xref: /openbmc/linux/drivers/ata/libata-core.c (revision efe4a1ac)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78 
79 #include "libata.h"
80 #include "libata-transport.h"
81 
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
85 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
86 
87 const struct ata_port_operations ata_base_port_ops = {
88 	.prereset		= ata_std_prereset,
89 	.postreset		= ata_std_postreset,
90 	.error_handler		= ata_std_error_handler,
91 	.sched_eh		= ata_std_sched_eh,
92 	.end_eh			= ata_std_end_eh,
93 };
94 
95 const struct ata_port_operations sata_port_ops = {
96 	.inherits		= &ata_base_port_ops,
97 
98 	.qc_defer		= ata_std_qc_defer,
99 	.hardreset		= sata_std_hardreset,
100 };
101 
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 					u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107 
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109 
110 struct ata_force_param {
111 	const char	*name;
112 	unsigned int	cbl;
113 	int		spd_limit;
114 	unsigned long	xfer_mask;
115 	unsigned int	horkage_on;
116 	unsigned int	horkage_off;
117 	unsigned int	lflags;
118 };
119 
120 struct ata_force_ent {
121 	int			port;
122 	int			device;
123 	struct ata_force_param	param;
124 };
125 
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128 
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133 
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137 
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141 
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145 
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149 
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153 
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157 
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161 
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165 
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169 
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173 
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178 
179 
180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 	return (sstatus & 0xf) == 0x3;
183 }
184 
185 /**
186  *	ata_link_next - link iteration helper
187  *	@link: the previous link, NULL to start
188  *	@ap: ATA port containing links to iterate
189  *	@mode: iteration mode, one of ATA_LITER_*
190  *
191  *	LOCKING:
192  *	Host lock or EH context.
193  *
194  *	RETURNS:
195  *	Pointer to the next link.
196  */
197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 			       enum ata_link_iter_mode mode)
199 {
200 	BUG_ON(mode != ATA_LITER_EDGE &&
201 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202 
203 	/* NULL link indicates start of iteration */
204 	if (!link)
205 		switch (mode) {
206 		case ATA_LITER_EDGE:
207 		case ATA_LITER_PMP_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			/* fall through */
211 		case ATA_LITER_HOST_FIRST:
212 			return &ap->link;
213 		}
214 
215 	/* we just iterated over the host link, what's next? */
216 	if (link == &ap->link)
217 		switch (mode) {
218 		case ATA_LITER_HOST_FIRST:
219 			if (sata_pmp_attached(ap))
220 				return ap->pmp_link;
221 			/* fall through */
222 		case ATA_LITER_PMP_FIRST:
223 			if (unlikely(ap->slave_link))
224 				return ap->slave_link;
225 			/* fall through */
226 		case ATA_LITER_EDGE:
227 			return NULL;
228 		}
229 
230 	/* slave_link excludes PMP */
231 	if (unlikely(link == ap->slave_link))
232 		return NULL;
233 
234 	/* we were over a PMP link */
235 	if (++link < ap->pmp_link + ap->nr_pmp_links)
236 		return link;
237 
238 	if (mode == ATA_LITER_PMP_FIRST)
239 		return &ap->link;
240 
241 	return NULL;
242 }
243 
244 /**
245  *	ata_dev_next - device iteration helper
246  *	@dev: the previous device, NULL to start
247  *	@link: ATA link containing devices to iterate
248  *	@mode: iteration mode, one of ATA_DITER_*
249  *
250  *	LOCKING:
251  *	Host lock or EH context.
252  *
253  *	RETURNS:
254  *	Pointer to the next device.
255  */
256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 				enum ata_dev_iter_mode mode)
258 {
259 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261 
262 	/* NULL dev indicates start of iteration */
263 	if (!dev)
264 		switch (mode) {
265 		case ATA_DITER_ENABLED:
266 		case ATA_DITER_ALL:
267 			dev = link->device;
268 			goto check;
269 		case ATA_DITER_ENABLED_REVERSE:
270 		case ATA_DITER_ALL_REVERSE:
271 			dev = link->device + ata_link_max_devices(link) - 1;
272 			goto check;
273 		}
274 
275  next:
276 	/* move to the next one */
277 	switch (mode) {
278 	case ATA_DITER_ENABLED:
279 	case ATA_DITER_ALL:
280 		if (++dev < link->device + ata_link_max_devices(link))
281 			goto check;
282 		return NULL;
283 	case ATA_DITER_ENABLED_REVERSE:
284 	case ATA_DITER_ALL_REVERSE:
285 		if (--dev >= link->device)
286 			goto check;
287 		return NULL;
288 	}
289 
290  check:
291 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 	    !ata_dev_enabled(dev))
293 		goto next;
294 	return dev;
295 }
296 
297 /**
298  *	ata_dev_phys_link - find physical link for a device
299  *	@dev: ATA device to look up physical link for
300  *
301  *	Look up physical link which @dev is attached to.  Note that
302  *	this is different from @dev->link only when @dev is on slave
303  *	link.  For all other cases, it's the same as @dev->link.
304  *
305  *	LOCKING:
306  *	Don't care.
307  *
308  *	RETURNS:
309  *	Pointer to the found physical link.
310  */
311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 	struct ata_port *ap = dev->link->ap;
314 
315 	if (!ap->slave_link)
316 		return dev->link;
317 	if (!dev->devno)
318 		return &ap->link;
319 	return ap->slave_link;
320 }
321 
322 /**
323  *	ata_force_cbl - force cable type according to libata.force
324  *	@ap: ATA port of interest
325  *
326  *	Force cable type according to libata.force and whine about it.
327  *	The last entry which has matching port number is used, so it
328  *	can be specified as part of device force parameters.  For
329  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330  *	same effect.
331  *
332  *	LOCKING:
333  *	EH context.
334  */
335 void ata_force_cbl(struct ata_port *ap)
336 {
337 	int i;
338 
339 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 		const struct ata_force_ent *fe = &ata_force_tbl[i];
341 
342 		if (fe->port != -1 && fe->port != ap->print_id)
343 			continue;
344 
345 		if (fe->param.cbl == ATA_CBL_NONE)
346 			continue;
347 
348 		ap->cbl = fe->param.cbl;
349 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 		return;
351 	}
352 }
353 
354 /**
355  *	ata_force_link_limits - force link limits according to libata.force
356  *	@link: ATA link of interest
357  *
358  *	Force link flags and SATA spd limit according to libata.force
359  *	and whine about it.  When only the port part is specified
360  *	(e.g. 1:), the limit applies to all links connected to both
361  *	the host link and all fan-out ports connected via PMP.  If the
362  *	device part is specified as 0 (e.g. 1.00:), it specifies the
363  *	first fan-out link not the host link.  Device number 15 always
364  *	points to the host link whether PMP is attached or not.  If the
365  *	controller has slave link, device number 16 points to it.
366  *
367  *	LOCKING:
368  *	EH context.
369  */
370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 	bool did_spd = false;
373 	int linkno = link->pmp;
374 	int i;
375 
376 	if (ata_is_host_link(link))
377 		linkno += 15;
378 
379 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 		const struct ata_force_ent *fe = &ata_force_tbl[i];
381 
382 		if (fe->port != -1 && fe->port != link->ap->print_id)
383 			continue;
384 
385 		if (fe->device != -1 && fe->device != linkno)
386 			continue;
387 
388 		/* only honor the first spd limit */
389 		if (!did_spd && fe->param.spd_limit) {
390 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 					fe->param.name);
393 			did_spd = true;
394 		}
395 
396 		/* let lflags stack */
397 		if (fe->param.lflags) {
398 			link->flags |= fe->param.lflags;
399 			ata_link_notice(link,
400 					"FORCE: link flag 0x%x forced -> 0x%x\n",
401 					fe->param.lflags, link->flags);
402 		}
403 	}
404 }
405 
406 /**
407  *	ata_force_xfermask - force xfermask according to libata.force
408  *	@dev: ATA device of interest
409  *
410  *	Force xfer_mask according to libata.force and whine about it.
411  *	For consistency with link selection, device number 15 selects
412  *	the first device connected to the host link.
413  *
414  *	LOCKING:
415  *	EH context.
416  */
417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 	int devno = dev->link->pmp + dev->devno;
420 	int alt_devno = devno;
421 	int i;
422 
423 	/* allow n.15/16 for devices attached to host port */
424 	if (ata_is_host_link(dev->link))
425 		alt_devno += 15;
426 
427 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 		const struct ata_force_ent *fe = &ata_force_tbl[i];
429 		unsigned long pio_mask, mwdma_mask, udma_mask;
430 
431 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 			continue;
433 
434 		if (fe->device != -1 && fe->device != devno &&
435 		    fe->device != alt_devno)
436 			continue;
437 
438 		if (!fe->param.xfer_mask)
439 			continue;
440 
441 		ata_unpack_xfermask(fe->param.xfer_mask,
442 				    &pio_mask, &mwdma_mask, &udma_mask);
443 		if (udma_mask)
444 			dev->udma_mask = udma_mask;
445 		else if (mwdma_mask) {
446 			dev->udma_mask = 0;
447 			dev->mwdma_mask = mwdma_mask;
448 		} else {
449 			dev->udma_mask = 0;
450 			dev->mwdma_mask = 0;
451 			dev->pio_mask = pio_mask;
452 		}
453 
454 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 			       fe->param.name);
456 		return;
457 	}
458 }
459 
460 /**
461  *	ata_force_horkage - force horkage according to libata.force
462  *	@dev: ATA device of interest
463  *
464  *	Force horkage according to libata.force and whine about it.
465  *	For consistency with link selection, device number 15 selects
466  *	the first device connected to the host link.
467  *
468  *	LOCKING:
469  *	EH context.
470  */
471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 	int devno = dev->link->pmp + dev->devno;
474 	int alt_devno = devno;
475 	int i;
476 
477 	/* allow n.15/16 for devices attached to host port */
478 	if (ata_is_host_link(dev->link))
479 		alt_devno += 15;
480 
481 	for (i = 0; i < ata_force_tbl_size; i++) {
482 		const struct ata_force_ent *fe = &ata_force_tbl[i];
483 
484 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 			continue;
486 
487 		if (fe->device != -1 && fe->device != devno &&
488 		    fe->device != alt_devno)
489 			continue;
490 
491 		if (!(~dev->horkage & fe->param.horkage_on) &&
492 		    !(dev->horkage & fe->param.horkage_off))
493 			continue;
494 
495 		dev->horkage |= fe->param.horkage_on;
496 		dev->horkage &= ~fe->param.horkage_off;
497 
498 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 			       fe->param.name);
500 	}
501 }
502 
503 /**
504  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505  *	@opcode: SCSI opcode
506  *
507  *	Determine ATAPI command type from @opcode.
508  *
509  *	LOCKING:
510  *	None.
511  *
512  *	RETURNS:
513  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514  */
515 int atapi_cmd_type(u8 opcode)
516 {
517 	switch (opcode) {
518 	case GPCMD_READ_10:
519 	case GPCMD_READ_12:
520 		return ATAPI_READ;
521 
522 	case GPCMD_WRITE_10:
523 	case GPCMD_WRITE_12:
524 	case GPCMD_WRITE_AND_VERIFY_10:
525 		return ATAPI_WRITE;
526 
527 	case GPCMD_READ_CD:
528 	case GPCMD_READ_CD_MSF:
529 		return ATAPI_READ_CD;
530 
531 	case ATA_16:
532 	case ATA_12:
533 		if (atapi_passthru16)
534 			return ATAPI_PASS_THRU;
535 		/* fall thru */
536 	default:
537 		return ATAPI_MISC;
538 	}
539 }
540 
541 /**
542  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543  *	@tf: Taskfile to convert
544  *	@pmp: Port multiplier port
545  *	@is_cmd: This FIS is for command
546  *	@fis: Buffer into which data will output
547  *
548  *	Converts a standard ATA taskfile to a Serial ATA
549  *	FIS structure (Register - Host to Device).
550  *
551  *	LOCKING:
552  *	Inherited from caller.
553  */
554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 	fis[0] = 0x27;			/* Register - Host to Device FIS */
557 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
558 	if (is_cmd)
559 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
560 
561 	fis[2] = tf->command;
562 	fis[3] = tf->feature;
563 
564 	fis[4] = tf->lbal;
565 	fis[5] = tf->lbam;
566 	fis[6] = tf->lbah;
567 	fis[7] = tf->device;
568 
569 	fis[8] = tf->hob_lbal;
570 	fis[9] = tf->hob_lbam;
571 	fis[10] = tf->hob_lbah;
572 	fis[11] = tf->hob_feature;
573 
574 	fis[12] = tf->nsect;
575 	fis[13] = tf->hob_nsect;
576 	fis[14] = 0;
577 	fis[15] = tf->ctl;
578 
579 	fis[16] = tf->auxiliary & 0xff;
580 	fis[17] = (tf->auxiliary >> 8) & 0xff;
581 	fis[18] = (tf->auxiliary >> 16) & 0xff;
582 	fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584 
585 /**
586  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587  *	@fis: Buffer from which data will be input
588  *	@tf: Taskfile to output
589  *
590  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
591  *
592  *	LOCKING:
593  *	Inherited from caller.
594  */
595 
596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 	tf->command	= fis[2];	/* status */
599 	tf->feature	= fis[3];	/* error */
600 
601 	tf->lbal	= fis[4];
602 	tf->lbam	= fis[5];
603 	tf->lbah	= fis[6];
604 	tf->device	= fis[7];
605 
606 	tf->hob_lbal	= fis[8];
607 	tf->hob_lbam	= fis[9];
608 	tf->hob_lbah	= fis[10];
609 
610 	tf->nsect	= fis[12];
611 	tf->hob_nsect	= fis[13];
612 }
613 
614 static const u8 ata_rw_cmds[] = {
615 	/* pio multi */
616 	ATA_CMD_READ_MULTI,
617 	ATA_CMD_WRITE_MULTI,
618 	ATA_CMD_READ_MULTI_EXT,
619 	ATA_CMD_WRITE_MULTI_EXT,
620 	0,
621 	0,
622 	0,
623 	ATA_CMD_WRITE_MULTI_FUA_EXT,
624 	/* pio */
625 	ATA_CMD_PIO_READ,
626 	ATA_CMD_PIO_WRITE,
627 	ATA_CMD_PIO_READ_EXT,
628 	ATA_CMD_PIO_WRITE_EXT,
629 	0,
630 	0,
631 	0,
632 	0,
633 	/* dma */
634 	ATA_CMD_READ,
635 	ATA_CMD_WRITE,
636 	ATA_CMD_READ_EXT,
637 	ATA_CMD_WRITE_EXT,
638 	0,
639 	0,
640 	0,
641 	ATA_CMD_WRITE_FUA_EXT
642 };
643 
644 /**
645  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
646  *	@tf: command to examine and configure
647  *	@dev: device tf belongs to
648  *
649  *	Examine the device configuration and tf->flags to calculate
650  *	the proper read/write commands and protocol to use.
651  *
652  *	LOCKING:
653  *	caller.
654  */
655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 	u8 cmd;
658 
659 	int index, fua, lba48, write;
660 
661 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664 
665 	if (dev->flags & ATA_DFLAG_PIO) {
666 		tf->protocol = ATA_PROT_PIO;
667 		index = dev->multi_count ? 0 : 8;
668 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 		/* Unable to use DMA due to host limitation */
670 		tf->protocol = ATA_PROT_PIO;
671 		index = dev->multi_count ? 0 : 8;
672 	} else {
673 		tf->protocol = ATA_PROT_DMA;
674 		index = 16;
675 	}
676 
677 	cmd = ata_rw_cmds[index + fua + lba48 + write];
678 	if (cmd) {
679 		tf->command = cmd;
680 		return 0;
681 	}
682 	return -1;
683 }
684 
685 /**
686  *	ata_tf_read_block - Read block address from ATA taskfile
687  *	@tf: ATA taskfile of interest
688  *	@dev: ATA device @tf belongs to
689  *
690  *	LOCKING:
691  *	None.
692  *
693  *	Read block address from @tf.  This function can handle all
694  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
695  *	flags select the address format to use.
696  *
697  *	RETURNS:
698  *	Block address read from @tf.
699  */
700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 	u64 block = 0;
703 
704 	if (tf->flags & ATA_TFLAG_LBA) {
705 		if (tf->flags & ATA_TFLAG_LBA48) {
706 			block |= (u64)tf->hob_lbah << 40;
707 			block |= (u64)tf->hob_lbam << 32;
708 			block |= (u64)tf->hob_lbal << 24;
709 		} else
710 			block |= (tf->device & 0xf) << 24;
711 
712 		block |= tf->lbah << 16;
713 		block |= tf->lbam << 8;
714 		block |= tf->lbal;
715 	} else {
716 		u32 cyl, head, sect;
717 
718 		cyl = tf->lbam | (tf->lbah << 8);
719 		head = tf->device & 0xf;
720 		sect = tf->lbal;
721 
722 		if (!sect) {
723 			ata_dev_warn(dev,
724 				     "device reported invalid CHS sector 0\n");
725 			return U64_MAX;
726 		}
727 
728 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 	}
730 
731 	return block;
732 }
733 
734 /**
735  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
736  *	@tf: Target ATA taskfile
737  *	@dev: ATA device @tf belongs to
738  *	@block: Block address
739  *	@n_block: Number of blocks
740  *	@tf_flags: RW/FUA etc...
741  *	@tag: tag
742  *	@class: IO priority class
743  *
744  *	LOCKING:
745  *	None.
746  *
747  *	Build ATA taskfile @tf for read/write request described by
748  *	@block, @n_block, @tf_flags and @tag on @dev.
749  *
750  *	RETURNS:
751  *
752  *	0 on success, -ERANGE if the request is too large for @dev,
753  *	-EINVAL if the request is invalid.
754  */
755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 		    u64 block, u32 n_block, unsigned int tf_flags,
757 		    unsigned int tag, int class)
758 {
759 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 	tf->flags |= tf_flags;
761 
762 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
763 		/* yay, NCQ */
764 		if (!lba_48_ok(block, n_block))
765 			return -ERANGE;
766 
767 		tf->protocol = ATA_PROT_NCQ;
768 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769 
770 		if (tf->flags & ATA_TFLAG_WRITE)
771 			tf->command = ATA_CMD_FPDMA_WRITE;
772 		else
773 			tf->command = ATA_CMD_FPDMA_READ;
774 
775 		tf->nsect = tag << 3;
776 		tf->hob_feature = (n_block >> 8) & 0xff;
777 		tf->feature = n_block & 0xff;
778 
779 		tf->hob_lbah = (block >> 40) & 0xff;
780 		tf->hob_lbam = (block >> 32) & 0xff;
781 		tf->hob_lbal = (block >> 24) & 0xff;
782 		tf->lbah = (block >> 16) & 0xff;
783 		tf->lbam = (block >> 8) & 0xff;
784 		tf->lbal = block & 0xff;
785 
786 		tf->device = ATA_LBA;
787 		if (tf->flags & ATA_TFLAG_FUA)
788 			tf->device |= 1 << 7;
789 
790 		if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 			if (class == IOPRIO_CLASS_RT)
792 				tf->hob_nsect |= ATA_PRIO_HIGH <<
793 						 ATA_SHIFT_PRIO;
794 		}
795 	} else if (dev->flags & ATA_DFLAG_LBA) {
796 		tf->flags |= ATA_TFLAG_LBA;
797 
798 		if (lba_28_ok(block, n_block)) {
799 			/* use LBA28 */
800 			tf->device |= (block >> 24) & 0xf;
801 		} else if (lba_48_ok(block, n_block)) {
802 			if (!(dev->flags & ATA_DFLAG_LBA48))
803 				return -ERANGE;
804 
805 			/* use LBA48 */
806 			tf->flags |= ATA_TFLAG_LBA48;
807 
808 			tf->hob_nsect = (n_block >> 8) & 0xff;
809 
810 			tf->hob_lbah = (block >> 40) & 0xff;
811 			tf->hob_lbam = (block >> 32) & 0xff;
812 			tf->hob_lbal = (block >> 24) & 0xff;
813 		} else
814 			/* request too large even for LBA48 */
815 			return -ERANGE;
816 
817 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 			return -EINVAL;
819 
820 		tf->nsect = n_block & 0xff;
821 
822 		tf->lbah = (block >> 16) & 0xff;
823 		tf->lbam = (block >> 8) & 0xff;
824 		tf->lbal = block & 0xff;
825 
826 		tf->device |= ATA_LBA;
827 	} else {
828 		/* CHS */
829 		u32 sect, head, cyl, track;
830 
831 		/* The request -may- be too large for CHS addressing. */
832 		if (!lba_28_ok(block, n_block))
833 			return -ERANGE;
834 
835 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 			return -EINVAL;
837 
838 		/* Convert LBA to CHS */
839 		track = (u32)block / dev->sectors;
840 		cyl   = track / dev->heads;
841 		head  = track % dev->heads;
842 		sect  = (u32)block % dev->sectors + 1;
843 
844 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 			(u32)block, track, cyl, head, sect);
846 
847 		/* Check whether the converted CHS can fit.
848 		   Cylinder: 0-65535
849 		   Head: 0-15
850 		   Sector: 1-255*/
851 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 			return -ERANGE;
853 
854 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 		tf->lbal = sect;
856 		tf->lbam = cyl;
857 		tf->lbah = cyl >> 8;
858 		tf->device |= head;
859 	}
860 
861 	return 0;
862 }
863 
864 /**
865  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866  *	@pio_mask: pio_mask
867  *	@mwdma_mask: mwdma_mask
868  *	@udma_mask: udma_mask
869  *
870  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871  *	unsigned int xfer_mask.
872  *
873  *	LOCKING:
874  *	None.
875  *
876  *	RETURNS:
877  *	Packed xfer_mask.
878  */
879 unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 				unsigned long mwdma_mask,
881 				unsigned long udma_mask)
882 {
883 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886 }
887 
888 /**
889  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890  *	@xfer_mask: xfer_mask to unpack
891  *	@pio_mask: resulting pio_mask
892  *	@mwdma_mask: resulting mwdma_mask
893  *	@udma_mask: resulting udma_mask
894  *
895  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896  *	Any NULL destination masks will be ignored.
897  */
898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
900 {
901 	if (pio_mask)
902 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 	if (mwdma_mask)
904 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 	if (udma_mask)
906 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907 }
908 
909 static const struct ata_xfer_ent {
910 	int shift, bits;
911 	u8 base;
912 } ata_xfer_tbl[] = {
913 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 	{ -1, },
917 };
918 
919 /**
920  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921  *	@xfer_mask: xfer_mask of interest
922  *
923  *	Return matching XFER_* value for @xfer_mask.  Only the highest
924  *	bit of @xfer_mask is considered.
925  *
926  *	LOCKING:
927  *	None.
928  *
929  *	RETURNS:
930  *	Matching XFER_* value, 0xff if no match found.
931  */
932 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933 {
934 	int highbit = fls(xfer_mask) - 1;
935 	const struct ata_xfer_ent *ent;
936 
937 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 			return ent->base + highbit - ent->shift;
940 	return 0xff;
941 }
942 
943 /**
944  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945  *	@xfer_mode: XFER_* of interest
946  *
947  *	Return matching xfer_mask for @xfer_mode.
948  *
949  *	LOCKING:
950  *	None.
951  *
952  *	RETURNS:
953  *	Matching xfer_mask, 0 if no match found.
954  */
955 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956 {
957 	const struct ata_xfer_ent *ent;
958 
959 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 				& ~((1 << ent->shift) - 1);
963 	return 0;
964 }
965 
966 /**
967  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968  *	@xfer_mode: XFER_* of interest
969  *
970  *	Return matching xfer_shift for @xfer_mode.
971  *
972  *	LOCKING:
973  *	None.
974  *
975  *	RETURNS:
976  *	Matching xfer_shift, -1 if no match found.
977  */
978 int ata_xfer_mode2shift(unsigned long xfer_mode)
979 {
980 	const struct ata_xfer_ent *ent;
981 
982 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 			return ent->shift;
985 	return -1;
986 }
987 
988 /**
989  *	ata_mode_string - convert xfer_mask to string
990  *	@xfer_mask: mask of bits supported; only highest bit counts.
991  *
992  *	Determine string which represents the highest speed
993  *	(highest bit in @modemask).
994  *
995  *	LOCKING:
996  *	None.
997  *
998  *	RETURNS:
999  *	Constant C string representing highest speed listed in
1000  *	@mode_mask, or the constant C string "<n/a>".
1001  */
1002 const char *ata_mode_string(unsigned long xfer_mask)
1003 {
1004 	static const char * const xfer_mode_str[] = {
1005 		"PIO0",
1006 		"PIO1",
1007 		"PIO2",
1008 		"PIO3",
1009 		"PIO4",
1010 		"PIO5",
1011 		"PIO6",
1012 		"MWDMA0",
1013 		"MWDMA1",
1014 		"MWDMA2",
1015 		"MWDMA3",
1016 		"MWDMA4",
1017 		"UDMA/16",
1018 		"UDMA/25",
1019 		"UDMA/33",
1020 		"UDMA/44",
1021 		"UDMA/66",
1022 		"UDMA/100",
1023 		"UDMA/133",
1024 		"UDMA7",
1025 	};
1026 	int highbit;
1027 
1028 	highbit = fls(xfer_mask) - 1;
1029 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 		return xfer_mode_str[highbit];
1031 	return "<n/a>";
1032 }
1033 
1034 const char *sata_spd_string(unsigned int spd)
1035 {
1036 	static const char * const spd_str[] = {
1037 		"1.5 Gbps",
1038 		"3.0 Gbps",
1039 		"6.0 Gbps",
1040 	};
1041 
1042 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 		return "<unknown>";
1044 	return spd_str[spd - 1];
1045 }
1046 
1047 /**
1048  *	ata_dev_classify - determine device type based on ATA-spec signature
1049  *	@tf: ATA taskfile register set for device to be identified
1050  *
1051  *	Determine from taskfile register contents whether a device is
1052  *	ATA or ATAPI, as per "Signature and persistence" section
1053  *	of ATA/PI spec (volume 1, sect 5.14).
1054  *
1055  *	LOCKING:
1056  *	None.
1057  *
1058  *	RETURNS:
1059  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061  */
1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063 {
1064 	/* Apple's open source Darwin code hints that some devices only
1065 	 * put a proper signature into the LBA mid/high registers,
1066 	 * So, we only check those.  It's sufficient for uniqueness.
1067 	 *
1068 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1071 	 * spec has never mentioned about using different signatures
1072 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1073 	 * Multiplier specification began to use 0x69/0x96 to identify
1074 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 	 * 0x69/0x96 shortly and described them as reserved for
1077 	 * SerialATA.
1078 	 *
1079 	 * We follow the current spec and consider that 0x69/0x96
1080 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 	 * SEMB signature.  This is worked around in
1083 	 * ata_dev_read_id().
