RETURNS:
1210  *	0 on success, -EACCES if command is aborted by the drive.
1211  *	-EIO on other errors.
1212  */
1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214 {
1215 	unsigned int err_mask;
1216 	struct ata_taskfile tf;
1217 	int lba48 = ata_id_has_lba48(dev->id);
1218 
1219 	ata_tf_init(dev, &tf);
1220 
1221 	/* always clear all address registers */
1222 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223 
1224 	if (lba48) {
1225 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226 		tf.flags |= ATA_TFLAG_LBA48;
1227 	} else
1228 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1229 
1230 	tf.protocol |= ATA_PROT_NODATA;
1231 	tf.device |= ATA_LBA;
1232 
1233 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234 	if (err_mask) {
1235 		ata_dev_warn(dev,
1236 			     "failed to read native max address (err_mask=0x%x)\n",
1237 			     err_mask);
1238 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239 			return -EACCES;
1240 		return -EIO;
1241 	}
1242 
1243 	if (lba48)
1244 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1245 	else
1246 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1247 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248 		(*max_sectors)--;
1249 	return 0;
1250 }
1251 
1252 /**
1253  *	ata_set_max_sectors - Set max sectors
1254  *	@dev: target device
1255  *	@new_sectors: new max sectors value to set for the device
1256  *
1257  *	Set max sectors of @dev to @new_sectors.
1258  *
1259  *	RETURNS:
1260  *	0 on success, -EACCES if command is aborted or denied (due to
1261  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1262  *	errors.
1263  */
1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265 {
1266 	unsigned int err_mask;
1267 	struct ata_taskfile tf;
1268 	int lba48 = ata_id_has_lba48(dev->id);
1269 
1270 	new_sectors--;
1271 
1272 	ata_tf_init(dev, &tf);
1273 
1274 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275 
1276 	if (lba48) {
1277 		tf.command = ATA_CMD_SET_MAX_EXT;
1278 		tf.flags |= ATA_TFLAG_LBA48;
1279 
1280 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283 	} else {
1284 		tf.command = ATA_CMD_SET_MAX;
1285 
1286 		tf.device |= (new_sectors >> 24) & 0xf;
1287 	}
1288 
1289 	tf.protocol |= ATA_PROT_NODATA;
1290 	tf.device |= ATA_LBA;
1291 
1292 	tf.lbal = (new_sectors >> 0) & 0xff;
1293 	tf.lbam = (new_sectors >> 8) & 0xff;
1294 	tf.lbah = (new_sectors >> 16) & 0xff;
1295 
1296 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297 	if (err_mask) {
1298 		ata_dev_warn(dev,
1299 			     "failed to set max address (err_mask=0x%x)\n",
1300 			     err_mask);
1301 		if (err_mask == AC_ERR_DEV &&
1302 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303 			return -EACCES;
1304 		return -EIO;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 /**
1311  *	ata_hpa_resize		-	Resize a device with an HPA set
1312  *	@dev: Device to resize
1313  *
1314  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315  *	it if required to the full size of the media. The caller must check
1316  *	the drive has the HPA feature set enabled.
1317  *
1318  *	RETURNS:
1319  *	0 on success, -errno on failure.
1320  */
1321 static int ata_hpa_resize(struct ata_device *dev)
1322 {
1323 	struct ata_eh_context *ehc = &dev->link->eh_context;
1324 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326 	u64 sectors = ata_id_n_sectors(dev->id);
1327 	u64 native_sectors;
1328 	int rc;
1329 
1330 	/* do we need to do it? */
1331 	if (dev->class != ATA_DEV_ATA ||
1332 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334 		return 0;
1335 
1336 	/* read native max address */
1337 	rc = ata_read_native_max_address(dev, &native_sectors);
1338 	if (rc) {
1339 		/* If device aborted the command or HPA isn't going to
1340 		 * be unlocked, skip HPA resizing.
1341 		 */
1342 		if (rc == -EACCES || !unlock_hpa) {
1343 			ata_dev_warn(dev,
1344 				     "HPA support seems broken, skipping HPA handling\n");
1345 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346 
1347 			/* we can continue if device aborted the command */
1348 			if (rc == -EACCES)
1349 				rc = 0;
1350 		}
1351 
1352 		return rc;
1353 	}
1354 	dev->n_native_sectors = native_sectors;
1355 
1356 	/* nothing to do? */
1357 	if (native_sectors <= sectors || !unlock_hpa) {
1358 		if (!print_info || native_sectors == sectors)
1359 			return 0;
1360 
1361 		if (native_sectors > sectors)
1362 			ata_dev_info(dev,
1363 				"HPA detected: current %llu, native %llu\n",
1364 				(unsigned long long)sectors,
1365 				(unsigned long long)native_sectors);
1366 		else if (native_sectors < sectors)
1367 			ata_dev_warn(dev,
1368 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1369 				(unsigned long long)native_sectors,
1370 				(unsigned long long)sectors);
1371 		return 0;
1372 	}
1373 
1374 	/* let's unlock HPA */
1375 	rc = ata_set_max_sectors(dev, native_sectors);
1376 	if (rc == -EACCES) {
1377 		/* if device aborted the command, skip HPA resizing */
1378 		ata_dev_warn(dev,
1379 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380 			     (unsigned long long)sectors,
1381 			     (unsigned long long)native_sectors);
1382 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383 		return 0;
1384 	} else if (rc)
1385 		return rc;
1386 
1387 	/* re-read IDENTIFY data */
1388 	rc = ata_dev_reread_id(dev, 0);
1389 	if (rc) {
1390 		ata_dev_err(dev,
1391 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1392 		return rc;
1393 	}
1394 
1395 	if (print_info) {
1396 		u64 new_sectors = ata_id_n_sectors(dev->id);
1397 		ata_dev_info(dev,
1398 			"HPA unlocked: %llu -> %llu, native %llu\n",
1399 			(unsigned long long)sectors,
1400 			(unsigned long long)new_sectors,
1401 			(unsigned long long)native_sectors);
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 /**
1408  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1409  *	@id: IDENTIFY DEVICE page to dump
1410  *
1411  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1412  *	page.
1413  *
1414  *	LOCKING:
1415  *	caller.
1416  */
1417 
1418 static inline void ata_dump_id(const u16 *id)
1419 {
1420 	DPRINTK("49==0x%04x  "
1421 		"53==0x%04x  "
1422 		"63==0x%04x  "
1423 		"64==0x%04x  "
1424 		"75==0x%04x  \n",
1425 		id[49],
1426 		id[53],
1427 		id[63],
1428 		id[64],
1429 		id[75]);
1430 	DPRINTK("80==0x%04x  "
1431 		"81==0x%04x  "
1432 		"82==0x%04x  "
1433 		"83==0x%04x  "
1434 		"84==0x%04x  \n",
1435 		id[80],
1436 		id[81],
1437 		id[82],
1438 		id[83],
1439 		id[84]);
1440 	DPRINTK("88==0x%04x  "
1441 		"93==0x%04x\n",
1442 		id[88],
1443 		id[93]);
1444 }
1445 
1446 /**
1447  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448  *	@id: IDENTIFY data to compute xfer mask from
1449  *
1450  *	Compute the xfermask for this device. This is not as trivial
1451  *	as it seems if we must consider early devices correctly.
1452  *
1453  *	FIXME: pre IDE drive timing (do we care ?).
1454  *
1455  *	LOCKING:
1456  *	None.
1457  *
1458  *	RETURNS:
1459  *	Computed xfermask
1460  */
1461 unsigned long ata_id_xfermask(const u16 *id)
1462 {
1463 	unsigned long pio_mask, mwdma_mask, udma_mask;
1464 
1465 	/* Usual case. Word 53 indicates word 64 is valid */
1466 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468 		pio_mask <<= 3;
1469 		pio_mask |= 0x7;
1470 	} else {
1471 		/* If word 64 isn't valid then Word 51 high byte holds
1472 		 * the PIO timing number for the maximum. Turn it into
1473 		 * a mask.
1474 		 */
1475 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476 		if (mode < 5)	/* Valid PIO range */
1477 			pio_mask = (2 << mode) - 1;
1478 		else
1479 			pio_mask = 1;
1480 
1481 		/* But wait.. there's more. Design your standards by
1482 		 * committee and you too can get a free iordy field to
1483 		 * process. However its the speeds not the modes that
1484 		 * are supported... Note drivers using the timing API
1485 		 * will get this right anyway
1486 		 */
1487 	}
1488 
1489 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490 
1491 	if (ata_id_is_cfa(id)) {
1492 		/*
1493 		 *	Process compact flash extended modes
1494 		 */
1495 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497 
1498 		if (pio)
1499 			pio_mask |= (1 << 5);
1500 		if (pio > 1)
1501 			pio_mask |= (1 << 6);
1502 		if (dma)
1503 			mwdma_mask |= (1 << 3);
1504 		if (dma > 1)
1505 			mwdma_mask |= (1 << 4);
1506 	}
1507 
1508 	udma_mask = 0;
1509 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511 
1512 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513 }
1514 
1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516 {
1517 	struct completion *waiting = qc->private_data;
1518 
1519 	complete(waiting);
1520 }
1521 
1522 /**
1523  *	ata_exec_internal_sg - execute libata internal command
1524  *	@dev: Device to which the command is sent
1525  *	@tf: Taskfile registers for the command and the result
1526  *	@cdb: CDB for packet command
1527  *	@dma_dir: Data tranfer direction of the command
1528  *	@sgl: sg list for the data buffer of the command
1529  *	@n_elem: Number of sg entries
1530  *	@timeout: Timeout in msecs (0 for default)
1531  *
1532  *	Executes libata internal command with timeout.  @tf contains
1533  *	command on entry and result on return.  Timeout and error
1534  *	conditions are reported via return value.  No recovery action
1535  *	is taken after a command times out.  It's caller's duty to
1536  *	clean up after timeout.
1537  *
1538  *	LOCKING:
1539  *	None.  Should be called with kernel context, might sleep.
1540  *
1541  *	RETURNS:
1542  *	Zero on success, AC_ERR_* mask on failure
1543  */
1544 unsigned ata_exec_internal_sg(struct ata_device *dev,
1545 			      struct ata_taskfile *tf, const u8 *cdb,
1546 			      int dma_dir, struct scatterlist *sgl,
1547 			      unsigned int n_elem, unsigned long timeout)
1548 {
1549 	struct ata_link *link = dev->link;
1550 	struct ata_port *ap = link->ap;
1551 	u8 command = tf->command;
1552 	int auto_timeout = 0;
1553 	struct ata_queued_cmd *qc;
1554 	unsigned int tag, preempted_tag;
1555 	u32 preempted_sactive, preempted_qc_active;
1556 	int preempted_nr_active_links;
1557 	DECLARE_COMPLETION_ONSTACK(wait);
1558 	unsigned long flags;
1559 	unsigned int err_mask;
1560 	int rc;
1561 
1562 	spin_lock_irqsave(ap->lock, flags);
1563 
1564 	/* no internal command while frozen */
1565 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1566 		spin_unlock_irqrestore(ap->lock, flags);
1567 		return AC_ERR_SYSTEM;
1568 	}
1569 
1570 	/* initialize internal qc */
1571 
1572 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1573 	 * drivers choke if any other tag is given.  This breaks
1574 	 * ata_tag_internal() test for those drivers.  Don't use new
1575 	 * EH stuff without converting to it.
1576 	 */
1577 	if (ap->ops->error_handler)
1578 		tag = ATA_TAG_INTERNAL;
1579 	else
1580 		tag = 0;
1581 
1582 	if (test_and_set_bit(tag, &ap->qc_allocated))
1583 		BUG();
1584 	qc = __ata_qc_from_tag(ap, tag);
1585 
1586 	qc->tag = tag;
1587 	qc->scsicmd = NULL;
1588 	qc->ap = ap;
1589 	qc->dev = dev;
1590 	ata_qc_reinit(qc);
1591 
1592 	preempted_tag = link->active_tag;
1593 	preempted_sactive = link->sactive;
1594 	preempted_qc_active = ap->qc_active;
1595 	preempted_nr_active_links = ap->nr_active_links;
1596 	link->active_tag = ATA_TAG_POISON;
1597 	link->sactive = 0;
1598 	ap->qc_active = 0;
1599 	ap->nr_active_links = 0;
1600 
1601 	/* prepare & issue qc */
1602 	qc->tf = *tf;
1603 	if (cdb)
1604 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1606 	qc->dma_dir = dma_dir;
1607 	if (dma_dir != DMA_NONE) {
1608 		unsigned int i, buflen = 0;
1609 		struct scatterlist *sg;
1610 
1611 		for_each_sg(sgl, sg, n_elem, i)
1612 			buflen += sg->length;
1613 
1614 		ata_sg_init(qc, sgl, n_elem);
1615 		qc->nbytes = buflen;
1616 	}
1617 
1618 	qc->private_data = &wait;
1619 	qc->complete_fn = ata_qc_complete_internal;
1620 
1621 	ata_qc_issue(qc);
1622 
1623 	spin_unlock_irqrestore(ap->lock, flags);
1624 
1625 	if (!timeout) {
1626 		if (ata_probe_timeout)
1627 			timeout = ata_probe_timeout * 1000;
1628 		else {
1629 			timeout = ata_internal_cmd_timeout(dev, command);
1630 			auto_timeout = 1;
1631 		}
1632 	}
1633 
1634 	if (ap->ops->error_handler)
1635 		ata_eh_release(ap);
1636 
1637 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1638 
1639 	if (ap->ops->error_handler)
1640 		ata_eh_acquire(ap);
1641 
1642 	ata_sff_flush_pio_task(ap);
1643 
1644 	if (!rc) {
1645 		spin_lock_irqsave(ap->lock, flags);
1646 
1647 		/* We're racing with irq here.  If we lose, the
1648 		 * following test prevents us from completing the qc
1649 		 * twice.  If we win, the port is frozen and will be
1650 		 * cleaned up by ->post_internal_cmd().
1651 		 */
1652 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1653 			qc->err_mask |= AC_ERR_TIMEOUT;
1654 
1655 			if (ap->ops->error_handler)
1656 				ata_port_freeze(ap);
1657 			else
1658 				ata_qc_complete(qc);
1659 
1660 			if (ata_msg_warn(ap))
1661 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1662 					     command);
1663 		}
1664 
1665 		spin_unlock_irqrestore(ap->lock, flags);
1666 	}
1667 
1668 	/* do post_internal_cmd */
1669 	if (ap->ops->post_internal_cmd)
1670 		ap->ops->post_internal_cmd(qc);
1671 
1672 	/* perform minimal error analysis */
1673 	if (qc->flags & ATA_QCFLAG_FAILED) {
1674 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1675 			qc->err_mask |= AC_ERR_DEV;
1676 
1677 		if (!qc->err_mask)
1678 			qc->err_mask |= AC_ERR_OTHER;
1679 
1680 		if (qc->err_mask & ~AC_ERR_OTHER)
1681 			qc->err_mask &= ~AC_ERR_OTHER;
1682 	}
1683 
1684 	/* finish up */
1685 	spin_lock_irqsave(ap->lock, flags);
1686 
1687 	*tf = qc->result_tf;
1688 	err_mask = qc->err_mask;
1689 
1690 	ata_qc_free(qc);
1691 	link->active_tag = preempted_tag;
1692 	link->sactive = preempted_sactive;
1693 	ap->qc_active = preempted_qc_active;
1694 	ap->nr_active_links = preempted_nr_active_links;
1695 
1696 	spin_unlock_irqrestore(ap->lock, flags);
1697 
1698 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1699 		ata_internal_cmd_timed_out(dev, command);
1700 
1701 	return err_mask;
1702 }
1703 
1704 /**
1705  *	ata_exec_internal - execute libata internal command
1706  *	@dev: Device to which the command is sent
1707  *	@tf: Taskfile registers for the command and the result
1708  *	@cdb: CDB for packet command
1709  *	@dma_dir: Data tranfer direction of the command
1710  *	@buf: Data buffer of the command
1711  *	@buflen: Length of data buffer
1712  *	@timeout: Timeout in msecs (0 for default)
1713  *
1714  *	Wrapper around ata_exec_internal_sg() which takes simple
1715  *	buffer instead of sg list.
1716  *
1717  *	LOCKING:
1718  *	None.  Should be called with kernel context, might sleep.
1719  *
1720  *	RETURNS:
1721  *	Zero on success, AC_ERR_* mask on failure
1722  */
1723 unsigned ata_exec_internal(struct ata_device *dev,
1724 			   struct ata_taskfile *tf, const u8 *cdb,
1725 			   int dma_dir, void *buf, unsigned int buflen,
1726 			   unsigned long timeout)
1727 {
1728 	struct scatterlist *psg = NULL, sg;
1729 	unsigned int n_elem = 0;
1730 
1731 	if (dma_dir != DMA_NONE) {
1732 		WARN_ON(!buf);
1733 		sg_init_one(&sg, buf, buflen);
1734 		psg = &sg;
1735 		n_elem++;
1736 	}
1737 
1738 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1739 				    timeout);
1740 }
1741 
1742 /**
1743  *	ata_do_simple_cmd - execute simple internal command
1744  *	@dev: Device to which the command is sent
1745  *	@cmd: Opcode to execute
1746  *
1747  *	Execute a 'simple' command, that only consists of the opcode
1748  *	'cmd' itself, without filling any other registers
1749  *
1750  *	LOCKING:
1751  *	Kernel thread context (may sleep).
1752  *
1753  *	RETURNS:
1754  *	Zero on success, AC_ERR_* mask on failure
1755  */
1756 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1757 {
1758 	struct ata_taskfile tf;
1759 
1760 	ata_tf_init(dev, &tf);
1761 
1762 	tf.command = cmd;
1763 	tf.flags |= ATA_TFLAG_DEVICE;
1764 	tf.protocol = ATA_PROT_NODATA;
1765 
1766 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1767 }
1768 
1769 /**
1770  *	ata_pio_need_iordy	-	check if iordy needed
1771  *	@adev: ATA device
1772  *
1773  *	Check if the current speed of the device requires IORDY. Used
1774  *	by various controllers for chip configuration.
1775  */
1776 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1777 {
1778 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1779 	 * lead to controller lock up on certain controllers if the
1780 	 * port is not occupied.  See bko#11703 for details.
1781 	 */
1782 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1783 		return 0;
1784 	/* Controller doesn't support IORDY.  Probably a pointless
1785 	 * check as the caller should know this.
1786 	 */
1787 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1788 		return 0;
1789 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1790 	if (ata_id_is_cfa(adev->id)
1791 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1792 		return 0;
1793 	/* PIO3 and higher it is mandatory */
1794 	if (adev->pio_mode > XFER_PIO_2)
1795 		return 1;
1796 	/* We turn it on when possible */
1797 	if (ata_id_has_iordy(adev->id))
1798 		return 1;
1799 	return 0;
1800 }
1801 
1802 /**
1803  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1804  *	@adev: ATA device
1805  *
1806  *	Compute the highest mode possible if we are not using iordy. Return
1807  *	-1 if no iordy mode is available.
1808  */
1809 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1810 {
1811 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1812 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1813 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1814 		/* Is the speed faster than the drive allows non IORDY ? */
1815 		if (pio) {
1816 			/* This is cycle times not frequency - watch the logic! */
1817 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1818 				return 3 << ATA_SHIFT_PIO;
1819 			return 7 << ATA_SHIFT_PIO;
1820 		}
1821 	}
1822 	return 3 << ATA_SHIFT_PIO;
1823 }
1824 
1825 /**
1826  *	ata_do_dev_read_id		-	default ID read method
1827  *	@dev: device
1828  *	@tf: proposed taskfile
1829  *	@id: data buffer
1830  *
1831  *	Issue the identify taskfile and hand back the buffer containing
1832  *	identify data. For some RAID controllers and for pre ATA devices
1833  *	this function is wrapped or replaced by the driver
1834  */
1835 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1836 					struct ata_taskfile *tf, u16 *id)
1837 {
1838 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1839 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1840 }
1841 
1842 /**
1843  *	ata_dev_read_id - Read ID data from the specified device
1844  *	@dev: target device
1845  *	@p_class: pointer to class of the target device (may be changed)
1846  *	@flags: ATA_READID_* flags
1847  *	@id: buffer to read IDENTIFY data into
1848  *
1849  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1850  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1851  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1852  *	for pre-ATA4 drives.
1853  *
1854  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1855  *	now we abort if we hit that case.
1856  *
1857  *	LOCKING:
1858  *	Kernel thread context (may sleep)
1859  *
1860  *	RETURNS:
1861  *	0 on success, -errno otherwise.
1862  */
1863 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1864 		    unsigned int flags, u16 *id)
1865 {
1866 	struct ata_port *ap = dev->link->ap;
1867 	unsigned int class = *p_class;
1868 	struct ata_taskfile tf;
1869 	unsigned int err_mask = 0;
1870 	const char *reason;
1871 	bool is_semb = class == ATA_DEV_SEMB;
1872 	int may_fallback = 1, tried_spinup = 0;
1873 	int rc;
1874 
1875 	if (ata_msg_ctl(ap))
1876 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1877 
1878 retry:
1879 	ata_tf_init(dev, &tf);
1880 
1881 	switch (class) {
1882 	case ATA_DEV_SEMB:
1883 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1884 	case ATA_DEV_ATA:
1885 		tf.command = ATA_CMD_ID_ATA;
1886 		break;
1887 	case ATA_DEV_ATAPI:
1888 		tf.command = ATA_CMD_ID_ATAPI;
1889 		break;
1890 	default:
1891 		rc = -ENODEV;
1892 		reason = "unsupported class";
1893 		goto err_out;
1894 	}
1895 
1896 	tf.protocol = ATA_PROT_PIO;
1897 
1898 	/* Some devices choke if TF registers contain garbage.  Make
1899 	 * sure those are properly initialized.
1900 	 */
1901 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902 
1903 	/* Device presence detection is unreliable on some
1904 	 * controllers.  Always poll IDENTIFY if available.
