xref: /openbmc/linux/drivers/ata/libata-core.c (revision e8f6f3b4)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <linux/glob.h>
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_host.h>
66 #include <linux/libata.h>
67 #include <asm/byteorder.h>
68 #include <linux/cdrom.h>
69 #include <linux/ratelimit.h>
70 #include <linux/pm_runtime.h>
71 #include <linux/platform_device.h>
72 
73 #include "libata.h"
74 #include "libata-transport.h"
75 
76 /* debounce timing parameters in msecs { interval, duration, timeout } */
77 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
78 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
79 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
80 
81 const struct ata_port_operations ata_base_port_ops = {
82 	.prereset		= ata_std_prereset,
83 	.postreset		= ata_std_postreset,
84 	.error_handler		= ata_std_error_handler,
85 	.sched_eh		= ata_std_sched_eh,
86 	.end_eh			= ata_std_end_eh,
87 };
88 
89 const struct ata_port_operations sata_port_ops = {
90 	.inherits		= &ata_base_port_ops,
91 
92 	.qc_defer		= ata_std_qc_defer,
93 	.hardreset		= sata_std_hardreset,
94 };
95 
96 static unsigned int ata_dev_init_params(struct ata_device *dev,
97 					u16 heads, u16 sectors);
98 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
99 static void ata_dev_xfermask(struct ata_device *dev);
100 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
101 
102 atomic_t ata_print_id = ATOMIC_INIT(0);
103 
104 struct ata_force_param {
105 	const char	*name;
106 	unsigned int	cbl;
107 	int		spd_limit;
108 	unsigned long	xfer_mask;
109 	unsigned int	horkage_on;
110 	unsigned int	horkage_off;
111 	unsigned int	lflags;
112 };
113 
114 struct ata_force_ent {
115 	int			port;
116 	int			device;
117 	struct ata_force_param	param;
118 };
119 
120 static struct ata_force_ent *ata_force_tbl;
121 static int ata_force_tbl_size;
122 
123 static char ata_force_param_buf[PAGE_SIZE] __initdata;
124 /* param_buf is thrown away after initialization, disallow read */
125 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
126 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127 
128 static int atapi_enabled = 1;
129 module_param(atapi_enabled, int, 0444);
130 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
131 
132 static int atapi_dmadir = 0;
133 module_param(atapi_dmadir, int, 0444);
134 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
135 
136 int atapi_passthru16 = 1;
137 module_param(atapi_passthru16, int, 0444);
138 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139 
140 int libata_fua = 0;
141 module_param_named(fua, libata_fua, int, 0444);
142 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
143 
144 static int ata_ignore_hpa;
145 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
146 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147 
148 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
149 module_param_named(dma, libata_dma_mask, int, 0444);
150 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151 
152 static int ata_probe_timeout;
153 module_param(ata_probe_timeout, int, 0444);
154 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
155 
156 int libata_noacpi = 0;
157 module_param_named(noacpi, libata_noacpi, int, 0444);
158 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
159 
160 int libata_allow_tpm = 0;
161 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
162 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
163 
164 static int atapi_an;
165 module_param(atapi_an, int, 0444);
166 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
167 
168 MODULE_AUTHOR("Jeff Garzik");
169 MODULE_DESCRIPTION("Library module for ATA devices");
170 MODULE_LICENSE("GPL");
171 MODULE_VERSION(DRV_VERSION);
172 
173 
174 static bool ata_sstatus_online(u32 sstatus)
175 {
176 	return (sstatus & 0xf) == 0x3;
177 }
178 
179 /**
180  *	ata_link_next - link iteration helper
181  *	@link: the previous link, NULL to start
182  *	@ap: ATA port containing links to iterate
183  *	@mode: iteration mode, one of ATA_LITER_*
184  *
185  *	LOCKING:
186  *	Host lock or EH context.
187  *
188  *	RETURNS:
189  *	Pointer to the next link.
190  */
191 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
192 			       enum ata_link_iter_mode mode)
193 {
194 	BUG_ON(mode != ATA_LITER_EDGE &&
195 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
196 
197 	/* NULL link indicates start of iteration */
198 	if (!link)
199 		switch (mode) {
200 		case ATA_LITER_EDGE:
201 		case ATA_LITER_PMP_FIRST:
202 			if (sata_pmp_attached(ap))
203 				return ap->pmp_link;
204 			/* fall through */
205 		case ATA_LITER_HOST_FIRST:
206 			return &ap->link;
207 		}
208 
209 	/* we just iterated over the host link, what's next? */
210 	if (link == &ap->link)
211 		switch (mode) {
212 		case ATA_LITER_HOST_FIRST:
213 			if (sata_pmp_attached(ap))
214 				return ap->pmp_link;
215 			/* fall through */
216 		case ATA_LITER_PMP_FIRST:
217 			if (unlikely(ap->slave_link))
218 				return ap->slave_link;
219 			/* fall through */
220 		case ATA_LITER_EDGE:
221 			return NULL;
222 		}
223 
224 	/* slave_link excludes PMP */
225 	if (unlikely(link == ap->slave_link))
226 		return NULL;
227 
228 	/* we were over a PMP link */
229 	if (++link < ap->pmp_link + ap->nr_pmp_links)
230 		return link;
231 
232 	if (mode == ATA_LITER_PMP_FIRST)
233 		return &ap->link;
234 
235 	return NULL;
236 }
237 
238 /**
239  *	ata_dev_next - device iteration helper
240  *	@dev: the previous device, NULL to start
241  *	@link: ATA link containing devices to iterate
242  *	@mode: iteration mode, one of ATA_DITER_*
243  *
244  *	LOCKING:
245  *	Host lock or EH context.
246  *
247  *	RETURNS:
248  *	Pointer to the next device.
249  */
250 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
251 				enum ata_dev_iter_mode mode)
252 {
253 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
254 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
255 
256 	/* NULL dev indicates start of iteration */
257 	if (!dev)
258 		switch (mode) {
259 		case ATA_DITER_ENABLED:
260 		case ATA_DITER_ALL:
261 			dev = link->device;
262 			goto check;
263 		case ATA_DITER_ENABLED_REVERSE:
264 		case ATA_DITER_ALL_REVERSE:
265 			dev = link->device + ata_link_max_devices(link) - 1;
266 			goto check;
267 		}
268 
269  next:
270 	/* move to the next one */
271 	switch (mode) {
272 	case ATA_DITER_ENABLED:
273 	case ATA_DITER_ALL:
274 		if (++dev < link->device + ata_link_max_devices(link))
275 			goto check;
276 		return NULL;
277 	case ATA_DITER_ENABLED_REVERSE:
278 	case ATA_DITER_ALL_REVERSE:
279 		if (--dev >= link->device)
280 			goto check;
281 		return NULL;
282 	}
283 
284  check:
285 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
286 	    !ata_dev_enabled(dev))
287 		goto next;
288 	return dev;
289 }
290 
291 /**
292  *	ata_dev_phys_link - find physical link for a device
293  *	@dev: ATA device to look up physical link for
294  *
295  *	Look up physical link which @dev is attached to.  Note that
296  *	this is different from @dev->link only when @dev is on slave
297  *	link.  For all other cases, it's the same as @dev->link.
298  *
299  *	LOCKING:
300  *	Don't care.
301  *
302  *	RETURNS:
303  *	Pointer to the found physical link.
304  */
305 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
306 {
307 	struct ata_port *ap = dev->link->ap;
308 
309 	if (!ap->slave_link)
310 		return dev->link;
311 	if (!dev->devno)
312 		return &ap->link;
313 	return ap->slave_link;
314 }
315 
316 /**
317  *	ata_force_cbl - force cable type according to libata.force
318  *	@ap: ATA port of interest
319  *
320  *	Force cable type according to libata.force and whine about it.
321  *	The last entry which has matching port number is used, so it
322  *	can be specified as part of device force parameters.  For
323  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
324  *	same effect.
325  *
326  *	LOCKING:
327  *	EH context.
328  */
329 void ata_force_cbl(struct ata_port *ap)
330 {
331 	int i;
332 
333 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
334 		const struct ata_force_ent *fe = &ata_force_tbl[i];
335 
336 		if (fe->port != -1 && fe->port != ap->print_id)
337 			continue;
338 
339 		if (fe->param.cbl == ATA_CBL_NONE)
340 			continue;
341 
342 		ap->cbl = fe->param.cbl;
343 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
344 		return;
345 	}
346 }
347 
348 /**
349  *	ata_force_link_limits - force link limits according to libata.force
350  *	@link: ATA link of interest
351  *
352  *	Force link flags and SATA spd limit according to libata.force
353  *	and whine about it.  When only the port part is specified
354  *	(e.g. 1:), the limit applies to all links connected to both
355  *	the host link and all fan-out ports connected via PMP.  If the
356  *	device part is specified as 0 (e.g. 1.00:), it specifies the
357  *	first fan-out link not the host link.  Device number 15 always
358  *	points to the host link whether PMP is attached or not.  If the
359  *	controller has slave link, device number 16 points to it.
360  *
361  *	LOCKING:
362  *	EH context.
363  */
364 static void ata_force_link_limits(struct ata_link *link)
365 {
366 	bool did_spd = false;
367 	int linkno = link->pmp;
368 	int i;
369 
370 	if (ata_is_host_link(link))
371 		linkno += 15;
372 
373 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
374 		const struct ata_force_ent *fe = &ata_force_tbl[i];
375 
376 		if (fe->port != -1 && fe->port != link->ap->print_id)
377 			continue;
378 
379 		if (fe->device != -1 && fe->device != linkno)
380 			continue;
381 
382 		/* only honor the first spd limit */
383 		if (!did_spd && fe->param.spd_limit) {
384 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
385 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
386 					fe->param.name);
387 			did_spd = true;
388 		}
389 
390 		/* let lflags stack */
391 		if (fe->param.lflags) {
392 			link->flags |= fe->param.lflags;
393 			ata_link_notice(link,
394 					"FORCE: link flag 0x%x forced -> 0x%x\n",
395 					fe->param.lflags, link->flags);
396 		}
397 	}
398 }
399 
400 /**
401  *	ata_force_xfermask - force xfermask according to libata.force
402  *	@dev: ATA device of interest
403  *
404  *	Force xfer_mask according to libata.force and whine about it.
405  *	For consistency with link selection, device number 15 selects
406  *	the first device connected to the host link.
407  *
408  *	LOCKING:
409  *	EH context.
410  */
411 static void ata_force_xfermask(struct ata_device *dev)
412 {
413 	int devno = dev->link->pmp + dev->devno;
414 	int alt_devno = devno;
415 	int i;
416 
417 	/* allow n.15/16 for devices attached to host port */
418 	if (ata_is_host_link(dev->link))
419 		alt_devno += 15;
420 
421 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
422 		const struct ata_force_ent *fe = &ata_force_tbl[i];
423 		unsigned long pio_mask, mwdma_mask, udma_mask;
424 
425 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
426 			continue;
427 
428 		if (fe->device != -1 && fe->device != devno &&
429 		    fe->device != alt_devno)
430 			continue;
431 
432 		if (!fe->param.xfer_mask)
433 			continue;
434 
435 		ata_unpack_xfermask(fe->param.xfer_mask,
436 				    &pio_mask, &mwdma_mask, &udma_mask);
437 		if (udma_mask)
438 			dev->udma_mask = udma_mask;
439 		else if (mwdma_mask) {
440 			dev->udma_mask = 0;
441 			dev->mwdma_mask = mwdma_mask;
442 		} else {
443 			dev->udma_mask = 0;
444 			dev->mwdma_mask = 0;
445 			dev->pio_mask = pio_mask;
446 		}
447 
448 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
449 			       fe->param.name);
450 		return;
451 	}
452 }
453 
454 /**
455  *	ata_force_horkage - force horkage according to libata.force
456  *	@dev: ATA device of interest
457  *
458  *	Force horkage according to libata.force and whine about it.
459  *	For consistency with link selection, device number 15 selects
460  *	the first device connected to the host link.
461  *
462  *	LOCKING:
463  *	EH context.
464  */
465 static void ata_force_horkage(struct ata_device *dev)
466 {
467 	int devno = dev->link->pmp + dev->devno;
468 	int alt_devno = devno;
469 	int i;
470 
471 	/* allow n.15/16 for devices attached to host port */
472 	if (ata_is_host_link(dev->link))
473 		alt_devno += 15;
474 
475 	for (i = 0; i < ata_force_tbl_size; i++) {
476 		const struct ata_force_ent *fe = &ata_force_tbl[i];
477 
478 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
479 			continue;
480 
481 		if (fe->device != -1 && fe->device != devno &&
482 		    fe->device != alt_devno)
483 			continue;
484 
485 		if (!(~dev->horkage & fe->param.horkage_on) &&
486 		    !(dev->horkage & fe->param.horkage_off))
487 			continue;
488 
489 		dev->horkage |= fe->param.horkage_on;
490 		dev->horkage &= ~fe->param.horkage_off;
491 
492 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
493 			       fe->param.name);
494 	}
495 }
496 
497 /**
498  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
499  *	@opcode: SCSI opcode
500  *
501  *	Determine ATAPI command type from @opcode.
502  *
503  *	LOCKING:
504  *	None.
505  *
506  *	RETURNS:
507  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
508  */
509 int atapi_cmd_type(u8 opcode)
510 {
511 	switch (opcode) {
512 	case GPCMD_READ_10:
513 	case GPCMD_READ_12:
514 		return ATAPI_READ;
515 
516 	case GPCMD_WRITE_10:
517 	case GPCMD_WRITE_12:
518 	case GPCMD_WRITE_AND_VERIFY_10:
519 		return ATAPI_WRITE;
520 
521 	case GPCMD_READ_CD:
522 	case GPCMD_READ_CD_MSF:
523 		return ATAPI_READ_CD;
524 
525 	case ATA_16:
526 	case ATA_12:
527 		if (atapi_passthru16)
528 			return ATAPI_PASS_THRU;
529 		/* fall thru */
530 	default:
531 		return ATAPI_MISC;
532 	}
533 }
534 
535 /**
536  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
537  *	@tf: Taskfile to convert
538  *	@pmp: Port multiplier port
539  *	@is_cmd: This FIS is for command
540  *	@fis: Buffer into which data will output
541  *
542  *	Converts a standard ATA taskfile to a Serial ATA
543  *	FIS structure (Register - Host to Device).
544  *
545  *	LOCKING:
546  *	Inherited from caller.
547  */
548 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
549 {
550 	fis[0] = 0x27;			/* Register - Host to Device FIS */
551 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
552 	if (is_cmd)
553 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
554 
555 	fis[2] = tf->command;
556 	fis[3] = tf->feature;
557 
558 	fis[4] = tf->lbal;
559 	fis[5] = tf->lbam;
560 	fis[6] = tf->lbah;
561 	fis[7] = tf->device;
562 
563 	fis[8] = tf->hob_lbal;
564 	fis[9] = tf->hob_lbam;
565 	fis[10] = tf->hob_lbah;
566 	fis[11] = tf->hob_feature;
567 
568 	fis[12] = tf->nsect;
569 	fis[13] = tf->hob_nsect;
570 	fis[14] = 0;
571 	fis[15] = tf->ctl;
572 
573 	fis[16] = tf->auxiliary & 0xff;
574 	fis[17] = (tf->auxiliary >> 8) & 0xff;
575 	fis[18] = (tf->auxiliary >> 16) & 0xff;
576 	fis[19] = (tf->auxiliary >> 24) & 0xff;
577 }
578 
579 /**
580  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
581  *	@fis: Buffer from which data will be input
582  *	@tf: Taskfile to output
583  *
584  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
585  *
586  *	LOCKING:
587  *	Inherited from caller.
588  */
589 
590 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
591 {
592 	tf->command	= fis[2];	/* status */
593 	tf->feature	= fis[3];	/* error */
594 
595 	tf->lbal	= fis[4];
596 	tf->lbam	= fis[5];
597 	tf->lbah	= fis[6];
598 	tf->device	= fis[7];
599 
600 	tf->hob_lbal	= fis[8];
601 	tf->hob_lbam	= fis[9];
602 	tf->hob_lbah	= fis[10];
603 
604 	tf->nsect	= fis[12];
605 	tf->hob_nsect	= fis[13];
606 }
607 
608 static const u8 ata_rw_cmds[] = {
609 	/* pio multi */
610 	ATA_CMD_READ_MULTI,
611 	ATA_CMD_WRITE_MULTI,
612 	ATA_CMD_READ_MULTI_EXT,
613 	ATA_CMD_WRITE_MULTI_EXT,
614 	0,
615 	0,
616 	0,
617 	ATA_CMD_WRITE_MULTI_FUA_EXT,
618 	/* pio */
619 	ATA_CMD_PIO_READ,
620 	ATA_CMD_PIO_WRITE,
621 	ATA_CMD_PIO_READ_EXT,
622 	ATA_CMD_PIO_WRITE_EXT,
623 	0,
624 	0,
625 	0,
626 	0,
627 	/* dma */
628 	ATA_CMD_READ,
629 	ATA_CMD_WRITE,
630 	ATA_CMD_READ_EXT,
631 	ATA_CMD_WRITE_EXT,
632 	0,
633 	0,
634 	0,
635 	ATA_CMD_WRITE_FUA_EXT
636 };
637 
638 /**
639  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
640  *	@tf: command to examine and configure
641  *	@dev: device tf belongs to
642  *
643  *	Examine the device configuration and tf->flags to calculate
644  *	the proper read/write commands and protocol to use.
645  *
646  *	LOCKING:
647  *	caller.
648  */
649 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
650 {
651 	u8 cmd;
652 
653 	int index, fua, lba48, write;
654 
655 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
656 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
657 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
658 
659 	if (dev->flags & ATA_DFLAG_PIO) {
660 		tf->protocol = ATA_PROT_PIO;
661 		index = dev->multi_count ? 0 : 8;
662 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
663 		/* Unable to use DMA due to host limitation */
664 		tf->protocol = ATA_PROT_PIO;
665 		index = dev->multi_count ? 0 : 8;
666 	} else {
667 		tf->protocol = ATA_PROT_DMA;
668 		index = 16;
669 	}
670 
671 	cmd = ata_rw_cmds[index + fua + lba48 + write];
672 	if (cmd) {
673 		tf->command = cmd;
674 		return 0;
675 	}
676 	return -1;
677 }
678 
679 /**
680  *	ata_tf_read_block - Read block address from ATA taskfile
681  *	@tf: ATA taskfile of interest
682  *	@dev: ATA device @tf belongs to
683  *
684  *	LOCKING:
685  *	None.
686  *
687  *	Read block address from @tf.  This function can handle all
688  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
689  *	flags select the address format to use.
690  *
691  *	RETURNS:
692  *	Block address read from @tf.
693  */
694 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
695 {
696 	u64 block = 0;
697 
698 	if (tf->flags & ATA_TFLAG_LBA) {
699 		if (tf->flags & ATA_TFLAG_LBA48) {
700 			block |= (u64)tf->hob_lbah << 40;
701 			block |= (u64)tf->hob_lbam << 32;
702 			block |= (u64)tf->hob_lbal << 24;
703 		} else
704 			block |= (tf->device & 0xf) << 24;
705 
706 		block |= tf->lbah << 16;
707 		block |= tf->lbam << 8;
708 		block |= tf->lbal;
709 	} else {
710 		u32 cyl, head, sect;
711 
712 		cyl = tf->lbam | (tf->lbah << 8);
713 		head = tf->device & 0xf;
714 		sect = tf->lbal;
715 
716 		if (!sect) {
717 			ata_dev_warn(dev,
718 				     "device reported invalid CHS sector 0\n");
719 			sect = 1; /* oh well */
720 		}
721 
722 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
723 	}
724 
725 	return block;
726 }
727 
728 /**
729  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
730  *	@tf: Target ATA taskfile
731  *	@dev: ATA device @tf belongs to
732  *	@block: Block address
733  *	@n_block: Number of blocks
734  *	@tf_flags: RW/FUA etc...
735  *	@tag: tag
736  *
737  *	LOCKING:
738  *	None.
739  *
740  *	Build ATA taskfile @tf for read/write request described by
741  *	@block, @n_block, @tf_flags and @tag on @dev.
742  *
743  *	RETURNS:
744  *
745  *	0 on success, -ERANGE if the request is too large for @dev,
746  *	-EINVAL if the request is invalid.
747  */
748 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
749 		    u64 block, u32 n_block, unsigned int tf_flags,
750 		    unsigned int tag)
751 {
752 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
753 	tf->flags |= tf_flags;
754 
755 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
756 		/* yay, NCQ */
757 		if (!lba_48_ok(block, n_block))
758 			return -ERANGE;
759 
760 		tf->protocol = ATA_PROT_NCQ;
761 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
762 
763 		if (tf->flags & ATA_TFLAG_WRITE)
764 			tf->command = ATA_CMD_FPDMA_WRITE;
765 		else
766 			tf->command = ATA_CMD_FPDMA_READ;
767 
768 		tf->nsect = tag << 3;
769 		tf->hob_feature = (n_block >> 8) & 0xff;
770 		tf->feature = n_block & 0xff;
771 
772 		tf->hob_lbah = (block >> 40) & 0xff;
773 		tf->hob_lbam = (block >> 32) & 0xff;
774 		tf->hob_lbal = (block >> 24) & 0xff;
775 		tf->lbah = (block >> 16) & 0xff;
776 		tf->lbam = (block >> 8) & 0xff;
777 		tf->lbal = block & 0xff;
778 
779 		tf->device = ATA_LBA;
780 		if (tf->flags & ATA_TFLAG_FUA)
781 			tf->device |= 1 << 7;
782 	} else if (dev->flags & ATA_DFLAG_LBA) {
783 		tf->flags |= ATA_TFLAG_LBA;
784 
785 		if (lba_28_ok(block, n_block)) {
786 			/* use LBA28 */
787 			tf->device |= (block >> 24) & 0xf;
788 		} else if (lba_48_ok(block, n_block)) {
789 			if (!(dev->flags & ATA_DFLAG_LBA48))
790 				return -ERANGE;
791 
792 			/* use LBA48 */
793 			tf->flags |= ATA_TFLAG_LBA48;
794 
795 			tf->hob_nsect = (n_block >> 8) & 0xff;
796 
797 			tf->hob_lbah = (block >> 40) & 0xff;
798 			tf->hob_lbam = (block >> 32) & 0xff;
799 			tf->hob_lbal = (block >> 24) & 0xff;
800 		} else
801 			/* request too large even for LBA48 */
802 			return -ERANGE;
803 
804 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
805 			return -EINVAL;
806 
807 		tf->nsect = n_block & 0xff;
808 
809 		tf->lbah = (block >> 16) & 0xff;
810 		tf->lbam = (block >> 8) & 0xff;
811 		tf->lbal = block & 0xff;
812 
813 		tf->device |= ATA_LBA;
814 	} else {
815 		/* CHS */
816 		u32 sect, head, cyl, track;
817 
818 		/* The request -may- be too large for CHS addressing. */
819 		if (!lba_28_ok(block, n_block))
820 			return -ERANGE;
821 
822 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
823 			return -EINVAL;
824 
825 		/* Convert LBA to CHS */
826 		track = (u32)block / dev->sectors;
827 		cyl   = track / dev->heads;
828 		head  = track % dev->heads;
829 		sect  = (u32)block % dev->sectors + 1;
830 
831 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
832 			(u32)block, track, cyl, head, sect);
833 
834 		/* Check whether the converted CHS can fit.