1084 	 */
1085 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 		DPRINTK("found ATA device by sig\n");
1087 		return ATA_DEV_ATA;
1088 	}
1089 
1090 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 		DPRINTK("found ATAPI device by sig\n");
1092 		return ATA_DEV_ATAPI;
1093 	}
1094 
1095 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 		DPRINTK("found PMP device by sig\n");
1097 		return ATA_DEV_PMP;
1098 	}
1099 
1100 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 		return ATA_DEV_SEMB;
1103 	}
1104 
1105 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 		DPRINTK("found ZAC device by sig\n");
1107 		return ATA_DEV_ZAC;
1108 	}
1109 
1110 	DPRINTK("unknown device\n");
1111 	return ATA_DEV_UNKNOWN;
1112 }
1113 
1114 /**
1115  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1116  *	@id: IDENTIFY DEVICE results we will examine
1117  *	@s: string into which data is output
1118  *	@ofs: offset into identify device page
1119  *	@len: length of string to return. must be an even number.
1120  *
1121  *	The strings in the IDENTIFY DEVICE page are broken up into
1122  *	16-bit chunks.  Run through the string, and output each
1123  *	8-bit chunk linearly, regardless of platform.
1124  *
1125  *	LOCKING:
1126  *	caller.
1127  */
1128 
1129 void ata_id_string(const u16 *id, unsigned char *s,
1130 		   unsigned int ofs, unsigned int len)
1131 {
1132 	unsigned int c;
1133 
1134 	BUG_ON(len & 1);
1135 
1136 	while (len > 0) {
1137 		c = id[ofs] >> 8;
1138 		*s = c;
1139 		s++;
1140 
1141 		c = id[ofs] & 0xff;
1142 		*s = c;
1143 		s++;
1144 
1145 		ofs++;
1146 		len -= 2;
1147 	}
1148 }
1149 
1150 /**
1151  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152  *	@id: IDENTIFY DEVICE results we will examine
1153  *	@s: string into which data is output
1154  *	@ofs: offset into identify device page
1155  *	@len: length of string to return. must be an odd number.
1156  *
1157  *	This function is identical to ata_id_string except that it
1158  *	trims trailing spaces and terminates the resulting string with
1159  *	null.  @len must be actual maximum length (even number) + 1.
1160  *
1161  *	LOCKING:
1162  *	caller.
1163  */
1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 		     unsigned int ofs, unsigned int len)
1166 {
1167 	unsigned char *p;
1168 
1169 	ata_id_string(id, s, ofs, len - 1);
1170 
1171 	p = s + strnlen(s, len - 1);
1172 	while (p > s && p[-1] == ' ')
1173 		p--;
1174 	*p = '\0';
1175 }
1176 
1177 static u64 ata_id_n_sectors(const u16 *id)
1178 {
1179 	if (ata_id_has_lba(id)) {
1180 		if (ata_id_has_lba48(id))
1181 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 		else
1183 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 	} else {
1185 		if (ata_id_current_chs_valid(id))
1186 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 			       id[ATA_ID_CUR_SECTORS];
1188 		else
1189 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 			       id[ATA_ID_SECTORS];
1191 	}
1192 }
1193 
1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195 {
1196 	u64 sectors = 0;
1197 
1198 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 	sectors |= (tf->lbah & 0xff) << 16;
1202 	sectors |= (tf->lbam & 0xff) << 8;
1203 	sectors |= (tf->lbal & 0xff);
1204 
1205 	return sectors;
1206 }
1207 
1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209 {
1210 	u64 sectors = 0;
1211 
1212 	sectors |= (tf->device & 0x0f) << 24;
1213 	sectors |= (tf->lbah & 0xff) << 16;
1214 	sectors |= (tf->lbam & 0xff) << 8;
1215 	sectors |= (tf->lbal & 0xff);
1216 
1217 	return sectors;
1218 }
1219 
1220 /**
1221  *	ata_read_native_max_address - Read native max address
1222  *	@dev: target device
1223  *	@max_sectors: out parameter for the result native max address
1224  *
1225  *	Perform an LBA48 or LBA28 native size query upon the device in
1226  *	question.
1227  *
1228  *	RETURNS:
1229  *	0 on success, -EACCES if command is aborted by the drive.
1230  *	-EIO on other errors.
1231  */
1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233 {
1234 	unsigned int err_mask;
1235 	struct ata_taskfile tf;
1236 	int lba48 = ata_id_has_lba48(dev->id);
1237 
1238 	ata_tf_init(dev, &tf);
1239 
1240 	/* always clear all address registers */
1241 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242 
1243 	if (lba48) {
1244 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 		tf.flags |= ATA_TFLAG_LBA48;
1246 	} else
1247 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1248 
1249 	tf.protocol = ATA_PROT_NODATA;
1250 	tf.device |= ATA_LBA;
1251 
1252 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 	if (err_mask) {
1254 		ata_dev_warn(dev,
1255 			     "failed to read native max address (err_mask=0x%x)\n",
1256 			     err_mask);
1257 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 			return -EACCES;
1259 		return -EIO;
1260 	}
1261 
1262 	if (lba48)
1263 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 	else
1265 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1266 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 		(*max_sectors)--;
1268 	return 0;
1269 }
1270 
1271 /**
1272  *	ata_set_max_sectors - Set max sectors
1273  *	@dev: target device
1274  *	@new_sectors: new max sectors value to set for the device
1275  *
1276  *	Set max sectors of @dev to @new_sectors.
1277  *
1278  *	RETURNS:
1279  *	0 on success, -EACCES if command is aborted or denied (due to
1280  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1281  *	errors.
1282  */
1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 {
1285 	unsigned int err_mask;
1286 	struct ata_taskfile tf;
1287 	int lba48 = ata_id_has_lba48(dev->id);
1288 
1289 	new_sectors--;
1290 
1291 	ata_tf_init(dev, &tf);
1292 
1293 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294 
1295 	if (lba48) {
1296 		tf.command = ATA_CMD_SET_MAX_EXT;
1297 		tf.flags |= ATA_TFLAG_LBA48;
1298 
1299 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 	} else {
1303 		tf.command = ATA_CMD_SET_MAX;
1304 
1305 		tf.device |= (new_sectors >> 24) & 0xf;
1306 	}
1307 
1308 	tf.protocol = ATA_PROT_NODATA;
1309 	tf.device |= ATA_LBA;
1310 
1311 	tf.lbal = (new_sectors >> 0) & 0xff;
1312 	tf.lbam = (new_sectors >> 8) & 0xff;
1313 	tf.lbah = (new_sectors >> 16) & 0xff;
1314 
1315 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 	if (err_mask) {
1317 		ata_dev_warn(dev,
1318 			     "failed to set max address (err_mask=0x%x)\n",
1319 			     err_mask);
1320 		if (err_mask == AC_ERR_DEV &&
1321 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 			return -EACCES;
1323 		return -EIO;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  *	ata_hpa_resize		-	Resize a device with an HPA set
1331  *	@dev: Device to resize
1332  *
1333  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334  *	it if required to the full size of the media. The caller must check
1335  *	the drive has the HPA feature set enabled.
1336  *
1337  *	RETURNS:
1338  *	0 on success, -errno on failure.
1339  */
1340 static int ata_hpa_resize(struct ata_device *dev)
1341 {
1342 	struct ata_eh_context *ehc = &dev->link->eh_context;
1343 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 	u64 sectors = ata_id_n_sectors(dev->id);
1346 	u64 native_sectors;
1347 	int rc;
1348 
1349 	/* do we need to do it? */
1350 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 		return 0;
1354 
1355 	/* read native max address */
1356 	rc = ata_read_native_max_address(dev, &native_sectors);
1357 	if (rc) {
1358 		/* If device aborted the command or HPA isn't going to
1359 		 * be unlocked, skip HPA resizing.
1360 		 */
1361 		if (rc == -EACCES || !unlock_hpa) {
1362 			ata_dev_warn(dev,
1363 				     "HPA support seems broken, skipping HPA handling\n");
1364 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365 
1366 			/* we can continue if device aborted the command */
1367 			if (rc == -EACCES)
1368 				rc = 0;
1369 		}
1370 
1371 		return rc;
1372 	}
1373 	dev->n_native_sectors = native_sectors;
1374 
1375 	/* nothing to do? */
1376 	if (native_sectors <= sectors || !unlock_hpa) {
1377 		if (!print_info || native_sectors == sectors)
1378 			return 0;
1379 
1380 		if (native_sectors > sectors)
1381 			ata_dev_info(dev,
1382 				"HPA detected: current %llu, native %llu\n",
1383 				(unsigned long long)sectors,
1384 				(unsigned long long)native_sectors);
1385 		else if (native_sectors < sectors)
1386 			ata_dev_warn(dev,
1387 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1388 				(unsigned long long)native_sectors,
1389 				(unsigned long long)sectors);
1390 		return 0;
1391 	}
1392 
1393 	/* let's unlock HPA */
1394 	rc = ata_set_max_sectors(dev, native_sectors);
1395 	if (rc == -EACCES) {
1396 		/* if device aborted the command, skip HPA resizing */
1397 		ata_dev_warn(dev,
1398 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 			     (unsigned long long)sectors,
1400 			     (unsigned long long)native_sectors);
1401 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 		return 0;
1403 	} else if (rc)
1404 		return rc;
1405 
1406 	/* re-read IDENTIFY data */
1407 	rc = ata_dev_reread_id(dev, 0);
1408 	if (rc) {
1409 		ata_dev_err(dev,
1410 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1411 		return rc;
1412 	}
1413 
1414 	if (print_info) {
1415 		u64 new_sectors = ata_id_n_sectors(dev->id);
1416 		ata_dev_info(dev,
1417 			"HPA unlocked: %llu -> %llu, native %llu\n",
1418 			(unsigned long long)sectors,
1419 			(unsigned long long)new_sectors,
1420 			(unsigned long long)native_sectors);
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1428  *	@id: IDENTIFY DEVICE page to dump
1429  *
1430  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1431  *	page.
1432  *
1433  *	LOCKING:
1434  *	caller.
1435  */
1436 
1437 static inline void ata_dump_id(const u16 *id)
1438 {
1439 	DPRINTK("49==0x%04x  "
1440 		"53==0x%04x  "
1441 		"63==0x%04x  "
1442 		"64==0x%04x  "
1443 		"75==0x%04x  \n",
1444 		id[49],
1445 		id[53],
1446 		id[63],
1447 		id[64],
1448 		id[75]);
1449 	DPRINTK("80==0x%04x  "
1450 		"81==0x%04x  "
1451 		"82==0x%04x  "
1452 		"83==0x%04x  "
1453 		"84==0x%04x  \n",
1454 		id[80],
1455 		id[81],
1456 		id[82],
1457 		id[83],
1458 		id[84]);
1459 	DPRINTK("88==0x%04x  "
1460 		"93==0x%04x\n",
1461 		id[88],
1462 		id[93]);
1463 }
1464 
1465 /**
1466  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467  *	@id: IDENTIFY data to compute xfer mask from
1468  *
1469  *	Compute the xfermask for this device. This is not as trivial
1470  *	as it seems if we must consider early devices correctly.
1471  *
1472  *	FIXME: pre IDE drive timing (do we care ?).
1473  *
1474  *	LOCKING:
1475  *	None.
1476  *
1477  *	RETURNS:
1478  *	Computed xfermask
1479  */
1480 unsigned long ata_id_xfermask(const u16 *id)
1481 {
1482 	unsigned long pio_mask, mwdma_mask, udma_mask;
1483 
1484 	/* Usual case. Word 53 indicates word 64 is valid */
1485 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 		pio_mask <<= 3;
1488 		pio_mask |= 0x7;
1489 	} else {
1490 		/* If word 64 isn't valid then Word 51 high byte holds
1491 		 * the PIO timing number for the maximum. Turn it into
1492 		 * a mask.
1493 		 */
1494 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 		if (mode < 5)	/* Valid PIO range */
1496 			pio_mask = (2 << mode) - 1;
1497 		else
1498 			pio_mask = 1;
1499 
1500 		/* But wait.. there's more. Design your standards by
1501 		 * committee and you too can get a free iordy field to
1502 		 * process. However its the speeds not the modes that
1503 		 * are supported... Note drivers using the timing API
1504 		 * will get this right anyway
1505 		 */
1506 	}
1507 
1508 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509 
1510 	if (ata_id_is_cfa(id)) {
1511 		/*
1512 		 *	Process compact flash extended modes
1513 		 */
1514 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516 
1517 		if (pio)
1518 			pio_mask |= (1 << 5);
1519 		if (pio > 1)
1520 			pio_mask |= (1 << 6);
1521 		if (dma)
1522 			mwdma_mask |= (1 << 3);
1523 		if (dma > 1)
1524 			mwdma_mask |= (1 << 4);
1525 	}
1526 
1527 	udma_mask = 0;
1528 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530 
1531 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 }
1533 
1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535 {
1536 	struct completion *waiting = qc->private_data;
1537 
1538 	complete(waiting);
1539 }
1540 
1541 /**
1542  *	ata_exec_internal_sg - execute libata internal command
1543  *	@dev: Device to which the command is sent
1544  *	@tf: Taskfile registers for the command and the result
1545  *	@cdb: CDB for packet command
1546  *	@dma_dir: Data transfer direction of the command
1547  *	@sgl: sg list for the data buffer of the command
1548  *	@n_elem: Number of sg entries
1549  *	@timeout: Timeout in msecs (0 for default)
1550  *
1551  *	Executes libata internal command with timeout.  @tf contains
1552  *	command on entry and result on return.  Timeout and error
1553  *	conditions are reported via return value.  No recovery action
1554  *	is taken after a command times out.  It's caller's duty to
1555  *	clean up after timeout.
1556  *
1557  *	LOCKING:
1558  *	None.  Should be called with kernel context, might sleep.
1559  *
1560  *	RETURNS:
1561  *	Zero on success, AC_ERR_* mask on failure
1562  */
1563 unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 			      struct ata_taskfile *tf, const u8 *cdb,
1565 			      int dma_dir, struct scatterlist *sgl,
1566 			      unsigned int n_elem, unsigned long timeout)
1567 {
1568 	struct ata_link *link = dev->link;
1569 	struct ata_port *ap = link->ap;
1570 	u8 command = tf->command;
1571 	int auto_timeout = 0;
1572 	struct ata_queued_cmd *qc;
1573 	unsigned int tag, preempted_tag;
1574 	u32 preempted_sactive, preempted_qc_active;
1575 	int preempted_nr_active_links;
1576 	DECLARE_COMPLETION_ONSTACK(wait);
1577 	unsigned long flags;
1578 	unsigned int err_mask;
1579 	int rc;
1580 
1581 	spin_lock_irqsave(ap->lock, flags);
1582 
1583 	/* no internal command while frozen */
1584 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 		spin_unlock_irqrestore(ap->lock, flags);
1586 		return AC_ERR_SYSTEM;
1587 	}
1588 
1589 	/* initialize internal qc */
1590 
1591 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1592 	 * drivers choke if any other tag is given.  This breaks
1593 	 * ata_tag_internal() test for those drivers.  Don't use new
1594 	 * EH stuff without converting to it.
1595 	 */
1596 	if (ap->ops->error_handler)
1597 		tag = ATA_TAG_INTERNAL;
1598 	else
1599 		tag = 0;
1600 
1601 	qc = __ata_qc_from_tag(ap, tag);
1602 
1603 	qc->tag = tag;
1604 	qc->scsicmd = NULL;
1605 	qc->ap = ap;
1606 	qc->dev = dev;
1607 	ata_qc_reinit(qc);
1608 
1609 	preempted_tag = link->active_tag;
1610 	preempted_sactive = link->sactive;
1611 	preempted_qc_active = ap->qc_active;
1612 	preempted_nr_active_links = ap->nr_active_links;
1613 	link->active_tag = ATA_TAG_POISON;
1614 	link->sactive = 0;
1615 	ap->qc_active = 0;
1616 	ap->nr_active_links = 0;
1617 
1618 	/* prepare & issue qc */
1619 	qc->tf = *tf;
1620 	if (cdb)
1621 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622 
1623 	/* some SATA bridges need us to indicate data xfer direction */
1624 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 	    dma_dir == DMA_FROM_DEVICE)
1626 		qc->tf.feature |= ATAPI_DMADIR;
1627 
1628 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 	qc->dma_dir = dma_dir;
1630 	if (dma_dir != DMA_NONE) {
1631 		unsigned int i, buflen = 0;
1632 		struct scatterlist *sg;
1633 
1634 		for_each_sg(sgl, sg, n_elem, i)
1635 			buflen += sg->length;
1636 
1637 		ata_sg_init(qc, sgl, n_elem);
1638 		qc->nbytes = buflen;
1639 	}
1640 
1641 	qc->private_data = &wait;
1642 	qc->complete_fn = ata_qc_complete_internal;
1643 
1644 	ata_qc_issue(qc);
1645 
1646 	spin_unlock_irqrestore(ap->lock, flags);
1647 
1648 	if (!timeout) {
1649 		if (ata_probe_timeout)
1650 			timeout = ata_probe_timeout * 1000;
1651 		else {
1652 			timeout = ata_internal_cmd_timeout(dev, command);
1653 			auto_timeout = 1;
1654 		}
1655 	}
1656 
1657 	if (ap->ops->error_handler)
1658 		ata_eh_release(ap);
1659 
1660 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661 
1662 	if (ap->ops->error_handler)
1663 		ata_eh_acquire(ap);
1664 
1665 	ata_sff_flush_pio_task(ap);
1666 
1667 	if (!rc) {
1668 		spin_lock_irqsave(ap->lock, flags);
1669 
1670 		/* We're racing with irq here.  If we lose, the
1671 		 * following test prevents us from completing the qc
1672 		 * twice.  If we win, the port is frozen and will be
1673 		 * cleaned up by ->post_internal_cmd().
1674 		 */
1675 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 			qc->err_mask |= AC_ERR_TIMEOUT;
1677 
1678 			if (ap->ops->error_handler)
1679 				ata_port_freeze(ap);
1680 			else
1681 				ata_qc_complete(qc);
1682 
1683 			if (ata_msg_warn(ap))
1684 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 					     command);
1686 		}
1687 
1688 		spin_unlock_irqrestore(ap->lock, flags);
1689 	}
1690 
1691 	/* do post_internal_cmd */
1692 	if (ap->ops->post_internal_cmd)
1693 		ap->ops->post_internal_cmd(qc);
1694 
1695 	/* perform minimal error analysis */
1696 	if (qc->flags & ATA_QCFLAG_FAILED) {
1697 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 			qc->err_mask |= AC_ERR_DEV;
1699 
1700 		if (!qc->err_mask)
1701 			qc->err_mask |= AC_ERR_OTHER;
1702 
1703 		if (qc->err_mask & ~AC_ERR_OTHER)
1704 			qc->err_mask &= ~AC_ERR_OTHER;
1705 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 		qc->result_tf.command |= ATA_SENSE;
1707 	}
1708 
1709 	/* finish up */
1710 	spin_lock_irqsave(ap->lock, flags);
1711 
1712 	*tf = qc->result_tf;
1713 	err_mask = qc->err_mask;
1714 
1715 	ata_qc_free(qc);
1716 	link->active_tag = preempted_tag;
1717 	link->sactive = preempted_sactive;
1718 	ap->qc_active = preempted_qc_active;
1719 	ap->nr_active_links = preempted_nr_active_links;
1720 
1721 	spin_unlock_irqrestore(ap->lock, flags);
1722 
1723 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 		ata_internal_cmd_timed_out(dev, command);
1725 
1726 	return err_mask;
1727 }
1728 
1729 /**
1730  *	ata_exec_internal - execute libata internal command
1731  *	@dev: Device to which the command is sent
1732  *	@tf: Taskfile registers for the command and the result
1733  *	@cdb: CDB for packet command
1734  *	@dma_dir: Data transfer direction of the command
1735  *	@buf: Data buffer of the command
1736  *	@buflen: Length of data buffer
1737  *	@timeout: Timeout in msecs (0 for default)
1738  *
1739  *	Wrapper around ata_exec_internal_sg() which takes simple
1740  *	buffer instead of sg list.
1741  *
1742  *	LOCKING:
1743  *	None.  Should be called with kernel context, might sleep.
1744  *
1745  *	RETURNS:
1746  *	Zero on success, AC_ERR_* mask on failure
1747  */
1748 unsigned ata_exec_internal(struct ata_device *dev,
1749 			   struct ata_taskfile *tf, const u8 *cdb,
1750 			   int dma_dir, void *buf, unsigned int buflen,
1751 			   unsigned long timeout)
1752 {
1753 	struct scatterlist *psg = NULL, sg;
1754 	unsigned int n_elem = 0;
1755 
1756 	if (dma_dir != DMA_NONE) {
1757 		WARN_ON(!buf);
1758 		sg_init_one(&sg, buf, buflen);
1759 		psg = &sg;
1760 		n_elem++;
1761 	}
1762 
1763 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 				    timeout);
1765 }
1766 
1767 /**
1768  *	ata_pio_need_iordy	-	check if iordy needed
1769  *	@adev: ATA device
1770  *
1771  *	Check if the current speed of the device requires IORDY. Used
1772  *	by various controllers for chip configuration.
1773  */
1774 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775 {
1776 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1777 	 * lead to controller lock up on certain controllers if the
1778 	 * port is not occupied.  See bko#11703 for details.
1779 	 */
1780 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 		return 0;
1782 	/* Controller doesn't support IORDY.  Probably a pointless
1783 	 * check as the caller should know this.
1784 	 */
1785 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1786 		return 0;
1787 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1788 	if (ata_id_is_cfa(adev->id)
1789 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 		return 0;
1791 	/* PIO3 and higher it is mandatory */
1792 	if (adev->pio_mode > XFER_PIO_2)
1793 		return 1;
1794 	/* We turn it on when possible */
1795 	if (ata_id_has_iordy(adev->id))
1796 		return 1;
1797 	return 0;
1798 }
1799 
1800 /**
1801  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1802  *	@adev: ATA device
1803  *
1804  *	Compute the highest mode possible if we are not using iordy. Return
1805  *	-1 if no iordy mode is available.
1806  */
1807 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808 {
1809 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1810 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1811 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812 		/* Is the speed faster than the drive allows non IORDY ? */
1813 		if (pio) {
1814 			/* This is cycle times not frequency - watch the logic! */
1815 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1816 				return 3 << ATA_SHIFT_PIO;
1817 			return 7 << ATA_SHIFT_PIO;
1818 		}
1819 	}
1820 	return 3 << ATA_SHIFT_PIO;
1821 }
1822 
1823 /**
1824  *	ata_do_dev_read_id		-	default ID read method
1825  *	@dev: device
1826  *	@tf: proposed taskfile
1827  *	@id: data buffer
1828  *
1829  *	Issue the identify taskfile and hand back the buffer containing
1830  *	identify data. For some RAID controllers and for pre ATA devices
1831  *	this function is wrapped or replaced by the driver
1832  */
1833 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 					struct ata_taskfile *tf, u16 *id)
1835 {
1836 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838 }
1839 
1840 /**
1841  *	ata_dev_read_id - Read ID data from the specified device
1842  *	@dev: target device
1843  *	@p_class: pointer to class of the target device (may be changed)
1844  *	@flags: ATA_READID_* flags
1845  *	@id: buffer to read IDENTIFY data into
1846  *
1847  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1848  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1850  *	for pre-ATA4 drives.
1851  *
1852  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853  *	now we abort if we hit that case.
1854  *
1855  *	LOCKING:
1856  *	Kernel thread context (may sleep)
1857  *
1858  *	RETURNS:
1859  *	0 on success, -errno otherwise.
1860  */
1861 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862 		    unsigned int flags, u16 *id)
1863 {
1864 	struct ata_port *ap = dev->link->ap;
1865 	unsigned int class = *p_class;
1866 	struct ata_taskfile tf;
1867 	unsigned int err_mask = 0;
1868 	const char *reason;
1869 	bool is_semb = class == ATA_DEV_SEMB;
1870 	int may_fallback = 1, tried_spinup = 0;
1871 	int rc;
1872 
1873 	if (ata_msg_ctl(ap))
1874 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875 
1876 retry:
1877 	ata_tf_init(dev, &tf);
1878 
1879 	switch (class) {
1880 	case ATA_DEV_SEMB:
1881 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1882 	case ATA_DEV_ATA:
1883 	case ATA_DEV_ZAC:
1884 		tf.command = ATA_CMD_ID_ATA;
1885 		break;
1886 	case ATA_DEV_ATAPI:
1887 		tf.command = ATA_CMD_ID_ATAPI;
1888 		break;
1889 	default:
1890 		rc = -ENODEV;
1891 		reason = "unsupported class";
1892 		goto err_out;
1893 	}
1894 
1895 	tf.protocol = ATA_PROT_PIO;
1896 
1897 	/* Some devices choke if TF registers contain garbage.  Make
1898 	 * sure those are properly initialized.
1899 	 */
1900 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901 
1902 	/* Device presence detection is unreliable on some
1903 	 * controllers.  Always poll IDENTIFY if available.
1904 	 */
1905 	tf.flags |= ATA_TFLAG_POLLING;
1906 
1907 	if (ap->ops->read_id)
1908 		err_mask = ap->ops->read_id(dev, &tf, id);
1909 	else
1910 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1911 
1912 	if (err_mask) {
1913 		if (err_mask & AC_ERR_NODEV_HINT) {
1914 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1915 			return -ENOENT;
1916 		}
1917 
1918 		if (is_semb) {
1919 			ata_dev_info(dev,
1920 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1921 			/* SEMB is not supported yet */
1922 			*p_class = ATA_DEV_SEMB_UNSUP;
1923 			return 0;
1924 		}
1925 
1926 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927 			/* Device or controller might have reported
1928 			 * the wrong device class.  Give a shot at the
1929 			 * other IDENTIFY if the current one is
1930 			 * aborted by the device.
1931 			 */
1932 			if (may_fallback) {
1933 				may_fallback = 0;
1934 
1935 				if (class == ATA_DEV_ATA)
1936 					class = ATA_DEV_ATAPI;
1937 				else
1938 					class = ATA_DEV_ATA;
1939 				goto retry;
1940 			}
1941 
1942 			/* Control reaches here iff the device aborted
1943 			 * both flavors of IDENTIFYs which happens
1944 			 * sometimes with phantom devices.
1945 			 */
1946 			ata_dev_dbg(dev,
1947 				    "both IDENTIFYs aborted, assuming NODEV\n");
1948 			return -ENOENT;
1949 		}
1950 
1951 		rc = -EIO;
1952 		reason = "I/O error";
1953 		goto err_out;
1954 	}
1955 
1956 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1957 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1959 			    class, may_fallback, tried_spinup);
1960 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962 	}
1963 
1964 	/* Falling back doesn't make sense if ID data was read
1965 	 * successfully at least once.