1905 	 */
1906 	tf.flags |= ATA_TFLAG_POLLING;
1907 
1908 	if (ap->ops->read_id)
1909 		err_mask = ap->ops->read_id(dev, &tf, id);
1910 	else
1911 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1912 
1913 	if (err_mask) {
1914 		if (err_mask & AC_ERR_NODEV_HINT) {
1915 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1916 			return -ENOENT;
1917 		}
1918 
1919 		if (is_semb) {
1920 			ata_dev_info(dev,
1921 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1922 			/* SEMB is not supported yet */
1923 			*p_class = ATA_DEV_SEMB_UNSUP;
1924 			return 0;
1925 		}
1926 
1927 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928 			/* Device or controller might have reported
1929 			 * the wrong device class.  Give a shot at the
1930 			 * other IDENTIFY if the current one is
1931 			 * aborted by the device.
1932 			 */
1933 			if (may_fallback) {
1934 				may_fallback = 0;
1935 
1936 				if (class == ATA_DEV_ATA)
1937 					class = ATA_DEV_ATAPI;
1938 				else
1939 					class = ATA_DEV_ATA;
1940 				goto retry;
1941 			}
1942 
1943 			/* Control reaches here iff the device aborted
1944 			 * both flavors of IDENTIFYs which happens
1945 			 * sometimes with phantom devices.
1946 			 */
1947 			ata_dev_dbg(dev,
1948 				    "both IDENTIFYs aborted, assuming NODEV\n");
1949 			return -ENOENT;
1950 		}
1951 
1952 		rc = -EIO;
1953 		reason = "I/O error";
1954 		goto err_out;
1955 	}
1956 
1957 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1958 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1960 			    class, may_fallback, tried_spinup);
1961 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963 	}
1964 
1965 	/* Falling back doesn't make sense if ID data was read
1966 	 * successfully at least once.
1967 	 */
1968 	may_fallback = 0;
1969 
1970 	swap_buf_le16(id, ATA_ID_WORDS);
1971 
1972 	/* sanity check */
1973 	rc = -EINVAL;
1974 	reason = "device reports invalid type";
1975 
1976 	if (class == ATA_DEV_ATA) {
1977 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978 			goto err_out;
1979 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980 							ata_id_is_ata(id)) {
1981 			ata_dev_dbg(dev,
1982 				"host indicates ignore ATA devices, ignored\n");
1983 			return -ENOENT;
1984 		}
1985 	} else {
1986 		if (ata_id_is_ata(id))
1987 			goto err_out;
1988 	}
1989 
1990 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991 		tried_spinup = 1;
1992 		/*
1993 		 * Drive powered-up in standby mode, and requires a specific
1994 		 * SET_FEATURES spin-up subcommand before it will accept
1995 		 * anything other than the original IDENTIFY command.
1996 		 */
1997 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1998 		if (err_mask && id[2] != 0x738c) {
1999 			rc = -EIO;
2000 			reason = "SPINUP failed";
2001 			goto err_out;
2002 		}
2003 		/*
2004 		 * If the drive initially returned incomplete IDENTIFY info,
2005 		 * we now must reissue the IDENTIFY command.
2006 		 */
2007 		if (id[2] == 0x37c8)
2008 			goto retry;
2009 	}
2010 
2011 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2012 		/*
2013 		 * The exact sequence expected by certain pre-ATA4 drives is:
2014 		 * SRST RESET
2015 		 * IDENTIFY (optional in early ATA)
2016 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2017 		 * anything else..
2018 		 * Some drives were very specific about that exact sequence.
2019 		 *
2020 		 * Note that ATA4 says lba is mandatory so the second check
2021 		 * should never trigger.
2022 		 */
2023 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2024 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2025 			if (err_mask) {
2026 				rc = -EIO;
2027 				reason = "INIT_DEV_PARAMS failed";
2028 				goto err_out;
2029 			}
2030 
2031 			/* current CHS translation info (id[53-58]) might be
2032 			 * changed. reread the identify device info.
2033 			 */
2034 			flags &= ~ATA_READID_POSTRESET;
2035 			goto retry;
2036 		}
2037 	}
2038 
2039 	*p_class = class;
2040 
2041 	return 0;
2042 
2043  err_out:
2044 	if (ata_msg_warn(ap))
2045 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046 			     reason, err_mask);
2047 	return rc;
2048 }
2049 
2050 static int ata_do_link_spd_horkage(struct ata_device *dev)
2051 {
2052 	struct ata_link *plink = ata_dev_phys_link(dev);
2053 	u32 target, target_limit;
2054 
2055 	if (!sata_scr_valid(plink))
2056 		return 0;
2057 
2058 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2059 		target = 1;
2060 	else
2061 		return 0;
2062 
2063 	target_limit = (1 << target) - 1;
2064 
2065 	/* if already on stricter limit, no need to push further */
2066 	if (plink->sata_spd_limit <= target_limit)
2067 		return 0;
2068 
2069 	plink->sata_spd_limit = target_limit;
2070 
2071 	/* Request another EH round by returning -EAGAIN if link is
2072 	 * going faster than the target speed.  Forward progress is
2073 	 * guaranteed by setting sata_spd_limit to target_limit above.
2074 	 */
2075 	if (plink->sata_spd > target) {
2076 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2077 			     sata_spd_string(target));
2078 		return -EAGAIN;
2079 	}
2080 	return 0;
2081 }
2082 
2083 static inline u8 ata_dev_knobble(struct ata_device *dev)
2084 {
2085 	struct ata_port *ap = dev->link->ap;
2086 
2087 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2088 		return 0;
2089 
2090 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2091 }
2092 
2093 static int ata_dev_config_ncq(struct ata_device *dev,
2094 			       char *desc, size_t desc_sz)
2095 {
2096 	struct ata_port *ap = dev->link->ap;
2097 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2098 	unsigned int err_mask;
2099 	char *aa_desc = "";
2100 
2101 	if (!ata_id_has_ncq(dev->id)) {
2102 		desc[0] = '\0';
2103 		return 0;
2104 	}
2105 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2106 		snprintf(desc, desc_sz, "NCQ (not used)");
2107 		return 0;
2108 	}
2109 	if (ap->flags & ATA_FLAG_NCQ) {
2110 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2111 		dev->flags |= ATA_DFLAG_NCQ;
2112 	}
2113 
2114 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2115 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2116 		ata_id_has_fpdma_aa(dev->id)) {
2117 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2118 			SATA_FPDMA_AA);
2119 		if (err_mask) {
2120 			ata_dev_err(dev,
2121 				    "failed to enable AA (error_mask=0x%x)\n",
2122 				    err_mask);
2123 			if (err_mask != AC_ERR_DEV) {
2124 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2125 				return -EIO;
2126 			}
2127 		} else
2128 			aa_desc = ", AA";
2129 	}
2130 
2131 	if (hdepth >= ddepth)
2132 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2133 	else
2134 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2135 			ddepth, aa_desc);
2136 	return 0;
2137 }
2138 
2139 /**
2140  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2141  *	@dev: Target device to configure
2142  *
2143  *	Configure @dev according to @dev->id.  Generic and low-level
2144  *	driver specific fixups are also applied.
2145  *
2146  *	LOCKING:
2147  *	Kernel thread context (may sleep)
2148  *
2149  *	RETURNS:
2150  *	0 on success, -errno otherwise
2151  */
2152 int ata_dev_configure(struct ata_device *dev)
2153 {
2154 	struct ata_port *ap = dev->link->ap;
2155 	struct ata_eh_context *ehc = &dev->link->eh_context;
2156 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2157 	const u16 *id = dev->id;
2158 	unsigned long xfer_mask;
2159 	unsigned int err_mask;
2160 	char revbuf[7];		/* XYZ-99\0 */
2161 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2162 	char modelbuf[ATA_ID_PROD_LEN+1];
2163 	int rc;
2164 
2165 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2166 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2167 		return 0;
2168 	}
2169 
2170 	if (ata_msg_probe(ap))
2171 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2172 
2173 	/* set horkage */
2174 	dev->horkage |= ata_dev_blacklisted(dev);
2175 	ata_force_horkage(dev);
2176 
2177 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2178 		ata_dev_info(dev, "unsupported device, disabling\n");
2179 		ata_dev_disable(dev);
2180 		return 0;
2181 	}
2182 
2183 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2184 	    dev->class == ATA_DEV_ATAPI) {
2185 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2186 			     atapi_enabled ? "not supported with this driver"
2187 			     : "disabled");
2188 		ata_dev_disable(dev);
2189 		return 0;
2190 	}
2191 
2192 	rc = ata_do_link_spd_horkage(dev);
2193 	if (rc)
2194 		return rc;
2195 
2196 	/* let ACPI work its magic */
2197 	rc = ata_acpi_on_devcfg(dev);
2198 	if (rc)
2199 		return rc;
2200 
2201 	/* massage HPA, do it early as it might change IDENTIFY data */
2202 	rc = ata_hpa_resize(dev);
2203 	if (rc)
2204 		return rc;
2205 
2206 	/* print device capabilities */
2207 	if (ata_msg_probe(ap))
2208 		ata_dev_dbg(dev,
2209 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2210 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2211 			    __func__,
2212 			    id[49], id[82], id[83], id[84],
2213 			    id[85], id[86], id[87], id[88]);
2214 
2215 	/* initialize to-be-configured parameters */
2216 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2217 	dev->max_sectors = 0;
2218 	dev->cdb_len = 0;
2219 	dev->n_sectors = 0;
2220 	dev->cylinders = 0;
2221 	dev->heads = 0;
2222 	dev->sectors = 0;
2223 	dev->multi_count = 0;
2224 
2225 	/*
2226 	 * common ATA, ATAPI feature tests
2227 	 */
2228 
2229 	/* find max transfer mode; for printk only */
2230 	xfer_mask = ata_id_xfermask(id);
2231 
2232 	if (ata_msg_probe(ap))
2233 		ata_dump_id(id);
2234 
2235 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2236 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2237 			sizeof(fwrevbuf));
2238 
2239 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2240 			sizeof(modelbuf));
2241 
2242 	/* ATA-specific feature tests */
2243 	if (dev->class == ATA_DEV_ATA) {
2244 		if (ata_id_is_cfa(id)) {
2245 			/* CPRM may make this media unusable */
2246 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2247 				ata_dev_warn(dev,
2248 	"supports DRM functions and may not be fully accessible\n");
2249 			snprintf(revbuf, 7, "CFA");
2250 		} else {
2251 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2252 			/* Warn the user if the device has TPM extensions */
2253 			if (ata_id_has_tpm(id))
2254 				ata_dev_warn(dev,
2255 	"supports DRM functions and may not be fully accessible\n");
2256 		}
2257 
2258 		dev->n_sectors = ata_id_n_sectors(id);
2259 
2260 		/* get current R/W Multiple count setting */
2261 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2262 			unsigned int max = dev->id[47] & 0xff;
2263 			unsigned int cnt = dev->id[59] & 0xff;
2264 			/* only recognize/allow powers of two here */
2265 			if (is_power_of_2(max) && is_power_of_2(cnt))
2266 				if (cnt <= max)
2267 					dev->multi_count = cnt;
2268 		}
2269 
2270 		if (ata_id_has_lba(id)) {
2271 			const char *lba_desc;
2272 			char ncq_desc[24];
2273 
2274 			lba_desc = "LBA";
2275 			dev->flags |= ATA_DFLAG_LBA;
2276 			if (ata_id_has_lba48(id)) {
2277 				dev->flags |= ATA_DFLAG_LBA48;
2278 				lba_desc = "LBA48";
2279 
2280 				if (dev->n_sectors >= (1UL << 28) &&
2281 				    ata_id_has_flush_ext(id))
2282 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2283 			}
2284 
2285 			/* config NCQ */
2286 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2287 			if (rc)
2288 				return rc;
2289 
2290 			/* print device info to dmesg */
2291 			if (ata_msg_drv(ap) && print_info) {
2292 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2293 					     revbuf, modelbuf, fwrevbuf,
2294 					     ata_mode_string(xfer_mask));
2295 				ata_dev_info(dev,
2296 					     "%llu sectors, multi %u: %s %s\n",
2297 					(unsigned long long)dev->n_sectors,
2298 					dev->multi_count, lba_desc, ncq_desc);
2299 			}
2300 		} else {
2301 			/* CHS */
2302 
2303 			/* Default translation */
2304 			dev->cylinders	= id[1];
2305 			dev->heads	= id[3];
2306 			dev->sectors	= id[6];
2307 
2308 			if (ata_id_current_chs_valid(id)) {
2309 				/* Current CHS translation is valid. */
2310 				dev->cylinders = id[54];
2311 				dev->heads     = id[55];
2312 				dev->sectors   = id[56];
2313 			}
2314 
2315 			/* print device info to dmesg */
2316 			if (ata_msg_drv(ap) && print_info) {
2317 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2318 					     revbuf,	modelbuf, fwrevbuf,
2319 					     ata_mode_string(xfer_mask));
2320 				ata_dev_info(dev,
2321 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2322 					     (unsigned long long)dev->n_sectors,
2323 					     dev->multi_count, dev->cylinders,
2324 					     dev->heads, dev->sectors);
2325 			}
2326 		}
2327 
2328 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2329 		 * from SATA Settings page of Identify Device Data Log.
2330 		 */
2331 		if (ata_id_has_devslp(dev->id)) {
2332 			u8 *sata_setting = ap->sector_buf;
2333 			int i, j;
2334 
2335 			dev->flags |= ATA_DFLAG_DEVSLP;
2336 			err_mask = ata_read_log_page(dev,
2337 						     ATA_LOG_SATA_ID_DEV_DATA,
2338 						     ATA_LOG_SATA_SETTINGS,
2339 						     sata_setting,
2340 						     1);
2341 			if (err_mask)
2342 				ata_dev_dbg(dev,
2343 					    "failed to get Identify Device Data, Emask 0x%x\n",
2344 					    err_mask);
2345 			else
2346 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2347 					j = ATA_LOG_DEVSLP_OFFSET + i;
2348 					dev->devslp_timing[i] = sata_setting[j];
2349 				}
2350 		}
2351 
2352 		dev->cdb_len = 16;
2353 	}
2354 
2355 	/* ATAPI-specific feature tests */
2356 	else if (dev->class == ATA_DEV_ATAPI) {
2357 		const char *cdb_intr_string = "";
2358 		const char *atapi_an_string = "";
2359 		const char *dma_dir_string = "";
2360 		u32 sntf;
2361 
2362 		rc = atapi_cdb_len(id);
2363 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2364 			if (ata_msg_warn(ap))
2365 				ata_dev_warn(dev, "unsupported CDB len\n");
2366 			rc = -EINVAL;
2367 			goto err_out_nosup;
2368 		}
2369 		dev->cdb_len = (unsigned int) rc;
2370 
2371 		/* Enable ATAPI AN if both the host and device have
2372 		 * the support.  If PMP is attached, SNTF is required
2373 		 * to enable ATAPI AN to discern between PHY status
2374 		 * changed notifications and ATAPI ANs.
2375 		 */
2376 		if (atapi_an &&
2377 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2378 		    (!sata_pmp_attached(ap) ||
2379 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2380 			/* issue SET feature command to turn this on */
2381 			err_mask = ata_dev_set_feature(dev,
2382 					SETFEATURES_SATA_ENABLE, SATA_AN);
2383 			if (err_mask)
2384 				ata_dev_err(dev,
2385 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2386 					    err_mask);
2387 			else {
2388 				dev->flags |= ATA_DFLAG_AN;
2389 				atapi_an_string = ", ATAPI AN";
2390 			}
2391 		}
2392 
2393 		if (ata_id_cdb_intr(dev->id)) {
2394 			dev->flags |= ATA_DFLAG_CDB_INTR;
2395 			cdb_intr_string = ", CDB intr";
2396 		}
2397 
2398 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2399 			dev->flags |= ATA_DFLAG_DMADIR;
2400 			dma_dir_string = ", DMADIR";
2401 		}
2402 
2403 		if (ata_id_has_da(dev->id)) {
2404 			dev->flags |= ATA_DFLAG_DA;
2405 			zpodd_init(dev);
2406 		}
2407 
2408 		/* print device info to dmesg */
2409 		if (ata_msg_drv(ap) && print_info)
2410 			ata_dev_info(dev,
2411 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2412 				     modelbuf, fwrevbuf,
2413 				     ata_mode_string(xfer_mask),
2414 				     cdb_intr_string, atapi_an_string,
2415 				     dma_dir_string);
2416 	}
2417 
2418 	/* determine max_sectors */
2419 	dev->max_sectors = ATA_MAX_SECTORS;
2420 	if (dev->flags & ATA_DFLAG_LBA48)
2421 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2422 
2423 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2424 	   200 sectors */
2425 	if (ata_dev_knobble(dev)) {
2426 		if (ata_msg_drv(ap) && print_info)
2427 			ata_dev_info(dev, "applying bridge limits\n");
2428 		dev->udma_mask &= ATA_UDMA5;
2429 		dev->max_sectors = ATA_MAX_SECTORS;
2430 	}
2431 
2432 	if ((dev->class == ATA_DEV_ATAPI) &&
2433 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2434 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2435 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2436 	}
2437 
2438 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2439 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2440 					 dev->max_sectors);
2441 
2442 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2443 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2444 
2445 	if (ap->ops->dev_config)
2446 		ap->ops->dev_config(dev);
2447 
2448 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2449 		/* Let the user know. We don't want to disallow opens for
2450 		   rescue purposes, or in case the vendor is just a blithering
2451 		   idiot. Do this after the dev_config call as some controllers
2452 		   with buggy firmware may want to avoid reporting false device
2453 		   bugs */
2454 
2455 		if (print_info) {
2456 			ata_dev_warn(dev,
2457 "Drive reports diagnostics failure. This may indicate a drive\n");
2458 			ata_dev_warn(dev,
2459 "fault or invalid emulation. Contact drive vendor for information.\n");
2460 		}
2461 	}
2462 
2463 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2464 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2465 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2466 	}
2467 
2468 	return 0;
2469 
2470 err_out_nosup:
2471 	if (ata_msg_probe(ap))
2472 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2473 	return rc;
2474 }
2475 
2476 /**
2477  *	ata_cable_40wire	-	return 40 wire cable type
2478  *	@ap: port
2479  *
2480  *	Helper method for drivers which want to hardwire 40 wire cable
2481  *	detection.
2482  */
2483 
2484 int ata_cable_40wire(struct ata_port *ap)
2485 {
2486 	return ATA_CBL_PATA40;
2487 }
2488 
2489 /**
2490  *	ata_cable_80wire	-	return 80 wire cable type
2491  *	@ap: port
2492  *
2493  *	Helper method for drivers which want to hardwire 80 wire cable
2494  *	detection.
2495  */
2496 
2497 int ata_cable_80wire(struct ata_port *ap)
2498 {
2499 	return ATA_CBL_PATA80;
2500 }
2501 
2502 /**
2503  *	ata_cable_unknown	-	return unknown PATA cable.
2504  *	@ap: port
2505  *
2506  *	Helper method for drivers which have no PATA cable detection.
2507  */
2508 
2509 int ata_cable_unknown(struct ata_port *ap)
2510 {
2511 	return ATA_CBL_PATA_UNK;
2512 }
2513 
2514 /**
2515  *	ata_cable_ignore	-	return ignored PATA cable.
2516  *	@ap: port
2517  *
2518  *	Helper method for drivers which don't use cable type to limit
2519  *	transfer mode.
2520  */
2521 int ata_cable_ignore(struct ata_port *ap)
2522 {
2523 	return ATA_CBL_PATA_IGN;
2524 }
2525 
2526 /**
2527  *	ata_cable_sata	-	return SATA cable type
2528  *	@ap: port
2529  *
2530  *	Helper method for drivers which have SATA cables
2531  */
2532 
2533 int ata_cable_sata(struct ata_port *ap)
2534 {
2535 	return ATA_CBL_SATA;
2536 }
2537 
2538 /**
2539  *	ata_bus_probe - Reset and probe ATA bus
2540  *	@ap: Bus to probe
2541  *
2542  *	Master ATA bus probing function.  Initiates a hardware-dependent
2543  *	bus reset, then attempts to identify any devices found on
2544  *	the bus.
2545  *
2546  *	LOCKING:
2547  *	PCI/etc. bus probe sem.
2548  *
2549  *	RETURNS:
2550  *	Zero on success, negative errno otherwise.
2551  */
2552 
2553 int ata_bus_probe(struct ata_port *ap)
2554 {
2555 	unsigned int classes[ATA_MAX_DEVICES];
2556 	int tries[ATA_MAX_DEVICES];
2557 	int rc;
2558 	struct ata_device *dev;
2559 
2560 	ata_for_each_dev(dev, &ap->link, ALL)
2561 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2562 
2563  retry:
2564 	ata_for_each_dev(dev, &ap->link, ALL) {
2565 		/* If we issue an SRST then an ATA drive (not ATAPI)
2566 		 * may change configuration and be in PIO0 timing. If
2567 		 * we do a hard reset (or are coming from power on)
2568 		 * this is true for ATA or ATAPI. Until we've set a
2569 		 * suitable controller mode we should not touch the
2570 		 * bus as we may be talking too fast.
2571 		 */
2572 		dev->pio_mode = XFER_PIO_0;
2573 		dev->dma_mode = 0xff;
2574 
2575 		/* If the controller has a pio mode setup function
2576 		 * then use it to set the chipset to rights. Don't
2577 		 * touch the DMA setup as that will be dealt with when
2578 		 * configuring devices.