835 		   Cylinder: 0-65535
836 		   Head: 0-15
837 		   Sector: 1-255*/
838 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
839 			return -ERANGE;
840 
841 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
842 		tf->lbal = sect;
843 		tf->lbam = cyl;
844 		tf->lbah = cyl >> 8;
845 		tf->device |= head;
846 	}
847 
848 	return 0;
849 }
850 
851 /**
852  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
853  *	@pio_mask: pio_mask
854  *	@mwdma_mask: mwdma_mask
855  *	@udma_mask: udma_mask
856  *
857  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
858  *	unsigned int xfer_mask.
859  *
860  *	LOCKING:
861  *	None.
862  *
863  *	RETURNS:
864  *	Packed xfer_mask.
865  */
866 unsigned long ata_pack_xfermask(unsigned long pio_mask,
867 				unsigned long mwdma_mask,
868 				unsigned long udma_mask)
869 {
870 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
871 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
872 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
873 }
874 
875 /**
876  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
877  *	@xfer_mask: xfer_mask to unpack
878  *	@pio_mask: resulting pio_mask
879  *	@mwdma_mask: resulting mwdma_mask
880  *	@udma_mask: resulting udma_mask
881  *
882  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
883  *	Any NULL distination masks will be ignored.
884  */
885 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
886 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
887 {
888 	if (pio_mask)
889 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
890 	if (mwdma_mask)
891 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
892 	if (udma_mask)
893 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
894 }
895 
896 static const struct ata_xfer_ent {
897 	int shift, bits;
898 	u8 base;
899 } ata_xfer_tbl[] = {
900 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
901 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
902 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
903 	{ -1, },
904 };
905 
906 /**
907  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
908  *	@xfer_mask: xfer_mask of interest
909  *
910  *	Return matching XFER_* value for @xfer_mask.  Only the highest
911  *	bit of @xfer_mask is considered.
912  *
913  *	LOCKING:
914  *	None.
915  *
916  *	RETURNS:
917  *	Matching XFER_* value, 0xff if no match found.
918  */
919 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
920 {
921 	int highbit = fls(xfer_mask) - 1;
922 	const struct ata_xfer_ent *ent;
923 
924 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
925 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
926 			return ent->base + highbit - ent->shift;
927 	return 0xff;
928 }
929 
930 /**
931  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
932  *	@xfer_mode: XFER_* of interest
933  *
934  *	Return matching xfer_mask for @xfer_mode.
935  *
936  *	LOCKING:
937  *	None.
938  *
939  *	RETURNS:
940  *	Matching xfer_mask, 0 if no match found.
941  */
942 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
943 {
944 	const struct ata_xfer_ent *ent;
945 
946 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
949 				& ~((1 << ent->shift) - 1);
950 	return 0;
951 }
952 
953 /**
954  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
955  *	@xfer_mode: XFER_* of interest
956  *
957  *	Return matching xfer_shift for @xfer_mode.
958  *
959  *	LOCKING:
960  *	None.
961  *
962  *	RETURNS:
963  *	Matching xfer_shift, -1 if no match found.
964  */
965 int ata_xfer_mode2shift(unsigned long xfer_mode)
966 {
967 	const struct ata_xfer_ent *ent;
968 
969 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
970 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
971 			return ent->shift;
972 	return -1;
973 }
974 
975 /**
976  *	ata_mode_string - convert xfer_mask to string
977  *	@xfer_mask: mask of bits supported; only highest bit counts.
978  *
979  *	Determine string which represents the highest speed
980  *	(highest bit in @modemask).
981  *
982  *	LOCKING:
983  *	None.
984  *
985  *	RETURNS:
986  *	Constant C string representing highest speed listed in
987  *	@mode_mask, or the constant C string "<n/a>".
988  */
989 const char *ata_mode_string(unsigned long xfer_mask)
990 {
991 	static const char * const xfer_mode_str[] = {
992 		"PIO0",
993 		"PIO1",
994 		"PIO2",
995 		"PIO3",
996 		"PIO4",
997 		"PIO5",
998 		"PIO6",
999 		"MWDMA0",
1000 		"MWDMA1",
1001 		"MWDMA2",
1002 		"MWDMA3",
1003 		"MWDMA4",
1004 		"UDMA/16",
1005 		"UDMA/25",
1006 		"UDMA/33",
1007 		"UDMA/44",
1008 		"UDMA/66",
1009 		"UDMA/100",
1010 		"UDMA/133",
1011 		"UDMA7",
1012 	};
1013 	int highbit;
1014 
1015 	highbit = fls(xfer_mask) - 1;
1016 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1017 		return xfer_mode_str[highbit];
1018 	return "<n/a>";
1019 }
1020 
1021 const char *sata_spd_string(unsigned int spd)
1022 {
1023 	static const char * const spd_str[] = {
1024 		"1.5 Gbps",
1025 		"3.0 Gbps",
1026 		"6.0 Gbps",
1027 	};
1028 
1029 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1030 		return "<unknown>";
1031 	return spd_str[spd - 1];
1032 }
1033 
1034 /**
1035  *	ata_dev_classify - determine device type based on ATA-spec signature
1036  *	@tf: ATA taskfile register set for device to be identified
1037  *
1038  *	Determine from taskfile register contents whether a device is
1039  *	ATA or ATAPI, as per "Signature and persistence" section
1040  *	of ATA/PI spec (volume 1, sect 5.14).
1041  *
1042  *	LOCKING:
1043  *	None.
1044  *
1045  *	RETURNS:
1046  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1047  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1048  */
1049 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1050 {
1051 	/* Apple's open source Darwin code hints that some devices only
1052 	 * put a proper signature into the LBA mid/high registers,
1053 	 * So, we only check those.  It's sufficient for uniqueness.
1054 	 *
1055 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1056 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1057 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1058 	 * spec has never mentioned about using different signatures
1059 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1060 	 * Multiplier specification began to use 0x69/0x96 to identify
1061 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1062 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1063 	 * 0x69/0x96 shortly and described them as reserved for
1064 	 * SerialATA.
1065 	 *
1066 	 * We follow the current spec and consider that 0x69/0x96
1067 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1068 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1069 	 * SEMB signature.  This is worked around in
1070 	 * ata_dev_read_id().
1071 	 */
1072 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1073 		DPRINTK("found ATA device by sig\n");
1074 		return ATA_DEV_ATA;
1075 	}
1076 
1077 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1078 		DPRINTK("found ATAPI device by sig\n");
1079 		return ATA_DEV_ATAPI;
1080 	}
1081 
1082 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1083 		DPRINTK("found PMP device by sig\n");
1084 		return ATA_DEV_PMP;
1085 	}
1086 
1087 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1088 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1089 		return ATA_DEV_SEMB;
1090 	}
1091 
1092 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1093 		DPRINTK("found ZAC device by sig\n");
1094 		return ATA_DEV_ZAC;
1095 	}
1096 
1097 	DPRINTK("unknown device\n");
1098 	return ATA_DEV_UNKNOWN;
1099 }
1100 
1101 /**
1102  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1103  *	@id: IDENTIFY DEVICE results we will examine
1104  *	@s: string into which data is output
1105  *	@ofs: offset into identify device page
1106  *	@len: length of string to return. must be an even number.
1107  *
1108  *	The strings in the IDENTIFY DEVICE page are broken up into
1109  *	16-bit chunks.  Run through the string, and output each
1110  *	8-bit chunk linearly, regardless of platform.
1111  *
1112  *	LOCKING:
1113  *	caller.
1114  */
1115 
1116 void ata_id_string(const u16 *id, unsigned char *s,
1117 		   unsigned int ofs, unsigned int len)
1118 {
1119 	unsigned int c;
1120 
1121 	BUG_ON(len & 1);
1122 
1123 	while (len > 0) {
1124 		c = id[ofs] >> 8;
1125 		*s = c;
1126 		s++;
1127 
1128 		c = id[ofs] & 0xff;
1129 		*s = c;
1130 		s++;
1131 
1132 		ofs++;
1133 		len -= 2;
1134 	}
1135 }
1136 
1137 /**
1138  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1139  *	@id: IDENTIFY DEVICE results we will examine
1140  *	@s: string into which data is output
1141  *	@ofs: offset into identify device page
1142  *	@len: length of string to return. must be an odd number.
1143  *
1144  *	This function is identical to ata_id_string except that it
1145  *	trims trailing spaces and terminates the resulting string with
1146  *	null.  @len must be actual maximum length (even number) + 1.
1147  *
1148  *	LOCKING:
1149  *	caller.
1150  */
1151 void ata_id_c_string(const u16 *id, unsigned char *s,
1152 		     unsigned int ofs, unsigned int len)
1153 {
1154 	unsigned char *p;
1155 
1156 	ata_id_string(id, s, ofs, len - 1);
1157 
1158 	p = s + strnlen(s, len - 1);
1159 	while (p > s && p[-1] == ' ')
1160 		p--;
1161 	*p = '\0';
1162 }
1163 
1164 static u64 ata_id_n_sectors(const u16 *id)
1165 {
1166 	if (ata_id_has_lba(id)) {
1167 		if (ata_id_has_lba48(id))
1168 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1169 		else
1170 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1171 	} else {
1172 		if (ata_id_current_chs_valid(id))
1173 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1174 			       id[ATA_ID_CUR_SECTORS];
1175 		else
1176 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1177 			       id[ATA_ID_SECTORS];
1178 	}
1179 }
1180 
1181 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1182 {
1183 	u64 sectors = 0;
1184 
1185 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1186 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1187 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1188 	sectors |= (tf->lbah & 0xff) << 16;
1189 	sectors |= (tf->lbam & 0xff) << 8;
1190 	sectors |= (tf->lbal & 0xff);
1191 
1192 	return sectors;
1193 }
1194 
1195 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1196 {
1197 	u64 sectors = 0;
1198 
1199 	sectors |= (tf->device & 0x0f) << 24;
1200 	sectors |= (tf->lbah & 0xff) << 16;
1201 	sectors |= (tf->lbam & 0xff) << 8;
1202 	sectors |= (tf->lbal & 0xff);
1203 
1204 	return sectors;
1205 }
1206 
1207 /**
1208  *	ata_read_native_max_address - Read native max address
1209  *	@dev: target device
1210  *	@max_sectors: out parameter for the result native max address
1211  *
1212  *	Perform an LBA48 or LBA28 native size query upon the device in
1213  *	question.
1214  *
1215  *	RETURNS:
1216  *	0 on success, -EACCES if command is aborted by the drive.
1217  *	-EIO on other errors.
1218  */
1219 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1220 {
1221 	unsigned int err_mask;
1222 	struct ata_taskfile tf;
1223 	int lba48 = ata_id_has_lba48(dev->id);
1224 
1225 	ata_tf_init(dev, &tf);
1226 
1227 	/* always clear all address registers */
1228 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1229 
1230 	if (lba48) {
1231 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1232 		tf.flags |= ATA_TFLAG_LBA48;
1233 	} else
1234 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1235 
1236 	tf.protocol |= ATA_PROT_NODATA;
1237 	tf.device |= ATA_LBA;
1238 
1239 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1240 	if (err_mask) {
1241 		ata_dev_warn(dev,
1242 			     "failed to read native max address (err_mask=0x%x)\n",
1243 			     err_mask);
1244 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1245 			return -EACCES;
1246 		return -EIO;
1247 	}
1248 
1249 	if (lba48)
1250 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1251 	else
1252 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1253 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1254 		(*max_sectors)--;
1255 	return 0;
1256 }
1257 
1258 /**
1259  *	ata_set_max_sectors - Set max sectors
1260  *	@dev: target device
1261  *	@new_sectors: new max sectors value to set for the device
1262  *
1263  *	Set max sectors of @dev to @new_sectors.
1264  *
1265  *	RETURNS:
1266  *	0 on success, -EACCES if command is aborted or denied (due to
1267  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1268  *	errors.
1269  */
1270 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1271 {
1272 	unsigned int err_mask;
1273 	struct ata_taskfile tf;
1274 	int lba48 = ata_id_has_lba48(dev->id);
1275 
1276 	new_sectors--;
1277 
1278 	ata_tf_init(dev, &tf);
1279 
1280 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1281 
1282 	if (lba48) {
1283 		tf.command = ATA_CMD_SET_MAX_EXT;
1284 		tf.flags |= ATA_TFLAG_LBA48;
1285 
1286 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1287 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1288 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1289 	} else {
1290 		tf.command = ATA_CMD_SET_MAX;
1291 
1292 		tf.device |= (new_sectors >> 24) & 0xf;
1293 	}
1294 
1295 	tf.protocol |= ATA_PROT_NODATA;
1296 	tf.device |= ATA_LBA;
1297 
1298 	tf.lbal = (new_sectors >> 0) & 0xff;
1299 	tf.lbam = (new_sectors >> 8) & 0xff;
1300 	tf.lbah = (new_sectors >> 16) & 0xff;
1301 
1302 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1303 	if (err_mask) {
1304 		ata_dev_warn(dev,
1305 			     "failed to set max address (err_mask=0x%x)\n",
1306 			     err_mask);
1307 		if (err_mask == AC_ERR_DEV &&
1308 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1309 			return -EACCES;
1310 		return -EIO;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 /**
1317  *	ata_hpa_resize		-	Resize a device with an HPA set
1318  *	@dev: Device to resize
1319  *
1320  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1321  *	it if required to the full size of the media. The caller must check
1322  *	the drive has the HPA feature set enabled.
1323  *
1324  *	RETURNS:
1325  *	0 on success, -errno on failure.
1326  */
1327 static int ata_hpa_resize(struct ata_device *dev)
1328 {
1329 	struct ata_eh_context *ehc = &dev->link->eh_context;
1330 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1331 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1332 	u64 sectors = ata_id_n_sectors(dev->id);
1333 	u64 native_sectors;
1334 	int rc;
1335 
1336 	/* do we need to do it? */
1337 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1338 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1339 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1340 		return 0;
1341 
1342 	/* read native max address */
1343 	rc = ata_read_native_max_address(dev, &native_sectors);
1344 	if (rc) {
1345 		/* If device aborted the command or HPA isn't going to
1346 		 * be unlocked, skip HPA resizing.
1347 		 */
1348 		if (rc == -EACCES || !unlock_hpa) {
1349 			ata_dev_warn(dev,
1350 				     "HPA support seems broken, skipping HPA handling\n");
1351 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1352 
1353 			/* we can continue if device aborted the command */
1354 			if (rc == -EACCES)
1355 				rc = 0;
1356 		}
1357 
1358 		return rc;
1359 	}
1360 	dev->n_native_sectors = native_sectors;
1361 
1362 	/* nothing to do? */
1363 	if (native_sectors <= sectors || !unlock_hpa) {
1364 		if (!print_info || native_sectors == sectors)
1365 			return 0;
1366 
1367 		if (native_sectors > sectors)
1368 			ata_dev_info(dev,
1369 				"HPA detected: current %llu, native %llu\n",
1370 				(unsigned long long)sectors,
1371 				(unsigned long long)native_sectors);
1372 		else if (native_sectors < sectors)
1373 			ata_dev_warn(dev,
1374 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1375 				(unsigned long long)native_sectors,
1376 				(unsigned long long)sectors);
1377 		return 0;
1378 	}
1379 
1380 	/* let's unlock HPA */
1381 	rc = ata_set_max_sectors(dev, native_sectors);
1382 	if (rc == -EACCES) {
1383 		/* if device aborted the command, skip HPA resizing */
1384 		ata_dev_warn(dev,
1385 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1386 			     (unsigned long long)sectors,
1387 			     (unsigned long long)native_sectors);
1388 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1389 		return 0;
1390 	} else if (rc)
1391 		return rc;
1392 
1393 	/* re-read IDENTIFY data */
1394 	rc = ata_dev_reread_id(dev, 0);
1395 	if (rc) {
1396 		ata_dev_err(dev,
1397 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1398 		return rc;
1399 	}
1400 
1401 	if (print_info) {
1402 		u64 new_sectors = ata_id_n_sectors(dev->id);
1403 		ata_dev_info(dev,
1404 			"HPA unlocked: %llu -> %llu, native %llu\n",
1405 			(unsigned long long)sectors,
1406 			(unsigned long long)new_sectors,
1407 			(unsigned long long)native_sectors);
1408 	}
1409 
1410 	return 0;
1411 }
1412 
1413 /**
1414  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1415  *	@id: IDENTIFY DEVICE page to dump
1416  *
1417  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1418  *	page.
1419  *
1420  *	LOCKING:
1421  *	caller.
1422  */
1423 
1424 static inline void ata_dump_id(const u16 *id)
1425 {
1426 	DPRINTK("49==0x%04x  "
1427 		"53==0x%04x  "
1428 		"63==0x%04x  "
1429 		"64==0x%04x  "
1430 		"75==0x%04x  \n",
1431 		id[49],
1432 		id[53],
1433 		id[63],
1434 		id[64],
1435 		id[75]);
1436 	DPRINTK("80==0x%04x  "
1437 		"81==0x%04x  "
1438 		"82==0x%04x  "
1439 		"83==0x%04x  "
1440 		"84==0x%04x  \n",
1441 		id[80],
1442 		id[81],
1443 		id[82],
1444 		id[83],
1445 		id[84]);
1446 	DPRINTK("88==0x%04x  "
1447 		"93==0x%04x\n",
1448 		id[88],
1449 		id[93]);
1450 }
1451 
1452 /**
1453  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1454  *	@id: IDENTIFY data to compute xfer mask from
1455  *
1456  *	Compute the xfermask for this device. This is not as trivial
1457  *	as it seems if we must consider early devices correctly.
1458  *
1459  *	FIXME: pre IDE drive timing (do we care ?).
1460  *
1461  *	LOCKING:
1462  *	None.
1463  *
1464  *	RETURNS:
1465  *	Computed xfermask
1466  */
1467 unsigned long ata_id_xfermask(const u16 *id)
1468 {
1469 	unsigned long pio_mask, mwdma_mask, udma_mask;
1470 
1471 	/* Usual case. Word 53 indicates word 64 is valid */
1472 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1473 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1474 		pio_mask <<= 3;
1475 		pio_mask |= 0x7;
1476 	} else {
1477 		/* If word 64 isn't valid then Word 51 high byte holds
1478 		 * the PIO timing number for the maximum. Turn it into
1479 		 * a mask.
1480 		 */
1481 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1482 		if (mode < 5)	/* Valid PIO range */
1483 			pio_mask = (2 << mode) - 1;
1484 		else
1485 			pio_mask = 1;
1486 
1487 		/* But wait.. there's more. Design your standards by
1488 		 * committee and you too can get a free iordy field to
1489 		 * process. However its the speeds not the modes that
1490 		 * are supported... Note drivers using the timing API
1491 		 * will get this right anyway
1492 		 */
1493 	}
1494 
1495 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1496 
1497 	if (ata_id_is_cfa(id)) {
1498 		/*
1499 		 *	Process compact flash extended modes
1500 		 */
1501 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1502 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1503 
1504 		if (pio)
1505 			pio_mask |= (1 << 5);
1506 		if (pio > 1)
1507 			pio_mask |= (1 << 6);
1508 		if (dma)
1509 			mwdma_mask |= (1 << 3);
1510 		if (dma > 1)
1511 			mwdma_mask |= (1 << 4);
1512 	}
1513 
1514 	udma_mask = 0;
1515 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1516 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1517 
1518 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1519 }
1520 
1521 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1522 {
1523 	struct completion *waiting = qc->private_data;
1524 
1525 	complete(waiting);
1526 }
1527 
1528 /**
1529  *	ata_exec_internal_sg - execute libata internal command
1530  *	@dev: Device to which the command is sent
1531  *	@tf: Taskfile registers for the command and the result
1532  *	@cdb: CDB for packet command
1533  *	@dma_dir: Data transfer direction of the command
1534  *	@sgl: sg list for the data buffer of the command
1535  *	@n_elem: Number of sg entries
1536  *	@timeout: Timeout in msecs (0 for default)
1537  *
1538  *	Executes libata internal command with timeout.  @tf contains
1539  *	command on entry and result on return.  Timeout and error
1540  *	conditions are reported via return value.  No recovery action
1541  *	is taken after a command times out.  It's caller's duty to
1542  *	clean up after timeout.
1543  *
1544  *	LOCKING:
1545  *	None.  Should be called with kernel context, might sleep.
1546  *
1547  *	RETURNS:
1548  *	Zero on success, AC_ERR_* mask on failure
1549  */
1550 unsigned ata_exec_internal_sg(struct ata_device *dev,
1551 			      struct ata_taskfile *tf, const u8 *cdb,
1552 			      int dma_dir, struct scatterlist *sgl,
1553 			      unsigned int n_elem, unsigned long timeout)
1554 {
1555 	struct ata_link *link = dev->link;
1556 	struct ata_port *ap = link->ap;
1557 	u8 command = tf->command;
1558 	int auto_timeout = 0;
1559 	struct ata_queued_cmd *qc;
1560 	unsigned int tag, preempted_tag;
1561 	u32 preempted_sactive, preempted_qc_active;
1562 	int preempted_nr_active_links;
1563 	DECLARE_COMPLETION_ONSTACK(wait);
1564 	unsigned long flags;
1565 	unsigned int err_mask;
1566 	int rc;
1567 
1568 	spin_lock_irqsave(ap->lock, flags);
1569 
1570 	/* no internal command while frozen */
1571 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1572 		spin_unlock_irqrestore(ap->lock, flags);
1573 		return AC_ERR_SYSTEM;
1574 	}
1575 
1576 	/* initialize internal qc */
1577 
1578 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1579 	 * drivers choke if any other tag is given.  This breaks
1580 	 * ata_tag_internal() test for those drivers.  Don't use new
1581 	 * EH stuff without converting to it.