1966 	 */
1967 	may_fallback = 0;
1968 
1969 	swap_buf_le16(id, ATA_ID_WORDS);
1970 
1971 	/* sanity check */
1972 	rc = -EINVAL;
1973 	reason = "device reports invalid type";
1974 
1975 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1976 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 			goto err_out;
1978 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979 							ata_id_is_ata(id)) {
1980 			ata_dev_dbg(dev,
1981 				"host indicates ignore ATA devices, ignored\n");
1982 			return -ENOENT;
1983 		}
1984 	} else {
1985 		if (ata_id_is_ata(id))
1986 			goto err_out;
1987 	}
1988 
1989 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990 		tried_spinup = 1;
1991 		/*
1992 		 * Drive powered-up in standby mode, and requires a specific
1993 		 * SET_FEATURES spin-up subcommand before it will accept
1994 		 * anything other than the original IDENTIFY command.
1995 		 */
1996 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1997 		if (err_mask && id[2] != 0x738c) {
1998 			rc = -EIO;
1999 			reason = "SPINUP failed";
2000 			goto err_out;
2001 		}
2002 		/*
2003 		 * If the drive initially returned incomplete IDENTIFY info,
2004 		 * we now must reissue the IDENTIFY command.
2005 		 */
2006 		if (id[2] == 0x37c8)
2007 			goto retry;
2008 	}
2009 
2010 	if ((flags & ATA_READID_POSTRESET) &&
2011 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2012 		/*
2013 		 * The exact sequence expected by certain pre-ATA4 drives is:
2014 		 * SRST RESET
2015 		 * IDENTIFY (optional in early ATA)
2016 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2017 		 * anything else..
2018 		 * Some drives were very specific about that exact sequence.
2019 		 *
2020 		 * Note that ATA4 says lba is mandatory so the second check
2021 		 * should never trigger.
2022 		 */
2023 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2024 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2025 			if (err_mask) {
2026 				rc = -EIO;
2027 				reason = "INIT_DEV_PARAMS failed";
2028 				goto err_out;
2029 			}
2030 
2031 			/* current CHS translation info (id[53-58]) might be
2032 			 * changed. reread the identify device info.
2033 			 */
2034 			flags &= ~ATA_READID_POSTRESET;
2035 			goto retry;
2036 		}
2037 	}
2038 
2039 	*p_class = class;
2040 
2041 	return 0;
2042 
2043  err_out:
2044 	if (ata_msg_warn(ap))
2045 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046 			     reason, err_mask);
2047 	return rc;
2048 }
2049 
2050 static int ata_do_link_spd_horkage(struct ata_device *dev)
2051 {
2052 	struct ata_link *plink = ata_dev_phys_link(dev);
2053 	u32 target, target_limit;
2054 
2055 	if (!sata_scr_valid(plink))
2056 		return 0;
2057 
2058 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2059 		target = 1;
2060 	else
2061 		return 0;
2062 
2063 	target_limit = (1 << target) - 1;
2064 
2065 	/* if already on stricter limit, no need to push further */
2066 	if (plink->sata_spd_limit <= target_limit)
2067 		return 0;
2068 
2069 	plink->sata_spd_limit = target_limit;
2070 
2071 	/* Request another EH round by returning -EAGAIN if link is
2072 	 * going faster than the target speed.  Forward progress is
2073 	 * guaranteed by setting sata_spd_limit to target_limit above.
2074 	 */
2075 	if (plink->sata_spd > target) {
2076 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2077 			     sata_spd_string(target));
2078 		return -EAGAIN;
2079 	}
2080 	return 0;
2081 }
2082 
2083 static inline u8 ata_dev_knobble(struct ata_device *dev)
2084 {
2085 	struct ata_port *ap = dev->link->ap;
2086 
2087 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2088 		return 0;
2089 
2090 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2091 }
2092 
2093 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2094 {
2095 	struct ata_port *ap = dev->link->ap;
2096 	unsigned int err_mask;
2097 	int log_index = ATA_LOG_NCQ_SEND_RECV * 2;
2098 	u16 log_pages;
2099 
2100 	err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2101 				     0, ap->sector_buf, 1);
2102 	if (err_mask) {
2103 		ata_dev_dbg(dev,
2104 			    "failed to get Log Directory Emask 0x%x\n",
2105 			    err_mask);
2106 		return;
2107 	}
2108 	log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2109 	if (!log_pages) {
2110 		ata_dev_warn(dev,
2111 			     "NCQ Send/Recv Log not supported\n");
2112 		return;
2113 	}
2114 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2115 				     0, ap->sector_buf, 1);
2116 	if (err_mask) {
2117 		ata_dev_dbg(dev,
2118 			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2119 			    err_mask);
2120 	} else {
2121 		u8 *cmds = dev->ncq_send_recv_cmds;
2122 
2123 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2124 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2125 
2126 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2127 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2128 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2129 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2130 		}
2131 	}
2132 }
2133 
2134 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2135 {
2136 	struct ata_port *ap = dev->link->ap;
2137 	unsigned int err_mask;
2138 	int log_index = ATA_LOG_NCQ_NON_DATA * 2;
2139 	u16 log_pages;
2140 
2141 	err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2142 				     0, ap->sector_buf, 1);
2143 	if (err_mask) {
2144 		ata_dev_dbg(dev,
2145 			    "failed to get Log Directory Emask 0x%x\n",
2146 			    err_mask);
2147 		return;
2148 	}
2149 	log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2150 	if (!log_pages) {
2151 		ata_dev_warn(dev,
2152 			     "NCQ Send/Recv Log not supported\n");
2153 		return;
2154 	}
2155 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2156 				     0, ap->sector_buf, 1);
2157 	if (err_mask) {
2158 		ata_dev_dbg(dev,
2159 			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2160 			    err_mask);
2161 	} else {
2162 		u8 *cmds = dev->ncq_non_data_cmds;
2163 
2164 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2165 	}
2166 }
2167 
2168 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2169 {
2170 	struct ata_port *ap = dev->link->ap;
2171 	unsigned int err_mask;
2172 
2173 	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2174 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2175 		return;
2176 	}
2177 
2178 	err_mask = ata_read_log_page(dev,
2179 				     ATA_LOG_SATA_ID_DEV_DATA,
2180 				     ATA_LOG_SATA_SETTINGS,
2181 				     ap->sector_buf,
2182 				     1);
2183 	if (err_mask) {
2184 		ata_dev_dbg(dev,
2185 			    "failed to get Identify Device data, Emask 0x%x\n",
2186 			    err_mask);
2187 		return;
2188 	}
2189 
2190 	if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2191 		dev->flags |= ATA_DFLAG_NCQ_PRIO;
2192 	} else {
2193 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2194 		ata_dev_dbg(dev, "SATA page does not support priority\n");
2195 	}
2196 
2197 }
2198 
2199 static int ata_dev_config_ncq(struct ata_device *dev,
2200 			       char *desc, size_t desc_sz)
2201 {
2202 	struct ata_port *ap = dev->link->ap;
2203 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2204 	unsigned int err_mask;
2205 	char *aa_desc = "";
2206 
2207 	if (!ata_id_has_ncq(dev->id)) {
2208 		desc[0] = '\0';
2209 		return 0;
2210 	}
2211 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2212 		snprintf(desc, desc_sz, "NCQ (not used)");
2213 		return 0;
2214 	}
2215 	if (ap->flags & ATA_FLAG_NCQ) {
2216 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2217 		dev->flags |= ATA_DFLAG_NCQ;
2218 	}
2219 
2220 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2221 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2222 		ata_id_has_fpdma_aa(dev->id)) {
2223 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2224 			SATA_FPDMA_AA);
2225 		if (err_mask) {
2226 			ata_dev_err(dev,
2227 				    "failed to enable AA (error_mask=0x%x)\n",
2228 				    err_mask);
2229 			if (err_mask != AC_ERR_DEV) {
2230 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2231 				return -EIO;
2232 			}
2233 		} else
2234 			aa_desc = ", AA";
2235 	}
2236 
2237 	if (hdepth >= ddepth)
2238 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2239 	else
2240 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2241 			ddepth, aa_desc);
2242 
2243 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2244 		if (ata_id_has_ncq_send_and_recv(dev->id))
2245 			ata_dev_config_ncq_send_recv(dev);
2246 		if (ata_id_has_ncq_non_data(dev->id))
2247 			ata_dev_config_ncq_non_data(dev);
2248 		if (ata_id_has_ncq_prio(dev->id))
2249 			ata_dev_config_ncq_prio(dev);
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2256 {
2257 	unsigned int err_mask;
2258 
2259 	if (!ata_id_has_sense_reporting(dev->id))
2260 		return;
2261 
2262 	if (ata_id_sense_reporting_enabled(dev->id))
2263 		return;
2264 
2265 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2266 	if (err_mask) {
2267 		ata_dev_dbg(dev,
2268 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2269 			    err_mask);
2270 	}
2271 }
2272 
2273 static void ata_dev_config_zac(struct ata_device *dev)
2274 {
2275 	struct ata_port *ap = dev->link->ap;
2276 	unsigned int err_mask;
2277 	u8 *identify_buf = ap->sector_buf;
2278 	int log_index = ATA_LOG_SATA_ID_DEV_DATA * 2, i, found = 0;
2279 	u16 log_pages;
2280 
2281 	dev->zac_zones_optimal_open = U32_MAX;
2282 	dev->zac_zones_optimal_nonseq = U32_MAX;
2283 	dev->zac_zones_max_open = U32_MAX;
2284 
2285 	/*
2286 	 * Always set the 'ZAC' flag for Host-managed devices.
2287 	 */
2288 	if (dev->class == ATA_DEV_ZAC)
2289 		dev->flags |= ATA_DFLAG_ZAC;
2290 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2291 		/*
2292 		 * Check for host-aware devices.
2293 		 */
2294 		dev->flags |= ATA_DFLAG_ZAC;
2295 
2296 	if (!(dev->flags & ATA_DFLAG_ZAC))
2297 		return;
2298 
2299 	/*
2300 	 * Read Log Directory to figure out if IDENTIFY DEVICE log
2301 	 * is supported.
2302 	 */
2303 	err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2304 				     0, ap->sector_buf, 1);
2305 	if (err_mask) {
2306 		ata_dev_info(dev,
2307 			     "failed to get Log Directory Emask 0x%x\n",
2308 			     err_mask);
2309 		return;
2310 	}
2311 	log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2312 	if (log_pages == 0) {
2313 		ata_dev_warn(dev,
2314 			     "ATA Identify Device Log not supported\n");
2315 		return;
2316 	}
2317 	/*
2318 	 * Read IDENTIFY DEVICE data log, page 0, to figure out
2319 	 * if page 9 is supported.
2320 	 */
2321 	err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 0,
2322 				     identify_buf, 1);
2323 	if (err_mask) {
2324 		ata_dev_info(dev,
2325 			     "failed to get Device Identify Log Emask 0x%x\n",
2326 			     err_mask);
2327 		return;
2328 	}
2329 	log_pages = identify_buf[8];
2330 	for (i = 0; i < log_pages; i++) {
2331 		if (identify_buf[9 + i] == ATA_LOG_ZONED_INFORMATION) {
2332 			found++;
2333 			break;
2334 		}
2335 	}
2336 	if (!found) {
2337 		ata_dev_warn(dev,
2338 			     "ATA Zoned Information Log not supported\n");
2339 		return;
2340 	}
2341 
2342 	/*
2343 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2344 	 */
2345 	err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA,
2346 				     ATA_LOG_ZONED_INFORMATION,
2347 				     identify_buf, 1);
2348 	if (!err_mask) {
2349 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2350 
2351 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2352 		if ((zoned_cap >> 63))
2353 			dev->zac_zoned_cap = (zoned_cap & 1);
2354 		opt_open = get_unaligned_le64(&identify_buf[24]);
2355 		if ((opt_open >> 63))
2356 			dev->zac_zones_optimal_open = (u32)opt_open;
2357 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2358 		if ((opt_nonseq >> 63))
2359 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2360 		max_open = get_unaligned_le64(&identify_buf[40]);
2361 		if ((max_open >> 63))
2362 			dev->zac_zones_max_open = (u32)max_open;
2363 	}
2364 }
2365 
2366 /**
2367  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2368  *	@dev: Target device to configure
2369  *
2370  *	Configure @dev according to @dev->id.  Generic and low-level
2371  *	driver specific fixups are also applied.
2372  *
2373  *	LOCKING:
2374  *	Kernel thread context (may sleep)
2375  *
2376  *	RETURNS:
2377  *	0 on success, -errno otherwise
2378  */
2379 int ata_dev_configure(struct ata_device *dev)
2380 {
2381 	struct ata_port *ap = dev->link->ap;
2382 	struct ata_eh_context *ehc = &dev->link->eh_context;
2383 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2384 	const u16 *id = dev->id;
2385 	unsigned long xfer_mask;
2386 	unsigned int err_mask;
2387 	char revbuf[7];		/* XYZ-99\0 */
2388 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2389 	char modelbuf[ATA_ID_PROD_LEN+1];
2390 	int rc;
2391 
2392 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2393 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2394 		return 0;
2395 	}
2396 
2397 	if (ata_msg_probe(ap))
2398 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2399 
2400 	/* set horkage */
2401 	dev->horkage |= ata_dev_blacklisted(dev);
2402 	ata_force_horkage(dev);
2403 
2404 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2405 		ata_dev_info(dev, "unsupported device, disabling\n");
2406 		ata_dev_disable(dev);
2407 		return 0;
2408 	}
2409 
2410 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2411 	    dev->class == ATA_DEV_ATAPI) {
2412 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2413 			     atapi_enabled ? "not supported with this driver"
2414 			     : "disabled");
2415 		ata_dev_disable(dev);
2416 		return 0;
2417 	}
2418 
2419 	rc = ata_do_link_spd_horkage(dev);
2420 	if (rc)
2421 		return rc;
2422 
2423 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2424 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2425 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2426 		dev->horkage |= ATA_HORKAGE_NOLPM;
2427 
2428 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2429 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2430 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2431 	}
2432 
2433 	/* let ACPI work its magic */
2434 	rc = ata_acpi_on_devcfg(dev);
2435 	if (rc)
2436 		return rc;
2437 
2438 	/* massage HPA, do it early as it might change IDENTIFY data */
2439 	rc = ata_hpa_resize(dev);
2440 	if (rc)
2441 		return rc;
2442 
2443 	/* print device capabilities */
2444 	if (ata_msg_probe(ap))
2445 		ata_dev_dbg(dev,
2446 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2447 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2448 			    __func__,
2449 			    id[49], id[82], id[83], id[84],
2450 			    id[85], id[86], id[87], id[88]);
2451 
2452 	/* initialize to-be-configured parameters */
2453 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2454 	dev->max_sectors = 0;
2455 	dev->cdb_len = 0;
2456 	dev->n_sectors = 0;
2457 	dev->cylinders = 0;
2458 	dev->heads = 0;
2459 	dev->sectors = 0;
2460 	dev->multi_count = 0;
2461 
2462 	/*
2463 	 * common ATA, ATAPI feature tests
2464 	 */
2465 
2466 	/* find max transfer mode; for printk only */
2467 	xfer_mask = ata_id_xfermask(id);
2468 
2469 	if (ata_msg_probe(ap))
2470 		ata_dump_id(id);
2471 
2472 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2473 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2474 			sizeof(fwrevbuf));
2475 
2476 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2477 			sizeof(modelbuf));
2478 
2479 	/* ATA-specific feature tests */
2480 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2481 		if (ata_id_is_cfa(id)) {
2482 			/* CPRM may make this media unusable */
2483 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2484 				ata_dev_warn(dev,
2485 	"supports DRM functions and may not be fully accessible\n");
2486 			snprintf(revbuf, 7, "CFA");
2487 		} else {
2488 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2489 			/* Warn the user if the device has TPM extensions */
2490 			if (ata_id_has_tpm(id))
2491 				ata_dev_warn(dev,
2492 	"supports DRM functions and may not be fully accessible\n");
2493 		}
2494 
2495 		dev->n_sectors = ata_id_n_sectors(id);
2496 
2497 		/* get current R/W Multiple count setting */
2498 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2499 			unsigned int max = dev->id[47] & 0xff;
2500 			unsigned int cnt = dev->id[59] & 0xff;
2501 			/* only recognize/allow powers of two here */
2502 			if (is_power_of_2(max) && is_power_of_2(cnt))
2503 				if (cnt <= max)
2504 					dev->multi_count = cnt;
2505 		}
2506 
2507 		if (ata_id_has_lba(id)) {
2508 			const char *lba_desc;
2509 			char ncq_desc[24];
2510 
2511 			lba_desc = "LBA";
2512 			dev->flags |= ATA_DFLAG_LBA;
2513 			if (ata_id_has_lba48(id)) {
2514 				dev->flags |= ATA_DFLAG_LBA48;
2515 				lba_desc = "LBA48";
2516 
2517 				if (dev->n_sectors >= (1UL << 28) &&
2518 				    ata_id_has_flush_ext(id))
2519 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2520 			}
2521 
2522 			/* config NCQ */
2523 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2524 			if (rc)
2525 				return rc;
2526 
2527 			/* print device info to dmesg */
2528 			if (ata_msg_drv(ap) && print_info) {
2529 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2530 					     revbuf, modelbuf, fwrevbuf,
2531 					     ata_mode_string(xfer_mask));
2532 				ata_dev_info(dev,
2533 					     "%llu sectors, multi %u: %s %s\n",
2534 					(unsigned long long)dev->n_sectors,
2535 					dev->multi_count, lba_desc, ncq_desc);
2536 			}
2537 		} else {
2538 			/* CHS */
2539 
2540 			/* Default translation */
2541 			dev->cylinders	= id[1];
2542 			dev->heads	= id[3];
2543 			dev->sectors	= id[6];
2544 
2545 			if (ata_id_current_chs_valid(id)) {
2546 				/* Current CHS translation is valid. */
2547 				dev->cylinders = id[54];
2548 				dev->heads     = id[55];
2549 				dev->sectors   = id[56];
2550 			}
2551 
2552 			/* print device info to dmesg */
2553 			if (ata_msg_drv(ap) && print_info) {
2554 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2555 					     revbuf,	modelbuf, fwrevbuf,
2556 					     ata_mode_string(xfer_mask));
2557 				ata_dev_info(dev,
2558 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2559 					     (unsigned long long)dev->n_sectors,
2560 					     dev->multi_count, dev->cylinders,
2561 					     dev->heads, dev->sectors);
2562 			}
2563 		}
2564 
2565 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2566 		 * from SATA Settings page of Identify Device Data Log.
2567 		 */
2568 		if (ata_id_has_devslp(dev->id)) {
2569 			u8 *sata_setting = ap->sector_buf;
2570 			int i, j;
2571 
2572 			dev->flags |= ATA_DFLAG_DEVSLP;
2573 			err_mask = ata_read_log_page(dev,
2574 						     ATA_LOG_SATA_ID_DEV_DATA,
2575 						     ATA_LOG_SATA_SETTINGS,
2576 						     sata_setting,
2577 						     1);
2578 			if (err_mask)
2579 				ata_dev_dbg(dev,
2580 					    "failed to get Identify Device Data, Emask 0x%x\n",
2581 					    err_mask);
2582 			else
2583 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2584 					j = ATA_LOG_DEVSLP_OFFSET + i;
2585 					dev->devslp_timing[i] = sata_setting[j];
2586 				}
2587 		}
2588 		ata_dev_config_sense_reporting(dev);
2589 		ata_dev_config_zac(dev);
2590 		dev->cdb_len = 16;
2591 	}
2592 
2593 	/* ATAPI-specific feature tests */
2594 	else if (dev->class == ATA_DEV_ATAPI) {
2595 		const char *cdb_intr_string = "";
2596 		const char *atapi_an_string = "";
2597 		const char *dma_dir_string = "";
2598 		u32 sntf;
2599 
2600 		rc = atapi_cdb_len(id);
2601 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2602 			if (ata_msg_warn(ap))
2603 				ata_dev_warn(dev, "unsupported CDB len\n");
2604 			rc = -EINVAL;
2605 			goto err_out_nosup;
2606 		}
2607 		dev->cdb_len = (unsigned int) rc;
2608 
2609 		/* Enable ATAPI AN if both the host and device have
2610 		 * the support.  If PMP is attached, SNTF is required
2611 		 * to enable ATAPI AN to discern between PHY status
2612 		 * changed notifications and ATAPI ANs.
2613 		 */
2614 		if (atapi_an &&
2615 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2616 		    (!sata_pmp_attached(ap) ||
2617 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2618 			/* issue SET feature command to turn this on */
2619 			err_mask = ata_dev_set_feature(dev,
2620 					SETFEATURES_SATA_ENABLE, SATA_AN);
2621 			if (err_mask)
2622 				ata_dev_err(dev,
2623 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2624 					    err_mask);
2625 			else {
2626 				dev->flags |= ATA_DFLAG_AN;
2627 				atapi_an_string = ", ATAPI AN";
2628 			}
2629 		}
2630 
2631 		if (ata_id_cdb_intr(dev->id)) {
2632 			dev->flags |= ATA_DFLAG_CDB_INTR;
2633 			cdb_intr_string = ", CDB intr";
2634 		}
2635 
2636 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2637 			dev->flags |= ATA_DFLAG_DMADIR;
2638 			dma_dir_string = ", DMADIR";
2639 		}
2640 
2641 		if (ata_id_has_da(dev->id)) {
2642 			dev->flags |= ATA_DFLAG_DA;
2643 			zpodd_init(dev);
2644 		}
2645 
2646 		/* print device info to dmesg */
2647 		if (ata_msg_drv(ap) && print_info)
2648 			ata_dev_info(dev,
2649 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2650 				     modelbuf, fwrevbuf,
2651 				     ata_mode_string(xfer_mask),
2652 				     cdb_intr_string, atapi_an_string,
2653 				     dma_dir_string);
2654 	}
2655 
2656 	/* determine max_sectors */
2657 	dev->max_sectors = ATA_MAX_SECTORS;
2658 	if (dev->flags & ATA_DFLAG_LBA48)
2659 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2660 
2661 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2662 	   200 sectors */
2663 	if (ata_dev_knobble(dev)) {
2664 		if (ata_msg_drv(ap) && print_info)
2665 			ata_dev_info(dev, "applying bridge limits\n");
2666 		dev->udma_mask &= ATA_UDMA5;
2667 		dev->max_sectors = ATA_MAX_SECTORS;
2668 	}
2669 
2670 	if ((dev->class == ATA_DEV_ATAPI) &&
2671 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2672 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2673 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2674 	}
2675 
2676 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2677 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2678 					 dev->max_sectors);
2679 
2680 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2681 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2682 					 dev->max_sectors);
2683 
2684 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2685 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2686 
2687 	if (ap->ops->dev_config)
2688 		ap->ops->dev_config(dev);
2689 
2690 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2691 		/* Let the user know. We don't want to disallow opens for
2692 		   rescue purposes, or in case the vendor is just a blithering
2693 		   idiot. Do this after the dev_config call as some controllers
2694 		   with buggy firmware may want to avoid reporting false device
2695 		   bugs */
2696 
2697 		if (print_info) {
2698 			ata_dev_warn(dev,
2699 "Drive reports diagnostics failure. This may indicate a drive\n");
2700 			ata_dev_warn(dev,
2701 "fault or invalid emulation. Contact drive vendor for information.\n");
2702 		}
2703 	}
2704 
2705 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2706 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2707 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2708 	}
2709 
2710 	return 0;
2711 
2712 err_out_nosup:
2713 	if (ata_msg_probe(ap))
2714 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2715 	return rc;
2716 }
2717 
2718 /**
2719  *	ata_cable_40wire	-	return 40 wire cable type
2720  *	@ap: port
2721  *
2722  *	Helper method for drivers which want to hardwire 40 wire cable
2723  *	detection.
2724  */
2725 
2726 int ata_cable_40wire(struct ata_port *ap)
2727 {
2728 	return ATA_CBL_PATA40;
2729 }
2730 
2731 /**
2732  *	ata_cable_80wire	-	return 80 wire cable type
2733  *	@ap: port
2734  *
2735  *	Helper method for drivers which want to hardwire 80 wire cable
2736  *	detection.
2737  */
2738 
2739 int ata_cable_80wire(struct ata_port *ap)
2740 {
2741 	return ATA_CBL_PATA80;
2742 }
2743 
2744 /**
2745  *	ata_cable_unknown	-	return unknown PATA cable.
2746  *	@ap: port
2747  *
2748  *	Helper method for drivers which have no PATA cable detection.
2749  */
2750 
2751 int ata_cable_unknown(struct ata_port *ap)
2752 {
2753 	return ATA_CBL_PATA_UNK;
2754 }
2755 
2756 /**
2757  *	ata_cable_ignore	-	return ignored PATA cable.
2758  *	@ap: port
2759  *
2760  *	Helper method for drivers which don't use cable type to limit
2761  *	transfer mode.
2762  */
2763 int ata_cable_ignore(struct ata_port *ap)
2764 {
2765 	return ATA_CBL_PATA_IGN;
2766 }
2767 
2768 /**
2769  *	ata_cable_sata	-	return SATA cable type
2770  *	@ap: port
2771  *
2772  *	Helper method for drivers which have SATA cables
2773  */
2774 
2775 int ata_cable_sata(struct ata_port *ap)
2776 {
2777 	return ATA_CBL_SATA;
2778 }
2779 
2780 /**
2781  *	ata_bus_probe - Reset and probe ATA bus
2782  *	@ap: Bus to probe
2783  *
2784  *	Master ATA bus probing function.  Initiates a hardware-dependent
2785  *	bus reset, then attempts to identify any devices found on
2786  *	the bus.
2787  *
2788  *	LOCKING:
2789  *	PCI/etc. bus probe sem.
2790  *
2791  *	RETURNS:
2792  *	Zero on success, negative errno otherwise.
2793  */
2794 
2795 int ata_bus_probe(struct ata_port *ap)
2796 {
2797 	unsigned int classes[ATA_MAX_DEVICES];
2798 	int tries[ATA_MAX_DEVICES];
2799 	int rc;
2800 	struct ata_device *dev;
2801 
2802 	ata_for_each_dev(dev, &ap->link, ALL)
2803 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2804 
2805  retry:
2806 	ata_for_each_dev(dev, &ap->link, ALL) {
2807 		/* If we issue an SRST then an ATA drive (not ATAPI)
2808 		 * may change configuration and be in PIO0 timing. If
2809 		 * we do a hard reset (or are coming from power on)
2810 		 * this is true for ATA or ATAPI. Until we've set a
2811 		 * suitable controller mode we should not touch the
2812 		 * bus as we may be talking too fast.
