1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 #include <linux/pm_runtime.h> 70 #include <linux/platform_device.h> 71 72 #include "libata.h" 73 #include "libata-transport.h" 74 75 /* debounce timing parameters in msecs { interval, duration, timeout } */ 76 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 77 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 78 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 79 80 const struct ata_port_operations ata_base_port_ops = { 81 .prereset = ata_std_prereset, 82 .postreset = ata_std_postreset, 83 .error_handler = ata_std_error_handler, 84 .sched_eh = ata_std_sched_eh, 85 .end_eh = ata_std_end_eh, 86 }; 87 88 const struct ata_port_operations sata_port_ops = { 89 .inherits = &ata_base_port_ops, 90 91 .qc_defer = ata_std_qc_defer, 92 .hardreset = sata_std_hardreset, 93 }; 94 95 static unsigned int ata_dev_init_params(struct ata_device *dev, 96 u16 heads, u16 sectors); 97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 98 static void ata_dev_xfermask(struct ata_device *dev); 99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 100 101 atomic_t ata_print_id = ATOMIC_INIT(0); 102 103 struct ata_force_param { 104 const char *name; 105 unsigned int cbl; 106 int spd_limit; 107 unsigned long xfer_mask; 108 unsigned int horkage_on; 109 unsigned int horkage_off; 110 unsigned int lflags; 111 }; 112 113 struct ata_force_ent { 114 int port; 115 int device; 116 struct ata_force_param param; 117 }; 118 119 static struct ata_force_ent *ata_force_tbl; 120 static int ata_force_tbl_size; 121 122 static char ata_force_param_buf[PAGE_SIZE] __initdata; 123 /* param_buf is thrown away after initialization, disallow read */ 124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 126 127 static int atapi_enabled = 1; 128 module_param(atapi_enabled, int, 0444); 129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 130 131 static int atapi_dmadir = 0; 132 module_param(atapi_dmadir, int, 0444); 133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 134 135 int atapi_passthru16 = 1; 136 module_param(atapi_passthru16, int, 0444); 137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 138 139 int libata_fua = 0; 140 module_param_named(fua, libata_fua, int, 0444); 141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 142 143 static int ata_ignore_hpa; 144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 146 147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 148 module_param_named(dma, libata_dma_mask, int, 0444); 149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 150 151 static int ata_probe_timeout; 152 module_param(ata_probe_timeout, int, 0444); 153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 154 155 int libata_noacpi = 0; 156 module_param_named(noacpi, libata_noacpi, int, 0444); 157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 158 159 int libata_allow_tpm = 0; 160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 162 163 static int atapi_an; 164 module_param(atapi_an, int, 0444); 165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 166 167 MODULE_AUTHOR("Jeff Garzik"); 168 MODULE_DESCRIPTION("Library module for ATA devices"); 169 MODULE_LICENSE("GPL"); 170 MODULE_VERSION(DRV_VERSION); 171 172 173 static bool ata_sstatus_online(u32 sstatus) 174 { 175 return (sstatus & 0xf) == 0x3; 176 } 177 178 /** 179 * ata_link_next - link iteration helper 180 * @link: the previous link, NULL to start 181 * @ap: ATA port containing links to iterate 182 * @mode: iteration mode, one of ATA_LITER_* 183 * 184 * LOCKING: 185 * Host lock or EH context. 186 * 187 * RETURNS: 188 * Pointer to the next link. 189 */ 190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 191 enum ata_link_iter_mode mode) 192 { 193 BUG_ON(mode != ATA_LITER_EDGE && 194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 195 196 /* NULL link indicates start of iteration */ 197 if (!link) 198 switch (mode) { 199 case ATA_LITER_EDGE: 200 case ATA_LITER_PMP_FIRST: 201 if (sata_pmp_attached(ap)) 202 return ap->pmp_link; 203 /* fall through */ 204 case ATA_LITER_HOST_FIRST: 205 return &ap->link; 206 } 207 208 /* we just iterated over the host link, what's next? */ 209 if (link == &ap->link) 210 switch (mode) { 211 case ATA_LITER_HOST_FIRST: 212 if (sata_pmp_attached(ap)) 213 return ap->pmp_link; 214 /* fall through */ 215 case ATA_LITER_PMP_FIRST: 216 if (unlikely(ap->slave_link)) 217 return ap->slave_link; 218 /* fall through */ 219 case ATA_LITER_EDGE: 220 return NULL; 221 } 222 223 /* slave_link excludes PMP */ 224 if (unlikely(link == ap->slave_link)) 225 return NULL; 226 227 /* we were over a PMP link */ 228 if (++link < ap->pmp_link + ap->nr_pmp_links) 229 return link; 230 231 if (mode == ATA_LITER_PMP_FIRST) 232 return &ap->link; 233 234 return NULL; 235 } 236 237 /** 238 * ata_dev_next - device iteration helper 239 * @dev: the previous device, NULL to start 240 * @link: ATA link containing devices to iterate 241 * @mode: iteration mode, one of ATA_DITER_* 242 * 243 * LOCKING: 244 * Host lock or EH context. 245 * 246 * RETURNS: 247 * Pointer to the next device. 248 */ 249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 250 enum ata_dev_iter_mode mode) 251 { 252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 254 255 /* NULL dev indicates start of iteration */ 256 if (!dev) 257 switch (mode) { 258 case ATA_DITER_ENABLED: 259 case ATA_DITER_ALL: 260 dev = link->device; 261 goto check; 262 case ATA_DITER_ENABLED_REVERSE: 263 case ATA_DITER_ALL_REVERSE: 264 dev = link->device + ata_link_max_devices(link) - 1; 265 goto check; 266 } 267 268 next: 269 /* move to the next one */ 270 switch (mode) { 271 case ATA_DITER_ENABLED: 272 case ATA_DITER_ALL: 273 if (++dev < link->device + ata_link_max_devices(link)) 274 goto check; 275 return NULL; 276 case ATA_DITER_ENABLED_REVERSE: 277 case ATA_DITER_ALL_REVERSE: 278 if (--dev >= link->device) 279 goto check; 280 return NULL; 281 } 282 283 check: 284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 285 !ata_dev_enabled(dev)) 286 goto next; 287 return dev; 288 } 289 290 /** 291 * ata_dev_phys_link - find physical link for a device 292 * @dev: ATA device to look up physical link for 293 * 294 * Look up physical link which @dev is attached to. Note that 295 * this is different from @dev->link only when @dev is on slave 296 * link. For all other cases, it's the same as @dev->link. 297 * 298 * LOCKING: 299 * Don't care. 300 * 301 * RETURNS: 302 * Pointer to the found physical link. 303 */ 304 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 305 { 306 struct ata_port *ap = dev->link->ap; 307 308 if (!ap->slave_link) 309 return dev->link; 310 if (!dev->devno) 311 return &ap->link; 312 return ap->slave_link; 313 } 314 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags) { 391 link->flags |= fe->param.lflags; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags, link->flags); 395 } 396 } 397 } 398 399 /** 400 * ata_force_xfermask - force xfermask according to libata.force 401 * @dev: ATA device of interest 402 * 403 * Force xfer_mask according to libata.force and whine about it. 404 * For consistency with link selection, device number 15 selects 405 * the first device connected to the host link. 406 * 407 * LOCKING: 408 * EH context. 409 */ 410 static void ata_force_xfermask(struct ata_device *dev) 411 { 412 int devno = dev->link->pmp + dev->devno; 413 int alt_devno = devno; 414 int i; 415 416 /* allow n.15/16 for devices attached to host port */ 417 if (ata_is_host_link(dev->link)) 418 alt_devno += 15; 419 420 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 421 const struct ata_force_ent *fe = &ata_force_tbl[i]; 422 unsigned long pio_mask, mwdma_mask, udma_mask; 423 424 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 425 continue; 426 427 if (fe->device != -1 && fe->device != devno && 428 fe->device != alt_devno) 429 continue; 430 431 if (!fe->param.xfer_mask) 432 continue; 433 434 ata_unpack_xfermask(fe->param.xfer_mask, 435 &pio_mask, &mwdma_mask, &udma_mask); 436 if (udma_mask) 437 dev->udma_mask = udma_mask; 438 else if (mwdma_mask) { 439 dev->udma_mask = 0; 440 dev->mwdma_mask = mwdma_mask; 441 } else { 442 dev->udma_mask = 0; 443 dev->mwdma_mask = 0; 444 dev->pio_mask = pio_mask; 445 } 446 447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 448 fe->param.name); 449 return; 450 } 451 } 452 453 /** 454 * ata_force_horkage - force horkage according to libata.force 455 * @dev: ATA device of interest 456 * 457 * Force horkage according to libata.force and whine about it. 458 * For consistency with link selection, device number 15 selects 459 * the first device connected to the host link. 460 * 461 * LOCKING: 462 * EH context. 463 */ 464 static void ata_force_horkage(struct ata_device *dev) 465 { 466 int devno = dev->link->pmp + dev->devno; 467 int alt_devno = devno; 468 int i; 469 470 /* allow n.15/16 for devices attached to host port */ 471 if (ata_is_host_link(dev->link)) 472 alt_devno += 15; 473 474 for (i = 0; i < ata_force_tbl_size; i++) { 475 const struct ata_force_ent *fe = &ata_force_tbl[i]; 476 477 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 478 continue; 479 480 if (fe->device != -1 && fe->device != devno && 481 fe->device != alt_devno) 482 continue; 483 484 if (!(~dev->horkage & fe->param.horkage_on) && 485 !(dev->horkage & fe->param.horkage_off)) 486 continue; 487 488 dev->horkage |= fe->param.horkage_on; 489 dev->horkage &= ~fe->param.horkage_off; 490 491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 492 fe->param.name); 493 } 494 } 495 496 /** 497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 498 * @opcode: SCSI opcode 499 * 500 * Determine ATAPI command type from @opcode. 501 * 502 * LOCKING: 503 * None. 504 * 505 * RETURNS: 506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 507 */ 508 int atapi_cmd_type(u8 opcode) 509 { 510 switch (opcode) { 511 case GPCMD_READ_10: 512 case GPCMD_READ_12: 513 return ATAPI_READ; 514 515 case GPCMD_WRITE_10: 516 case GPCMD_WRITE_12: 517 case GPCMD_WRITE_AND_VERIFY_10: 518 return ATAPI_WRITE; 519 520 case GPCMD_READ_CD: 521 case GPCMD_READ_CD_MSF: 522 return ATAPI_READ_CD; 523 524 case ATA_16: 525 case ATA_12: 526 if (atapi_passthru16) 527 return ATAPI_PASS_THRU; 528 /* fall thru */ 529 default: 530 return ATAPI_MISC; 531 } 532 } 533 534 /** 535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 536 * @tf: Taskfile to convert 537 * @pmp: Port multiplier port 538 * @is_cmd: This FIS is for command 539 * @fis: Buffer into which data will output 540 * 541 * Converts a standard ATA taskfile to a Serial ATA 542 * FIS structure (Register - Host to Device). 543 * 544 * LOCKING: 545 * Inherited from caller. 546 */ 547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 548 { 549 fis[0] = 0x27; /* Register - Host to Device FIS */ 550 fis[1] = pmp & 0xf; /* Port multiplier number*/ 551 if (is_cmd) 552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 553 554 fis[2] = tf->command; 555 fis[3] = tf->feature; 556 557 fis[4] = tf->lbal; 558 fis[5] = tf->lbam; 559 fis[6] = tf->lbah; 560 fis[7] = tf->device; 561 562 fis[8] = tf->hob_lbal; 563 fis[9] = tf->hob_lbam; 564 fis[10] = tf->hob_lbah; 565 fis[11] = tf->hob_feature; 566 567 fis[12] = tf->nsect; 568 fis[13] = tf->hob_nsect; 569 fis[14] = 0; 570 fis[15] = tf->ctl; 571 572 fis[16] = 0; 573 fis[17] = 0; 574 fis[18] = 0; 575 fis[19] = 0; 576 } 577 578 /** 579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 580 * @fis: Buffer from which data will be input 581 * @tf: Taskfile to output 582 * 583 * Converts a serial ATA FIS structure to a standard ATA taskfile. 584 * 585 * LOCKING: 586 * Inherited from caller. 587 */ 588 589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 590 { 591 tf->command = fis[2]; /* status */ 592 tf->feature = fis[3]; /* error */ 593 594 tf->lbal = fis[4]; 595 tf->lbam = fis[5]; 596 tf->lbah = fis[6]; 597 tf->device = fis[7]; 598 599 tf->hob_lbal = fis[8]; 600 tf->hob_lbam = fis[9]; 601 tf->hob_lbah = fis[10]; 602 603 tf->nsect = fis[12]; 604 tf->hob_nsect = fis[13]; 605 } 606 607 static const u8 ata_rw_cmds[] = { 608 /* pio multi */ 609 ATA_CMD_READ_MULTI, 610 ATA_CMD_WRITE_MULTI, 611 ATA_CMD_READ_MULTI_EXT, 612 ATA_CMD_WRITE_MULTI_EXT, 613 0, 614 0, 615 0, 616 ATA_CMD_WRITE_MULTI_FUA_EXT, 617 /* pio */ 618 ATA_CMD_PIO_READ, 619 ATA_CMD_PIO_WRITE, 620 ATA_CMD_PIO_READ_EXT, 621 ATA_CMD_PIO_WRITE_EXT, 622 0, 623 0, 624 0, 625 0, 626 /* dma */ 627 ATA_CMD_READ, 628 ATA_CMD_WRITE, 629 ATA_CMD_READ_EXT, 630 ATA_CMD_WRITE_EXT, 631 0, 632 0, 633 0, 634 ATA_CMD_WRITE_FUA_EXT 635 }; 636 637 /** 638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 639 * @tf: command to examine and configure 640 * @dev: device tf belongs to 641 * 642 * Examine the device configuration and tf->flags to calculate 643 * the proper read/write commands and protocol to use. 644 * 645 * LOCKING: 646 * caller. 647 */ 648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 649 { 650 u8 cmd; 651 652 int index, fua, lba48, write; 653 654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 657 658 if (dev->flags & ATA_DFLAG_PIO) { 659 tf->protocol = ATA_PROT_PIO; 660 index = dev->multi_count ? 0 : 8; 661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 662 /* Unable to use DMA due to host limitation */ 663 tf->protocol = ATA_PROT_PIO; 664 index = dev->multi_count ? 0 : 8; 665 } else { 666 tf->protocol = ATA_PROT_DMA; 667 index = 16; 668 } 669 670 cmd = ata_rw_cmds[index + fua + lba48 + write]; 671 if (cmd) { 672 tf->command = cmd; 673 return 0; 674 } 675 return -1; 676 } 677 678 /** 679 * ata_tf_read_block - Read block address from ATA taskfile 680 * @tf: ATA taskfile of interest 681 * @dev: ATA device @tf belongs to 682 * 683 * LOCKING: 684 * None. 685 * 686 * Read block address from @tf. This function can handle all 687 * three address formats - LBA, LBA48 and CHS. tf->protocol and 688 * flags select the address format to use. 689 * 690 * RETURNS: 691 * Block address read from @tf. 692 */ 693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 694 { 695 u64 block = 0; 696 697 if (tf->flags & ATA_TFLAG_LBA) { 698 if (tf->flags & ATA_TFLAG_LBA48) { 699 block |= (u64)tf->hob_lbah << 40; 700 block |= (u64)tf->hob_lbam << 32; 701 block |= (u64)tf->hob_lbal << 24; 702 } else 703 block |= (tf->device & 0xf) << 24; 704 705 block |= tf->lbah << 16; 706 block |= tf->lbam << 8; 707 block |= tf->lbal; 708 } else { 709 u32 cyl, head, sect; 710 711 cyl = tf->lbam | (tf->lbah << 8); 712 head = tf->device & 0xf; 713 sect = tf->lbal; 714 715 if (!sect) { 716 ata_dev_warn(dev, 717 "device reported invalid CHS sector 0\n"); 718 sect = 1; /* oh well */ 719 } 720 721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 722 } 723 724 return block; 725 } 726 727 /** 728 * ata_build_rw_tf - Build ATA taskfile for given read/write request 729 * @tf: Target ATA taskfile 730 * @dev: ATA device @tf belongs to 731 * @block: Block address 732 * @n_block: Number of blocks 733 * @tf_flags: RW/FUA etc... 734 * @tag: tag 735 * 736 * LOCKING: 737 * None. 738 * 739 * Build ATA taskfile @tf for read/write request described by 740 * @block, @n_block, @tf_flags and @tag on @dev. 741 * 742 * RETURNS: 743 * 744 * 0 on success, -ERANGE if the request is too large for @dev, 745 * -EINVAL if the request is invalid. 746 */ 747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 748 u64 block, u32 n_block, unsigned int tf_flags, 749 unsigned int tag) 750 { 751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 752 tf->flags |= tf_flags; 753 754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 755 /* yay, NCQ */ 756 if (!lba_48_ok(block, n_block)) 757 return -ERANGE; 758 759 tf->protocol = ATA_PROT_NCQ; 760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 761 762 if (tf->flags & ATA_TFLAG_WRITE) 763 tf->command = ATA_CMD_FPDMA_WRITE; 764 else 765 tf->command = ATA_CMD_FPDMA_READ; 766 767 tf->nsect = tag << 3; 768 tf->hob_feature = (n_block >> 8) & 0xff; 769 tf->feature = n_block & 0xff; 770 771 tf->hob_lbah = (block >> 40) & 0xff; 772 tf->hob_lbam = (block >> 32) & 0xff; 773 tf->hob_lbal = (block >> 24) & 0xff; 774 tf->lbah = (block >> 16) & 0xff; 775 tf->lbam = (block >> 8) & 0xff; 776 tf->lbal = block & 0xff; 777 778 tf->device = ATA_LBA; 779 if (tf->flags & ATA_TFLAG_FUA) 780 tf->device |= 1 << 7; 781 } else if (dev->flags & ATA_DFLAG_LBA) { 782 tf->flags |= ATA_TFLAG_LBA; 783 784 if (lba_28_ok(block, n_block)) { 785 /* use LBA28 */ 786 tf->device |= (block >> 24) & 0xf; 787 } else if (lba_48_ok(block, n_block)) { 788 if (!(dev->flags & ATA_DFLAG_LBA48)) 789 return -ERANGE; 790 791 /* use LBA48 */ 792 tf->flags |= ATA_TFLAG_LBA48; 793 794 tf->hob_nsect = (n_block >> 8) & 0xff; 795 796 tf->hob_lbah = (block >> 40) & 0xff; 797 tf->hob_lbam = (block >> 32) & 0xff; 798 tf->hob_lbal = (block >> 24) & 0xff; 799 } else 800 /* request too large even for LBA48 */ 801 return -ERANGE; 802 803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 804 return -EINVAL; 805 806 tf->nsect = n_block & 0xff; 807 808 tf->lbah = (block >> 16) & 0xff; 809 tf->lbam = (block >> 8) & 0xff; 810 tf->lbal = block & 0xff; 811 812 tf->device |= ATA_LBA; 813 } else { 814 /* CHS */ 815 u32 sect, head, cyl, track; 816 817 /* The request -may- be too large for CHS addressing. */ 818 if (!lba_28_ok(block, n_block)) 819 return -ERANGE; 820 821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 822 return -EINVAL; 823 824 /* Convert LBA to CHS */ 825 track = (u32)block / dev->sectors; 826 cyl = track / dev->heads; 827 head = track % dev->heads; 828 sect = (u32)block % dev->sectors + 1; 829 830 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 831 (u32)block, track, cyl, head, sect); 832 833 /* Check whether the converted CHS can fit. 834 Cylinder: 0-65535 835 Head: 0-15 836 Sector: 1-255*/ 837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 838 return -ERANGE; 839 840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 841 tf->lbal = sect; 842 tf->lbam = cyl; 843 tf->lbah = cyl >> 8; 844 tf->device |= head; 845 } 846 847 return 0; 848 } 849 850 /** 851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 852 * @pio_mask: pio_mask 853 * @mwdma_mask: mwdma_mask 854 * @udma_mask: udma_mask 855 * 856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 857 * unsigned int xfer_mask. 858 * 859 * LOCKING: 860 * None. 861 * 862 * RETURNS: 863 * Packed xfer_mask. 864 */ 865 unsigned long ata_pack_xfermask(unsigned long pio_mask, 866 unsigned long mwdma_mask, 867 unsigned long udma_mask) 868 { 869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 872 } 873 874 /** 875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 876 * @xfer_mask: xfer_mask to unpack 877 * @pio_mask: resulting pio_mask 878 * @mwdma_mask: resulting mwdma_mask 879 * @udma_mask: resulting udma_mask 880 * 881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 882 * Any NULL distination masks will be ignored. 883 */ 884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 885 unsigned long *mwdma_mask, unsigned long *udma_mask) 886 { 887 if (pio_mask) 888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 889 if (mwdma_mask) 890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 891 if (udma_mask) 892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 893 } 894 895 static const struct ata_xfer_ent { 896 int shift, bits; 897 u8 base; 898 } ata_xfer_tbl[] = { 899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 902 { -1, }, 903 }; 904 905 /** 906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 907 * @xfer_mask: xfer_mask of interest 908 * 909 * Return matching XFER_* value for @xfer_mask. Only the highest 910 * bit of @xfer_mask is considered. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching XFER_* value, 0xff if no match found. 917 */ 918 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 919 { 920 int highbit = fls(xfer_mask) - 1; 921 const struct ata_xfer_ent *ent; 922 923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 925 return ent->base + highbit - ent->shift; 926 return 0xff; 927 } 928 929 /** 930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 931 * @xfer_mode: XFER_* of interest 932 * 933 * Return matching xfer_mask for @xfer_mode. 934 * 935 * LOCKING: 936 * None. 937 * 938 * RETURNS: 939 * Matching xfer_mask, 0 if no match found. 940 */ 941 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 942 { 943 const struct ata_xfer_ent *ent; 944 945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 948 & ~((1 << ent->shift) - 1); 949 return 0; 950 } 951 952 /** 953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 954 * @xfer_mode: XFER_* of interest 955 * 956 * Return matching xfer_shift for @xfer_mode. 957 * 958 * LOCKING: 959 * None. 960 * 961 * RETURNS: 962 * Matching xfer_shift, -1 if no match found. 963 */ 964 int ata_xfer_mode2shift(unsigned long xfer_mode) 965 { 966 const struct ata_xfer_ent *ent; 967 968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 970 return ent->shift; 971 return -1; 972 } 973 974 /** 975 * ata_mode_string - convert xfer_mask to string 976 * @xfer_mask: mask of bits supported; only highest bit counts. 977 * 978 * Determine string which represents the highest speed 979 * (highest bit in @modemask). 980 * 981 * LOCKING: 982 * None. 983 * 984 * RETURNS: 985 * Constant C string representing highest speed listed in 986 * @mode_mask, or the constant C string "<n/a>". 987 */ 988 const char *ata_mode_string(unsigned long xfer_mask) 989 { 990 static const char * const xfer_mode_str[] = { 991 "PIO0", 992 "PIO1", 993 "PIO2", 994 "PIO3", 995 "PIO4", 996 "PIO5", 997 "PIO6", 998 "MWDMA0", 999 "MWDMA1", 1000 "MWDMA2", 1001 "MWDMA3", 1002 "MWDMA4", 1003 "UDMA/16", 1004 "UDMA/25", 1005 "UDMA/33", 1006 "UDMA/44", 1007 "UDMA/66", 1008 "UDMA/100", 1009 "UDMA/133", 1010 "UDMA7", 1011 }; 1012 int highbit; 1013 1014 highbit = fls(xfer_mask) - 1; 1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1016 return xfer_mode_str[highbit]; 1017 return "<n/a>"; 1018 } 1019 1020 const char *sata_spd_string(unsigned int spd) 1021 { 1022 static const char * const spd_str[] = { 1023 "1.5 Gbps", 1024 "3.0 Gbps", 1025 "6.0 Gbps", 1026 }; 1027 1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1029 return "<unknown>"; 1030 return spd_str[spd - 1]; 1031 } 1032 1033 /** 1034 * ata_dev_classify - determine device type based on ATA-spec signature 1035 * @tf: ATA taskfile register set for device to be identified 1036 * 1037 * Determine from taskfile register contents whether a device is 1038 * ATA or ATAPI, as per "Signature and persistence" section 1039 * of ATA/PI spec (volume 1, sect 5.14). 1040 * 1041 * LOCKING: 1042 * None. 1043 * 1044 * RETURNS: 1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1046 * %ATA_DEV_UNKNOWN the event of failure. 1047 */ 1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1049 { 1050 /* Apple's open source Darwin code hints that some devices only 1051 * put a proper signature into the LBA mid/high registers, 1052 * So, we only check those. It's sufficient for uniqueness. 1053 * 1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1055 * signatures for ATA and ATAPI devices attached on SerialATA, 1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1057 * spec has never mentioned about using different signatures 1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1059 * Multiplier specification began to use 0x69/0x96 to identify 1060 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1062 * 0x69/0x96 shortly and described them as reserved for 1063 * SerialATA. 1064 * 1065 * We follow the current spec and consider that 0x69/0x96 1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1068 * SEMB signature. This is worked around in 1069 * ata_dev_read_id(). 1070 */ 1071 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1072 DPRINTK("found ATA device by sig\n"); 1073 return ATA_DEV_ATA; 1074 } 1075 1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1077 DPRINTK("found ATAPI device by sig\n"); 1078 return ATA_DEV_ATAPI; 1079 } 1080 1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1082 DPRINTK("found PMP device by sig\n"); 1083 return ATA_DEV_PMP; 1084 } 1085 1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1087 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1088 return ATA_DEV_SEMB; 1089 } 1090 1091 DPRINTK("unknown device\n"); 1092 return ATA_DEV_UNKNOWN; 1093 } 1094 1095 /** 1096 * ata_id_string - Convert IDENTIFY DEVICE page into string 1097 * @id: IDENTIFY DEVICE results we will examine 1098 * @s: string into which data is output 1099 * @ofs: offset into identify device page 1100 * @len: length of string to return. must be an even number. 