1582 	 */
1583 	if (ap->ops->error_handler)
1584 		tag = ATA_TAG_INTERNAL;
1585 	else
1586 		tag = 0;
1587 
1588 	if (test_and_set_bit(tag, &ap->qc_allocated))
1589 		BUG();
1590 	qc = __ata_qc_from_tag(ap, tag);
1591 
1592 	qc->tag = tag;
1593 	qc->scsicmd = NULL;
1594 	qc->ap = ap;
1595 	qc->dev = dev;
1596 	ata_qc_reinit(qc);
1597 
1598 	preempted_tag = link->active_tag;
1599 	preempted_sactive = link->sactive;
1600 	preempted_qc_active = ap->qc_active;
1601 	preempted_nr_active_links = ap->nr_active_links;
1602 	link->active_tag = ATA_TAG_POISON;
1603 	link->sactive = 0;
1604 	ap->qc_active = 0;
1605 	ap->nr_active_links = 0;
1606 
1607 	/* prepare & issue qc */
1608 	qc->tf = *tf;
1609 	if (cdb)
1610 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1611 
1612 	/* some SATA bridges need us to indicate data xfer direction */
1613 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1614 	    dma_dir == DMA_FROM_DEVICE)
1615 		qc->tf.feature |= ATAPI_DMADIR;
1616 
1617 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1618 	qc->dma_dir = dma_dir;
1619 	if (dma_dir != DMA_NONE) {
1620 		unsigned int i, buflen = 0;
1621 		struct scatterlist *sg;
1622 
1623 		for_each_sg(sgl, sg, n_elem, i)
1624 			buflen += sg->length;
1625 
1626 		ata_sg_init(qc, sgl, n_elem);
1627 		qc->nbytes = buflen;
1628 	}
1629 
1630 	qc->private_data = &wait;
1631 	qc->complete_fn = ata_qc_complete_internal;
1632 
1633 	ata_qc_issue(qc);
1634 
1635 	spin_unlock_irqrestore(ap->lock, flags);
1636 
1637 	if (!timeout) {
1638 		if (ata_probe_timeout)
1639 			timeout = ata_probe_timeout * 1000;
1640 		else {
1641 			timeout = ata_internal_cmd_timeout(dev, command);
1642 			auto_timeout = 1;
1643 		}
1644 	}
1645 
1646 	if (ap->ops->error_handler)
1647 		ata_eh_release(ap);
1648 
1649 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1650 
1651 	if (ap->ops->error_handler)
1652 		ata_eh_acquire(ap);
1653 
1654 	ata_sff_flush_pio_task(ap);
1655 
1656 	if (!rc) {
1657 		spin_lock_irqsave(ap->lock, flags);
1658 
1659 		/* We're racing with irq here.  If we lose, the
1660 		 * following test prevents us from completing the qc
1661 		 * twice.  If we win, the port is frozen and will be
1662 		 * cleaned up by ->post_internal_cmd().
1663 		 */
1664 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1665 			qc->err_mask |= AC_ERR_TIMEOUT;
1666 
1667 			if (ap->ops->error_handler)
1668 				ata_port_freeze(ap);
1669 			else
1670 				ata_qc_complete(qc);
1671 
1672 			if (ata_msg_warn(ap))
1673 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1674 					     command);
1675 		}
1676 
1677 		spin_unlock_irqrestore(ap->lock, flags);
1678 	}
1679 
1680 	/* do post_internal_cmd */
1681 	if (ap->ops->post_internal_cmd)
1682 		ap->ops->post_internal_cmd(qc);
1683 
1684 	/* perform minimal error analysis */
1685 	if (qc->flags & ATA_QCFLAG_FAILED) {
1686 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1687 			qc->err_mask |= AC_ERR_DEV;
1688 
1689 		if (!qc->err_mask)
1690 			qc->err_mask |= AC_ERR_OTHER;
1691 
1692 		if (qc->err_mask & ~AC_ERR_OTHER)
1693 			qc->err_mask &= ~AC_ERR_OTHER;
1694 	}
1695 
1696 	/* finish up */
1697 	spin_lock_irqsave(ap->lock, flags);
1698 
1699 	*tf = qc->result_tf;
1700 	err_mask = qc->err_mask;
1701 
1702 	ata_qc_free(qc);
1703 	link->active_tag = preempted_tag;
1704 	link->sactive = preempted_sactive;
1705 	ap->qc_active = preempted_qc_active;
1706 	ap->nr_active_links = preempted_nr_active_links;
1707 
1708 	spin_unlock_irqrestore(ap->lock, flags);
1709 
1710 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1711 		ata_internal_cmd_timed_out(dev, command);
1712 
1713 	return err_mask;
1714 }
1715 
1716 /**
1717  *	ata_exec_internal - execute libata internal command
1718  *	@dev: Device to which the command is sent
1719  *	@tf: Taskfile registers for the command and the result
1720  *	@cdb: CDB for packet command
1721  *	@dma_dir: Data transfer direction of the command
1722  *	@buf: Data buffer of the command
1723  *	@buflen: Length of data buffer
1724  *	@timeout: Timeout in msecs (0 for default)
1725  *
1726  *	Wrapper around ata_exec_internal_sg() which takes simple
1727  *	buffer instead of sg list.
1728  *
1729  *	LOCKING:
1730  *	None.  Should be called with kernel context, might sleep.
1731  *
1732  *	RETURNS:
1733  *	Zero on success, AC_ERR_* mask on failure
1734  */
1735 unsigned ata_exec_internal(struct ata_device *dev,
1736 			   struct ata_taskfile *tf, const u8 *cdb,
1737 			   int dma_dir, void *buf, unsigned int buflen,
1738 			   unsigned long timeout)
1739 {
1740 	struct scatterlist *psg = NULL, sg;
1741 	unsigned int n_elem = 0;
1742 
1743 	if (dma_dir != DMA_NONE) {
1744 		WARN_ON(!buf);
1745 		sg_init_one(&sg, buf, buflen);
1746 		psg = &sg;
1747 		n_elem++;
1748 	}
1749 
1750 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1751 				    timeout);
1752 }
1753 
1754 /**
1755  *	ata_do_simple_cmd - execute simple internal command
1756  *	@dev: Device to which the command is sent
1757  *	@cmd: Opcode to execute
1758  *
1759  *	Execute a 'simple' command, that only consists of the opcode
1760  *	'cmd' itself, without filling any other registers
1761  *
1762  *	LOCKING:
1763  *	Kernel thread context (may sleep).
1764  *
1765  *	RETURNS:
1766  *	Zero on success, AC_ERR_* mask on failure
1767  */
1768 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1769 {
1770 	struct ata_taskfile tf;
1771 
1772 	ata_tf_init(dev, &tf);
1773 
1774 	tf.command = cmd;
1775 	tf.flags |= ATA_TFLAG_DEVICE;
1776 	tf.protocol = ATA_PROT_NODATA;
1777 
1778 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1779 }
1780 
1781 /**
1782  *	ata_pio_need_iordy	-	check if iordy needed
1783  *	@adev: ATA device
1784  *
1785  *	Check if the current speed of the device requires IORDY. Used
1786  *	by various controllers for chip configuration.
1787  */
1788 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1789 {
1790 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1791 	 * lead to controller lock up on certain controllers if the
1792 	 * port is not occupied.  See bko#11703 for details.
1793 	 */
1794 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1795 		return 0;
1796 	/* Controller doesn't support IORDY.  Probably a pointless
1797 	 * check as the caller should know this.
1798 	 */
1799 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1800 		return 0;
1801 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1802 	if (ata_id_is_cfa(adev->id)
1803 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1804 		return 0;
1805 	/* PIO3 and higher it is mandatory */
1806 	if (adev->pio_mode > XFER_PIO_2)
1807 		return 1;
1808 	/* We turn it on when possible */
1809 	if (ata_id_has_iordy(adev->id))
1810 		return 1;
1811 	return 0;
1812 }
1813 
1814 /**
1815  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1816  *	@adev: ATA device
1817  *
1818  *	Compute the highest mode possible if we are not using iordy. Return
1819  *	-1 if no iordy mode is available.
1820  */
1821 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1822 {
1823 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1824 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1825 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1826 		/* Is the speed faster than the drive allows non IORDY ? */
1827 		if (pio) {
1828 			/* This is cycle times not frequency - watch the logic! */
1829 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1830 				return 3 << ATA_SHIFT_PIO;
1831 			return 7 << ATA_SHIFT_PIO;
1832 		}
1833 	}
1834 	return 3 << ATA_SHIFT_PIO;
1835 }
1836 
1837 /**
1838  *	ata_do_dev_read_id		-	default ID read method
1839  *	@dev: device
1840  *	@tf: proposed taskfile
1841  *	@id: data buffer
1842  *
1843  *	Issue the identify taskfile and hand back the buffer containing
1844  *	identify data. For some RAID controllers and for pre ATA devices
1845  *	this function is wrapped or replaced by the driver
1846  */
1847 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1848 					struct ata_taskfile *tf, u16 *id)
1849 {
1850 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1851 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1852 }
1853 
1854 /**
1855  *	ata_dev_read_id - Read ID data from the specified device
1856  *	@dev: target device
1857  *	@p_class: pointer to class of the target device (may be changed)
1858  *	@flags: ATA_READID_* flags
1859  *	@id: buffer to read IDENTIFY data into
1860  *
1861  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1862  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1863  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1864  *	for pre-ATA4 drives.
1865  *
1866  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1867  *	now we abort if we hit that case.
1868  *
1869  *	LOCKING:
1870  *	Kernel thread context (may sleep)
1871  *
1872  *	RETURNS:
1873  *	0 on success, -errno otherwise.
1874  */
1875 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1876 		    unsigned int flags, u16 *id)
1877 {
1878 	struct ata_port *ap = dev->link->ap;
1879 	unsigned int class = *p_class;
1880 	struct ata_taskfile tf;
1881 	unsigned int err_mask = 0;
1882 	const char *reason;
1883 	bool is_semb = class == ATA_DEV_SEMB;
1884 	int may_fallback = 1, tried_spinup = 0;
1885 	int rc;
1886 
1887 	if (ata_msg_ctl(ap))
1888 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1889 
1890 retry:
1891 	ata_tf_init(dev, &tf);
1892 
1893 	switch (class) {
1894 	case ATA_DEV_SEMB:
1895 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1896 	case ATA_DEV_ATA:
1897 	case ATA_DEV_ZAC:
1898 		tf.command = ATA_CMD_ID_ATA;
1899 		break;
1900 	case ATA_DEV_ATAPI:
1901 		tf.command = ATA_CMD_ID_ATAPI;
1902 		break;
1903 	default:
1904 		rc = -ENODEV;
1905 		reason = "unsupported class";
1906 		goto err_out;
1907 	}
1908 
1909 	tf.protocol = ATA_PROT_PIO;
1910 
1911 	/* Some devices choke if TF registers contain garbage.  Make
1912 	 * sure those are properly initialized.
1913 	 */
1914 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1915 
1916 	/* Device presence detection is unreliable on some
1917 	 * controllers.  Always poll IDENTIFY if available.
1918 	 */
1919 	tf.flags |= ATA_TFLAG_POLLING;
1920 
1921 	if (ap->ops->read_id)
1922 		err_mask = ap->ops->read_id(dev, &tf, id);
1923 	else
1924 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1925 
1926 	if (err_mask) {
1927 		if (err_mask & AC_ERR_NODEV_HINT) {
1928 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1929 			return -ENOENT;
1930 		}
1931 
1932 		if (is_semb) {
1933 			ata_dev_info(dev,
1934 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1935 			/* SEMB is not supported yet */
1936 			*p_class = ATA_DEV_SEMB_UNSUP;
1937 			return 0;
1938 		}
1939 
1940 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1941 			/* Device or controller might have reported
1942 			 * the wrong device class.  Give a shot at the
1943 			 * other IDENTIFY if the current one is
1944 			 * aborted by the device.
1945 			 */
1946 			if (may_fallback) {
1947 				may_fallback = 0;
1948 
1949 				if (class == ATA_DEV_ATA)
1950 					class = ATA_DEV_ATAPI;
1951 				else
1952 					class = ATA_DEV_ATA;
1953 				goto retry;
1954 			}
1955 
1956 			/* Control reaches here iff the device aborted
1957 			 * both flavors of IDENTIFYs which happens
1958 			 * sometimes with phantom devices.
1959 			 */
1960 			ata_dev_dbg(dev,
1961 				    "both IDENTIFYs aborted, assuming NODEV\n");
1962 			return -ENOENT;
1963 		}
1964 
1965 		rc = -EIO;
1966 		reason = "I/O error";
1967 		goto err_out;
1968 	}
1969 
1970 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1971 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1972 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1973 			    class, may_fallback, tried_spinup);
1974 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1975 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1976 	}
1977 
1978 	/* Falling back doesn't make sense if ID data was read
1979 	 * successfully at least once.
1980 	 */
1981 	may_fallback = 0;
1982 
1983 	swap_buf_le16(id, ATA_ID_WORDS);
1984 
1985 	/* sanity check */
1986 	rc = -EINVAL;
1987 	reason = "device reports invalid type";
1988 
1989 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1990 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1991 			goto err_out;
1992 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1993 							ata_id_is_ata(id)) {
1994 			ata_dev_dbg(dev,
1995 				"host indicates ignore ATA devices, ignored\n");
1996 			return -ENOENT;
1997 		}
1998 	} else {
1999 		if (ata_id_is_ata(id))
2000 			goto err_out;
2001 	}
2002 
2003 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2004 		tried_spinup = 1;
2005 		/*
2006 		 * Drive powered-up in standby mode, and requires a specific
2007 		 * SET_FEATURES spin-up subcommand before it will accept
2008 		 * anything other than the original IDENTIFY command.
2009 		 */
2010 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2011 		if (err_mask && id[2] != 0x738c) {
2012 			rc = -EIO;
2013 			reason = "SPINUP failed";
2014 			goto err_out;
2015 		}
2016 		/*
2017 		 * If the drive initially returned incomplete IDENTIFY info,
2018 		 * we now must reissue the IDENTIFY command.
2019 		 */
2020 		if (id[2] == 0x37c8)
2021 			goto retry;
2022 	}
2023 
2024 	if ((flags & ATA_READID_POSTRESET) &&
2025 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2026 		/*
2027 		 * The exact sequence expected by certain pre-ATA4 drives is:
2028 		 * SRST RESET
2029 		 * IDENTIFY (optional in early ATA)
2030 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2031 		 * anything else..
2032 		 * Some drives were very specific about that exact sequence.
2033 		 *
2034 		 * Note that ATA4 says lba is mandatory so the second check
2035 		 * should never trigger.
2036 		 */
2037 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2038 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2039 			if (err_mask) {
2040 				rc = -EIO;
2041 				reason = "INIT_DEV_PARAMS failed";
2042 				goto err_out;
2043 			}
2044 
2045 			/* current CHS translation info (id[53-58]) might be
2046 			 * changed. reread the identify device info.
2047 			 */
2048 			flags &= ~ATA_READID_POSTRESET;
2049 			goto retry;
2050 		}
2051 	}
2052 
2053 	*p_class = class;
2054 
2055 	return 0;
2056 
2057  err_out:
2058 	if (ata_msg_warn(ap))
2059 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2060 			     reason, err_mask);
2061 	return rc;
2062 }
2063 
2064 static int ata_do_link_spd_horkage(struct ata_device *dev)
2065 {
2066 	struct ata_link *plink = ata_dev_phys_link(dev);
2067 	u32 target, target_limit;
2068 
2069 	if (!sata_scr_valid(plink))
2070 		return 0;
2071 
2072 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2073 		target = 1;
2074 	else
2075 		return 0;
2076 
2077 	target_limit = (1 << target) - 1;
2078 
2079 	/* if already on stricter limit, no need to push further */
2080 	if (plink->sata_spd_limit <= target_limit)
2081 		return 0;
2082 
2083 	plink->sata_spd_limit = target_limit;
2084 
2085 	/* Request another EH round by returning -EAGAIN if link is
2086 	 * going faster than the target speed.  Forward progress is
2087 	 * guaranteed by setting sata_spd_limit to target_limit above.
2088 	 */
2089 	if (plink->sata_spd > target) {
2090 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2091 			     sata_spd_string(target));
2092 		return -EAGAIN;
2093 	}
2094 	return 0;
2095 }
2096 
2097 static inline u8 ata_dev_knobble(struct ata_device *dev)
2098 {
2099 	struct ata_port *ap = dev->link->ap;
2100 
2101 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2102 		return 0;
2103 
2104 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2105 }
2106 
2107 static int ata_dev_config_ncq(struct ata_device *dev,
2108 			       char *desc, size_t desc_sz)
2109 {
2110 	struct ata_port *ap = dev->link->ap;
2111 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2112 	unsigned int err_mask;
2113 	char *aa_desc = "";
2114 
2115 	if (!ata_id_has_ncq(dev->id)) {
2116 		desc[0] = '\0';
2117 		return 0;
2118 	}
2119 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2120 		snprintf(desc, desc_sz, "NCQ (not used)");
2121 		return 0;
2122 	}
2123 	if (ap->flags & ATA_FLAG_NCQ) {
2124 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2125 		dev->flags |= ATA_DFLAG_NCQ;
2126 	}
2127 
2128 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2129 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2130 		ata_id_has_fpdma_aa(dev->id)) {
2131 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2132 			SATA_FPDMA_AA);
2133 		if (err_mask) {
2134 			ata_dev_err(dev,
2135 				    "failed to enable AA (error_mask=0x%x)\n",
2136 				    err_mask);
2137 			if (err_mask != AC_ERR_DEV) {
2138 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2139 				return -EIO;
2140 			}
2141 		} else
2142 			aa_desc = ", AA";
2143 	}
2144 
2145 	if (hdepth >= ddepth)
2146 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2147 	else
2148 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2149 			ddepth, aa_desc);
2150 
2151 	if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2152 	    ata_id_has_ncq_send_and_recv(dev->id)) {
2153 		err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2154 					     0, ap->sector_buf, 1);
2155 		if (err_mask) {
2156 			ata_dev_dbg(dev,
2157 				    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2158 				    err_mask);
2159 		} else {
2160 			u8 *cmds = dev->ncq_send_recv_cmds;
2161 
2162 			dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2163 			memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2164 
2165 			if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2166 				ata_dev_dbg(dev, "disabling queued TRIM support\n");
2167 				cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2168 					~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2169 			}
2170 		}
2171 	}
2172 
2173 	return 0;
2174 }
2175 
2176 /**
2177  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2178  *	@dev: Target device to configure
2179  *
2180  *	Configure @dev according to @dev->id.  Generic and low-level
2181  *	driver specific fixups are also applied.
2182  *
2183  *	LOCKING:
2184  *	Kernel thread context (may sleep)
2185  *
2186  *	RETURNS:
2187  *	0 on success, -errno otherwise
2188  */
2189 int ata_dev_configure(struct ata_device *dev)
2190 {
2191 	struct ata_port *ap = dev->link->ap;
2192 	struct ata_eh_context *ehc = &dev->link->eh_context;
2193 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2194 	const u16 *id = dev->id;
2195 	unsigned long xfer_mask;
2196 	unsigned int err_mask;
2197 	char revbuf[7];		/* XYZ-99\0 */
2198 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2199 	char modelbuf[ATA_ID_PROD_LEN+1];
2200 	int rc;
2201 
2202 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2203 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2204 		return 0;
2205 	}
2206 
2207 	if (ata_msg_probe(ap))
2208 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2209 
2210 	/* set horkage */
2211 	dev->horkage |= ata_dev_blacklisted(dev);
2212 	ata_force_horkage(dev);
2213 
2214 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2215 		ata_dev_info(dev, "unsupported device, disabling\n");
2216 		ata_dev_disable(dev);
2217 		return 0;
2218 	}
2219 
2220 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2221 	    dev->class == ATA_DEV_ATAPI) {
2222 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2223 			     atapi_enabled ? "not supported with this driver"
2224 			     : "disabled");
2225 		ata_dev_disable(dev);
2226 		return 0;
2227 	}
2228 
2229 	rc = ata_do_link_spd_horkage(dev);
2230 	if (rc)
2231 		return rc;
2232 
2233 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2234 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2235 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2236 		dev->horkage |= ATA_HORKAGE_NOLPM;
2237 
2238 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2239 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2240 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2241 	}
2242 
2243 	/* let ACPI work its magic */
2244 	rc = ata_acpi_on_devcfg(dev);
2245 	if (rc)
2246 		return rc;
2247 
2248 	/* massage HPA, do it early as it might change IDENTIFY data */
2249 	rc = ata_hpa_resize(dev);
2250 	if (rc)
2251 		return rc;
2252 
2253 	/* print device capabilities */
2254 	if (ata_msg_probe(ap))
2255 		ata_dev_dbg(dev,
2256 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2257 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2258 			    __func__,
2259 			    id[49], id[82], id[83], id[84],
2260 			    id[85], id[86], id[87], id[88]);
2261 
2262 	/* initialize to-be-configured parameters */
2263 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2264 	dev->max_sectors = 0;
2265 	dev->cdb_len = 0;
2266 	dev->n_sectors = 0;
2267 	dev->cylinders = 0;
2268 	dev->heads = 0;
2269 	dev->sectors = 0;
2270 	dev->multi_count = 0;
2271 
2272 	/*
2273 	 * common ATA, ATAPI feature tests
2274 	 */
2275 
2276 	/* find max transfer mode; for printk only */
2277 	xfer_mask = ata_id_xfermask(id);
2278 
2279 	if (ata_msg_probe(ap))
2280 		ata_dump_id(id);
2281 
2282 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2283 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2284 			sizeof(fwrevbuf));
2285 
2286 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2287 			sizeof(modelbuf));
2288 
2289 	/* ATA-specific feature tests */
2290 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2291 		if (ata_id_is_cfa(id)) {
2292 			/* CPRM may make this media unusable */
2293 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2294 				ata_dev_warn(dev,
2295 	"supports DRM functions and may not be fully accessible\n");
2296 			snprintf(revbuf, 7, "CFA");
2297 		} else {
2298 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2299 			/* Warn the user if the device has TPM extensions */
2300 			if (ata_id_has_tpm(id))
2301 				ata_dev_warn(dev,
2302 	"supports DRM functions and may not be fully accessible\n");
2303 		}
2304 
2305 		dev->n_sectors = ata_id_n_sectors(id);
2306 
2307 		/* get current R/W Multiple count setting */
2308 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2309 			unsigned int max = dev->id[47] & 0xff;
2310 			unsigned int cnt = dev->id[59] & 0xff;
2311 			/* only recognize/allow powers of two here */
2312 			if (is_power_of_2(max) && is_power_of_2(cnt))
2313 				if (cnt <= max)
2314 					dev->multi_count = cnt;
2315 		}
2316 
2317 		if (ata_id_has_lba(id)) {
2318 			const char *lba_desc;
2319 			char ncq_desc[24];
2320 
2321 			lba_desc = "LBA";
2322 			dev->flags |= ATA_DFLAG_LBA;
2323 			if (ata_id_has_lba48(id)) {
2324 				dev->flags |= ATA_DFLAG_LBA48;
2325 				lba_desc = "LBA48";
2326 
2327 				if (dev->n_sectors >= (1UL << 28) &&
2328 				    ata_id_has_flush_ext(id))
2329 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2330 			}
2331 
2332 			/* config NCQ */
2333 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2334 			if (rc)
2335 				return rc;
2336 
2337 			/* print device info to dmesg */
2338 			if (ata_msg_drv(ap) && print_info) {
2339 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2340 					     revbuf, modelbuf, fwrevbuf,
2341 					     ata_mode_string(xfer_mask));
2342 				ata_dev_info(dev,
2343 					     "%llu sectors, multi %u: %s %s\n",
2344 					(unsigned long long)dev->n_sectors,
2345 					dev->multi_count, lba_desc, ncq_desc);
2346 			}
2347 		} else {
2348 			/* CHS */
2349 
2350 			/* Default translation */
2351 			dev->cylinders	= id[1];
2352 			dev->heads	= id[3];
2353 			dev->sectors	= id[6];
2354 
2355 			if (ata_id_current_chs_valid(id)) {
2356 				/* Current CHS translation is valid. */
2357 				dev->cylinders = id[54];
2358 				dev->heads     = id[55];
2359 				dev->sectors   = id[56];
2360 			}
2361 
2362 			/* print device info to dmesg */
2363 			if (ata_msg_drv(ap) && print_info) {
2364 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2365 					     revbuf,	modelbuf, fwrevbuf,
2366 					     ata_mode_string(xfer_mask));
2367 				ata_dev_info(dev,
2368 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2369 					     (unsigned long long)dev->n_sectors,
2370 					     dev->multi_count, dev->cylinders,
2371 					     dev->heads, dev->sectors);
2372 			}
2373 		}
2374 
2375 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2376 		 * from SATA Settings page of Identify Device Data Log.