2813 		 */
2814 		dev->pio_mode = XFER_PIO_0;
2815 		dev->dma_mode = 0xff;
2816 
2817 		/* If the controller has a pio mode setup function
2818 		 * then use it to set the chipset to rights. Don't
2819 		 * touch the DMA setup as that will be dealt with when
2820 		 * configuring devices.
2821 		 */
2822 		if (ap->ops->set_piomode)
2823 			ap->ops->set_piomode(ap, dev);
2824 	}
2825 
2826 	/* reset and determine device classes */
2827 	ap->ops->phy_reset(ap);
2828 
2829 	ata_for_each_dev(dev, &ap->link, ALL) {
2830 		if (dev->class != ATA_DEV_UNKNOWN)
2831 			classes[dev->devno] = dev->class;
2832 		else
2833 			classes[dev->devno] = ATA_DEV_NONE;
2834 
2835 		dev->class = ATA_DEV_UNKNOWN;
2836 	}
2837 
2838 	/* read IDENTIFY page and configure devices. We have to do the identify
2839 	   specific sequence bass-ackwards so that PDIAG- is released by
2840 	   the slave device */
2841 
2842 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2843 		if (tries[dev->devno])
2844 			dev->class = classes[dev->devno];
2845 
2846 		if (!ata_dev_enabled(dev))
2847 			continue;
2848 
2849 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2850 				     dev->id);
2851 		if (rc)
2852 			goto fail;
2853 	}
2854 
2855 	/* Now ask for the cable type as PDIAG- should have been released */
2856 	if (ap->ops->cable_detect)
2857 		ap->cbl = ap->ops->cable_detect(ap);
2858 
2859 	/* We may have SATA bridge glue hiding here irrespective of
2860 	 * the reported cable types and sensed types.  When SATA
2861 	 * drives indicate we have a bridge, we don't know which end
2862 	 * of the link the bridge is which is a problem.
2863 	 */
2864 	ata_for_each_dev(dev, &ap->link, ENABLED)
2865 		if (ata_id_is_sata(dev->id))
2866 			ap->cbl = ATA_CBL_SATA;
2867 
2868 	/* After the identify sequence we can now set up the devices. We do
2869 	   this in the normal order so that the user doesn't get confused */
2870 
2871 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2872 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2873 		rc = ata_dev_configure(dev);
2874 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2875 		if (rc)
2876 			goto fail;
2877 	}
2878 
2879 	/* configure transfer mode */
2880 	rc = ata_set_mode(&ap->link, &dev);
2881 	if (rc)
2882 		goto fail;
2883 
2884 	ata_for_each_dev(dev, &ap->link, ENABLED)
2885 		return 0;
2886 
2887 	return -ENODEV;
2888 
2889  fail:
2890 	tries[dev->devno]--;
2891 
2892 	switch (rc) {
2893 	case -EINVAL:
2894 		/* eeek, something went very wrong, give up */
2895 		tries[dev->devno] = 0;
2896 		break;
2897 
2898 	case -ENODEV:
2899 		/* give it just one more chance */
2900 		tries[dev->devno] = min(tries[dev->devno], 1);
2901 	case -EIO:
2902 		if (tries[dev->devno] == 1) {
2903 			/* This is the last chance, better to slow
2904 			 * down than lose it.
2905 			 */
2906 			sata_down_spd_limit(&ap->link, 0);
2907 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2908 		}
2909 	}
2910 
2911 	if (!tries[dev->devno])
2912 		ata_dev_disable(dev);
2913 
2914 	goto retry;
2915 }
2916 
2917 /**
2918  *	sata_print_link_status - Print SATA link status
2919  *	@link: SATA link to printk link status about
2920  *
2921  *	This function prints link speed and status of a SATA link.
2922  *
2923  *	LOCKING:
2924  *	None.
2925  */
2926 static void sata_print_link_status(struct ata_link *link)
2927 {
2928 	u32 sstatus, scontrol, tmp;
2929 
2930 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2931 		return;
2932 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2933 
2934 	if (ata_phys_link_online(link)) {
2935 		tmp = (sstatus >> 4) & 0xf;
2936 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2937 			      sata_spd_string(tmp), sstatus, scontrol);
2938 	} else {
2939 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2940 			      sstatus, scontrol);
2941 	}
2942 }
2943 
2944 /**
2945  *	ata_dev_pair		-	return other device on cable
2946  *	@adev: device
2947  *
2948  *	Obtain the other device on the same cable, or if none is
2949  *	present NULL is returned
2950  */
2951 
2952 struct ata_device *ata_dev_pair(struct ata_device *adev)
2953 {
2954 	struct ata_link *link = adev->link;
2955 	struct ata_device *pair = &link->device[1 - adev->devno];
2956 	if (!ata_dev_enabled(pair))
2957 		return NULL;
2958 	return pair;
2959 }
2960 
2961 /**
2962  *	sata_down_spd_limit - adjust SATA spd limit downward
2963  *	@link: Link to adjust SATA spd limit for
2964  *	@spd_limit: Additional limit
2965  *
2966  *	Adjust SATA spd limit of @link downward.  Note that this
2967  *	function only adjusts the limit.  The change must be applied
2968  *	using sata_set_spd().
2969  *
2970  *	If @spd_limit is non-zero, the speed is limited to equal to or
2971  *	lower than @spd_limit if such speed is supported.  If
2972  *	@spd_limit is slower than any supported speed, only the lowest
2973  *	supported speed is allowed.
2974  *
2975  *	LOCKING:
2976  *	Inherited from caller.
2977  *
2978  *	RETURNS:
2979  *	0 on success, negative errno on failure
2980  */
2981 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2982 {
2983 	u32 sstatus, spd, mask;
2984 	int rc, bit;
2985 
2986 	if (!sata_scr_valid(link))
2987 		return -EOPNOTSUPP;
2988 
2989 	/* If SCR can be read, use it to determine the current SPD.
2990 	 * If not, use cached value in link->sata_spd.
2991 	 */
2992 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2993 	if (rc == 0 && ata_sstatus_online(sstatus))
2994 		spd = (sstatus >> 4) & 0xf;
2995 	else
2996 		spd = link->sata_spd;
2997 
2998 	mask = link->sata_spd_limit;
2999 	if (mask <= 1)
3000 		return -EINVAL;
3001 
3002 	/* unconditionally mask off the highest bit */
3003 	bit = fls(mask) - 1;
3004 	mask &= ~(1 << bit);
3005 
3006 	/* Mask off all speeds higher than or equal to the current
3007 	 * one.  Force 1.5Gbps if current SPD is not available.
3008 	 */
3009 	if (spd > 1)
3010 		mask &= (1 << (spd - 1)) - 1;
3011 	else
3012 		mask &= 1;
3013 
3014 	/* were we already at the bottom? */
3015 	if (!mask)
3016 		return -EINVAL;
3017 
3018 	if (spd_limit) {
3019 		if (mask & ((1 << spd_limit) - 1))
3020 			mask &= (1 << spd_limit) - 1;
3021 		else {
3022 			bit = ffs(mask) - 1;
3023 			mask = 1 << bit;
3024 		}
3025 	}
3026 
3027 	link->sata_spd_limit = mask;
3028 
3029 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3030 		      sata_spd_string(fls(mask)));
3031 
3032 	return 0;
3033 }
3034 
3035 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3036 {
3037 	struct ata_link *host_link = &link->ap->link;
3038 	u32 limit, target, spd;
3039 
3040 	limit = link->sata_spd_limit;
3041 
3042 	/* Don't configure downstream link faster than upstream link.
3043 	 * It doesn't speed up anything and some PMPs choke on such
3044 	 * configuration.
3045 	 */
3046 	if (!ata_is_host_link(link) && host_link->sata_spd)
3047 		limit &= (1 << host_link->sata_spd) - 1;
3048 
3049 	if (limit == UINT_MAX)
3050 		target = 0;
3051 	else
3052 		target = fls(limit);
3053 
3054 	spd = (*scontrol >> 4) & 0xf;
3055 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3056 
3057 	return spd != target;
3058 }
3059 
3060 /**
3061  *	sata_set_spd_needed - is SATA spd configuration needed
3062  *	@link: Link in question
3063  *
3064  *	Test whether the spd limit in SControl matches
3065  *	@link->sata_spd_limit.  This function is used to determine
3066  *	whether hardreset is necessary to apply SATA spd
3067  *	configuration.
3068  *
3069  *	LOCKING:
3070  *	Inherited from caller.
3071  *
3072  *	RETURNS:
3073  *	1 if SATA spd configuration is needed, 0 otherwise.
3074  */
3075 static int sata_set_spd_needed(struct ata_link *link)
3076 {
3077 	u32 scontrol;
3078 
3079 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3080 		return 1;
3081 
3082 	return __sata_set_spd_needed(link, &scontrol);
3083 }
3084 
3085 /**
3086  *	sata_set_spd - set SATA spd according to spd limit
3087  *	@link: Link to set SATA spd for
3088  *
3089  *	Set SATA spd of @link according to sata_spd_limit.
3090  *
3091  *	LOCKING:
3092  *	Inherited from caller.
3093  *
3094  *	RETURNS:
3095  *	0 if spd doesn't need to be changed, 1 if spd has been
3096  *	changed.  Negative errno if SCR registers are inaccessible.
3097  */
3098 int sata_set_spd(struct ata_link *link)
3099 {
3100 	u32 scontrol;
3101 	int rc;
3102 
3103 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3104 		return rc;
3105 
3106 	if (!__sata_set_spd_needed(link, &scontrol))
3107 		return 0;
3108 
3109 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3110 		return rc;
3111 
3112 	return 1;
3113 }
3114 
3115 /*
3116  * This mode timing computation functionality is ported over from
3117  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3118  */
3119 /*
3120  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3121  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3122  * for UDMA6, which is currently supported only by Maxtor drives.
3123  *
3124  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3125  */
3126 
3127 static const struct ata_timing ata_timing[] = {
3128 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3129 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3130 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3131 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3132 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3133 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3134 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3135 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3136 
3137 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3138 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3139 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3140 
3141 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3142 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3143 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3144 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3145 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3146 
3147 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3148 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3149 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3150 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3151 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3152 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3153 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3154 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3155 
3156 	{ 0xFF }
3157 };
3158 
3159 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3160 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
3161 
3162 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3163 {
3164 	q->setup	= EZ(t->setup      * 1000,  T);
3165 	q->act8b	= EZ(t->act8b      * 1000,  T);
3166 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
3167 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
3168 	q->active	= EZ(t->active     * 1000,  T);
3169 	q->recover	= EZ(t->recover    * 1000,  T);
3170 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
3171 	q->cycle	= EZ(t->cycle      * 1000,  T);
3172 	q->udma		= EZ(t->udma       * 1000, UT);
3173 }
3174 
3175 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3176 		      struct ata_timing *m, unsigned int what)
3177 {
3178 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3179 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3180 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3181 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3182 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3183 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3184 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3185 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3186 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3187 }
3188 
3189 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3190 {
3191 	const struct ata_timing *t = ata_timing;
3192 
3193 	while (xfer_mode > t->mode)
3194 		t++;
3195 
3196 	if (xfer_mode == t->mode)
3197 		return t;
3198 
3199 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3200 			__func__, xfer_mode);
3201 
3202 	return NULL;
3203 }
3204 
3205 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3206 		       struct ata_timing *t, int T, int UT)
3207 {
3208 	const u16 *id = adev->id;
3209 	const struct ata_timing *s;
3210 	struct ata_timing p;
3211 
3212 	/*
3213 	 * Find the mode.
3214 	 */
3215 
3216 	if (!(s = ata_timing_find_mode(speed)))
3217 		return -EINVAL;
3218 
3219 	memcpy(t, s, sizeof(*s));
3220 
3221 	/*
3222 	 * If the drive is an EIDE drive, it can tell us it needs extended
3223 	 * PIO/MW_DMA cycle timing.
3224 	 */
3225 
3226 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3227 		memset(&p, 0, sizeof(p));
3228 
3229 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3230 			if (speed <= XFER_PIO_2)
3231 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3232 			else if ((speed <= XFER_PIO_4) ||
3233 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3234 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3235 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3236 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3237 
3238 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3239 	}
3240 
3241 	/*
3242 	 * Convert the timing to bus clock counts.
3243 	 */
3244 
3245 	ata_timing_quantize(t, t, T, UT);
3246 
3247 	/*
3248 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3249 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3250 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3251 	 */
3252 
3253 	if (speed > XFER_PIO_6) {
3254 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3255 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3256 	}
3257 
3258 	/*
3259 	 * Lengthen active & recovery time so that cycle time is correct.
3260 	 */
3261 
3262 	if (t->act8b + t->rec8b < t->cyc8b) {
3263 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3264 		t->rec8b = t->cyc8b - t->act8b;
3265 	}
3266 
3267 	if (t->active + t->recover < t->cycle) {
3268 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3269 		t->recover = t->cycle - t->active;
3270 	}
3271 
3272 	/* In a few cases quantisation may produce enough errors to
3273 	   leave t->cycle too low for the sum of active and recovery
3274 	   if so we must correct this */
3275 	if (t->active + t->recover > t->cycle)
3276 		t->cycle = t->active + t->recover;
3277 
3278 	return 0;
3279 }
3280 
3281 /**
3282  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3283  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3284  *	@cycle: cycle duration in ns
3285  *
3286  *	Return matching xfer mode for @cycle.  The returned mode is of
3287  *	the transfer type specified by @xfer_shift.  If @cycle is too
3288  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3289  *	than the fastest known mode, the fasted mode is returned.
3290  *
3291  *	LOCKING:
3292  *	None.
3293  *
3294  *	RETURNS:
3295  *	Matching xfer_mode, 0xff if no match found.
3296  */
3297 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3298 {
3299 	u8 base_mode = 0xff, last_mode = 0xff;
3300 	const struct ata_xfer_ent *ent;
3301 	const struct ata_timing *t;
3302 
3303 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3304 		if (ent->shift == xfer_shift)
3305 			base_mode = ent->base;
3306 
3307 	for (t = ata_timing_find_mode(base_mode);
3308 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3309 		unsigned short this_cycle;
3310 
3311 		switch (xfer_shift) {
3312 		case ATA_SHIFT_PIO:
3313 		case ATA_SHIFT_MWDMA:
3314 			this_cycle = t->cycle;
3315 			break;
3316 		case ATA_SHIFT_UDMA:
3317 			this_cycle = t->udma;
3318 			break;
3319 		default:
3320 			return 0xff;
3321 		}
3322 
3323 		if (cycle > this_cycle)
3324 			break;
3325 
3326 		last_mode = t->mode;
3327 	}
3328 
3329 	return last_mode;
3330 }
3331 
3332 /**
3333  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3334  *	@dev: Device to adjust xfer masks
3335  *	@sel: ATA_DNXFER_* selector
3336  *
3337  *	Adjust xfer masks of @dev downward.  Note that this function
3338  *	does not apply the change.  Invoking ata_set_mode() afterwards
3339  *	will apply the limit.
3340  *
3341  *	LOCKING:
3342  *	Inherited from caller.
3343  *
3344  *	RETURNS:
3345  *	0 on success, negative errno on failure
3346  */
3347 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3348 {
3349 	char buf[32];
3350 	unsigned long orig_mask, xfer_mask;
3351 	unsigned long pio_mask, mwdma_mask, udma_mask;
3352 	int quiet, highbit;
3353 
3354 	quiet = !!(sel & ATA_DNXFER_QUIET);
3355 	sel &= ~ATA_DNXFER_QUIET;
3356 
3357 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3358 						  dev->mwdma_mask,
3359 						  dev->udma_mask);
3360 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3361 
3362 	switch (sel) {
3363 	case ATA_DNXFER_PIO:
3364 		highbit = fls(pio_mask) - 1;
3365 		pio_mask &= ~(1 << highbit);
3366 		break;
3367 
3368 	case ATA_DNXFER_DMA:
3369 		if (udma_mask) {
3370 			highbit = fls(udma_mask) - 1;
3371 			udma_mask &= ~(1 << highbit);
3372 			if (!udma_mask)
3373 				return -ENOENT;
3374 		} else if (mwdma_mask) {
3375 			highbit = fls(mwdma_mask) - 1;
3376 			mwdma_mask &= ~(1 << highbit);
3377 			if (!mwdma_mask)
3378 				return -ENOENT;
3379 		}
3380 		break;
3381 
3382 	case ATA_DNXFER_40C:
3383 		udma_mask &= ATA_UDMA_MASK_40C;
3384 		break;
3385 
3386 	case ATA_DNXFER_FORCE_PIO0:
3387 		pio_mask &= 1;
3388 	case ATA_DNXFER_FORCE_PIO:
3389 		mwdma_mask = 0;
3390 		udma_mask = 0;
3391 		break;
3392 
3393 	default:
3394 		BUG();
3395 	}
3396 
3397 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3398 
3399 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3400 		return -ENOENT;
3401 
3402 	if (!quiet) {
3403 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3404 			snprintf(buf, sizeof(buf), "%s:%s",
3405 				 ata_mode_string(xfer_mask),
3406 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3407 		else
3408 			snprintf(buf, sizeof(buf), "%s",
3409 				 ata_mode_string(xfer_mask));
3410 
3411 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3412 	}
3413 
3414 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3415 			    &dev->udma_mask);
3416 
3417 	return 0;
3418 }
3419 
3420 static int ata_dev_set_mode(struct ata_device *dev)
3421 {
3422 	struct ata_port *ap = dev->link->ap;
3423 	struct ata_eh_context *ehc = &dev->link->eh_context;
3424 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3425 	const char *dev_err_whine = "";
3426 	int ign_dev_err = 0;
3427 	unsigned int err_mask = 0;
3428 	int rc;
3429 
3430 	dev->flags &= ~ATA_DFLAG_PIO;
3431 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3432 		dev->flags |= ATA_DFLAG_PIO;
3433 
3434 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3435 		dev_err_whine = " (SET_XFERMODE skipped)";
3436 	else {
3437 		if (nosetxfer)
3438 			ata_dev_warn(dev,
3439 				     "NOSETXFER but PATA detected - can't "
3440 				     "skip SETXFER, might malfunction\n");
3441 		err_mask = ata_dev_set_xfermode(dev);
3442 	}
3443 
3444 	if (err_mask & ~AC_ERR_DEV)
3445 		goto fail;
3446 
3447 	/* revalidate */
3448 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3449 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3450 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3451 	if (rc)
3452 		return rc;
3453 
3454 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3455 		/* Old CFA may refuse this command, which is just fine */
3456 		if (ata_id_is_cfa(dev->id))
3457 			ign_dev_err = 1;
3458 		/* Catch several broken garbage emulations plus some pre
3459 		   ATA devices */
3460 		if (ata_id_major_version(dev->id) == 0 &&
3461 					dev->pio_mode <= XFER_PIO_2)
3462 			ign_dev_err = 1;
3463 		/* Some very old devices and some bad newer ones fail
3464 		   any kind of SET_XFERMODE request but support PIO0-2
3465 		   timings and no IORDY */
3466 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3467 			ign_dev_err = 1;
3468 	}
3469 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3470 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3471 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3472 	    dev->dma_mode == XFER_MW_DMA_0 &&
3473 	    (dev->id[63] >> 8) & 1)
3474 		ign_dev_err = 1;
3475 
3476 	/* if the device is actually configured correctly, ignore dev err */
3477 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3478 		ign_dev_err = 1;
3479 
3480 	if (err_mask & AC_ERR_DEV) {
3481 		if (!ign_dev_err)
3482 			goto fail;
3483 		else
3484 			dev_err_whine = " (device error ignored)";
3485 	}
3486 
3487 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3488 		dev->xfer_shift, (int)dev->xfer_mode);
3489 
3490 	ata_dev_info(dev, "configured for %s%s\n",
3491 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3492 		     dev_err_whine);
3493 
3494 	return 0;
3495 
3496  fail:
3497 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3498 	return -EIO;
3499 }
3500 
3501 /**
3502  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3503  *	@link: link on which timings will be programmed
3504  *	@r_failed_dev: out parameter for failed device
3505  *
3506  *	Standard implementation of the function used to tune and set
3507  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3508  *	ata_dev_set_mode() fails, pointer to the failing device is
3509  *	returned in @r_failed_dev.
3510  *
3511  *	LOCKING:
3512  *	PCI/etc. bus probe sem.
3513  *
3514  *	RETURNS:
3515  *	0 on success, negative errno otherwise
3516  */
3517 
3518 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3519 {
3520 	struct ata_port *ap = link->ap;
3521 	struct ata_device *dev;
3522 	int rc = 0, used_dma = 0, found = 0;
3523 
3524 	/* step 1: calculate xfer_mask */
3525 	ata_for_each_dev(dev, link, ENABLED) {
3526 		unsigned long pio_mask, dma_mask;
3527 		unsigned int mode_mask;
3528 
3529 		mode_mask = ATA_DMA_MASK_ATA;
3530 		if (dev->class == ATA_DEV_ATAPI)
3531 			mode_mask = ATA_DMA_MASK_ATAPI;
3532 		else if (ata_id_is_cfa(dev->id))
3533 			mode_mask = ATA_DMA_MASK_CFA;
3534 
3535 		ata_dev_xfermask(dev);
3536 		ata_force_xfermask(dev);
3537 
3538 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3539 
3540 		if (libata_dma_mask & mode_mask)
3541 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3542 						     dev->udma_mask);
3543 		else
3544 			dma_mask = 0;
3545 
3546 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3547 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3548 
3549 		found = 1;
3550 		if (ata_dma_enabled(dev))
3551 			used_dma = 1;
3552 	}
3553 	if (!found)
3554 		goto out;
3555 
3556 	/* step 2: always set host PIO timings */
3557 	ata_for_each_dev(dev, link, ENABLED) {
3558 		if (dev->pio_mode == 0xff) {
3559 			ata_dev_warn(dev, "no PIO support\n");
3560 			rc = -EINVAL;
3561 			goto out;
3562 		}
3563 
3564 		dev->xfer_mode = dev->pio_mode;
3565 		dev->xfer_shift = ATA_SHIFT_PIO;
3566 		if (ap->ops->set_piomode)
3567 			ap->ops->set_piomode(ap, dev);
3568 	}
3569 
3570 	/* step 3: set host DMA timings */
3571 	ata_for_each_dev(dev, link, ENABLED) {
3572 		if (!ata_dma_enabled(dev))
3573 			continue;
3574 
3575 		dev->xfer_mode = dev->dma_mode;
3576 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3577 		if (ap->ops->set_dmamode)
3578 			ap->ops->set_dmamode(ap, dev);
3579 	}
3580 
3581 	/* step 4: update devices' xfer mode */
3582 	ata_for_each_dev(dev, link, ENABLED) {
3583 		rc = ata_dev_set_mode(dev);
3584 		if (rc)
3585 			goto out;
3586 	}
3587 
3588 	/* Record simplex status. If we selected DMA then the other
3589 	 * host channels are not permitted to do so.
3590 	 */
3591 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3592 		ap->host->simplex_claimed = ap;
3593 
3594  out:
3595 	if (rc)
3596 		*r_failed_dev = dev;
3597 	return rc;
3598 }
3599 
3600 /**
3601  *	ata_wait_ready - wait for link to become ready
3602  *	@link: link to be waited on
3603  *	@deadline: deadline jiffies for the operation
3604  *	@check_ready: callback to check link readiness
3605  *
3606  *	Wait for @link to become ready.  @check_ready should return
3607  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3608  *	link doesn't seem to be occupied, other errno for other error
3609  *	conditions.
3610  *
3611  *	Transient -ENODEV conditions are allowed for
3612  *	ATA_TMOUT_FF_WAIT.
3613  *
3614  *	LOCKING:
3615  *	EH context.
3616  *
3617  *	RETURNS:
3618  *	0 if @link is ready before @deadline; otherwise, -errno.
3619  */
3620 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3621 		   int (*check_ready)(struct ata_link *link))
3622 {
3623 	unsigned long start = jiffies;
3624 	unsigned long nodev_deadline;
3625 	int warned = 0;
3626 
3627 	/* choose which 0xff timeout to use, read comment in libata.h */
3628 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3629 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3630 	else
3631 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3632 
3633 	/* Slave readiness can't be tested separately from master.  On
3634 	 * M/S emulation configuration, this function should be called
3635 	 * only on the master and it will handle both master and slave.
3636 	 */
3637 	WARN_ON(link == link->ap->slave_link);
3638 
3639 	if (time_after(nodev_deadline, deadline))
3640 		nodev_deadline = deadline;
3641 
3642 	while (1) {
3643 		unsigned long now = jiffies;
3644 		int ready, tmp;
3645 
3646 		ready = tmp = check_ready(link);
3647 		if (ready > 0)
3648 			return 0;
3649 
3650 		/*
3651 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3652 		 * is online.  Also, some SATA devices take a long
3653 		 * time to clear 0xff after reset.  Wait for
3654 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3655 		 * offline.
3656 		 *
3657 		 * Note that some PATA controllers (pata_ali) explode
3658 		 * if status register is read more than once when
3659 		 * there's no device attached.
3660 		 */
3661 		if (ready == -ENODEV) {
3662 			if (ata_link_online(link))
3663 				ready = 0;
3664 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3665 				 !ata_link_offline(link) &&
3666 				 time_before(now, nodev_deadline))
3667 				ready = 0;
3668 		}
3669 
3670 		if (ready)
3671 			return ready;
3672 		if (time_after(now, deadline))
3673 			return -EBUSY;
3674 
3675 		if (!warned && time_after(now, start + 5 * HZ) &&
3676 		    (deadline - now > 3 * HZ)) {
3677 			ata_link_warn(link,
3678 				"link is slow to respond, please be patient "
3679 				"(ready=%d)\n", tmp);
3680 			warned = 1;
3681 		}
3682 
3683 		ata_msleep(link->ap, 50);
3684 	}
3685 }
3686 
3687 /**
3688  *	ata_wait_after_reset - wait for link to become ready after reset
3689  *	@link: link to be waited on
3690  *	@deadline: deadline jiffies for the operation
3691  *	@check_ready: callback to check link readiness
3692  *
3693  *	Wait for @link to become ready after reset.
3694  *
3695  *	LOCKING:
3696  *	EH context.
3697  *
3698  *	RETURNS:
3699  *	0 if @link is ready before @deadline; otherwise, -errno.
3700  */
3701 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3702 				int (*check_ready)(struct ata_link *link))
3703 {
3704 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3705 
3706 	return ata_wait_ready(link, deadline, check_ready);
3707 }
3708 
3709 /**
3710  *	sata_link_debounce - debounce SATA phy status
3711  *	@link: ATA link to debounce SATA phy status for
3712  *	@params: timing parameters { interval, duration, timeout } in msec
3713  *	@deadline: deadline jiffies for the operation
3714  *
3715  *	Make sure SStatus of @link reaches stable state, determined by
3716  *	holding the same value where DET is not 1 for @duration polled
3717  *	every @interval, before @timeout.  Timeout constraints the
3718  *	beginning of the stable state.  Because DET gets stuck at 1 on
3719  *	some controllers after hot unplugging, this functions waits
3720  *	until timeout then returns 0 if DET is stable at 1.