2579 		 */
2580 		if (ap->ops->set_piomode)
2581 			ap->ops->set_piomode(ap, dev);
2582 	}
2583 
2584 	/* reset and determine device classes */
2585 	ap->ops->phy_reset(ap);
2586 
2587 	ata_for_each_dev(dev, &ap->link, ALL) {
2588 		if (dev->class != ATA_DEV_UNKNOWN)
2589 			classes[dev->devno] = dev->class;
2590 		else
2591 			classes[dev->devno] = ATA_DEV_NONE;
2592 
2593 		dev->class = ATA_DEV_UNKNOWN;
2594 	}
2595 
2596 	/* read IDENTIFY page and configure devices. We have to do the identify
2597 	   specific sequence bass-ackwards so that PDIAG- is released by
2598 	   the slave device */
2599 
2600 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2601 		if (tries[dev->devno])
2602 			dev->class = classes[dev->devno];
2603 
2604 		if (!ata_dev_enabled(dev))
2605 			continue;
2606 
2607 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2608 				     dev->id);
2609 		if (rc)
2610 			goto fail;
2611 	}
2612 
2613 	/* Now ask for the cable type as PDIAG- should have been released */
2614 	if (ap->ops->cable_detect)
2615 		ap->cbl = ap->ops->cable_detect(ap);
2616 
2617 	/* We may have SATA bridge glue hiding here irrespective of
2618 	 * the reported cable types and sensed types.  When SATA
2619 	 * drives indicate we have a bridge, we don't know which end
2620 	 * of the link the bridge is which is a problem.
2621 	 */
2622 	ata_for_each_dev(dev, &ap->link, ENABLED)
2623 		if (ata_id_is_sata(dev->id))
2624 			ap->cbl = ATA_CBL_SATA;
2625 
2626 	/* After the identify sequence we can now set up the devices. We do
2627 	   this in the normal order so that the user doesn't get confused */
2628 
2629 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2630 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2631 		rc = ata_dev_configure(dev);
2632 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2633 		if (rc)
2634 			goto fail;
2635 	}
2636 
2637 	/* configure transfer mode */
2638 	rc = ata_set_mode(&ap->link, &dev);
2639 	if (rc)
2640 		goto fail;
2641 
2642 	ata_for_each_dev(dev, &ap->link, ENABLED)
2643 		return 0;
2644 
2645 	return -ENODEV;
2646 
2647  fail:
2648 	tries[dev->devno]--;
2649 
2650 	switch (rc) {
2651 	case -EINVAL:
2652 		/* eeek, something went very wrong, give up */
2653 		tries[dev->devno] = 0;
2654 		break;
2655 
2656 	case -ENODEV:
2657 		/* give it just one more chance */
2658 		tries[dev->devno] = min(tries[dev->devno], 1);
2659 	case -EIO:
2660 		if (tries[dev->devno] == 1) {
2661 			/* This is the last chance, better to slow
2662 			 * down than lose it.
2663 			 */
2664 			sata_down_spd_limit(&ap->link, 0);
2665 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2666 		}
2667 	}
2668 
2669 	if (!tries[dev->devno])
2670 		ata_dev_disable(dev);
2671 
2672 	goto retry;
2673 }
2674 
2675 /**
2676  *	sata_print_link_status - Print SATA link status
2677  *	@link: SATA link to printk link status about
2678  *
2679  *	This function prints link speed and status of a SATA link.
2680  *
2681  *	LOCKING:
2682  *	None.
2683  */
2684 static void sata_print_link_status(struct ata_link *link)
2685 {
2686 	u32 sstatus, scontrol, tmp;
2687 
2688 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2689 		return;
2690 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2691 
2692 	if (ata_phys_link_online(link)) {
2693 		tmp = (sstatus >> 4) & 0xf;
2694 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2695 			      sata_spd_string(tmp), sstatus, scontrol);
2696 	} else {
2697 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2698 			      sstatus, scontrol);
2699 	}
2700 }
2701 
2702 /**
2703  *	ata_dev_pair		-	return other device on cable
2704  *	@adev: device
2705  *
2706  *	Obtain the other device on the same cable, or if none is
2707  *	present NULL is returned
2708  */
2709 
2710 struct ata_device *ata_dev_pair(struct ata_device *adev)
2711 {
2712 	struct ata_link *link = adev->link;
2713 	struct ata_device *pair = &link->device[1 - adev->devno];
2714 	if (!ata_dev_enabled(pair))
2715 		return NULL;
2716 	return pair;
2717 }
2718 
2719 /**
2720  *	sata_down_spd_limit - adjust SATA spd limit downward
2721  *	@link: Link to adjust SATA spd limit for
2722  *	@spd_limit: Additional limit
2723  *
2724  *	Adjust SATA spd limit of @link downward.  Note that this
2725  *	function only adjusts the limit.  The change must be applied
2726  *	using sata_set_spd().
2727  *
2728  *	If @spd_limit is non-zero, the speed is limited to equal to or
2729  *	lower than @spd_limit if such speed is supported.  If
2730  *	@spd_limit is slower than any supported speed, only the lowest
2731  *	supported speed is allowed.
2732  *
2733  *	LOCKING:
2734  *	Inherited from caller.
2735  *
2736  *	RETURNS:
2737  *	0 on success, negative errno on failure
2738  */
2739 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2740 {
2741 	u32 sstatus, spd, mask;
2742 	int rc, bit;
2743 
2744 	if (!sata_scr_valid(link))
2745 		return -EOPNOTSUPP;
2746 
2747 	/* If SCR can be read, use it to determine the current SPD.
2748 	 * If not, use cached value in link->sata_spd.
2749 	 */
2750 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2751 	if (rc == 0 && ata_sstatus_online(sstatus))
2752 		spd = (sstatus >> 4) & 0xf;
2753 	else
2754 		spd = link->sata_spd;
2755 
2756 	mask = link->sata_spd_limit;
2757 	if (mask <= 1)
2758 		return -EINVAL;
2759 
2760 	/* unconditionally mask off the highest bit */
2761 	bit = fls(mask) - 1;
2762 	mask &= ~(1 << bit);
2763 
2764 	/* Mask off all speeds higher than or equal to the current
2765 	 * one.  Force 1.5Gbps if current SPD is not available.
2766 	 */
2767 	if (spd > 1)
2768 		mask &= (1 << (spd - 1)) - 1;
2769 	else
2770 		mask &= 1;
2771 
2772 	/* were we already at the bottom? */
2773 	if (!mask)
2774 		return -EINVAL;
2775 
2776 	if (spd_limit) {
2777 		if (mask & ((1 << spd_limit) - 1))
2778 			mask &= (1 << spd_limit) - 1;
2779 		else {
2780 			bit = ffs(mask) - 1;
2781 			mask = 1 << bit;
2782 		}
2783 	}
2784 
2785 	link->sata_spd_limit = mask;
2786 
2787 	ata_link_warn(link, "limiting SATA link speed to %s\n",
2788 		      sata_spd_string(fls(mask)));
2789 
2790 	return 0;
2791 }
2792 
2793 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2794 {
2795 	struct ata_link *host_link = &link->ap->link;
2796 	u32 limit, target, spd;
2797 
2798 	limit = link->sata_spd_limit;
2799 
2800 	/* Don't configure downstream link faster than upstream link.
2801 	 * It doesn't speed up anything and some PMPs choke on such
2802 	 * configuration.
2803 	 */
2804 	if (!ata_is_host_link(link) && host_link->sata_spd)
2805 		limit &= (1 << host_link->sata_spd) - 1;
2806 
2807 	if (limit == UINT_MAX)
2808 		target = 0;
2809 	else
2810 		target = fls(limit);
2811 
2812 	spd = (*scontrol >> 4) & 0xf;
2813 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2814 
2815 	return spd != target;
2816 }
2817 
2818 /**
2819  *	sata_set_spd_needed - is SATA spd configuration needed
2820  *	@link: Link in question
2821  *
2822  *	Test whether the spd limit in SControl matches
2823  *	@link->sata_spd_limit.  This function is used to determine
2824  *	whether hardreset is necessary to apply SATA spd
2825  *	configuration.
2826  *
2827  *	LOCKING:
2828  *	Inherited from caller.
2829  *
2830  *	RETURNS:
2831  *	1 if SATA spd configuration is needed, 0 otherwise.
2832  */
2833 static int sata_set_spd_needed(struct ata_link *link)
2834 {
2835 	u32 scontrol;
2836 
2837 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2838 		return 1;
2839 
2840 	return __sata_set_spd_needed(link, &scontrol);
2841 }
2842 
2843 /**
2844  *	sata_set_spd - set SATA spd according to spd limit
2845  *	@link: Link to set SATA spd for
2846  *
2847  *	Set SATA spd of @link according to sata_spd_limit.
2848  *
2849  *	LOCKING:
2850  *	Inherited from caller.
2851  *
2852  *	RETURNS:
2853  *	0 if spd doesn't need to be changed, 1 if spd has been
2854  *	changed.  Negative errno if SCR registers are inaccessible.
2855  */
2856 int sata_set_spd(struct ata_link *link)
2857 {
2858 	u32 scontrol;
2859 	int rc;
2860 
2861 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2862 		return rc;
2863 
2864 	if (!__sata_set_spd_needed(link, &scontrol))
2865 		return 0;
2866 
2867 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2868 		return rc;
2869 
2870 	return 1;
2871 }
2872 
2873 /*
2874  * This mode timing computation functionality is ported over from
2875  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2876  */
2877 /*
2878  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2879  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2880  * for UDMA6, which is currently supported only by Maxtor drives.
2881  *
2882  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2883  */
2884 
2885 static const struct ata_timing ata_timing[] = {
2886 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2887 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2888 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2889 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2890 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2891 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2892 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2893 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2894 
2895 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2896 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2897 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2898 
2899 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2900 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2901 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2902 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2903 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2904 
2905 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2906 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2907 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2908 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2909 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2910 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2911 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2912 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2913 
2914 	{ 0xFF }
2915 };
2916 
2917 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2918 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2919 
2920 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2921 {
2922 	q->setup	= EZ(t->setup      * 1000,  T);
2923 	q->act8b	= EZ(t->act8b      * 1000,  T);
2924 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2925 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2926 	q->active	= EZ(t->active     * 1000,  T);
2927 	q->recover	= EZ(t->recover    * 1000,  T);
2928 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2929 	q->cycle	= EZ(t->cycle      * 1000,  T);
2930 	q->udma		= EZ(t->udma       * 1000, UT);
2931 }
2932 
2933 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2934 		      struct ata_timing *m, unsigned int what)
2935 {
2936 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2937 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2938 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2939 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2940 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2941 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2942 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2943 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2944 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2945 }
2946 
2947 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2948 {
2949 	const struct ata_timing *t = ata_timing;
2950 
2951 	while (xfer_mode > t->mode)
2952 		t++;
2953 
2954 	if (xfer_mode == t->mode)
2955 		return t;
2956 
2957 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2958 			__func__, xfer_mode);
2959 
2960 	return NULL;
2961 }
2962 
2963 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2964 		       struct ata_timing *t, int T, int UT)
2965 {
2966 	const u16 *id = adev->id;
2967 	const struct ata_timing *s;
2968 	struct ata_timing p;
2969 
2970 	/*
2971 	 * Find the mode.
2972 	 */
2973 
2974 	if (!(s = ata_timing_find_mode(speed)))
2975 		return -EINVAL;
2976 
2977 	memcpy(t, s, sizeof(*s));
2978 
2979 	/*
2980 	 * If the drive is an EIDE drive, it can tell us it needs extended
2981 	 * PIO/MW_DMA cycle timing.
2982 	 */
2983 
2984 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2985 		memset(&p, 0, sizeof(p));
2986 
2987 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2988 			if (speed <= XFER_PIO_2)
2989 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2990 			else if ((speed <= XFER_PIO_4) ||
2991 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2992 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2993 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2994 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2995 
2996 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2997 	}
2998 
2999 	/*
3000 	 * Convert the timing to bus clock counts.
3001 	 */
3002 
3003 	ata_timing_quantize(t, t, T, UT);
3004 
3005 	/*
3006 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3007 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3008 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3009 	 */
3010 
3011 	if (speed > XFER_PIO_6) {
3012 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3013 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3014 	}
3015 
3016 	/*
3017 	 * Lengthen active & recovery time so that cycle time is correct.
3018 	 */
3019 
3020 	if (t->act8b + t->rec8b < t->cyc8b) {
3021 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3022 		t->rec8b = t->cyc8b - t->act8b;
3023 	}
3024 
3025 	if (t->active + t->recover < t->cycle) {
3026 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3027 		t->recover = t->cycle - t->active;
3028 	}
3029 
3030 	/* In a few cases quantisation may produce enough errors to
3031 	   leave t->cycle too low for the sum of active and recovery
3032 	   if so we must correct this */
3033 	if (t->active + t->recover > t->cycle)
3034 		t->cycle = t->active + t->recover;
3035 
3036 	return 0;
3037 }
3038 
3039 /**
3040  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3041  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3042  *	@cycle: cycle duration in ns
3043  *
3044  *	Return matching xfer mode for @cycle.  The returned mode is of
3045  *	the transfer type specified by @xfer_shift.  If @cycle is too
3046  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3047  *	than the fastest known mode, the fasted mode is returned.
3048  *
3049  *	LOCKING:
3050  *	None.
3051  *
3052  *	RETURNS:
3053  *	Matching xfer_mode, 0xff if no match found.
3054  */
3055 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3056 {
3057 	u8 base_mode = 0xff, last_mode = 0xff;
3058 	const struct ata_xfer_ent *ent;
3059 	const struct ata_timing *t;
3060 
3061 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3062 		if (ent->shift == xfer_shift)
3063 			base_mode = ent->base;
3064 
3065 	for (t = ata_timing_find_mode(base_mode);
3066 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3067 		unsigned short this_cycle;
3068 
3069 		switch (xfer_shift) {
3070 		case ATA_SHIFT_PIO:
3071 		case ATA_SHIFT_MWDMA:
3072 			this_cycle = t->cycle;
3073 			break;
3074 		case ATA_SHIFT_UDMA:
3075 			this_cycle = t->udma;
3076 			break;
3077 		default:
3078 			return 0xff;
3079 		}
3080 
3081 		if (cycle > this_cycle)
3082 			break;
3083 
3084 		last_mode = t->mode;
3085 	}
3086 
3087 	return last_mode;
3088 }
3089 
3090 /**
3091  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3092  *	@dev: Device to adjust xfer masks
3093  *	@sel: ATA_DNXFER_* selector
3094  *
3095  *	Adjust xfer masks of @dev downward.  Note that this function
3096  *	does not apply the change.  Invoking ata_set_mode() afterwards
3097  *	will apply the limit.
3098  *
3099  *	LOCKING:
3100  *	Inherited from caller.
3101  *
3102  *	RETURNS:
3103  *	0 on success, negative errno on failure
3104  */
3105 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3106 {
3107 	char buf[32];
3108 	unsigned long orig_mask, xfer_mask;
3109 	unsigned long pio_mask, mwdma_mask, udma_mask;
3110 	int quiet, highbit;
3111 
3112 	quiet = !!(sel & ATA_DNXFER_QUIET);
3113 	sel &= ~ATA_DNXFER_QUIET;
3114 
3115 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3116 						  dev->mwdma_mask,
3117 						  dev->udma_mask);
3118 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3119 
3120 	switch (sel) {
3121 	case ATA_DNXFER_PIO:
3122 		highbit = fls(pio_mask) - 1;
3123 		pio_mask &= ~(1 << highbit);
3124 		break;
3125 
3126 	case ATA_DNXFER_DMA:
3127 		if (udma_mask) {
3128 			highbit = fls(udma_mask) - 1;
3129 			udma_mask &= ~(1 << highbit);
3130 			if (!udma_mask)
3131 				return -ENOENT;
3132 		} else if (mwdma_mask) {
3133 			highbit = fls(mwdma_mask) - 1;
3134 			mwdma_mask &= ~(1 << highbit);
3135 			if (!mwdma_mask)
3136 				return -ENOENT;
3137 		}
3138 		break;
3139 
3140 	case ATA_DNXFER_40C:
3141 		udma_mask &= ATA_UDMA_MASK_40C;
3142 		break;
3143 
3144 	case ATA_DNXFER_FORCE_PIO0:
3145 		pio_mask &= 1;
3146 	case ATA_DNXFER_FORCE_PIO:
3147 		mwdma_mask = 0;
3148 		udma_mask = 0;
3149 		break;
3150 
3151 	default:
3152 		BUG();
3153 	}
3154 
3155 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3156 
3157 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3158 		return -ENOENT;
3159 
3160 	if (!quiet) {
3161 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3162 			snprintf(buf, sizeof(buf), "%s:%s",
3163 				 ata_mode_string(xfer_mask),
3164 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3165 		else
3166 			snprintf(buf, sizeof(buf), "%s",
3167 				 ata_mode_string(xfer_mask));
3168 
3169 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3170 	}
3171 
3172 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3173 			    &dev->udma_mask);
3174 
3175 	return 0;
3176 }
3177 
3178 static int ata_dev_set_mode(struct ata_device *dev)
3179 {
3180 	struct ata_port *ap = dev->link->ap;
3181 	struct ata_eh_context *ehc = &dev->link->eh_context;
3182 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3183 	const char *dev_err_whine = "";
3184 	int ign_dev_err = 0;
3185 	unsigned int err_mask = 0;
3186 	int rc;
3187 
3188 	dev->flags &= ~ATA_DFLAG_PIO;
3189 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3190 		dev->flags |= ATA_DFLAG_PIO;
3191 
3192 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3193 		dev_err_whine = " (SET_XFERMODE skipped)";
3194 	else {
3195 		if (nosetxfer)
3196 			ata_dev_warn(dev,
3197 				     "NOSETXFER but PATA detected - can't "
3198 				     "skip SETXFER, might malfunction\n");
3199 		err_mask = ata_dev_set_xfermode(dev);
3200 	}
3201 
3202 	if (err_mask & ~AC_ERR_DEV)
3203 		goto fail;
3204 
3205 	/* revalidate */
3206 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3207 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3208 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3209 	if (rc)
3210 		return rc;
3211 
3212 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3213 		/* Old CFA may refuse this command, which is just fine */
3214 		if (ata_id_is_cfa(dev->id))
3215 			ign_dev_err = 1;
3216 		/* Catch several broken garbage emulations plus some pre
3217 		   ATA devices */
3218 		if (ata_id_major_version(dev->id) == 0 &&
3219 					dev->pio_mode <= XFER_PIO_2)
3220 			ign_dev_err = 1;
3221 		/* Some very old devices and some bad newer ones fail
3222 		   any kind of SET_XFERMODE request but support PIO0-2
3223 		   timings and no IORDY */
3224 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3225 			ign_dev_err = 1;
3226 	}
3227 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3228 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3229 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3230 	    dev->dma_mode == XFER_MW_DMA_0 &&
3231 	    (dev->id[63] >> 8) & 1)
3232 		ign_dev_err = 1;
3233 
3234 	/* if the device is actually configured correctly, ignore dev err */
3235 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3236 		ign_dev_err = 1;
3237 
3238 	if (err_mask & AC_ERR_DEV) {
3239 		if (!ign_dev_err)
3240 			goto fail;
3241 		else
3242 			dev_err_whine = " (device error ignored)";
3243 	}
3244 
3245 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3246 		dev->xfer_shift, (int)dev->xfer_mode);
3247 
3248 	ata_dev_info(dev, "configured for %s%s\n",
3249 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3250 		     dev_err_whine);
3251 
3252 	return 0;
3253 
3254  fail:
3255 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3256 	return -EIO;
3257 }
3258 
3259 /**
3260  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3261  *	@link: link on which timings will be programmed
3262  *	@r_failed_dev: out parameter for failed device
3263  *
3264  *	Standard implementation of the function used to tune and set
3265  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3266  *	ata_dev_set_mode() fails, pointer to the failing device is
3267  *	returned in @r_failed_dev.
3268  *
3269  *	LOCKING:
3270  *	PCI/etc. bus probe sem.
3271  *
3272  *	RETURNS:
3273  *	0 on success, negative errno otherwise
3274  */
3275 
3276 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3277 {
3278 	struct ata_port *ap = link->ap;
3279 	struct ata_device *dev;
3280 	int rc = 0, used_dma = 0, found = 0;
3281 
3282 	/* step 1: calculate xfer_mask */
3283 	ata_for_each_dev(dev, link, ENABLED) {
3284 		unsigned long pio_mask, dma_mask;
3285 		unsigned int mode_mask;
3286 
3287 		mode_mask = ATA_DMA_MASK_ATA;
3288 		if (dev->class == ATA_DEV_ATAPI)
3289 			mode_mask = ATA_DMA_MASK_ATAPI;
3290 		else if (ata_id_is_cfa(dev->id))
3291 			mode_mask = ATA_DMA_MASK_CFA;
3292 
3293 		ata_dev_xfermask(dev);
3294 		ata_force_xfermask(dev);
3295 
3296 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3297 
3298 		if (libata_dma_mask & mode_mask)
3299 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3300 						     dev->udma_mask);
3301 		else
3302 			dma_mask = 0;
3303 
3304 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3305 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3306 
3307 		found = 1;
3308 		if (ata_dma_enabled(dev))
3309 			used_dma = 1;
3310 	}
3311 	if (!found)
3312 		goto out;
3313 
3314 	/* step 2: always set host PIO timings */
3315 	ata_for_each_dev(dev, link, ENABLED) {
3316 		if (dev->pio_mode == 0xff) {
3317 			ata_dev_warn(dev, "no PIO support\n");
3318 			rc = -EINVAL;
3319 			goto out;
3320 		}
3321 
3322 		dev->xfer_mode = dev->pio_mode;
3323 		dev->xfer_shift = ATA_SHIFT_PIO;
3324 		if (ap->ops->set_piomode)
3325 			ap->ops->set_piomode(ap, dev);
3326 	}
3327 
3328 	/* step 3: set host DMA timings */
3329 	ata_for_each_dev(dev, link, ENABLED) {
3330 		if (!ata_dma_enabled(dev))
3331 			continue;
3332 
3333 		dev->xfer_mode = dev->dma_mode;
3334 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3335 		if (ap->ops->set_dmamode)
3336 			ap->ops->set_dmamode(ap, dev);
3337 	}
3338 
3339 	/* step 4: update devices' xfer mode */
3340 	ata_for_each_dev(dev, link, ENABLED) {
3341 		rc = ata_dev_set_mode(dev);
3342 		if (rc)
3343 			goto out;
3344 	}
3345 
3346 	/* Record simplex status. If we selected DMA then the other
3347 	 * host channels are not permitted to do so.