2377 		 */
2378 		if (ata_id_has_devslp(dev->id)) {
2379 			u8 *sata_setting = ap->sector_buf;
2380 			int i, j;
2381 
2382 			dev->flags |= ATA_DFLAG_DEVSLP;
2383 			err_mask = ata_read_log_page(dev,
2384 						     ATA_LOG_SATA_ID_DEV_DATA,
2385 						     ATA_LOG_SATA_SETTINGS,
2386 						     sata_setting,
2387 						     1);
2388 			if (err_mask)
2389 				ata_dev_dbg(dev,
2390 					    "failed to get Identify Device Data, Emask 0x%x\n",
2391 					    err_mask);
2392 			else
2393 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2394 					j = ATA_LOG_DEVSLP_OFFSET + i;
2395 					dev->devslp_timing[i] = sata_setting[j];
2396 				}
2397 		}
2398 
2399 		dev->cdb_len = 16;
2400 	}
2401 
2402 	/* ATAPI-specific feature tests */
2403 	else if (dev->class == ATA_DEV_ATAPI) {
2404 		const char *cdb_intr_string = "";
2405 		const char *atapi_an_string = "";
2406 		const char *dma_dir_string = "";
2407 		u32 sntf;
2408 
2409 		rc = atapi_cdb_len(id);
2410 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2411 			if (ata_msg_warn(ap))
2412 				ata_dev_warn(dev, "unsupported CDB len\n");
2413 			rc = -EINVAL;
2414 			goto err_out_nosup;
2415 		}
2416 		dev->cdb_len = (unsigned int) rc;
2417 
2418 		/* Enable ATAPI AN if both the host and device have
2419 		 * the support.  If PMP is attached, SNTF is required
2420 		 * to enable ATAPI AN to discern between PHY status
2421 		 * changed notifications and ATAPI ANs.
2422 		 */
2423 		if (atapi_an &&
2424 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2425 		    (!sata_pmp_attached(ap) ||
2426 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2427 			/* issue SET feature command to turn this on */
2428 			err_mask = ata_dev_set_feature(dev,
2429 					SETFEATURES_SATA_ENABLE, SATA_AN);
2430 			if (err_mask)
2431 				ata_dev_err(dev,
2432 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2433 					    err_mask);
2434 			else {
2435 				dev->flags |= ATA_DFLAG_AN;
2436 				atapi_an_string = ", ATAPI AN";
2437 			}
2438 		}
2439 
2440 		if (ata_id_cdb_intr(dev->id)) {
2441 			dev->flags |= ATA_DFLAG_CDB_INTR;
2442 			cdb_intr_string = ", CDB intr";
2443 		}
2444 
2445 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2446 			dev->flags |= ATA_DFLAG_DMADIR;
2447 			dma_dir_string = ", DMADIR";
2448 		}
2449 
2450 		if (ata_id_has_da(dev->id)) {
2451 			dev->flags |= ATA_DFLAG_DA;
2452 			zpodd_init(dev);
2453 		}
2454 
2455 		/* print device info to dmesg */
2456 		if (ata_msg_drv(ap) && print_info)
2457 			ata_dev_info(dev,
2458 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2459 				     modelbuf, fwrevbuf,
2460 				     ata_mode_string(xfer_mask),
2461 				     cdb_intr_string, atapi_an_string,
2462 				     dma_dir_string);
2463 	}
2464 
2465 	/* determine max_sectors */
2466 	dev->max_sectors = ATA_MAX_SECTORS;
2467 	if (dev->flags & ATA_DFLAG_LBA48)
2468 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2469 
2470 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2471 	   200 sectors */
2472 	if (ata_dev_knobble(dev)) {
2473 		if (ata_msg_drv(ap) && print_info)
2474 			ata_dev_info(dev, "applying bridge limits\n");
2475 		dev->udma_mask &= ATA_UDMA5;
2476 		dev->max_sectors = ATA_MAX_SECTORS;
2477 	}
2478 
2479 	if ((dev->class == ATA_DEV_ATAPI) &&
2480 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2481 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2482 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2483 	}
2484 
2485 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2486 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2487 					 dev->max_sectors);
2488 
2489 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2490 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2491 
2492 	if (ap->ops->dev_config)
2493 		ap->ops->dev_config(dev);
2494 
2495 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2496 		/* Let the user know. We don't want to disallow opens for
2497 		   rescue purposes, or in case the vendor is just a blithering
2498 		   idiot. Do this after the dev_config call as some controllers
2499 		   with buggy firmware may want to avoid reporting false device
2500 		   bugs */
2501 
2502 		if (print_info) {
2503 			ata_dev_warn(dev,
2504 "Drive reports diagnostics failure. This may indicate a drive\n");
2505 			ata_dev_warn(dev,
2506 "fault or invalid emulation. Contact drive vendor for information.\n");
2507 		}
2508 	}
2509 
2510 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2511 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2512 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2513 	}
2514 
2515 	return 0;
2516 
2517 err_out_nosup:
2518 	if (ata_msg_probe(ap))
2519 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2520 	return rc;
2521 }
2522 
2523 /**
2524  *	ata_cable_40wire	-	return 40 wire cable type
2525  *	@ap: port
2526  *
2527  *	Helper method for drivers which want to hardwire 40 wire cable
2528  *	detection.
2529  */
2530 
2531 int ata_cable_40wire(struct ata_port *ap)
2532 {
2533 	return ATA_CBL_PATA40;
2534 }
2535 
2536 /**
2537  *	ata_cable_80wire	-	return 80 wire cable type
2538  *	@ap: port
2539  *
2540  *	Helper method for drivers which want to hardwire 80 wire cable
2541  *	detection.
2542  */
2543 
2544 int ata_cable_80wire(struct ata_port *ap)
2545 {
2546 	return ATA_CBL_PATA80;
2547 }
2548 
2549 /**
2550  *	ata_cable_unknown	-	return unknown PATA cable.
2551  *	@ap: port
2552  *
2553  *	Helper method for drivers which have no PATA cable detection.
2554  */
2555 
2556 int ata_cable_unknown(struct ata_port *ap)
2557 {
2558 	return ATA_CBL_PATA_UNK;
2559 }
2560 
2561 /**
2562  *	ata_cable_ignore	-	return ignored PATA cable.
2563  *	@ap: port
2564  *
2565  *	Helper method for drivers which don't use cable type to limit
2566  *	transfer mode.
2567  */
2568 int ata_cable_ignore(struct ata_port *ap)
2569 {
2570 	return ATA_CBL_PATA_IGN;
2571 }
2572 
2573 /**
2574  *	ata_cable_sata	-	return SATA cable type
2575  *	@ap: port
2576  *
2577  *	Helper method for drivers which have SATA cables
2578  */
2579 
2580 int ata_cable_sata(struct ata_port *ap)
2581 {
2582 	return ATA_CBL_SATA;
2583 }
2584 
2585 /**
2586  *	ata_bus_probe - Reset and probe ATA bus
2587  *	@ap: Bus to probe
2588  *
2589  *	Master ATA bus probing function.  Initiates a hardware-dependent
2590  *	bus reset, then attempts to identify any devices found on
2591  *	the bus.
2592  *
2593  *	LOCKING:
2594  *	PCI/etc. bus probe sem.
2595  *
2596  *	RETURNS:
2597  *	Zero on success, negative errno otherwise.
2598  */
2599 
2600 int ata_bus_probe(struct ata_port *ap)
2601 {
2602 	unsigned int classes[ATA_MAX_DEVICES];
2603 	int tries[ATA_MAX_DEVICES];
2604 	int rc;
2605 	struct ata_device *dev;
2606 
2607 	ata_for_each_dev(dev, &ap->link, ALL)
2608 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2609 
2610  retry:
2611 	ata_for_each_dev(dev, &ap->link, ALL) {
2612 		/* If we issue an SRST then an ATA drive (not ATAPI)
2613 		 * may change configuration and be in PIO0 timing. If
2614 		 * we do a hard reset (or are coming from power on)
2615 		 * this is true for ATA or ATAPI. Until we've set a
2616 		 * suitable controller mode we should not touch the
2617 		 * bus as we may be talking too fast.
2618 		 */
2619 		dev->pio_mode = XFER_PIO_0;
2620 		dev->dma_mode = 0xff;
2621 
2622 		/* If the controller has a pio mode setup function
2623 		 * then use it to set the chipset to rights. Don't
2624 		 * touch the DMA setup as that will be dealt with when
2625 		 * configuring devices.
2626 		 */
2627 		if (ap->ops->set_piomode)
2628 			ap->ops->set_piomode(ap, dev);
2629 	}
2630 
2631 	/* reset and determine device classes */
2632 	ap->ops->phy_reset(ap);
2633 
2634 	ata_for_each_dev(dev, &ap->link, ALL) {
2635 		if (dev->class != ATA_DEV_UNKNOWN)
2636 			classes[dev->devno] = dev->class;
2637 		else
2638 			classes[dev->devno] = ATA_DEV_NONE;
2639 
2640 		dev->class = ATA_DEV_UNKNOWN;
2641 	}
2642 
2643 	/* read IDENTIFY page and configure devices. We have to do the identify
2644 	   specific sequence bass-ackwards so that PDIAG- is released by
2645 	   the slave device */
2646 
2647 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2648 		if (tries[dev->devno])
2649 			dev->class = classes[dev->devno];
2650 
2651 		if (!ata_dev_enabled(dev))
2652 			continue;
2653 
2654 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2655 				     dev->id);
2656 		if (rc)
2657 			goto fail;
2658 	}
2659 
2660 	/* Now ask for the cable type as PDIAG- should have been released */
2661 	if (ap->ops->cable_detect)
2662 		ap->cbl = ap->ops->cable_detect(ap);
2663 
2664 	/* We may have SATA bridge glue hiding here irrespective of
2665 	 * the reported cable types and sensed types.  When SATA
2666 	 * drives indicate we have a bridge, we don't know which end
2667 	 * of the link the bridge is which is a problem.
2668 	 */
2669 	ata_for_each_dev(dev, &ap->link, ENABLED)
2670 		if (ata_id_is_sata(dev->id))
2671 			ap->cbl = ATA_CBL_SATA;
2672 
2673 	/* After the identify sequence we can now set up the devices. We do
2674 	   this in the normal order so that the user doesn't get confused */
2675 
2676 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2677 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2678 		rc = ata_dev_configure(dev);
2679 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2680 		if (rc)
2681 			goto fail;
2682 	}
2683 
2684 	/* configure transfer mode */
2685 	rc = ata_set_mode(&ap->link, &dev);
2686 	if (rc)
2687 		goto fail;
2688 
2689 	ata_for_each_dev(dev, &ap->link, ENABLED)
2690 		return 0;
2691 
2692 	return -ENODEV;
2693 
2694  fail:
2695 	tries[dev->devno]--;
2696 
2697 	switch (rc) {
2698 	case -EINVAL:
2699 		/* eeek, something went very wrong, give up */
2700 		tries[dev->devno] = 0;
2701 		break;
2702 
2703 	case -ENODEV:
2704 		/* give it just one more chance */
2705 		tries[dev->devno] = min(tries[dev->devno], 1);
2706 	case -EIO:
2707 		if (tries[dev->devno] == 1) {
2708 			/* This is the last chance, better to slow
2709 			 * down than lose it.
2710 			 */
2711 			sata_down_spd_limit(&ap->link, 0);
2712 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2713 		}
2714 	}
2715 
2716 	if (!tries[dev->devno])
2717 		ata_dev_disable(dev);
2718 
2719 	goto retry;
2720 }
2721 
2722 /**
2723  *	sata_print_link_status - Print SATA link status
2724  *	@link: SATA link to printk link status about
2725  *
2726  *	This function prints link speed and status of a SATA link.
2727  *
2728  *	LOCKING:
2729  *	None.
2730  */
2731 static void sata_print_link_status(struct ata_link *link)
2732 {
2733 	u32 sstatus, scontrol, tmp;
2734 
2735 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2736 		return;
2737 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2738 
2739 	if (ata_phys_link_online(link)) {
2740 		tmp = (sstatus >> 4) & 0xf;
2741 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2742 			      sata_spd_string(tmp), sstatus, scontrol);
2743 	} else {
2744 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2745 			      sstatus, scontrol);
2746 	}
2747 }
2748 
2749 /**
2750  *	ata_dev_pair		-	return other device on cable
2751  *	@adev: device
2752  *
2753  *	Obtain the other device on the same cable, or if none is
2754  *	present NULL is returned
2755  */
2756 
2757 struct ata_device *ata_dev_pair(struct ata_device *adev)
2758 {
2759 	struct ata_link *link = adev->link;
2760 	struct ata_device *pair = &link->device[1 - adev->devno];
2761 	if (!ata_dev_enabled(pair))
2762 		return NULL;
2763 	return pair;
2764 }
2765 
2766 /**
2767  *	sata_down_spd_limit - adjust SATA spd limit downward
2768  *	@link: Link to adjust SATA spd limit for
2769  *	@spd_limit: Additional limit
2770  *
2771  *	Adjust SATA spd limit of @link downward.  Note that this
2772  *	function only adjusts the limit.  The change must be applied
2773  *	using sata_set_spd().
2774  *
2775  *	If @spd_limit is non-zero, the speed is limited to equal to or
2776  *	lower than @spd_limit if such speed is supported.  If
2777  *	@spd_limit is slower than any supported speed, only the lowest
2778  *	supported speed is allowed.
2779  *
2780  *	LOCKING:
2781  *	Inherited from caller.
2782  *
2783  *	RETURNS:
2784  *	0 on success, negative errno on failure
2785  */
2786 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2787 {
2788 	u32 sstatus, spd, mask;
2789 	int rc, bit;
2790 
2791 	if (!sata_scr_valid(link))
2792 		return -EOPNOTSUPP;
2793 
2794 	/* If SCR can be read, use it to determine the current SPD.
2795 	 * If not, use cached value in link->sata_spd.
2796 	 */
2797 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2798 	if (rc == 0 && ata_sstatus_online(sstatus))
2799 		spd = (sstatus >> 4) & 0xf;
2800 	else
2801 		spd = link->sata_spd;
2802 
2803 	mask = link->sata_spd_limit;
2804 	if (mask <= 1)
2805 		return -EINVAL;
2806 
2807 	/* unconditionally mask off the highest bit */
2808 	bit = fls(mask) - 1;
2809 	mask &= ~(1 << bit);
2810 
2811 	/* Mask off all speeds higher than or equal to the current
2812 	 * one.  Force 1.5Gbps if current SPD is not available.
2813 	 */
2814 	if (spd > 1)
2815 		mask &= (1 << (spd - 1)) - 1;
2816 	else
2817 		mask &= 1;
2818 
2819 	/* were we already at the bottom? */
2820 	if (!mask)
2821 		return -EINVAL;
2822 
2823 	if (spd_limit) {
2824 		if (mask & ((1 << spd_limit) - 1))
2825 			mask &= (1 << spd_limit) - 1;
2826 		else {
2827 			bit = ffs(mask) - 1;
2828 			mask = 1 << bit;
2829 		}
2830 	}
2831 
2832 	link->sata_spd_limit = mask;
2833 
2834 	ata_link_warn(link, "limiting SATA link speed to %s\n",
2835 		      sata_spd_string(fls(mask)));
2836 
2837 	return 0;
2838 }
2839 
2840 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2841 {
2842 	struct ata_link *host_link = &link->ap->link;
2843 	u32 limit, target, spd;
2844 
2845 	limit = link->sata_spd_limit;
2846 
2847 	/* Don't configure downstream link faster than upstream link.
2848 	 * It doesn't speed up anything and some PMPs choke on such
2849 	 * configuration.
2850 	 */
2851 	if (!ata_is_host_link(link) && host_link->sata_spd)
2852 		limit &= (1 << host_link->sata_spd) - 1;
2853 
2854 	if (limit == UINT_MAX)
2855 		target = 0;
2856 	else
2857 		target = fls(limit);
2858 
2859 	spd = (*scontrol >> 4) & 0xf;
2860 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2861 
2862 	return spd != target;
2863 }
2864 
2865 /**
2866  *	sata_set_spd_needed - is SATA spd configuration needed
2867  *	@link: Link in question
2868  *
2869  *	Test whether the spd limit in SControl matches
2870  *	@link->sata_spd_limit.  This function is used to determine
2871  *	whether hardreset is necessary to apply SATA spd
2872  *	configuration.
2873  *
2874  *	LOCKING:
2875  *	Inherited from caller.
2876  *
2877  *	RETURNS:
2878  *	1 if SATA spd configuration is needed, 0 otherwise.
2879  */
2880 static int sata_set_spd_needed(struct ata_link *link)
2881 {
2882 	u32 scontrol;
2883 
2884 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2885 		return 1;
2886 
2887 	return __sata_set_spd_needed(link, &scontrol);
2888 }
2889 
2890 /**
2891  *	sata_set_spd - set SATA spd according to spd limit
2892  *	@link: Link to set SATA spd for
2893  *
2894  *	Set SATA spd of @link according to sata_spd_limit.
2895  *
2896  *	LOCKING:
2897  *	Inherited from caller.
2898  *
2899  *	RETURNS:
2900  *	0 if spd doesn't need to be changed, 1 if spd has been
2901  *	changed.  Negative errno if SCR registers are inaccessible.
2902  */
2903 int sata_set_spd(struct ata_link *link)
2904 {
2905 	u32 scontrol;
2906 	int rc;
2907 
2908 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2909 		return rc;
2910 
2911 	if (!__sata_set_spd_needed(link, &scontrol))
2912 		return 0;
2913 
2914 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2915 		return rc;
2916 
2917 	return 1;
2918 }
2919 
2920 /*
2921  * This mode timing computation functionality is ported over from
2922  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2923  */
2924 /*
2925  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2926  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2927  * for UDMA6, which is currently supported only by Maxtor drives.
2928  *
2929  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2930  */
2931 
2932 static const struct ata_timing ata_timing[] = {
2933 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2934 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2935 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2936 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2937 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2938 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2939 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2940 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2941 
2942 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2943 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2944 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2945 
2946 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2947 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2948 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2949 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2950 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2951 
2952 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2953 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2954 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2955 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2956 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2957 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2958 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2959 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2960 
2961 	{ 0xFF }
2962 };
2963 
2964 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2965 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2966 
2967 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2968 {
2969 	q->setup	= EZ(t->setup      * 1000,  T);
2970 	q->act8b	= EZ(t->act8b      * 1000,  T);
2971 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2972 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2973 	q->active	= EZ(t->active     * 1000,  T);
2974 	q->recover	= EZ(t->recover    * 1000,  T);
2975 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2976 	q->cycle	= EZ(t->cycle      * 1000,  T);
2977 	q->udma		= EZ(t->udma       * 1000, UT);
2978 }
2979 
2980 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2981 		      struct ata_timing *m, unsigned int what)
2982 {
2983 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2984 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2985 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2986 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2987 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2988 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2989 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2990 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2991 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2992 }
2993 
2994 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2995 {
2996 	const struct ata_timing *t = ata_timing;
2997 
2998 	while (xfer_mode > t->mode)
2999 		t++;
3000 
3001 	if (xfer_mode == t->mode)
3002 		return t;
3003 
3004 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3005 			__func__, xfer_mode);
3006 
3007 	return NULL;
3008 }
3009 
3010 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3011 		       struct ata_timing *t, int T, int UT)
3012 {
3013 	const u16 *id = adev->id;
3014 	const struct ata_timing *s;
3015 	struct ata_timing p;
3016 
3017 	/*
3018 	 * Find the mode.
3019 	 */
3020 
3021 	if (!(s = ata_timing_find_mode(speed)))
3022 		return -EINVAL;
3023 
3024 	memcpy(t, s, sizeof(*s));
3025 
3026 	/*
3027 	 * If the drive is an EIDE drive, it can tell us it needs extended
3028 	 * PIO/MW_DMA cycle timing.
3029 	 */
3030 
3031 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3032 		memset(&p, 0, sizeof(p));
3033 
3034 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3035 			if (speed <= XFER_PIO_2)
3036 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3037 			else if ((speed <= XFER_PIO_4) ||
3038 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3039 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3040 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3041 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3042 
3043 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3044 	}
3045 
3046 	/*
3047 	 * Convert the timing to bus clock counts.
3048 	 */
3049 
3050 	ata_timing_quantize(t, t, T, UT);
3051 
3052 	/*
3053 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3054 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3055 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3056 	 */
3057 
3058 	if (speed > XFER_PIO_6) {
3059 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3060 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3061 	}
3062 
3063 	/*
3064 	 * Lengthen active & recovery time so that cycle time is correct.
3065 	 */
3066 
3067 	if (t->act8b + t->rec8b < t->cyc8b) {
3068 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3069 		t->rec8b = t->cyc8b - t->act8b;
3070 	}
3071 
3072 	if (t->active + t->recover < t->cycle) {
3073 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3074 		t->recover = t->cycle - t->active;
3075 	}
3076 
3077 	/* In a few cases quantisation may produce enough errors to
3078 	   leave t->cycle too low for the sum of active and recovery
3079 	   if so we must correct this */
3080 	if (t->active + t->recover > t->cycle)
3081 		t->cycle = t->active + t->recover;
3082 
3083 	return 0;
3084 }
3085 
3086 /**
3087  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3088  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3089  *	@cycle: cycle duration in ns
3090  *
3091  *	Return matching xfer mode for @cycle.  The returned mode is of
3092  *	the transfer type specified by @xfer_shift.  If @cycle is too
3093  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3094  *	than the fastest known mode, the fasted mode is returned.