3721  *
3722  *	@timeout is further limited by @deadline.  The sooner of the
3723  *	two is used.
3724  *
3725  *	LOCKING:
3726  *	Kernel thread context (may sleep)
3727  *
3728  *	RETURNS:
3729  *	0 on success, -errno on failure.
3730  */
3731 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3732 		       unsigned long deadline)
3733 {
3734 	unsigned long interval = params[0];
3735 	unsigned long duration = params[1];
3736 	unsigned long last_jiffies, t;
3737 	u32 last, cur;
3738 	int rc;
3739 
3740 	t = ata_deadline(jiffies, params[2]);
3741 	if (time_before(t, deadline))
3742 		deadline = t;
3743 
3744 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3745 		return rc;
3746 	cur &= 0xf;
3747 
3748 	last = cur;
3749 	last_jiffies = jiffies;
3750 
3751 	while (1) {
3752 		ata_msleep(link->ap, interval);
3753 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3754 			return rc;
3755 		cur &= 0xf;
3756 
3757 		/* DET stable? */
3758 		if (cur == last) {
3759 			if (cur == 1 && time_before(jiffies, deadline))
3760 				continue;
3761 			if (time_after(jiffies,
3762 				       ata_deadline(last_jiffies, duration)))
3763 				return 0;
3764 			continue;
3765 		}
3766 
3767 		/* unstable, start over */
3768 		last = cur;
3769 		last_jiffies = jiffies;
3770 
3771 		/* Check deadline.  If debouncing failed, return
3772 		 * -EPIPE to tell upper layer to lower link speed.
3773 		 */
3774 		if (time_after(jiffies, deadline))
3775 			return -EPIPE;
3776 	}
3777 }
3778 
3779 /**
3780  *	sata_link_resume - resume SATA link
3781  *	@link: ATA link to resume SATA
3782  *	@params: timing parameters { interval, duration, timeout } in msec
3783  *	@deadline: deadline jiffies for the operation
3784  *
3785  *	Resume SATA phy @link and debounce it.
3786  *
3787  *	LOCKING:
3788  *	Kernel thread context (may sleep)
3789  *
3790  *	RETURNS:
3791  *	0 on success, -errno on failure.
3792  */
3793 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3794 		     unsigned long deadline)
3795 {
3796 	int tries = ATA_LINK_RESUME_TRIES;
3797 	u32 scontrol, serror;
3798 	int rc;
3799 
3800 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3801 		return rc;
3802 
3803 	/*
3804 	 * Writes to SControl sometimes get ignored under certain
3805 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3806 	 * cleared.
3807 	 */
3808 	do {
3809 		scontrol = (scontrol & 0x0f0) | 0x300;
3810 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3811 			return rc;
3812 		/*
3813 		 * Some PHYs react badly if SStatus is pounded
3814 		 * immediately after resuming.  Delay 200ms before
3815 		 * debouncing.
3816 		 */
3817 		if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3818 			ata_msleep(link->ap, 200);
3819 
3820 		/* is SControl restored correctly? */
3821 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3822 			return rc;
3823 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3824 
3825 	if ((scontrol & 0xf0f) != 0x300) {
3826 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3827 			     scontrol);
3828 		return 0;
3829 	}
3830 
3831 	if (tries < ATA_LINK_RESUME_TRIES)
3832 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3833 			      ATA_LINK_RESUME_TRIES - tries);
3834 
3835 	if ((rc = sata_link_debounce(link, params, deadline)))
3836 		return rc;
3837 
3838 	/* clear SError, some PHYs require this even for SRST to work */
3839 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3840 		rc = sata_scr_write(link, SCR_ERROR, serror);
3841 
3842 	return rc != -EINVAL ? rc : 0;
3843 }
3844 
3845 /**
3846  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3847  *	@link: ATA link to manipulate SControl for
3848  *	@policy: LPM policy to configure
3849  *	@spm_wakeup: initiate LPM transition to active state
3850  *
3851  *	Manipulate the IPM field of the SControl register of @link
3852  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3853  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3854  *	the link.  This function also clears PHYRDY_CHG before
3855  *	returning.
3856  *
3857  *	LOCKING:
3858  *	EH context.
3859  *
3860  *	RETURNS:
3861  *	0 on success, -errno otherwise.
3862  */
3863 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3864 		      bool spm_wakeup)
3865 {
3866 	struct ata_eh_context *ehc = &link->eh_context;
3867 	bool woken_up = false;
3868 	u32 scontrol;
3869 	int rc;
3870 
3871 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3872 	if (rc)
3873 		return rc;
3874 
3875 	switch (policy) {
3876 	case ATA_LPM_MAX_POWER:
3877 		/* disable all LPM transitions */
3878 		scontrol |= (0x7 << 8);
3879 		/* initiate transition to active state */
3880 		if (spm_wakeup) {
3881 			scontrol |= (0x4 << 12);
3882 			woken_up = true;
3883 		}
3884 		break;
3885 	case ATA_LPM_MED_POWER:
3886 		/* allow LPM to PARTIAL */
3887 		scontrol &= ~(0x1 << 8);
3888 		scontrol |= (0x6 << 8);
3889 		break;
3890 	case ATA_LPM_MIN_POWER:
3891 		if (ata_link_nr_enabled(link) > 0)
3892 			/* no restrictions on LPM transitions */
3893 			scontrol &= ~(0x7 << 8);
3894 		else {
3895 			/* empty port, power off */
3896 			scontrol &= ~0xf;
3897 			scontrol |= (0x1 << 2);
3898 		}
3899 		break;
3900 	default:
3901 		WARN_ON(1);
3902 	}
3903 
3904 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3905 	if (rc)
3906 		return rc;
3907 
3908 	/* give the link time to transit out of LPM state */
3909 	if (woken_up)
3910 		msleep(10);
3911 
3912 	/* clear PHYRDY_CHG from SError */
3913 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3914 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3915 }
3916 
3917 /**
3918  *	ata_std_prereset - prepare for reset
3919  *	@link: ATA link to be reset
3920  *	@deadline: deadline jiffies for the operation
3921  *
3922  *	@link is about to be reset.  Initialize it.  Failure from
3923  *	prereset makes libata abort whole reset sequence and give up
3924  *	that port, so prereset should be best-effort.  It does its
3925  *	best to prepare for reset sequence but if things go wrong, it
3926  *	should just whine, not fail.
3927  *
3928  *	LOCKING:
3929  *	Kernel thread context (may sleep)
3930  *
3931  *	RETURNS:
3932  *	0 on success, -errno otherwise.
3933  */
3934 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3935 {
3936 	struct ata_port *ap = link->ap;
3937 	struct ata_eh_context *ehc = &link->eh_context;
3938 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3939 	int rc;
3940 
3941 	/* if we're about to do hardreset, nothing more to do */
3942 	if (ehc->i.action & ATA_EH_HARDRESET)
3943 		return 0;
3944 
3945 	/* if SATA, resume link */
3946 	if (ap->flags & ATA_FLAG_SATA) {
3947 		rc = sata_link_resume(link, timing, deadline);
3948 		/* whine about phy resume failure but proceed */
3949 		if (rc && rc != -EOPNOTSUPP)
3950 			ata_link_warn(link,
3951 				      "failed to resume link for reset (errno=%d)\n",
3952 				      rc);
3953 	}
3954 
3955 	/* no point in trying softreset on offline link */
3956 	if (ata_phys_link_offline(link))
3957 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3958 
3959 	return 0;
3960 }
3961 
3962 /**
3963  *	sata_link_hardreset - reset link via SATA phy reset
3964  *	@link: link to reset
3965  *	@timing: timing parameters { interval, duration, timeout } in msec
3966  *	@deadline: deadline jiffies for the operation
3967  *	@online: optional out parameter indicating link onlineness
3968  *	@check_ready: optional callback to check link readiness
3969  *
3970  *	SATA phy-reset @link using DET bits of SControl register.
3971  *	After hardreset, link readiness is waited upon using
3972  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3973  *	allowed to not specify @check_ready and wait itself after this
3974  *	function returns.  Device classification is LLD's
3975  *	responsibility.
3976  *
3977  *	*@online is set to one iff reset succeeded and @link is online
3978  *	after reset.
3979  *
3980  *	LOCKING:
3981  *	Kernel thread context (may sleep)
3982  *
3983  *	RETURNS:
3984  *	0 on success, -errno otherwise.
3985  */
3986 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3987 			unsigned long deadline,
3988 			bool *online, int (*check_ready)(struct ata_link *))
3989 {
3990 	u32 scontrol;
3991 	int rc;
3992 
3993 	DPRINTK("ENTER\n");
3994 
3995 	if (online)
3996 		*online = false;
3997 
3998 	if (sata_set_spd_needed(link)) {
3999 		/* SATA spec says nothing about how to reconfigure
4000 		 * spd.  To be on the safe side, turn off phy during
4001 		 * reconfiguration.  This works for at least ICH7 AHCI
4002 		 * and Sil3124.
4003 		 */
4004 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4005 			goto out;
4006 
4007 		scontrol = (scontrol & 0x0f0) | 0x304;
4008 
4009 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4010 			goto out;
4011 
4012 		sata_set_spd(link);
4013 	}
4014 
4015 	/* issue phy wake/reset */
4016 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4017 		goto out;
4018 
4019 	scontrol = (scontrol & 0x0f0) | 0x301;
4020 
4021 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4022 		goto out;
4023 
4024 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4025 	 * 10.4.2 says at least 1 ms.
4026 	 */
4027 	ata_msleep(link->ap, 1);
4028 
4029 	/* bring link back */
4030 	rc = sata_link_resume(link, timing, deadline);
4031 	if (rc)
4032 		goto out;
4033 	/* if link is offline nothing more to do */
4034 	if (ata_phys_link_offline(link))
4035 		goto out;
4036 
4037 	/* Link is online.  From this point, -ENODEV too is an error. */
4038 	if (online)
4039 		*online = true;
4040 
4041 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4042 		/* If PMP is supported, we have to do follow-up SRST.
4043 		 * Some PMPs don't send D2H Reg FIS after hardreset if
4044 		 * the first port is empty.  Wait only for
4045 		 * ATA_TMOUT_PMP_SRST_WAIT.
4046 		 */
4047 		if (check_ready) {
4048 			unsigned long pmp_deadline;
4049 
4050 			pmp_deadline = ata_deadline(jiffies,
4051 						    ATA_TMOUT_PMP_SRST_WAIT);
4052 			if (time_after(pmp_deadline, deadline))
4053 				pmp_deadline = deadline;
4054 			ata_wait_ready(link, pmp_deadline, check_ready);
4055 		}
4056 		rc = -EAGAIN;
4057 		goto out;
4058 	}
4059 
4060 	rc = 0;
4061 	if (check_ready)
4062 		rc = ata_wait_ready(link, deadline, check_ready);
4063  out:
4064 	if (rc && rc != -EAGAIN) {
4065 		/* online is set iff link is online && reset succeeded */
4066 		if (online)
4067 			*online = false;
4068 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4069 	}
4070 	DPRINTK("EXIT, rc=%d\n", rc);
4071 	return rc;
4072 }
4073 
4074 /**
4075  *	sata_std_hardreset - COMRESET w/o waiting or classification
4076  *	@link: link to reset
4077  *	@class: resulting class of attached device
4078  *	@deadline: deadline jiffies for the operation
4079  *
4080  *	Standard SATA COMRESET w/o waiting or classification.
4081  *
4082  *	LOCKING:
4083  *	Kernel thread context (may sleep)
4084  *
4085  *	RETURNS:
4086  *	0 if link offline, -EAGAIN if link online, -errno on errors.
4087  */
4088 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4089 		       unsigned long deadline)
4090 {
4091 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4092 	bool online;
4093 	int rc;
4094 
4095 	/* do hardreset */
4096 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4097 	return online ? -EAGAIN : rc;
4098 }
4099 
4100 /**
4101  *	ata_std_postreset - standard postreset callback
4102  *	@link: the target ata_link
4103  *	@classes: classes of attached devices
4104  *
4105  *	This function is invoked after a successful reset.  Note that
4106  *	the device might have been reset more than once using
4107  *	different reset methods before postreset is invoked.
4108  *
4109  *	LOCKING:
4110  *	Kernel thread context (may sleep)
4111  */
4112 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4113 {
4114 	u32 serror;
4115 
4116 	DPRINTK("ENTER\n");
4117 
4118 	/* reset complete, clear SError */
4119 	if (!sata_scr_read(link, SCR_ERROR, &serror))
4120 		sata_scr_write(link, SCR_ERROR, serror);
4121 
4122 	/* print link status */
4123 	sata_print_link_status(link);
4124 
4125 	DPRINTK("EXIT\n");
4126 }
4127 
4128 /**
4129  *	ata_dev_same_device - Determine whether new ID matches configured device
4130  *	@dev: device to compare against
4131  *	@new_class: class of the new device
4132  *	@new_id: IDENTIFY page of the new device
4133  *
4134  *	Compare @new_class and @new_id against @dev and determine
4135  *	whether @dev is the device indicated by @new_class and
4136  *	@new_id.
4137  *
4138  *	LOCKING:
4139  *	None.
4140  *
4141  *	RETURNS:
4142  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
4143  */
4144 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4145 			       const u16 *new_id)
4146 {
4147 	const u16 *old_id = dev->id;
4148 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
4149 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4150 
4151 	if (dev->class != new_class) {
4152 		ata_dev_info(dev, "class mismatch %d != %d\n",
4153 			     dev->class, new_class);
4154 		return 0;
4155 	}
4156 
4157 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4158 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4159 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4160 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4161 
4162 	if (strcmp(model[0], model[1])) {
4163 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4164 			     model[0], model[1]);
4165 		return 0;
4166 	}
4167 
4168 	if (strcmp(serial[0], serial[1])) {
4169 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4170 			     serial[0], serial[1]);
4171 		return 0;
4172 	}
4173 
4174 	return 1;
4175 }
4176 
4177 /**
4178  *	ata_dev_reread_id - Re-read IDENTIFY data
4179  *	@dev: target ATA device
4180  *	@readid_flags: read ID flags
4181  *
4182  *	Re-read IDENTIFY page and make sure @dev is still attached to
4183  *	the port.
4184  *
4185  *	LOCKING:
4186  *	Kernel thread context (may sleep)
4187  *
4188  *	RETURNS:
4189  *	0 on success, negative errno otherwise
4190  */
4191 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4192 {
4193 	unsigned int class = dev->class;
4194 	u16 *id = (void *)dev->link->ap->sector_buf;
4195 	int rc;
4196 
4197 	/* read ID data */
4198 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4199 	if (rc)
4200 		return rc;
4201 
4202 	/* is the device still there? */
4203 	if (!ata_dev_same_device(dev, class, id))
4204 		return -ENODEV;
4205 
4206 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4207 	return 0;
4208 }
4209 
4210 /**
4211  *	ata_dev_revalidate - Revalidate ATA device
4212  *	@dev: device to revalidate
4213  *	@new_class: new class code
4214  *	@readid_flags: read ID flags
4215  *
4216  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4217  *	port and reconfigure it according to the new IDENTIFY page.
4218  *
4219  *	LOCKING:
4220  *	Kernel thread context (may sleep)
4221  *
4222  *	RETURNS:
4223  *	0 on success, negative errno otherwise
4224  */
4225 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4226 		       unsigned int readid_flags)
4227 {
4228 	u64 n_sectors = dev->n_sectors;
4229 	u64 n_native_sectors = dev->n_native_sectors;
4230 	int rc;
4231 
4232 	if (!ata_dev_enabled(dev))
4233 		return -ENODEV;
4234 
4235 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4236 	if (ata_class_enabled(new_class) &&
4237 	    new_class != ATA_DEV_ATA &&
4238 	    new_class != ATA_DEV_ATAPI &&
4239 	    new_class != ATA_DEV_ZAC &&
4240 	    new_class != ATA_DEV_SEMB) {
4241 		ata_dev_info(dev, "class mismatch %u != %u\n",
4242 			     dev->class, new_class);
4243 		rc = -ENODEV;
4244 		goto fail;
4245 	}
4246 
4247 	/* re-read ID */
4248 	rc = ata_dev_reread_id(dev, readid_flags);
4249 	if (rc)
4250 		goto fail;
4251 
4252 	/* configure device according to the new ID */
4253 	rc = ata_dev_configure(dev);
4254 	if (rc)
4255 		goto fail;
4256 
4257 	/* verify n_sectors hasn't changed */
4258 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4259 	    dev->n_sectors == n_sectors)
4260 		return 0;
4261 
4262 	/* n_sectors has changed */
4263 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4264 		     (unsigned long long)n_sectors,
4265 		     (unsigned long long)dev->n_sectors);
4266 
4267 	/*
4268 	 * Something could have caused HPA to be unlocked
4269 	 * involuntarily.  If n_native_sectors hasn't changed and the
4270 	 * new size matches it, keep the device.
4271 	 */
4272 	if (dev->n_native_sectors == n_native_sectors &&
4273 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4274 		ata_dev_warn(dev,
4275 			     "new n_sectors matches native, probably "
4276 			     "late HPA unlock, n_sectors updated\n");
4277 		/* use the larger n_sectors */
4278 		return 0;
4279 	}
4280 
4281 	/*
4282 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4283 	 * unlocking HPA in those cases.
4284 	 *
4285 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4286 	 */
4287 	if (dev->n_native_sectors == n_native_sectors &&
4288 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4289 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4290 		ata_dev_warn(dev,
4291 			     "old n_sectors matches native, probably "
4292 			     "late HPA lock, will try to unlock HPA\n");
4293 		/* try unlocking HPA */
4294 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4295 		rc = -EIO;
4296 	} else
4297 		rc = -ENODEV;
4298 
4299 	/* restore original n_[native_]sectors and fail */
4300 	dev->n_native_sectors = n_native_sectors;
4301 	dev->n_sectors = n_sectors;
4302  fail:
4303 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4304 	return rc;
4305 }
4306 
4307 struct ata_blacklist_entry {
4308 	const char *model_num;
4309 	const char *model_rev;
4310 	unsigned long horkage;
4311 };
4312 
4313 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4314 	/* Devices with DMA related problems under Linux */
4315 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4316 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4317 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4318 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4319 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4320 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4321 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4322 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4323 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4324 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4325 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4326 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4327 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4328 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4329 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4330 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4331 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4332 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4333 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4334 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4335 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4336 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4337 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4338 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4339 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4340 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4341 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4342 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4343 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4344 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4345 	/* Odd clown on sil3726/4726 PMPs */
4346 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4347 
4348 	/* Weird ATAPI devices */
4349 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4350 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4351 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4352 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4353 
4354 	/*
4355 	 * Causes silent data corruption with higher max sects.
4356 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4357 	 */
4358 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4359 
4360 	/*
4361 	 * These devices time out with higher max sects.
4362 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4363 	 */
4364 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4365 
4366 	/* Devices we expect to fail diagnostics */
4367 
4368 	/* Devices where NCQ should be avoided */
4369 	/* NCQ is slow */
4370 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4371 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4372 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4373 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4374 	/* NCQ is broken */
4375 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4376 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4377 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4378 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4379 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4380 
4381 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4382 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4383 						ATA_HORKAGE_FIRMWARE_WARN },
4384 
4385 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4386 						ATA_HORKAGE_FIRMWARE_WARN },
4387 
4388 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4389 						ATA_HORKAGE_FIRMWARE_WARN },
4390 
4391 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4392 						ATA_HORKAGE_FIRMWARE_WARN },
4393 
4394 	/* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4395 	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4396 	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4397 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4398 
4399 	/* Blacklist entries taken from Silicon Image 3124/3132
4400 	   Windows driver .inf file - also several Linux problem reports */
4401 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4402 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4403 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4404 
4405 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4406 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4407 
4408 	/* devices which puke on READ_NATIVE_MAX */
4409 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4410 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4411 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4412 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4413 
4414 	/* this one allows HPA unlocking but fails IOs on the area */
4415 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4416 
4417 	/* Devices which report 1 sector over size HPA */
4418 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4419 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4420 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4421 
4422 	/* Devices which get the IVB wrong */
4423 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4424 	/* Maybe we should just blacklist TSSTcorp... */
4425 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4426 
4427 	/* Devices that do not need bridging limits applied */
4428 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4429 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4430 
4431 	/* Devices which aren't very happy with higher link speeds */
4432 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4433 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4434 
4435 	/*
4436 	 * Devices which choke on SETXFER.  Applies only if both the
4437 	 * device and controller are SATA.
4438 	 */
4439 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4440 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4441 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4442 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4443 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4444 
4445 	/* devices that don't properly handle queued TRIM commands */
4446 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4447 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4448 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4449 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4450 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4451 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4452 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4453 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4454 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4455 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4456 	{ "Samsung SSD 8*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4457 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4458 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4459 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4460 
4461 	/* devices that don't properly handle TRIM commands */
4462 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4463 
4464 	/*
4465 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4466 	 * (Return Zero After Trim) flags in the ATA Command Set are
4467 	 * unreliable in the sense that they only define what happens if
4468 	 * the device successfully executed the DSM TRIM command. TRIM
4469 	 * is only advisory, however, and the device is free to silently
4470 	 * ignore all or parts of the request.
4471 	 *
4472 	 * Whitelist drives that are known to reliably return zeroes
4473 	 * after TRIM.
4474 	 */
4475 
4476 	/*
4477 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4478 	 * that model before whitelisting all other intel SSDs.
4479 	 */
4480 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4481 
4482 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4483 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4484 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4485 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4486 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4487 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4488 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4489 
4490 	/*
4491 	 * Some WD SATA-I drives spin up and down erratically when the link
4492 	 * is put into the slumber mode.  We don't have full list of the
4493 	 * affected devices.  Disable LPM if the device matches one of the
4494 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4495 	 * lost too.
4496 	 *
4497 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4498 	 */
4499 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4500 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4501 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4502 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4503 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4504 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4505 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4506 
4507 	/* End Marker */
4508 	{ }
4509 };
4510 
4511 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4512 {
4513 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4514 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4515 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4516 
4517 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4518 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4519 
4520 	while (ad->model_num) {
4521 		if (glob_match(ad->model_num, model_num)) {
4522 			if (ad->model_rev == NULL)
4523 				return ad->horkage;
4524 			if (glob_match(ad->model_rev, model_rev))
4525 				return ad->horkage;
4526 		}
4527 		ad++;
4528 	}
4529 	return 0;
4530 }
4531 
4532 static int ata_dma_blacklisted(const struct ata_device *dev)
4533 {
4534 	/* We don't support polling DMA.
4535 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4536 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4537 	 */
4538 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4539 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4540 		return 1;
4541 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4542 }
4543 
4544 /**
4545  *	ata_is_40wire		-	check drive side detection
4546  *	@dev: device
4547  *
4548  *	Perform drive side detection decoding, allowing for device vendors
4549  *	who can't follow the documentation.
4550  */
4551 
4552 static int ata_is_40wire(struct ata_device *dev)
4553 {
4554 	if (dev->horkage & ATA_HORKAGE_IVB)
4555 		return ata_drive_40wire_relaxed(dev->id);
4556 	return ata_drive_40wire(dev->id);
4557 }
4558 
4559 /**
4560  *	cable_is_40wire		-	40/80/SATA decider
4561  *	@ap: port to consider
4562  *
4563  *	This function encapsulates the policy for speed management
4564  *	in one place. At the moment we don't cache the result but
4565  *	there is a good case for setting ap->cbl to the result when
4566  *	we are called with unknown cables (and figuring out if it
4567  *	impacts hotplug at all).
4568  *
4569  *	Return 1 if the cable appears to be 40 wire.
4570  */
4571 
4572 static int cable_is_40wire(struct ata_port *ap)
4573 {
4574 	struct ata_link *link;
4575 	struct ata_device *dev;
4576 
4577 	/* If the controller thinks we are 40 wire, we are. */
4578 	if (ap->cbl == ATA_CBL_PATA40)
4579 		return 1;
4580 
4581 	/* If the controller thinks we are 80 wire, we are. */
4582 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4583 		return 0;
4584 
4585 	/* If the system is known to be 40 wire short cable (eg
4586 	 * laptop), then we allow 80 wire modes even if the drive
4587 	 * isn't sure.
4588 	 */
4589 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4590 		return 0;
4591 
4592 	/* If the controller doesn't know, we scan.
4593 	 *
4594 	 * Note: We look for all 40 wire detects at this point.  Any
4595 	 *       80 wire detect is taken to be 80 wire cable because
4596 	 * - in many setups only the one drive (slave if present) will
4597 	 *   give a valid detect
4598 	 * - if you have a non detect capable drive you don't want it
4599 	 *   to colour the choice
4600 	 */
4601 	ata_for_each_link(link, ap, EDGE) {
4602 		ata_for_each_dev(dev, link, ENABLED) {
4603 			if (!ata_is_40wire(dev))
4604 				return 0;
4605 		}
4606 	}
4607 	return 1;
4608 }
4609 
4610 /**
4611  *	ata_dev_xfermask - Compute supported xfermask of the given device
4612  *	@dev: Device to compute xfermask for
4613  *
4614  *	Compute supported xfermask of @dev and store it in
4615  *	dev->*_mask.  This function is responsible for applying all
4616  *	known limits including host controller limits, device
4617  *	blacklist, etc...
4618  *
4619  *	LOCKING:
4620  *	None.
4621  */
4622 static void ata_dev_xfermask(struct ata_device *dev)
4623 {
4624 	struct ata_link *link = dev->link;
4625 	struct ata_port *ap = link->ap;
4626 	struct ata_host *host = ap->host;
4627 	unsigned long xfer_mask;
4628 
4629 	/* controller modes available */
4630 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4631 				      ap->mwdma_mask, ap->udma_mask);
4632 
4633 	/* drive modes available */
4634 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4635 				       dev->mwdma_mask, dev->udma_mask);
4636 	xfer_mask &= ata_id_xfermask(dev->id);
4637 
4638 	/*
4639 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4640 	 *	cable
4641 	 */
4642 	if (ata_dev_pair(dev)) {
4643 		/* No PIO5 or PIO6 */
4644 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4645 		/* No MWDMA3 or MWDMA 4 */
4646 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4647 	}
4648 
4649 	if (ata_dma_blacklisted(dev)) {
4650 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4651 		ata_dev_warn(dev,
4652 			     "device is on DMA blacklist, disabling DMA\n");
4653 	}
4654 
4655 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4656 	    host->simplex_claimed && host->simplex_claimed != ap) {
4657 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4658 		ata_dev_warn(dev,
4659 			     "simplex DMA is claimed by other device, disabling DMA\n");
4660 	}
4661 
4662 	if (ap->flags & ATA_FLAG_NO_IORDY)
4663 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4664 
4665 	if (ap->ops->mode_filter)
4666 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4667 
4668 	/* Apply cable rule here.  Don't apply it early because when
4669 	 * we handle hot plug the cable type can itself change.