3348 	 */
3349 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3350 		ap->host->simplex_claimed = ap;
3351 
3352  out:
3353 	if (rc)
3354 		*r_failed_dev = dev;
3355 	return rc;
3356 }
3357 
3358 /**
3359  *	ata_wait_ready - wait for link to become ready
3360  *	@link: link to be waited on
3361  *	@deadline: deadline jiffies for the operation
3362  *	@check_ready: callback to check link readiness
3363  *
3364  *	Wait for @link to become ready.  @check_ready should return
3365  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3366  *	link doesn't seem to be occupied, other errno for other error
3367  *	conditions.
3368  *
3369  *	Transient -ENODEV conditions are allowed for
3370  *	ATA_TMOUT_FF_WAIT.
3371  *
3372  *	LOCKING:
3373  *	EH context.
3374  *
3375  *	RETURNS:
3376  *	0 if @linke is ready before @deadline; otherwise, -errno.
3377  */
3378 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3379 		   int (*check_ready)(struct ata_link *link))
3380 {
3381 	unsigned long start = jiffies;
3382 	unsigned long nodev_deadline;
3383 	int warned = 0;
3384 
3385 	/* choose which 0xff timeout to use, read comment in libata.h */
3386 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3387 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3388 	else
3389 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3390 
3391 	/* Slave readiness can't be tested separately from master.  On
3392 	 * M/S emulation configuration, this function should be called
3393 	 * only on the master and it will handle both master and slave.
3394 	 */
3395 	WARN_ON(link == link->ap->slave_link);
3396 
3397 	if (time_after(nodev_deadline, deadline))
3398 		nodev_deadline = deadline;
3399 
3400 	while (1) {
3401 		unsigned long now = jiffies;
3402 		int ready, tmp;
3403 
3404 		ready = tmp = check_ready(link);
3405 		if (ready > 0)
3406 			return 0;
3407 
3408 		/*
3409 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3410 		 * is online.  Also, some SATA devices take a long
3411 		 * time to clear 0xff after reset.  Wait for
3412 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3413 		 * offline.
3414 		 *
3415 		 * Note that some PATA controllers (pata_ali) explode
3416 		 * if status register is read more than once when
3417 		 * there's no device attached.
3418 		 */
3419 		if (ready == -ENODEV) {
3420 			if (ata_link_online(link))
3421 				ready = 0;
3422 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3423 				 !ata_link_offline(link) &&
3424 				 time_before(now, nodev_deadline))
3425 				ready = 0;
3426 		}
3427 
3428 		if (ready)
3429 			return ready;
3430 		if (time_after(now, deadline))
3431 			return -EBUSY;
3432 
3433 		if (!warned && time_after(now, start + 5 * HZ) &&
3434 		    (deadline - now > 3 * HZ)) {
3435 			ata_link_warn(link,
3436 				"link is slow to respond, please be patient "
3437 				"(ready=%d)\n", tmp);
3438 			warned = 1;
3439 		}
3440 
3441 		ata_msleep(link->ap, 50);
3442 	}
3443 }
3444 
3445 /**
3446  *	ata_wait_after_reset - wait for link to become ready after reset
3447  *	@link: link to be waited on
3448  *	@deadline: deadline jiffies for the operation
3449  *	@check_ready: callback to check link readiness
3450  *
3451  *	Wait for @link to become ready after reset.
3452  *
3453  *	LOCKING:
3454  *	EH context.
3455  *
3456  *	RETURNS:
3457  *	0 if @linke is ready before @deadline; otherwise, -errno.
3458  */
3459 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3460 				int (*check_ready)(struct ata_link *link))
3461 {
3462 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3463 
3464 	return ata_wait_ready(link, deadline, check_ready);
3465 }
3466 
3467 /**
3468  *	sata_link_debounce - debounce SATA phy status
3469  *	@link: ATA link to debounce SATA phy status for
3470  *	@params: timing parameters { interval, duratinon, timeout } in msec
3471  *	@deadline: deadline jiffies for the operation
3472  *
3473  *	Make sure SStatus of @link reaches stable state, determined by
3474  *	holding the same value where DET is not 1 for @duration polled
3475  *	every @interval, before @timeout.  Timeout constraints the
3476  *	beginning of the stable state.  Because DET gets stuck at 1 on
3477  *	some controllers after hot unplugging, this functions waits
3478  *	until timeout then returns 0 if DET is stable at 1.
3479  *
3480  *	@timeout is further limited by @deadline.  The sooner of the
3481  *	two is used.
3482  *
3483  *	LOCKING:
3484  *	Kernel thread context (may sleep)
3485  *
3486  *	RETURNS:
3487  *	0 on success, -errno on failure.
3488  */
3489 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3490 		       unsigned long deadline)
3491 {
3492 	unsigned long interval = params[0];
3493 	unsigned long duration = params[1];
3494 	unsigned long last_jiffies, t;
3495 	u32 last, cur;
3496 	int rc;
3497 
3498 	t = ata_deadline(jiffies, params[2]);
3499 	if (time_before(t, deadline))
3500 		deadline = t;
3501 
3502 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3503 		return rc;
3504 	cur &= 0xf;
3505 
3506 	last = cur;
3507 	last_jiffies = jiffies;
3508 
3509 	while (1) {
3510 		ata_msleep(link->ap, interval);
3511 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3512 			return rc;
3513 		cur &= 0xf;
3514 
3515 		/* DET stable? */
3516 		if (cur == last) {
3517 			if (cur == 1 && time_before(jiffies, deadline))
3518 				continue;
3519 			if (time_after(jiffies,
3520 				       ata_deadline(last_jiffies, duration)))
3521 				return 0;
3522 			continue;
3523 		}
3524 
3525 		/* unstable, start over */
3526 		last = cur;
3527 		last_jiffies = jiffies;
3528 
3529 		/* Check deadline.  If debouncing failed, return
3530 		 * -EPIPE to tell upper layer to lower link speed.
3531 		 */
3532 		if (time_after(jiffies, deadline))
3533 			return -EPIPE;
3534 	}
3535 }
3536 
3537 /**
3538  *	sata_link_resume - resume SATA link
3539  *	@link: ATA link to resume SATA
3540  *	@params: timing parameters { interval, duratinon, timeout } in msec
3541  *	@deadline: deadline jiffies for the operation
3542  *
3543  *	Resume SATA phy @link and debounce it.
3544  *
3545  *	LOCKING:
3546  *	Kernel thread context (may sleep)
3547  *
3548  *	RETURNS:
3549  *	0 on success, -errno on failure.
3550  */
3551 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3552 		     unsigned long deadline)
3553 {
3554 	int tries = ATA_LINK_RESUME_TRIES;
3555 	u32 scontrol, serror;
3556 	int rc;
3557 
3558 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3559 		return rc;
3560 
3561 	/*
3562 	 * Writes to SControl sometimes get ignored under certain
3563 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3564 	 * cleared.
3565 	 */
3566 	do {
3567 		scontrol = (scontrol & 0x0f0) | 0x300;
3568 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3569 			return rc;
3570 		/*
3571 		 * Some PHYs react badly if SStatus is pounded
3572 		 * immediately after resuming.  Delay 200ms before
3573 		 * debouncing.
3574 		 */
3575 		ata_msleep(link->ap, 200);
3576 
3577 		/* is SControl restored correctly? */
3578 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3579 			return rc;
3580 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3581 
3582 	if ((scontrol & 0xf0f) != 0x300) {
3583 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3584 			     scontrol);
3585 		return 0;
3586 	}
3587 
3588 	if (tries < ATA_LINK_RESUME_TRIES)
3589 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3590 			      ATA_LINK_RESUME_TRIES - tries);
3591 
3592 	if ((rc = sata_link_debounce(link, params, deadline)))
3593 		return rc;
3594 
3595 	/* clear SError, some PHYs require this even for SRST to work */
3596 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3597 		rc = sata_scr_write(link, SCR_ERROR, serror);
3598 
3599 	return rc != -EINVAL ? rc : 0;
3600 }
3601 
3602 /**
3603  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3604  *	@link: ATA link to manipulate SControl for
3605  *	@policy: LPM policy to configure
3606  *	@spm_wakeup: initiate LPM transition to active state
3607  *
3608  *	Manipulate the IPM field of the SControl register of @link
3609  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3610  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3611  *	the link.  This function also clears PHYRDY_CHG before
3612  *	returning.
3613  *
3614  *	LOCKING:
3615  *	EH context.
3616  *
3617  *	RETURNS:
3618  *	0 on succes, -errno otherwise.
3619  */
3620 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3621 		      bool spm_wakeup)
3622 {
3623 	struct ata_eh_context *ehc = &link->eh_context;
3624 	bool woken_up = false;
3625 	u32 scontrol;
3626 	int rc;
3627 
3628 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3629 	if (rc)
3630 		return rc;
3631 
3632 	switch (policy) {
3633 	case ATA_LPM_MAX_POWER:
3634 		/* disable all LPM transitions */
3635 		scontrol |= (0x7 << 8);
3636 		/* initiate transition to active state */
3637 		if (spm_wakeup) {
3638 			scontrol |= (0x4 << 12);
3639 			woken_up = true;
3640 		}
3641 		break;
3642 	case ATA_LPM_MED_POWER:
3643 		/* allow LPM to PARTIAL */
3644 		scontrol &= ~(0x1 << 8);
3645 		scontrol |= (0x6 << 8);
3646 		break;
3647 	case ATA_LPM_MIN_POWER:
3648 		if (ata_link_nr_enabled(link) > 0)
3649 			/* no restrictions on LPM transitions */
3650 			scontrol &= ~(0x7 << 8);
3651 		else {
3652 			/* empty port, power off */
3653 			scontrol &= ~0xf;
3654 			scontrol |= (0x1 << 2);
3655 		}
3656 		break;
3657 	default:
3658 		WARN_ON(1);
3659 	}
3660 
3661 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3662 	if (rc)
3663 		return rc;
3664 
3665 	/* give the link time to transit out of LPM state */
3666 	if (woken_up)
3667 		msleep(10);
3668 
3669 	/* clear PHYRDY_CHG from SError */
3670 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3671 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3672 }
3673 
3674 /**
3675  *	ata_std_prereset - prepare for reset
3676  *	@link: ATA link to be reset
3677  *	@deadline: deadline jiffies for the operation
3678  *
3679  *	@link is about to be reset.  Initialize it.  Failure from
3680  *	prereset makes libata abort whole reset sequence and give up
3681  *	that port, so prereset should be best-effort.  It does its
3682  *	best to prepare for reset sequence but if things go wrong, it
3683  *	should just whine, not fail.
3684  *
3685  *	LOCKING:
3686  *	Kernel thread context (may sleep)
3687  *
3688  *	RETURNS:
3689  *	0 on success, -errno otherwise.
3690  */
3691 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3692 {
3693 	struct ata_port *ap = link->ap;
3694 	struct ata_eh_context *ehc = &link->eh_context;
3695 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3696 	int rc;
3697 
3698 	/* if we're about to do hardreset, nothing more to do */
3699 	if (ehc->i.action & ATA_EH_HARDRESET)
3700 		return 0;
3701 
3702 	/* if SATA, resume link */
3703 	if (ap->flags & ATA_FLAG_SATA) {
3704 		rc = sata_link_resume(link, timing, deadline);
3705 		/* whine about phy resume failure but proceed */
3706 		if (rc && rc != -EOPNOTSUPP)
3707 			ata_link_warn(link,
3708 				      "failed to resume link for reset (errno=%d)\n",
3709 				      rc);
3710 	}
3711 
3712 	/* no point in trying softreset on offline link */
3713 	if (ata_phys_link_offline(link))
3714 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3715 
3716 	return 0;
3717 }
3718 
3719 /**
3720  *	sata_link_hardreset - reset link via SATA phy reset
3721  *	@link: link to reset
3722  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3723  *	@deadline: deadline jiffies for the operation
3724  *	@online: optional out parameter indicating link onlineness
3725  *	@check_ready: optional callback to check link readiness
3726  *
3727  *	SATA phy-reset @link using DET bits of SControl register.
3728  *	After hardreset, link readiness is waited upon using
3729  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3730  *	allowed to not specify @check_ready and wait itself after this
3731  *	function returns.  Device classification is LLD's
3732  *	responsibility.
3733  *
3734  *	*@online is set to one iff reset succeeded and @link is online
3735  *	after reset.
3736  *
3737  *	LOCKING:
3738  *	Kernel thread context (may sleep)
3739  *
3740  *	RETURNS:
3741  *	0 on success, -errno otherwise.
3742  */
3743 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3744 			unsigned long deadline,
3745 			bool *online, int (*check_ready)(struct ata_link *))
3746 {
3747 	u32 scontrol;
3748 	int rc;
3749 
3750 	DPRINTK("ENTER\n");
3751 
3752 	if (online)
3753 		*online = false;
3754 
3755 	if (sata_set_spd_needed(link)) {
3756 		/* SATA spec says nothing about how to reconfigure
3757 		 * spd.  To be on the safe side, turn off phy during
3758 		 * reconfiguration.  This works for at least ICH7 AHCI
3759 		 * and Sil3124.
3760 		 */
3761 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3762 			goto out;
3763 
3764 		scontrol = (scontrol & 0x0f0) | 0x304;
3765 
3766 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3767 			goto out;
3768 
3769 		sata_set_spd(link);
3770 	}
3771 
3772 	/* issue phy wake/reset */
3773 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3774 		goto out;
3775 
3776 	scontrol = (scontrol & 0x0f0) | 0x301;
3777 
3778 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3779 		goto out;
3780 
3781 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3782 	 * 10.4.2 says at least 1 ms.
3783 	 */
3784 	ata_msleep(link->ap, 1);
3785 
3786 	/* bring link back */
3787 	rc = sata_link_resume(link, timing, deadline);
3788 	if (rc)
3789 		goto out;
3790 	/* if link is offline nothing more to do */
3791 	if (ata_phys_link_offline(link))
3792 		goto out;
3793 
3794 	/* Link is online.  From this point, -ENODEV too is an error. */
3795 	if (online)
3796 		*online = true;
3797 
3798 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3799 		/* If PMP is supported, we have to do follow-up SRST.
3800 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3801 		 * the first port is empty.  Wait only for
3802 		 * ATA_TMOUT_PMP_SRST_WAIT.
3803 		 */
3804 		if (check_ready) {
3805 			unsigned long pmp_deadline;
3806 
3807 			pmp_deadline = ata_deadline(jiffies,
3808 						    ATA_TMOUT_PMP_SRST_WAIT);
3809 			if (time_after(pmp_deadline, deadline))
3810 				pmp_deadline = deadline;
3811 			ata_wait_ready(link, pmp_deadline, check_ready);
3812 		}
3813 		rc = -EAGAIN;
3814 		goto out;
3815 	}
3816 
3817 	rc = 0;
3818 	if (check_ready)
3819 		rc = ata_wait_ready(link, deadline, check_ready);
3820  out:
3821 	if (rc && rc != -EAGAIN) {
3822 		/* online is set iff link is online && reset succeeded */
3823 		if (online)
3824 			*online = false;
3825 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3826 	}
3827 	DPRINTK("EXIT, rc=%d\n", rc);
3828 	return rc;
3829 }
3830 
3831 /**
3832  *	sata_std_hardreset - COMRESET w/o waiting or classification
3833  *	@link: link to reset
3834  *	@class: resulting class of attached device
3835  *	@deadline: deadline jiffies for the operation
3836  *
3837  *	Standard SATA COMRESET w/o waiting or classification.
3838  *
3839  *	LOCKING:
3840  *	Kernel thread context (may sleep)
3841  *
3842  *	RETURNS:
3843  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3844  */
3845 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3846 		       unsigned long deadline)
3847 {
3848 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3849 	bool online;
3850 	int rc;
3851 
3852 	/* do hardreset */
3853 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3854 	return online ? -EAGAIN : rc;
3855 }
3856 
3857 /**
3858  *	ata_std_postreset - standard postreset callback
3859  *	@link: the target ata_link
3860  *	@classes: classes of attached devices
3861  *
3862  *	This function is invoked after a successful reset.  Note that
3863  *	the device might have been reset more than once using
3864  *	different reset methods before postreset is invoked.
3865  *
3866  *	LOCKING:
3867  *	Kernel thread context (may sleep)
3868  */
3869 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3870 {
3871 	u32 serror;
3872 
3873 	DPRINTK("ENTER\n");
3874 
3875 	/* reset complete, clear SError */
3876 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3877 		sata_scr_write(link, SCR_ERROR, serror);
3878 
3879 	/* print link status */
3880 	sata_print_link_status(link);
3881 
3882 	DPRINTK("EXIT\n");
3883 }
3884 
3885 /**
3886  *	ata_dev_same_device - Determine whether new ID matches configured device
3887  *	@dev: device to compare against
3888  *	@new_class: class of the new device
3889  *	@new_id: IDENTIFY page of the new device
3890  *
3891  *	Compare @new_class and @new_id against @dev and determine
3892  *	whether @dev is the device indicated by @new_class and
3893  *	@new_id.
3894  *
3895  *	LOCKING:
3896  *	None.
3897  *
3898  *	RETURNS:
3899  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3900  */
3901 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3902 			       const u16 *new_id)
3903 {
3904 	const u16 *old_id = dev->id;
3905 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3906 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3907 
3908 	if (dev->class != new_class) {
3909 		ata_dev_info(dev, "class mismatch %d != %d\n",
3910 			     dev->class, new_class);
3911 		return 0;
3912 	}
3913 
3914 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3915 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3916 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3917 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3918 
3919 	if (strcmp(model[0], model[1])) {
3920 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3921 			     model[0], model[1]);
3922 		return 0;
3923 	}
3924 
3925 	if (strcmp(serial[0], serial[1])) {
3926 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3927 			     serial[0], serial[1]);
3928 		return 0;
3929 	}
3930 
3931 	return 1;
3932 }
3933 
3934 /**
3935  *	ata_dev_reread_id - Re-read IDENTIFY data
3936  *	@dev: target ATA device
3937  *	@readid_flags: read ID flags
3938  *
3939  *	Re-read IDENTIFY page and make sure @dev is still attached to
3940  *	the port.
3941  *
3942  *	LOCKING:
3943  *	Kernel thread context (may sleep)
3944  *
3945  *	RETURNS:
3946  *	0 on success, negative errno otherwise
3947  */
3948 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3949 {
3950 	unsigned int class = dev->class;
3951 	u16 *id = (void *)dev->link->ap->sector_buf;
3952 	int rc;
3953 
3954 	/* read ID data */
3955 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3956 	if (rc)
3957 		return rc;
3958 
3959 	/* is the device still there? */
3960 	if (!ata_dev_same_device(dev, class, id))
3961 		return -ENODEV;
3962 
3963 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3964 	return 0;
3965 }
3966 
3967 /**
3968  *	ata_dev_revalidate - Revalidate ATA device
3969  *	@dev: device to revalidate
3970  *	@new_class: new class code
3971  *	@readid_flags: read ID flags
3972  *
3973  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3974  *	port and reconfigure it according to the new IDENTIFY page.
3975  *
3976  *	LOCKING:
3977  *	Kernel thread context (may sleep)
3978  *
3979  *	RETURNS:
3980  *	0 on success, negative errno otherwise
3981  */
3982 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3983 		       unsigned int readid_flags)
3984 {
3985 	u64 n_sectors = dev->n_sectors;
3986 	u64 n_native_sectors = dev->n_native_sectors;
3987 	int rc;
3988 
3989 	if (!ata_dev_enabled(dev))
3990 		return -ENODEV;
3991 
3992 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3993 	if (ata_class_enabled(new_class) &&
3994 	    new_class != ATA_DEV_ATA &&
3995 	    new_class != ATA_DEV_ATAPI &&
3996 	    new_class != ATA_DEV_SEMB) {
3997 		ata_dev_info(dev, "class mismatch %u != %u\n",
3998 			     dev->class, new_class);
3999 		rc = -ENODEV;
4000 		goto fail;
4001 	}
4002 
4003 	/* re-read ID */
4004 	rc = ata_dev_reread_id(dev, readid_flags);
4005 	if (rc)
4006 		goto fail;
4007 
4008 	/* configure device according to the new ID */
4009 	rc = ata_dev_configure(dev);
4010 	if (rc)
4011 		goto fail;
4012 
4013 	/* verify n_sectors hasn't changed */
4014 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4015 	    dev->n_sectors == n_sectors)
4016 		return 0;
4017 
4018 	/* n_sectors has changed */
4019 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4020 		     (unsigned long long)n_sectors,
4021 		     (unsigned long long)dev->n_sectors);
4022 
4023 	/*
4024 	 * Something could have caused HPA to be unlocked
4025 	 * involuntarily.  If n_native_sectors hasn't changed and the
4026 	 * new size matches it, keep the device.
4027 	 */
4028 	if (dev->n_native_sectors == n_native_sectors &&
4029 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4030 		ata_dev_warn(dev,
4031 			     "new n_sectors matches native, probably "
4032 			     "late HPA unlock, n_sectors updated\n");
4033 		/* use the larger n_sectors */
4034 		return 0;
4035 	}
4036 
4037 	/*
4038 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4039 	 * unlocking HPA in those cases.