3095  *
3096  *	LOCKING:
3097  *	None.
3098  *
3099  *	RETURNS:
3100  *	Matching xfer_mode, 0xff if no match found.
3101  */
3102 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3103 {
3104 	u8 base_mode = 0xff, last_mode = 0xff;
3105 	const struct ata_xfer_ent *ent;
3106 	const struct ata_timing *t;
3107 
3108 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3109 		if (ent->shift == xfer_shift)
3110 			base_mode = ent->base;
3111 
3112 	for (t = ata_timing_find_mode(base_mode);
3113 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3114 		unsigned short this_cycle;
3115 
3116 		switch (xfer_shift) {
3117 		case ATA_SHIFT_PIO:
3118 		case ATA_SHIFT_MWDMA:
3119 			this_cycle = t->cycle;
3120 			break;
3121 		case ATA_SHIFT_UDMA:
3122 			this_cycle = t->udma;
3123 			break;
3124 		default:
3125 			return 0xff;
3126 		}
3127 
3128 		if (cycle > this_cycle)
3129 			break;
3130 
3131 		last_mode = t->mode;
3132 	}
3133 
3134 	return last_mode;
3135 }
3136 
3137 /**
3138  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3139  *	@dev: Device to adjust xfer masks
3140  *	@sel: ATA_DNXFER_* selector
3141  *
3142  *	Adjust xfer masks of @dev downward.  Note that this function
3143  *	does not apply the change.  Invoking ata_set_mode() afterwards
3144  *	will apply the limit.
3145  *
3146  *	LOCKING:
3147  *	Inherited from caller.
3148  *
3149  *	RETURNS:
3150  *	0 on success, negative errno on failure
3151  */
3152 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3153 {
3154 	char buf[32];
3155 	unsigned long orig_mask, xfer_mask;
3156 	unsigned long pio_mask, mwdma_mask, udma_mask;
3157 	int quiet, highbit;
3158 
3159 	quiet = !!(sel & ATA_DNXFER_QUIET);
3160 	sel &= ~ATA_DNXFER_QUIET;
3161 
3162 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3163 						  dev->mwdma_mask,
3164 						  dev->udma_mask);
3165 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3166 
3167 	switch (sel) {
3168 	case ATA_DNXFER_PIO:
3169 		highbit = fls(pio_mask) - 1;
3170 		pio_mask &= ~(1 << highbit);
3171 		break;
3172 
3173 	case ATA_DNXFER_DMA:
3174 		if (udma_mask) {
3175 			highbit = fls(udma_mask) - 1;
3176 			udma_mask &= ~(1 << highbit);
3177 			if (!udma_mask)
3178 				return -ENOENT;
3179 		} else if (mwdma_mask) {
3180 			highbit = fls(mwdma_mask) - 1;
3181 			mwdma_mask &= ~(1 << highbit);
3182 			if (!mwdma_mask)
3183 				return -ENOENT;
3184 		}
3185 		break;
3186 
3187 	case ATA_DNXFER_40C:
3188 		udma_mask &= ATA_UDMA_MASK_40C;
3189 		break;
3190 
3191 	case ATA_DNXFER_FORCE_PIO0:
3192 		pio_mask &= 1;
3193 	case ATA_DNXFER_FORCE_PIO:
3194 		mwdma_mask = 0;
3195 		udma_mask = 0;
3196 		break;
3197 
3198 	default:
3199 		BUG();
3200 	}
3201 
3202 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3203 
3204 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3205 		return -ENOENT;
3206 
3207 	if (!quiet) {
3208 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3209 			snprintf(buf, sizeof(buf), "%s:%s",
3210 				 ata_mode_string(xfer_mask),
3211 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3212 		else
3213 			snprintf(buf, sizeof(buf), "%s",
3214 				 ata_mode_string(xfer_mask));
3215 
3216 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3217 	}
3218 
3219 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3220 			    &dev->udma_mask);
3221 
3222 	return 0;
3223 }
3224 
3225 static int ata_dev_set_mode(struct ata_device *dev)
3226 {
3227 	struct ata_port *ap = dev->link->ap;
3228 	struct ata_eh_context *ehc = &dev->link->eh_context;
3229 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3230 	const char *dev_err_whine = "";
3231 	int ign_dev_err = 0;
3232 	unsigned int err_mask = 0;
3233 	int rc;
3234 
3235 	dev->flags &= ~ATA_DFLAG_PIO;
3236 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3237 		dev->flags |= ATA_DFLAG_PIO;
3238 
3239 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3240 		dev_err_whine = " (SET_XFERMODE skipped)";
3241 	else {
3242 		if (nosetxfer)
3243 			ata_dev_warn(dev,
3244 				     "NOSETXFER but PATA detected - can't "
3245 				     "skip SETXFER, might malfunction\n");
3246 		err_mask = ata_dev_set_xfermode(dev);
3247 	}
3248 
3249 	if (err_mask & ~AC_ERR_DEV)
3250 		goto fail;
3251 
3252 	/* revalidate */
3253 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3254 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3255 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3256 	if (rc)
3257 		return rc;
3258 
3259 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3260 		/* Old CFA may refuse this command, which is just fine */
3261 		if (ata_id_is_cfa(dev->id))
3262 			ign_dev_err = 1;
3263 		/* Catch several broken garbage emulations plus some pre
3264 		   ATA devices */
3265 		if (ata_id_major_version(dev->id) == 0 &&
3266 					dev->pio_mode <= XFER_PIO_2)
3267 			ign_dev_err = 1;
3268 		/* Some very old devices and some bad newer ones fail
3269 		   any kind of SET_XFERMODE request but support PIO0-2
3270 		   timings and no IORDY */
3271 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3272 			ign_dev_err = 1;
3273 	}
3274 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3275 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3276 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3277 	    dev->dma_mode == XFER_MW_DMA_0 &&
3278 	    (dev->id[63] >> 8) & 1)
3279 		ign_dev_err = 1;
3280 
3281 	/* if the device is actually configured correctly, ignore dev err */
3282 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3283 		ign_dev_err = 1;
3284 
3285 	if (err_mask & AC_ERR_DEV) {
3286 		if (!ign_dev_err)
3287 			goto fail;
3288 		else
3289 			dev_err_whine = " (device error ignored)";
3290 	}
3291 
3292 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3293 		dev->xfer_shift, (int)dev->xfer_mode);
3294 
3295 	ata_dev_info(dev, "configured for %s%s\n",
3296 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3297 		     dev_err_whine);
3298 
3299 	return 0;
3300 
3301  fail:
3302 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3303 	return -EIO;
3304 }
3305 
3306 /**
3307  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3308  *	@link: link on which timings will be programmed
3309  *	@r_failed_dev: out parameter for failed device
3310  *
3311  *	Standard implementation of the function used to tune and set
3312  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3313  *	ata_dev_set_mode() fails, pointer to the failing device is
3314  *	returned in @r_failed_dev.
3315  *
3316  *	LOCKING:
3317  *	PCI/etc. bus probe sem.
3318  *
3319  *	RETURNS:
3320  *	0 on success, negative errno otherwise
3321  */
3322 
3323 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3324 {
3325 	struct ata_port *ap = link->ap;
3326 	struct ata_device *dev;
3327 	int rc = 0, used_dma = 0, found = 0;
3328 
3329 	/* step 1: calculate xfer_mask */
3330 	ata_for_each_dev(dev, link, ENABLED) {
3331 		unsigned long pio_mask, dma_mask;
3332 		unsigned int mode_mask;
3333 
3334 		mode_mask = ATA_DMA_MASK_ATA;
3335 		if (dev->class == ATA_DEV_ATAPI)
3336 			mode_mask = ATA_DMA_MASK_ATAPI;
3337 		else if (ata_id_is_cfa(dev->id))
3338 			mode_mask = ATA_DMA_MASK_CFA;
3339 
3340 		ata_dev_xfermask(dev);
3341 		ata_force_xfermask(dev);
3342 
3343 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3344 
3345 		if (libata_dma_mask & mode_mask)
3346 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3347 						     dev->udma_mask);
3348 		else
3349 			dma_mask = 0;
3350 
3351 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3352 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3353 
3354 		found = 1;
3355 		if (ata_dma_enabled(dev))
3356 			used_dma = 1;
3357 	}
3358 	if (!found)
3359 		goto out;
3360 
3361 	/* step 2: always set host PIO timings */
3362 	ata_for_each_dev(dev, link, ENABLED) {
3363 		if (dev->pio_mode == 0xff) {
3364 			ata_dev_warn(dev, "no PIO support\n");
3365 			rc = -EINVAL;
3366 			goto out;
3367 		}
3368 
3369 		dev->xfer_mode = dev->pio_mode;
3370 		dev->xfer_shift = ATA_SHIFT_PIO;
3371 		if (ap->ops->set_piomode)
3372 			ap->ops->set_piomode(ap, dev);
3373 	}
3374 
3375 	/* step 3: set host DMA timings */
3376 	ata_for_each_dev(dev, link, ENABLED) {
3377 		if (!ata_dma_enabled(dev))
3378 			continue;
3379 
3380 		dev->xfer_mode = dev->dma_mode;
3381 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3382 		if (ap->ops->set_dmamode)
3383 			ap->ops->set_dmamode(ap, dev);
3384 	}
3385 
3386 	/* step 4: update devices' xfer mode */
3387 	ata_for_each_dev(dev, link, ENABLED) {
3388 		rc = ata_dev_set_mode(dev);
3389 		if (rc)
3390 			goto out;
3391 	}
3392 
3393 	/* Record simplex status. If we selected DMA then the other
3394 	 * host channels are not permitted to do so.
3395 	 */
3396 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3397 		ap->host->simplex_claimed = ap;
3398 
3399  out:
3400 	if (rc)
3401 		*r_failed_dev = dev;
3402 	return rc;
3403 }
3404 
3405 /**
3406  *	ata_wait_ready - wait for link to become ready
3407  *	@link: link to be waited on
3408  *	@deadline: deadline jiffies for the operation
3409  *	@check_ready: callback to check link readiness
3410  *
3411  *	Wait for @link to become ready.  @check_ready should return
3412  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3413  *	link doesn't seem to be occupied, other errno for other error
3414  *	conditions.
3415  *
3416  *	Transient -ENODEV conditions are allowed for
3417  *	ATA_TMOUT_FF_WAIT.
3418  *
3419  *	LOCKING:
3420  *	EH context.
3421  *
3422  *	RETURNS:
3423  *	0 if @linke is ready before @deadline; otherwise, -errno.
3424  */
3425 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3426 		   int (*check_ready)(struct ata_link *link))
3427 {
3428 	unsigned long start = jiffies;
3429 	unsigned long nodev_deadline;
3430 	int warned = 0;
3431 
3432 	/* choose which 0xff timeout to use, read comment in libata.h */
3433 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3434 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3435 	else
3436 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3437 
3438 	/* Slave readiness can't be tested separately from master.  On
3439 	 * M/S emulation configuration, this function should be called
3440 	 * only on the master and it will handle both master and slave.
3441 	 */
3442 	WARN_ON(link == link->ap->slave_link);
3443 
3444 	if (time_after(nodev_deadline, deadline))
3445 		nodev_deadline = deadline;
3446 
3447 	while (1) {
3448 		unsigned long now = jiffies;
3449 		int ready, tmp;
3450 
3451 		ready = tmp = check_ready(link);
3452 		if (ready > 0)
3453 			return 0;
3454 
3455 		/*
3456 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3457 		 * is online.  Also, some SATA devices take a long
3458 		 * time to clear 0xff after reset.  Wait for
3459 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3460 		 * offline.
3461 		 *
3462 		 * Note that some PATA controllers (pata_ali) explode
3463 		 * if status register is read more than once when
3464 		 * there's no device attached.
3465 		 */
3466 		if (ready == -ENODEV) {
3467 			if (ata_link_online(link))
3468 				ready = 0;
3469 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3470 				 !ata_link_offline(link) &&
3471 				 time_before(now, nodev_deadline))
3472 				ready = 0;
3473 		}
3474 
3475 		if (ready)
3476 			return ready;
3477 		if (time_after(now, deadline))
3478 			return -EBUSY;
3479 
3480 		if (!warned && time_after(now, start + 5 * HZ) &&
3481 		    (deadline - now > 3 * HZ)) {
3482 			ata_link_warn(link,
3483 				"link is slow to respond, please be patient "
3484 				"(ready=%d)\n", tmp);
3485 			warned = 1;
3486 		}
3487 
3488 		ata_msleep(link->ap, 50);
3489 	}
3490 }
3491 
3492 /**
3493  *	ata_wait_after_reset - wait for link to become ready after reset
3494  *	@link: link to be waited on
3495  *	@deadline: deadline jiffies for the operation
3496  *	@check_ready: callback to check link readiness
3497  *
3498  *	Wait for @link to become ready after reset.
3499  *
3500  *	LOCKING:
3501  *	EH context.
3502  *
3503  *	RETURNS:
3504  *	0 if @linke is ready before @deadline; otherwise, -errno.
3505  */
3506 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3507 				int (*check_ready)(struct ata_link *link))
3508 {
3509 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3510 
3511 	return ata_wait_ready(link, deadline, check_ready);
3512 }
3513 
3514 /**
3515  *	sata_link_debounce - debounce SATA phy status
3516  *	@link: ATA link to debounce SATA phy status for
3517  *	@params: timing parameters { interval, duratinon, timeout } in msec
3518  *	@deadline: deadline jiffies for the operation
3519  *
3520  *	Make sure SStatus of @link reaches stable state, determined by
3521  *	holding the same value where DET is not 1 for @duration polled
3522  *	every @interval, before @timeout.  Timeout constraints the
3523  *	beginning of the stable state.  Because DET gets stuck at 1 on
3524  *	some controllers after hot unplugging, this functions waits
3525  *	until timeout then returns 0 if DET is stable at 1.
3526  *
3527  *	@timeout is further limited by @deadline.  The sooner of the
3528  *	two is used.
3529  *
3530  *	LOCKING:
3531  *	Kernel thread context (may sleep)
3532  *
3533  *	RETURNS:
3534  *	0 on success, -errno on failure.
3535  */
3536 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3537 		       unsigned long deadline)
3538 {
3539 	unsigned long interval = params[0];
3540 	unsigned long duration = params[1];
3541 	unsigned long last_jiffies, t;
3542 	u32 last, cur;
3543 	int rc;
3544 
3545 	t = ata_deadline(jiffies, params[2]);
3546 	if (time_before(t, deadline))
3547 		deadline = t;
3548 
3549 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3550 		return rc;
3551 	cur &= 0xf;
3552 
3553 	last = cur;
3554 	last_jiffies = jiffies;
3555 
3556 	while (1) {
3557 		ata_msleep(link->ap, interval);
3558 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3559 			return rc;
3560 		cur &= 0xf;
3561 
3562 		/* DET stable? */
3563 		if (cur == last) {
3564 			if (cur == 1 && time_before(jiffies, deadline))
3565 				continue;
3566 			if (time_after(jiffies,
3567 				       ata_deadline(last_jiffies, duration)))
3568 				return 0;
3569 			continue;
3570 		}
3571 
3572 		/* unstable, start over */
3573 		last = cur;
3574 		last_jiffies = jiffies;
3575 
3576 		/* Check deadline.  If debouncing failed, return
3577 		 * -EPIPE to tell upper layer to lower link speed.
3578 		 */
3579 		if (time_after(jiffies, deadline))
3580 			return -EPIPE;
3581 	}
3582 }
3583 
3584 /**
3585  *	sata_link_resume - resume SATA link
3586  *	@link: ATA link to resume SATA
3587  *	@params: timing parameters { interval, duratinon, timeout } in msec
3588  *	@deadline: deadline jiffies for the operation
3589  *
3590  *	Resume SATA phy @link and debounce it.
3591  *
3592  *	LOCKING:
3593  *	Kernel thread context (may sleep)
3594  *
3595  *	RETURNS:
3596  *	0 on success, -errno on failure.
3597  */
3598 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3599 		     unsigned long deadline)
3600 {
3601 	int tries = ATA_LINK_RESUME_TRIES;
3602 	u32 scontrol, serror;
3603 	int rc;
3604 
3605 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3606 		return rc;
3607 
3608 	/*
3609 	 * Writes to SControl sometimes get ignored under certain
3610 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3611 	 * cleared.
3612 	 */
3613 	do {
3614 		scontrol = (scontrol & 0x0f0) | 0x300;
3615 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3616 			return rc;
3617 		/*
3618 		 * Some PHYs react badly if SStatus is pounded
3619 		 * immediately after resuming.  Delay 200ms before
3620 		 * debouncing.
3621 		 */
3622 		ata_msleep(link->ap, 200);
3623 
3624 		/* is SControl restored correctly? */
3625 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3626 			return rc;
3627 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3628 
3629 	if ((scontrol & 0xf0f) != 0x300) {
3630 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3631 			     scontrol);
3632 		return 0;
3633 	}
3634 
3635 	if (tries < ATA_LINK_RESUME_TRIES)
3636 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3637 			      ATA_LINK_RESUME_TRIES - tries);
3638 
3639 	if ((rc = sata_link_debounce(link, params, deadline)))
3640 		return rc;
3641 
3642 	/* clear SError, some PHYs require this even for SRST to work */
3643 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3644 		rc = sata_scr_write(link, SCR_ERROR, serror);
3645 
3646 	return rc != -EINVAL ? rc : 0;
3647 }
3648 
3649 /**
3650  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3651  *	@link: ATA link to manipulate SControl for
3652  *	@policy: LPM policy to configure
3653  *	@spm_wakeup: initiate LPM transition to active state
3654  *
3655  *	Manipulate the IPM field of the SControl register of @link
3656  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3657  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3658  *	the link.  This function also clears PHYRDY_CHG before
3659  *	returning.
3660  *
3661  *	LOCKING:
3662  *	EH context.
3663  *
3664  *	RETURNS:
3665  *	0 on succes, -errno otherwise.
3666  */
3667 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3668 		      bool spm_wakeup)
3669 {
3670 	struct ata_eh_context *ehc = &link->eh_context;
3671 	bool woken_up = false;
3672 	u32 scontrol;
3673 	int rc;
3674 
3675 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3676 	if (rc)
3677 		return rc;
3678 
3679 	switch (policy) {
3680 	case ATA_LPM_MAX_POWER:
3681 		/* disable all LPM transitions */
3682 		scontrol |= (0x7 << 8);
3683 		/* initiate transition to active state */
3684 		if (spm_wakeup) {
3685 			scontrol |= (0x4 << 12);
3686 			woken_up = true;
3687 		}
3688 		break;
3689 	case ATA_LPM_MED_POWER:
3690 		/* allow LPM to PARTIAL */
3691 		scontrol &= ~(0x1 << 8);
3692 		scontrol |= (0x6 << 8);
3693 		break;
3694 	case ATA_LPM_MIN_POWER:
3695 		if (ata_link_nr_enabled(link) > 0)
3696 			/* no restrictions on LPM transitions */
3697 			scontrol &= ~(0x7 << 8);
3698 		else {
3699 			/* empty port, power off */
3700 			scontrol &= ~0xf;
3701 			scontrol |= (0x1 << 2);
3702 		}
3703 		break;
3704 	default:
3705 		WARN_ON(1);
3706 	}
3707 
3708 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3709 	if (rc)
3710 		return rc;
3711 
3712 	/* give the link time to transit out of LPM state */
3713 	if (woken_up)
3714 		msleep(10);
3715 
3716 	/* clear PHYRDY_CHG from SError */
3717 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3718 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3719 }
3720 
3721 /**
3722  *	ata_std_prereset - prepare for reset
3723  *	@link: ATA link to be reset
3724  *	@deadline: deadline jiffies for the operation
3725  *
3726  *	@link is about to be reset.  Initialize it.  Failure from
3727  *	prereset makes libata abort whole reset sequence and give up
3728  *	that port, so prereset should be best-effort.  It does its
3729  *	best to prepare for reset sequence but if things go wrong, it
3730  *	should just whine, not fail.
3731  *
3732  *	LOCKING:
3733  *	Kernel thread context (may sleep)
3734  *
3735  *	RETURNS:
3736  *	0 on success, -errno otherwise.
3737  */
3738 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3739 {
3740 	struct ata_port *ap = link->ap;
3741 	struct ata_eh_context *ehc = &link->eh_context;
3742 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3743 	int rc;
3744 
3745 	/* if we're about to do hardreset, nothing more to do */
3746 	if (ehc->i.action & ATA_EH_HARDRESET)
3747 		return 0;
3748 
3749 	/* if SATA, resume link */
3750 	if (ap->flags & ATA_FLAG_SATA) {
3751 		rc = sata_link_resume(link, timing, deadline);
3752 		/* whine about phy resume failure but proceed */
3753 		if (rc && rc != -EOPNOTSUPP)
3754 			ata_link_warn(link,
3755 				      "failed to resume link for reset (errno=%d)\n",
3756 				      rc);
3757 	}
3758 
3759 	/* no point in trying softreset on offline link */
3760 	if (ata_phys_link_offline(link))
3761 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3762 
3763 	return 0;
3764 }
3765 
3766 /**
3767  *	sata_link_hardreset - reset link via SATA phy reset
3768  *	@link: link to reset
3769  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3770  *	@deadline: deadline jiffies for the operation
3771  *	@online: optional out parameter indicating link onlineness
3772  *	@check_ready: optional callback to check link readiness
3773  *
3774  *	SATA phy-reset @link using DET bits of SControl register.
3775  *	After hardreset, link readiness is waited upon using
3776  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3777  *	allowed to not specify @check_ready and wait itself after this
3778  *	function returns.  Device classification is LLD's
3779  *	responsibility.
3780  *
3781  *	*@online is set to one iff reset succeeded and @link is online
3782  *	after reset.
3783  *
3784  *	LOCKING:
3785  *	Kernel thread context (may sleep)
3786  *
3787  *	RETURNS:
3788  *	0 on success, -errno otherwise.
3789  */
3790 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3791 			unsigned long deadline,
3792 			bool *online, int (*check_ready)(struct ata_link *))
3793 {
3794 	u32 scontrol;
3795 	int rc;
3796 
3797 	DPRINTK("ENTER\n");
3798 
3799 	if (online)
3800 		*online = false;
3801 
3802 	if (sata_set_spd_needed(link)) {
3803 		/* SATA spec says nothing about how to reconfigure
3804 		 * spd.  To be on the safe side, turn off phy during
3805 		 * reconfiguration.  This works for at least ICH7 AHCI
3806 		 * and Sil3124.