1101 * 1102 * The strings in the IDENTIFY DEVICE page are broken up into 1103 * 16-bit chunks. Run through the string, and output each 1104 * 8-bit chunk linearly, regardless of platform. 1105 * 1106 * LOCKING: 1107 * caller. 1108 */ 1109 1110 void ata_id_string(const u16 *id, unsigned char *s, 1111 unsigned int ofs, unsigned int len) 1112 { 1113 unsigned int c; 1114 1115 BUG_ON(len & 1); 1116 1117 while (len > 0) { 1118 c = id[ofs] >> 8; 1119 *s = c; 1120 s++; 1121 1122 c = id[ofs] & 0xff; 1123 *s = c; 1124 s++; 1125 1126 ofs++; 1127 len -= 2; 1128 } 1129 } 1130 1131 /** 1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1133 * @id: IDENTIFY DEVICE results we will examine 1134 * @s: string into which data is output 1135 * @ofs: offset into identify device page 1136 * @len: length of string to return. must be an odd number. 1137 * 1138 * This function is identical to ata_id_string except that it 1139 * trims trailing spaces and terminates the resulting string with 1140 * null. @len must be actual maximum length (even number) + 1. 1141 * 1142 * LOCKING: 1143 * caller. 1144 */ 1145 void ata_id_c_string(const u16 *id, unsigned char *s, 1146 unsigned int ofs, unsigned int len) 1147 { 1148 unsigned char *p; 1149 1150 ata_id_string(id, s, ofs, len - 1); 1151 1152 p = s + strnlen(s, len - 1); 1153 while (p > s && p[-1] == ' ') 1154 p--; 1155 *p = '\0'; 1156 } 1157 1158 static u64 ata_id_n_sectors(const u16 *id) 1159 { 1160 if (ata_id_has_lba(id)) { 1161 if (ata_id_has_lba48(id)) 1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1163 else 1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1165 } else { 1166 if (ata_id_current_chs_valid(id)) 1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1168 id[ATA_ID_CUR_SECTORS]; 1169 else 1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1171 id[ATA_ID_SECTORS]; 1172 } 1173 } 1174 1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1176 { 1177 u64 sectors = 0; 1178 1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1182 sectors |= (tf->lbah & 0xff) << 16; 1183 sectors |= (tf->lbam & 0xff) << 8; 1184 sectors |= (tf->lbal & 0xff); 1185 1186 return sectors; 1187 } 1188 1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1190 { 1191 u64 sectors = 0; 1192 1193 sectors |= (tf->device & 0x0f) << 24; 1194 sectors |= (tf->lbah & 0xff) << 16; 1195 sectors |= (tf->lbam & 0xff) << 8; 1196 sectors |= (tf->lbal & 0xff); 1197 1198 return sectors; 1199 } 1200 1201 /** 1202 * ata_read_native_max_address - Read native max address 1203 * @dev: target device 1204 * @max_sectors: out parameter for the result native max address 1205 * 1206 * Perform an LBA48 or LBA28 native size query upon the device in 1207 * question. 1208 * 1209 * RETURNS: 1210 * 0 on success, -EACCES if command is aborted by the drive. 1211 * -EIO on other errors. 1212 */ 1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1214 { 1215 unsigned int err_mask; 1216 struct ata_taskfile tf; 1217 int lba48 = ata_id_has_lba48(dev->id); 1218 1219 ata_tf_init(dev, &tf); 1220 1221 /* always clear all address registers */ 1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1223 1224 if (lba48) { 1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1226 tf.flags |= ATA_TFLAG_LBA48; 1227 } else 1228 tf.command = ATA_CMD_READ_NATIVE_MAX; 1229 1230 tf.protocol |= ATA_PROT_NODATA; 1231 tf.device |= ATA_LBA; 1232 1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1234 if (err_mask) { 1235 ata_dev_warn(dev, 1236 "failed to read native max address (err_mask=0x%x)\n", 1237 err_mask); 1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1239 return -EACCES; 1240 return -EIO; 1241 } 1242 1243 if (lba48) 1244 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1245 else 1246 *max_sectors = ata_tf_to_lba(&tf) + 1; 1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1248 (*max_sectors)--; 1249 return 0; 1250 } 1251 1252 /** 1253 * ata_set_max_sectors - Set max sectors 1254 * @dev: target device 1255 * @new_sectors: new max sectors value to set for the device 1256 * 1257 * Set max sectors of @dev to @new_sectors. 1258 * 1259 * RETURNS: 1260 * 0 on success, -EACCES if command is aborted or denied (due to 1261 * previous non-volatile SET_MAX) by the drive. -EIO on other 1262 * errors. 1263 */ 1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1265 { 1266 unsigned int err_mask; 1267 struct ata_taskfile tf; 1268 int lba48 = ata_id_has_lba48(dev->id); 1269 1270 new_sectors--; 1271 1272 ata_tf_init(dev, &tf); 1273 1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1275 1276 if (lba48) { 1277 tf.command = ATA_CMD_SET_MAX_EXT; 1278 tf.flags |= ATA_TFLAG_LBA48; 1279 1280 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1281 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1282 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1283 } else { 1284 tf.command = ATA_CMD_SET_MAX; 1285 1286 tf.device |= (new_sectors >> 24) & 0xf; 1287 } 1288 1289 tf.protocol |= ATA_PROT_NODATA; 1290 tf.device |= ATA_LBA; 1291 1292 tf.lbal = (new_sectors >> 0) & 0xff; 1293 tf.lbam = (new_sectors >> 8) & 0xff; 1294 tf.lbah = (new_sectors >> 16) & 0xff; 1295 1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1297 if (err_mask) { 1298 ata_dev_warn(dev, 1299 "failed to set max address (err_mask=0x%x)\n", 1300 err_mask); 1301 if (err_mask == AC_ERR_DEV && 1302 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1303 return -EACCES; 1304 return -EIO; 1305 } 1306 1307 return 0; 1308 } 1309 1310 /** 1311 * ata_hpa_resize - Resize a device with an HPA set 1312 * @dev: Device to resize 1313 * 1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1315 * it if required to the full size of the media. The caller must check 1316 * the drive has the HPA feature set enabled. 1317 * 1318 * RETURNS: 1319 * 0 on success, -errno on failure. 1320 */ 1321 static int ata_hpa_resize(struct ata_device *dev) 1322 { 1323 struct ata_eh_context *ehc = &dev->link->eh_context; 1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1326 u64 sectors = ata_id_n_sectors(dev->id); 1327 u64 native_sectors; 1328 int rc; 1329 1330 /* do we need to do it? */ 1331 if (dev->class != ATA_DEV_ATA || 1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1334 return 0; 1335 1336 /* read native max address */ 1337 rc = ata_read_native_max_address(dev, &native_sectors); 1338 if (rc) { 1339 /* If device aborted the command or HPA isn't going to 1340 * be unlocked, skip HPA resizing. 1341 */ 1342 if (rc == -EACCES || !unlock_hpa) { 1343 ata_dev_warn(dev, 1344 "HPA support seems broken, skipping HPA handling\n"); 1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1346 1347 /* we can continue if device aborted the command */ 1348 if (rc == -EACCES) 1349 rc = 0; 1350 } 1351 1352 return rc; 1353 } 1354 dev->n_native_sectors = native_sectors; 1355 1356 /* nothing to do? */ 1357 if (native_sectors <= sectors || !unlock_hpa) { 1358 if (!print_info || native_sectors == sectors) 1359 return 0; 1360 1361 if (native_sectors > sectors) 1362 ata_dev_info(dev, 1363 "HPA detected: current %llu, native %llu\n", 1364 (unsigned long long)sectors, 1365 (unsigned long long)native_sectors); 1366 else if (native_sectors < sectors) 1367 ata_dev_warn(dev, 1368 "native sectors (%llu) is smaller than sectors (%llu)\n", 1369 (unsigned long long)native_sectors, 1370 (unsigned long long)sectors); 1371 return 0; 1372 } 1373 1374 /* let's unlock HPA */ 1375 rc = ata_set_max_sectors(dev, native_sectors); 1376 if (rc == -EACCES) { 1377 /* if device aborted the command, skip HPA resizing */ 1378 ata_dev_warn(dev, 1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1380 (unsigned long long)sectors, 1381 (unsigned long long)native_sectors); 1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1383 return 0; 1384 } else if (rc) 1385 return rc; 1386 1387 /* re-read IDENTIFY data */ 1388 rc = ata_dev_reread_id(dev, 0); 1389 if (rc) { 1390 ata_dev_err(dev, 1391 "failed to re-read IDENTIFY data after HPA resizing\n"); 1392 return rc; 1393 } 1394 1395 if (print_info) { 1396 u64 new_sectors = ata_id_n_sectors(dev->id); 1397 ata_dev_info(dev, 1398 "HPA unlocked: %llu -> %llu, native %llu\n", 1399 (unsigned long long)sectors, 1400 (unsigned long long)new_sectors, 1401 (unsigned long long)native_sectors); 1402 } 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * ata_dump_id - IDENTIFY DEVICE info debugging output 1409 * @id: IDENTIFY DEVICE page to dump 1410 * 1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1412 * page. 1413 * 1414 * LOCKING: 1415 * caller. 1416 */ 1417 1418 static inline void ata_dump_id(const u16 *id) 1419 { 1420 DPRINTK("49==0x%04x " 1421 "53==0x%04x " 1422 "63==0x%04x " 1423 "64==0x%04x " 1424 "75==0x%04x \n", 1425 id[49], 1426 id[53], 1427 id[63], 1428 id[64], 1429 id[75]); 1430 DPRINTK("80==0x%04x " 1431 "81==0x%04x " 1432 "82==0x%04x " 1433 "83==0x%04x " 1434 "84==0x%04x \n", 1435 id[80], 1436 id[81], 1437 id[82], 1438 id[83], 1439 id[84]); 1440 DPRINTK("88==0x%04x " 1441 "93==0x%04x\n", 1442 id[88], 1443 id[93]); 1444 } 1445 1446 /** 1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1448 * @id: IDENTIFY data to compute xfer mask from 1449 * 1450 * Compute the xfermask for this device. This is not as trivial 1451 * as it seems if we must consider early devices correctly. 1452 * 1453 * FIXME: pre IDE drive timing (do we care ?). 1454 * 1455 * LOCKING: 1456 * None. 1457 * 1458 * RETURNS: 1459 * Computed xfermask 1460 */ 1461 unsigned long ata_id_xfermask(const u16 *id) 1462 { 1463 unsigned long pio_mask, mwdma_mask, udma_mask; 1464 1465 /* Usual case. Word 53 indicates word 64 is valid */ 1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1468 pio_mask <<= 3; 1469 pio_mask |= 0x7; 1470 } else { 1471 /* If word 64 isn't valid then Word 51 high byte holds 1472 * the PIO timing number for the maximum. Turn it into 1473 * a mask. 1474 */ 1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1476 if (mode < 5) /* Valid PIO range */ 1477 pio_mask = (2 << mode) - 1; 1478 else 1479 pio_mask = 1; 1480 1481 /* But wait.. there's more. Design your standards by 1482 * committee and you too can get a free iordy field to 1483 * process. However its the speeds not the modes that 1484 * are supported... Note drivers using the timing API 1485 * will get this right anyway 1486 */ 1487 } 1488 1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1490 1491 if (ata_id_is_cfa(id)) { 1492 /* 1493 * Process compact flash extended modes 1494 */ 1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1497 1498 if (pio) 1499 pio_mask |= (1 << 5); 1500 if (pio > 1) 1501 pio_mask |= (1 << 6); 1502 if (dma) 1503 mwdma_mask |= (1 << 3); 1504 if (dma > 1) 1505 mwdma_mask |= (1 << 4); 1506 } 1507 1508 udma_mask = 0; 1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1511 1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1513 } 1514 1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1516 { 1517 struct completion *waiting = qc->private_data; 1518 1519 complete(waiting); 1520 } 1521 1522 /** 1523 * ata_exec_internal_sg - execute libata internal command 1524 * @dev: Device to which the command is sent 1525 * @tf: Taskfile registers for the command and the result 1526 * @cdb: CDB for packet command 1527 * @dma_dir: Data tranfer direction of the command 1528 * @sgl: sg list for the data buffer of the command 1529 * @n_elem: Number of sg entries 1530 * @timeout: Timeout in msecs (0 for default) 1531 * 1532 * Executes libata internal command with timeout. @tf contains 1533 * command on entry and result on return. Timeout and error 1534 * conditions are reported via return value. No recovery action 1535 * is taken after a command times out. It's caller's duty to 1536 * clean up after timeout. 1537 * 1538 * LOCKING: 1539 * None. Should be called with kernel context, might sleep. 1540 * 1541 * RETURNS: 1542 * Zero on success, AC_ERR_* mask on failure 1543 */ 1544 unsigned ata_exec_internal_sg(struct ata_device *dev, 1545 struct ata_taskfile *tf, const u8 *cdb, 1546 int dma_dir, struct scatterlist *sgl, 1547 unsigned int n_elem, unsigned long timeout) 1548 { 1549 struct ata_link *link = dev->link; 1550 struct ata_port *ap = link->ap; 1551 u8 command = tf->command; 1552 int auto_timeout = 0; 1553 struct ata_queued_cmd *qc; 1554 unsigned int tag, preempted_tag; 1555 u32 preempted_sactive, preempted_qc_active; 1556 int preempted_nr_active_links; 1557 DECLARE_COMPLETION_ONSTACK(wait); 1558 unsigned long flags; 1559 unsigned int err_mask; 1560 int rc; 1561 1562 spin_lock_irqsave(ap->lock, flags); 1563 1564 /* no internal command while frozen */ 1565 if (ap->pflags & ATA_PFLAG_FROZEN) { 1566 spin_unlock_irqrestore(ap->lock, flags); 1567 return AC_ERR_SYSTEM; 1568 } 1569 1570 /* initialize internal qc */ 1571 1572 /* XXX: Tag 0 is used for drivers with legacy EH as some 1573 * drivers choke if any other tag is given. This breaks 1574 * ata_tag_internal() test for those drivers. Don't use new 1575 * EH stuff without converting to it. 1576 */ 1577 if (ap->ops->error_handler) 1578 tag = ATA_TAG_INTERNAL; 1579 else 1580 tag = 0; 1581 1582 if (test_and_set_bit(tag, &ap->qc_allocated)) 1583 BUG(); 1584 qc = __ata_qc_from_tag(ap, tag); 1585 1586 qc->tag = tag; 1587 qc->scsicmd = NULL; 1588 qc->ap = ap; 1589 qc->dev = dev; 1590 ata_qc_reinit(qc); 1591 1592 preempted_tag = link->active_tag; 1593 preempted_sactive = link->sactive; 1594 preempted_qc_active = ap->qc_active; 1595 preempted_nr_active_links = ap->nr_active_links; 1596 link->active_tag = ATA_TAG_POISON; 1597 link->sactive = 0; 1598 ap->qc_active = 0; 1599 ap->nr_active_links = 0; 1600 1601 /* prepare & issue qc */ 1602 qc->tf = *tf; 1603 if (cdb) 1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1605 qc->flags |= ATA_QCFLAG_RESULT_TF; 1606 qc->dma_dir = dma_dir; 1607 if (dma_dir != DMA_NONE) { 1608 unsigned int i, buflen = 0; 1609 struct scatterlist *sg; 1610 1611 for_each_sg(sgl, sg, n_elem, i) 1612 buflen += sg->length; 1613 1614 ata_sg_init(qc, sgl, n_elem); 1615 qc->nbytes = buflen; 1616 } 1617 1618 qc->private_data = &wait; 1619 qc->complete_fn = ata_qc_complete_internal; 1620 1621 ata_qc_issue(qc); 1622 1623 spin_unlock_irqrestore(ap->lock, flags); 1624 1625 if (!timeout) { 1626 if (ata_probe_timeout) 1627 timeout = ata_probe_timeout * 1000; 1628 else { 1629 timeout = ata_internal_cmd_timeout(dev, command); 1630 auto_timeout = 1; 1631 } 1632 } 1633 1634 if (ap->ops->error_handler) 1635 ata_eh_release(ap); 1636 1637 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1638 1639 if (ap->ops->error_handler) 1640 ata_eh_acquire(ap); 1641 1642 ata_sff_flush_pio_task(ap); 1643 1644 if (!rc) { 1645 spin_lock_irqsave(ap->lock, flags); 1646 1647 /* We're racing with irq here. If we lose, the 1648 * following test prevents us from completing the qc 1649 * twice. If we win, the port is frozen and will be 1650 * cleaned up by ->post_internal_cmd(). 1651 */ 1652 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1653 qc->err_mask |= AC_ERR_TIMEOUT; 1654 1655 if (ap->ops->error_handler) 1656 ata_port_freeze(ap); 1657 else 1658 ata_qc_complete(qc); 1659 1660 if (ata_msg_warn(ap)) 1661 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1662 command); 1663 } 1664 1665 spin_unlock_irqrestore(ap->lock, flags); 1666 } 1667 1668 /* do post_internal_cmd */ 1669 if (ap->ops->post_internal_cmd) 1670 ap->ops->post_internal_cmd(qc); 1671 1672 /* perform minimal error analysis */ 1673 if (qc->flags & ATA_QCFLAG_FAILED) { 1674 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1675 qc->err_mask |= AC_ERR_DEV; 1676 1677 if (!qc->err_mask) 1678 qc->err_mask |= AC_ERR_OTHER; 1679 1680 if (qc->err_mask & ~AC_ERR_OTHER) 1681 qc->err_mask &= ~AC_ERR_OTHER; 1682 } 1683 1684 /* finish up */ 1685 spin_lock_irqsave(ap->lock, flags); 1686 1687 *tf = qc->result_tf; 1688 err_mask = qc->err_mask; 1689 1690 ata_qc_free(qc); 1691 link->active_tag = preempted_tag; 1692 link->sactive = preempted_sactive; 1693 ap->qc_active = preempted_qc_active; 1694 ap->nr_active_links = preempted_nr_active_links; 1695 1696 spin_unlock_irqrestore(ap->lock, flags); 1697 1698 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1699 ata_internal_cmd_timed_out(dev, command); 1700 1701 return err_mask; 1702 } 1703 1704 /** 1705 * ata_exec_internal - execute libata internal command 1706 * @dev: Device to which the command is sent 1707 * @tf: Taskfile registers for the command and the result 1708 * @cdb: CDB for packet command 1709 * @dma_dir: Data tranfer direction of the command 1710 * @buf: Data buffer of the command 1711 * @buflen: Length of data buffer 1712 * @timeout: Timeout in msecs (0 for default) 1713 * 1714 * Wrapper around ata_exec_internal_sg() which takes simple 1715 * buffer instead of sg list. 1716 * 1717 * LOCKING: 1718 * None. Should be called with kernel context, might sleep. 1719 * 1720 * RETURNS: 1721 * Zero on success, AC_ERR_* mask on failure 1722 */ 1723 unsigned ata_exec_internal(struct ata_device *dev, 1724 struct ata_taskfile *tf, const u8 *cdb, 1725 int dma_dir, void *buf, unsigned int buflen, 1726 unsigned long timeout) 1727 { 1728 struct scatterlist *psg = NULL, sg; 1729 unsigned int n_elem = 0; 1730 1731 if (dma_dir != DMA_NONE) { 1732 WARN_ON(!buf); 1733 sg_init_one(&sg, buf, buflen); 1734 psg = &sg; 1735 n_elem++; 1736 } 1737 1738 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1739 timeout); 1740 } 1741 1742 /** 1743 * ata_do_simple_cmd - execute simple internal command 1744 * @dev: Device to which the command is sent 1745 * @cmd: Opcode to execute 1746 * 1747 * Execute a 'simple' command, that only consists of the opcode 1748 * 'cmd' itself, without filling any other registers 1749 * 1750 * LOCKING: 1751 * Kernel thread context (may sleep). 1752 * 1753 * RETURNS: 1754 * Zero on success, AC_ERR_* mask on failure 1755 */ 1756 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1757 { 1758 struct ata_taskfile tf; 1759 1760 ata_tf_init(dev, &tf); 1761 1762 tf.command = cmd; 1763 tf.flags |= ATA_TFLAG_DEVICE; 1764 tf.protocol = ATA_PROT_NODATA; 1765 1766 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1767 } 1768 1769 /** 1770 * ata_pio_need_iordy - check if iordy needed 1771 * @adev: ATA device 1772 * 1773 * Check if the current speed of the device requires IORDY. Used 1774 * by various controllers for chip configuration. 1775 */ 1776 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1777 { 1778 /* Don't set IORDY if we're preparing for reset. IORDY may 1779 * lead to controller lock up on certain controllers if the 1780 * port is not occupied. See bko#11703 for details. 1781 */ 1782 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1783 return 0; 1784 /* Controller doesn't support IORDY. Probably a pointless 1785 * check as the caller should know this. 1786 */ 1787 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1788 return 0; 1789 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1790 if (ata_id_is_cfa(adev->id) 1791 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1792 return 0; 1793 /* PIO3 and higher it is mandatory */ 1794 if (adev->pio_mode > XFER_PIO_2) 1795 return 1; 1796 /* We turn it on when possible */ 1797 if (ata_id_has_iordy(adev->id)) 1798 return 1; 1799 return 0; 1800 } 1801 1802 /** 1803 * ata_pio_mask_no_iordy - Return the non IORDY mask 1804 * @adev: ATA device 1805 * 1806 * Compute the highest mode possible if we are not using iordy. Return 1807 * -1 if no iordy mode is available. 1808 */ 1809 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1810 { 1811 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1812 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1813 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1814 /* Is the speed faster than the drive allows non IORDY ? */ 1815 if (pio) { 1816 /* This is cycle times not frequency - watch the logic! */ 1817 if (pio > 240) /* PIO2 is 240nS per cycle */ 1818 return 3 << ATA_SHIFT_PIO; 1819 return 7 << ATA_SHIFT_PIO; 1820 } 1821 } 1822 return 3 << ATA_SHIFT_PIO; 1823 } 1824 1825 /** 1826 * ata_do_dev_read_id - default ID read method 1827 * @dev: device 1828 * @tf: proposed taskfile 1829 * @id: data buffer 1830 * 1831 * Issue the identify taskfile and hand back the buffer containing 1832 * identify data. For some RAID controllers and for pre ATA devices 1833 * this function is wrapped or replaced by the driver 1834 */ 1835 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1836 struct ata_taskfile *tf, u16 *id) 1837 { 1838 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1839 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1840 } 1841 1842 /** 1843 * ata_dev_read_id - Read ID data from the specified device 1844 * @dev: target device 1845 * @p_class: pointer to class of the target device (may be changed) 1846 * @flags: ATA_READID_* flags 1847 * @id: buffer to read IDENTIFY data into 1848 * 1849 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1850 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1851 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1852 * for pre-ATA4 drives. 1853 * 1854 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1855 * now we abort if we hit that case. 1856 * 1857 * LOCKING: 1858 * Kernel thread context (may sleep) 1859 * 1860 * RETURNS: 1861 * 0 on success, -errno otherwise. 1862 */ 1863 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1864 unsigned int flags, u16 *id) 1865 { 1866 struct ata_port *ap = dev->link->ap; 1867 unsigned int class = *p_class; 1868 struct ata_taskfile tf; 1869 unsigned int err_mask = 0; 1870 const char *reason; 1871 bool is_semb = class == ATA_DEV_SEMB; 1872 int may_fallback = 1, tried_spinup = 0; 1873 int rc; 1874 1875 if (ata_msg_ctl(ap)) 1876 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1877 1878 retry: 1879 ata_tf_init(dev, &tf); 1880 1881 switch (class) { 1882 case ATA_DEV_SEMB: 1883 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1884 case ATA_DEV_ATA: 1885 tf.command = ATA_CMD_ID_ATA; 1886 break; 1887 case ATA_DEV_ATAPI: 1888 tf.command = ATA_CMD_ID_ATAPI; 1889 break; 1890 default: 1891 rc = -ENODEV; 1892 reason = "unsupported class"; 1893 goto err_out; 1894 } 1895 1896 tf.protocol = ATA_PROT_PIO; 1897 1898 /* Some devices choke if TF registers contain garbage. Make 1899 * sure those are properly initialized. 1900 */ 1901 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1902 1903 /* Device presence detection is unreliable on some 1904 * controllers. Always poll IDENTIFY if available. 1905 */ 1906 tf.flags |= ATA_TFLAG_POLLING; 1907 1908 if (ap->ops->read_id) 1909 err_mask = ap->ops->read_id(dev, &tf, id); 1910 else 1911 err_mask = ata_do_dev_read_id(dev, &tf, id); 1912 1913 if (err_mask) { 1914 if (err_mask & AC_ERR_NODEV_HINT) { 1915 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1916 return -ENOENT; 1917 } 1918 1919 if (is_semb) { 1920 ata_dev_info(dev, 1921 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1922 /* SEMB is not supported yet */ 1923 *p_class = ATA_DEV_SEMB_UNSUP; 1924 return 0; 1925 } 1926 1927 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1928 /* Device or controller might have reported 1929 * the wrong device class. Give a shot at the 1930 * other IDENTIFY if the current one is 1931 * aborted by the device. 1932 */ 1933 if (may_fallback) { 1934 may_fallback = 0; 1935 1936 if (class == ATA_DEV_ATA) 1937 class = ATA_DEV_ATAPI; 1938 else 1939 class = ATA_DEV_ATA; 1940 goto retry; 1941 } 1942 1943 /* Control reaches here iff the device aborted 1944 * both flavors of IDENTIFYs which happens 1945 * sometimes with phantom devices. 1946 */ 1947 ata_dev_dbg(dev, 1948 "both IDENTIFYs aborted, assuming NODEV\n"); 1949 return -ENOENT; 1950 } 1951 1952 rc = -EIO; 1953 reason = "I/O error"; 1954 goto err_out; 1955 } 1956 1957 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1958 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1959 "class=%d may_fallback=%d tried_spinup=%d\n", 1960 class, may_fallback, tried_spinup); 1961 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1962 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1963 } 1964 1965 /* Falling back doesn't make sense if ID data was read 1966 * successfully at least once. 1967 */ 1968 may_fallback = 0; 1969 1970 swap_buf_le16(id, ATA_ID_WORDS); 1971 1972 /* sanity check */ 1973 rc = -EINVAL; 1974 reason = "device reports invalid type"; 1975 1976 if (class == ATA_DEV_ATA) { 1977 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1978 goto err_out; 1979 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1980 ata_id_is_ata(id)) { 1981 ata_dev_dbg(dev, 1982 "host indicates ignore ATA devices, ignored\n"); 1983 return -ENOENT; 1984 } 1985 } else { 1986 if (ata_id_is_ata(id)) 1987 goto err_out; 1988 } 1989 1990 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1991 tried_spinup = 1; 1992 /* 1993 * Drive powered-up in standby mode, and requires a specific 1994 * SET_FEATURES spin-up subcommand before it will accept 1995 * anything other than the original IDENTIFY command. 