4040 	 *
4041 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4042 	 */
4043 	if (dev->n_native_sectors == n_native_sectors &&
4044 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4045 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4046 		ata_dev_warn(dev,
4047 			     "old n_sectors matches native, probably "
4048 			     "late HPA lock, will try to unlock HPA\n");
4049 		/* try unlocking HPA */
4050 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4051 		rc = -EIO;
4052 	} else
4053 		rc = -ENODEV;
4054 
4055 	/* restore original n_[native_]sectors and fail */
4056 	dev->n_native_sectors = n_native_sectors;
4057 	dev->n_sectors = n_sectors;
4058  fail:
4059 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4060 	return rc;
4061 }
4062 
4063 struct ata_blacklist_entry {
4064 	const char *model_num;
4065 	const char *model_rev;
4066 	unsigned long horkage;
4067 };
4068 
4069 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4070 	/* Devices with DMA related problems under Linux */
4071 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4072 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4073 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4074 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4075 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4076 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4077 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4078 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4079 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4080 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4081 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4082 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4083 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4084 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4085 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4086 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4087 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4088 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4089 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4090 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4091 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4092 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4093 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4094 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4095 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4096 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4097 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4098 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4099 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4100 	/* Odd clown on sil3726/4726 PMPs */
4101 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4102 
4103 	/* Weird ATAPI devices */
4104 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4105 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4106 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4107 
4108 	/* Devices we expect to fail diagnostics */
4109 
4110 	/* Devices where NCQ should be avoided */
4111 	/* NCQ is slow */
4112 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4113 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4114 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4115 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4116 	/* NCQ is broken */
4117 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4118 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4119 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4120 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4121 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4122 
4123 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4124 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4125 						ATA_HORKAGE_FIRMWARE_WARN },
4126 
4127 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4128 						ATA_HORKAGE_FIRMWARE_WARN },
4129 
4130 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4131 						ATA_HORKAGE_FIRMWARE_WARN },
4132 
4133 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4134 						ATA_HORKAGE_FIRMWARE_WARN },
4135 
4136 	/* Blacklist entries taken from Silicon Image 3124/3132
4137 	   Windows driver .inf file - also several Linux problem reports */
4138 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4139 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4140 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4141 
4142 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4143 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4144 
4145 	/* devices which puke on READ_NATIVE_MAX */
4146 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4147 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4148 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4149 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4150 
4151 	/* this one allows HPA unlocking but fails IOs on the area */
4152 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4153 
4154 	/* Devices which report 1 sector over size HPA */
4155 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4156 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4157 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4158 
4159 	/* Devices which get the IVB wrong */
4160 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4161 	/* Maybe we should just blacklist TSSTcorp... */
4162 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4163 
4164 	/* Devices that do not need bridging limits applied */
4165 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4166 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4167 
4168 	/* Devices which aren't very happy with higher link speeds */
4169 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4170 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4171 
4172 	/*
4173 	 * Devices which choke on SETXFER.  Applies only if both the
4174 	 * device and controller are SATA.
4175 	 */
4176 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4177 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4178 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4179 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4180 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4181 
4182 	/* End Marker */
4183 	{ }
4184 };
4185 
4186 /**
4187  *	glob_match - match a text string against a glob-style pattern
4188  *	@text: the string to be examined
4189  *	@pattern: the glob-style pattern to be matched against
4190  *
4191  *	Either/both of text and pattern can be empty strings.
4192  *
4193  *	Match text against a glob-style pattern, with wildcards and simple sets:
4194  *
4195  *		?	matches any single character.
4196  *		*	matches any run of characters.
4197  *		[xyz]	matches a single character from the set: x, y, or z.
4198  *		[a-d]	matches a single character from the range: a, b, c, or d.
4199  *		[a-d0-9] matches a single character from either range.
4200  *
4201  *	The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4202  *	Behaviour with malformed patterns is undefined, though generally reasonable.
4203  *
4204  *	Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4205  *
4206  *	This function uses one level of recursion per '*' in pattern.
4207  *	Since it calls _nothing_ else, and has _no_ explicit local variables,
4208  *	this will not cause stack problems for any reasonable use here.
4209  *
4210  *	RETURNS:
4211  *	0 on match, 1 otherwise.
4212  */
4213 static int glob_match (const char *text, const char *pattern)
4214 {
4215 	do {
4216 		/* Match single character or a '?' wildcard */
4217 		if (*text == *pattern || *pattern == '?') {
4218 			if (!*pattern++)
4219 				return 0;  /* End of both strings: match */
4220 		} else {
4221 			/* Match single char against a '[' bracketed ']' pattern set */
4222 			if (!*text || *pattern != '[')
4223 				break;  /* Not a pattern set */
4224 			while (*++pattern && *pattern != ']' && *text != *pattern) {
4225 				if (*pattern == '-' && *(pattern - 1) != '[')
4226 					if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4227 						++pattern;
4228 						break;
4229 					}
4230 			}
4231 			if (!*pattern || *pattern == ']')
4232 				return 1;  /* No match */
4233 			while (*pattern && *pattern++ != ']');
4234 		}
4235 	} while (*++text && *pattern);
4236 
4237 	/* Match any run of chars against a '*' wildcard */
4238 	if (*pattern == '*') {
4239 		if (!*++pattern)
4240 			return 0;  /* Match: avoid recursion at end of pattern */
4241 		/* Loop to handle additional pattern chars after the wildcard */
4242 		while (*text) {
4243 			if (glob_match(text, pattern) == 0)
4244 				return 0;  /* Remainder matched */
4245 			++text;  /* Absorb (match) this char and try again */
4246 		}
4247 	}
4248 	if (!*text && !*pattern)
4249 		return 0;  /* End of both strings: match */
4250 	return 1;  /* No match */
4251 }
4252 
4253 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4254 {
4255 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4256 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4257 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4258 
4259 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4260 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4261 
4262 	while (ad->model_num) {
4263 		if (!glob_match(model_num, ad->model_num)) {
4264 			if (ad->model_rev == NULL)
4265 				return ad->horkage;
4266 			if (!glob_match(model_rev, ad->model_rev))
4267 				return ad->horkage;
4268 		}
4269 		ad++;
4270 	}
4271 	return 0;
4272 }
4273 
4274 static int ata_dma_blacklisted(const struct ata_device *dev)
4275 {
4276 	/* We don't support polling DMA.
4277 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4278 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4279 	 */
4280 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4281 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4282 		return 1;
4283 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4284 }
4285 
4286 /**
4287  *	ata_is_40wire		-	check drive side detection
4288  *	@dev: device
4289  *
4290  *	Perform drive side detection decoding, allowing for device vendors
4291  *	who can't follow the documentation.
4292  */
4293 
4294 static int ata_is_40wire(struct ata_device *dev)
4295 {
4296 	if (dev->horkage & ATA_HORKAGE_IVB)
4297 		return ata_drive_40wire_relaxed(dev->id);
4298 	return ata_drive_40wire(dev->id);
4299 }
4300 
4301 /**
4302  *	cable_is_40wire		-	40/80/SATA decider
4303  *	@ap: port to consider
4304  *
4305  *	This function encapsulates the policy for speed management
4306  *	in one place. At the moment we don't cache the result but
4307  *	there is a good case for setting ap->cbl to the result when
4308  *	we are called with unknown cables (and figuring out if it
4309  *	impacts hotplug at all).
4310  *
4311  *	Return 1 if the cable appears to be 40 wire.
4312  */
4313 
4314 static int cable_is_40wire(struct ata_port *ap)
4315 {
4316 	struct ata_link *link;
4317 	struct ata_device *dev;
4318 
4319 	/* If the controller thinks we are 40 wire, we are. */
4320 	if (ap->cbl == ATA_CBL_PATA40)
4321 		return 1;
4322 
4323 	/* If the controller thinks we are 80 wire, we are. */
4324 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4325 		return 0;
4326 
4327 	/* If the system is known to be 40 wire short cable (eg
4328 	 * laptop), then we allow 80 wire modes even if the drive
4329 	 * isn't sure.
4330 	 */
4331 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4332 		return 0;
4333 
4334 	/* If the controller doesn't know, we scan.
4335 	 *
4336 	 * Note: We look for all 40 wire detects at this point.  Any
4337 	 *       80 wire detect is taken to be 80 wire cable because
4338 	 * - in many setups only the one drive (slave if present) will
4339 	 *   give a valid detect
4340 	 * - if you have a non detect capable drive you don't want it
4341 	 *   to colour the choice
4342 	 */
4343 	ata_for_each_link(link, ap, EDGE) {
4344 		ata_for_each_dev(dev, link, ENABLED) {
4345 			if (!ata_is_40wire(dev))
4346 				return 0;
4347 		}
4348 	}
4349 	return 1;
4350 }
4351 
4352 /**
4353  *	ata_dev_xfermask - Compute supported xfermask of the given device
4354  *	@dev: Device to compute xfermask for
4355  *
4356  *	Compute supported xfermask of @dev and store it in
4357  *	dev->*_mask.  This function is responsible for applying all
4358  *	known limits including host controller limits, device
4359  *	blacklist, etc...
4360  *
4361  *	LOCKING:
4362  *	None.
4363  */
4364 static void ata_dev_xfermask(struct ata_device *dev)
4365 {
4366 	struct ata_link *link = dev->link;
4367 	struct ata_port *ap = link->ap;
4368 	struct ata_host *host = ap->host;
4369 	unsigned long xfer_mask;
4370 
4371 	/* controller modes available */
4372 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4373 				      ap->mwdma_mask, ap->udma_mask);
4374 
4375 	/* drive modes available */
4376 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4377 				       dev->mwdma_mask, dev->udma_mask);
4378 	xfer_mask &= ata_id_xfermask(dev->id);
4379 
4380 	/*
4381 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4382 	 *	cable
4383 	 */
4384 	if (ata_dev_pair(dev)) {
4385 		/* No PIO5 or PIO6 */
4386 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4387 		/* No MWDMA3 or MWDMA 4 */
4388 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4389 	}
4390 
4391 	if (ata_dma_blacklisted(dev)) {
4392 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4393 		ata_dev_warn(dev,
4394 			     "device is on DMA blacklist, disabling DMA\n");
4395 	}
4396 
4397 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4398 	    host->simplex_claimed && host->simplex_claimed != ap) {
4399 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4400 		ata_dev_warn(dev,
4401 			     "simplex DMA is claimed by other device, disabling DMA\n");
4402 	}
4403 
4404 	if (ap->flags & ATA_FLAG_NO_IORDY)
4405 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4406 
4407 	if (ap->ops->mode_filter)
4408 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4409 
4410 	/* Apply cable rule here.  Don't apply it early because when
4411 	 * we handle hot plug the cable type can itself change.
4412 	 * Check this last so that we know if the transfer rate was
4413 	 * solely limited by the cable.
4414 	 * Unknown or 80 wire cables reported host side are checked
4415 	 * drive side as well. Cases where we know a 40wire cable
4416 	 * is used safely for 80 are not checked here.
4417 	 */
4418 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4419 		/* UDMA/44 or higher would be available */
4420 		if (cable_is_40wire(ap)) {
4421 			ata_dev_warn(dev,
4422 				     "limited to UDMA/33 due to 40-wire cable\n");
4423 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4424 		}
4425 
4426 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4427 			    &dev->mwdma_mask, &dev->udma_mask);
4428 }
4429 
4430 /**
4431  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4432  *	@dev: Device to which command will be sent
4433  *
4434  *	Issue SET FEATURES - XFER MODE command to device @dev
4435  *	on port @ap.
4436  *
4437  *	LOCKING:
4438  *	PCI/etc. bus probe sem.
4439  *
4440  *	RETURNS:
4441  *	0 on success, AC_ERR_* mask otherwise.
4442  */
4443 
4444 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4445 {
4446 	struct ata_taskfile tf;
4447 	unsigned int err_mask;
4448 
4449 	/* set up set-features taskfile */
4450 	DPRINTK("set features - xfer mode\n");
4451 
4452 	/* Some controllers and ATAPI devices show flaky interrupt
4453 	 * behavior after setting xfer mode.  Use polling instead.
4454 	 */
4455 	ata_tf_init(dev, &tf);
4456 	tf.command = ATA_CMD_SET_FEATURES;
4457 	tf.feature = SETFEATURES_XFER;
4458 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4459 	tf.protocol = ATA_PROT_NODATA;
4460 	/* If we are using IORDY we must send the mode setting command */
4461 	if (ata_pio_need_iordy(dev))
4462 		tf.nsect = dev->xfer_mode;
4463 	/* If the device has IORDY and the controller does not - turn it off */
4464  	else if (ata_id_has_iordy(dev->id))
4465 		tf.nsect = 0x01;
4466 	else /* In the ancient relic department - skip all of this */
4467 		return 0;
4468 
4469 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4470 
4471 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4472 	return err_mask;
4473 }
4474 
4475 /**
4476  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4477  *	@dev: Device to which command will be sent
4478  *	@enable: Whether to enable or disable the feature
4479  *	@feature: The sector count represents the feature to set
4480  *
4481  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4482  *	on port @ap with sector count
4483  *
4484  *	LOCKING:
4485  *	PCI/etc. bus probe sem.
4486  *
4487  *	RETURNS:
4488  *	0 on success, AC_ERR_* mask otherwise.
4489  */
4490 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4491 {
4492 	struct ata_taskfile tf;
4493 	unsigned int err_mask;
4494 
4495 	/* set up set-features taskfile */
4496 	DPRINTK("set features - SATA features\n");
4497 
4498 	ata_tf_init(dev, &tf);
4499 	tf.command = ATA_CMD_SET_FEATURES;
4500 	tf.feature = enable;
4501 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4502 	tf.protocol = ATA_PROT_NODATA;
4503 	tf.nsect = feature;
4504 
4505 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4506 
4507 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4508 	return err_mask;
4509 }
4510 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4511 
4512 /**
4513  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4514  *	@dev: Device to which command will be sent
4515  *	@heads: Number of heads (taskfile parameter)
4516  *	@sectors: Number of sectors (taskfile parameter)
4517  *
4518  *	LOCKING:
4519  *	Kernel thread context (may sleep)
4520  *
4521  *	RETURNS:
4522  *	0 on success, AC_ERR_* mask otherwise.
4523  */
4524 static unsigned int ata_dev_init_params(struct ata_device *dev,
4525 					u16 heads, u16 sectors)
4526 {
4527 	struct ata_taskfile tf;
4528 	unsigned int err_mask;
4529 
4530 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4531 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4532 		return AC_ERR_INVALID;
4533 
4534 	/* set up init dev params taskfile */
4535 	DPRINTK("init dev params \n");
4536 
4537 	ata_tf_init(dev, &tf);
4538 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4539 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4540 	tf.protocol = ATA_PROT_NODATA;
4541 	tf.nsect = sectors;
4542 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4543 
4544 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4545 	/* A clean abort indicates an original or just out of spec drive
4546 	   and we should continue as we issue the setup based on the
4547 	   drive reported working geometry */
4548 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4549 		err_mask = 0;
4550 
4551 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4552 	return err_mask;
4553 }
4554 
4555 /**
4556  *	ata_sg_clean - Unmap DMA memory associated with command
4557  *	@qc: Command containing DMA memory to be released
4558  *
4559  *	Unmap all mapped DMA memory associated with this command.
4560  *
4561  *	LOCKING:
4562  *	spin_lock_irqsave(host lock)
4563  */
4564 void ata_sg_clean(struct ata_queued_cmd *qc)
4565 {
4566 	struct ata_port *ap = qc->ap;
4567 	struct scatterlist *sg = qc->sg;
4568 	int dir = qc->dma_dir;
4569 
4570 	WARN_ON_ONCE(sg == NULL);
4571 
4572 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4573 
4574 	if (qc->n_elem)
4575 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4576 
4577 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4578 	qc->sg = NULL;
4579 }
4580 
4581 /**
4582  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4583  *	@qc: Metadata associated with taskfile to check
4584  *
4585  *	Allow low-level driver to filter ATA PACKET commands, returning
4586  *	a status indicating whether or not it is OK to use DMA for the
4587  *	supplied PACKET command.
4588  *
4589  *	LOCKING:
4590  *	spin_lock_irqsave(host lock)
4591  *
4592  *	RETURNS: 0 when ATAPI DMA can be used
4593  *               nonzero otherwise
4594  */
4595 int atapi_check_dma(struct ata_queued_cmd *qc)
4596 {
4597 	struct ata_port *ap = qc->ap;
4598 
4599 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4600 	 * few ATAPI devices choke on such DMA requests.
4601 	 */
4602 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4603 	    unlikely(qc->nbytes & 15))
4604 		return 1;
4605 
4606 	if (ap->ops->check_atapi_dma)
4607 		return ap->ops->check_atapi_dma(qc);
4608 
4609 	return 0;
4610 }
4611 
4612 /**
4613  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4614  *	@qc: ATA command in question
4615  *
4616  *	Non-NCQ commands cannot run with any other command, NCQ or
4617  *	not.  As upper layer only knows the queue depth, we are
4618  *	responsible for maintaining exclusion.  This function checks
4619  *	whether a new command @qc can be issued.
4620  *
4621  *	LOCKING:
4622  *	spin_lock_irqsave(host lock)
4623  *
4624  *	RETURNS:
4625  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4626  */
4627 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4628 {
4629 	struct ata_link *link = qc->dev->link;
4630 
4631 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4632 		if (!ata_tag_valid(link->active_tag))
4633 			return 0;
4634 	} else {
4635 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4636 			return 0;
4637 	}
4638 
4639 	return ATA_DEFER_LINK;
4640 }
4641 
4642 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4643 
4644 /**
4645  *	ata_sg_init - Associate command with scatter-gather table.
4646  *	@qc: Command to be associated
4647  *	@sg: Scatter-gather table.
4648  *	@n_elem: Number of elements in s/g table.
4649  *
4650  *	Initialize the data-related elements of queued_cmd @qc
4651  *	to point to a scatter-gather table @sg, containing @n_elem
4652  *	elements.
4653  *
4654  *	LOCKING:
4655  *	spin_lock_irqsave(host lock)
4656  */
4657 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4658 		 unsigned int n_elem)
4659 {
4660 	qc->sg = sg;
4661 	qc->n_elem = n_elem;
4662 	qc->cursg = qc->sg;
4663 }
4664 
4665 /**
4666  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4667  *	@qc: Command with scatter-gather table to be mapped.
4668  *
4669  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4670  *
4671  *	LOCKING:
4672  *	spin_lock_irqsave(host lock)
4673  *
4674  *	RETURNS:
4675  *	Zero on success, negative on error.
4676  *
4677  */
4678 static int ata_sg_setup(struct ata_queued_cmd *qc)
4679 {
4680 	struct ata_port *ap = qc->ap;
4681 	unsigned int n_elem;
4682 
4683 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4684 
4685 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4686 	if (n_elem < 1)
4687 		return -1;
4688 
4689 	DPRINTK("%d sg elements mapped\n", n_elem);
4690 	qc->orig_n_elem = qc->n_elem;
4691 	qc->n_elem = n_elem;
4692 	qc->flags |= ATA_QCFLAG_DMAMAP;
4693 
4694 	return 0;
4695 }
4696 
4697 /**
4698  *	swap_buf_le16 - swap halves of 16-bit words in place
4699  *	@buf:  Buffer to swap
4700  *	@buf_words:  Number of 16-bit words in buffer.
4701  *
4702  *	Swap halves of 16-bit words if needed to convert from
4703  *	little-endian byte order to native cpu byte order, or
4704  *	vice-versa.
4705  *
4706  *	LOCKING:
4707  *	Inherited from caller.
4708  */
4709 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4710 {
4711 #ifdef __BIG_ENDIAN
4712 	unsigned int i;
4713 
4714 	for (i = 0; i < buf_words; i++)
4715 		buf[i] = le16_to_cpu(buf[i]);
4716 #endif /* __BIG_ENDIAN */
4717 }
4718 
4719 /**
4720  *	ata_qc_new - Request an available ATA command, for queueing
4721  *	@ap: target port
4722  *
4723  *	LOCKING:
4724  *	None.
4725  */
4726 
4727 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4728 {
4729 	struct ata_queued_cmd *qc = NULL;
4730 	unsigned int i;
4731 
4732 	/* no command while frozen */
4733 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4734 		return NULL;
4735 
4736 	/* the last tag is reserved for internal command. */
4737 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4738 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4739 			qc = __ata_qc_from_tag(ap, i);
4740 			break;
4741 		}
4742 
4743 	if (qc)
4744 		qc->tag = i;
4745 
4746 	return qc;
4747 }
4748 
4749 /**
4750  *	ata_qc_new_init - Request an available ATA command, and initialize it
4751  *	@dev: Device from whom we request an available command structure
4752  *
4753  *	LOCKING:
4754  *	None.
4755  */
4756 
4757 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4758 {
4759 	struct ata_port *ap = dev->link->ap;
4760 	struct ata_queued_cmd *qc;
4761 
4762 	qc = ata_qc_new(ap);
4763 	if (qc) {
4764 		qc->scsicmd = NULL;
4765 		qc->ap = ap;
4766 		qc->dev = dev;
4767 
4768 		ata_qc_reinit(qc);
4769 	}
4770 
4771 	return qc;
4772 }
4773 
4774 /**
4775  *	ata_qc_free - free unused ata_queued_cmd
4776  *	@qc: Command to complete
4777  *
4778  *	Designed to free unused ata_queued_cmd object
4779  *	in case something prevents using it.
4780  *
4781  *	LOCKING:
4782  *	spin_lock_irqsave(host lock)
4783  */
4784 void ata_qc_free(struct ata_queued_cmd *qc)
4785 {
4786 	struct ata_port *ap;
4787 	unsigned int tag;
4788 
4789 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4790 	ap = qc->ap;
4791 
4792 	qc->flags = 0;
4793 	tag = qc->tag;
4794 	if (likely(ata_tag_valid(tag))) {
4795 		qc->tag = ATA_TAG_POISON;
4796 		clear_bit(tag, &ap->qc_allocated);
4797 	}
4798 }
4799 
4800 void __ata_qc_complete(struct ata_queued_cmd *qc)
4801 {
4802 	struct ata_port *ap;
4803 	struct ata_link *link;
4804 
4805 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4806 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4807 	ap = qc->ap;
4808 	link = qc->dev->link;
4809 
4810 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4811 		ata_sg_clean(qc);
4812 
4813 	/* command should be marked inactive atomically with qc completion */
4814 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4815 		link->sactive &= ~(1 << qc->tag);
4816 		if (!link->sactive)
4817 			ap->nr_active_links--;
4818 	} else {
4819 		link->active_tag = ATA_TAG_POISON;
4820 		ap->nr_active_links--;
4821 	}
4822 
4823 	/* clear exclusive status */
4824 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4825 		     ap->excl_link == link))
4826 		ap->excl_link = NULL;
4827 
4828 	/* atapi: mark qc as inactive to prevent the interrupt handler
4829 	 * from completing the command twice later, before the error handler
4830 	 * is called. (when rc != 0 and atapi request sense is needed)
4831 	 */
4832 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4833 	ap->qc_active &= ~(1 << qc->tag);
4834 
4835 	/* call completion callback */
4836 	qc->complete_fn(qc);
4837 }
4838 
4839 static void fill_result_tf(struct ata_queued_cmd *qc)
4840 {
4841 	struct ata_port *ap = qc->ap;
4842 
4843 	qc->result_tf.flags = qc->tf.flags;
4844 	ap->ops->qc_fill_rtf(qc);
4845 }
4846 
4847 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4848 {
4849 	struct ata_device *dev = qc->dev;
4850 
4851 	if (ata_is_nodata(qc->tf.protocol))
4852 		return;
4853 
4854 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4855 		return;
4856 
4857 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4858 }
4859 
4860 /**
4861  *	ata_qc_complete - Complete an active ATA command
4862  *	@qc: Command to complete
4863  *
4864  *	Indicate to the mid and upper layers that an ATA command has
4865  *	completed, with either an ok or not-ok status.