3807 		 */
3808 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3809 			goto out;
3810 
3811 		scontrol = (scontrol & 0x0f0) | 0x304;
3812 
3813 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3814 			goto out;
3815 
3816 		sata_set_spd(link);
3817 	}
3818 
3819 	/* issue phy wake/reset */
3820 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3821 		goto out;
3822 
3823 	scontrol = (scontrol & 0x0f0) | 0x301;
3824 
3825 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3826 		goto out;
3827 
3828 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3829 	 * 10.4.2 says at least 1 ms.
3830 	 */
3831 	ata_msleep(link->ap, 1);
3832 
3833 	/* bring link back */
3834 	rc = sata_link_resume(link, timing, deadline);
3835 	if (rc)
3836 		goto out;
3837 	/* if link is offline nothing more to do */
3838 	if (ata_phys_link_offline(link))
3839 		goto out;
3840 
3841 	/* Link is online.  From this point, -ENODEV too is an error. */
3842 	if (online)
3843 		*online = true;
3844 
3845 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3846 		/* If PMP is supported, we have to do follow-up SRST.
3847 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3848 		 * the first port is empty.  Wait only for
3849 		 * ATA_TMOUT_PMP_SRST_WAIT.
3850 		 */
3851 		if (check_ready) {
3852 			unsigned long pmp_deadline;
3853 
3854 			pmp_deadline = ata_deadline(jiffies,
3855 						    ATA_TMOUT_PMP_SRST_WAIT);
3856 			if (time_after(pmp_deadline, deadline))
3857 				pmp_deadline = deadline;
3858 			ata_wait_ready(link, pmp_deadline, check_ready);
3859 		}
3860 		rc = -EAGAIN;
3861 		goto out;
3862 	}
3863 
3864 	rc = 0;
3865 	if (check_ready)
3866 		rc = ata_wait_ready(link, deadline, check_ready);
3867  out:
3868 	if (rc && rc != -EAGAIN) {
3869 		/* online is set iff link is online && reset succeeded */
3870 		if (online)
3871 			*online = false;
3872 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3873 	}
3874 	DPRINTK("EXIT, rc=%d\n", rc);
3875 	return rc;
3876 }
3877 
3878 /**
3879  *	sata_std_hardreset - COMRESET w/o waiting or classification
3880  *	@link: link to reset
3881  *	@class: resulting class of attached device
3882  *	@deadline: deadline jiffies for the operation
3883  *
3884  *	Standard SATA COMRESET w/o waiting or classification.
3885  *
3886  *	LOCKING:
3887  *	Kernel thread context (may sleep)
3888  *
3889  *	RETURNS:
3890  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3891  */
3892 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3893 		       unsigned long deadline)
3894 {
3895 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3896 	bool online;
3897 	int rc;
3898 
3899 	/* do hardreset */
3900 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3901 	return online ? -EAGAIN : rc;
3902 }
3903 
3904 /**
3905  *	ata_std_postreset - standard postreset callback
3906  *	@link: the target ata_link
3907  *	@classes: classes of attached devices
3908  *
3909  *	This function is invoked after a successful reset.  Note that
3910  *	the device might have been reset more than once using
3911  *	different reset methods before postreset is invoked.
3912  *
3913  *	LOCKING:
3914  *	Kernel thread context (may sleep)
3915  */
3916 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3917 {
3918 	u32 serror;
3919 
3920 	DPRINTK("ENTER\n");
3921 
3922 	/* reset complete, clear SError */
3923 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3924 		sata_scr_write(link, SCR_ERROR, serror);
3925 
3926 	/* print link status */
3927 	sata_print_link_status(link);
3928 
3929 	DPRINTK("EXIT\n");
3930 }
3931 
3932 /**
3933  *	ata_dev_same_device - Determine whether new ID matches configured device
3934  *	@dev: device to compare against
3935  *	@new_class: class of the new device
3936  *	@new_id: IDENTIFY page of the new device
3937  *
3938  *	Compare @new_class and @new_id against @dev and determine
3939  *	whether @dev is the device indicated by @new_class and
3940  *	@new_id.
3941  *
3942  *	LOCKING:
3943  *	None.
3944  *
3945  *	RETURNS:
3946  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3947  */
3948 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3949 			       const u16 *new_id)
3950 {
3951 	const u16 *old_id = dev->id;
3952 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3953 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3954 
3955 	if (dev->class != new_class) {
3956 		ata_dev_info(dev, "class mismatch %d != %d\n",
3957 			     dev->class, new_class);
3958 		return 0;
3959 	}
3960 
3961 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3962 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3963 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3964 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3965 
3966 	if (strcmp(model[0], model[1])) {
3967 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3968 			     model[0], model[1]);
3969 		return 0;
3970 	}
3971 
3972 	if (strcmp(serial[0], serial[1])) {
3973 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3974 			     serial[0], serial[1]);
3975 		return 0;
3976 	}
3977 
3978 	return 1;
3979 }
3980 
3981 /**
3982  *	ata_dev_reread_id - Re-read IDENTIFY data
3983  *	@dev: target ATA device
3984  *	@readid_flags: read ID flags
3985  *
3986  *	Re-read IDENTIFY page and make sure @dev is still attached to
3987  *	the port.
3988  *
3989  *	LOCKING:
3990  *	Kernel thread context (may sleep)
3991  *
3992  *	RETURNS:
3993  *	0 on success, negative errno otherwise
3994  */
3995 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3996 {
3997 	unsigned int class = dev->class;
3998 	u16 *id = (void *)dev->link->ap->sector_buf;
3999 	int rc;
4000 
4001 	/* read ID data */
4002 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4003 	if (rc)
4004 		return rc;
4005 
4006 	/* is the device still there? */
4007 	if (!ata_dev_same_device(dev, class, id))
4008 		return -ENODEV;
4009 
4010 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4011 	return 0;
4012 }
4013 
4014 /**
4015  *	ata_dev_revalidate - Revalidate ATA device
4016  *	@dev: device to revalidate
4017  *	@new_class: new class code
4018  *	@readid_flags: read ID flags
4019  *
4020  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4021  *	port and reconfigure it according to the new IDENTIFY page.
4022  *
4023  *	LOCKING:
4024  *	Kernel thread context (may sleep)
4025  *
4026  *	RETURNS:
4027  *	0 on success, negative errno otherwise
4028  */
4029 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4030 		       unsigned int readid_flags)
4031 {
4032 	u64 n_sectors = dev->n_sectors;
4033 	u64 n_native_sectors = dev->n_native_sectors;
4034 	int rc;
4035 
4036 	if (!ata_dev_enabled(dev))
4037 		return -ENODEV;
4038 
4039 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4040 	if (ata_class_enabled(new_class) &&
4041 	    new_class != ATA_DEV_ATA &&
4042 	    new_class != ATA_DEV_ATAPI &&
4043 	    new_class != ATA_DEV_ZAC &&
4044 	    new_class != ATA_DEV_SEMB) {
4045 		ata_dev_info(dev, "class mismatch %u != %u\n",
4046 			     dev->class, new_class);
4047 		rc = -ENODEV;
4048 		goto fail;
4049 	}
4050 
4051 	/* re-read ID */
4052 	rc = ata_dev_reread_id(dev, readid_flags);
4053 	if (rc)
4054 		goto fail;
4055 
4056 	/* configure device according to the new ID */
4057 	rc = ata_dev_configure(dev);
4058 	if (rc)
4059 		goto fail;
4060 
4061 	/* verify n_sectors hasn't changed */
4062 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4063 	    dev->n_sectors == n_sectors)
4064 		return 0;
4065 
4066 	/* n_sectors has changed */
4067 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4068 		     (unsigned long long)n_sectors,
4069 		     (unsigned long long)dev->n_sectors);
4070 
4071 	/*
4072 	 * Something could have caused HPA to be unlocked
4073 	 * involuntarily.  If n_native_sectors hasn't changed and the
4074 	 * new size matches it, keep the device.
4075 	 */
4076 	if (dev->n_native_sectors == n_native_sectors &&
4077 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4078 		ata_dev_warn(dev,
4079 			     "new n_sectors matches native, probably "
4080 			     "late HPA unlock, n_sectors updated\n");
4081 		/* use the larger n_sectors */
4082 		return 0;
4083 	}
4084 
4085 	/*
4086 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4087 	 * unlocking HPA in those cases.
4088 	 *
4089 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4090 	 */
4091 	if (dev->n_native_sectors == n_native_sectors &&
4092 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4093 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4094 		ata_dev_warn(dev,
4095 			     "old n_sectors matches native, probably "
4096 			     "late HPA lock, will try to unlock HPA\n");
4097 		/* try unlocking HPA */
4098 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4099 		rc = -EIO;
4100 	} else
4101 		rc = -ENODEV;
4102 
4103 	/* restore original n_[native_]sectors and fail */
4104 	dev->n_native_sectors = n_native_sectors;
4105 	dev->n_sectors = n_sectors;
4106  fail:
4107 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4108 	return rc;
4109 }
4110 
4111 struct ata_blacklist_entry {
4112 	const char *model_num;
4113 	const char *model_rev;
4114 	unsigned long horkage;
4115 };
4116 
4117 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4118 	/* Devices with DMA related problems under Linux */
4119 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4120 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4121 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4122 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4123 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4124 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4125 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4126 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4127 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4128 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4129 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4130 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4131 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4132 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4133 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4134 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4135 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4136 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4137 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4138 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4139 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4140 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4141 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4142 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4143 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4144 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4145 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4146 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4147 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4148 	/* Odd clown on sil3726/4726 PMPs */
4149 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4150 
4151 	/* Weird ATAPI devices */
4152 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4153 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4154 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4155 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4156 
4157 	/* Devices we expect to fail diagnostics */
4158 
4159 	/* Devices where NCQ should be avoided */
4160 	/* NCQ is slow */
4161 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4162 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4163 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4164 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4165 	/* NCQ is broken */
4166 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4167 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4168 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4169 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4170 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4171 
4172 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4173 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4174 						ATA_HORKAGE_FIRMWARE_WARN },
4175 
4176 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4177 						ATA_HORKAGE_FIRMWARE_WARN },
4178 
4179 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4180 						ATA_HORKAGE_FIRMWARE_WARN },
4181 
4182 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4183 						ATA_HORKAGE_FIRMWARE_WARN },
4184 
4185 	/* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4186 	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4187 	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4188 
4189 	/* Blacklist entries taken from Silicon Image 3124/3132
4190 	   Windows driver .inf file - also several Linux problem reports */
4191 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4192 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4193 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4194 
4195 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4196 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4197 
4198 	/* devices which puke on READ_NATIVE_MAX */
4199 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4200 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4201 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4202 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4203 
4204 	/* this one allows HPA unlocking but fails IOs on the area */
4205 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4206 
4207 	/* Devices which report 1 sector over size HPA */
4208 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4209 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4210 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4211 
4212 	/* Devices which get the IVB wrong */
4213 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4214 	/* Maybe we should just blacklist TSSTcorp... */
4215 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4216 
4217 	/* Devices that do not need bridging limits applied */
4218 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4219 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4220 
4221 	/* Devices which aren't very happy with higher link speeds */
4222 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4223 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4224 
4225 	/*
4226 	 * Devices which choke on SETXFER.  Applies only if both the
4227 	 * device and controller are SATA.
4228 	 */
4229 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4230 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4231 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4232 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4233 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4234 
4235 	/* devices that don't properly handle queued TRIM commands */
4236 	{ "Micron_M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4237 	{ "Crucial_CT???M500SSD*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4238 	{ "Micron_M550*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4239 	{ "Crucial_CT*M550SSD*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4240 
4241 	/*
4242 	 * Some WD SATA-I drives spin up and down erratically when the link
4243 	 * is put into the slumber mode.  We don't have full list of the
4244 	 * affected devices.  Disable LPM if the device matches one of the
4245 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4246 	 * lost too.
4247 	 *
4248 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4249 	 */
4250 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4251 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4252 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4253 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4254 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4255 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4256 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4257 
4258 	/* End Marker */
4259 	{ }
4260 };
4261 
4262 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4263 {
4264 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4265 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4266 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4267 
4268 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4269 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4270 
4271 	while (ad->model_num) {
4272 		if (glob_match(ad->model_num, model_num)) {
4273 			if (ad->model_rev == NULL)
4274 				return ad->horkage;
4275 			if (glob_match(ad->model_rev, model_rev))
4276 				return ad->horkage;
4277 		}
4278 		ad++;
4279 	}
4280 	return 0;
4281 }
4282 
4283 static int ata_dma_blacklisted(const struct ata_device *dev)
4284 {
4285 	/* We don't support polling DMA.
4286 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4287 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4288 	 */
4289 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4290 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4291 		return 1;
4292 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4293 }
4294 
4295 /**
4296  *	ata_is_40wire		-	check drive side detection
4297  *	@dev: device
4298  *
4299  *	Perform drive side detection decoding, allowing for device vendors
4300  *	who can't follow the documentation.
4301  */
4302 
4303 static int ata_is_40wire(struct ata_device *dev)
4304 {
4305 	if (dev->horkage & ATA_HORKAGE_IVB)
4306 		return ata_drive_40wire_relaxed(dev->id);
4307 	return ata_drive_40wire(dev->id);
4308 }
4309 
4310 /**
4311  *	cable_is_40wire		-	40/80/SATA decider
4312  *	@ap: port to consider
4313  *
4314  *	This function encapsulates the policy for speed management
4315  *	in one place. At the moment we don't cache the result but
4316  *	there is a good case for setting ap->cbl to the result when
4317  *	we are called with unknown cables (and figuring out if it
4318  *	impacts hotplug at all).
4319  *
4320  *	Return 1 if the cable appears to be 40 wire.
4321  */
4322 
4323 static int cable_is_40wire(struct ata_port *ap)
4324 {
4325 	struct ata_link *link;
4326 	struct ata_device *dev;
4327 
4328 	/* If the controller thinks we are 40 wire, we are. */
4329 	if (ap->cbl == ATA_CBL_PATA40)
4330 		return 1;
4331 
4332 	/* If the controller thinks we are 80 wire, we are. */
4333 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4334 		return 0;
4335 
4336 	/* If the system is known to be 40 wire short cable (eg
4337 	 * laptop), then we allow 80 wire modes even if the drive
4338 	 * isn't sure.
4339 	 */
4340 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4341 		return 0;
4342 
4343 	/* If the controller doesn't know, we scan.
4344 	 *
4345 	 * Note: We look for all 40 wire detects at this point.  Any
4346 	 *       80 wire detect is taken to be 80 wire cable because
4347 	 * - in many setups only the one drive (slave if present) will
4348 	 *   give a valid detect
4349 	 * - if you have a non detect capable drive you don't want it
4350 	 *   to colour the choice
4351 	 */
4352 	ata_for_each_link(link, ap, EDGE) {
4353 		ata_for_each_dev(dev, link, ENABLED) {
4354 			if (!ata_is_40wire(dev))
4355 				return 0;
4356 		}
4357 	}
4358 	return 1;
4359 }
4360 
4361 /**
4362  *	ata_dev_xfermask - Compute supported xfermask of the given device
4363  *	@dev: Device to compute xfermask for
4364  *
4365  *	Compute supported xfermask of @dev and store it in
4366  *	dev->*_mask.  This function is responsible for applying all
4367  *	known limits including host controller limits, device
4368  *	blacklist, etc...
4369  *
4370  *	LOCKING:
4371  *	None.
4372  */
4373 static void ata_dev_xfermask(struct ata_device *dev)
4374 {
4375 	struct ata_link *link = dev->link;
4376 	struct ata_port *ap = link->ap;
4377 	struct ata_host *host = ap->host;
4378 	unsigned long xfer_mask;
4379 
4380 	/* controller modes available */
4381 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4382 				      ap->mwdma_mask, ap->udma_mask);
4383 
4384 	/* drive modes available */
4385 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4386 				       dev->mwdma_mask, dev->udma_mask);
4387 	xfer_mask &= ata_id_xfermask(dev->id);
4388 
4389 	/*
4390 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4391 	 *	cable
4392 	 */
4393 	if (ata_dev_pair(dev)) {
4394 		/* No PIO5 or PIO6 */
4395 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4396 		/* No MWDMA3 or MWDMA 4 */
4397 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4398 	}
4399 
4400 	if (ata_dma_blacklisted(dev)) {
4401 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4402 		ata_dev_warn(dev,
4403 			     "device is on DMA blacklist, disabling DMA\n");
4404 	}
4405 
4406 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4407 	    host->simplex_claimed && host->simplex_claimed != ap) {
4408 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4409 		ata_dev_warn(dev,
4410 			     "simplex DMA is claimed by other device, disabling DMA\n");
4411 	}
4412 
4413 	if (ap->flags & ATA_FLAG_NO_IORDY)
4414 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4415 
4416 	if (ap->ops->mode_filter)
4417 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4418 
4419 	/* Apply cable rule here.  Don't apply it early because when
4420 	 * we handle hot plug the cable type can itself change.
4421 	 * Check this last so that we know if the transfer rate was
4422 	 * solely limited by the cable.
4423 	 * Unknown or 80 wire cables reported host side are checked
4424 	 * drive side as well. Cases where we know a 40wire cable
4425 	 * is used safely for 80 are not checked here.
4426 	 */
4427 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4428 		/* UDMA/44 or higher would be available */
4429 		if (cable_is_40wire(ap)) {
4430 			ata_dev_warn(dev,
4431 				     "limited to UDMA/33 due to 40-wire cable\n");
4432 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4433 		}
4434 
4435 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4436 			    &dev->mwdma_mask, &dev->udma_mask);
4437 }
4438 
4439 /**
4440  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4441  *	@dev: Device to which command will be sent
4442  *
4443  *	Issue SET FEATURES - XFER MODE command to device @dev
4444  *	on port @ap.
4445  *
4446  *	LOCKING:
4447  *	PCI/etc. bus probe sem.
4448  *
4449  *	RETURNS:
4450  *	0 on success, AC_ERR_* mask otherwise.
4451  */
4452 
4453 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4454 {
4455 	struct ata_taskfile tf;
4456 	unsigned int err_mask;
4457 
4458 	/* set up set-features taskfile */
4459 	DPRINTK("set features - xfer mode\n");
4460 
4461 	/* Some controllers and ATAPI devices show flaky interrupt
4462 	 * behavior after setting xfer mode.  Use polling instead.
4463 	 */
4464 	ata_tf_init(dev, &tf);
4465 	tf.command = ATA_CMD_SET_FEATURES;
4466 	tf.feature = SETFEATURES_XFER;
4467 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4468 	tf.protocol = ATA_PROT_NODATA;
4469 	/* If we are using IORDY we must send the mode setting command */
4470 	if (ata_pio_need_iordy(dev))
4471 		tf.nsect = dev->xfer_mode;
4472 	/* If the device has IORDY and the controller does not - turn it off */
4473  	else if (ata_id_has_iordy(dev->id))
4474 		tf.nsect = 0x01;
4475 	else /* In the ancient relic department - skip all of this */
4476 		return 0;
4477 
4478 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4479 
4480 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4481 	return err_mask;
4482 }
4483 
4484 /**
4485  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4486  *	@dev: Device to which command will be sent
4487  *	@enable: Whether to enable or disable the feature
4488  *	@feature: The sector count represents the feature to set
4489  *
4490  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4491  *	on port @ap with sector count
4492  *
4493  *	LOCKING:
4494  *	PCI/etc. bus probe sem.
4495  *
4496  *	RETURNS:
4497  *	0 on success, AC_ERR_* mask otherwise.
4498  */
4499 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4500 {
4501 	struct ata_taskfile tf;
4502 	unsigned int err_mask;
4503 
4504 	/* set up set-features taskfile */
4505 	DPRINTK("set features - SATA features\n");
4506 
4507 	ata_tf_init(dev, &tf);
4508 	tf.command = ATA_CMD_SET_FEATURES;
4509 	tf.feature = enable;
4510 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4511 	tf.protocol = ATA_PROT_NODATA;
4512 	tf.nsect = feature;
4513 
4514 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4515 
4516 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4517 	return err_mask;
4518 }
4519 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4520 
4521 /**
4522  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4523  *	@dev: Device to which command will be sent
4524  *	@heads: Number of heads (taskfile parameter)
4525  *	@sectors: Number of sectors (taskfile parameter)
4526  *
4527  *	LOCKING:
4528  *	Kernel thread context (may sleep)
4529  *
4530  *	RETURNS:
4531  *	0 on success, AC_ERR_* mask otherwise.
4532  */
4533 static unsigned int ata_dev_init_params(struct ata_device *dev,
4534 					u16 heads, u16 sectors)
4535 {
4536 	struct ata_taskfile tf;
4537 	unsigned int err_mask;
4538 
4539 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4540 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4541 		return AC_ERR_INVALID;
4542 
4543 	/* set up init dev params taskfile */
4544 	DPRINTK("init dev params \n");
4545 
4546 	ata_tf_init(dev, &tf);
4547 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4548 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4549 	tf.protocol = ATA_PROT_NODATA;
4550 	tf.nsect = sectors;
4551 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4552 
4553 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4554 	/* A clean abort indicates an original or just out of spec drive
4555 	   and we should continue as we issue the setup based on the
4556 	   drive reported working geometry */
4557 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4558 		err_mask = 0;
4559 
4560 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4561 	return err_mask;
4562 }
4563 
4564 /**
4565  *	ata_sg_clean - Unmap DMA memory associated with command
4566  *	@qc: Command containing DMA memory to be released
4567  *
4568  *	Unmap all mapped DMA memory associated with this command.
4569  *
4570  *	LOCKING:
4571  *	spin_lock_irqsave(host lock)
4572  */
4573 void ata_sg_clean(struct ata_queued_cmd *qc)
4574 {
4575 	struct ata_port *ap = qc->ap;
4576 	struct scatterlist *sg = qc->sg;
4577 	int dir = qc->dma_dir;
4578 
4579 	WARN_ON_ONCE(sg == NULL);
4580 
4581 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4582 
4583 	if (qc->n_elem)
4584 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4585 
4586 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4587 	qc->sg = NULL;
4588 }
4589 
4590 /**
4591  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4592  *	@qc: Metadata associated with taskfile to check
4593  *
4594  *	Allow low-level driver to filter ATA PACKET commands, returning
4595  *	a status indicating whether or not it is OK to use DMA for the
4596  *	supplied PACKET command.
4597  *
4598  *	LOCKING:
4599  *	spin_lock_irqsave(host lock)
4600  *
4601  *	RETURNS: 0 when ATAPI DMA can be used
4602  *               nonzero otherwise
4603  */
4604 int atapi_check_dma(struct ata_queued_cmd *qc)
4605 {
4606 	struct ata_port *ap = qc->ap;
4607 
4608 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4609 	 * few ATAPI devices choke on such DMA requests.