1996 */ 1997 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1998 if (err_mask && id[2] != 0x738c) { 1999 rc = -EIO; 2000 reason = "SPINUP failed"; 2001 goto err_out; 2002 } 2003 /* 2004 * If the drive initially returned incomplete IDENTIFY info, 2005 * we now must reissue the IDENTIFY command. 2006 */ 2007 if (id[2] == 0x37c8) 2008 goto retry; 2009 } 2010 2011 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2012 /* 2013 * The exact sequence expected by certain pre-ATA4 drives is: 2014 * SRST RESET 2015 * IDENTIFY (optional in early ATA) 2016 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2017 * anything else.. 2018 * Some drives were very specific about that exact sequence. 2019 * 2020 * Note that ATA4 says lba is mandatory so the second check 2021 * should never trigger. 2022 */ 2023 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2024 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2025 if (err_mask) { 2026 rc = -EIO; 2027 reason = "INIT_DEV_PARAMS failed"; 2028 goto err_out; 2029 } 2030 2031 /* current CHS translation info (id[53-58]) might be 2032 * changed. reread the identify device info. 2033 */ 2034 flags &= ~ATA_READID_POSTRESET; 2035 goto retry; 2036 } 2037 } 2038 2039 *p_class = class; 2040 2041 return 0; 2042 2043 err_out: 2044 if (ata_msg_warn(ap)) 2045 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2046 reason, err_mask); 2047 return rc; 2048 } 2049 2050 static int ata_do_link_spd_horkage(struct ata_device *dev) 2051 { 2052 struct ata_link *plink = ata_dev_phys_link(dev); 2053 u32 target, target_limit; 2054 2055 if (!sata_scr_valid(plink)) 2056 return 0; 2057 2058 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2059 target = 1; 2060 else 2061 return 0; 2062 2063 target_limit = (1 << target) - 1; 2064 2065 /* if already on stricter limit, no need to push further */ 2066 if (plink->sata_spd_limit <= target_limit) 2067 return 0; 2068 2069 plink->sata_spd_limit = target_limit; 2070 2071 /* Request another EH round by returning -EAGAIN if link is 2072 * going faster than the target speed. Forward progress is 2073 * guaranteed by setting sata_spd_limit to target_limit above. 2074 */ 2075 if (plink->sata_spd > target) { 2076 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2077 sata_spd_string(target)); 2078 return -EAGAIN; 2079 } 2080 return 0; 2081 } 2082 2083 static inline u8 ata_dev_knobble(struct ata_device *dev) 2084 { 2085 struct ata_port *ap = dev->link->ap; 2086 2087 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2088 return 0; 2089 2090 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2091 } 2092 2093 static int ata_dev_config_ncq(struct ata_device *dev, 2094 char *desc, size_t desc_sz) 2095 { 2096 struct ata_port *ap = dev->link->ap; 2097 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2098 unsigned int err_mask; 2099 char *aa_desc = ""; 2100 2101 if (!ata_id_has_ncq(dev->id)) { 2102 desc[0] = '\0'; 2103 return 0; 2104 } 2105 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2106 snprintf(desc, desc_sz, "NCQ (not used)"); 2107 return 0; 2108 } 2109 if (ap->flags & ATA_FLAG_NCQ) { 2110 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2111 dev->flags |= ATA_DFLAG_NCQ; 2112 } 2113 2114 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2115 (ap->flags & ATA_FLAG_FPDMA_AA) && 2116 ata_id_has_fpdma_aa(dev->id)) { 2117 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2118 SATA_FPDMA_AA); 2119 if (err_mask) { 2120 ata_dev_err(dev, 2121 "failed to enable AA (error_mask=0x%x)\n", 2122 err_mask); 2123 if (err_mask != AC_ERR_DEV) { 2124 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2125 return -EIO; 2126 } 2127 } else 2128 aa_desc = ", AA"; 2129 } 2130 2131 if (hdepth >= ddepth) 2132 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2133 else 2134 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2135 ddepth, aa_desc); 2136 return 0; 2137 } 2138 2139 /** 2140 * ata_dev_configure - Configure the specified ATA/ATAPI device 2141 * @dev: Target device to configure 2142 * 2143 * Configure @dev according to @dev->id. Generic and low-level 2144 * driver specific fixups are also applied. 2145 * 2146 * LOCKING: 2147 * Kernel thread context (may sleep) 2148 * 2149 * RETURNS: 2150 * 0 on success, -errno otherwise 2151 */ 2152 int ata_dev_configure(struct ata_device *dev) 2153 { 2154 struct ata_port *ap = dev->link->ap; 2155 struct ata_eh_context *ehc = &dev->link->eh_context; 2156 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2157 const u16 *id = dev->id; 2158 unsigned long xfer_mask; 2159 unsigned int err_mask; 2160 char revbuf[7]; /* XYZ-99\0 */ 2161 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2162 char modelbuf[ATA_ID_PROD_LEN+1]; 2163 int rc; 2164 2165 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2166 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2167 return 0; 2168 } 2169 2170 if (ata_msg_probe(ap)) 2171 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2172 2173 /* set horkage */ 2174 dev->horkage |= ata_dev_blacklisted(dev); 2175 ata_force_horkage(dev); 2176 2177 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2178 ata_dev_info(dev, "unsupported device, disabling\n"); 2179 ata_dev_disable(dev); 2180 return 0; 2181 } 2182 2183 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2184 dev->class == ATA_DEV_ATAPI) { 2185 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2186 atapi_enabled ? "not supported with this driver" 2187 : "disabled"); 2188 ata_dev_disable(dev); 2189 return 0; 2190 } 2191 2192 rc = ata_do_link_spd_horkage(dev); 2193 if (rc) 2194 return rc; 2195 2196 /* let ACPI work its magic */ 2197 rc = ata_acpi_on_devcfg(dev); 2198 if (rc) 2199 return rc; 2200 2201 /* massage HPA, do it early as it might change IDENTIFY data */ 2202 rc = ata_hpa_resize(dev); 2203 if (rc) 2204 return rc; 2205 2206 /* print device capabilities */ 2207 if (ata_msg_probe(ap)) 2208 ata_dev_dbg(dev, 2209 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2210 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2211 __func__, 2212 id[49], id[82], id[83], id[84], 2213 id[85], id[86], id[87], id[88]); 2214 2215 /* initialize to-be-configured parameters */ 2216 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2217 dev->max_sectors = 0; 2218 dev->cdb_len = 0; 2219 dev->n_sectors = 0; 2220 dev->cylinders = 0; 2221 dev->heads = 0; 2222 dev->sectors = 0; 2223 dev->multi_count = 0; 2224 2225 /* 2226 * common ATA, ATAPI feature tests 2227 */ 2228 2229 /* find max transfer mode; for printk only */ 2230 xfer_mask = ata_id_xfermask(id); 2231 2232 if (ata_msg_probe(ap)) 2233 ata_dump_id(id); 2234 2235 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2236 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2237 sizeof(fwrevbuf)); 2238 2239 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2240 sizeof(modelbuf)); 2241 2242 /* ATA-specific feature tests */ 2243 if (dev->class == ATA_DEV_ATA) { 2244 if (ata_id_is_cfa(id)) { 2245 /* CPRM may make this media unusable */ 2246 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2247 ata_dev_warn(dev, 2248 "supports DRM functions and may not be fully accessible\n"); 2249 snprintf(revbuf, 7, "CFA"); 2250 } else { 2251 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2252 /* Warn the user if the device has TPM extensions */ 2253 if (ata_id_has_tpm(id)) 2254 ata_dev_warn(dev, 2255 "supports DRM functions and may not be fully accessible\n"); 2256 } 2257 2258 dev->n_sectors = ata_id_n_sectors(id); 2259 2260 /* get current R/W Multiple count setting */ 2261 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2262 unsigned int max = dev->id[47] & 0xff; 2263 unsigned int cnt = dev->id[59] & 0xff; 2264 /* only recognize/allow powers of two here */ 2265 if (is_power_of_2(max) && is_power_of_2(cnt)) 2266 if (cnt <= max) 2267 dev->multi_count = cnt; 2268 } 2269 2270 if (ata_id_has_lba(id)) { 2271 const char *lba_desc; 2272 char ncq_desc[24]; 2273 2274 lba_desc = "LBA"; 2275 dev->flags |= ATA_DFLAG_LBA; 2276 if (ata_id_has_lba48(id)) { 2277 dev->flags |= ATA_DFLAG_LBA48; 2278 lba_desc = "LBA48"; 2279 2280 if (dev->n_sectors >= (1UL << 28) && 2281 ata_id_has_flush_ext(id)) 2282 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2283 } 2284 2285 /* config NCQ */ 2286 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2287 if (rc) 2288 return rc; 2289 2290 /* print device info to dmesg */ 2291 if (ata_msg_drv(ap) && print_info) { 2292 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2293 revbuf, modelbuf, fwrevbuf, 2294 ata_mode_string(xfer_mask)); 2295 ata_dev_info(dev, 2296 "%llu sectors, multi %u: %s %s\n", 2297 (unsigned long long)dev->n_sectors, 2298 dev->multi_count, lba_desc, ncq_desc); 2299 } 2300 } else { 2301 /* CHS */ 2302 2303 /* Default translation */ 2304 dev->cylinders = id[1]; 2305 dev->heads = id[3]; 2306 dev->sectors = id[6]; 2307 2308 if (ata_id_current_chs_valid(id)) { 2309 /* Current CHS translation is valid. */ 2310 dev->cylinders = id[54]; 2311 dev->heads = id[55]; 2312 dev->sectors = id[56]; 2313 } 2314 2315 /* print device info to dmesg */ 2316 if (ata_msg_drv(ap) && print_info) { 2317 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2318 revbuf, modelbuf, fwrevbuf, 2319 ata_mode_string(xfer_mask)); 2320 ata_dev_info(dev, 2321 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2322 (unsigned long long)dev->n_sectors, 2323 dev->multi_count, dev->cylinders, 2324 dev->heads, dev->sectors); 2325 } 2326 } 2327 2328 /* Check and mark DevSlp capability. Get DevSlp timing variables 2329 * from SATA Settings page of Identify Device Data Log. 2330 */ 2331 if (ata_id_has_devslp(dev->id)) { 2332 u8 *sata_setting = ap->sector_buf; 2333 int i, j; 2334 2335 dev->flags |= ATA_DFLAG_DEVSLP; 2336 err_mask = ata_read_log_page(dev, 2337 ATA_LOG_SATA_ID_DEV_DATA, 2338 ATA_LOG_SATA_SETTINGS, 2339 sata_setting, 2340 1); 2341 if (err_mask) 2342 ata_dev_dbg(dev, 2343 "failed to get Identify Device Data, Emask 0x%x\n", 2344 err_mask); 2345 else 2346 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2347 j = ATA_LOG_DEVSLP_OFFSET + i; 2348 dev->devslp_timing[i] = sata_setting[j]; 2349 } 2350 } 2351 2352 dev->cdb_len = 16; 2353 } 2354 2355 /* ATAPI-specific feature tests */ 2356 else if (dev->class == ATA_DEV_ATAPI) { 2357 const char *cdb_intr_string = ""; 2358 const char *atapi_an_string = ""; 2359 const char *dma_dir_string = ""; 2360 u32 sntf; 2361 2362 rc = atapi_cdb_len(id); 2363 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2364 if (ata_msg_warn(ap)) 2365 ata_dev_warn(dev, "unsupported CDB len\n"); 2366 rc = -EINVAL; 2367 goto err_out_nosup; 2368 } 2369 dev->cdb_len = (unsigned int) rc; 2370 2371 /* Enable ATAPI AN if both the host and device have 2372 * the support. If PMP is attached, SNTF is required 2373 * to enable ATAPI AN to discern between PHY status 2374 * changed notifications and ATAPI ANs. 2375 */ 2376 if (atapi_an && 2377 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2378 (!sata_pmp_attached(ap) || 2379 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2380 /* issue SET feature command to turn this on */ 2381 err_mask = ata_dev_set_feature(dev, 2382 SETFEATURES_SATA_ENABLE, SATA_AN); 2383 if (err_mask) 2384 ata_dev_err(dev, 2385 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2386 err_mask); 2387 else { 2388 dev->flags |= ATA_DFLAG_AN; 2389 atapi_an_string = ", ATAPI AN"; 2390 } 2391 } 2392 2393 if (ata_id_cdb_intr(dev->id)) { 2394 dev->flags |= ATA_DFLAG_CDB_INTR; 2395 cdb_intr_string = ", CDB intr"; 2396 } 2397 2398 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2399 dev->flags |= ATA_DFLAG_DMADIR; 2400 dma_dir_string = ", DMADIR"; 2401 } 2402 2403 if (ata_id_has_da(dev->id)) { 2404 dev->flags |= ATA_DFLAG_DA; 2405 zpodd_init(dev); 2406 } 2407 2408 /* print device info to dmesg */ 2409 if (ata_msg_drv(ap) && print_info) 2410 ata_dev_info(dev, 2411 "ATAPI: %s, %s, max %s%s%s%s\n", 2412 modelbuf, fwrevbuf, 2413 ata_mode_string(xfer_mask), 2414 cdb_intr_string, atapi_an_string, 2415 dma_dir_string); 2416 } 2417 2418 /* determine max_sectors */ 2419 dev->max_sectors = ATA_MAX_SECTORS; 2420 if (dev->flags & ATA_DFLAG_LBA48) 2421 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2422 2423 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2424 200 sectors */ 2425 if (ata_dev_knobble(dev)) { 2426 if (ata_msg_drv(ap) && print_info) 2427 ata_dev_info(dev, "applying bridge limits\n"); 2428 dev->udma_mask &= ATA_UDMA5; 2429 dev->max_sectors = ATA_MAX_SECTORS; 2430 } 2431 2432 if ((dev->class == ATA_DEV_ATAPI) && 2433 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2434 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2435 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2436 } 2437 2438 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2439 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2440 dev->max_sectors); 2441 2442 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2443 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2444 2445 if (ap->ops->dev_config) 2446 ap->ops->dev_config(dev); 2447 2448 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2449 /* Let the user know. We don't want to disallow opens for 2450 rescue purposes, or in case the vendor is just a blithering 2451 idiot. Do this after the dev_config call as some controllers 2452 with buggy firmware may want to avoid reporting false device 2453 bugs */ 2454 2455 if (print_info) { 2456 ata_dev_warn(dev, 2457 "Drive reports diagnostics failure. This may indicate a drive\n"); 2458 ata_dev_warn(dev, 2459 "fault or invalid emulation. Contact drive vendor for information.\n"); 2460 } 2461 } 2462 2463 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2464 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2465 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2466 } 2467 2468 return 0; 2469 2470 err_out_nosup: 2471 if (ata_msg_probe(ap)) 2472 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2473 return rc; 2474 } 2475 2476 /** 2477 * ata_cable_40wire - return 40 wire cable type 2478 * @ap: port 2479 * 2480 * Helper method for drivers which want to hardwire 40 wire cable 2481 * detection. 2482 */ 2483 2484 int ata_cable_40wire(struct ata_port *ap) 2485 { 2486 return ATA_CBL_PATA40; 2487 } 2488 2489 /** 2490 * ata_cable_80wire - return 80 wire cable type 2491 * @ap: port 2492 * 2493 * Helper method for drivers which want to hardwire 80 wire cable 2494 * detection. 2495 */ 2496 2497 int ata_cable_80wire(struct ata_port *ap) 2498 { 2499 return ATA_CBL_PATA80; 2500 } 2501 2502 /** 2503 * ata_cable_unknown - return unknown PATA cable. 2504 * @ap: port 2505 * 2506 * Helper method for drivers which have no PATA cable detection. 2507 */ 2508 2509 int ata_cable_unknown(struct ata_port *ap) 2510 { 2511 return ATA_CBL_PATA_UNK; 2512 } 2513 2514 /** 2515 * ata_cable_ignore - return ignored PATA cable. 2516 * @ap: port 2517 * 2518 * Helper method for drivers which don't use cable type to limit 2519 * transfer mode. 2520 */ 2521 int ata_cable_ignore(struct ata_port *ap) 2522 { 2523 return ATA_CBL_PATA_IGN; 2524 } 2525 2526 /** 2527 * ata_cable_sata - return SATA cable type 2528 * @ap: port 2529 * 2530 * Helper method for drivers which have SATA cables 2531 */ 2532 2533 int ata_cable_sata(struct ata_port *ap) 2534 { 2535 return ATA_CBL_SATA; 2536 } 2537 2538 /** 2539 * ata_bus_probe - Reset and probe ATA bus 2540 * @ap: Bus to probe 2541 * 2542 * Master ATA bus probing function. Initiates a hardware-dependent 2543 * bus reset, then attempts to identify any devices found on 2544 * the bus. 2545 * 2546 * LOCKING: 2547 * PCI/etc. bus probe sem. 2548 * 2549 * RETURNS: 2550 * Zero on success, negative errno otherwise. 2551 */ 2552 2553 int ata_bus_probe(struct ata_port *ap) 2554 { 2555 unsigned int classes[ATA_MAX_DEVICES]; 2556 int tries[ATA_MAX_DEVICES]; 2557 int rc; 2558 struct ata_device *dev; 2559 2560 ata_for_each_dev(dev, &ap->link, ALL) 2561 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2562 2563 retry: 2564 ata_for_each_dev(dev, &ap->link, ALL) { 2565 /* If we issue an SRST then an ATA drive (not ATAPI) 2566 * may change configuration and be in PIO0 timing. If 2567 * we do a hard reset (or are coming from power on) 2568 * this is true for ATA or ATAPI. Until we've set a 2569 * suitable controller mode we should not touch the 2570 * bus as we may be talking too fast. 2571 */ 2572 dev->pio_mode = XFER_PIO_0; 2573 dev->dma_mode = 0xff; 2574 2575 /* If the controller has a pio mode setup function 2576 * then use it to set the chipset to rights. Don't 2577 * touch the DMA setup as that will be dealt with when 2578 * configuring devices. 2579 */ 2580 if (ap->ops->set_piomode) 2581 ap->ops->set_piomode(ap, dev); 2582 } 2583 2584 /* reset and determine device classes */ 2585 ap->ops->phy_reset(ap); 2586 2587 ata_for_each_dev(dev, &ap->link, ALL) { 2588 if (dev->class != ATA_DEV_UNKNOWN) 2589 classes[dev->devno] = dev->class; 2590 else 2591 classes[dev->devno] = ATA_DEV_NONE; 2592 2593 dev->class = ATA_DEV_UNKNOWN; 2594 } 2595 2596 /* read IDENTIFY page and configure devices. We have to do the identify 2597 specific sequence bass-ackwards so that PDIAG- is released by 2598 the slave device */ 2599 2600 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2601 if (tries[dev->devno]) 2602 dev->class = classes[dev->devno]; 2603 2604 if (!ata_dev_enabled(dev)) 2605 continue; 2606 2607 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2608 dev->id); 2609 if (rc) 2610 goto fail; 2611 } 2612 2613 /* Now ask for the cable type as PDIAG- should have been released */ 2614 if (ap->ops->cable_detect) 2615 ap->cbl = ap->ops->cable_detect(ap); 2616 2617 /* We may have SATA bridge glue hiding here irrespective of 2618 * the reported cable types and sensed types. When SATA 2619 * drives indicate we have a bridge, we don't know which end 2620 * of the link the bridge is which is a problem. 2621 */ 2622 ata_for_each_dev(dev, &ap->link, ENABLED) 2623 if (ata_id_is_sata(dev->id)) 2624 ap->cbl = ATA_CBL_SATA; 2625 2626 /* After the identify sequence we can now set up the devices. We do 2627 this in the normal order so that the user doesn't get confused */ 2628 2629 ata_for_each_dev(dev, &ap->link, ENABLED) { 2630 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2631 rc = ata_dev_configure(dev); 2632 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2633 if (rc) 2634 goto fail; 2635 } 2636 2637 /* configure transfer mode */ 2638 rc = ata_set_mode(&ap->link, &dev); 2639 if (rc) 2640 goto fail; 2641 2642 ata_for_each_dev(dev, &ap->link, ENABLED) 2643 return 0; 2644 2645 return -ENODEV; 2646 2647 fail: 2648 tries[dev->devno]--; 2649 2650 switch (rc) { 2651 case -EINVAL: 2652 /* eeek, something went very wrong, give up */ 2653 tries[dev->devno] = 0; 2654 break; 2655 2656 case -ENODEV: 2657 /* give it just one more chance */ 2658 tries[dev->devno] = min(tries[dev->devno], 1); 2659 case -EIO: 2660 if (tries[dev->devno] == 1) { 2661 /* This is the last chance, better to slow 2662 * down than lose it. 2663 */ 2664 sata_down_spd_limit(&ap->link, 0); 2665 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2666 } 2667 } 2668 2669 if (!tries[dev->devno]) 2670 ata_dev_disable(dev); 2671 2672 goto retry; 2673 } 2674 2675 /** 2676 * sata_print_link_status - Print SATA link status 2677 * @link: SATA link to printk link status about 2678 * 2679 * This function prints link speed and status of a SATA link. 2680 * 2681 * LOCKING: 2682 * None. 2683 */ 2684 static void sata_print_link_status(struct ata_link *link) 2685 { 2686 u32 sstatus, scontrol, tmp; 2687 2688 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2689 return; 2690 sata_scr_read(link, SCR_CONTROL, &scontrol); 2691 2692 if (ata_phys_link_online(link)) { 2693 tmp = (sstatus >> 4) & 0xf; 2694 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2695 sata_spd_string(tmp), sstatus, scontrol); 2696 } else { 2697 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2698 sstatus, scontrol); 2699 } 2700 } 2701 2702 /** 2703 * ata_dev_pair - return other device on cable 2704 * @adev: device 2705 * 2706 * Obtain the other device on the same cable, or if none is 2707 * present NULL is returned 2708 */ 2709 2710 struct ata_device *ata_dev_pair(struct ata_device *adev) 2711 { 2712 struct ata_link *link = adev->link; 2713 struct ata_device *pair = &link->device[1 - adev->devno]; 2714 if (!ata_dev_enabled(pair)) 2715 return NULL; 2716 return pair; 2717 } 2718 2719 /** 2720 * sata_down_spd_limit - adjust SATA spd limit downward 2721 * @link: Link to adjust SATA spd limit for 2722 * @spd_limit: Additional limit 2723 * 2724 * Adjust SATA spd limit of @link downward. Note that this 2725 * function only adjusts the limit. The change must be applied 2726 * using sata_set_spd(). 2727 * 2728 * If @spd_limit is non-zero, the speed is limited to equal to or 2729 * lower than @spd_limit if such speed is supported. If 2730 * @spd_limit is slower than any supported speed, only the lowest 2731 * supported speed is allowed. 2732 * 2733 * LOCKING: 2734 * Inherited from caller. 2735 * 2736 * RETURNS: 2737 * 0 on success, negative errno on failure 2738 */ 2739 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2740 { 2741 u32 sstatus, spd, mask; 2742 int rc, bit; 2743 2744 if (!sata_scr_valid(link)) 2745 return -EOPNOTSUPP; 2746 2747 /* If SCR can be read, use it to determine the current SPD. 2748 * If not, use cached value in link->sata_spd. 2749 */ 2750 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2751 if (rc == 0 && ata_sstatus_online(sstatus)) 2752 spd = (sstatus >> 4) & 0xf; 2753 else 2754 spd = link->sata_spd; 2755 2756 mask = link->sata_spd_limit; 2757 if (mask <= 1) 2758 return -EINVAL; 2759 2760 /* unconditionally mask off the highest bit */ 2761 bit = fls(mask) - 1; 2762 mask &= ~(1 << bit); 2763 2764 /* Mask off all speeds higher than or equal to the current 2765 * one. Force 1.5Gbps if current SPD is not available. 2766 */ 2767 if (spd > 1) 2768 mask &= (1 << (spd - 1)) - 1; 2769 else 2770 mask &= 1; 2771 2772 /* were we already at the bottom? */ 2773 if (!mask) 2774 return -EINVAL; 2775 2776 if (spd_limit) { 2777 if (mask & ((1 << spd_limit) - 1)) 2778 mask &= (1 << spd_limit) - 1; 2779 else { 2780 bit = ffs(mask) - 1; 2781 mask = 1 << bit; 2782 } 2783 } 2784 2785 link->sata_spd_limit = mask; 2786 2787 ata_link_warn(link, "limiting SATA link speed to %s\n", 2788 sata_spd_string(fls(mask))); 2789 2790 return 0; 2791 } 2792 2793 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2794 { 2795 struct ata_link *host_link = &link->ap->link; 2796 u32 limit, target, spd; 2797 2798 limit = link->sata_spd_limit; 2799 2800 /* Don't configure downstream link faster than upstream link. 2801 * It doesn't speed up anything and some PMPs choke on such 2802 * configuration. 2803 */ 2804 if (!ata_is_host_link(link) && host_link->sata_spd) 2805 limit &= (1 << host_link->sata_spd) - 1; 2806 2807 if (limit == UINT_MAX) 2808 target = 0; 2809 else 2810 target = fls(limit); 2811 2812 spd = (*scontrol >> 4) & 0xf; 2813 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2814 2815 return spd != target; 2816 } 2817 2818 /** 2819 * sata_set_spd_needed - is SATA spd configuration needed 2820 * @link: Link in question 2821 * 2822 * Test whether the spd limit in SControl matches 2823 * @link->sata_spd_limit. This function is used to determine 2824 * whether hardreset is necessary to apply SATA spd 2825 * configuration. 2826 * 2827 * LOCKING: 2828 * Inherited from caller. 2829 * 2830 * RETURNS: 2831 * 1 if SATA spd configuration is needed, 0 otherwise. 2832 */ 2833 static int sata_set_spd_needed(struct ata_link *link) 2834 { 2835 u32 scontrol; 2836 2837 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2838 return 1; 2839 2840 return __sata_set_spd_needed(link, &scontrol); 2841 } 2842 2843 /** 2844 * sata_set_spd - set SATA spd according to spd limit 2845 * @link: Link to set SATA spd for 2846 * 2847 * Set SATA spd of @link according to sata_spd_limit. 2848 * 2849 * LOCKING: 2850 * Inherited from caller. 