4866  *
4867  *	Refrain from calling this function multiple times when
4868  *	successfully completing multiple NCQ commands.
4869  *	ata_qc_complete_multiple() should be used instead, which will
4870  *	properly update IRQ expect state.
4871  *
4872  *	LOCKING:
4873  *	spin_lock_irqsave(host lock)
4874  */
4875 void ata_qc_complete(struct ata_queued_cmd *qc)
4876 {
4877 	struct ata_port *ap = qc->ap;
4878 
4879 	/* XXX: New EH and old EH use different mechanisms to
4880 	 * synchronize EH with regular execution path.
4881 	 *
4882 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4883 	 * Normal execution path is responsible for not accessing a
4884 	 * failed qc.  libata core enforces the rule by returning NULL
4885 	 * from ata_qc_from_tag() for failed qcs.
4886 	 *
4887 	 * Old EH depends on ata_qc_complete() nullifying completion
4888 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4889 	 * not synchronize with interrupt handler.  Only PIO task is
4890 	 * taken care of.
4891 	 */
4892 	if (ap->ops->error_handler) {
4893 		struct ata_device *dev = qc->dev;
4894 		struct ata_eh_info *ehi = &dev->link->eh_info;
4895 
4896 		if (unlikely(qc->err_mask))
4897 			qc->flags |= ATA_QCFLAG_FAILED;
4898 
4899 		/*
4900 		 * Finish internal commands without any further processing
4901 		 * and always with the result TF filled.
4902 		 */
4903 		if (unlikely(ata_tag_internal(qc->tag))) {
4904 			fill_result_tf(qc);
4905 			__ata_qc_complete(qc);
4906 			return;
4907 		}
4908 
4909 		/*
4910 		 * Non-internal qc has failed.  Fill the result TF and
4911 		 * summon EH.
4912 		 */
4913 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4914 			fill_result_tf(qc);
4915 			ata_qc_schedule_eh(qc);
4916 			return;
4917 		}
4918 
4919 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4920 
4921 		/* read result TF if requested */
4922 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4923 			fill_result_tf(qc);
4924 
4925 		/* Some commands need post-processing after successful
4926 		 * completion.
4927 		 */
4928 		switch (qc->tf.command) {
4929 		case ATA_CMD_SET_FEATURES:
4930 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4931 			    qc->tf.feature != SETFEATURES_WC_OFF)
4932 				break;
4933 			/* fall through */
4934 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4935 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4936 			/* revalidate device */
4937 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4938 			ata_port_schedule_eh(ap);
4939 			break;
4940 
4941 		case ATA_CMD_SLEEP:
4942 			dev->flags |= ATA_DFLAG_SLEEPING;
4943 			break;
4944 		}
4945 
4946 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4947 			ata_verify_xfer(qc);
4948 
4949 		__ata_qc_complete(qc);
4950 	} else {
4951 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4952 			return;
4953 
4954 		/* read result TF if failed or requested */
4955 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4956 			fill_result_tf(qc);
4957 
4958 		__ata_qc_complete(qc);
4959 	}
4960 }
4961 
4962 /**
4963  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4964  *	@ap: port in question
4965  *	@qc_active: new qc_active mask
4966  *
4967  *	Complete in-flight commands.  This functions is meant to be
4968  *	called from low-level driver's interrupt routine to complete
4969  *	requests normally.  ap->qc_active and @qc_active is compared
4970  *	and commands are completed accordingly.
4971  *
4972  *	Always use this function when completing multiple NCQ commands
4973  *	from IRQ handlers instead of calling ata_qc_complete()
4974  *	multiple times to keep IRQ expect status properly in sync.
4975  *
4976  *	LOCKING:
4977  *	spin_lock_irqsave(host lock)
4978  *
4979  *	RETURNS:
4980  *	Number of completed commands on success, -errno otherwise.
4981  */
4982 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4983 {
4984 	int nr_done = 0;
4985 	u32 done_mask;
4986 
4987 	done_mask = ap->qc_active ^ qc_active;
4988 
4989 	if (unlikely(done_mask & qc_active)) {
4990 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4991 			     ap->qc_active, qc_active);
4992 		return -EINVAL;
4993 	}
4994 
4995 	while (done_mask) {
4996 		struct ata_queued_cmd *qc;
4997 		unsigned int tag = __ffs(done_mask);
4998 
4999 		qc = ata_qc_from_tag(ap, tag);
5000 		if (qc) {
5001 			ata_qc_complete(qc);
5002 			nr_done++;
5003 		}
5004 		done_mask &= ~(1 << tag);
5005 	}
5006 
5007 	return nr_done;
5008 }
5009 
5010 /**
5011  *	ata_qc_issue - issue taskfile to device
5012  *	@qc: command to issue to device
5013  *
5014  *	Prepare an ATA command to submission to device.
5015  *	This includes mapping the data into a DMA-able
5016  *	area, filling in the S/G table, and finally
5017  *	writing the taskfile to hardware, starting the command.
5018  *
5019  *	LOCKING:
5020  *	spin_lock_irqsave(host lock)
5021  */
5022 void ata_qc_issue(struct ata_queued_cmd *qc)
5023 {
5024 	struct ata_port *ap = qc->ap;
5025 	struct ata_link *link = qc->dev->link;
5026 	u8 prot = qc->tf.protocol;
5027 
5028 	/* Make sure only one non-NCQ command is outstanding.  The
5029 	 * check is skipped for old EH because it reuses active qc to
5030 	 * request ATAPI sense.
5031 	 */
5032 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5033 
5034 	if (ata_is_ncq(prot)) {
5035 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5036 
5037 		if (!link->sactive)
5038 			ap->nr_active_links++;
5039 		link->sactive |= 1 << qc->tag;
5040 	} else {
5041 		WARN_ON_ONCE(link->sactive);
5042 
5043 		ap->nr_active_links++;
5044 		link->active_tag = qc->tag;
5045 	}
5046 
5047 	qc->flags |= ATA_QCFLAG_ACTIVE;
5048 	ap->qc_active |= 1 << qc->tag;
5049 
5050 	/*
5051 	 * We guarantee to LLDs that they will have at least one
5052 	 * non-zero sg if the command is a data command.
5053 	 */
5054 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5055 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5056 		goto sys_err;
5057 
5058 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5059 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5060 		if (ata_sg_setup(qc))
5061 			goto sys_err;
5062 
5063 	/* if device is sleeping, schedule reset and abort the link */
5064 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5065 		link->eh_info.action |= ATA_EH_RESET;
5066 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5067 		ata_link_abort(link);
5068 		return;
5069 	}
5070 
5071 	ap->ops->qc_prep(qc);
5072 
5073 	qc->err_mask |= ap->ops->qc_issue(qc);
5074 	if (unlikely(qc->err_mask))
5075 		goto err;
5076 	return;
5077 
5078 sys_err:
5079 	qc->err_mask |= AC_ERR_SYSTEM;
5080 err:
5081 	ata_qc_complete(qc);
5082 }
5083 
5084 /**
5085  *	sata_scr_valid - test whether SCRs are accessible
5086  *	@link: ATA link to test SCR accessibility for
5087  *
5088  *	Test whether SCRs are accessible for @link.
5089  *
5090  *	LOCKING:
5091  *	None.
5092  *
5093  *	RETURNS:
5094  *	1 if SCRs are accessible, 0 otherwise.
5095  */
5096 int sata_scr_valid(struct ata_link *link)
5097 {
5098 	struct ata_port *ap = link->ap;
5099 
5100 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5101 }
5102 
5103 /**
5104  *	sata_scr_read - read SCR register of the specified port
5105  *	@link: ATA link to read SCR for
5106  *	@reg: SCR to read
5107  *	@val: Place to store read value
5108  *
5109  *	Read SCR register @reg of @link into *@val.  This function is
5110  *	guaranteed to succeed if @link is ap->link, the cable type of
5111  *	the port is SATA and the port implements ->scr_read.
5112  *
5113  *	LOCKING:
5114  *	None if @link is ap->link.  Kernel thread context otherwise.
5115  *
5116  *	RETURNS:
5117  *	0 on success, negative errno on failure.
5118  */
5119 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5120 {
5121 	if (ata_is_host_link(link)) {
5122 		if (sata_scr_valid(link))
5123 			return link->ap->ops->scr_read(link, reg, val);
5124 		return -EOPNOTSUPP;
5125 	}
5126 
5127 	return sata_pmp_scr_read(link, reg, val);
5128 }
5129 
5130 /**
5131  *	sata_scr_write - write SCR register of the specified port
5132  *	@link: ATA link to write SCR for
5133  *	@reg: SCR to write
5134  *	@val: value to write
5135  *
5136  *	Write @val to SCR register @reg of @link.  This function is
5137  *	guaranteed to succeed if @link is ap->link, the cable type of
5138  *	the port is SATA and the port implements ->scr_read.
5139  *
5140  *	LOCKING:
5141  *	None if @link is ap->link.  Kernel thread context otherwise.
5142  *
5143  *	RETURNS:
5144  *	0 on success, negative errno on failure.
5145  */
5146 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5147 {
5148 	if (ata_is_host_link(link)) {
5149 		if (sata_scr_valid(link))
5150 			return link->ap->ops->scr_write(link, reg, val);
5151 		return -EOPNOTSUPP;
5152 	}
5153 
5154 	return sata_pmp_scr_write(link, reg, val);
5155 }
5156 
5157 /**
5158  *	sata_scr_write_flush - write SCR register of the specified port and flush
5159  *	@link: ATA link to write SCR for
5160  *	@reg: SCR to write
5161  *	@val: value to write
5162  *
5163  *	This function is identical to sata_scr_write() except that this
5164  *	function performs flush after writing to the register.
5165  *
5166  *	LOCKING:
5167  *	None if @link is ap->link.  Kernel thread context otherwise.
5168  *
5169  *	RETURNS:
5170  *	0 on success, negative errno on failure.
5171  */
5172 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5173 {
5174 	if (ata_is_host_link(link)) {
5175 		int rc;
5176 
5177 		if (sata_scr_valid(link)) {
5178 			rc = link->ap->ops->scr_write(link, reg, val);
5179 			if (rc == 0)
5180 				rc = link->ap->ops->scr_read(link, reg, &val);
5181 			return rc;
5182 		}
5183 		return -EOPNOTSUPP;
5184 	}
5185 
5186 	return sata_pmp_scr_write(link, reg, val);
5187 }
5188 
5189 /**
5190  *	ata_phys_link_online - test whether the given link is online
5191  *	@link: ATA link to test
5192  *
5193  *	Test whether @link is online.  Note that this function returns
5194  *	0 if online status of @link cannot be obtained, so
5195  *	ata_link_online(link) != !ata_link_offline(link).
5196  *
5197  *	LOCKING:
5198  *	None.
5199  *
5200  *	RETURNS:
5201  *	True if the port online status is available and online.
5202  */
5203 bool ata_phys_link_online(struct ata_link *link)
5204 {
5205 	u32 sstatus;
5206 
5207 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5208 	    ata_sstatus_online(sstatus))
5209 		return true;
5210 	return false;
5211 }
5212 
5213 /**
5214  *	ata_phys_link_offline - test whether the given link is offline
5215  *	@link: ATA link to test
5216  *
5217  *	Test whether @link is offline.  Note that this function
5218  *	returns 0 if offline status of @link cannot be obtained, so
5219  *	ata_link_online(link) != !ata_link_offline(link).
5220  *
5221  *	LOCKING:
5222  *	None.
5223  *
5224  *	RETURNS:
5225  *	True if the port offline status is available and offline.
5226  */
5227 bool ata_phys_link_offline(struct ata_link *link)
5228 {
5229 	u32 sstatus;
5230 
5231 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5232 	    !ata_sstatus_online(sstatus))
5233 		return true;
5234 	return false;
5235 }
5236 
5237 /**
5238  *	ata_link_online - test whether the given link is online
5239  *	@link: ATA link to test
5240  *
5241  *	Test whether @link is online.  This is identical to
5242  *	ata_phys_link_online() when there's no slave link.  When
5243  *	there's a slave link, this function should only be called on
5244  *	the master link and will return true if any of M/S links is
5245  *	online.
5246  *
5247  *	LOCKING:
5248  *	None.
5249  *
5250  *	RETURNS:
5251  *	True if the port online status is available and online.
5252  */
5253 bool ata_link_online(struct ata_link *link)
5254 {
5255 	struct ata_link *slave = link->ap->slave_link;
5256 
5257 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5258 
5259 	return ata_phys_link_online(link) ||
5260 		(slave && ata_phys_link_online(slave));
5261 }
5262 
5263 /**
5264  *	ata_link_offline - test whether the given link is offline
5265  *	@link: ATA link to test
5266  *
5267  *	Test whether @link is offline.  This is identical to
5268  *	ata_phys_link_offline() when there's no slave link.  When
5269  *	there's a slave link, this function should only be called on
5270  *	the master link and will return true if both M/S links are
5271  *	offline.
5272  *
5273  *	LOCKING:
5274  *	None.
5275  *
5276  *	RETURNS:
5277  *	True if the port offline status is available and offline.
5278  */
5279 bool ata_link_offline(struct ata_link *link)
5280 {
5281 	struct ata_link *slave = link->ap->slave_link;
5282 
5283 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5284 
5285 	return ata_phys_link_offline(link) &&
5286 		(!slave || ata_phys_link_offline(slave));
5287 }
5288 
5289 #ifdef CONFIG_PM
5290 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5291 			       unsigned int action, unsigned int ehi_flags,
5292 			       int *async)
5293 {
5294 	struct ata_link *link;
5295 	unsigned long flags;
5296 	int rc = 0;
5297 
5298 	/* Previous resume operation might still be in
5299 	 * progress.  Wait for PM_PENDING to clear.
5300 	 */
5301 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5302 		if (async) {
5303 			*async = -EAGAIN;
5304 			return 0;
5305 		}
5306 		ata_port_wait_eh(ap);
5307 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5308 	}
5309 
5310 	/* request PM ops to EH */
5311 	spin_lock_irqsave(ap->lock, flags);
5312 
5313 	ap->pm_mesg = mesg;
5314 	if (async)
5315 		ap->pm_result = async;
5316 	else
5317 		ap->pm_result = &rc;
5318 
5319 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5320 	ata_for_each_link(link, ap, HOST_FIRST) {
5321 		link->eh_info.action |= action;
5322 		link->eh_info.flags |= ehi_flags;
5323 	}
5324 
5325 	ata_port_schedule_eh(ap);
5326 
5327 	spin_unlock_irqrestore(ap->lock, flags);
5328 
5329 	/* wait and check result */
5330 	if (!async) {
5331 		ata_port_wait_eh(ap);
5332 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5333 	}
5334 
5335 	return rc;
5336 }
5337 
5338 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5339 {
5340 	/*
5341 	 * On some hardware, device fails to respond after spun down
5342 	 * for suspend.  As the device won't be used before being
5343 	 * resumed, we don't need to touch the device.  Ask EH to skip
5344 	 * the usual stuff and proceed directly to suspend.
5345 	 *
5346 	 * http://thread.gmane.org/gmane.linux.ide/46764
5347 	 */
5348 	unsigned int ehi_flags = ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5349 				 ATA_EHI_NO_RECOVERY;
5350 	return ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5351 }
5352 
5353 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5354 {
5355 	struct ata_port *ap = to_ata_port(dev);
5356 
5357 	return __ata_port_suspend_common(ap, mesg, NULL);
5358 }
5359 
5360 static int ata_port_suspend(struct device *dev)
5361 {
5362 	if (pm_runtime_suspended(dev))
5363 		return 0;
5364 
5365 	return ata_port_suspend_common(dev, PMSG_SUSPEND);
5366 }
5367 
5368 static int ata_port_do_freeze(struct device *dev)
5369 {
5370 	if (pm_runtime_suspended(dev))
5371 		return 0;
5372 
5373 	return ata_port_suspend_common(dev, PMSG_FREEZE);
5374 }
5375 
5376 static int ata_port_poweroff(struct device *dev)
5377 {
5378 	return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5379 }
5380 
5381 static int __ata_port_resume_common(struct ata_port *ap, pm_message_t mesg,
5382 				    int *async)
5383 {
5384 	int rc;
5385 
5386 	rc = ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5387 		ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5388 	return rc;
5389 }
5390 
5391 static int ata_port_resume_common(struct device *dev, pm_message_t mesg)
5392 {
5393 	struct ata_port *ap = to_ata_port(dev);
5394 
5395 	return __ata_port_resume_common(ap, mesg, NULL);
5396 }
5397 
5398 static int ata_port_resume(struct device *dev)
5399 {
5400 	int rc;
5401 
5402 	rc = ata_port_resume_common(dev, PMSG_RESUME);
5403 	if (!rc) {
5404 		pm_runtime_disable(dev);
5405 		pm_runtime_set_active(dev);
5406 		pm_runtime_enable(dev);
5407 	}
5408 
5409 	return rc;
5410 }
5411 
5412 /*
5413  * For ODDs, the upper layer will poll for media change every few seconds,
5414  * which will make it enter and leave suspend state every few seconds. And
5415  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5416  * is very little and the ODD may malfunction after constantly being reset.
5417  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5418  * ODD is attached to the port.
5419  */
5420 static int ata_port_runtime_idle(struct device *dev)
5421 {
5422 	struct ata_port *ap = to_ata_port(dev);
5423 	struct ata_link *link;
5424 	struct ata_device *adev;
5425 
5426 	ata_for_each_link(link, ap, HOST_FIRST) {
5427 		ata_for_each_dev(adev, link, ENABLED)
5428 			if (adev->class == ATA_DEV_ATAPI &&
5429 			    !zpodd_dev_enabled(adev))
5430 				return -EBUSY;
5431 	}
5432 
5433 	return pm_runtime_suspend(dev);
5434 }
5435 
5436 static int ata_port_runtime_suspend(struct device *dev)
5437 {
5438 	return ata_port_suspend_common(dev, PMSG_AUTO_SUSPEND);
5439 }
5440 
5441 static int ata_port_runtime_resume(struct device *dev)
5442 {
5443 	return ata_port_resume_common(dev, PMSG_AUTO_RESUME);
5444 }
5445 
5446 static const struct dev_pm_ops ata_port_pm_ops = {
5447 	.suspend = ata_port_suspend,
5448 	.resume = ata_port_resume,
5449 	.freeze = ata_port_do_freeze,
5450 	.thaw = ata_port_resume,
5451 	.poweroff = ata_port_poweroff,
5452 	.restore = ata_port_resume,
5453 
5454 	.runtime_suspend = ata_port_runtime_suspend,
5455 	.runtime_resume = ata_port_runtime_resume,
5456 	.runtime_idle = ata_port_runtime_idle,
5457 };
5458 
5459 /* sas ports don't participate in pm runtime management of ata_ports,
5460  * and need to resume ata devices at the domain level, not the per-port
5461  * level. sas suspend/resume is async to allow parallel port recovery
5462  * since sas has multiple ata_port instances per Scsi_Host.
5463  */
5464 int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5465 {
5466 	return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5467 }
5468 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5469 
5470 int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5471 {
5472 	return __ata_port_resume_common(ap, PMSG_RESUME, async);
5473 }
5474 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5475 
5476 
5477 /**
5478  *	ata_host_suspend - suspend host
5479  *	@host: host to suspend
5480  *	@mesg: PM message
5481  *
5482  *	Suspend @host.  Actual operation is performed by port suspend.
5483  */
5484 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5485 {
5486 	host->dev->power.power_state = mesg;
5487 	return 0;
5488 }
5489 
5490 /**
5491  *	ata_host_resume - resume host
5492  *	@host: host to resume
5493  *
5494  *	Resume @host.  Actual operation is performed by port resume.
5495  */
5496 void ata_host_resume(struct ata_host *host)
5497 {
5498 	host->dev->power.power_state = PMSG_ON;
5499 }
5500 #endif
5501 
5502 struct device_type ata_port_type = {
5503 	.name = "ata_port",
5504 #ifdef CONFIG_PM
5505 	.pm = &ata_port_pm_ops,
5506 #endif
5507 };
5508 
5509 /**
5510  *	ata_dev_init - Initialize an ata_device structure
5511  *	@dev: Device structure to initialize
5512  *
5513  *	Initialize @dev in preparation for probing.
5514  *
5515  *	LOCKING:
5516  *	Inherited from caller.
5517  */
5518 void ata_dev_init(struct ata_device *dev)
5519 {
5520 	struct ata_link *link = ata_dev_phys_link(dev);
5521 	struct ata_port *ap = link->ap;
5522 	unsigned long flags;
5523 
5524 	/* SATA spd limit is bound to the attached device, reset together */
5525 	link->sata_spd_limit = link->hw_sata_spd_limit;
5526 	link->sata_spd = 0;
5527 
5528 	/* High bits of dev->flags are used to record warm plug
5529 	 * requests which occur asynchronously.  Synchronize using
5530 	 * host lock.