4610 	 */
4611 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4612 	    unlikely(qc->nbytes & 15))
4613 		return 1;
4614 
4615 	if (ap->ops->check_atapi_dma)
4616 		return ap->ops->check_atapi_dma(qc);
4617 
4618 	return 0;
4619 }
4620 
4621 /**
4622  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4623  *	@qc: ATA command in question
4624  *
4625  *	Non-NCQ commands cannot run with any other command, NCQ or
4626  *	not.  As upper layer only knows the queue depth, we are
4627  *	responsible for maintaining exclusion.  This function checks
4628  *	whether a new command @qc can be issued.
4629  *
4630  *	LOCKING:
4631  *	spin_lock_irqsave(host lock)
4632  *
4633  *	RETURNS:
4634  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4635  */
4636 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4637 {
4638 	struct ata_link *link = qc->dev->link;
4639 
4640 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4641 		if (!ata_tag_valid(link->active_tag))
4642 			return 0;
4643 	} else {
4644 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4645 			return 0;
4646 	}
4647 
4648 	return ATA_DEFER_LINK;
4649 }
4650 
4651 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4652 
4653 /**
4654  *	ata_sg_init - Associate command with scatter-gather table.
4655  *	@qc: Command to be associated
4656  *	@sg: Scatter-gather table.
4657  *	@n_elem: Number of elements in s/g table.
4658  *
4659  *	Initialize the data-related elements of queued_cmd @qc
4660  *	to point to a scatter-gather table @sg, containing @n_elem
4661  *	elements.
4662  *
4663  *	LOCKING:
4664  *	spin_lock_irqsave(host lock)
4665  */
4666 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4667 		 unsigned int n_elem)
4668 {
4669 	qc->sg = sg;
4670 	qc->n_elem = n_elem;
4671 	qc->cursg = qc->sg;
4672 }
4673 
4674 /**
4675  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4676  *	@qc: Command with scatter-gather table to be mapped.
4677  *
4678  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4679  *
4680  *	LOCKING:
4681  *	spin_lock_irqsave(host lock)
4682  *
4683  *	RETURNS:
4684  *	Zero on success, negative on error.
4685  *
4686  */
4687 static int ata_sg_setup(struct ata_queued_cmd *qc)
4688 {
4689 	struct ata_port *ap = qc->ap;
4690 	unsigned int n_elem;
4691 
4692 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4693 
4694 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4695 	if (n_elem < 1)
4696 		return -1;
4697 
4698 	DPRINTK("%d sg elements mapped\n", n_elem);
4699 	qc->orig_n_elem = qc->n_elem;
4700 	qc->n_elem = n_elem;
4701 	qc->flags |= ATA_QCFLAG_DMAMAP;
4702 
4703 	return 0;
4704 }
4705 
4706 /**
4707  *	swap_buf_le16 - swap halves of 16-bit words in place
4708  *	@buf:  Buffer to swap
4709  *	@buf_words:  Number of 16-bit words in buffer.
4710  *
4711  *	Swap halves of 16-bit words if needed to convert from
4712  *	little-endian byte order to native cpu byte order, or
4713  *	vice-versa.
4714  *
4715  *	LOCKING:
4716  *	Inherited from caller.
4717  */
4718 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4719 {
4720 #ifdef __BIG_ENDIAN
4721 	unsigned int i;
4722 
4723 	for (i = 0; i < buf_words; i++)
4724 		buf[i] = le16_to_cpu(buf[i]);
4725 #endif /* __BIG_ENDIAN */
4726 }
4727 
4728 /**
4729  *	ata_qc_new - Request an available ATA command, for queueing
4730  *	@ap: target port
4731  *
4732  *	Some ATA host controllers may implement a queue depth which is less
4733  *	than ATA_MAX_QUEUE. So we shouldn't allocate a tag which is beyond
4734  *	the hardware limitation.
4735  *
4736  *	LOCKING:
4737  *	None.
4738  */
4739 
4740 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4741 {
4742 	struct ata_queued_cmd *qc = NULL;
4743 	unsigned int max_queue = ap->host->n_tags;
4744 	unsigned int i, tag;
4745 
4746 	/* no command while frozen */
4747 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4748 		return NULL;
4749 
4750 	for (i = 0, tag = ap->last_tag + 1; i < max_queue; i++, tag++) {
4751 		tag = tag < max_queue ? tag : 0;
4752 
4753 		/* the last tag is reserved for internal command. */
4754 		if (tag == ATA_TAG_INTERNAL)
4755 			continue;
4756 
4757 		if (!test_and_set_bit(tag, &ap->qc_allocated)) {
4758 			qc = __ata_qc_from_tag(ap, tag);
4759 			qc->tag = tag;
4760 			ap->last_tag = tag;
4761 			break;
4762 		}
4763 	}
4764 
4765 	return qc;
4766 }
4767 
4768 /**
4769  *	ata_qc_new_init - Request an available ATA command, and initialize it
4770  *	@dev: Device from whom we request an available command structure
4771  *
4772  *	LOCKING:
4773  *	None.
4774  */
4775 
4776 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4777 {
4778 	struct ata_port *ap = dev->link->ap;
4779 	struct ata_queued_cmd *qc;
4780 
4781 	qc = ata_qc_new(ap);
4782 	if (qc) {
4783 		qc->scsicmd = NULL;
4784 		qc->ap = ap;
4785 		qc->dev = dev;
4786 
4787 		ata_qc_reinit(qc);
4788 	}
4789 
4790 	return qc;
4791 }
4792 
4793 /**
4794  *	ata_qc_free - free unused ata_queued_cmd
4795  *	@qc: Command to complete
4796  *
4797  *	Designed to free unused ata_queued_cmd object
4798  *	in case something prevents using it.
4799  *
4800  *	LOCKING:
4801  *	spin_lock_irqsave(host lock)
4802  */
4803 void ata_qc_free(struct ata_queued_cmd *qc)
4804 {
4805 	struct ata_port *ap;
4806 	unsigned int tag;
4807 
4808 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4809 	ap = qc->ap;
4810 
4811 	qc->flags = 0;
4812 	tag = qc->tag;
4813 	if (likely(ata_tag_valid(tag))) {
4814 		qc->tag = ATA_TAG_POISON;
4815 		clear_bit(tag, &ap->qc_allocated);
4816 	}
4817 }
4818 
4819 void __ata_qc_complete(struct ata_queued_cmd *qc)
4820 {
4821 	struct ata_port *ap;
4822 	struct ata_link *link;
4823 
4824 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4825 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4826 	ap = qc->ap;
4827 	link = qc->dev->link;
4828 
4829 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4830 		ata_sg_clean(qc);
4831 
4832 	/* command should be marked inactive atomically with qc completion */
4833 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4834 		link->sactive &= ~(1 << qc->tag);
4835 		if (!link->sactive)
4836 			ap->nr_active_links--;
4837 	} else {
4838 		link->active_tag = ATA_TAG_POISON;
4839 		ap->nr_active_links--;
4840 	}
4841 
4842 	/* clear exclusive status */
4843 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4844 		     ap->excl_link == link))
4845 		ap->excl_link = NULL;
4846 
4847 	/* atapi: mark qc as inactive to prevent the interrupt handler
4848 	 * from completing the command twice later, before the error handler
4849 	 * is called. (when rc != 0 and atapi request sense is needed)
4850 	 */
4851 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4852 	ap->qc_active &= ~(1 << qc->tag);
4853 
4854 	/* call completion callback */
4855 	qc->complete_fn(qc);
4856 }
4857 
4858 static void fill_result_tf(struct ata_queued_cmd *qc)
4859 {
4860 	struct ata_port *ap = qc->ap;
4861 
4862 	qc->result_tf.flags = qc->tf.flags;
4863 	ap->ops->qc_fill_rtf(qc);
4864 }
4865 
4866 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4867 {
4868 	struct ata_device *dev = qc->dev;
4869 
4870 	if (ata_is_nodata(qc->tf.protocol))
4871 		return;
4872 
4873 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4874 		return;
4875 
4876 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4877 }
4878 
4879 /**
4880  *	ata_qc_complete - Complete an active ATA command
4881  *	@qc: Command to complete
4882  *
4883  *	Indicate to the mid and upper layers that an ATA command has
4884  *	completed, with either an ok or not-ok status.
4885  *
4886  *	Refrain from calling this function multiple times when
4887  *	successfully completing multiple NCQ commands.
4888  *	ata_qc_complete_multiple() should be used instead, which will
4889  *	properly update IRQ expect state.
4890  *
4891  *	LOCKING:
4892  *	spin_lock_irqsave(host lock)
4893  */
4894 void ata_qc_complete(struct ata_queued_cmd *qc)
4895 {
4896 	struct ata_port *ap = qc->ap;
4897 
4898 	/* XXX: New EH and old EH use different mechanisms to
4899 	 * synchronize EH with regular execution path.
4900 	 *
4901 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4902 	 * Normal execution path is responsible for not accessing a
4903 	 * failed qc.  libata core enforces the rule by returning NULL
4904 	 * from ata_qc_from_tag() for failed qcs.
4905 	 *
4906 	 * Old EH depends on ata_qc_complete() nullifying completion
4907 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4908 	 * not synchronize with interrupt handler.  Only PIO task is
4909 	 * taken care of.
4910 	 */
4911 	if (ap->ops->error_handler) {
4912 		struct ata_device *dev = qc->dev;
4913 		struct ata_eh_info *ehi = &dev->link->eh_info;
4914 
4915 		if (unlikely(qc->err_mask))
4916 			qc->flags |= ATA_QCFLAG_FAILED;
4917 
4918 		/*
4919 		 * Finish internal commands without any further processing
4920 		 * and always with the result TF filled.
4921 		 */
4922 		if (unlikely(ata_tag_internal(qc->tag))) {
4923 			fill_result_tf(qc);
4924 			__ata_qc_complete(qc);
4925 			return;
4926 		}
4927 
4928 		/*
4929 		 * Non-internal qc has failed.  Fill the result TF and
4930 		 * summon EH.
4931 		 */
4932 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4933 			fill_result_tf(qc);
4934 			ata_qc_schedule_eh(qc);
4935 			return;
4936 		}
4937 
4938 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4939 
4940 		/* read result TF if requested */
4941 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4942 			fill_result_tf(qc);
4943 
4944 		/* Some commands need post-processing after successful
4945 		 * completion.
4946 		 */
4947 		switch (qc->tf.command) {
4948 		case ATA_CMD_SET_FEATURES:
4949 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4950 			    qc->tf.feature != SETFEATURES_WC_OFF)
4951 				break;
4952 			/* fall through */
4953 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4954 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4955 			/* revalidate device */
4956 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4957 			ata_port_schedule_eh(ap);
4958 			break;
4959 
4960 		case ATA_CMD_SLEEP:
4961 			dev->flags |= ATA_DFLAG_SLEEPING;
4962 			break;
4963 		}
4964 
4965 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4966 			ata_verify_xfer(qc);
4967 
4968 		__ata_qc_complete(qc);
4969 	} else {
4970 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4971 			return;
4972 
4973 		/* read result TF if failed or requested */
4974 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4975 			fill_result_tf(qc);
4976 
4977 		__ata_qc_complete(qc);
4978 	}
4979 }
4980 
4981 /**
4982  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4983  *	@ap: port in question
4984  *	@qc_active: new qc_active mask
4985  *
4986  *	Complete in-flight commands.  This functions is meant to be
4987  *	called from low-level driver's interrupt routine to complete
4988  *	requests normally.  ap->qc_active and @qc_active is compared
4989  *	and commands are completed accordingly.
4990  *
4991  *	Always use this function when completing multiple NCQ commands
4992  *	from IRQ handlers instead of calling ata_qc_complete()
4993  *	multiple times to keep IRQ expect status properly in sync.
4994  *
4995  *	LOCKING:
4996  *	spin_lock_irqsave(host lock)
4997  *
4998  *	RETURNS:
4999  *	Number of completed commands on success, -errno otherwise.
5000  */
5001 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5002 {
5003 	int nr_done = 0;
5004 	u32 done_mask;
5005 
5006 	done_mask = ap->qc_active ^ qc_active;
5007 
5008 	if (unlikely(done_mask & qc_active)) {
5009 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5010 			     ap->qc_active, qc_active);
5011 		return -EINVAL;
5012 	}
5013 
5014 	while (done_mask) {
5015 		struct ata_queued_cmd *qc;
5016 		unsigned int tag = __ffs(done_mask);
5017 
5018 		qc = ata_qc_from_tag(ap, tag);
5019 		if (qc) {
5020 			ata_qc_complete(qc);
5021 			nr_done++;
5022 		}
5023 		done_mask &= ~(1 << tag);
5024 	}
5025 
5026 	return nr_done;
5027 }
5028 
5029 /**
5030  *	ata_qc_issue - issue taskfile to device
5031  *	@qc: command to issue to device
5032  *
5033  *	Prepare an ATA command to submission to device.
5034  *	This includes mapping the data into a DMA-able
5035  *	area, filling in the S/G table, and finally
5036  *	writing the taskfile to hardware, starting the command.
5037  *
5038  *	LOCKING:
5039  *	spin_lock_irqsave(host lock)
5040  */
5041 void ata_qc_issue(struct ata_queued_cmd *qc)
5042 {
5043 	struct ata_port *ap = qc->ap;
5044 	struct ata_link *link = qc->dev->link;
5045 	u8 prot = qc->tf.protocol;
5046 
5047 	/* Make sure only one non-NCQ command is outstanding.  The
5048 	 * check is skipped for old EH because it reuses active qc to
5049 	 * request ATAPI sense.
5050 	 */
5051 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5052 
5053 	if (ata_is_ncq(prot)) {
5054 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5055 
5056 		if (!link->sactive)
5057 			ap->nr_active_links++;
5058 		link->sactive |= 1 << qc->tag;
5059 	} else {
5060 		WARN_ON_ONCE(link->sactive);
5061 
5062 		ap->nr_active_links++;
5063 		link->active_tag = qc->tag;
5064 	}
5065 
5066 	qc->flags |= ATA_QCFLAG_ACTIVE;
5067 	ap->qc_active |= 1 << qc->tag;
5068 
5069 	/*
5070 	 * We guarantee to LLDs that they will have at least one
5071 	 * non-zero sg if the command is a data command.
5072 	 */
5073 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5074 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5075 		goto sys_err;
5076 
5077 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5078 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5079 		if (ata_sg_setup(qc))
5080 			goto sys_err;
5081 
5082 	/* if device is sleeping, schedule reset and abort the link */
5083 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5084 		link->eh_info.action |= ATA_EH_RESET;
5085 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5086 		ata_link_abort(link);
5087 		return;
5088 	}
5089 
5090 	ap->ops->qc_prep(qc);
5091 
5092 	qc->err_mask |= ap->ops->qc_issue(qc);
5093 	if (unlikely(qc->err_mask))
5094 		goto err;
5095 	return;
5096 
5097 sys_err:
5098 	qc->err_mask |= AC_ERR_SYSTEM;
5099 err:
5100 	ata_qc_complete(qc);
5101 }
5102 
5103 /**
5104  *	sata_scr_valid - test whether SCRs are accessible
5105  *	@link: ATA link to test SCR accessibility for
5106  *
5107  *	Test whether SCRs are accessible for @link.
5108  *
5109  *	LOCKING:
5110  *	None.
5111  *
5112  *	RETURNS:
5113  *	1 if SCRs are accessible, 0 otherwise.
5114  */
5115 int sata_scr_valid(struct ata_link *link)
5116 {
5117 	struct ata_port *ap = link->ap;
5118 
5119 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5120 }
5121 
5122 /**
5123  *	sata_scr_read - read SCR register of the specified port
5124  *	@link: ATA link to read SCR for
5125  *	@reg: SCR to read
5126  *	@val: Place to store read value
5127  *
5128  *	Read SCR register @reg of @link into *@val.  This function is
5129  *	guaranteed to succeed if @link is ap->link, the cable type of
5130  *	the port is SATA and the port implements ->scr_read.
5131  *
5132  *	LOCKING:
5133  *	None if @link is ap->link.  Kernel thread context otherwise.
5134  *
5135  *	RETURNS:
5136  *	0 on success, negative errno on failure.
5137  */
5138 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5139 {
5140 	if (ata_is_host_link(link)) {
5141 		if (sata_scr_valid(link))
5142 			return link->ap->ops->scr_read(link, reg, val);
5143 		return -EOPNOTSUPP;
5144 	}
5145 
5146 	return sata_pmp_scr_read(link, reg, val);
5147 }
5148 
5149 /**
5150  *	sata_scr_write - write SCR register of the specified port
5151  *	@link: ATA link to write SCR for
5152  *	@reg: SCR to write
5153  *	@val: value to write
5154  *
5155  *	Write @val to SCR register @reg of @link.  This function is
5156  *	guaranteed to succeed if @link is ap->link, the cable type of
5157  *	the port is SATA and the port implements ->scr_read.
5158  *
5159  *	LOCKING:
5160  *	None if @link is ap->link.  Kernel thread context otherwise.
5161  *
5162  *	RETURNS:
5163  *	0 on success, negative errno on failure.
5164  */
5165 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5166 {
5167 	if (ata_is_host_link(link)) {
5168 		if (sata_scr_valid(link))
5169 			return link->ap->ops->scr_write(link, reg, val);
5170 		return -EOPNOTSUPP;
5171 	}
5172 
5173 	return sata_pmp_scr_write(link, reg, val);
5174 }
5175 
5176 /**
5177  *	sata_scr_write_flush - write SCR register of the specified port and flush
5178  *	@link: ATA link to write SCR for
5179  *	@reg: SCR to write
5180  *	@val: value to write
5181  *
5182  *	This function is identical to sata_scr_write() except that this
5183  *	function performs flush after writing to the register.
5184  *
5185  *	LOCKING:
5186  *	None if @link is ap->link.  Kernel thread context otherwise.
5187  *
5188  *	RETURNS:
5189  *	0 on success, negative errno on failure.
5190  */
5191 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5192 {
5193 	if (ata_is_host_link(link)) {
5194 		int rc;
5195 
5196 		if (sata_scr_valid(link)) {
5197 			rc = link->ap->ops->scr_write(link, reg, val);
5198 			if (rc == 0)
5199 				rc = link->ap->ops->scr_read(link, reg, &val);
5200 			return rc;
5201 		}
5202 		return -EOPNOTSUPP;
5203 	}
5204 
5205 	return sata_pmp_scr_write(link, reg, val);
5206 }
5207 
5208 /**
5209  *	ata_phys_link_online - test whether the given link is online
5210  *	@link: ATA link to test
5211  *
5212  *	Test whether @link is online.  Note that this function returns
5213  *	0 if online status of @link cannot be obtained, so
5214  *	ata_link_online(link) != !ata_link_offline(link).
5215  *
5216  *	LOCKING:
5217  *	None.
5218  *
5219  *	RETURNS:
5220  *	True if the port online status is available and online.
5221  */
5222 bool ata_phys_link_online(struct ata_link *link)
5223 {
5224 	u32 sstatus;
5225 
5226 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5227 	    ata_sstatus_online(sstatus))
5228 		return true;
5229 	return false;
5230 }
5231 
5232 /**
5233  *	ata_phys_link_offline - test whether the given link is offline
5234  *	@link: ATA link to test
5235  *
5236  *	Test whether @link is offline.  Note that this function
5237  *	returns 0 if offline status of @link cannot be obtained, so
5238  *	ata_link_online(link) != !ata_link_offline(link).
5239  *
5240  *	LOCKING:
5241  *	None.
5242  *
5243  *	RETURNS:
5244  *	True if the port offline status is available and offline.
5245  */
5246 bool ata_phys_link_offline(struct ata_link *link)
5247 {
5248 	u32 sstatus;
5249 
5250 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5251 	    !ata_sstatus_online(sstatus))
5252 		return true;
5253 	return false;
5254 }
5255 
5256 /**
5257  *	ata_link_online - test whether the given link is online
5258  *	@link: ATA link to test
5259  *
5260  *	Test whether @link is online.  This is identical to
5261  *	ata_phys_link_online() when there's no slave link.  When
5262  *	there's a slave link, this function should only be called on
5263  *	the master link and will return true if any of M/S links is
5264  *	online.
5265  *
5266  *	LOCKING:
5267  *	None.
5268  *
5269  *	RETURNS:
5270  *	True if the port online status is available and online.
5271  */
5272 bool ata_link_online(struct ata_link *link)
5273 {
5274 	struct ata_link *slave = link->ap->slave_link;
5275 
5276 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5277 
5278 	return ata_phys_link_online(link) ||
5279 		(slave && ata_phys_link_online(slave));
5280 }
5281 
5282 /**
5283  *	ata_link_offline - test whether the given link is offline
5284  *	@link: ATA link to test
5285  *
5286  *	Test whether @link is offline.  This is identical to
5287  *	ata_phys_link_offline() when there's no slave link.  When
5288  *	there's a slave link, this function should only be called on
5289  *	the master link and will return true if both M/S links are
5290  *	offline.
5291  *
5292  *	LOCKING:
5293  *	None.
5294  *
5295  *	RETURNS:
5296  *	True if the port offline status is available and offline.
5297  */
5298 bool ata_link_offline(struct ata_link *link)
5299 {
5300 	struct ata_link *slave = link->ap->slave_link;
5301 
5302 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5303 
5304 	return ata_phys_link_offline(link) &&
5305 		(!slave || ata_phys_link_offline(slave));
5306 }
5307 
5308 #ifdef CONFIG_PM
5309 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5310 				unsigned int action, unsigned int ehi_flags,
5311 				bool async)
5312 {
5313 	struct ata_link *link;
5314 	unsigned long flags;
5315 
5316 	/* Previous resume operation might still be in
5317 	 * progress.  Wait for PM_PENDING to clear.