2851 * 2852 * RETURNS: 2853 * 0 if spd doesn't need to be changed, 1 if spd has been 2854 * changed. Negative errno if SCR registers are inaccessible. 2855 */ 2856 int sata_set_spd(struct ata_link *link) 2857 { 2858 u32 scontrol; 2859 int rc; 2860 2861 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2862 return rc; 2863 2864 if (!__sata_set_spd_needed(link, &scontrol)) 2865 return 0; 2866 2867 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2868 return rc; 2869 2870 return 1; 2871 } 2872 2873 /* 2874 * This mode timing computation functionality is ported over from 2875 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2876 */ 2877 /* 2878 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2879 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2880 * for UDMA6, which is currently supported only by Maxtor drives. 2881 * 2882 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2883 */ 2884 2885 static const struct ata_timing ata_timing[] = { 2886 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2887 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2888 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2889 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2890 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2891 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2892 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2893 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2894 2895 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2896 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2897 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2898 2899 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2900 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2901 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2902 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2903 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2904 2905 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2906 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2907 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2908 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2909 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2910 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2911 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2912 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2913 2914 { 0xFF } 2915 }; 2916 2917 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2918 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2919 2920 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2921 { 2922 q->setup = EZ(t->setup * 1000, T); 2923 q->act8b = EZ(t->act8b * 1000, T); 2924 q->rec8b = EZ(t->rec8b * 1000, T); 2925 q->cyc8b = EZ(t->cyc8b * 1000, T); 2926 q->active = EZ(t->active * 1000, T); 2927 q->recover = EZ(t->recover * 1000, T); 2928 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2929 q->cycle = EZ(t->cycle * 1000, T); 2930 q->udma = EZ(t->udma * 1000, UT); 2931 } 2932 2933 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2934 struct ata_timing *m, unsigned int what) 2935 { 2936 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2937 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2938 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2939 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2940 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2941 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2942 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2943 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2944 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2945 } 2946 2947 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2948 { 2949 const struct ata_timing *t = ata_timing; 2950 2951 while (xfer_mode > t->mode) 2952 t++; 2953 2954 if (xfer_mode == t->mode) 2955 return t; 2956 2957 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 2958 __func__, xfer_mode); 2959 2960 return NULL; 2961 } 2962 2963 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2964 struct ata_timing *t, int T, int UT) 2965 { 2966 const u16 *id = adev->id; 2967 const struct ata_timing *s; 2968 struct ata_timing p; 2969 2970 /* 2971 * Find the mode. 2972 */ 2973 2974 if (!(s = ata_timing_find_mode(speed))) 2975 return -EINVAL; 2976 2977 memcpy(t, s, sizeof(*s)); 2978 2979 /* 2980 * If the drive is an EIDE drive, it can tell us it needs extended 2981 * PIO/MW_DMA cycle timing. 2982 */ 2983 2984 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2985 memset(&p, 0, sizeof(p)); 2986 2987 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 2988 if (speed <= XFER_PIO_2) 2989 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 2990 else if ((speed <= XFER_PIO_4) || 2991 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 2992 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 2993 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 2994 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 2995 2996 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2997 } 2998 2999 /* 3000 * Convert the timing to bus clock counts. 3001 */ 3002 3003 ata_timing_quantize(t, t, T, UT); 3004 3005 /* 3006 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3007 * S.M.A.R.T * and some other commands. We have to ensure that the 3008 * DMA cycle timing is slower/equal than the fastest PIO timing. 3009 */ 3010 3011 if (speed > XFER_PIO_6) { 3012 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3013 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3014 } 3015 3016 /* 3017 * Lengthen active & recovery time so that cycle time is correct. 3018 */ 3019 3020 if (t->act8b + t->rec8b < t->cyc8b) { 3021 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3022 t->rec8b = t->cyc8b - t->act8b; 3023 } 3024 3025 if (t->active + t->recover < t->cycle) { 3026 t->active += (t->cycle - (t->active + t->recover)) / 2; 3027 t->recover = t->cycle - t->active; 3028 } 3029 3030 /* In a few cases quantisation may produce enough errors to 3031 leave t->cycle too low for the sum of active and recovery 3032 if so we must correct this */ 3033 if (t->active + t->recover > t->cycle) 3034 t->cycle = t->active + t->recover; 3035 3036 return 0; 3037 } 3038 3039 /** 3040 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3041 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3042 * @cycle: cycle duration in ns 3043 * 3044 * Return matching xfer mode for @cycle. The returned mode is of 3045 * the transfer type specified by @xfer_shift. If @cycle is too 3046 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3047 * than the fastest known mode, the fasted mode is returned. 3048 * 3049 * LOCKING: 3050 * None. 3051 * 3052 * RETURNS: 3053 * Matching xfer_mode, 0xff if no match found. 3054 */ 3055 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3056 { 3057 u8 base_mode = 0xff, last_mode = 0xff; 3058 const struct ata_xfer_ent *ent; 3059 const struct ata_timing *t; 3060 3061 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3062 if (ent->shift == xfer_shift) 3063 base_mode = ent->base; 3064 3065 for (t = ata_timing_find_mode(base_mode); 3066 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3067 unsigned short this_cycle; 3068 3069 switch (xfer_shift) { 3070 case ATA_SHIFT_PIO: 3071 case ATA_SHIFT_MWDMA: 3072 this_cycle = t->cycle; 3073 break; 3074 case ATA_SHIFT_UDMA: 3075 this_cycle = t->udma; 3076 break; 3077 default: 3078 return 0xff; 3079 } 3080 3081 if (cycle > this_cycle) 3082 break; 3083 3084 last_mode = t->mode; 3085 } 3086 3087 return last_mode; 3088 } 3089 3090 /** 3091 * ata_down_xfermask_limit - adjust dev xfer masks downward 3092 * @dev: Device to adjust xfer masks 3093 * @sel: ATA_DNXFER_* selector 3094 * 3095 * Adjust xfer masks of @dev downward. Note that this function 3096 * does not apply the change. Invoking ata_set_mode() afterwards 3097 * will apply the limit. 3098 * 3099 * LOCKING: 3100 * Inherited from caller. 3101 * 3102 * RETURNS: 3103 * 0 on success, negative errno on failure 3104 */ 3105 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3106 { 3107 char buf[32]; 3108 unsigned long orig_mask, xfer_mask; 3109 unsigned long pio_mask, mwdma_mask, udma_mask; 3110 int quiet, highbit; 3111 3112 quiet = !!(sel & ATA_DNXFER_QUIET); 3113 sel &= ~ATA_DNXFER_QUIET; 3114 3115 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3116 dev->mwdma_mask, 3117 dev->udma_mask); 3118 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3119 3120 switch (sel) { 3121 case ATA_DNXFER_PIO: 3122 highbit = fls(pio_mask) - 1; 3123 pio_mask &= ~(1 << highbit); 3124 break; 3125 3126 case ATA_DNXFER_DMA: 3127 if (udma_mask) { 3128 highbit = fls(udma_mask) - 1; 3129 udma_mask &= ~(1 << highbit); 3130 if (!udma_mask) 3131 return -ENOENT; 3132 } else if (mwdma_mask) { 3133 highbit = fls(mwdma_mask) - 1; 3134 mwdma_mask &= ~(1 << highbit); 3135 if (!mwdma_mask) 3136 return -ENOENT; 3137 } 3138 break; 3139 3140 case ATA_DNXFER_40C: 3141 udma_mask &= ATA_UDMA_MASK_40C; 3142 break; 3143 3144 case ATA_DNXFER_FORCE_PIO0: 3145 pio_mask &= 1; 3146 case ATA_DNXFER_FORCE_PIO: 3147 mwdma_mask = 0; 3148 udma_mask = 0; 3149 break; 3150 3151 default: 3152 BUG(); 3153 } 3154 3155 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3156 3157 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3158 return -ENOENT; 3159 3160 if (!quiet) { 3161 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3162 snprintf(buf, sizeof(buf), "%s:%s", 3163 ata_mode_string(xfer_mask), 3164 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3165 else 3166 snprintf(buf, sizeof(buf), "%s", 3167 ata_mode_string(xfer_mask)); 3168 3169 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3170 } 3171 3172 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3173 &dev->udma_mask); 3174 3175 return 0; 3176 } 3177 3178 static int ata_dev_set_mode(struct ata_device *dev) 3179 { 3180 struct ata_port *ap = dev->link->ap; 3181 struct ata_eh_context *ehc = &dev->link->eh_context; 3182 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3183 const char *dev_err_whine = ""; 3184 int ign_dev_err = 0; 3185 unsigned int err_mask = 0; 3186 int rc; 3187 3188 dev->flags &= ~ATA_DFLAG_PIO; 3189 if (dev->xfer_shift == ATA_SHIFT_PIO) 3190 dev->flags |= ATA_DFLAG_PIO; 3191 3192 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3193 dev_err_whine = " (SET_XFERMODE skipped)"; 3194 else { 3195 if (nosetxfer) 3196 ata_dev_warn(dev, 3197 "NOSETXFER but PATA detected - can't " 3198 "skip SETXFER, might malfunction\n"); 3199 err_mask = ata_dev_set_xfermode(dev); 3200 } 3201 3202 if (err_mask & ~AC_ERR_DEV) 3203 goto fail; 3204 3205 /* revalidate */ 3206 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3207 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3208 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3209 if (rc) 3210 return rc; 3211 3212 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3213 /* Old CFA may refuse this command, which is just fine */ 3214 if (ata_id_is_cfa(dev->id)) 3215 ign_dev_err = 1; 3216 /* Catch several broken garbage emulations plus some pre 3217 ATA devices */ 3218 if (ata_id_major_version(dev->id) == 0 && 3219 dev->pio_mode <= XFER_PIO_2) 3220 ign_dev_err = 1; 3221 /* Some very old devices and some bad newer ones fail 3222 any kind of SET_XFERMODE request but support PIO0-2 3223 timings and no IORDY */ 3224 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3225 ign_dev_err = 1; 3226 } 3227 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3228 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3229 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3230 dev->dma_mode == XFER_MW_DMA_0 && 3231 (dev->id[63] >> 8) & 1) 3232 ign_dev_err = 1; 3233 3234 /* if the device is actually configured correctly, ignore dev err */ 3235 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3236 ign_dev_err = 1; 3237 3238 if (err_mask & AC_ERR_DEV) { 3239 if (!ign_dev_err) 3240 goto fail; 3241 else 3242 dev_err_whine = " (device error ignored)"; 3243 } 3244 3245 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3246 dev->xfer_shift, (int)dev->xfer_mode); 3247 3248 ata_dev_info(dev, "configured for %s%s\n", 3249 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3250 dev_err_whine); 3251 3252 return 0; 3253 3254 fail: 3255 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3256 return -EIO; 3257 } 3258 3259 /** 3260 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3261 * @link: link on which timings will be programmed 3262 * @r_failed_dev: out parameter for failed device 3263 * 3264 * Standard implementation of the function used to tune and set 3265 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3266 * ata_dev_set_mode() fails, pointer to the failing device is 3267 * returned in @r_failed_dev. 3268 * 3269 * LOCKING: 3270 * PCI/etc. bus probe sem. 3271 * 3272 * RETURNS: 3273 * 0 on success, negative errno otherwise 3274 */ 3275 3276 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3277 { 3278 struct ata_port *ap = link->ap; 3279 struct ata_device *dev; 3280 int rc = 0, used_dma = 0, found = 0; 3281 3282 /* step 1: calculate xfer_mask */ 3283 ata_for_each_dev(dev, link, ENABLED) { 3284 unsigned long pio_mask, dma_mask; 3285 unsigned int mode_mask; 3286 3287 mode_mask = ATA_DMA_MASK_ATA; 3288 if (dev->class == ATA_DEV_ATAPI) 3289 mode_mask = ATA_DMA_MASK_ATAPI; 3290 else if (ata_id_is_cfa(dev->id)) 3291 mode_mask = ATA_DMA_MASK_CFA; 3292 3293 ata_dev_xfermask(dev); 3294 ata_force_xfermask(dev); 3295 3296 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3297 3298 if (libata_dma_mask & mode_mask) 3299 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3300 dev->udma_mask); 3301 else 3302 dma_mask = 0; 3303 3304 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3305 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3306 3307 found = 1; 3308 if (ata_dma_enabled(dev)) 3309 used_dma = 1; 3310 } 3311 if (!found) 3312 goto out; 3313 3314 /* step 2: always set host PIO timings */ 3315 ata_for_each_dev(dev, link, ENABLED) { 3316 if (dev->pio_mode == 0xff) { 3317 ata_dev_warn(dev, "no PIO support\n"); 3318 rc = -EINVAL; 3319 goto out; 3320 } 3321 3322 dev->xfer_mode = dev->pio_mode; 3323 dev->xfer_shift = ATA_SHIFT_PIO; 3324 if (ap->ops->set_piomode) 3325 ap->ops->set_piomode(ap, dev); 3326 } 3327 3328 /* step 3: set host DMA timings */ 3329 ata_for_each_dev(dev, link, ENABLED) { 3330 if (!ata_dma_enabled(dev)) 3331 continue; 3332 3333 dev->xfer_mode = dev->dma_mode; 3334 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3335 if (ap->ops->set_dmamode) 3336 ap->ops->set_dmamode(ap, dev); 3337 } 3338 3339 /* step 4: update devices' xfer mode */ 3340 ata_for_each_dev(dev, link, ENABLED) { 3341 rc = ata_dev_set_mode(dev); 3342 if (rc) 3343 goto out; 3344 } 3345 3346 /* Record simplex status. If we selected DMA then the other 3347 * host channels are not permitted to do so. 3348 */ 3349 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3350 ap->host->simplex_claimed = ap; 3351 3352 out: 3353 if (rc) 3354 *r_failed_dev = dev; 3355 return rc; 3356 } 3357 3358 /** 3359 * ata_wait_ready - wait for link to become ready 3360 * @link: link to be waited on 3361 * @deadline: deadline jiffies for the operation 3362 * @check_ready: callback to check link readiness 3363 * 3364 * Wait for @link to become ready. @check_ready should return 3365 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3366 * link doesn't seem to be occupied, other errno for other error 3367 * conditions. 3368 * 3369 * Transient -ENODEV conditions are allowed for 3370 * ATA_TMOUT_FF_WAIT. 3371 * 3372 * LOCKING: 3373 * EH context. 3374 * 3375 * RETURNS: 3376 * 0 if @linke is ready before @deadline; otherwise, -errno. 3377 */ 3378 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3379 int (*check_ready)(struct ata_link *link)) 3380 { 3381 unsigned long start = jiffies; 3382 unsigned long nodev_deadline; 3383 int warned = 0; 3384 3385 /* choose which 0xff timeout to use, read comment in libata.h */ 3386 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3387 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3388 else 3389 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3390 3391 /* Slave readiness can't be tested separately from master. On 3392 * M/S emulation configuration, this function should be called 3393 * only on the master and it will handle both master and slave. 3394 */ 3395 WARN_ON(link == link->ap->slave_link); 3396 3397 if (time_after(nodev_deadline, deadline)) 3398 nodev_deadline = deadline; 3399 3400 while (1) { 3401 unsigned long now = jiffies; 3402 int ready, tmp; 3403 3404 ready = tmp = check_ready(link); 3405 if (ready > 0) 3406 return 0; 3407 3408 /* 3409 * -ENODEV could be transient. Ignore -ENODEV if link 3410 * is online. Also, some SATA devices take a long 3411 * time to clear 0xff after reset. Wait for 3412 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3413 * offline. 3414 * 3415 * Note that some PATA controllers (pata_ali) explode 3416 * if status register is read more than once when 3417 * there's no device attached. 3418 */ 3419 if (ready == -ENODEV) { 3420 if (ata_link_online(link)) 3421 ready = 0; 3422 else if ((link->ap->flags & ATA_FLAG_SATA) && 3423 !ata_link_offline(link) && 3424 time_before(now, nodev_deadline)) 3425 ready = 0; 3426 } 3427 3428 if (ready) 3429 return ready; 3430 if (time_after(now, deadline)) 3431 return -EBUSY; 3432 3433 if (!warned && time_after(now, start + 5 * HZ) && 3434 (deadline - now > 3 * HZ)) { 3435 ata_link_warn(link, 3436 "link is slow to respond, please be patient " 3437 "(ready=%d)\n", tmp); 3438 warned = 1; 3439 } 3440 3441 ata_msleep(link->ap, 50); 3442 } 3443 } 3444 3445 /** 3446 * ata_wait_after_reset - wait for link to become ready after reset 3447 * @link: link to be waited on 3448 * @deadline: deadline jiffies for the operation 3449 * @check_ready: callback to check link readiness 3450 * 3451 * Wait for @link to become ready after reset. 3452 * 3453 * LOCKING: 3454 * EH context. 3455 * 3456 * RETURNS: 3457 * 0 if @linke is ready before @deadline; otherwise, -errno. 3458 */ 3459 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3460 int (*check_ready)(struct ata_link *link)) 3461 { 3462 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3463 3464 return ata_wait_ready(link, deadline, check_ready); 3465 } 3466 3467 /** 3468 * sata_link_debounce - debounce SATA phy status 3469 * @link: ATA link to debounce SATA phy status for 3470 * @params: timing parameters { interval, duratinon, timeout } in msec 3471 * @deadline: deadline jiffies for the operation 3472 * 3473 * Make sure SStatus of @link reaches stable state, determined by 3474 * holding the same value where DET is not 1 for @duration polled 3475 * every @interval, before @timeout. Timeout constraints the 3476 * beginning of the stable state. Because DET gets stuck at 1 on 3477 * some controllers after hot unplugging, this functions waits 3478 * until timeout then returns 0 if DET is stable at 1. 3479 * 3480 * @timeout is further limited by @deadline. The sooner of the 3481 * two is used. 3482 * 3483 * LOCKING: 3484 * Kernel thread context (may sleep) 3485 * 3486 * RETURNS: 3487 * 0 on success, -errno on failure. 3488 */ 3489 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3490 unsigned long deadline) 3491 { 3492 unsigned long interval = params[0]; 3493 unsigned long duration = params[1]; 3494 unsigned long last_jiffies, t; 3495 u32 last, cur; 3496 int rc; 3497 3498 t = ata_deadline(jiffies, params[2]); 3499 if (time_before(t, deadline)) 3500 deadline = t; 3501 3502 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3503 return rc; 3504 cur &= 0xf; 3505 3506 last = cur; 3507 last_jiffies = jiffies; 3508 3509 while (1) { 3510 ata_msleep(link->ap, interval); 3511 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3512 return rc; 3513 cur &= 0xf; 3514 3515 /* DET stable? */ 3516 if (cur == last) { 3517 if (cur == 1 && time_before(jiffies, deadline)) 3518 continue; 3519 if (time_after(jiffies, 3520 ata_deadline(last_jiffies, duration))) 3521 return 0; 3522 continue; 3523 } 3524 3525 /* unstable, start over */ 3526 last = cur; 3527 last_jiffies = jiffies; 3528 3529 /* Check deadline. If debouncing failed, return 3530 * -EPIPE to tell upper layer to lower link speed. 3531 */ 3532 if (time_after(jiffies, deadline)) 3533 return -EPIPE; 3534 } 3535 } 3536 3537 /** 3538 * sata_link_resume - resume SATA link 3539 * @link: ATA link to resume SATA 3540 * @params: timing parameters { interval, duratinon, timeout } in msec 3541 * @deadline: deadline jiffies for the operation 3542 * 3543 * Resume SATA phy @link and debounce it. 3544 * 3545 * LOCKING: 3546 * Kernel thread context (may sleep) 3547 * 3548 * RETURNS: 3549 * 0 on success, -errno on failure. 3550 */ 3551 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3552 unsigned long deadline) 3553 { 3554 int tries = ATA_LINK_RESUME_TRIES; 3555 u32 scontrol, serror; 3556 int rc; 3557 3558 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3559 return rc; 3560 3561 /* 3562 * Writes to SControl sometimes get ignored under certain 3563 * controllers (ata_piix SIDPR). Make sure DET actually is 3564 * cleared. 3565 */ 3566 do { 3567 scontrol = (scontrol & 0x0f0) | 0x300; 3568 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3569 return rc; 3570 /* 3571 * Some PHYs react badly if SStatus is pounded 3572 * immediately after resuming. Delay 200ms before 3573 * debouncing. 3574 */ 3575 ata_msleep(link->ap, 200); 3576 3577 /* is SControl restored correctly? */ 3578 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3579 return rc; 3580 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3581 3582 if ((scontrol & 0xf0f) != 0x300) { 3583 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3584 scontrol); 3585 return 0; 3586 } 3587 3588 if (tries < ATA_LINK_RESUME_TRIES) 3589 ata_link_warn(link, "link resume succeeded after %d retries\n", 3590 ATA_LINK_RESUME_TRIES - tries); 3591 3592 if ((rc = sata_link_debounce(link, params, deadline))) 3593 return rc; 3594 3595 /* clear SError, some PHYs require this even for SRST to work */ 3596 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3597 rc = sata_scr_write(link, SCR_ERROR, serror); 3598 3599 return rc != -EINVAL ? rc : 0; 3600 } 3601 3602 /** 3603 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3604 * @link: ATA link to manipulate SControl for 3605 * @policy: LPM policy to configure 3606 * @spm_wakeup: initiate LPM transition to active state 3607 * 3608 * Manipulate the IPM field of the SControl register of @link 3609 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3610 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3611 * the link. This function also clears PHYRDY_CHG before 3612 * returning. 3613 * 3614 * LOCKING: 3615 * EH context. 3616 * 3617 * RETURNS: 3618 * 0 on succes, -errno otherwise. 3619 */ 3620 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3621 bool spm_wakeup) 3622 { 3623 struct ata_eh_context *ehc = &link->eh_context; 3624 bool woken_up = false; 3625 u32 scontrol; 3626 int rc; 3627 3628 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3629 if (rc) 3630 return rc; 3631 3632 switch (policy) { 3633 case ATA_LPM_MAX_POWER: 3634 /* disable all LPM transitions */ 3635 scontrol |= (0x7 << 8); 3636 /* initiate transition to active state */ 3637 if (spm_wakeup) { 3638 scontrol |= (0x4 << 12); 3639 woken_up = true; 3640 } 3641 break; 3642 case ATA_LPM_MED_POWER: 3643 /* allow LPM to PARTIAL */ 3644 scontrol &= ~(0x1 << 8); 3645 scontrol |= (0x6 << 8); 3646 break; 3647 case ATA_LPM_MIN_POWER: 3648 if (ata_link_nr_enabled(link) > 0) 3649 /* no restrictions on LPM transitions */ 3650 scontrol &= ~(0x7 << 8); 3651 else { 3652 /* empty port, power off */ 3653 scontrol &= ~0xf; 3654 scontrol |= (0x1 << 2); 3655 } 3656 break; 3657 default: 3658 WARN_ON(1); 3659 } 3660 3661 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3662 if (rc) 3663 return rc; 3664 3665 /* give the link time to transit out of LPM state */ 3666 if (woken_up) 3667 msleep(10); 3668 3669 /* clear PHYRDY_CHG from SError */ 3670 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3671 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3672 } 3673 3674 /** 3675 * ata_std_prereset - prepare for reset 3676 * @link: ATA link to be reset 3677 * @deadline: deadline jiffies for the operation 3678 * 3679 * @link is about to be reset. Initialize it. Failure from 3680 * prereset makes libata abort whole reset sequence and give up 3681 * that port, so prereset should be best-effort. It does its 3682 * best to prepare for reset sequence but if things go wrong, it 3683 * should just whine, not fail. 3684 * 3685 * LOCKING: 3686 * Kernel thread context (may sleep) 3687 * 3688 * RETURNS: 3689 * 0 on success, -errno otherwise. 