5531 	 */
5532 	spin_lock_irqsave(ap->lock, flags);
5533 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5534 	dev->horkage = 0;
5535 	spin_unlock_irqrestore(ap->lock, flags);
5536 
5537 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5538 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5539 	dev->pio_mask = UINT_MAX;
5540 	dev->mwdma_mask = UINT_MAX;
5541 	dev->udma_mask = UINT_MAX;
5542 }
5543 
5544 /**
5545  *	ata_link_init - Initialize an ata_link structure
5546  *	@ap: ATA port link is attached to
5547  *	@link: Link structure to initialize
5548  *	@pmp: Port multiplier port number
5549  *
5550  *	Initialize @link.
5551  *
5552  *	LOCKING:
5553  *	Kernel thread context (may sleep)
5554  */
5555 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5556 {
5557 	int i;
5558 
5559 	/* clear everything except for devices */
5560 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5561 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5562 
5563 	link->ap = ap;
5564 	link->pmp = pmp;
5565 	link->active_tag = ATA_TAG_POISON;
5566 	link->hw_sata_spd_limit = UINT_MAX;
5567 
5568 	/* can't use iterator, ap isn't initialized yet */
5569 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5570 		struct ata_device *dev = &link->device[i];
5571 
5572 		dev->link = link;
5573 		dev->devno = dev - link->device;
5574 #ifdef CONFIG_ATA_ACPI
5575 		dev->gtf_filter = ata_acpi_gtf_filter;
5576 #endif
5577 		ata_dev_init(dev);
5578 	}
5579 }
5580 
5581 /**
5582  *	sata_link_init_spd - Initialize link->sata_spd_limit
5583  *	@link: Link to configure sata_spd_limit for
5584  *
5585  *	Initialize @link->[hw_]sata_spd_limit to the currently
5586  *	configured value.
5587  *
5588  *	LOCKING:
5589  *	Kernel thread context (may sleep).
5590  *
5591  *	RETURNS:
5592  *	0 on success, -errno on failure.
5593  */
5594 int sata_link_init_spd(struct ata_link *link)
5595 {
5596 	u8 spd;
5597 	int rc;
5598 
5599 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5600 	if (rc)
5601 		return rc;
5602 
5603 	spd = (link->saved_scontrol >> 4) & 0xf;
5604 	if (spd)
5605 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5606 
5607 	ata_force_link_limits(link);
5608 
5609 	link->sata_spd_limit = link->hw_sata_spd_limit;
5610 
5611 	return 0;
5612 }
5613 
5614 /**
5615  *	ata_port_alloc - allocate and initialize basic ATA port resources
5616  *	@host: ATA host this allocated port belongs to
5617  *
5618  *	Allocate and initialize basic ATA port resources.
5619  *
5620  *	RETURNS:
5621  *	Allocate ATA port on success, NULL on failure.
5622  *
5623  *	LOCKING:
5624  *	Inherited from calling layer (may sleep).
5625  */
5626 struct ata_port *ata_port_alloc(struct ata_host *host)
5627 {
5628 	struct ata_port *ap;
5629 
5630 	DPRINTK("ENTER\n");
5631 
5632 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5633 	if (!ap)
5634 		return NULL;
5635 
5636 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5637 	ap->lock = &host->lock;
5638 	ap->print_id = -1;
5639 	ap->host = host;
5640 	ap->dev = host->dev;
5641 
5642 #if defined(ATA_VERBOSE_DEBUG)
5643 	/* turn on all debugging levels */
5644 	ap->msg_enable = 0x00FF;
5645 #elif defined(ATA_DEBUG)
5646 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5647 #else
5648 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5649 #endif
5650 
5651 	mutex_init(&ap->scsi_scan_mutex);
5652 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5653 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5654 	INIT_LIST_HEAD(&ap->eh_done_q);
5655 	init_waitqueue_head(&ap->eh_wait_q);
5656 	init_completion(&ap->park_req_pending);
5657 	init_timer_deferrable(&ap->fastdrain_timer);
5658 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5659 	ap->fastdrain_timer.data = (unsigned long)ap;
5660 
5661 	ap->cbl = ATA_CBL_NONE;
5662 
5663 	ata_link_init(ap, &ap->link, 0);
5664 
5665 #ifdef ATA_IRQ_TRAP
5666 	ap->stats.unhandled_irq = 1;
5667 	ap->stats.idle_irq = 1;
5668 #endif
5669 	ata_sff_port_init(ap);
5670 
5671 	return ap;
5672 }
5673 
5674 static void ata_host_release(struct device *gendev, void *res)
5675 {
5676 	struct ata_host *host = dev_get_drvdata(gendev);
5677 	int i;
5678 
5679 	for (i = 0; i < host->n_ports; i++) {
5680 		struct ata_port *ap = host->ports[i];
5681 
5682 		if (!ap)
5683 			continue;
5684 
5685 		if (ap->scsi_host)
5686 			scsi_host_put(ap->scsi_host);
5687 
5688 		kfree(ap->pmp_link);
5689 		kfree(ap->slave_link);
5690 		kfree(ap);
5691 		host->ports[i] = NULL;
5692 	}
5693 
5694 	dev_set_drvdata(gendev, NULL);
5695 }
5696 
5697 /**
5698  *	ata_host_alloc - allocate and init basic ATA host resources
5699  *	@dev: generic device this host is associated with
5700  *	@max_ports: maximum number of ATA ports associated with this host
5701  *
5702  *	Allocate and initialize basic ATA host resources.  LLD calls
5703  *	this function to allocate a host, initializes it fully and
5704  *	attaches it using ata_host_register().
5705  *
5706  *	@max_ports ports are allocated and host->n_ports is
5707  *	initialized to @max_ports.  The caller is allowed to decrease
5708  *	host->n_ports before calling ata_host_register().  The unused
5709  *	ports will be automatically freed on registration.
5710  *
5711  *	RETURNS:
5712  *	Allocate ATA host on success, NULL on failure.
5713  *
5714  *	LOCKING:
5715  *	Inherited from calling layer (may sleep).
5716  */
5717 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5718 {
5719 	struct ata_host *host;
5720 	size_t sz;
5721 	int i;
5722 
5723 	DPRINTK("ENTER\n");
5724 
5725 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5726 		return NULL;
5727 
5728 	/* alloc a container for our list of ATA ports (buses) */
5729 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5730 	/* alloc a container for our list of ATA ports (buses) */
5731 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5732 	if (!host)
5733 		goto err_out;
5734 
5735 	devres_add(dev, host);
5736 	dev_set_drvdata(dev, host);
5737 
5738 	spin_lock_init(&host->lock);
5739 	mutex_init(&host->eh_mutex);
5740 	host->dev = dev;
5741 	host->n_ports = max_ports;
5742 
5743 	/* allocate ports bound to this host */
5744 	for (i = 0; i < max_ports; i++) {
5745 		struct ata_port *ap;
5746 
5747 		ap = ata_port_alloc(host);
5748 		if (!ap)
5749 			goto err_out;
5750 
5751 		ap->port_no = i;
5752 		host->ports[i] = ap;
5753 	}
5754 
5755 	devres_remove_group(dev, NULL);
5756 	return host;
5757 
5758  err_out:
5759 	devres_release_group(dev, NULL);
5760 	return NULL;
5761 }
5762 
5763 /**
5764  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5765  *	@dev: generic device this host is associated with
5766  *	@ppi: array of ATA port_info to initialize host with
5767  *	@n_ports: number of ATA ports attached to this host
5768  *
5769  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5770  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5771  *	last entry will be used for the remaining ports.
5772  *
5773  *	RETURNS:
5774  *	Allocate ATA host on success, NULL on failure.
5775  *
5776  *	LOCKING:
5777  *	Inherited from calling layer (may sleep).
5778  */
5779 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5780 				      const struct ata_port_info * const * ppi,
5781 				      int n_ports)
5782 {
5783 	const struct ata_port_info *pi;
5784 	struct ata_host *host;
5785 	int i, j;
5786 
5787 	host = ata_host_alloc(dev, n_ports);
5788 	if (!host)
5789 		return NULL;
5790 
5791 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5792 		struct ata_port *ap = host->ports[i];
5793 
5794 		if (ppi[j])
5795 			pi = ppi[j++];
5796 
5797 		ap->pio_mask = pi->pio_mask;
5798 		ap->mwdma_mask = pi->mwdma_mask;
5799 		ap->udma_mask = pi->udma_mask;
5800 		ap->flags |= pi->flags;
5801 		ap->link.flags |= pi->link_flags;
5802 		ap->ops = pi->port_ops;
5803 
5804 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5805 			host->ops = pi->port_ops;
5806 	}
5807 
5808 	return host;
5809 }
5810 
5811 /**
5812  *	ata_slave_link_init - initialize slave link
5813  *	@ap: port to initialize slave link for
5814  *
5815  *	Create and initialize slave link for @ap.  This enables slave
5816  *	link handling on the port.
5817  *
5818  *	In libata, a port contains links and a link contains devices.
5819  *	There is single host link but if a PMP is attached to it,
5820  *	there can be multiple fan-out links.  On SATA, there's usually
5821  *	a single device connected to a link but PATA and SATA
5822  *	controllers emulating TF based interface can have two - master
5823  *	and slave.
5824  *
5825  *	However, there are a few controllers which don't fit into this
5826  *	abstraction too well - SATA controllers which emulate TF
5827  *	interface with both master and slave devices but also have
5828  *	separate SCR register sets for each device.  These controllers
5829  *	need separate links for physical link handling
5830  *	(e.g. onlineness, link speed) but should be treated like a
5831  *	traditional M/S controller for everything else (e.g. command
5832  *	issue, softreset).
5833  *
5834  *	slave_link is libata's way of handling this class of
5835  *	controllers without impacting core layer too much.  For
5836  *	anything other than physical link handling, the default host
5837  *	link is used for both master and slave.  For physical link
5838  *	handling, separate @ap->slave_link is used.  All dirty details
5839  *	are implemented inside libata core layer.  From LLD's POV, the
5840  *	only difference is that prereset, hardreset and postreset are
5841  *	called once more for the slave link, so the reset sequence
5842  *	looks like the following.
5843  *
5844  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5845  *	softreset(M) -> postreset(M) -> postreset(S)
5846  *
5847  *	Note that softreset is called only for the master.  Softreset
5848  *	resets both M/S by definition, so SRST on master should handle
5849  *	both (the standard method will work just fine).
5850  *
5851  *	LOCKING:
5852  *	Should be called before host is registered.
5853  *
5854  *	RETURNS:
5855  *	0 on success, -errno on failure.
5856  */
5857 int ata_slave_link_init(struct ata_port *ap)
5858 {
5859 	struct ata_link *link;
5860 
5861 	WARN_ON(ap->slave_link);
5862 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5863 
5864 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5865 	if (!link)
5866 		return -ENOMEM;
5867 
5868 	ata_link_init(ap, link, 1);
5869 	ap->slave_link = link;
5870 	return 0;
5871 }
5872 
5873 static void ata_host_stop(struct device *gendev, void *res)
5874 {
5875 	struct ata_host *host = dev_get_drvdata(gendev);
5876 	int i;
5877 
5878 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5879 
5880 	for (i = 0; i < host->n_ports; i++) {
5881 		struct ata_port *ap = host->ports[i];
5882 
5883 		if (ap->ops->port_stop)
5884 			ap->ops->port_stop(ap);
5885 	}
5886 
5887 	if (host->ops->host_stop)
5888 		host->ops->host_stop(host);
5889 }
5890 
5891 /**
5892  *	ata_finalize_port_ops - finalize ata_port_operations
5893  *	@ops: ata_port_operations to finalize
5894  *
5895  *	An ata_port_operations can inherit from another ops and that
5896  *	ops can again inherit from another.  This can go on as many
5897  *	times as necessary as long as there is no loop in the
5898  *	inheritance chain.
5899  *
5900  *	Ops tables are finalized when the host is started.  NULL or
5901  *	unspecified entries are inherited from the closet ancestor
5902  *	which has the method and the entry is populated with it.
5903  *	After finalization, the ops table directly points to all the
5904  *	methods and ->inherits is no longer necessary and cleared.
5905  *
5906  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5907  *
5908  *	LOCKING:
5909  *	None.
5910  */
5911 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5912 {
5913 	static DEFINE_SPINLOCK(lock);
5914 	const struct ata_port_operations *cur;
5915 	void **begin = (void **)ops;
5916 	void **end = (void **)&ops->inherits;
5917 	void **pp;
5918 
5919 	if (!ops || !ops->inherits)
5920 		return;
5921 
5922 	spin_lock(&lock);
5923 
5924 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5925 		void **inherit = (void **)cur;
5926 
5927 		for (pp = begin; pp < end; pp++, inherit++)
5928 			if (!*pp)
5929 				*pp = *inherit;
5930 	}
5931 
5932 	for (pp = begin; pp < end; pp++)
5933 		if (IS_ERR(*pp))
5934 			*pp = NULL;
5935 
5936 	ops->inherits = NULL;
5937 
5938 	spin_unlock(&lock);
5939 }
5940 
5941 /**
5942  *	ata_host_start - start and freeze ports of an ATA host
5943  *	@host: ATA host to start ports for
5944  *
5945  *	Start and then freeze ports of @host.  Started status is
5946  *	recorded in host->flags, so this function can be called
5947  *	multiple times.  Ports are guaranteed to get started only
5948  *	once.  If host->ops isn't initialized yet, its set to the
5949  *	first non-dummy port ops.
5950  *
5951  *	LOCKING:
5952  *	Inherited from calling layer (may sleep).
5953  *
5954  *	RETURNS:
5955  *	0 if all ports are started successfully, -errno otherwise.
5956  */
5957 int ata_host_start(struct ata_host *host)
5958 {
5959 	int have_stop = 0;
5960 	void *start_dr = NULL;
5961 	int i, rc;
5962 
5963 	if (host->flags & ATA_HOST_STARTED)
5964 		return 0;
5965 
5966 	ata_finalize_port_ops(host->ops);
5967 
5968 	for (i = 0; i < host->n_ports; i++) {
5969 		struct ata_port *ap = host->ports[i];
5970 
5971 		ata_finalize_port_ops(ap->ops);
5972 
5973 		if (!host->ops && !ata_port_is_dummy(ap))
5974 			host->ops = ap->ops;
5975 
5976 		if (ap->ops->port_stop)
5977 			have_stop = 1;
5978 	}
5979 
5980 	if (host->ops->host_stop)
5981 		have_stop = 1;
5982 
5983 	if (have_stop) {
5984 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5985 		if (!start_dr)
5986 			return -ENOMEM;
5987 	}
5988 
5989 	for (i = 0; i < host->n_ports; i++) {
5990 		struct ata_port *ap = host->ports[i];
5991 
5992 		if (ap->ops->port_start) {
5993 			rc = ap->ops->port_start(ap);
5994 			if (rc) {
5995 				if (rc != -ENODEV)
5996 					dev_err(host->dev,
5997 						"failed to start port %d (errno=%d)\n",
5998 						i, rc);
5999 				goto err_out;
6000 			}
6001 		}
6002 		ata_eh_freeze_port(ap);
6003 	}
6004 
6005 	if (start_dr)
6006 		devres_add(host->dev, start_dr);
6007 	host->flags |= ATA_HOST_STARTED;
6008 	return 0;
6009 
6010  err_out:
6011 	while (--i >= 0) {
6012 		struct ata_port *ap = host->ports[i];
6013 
6014 		if (ap->ops->port_stop)
6015 			ap->ops->port_stop(ap);
6016 	}
6017 	devres_free(start_dr);
6018 	return rc;
6019 }
6020 
6021 /**
6022  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6023  *	@host:	host to initialize
6024  *	@dev:	device host is attached to
6025  *	@ops:	port_ops
6026  *
6027  */
6028 void ata_host_init(struct ata_host *host, struct device *dev,
6029 		   struct ata_port_operations *ops)
6030 {
6031 	spin_lock_init(&host->lock);
6032 	mutex_init(&host->eh_mutex);
6033 	host->dev = dev;
6034 	host->ops = ops;
6035 }
6036 
6037 void __ata_port_probe(struct ata_port *ap)
6038 {
6039 	struct ata_eh_info *ehi = &ap->link.eh_info;
6040 	unsigned long flags;
6041 
6042 	/* kick EH for boot probing */
6043 	spin_lock_irqsave(ap->lock, flags);
6044 
6045 	ehi->probe_mask |= ATA_ALL_DEVICES;
6046 	ehi->action |= ATA_EH_RESET;
6047 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6048 
6049 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6050 	ap->pflags |= ATA_PFLAG_LOADING;
6051 	ata_port_schedule_eh(ap);
6052 
6053 	spin_unlock_irqrestore(ap->lock, flags);
6054 }
6055 
6056 int ata_port_probe(struct ata_port *ap)
6057 {
6058 	int rc = 0;
6059 
6060 	if (ap->ops->error_handler) {
6061 		__ata_port_probe(ap);
6062 		ata_port_wait_eh(ap);
6063 	} else {
6064 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6065 		rc = ata_bus_probe(ap);
6066 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6067 	}
6068 	return rc;
6069 }
6070 
6071 
6072 static void async_port_probe(void *data, async_cookie_t cookie)
6073 {
6074 	struct ata_port *ap = data;
6075 
6076 	/*
6077 	 * If we're not allowed to scan this host in parallel,
6078 	 * we need to wait until all previous scans have completed
6079 	 * before going further.
6080 	 * Jeff Garzik says this is only within a controller, so we
6081 	 * don't need to wait for port 0, only for later ports.
6082 	 */
6083 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6084 		async_synchronize_cookie(cookie);
6085 
6086 	(void)ata_port_probe(ap);
6087 
6088 	/* in order to keep device order, we need to synchronize at this point */
6089 	async_synchronize_cookie(cookie);
6090 
6091 	ata_scsi_scan_host(ap, 1);
6092 }
6093 
6094 /**
6095  *	ata_host_register - register initialized ATA host
6096  *	@host: ATA host to register
6097  *	@sht: template for SCSI host
6098  *
6099  *	Register initialized ATA host.  @host is allocated using
6100  *	ata_host_alloc() and fully initialized by LLD.  This function
6101  *	starts ports, registers @host with ATA and SCSI layers and
6102  *	probe registered devices.
6103  *
6104  *	LOCKING:
6105  *	Inherited from calling layer (may sleep).
6106  *
6107  *	RETURNS:
6108  *	0 on success, -errno otherwise.
6109  */
6110 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6111 {
6112 	int i, rc;
6113 
6114 	/* host must have been started */
6115 	if (!(host->flags & ATA_HOST_STARTED)) {
6116 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6117 		WARN_ON(1);
6118 		return -EINVAL;
6119 	}
6120 
6121 	/* Blow away unused ports.  This happens when LLD can't
6122 	 * determine the exact number of ports to allocate at
6123 	 * allocation time.
6124 	 */
6125 	for (i = host->n_ports; host->ports[i]; i++)
6126 		kfree(host->ports[i]);
6127 
6128 	/* give ports names and add SCSI hosts */
6129 	for (i = 0; i < host->n_ports; i++)
6130 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6131 
6132 
6133 	/* Create associated sysfs transport objects  */
6134 	for (i = 0; i < host->n_ports; i++) {
6135 		rc = ata_tport_add(host->dev,host->ports[i]);
6136 		if (rc) {
6137 			goto err_tadd;
6138 		}
6139 	}
6140 
6141 	rc = ata_scsi_add_hosts(host, sht);
6142 	if (rc)
6143 		goto err_tadd;
6144 
6145 	/* set cable, sata_spd_limit and report */
6146 	for (i = 0; i < host->n_ports; i++) {
6147 		struct ata_port *ap = host->ports[i];
6148 		unsigned long xfer_mask;
6149 
6150 		/* set SATA cable type if still unset */
6151 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6152 			ap->cbl = ATA_CBL_SATA;
6153 
6154 		/* init sata_spd_limit to the current value */
6155 		sata_link_init_spd(&ap->link);
6156 		if (ap->slave_link)
6157 			sata_link_init_spd(ap->slave_link);
6158 
6159 		/* print per-port info to dmesg */
6160 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6161 					      ap->udma_mask);
6162 
6163 		if (!ata_port_is_dummy(ap)) {
6164 			ata_port_info(ap, "%cATA max %s %s\n",
6165 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6166 				      ata_mode_string(xfer_mask),
6167 				      ap->link.eh_info.desc);
6168 			ata_ehi_clear_desc(&ap->link.eh_info);
6169 		} else
6170 			ata_port_info(ap, "DUMMY\n");
6171 	}
6172 
6173 	/* perform each probe asynchronously */
6174 	for (i = 0; i < host->n_ports; i++) {
6175 		struct ata_port *ap = host->ports[i];
6176 		async_schedule(async_port_probe, ap);
6177 	}
6178 
6179 	return 0;
6180 
6181  err_tadd:
6182 	while (--i >= 0) {
6183 		ata_tport_delete(host->ports[i]);
6184 	}
6185 	return rc;
6186 
6187 }
6188 
6189 /**
6190  *	ata_host_activate - start host, request IRQ and register it
6191  *	@host: target ATA host
6192  *	@irq: IRQ to request
6193  *	@irq_handler: irq_handler used when requesting IRQ
6194  *	@irq_flags: irq_flags used when requesting IRQ
6195  *	@sht: scsi_host_template to use when registering the host
6196  *
6197  *	After allocating an ATA host and initializing it, most libata
6198  *	LLDs perform three steps to activate the host - start host,
6199  *	request IRQ and register it.  This helper takes necessasry
6200  *	arguments and performs the three steps in one go.
6201  *
6202  *	An invalid IRQ skips the IRQ registration and expects the host to
6203  *	have set polling mode on the port. In this case, @irq_handler
6204  *	should be NULL.
6205  *
6206  *	LOCKING:
6207  *	Inherited from calling layer (may sleep).
6208  *
6209  *	RETURNS:
6210  *	0 on success, -errno otherwise.