4670 	 * Check this last so that we know if the transfer rate was
4671 	 * solely limited by the cable.
4672 	 * Unknown or 80 wire cables reported host side are checked
4673 	 * drive side as well. Cases where we know a 40wire cable
4674 	 * is used safely for 80 are not checked here.
4675 	 */
4676 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4677 		/* UDMA/44 or higher would be available */
4678 		if (cable_is_40wire(ap)) {
4679 			ata_dev_warn(dev,
4680 				     "limited to UDMA/33 due to 40-wire cable\n");
4681 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4682 		}
4683 
4684 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4685 			    &dev->mwdma_mask, &dev->udma_mask);
4686 }
4687 
4688 /**
4689  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4690  *	@dev: Device to which command will be sent
4691  *
4692  *	Issue SET FEATURES - XFER MODE command to device @dev
4693  *	on port @ap.
4694  *
4695  *	LOCKING:
4696  *	PCI/etc. bus probe sem.
4697  *
4698  *	RETURNS:
4699  *	0 on success, AC_ERR_* mask otherwise.
4700  */
4701 
4702 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4703 {
4704 	struct ata_taskfile tf;
4705 	unsigned int err_mask;
4706 
4707 	/* set up set-features taskfile */
4708 	DPRINTK("set features - xfer mode\n");
4709 
4710 	/* Some controllers and ATAPI devices show flaky interrupt
4711 	 * behavior after setting xfer mode.  Use polling instead.
4712 	 */
4713 	ata_tf_init(dev, &tf);
4714 	tf.command = ATA_CMD_SET_FEATURES;
4715 	tf.feature = SETFEATURES_XFER;
4716 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4717 	tf.protocol = ATA_PROT_NODATA;
4718 	/* If we are using IORDY we must send the mode setting command */
4719 	if (ata_pio_need_iordy(dev))
4720 		tf.nsect = dev->xfer_mode;
4721 	/* If the device has IORDY and the controller does not - turn it off */
4722  	else if (ata_id_has_iordy(dev->id))
4723 		tf.nsect = 0x01;
4724 	else /* In the ancient relic department - skip all of this */
4725 		return 0;
4726 
4727 	/* On some disks, this command causes spin-up, so we need longer timeout */
4728 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4729 
4730 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4731 	return err_mask;
4732 }
4733 
4734 /**
4735  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4736  *	@dev: Device to which command will be sent
4737  *	@enable: Whether to enable or disable the feature
4738  *	@feature: The sector count represents the feature to set
4739  *
4740  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4741  *	on port @ap with sector count
4742  *
4743  *	LOCKING:
4744  *	PCI/etc. bus probe sem.
4745  *
4746  *	RETURNS:
4747  *	0 on success, AC_ERR_* mask otherwise.
4748  */
4749 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4750 {
4751 	struct ata_taskfile tf;
4752 	unsigned int err_mask;
4753 	unsigned long timeout = 0;
4754 
4755 	/* set up set-features taskfile */
4756 	DPRINTK("set features - SATA features\n");
4757 
4758 	ata_tf_init(dev, &tf);
4759 	tf.command = ATA_CMD_SET_FEATURES;
4760 	tf.feature = enable;
4761 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4762 	tf.protocol = ATA_PROT_NODATA;
4763 	tf.nsect = feature;
4764 
4765 	if (enable == SETFEATURES_SPINUP)
4766 		timeout = ata_probe_timeout ?
4767 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4768 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4769 
4770 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4771 	return err_mask;
4772 }
4773 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4774 
4775 /**
4776  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4777  *	@dev: Device to which command will be sent
4778  *	@heads: Number of heads (taskfile parameter)
4779  *	@sectors: Number of sectors (taskfile parameter)
4780  *
4781  *	LOCKING:
4782  *	Kernel thread context (may sleep)
4783  *
4784  *	RETURNS:
4785  *	0 on success, AC_ERR_* mask otherwise.
4786  */
4787 static unsigned int ata_dev_init_params(struct ata_device *dev,
4788 					u16 heads, u16 sectors)
4789 {
4790 	struct ata_taskfile tf;
4791 	unsigned int err_mask;
4792 
4793 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4794 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4795 		return AC_ERR_INVALID;
4796 
4797 	/* set up init dev params taskfile */
4798 	DPRINTK("init dev params \n");
4799 
4800 	ata_tf_init(dev, &tf);
4801 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4802 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4803 	tf.protocol = ATA_PROT_NODATA;
4804 	tf.nsect = sectors;
4805 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4806 
4807 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4808 	/* A clean abort indicates an original or just out of spec drive
4809 	   and we should continue as we issue the setup based on the
4810 	   drive reported working geometry */
4811 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4812 		err_mask = 0;
4813 
4814 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4815 	return err_mask;
4816 }
4817 
4818 /**
4819  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4820  *	@qc: Metadata associated with taskfile to check
4821  *
4822  *	Allow low-level driver to filter ATA PACKET commands, returning
4823  *	a status indicating whether or not it is OK to use DMA for the
4824  *	supplied PACKET command.
4825  *
4826  *	LOCKING:
4827  *	spin_lock_irqsave(host lock)
4828  *
4829  *	RETURNS: 0 when ATAPI DMA can be used
4830  *               nonzero otherwise
4831  */
4832 int atapi_check_dma(struct ata_queued_cmd *qc)
4833 {
4834 	struct ata_port *ap = qc->ap;
4835 
4836 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4837 	 * few ATAPI devices choke on such DMA requests.
4838 	 */
4839 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4840 	    unlikely(qc->nbytes & 15))
4841 		return 1;
4842 
4843 	if (ap->ops->check_atapi_dma)
4844 		return ap->ops->check_atapi_dma(qc);
4845 
4846 	return 0;
4847 }
4848 
4849 /**
4850  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4851  *	@qc: ATA command in question
4852  *
4853  *	Non-NCQ commands cannot run with any other command, NCQ or
4854  *	not.  As upper layer only knows the queue depth, we are
4855  *	responsible for maintaining exclusion.  This function checks
4856  *	whether a new command @qc can be issued.
4857  *
4858  *	LOCKING:
4859  *	spin_lock_irqsave(host lock)
4860  *
4861  *	RETURNS:
4862  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4863  */
4864 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4865 {
4866 	struct ata_link *link = qc->dev->link;
4867 
4868 	if (ata_is_ncq(qc->tf.protocol)) {
4869 		if (!ata_tag_valid(link->active_tag))
4870 			return 0;
4871 	} else {
4872 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4873 			return 0;
4874 	}
4875 
4876 	return ATA_DEFER_LINK;
4877 }
4878 
4879 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4880 
4881 /**
4882  *	ata_sg_init - Associate command with scatter-gather table.
4883  *	@qc: Command to be associated
4884  *	@sg: Scatter-gather table.
4885  *	@n_elem: Number of elements in s/g table.
4886  *
4887  *	Initialize the data-related elements of queued_cmd @qc
4888  *	to point to a scatter-gather table @sg, containing @n_elem
4889  *	elements.
4890  *
4891  *	LOCKING:
4892  *	spin_lock_irqsave(host lock)
4893  */
4894 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4895 		 unsigned int n_elem)
4896 {
4897 	qc->sg = sg;
4898 	qc->n_elem = n_elem;
4899 	qc->cursg = qc->sg;
4900 }
4901 
4902 #ifdef CONFIG_HAS_DMA
4903 
4904 /**
4905  *	ata_sg_clean - Unmap DMA memory associated with command
4906  *	@qc: Command containing DMA memory to be released
4907  *
4908  *	Unmap all mapped DMA memory associated with this command.
4909  *
4910  *	LOCKING:
4911  *	spin_lock_irqsave(host lock)
4912  */
4913 static void ata_sg_clean(struct ata_queued_cmd *qc)
4914 {
4915 	struct ata_port *ap = qc->ap;
4916 	struct scatterlist *sg = qc->sg;
4917 	int dir = qc->dma_dir;
4918 
4919 	WARN_ON_ONCE(sg == NULL);
4920 
4921 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4922 
4923 	if (qc->n_elem)
4924 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4925 
4926 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4927 	qc->sg = NULL;
4928 }
4929 
4930 /**
4931  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4932  *	@qc: Command with scatter-gather table to be mapped.
4933  *
4934  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4935  *
4936  *	LOCKING:
4937  *	spin_lock_irqsave(host lock)
4938  *
4939  *	RETURNS:
4940  *	Zero on success, negative on error.
4941  *
4942  */
4943 static int ata_sg_setup(struct ata_queued_cmd *qc)
4944 {
4945 	struct ata_port *ap = qc->ap;
4946 	unsigned int n_elem;
4947 
4948 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4949 
4950 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4951 	if (n_elem < 1)
4952 		return -1;
4953 
4954 	DPRINTK("%d sg elements mapped\n", n_elem);
4955 	qc->orig_n_elem = qc->n_elem;
4956 	qc->n_elem = n_elem;
4957 	qc->flags |= ATA_QCFLAG_DMAMAP;
4958 
4959 	return 0;
4960 }
4961 
4962 #else /* !CONFIG_HAS_DMA */
4963 
4964 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4965 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4966 
4967 #endif /* !CONFIG_HAS_DMA */
4968 
4969 /**
4970  *	swap_buf_le16 - swap halves of 16-bit words in place
4971  *	@buf:  Buffer to swap
4972  *	@buf_words:  Number of 16-bit words in buffer.
4973  *
4974  *	Swap halves of 16-bit words if needed to convert from
4975  *	little-endian byte order to native cpu byte order, or
4976  *	vice-versa.
4977  *
4978  *	LOCKING:
4979  *	Inherited from caller.
4980  */
4981 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4982 {
4983 #ifdef __BIG_ENDIAN
4984 	unsigned int i;
4985 
4986 	for (i = 0; i < buf_words; i++)
4987 		buf[i] = le16_to_cpu(buf[i]);
4988 #endif /* __BIG_ENDIAN */
4989 }
4990 
4991 /**
4992  *	ata_qc_new_init - Request an available ATA command, and initialize it
4993  *	@dev: Device from whom we request an available command structure
4994  *	@tag: tag
4995  *
4996  *	LOCKING:
4997  *	None.
4998  */
4999 
5000 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5001 {
5002 	struct ata_port *ap = dev->link->ap;
5003 	struct ata_queued_cmd *qc;
5004 
5005 	/* no command while frozen */
5006 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5007 		return NULL;
5008 
5009 	/* libsas case */
5010 	if (ap->flags & ATA_FLAG_SAS_HOST) {
5011 		tag = ata_sas_allocate_tag(ap);
5012 		if (tag < 0)
5013 			return NULL;
5014 	}
5015 
5016 	qc = __ata_qc_from_tag(ap, tag);
5017 	qc->tag = tag;
5018 	qc->scsicmd = NULL;
5019 	qc->ap = ap;
5020 	qc->dev = dev;
5021 
5022 	ata_qc_reinit(qc);
5023 
5024 	return qc;
5025 }
5026 
5027 /**
5028  *	ata_qc_free - free unused ata_queued_cmd
5029  *	@qc: Command to complete
5030  *
5031  *	Designed to free unused ata_queued_cmd object
5032  *	in case something prevents using it.
5033  *
5034  *	LOCKING:
5035  *	spin_lock_irqsave(host lock)
5036  */
5037 void ata_qc_free(struct ata_queued_cmd *qc)
5038 {
5039 	struct ata_port *ap;
5040 	unsigned int tag;
5041 
5042 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5043 	ap = qc->ap;
5044 
5045 	qc->flags = 0;
5046 	tag = qc->tag;
5047 	if (likely(ata_tag_valid(tag))) {
5048 		qc->tag = ATA_TAG_POISON;
5049 		if (ap->flags & ATA_FLAG_SAS_HOST)
5050 			ata_sas_free_tag(tag, ap);
5051 	}
5052 }
5053 
5054 void __ata_qc_complete(struct ata_queued_cmd *qc)
5055 {
5056 	struct ata_port *ap;
5057 	struct ata_link *link;
5058 
5059 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5060 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5061 	ap = qc->ap;
5062 	link = qc->dev->link;
5063 
5064 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5065 		ata_sg_clean(qc);
5066 
5067 	/* command should be marked inactive atomically with qc completion */
5068 	if (ata_is_ncq(qc->tf.protocol)) {
5069 		link->sactive &= ~(1 << qc->tag);
5070 		if (!link->sactive)
5071 			ap->nr_active_links--;
5072 	} else {
5073 		link->active_tag = ATA_TAG_POISON;
5074 		ap->nr_active_links--;
5075 	}
5076 
5077 	/* clear exclusive status */
5078 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5079 		     ap->excl_link == link))
5080 		ap->excl_link = NULL;
5081 
5082 	/* atapi: mark qc as inactive to prevent the interrupt handler
5083 	 * from completing the command twice later, before the error handler
5084 	 * is called. (when rc != 0 and atapi request sense is needed)
5085 	 */
5086 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5087 	ap->qc_active &= ~(1 << qc->tag);
5088 
5089 	/* call completion callback */
5090 	qc->complete_fn(qc);
5091 }
5092 
5093 static void fill_result_tf(struct ata_queued_cmd *qc)
5094 {
5095 	struct ata_port *ap = qc->ap;
5096 
5097 	qc->result_tf.flags = qc->tf.flags;
5098 	ap->ops->qc_fill_rtf(qc);
5099 }
5100 
5101 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5102 {
5103 	struct ata_device *dev = qc->dev;
5104 
5105 	if (!ata_is_data(qc->tf.protocol))
5106 		return;
5107 
5108 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5109 		return;
5110 
5111 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5112 }
5113 
5114 /**
5115  *	ata_qc_complete - Complete an active ATA command
5116  *	@qc: Command to complete
5117  *
5118  *	Indicate to the mid and upper layers that an ATA command has
5119  *	completed, with either an ok or not-ok status.
5120  *
5121  *	Refrain from calling this function multiple times when
5122  *	successfully completing multiple NCQ commands.
5123  *	ata_qc_complete_multiple() should be used instead, which will
5124  *	properly update IRQ expect state.
5125  *
5126  *	LOCKING:
5127  *	spin_lock_irqsave(host lock)
5128  */
5129 void ata_qc_complete(struct ata_queued_cmd *qc)
5130 {
5131 	struct ata_port *ap = qc->ap;
5132 
5133 	/* Trigger the LED (if available) */
5134 	ledtrig_disk_activity();
5135 
5136 	/* XXX: New EH and old EH use different mechanisms to
5137 	 * synchronize EH with regular execution path.
5138 	 *
5139 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5140 	 * Normal execution path is responsible for not accessing a
5141 	 * failed qc.  libata core enforces the rule by returning NULL
5142 	 * from ata_qc_from_tag() for failed qcs.
5143 	 *
5144 	 * Old EH depends on ata_qc_complete() nullifying completion
5145 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5146 	 * not synchronize with interrupt handler.  Only PIO task is
5147 	 * taken care of.
5148 	 */
5149 	if (ap->ops->error_handler) {
5150 		struct ata_device *dev = qc->dev;
5151 		struct ata_eh_info *ehi = &dev->link->eh_info;
5152 
5153 		if (unlikely(qc->err_mask))
5154 			qc->flags |= ATA_QCFLAG_FAILED;
5155 
5156 		/*
5157 		 * Finish internal commands without any further processing
5158 		 * and always with the result TF filled.
5159 		 */
5160 		if (unlikely(ata_tag_internal(qc->tag))) {
5161 			fill_result_tf(qc);
5162 			trace_ata_qc_complete_internal(qc);
5163 			__ata_qc_complete(qc);
5164 			return;
5165 		}
5166 
5167 		/*
5168 		 * Non-internal qc has failed.  Fill the result TF and
5169 		 * summon EH.
5170 		 */
5171 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5172 			fill_result_tf(qc);
5173 			trace_ata_qc_complete_failed(qc);
5174 			ata_qc_schedule_eh(qc);
5175 			return;
5176 		}
5177 
5178 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5179 
5180 		/* read result TF if requested */
5181 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5182 			fill_result_tf(qc);
5183 
5184 		trace_ata_qc_complete_done(qc);
5185 		/* Some commands need post-processing after successful
5186 		 * completion.
5187 		 */
5188 		switch (qc->tf.command) {
5189 		case ATA_CMD_SET_FEATURES:
5190 			if (qc->tf.feature != SETFEATURES_WC_ON &&
5191 			    qc->tf.feature != SETFEATURES_WC_OFF &&
5192 			    qc->tf.feature != SETFEATURES_RA_ON &&
5193 			    qc->tf.feature != SETFEATURES_RA_OFF)
5194 				break;
5195 			/* fall through */
5196 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5197 		case ATA_CMD_SET_MULTI: /* multi_count changed */
5198 			/* revalidate device */
5199 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5200 			ata_port_schedule_eh(ap);
5201 			break;
5202 
5203 		case ATA_CMD_SLEEP:
5204 			dev->flags |= ATA_DFLAG_SLEEPING;
5205 			break;
5206 		}
5207 
5208 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5209 			ata_verify_xfer(qc);
5210 
5211 		__ata_qc_complete(qc);
5212 	} else {
5213 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5214 			return;
5215 
5216 		/* read result TF if failed or requested */
5217 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5218 			fill_result_tf(qc);
5219 
5220 		__ata_qc_complete(qc);
5221 	}
5222 }
5223 
5224 /**
5225  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5226  *	@ap: port in question
5227  *	@qc_active: new qc_active mask
5228  *
5229  *	Complete in-flight commands.  This functions is meant to be
5230  *	called from low-level driver's interrupt routine to complete
5231  *	requests normally.  ap->qc_active and @qc_active is compared
5232  *	and commands are completed accordingly.
5233  *
5234  *	Always use this function when completing multiple NCQ commands
5235  *	from IRQ handlers instead of calling ata_qc_complete()
5236  *	multiple times to keep IRQ expect status properly in sync.
5237  *
5238  *	LOCKING:
5239  *	spin_lock_irqsave(host lock)
5240  *
5241  *	RETURNS:
5242  *	Number of completed commands on success, -errno otherwise.
5243  */
5244 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5245 {
5246 	int nr_done = 0;
5247 	u32 done_mask;
5248 
5249 	done_mask = ap->qc_active ^ qc_active;
5250 
5251 	if (unlikely(done_mask & qc_active)) {
5252 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5253 			     ap->qc_active, qc_active);
5254 		return -EINVAL;
5255 	}
5256 
5257 	while (done_mask) {
5258 		struct ata_queued_cmd *qc;
5259 		unsigned int tag = __ffs(done_mask);
5260 
5261 		qc = ata_qc_from_tag(ap, tag);
5262 		if (qc) {
5263 			ata_qc_complete(qc);
5264 			nr_done++;
5265 		}
5266 		done_mask &= ~(1 << tag);
5267 	}
5268 
5269 	return nr_done;
5270 }
5271 
5272 /**
5273  *	ata_qc_issue - issue taskfile to device
5274  *	@qc: command to issue to device
5275  *
5276  *	Prepare an ATA command to submission to device.
5277  *	This includes mapping the data into a DMA-able
5278  *	area, filling in the S/G table, and finally
5279  *	writing the taskfile to hardware, starting the command.
5280  *
5281  *	LOCKING:
5282  *	spin_lock_irqsave(host lock)
5283  */
5284 void ata_qc_issue(struct ata_queued_cmd *qc)
5285 {
5286 	struct ata_port *ap = qc->ap;
5287 	struct ata_link *link = qc->dev->link;
5288 	u8 prot = qc->tf.protocol;
5289 
5290 	/* Make sure only one non-NCQ command is outstanding.  The
5291 	 * check is skipped for old EH because it reuses active qc to
5292 	 * request ATAPI sense.
5293 	 */
5294 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5295 
5296 	if (ata_is_ncq(prot)) {
5297 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5298 
5299 		if (!link->sactive)
5300 			ap->nr_active_links++;
5301 		link->sactive |= 1 << qc->tag;
5302 	} else {
5303 		WARN_ON_ONCE(link->sactive);
5304 
5305 		ap->nr_active_links++;
5306 		link->active_tag = qc->tag;
5307 	}
5308 
5309 	qc->flags |= ATA_QCFLAG_ACTIVE;
5310 	ap->qc_active |= 1 << qc->tag;
5311 
5312 	/*
5313 	 * We guarantee to LLDs that they will have at least one
5314 	 * non-zero sg if the command is a data command.
5315 	 */
5316 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5317 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5318 		goto sys_err;
5319 
5320 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5321 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5322 		if (ata_sg_setup(qc))
5323 			goto sys_err;
5324 
5325 	/* if device is sleeping, schedule reset and abort the link */
5326 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5327 		link->eh_info.action |= ATA_EH_RESET;
5328 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5329 		ata_link_abort(link);
5330 		return;
5331 	}
5332 
5333 	ap->ops->qc_prep(qc);
5334 	trace_ata_qc_issue(qc);
5335 	qc->err_mask |= ap->ops->qc_issue(qc);
5336 	if (unlikely(qc->err_mask))
5337 		goto err;
5338 	return;
5339 
5340 sys_err:
5341 	qc->err_mask |= AC_ERR_SYSTEM;
5342 err:
5343 	ata_qc_complete(qc);
5344 }
5345 
5346 /**
5347  *	sata_scr_valid - test whether SCRs are accessible
5348  *	@link: ATA link to test SCR accessibility for
5349  *
5350  *	Test whether SCRs are accessible for @link.
5351  *
5352  *	LOCKING:
5353  *	None.
5354  *
5355  *	RETURNS:
5356  *	1 if SCRs are accessible, 0 otherwise.
5357  */
5358 int sata_scr_valid(struct ata_link *link)
5359 {
5360 	struct ata_port *ap = link->ap;
5361 
5362 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5363 }
5364 
5365 /**
5366  *	sata_scr_read - read SCR register of the specified port
5367  *	@link: ATA link to read SCR for
5368  *	@reg: SCR to read
5369  *	@val: Place to store read value
5370  *
5371  *	Read SCR register @reg of @link into *@val.  This function is
5372  *	guaranteed to succeed if @link is ap->link, the cable type of
5373  *	the port is SATA and the port implements ->scr_read.
5374  *
5375  *	LOCKING:
5376  *	None if @link is ap->link.  Kernel thread context otherwise.
5377  *
5378  *	RETURNS:
5379  *	0 on success, negative errno on failure.
5380  */
5381 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5382 {
5383 	if (ata_is_host_link(link)) {
5384 		if (sata_scr_valid(link))
5385 			return link->ap->ops->scr_read(link, reg, val);
5386 		return -EOPNOTSUPP;
5387 	}
5388 
5389 	return sata_pmp_scr_read(link, reg, val);
5390 }
5391 
5392 /**
5393  *	sata_scr_write - write SCR register of the specified port
5394  *	@link: ATA link to write SCR for
5395  *	@reg: SCR to write
5396  *	@val: value to write
5397  *
5398  *	Write @val to SCR register @reg of @link.  This function is
5399  *	guaranteed to succeed if @link is ap->link, the cable type of
5400  *	the port is SATA and the port implements ->scr_read.
5401  *
5402  *	LOCKING:
5403  *	None if @link is ap->link.  Kernel thread context otherwise.
5404  *
5405  *	RETURNS:
5406  *	0 on success, negative errno on failure.
5407  */
5408 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5409 {
5410 	if (ata_is_host_link(link)) {
5411 		if (sata_scr_valid(link))
5412 			return link->ap->ops->scr_write(link, reg, val);
5413 		return -EOPNOTSUPP;
5414 	}
5415 
5416 	return sata_pmp_scr_write(link, reg, val);
5417 }
5418 
5419 /**
5420  *	sata_scr_write_flush - write SCR register of the specified port and flush
5421  *	@link: ATA link to write SCR for
5422  *	@reg: SCR to write
5423  *	@val: value to write
5424  *
5425  *	This function is identical to sata_scr_write() except that this
5426  *	function performs flush after writing to the register.
5427  *
5428  *	LOCKING:
5429  *	None if @link is ap->link.  Kernel thread context otherwise.
5430  *
5431  *	RETURNS:
5432  *	0 on success, negative errno on failure.
5433  */
5434 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5435 {
5436 	if (ata_is_host_link(link)) {
5437 		int rc;
5438 
5439 		if (sata_scr_valid(link)) {
5440 			rc = link->ap->ops->scr_write(link, reg, val);
5441 			if (rc == 0)
5442 				rc = link->ap->ops->scr_read(link, reg, &val);
5443 			return rc;
5444 		}
5445 		return -EOPNOTSUPP;
5446 	}
5447 
5448 	return sata_pmp_scr_write(link, reg, val);
5449 }
5450 
5451 /**
5452  *	ata_phys_link_online - test whether the given link is online
5453  *	@link: ATA link to test
5454  *
5455  *	Test whether @link is online.  Note that this function returns
5456  *	0 if online status of @link cannot be obtained, so
5457  *	ata_link_online(link) != !ata_link_offline(link).
5458  *
5459  *	LOCKING:
5460  *	None.
5461  *
5462  *	RETURNS:
5463  *	True if the port online status is available and online.
5464  */
5465 bool ata_phys_link_online(struct ata_link *link)
5466 {
5467 	u32 sstatus;
5468 
5469 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5470 	    ata_sstatus_online(sstatus))
5471 		return true;
5472 	return false;
5473 }
5474 
5475 /**
5476  *	ata_phys_link_offline - test whether the given link is offline
5477  *	@link: ATA link to test
5478  *
5479  *	Test whether @link is offline.  Note that this function
5480  *	returns 0 if offline status of @link cannot be obtained, so
5481  *	ata_link_online(link) != !ata_link_offline(link).
5482  *
5483  *	LOCKING:
5484  *	None.
5485  *
5486  *	RETURNS:
5487  *	True if the port offline status is available and offline.
5488  */
5489 bool ata_phys_link_offline(struct ata_link *link)
5490 {
5491 	u32 sstatus;
5492 
5493 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5494 	    !ata_sstatus_online(sstatus))
5495 		return true;
5496 	return false;
5497 }
5498 
5499 /**
5500  *	ata_link_online - test whether the given link is online
5501  *	@link: ATA link to test
5502  *
5503  *	Test whether @link is online.  This is identical to
5504  *	ata_phys_link_online() when there's no slave link.  When
5505  *	there's a slave link, this function should only be called on
5506  *	the master link and will return true if any of M/S links is
5507  *	online.
5508  *
5509  *	LOCKING:
5510  *	None.
5511  *
5512  *	RETURNS:
5513  *	True if the port online status is available and online.