3690 */ 3691 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3692 { 3693 struct ata_port *ap = link->ap; 3694 struct ata_eh_context *ehc = &link->eh_context; 3695 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3696 int rc; 3697 3698 /* if we're about to do hardreset, nothing more to do */ 3699 if (ehc->i.action & ATA_EH_HARDRESET) 3700 return 0; 3701 3702 /* if SATA, resume link */ 3703 if (ap->flags & ATA_FLAG_SATA) { 3704 rc = sata_link_resume(link, timing, deadline); 3705 /* whine about phy resume failure but proceed */ 3706 if (rc && rc != -EOPNOTSUPP) 3707 ata_link_warn(link, 3708 "failed to resume link for reset (errno=%d)\n", 3709 rc); 3710 } 3711 3712 /* no point in trying softreset on offline link */ 3713 if (ata_phys_link_offline(link)) 3714 ehc->i.action &= ~ATA_EH_SOFTRESET; 3715 3716 return 0; 3717 } 3718 3719 /** 3720 * sata_link_hardreset - reset link via SATA phy reset 3721 * @link: link to reset 3722 * @timing: timing parameters { interval, duratinon, timeout } in msec 3723 * @deadline: deadline jiffies for the operation 3724 * @online: optional out parameter indicating link onlineness 3725 * @check_ready: optional callback to check link readiness 3726 * 3727 * SATA phy-reset @link using DET bits of SControl register. 3728 * After hardreset, link readiness is waited upon using 3729 * ata_wait_ready() if @check_ready is specified. LLDs are 3730 * allowed to not specify @check_ready and wait itself after this 3731 * function returns. Device classification is LLD's 3732 * responsibility. 3733 * 3734 * *@online is set to one iff reset succeeded and @link is online 3735 * after reset. 3736 * 3737 * LOCKING: 3738 * Kernel thread context (may sleep) 3739 * 3740 * RETURNS: 3741 * 0 on success, -errno otherwise. 3742 */ 3743 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3744 unsigned long deadline, 3745 bool *online, int (*check_ready)(struct ata_link *)) 3746 { 3747 u32 scontrol; 3748 int rc; 3749 3750 DPRINTK("ENTER\n"); 3751 3752 if (online) 3753 *online = false; 3754 3755 if (sata_set_spd_needed(link)) { 3756 /* SATA spec says nothing about how to reconfigure 3757 * spd. To be on the safe side, turn off phy during 3758 * reconfiguration. This works for at least ICH7 AHCI 3759 * and Sil3124. 3760 */ 3761 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3762 goto out; 3763 3764 scontrol = (scontrol & 0x0f0) | 0x304; 3765 3766 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3767 goto out; 3768 3769 sata_set_spd(link); 3770 } 3771 3772 /* issue phy wake/reset */ 3773 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3774 goto out; 3775 3776 scontrol = (scontrol & 0x0f0) | 0x301; 3777 3778 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3779 goto out; 3780 3781 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3782 * 10.4.2 says at least 1 ms. 3783 */ 3784 ata_msleep(link->ap, 1); 3785 3786 /* bring link back */ 3787 rc = sata_link_resume(link, timing, deadline); 3788 if (rc) 3789 goto out; 3790 /* if link is offline nothing more to do */ 3791 if (ata_phys_link_offline(link)) 3792 goto out; 3793 3794 /* Link is online. From this point, -ENODEV too is an error. */ 3795 if (online) 3796 *online = true; 3797 3798 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3799 /* If PMP is supported, we have to do follow-up SRST. 3800 * Some PMPs don't send D2H Reg FIS after hardreset if 3801 * the first port is empty. Wait only for 3802 * ATA_TMOUT_PMP_SRST_WAIT. 3803 */ 3804 if (check_ready) { 3805 unsigned long pmp_deadline; 3806 3807 pmp_deadline = ata_deadline(jiffies, 3808 ATA_TMOUT_PMP_SRST_WAIT); 3809 if (time_after(pmp_deadline, deadline)) 3810 pmp_deadline = deadline; 3811 ata_wait_ready(link, pmp_deadline, check_ready); 3812 } 3813 rc = -EAGAIN; 3814 goto out; 3815 } 3816 3817 rc = 0; 3818 if (check_ready) 3819 rc = ata_wait_ready(link, deadline, check_ready); 3820 out: 3821 if (rc && rc != -EAGAIN) { 3822 /* online is set iff link is online && reset succeeded */ 3823 if (online) 3824 *online = false; 3825 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3826 } 3827 DPRINTK("EXIT, rc=%d\n", rc); 3828 return rc; 3829 } 3830 3831 /** 3832 * sata_std_hardreset - COMRESET w/o waiting or classification 3833 * @link: link to reset 3834 * @class: resulting class of attached device 3835 * @deadline: deadline jiffies for the operation 3836 * 3837 * Standard SATA COMRESET w/o waiting or classification. 3838 * 3839 * LOCKING: 3840 * Kernel thread context (may sleep) 3841 * 3842 * RETURNS: 3843 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3844 */ 3845 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3846 unsigned long deadline) 3847 { 3848 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3849 bool online; 3850 int rc; 3851 3852 /* do hardreset */ 3853 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3854 return online ? -EAGAIN : rc; 3855 } 3856 3857 /** 3858 * ata_std_postreset - standard postreset callback 3859 * @link: the target ata_link 3860 * @classes: classes of attached devices 3861 * 3862 * This function is invoked after a successful reset. Note that 3863 * the device might have been reset more than once using 3864 * different reset methods before postreset is invoked. 3865 * 3866 * LOCKING: 3867 * Kernel thread context (may sleep) 3868 */ 3869 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3870 { 3871 u32 serror; 3872 3873 DPRINTK("ENTER\n"); 3874 3875 /* reset complete, clear SError */ 3876 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3877 sata_scr_write(link, SCR_ERROR, serror); 3878 3879 /* print link status */ 3880 sata_print_link_status(link); 3881 3882 DPRINTK("EXIT\n"); 3883 } 3884 3885 /** 3886 * ata_dev_same_device - Determine whether new ID matches configured device 3887 * @dev: device to compare against 3888 * @new_class: class of the new device 3889 * @new_id: IDENTIFY page of the new device 3890 * 3891 * Compare @new_class and @new_id against @dev and determine 3892 * whether @dev is the device indicated by @new_class and 3893 * @new_id. 3894 * 3895 * LOCKING: 3896 * None. 3897 * 3898 * RETURNS: 3899 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3900 */ 3901 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3902 const u16 *new_id) 3903 { 3904 const u16 *old_id = dev->id; 3905 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3906 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3907 3908 if (dev->class != new_class) { 3909 ata_dev_info(dev, "class mismatch %d != %d\n", 3910 dev->class, new_class); 3911 return 0; 3912 } 3913 3914 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3915 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3916 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3917 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3918 3919 if (strcmp(model[0], model[1])) { 3920 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3921 model[0], model[1]); 3922 return 0; 3923 } 3924 3925 if (strcmp(serial[0], serial[1])) { 3926 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3927 serial[0], serial[1]); 3928 return 0; 3929 } 3930 3931 return 1; 3932 } 3933 3934 /** 3935 * ata_dev_reread_id - Re-read IDENTIFY data 3936 * @dev: target ATA device 3937 * @readid_flags: read ID flags 3938 * 3939 * Re-read IDENTIFY page and make sure @dev is still attached to 3940 * the port. 3941 * 3942 * LOCKING: 3943 * Kernel thread context (may sleep) 3944 * 3945 * RETURNS: 3946 * 0 on success, negative errno otherwise 3947 */ 3948 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3949 { 3950 unsigned int class = dev->class; 3951 u16 *id = (void *)dev->link->ap->sector_buf; 3952 int rc; 3953 3954 /* read ID data */ 3955 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3956 if (rc) 3957 return rc; 3958 3959 /* is the device still there? */ 3960 if (!ata_dev_same_device(dev, class, id)) 3961 return -ENODEV; 3962 3963 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3964 return 0; 3965 } 3966 3967 /** 3968 * ata_dev_revalidate - Revalidate ATA device 3969 * @dev: device to revalidate 3970 * @new_class: new class code 3971 * @readid_flags: read ID flags 3972 * 3973 * Re-read IDENTIFY page, make sure @dev is still attached to the 3974 * port and reconfigure it according to the new IDENTIFY page. 3975 * 3976 * LOCKING: 3977 * Kernel thread context (may sleep) 3978 * 3979 * RETURNS: 3980 * 0 on success, negative errno otherwise 3981 */ 3982 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3983 unsigned int readid_flags) 3984 { 3985 u64 n_sectors = dev->n_sectors; 3986 u64 n_native_sectors = dev->n_native_sectors; 3987 int rc; 3988 3989 if (!ata_dev_enabled(dev)) 3990 return -ENODEV; 3991 3992 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3993 if (ata_class_enabled(new_class) && 3994 new_class != ATA_DEV_ATA && 3995 new_class != ATA_DEV_ATAPI && 3996 new_class != ATA_DEV_SEMB) { 3997 ata_dev_info(dev, "class mismatch %u != %u\n", 3998 dev->class, new_class); 3999 rc = -ENODEV; 4000 goto fail; 4001 } 4002 4003 /* re-read ID */ 4004 rc = ata_dev_reread_id(dev, readid_flags); 4005 if (rc) 4006 goto fail; 4007 4008 /* configure device according to the new ID */ 4009 rc = ata_dev_configure(dev); 4010 if (rc) 4011 goto fail; 4012 4013 /* verify n_sectors hasn't changed */ 4014 if (dev->class != ATA_DEV_ATA || !n_sectors || 4015 dev->n_sectors == n_sectors) 4016 return 0; 4017 4018 /* n_sectors has changed */ 4019 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4020 (unsigned long long)n_sectors, 4021 (unsigned long long)dev->n_sectors); 4022 4023 /* 4024 * Something could have caused HPA to be unlocked 4025 * involuntarily. If n_native_sectors hasn't changed and the 4026 * new size matches it, keep the device. 4027 */ 4028 if (dev->n_native_sectors == n_native_sectors && 4029 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4030 ata_dev_warn(dev, 4031 "new n_sectors matches native, probably " 4032 "late HPA unlock, n_sectors updated\n"); 4033 /* use the larger n_sectors */ 4034 return 0; 4035 } 4036 4037 /* 4038 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4039 * unlocking HPA in those cases. 4040 * 4041 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4042 */ 4043 if (dev->n_native_sectors == n_native_sectors && 4044 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4045 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4046 ata_dev_warn(dev, 4047 "old n_sectors matches native, probably " 4048 "late HPA lock, will try to unlock HPA\n"); 4049 /* try unlocking HPA */ 4050 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4051 rc = -EIO; 4052 } else 4053 rc = -ENODEV; 4054 4055 /* restore original n_[native_]sectors and fail */ 4056 dev->n_native_sectors = n_native_sectors; 4057 dev->n_sectors = n_sectors; 4058 fail: 4059 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4060 return rc; 4061 } 4062 4063 struct ata_blacklist_entry { 4064 const char *model_num; 4065 const char *model_rev; 4066 unsigned long horkage; 4067 }; 4068 4069 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4070 /* Devices with DMA related problems under Linux */ 4071 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4072 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4073 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4074 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4075 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4076 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4077 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4078 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4079 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4080 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4081 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4082 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4083 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4084 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4085 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4086 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4087 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4088 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4089 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4090 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4091 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4092 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4093 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4094 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4095 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4096 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4097 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4098 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4099 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4100 /* Odd clown on sil3726/4726 PMPs */ 4101 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4102 4103 /* Weird ATAPI devices */ 4104 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4105 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4106 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4107 4108 /* Devices we expect to fail diagnostics */ 4109 4110 /* Devices where NCQ should be avoided */ 4111 /* NCQ is slow */ 4112 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4113 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4114 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4115 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4116 /* NCQ is broken */ 4117 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4118 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4119 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4120 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4121 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4122 4123 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4124 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4125 ATA_HORKAGE_FIRMWARE_WARN }, 4126 4127 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4128 ATA_HORKAGE_FIRMWARE_WARN }, 4129 4130 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4131 ATA_HORKAGE_FIRMWARE_WARN }, 4132 4133 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4134 ATA_HORKAGE_FIRMWARE_WARN }, 4135 4136 /* Blacklist entries taken from Silicon Image 3124/3132 4137 Windows driver .inf file - also several Linux problem reports */ 4138 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4139 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4140 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4141 4142 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4143 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4144 4145 /* devices which puke on READ_NATIVE_MAX */ 4146 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4147 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4148 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4149 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4150 4151 /* this one allows HPA unlocking but fails IOs on the area */ 4152 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4153 4154 /* Devices which report 1 sector over size HPA */ 4155 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4156 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4157 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4158 4159 /* Devices which get the IVB wrong */ 4160 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4161 /* Maybe we should just blacklist TSSTcorp... */ 4162 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4163 4164 /* Devices that do not need bridging limits applied */ 4165 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4166 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4167 4168 /* Devices which aren't very happy with higher link speeds */ 4169 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4170 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4171 4172 /* 4173 * Devices which choke on SETXFER. Applies only if both the 4174 * device and controller are SATA. 4175 */ 4176 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4177 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4178 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4179 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4180 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4181 4182 /* End Marker */ 4183 { } 4184 }; 4185 4186 /** 4187 * glob_match - match a text string against a glob-style pattern 4188 * @text: the string to be examined 4189 * @pattern: the glob-style pattern to be matched against 4190 * 4191 * Either/both of text and pattern can be empty strings. 4192 * 4193 * Match text against a glob-style pattern, with wildcards and simple sets: 4194 * 4195 * ? matches any single character. 4196 * * matches any run of characters. 4197 * [xyz] matches a single character from the set: x, y, or z. 4198 * [a-d] matches a single character from the range: a, b, c, or d. 4199 * [a-d0-9] matches a single character from either range. 4200 * 4201 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4202 * Behaviour with malformed patterns is undefined, though generally reasonable. 4203 * 4204 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4205 * 4206 * This function uses one level of recursion per '*' in pattern. 4207 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4208 * this will not cause stack problems for any reasonable use here. 4209 * 4210 * RETURNS: 4211 * 0 on match, 1 otherwise. 4212 */ 4213 static int glob_match (const char *text, const char *pattern) 4214 { 4215 do { 4216 /* Match single character or a '?' wildcard */ 4217 if (*text == *pattern || *pattern == '?') { 4218 if (!*pattern++) 4219 return 0; /* End of both strings: match */ 4220 } else { 4221 /* Match single char against a '[' bracketed ']' pattern set */ 4222 if (!*text || *pattern != '[') 4223 break; /* Not a pattern set */ 4224 while (*++pattern && *pattern != ']' && *text != *pattern) { 4225 if (*pattern == '-' && *(pattern - 1) != '[') 4226 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4227 ++pattern; 4228 break; 4229 } 4230 } 4231 if (!*pattern || *pattern == ']') 4232 return 1; /* No match */ 4233 while (*pattern && *pattern++ != ']'); 4234 } 4235 } while (*++text && *pattern); 4236 4237 /* Match any run of chars against a '*' wildcard */ 4238 if (*pattern == '*') { 4239 if (!*++pattern) 4240 return 0; /* Match: avoid recursion at end of pattern */ 4241 /* Loop to handle additional pattern chars after the wildcard */ 4242 while (*text) { 4243 if (glob_match(text, pattern) == 0) 4244 return 0; /* Remainder matched */ 4245 ++text; /* Absorb (match) this char and try again */ 4246 } 4247 } 4248 if (!*text && !*pattern) 4249 return 0; /* End of both strings: match */ 4250 return 1; /* No match */ 4251 } 4252 4253 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4254 { 4255 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4256 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4257 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4258 4259 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4260 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4261 4262 while (ad->model_num) { 4263 if (!glob_match(model_num, ad->model_num)) { 4264 if (ad->model_rev == NULL) 4265 return ad->horkage; 4266 if (!glob_match(model_rev, ad->model_rev)) 4267 return ad->horkage; 4268 } 4269 ad++; 4270 } 4271 return 0; 4272 } 4273 4274 static int ata_dma_blacklisted(const struct ata_device *dev) 4275 { 4276 /* We don't support polling DMA. 4277 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4278 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4279 */ 4280 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4281 (dev->flags & ATA_DFLAG_CDB_INTR)) 4282 return 1; 4283 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4284 } 4285 4286 /** 4287 * ata_is_40wire - check drive side detection 4288 * @dev: device 4289 * 4290 * Perform drive side detection decoding, allowing for device vendors 4291 * who can't follow the documentation. 4292 */ 4293 4294 static int ata_is_40wire(struct ata_device *dev) 4295 { 4296 if (dev->horkage & ATA_HORKAGE_IVB) 4297 return ata_drive_40wire_relaxed(dev->id); 4298 return ata_drive_40wire(dev->id); 4299 } 4300 4301 /** 4302 * cable_is_40wire - 40/80/SATA decider 4303 * @ap: port to consider 4304 * 4305 * This function encapsulates the policy for speed management 4306 * in one place. At the moment we don't cache the result but 4307 * there is a good case for setting ap->cbl to the result when 4308 * we are called with unknown cables (and figuring out if it 4309 * impacts hotplug at all). 4310 * 4311 * Return 1 if the cable appears to be 40 wire. 4312 */ 4313 4314 static int cable_is_40wire(struct ata_port *ap) 4315 { 4316 struct ata_link *link; 4317 struct ata_device *dev; 4318 4319 /* If the controller thinks we are 40 wire, we are. */ 4320 if (ap->cbl == ATA_CBL_PATA40) 4321 return 1; 4322 4323 /* If the controller thinks we are 80 wire, we are. */ 4324 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4325 return 0; 4326 4327 /* If the system is known to be 40 wire short cable (eg 4328 * laptop), then we allow 80 wire modes even if the drive 4329 * isn't sure. 4330 */ 4331 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4332 return 0; 4333 4334 /* If the controller doesn't know, we scan. 4335 * 4336 * Note: We look for all 40 wire detects at this point. Any 4337 * 80 wire detect is taken to be 80 wire cable because 4338 * - in many setups only the one drive (slave if present) will 4339 * give a valid detect 4340 * - if you have a non detect capable drive you don't want it 4341 * to colour the choice 4342 */ 4343 ata_for_each_link(link, ap, EDGE) { 4344 ata_for_each_dev(dev, link, ENABLED) { 4345 if (!ata_is_40wire(dev)) 4346 return 0; 4347 } 4348 } 4349 return 1; 4350 } 4351 4352 /** 4353 * ata_dev_xfermask - Compute supported xfermask of the given device 4354 * @dev: Device to compute xfermask for 4355 * 4356 * Compute supported xfermask of @dev and store it in 4357 * dev->*_mask. This function is responsible for applying all 4358 * known limits including host controller limits, device 4359 * blacklist, etc... 4360 * 4361 * LOCKING: 4362 * None. 4363 */ 4364 static void ata_dev_xfermask(struct ata_device *dev) 4365 { 4366 struct ata_link *link = dev->link; 4367 struct ata_port *ap = link->ap; 4368 struct ata_host *host = ap->host; 4369 unsigned long xfer_mask; 4370 4371 /* controller modes available */ 4372 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4373 ap->mwdma_mask, ap->udma_mask); 4374 4375 /* drive modes available */ 4376 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4377 dev->mwdma_mask, dev->udma_mask); 4378 xfer_mask &= ata_id_xfermask(dev->id); 4379 4380 /* 4381 * CFA Advanced TrueIDE timings are not allowed on a shared 4382 * cable 4383 */ 4384 if (ata_dev_pair(dev)) { 4385 /* No PIO5 or PIO6 */ 4386 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4387 /* No MWDMA3 or MWDMA 4 */ 4388 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4389 } 4390 4391 if (ata_dma_blacklisted(dev)) { 4392 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4393 ata_dev_warn(dev, 4394 "device is on DMA blacklist, disabling DMA\n"); 4395 } 4396 4397 if ((host->flags & ATA_HOST_SIMPLEX) && 4398 host->simplex_claimed && host->simplex_claimed != ap) { 4399 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4400 ata_dev_warn(dev, 4401 "simplex DMA is claimed by other device, disabling DMA\n"); 4402 } 4403 4404 if (ap->flags & ATA_FLAG_NO_IORDY) 4405 xfer_mask &= ata_pio_mask_no_iordy(dev); 4406 4407 if (ap->ops->mode_filter) 4408 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4409 4410 /* Apply cable rule here. Don't apply it early because when 4411 * we handle hot plug the cable type can itself change. 4412 * Check this last so that we know if the transfer rate was 4413 * solely limited by the cable. 