6211  */
6212 int ata_host_activate(struct ata_host *host, int irq,
6213 		      irq_handler_t irq_handler, unsigned long irq_flags,
6214 		      struct scsi_host_template *sht)
6215 {
6216 	int i, rc;
6217 
6218 	rc = ata_host_start(host);
6219 	if (rc)
6220 		return rc;
6221 
6222 	/* Special case for polling mode */
6223 	if (!irq) {
6224 		WARN_ON(irq_handler);
6225 		return ata_host_register(host, sht);
6226 	}
6227 
6228 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6229 			      dev_driver_string(host->dev), host);
6230 	if (rc)
6231 		return rc;
6232 
6233 	for (i = 0; i < host->n_ports; i++)
6234 		ata_port_desc(host->ports[i], "irq %d", irq);
6235 
6236 	rc = ata_host_register(host, sht);
6237 	/* if failed, just free the IRQ and leave ports alone */
6238 	if (rc)
6239 		devm_free_irq(host->dev, irq, host);
6240 
6241 	return rc;
6242 }
6243 
6244 /**
6245  *	ata_port_detach - Detach ATA port in prepration of device removal
6246  *	@ap: ATA port to be detached
6247  *
6248  *	Detach all ATA devices and the associated SCSI devices of @ap;
6249  *	then, remove the associated SCSI host.  @ap is guaranteed to
6250  *	be quiescent on return from this function.
6251  *
6252  *	LOCKING:
6253  *	Kernel thread context (may sleep).
6254  */
6255 static void ata_port_detach(struct ata_port *ap)
6256 {
6257 	unsigned long flags;
6258 
6259 	if (!ap->ops->error_handler)
6260 		goto skip_eh;
6261 
6262 	/* tell EH we're leaving & flush EH */
6263 	spin_lock_irqsave(ap->lock, flags);
6264 	ap->pflags |= ATA_PFLAG_UNLOADING;
6265 	ata_port_schedule_eh(ap);
6266 	spin_unlock_irqrestore(ap->lock, flags);
6267 
6268 	/* wait till EH commits suicide */
6269 	ata_port_wait_eh(ap);
6270 
6271 	/* it better be dead now */
6272 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6273 
6274 	cancel_delayed_work_sync(&ap->hotplug_task);
6275 
6276  skip_eh:
6277 	if (ap->pmp_link) {
6278 		int i;
6279 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6280 			ata_tlink_delete(&ap->pmp_link[i]);
6281 	}
6282 	ata_tport_delete(ap);
6283 
6284 	/* remove the associated SCSI host */
6285 	scsi_remove_host(ap->scsi_host);
6286 }
6287 
6288 /**
6289  *	ata_host_detach - Detach all ports of an ATA host
6290  *	@host: Host to detach
6291  *
6292  *	Detach all ports of @host.
6293  *
6294  *	LOCKING:
6295  *	Kernel thread context (may sleep).
6296  */
6297 void ata_host_detach(struct ata_host *host)
6298 {
6299 	int i;
6300 
6301 	for (i = 0; i < host->n_ports; i++)
6302 		ata_port_detach(host->ports[i]);
6303 
6304 	/* the host is dead now, dissociate ACPI */
6305 	ata_acpi_dissociate(host);
6306 }
6307 
6308 #ifdef CONFIG_PCI
6309 
6310 /**
6311  *	ata_pci_remove_one - PCI layer callback for device removal
6312  *	@pdev: PCI device that was removed
6313  *
6314  *	PCI layer indicates to libata via this hook that hot-unplug or
6315  *	module unload event has occurred.  Detach all ports.  Resource
6316  *	release is handled via devres.
6317  *
6318  *	LOCKING:
6319  *	Inherited from PCI layer (may sleep).
6320  */
6321 void ata_pci_remove_one(struct pci_dev *pdev)
6322 {
6323 	struct ata_host *host = pci_get_drvdata(pdev);
6324 
6325 	ata_host_detach(host);
6326 }
6327 
6328 /* move to PCI subsystem */
6329 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6330 {
6331 	unsigned long tmp = 0;
6332 
6333 	switch (bits->width) {
6334 	case 1: {
6335 		u8 tmp8 = 0;
6336 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6337 		tmp = tmp8;
6338 		break;
6339 	}
6340 	case 2: {
6341 		u16 tmp16 = 0;
6342 		pci_read_config_word(pdev, bits->reg, &tmp16);
6343 		tmp = tmp16;
6344 		break;
6345 	}
6346 	case 4: {
6347 		u32 tmp32 = 0;
6348 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6349 		tmp = tmp32;
6350 		break;
6351 	}
6352 
6353 	default:
6354 		return -EINVAL;
6355 	}
6356 
6357 	tmp &= bits->mask;
6358 
6359 	return (tmp == bits->val) ? 1 : 0;
6360 }
6361 
6362 #ifdef CONFIG_PM
6363 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6364 {
6365 	pci_save_state(pdev);
6366 	pci_disable_device(pdev);
6367 
6368 	if (mesg.event & PM_EVENT_SLEEP)
6369 		pci_set_power_state(pdev, PCI_D3hot);
6370 }
6371 
6372 int ata_pci_device_do_resume(struct pci_dev *pdev)
6373 {
6374 	int rc;
6375 
6376 	pci_set_power_state(pdev, PCI_D0);
6377 	pci_restore_state(pdev);
6378 
6379 	rc = pcim_enable_device(pdev);
6380 	if (rc) {
6381 		dev_err(&pdev->dev,
6382 			"failed to enable device after resume (%d)\n", rc);
6383 		return rc;
6384 	}
6385 
6386 	pci_set_master(pdev);
6387 	return 0;
6388 }
6389 
6390 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6391 {
6392 	struct ata_host *host = pci_get_drvdata(pdev);
6393 	int rc = 0;
6394 
6395 	rc = ata_host_suspend(host, mesg);
6396 	if (rc)
6397 		return rc;
6398 
6399 	ata_pci_device_do_suspend(pdev, mesg);
6400 
6401 	return 0;
6402 }
6403 
6404 int ata_pci_device_resume(struct pci_dev *pdev)
6405 {
6406 	struct ata_host *host = pci_get_drvdata(pdev);
6407 	int rc;
6408 
6409 	rc = ata_pci_device_do_resume(pdev);
6410 	if (rc == 0)
6411 		ata_host_resume(host);
6412 	return rc;
6413 }
6414 #endif /* CONFIG_PM */
6415 
6416 #endif /* CONFIG_PCI */
6417 
6418 /**
6419  *	ata_platform_remove_one - Platform layer callback for device removal
6420  *	@pdev: Platform device that was removed
6421  *
6422  *	Platform layer indicates to libata via this hook that hot-unplug or
6423  *	module unload event has occurred.  Detach all ports.  Resource
6424  *	release is handled via devres.
6425  *
6426  *	LOCKING:
6427  *	Inherited from platform layer (may sleep).
6428  */
6429 int ata_platform_remove_one(struct platform_device *pdev)
6430 {
6431 	struct ata_host *host = platform_get_drvdata(pdev);
6432 
6433 	ata_host_detach(host);
6434 
6435 	return 0;
6436 }
6437 
6438 static int __init ata_parse_force_one(char **cur,
6439 				      struct ata_force_ent *force_ent,
6440 				      const char **reason)
6441 {
6442 	/* FIXME: Currently, there's no way to tag init const data and
6443 	 * using __initdata causes build failure on some versions of
6444 	 * gcc.  Once __initdataconst is implemented, add const to the
6445 	 * following structure.
6446 	 */
6447 	static struct ata_force_param force_tbl[] __initdata = {
6448 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6449 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6450 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6451 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6452 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6453 		{ "sata",	.cbl		= ATA_CBL_SATA },
6454 		{ "1.5Gbps",	.spd_limit	= 1 },
6455 		{ "3.0Gbps",	.spd_limit	= 2 },
6456 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6457 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6458 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6459 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6460 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6461 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6462 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6463 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6464 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6465 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6466 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6467 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6468 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6469 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6470 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6471 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6472 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6473 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6474 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6475 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6476 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6477 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6478 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6479 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6480 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6481 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6482 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6483 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6484 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6485 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6486 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6487 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6488 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6489 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6490 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6491 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6492 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6493 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6494 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6495 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6496 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6497 	};
6498 	char *start = *cur, *p = *cur;
6499 	char *id, *val, *endp;
6500 	const struct ata_force_param *match_fp = NULL;
6501 	int nr_matches = 0, i;
6502 
6503 	/* find where this param ends and update *cur */
6504 	while (*p != '\0' && *p != ',')
6505 		p++;
6506 
6507 	if (*p == '\0')
6508 		*cur = p;
6509 	else
6510 		*cur = p + 1;
6511 
6512 	*p = '\0';
6513 
6514 	/* parse */
6515 	p = strchr(start, ':');
6516 	if (!p) {
6517 		val = strstrip(start);
6518 		goto parse_val;
6519 	}
6520 	*p = '\0';
6521 
6522 	id = strstrip(start);
6523 	val = strstrip(p + 1);
6524 
6525 	/* parse id */
6526 	p = strchr(id, '.');
6527 	if (p) {
6528 		*p++ = '\0';
6529 		force_ent->device = simple_strtoul(p, &endp, 10);
6530 		if (p == endp || *endp != '\0') {
6531 			*reason = "invalid device";
6532 			return -EINVAL;
6533 		}
6534 	}
6535 
6536 	force_ent->port = simple_strtoul(id, &endp, 10);
6537 	if (p == endp || *endp != '\0') {
6538 		*reason = "invalid port/link";
6539 		return -EINVAL;
6540 	}
6541 
6542  parse_val:
6543 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6544 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6545 		const struct ata_force_param *fp = &force_tbl[i];
6546 
6547 		if (strncasecmp(val, fp->name, strlen(val)))
6548 			continue;
6549 
6550 		nr_matches++;
6551 		match_fp = fp;
6552 
6553 		if (strcasecmp(val, fp->name) == 0) {
6554 			nr_matches = 1;
6555 			break;
6556 		}
6557 	}
6558 
6559 	if (!nr_matches) {
6560 		*reason = "unknown value";
6561 		return -EINVAL;
6562 	}
6563 	if (nr_matches > 1) {
6564 		*reason = "ambigious value";
6565 		return -EINVAL;
6566 	}
6567 
6568 	force_ent->param = *match_fp;
6569 
6570 	return 0;
6571 }
6572 
6573 static void __init ata_parse_force_param(void)
6574 {
6575 	int idx = 0, size = 1;
6576 	int last_port = -1, last_device = -1;
6577 	char *p, *cur, *next;
6578 
6579 	/* calculate maximum number of params and allocate force_tbl */
6580 	for (p = ata_force_param_buf; *p; p++)
6581 		if (*p == ',')
6582 			size++;
6583 
6584 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6585 	if (!ata_force_tbl) {
6586 		printk(KERN_WARNING "ata: failed to extend force table, "
6587 		       "libata.force ignored\n");
6588 		return;
6589 	}
6590 
6591 	/* parse and populate the table */
6592 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6593 		const char *reason = "";
6594 		struct ata_force_ent te = { .port = -1, .device = -1 };
6595 
6596 		next = cur;
6597 		if (ata_parse_force_one(&next, &te, &reason)) {
6598 			printk(KERN_WARNING "ata: failed to parse force "
6599 			       "parameter \"%s\" (%s)\n",
6600 			       cur, reason);
6601 			continue;
6602 		}
6603 
6604 		if (te.port == -1) {
6605 			te.port = last_port;
6606 			te.device = last_device;
6607 		}
6608 
6609 		ata_force_tbl[idx++] = te;
6610 
6611 		last_port = te.port;
6612 		last_device = te.device;
6613 	}
6614 
6615 	ata_force_tbl_size = idx;
6616 }
6617 
6618 static int __init ata_init(void)
6619 {
6620 	int rc;
6621 
6622 	ata_parse_force_param();
6623 
6624 	ata_acpi_register();
6625 
6626 	rc = ata_sff_init();
6627 	if (rc) {
6628 		kfree(ata_force_tbl);
6629 		return rc;
6630 	}
6631 
6632 	libata_transport_init();
6633 	ata_scsi_transport_template = ata_attach_transport();
6634 	if (!ata_scsi_transport_template) {
6635 		ata_sff_exit();
6636 		rc = -ENOMEM;
6637 		goto err_out;
6638 	}
6639 
6640 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6641 	return 0;
6642 
6643 err_out:
6644 	return rc;
6645 }
6646 
6647 static void __exit ata_exit(void)
6648 {
6649 	ata_release_transport(ata_scsi_transport_template);
6650 	libata_transport_exit();
6651 	ata_sff_exit();
6652 	ata_acpi_unregister();
6653 	kfree(ata_force_tbl);
6654 }
6655 
6656 subsys_initcall(ata_init);
6657 module_exit(ata_exit);
6658 
6659 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6660 
6661 int ata_ratelimit(void)
6662 {
6663 	return __ratelimit(&ratelimit);
6664 }
6665 
6666 /**
6667  *	ata_msleep - ATA EH owner aware msleep
6668  *	@ap: ATA port to attribute the sleep to
6669  *	@msecs: duration to sleep in milliseconds
6670  *
6671  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6672  *	ownership is released before going to sleep and reacquired
6673  *	after the sleep is complete.  IOW, other ports sharing the
6674  *	@ap->host will be allowed to own the EH while this task is
6675  *	sleeping.
6676  *
6677  *	LOCKING:
6678  *	Might sleep.
6679  */
6680 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6681 {
6682 	bool owns_eh = ap && ap->host->eh_owner == current;
6683 
6684 	if (owns_eh)
6685 		ata_eh_release(ap);
6686 
6687 	msleep(msecs);
6688 
6689 	if (owns_eh)
6690 		ata_eh_acquire(ap);
6691 }
6692 
6693 /**
6694  *	ata_wait_register - wait until register value changes
6695  *	@ap: ATA port to wait register for, can be NULL
6696  *	@reg: IO-mapped register
6697  *	@mask: Mask to apply to read register value
6698  *	@val: Wait condition
6699  *	@interval: polling interval in milliseconds
6700  *	@timeout: timeout in milliseconds
6701  *
6702  *	Waiting for some bits of register to change is a common
6703  *	operation for ATA controllers.  This function reads 32bit LE
6704  *	IO-mapped register @reg and tests for the following condition.
6705  *
6706  *	(*@reg & mask) != val
6707  *
6708  *	If the condition is met, it returns; otherwise, the process is
6709  *	repeated after @interval_msec until timeout.
6710  *
6711  *	LOCKING:
6712  *	Kernel thread context (may sleep)
6713  *
6714  *	RETURNS:
6715  *	The final register value.
6716  */
6717 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6718 		      unsigned long interval, unsigned long timeout)
6719 {
6720 	unsigned long deadline;
6721 	u32 tmp;
6722 
6723 	tmp = ioread32(reg);
6724 
6725 	/* Calculate timeout _after_ the first read to make sure
6726 	 * preceding writes reach the controller before starting to
6727 	 * eat away the timeout.
6728 	 */
6729 	deadline = ata_deadline(jiffies, timeout);
6730 
6731 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6732 		ata_msleep(ap, interval);
6733 		tmp = ioread32(reg);
6734 	}
6735 
6736 	return tmp;
6737 }
6738 
6739 /*
6740  * Dummy port_ops
6741  */
6742 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6743 {
6744 	return AC_ERR_SYSTEM;
6745 }
6746 
6747 static void ata_dummy_error_handler(struct ata_port *ap)
6748 {
6749 	/* truly dummy */
6750 }
6751 
6752 struct ata_port_operations ata_dummy_port_ops = {
6753 	.qc_prep		= ata_noop_qc_prep,
6754 	.qc_issue		= ata_dummy_qc_issue,
6755 	.error_handler		= ata_dummy_error_handler,
6756 	.sched_eh		= ata_std_sched_eh,
6757 	.end_eh			= ata_std_end_eh,
6758 };
6759 
6760 const struct ata_port_info ata_dummy_port_info = {
6761 	.port_ops		= &ata_dummy_port_ops,
6762 };
6763 
6764 /*
6765  * Utility print functions
6766  */
6767 int ata_port_printk(const struct ata_port *ap, const char *level,
6768 		    const char *fmt, ...)
6769 {
6770 	struct va_format vaf;
6771 	va_list args;
6772 	int r;
6773 
6774 	va_start(args, fmt);
6775 
6776 	vaf.fmt = fmt;
6777 	vaf.va = &args;
6778 
6779 	r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6780 
6781 	va_end(args);
6782 
6783 	return r;
6784 }
6785 EXPORT_SYMBOL(ata_port_printk);
6786 
6787 int ata_link_printk(const struct ata_link *link, const char *level,
6788 		    const char *fmt, ...)
6789 {
6790 	struct va_format vaf;
6791 	va_list args;
6792 	int r;
6793 
6794 	va_start(args, fmt);
6795 
6796 	vaf.fmt = fmt;
6797 	vaf.va = &args;
6798 
6799 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6800 		r = printk("%sata%u.%02u: %pV",
6801 			   level, link->ap->print_id, link->pmp, &vaf);
6802 	else
6803 		r = printk("%sata%u: %pV",
6804 			   level, link->ap->print_id, &vaf);
6805 
6806 	va_end(args);
6807 
6808 	return r;
6809 }
6810 EXPORT_SYMBOL(ata_link_printk);
6811 
6812 int ata_dev_printk(const struct ata_device *dev, const char *level,
6813 		    const char *fmt, ...)
6814 {
6815 	struct va_format vaf;
6816 	va_list args;
6817 	int r;
6818 
6819 	va_start(args, fmt);
6820 
6821 	vaf.fmt = fmt;
6822 	vaf.va = &args;
6823 
6824 	r = printk("%sata%u.%02u: %pV",
6825 		   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6826 		   &vaf);
6827 
6828 	va_end(args);
6829 
6830 	return r;
6831 }
6832 EXPORT_SYMBOL(ata_dev_printk);
6833 
6834 void ata_print_version(const struct device *dev, const char *version)
6835 {
6836 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6837 }
6838 EXPORT_SYMBOL(ata_print_version);
6839 
6840 /*
6841  * libata is essentially a library of internal helper functions for
6842  * low-level ATA host controller drivers.  As such, the API/ABI is
6843  * likely to change as new drivers are added and updated.
6844  * Do not depend on ABI/API stability.
6845  */
6846 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6847 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6848 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6849 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6850 EXPORT_SYMBOL_GPL(sata_port_ops);
6851 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6852 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6853 EXPORT_SYMBOL_GPL(ata_link_next);
6854 EXPORT_SYMBOL_GPL(ata_dev_next);
6855 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6856 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6857 EXPORT_SYMBOL_GPL(ata_host_init);
6858 EXPORT_SYMBOL_GPL(ata_host_alloc);
6859 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6860 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6861 EXPORT_SYMBOL_GPL(ata_host_start);
6862 EXPORT_SYMBOL_GPL(ata_host_register);
6863 EXPORT_SYMBOL_GPL(ata_host_activate);
6864 EXPORT_SYMBOL_GPL(ata_host_detach);
6865 EXPORT_SYMBOL_GPL(ata_sg_init);
6866 EXPORT_SYMBOL_GPL(ata_qc_complete);
6867 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6868 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6869 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6870 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6871 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6872 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6873 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6874 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6875 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6876 EXPORT_SYMBOL_GPL(ata_mode_string);
6877 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6878 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6879 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6880 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6881 EXPORT_SYMBOL_GPL(ata_dev_disable);
6882 EXPORT_SYMBOL_GPL(sata_set_spd);
6883 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6884 EXPORT_SYMBOL_GPL(sata_link_debounce);
6885 EXPORT_SYMBOL_GPL(sata_link_resume);
6886 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6887 EXPORT_SYMBOL_GPL(ata_std_prereset);
6888 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6889 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6890 EXPORT_SYMBOL_GPL(ata_std_postreset);
6891 EXPORT_SYMBOL_GPL(ata_dev_classify);
6892 EXPORT_SYMBOL_GPL(ata_dev_pair);
6893 EXPORT_SYMBOL_GPL(ata_ratelimit);
6894 EXPORT_SYMBOL_GPL(ata_msleep);
6895 EXPORT_SYMBOL_GPL(ata_wait_register);
6896 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6897 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6898 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6899 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6900 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6901 EXPORT_SYMBOL_GPL(sata_scr_valid);
6902 EXPORT_SYMBOL_GPL(sata_scr_read);
6903 EXPORT_SYMBOL_GPL(sata_scr_write);
6904 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6905 EXPORT_SYMBOL_GPL(ata_link_online);
6906 EXPORT_SYMBOL_GPL(ata_link_offline);
6907 #ifdef CONFIG_PM
6908 EXPORT_SYMBOL_GPL(ata_host_suspend);
6909 EXPORT_SYMBOL_GPL(ata_host_resume);
6910 #endif /* CONFIG_PM */
6911 EXPORT_SYMBOL_GPL(ata_id_string);
6912 EXPORT_SYMBOL_GPL(ata_id_c_string);
6913 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6914 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6915 
6916 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6917 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6918 EXPORT_SYMBOL_GPL(ata_timing_compute);
6919 EXPORT_SYMBOL_GPL(ata_timing_merge);
6920 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6921 
6922 #ifdef CONFIG_PCI
6923 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6924 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6925 #ifdef CONFIG_PM
6926 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6927 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6928 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6929 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6930 #endif /* CONFIG_PM */
6931 #endif /* CONFIG_PCI */
6932 
6933 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6934 
6935 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6936 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6937 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6938 EXPORT_SYMBOL_GPL(ata_port_desc);
6939 #ifdef CONFIG_PCI
6940 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6941 #endif /* CONFIG_PCI */
6942 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6943 EXPORT_SYMBOL_GPL(ata_link_abort);
6944 EXPORT_SYMBOL_GPL(ata_port_abort);
6945 EXPORT_SYMBOL_GPL(ata_port_freeze);
6946 EXPORT_SYMBOL_GPL(sata_async_notification);
6947 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6948 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6949 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6950 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6951 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6952 EXPORT_SYMBOL_GPL(ata_do_eh);
6953 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6954 
6955 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6956 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6957 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6958 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6959 EXPORT_SYMBOL_GPL(ata_cable_sata);
6960