5514  */
5515 bool ata_link_online(struct ata_link *link)
5516 {
5517 	struct ata_link *slave = link->ap->slave_link;
5518 
5519 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5520 
5521 	return ata_phys_link_online(link) ||
5522 		(slave && ata_phys_link_online(slave));
5523 }
5524 
5525 /**
5526  *	ata_link_offline - test whether the given link is offline
5527  *	@link: ATA link to test
5528  *
5529  *	Test whether @link is offline.  This is identical to
5530  *	ata_phys_link_offline() when there's no slave link.  When
5531  *	there's a slave link, this function should only be called on
5532  *	the master link and will return true if both M/S links are
5533  *	offline.
5534  *
5535  *	LOCKING:
5536  *	None.
5537  *
5538  *	RETURNS:
5539  *	True if the port offline status is available and offline.
5540  */
5541 bool ata_link_offline(struct ata_link *link)
5542 {
5543 	struct ata_link *slave = link->ap->slave_link;
5544 
5545 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5546 
5547 	return ata_phys_link_offline(link) &&
5548 		(!slave || ata_phys_link_offline(slave));
5549 }
5550 
5551 #ifdef CONFIG_PM
5552 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5553 				unsigned int action, unsigned int ehi_flags,
5554 				bool async)
5555 {
5556 	struct ata_link *link;
5557 	unsigned long flags;
5558 
5559 	/* Previous resume operation might still be in
5560 	 * progress.  Wait for PM_PENDING to clear.
5561 	 */
5562 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5563 		ata_port_wait_eh(ap);
5564 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5565 	}
5566 
5567 	/* request PM ops to EH */
5568 	spin_lock_irqsave(ap->lock, flags);
5569 
5570 	ap->pm_mesg = mesg;
5571 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5572 	ata_for_each_link(link, ap, HOST_FIRST) {
5573 		link->eh_info.action |= action;
5574 		link->eh_info.flags |= ehi_flags;
5575 	}
5576 
5577 	ata_port_schedule_eh(ap);
5578 
5579 	spin_unlock_irqrestore(ap->lock, flags);
5580 
5581 	if (!async) {
5582 		ata_port_wait_eh(ap);
5583 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5584 	}
5585 }
5586 
5587 /*
5588  * On some hardware, device fails to respond after spun down for suspend.  As
5589  * the device won't be used before being resumed, we don't need to touch the
5590  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5591  *
5592  * http://thread.gmane.org/gmane.linux.ide/46764
5593  */
5594 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5595 						 | ATA_EHI_NO_AUTOPSY
5596 						 | ATA_EHI_NO_RECOVERY;
5597 
5598 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5599 {
5600 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5601 }
5602 
5603 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5604 {
5605 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5606 }
5607 
5608 static int ata_port_pm_suspend(struct device *dev)
5609 {
5610 	struct ata_port *ap = to_ata_port(dev);
5611 
5612 	if (pm_runtime_suspended(dev))
5613 		return 0;
5614 
5615 	ata_port_suspend(ap, PMSG_SUSPEND);
5616 	return 0;
5617 }
5618 
5619 static int ata_port_pm_freeze(struct device *dev)
5620 {
5621 	struct ata_port *ap = to_ata_port(dev);
5622 
5623 	if (pm_runtime_suspended(dev))
5624 		return 0;
5625 
5626 	ata_port_suspend(ap, PMSG_FREEZE);
5627 	return 0;
5628 }
5629 
5630 static int ata_port_pm_poweroff(struct device *dev)
5631 {
5632 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5633 	return 0;
5634 }
5635 
5636 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5637 						| ATA_EHI_QUIET;
5638 
5639 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5640 {
5641 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5642 }
5643 
5644 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5645 {
5646 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5647 }
5648 
5649 static int ata_port_pm_resume(struct device *dev)
5650 {
5651 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5652 	pm_runtime_disable(dev);
5653 	pm_runtime_set_active(dev);
5654 	pm_runtime_enable(dev);
5655 	return 0;
5656 }
5657 
5658 /*
5659  * For ODDs, the upper layer will poll for media change every few seconds,
5660  * which will make it enter and leave suspend state every few seconds. And
5661  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5662  * is very little and the ODD may malfunction after constantly being reset.
5663  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5664  * ODD is attached to the port.
5665  */
5666 static int ata_port_runtime_idle(struct device *dev)
5667 {
5668 	struct ata_port *ap = to_ata_port(dev);
5669 	struct ata_link *link;
5670 	struct ata_device *adev;
5671 
5672 	ata_for_each_link(link, ap, HOST_FIRST) {
5673 		ata_for_each_dev(adev, link, ENABLED)
5674 			if (adev->class == ATA_DEV_ATAPI &&
5675 			    !zpodd_dev_enabled(adev))
5676 				return -EBUSY;
5677 	}
5678 
5679 	return 0;
5680 }
5681 
5682 static int ata_port_runtime_suspend(struct device *dev)
5683 {
5684 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5685 	return 0;
5686 }
5687 
5688 static int ata_port_runtime_resume(struct device *dev)
5689 {
5690 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5691 	return 0;
5692 }
5693 
5694 static const struct dev_pm_ops ata_port_pm_ops = {
5695 	.suspend = ata_port_pm_suspend,
5696 	.resume = ata_port_pm_resume,
5697 	.freeze = ata_port_pm_freeze,
5698 	.thaw = ata_port_pm_resume,
5699 	.poweroff = ata_port_pm_poweroff,
5700 	.restore = ata_port_pm_resume,
5701 
5702 	.runtime_suspend = ata_port_runtime_suspend,
5703 	.runtime_resume = ata_port_runtime_resume,
5704 	.runtime_idle = ata_port_runtime_idle,
5705 };
5706 
5707 /* sas ports don't participate in pm runtime management of ata_ports,
5708  * and need to resume ata devices at the domain level, not the per-port
5709  * level. sas suspend/resume is async to allow parallel port recovery
5710  * since sas has multiple ata_port instances per Scsi_Host.
5711  */
5712 void ata_sas_port_suspend(struct ata_port *ap)
5713 {
5714 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5715 }
5716 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5717 
5718 void ata_sas_port_resume(struct ata_port *ap)
5719 {
5720 	ata_port_resume_async(ap, PMSG_RESUME);
5721 }
5722 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5723 
5724 /**
5725  *	ata_host_suspend - suspend host
5726  *	@host: host to suspend
5727  *	@mesg: PM message
5728  *
5729  *	Suspend @host.  Actual operation is performed by port suspend.
5730  */
5731 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5732 {
5733 	host->dev->power.power_state = mesg;
5734 	return 0;
5735 }
5736 
5737 /**
5738  *	ata_host_resume - resume host
5739  *	@host: host to resume
5740  *
5741  *	Resume @host.  Actual operation is performed by port resume.
5742  */
5743 void ata_host_resume(struct ata_host *host)
5744 {
5745 	host->dev->power.power_state = PMSG_ON;
5746 }
5747 #endif
5748 
5749 struct device_type ata_port_type = {
5750 	.name = "ata_port",
5751 #ifdef CONFIG_PM
5752 	.pm = &ata_port_pm_ops,
5753 #endif
5754 };
5755 
5756 /**
5757  *	ata_dev_init - Initialize an ata_device structure
5758  *	@dev: Device structure to initialize
5759  *
5760  *	Initialize @dev in preparation for probing.
5761  *
5762  *	LOCKING:
5763  *	Inherited from caller.
5764  */
5765 void ata_dev_init(struct ata_device *dev)
5766 {
5767 	struct ata_link *link = ata_dev_phys_link(dev);
5768 	struct ata_port *ap = link->ap;
5769 	unsigned long flags;
5770 
5771 	/* SATA spd limit is bound to the attached device, reset together */
5772 	link->sata_spd_limit = link->hw_sata_spd_limit;
5773 	link->sata_spd = 0;
5774 
5775 	/* High bits of dev->flags are used to record warm plug
5776 	 * requests which occur asynchronously.  Synchronize using
5777 	 * host lock.
5778 	 */
5779 	spin_lock_irqsave(ap->lock, flags);
5780 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5781 	dev->horkage = 0;
5782 	spin_unlock_irqrestore(ap->lock, flags);
5783 
5784 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5785 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5786 	dev->pio_mask = UINT_MAX;
5787 	dev->mwdma_mask = UINT_MAX;
5788 	dev->udma_mask = UINT_MAX;
5789 }
5790 
5791 /**
5792  *	ata_link_init - Initialize an ata_link structure
5793  *	@ap: ATA port link is attached to
5794  *	@link: Link structure to initialize
5795  *	@pmp: Port multiplier port number
5796  *
5797  *	Initialize @link.
5798  *
5799  *	LOCKING:
5800  *	Kernel thread context (may sleep)
5801  */
5802 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5803 {
5804 	int i;
5805 
5806 	/* clear everything except for devices */
5807 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5808 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5809 
5810 	link->ap = ap;
5811 	link->pmp = pmp;
5812 	link->active_tag = ATA_TAG_POISON;
5813 	link->hw_sata_spd_limit = UINT_MAX;
5814 
5815 	/* can't use iterator, ap isn't initialized yet */
5816 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5817 		struct ata_device *dev = &link->device[i];
5818 
5819 		dev->link = link;
5820 		dev->devno = dev - link->device;
5821 #ifdef CONFIG_ATA_ACPI
5822 		dev->gtf_filter = ata_acpi_gtf_filter;
5823 #endif
5824 		ata_dev_init(dev);
5825 	}
5826 }
5827 
5828 /**
5829  *	sata_link_init_spd - Initialize link->sata_spd_limit
5830  *	@link: Link to configure sata_spd_limit for
5831  *
5832  *	Initialize @link->[hw_]sata_spd_limit to the currently
5833  *	configured value.
5834  *
5835  *	LOCKING:
5836  *	Kernel thread context (may sleep).
5837  *
5838  *	RETURNS:
5839  *	0 on success, -errno on failure.
5840  */
5841 int sata_link_init_spd(struct ata_link *link)
5842 {
5843 	u8 spd;
5844 	int rc;
5845 
5846 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5847 	if (rc)
5848 		return rc;
5849 
5850 	spd = (link->saved_scontrol >> 4) & 0xf;
5851 	if (spd)
5852 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5853 
5854 	ata_force_link_limits(link);
5855 
5856 	link->sata_spd_limit = link->hw_sata_spd_limit;
5857 
5858 	return 0;
5859 }
5860 
5861 /**
5862  *	ata_port_alloc - allocate and initialize basic ATA port resources
5863  *	@host: ATA host this allocated port belongs to
5864  *
5865  *	Allocate and initialize basic ATA port resources.
5866  *
5867  *	RETURNS:
5868  *	Allocate ATA port on success, NULL on failure.
5869  *
5870  *	LOCKING:
5871  *	Inherited from calling layer (may sleep).
5872  */
5873 struct ata_port *ata_port_alloc(struct ata_host *host)
5874 {
5875 	struct ata_port *ap;
5876 
5877 	DPRINTK("ENTER\n");
5878 
5879 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5880 	if (!ap)
5881 		return NULL;
5882 
5883 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5884 	ap->lock = &host->lock;
5885 	ap->print_id = -1;
5886 	ap->local_port_no = -1;
5887 	ap->host = host;
5888 	ap->dev = host->dev;
5889 
5890 #if defined(ATA_VERBOSE_DEBUG)
5891 	/* turn on all debugging levels */
5892 	ap->msg_enable = 0x00FF;
5893 #elif defined(ATA_DEBUG)
5894 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5895 #else
5896 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5897 #endif
5898 
5899 	mutex_init(&ap->scsi_scan_mutex);
5900 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5901 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5902 	INIT_LIST_HEAD(&ap->eh_done_q);
5903 	init_waitqueue_head(&ap->eh_wait_q);
5904 	init_completion(&ap->park_req_pending);
5905 	setup_deferrable_timer(&ap->fastdrain_timer,
5906 			       ata_eh_fastdrain_timerfn,
5907 			       (unsigned long)ap);
5908 
5909 	ap->cbl = ATA_CBL_NONE;
5910 
5911 	ata_link_init(ap, &ap->link, 0);
5912 
5913 #ifdef ATA_IRQ_TRAP
5914 	ap->stats.unhandled_irq = 1;
5915 	ap->stats.idle_irq = 1;
5916 #endif
5917 	ata_sff_port_init(ap);
5918 
5919 	return ap;
5920 }
5921 
5922 static void ata_host_release(struct device *gendev, void *res)
5923 {
5924 	struct ata_host *host = dev_get_drvdata(gendev);
5925 	int i;
5926 
5927 	for (i = 0; i < host->n_ports; i++) {
5928 		struct ata_port *ap = host->ports[i];
5929 
5930 		if (!ap)
5931 			continue;
5932 
5933 		if (ap->scsi_host)
5934 			scsi_host_put(ap->scsi_host);
5935 
5936 		kfree(ap->pmp_link);
5937 		kfree(ap->slave_link);
5938 		kfree(ap);
5939 		host->ports[i] = NULL;
5940 	}
5941 
5942 	dev_set_drvdata(gendev, NULL);
5943 }
5944 
5945 /**
5946  *	ata_host_alloc - allocate and init basic ATA host resources
5947  *	@dev: generic device this host is associated with
5948  *	@max_ports: maximum number of ATA ports associated with this host
5949  *
5950  *	Allocate and initialize basic ATA host resources.  LLD calls
5951  *	this function to allocate a host, initializes it fully and
5952  *	attaches it using ata_host_register().
5953  *
5954  *	@max_ports ports are allocated and host->n_ports is
5955  *	initialized to @max_ports.  The caller is allowed to decrease
5956  *	host->n_ports before calling ata_host_register().  The unused
5957  *	ports will be automatically freed on registration.
5958  *
5959  *	RETURNS:
5960  *	Allocate ATA host on success, NULL on failure.
5961  *
5962  *	LOCKING:
5963  *	Inherited from calling layer (may sleep).
5964  */
5965 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5966 {
5967 	struct ata_host *host;
5968 	size_t sz;
5969 	int i;
5970 
5971 	DPRINTK("ENTER\n");
5972 
5973 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5974 		return NULL;
5975 
5976 	/* alloc a container for our list of ATA ports (buses) */
5977 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5978 	/* alloc a container for our list of ATA ports (buses) */
5979 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5980 	if (!host)
5981 		goto err_out;
5982 
5983 	devres_add(dev, host);
5984 	dev_set_drvdata(dev, host);
5985 
5986 	spin_lock_init(&host->lock);
5987 	mutex_init(&host->eh_mutex);
5988 	host->dev = dev;
5989 	host->n_ports = max_ports;
5990 
5991 	/* allocate ports bound to this host */
5992 	for (i = 0; i < max_ports; i++) {
5993 		struct ata_port *ap;
5994 
5995 		ap = ata_port_alloc(host);
5996 		if (!ap)
5997 			goto err_out;
5998 
5999 		ap->port_no = i;
6000 		host->ports[i] = ap;
6001 	}
6002 
6003 	devres_remove_group(dev, NULL);
6004 	return host;
6005 
6006  err_out:
6007 	devres_release_group(dev, NULL);
6008 	return NULL;
6009 }
6010 
6011 /**
6012  *	ata_host_alloc_pinfo - alloc host and init with port_info array
6013  *	@dev: generic device this host is associated with
6014  *	@ppi: array of ATA port_info to initialize host with
6015  *	@n_ports: number of ATA ports attached to this host
6016  *
6017  *	Allocate ATA host and initialize with info from @ppi.  If NULL
6018  *	terminated, @ppi may contain fewer entries than @n_ports.  The
6019  *	last entry will be used for the remaining ports.
6020  *
6021  *	RETURNS:
6022  *	Allocate ATA host on success, NULL on failure.
6023  *
6024  *	LOCKING:
6025  *	Inherited from calling layer (may sleep).
6026  */
6027 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6028 				      const struct ata_port_info * const * ppi,
6029 				      int n_ports)
6030 {
6031 	const struct ata_port_info *pi;
6032 	struct ata_host *host;
6033 	int i, j;
6034 
6035 	host = ata_host_alloc(dev, n_ports);
6036 	if (!host)
6037 		return NULL;
6038 
6039 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6040 		struct ata_port *ap = host->ports[i];
6041 
6042 		if (ppi[j])
6043 			pi = ppi[j++];
6044 
6045 		ap->pio_mask = pi->pio_mask;
6046 		ap->mwdma_mask = pi->mwdma_mask;
6047 		ap->udma_mask = pi->udma_mask;
6048 		ap->flags |= pi->flags;
6049 		ap->link.flags |= pi->link_flags;
6050 		ap->ops = pi->port_ops;
6051 
6052 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6053 			host->ops = pi->port_ops;
6054 	}
6055 
6056 	return host;
6057 }
6058 
6059 /**
6060  *	ata_slave_link_init - initialize slave link
6061  *	@ap: port to initialize slave link for
6062  *
6063  *	Create and initialize slave link for @ap.  This enables slave
6064  *	link handling on the port.
6065  *
6066  *	In libata, a port contains links and a link contains devices.
6067  *	There is single host link but if a PMP is attached to it,
6068  *	there can be multiple fan-out links.  On SATA, there's usually
6069  *	a single device connected to a link but PATA and SATA
6070  *	controllers emulating TF based interface can have two - master
6071  *	and slave.
6072  *
6073  *	However, there are a few controllers which don't fit into this
6074  *	abstraction too well - SATA controllers which emulate TF
6075  *	interface with both master and slave devices but also have
6076  *	separate SCR register sets for each device.  These controllers
6077  *	need separate links for physical link handling
6078  *	(e.g. onlineness, link speed) but should be treated like a
6079  *	traditional M/S controller for everything else (e.g. command
6080  *	issue, softreset).
6081  *
6082  *	slave_link is libata's way of handling this class of
6083  *	controllers without impacting core layer too much.  For
6084  *	anything other than physical link handling, the default host
6085  *	link is used for both master and slave.  For physical link
6086  *	handling, separate @ap->slave_link is used.  All dirty details
6087  *	are implemented inside libata core layer.  From LLD's POV, the
6088  *	only difference is that prereset, hardreset and postreset are
6089  *	called once more for the slave link, so the reset sequence
6090  *	looks like the following.
6091  *
6092  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6093  *	softreset(M) -> postreset(M) -> postreset(S)
6094  *
6095  *	Note that softreset is called only for the master.  Softreset
6096  *	resets both M/S by definition, so SRST on master should handle
6097  *	both (the standard method will work just fine).
6098  *
6099  *	LOCKING:
6100  *	Should be called before host is registered.
6101  *
6102  *	RETURNS:
6103  *	0 on success, -errno on failure.
6104  */
6105 int ata_slave_link_init(struct ata_port *ap)
6106 {
6107 	struct ata_link *link;
6108 
6109 	WARN_ON(ap->slave_link);
6110 	WARN_ON(ap->flags & ATA_FLAG_PMP);
6111 
6112 	link = kzalloc(sizeof(*link), GFP_KERNEL);
6113 	if (!link)
6114 		return -ENOMEM;
6115 
6116 	ata_link_init(ap, link, 1);
6117 	ap->slave_link = link;
6118 	return 0;
6119 }
6120 
6121 static void ata_host_stop(struct device *gendev, void *res)
6122 {
6123 	struct ata_host *host = dev_get_drvdata(gendev);
6124 	int i;
6125 
6126 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
6127 
6128 	for (i = 0; i < host->n_ports; i++) {
6129 		struct ata_port *ap = host->ports[i];
6130 
6131 		if (ap->ops->port_stop)
6132 			ap->ops->port_stop(ap);
6133 	}
6134 
6135 	if (host->ops->host_stop)
6136 		host->ops->host_stop(host);
6137 }
6138 
6139 /**
6140  *	ata_finalize_port_ops - finalize ata_port_operations
6141  *	@ops: ata_port_operations to finalize
6142  *
6143  *	An ata_port_operations can inherit from another ops and that
6144  *	ops can again inherit from another.  This can go on as many
6145  *	times as necessary as long as there is no loop in the
6146  *	inheritance chain.
6147  *
6148  *	Ops tables are finalized when the host is started.  NULL or
6149  *	unspecified entries are inherited from the closet ancestor
6150  *	which has the method and the entry is populated with it.
6151  *	After finalization, the ops table directly points to all the
6152  *	methods and ->inherits is no longer necessary and cleared.
6153  *
6154  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6155  *
6156  *	LOCKING:
6157  *	None.
6158  */
6159 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6160 {
6161 	static DEFINE_SPINLOCK(lock);
6162 	const struct ata_port_operations *cur;
6163 	void **begin = (void **)ops;
6164 	void **end = (void **)&ops->inherits;
6165 	void **pp;
6166 
6167 	if (!ops || !ops->inherits)
6168 		return;
6169 
6170 	spin_lock(&lock);
6171 
6172 	for (cur = ops->inherits; cur; cur = cur->inherits) {
6173 		void **inherit = (void **)cur;
6174 
6175 		for (pp = begin; pp < end; pp++, inherit++)
6176 			if (!*pp)
6177 				*pp = *inherit;
6178 	}
6179 
6180 	for (pp = begin; pp < end; pp++)
6181 		if (IS_ERR(*pp))
6182 			*pp = NULL;
6183 
6184 	ops->inherits = NULL;
6185 
6186 	spin_unlock(&lock);
6187 }
6188 
6189 /**
6190  *	ata_host_start - start and freeze ports of an ATA host
6191  *	@host: ATA host to start ports for
6192  *
6193  *	Start and then freeze ports of @host.  Started status is
6194  *	recorded in host->flags, so this function can be called
6195  *	multiple times.  Ports are guaranteed to get started only
6196  *	once.  If host->ops isn't initialized yet, its set to the
6197  *	first non-dummy port ops.
6198  *
6199  *	LOCKING:
6200  *	Inherited from calling layer (may sleep).
6201  *
6202  *	RETURNS:
6203  *	0 if all ports are started successfully, -errno otherwise.
6204  */
6205 int ata_host_start(struct ata_host *host)
6206 {
6207 	int have_stop = 0;
6208 	void *start_dr = NULL;
6209 	int i, rc;
6210 
6211 	if (host->flags & ATA_HOST_STARTED)
6212 		return 0;
6213 
6214 	ata_finalize_port_ops(host->ops);
6215 
6216 	for (i = 0; i < host->n_ports; i++) {
6217 		struct ata_port *ap = host->ports[i];
6218 
6219 		ata_finalize_port_ops(ap->ops);
6220 
6221 		if (!host->ops && !ata_port_is_dummy(ap))
6222 			host->ops = ap->ops;
6223 
6224 		if (ap->ops->port_stop)
6225 			have_stop = 1;
6226 	}
6227 
6228 	if (host->ops->host_stop)
6229 		have_stop = 1;
6230 
6231 	if (have_stop) {
6232 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6233 		if (!start_dr)
6234 			return -ENOMEM;
6235 	}
6236 
6237 	for (i = 0; i < host->n_ports; i++) {
6238 		struct ata_port *ap = host->ports[i];
6239 
6240 		if (ap->ops->port_start) {
6241 			rc = ap->ops->port_start(ap);
6242 			if (rc) {
6243 				if (rc != -ENODEV)
6244 					dev_err(host->dev,
6245 						"failed to start port %d (errno=%d)\n",
6246 						i, rc);
6247 				goto err_out;
6248 			}
6249 		}
6250 		ata_eh_freeze_port(ap);
6251 	}
6252 
6253 	if (start_dr)
6254 		devres_add(host->dev, start_dr);
6255 	host->flags |= ATA_HOST_STARTED;
6256 	return 0;
6257 
6258  err_out:
6259 	while (--i >= 0) {
6260 		struct ata_port *ap = host->ports[i];
6261 
6262 		if (ap->ops->port_stop)
6263 			ap->ops->port_stop(ap);
6264 	}
6265 	devres_free(start_dr);
6266 	return rc;
6267 }
6268 
6269 /**
6270  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6271  *	@host:	host to initialize
6272  *	@dev:	device host is attached to
6273  *	@ops:	port_ops
6274  *
6275  */
6276 void ata_host_init(struct ata_host *host, struct device *dev,
6277 		   struct ata_port_operations *ops)
6278 {
6279 	spin_lock_init(&host->lock);
6280 	mutex_init(&host->eh_mutex);
6281 	host->n_tags = ATA_MAX_QUEUE - 1;
6282 	host->dev = dev;
6283 	host->ops = ops;
6284 }
6285 
6286 void __ata_port_probe(struct ata_port *ap)
6287 {
6288 	struct ata_eh_info *ehi = &ap->link.eh_info;
6289 	unsigned long flags;
6290 
6291 	/* kick EH for boot probing */
6292 	spin_lock_irqsave(ap->lock, flags);
6293 
6294 	ehi->probe_mask |= ATA_ALL_DEVICES;
6295 	ehi->action |= ATA_EH_RESET;
6296 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6297 
6298 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6299 	ap->pflags |= ATA_PFLAG_LOADING;
6300 	ata_port_schedule_eh(ap);
6301 
6302 	spin_unlock_irqrestore(ap->lock, flags);
6303 }
6304 
6305 int ata_port_probe(struct ata_port *ap)
6306 {
6307 	int rc = 0;
6308 
6309 	if (ap->ops->error_handler) {
6310 		__ata_port_probe(ap);
6311 		ata_port_wait_eh(ap);
6312 	} else {
6313 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6314 		rc = ata_bus_probe(ap);
6315 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6316 	}
6317 	return rc;
6318 }
6319 
6320 
6321 static void async_port_probe(void *data, async_cookie_t cookie)
6322 {
6323 	struct ata_port *ap = data;
6324 
6325 	/*
6326 	 * If we're not allowed to scan this host in parallel,
6327 	 * we need to wait until all previous scans have completed
6328 	 * before going further.
6329 	 * Jeff Garzik says this is only within a controller, so we
6330 	 * don't need to wait for port 0, only for later ports.
6331 	 */
6332 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6333 		async_synchronize_cookie(cookie);
6334 
6335 	(void)ata_port_probe(ap);
6336 
6337 	/* in order to keep device order, we need to synchronize at this point */
6338 	async_synchronize_cookie(cookie);
6339 
6340 	ata_scsi_scan_host(ap, 1);
6341 }
6342 
6343 /**
6344  *	ata_host_register - register initialized ATA host
6345  *	@host: ATA host to register
6346  *	@sht: template for SCSI host
6347  *
6348  *	Register initialized ATA host.  @host is allocated using
6349  *	ata_host_alloc() and fully initialized by LLD.  This function
6350  *	starts ports, registers @host with ATA and SCSI layers and
6351  *	probe registered devices.
6352  *
6353  *	LOCKING:
6354  *	Inherited from calling layer (may sleep).
6355  *
6356  *	RETURNS:
6357  *	0 on success, -errno otherwise.