4414 * Unknown or 80 wire cables reported host side are checked 4415 * drive side as well. Cases where we know a 40wire cable 4416 * is used safely for 80 are not checked here. 4417 */ 4418 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4419 /* UDMA/44 or higher would be available */ 4420 if (cable_is_40wire(ap)) { 4421 ata_dev_warn(dev, 4422 "limited to UDMA/33 due to 40-wire cable\n"); 4423 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4424 } 4425 4426 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4427 &dev->mwdma_mask, &dev->udma_mask); 4428 } 4429 4430 /** 4431 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4432 * @dev: Device to which command will be sent 4433 * 4434 * Issue SET FEATURES - XFER MODE command to device @dev 4435 * on port @ap. 4436 * 4437 * LOCKING: 4438 * PCI/etc. bus probe sem. 4439 * 4440 * RETURNS: 4441 * 0 on success, AC_ERR_* mask otherwise. 4442 */ 4443 4444 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4445 { 4446 struct ata_taskfile tf; 4447 unsigned int err_mask; 4448 4449 /* set up set-features taskfile */ 4450 DPRINTK("set features - xfer mode\n"); 4451 4452 /* Some controllers and ATAPI devices show flaky interrupt 4453 * behavior after setting xfer mode. Use polling instead. 4454 */ 4455 ata_tf_init(dev, &tf); 4456 tf.command = ATA_CMD_SET_FEATURES; 4457 tf.feature = SETFEATURES_XFER; 4458 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4459 tf.protocol = ATA_PROT_NODATA; 4460 /* If we are using IORDY we must send the mode setting command */ 4461 if (ata_pio_need_iordy(dev)) 4462 tf.nsect = dev->xfer_mode; 4463 /* If the device has IORDY and the controller does not - turn it off */ 4464 else if (ata_id_has_iordy(dev->id)) 4465 tf.nsect = 0x01; 4466 else /* In the ancient relic department - skip all of this */ 4467 return 0; 4468 4469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4470 4471 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4472 return err_mask; 4473 } 4474 4475 /** 4476 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4477 * @dev: Device to which command will be sent 4478 * @enable: Whether to enable or disable the feature 4479 * @feature: The sector count represents the feature to set 4480 * 4481 * Issue SET FEATURES - SATA FEATURES command to device @dev 4482 * on port @ap with sector count 4483 * 4484 * LOCKING: 4485 * PCI/etc. bus probe sem. 4486 * 4487 * RETURNS: 4488 * 0 on success, AC_ERR_* mask otherwise. 4489 */ 4490 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4491 { 4492 struct ata_taskfile tf; 4493 unsigned int err_mask; 4494 4495 /* set up set-features taskfile */ 4496 DPRINTK("set features - SATA features\n"); 4497 4498 ata_tf_init(dev, &tf); 4499 tf.command = ATA_CMD_SET_FEATURES; 4500 tf.feature = enable; 4501 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4502 tf.protocol = ATA_PROT_NODATA; 4503 tf.nsect = feature; 4504 4505 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4506 4507 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4508 return err_mask; 4509 } 4510 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4511 4512 /** 4513 * ata_dev_init_params - Issue INIT DEV PARAMS command 4514 * @dev: Device to which command will be sent 4515 * @heads: Number of heads (taskfile parameter) 4516 * @sectors: Number of sectors (taskfile parameter) 4517 * 4518 * LOCKING: 4519 * Kernel thread context (may sleep) 4520 * 4521 * RETURNS: 4522 * 0 on success, AC_ERR_* mask otherwise. 4523 */ 4524 static unsigned int ata_dev_init_params(struct ata_device *dev, 4525 u16 heads, u16 sectors) 4526 { 4527 struct ata_taskfile tf; 4528 unsigned int err_mask; 4529 4530 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4531 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4532 return AC_ERR_INVALID; 4533 4534 /* set up init dev params taskfile */ 4535 DPRINTK("init dev params \n"); 4536 4537 ata_tf_init(dev, &tf); 4538 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4539 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4540 tf.protocol = ATA_PROT_NODATA; 4541 tf.nsect = sectors; 4542 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4543 4544 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4545 /* A clean abort indicates an original or just out of spec drive 4546 and we should continue as we issue the setup based on the 4547 drive reported working geometry */ 4548 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4549 err_mask = 0; 4550 4551 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4552 return err_mask; 4553 } 4554 4555 /** 4556 * ata_sg_clean - Unmap DMA memory associated with command 4557 * @qc: Command containing DMA memory to be released 4558 * 4559 * Unmap all mapped DMA memory associated with this command. 4560 * 4561 * LOCKING: 4562 * spin_lock_irqsave(host lock) 4563 */ 4564 void ata_sg_clean(struct ata_queued_cmd *qc) 4565 { 4566 struct ata_port *ap = qc->ap; 4567 struct scatterlist *sg = qc->sg; 4568 int dir = qc->dma_dir; 4569 4570 WARN_ON_ONCE(sg == NULL); 4571 4572 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4573 4574 if (qc->n_elem) 4575 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4576 4577 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4578 qc->sg = NULL; 4579 } 4580 4581 /** 4582 * atapi_check_dma - Check whether ATAPI DMA can be supported 4583 * @qc: Metadata associated with taskfile to check 4584 * 4585 * Allow low-level driver to filter ATA PACKET commands, returning 4586 * a status indicating whether or not it is OK to use DMA for the 4587 * supplied PACKET command. 4588 * 4589 * LOCKING: 4590 * spin_lock_irqsave(host lock) 4591 * 4592 * RETURNS: 0 when ATAPI DMA can be used 4593 * nonzero otherwise 4594 */ 4595 int atapi_check_dma(struct ata_queued_cmd *qc) 4596 { 4597 struct ata_port *ap = qc->ap; 4598 4599 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4600 * few ATAPI devices choke on such DMA requests. 4601 */ 4602 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4603 unlikely(qc->nbytes & 15)) 4604 return 1; 4605 4606 if (ap->ops->check_atapi_dma) 4607 return ap->ops->check_atapi_dma(qc); 4608 4609 return 0; 4610 } 4611 4612 /** 4613 * ata_std_qc_defer - Check whether a qc needs to be deferred 4614 * @qc: ATA command in question 4615 * 4616 * Non-NCQ commands cannot run with any other command, NCQ or 4617 * not. As upper layer only knows the queue depth, we are 4618 * responsible for maintaining exclusion. This function checks 4619 * whether a new command @qc can be issued. 4620 * 4621 * LOCKING: 4622 * spin_lock_irqsave(host lock) 4623 * 4624 * RETURNS: 4625 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4626 */ 4627 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4628 { 4629 struct ata_link *link = qc->dev->link; 4630 4631 if (qc->tf.protocol == ATA_PROT_NCQ) { 4632 if (!ata_tag_valid(link->active_tag)) 4633 return 0; 4634 } else { 4635 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4636 return 0; 4637 } 4638 4639 return ATA_DEFER_LINK; 4640 } 4641 4642 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4643 4644 /** 4645 * ata_sg_init - Associate command with scatter-gather table. 4646 * @qc: Command to be associated 4647 * @sg: Scatter-gather table. 4648 * @n_elem: Number of elements in s/g table. 4649 * 4650 * Initialize the data-related elements of queued_cmd @qc 4651 * to point to a scatter-gather table @sg, containing @n_elem 4652 * elements. 4653 * 4654 * LOCKING: 4655 * spin_lock_irqsave(host lock) 4656 */ 4657 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4658 unsigned int n_elem) 4659 { 4660 qc->sg = sg; 4661 qc->n_elem = n_elem; 4662 qc->cursg = qc->sg; 4663 } 4664 4665 /** 4666 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4667 * @qc: Command with scatter-gather table to be mapped. 4668 * 4669 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4670 * 4671 * LOCKING: 4672 * spin_lock_irqsave(host lock) 4673 * 4674 * RETURNS: 4675 * Zero on success, negative on error. 4676 * 4677 */ 4678 static int ata_sg_setup(struct ata_queued_cmd *qc) 4679 { 4680 struct ata_port *ap = qc->ap; 4681 unsigned int n_elem; 4682 4683 VPRINTK("ENTER, ata%u\n", ap->print_id); 4684 4685 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4686 if (n_elem < 1) 4687 return -1; 4688 4689 DPRINTK("%d sg elements mapped\n", n_elem); 4690 qc->orig_n_elem = qc->n_elem; 4691 qc->n_elem = n_elem; 4692 qc->flags |= ATA_QCFLAG_DMAMAP; 4693 4694 return 0; 4695 } 4696 4697 /** 4698 * swap_buf_le16 - swap halves of 16-bit words in place 4699 * @buf: Buffer to swap 4700 * @buf_words: Number of 16-bit words in buffer. 4701 * 4702 * Swap halves of 16-bit words if needed to convert from 4703 * little-endian byte order to native cpu byte order, or 4704 * vice-versa. 4705 * 4706 * LOCKING: 4707 * Inherited from caller. 4708 */ 4709 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4710 { 4711 #ifdef __BIG_ENDIAN 4712 unsigned int i; 4713 4714 for (i = 0; i < buf_words; i++) 4715 buf[i] = le16_to_cpu(buf[i]); 4716 #endif /* __BIG_ENDIAN */ 4717 } 4718 4719 /** 4720 * ata_qc_new - Request an available ATA command, for queueing 4721 * @ap: target port 4722 * 4723 * LOCKING: 4724 * None. 4725 */ 4726 4727 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4728 { 4729 struct ata_queued_cmd *qc = NULL; 4730 unsigned int i; 4731 4732 /* no command while frozen */ 4733 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4734 return NULL; 4735 4736 /* the last tag is reserved for internal command. */ 4737 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4738 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4739 qc = __ata_qc_from_tag(ap, i); 4740 break; 4741 } 4742 4743 if (qc) 4744 qc->tag = i; 4745 4746 return qc; 4747 } 4748 4749 /** 4750 * ata_qc_new_init - Request an available ATA command, and initialize it 4751 * @dev: Device from whom we request an available command structure 4752 * 4753 * LOCKING: 4754 * None. 4755 */ 4756 4757 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4758 { 4759 struct ata_port *ap = dev->link->ap; 4760 struct ata_queued_cmd *qc; 4761 4762 qc = ata_qc_new(ap); 4763 if (qc) { 4764 qc->scsicmd = NULL; 4765 qc->ap = ap; 4766 qc->dev = dev; 4767 4768 ata_qc_reinit(qc); 4769 } 4770 4771 return qc; 4772 } 4773 4774 /** 4775 * ata_qc_free - free unused ata_queued_cmd 4776 * @qc: Command to complete 4777 * 4778 * Designed to free unused ata_queued_cmd object 4779 * in case something prevents using it. 4780 * 4781 * LOCKING: 4782 * spin_lock_irqsave(host lock) 4783 */ 4784 void ata_qc_free(struct ata_queued_cmd *qc) 4785 { 4786 struct ata_port *ap; 4787 unsigned int tag; 4788 4789 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4790 ap = qc->ap; 4791 4792 qc->flags = 0; 4793 tag = qc->tag; 4794 if (likely(ata_tag_valid(tag))) { 4795 qc->tag = ATA_TAG_POISON; 4796 clear_bit(tag, &ap->qc_allocated); 4797 } 4798 } 4799 4800 void __ata_qc_complete(struct ata_queued_cmd *qc) 4801 { 4802 struct ata_port *ap; 4803 struct ata_link *link; 4804 4805 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4806 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4807 ap = qc->ap; 4808 link = qc->dev->link; 4809 4810 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4811 ata_sg_clean(qc); 4812 4813 /* command should be marked inactive atomically with qc completion */ 4814 if (qc->tf.protocol == ATA_PROT_NCQ) { 4815 link->sactive &= ~(1 << qc->tag); 4816 if (!link->sactive) 4817 ap->nr_active_links--; 4818 } else { 4819 link->active_tag = ATA_TAG_POISON; 4820 ap->nr_active_links--; 4821 } 4822 4823 /* clear exclusive status */ 4824 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4825 ap->excl_link == link)) 4826 ap->excl_link = NULL; 4827 4828 /* atapi: mark qc as inactive to prevent the interrupt handler 4829 * from completing the command twice later, before the error handler 4830 * is called. (when rc != 0 and atapi request sense is needed) 4831 */ 4832 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4833 ap->qc_active &= ~(1 << qc->tag); 4834 4835 /* call completion callback */ 4836 qc->complete_fn(qc); 4837 } 4838 4839 static void fill_result_tf(struct ata_queued_cmd *qc) 4840 { 4841 struct ata_port *ap = qc->ap; 4842 4843 qc->result_tf.flags = qc->tf.flags; 4844 ap->ops->qc_fill_rtf(qc); 4845 } 4846 4847 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4848 { 4849 struct ata_device *dev = qc->dev; 4850 4851 if (ata_is_nodata(qc->tf.protocol)) 4852 return; 4853 4854 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4855 return; 4856 4857 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4858 } 4859 4860 /** 4861 * ata_qc_complete - Complete an active ATA command 4862 * @qc: Command to complete 4863 * 4864 * Indicate to the mid and upper layers that an ATA command has 4865 * completed, with either an ok or not-ok status. 4866 * 4867 * Refrain from calling this function multiple times when 4868 * successfully completing multiple NCQ commands. 4869 * ata_qc_complete_multiple() should be used instead, which will 4870 * properly update IRQ expect state. 4871 * 4872 * LOCKING: 4873 * spin_lock_irqsave(host lock) 4874 */ 4875 void ata_qc_complete(struct ata_queued_cmd *qc) 4876 { 4877 struct ata_port *ap = qc->ap; 4878 4879 /* XXX: New EH and old EH use different mechanisms to 4880 * synchronize EH with regular execution path. 4881 * 4882 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4883 * Normal execution path is responsible for not accessing a 4884 * failed qc. libata core enforces the rule by returning NULL 4885 * from ata_qc_from_tag() for failed qcs. 4886 * 4887 * Old EH depends on ata_qc_complete() nullifying completion 4888 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4889 * not synchronize with interrupt handler. Only PIO task is 4890 * taken care of. 4891 */ 4892 if (ap->ops->error_handler) { 4893 struct ata_device *dev = qc->dev; 4894 struct ata_eh_info *ehi = &dev->link->eh_info; 4895 4896 if (unlikely(qc->err_mask)) 4897 qc->flags |= ATA_QCFLAG_FAILED; 4898 4899 /* 4900 * Finish internal commands without any further processing 4901 * and always with the result TF filled. 4902 */ 4903 if (unlikely(ata_tag_internal(qc->tag))) { 4904 fill_result_tf(qc); 4905 __ata_qc_complete(qc); 4906 return; 4907 } 4908 4909 /* 4910 * Non-internal qc has failed. Fill the result TF and 4911 * summon EH. 4912 */ 4913 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4914 fill_result_tf(qc); 4915 ata_qc_schedule_eh(qc); 4916 return; 4917 } 4918 4919 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4920 4921 /* read result TF if requested */ 4922 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4923 fill_result_tf(qc); 4924 4925 /* Some commands need post-processing after successful 4926 * completion. 4927 */ 4928 switch (qc->tf.command) { 4929 case ATA_CMD_SET_FEATURES: 4930 if (qc->tf.feature != SETFEATURES_WC_ON && 4931 qc->tf.feature != SETFEATURES_WC_OFF) 4932 break; 4933 /* fall through */ 4934 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4935 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4936 /* revalidate device */ 4937 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4938 ata_port_schedule_eh(ap); 4939 break; 4940 4941 case ATA_CMD_SLEEP: 4942 dev->flags |= ATA_DFLAG_SLEEPING; 4943 break; 4944 } 4945 4946 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4947 ata_verify_xfer(qc); 4948 4949 __ata_qc_complete(qc); 4950 } else { 4951 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4952 return; 4953 4954 /* read result TF if failed or requested */ 4955 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4956 fill_result_tf(qc); 4957 4958 __ata_qc_complete(qc); 4959 } 4960 } 4961 4962 /** 4963 * ata_qc_complete_multiple - Complete multiple qcs successfully 4964 * @ap: port in question 4965 * @qc_active: new qc_active mask 4966 * 4967 * Complete in-flight commands. This functions is meant to be 4968 * called from low-level driver's interrupt routine to complete 4969 * requests normally. ap->qc_active and @qc_active is compared 4970 * and commands are completed accordingly. 4971 * 4972 * Always use this function when completing multiple NCQ commands 4973 * from IRQ handlers instead of calling ata_qc_complete() 4974 * multiple times to keep IRQ expect status properly in sync. 4975 * 4976 * LOCKING: 4977 * spin_lock_irqsave(host lock) 4978 * 4979 * RETURNS: 4980 * Number of completed commands on success, -errno otherwise. 4981 */ 4982 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4983 { 4984 int nr_done = 0; 4985 u32 done_mask; 4986 4987 done_mask = ap->qc_active ^ qc_active; 4988 4989 if (unlikely(done_mask & qc_active)) { 4990 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 4991 ap->qc_active, qc_active); 4992 return -EINVAL; 4993 } 4994 4995 while (done_mask) { 4996 struct ata_queued_cmd *qc; 4997 unsigned int tag = __ffs(done_mask); 4998 4999 qc = ata_qc_from_tag(ap, tag); 5000 if (qc) { 5001 ata_qc_complete(qc); 5002 nr_done++; 5003 } 5004 done_mask &= ~(1 << tag); 5005 } 5006 5007 return nr_done; 5008 } 5009 5010 /** 5011 * ata_qc_issue - issue taskfile to device 5012 * @qc: command to issue to device 5013 * 5014 * Prepare an ATA command to submission to device. 5015 * This includes mapping the data into a DMA-able 5016 * area, filling in the S/G table, and finally 5017 * writing the taskfile to hardware, starting the command. 5018 * 5019 * LOCKING: 5020 * spin_lock_irqsave(host lock) 5021 */ 5022 void ata_qc_issue(struct ata_queued_cmd *qc) 5023 { 5024 struct ata_port *ap = qc->ap; 5025 struct ata_link *link = qc->dev->link; 5026 u8 prot = qc->tf.protocol; 5027 5028 /* Make sure only one non-NCQ command is outstanding. The 5029 * check is skipped for old EH because it reuses active qc to 5030 * request ATAPI sense. 5031 */ 5032 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5033 5034 if (ata_is_ncq(prot)) { 5035 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5036 5037 if (!link->sactive) 5038 ap->nr_active_links++; 5039 link->sactive |= 1 << qc->tag; 5040 } else { 5041 WARN_ON_ONCE(link->sactive); 5042 5043 ap->nr_active_links++; 5044 link->active_tag = qc->tag; 5045 } 5046 5047 qc->flags |= ATA_QCFLAG_ACTIVE; 5048 ap->qc_active |= 1 << qc->tag; 5049 5050 /* 5051 * We guarantee to LLDs that they will have at least one 5052 * non-zero sg if the command is a data command. 5053 */ 5054 if (WARN_ON_ONCE(ata_is_data(prot) && 5055 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5056 goto sys_err; 5057 5058 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5059 (ap->flags & ATA_FLAG_PIO_DMA))) 5060 if (ata_sg_setup(qc)) 5061 goto sys_err; 5062 5063 /* if device is sleeping, schedule reset and abort the link */ 5064 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5065 link->eh_info.action |= ATA_EH_RESET; 5066 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5067 ata_link_abort(link); 5068 return; 5069 } 5070 5071 ap->ops->qc_prep(qc); 5072 5073 qc->err_mask |= ap->ops->qc_issue(qc); 5074 if (unlikely(qc->err_mask)) 5075 goto err; 5076 return; 5077 5078 sys_err: 5079 qc->err_mask |= AC_ERR_SYSTEM; 5080 err: 5081 ata_qc_complete(qc); 5082 } 5083 5084 /** 5085 * sata_scr_valid - test whether SCRs are accessible 5086 * @link: ATA link to test SCR accessibility for 5087 * 5088 * Test whether SCRs are accessible for @link. 5089 * 5090 * LOCKING: 5091 * None. 5092 * 5093 * RETURNS: 5094 * 1 if SCRs are accessible, 0 otherwise. 5095 */ 5096 int sata_scr_valid(struct ata_link *link) 5097 { 5098 struct ata_port *ap = link->ap; 5099 5100 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5101 } 5102 5103 /** 5104 * sata_scr_read - read SCR register of the specified port 5105 * @link: ATA link to read SCR for 5106 * @reg: SCR to read 5107 * @val: Place to store read value 5108 * 5109 * Read SCR register @reg of @link into *@val. This function is 5110 * guaranteed to succeed if @link is ap->link, the cable type of 5111 * the port is SATA and the port implements ->scr_read. 5112 * 5113 * LOCKING: 5114 * None if @link is ap->link. Kernel thread context otherwise. 5115 * 5116 * RETURNS: 5117 * 0 on success, negative errno on failure. 5118 */ 5119 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5120 { 5121 if (ata_is_host_link(link)) { 5122 if (sata_scr_valid(link)) 5123 return link->ap->ops->scr_read(link, reg, val); 5124 return -EOPNOTSUPP; 5125 } 5126 5127 return sata_pmp_scr_read(link, reg, val); 5128 } 5129 5130 /** 5131 * sata_scr_write - write SCR register of the specified port 5132 * @link: ATA link to write SCR for 5133 * @reg: SCR to write 5134 * @val: value to write 5135 * 5136 * Write @val to SCR register @reg of @link. This function is 5137 * guaranteed to succeed if @link is ap->link, the cable type of 5138 * the port is SATA and the port implements ->scr_read. 5139 * 5140 * LOCKING: 5141 * None if @link is ap->link. Kernel thread context otherwise. 5142 * 5143 * RETURNS: 5144 * 0 on success, negative errno on failure. 5145 */ 5146 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5147 { 5148 if (ata_is_host_link(link)) { 5149 if (sata_scr_valid(link)) 5150 return link->ap->ops->scr_write(link, reg, val); 5151 return -EOPNOTSUPP; 5152 } 5153 5154 return sata_pmp_scr_write(link, reg, val); 5155 } 5156 5157 /** 5158 * sata_scr_write_flush - write SCR register of the specified port and flush 5159 * @link: ATA link to write SCR for 5160 * @reg: SCR to write 5161 * @val: value to write 5162 * 5163 * This function is identical to sata_scr_write() except that this 5164 * function performs flush after writing to the register. 5165 * 5166 * LOCKING: 5167 * None if @link is ap->link. Kernel thread context otherwise. 5168 * 5169 * RETURNS: 5170 * 0 on success, negative errno on failure. 5171 */ 5172 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5173 { 5174 if (ata_is_host_link(link)) { 5175 int rc; 5176 5177 if (sata_scr_valid(link)) { 5178 rc = link->ap->ops->scr_write(link, reg, val); 5179 if (rc == 0) 5180 rc = link->ap->ops->scr_read(link, reg, &val); 5181 return rc; 5182 } 5183 return -EOPNOTSUPP; 5184 } 5185 5186 return sata_pmp_scr_write(link, reg, val); 5187 } 5188 5189 /** 5190 * ata_phys_link_online - test whether the given link is online 5191 * @link: ATA link to test 5192 * 5193 * Test whether @link is online. Note that this function returns 5194 * 0 if online status of @link cannot be obtained, so 5195 * ata_link_online(link) != !ata_link_offline(link). 5196 * 5197 * LOCKING: 5198 * None. 5199 * 5200 * RETURNS: 5201 * True if the port online status is available and online. 5202 */ 5203 bool ata_phys_link_online(struct ata_link *link) 5204 { 5205 u32 sstatus; 5206 5207 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5208 ata_sstatus_online(sstatus)) 5209 return true; 5210 return false; 5211 } 5212 5213 /** 5214 * ata_phys_link_offline - test whether the given link is offline 5215 * @link: ATA link to test 5216 * 5217 * Test whether @link is offline. Note that this function 5218 * returns 0 if offline status of @link cannot be obtained, so 5219 * ata_link_online(link) != !ata_link_offline(link). 5220 * 5221 * LOCKING: 5222 * None. 5223 * 5224 * RETURNS: 5225 * True if the port offline status is available and offline. 5226 */ 5227 bool ata_phys_link_offline(struct ata_link *link) 5228 { 5229 u32 sstatus; 5230 5231 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5232 !ata_sstatus_online(sstatus)) 5233 return true; 5234 return false; 5235 } 5236 5237 /** 5238 * ata_link_online - test whether the given link is online 5239 * @link: ATA link to test 5240 * 5241 * Test whether @link is online. This is identical to 5242 * ata_phys_link_online() when there's no slave link. When 5243 * there's a slave link, this function should only be called on 5244 * the master link and will return true if any of M/S links is 5245 * online. 5246 * 5247 * LOCKING: 5248 * None. 5249 * 5250 * RETURNS: 5251 * True if the port online status is available and online. 5252 */ 5253 bool ata_link_online(struct ata_link *link) 5254 { 5255 struct ata_link *slave = link->ap->slave_link; 5256 5257 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5258 5259 return ata_phys_link_online(link) || 5260 (slave && ata_phys_link_online(slave)); 5261 } 5262 5263 /** 5264 * ata_link_offline - test whether the given link is offline 5265 * @link: ATA link to test 5266 * 5267 * Test whether @link is offline. This is identical to 5268 * ata_phys_link_offline() when there's no slave link. When 5269 * there's a slave link, this function should only be called on 5270 * the master link and will return true if both M/S links are 5271 * offline. 5272 * 5273 * LOCKING: 5274 * None. 5275 * 5276 * RETURNS: 5277 * True if the port offline status is available and offline. 5278 */ 5279 bool ata_link_offline(struct ata_link *link) 5280 { 5281 struct ata_link *slave = link->ap->slave_link; 5282 5283 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5284 5285 return ata_phys_link_offline(link) && 5286 (!slave || ata_phys_link_offline(slave)); 5287 } 5288 5289 #ifdef CONFIG_PM 5290 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5291 unsigned int action, unsigned int ehi_flags, 5292 int *async) 5293 { 5294 struct ata_link *link; 5295 unsigned long flags; 5296 int rc = 0; 5297 5298 /* Previous resume operation might still be in 5299 * progress. Wait for PM_PENDING to clear. 5300 */ 5301 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5302 if (async) { 5303 *async = -EAGAIN; 5304 return 0; 5305 } 5306 ata_port_wait_eh(ap); 5307 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5308 } 5309 5310 /* request PM ops to EH */ 5311 spin_lock_irqsave(ap->lock, flags); 5312 5313 ap->pm_mesg = mesg; 5314 if (async) 5315 ap->pm_result = async; 5316 else 5317 ap->pm_result = &rc; 5318 5319 ap->pflags |= ATA_PFLAG_PM_PENDING; 5320 ata_for_each_link(link, ap, HOST_FIRST) { 5321 link->eh_info.action |= action; 5322 link->eh_info.flags |= ehi_flags; 5323 } 5324 5325 ata_port_schedule_eh(ap); 5326 5327 spin_unlock_irqrestore(ap->lock, flags); 5328 5329 /* wait and check result */ 5330 if (!async) { 5331 ata_port_wait_eh(ap); 5332 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5333 } 5334 5335 return rc; 5336 } 5337 5338 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async) 5339 { 5340 /* 5341 * On some hardware, device fails to respond after spun down 5342 * for suspend. As the device won't be used before being 5343 * resumed, we don't need to touch the device. Ask EH to skip 5344 * the usual stuff and proceed directly to suspend. 5345 * 5346 * http://thread.gmane.org/gmane.linux.ide/46764 5347 */ 5348 unsigned int ehi_flags = ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY | 5349 ATA_EHI_NO_RECOVERY; 5350 return ata_port_request_pm(ap, mesg, 0, ehi_flags, async); 5351 } 5352 5353 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg) 5354 { 5355 struct ata_port *ap = to_ata_port(dev); 5356 5357 return __ata_port_suspend_common(ap, mesg, NULL); 5358 } 5359 5360 static int ata_port_suspend(struct device *dev) 5361 { 5362 if (pm_runtime_suspended(dev)) 5363 return 0; 5364 5365 return ata_port_suspend_common(dev, PMSG_SUSPEND); 5366 } 5367 5368 static int ata_port_do_freeze(struct device *dev) 5369 { 5370 if (pm_runtime_suspended(dev)) 5371 return 0; 5372 5373 return ata_port_suspend_common(dev, PMSG_FREEZE); 5374 } 5375 5376 static int ata_port_poweroff(struct device *dev) 5377 { 5378 return ata_port_suspend_common(dev, PMSG_HIBERNATE); 5379 } 5380 5381 static int __ata_port_resume_common(struct ata_port *ap, pm_message_t mesg, 5382 int *async) 5383 { 5384 int rc; 5385 5386 rc = ata_port_request_pm(ap, mesg, ATA_EH_RESET, 5387 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async); 5388 return rc; 5389 } 5390 5391 static int ata_port_resume_common(struct device *dev, pm_message_t mesg) 5392 { 5393 struct ata_port *ap = to_ata_port(dev); 5394 5395 return __ata_port_resume_common(ap, mesg, NULL); 5396 } 5397 5398 static int ata_port_resume(struct device *dev) 5399 { 5400 int rc; 5401 5402 rc = ata_port_resume_common(dev, PMSG_RESUME); 5403 if (!rc) { 5404 pm_runtime_disable(dev); 5405 pm_runtime_set_active(dev); 5406 pm_runtime_enable(dev); 5407 } 5408 5409 return rc; 5410 } 5411 5412 /* 5413 * For ODDs, the upper layer will poll for media change every few seconds, 5414 * which will make it enter and leave suspend state every few seconds. And 5415 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5416 * is very little and the ODD may malfunction after constantly being reset. 5417 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5418 * ODD is attached to the port. 5419 */ 5420 static int ata_port_runtime_idle(struct device *dev) 5421 { 5422 struct ata_port *ap = to_ata_port(dev); 5423 struct ata_link *link; 5424 struct ata_device *adev; 5425 5426 ata_for_each_link(link, ap, HOST_FIRST) { 5427 ata_for_each_dev(adev, link, ENABLED) 5428 if (adev->class == ATA_DEV_ATAPI && 5429 !zpodd_dev_enabled(adev)) 5430 return -EBUSY; 5431 } 5432 5433 return pm_runtime_suspend(dev); 5434 } 5435 5436 static int ata_port_runtime_suspend(struct device *dev) 5437 { 5438 return ata_port_suspend_common(dev, PMSG_AUTO_SUSPEND); 5439 } 5440 5441 static int ata_port_runtime_resume(struct device *dev) 5442 { 5443 return ata_port_resume_common(dev, PMSG_AUTO_RESUME); 5444 } 5445 5446 static const struct dev_pm_ops ata_port_pm_ops = { 5447 .suspend = ata_port_suspend, 5448 .resume = ata_port_resume, 5449 .freeze = ata_port_do_freeze, 5450 .thaw = ata_port_resume, 5451 .poweroff = ata_port_poweroff, 5452 .restore = ata_port_resume, 5453 5454 .runtime_suspend = ata_port_runtime_suspend, 5455 .runtime_resume = ata_port_runtime_resume, 5456 .runtime_idle = ata_port_runtime_idle, 5457 }; 5458 5459 /* sas ports don't participate in pm runtime management of ata_ports, 5460 * and need to resume ata devices at the domain level, not the per-port 5461 * level. sas suspend/resume is async to allow parallel port recovery 5462 * since sas has multiple ata_port instances per Scsi_Host. 5463 */ 5464 int ata_sas_port_async_suspend(struct ata_port *ap, int *async) 5465 { 5466 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async); 5467 } 5468 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend); 5469 5470 int ata_sas_port_async_resume(struct ata_port *ap, int *async) 5471 { 5472 return __ata_port_resume_common(ap, PMSG_RESUME, async); 5473 } 5474 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume); 5475 5476 5477 /** 5478 * ata_host_suspend - suspend host 5479 * @host: host to suspend 5480 * @mesg: PM message 5481 * 5482 * Suspend @host. Actual operation is performed by port suspend. 5483 */ 5484 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5485 { 5486 host->dev->power.power_state = mesg; 5487 return 0; 5488 } 5489 5490 /** 5491 * ata_host_resume - resume host 5492 * @host: host to resume 5493 * 5494 * Resume @host. Actual operation is performed by port resume. 5495 */ 5496 void ata_host_resume(struct ata_host *host) 5497 { 5498 host->dev->power.power_state = PMSG_ON; 5499 } 5500 #endif 5501 5502 struct device_type ata_port_type = { 5503 .name = "ata_port", 5504 #ifdef CONFIG_PM 5505 .pm = &ata_port_pm_ops, 5506 #endif 5507 }; 5508 5509 /** 5510 * ata_dev_init - Initialize an ata_device structure 5511 * @dev: Device structure to initialize 5512 * 5513 * Initialize @dev in preparation for probing. 5514 * 5515 * LOCKING: 5516 * Inherited from caller. 5517 */ 5518 void ata_dev_init(struct ata_device *dev) 5519 { 5520 struct ata_link *link = ata_dev_phys_link(dev); 5521 struct ata_port *ap = link->ap; 5522 unsigned long flags; 5523 5524 /* SATA spd limit is bound to the attached device, reset together */ 5525 link->sata_spd_limit = link->hw_sata_spd_limit; 5526 link->sata_spd = 0; 5527 5528 /* High bits of dev->flags are used to record warm plug 5529 * requests which occur asynchronously. Synchronize using 5530 * host lock. 5531 */ 5532 spin_lock_irqsave(ap->lock, flags); 5533 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5534 dev->horkage = 0; 5535 spin_unlock_irqrestore(ap->lock, flags); 5536 5537 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5538 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5539 dev->pio_mask = UINT_MAX; 5540 dev->mwdma_mask = UINT_MAX; 5541 dev->udma_mask = UINT_MAX; 5542 } 5543 5544 /** 5545 * ata_link_init - Initialize an ata_link structure 5546 * @ap: ATA port link is attached to 5547 * @link: Link structure to initialize 5548 * @pmp: Port multiplier port number 5549 * 5550 * Initialize @link. 5551 * 5552 * LOCKING: 5553 * Kernel thread context (may sleep) 5554 */ 5555 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5556 { 5557 int i; 5558 5559 /* clear everything except for devices */ 5560 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5561 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5562 5563 link->ap = ap; 5564 link->pmp = pmp; 5565 link->active_tag = ATA_TAG_POISON; 5566 link->hw_sata_spd_limit = UINT_MAX; 5567 5568 /* can't use iterator, ap isn't initialized yet */ 5569 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5570 struct ata_device *dev = &link->device[i]; 5571 5572 dev->link = link; 5573 dev->devno = dev - link->device; 5574 #ifdef CONFIG_ATA_ACPI 5575 dev->gtf_filter = ata_acpi_gtf_filter; 5576 #endif 5577 ata_dev_init(dev); 5578 } 5579 } 5580 5581 /** 5582 * sata_link_init_spd - Initialize link->sata_spd_limit 5583 * @link: Link to configure sata_spd_limit for 5584 * 5585 * Initialize @link->[hw_]sata_spd_limit to the currently 5586 * configured value. 5587 * 5588 * LOCKING: 5589 * Kernel thread context (may sleep). 5590 * 5591 * RETURNS: 5592 * 0 on success, -errno on failure. 5593 */ 5594 int sata_link_init_spd(struct ata_link *link) 5595 { 5596 u8 spd; 5597 int rc; 5598 5599 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5600 if (rc) 5601 return rc; 5602 5603 spd = (link->saved_scontrol >> 4) & 0xf; 5604 if (spd) 5605 link->hw_sata_spd_limit &= (1 << spd) - 1; 5606 5607 ata_force_link_limits(link); 5608 5609 link->sata_spd_limit = link->hw_sata_spd_limit; 5610 5611 return 0; 5612 } 5613 5614 /** 5615 * ata_port_alloc - allocate and initialize basic ATA port resources 5616 * @host: ATA host this allocated port belongs to 5617 * 5618 * Allocate and initialize basic ATA port resources. 5619 * 5620 * RETURNS: 5621 * Allocate ATA port on success, NULL on failure. 5622 * 5623 * LOCKING: 5624 * Inherited from calling layer (may sleep). 5625 */ 5626 struct ata_port *ata_port_alloc(struct ata_host *host) 5627 { 5628 struct ata_port *ap; 5629 5630 DPRINTK("ENTER\n"); 5631 5632 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5633 if (!ap) 5634 return NULL; 5635 5636 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5637 ap->lock = &host->lock; 5638 ap->print_id = -1; 5639 ap->host = host; 5640 ap->dev = host->dev; 5641 5642 #if defined(ATA_VERBOSE_DEBUG) 5643 /* turn on all debugging levels */ 5644 ap->msg_enable = 0x00FF; 5645 #elif defined(ATA_DEBUG) 5646 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5647 #else 5648 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5649 #endif 5650 5651 mutex_init(&ap->scsi_scan_mutex); 5652 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5653 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5654 INIT_LIST_HEAD(&ap->eh_done_q); 5655 init_waitqueue_head(&ap->eh_wait_q); 5656 init_completion(&ap->park_req_pending); 5657 init_timer_deferrable(&ap->fastdrain_timer); 5658 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5659 ap->fastdrain_timer.data = (unsigned long)ap; 5660 5661 ap->cbl = ATA_CBL_NONE; 5662 5663 ata_link_init(ap, &ap->link, 0); 5664 5665 #ifdef ATA_IRQ_TRAP 5666 ap->stats.unhandled_irq = 1; 5667 ap->stats.idle_irq = 1; 5668 #endif 5669 ata_sff_port_init(ap); 5670 5671 return ap; 5672 } 5673 5674 static void ata_host_release(struct device *gendev, void *res) 5675 { 5676 struct ata_host *host = dev_get_drvdata(gendev); 5677 int i; 5678 5679 for (i = 0; i < host->n_ports; i++) { 5680 struct ata_port *ap = host->ports[i]; 5681 5682 if (!ap) 5683 continue; 5684 5685 if (ap->scsi_host) 5686 scsi_host_put(ap->scsi_host); 5687 5688 kfree(ap->pmp_link); 5689 kfree(ap->slave_link); 5690 kfree(ap); 5691 host->ports[i] = NULL; 5692 } 5693 5694 dev_set_drvdata(gendev, NULL); 5695 } 5696 5697 /** 5698 * ata_host_alloc - allocate and init basic ATA host resources 5699 * @dev: generic device this host is associated with 5700 * @max_ports: maximum number of ATA ports associated with this host 5701 * 5702 * Allocate and initialize basic ATA host resources. LLD calls 5703 * this function to allocate a host, initializes it fully and 5704 * attaches it using ata_host_register(). 5705 * 5706 * @max_ports ports are allocated and host->n_ports is 5707 * initialized to @max_ports. The caller is allowed to decrease 5708 * host->n_ports before calling ata_host_register(). The unused 5709 * ports will be automatically freed on registration. 5710 * 5711 * RETURNS: 5712 * Allocate ATA host on success, NULL on failure. 5713 * 5714 * LOCKING: 5715 * Inherited from calling layer (may sleep). 5716 */ 5717 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5718 { 5719 struct ata_host *host; 5720 size_t sz; 5721 int i; 5722 5723 DPRINTK("ENTER\n"); 5724 5725 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5726 return NULL; 5727 5728 /* alloc a container for our list of ATA ports (buses) */ 5729 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5730 /* alloc a container for our list of ATA ports (buses) */ 5731 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5732 if (!host) 5733 goto err_out; 5734 5735 devres_add(dev, host); 5736 dev_set_drvdata(dev, host); 5737 5738 spin_lock_init(&host->lock); 5739 mutex_init(&host->eh_mutex); 5740 host->dev = dev; 5741 host->n_ports = max_ports; 5742 5743 /* allocate ports bound to this host */ 5744 for (i = 0; i < max_ports; i++) { 5745 struct ata_port *ap; 5746 5747 ap = ata_port_alloc(host); 5748 if (!ap) 5749 goto err_out; 5750 5751 ap->port_no = i; 5752 host->ports[i] = ap; 5753 } 5754 5755 devres_remove_group(dev, NULL); 5756 return host; 5757 5758 err_out: 5759 devres_release_group(dev, NULL); 5760 return NULL; 5761 } 5762 5763 /** 5764 * ata_host_alloc_pinfo - alloc host and init with port_info array 5765 * @dev: generic device this host is associated with 5766 * @ppi: array of ATA port_info to initialize host with 5767 * @n_ports: number of ATA ports attached to this host 5768 * 5769 * Allocate ATA host and initialize with info from @ppi. If NULL 5770 * terminated, @ppi may contain fewer entries than @n_ports. The 5771 * last entry will be used for the remaining ports. 5772 * 5773 * RETURNS: 5774 * Allocate ATA host on success, NULL on failure. 5775 * 5776 * LOCKING: 5777 * Inherited from calling layer (may sleep). 5778 */ 5779 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5780 const struct ata_port_info * const * ppi, 5781 int n_ports) 5782 { 5783 const struct ata_port_info *pi; 5784 struct ata_host *host; 5785 int i, j; 5786 5787 host = ata_host_alloc(dev, n_ports); 5788 if (!host) 5789 return NULL; 5790 5791 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5792 struct ata_port *ap = host->ports[i]; 5793 5794 if (ppi[j]) 5795 pi = ppi[j++]; 5796 5797 ap->pio_mask = pi->pio_mask; 5798 ap->mwdma_mask = pi->mwdma_mask; 5799 ap->udma_mask = pi->udma_mask; 5800 ap->flags |= pi->flags; 5801 ap->link.flags |= pi->link_flags; 5802 ap->ops = pi->port_ops; 5803 5804 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5805 host->ops = pi->port_ops; 5806 } 5807 5808 return host; 5809 } 5810 5811 /** 5812 * ata_slave_link_init - initialize slave link 5813 * @ap: port to initialize slave link for 5814 * 5815 * Create and initialize slave link for @ap. This enables slave 5816 * link handling on the port. 5817 * 5818 * In libata, a port contains links and a link contains devices. 5819 * There is single host link but if a PMP is attached to it, 5820 * there can be multiple fan-out links. On SATA, there's usually 5821 * a single device connected to a link but PATA and SATA 5822 * controllers emulating TF based interface can have two - master 5823 * and slave. 5824 * 5825 * However, there are a few controllers which don't fit into this 5826 * abstraction too well - SATA controllers which emulate TF 5827 * interface with both master and slave devices but also have 5828 * separate SCR register sets for each device. These controllers 5829 * need separate links for physical link handling 5830 * (e.g. onlineness, link speed) but should be treated like a 5831 * traditional M/S controller for everything else (e.g. command 5832 * issue, softreset). 5833 * 5834 * slave_link is libata's way of handling this class of 5835 * controllers without impacting core layer too much. For 5836 * anything other than physical link handling, the default host 5837 * link is used for both master and slave. For physical link 5838 * handling, separate @ap->slave_link is used. All dirty details 5839 * are implemented inside libata core layer. From LLD's POV, the 5840 * only difference is that prereset, hardreset and postreset are 5841 * called once more for the slave link, so the reset sequence 5842 * looks like the following. 5843 * 5844 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5845 * softreset(M) -> postreset(M) -> postreset(S) 5846 * 5847 * Note that softreset is called only for the master. Softreset 5848 * resets both M/S by definition, so SRST on master should handle 5849 * both (the standard method will work just fine). 5850 * 5851 * LOCKING: 5852 * Should be called before host is registered. 5853 * 5854 * RETURNS: 5855 * 0 on success, -errno on failure. 5856 */ 5857 int ata_slave_link_init(struct ata_port *ap) 5858 { 5859 struct ata_link *link; 5860 5861 WARN_ON(ap->slave_link); 5862 WARN_ON(ap->flags & ATA_FLAG_PMP); 5863 5864 link = kzalloc(sizeof(*link), GFP_KERNEL); 5865 if (!link) 5866 return -ENOMEM; 5867 5868 ata_link_init(ap, link, 1); 5869 ap->slave_link = link; 5870 return 0; 5871 } 5872 5873 static void ata_host_stop(struct device *gendev, void *res) 5874 { 5875 struct ata_host *host = dev_get_drvdata(gendev); 5876 int i; 5877 5878 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5879 5880 for (i = 0; i < host->n_ports; i++) { 5881 struct ata_port *ap = host->ports[i]; 5882 5883 if (ap->ops->port_stop) 5884 ap->ops->port_stop(ap); 5885 } 5886 5887 if (host->ops->host_stop) 5888 host->ops->host_stop(host); 5889 } 5890 5891 /** 5892 * ata_finalize_port_ops - finalize ata_port_operations 5893 * @ops: ata_port_operations to finalize 5894 * 5895 * An ata_port_operations can inherit from another ops and that 5896 * ops can again inherit from another. This can go on as many 5897 * times as necessary as long as there is no loop in the 5898 * inheritance chain. 5899 * 5900 * Ops tables are finalized when the host is started. NULL or 5901 * unspecified entries are inherited from the closet ancestor 5902 * which has the method and the entry is populated with it. 5903 * After finalization, the ops table directly points to all the 5904 * methods and ->inherits is no longer necessary and cleared. 5905 * 5906 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5907 * 5908 * LOCKING: 5909 * None. 5910 */ 5911 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5912 { 5913 static DEFINE_SPINLOCK(lock); 5914 const struct ata_port_operations *cur; 5915 void **begin = (void **)ops; 5916 void **end = (void **)&ops->inherits; 5917 void **pp; 5918 5919 if (!ops || !ops->inherits) 5920 return; 5921 5922 spin_lock(&lock); 5923 5924 for (cur = ops->inherits; cur; cur = cur->inherits) { 5925 void **inherit = (void **)cur; 5926 5927 for (pp = begin; pp < end; pp++, inherit++) 5928 if (!*pp) 5929 *pp = *inherit; 5930 } 5931 5932 for (pp = begin; pp < end; pp++) 5933 if (IS_ERR(*pp)) 5934 *pp = NULL; 5935 5936 ops->inherits = NULL; 5937 5938 spin_unlock(&lock); 5939 } 5940 5941 /** 5942 * ata_host_start - start and freeze ports of an ATA host 5943 * @host: ATA host to start ports for 5944 * 5945 * Start and then freeze ports of @host. Started status is 5946 * recorded in host->flags, so this function can be called 5947 * multiple times. Ports are guaranteed to get started only 5948 * once. If host->ops isn't initialized yet, its set to the 5949 * first non-dummy port ops. 5950 * 5951 * LOCKING: 5952 * Inherited from calling layer (may sleep). 5953 * 5954 * RETURNS: 5955 * 0 if all ports are started successfully, -errno otherwise. 5956 */ 5957 int ata_host_start(struct ata_host *host) 5958 { 5959 int have_stop = 0; 5960 void *start_dr = NULL; 5961 int i, rc; 5962 5963 if (host->flags & ATA_HOST_STARTED) 5964 return 0; 5965 5966 ata_finalize_port_ops(host->ops); 5967 5968 for (i = 0; i < host->n_ports; i++) { 5969 struct ata_port *ap = host->ports[i]; 5970 5971 ata_finalize_port_ops(ap->ops); 5972 5973 if (!host->ops && !ata_port_is_dummy(ap)) 5974 host->ops = ap->ops; 5975 5976 if (ap->ops->port_stop) 5977 have_stop = 1; 5978 } 5979 5980 if (host->ops->host_stop) 5981 have_stop = 1; 5982 5983 if (have_stop) { 5984 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5985 if (!start_dr) 5986 return -ENOMEM; 5987 } 5988 5989 for (i = 0; i < host->n_ports; i++) { 5990 struct ata_port *ap = host->ports[i]; 5991 5992 if (ap->ops->port_start) { 5993 rc = ap->ops->port_start(ap); 5994 if (rc) { 5995 if (rc != -ENODEV) 5996 dev_err(host->dev, 5997 "failed to start port %d (errno=%d)\n", 5998 i, rc); 5999 goto err_out; 6000 } 6001 } 6002 ata_eh_freeze_port(ap); 6003 } 6004 6005 if (start_dr) 6006 devres_add(host->dev, start_dr); 6007 host->flags |= ATA_HOST_STARTED; 6008 return 0; 6009 6010 err_out: 6011 while (--i >= 0) { 6012 struct ata_port *ap = host->ports[i]; 6013 6014 if (ap->ops->port_stop) 6015 ap->ops->port_stop(ap); 6016 } 6017 devres_free(start_dr); 6018 return rc; 6019 } 6020 6021 /** 6022 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6023 * @host: host to initialize 6024 * @dev: device host is attached to 6025 * @ops: port_ops 6026 * 6027 */ 6028 void ata_host_init(struct ata_host *host, struct device *dev, 6029 struct ata_port_operations *ops) 6030 { 6031 spin_lock_init(&host->lock); 6032 mutex_init(&host->eh_mutex); 6033 host->dev = dev; 6034 host->ops = ops; 6035 } 6036 6037 void __ata_port_probe(struct ata_port *ap) 6038 { 6039 struct ata_eh_info *ehi = &ap->link.eh_info; 6040 unsigned long flags; 6041 6042 /* kick EH for boot probing */ 6043 spin_lock_irqsave(ap->lock, flags); 6044 6045 ehi->probe_mask |= ATA_ALL_DEVICES; 6046 ehi->action |= ATA_EH_RESET; 6047 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6048 6049 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6050 ap->pflags |= ATA_PFLAG_LOADING; 6051 ata_port_schedule_eh(ap); 6052 6053 spin_unlock_irqrestore(ap->lock, flags); 6054 } 6055 6056 int ata_port_probe(struct ata_port *ap) 6057 { 6058 int rc = 0; 6059 6060 if (ap->ops->error_handler) { 6061 __ata_port_probe(ap); 6062 ata_port_wait_eh(ap); 6063 } else { 6064 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6065 rc = ata_bus_probe(ap); 6066 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6067 } 6068 return rc; 6069 } 6070 6071 6072 static void async_port_probe(void *data, async_cookie_t cookie) 6073 { 6074 struct ata_port *ap = data; 6075 6076 /* 6077 * If we're not allowed to scan this host in parallel, 6078 * we need to wait until all previous scans have completed 6079 * before going further. 6080 * Jeff Garzik says this is only within a controller, so we 6081 * don't need to wait for port 0, only for later ports. 6082 */ 6083 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6084 async_synchronize_cookie(cookie); 6085 6086 (void)ata_port_probe(ap); 6087 6088 /* in order to keep device order, we need to synchronize at this point */ 6089 async_synchronize_cookie(cookie); 6090 6091 ata_scsi_scan_host(ap, 1); 6092 } 6093 6094 /** 6095 * ata_host_register - register initialized ATA host 6096 * @host: ATA host to register 6097 * @sht: template for SCSI host 6098 * 6099 * Register initialized ATA host. @host is allocated using 6100 * ata_host_alloc() and fully initialized by LLD. This function 6101 * starts ports, registers @host with ATA and SCSI layers and 6102 * probe registered devices. 6103 * 6104 * LOCKING: 6105 * Inherited from calling layer (may sleep). 6106 * 6107 * RETURNS: 6108 * 0 on success, -errno otherwise. 6109 */ 6110 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6111 { 6112 int i, rc; 6113 6114 /* host must have been started */ 6115 if (!