6358  */
6359 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6360 {
6361 	int i, rc;
6362 
6363 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6364 
6365 	/* host must have been started */
6366 	if (!(host->flags & ATA_HOST_STARTED)) {
6367 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6368 		WARN_ON(1);
6369 		return -EINVAL;
6370 	}
6371 
6372 	/* Blow away unused ports.  This happens when LLD can't
6373 	 * determine the exact number of ports to allocate at
6374 	 * allocation time.
6375 	 */
6376 	for (i = host->n_ports; host->ports[i]; i++)
6377 		kfree(host->ports[i]);
6378 
6379 	/* give ports names and add SCSI hosts */
6380 	for (i = 0; i < host->n_ports; i++) {
6381 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6382 		host->ports[i]->local_port_no = i + 1;
6383 	}
6384 
6385 	/* Create associated sysfs transport objects  */
6386 	for (i = 0; i < host->n_ports; i++) {
6387 		rc = ata_tport_add(host->dev,host->ports[i]);
6388 		if (rc) {
6389 			goto err_tadd;
6390 		}
6391 	}
6392 
6393 	rc = ata_scsi_add_hosts(host, sht);
6394 	if (rc)
6395 		goto err_tadd;
6396 
6397 	/* set cable, sata_spd_limit and report */
6398 	for (i = 0; i < host->n_ports; i++) {
6399 		struct ata_port *ap = host->ports[i];
6400 		unsigned long xfer_mask;
6401 
6402 		/* set SATA cable type if still unset */
6403 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6404 			ap->cbl = ATA_CBL_SATA;
6405 
6406 		/* init sata_spd_limit to the current value */
6407 		sata_link_init_spd(&ap->link);
6408 		if (ap->slave_link)
6409 			sata_link_init_spd(ap->slave_link);
6410 
6411 		/* print per-port info to dmesg */
6412 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6413 					      ap->udma_mask);
6414 
6415 		if (!ata_port_is_dummy(ap)) {
6416 			ata_port_info(ap, "%cATA max %s %s\n",
6417 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6418 				      ata_mode_string(xfer_mask),
6419 				      ap->link.eh_info.desc);
6420 			ata_ehi_clear_desc(&ap->link.eh_info);
6421 		} else
6422 			ata_port_info(ap, "DUMMY\n");
6423 	}
6424 
6425 	/* perform each probe asynchronously */
6426 	for (i = 0; i < host->n_ports; i++) {
6427 		struct ata_port *ap = host->ports[i];
6428 		async_schedule(async_port_probe, ap);
6429 	}
6430 
6431 	return 0;
6432 
6433  err_tadd:
6434 	while (--i >= 0) {
6435 		ata_tport_delete(host->ports[i]);
6436 	}
6437 	return rc;
6438 
6439 }
6440 
6441 /**
6442  *	ata_host_activate - start host, request IRQ and register it
6443  *	@host: target ATA host
6444  *	@irq: IRQ to request
6445  *	@irq_handler: irq_handler used when requesting IRQ
6446  *	@irq_flags: irq_flags used when requesting IRQ
6447  *	@sht: scsi_host_template to use when registering the host
6448  *
6449  *	After allocating an ATA host and initializing it, most libata
6450  *	LLDs perform three steps to activate the host - start host,
6451  *	request IRQ and register it.  This helper takes necessary
6452  *	arguments and performs the three steps in one go.
6453  *
6454  *	An invalid IRQ skips the IRQ registration and expects the host to
6455  *	have set polling mode on the port. In this case, @irq_handler
6456  *	should be NULL.
6457  *
6458  *	LOCKING:
6459  *	Inherited from calling layer (may sleep).
6460  *
6461  *	RETURNS:
6462  *	0 on success, -errno otherwise.
6463  */
6464 int ata_host_activate(struct ata_host *host, int irq,
6465 		      irq_handler_t irq_handler, unsigned long irq_flags,
6466 		      struct scsi_host_template *sht)
6467 {
6468 	int i, rc;
6469 	char *irq_desc;
6470 
6471 	rc = ata_host_start(host);
6472 	if (rc)
6473 		return rc;
6474 
6475 	/* Special case for polling mode */
6476 	if (!irq) {
6477 		WARN_ON(irq_handler);
6478 		return ata_host_register(host, sht);
6479 	}
6480 
6481 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6482 				  dev_driver_string(host->dev),
6483 				  dev_name(host->dev));
6484 	if (!irq_desc)
6485 		return -ENOMEM;
6486 
6487 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6488 			      irq_desc, host);
6489 	if (rc)
6490 		return rc;
6491 
6492 	for (i = 0; i < host->n_ports; i++)
6493 		ata_port_desc(host->ports[i], "irq %d", irq);
6494 
6495 	rc = ata_host_register(host, sht);
6496 	/* if failed, just free the IRQ and leave ports alone */
6497 	if (rc)
6498 		devm_free_irq(host->dev, irq, host);
6499 
6500 	return rc;
6501 }
6502 
6503 /**
6504  *	ata_port_detach - Detach ATA port in preparation of device removal
6505  *	@ap: ATA port to be detached
6506  *
6507  *	Detach all ATA devices and the associated SCSI devices of @ap;
6508  *	then, remove the associated SCSI host.  @ap is guaranteed to
6509  *	be quiescent on return from this function.
6510  *
6511  *	LOCKING:
6512  *	Kernel thread context (may sleep).
6513  */
6514 static void ata_port_detach(struct ata_port *ap)
6515 {
6516 	unsigned long flags;
6517 	struct ata_link *link;
6518 	struct ata_device *dev;
6519 
6520 	if (!ap->ops->error_handler)
6521 		goto skip_eh;
6522 
6523 	/* tell EH we're leaving & flush EH */
6524 	spin_lock_irqsave(ap->lock, flags);
6525 	ap->pflags |= ATA_PFLAG_UNLOADING;
6526 	ata_port_schedule_eh(ap);
6527 	spin_unlock_irqrestore(ap->lock, flags);
6528 
6529 	/* wait till EH commits suicide */
6530 	ata_port_wait_eh(ap);
6531 
6532 	/* it better be dead now */
6533 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6534 
6535 	cancel_delayed_work_sync(&ap->hotplug_task);
6536 
6537  skip_eh:
6538 	/* clean up zpodd on port removal */
6539 	ata_for_each_link(link, ap, HOST_FIRST) {
6540 		ata_for_each_dev(dev, link, ALL) {
6541 			if (zpodd_dev_enabled(dev))
6542 				zpodd_exit(dev);
6543 		}
6544 	}
6545 	if (ap->pmp_link) {
6546 		int i;
6547 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6548 			ata_tlink_delete(&ap->pmp_link[i]);
6549 	}
6550 	/* remove the associated SCSI host */
6551 	scsi_remove_host(ap->scsi_host);
6552 	ata_tport_delete(ap);
6553 }
6554 
6555 /**
6556  *	ata_host_detach - Detach all ports of an ATA host
6557  *	@host: Host to detach
6558  *
6559  *	Detach all ports of @host.
6560  *
6561  *	LOCKING:
6562  *	Kernel thread context (may sleep).
6563  */
6564 void ata_host_detach(struct ata_host *host)
6565 {
6566 	int i;
6567 
6568 	for (i = 0; i < host->n_ports; i++)
6569 		ata_port_detach(host->ports[i]);
6570 
6571 	/* the host is dead now, dissociate ACPI */
6572 	ata_acpi_dissociate(host);
6573 }
6574 
6575 #ifdef CONFIG_PCI
6576 
6577 /**
6578  *	ata_pci_remove_one - PCI layer callback for device removal
6579  *	@pdev: PCI device that was removed
6580  *
6581  *	PCI layer indicates to libata via this hook that hot-unplug or
6582  *	module unload event has occurred.  Detach all ports.  Resource
6583  *	release is handled via devres.
6584  *
6585  *	LOCKING:
6586  *	Inherited from PCI layer (may sleep).
6587  */
6588 void ata_pci_remove_one(struct pci_dev *pdev)
6589 {
6590 	struct ata_host *host = pci_get_drvdata(pdev);
6591 
6592 	ata_host_detach(host);
6593 }
6594 
6595 /* move to PCI subsystem */
6596 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6597 {
6598 	unsigned long tmp = 0;
6599 
6600 	switch (bits->width) {
6601 	case 1: {
6602 		u8 tmp8 = 0;
6603 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6604 		tmp = tmp8;
6605 		break;
6606 	}
6607 	case 2: {
6608 		u16 tmp16 = 0;
6609 		pci_read_config_word(pdev, bits->reg, &tmp16);
6610 		tmp = tmp16;
6611 		break;
6612 	}
6613 	case 4: {
6614 		u32 tmp32 = 0;
6615 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6616 		tmp = tmp32;
6617 		break;
6618 	}
6619 
6620 	default:
6621 		return -EINVAL;
6622 	}
6623 
6624 	tmp &= bits->mask;
6625 
6626 	return (tmp == bits->val) ? 1 : 0;
6627 }
6628 
6629 #ifdef CONFIG_PM
6630 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6631 {
6632 	pci_save_state(pdev);
6633 	pci_disable_device(pdev);
6634 
6635 	if (mesg.event & PM_EVENT_SLEEP)
6636 		pci_set_power_state(pdev, PCI_D3hot);
6637 }
6638 
6639 int ata_pci_device_do_resume(struct pci_dev *pdev)
6640 {
6641 	int rc;
6642 
6643 	pci_set_power_state(pdev, PCI_D0);
6644 	pci_restore_state(pdev);
6645 
6646 	rc = pcim_enable_device(pdev);
6647 	if (rc) {
6648 		dev_err(&pdev->dev,
6649 			"failed to enable device after resume (%d)\n", rc);
6650 		return rc;
6651 	}
6652 
6653 	pci_set_master(pdev);
6654 	return 0;
6655 }
6656 
6657 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6658 {
6659 	struct ata_host *host = pci_get_drvdata(pdev);
6660 	int rc = 0;
6661 
6662 	rc = ata_host_suspend(host, mesg);
6663 	if (rc)
6664 		return rc;
6665 
6666 	ata_pci_device_do_suspend(pdev, mesg);
6667 
6668 	return 0;
6669 }
6670 
6671 int ata_pci_device_resume(struct pci_dev *pdev)
6672 {
6673 	struct ata_host *host = pci_get_drvdata(pdev);
6674 	int rc;
6675 
6676 	rc = ata_pci_device_do_resume(pdev);
6677 	if (rc == 0)
6678 		ata_host_resume(host);
6679 	return rc;
6680 }
6681 #endif /* CONFIG_PM */
6682 
6683 #endif /* CONFIG_PCI */
6684 
6685 /**
6686  *	ata_platform_remove_one - Platform layer callback for device removal
6687  *	@pdev: Platform device that was removed
6688  *
6689  *	Platform layer indicates to libata via this hook that hot-unplug or
6690  *	module unload event has occurred.  Detach all ports.  Resource
6691  *	release is handled via devres.
6692  *
6693  *	LOCKING:
6694  *	Inherited from platform layer (may sleep).
6695  */
6696 int ata_platform_remove_one(struct platform_device *pdev)
6697 {
6698 	struct ata_host *host = platform_get_drvdata(pdev);
6699 
6700 	ata_host_detach(host);
6701 
6702 	return 0;
6703 }
6704 
6705 static int __init ata_parse_force_one(char **cur,
6706 				      struct ata_force_ent *force_ent,
6707 				      const char **reason)
6708 {
6709 	static const struct ata_force_param force_tbl[] __initconst = {
6710 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6711 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6712 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6713 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6714 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6715 		{ "sata",	.cbl		= ATA_CBL_SATA },
6716 		{ "1.5Gbps",	.spd_limit	= 1 },
6717 		{ "3.0Gbps",	.spd_limit	= 2 },
6718 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6719 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6720 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6721 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6722 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6723 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6724 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6725 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6726 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6727 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6728 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6729 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6730 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6731 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6732 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6733 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6734 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6735 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6736 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6737 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6738 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6739 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6740 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6741 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6742 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6743 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6744 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6745 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6746 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6747 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6748 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6749 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6750 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6751 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6752 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6753 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6754 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6755 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6756 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6757 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6758 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6759 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6760 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6761 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6762 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6763 	};
6764 	char *start = *cur, *p = *cur;
6765 	char *id, *val, *endp;
6766 	const struct ata_force_param *match_fp = NULL;
6767 	int nr_matches = 0, i;
6768 
6769 	/* find where this param ends and update *cur */
6770 	while (*p != '\0' && *p != ',')
6771 		p++;
6772 
6773 	if (*p == '\0')
6774 		*cur = p;
6775 	else
6776 		*cur = p + 1;
6777 
6778 	*p = '\0';
6779 
6780 	/* parse */
6781 	p = strchr(start, ':');
6782 	if (!p) {
6783 		val = strstrip(start);
6784 		goto parse_val;
6785 	}
6786 	*p = '\0';
6787 
6788 	id = strstrip(start);
6789 	val = strstrip(p + 1);
6790 
6791 	/* parse id */
6792 	p = strchr(id, '.');
6793 	if (p) {
6794 		*p++ = '\0';
6795 		force_ent->device = simple_strtoul(p, &endp, 10);
6796 		if (p == endp || *endp != '\0') {
6797 			*reason = "invalid device";
6798 			return -EINVAL;
6799 		}
6800 	}
6801 
6802 	force_ent->port = simple_strtoul(id, &endp, 10);
6803 	if (id == endp || *endp != '\0') {
6804 		*reason = "invalid port/link";
6805 		return -EINVAL;
6806 	}
6807 
6808  parse_val:
6809 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6810 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6811 		const struct ata_force_param *fp = &force_tbl[i];
6812 
6813 		if (strncasecmp(val, fp->name, strlen(val)))
6814 			continue;
6815 
6816 		nr_matches++;
6817 		match_fp = fp;
6818 
6819 		if (strcasecmp(val, fp->name) == 0) {
6820 			nr_matches = 1;
6821 			break;
6822 		}
6823 	}
6824 
6825 	if (!nr_matches) {
6826 		*reason = "unknown value";
6827 		return -EINVAL;
6828 	}
6829 	if (nr_matches > 1) {
6830 		*reason = "ambigious value";
6831 		return -EINVAL;
6832 	}
6833 
6834 	force_ent->param = *match_fp;
6835 
6836 	return 0;
6837 }
6838 
6839 static void __init ata_parse_force_param(void)
6840 {
6841 	int idx = 0, size = 1;
6842 	int last_port = -1, last_device = -1;
6843 	char *p, *cur, *next;
6844 
6845 	/* calculate maximum number of params and allocate force_tbl */
6846 	for (p = ata_force_param_buf; *p; p++)
6847 		if (*p == ',')
6848 			size++;
6849 
6850 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6851 	if (!ata_force_tbl) {
6852 		printk(KERN_WARNING "ata: failed to extend force table, "
6853 		       "libata.force ignored\n");
6854 		return;
6855 	}
6856 
6857 	/* parse and populate the table */
6858 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6859 		const char *reason = "";
6860 		struct ata_force_ent te = { .port = -1, .device = -1 };
6861 
6862 		next = cur;
6863 		if (ata_parse_force_one(&next, &te, &reason)) {
6864 			printk(KERN_WARNING "ata: failed to parse force "
6865 			       "parameter \"%s\" (%s)\n",
6866 			       cur, reason);
6867 			continue;
6868 		}
6869 
6870 		if (te.port == -1) {
6871 			te.port = last_port;
6872 			te.device = last_device;
6873 		}
6874 
6875 		ata_force_tbl[idx++] = te;
6876 
6877 		last_port = te.port;
6878 		last_device = te.device;
6879 	}
6880 
6881 	ata_force_tbl_size = idx;
6882 }
6883 
6884 static int __init ata_init(void)
6885 {
6886 	int rc;
6887 
6888 	ata_parse_force_param();
6889 
6890 	rc = ata_sff_init();
6891 	if (rc) {
6892 		kfree(ata_force_tbl);
6893 		return rc;
6894 	}
6895 
6896 	libata_transport_init();
6897 	ata_scsi_transport_template = ata_attach_transport();
6898 	if (!ata_scsi_transport_template) {
6899 		ata_sff_exit();
6900 		rc = -ENOMEM;
6901 		goto err_out;
6902 	}
6903 
6904 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6905 	return 0;
6906 
6907 err_out:
6908 	return rc;
6909 }
6910 
6911 static void __exit ata_exit(void)
6912 {
6913 	ata_release_transport(ata_scsi_transport_template);
6914 	libata_transport_exit();
6915 	ata_sff_exit();
6916 	kfree(ata_force_tbl);
6917 }
6918 
6919 subsys_initcall(ata_init);
6920 module_exit(ata_exit);
6921 
6922 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6923 
6924 int ata_ratelimit(void)
6925 {
6926 	return __ratelimit(&ratelimit);
6927 }
6928 
6929 /**
6930  *	ata_msleep - ATA EH owner aware msleep
6931  *	@ap: ATA port to attribute the sleep to
6932  *	@msecs: duration to sleep in milliseconds
6933  *
6934  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6935  *	ownership is released before going to sleep and reacquired
6936  *	after the sleep is complete.  IOW, other ports sharing the
6937  *	@ap->host will be allowed to own the EH while this task is
6938  *	sleeping.
6939  *
6940  *	LOCKING:
6941  *	Might sleep.
6942  */
6943 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6944 {
6945 	bool owns_eh = ap && ap->host->eh_owner == current;
6946 
6947 	if (owns_eh)
6948 		ata_eh_release(ap);
6949 
6950 	if (msecs < 20) {
6951 		unsigned long usecs = msecs * USEC_PER_MSEC;
6952 		usleep_range(usecs, usecs + 50);
6953 	} else {
6954 		msleep(msecs);
6955 	}
6956 
6957 	if (owns_eh)
6958 		ata_eh_acquire(ap);
6959 }
6960 
6961 /**
6962  *	ata_wait_register - wait until register value changes
6963  *	@ap: ATA port to wait register for, can be NULL
6964  *	@reg: IO-mapped register
6965  *	@mask: Mask to apply to read register value
6966  *	@val: Wait condition
6967  *	@interval: polling interval in milliseconds
6968  *	@timeout: timeout in milliseconds
6969  *
6970  *	Waiting for some bits of register to change is a common
6971  *	operation for ATA controllers.  This function reads 32bit LE
6972  *	IO-mapped register @reg and tests for the following condition.
6973  *
6974  *	(*@reg & mask) != val
6975  *
6976  *	If the condition is met, it returns; otherwise, the process is
6977  *	repeated after @interval_msec until timeout.
6978  *
6979  *	LOCKING:
6980  *	Kernel thread context (may sleep)
6981  *
6982  *	RETURNS:
6983  *	The final register value.
6984  */
6985 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6986 		      unsigned long interval, unsigned long timeout)
6987 {
6988 	unsigned long deadline;
6989 	u32 tmp;
6990 
6991 	tmp = ioread32(reg);
6992 
6993 	/* Calculate timeout _after_ the first read to make sure
6994 	 * preceding writes reach the controller before starting to
6995 	 * eat away the timeout.
6996 	 */
6997 	deadline = ata_deadline(jiffies, timeout);
6998 
6999 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7000 		ata_msleep(ap, interval);
7001 		tmp = ioread32(reg);
7002 	}
7003 
7004 	return tmp;
7005 }
7006 
7007 /**
7008  *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
7009  *	@link: Link receiving the event
7010  *
7011  *	Test whether the received PHY event has to be ignored or not.
7012  *
7013  *	LOCKING:
7014  *	None:
7015  *
7016  *	RETURNS:
7017  *	True if the event has to be ignored.
7018  */
7019 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7020 {
7021 	unsigned long lpm_timeout = link->last_lpm_change +
7022 				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7023 
7024 	/* if LPM is enabled, PHYRDY doesn't mean anything */
7025 	if (link->lpm_policy > ATA_LPM_MAX_POWER)
7026 		return true;
7027 
7028 	/* ignore the first PHY event after the LPM policy changed
7029 	 * as it is might be spurious
7030 	 */
7031 	if ((link->flags & ATA_LFLAG_CHANGED) &&
7032 	    time_before(jiffies, lpm_timeout))
7033 		return true;
7034 
7035 	return false;
7036 }
7037 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7038 
7039 /*
7040  * Dummy port_ops
7041  */
7042 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7043 {
7044 	return AC_ERR_SYSTEM;
7045 }
7046 
7047 static void ata_dummy_error_handler(struct ata_port *ap)
7048 {
7049 	/* truly dummy */
7050 }
7051 
7052 struct ata_port_operations ata_dummy_port_ops = {
7053 	.qc_prep		= ata_noop_qc_prep,
7054 	.qc_issue		= ata_dummy_qc_issue,
7055 	.error_handler		= ata_dummy_error_handler,
7056 	.sched_eh		= ata_std_sched_eh,
7057 	.end_eh			= ata_std_end_eh,
7058 };
7059 
7060 const struct ata_port_info ata_dummy_port_info = {
7061 	.port_ops		= &ata_dummy_port_ops,
7062 };
7063 
7064 /*
7065  * Utility print functions
7066  */
7067 void ata_port_printk(const struct ata_port *ap, const char *level,
7068 		     const char *fmt, ...)
7069 {
7070 	struct va_format vaf;
7071 	va_list args;
7072 
7073 	va_start(args, fmt);
7074 
7075 	vaf.fmt = fmt;
7076 	vaf.va = &args;
7077 
7078 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
7079 
7080 	va_end(args);
7081 }
7082 EXPORT_SYMBOL(ata_port_printk);
7083 
7084 void ata_link_printk(const struct ata_link *link, const char *level,
7085 		     const char *fmt, ...)
7086 {
7087 	struct va_format vaf;
7088 	va_list args;
7089 
7090 	va_start(args, fmt);
7091 
7092 	vaf.fmt = fmt;
7093 	vaf.va = &args;
7094 
7095 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7096 		printk("%sata%u.%02u: %pV",
7097 		       level, link->ap->print_id, link->pmp, &vaf);
7098 	else
7099 		printk("%sata%u: %pV",
7100 		       level, link->ap->print_id, &vaf);
7101 
7102 	va_end(args);
7103 }
7104 EXPORT_SYMBOL(ata_link_printk);
7105 
7106 void ata_dev_printk(const struct ata_device *dev, const char *level,
7107 		    const char *fmt, ...)
7108 {
7109 	struct va_format vaf;
7110 	va_list args;
7111 
7112 	va_start(args, fmt);
7113 
7114 	vaf.fmt = fmt;
7115 	vaf.va = &args;
7116 
7117 	printk("%sata%u.%02u: %pV",
7118 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7119 	       &vaf);
7120 
7121 	va_end(args);
7122 }
7123 EXPORT_SYMBOL(ata_dev_printk);
7124 
7125 void ata_print_version(const struct device *dev, const char *version)
7126 {
7127 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7128 }
7129 EXPORT_SYMBOL(ata_print_version);
7130 
7131 /*
7132  * libata is essentially a library of internal helper functions for
7133  * low-level ATA host controller drivers.  As such, the API/ABI is
7134  * likely to change as new drivers are added and updated.
7135  * Do not depend on ABI/API stability.
7136  */
7137 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7138 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7139 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7140 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7141 EXPORT_SYMBOL_GPL(sata_port_ops);
7142 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7143 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7144 EXPORT_SYMBOL_GPL(ata_link_next);
7145 EXPORT_SYMBOL_GPL(ata_dev_next);
7146 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7147 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7148 EXPORT_SYMBOL_GPL(ata_host_init);
7149 EXPORT_SYMBOL_GPL(ata_host_alloc);
7150 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7151 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7152 EXPORT_SYMBOL_GPL(ata_host_start);
7153 EXPORT_SYMBOL_GPL(ata_host_register);
7154 EXPORT_SYMBOL_GPL(ata_host_activate);
7155 EXPORT_SYMBOL_GPL(ata_host_detach);
7156 EXPORT_SYMBOL_GPL(ata_sg_init);
7157 EXPORT_SYMBOL_GPL(ata_qc_complete);
7158 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7159 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7160 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7161 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7162 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7163 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7164 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7165 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7166 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7167 EXPORT_SYMBOL_GPL(ata_mode_string);
7168 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7169 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7170 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7171 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7172 EXPORT_SYMBOL_GPL(ata_dev_disable);
7173 EXPORT_SYMBOL_GPL(sata_set_spd);
7174 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7175 EXPORT_SYMBOL_GPL(sata_link_debounce);
7176 EXPORT_SYMBOL_GPL(sata_link_resume);
7177 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7178 EXPORT_SYMBOL_GPL(ata_std_prereset);
7179 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7180 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7181 EXPORT_SYMBOL_GPL(ata_std_postreset);
7182 EXPORT_SYMBOL_GPL(ata_dev_classify);
7183 EXPORT_SYMBOL_GPL(ata_dev_pair);
7184 EXPORT_SYMBOL_GPL(ata_ratelimit);
7185 EXPORT_SYMBOL_GPL(ata_msleep);
7186 EXPORT_SYMBOL_GPL(ata_wait_register);
7187 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7188 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7189 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7190 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7191 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7192 EXPORT_SYMBOL_GPL(sata_scr_valid);
7193 EXPORT_SYMBOL_GPL(sata_scr_read);
7194 EXPORT_SYMBOL_GPL(sata_scr_write);
7195 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7196 EXPORT_SYMBOL_GPL(ata_link_online);
7197 EXPORT_SYMBOL_GPL(ata_link_offline);
7198 #ifdef CONFIG_PM
7199 EXPORT_SYMBOL_GPL(ata_host_suspend);
7200 EXPORT_SYMBOL_GPL(ata_host_resume);
7201 #endif /* CONFIG_PM */
7202 EXPORT_SYMBOL_GPL(ata_id_string);
7203 EXPORT_SYMBOL_GPL(ata_id_c_string);
7204 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7205 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7206 
7207 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7208 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7209 EXPORT_SYMBOL_GPL(ata_timing_compute);
7210 EXPORT_SYMBOL_GPL(ata_timing_merge);
7211 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7212 
7213 #ifdef CONFIG_PCI
7214 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7215 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7216 #ifdef CONFIG_PM
7217 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7218 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7219 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7220 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7221 #endif /* CONFIG_PM */
7222 #endif /* CONFIG_PCI */
7223 
7224 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7225 
7226 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7227 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7228 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7229 EXPORT_SYMBOL_GPL(ata_port_desc);
7230 #ifdef CONFIG_PCI
7231 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7232 #endif /* CONFIG_PCI */
7233 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7234 EXPORT_SYMBOL_GPL(ata_link_abort);
7235 EXPORT_SYMBOL_GPL(ata_port_abort);
7236 EXPORT_SYMBOL_GPL(ata_port_freeze);
7237 EXPORT_SYMBOL_GPL(sata_async_notification);
7238 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7239 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7240 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7241 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7242 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7243 EXPORT_SYMBOL_GPL(ata_do_eh);
7244 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7245 
7246 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7247 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7248 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7249 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7250 EXPORT_SYMBOL_GPL(ata_cable_sata);
7251