(host->flags & ATA_HOST_STARTED)) { 6116 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6117 WARN_ON(1); 6118 return -EINVAL; 6119 } 6120 6121 /* Blow away unused ports. This happens when LLD can't 6122 * determine the exact number of ports to allocate at 6123 * allocation time. 6124 */ 6125 for (i = host->n_ports; host->ports[i]; i++) 6126 kfree(host->ports[i]); 6127 6128 /* give ports names and add SCSI hosts */ 6129 for (i = 0; i < host->n_ports; i++) 6130 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6131 6132 6133 /* Create associated sysfs transport objects */ 6134 for (i = 0; i < host->n_ports; i++) { 6135 rc = ata_tport_add(host->dev,host->ports[i]); 6136 if (rc) { 6137 goto err_tadd; 6138 } 6139 } 6140 6141 rc = ata_scsi_add_hosts(host, sht); 6142 if (rc) 6143 goto err_tadd; 6144 6145 /* set cable, sata_spd_limit and report */ 6146 for (i = 0; i < host->n_ports; i++) { 6147 struct ata_port *ap = host->ports[i]; 6148 unsigned long xfer_mask; 6149 6150 /* set SATA cable type if still unset */ 6151 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6152 ap->cbl = ATA_CBL_SATA; 6153 6154 /* init sata_spd_limit to the current value */ 6155 sata_link_init_spd(&ap->link); 6156 if (ap->slave_link) 6157 sata_link_init_spd(ap->slave_link); 6158 6159 /* print per-port info to dmesg */ 6160 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6161 ap->udma_mask); 6162 6163 if (!ata_port_is_dummy(ap)) { 6164 ata_port_info(ap, "%cATA max %s %s\n", 6165 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6166 ata_mode_string(xfer_mask), 6167 ap->link.eh_info.desc); 6168 ata_ehi_clear_desc(&ap->link.eh_info); 6169 } else 6170 ata_port_info(ap, "DUMMY\n"); 6171 } 6172 6173 /* perform each probe asynchronously */ 6174 for (i = 0; i < host->n_ports; i++) { 6175 struct ata_port *ap = host->ports[i]; 6176 async_schedule(async_port_probe, ap); 6177 } 6178 6179 return 0; 6180 6181 err_tadd: 6182 while (--i >= 0) { 6183 ata_tport_delete(host->ports[i]); 6184 } 6185 return rc; 6186 6187 } 6188 6189 /** 6190 * ata_host_activate - start host, request IRQ and register it 6191 * @host: target ATA host 6192 * @irq: IRQ to request 6193 * @irq_handler: irq_handler used when requesting IRQ 6194 * @irq_flags: irq_flags used when requesting IRQ 6195 * @sht: scsi_host_template to use when registering the host 6196 * 6197 * After allocating an ATA host and initializing it, most libata 6198 * LLDs perform three steps to activate the host - start host, 6199 * request IRQ and register it. This helper takes necessasry 6200 * arguments and performs the three steps in one go. 6201 * 6202 * An invalid IRQ skips the IRQ registration and expects the host to 6203 * have set polling mode on the port. In this case, @irq_handler 6204 * should be NULL. 6205 * 6206 * LOCKING: 6207 * Inherited from calling layer (may sleep). 6208 * 6209 * RETURNS: 6210 * 0 on success, -errno otherwise. 6211 */ 6212 int ata_host_activate(struct ata_host *host, int irq, 6213 irq_handler_t irq_handler, unsigned long irq_flags, 6214 struct scsi_host_template *sht) 6215 { 6216 int i, rc; 6217 6218 rc = ata_host_start(host); 6219 if (rc) 6220 return rc; 6221 6222 /* Special case for polling mode */ 6223 if (!irq) { 6224 WARN_ON(irq_handler); 6225 return ata_host_register(host, sht); 6226 } 6227 6228 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6229 dev_driver_string(host->dev), host); 6230 if (rc) 6231 return rc; 6232 6233 for (i = 0; i < host->n_ports; i++) 6234 ata_port_desc(host->ports[i], "irq %d", irq); 6235 6236 rc = ata_host_register(host, sht); 6237 /* if failed, just free the IRQ and leave ports alone */ 6238 if (rc) 6239 devm_free_irq(host->dev, irq, host); 6240 6241 return rc; 6242 } 6243 6244 /** 6245 * ata_port_detach - Detach ATA port in prepration of device removal 6246 * @ap: ATA port to be detached 6247 * 6248 * Detach all ATA devices and the associated SCSI devices of @ap; 6249 * then, remove the associated SCSI host. @ap is guaranteed to 6250 * be quiescent on return from this function. 6251 * 6252 * LOCKING: 6253 * Kernel thread context (may sleep). 6254 */ 6255 static void ata_port_detach(struct ata_port *ap) 6256 { 6257 unsigned long flags; 6258 6259 if (!ap->ops->error_handler) 6260 goto skip_eh; 6261 6262 /* tell EH we're leaving & flush EH */ 6263 spin_lock_irqsave(ap->lock, flags); 6264 ap->pflags |= ATA_PFLAG_UNLOADING; 6265 ata_port_schedule_eh(ap); 6266 spin_unlock_irqrestore(ap->lock, flags); 6267 6268 /* wait till EH commits suicide */ 6269 ata_port_wait_eh(ap); 6270 6271 /* it better be dead now */ 6272 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6273 6274 cancel_delayed_work_sync(&ap->hotplug_task); 6275 6276 skip_eh: 6277 if (ap->pmp_link) { 6278 int i; 6279 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6280 ata_tlink_delete(&ap->pmp_link[i]); 6281 } 6282 ata_tport_delete(ap); 6283 6284 /* remove the associated SCSI host */ 6285 scsi_remove_host(ap->scsi_host); 6286 } 6287 6288 /** 6289 * ata_host_detach - Detach all ports of an ATA host 6290 * @host: Host to detach 6291 * 6292 * Detach all ports of @host. 6293 * 6294 * LOCKING: 6295 * Kernel thread context (may sleep). 6296 */ 6297 void ata_host_detach(struct ata_host *host) 6298 { 6299 int i; 6300 6301 for (i = 0; i < host->n_ports; i++) 6302 ata_port_detach(host->ports[i]); 6303 6304 /* the host is dead now, dissociate ACPI */ 6305 ata_acpi_dissociate(host); 6306 } 6307 6308 #ifdef CONFIG_PCI 6309 6310 /** 6311 * ata_pci_remove_one - PCI layer callback for device removal 6312 * @pdev: PCI device that was removed 6313 * 6314 * PCI layer indicates to libata via this hook that hot-unplug or 6315 * module unload event has occurred. Detach all ports. Resource 6316 * release is handled via devres. 6317 * 6318 * LOCKING: 6319 * Inherited from PCI layer (may sleep). 6320 */ 6321 void ata_pci_remove_one(struct pci_dev *pdev) 6322 { 6323 struct ata_host *host = pci_get_drvdata(pdev); 6324 6325 ata_host_detach(host); 6326 } 6327 6328 /* move to PCI subsystem */ 6329 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6330 { 6331 unsigned long tmp = 0; 6332 6333 switch (bits->width) { 6334 case 1: { 6335 u8 tmp8 = 0; 6336 pci_read_config_byte(pdev, bits->reg, &tmp8); 6337 tmp = tmp8; 6338 break; 6339 } 6340 case 2: { 6341 u16 tmp16 = 0; 6342 pci_read_config_word(pdev, bits->reg, &tmp16); 6343 tmp = tmp16; 6344 break; 6345 } 6346 case 4: { 6347 u32 tmp32 = 0; 6348 pci_read_config_dword(pdev, bits->reg, &tmp32); 6349 tmp = tmp32; 6350 break; 6351 } 6352 6353 default: 6354 return -EINVAL; 6355 } 6356 6357 tmp &= bits->mask; 6358 6359 return (tmp == bits->val) ? 1 : 0; 6360 } 6361 6362 #ifdef CONFIG_PM 6363 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6364 { 6365 pci_save_state(pdev); 6366 pci_disable_device(pdev); 6367 6368 if (mesg.event & PM_EVENT_SLEEP) 6369 pci_set_power_state(pdev, PCI_D3hot); 6370 } 6371 6372 int ata_pci_device_do_resume(struct pci_dev *pdev) 6373 { 6374 int rc; 6375 6376 pci_set_power_state(pdev, PCI_D0); 6377 pci_restore_state(pdev); 6378 6379 rc = pcim_enable_device(pdev); 6380 if (rc) { 6381 dev_err(&pdev->dev, 6382 "failed to enable device after resume (%d)\n", rc); 6383 return rc; 6384 } 6385 6386 pci_set_master(pdev); 6387 return 0; 6388 } 6389 6390 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6391 { 6392 struct ata_host *host = pci_get_drvdata(pdev); 6393 int rc = 0; 6394 6395 rc = ata_host_suspend(host, mesg); 6396 if (rc) 6397 return rc; 6398 6399 ata_pci_device_do_suspend(pdev, mesg); 6400 6401 return 0; 6402 } 6403 6404 int ata_pci_device_resume(struct pci_dev *pdev) 6405 { 6406 struct ata_host *host = pci_get_drvdata(pdev); 6407 int rc; 6408 6409 rc = ata_pci_device_do_resume(pdev); 6410 if (rc == 0) 6411 ata_host_resume(host); 6412 return rc; 6413 } 6414 #endif /* CONFIG_PM */ 6415 6416 #endif /* CONFIG_PCI */ 6417 6418 /** 6419 * ata_platform_remove_one - Platform layer callback for device removal 6420 * @pdev: Platform device that was removed 6421 * 6422 * Platform layer indicates to libata via this hook that hot-unplug or 6423 * module unload event has occurred. Detach all ports. Resource 6424 * release is handled via devres. 6425 * 6426 * LOCKING: 6427 * Inherited from platform layer (may sleep). 6428 */ 6429 int ata_platform_remove_one(struct platform_device *pdev) 6430 { 6431 struct ata_host *host = platform_get_drvdata(pdev); 6432 6433 ata_host_detach(host); 6434 6435 return 0; 6436 } 6437 6438 static int __init ata_parse_force_one(char **cur, 6439 struct ata_force_ent *force_ent, 6440 const char **reason) 6441 { 6442 /* FIXME: Currently, there's no way to tag init const data and 6443 * using __initdata causes build failure on some versions of 6444 * gcc. Once __initdataconst is implemented, add const to the 6445 * following structure. 6446 */ 6447 static struct ata_force_param force_tbl[] __initdata = { 6448 { "40c", .cbl = ATA_CBL_PATA40 }, 6449 { "80c", .cbl = ATA_CBL_PATA80 }, 6450 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6451 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6452 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6453 { "sata", .cbl = ATA_CBL_SATA }, 6454 { "1.5Gbps", .spd_limit = 1 }, 6455 { "3.0Gbps", .spd_limit = 2 }, 6456 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6457 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6458 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6459 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6460 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6461 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6462 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6463 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6464 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6465 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6466 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6467 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6468 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6469 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6470 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6471 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6472 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6473 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6474 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6475 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6476 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6477 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6478 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6479 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6480 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6481 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6482 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6483 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6484 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6485 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6486 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6487 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6488 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6489 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6490 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6491 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6492 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6493 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6494 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6495 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6496 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6497 }; 6498 char *start = *cur, *p = *cur; 6499 char *id, *val, *endp; 6500 const struct ata_force_param *match_fp = NULL; 6501 int nr_matches = 0, i; 6502 6503 /* find where this param ends and update *cur */ 6504 while (*p != '\0' && *p != ',') 6505 p++; 6506 6507 if (*p == '\0') 6508 *cur = p; 6509 else 6510 *cur = p + 1; 6511 6512 *p = '\0'; 6513 6514 /* parse */ 6515 p = strchr(start, ':'); 6516 if (!p) { 6517 val = strstrip(start); 6518 goto parse_val; 6519 } 6520 *p = '\0'; 6521 6522 id = strstrip(start); 6523 val = strstrip(p + 1); 6524 6525 /* parse id */ 6526 p = strchr(id, '.'); 6527 if (p) { 6528 *p++ = '\0'; 6529 force_ent->device = simple_strtoul(p, &endp, 10); 6530 if (p == endp || *endp != '\0') { 6531 *reason = "invalid device"; 6532 return -EINVAL; 6533 } 6534 } 6535 6536 force_ent->port = simple_strtoul(id, &endp, 10); 6537 if (p == endp || *endp != '\0') { 6538 *reason = "invalid port/link"; 6539 return -EINVAL; 6540 } 6541 6542 parse_val: 6543 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6544 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6545 const struct ata_force_param *fp = &force_tbl[i]; 6546 6547 if (strncasecmp(val, fp->name, strlen(val))) 6548 continue; 6549 6550 nr_matches++; 6551 match_fp = fp; 6552 6553 if (strcasecmp(val, fp->name) == 0) { 6554 nr_matches = 1; 6555 break; 6556 } 6557 } 6558 6559 if (!nr_matches) { 6560 *reason = "unknown value"; 6561 return -EINVAL; 6562 } 6563 if (nr_matches > 1) { 6564 *reason = "ambigious value"; 6565 return -EINVAL; 6566 } 6567 6568 force_ent->param = *match_fp; 6569 6570 return 0; 6571 } 6572 6573 static void __init ata_parse_force_param(void) 6574 { 6575 int idx = 0, size = 1; 6576 int last_port = -1, last_device = -1; 6577 char *p, *cur, *next; 6578 6579 /* calculate maximum number of params and allocate force_tbl */ 6580 for (p = ata_force_param_buf; *p; p++) 6581 if (*p == ',') 6582 size++; 6583 6584 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6585 if (!ata_force_tbl) { 6586 printk(KERN_WARNING "ata: failed to extend force table, " 6587 "libata.force ignored\n"); 6588 return; 6589 } 6590 6591 /* parse and populate the table */ 6592 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6593 const char *reason = ""; 6594 struct ata_force_ent te = { .port = -1, .device = -1 }; 6595 6596 next = cur; 6597 if (ata_parse_force_one(&next, &te, &reason)) { 6598 printk(KERN_WARNING "ata: failed to parse force " 6599 "parameter \"%s\" (%s)\n", 6600 cur, reason); 6601 continue; 6602 } 6603 6604 if (te.port == -1) { 6605 te.port = last_port; 6606 te.device = last_device; 6607 } 6608 6609 ata_force_tbl[idx++] = te; 6610 6611 last_port = te.port; 6612 last_device = te.device; 6613 } 6614 6615 ata_force_tbl_size = idx; 6616 } 6617 6618 static int __init ata_init(void) 6619 { 6620 int rc; 6621 6622 ata_parse_force_param(); 6623 6624 ata_acpi_register(); 6625 6626 rc = ata_sff_init(); 6627 if (rc) { 6628 kfree(ata_force_tbl); 6629 return rc; 6630 } 6631 6632 libata_transport_init(); 6633 ata_scsi_transport_template = ata_attach_transport(); 6634 if (!ata_scsi_transport_template) { 6635 ata_sff_exit(); 6636 rc = -ENOMEM; 6637 goto err_out; 6638 } 6639 6640 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6641 return 0; 6642 6643 err_out: 6644 return rc; 6645 } 6646 6647 static void __exit ata_exit(void) 6648 { 6649 ata_release_transport(ata_scsi_transport_template); 6650 libata_transport_exit(); 6651 ata_sff_exit(); 6652 ata_acpi_unregister(); 6653 kfree(ata_force_tbl); 6654 } 6655 6656 subsys_initcall(ata_init); 6657 module_exit(ata_exit); 6658 6659 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6660 6661 int ata_ratelimit(void) 6662 { 6663 return __ratelimit(&ratelimit); 6664 } 6665 6666 /** 6667 * ata_msleep - ATA EH owner aware msleep 6668 * @ap: ATA port to attribute the sleep to 6669 * @msecs: duration to sleep in milliseconds 6670 * 6671 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6672 * ownership is released before going to sleep and reacquired 6673 * after the sleep is complete. IOW, other ports sharing the 6674 * @ap->host will be allowed to own the EH while this task is 6675 * sleeping. 6676 * 6677 * LOCKING: 6678 * Might sleep. 6679 */ 6680 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6681 { 6682 bool owns_eh = ap && ap->host->eh_owner == current; 6683 6684 if (owns_eh) 6685 ata_eh_release(ap); 6686 6687 msleep(msecs); 6688 6689 if (owns_eh) 6690 ata_eh_acquire(ap); 6691 } 6692 6693 /** 6694 * ata_wait_register - wait until register value changes 6695 * @ap: ATA port to wait register for, can be NULL 6696 * @reg: IO-mapped register 6697 * @mask: Mask to apply to read register value 6698 * @val: Wait condition 6699 * @interval: polling interval in milliseconds 6700 * @timeout: timeout in milliseconds 6701 * 6702 * Waiting for some bits of register to change is a common 6703 * operation for ATA controllers. This function reads 32bit LE 6704 * IO-mapped register @reg and tests for the following condition. 6705 * 6706 * (*@reg & mask) != val 6707 * 6708 * If the condition is met, it returns; otherwise, the process is 6709 * repeated after @interval_msec until timeout. 6710 * 6711 * LOCKING: 6712 * Kernel thread context (may sleep) 6713 * 6714 * RETURNS: 6715 * The final register value. 6716 */ 6717 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6718 unsigned long interval, unsigned long timeout) 6719 { 6720 unsigned long deadline; 6721 u32 tmp; 6722 6723 tmp = ioread32(reg); 6724 6725 /* Calculate timeout _after_ the first read to make sure 6726 * preceding writes reach the controller before starting to 6727 * eat away the timeout. 6728 */ 6729 deadline = ata_deadline(jiffies, timeout); 6730 6731 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6732 ata_msleep(ap, interval); 6733 tmp = ioread32(reg); 6734 } 6735 6736 return tmp; 6737 } 6738 6739 /* 6740 * Dummy port_ops 6741 */ 6742 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6743 { 6744 return AC_ERR_SYSTEM; 6745 } 6746 6747 static void ata_dummy_error_handler(struct ata_port *ap) 6748 { 6749 /* truly dummy */ 6750 } 6751 6752 struct ata_port_operations ata_dummy_port_ops = { 6753 .qc_prep = ata_noop_qc_prep, 6754 .qc_issue = ata_dummy_qc_issue, 6755 .error_handler = ata_dummy_error_handler, 6756 .sched_eh = ata_std_sched_eh, 6757 .end_eh = ata_std_end_eh, 6758 }; 6759 6760 const struct ata_port_info ata_dummy_port_info = { 6761 .port_ops = &ata_dummy_port_ops, 6762 }; 6763 6764 /* 6765 * Utility print functions 6766 */ 6767 int ata_port_printk(const struct ata_port *ap, const char *level, 6768 const char *fmt, ...) 6769 { 6770 struct va_format vaf; 6771 va_list args; 6772 int r; 6773 6774 va_start(args, fmt); 6775 6776 vaf.fmt = fmt; 6777 vaf.va = &args; 6778 6779 r = printk("%sata%u: %pV", level, ap->print_id, &vaf); 6780 6781 va_end(args); 6782 6783 return r; 6784 } 6785 EXPORT_SYMBOL(ata_port_printk); 6786 6787 int ata_link_printk(const struct ata_link *link, const char *level, 6788 const char *fmt, ...) 6789 { 6790 struct va_format vaf; 6791 va_list args; 6792 int r; 6793 6794 va_start(args, fmt); 6795 6796 vaf.fmt = fmt; 6797 vaf.va = &args; 6798 6799 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6800 r = printk("%sata%u.%02u: %pV", 6801 level, link->ap->print_id, link->pmp, &vaf); 6802 else 6803 r = printk("%sata%u: %pV", 6804 level, link->ap->print_id, &vaf); 6805 6806 va_end(args); 6807 6808 return r; 6809 } 6810 EXPORT_SYMBOL(ata_link_printk); 6811 6812 int ata_dev_printk(const struct ata_device *dev, const char *level, 6813 const char *fmt, ...) 6814 { 6815 struct va_format vaf; 6816 va_list args; 6817 int r; 6818 6819 va_start(args, fmt); 6820 6821 vaf.fmt = fmt; 6822 vaf.va = &args; 6823 6824 r = printk("%sata%u.%02u: %pV", 6825 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6826 &vaf); 6827 6828 va_end(args); 6829 6830 return r; 6831 } 6832 EXPORT_SYMBOL(ata_dev_printk); 6833 6834 void ata_print_version(const struct device *dev, const char *version) 6835 { 6836 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6837 } 6838 EXPORT_SYMBOL(ata_print_version); 6839 6840 /* 6841 * libata is essentially a library of internal helper functions for 6842 * low-level ATA host controller drivers. As such, the API/ABI is 6843 * likely to change as new drivers are added and updated. 6844 * Do not depend on ABI/API stability. 6845 */ 6846 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6847 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6848 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6849 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6850 EXPORT_SYMBOL_GPL(sata_port_ops); 6851 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6852 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6853 EXPORT_SYMBOL_GPL(ata_link_next); 6854 EXPORT_SYMBOL_GPL(ata_dev_next); 6855 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6856 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6857 EXPORT_SYMBOL_GPL(ata_host_init); 6858 EXPORT_SYMBOL_GPL(ata_host_alloc); 6859 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6860 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6861 EXPORT_SYMBOL_GPL(ata_host_start); 6862 EXPORT_SYMBOL_GPL(ata_host_register); 6863 EXPORT_SYMBOL_GPL(ata_host_activate); 6864 EXPORT_SYMBOL_GPL(ata_host_detach); 6865 EXPORT_SYMBOL_GPL(ata_sg_init); 6866 EXPORT_SYMBOL_GPL(ata_qc_complete); 6867 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6868 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6869 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6870 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6871 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6872 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6873 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6874 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6875 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6876 EXPORT_SYMBOL_GPL(ata_mode_string); 6877 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6878 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6879 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6880 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6881 EXPORT_SYMBOL_GPL(ata_dev_disable); 6882 EXPORT_SYMBOL_GPL(sata_set_spd); 6883 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6884 EXPORT_SYMBOL_GPL(sata_link_debounce); 6885 EXPORT_SYMBOL_GPL(sata_link_resume); 6886 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6887 EXPORT_SYMBOL_GPL(ata_std_prereset); 6888 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6889 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6890 EXPORT_SYMBOL_GPL(ata_std_postreset); 6891 EXPORT_SYMBOL_GPL(ata_dev_classify); 6892 EXPORT_SYMBOL_GPL(ata_dev_pair); 6893 EXPORT_SYMBOL_GPL(ata_ratelimit); 6894 EXPORT_SYMBOL_GPL(ata_msleep); 6895 EXPORT_SYMBOL_GPL(ata_wait_register); 6896 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6897 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6898 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6899 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6900 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6901 EXPORT_SYMBOL_GPL(sata_scr_valid); 6902 EXPORT_SYMBOL_GPL(sata_scr_read); 6903 EXPORT_SYMBOL_GPL(sata_scr_write); 6904 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6905 EXPORT_SYMBOL_GPL(ata_link_online); 6906 EXPORT_SYMBOL_GPL(ata_link_offline); 6907 #ifdef CONFIG_PM 6908 EXPORT_SYMBOL_GPL(ata_host_suspend); 6909 EXPORT_SYMBOL_GPL(ata_host_resume); 6910 #endif /* CONFIG_PM */ 6911 EXPORT_SYMBOL_GPL(ata_id_string); 6912 EXPORT_SYMBOL_GPL(ata_id_c_string); 6913 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6914 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6915 6916 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6917 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6918 EXPORT_SYMBOL_GPL(ata_timing_compute); 6919 EXPORT_SYMBOL_GPL(ata_timing_merge); 6920 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6921 6922 #ifdef CONFIG_PCI 6923 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6924 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6925 #ifdef CONFIG_PM 6926 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6927 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6928 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6929 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6930 #endif /* CONFIG_PM */ 6931 #endif /* CONFIG_PCI */ 6932 6933 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6934 6935 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6936 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6937 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6938 EXPORT_SYMBOL_GPL(ata_port_desc); 6939 #ifdef CONFIG_PCI 6940 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6941 #endif /* CONFIG_PCI */ 6942 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6943 EXPORT_SYMBOL_GPL(ata_link_abort); 6944 EXPORT_SYMBOL_GPL(ata_port_abort); 6945 EXPORT_SYMBOL_GPL(ata_port_freeze); 6946 EXPORT_SYMBOL_GPL(sata_async_notification); 6947 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6948 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6949 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6950 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6951 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6952 EXPORT_SYMBOL_GPL(ata_do_eh); 6953 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6954 6955 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6956 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6957 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6958 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6959 EXPORT_SYMBOL_GPL(ata_cable_sata); 6960