5318 	 */
5319 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5320 		ata_port_wait_eh(ap);
5321 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5322 	}
5323 
5324 	/* request PM ops to EH */
5325 	spin_lock_irqsave(ap->lock, flags);
5326 
5327 	ap->pm_mesg = mesg;
5328 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5329 	ata_for_each_link(link, ap, HOST_FIRST) {
5330 		link->eh_info.action |= action;
5331 		link->eh_info.flags |= ehi_flags;
5332 	}
5333 
5334 	ata_port_schedule_eh(ap);
5335 
5336 	spin_unlock_irqrestore(ap->lock, flags);
5337 
5338 	if (!async) {
5339 		ata_port_wait_eh(ap);
5340 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5341 	}
5342 }
5343 
5344 /*
5345  * On some hardware, device fails to respond after spun down for suspend.  As
5346  * the device won't be used before being resumed, we don't need to touch the
5347  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5348  *
5349  * http://thread.gmane.org/gmane.linux.ide/46764
5350  */
5351 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5352 						 | ATA_EHI_NO_AUTOPSY
5353 						 | ATA_EHI_NO_RECOVERY;
5354 
5355 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5356 {
5357 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5358 }
5359 
5360 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5361 {
5362 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5363 }
5364 
5365 static int ata_port_pm_suspend(struct device *dev)
5366 {
5367 	struct ata_port *ap = to_ata_port(dev);
5368 
5369 	if (pm_runtime_suspended(dev))
5370 		return 0;
5371 
5372 	ata_port_suspend(ap, PMSG_SUSPEND);
5373 	return 0;
5374 }
5375 
5376 static int ata_port_pm_freeze(struct device *dev)
5377 {
5378 	struct ata_port *ap = to_ata_port(dev);
5379 
5380 	if (pm_runtime_suspended(dev))
5381 		return 0;
5382 
5383 	ata_port_suspend(ap, PMSG_FREEZE);
5384 	return 0;
5385 }
5386 
5387 static int ata_port_pm_poweroff(struct device *dev)
5388 {
5389 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5390 	return 0;
5391 }
5392 
5393 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5394 						| ATA_EHI_QUIET;
5395 
5396 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5397 {
5398 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5399 }
5400 
5401 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5402 {
5403 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5404 }
5405 
5406 static int ata_port_pm_resume(struct device *dev)
5407 {
5408 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5409 	pm_runtime_disable(dev);
5410 	pm_runtime_set_active(dev);
5411 	pm_runtime_enable(dev);
5412 	return 0;
5413 }
5414 
5415 /*
5416  * For ODDs, the upper layer will poll for media change every few seconds,
5417  * which will make it enter and leave suspend state every few seconds. And
5418  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5419  * is very little and the ODD may malfunction after constantly being reset.
5420  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5421  * ODD is attached to the port.
5422  */
5423 static int ata_port_runtime_idle(struct device *dev)
5424 {
5425 	struct ata_port *ap = to_ata_port(dev);
5426 	struct ata_link *link;
5427 	struct ata_device *adev;
5428 
5429 	ata_for_each_link(link, ap, HOST_FIRST) {
5430 		ata_for_each_dev(adev, link, ENABLED)
5431 			if (adev->class == ATA_DEV_ATAPI &&
5432 			    !zpodd_dev_enabled(adev))
5433 				return -EBUSY;
5434 	}
5435 
5436 	return 0;
5437 }
5438 
5439 static int ata_port_runtime_suspend(struct device *dev)
5440 {
5441 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5442 	return 0;
5443 }
5444 
5445 static int ata_port_runtime_resume(struct device *dev)
5446 {
5447 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5448 	return 0;
5449 }
5450 
5451 static const struct dev_pm_ops ata_port_pm_ops = {
5452 	.suspend = ata_port_pm_suspend,
5453 	.resume = ata_port_pm_resume,
5454 	.freeze = ata_port_pm_freeze,
5455 	.thaw = ata_port_pm_resume,
5456 	.poweroff = ata_port_pm_poweroff,
5457 	.restore = ata_port_pm_resume,
5458 
5459 	.runtime_suspend = ata_port_runtime_suspend,
5460 	.runtime_resume = ata_port_runtime_resume,
5461 	.runtime_idle = ata_port_runtime_idle,
5462 };
5463 
5464 /* sas ports don't participate in pm runtime management of ata_ports,
5465  * and need to resume ata devices at the domain level, not the per-port
5466  * level. sas suspend/resume is async to allow parallel port recovery
5467  * since sas has multiple ata_port instances per Scsi_Host.
5468  */
5469 void ata_sas_port_suspend(struct ata_port *ap)
5470 {
5471 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5472 }
5473 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5474 
5475 void ata_sas_port_resume(struct ata_port *ap)
5476 {
5477 	ata_port_resume_async(ap, PMSG_RESUME);
5478 }
5479 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5480 
5481 /**
5482  *	ata_host_suspend - suspend host
5483  *	@host: host to suspend
5484  *	@mesg: PM message
5485  *
5486  *	Suspend @host.  Actual operation is performed by port suspend.
5487  */
5488 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5489 {
5490 	host->dev->power.power_state = mesg;
5491 	return 0;
5492 }
5493 
5494 /**
5495  *	ata_host_resume - resume host
5496  *	@host: host to resume
5497  *
5498  *	Resume @host.  Actual operation is performed by port resume.
5499  */
5500 void ata_host_resume(struct ata_host *host)
5501 {
5502 	host->dev->power.power_state = PMSG_ON;
5503 }
5504 #endif
5505 
5506 struct device_type ata_port_type = {
5507 	.name = "ata_port",
5508 #ifdef CONFIG_PM
5509 	.pm = &ata_port_pm_ops,
5510 #endif
5511 };
5512 
5513 /**
5514  *	ata_dev_init - Initialize an ata_device structure
5515  *	@dev: Device structure to initialize
5516  *
5517  *	Initialize @dev in preparation for probing.
5518  *
5519  *	LOCKING:
5520  *	Inherited from caller.
5521  */
5522 void ata_dev_init(struct ata_device *dev)
5523 {
5524 	struct ata_link *link = ata_dev_phys_link(dev);
5525 	struct ata_port *ap = link->ap;
5526 	unsigned long flags;
5527 
5528 	/* SATA spd limit is bound to the attached device, reset together */
5529 	link->sata_spd_limit = link->hw_sata_spd_limit;
5530 	link->sata_spd = 0;
5531 
5532 	/* High bits of dev->flags are used to record warm plug
5533 	 * requests which occur asynchronously.  Synchronize using
5534 	 * host lock.
5535 	 */
5536 	spin_lock_irqsave(ap->lock, flags);
5537 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5538 	dev->horkage = 0;
5539 	spin_unlock_irqrestore(ap->lock, flags);
5540 
5541 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5542 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5543 	dev->pio_mask = UINT_MAX;
5544 	dev->mwdma_mask = UINT_MAX;
5545 	dev->udma_mask = UINT_MAX;
5546 }
5547 
5548 /**
5549  *	ata_link_init - Initialize an ata_link structure
5550  *	@ap: ATA port link is attached to
5551  *	@link: Link structure to initialize
5552  *	@pmp: Port multiplier port number
5553  *
5554  *	Initialize @link.
5555  *
5556  *	LOCKING:
5557  *	Kernel thread context (may sleep)
5558  */
5559 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5560 {
5561 	int i;
5562 
5563 	/* clear everything except for devices */
5564 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5565 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5566 
5567 	link->ap = ap;
5568 	link->pmp = pmp;
5569 	link->active_tag = ATA_TAG_POISON;
5570 	link->hw_sata_spd_limit = UINT_MAX;
5571 
5572 	/* can't use iterator, ap isn't initialized yet */
5573 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5574 		struct ata_device *dev = &link->device[i];
5575 
5576 		dev->link = link;
5577 		dev->devno = dev - link->device;
5578 #ifdef CONFIG_ATA_ACPI
5579 		dev->gtf_filter = ata_acpi_gtf_filter;
5580 #endif
5581 		ata_dev_init(dev);
5582 	}
5583 }
5584 
5585 /**
5586  *	sata_link_init_spd - Initialize link->sata_spd_limit
5587  *	@link: Link to configure sata_spd_limit for
5588  *
5589  *	Initialize @link->[hw_]sata_spd_limit to the currently
5590  *	configured value.
5591  *
5592  *	LOCKING:
5593  *	Kernel thread context (may sleep).
5594  *
5595  *	RETURNS:
5596  *	0 on success, -errno on failure.
5597  */
5598 int sata_link_init_spd(struct ata_link *link)
5599 {
5600 	u8 spd;
5601 	int rc;
5602 
5603 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5604 	if (rc)
5605 		return rc;
5606 
5607 	spd = (link->saved_scontrol >> 4) & 0xf;
5608 	if (spd)
5609 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5610 
5611 	ata_force_link_limits(link);
5612 
5613 	link->sata_spd_limit = link->hw_sata_spd_limit;
5614 
5615 	return 0;
5616 }
5617 
5618 /**
5619  *	ata_port_alloc - allocate and initialize basic ATA port resources
5620  *	@host: ATA host this allocated port belongs to
5621  *
5622  *	Allocate and initialize basic ATA port resources.
5623  *
5624  *	RETURNS:
5625  *	Allocate ATA port on success, NULL on failure.
5626  *
5627  *	LOCKING:
5628  *	Inherited from calling layer (may sleep).
5629  */
5630 struct ata_port *ata_port_alloc(struct ata_host *host)
5631 {
5632 	struct ata_port *ap;
5633 
5634 	DPRINTK("ENTER\n");
5635 
5636 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5637 	if (!ap)
5638 		return NULL;
5639 
5640 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5641 	ap->lock = &host->lock;
5642 	ap->print_id = -1;
5643 	ap->local_port_no = -1;
5644 	ap->host = host;
5645 	ap->dev = host->dev;
5646 
5647 #if defined(ATA_VERBOSE_DEBUG)
5648 	/* turn on all debugging levels */
5649 	ap->msg_enable = 0x00FF;
5650 #elif defined(ATA_DEBUG)
5651 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5652 #else
5653 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5654 #endif
5655 
5656 	mutex_init(&ap->scsi_scan_mutex);
5657 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5658 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5659 	INIT_LIST_HEAD(&ap->eh_done_q);
5660 	init_waitqueue_head(&ap->eh_wait_q);
5661 	init_completion(&ap->park_req_pending);
5662 	init_timer_deferrable(&ap->fastdrain_timer);
5663 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5664 	ap->fastdrain_timer.data = (unsigned long)ap;
5665 
5666 	ap->cbl = ATA_CBL_NONE;
5667 
5668 	ata_link_init(ap, &ap->link, 0);
5669 
5670 #ifdef ATA_IRQ_TRAP
5671 	ap->stats.unhandled_irq = 1;
5672 	ap->stats.idle_irq = 1;
5673 #endif
5674 	ata_sff_port_init(ap);
5675 
5676 	return ap;
5677 }
5678 
5679 static void ata_host_release(struct device *gendev, void *res)
5680 {
5681 	struct ata_host *host = dev_get_drvdata(gendev);
5682 	int i;
5683 
5684 	for (i = 0; i < host->n_ports; i++) {
5685 		struct ata_port *ap = host->ports[i];
5686 
5687 		if (!ap)
5688 			continue;
5689 
5690 		if (ap->scsi_host)
5691 			scsi_host_put(ap->scsi_host);
5692 
5693 		kfree(ap->pmp_link);
5694 		kfree(ap->slave_link);
5695 		kfree(ap);
5696 		host->ports[i] = NULL;
5697 	}
5698 
5699 	dev_set_drvdata(gendev, NULL);
5700 }
5701 
5702 /**
5703  *	ata_host_alloc - allocate and init basic ATA host resources
5704  *	@dev: generic device this host is associated with
5705  *	@max_ports: maximum number of ATA ports associated with this host
5706  *
5707  *	Allocate and initialize basic ATA host resources.  LLD calls
5708  *	this function to allocate a host, initializes it fully and
5709  *	attaches it using ata_host_register().
5710  *
5711  *	@max_ports ports are allocated and host->n_ports is
5712  *	initialized to @max_ports.  The caller is allowed to decrease
5713  *	host->n_ports before calling ata_host_register().  The unused
5714  *	ports will be automatically freed on registration.
5715  *
5716  *	RETURNS:
5717  *	Allocate ATA host on success, NULL on failure.
5718  *
5719  *	LOCKING:
5720  *	Inherited from calling layer (may sleep).
5721  */
5722 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5723 {
5724 	struct ata_host *host;
5725 	size_t sz;
5726 	int i;
5727 
5728 	DPRINTK("ENTER\n");
5729 
5730 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5731 		return NULL;
5732 
5733 	/* alloc a container for our list of ATA ports (buses) */
5734 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5735 	/* alloc a container for our list of ATA ports (buses) */
5736 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5737 	if (!host)
5738 		goto err_out;
5739 
5740 	devres_add(dev, host);
5741 	dev_set_drvdata(dev, host);
5742 
5743 	spin_lock_init(&host->lock);
5744 	mutex_init(&host->eh_mutex);
5745 	host->dev = dev;
5746 	host->n_ports = max_ports;
5747 
5748 	/* allocate ports bound to this host */
5749 	for (i = 0; i < max_ports; i++) {
5750 		struct ata_port *ap;
5751 
5752 		ap = ata_port_alloc(host);
5753 		if (!ap)
5754 			goto err_out;
5755 
5756 		ap->port_no = i;
5757 		host->ports[i] = ap;
5758 	}
5759 
5760 	devres_remove_group(dev, NULL);
5761 	return host;
5762 
5763  err_out:
5764 	devres_release_group(dev, NULL);
5765 	return NULL;
5766 }
5767 
5768 /**
5769  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5770  *	@dev: generic device this host is associated with
5771  *	@ppi: array of ATA port_info to initialize host with
5772  *	@n_ports: number of ATA ports attached to this host
5773  *
5774  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5775  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5776  *	last entry will be used for the remaining ports.
5777  *
5778  *	RETURNS:
5779  *	Allocate ATA host on success, NULL on failure.
5780  *
5781  *	LOCKING:
5782  *	Inherited from calling layer (may sleep).
5783  */
5784 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5785 				      const struct ata_port_info * const * ppi,
5786 				      int n_ports)
5787 {
5788 	const struct ata_port_info *pi;
5789 	struct ata_host *host;
5790 	int i, j;
5791 
5792 	host = ata_host_alloc(dev, n_ports);
5793 	if (!host)
5794 		return NULL;
5795 
5796 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5797 		struct ata_port *ap = host->ports[i];
5798 
5799 		if (ppi[j])
5800 			pi = ppi[j++];
5801 
5802 		ap->pio_mask = pi->pio_mask;
5803 		ap->mwdma_mask = pi->mwdma_mask;
5804 		ap->udma_mask = pi->udma_mask;
5805 		ap->flags |= pi->flags;
5806 		ap->link.flags |= pi->link_flags;
5807 		ap->ops = pi->port_ops;
5808 
5809 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5810 			host->ops = pi->port_ops;
5811 	}
5812 
5813 	return host;
5814 }
5815 
5816 /**
5817  *	ata_slave_link_init - initialize slave link
5818  *	@ap: port to initialize slave link for
5819  *
5820  *	Create and initialize slave link for @ap.  This enables slave
5821  *	link handling on the port.
5822  *
5823  *	In libata, a port contains links and a link contains devices.
5824  *	There is single host link but if a PMP is attached to it,
5825  *	there can be multiple fan-out links.  On SATA, there's usually
5826  *	a single device connected to a link but PATA and SATA
5827  *	controllers emulating TF based interface can have two - master
5828  *	and slave.
5829  *
5830  *	However, there are a few controllers which don't fit into this
5831  *	abstraction too well - SATA controllers which emulate TF
5832  *	interface with both master and slave devices but also have
5833  *	separate SCR register sets for each device.  These controllers
5834  *	need separate links for physical link handling
5835  *	(e.g. onlineness, link speed) but should be treated like a
5836  *	traditional M/S controller for everything else (e.g. command
5837  *	issue, softreset).
5838  *
5839  *	slave_link is libata's way of handling this class of
5840  *	controllers without impacting core layer too much.  For
5841  *	anything other than physical link handling, the default host
5842  *	link is used for both master and slave.  For physical link
5843  *	handling, separate @ap->slave_link is used.  All dirty details
5844  *	are implemented inside libata core layer.  From LLD's POV, the
5845  *	only difference is that prereset, hardreset and postreset are
5846  *	called once more for the slave link, so the reset sequence
5847  *	looks like the following.
5848  *
5849  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5850  *	softreset(M) -> postreset(M) -> postreset(S)
5851  *
5852  *	Note that softreset is called only for the master.  Softreset
5853  *	resets both M/S by definition, so SRST on master should handle
5854  *	both (the standard method will work just fine).
5855  *
5856  *	LOCKING:
5857  *	Should be called before host is registered.
5858  *
5859  *	RETURNS:
5860  *	0 on success, -errno on failure.
5861  */
5862 int ata_slave_link_init(struct ata_port *ap)
5863 {
5864 	struct ata_link *link;
5865 
5866 	WARN_ON(ap->slave_link);
5867 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5868 
5869 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5870 	if (!link)
5871 		return -ENOMEM;
5872 
5873 	ata_link_init(ap, link, 1);
5874 	ap->slave_link = link;
5875 	return 0;
5876 }
5877 
5878 static void ata_host_stop(struct device *gendev, void *res)
5879 {
5880 	struct ata_host *host = dev_get_drvdata(gendev);
5881 	int i;
5882 
5883 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5884 
5885 	for (i = 0; i < host->n_ports; i++) {
5886 		struct ata_port *ap = host->ports[i];
5887 
5888 		if (ap->ops->port_stop)
5889 			ap->ops->port_stop(ap);
5890 	}
5891 
5892 	if (host->ops->host_stop)
5893 		host->ops->host_stop(host);
5894 }
5895 
5896 /**
5897  *	ata_finalize_port_ops - finalize ata_port_operations
5898  *	@ops: ata_port_operations to finalize
5899  *
5900  *	An ata_port_operations can inherit from another ops and that
5901  *	ops can again inherit from another.  This can go on as many
5902  *	times as necessary as long as there is no loop in the
5903  *	inheritance chain.
5904  *
5905  *	Ops tables are finalized when the host is started.  NULL or
5906  *	unspecified entries are inherited from the closet ancestor
5907  *	which has the method and the entry is populated with it.
5908  *	After finalization, the ops table directly points to all the
5909  *	methods and ->inherits is no longer necessary and cleared.
5910  *
5911  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5912  *
5913  *	LOCKING:
5914  *	None.
5915  */
5916 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5917 {
5918 	static DEFINE_SPINLOCK(lock);
5919 	const struct ata_port_operations *cur;
5920 	void **begin = (void **)ops;
5921 	void **end = (void **)&ops->inherits;
5922 	void **pp;
5923 
5924 	if (!ops || !ops->inherits)
5925 		return;
5926 
5927 	spin_lock(&lock);
5928 
5929 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5930 		void **inherit = (void **)cur;
5931 
5932 		for (pp = begin; pp < end; pp++, inherit++)
5933 			if (!*pp)
5934 				*pp = *inherit;
5935 	}
5936 
5937 	for (pp = begin; pp < end; pp++)
5938 		if (IS_ERR(*pp))
5939 			*pp = NULL;
5940 
5941 	ops->inherits = NULL;
5942 
5943 	spin_unlock(&lock);
5944 }
5945 
5946 /**
5947  *	ata_host_start - start and freeze ports of an ATA host
5948  *	@host: ATA host to start ports for
5949  *
5950  *	Start and then freeze ports of @host.  Started status is
5951  *	recorded in host->flags, so this function can be called
5952  *	multiple times.  Ports are guaranteed to get started only
5953  *	once.  If host->ops isn't initialized yet, its set to the
5954  *	first non-dummy port ops.
5955  *
5956  *	LOCKING:
5957  *	Inherited from calling layer (may sleep).
5958  *
5959  *	RETURNS:
5960  *	0 if all ports are started successfully, -errno otherwise.
5961  */
5962 int ata_host_start(struct ata_host *host)
5963 {
5964 	int have_stop = 0;
5965 	void *start_dr = NULL;
5966 	int i, rc;
5967 
5968 	if (host->flags & ATA_HOST_STARTED)
5969 		return 0;
5970 
5971 	ata_finalize_port_ops(host->ops);
5972 
5973 	for (i = 0; i < host->n_ports; i++) {
5974 		struct ata_port *ap = host->ports[i];
5975 
5976 		ata_finalize_port_ops(ap->ops);
5977 
5978 		if (!host->ops && !ata_port_is_dummy(ap))
5979 			host->ops = ap->ops;
5980 
5981 		if (ap->ops->port_stop)
5982 			have_stop = 1;
5983 	}
5984 
5985 	if (host->ops->host_stop)
5986 		have_stop = 1;
5987 
5988 	if (have_stop) {
5989 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5990 		if (!start_dr)
5991 			return -ENOMEM;
5992 	}
5993 
5994 	for (i = 0; i < host->n_ports; i++) {
5995 		struct ata_port *ap = host->ports[i];
5996 
5997 		if (ap->ops->port_start) {
5998 			rc = ap->ops->port_start(ap);
5999 			if (rc) {
6000 				if (rc != -ENODEV)
6001 					dev_err(host->dev,
6002 						"failed to start port %d (errno=%d)\n",
6003 						i, rc);
6004 				goto err_out;
6005 			}
6006 		}
6007 		ata_eh_freeze_port(ap);
6008 	}
6009 
6010 	if (start_dr)
6011 		devres_add(host->dev, start_dr);
6012 	host->flags |= ATA_HOST_STARTED;
6013 	return 0;
6014 
6015  err_out:
6016 	while (--i >= 0) {
6017 		struct ata_port *ap = host->ports[i];
6018 
6019 		if (ap->ops->port_stop)
6020 			ap->ops->port_stop(ap);
6021 	}
6022 	devres_free(start_dr);
6023 	return rc;
6024 }
6025 
6026 /**
6027  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6028  *	@host:	host to initialize
6029  *	@dev:	device host is attached to
6030  *	@ops:	port_ops
6031  *
6032  */
6033 void ata_host_init(struct ata_host *host, struct device *dev,
6034 		   struct ata_port_operations *ops)
6035 {
6036 	spin_lock_init(&host->lock);
6037 	mutex_init(&host->eh_mutex);
6038 	host->n_tags = ATA_MAX_QUEUE - 1;
6039 	host->dev = dev;
6040 	host->ops = ops;
6041 }
6042 
6043 void __ata_port_probe(struct ata_port *ap)
6044 {
6045 	struct ata_eh_info *ehi = &ap->link.eh_info;
6046 	unsigned long flags;
6047 
6048 	/* kick EH for boot probing */
6049 	spin_lock_irqsave(ap->lock, flags);
6050 
6051 	ehi->probe_mask |= ATA_ALL_DEVICES;
6052 	ehi->action |= ATA_EH_RESET;
6053 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6054 
6055 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6056 	ap->pflags |= ATA_PFLAG_LOADING;
6057 	ata_port_schedule_eh(ap);
6058 
6059 	spin_unlock_irqrestore(ap->lock, flags);
6060 }
6061 
6062 int ata_port_probe(struct ata_port *ap)
6063 {
6064 	int rc = 0;
6065 
6066 	if (ap->ops->error_handler) {
6067 		__ata_port_probe(ap);
6068 		ata_port_wait_eh(ap);
6069 	} else {
6070 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6071 		rc = ata_bus_probe(ap);
6072 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6073 	}
6074 	return rc;
6075 }
6076 
6077 
6078 static void async_port_probe(void *data, async_cookie_t cookie)
6079 {
6080 	struct ata_port *ap = data;
6081 
6082 	/*
6083 	 * If we're not allowed to scan this host in parallel,
6084 	 * we need to wait until all previous scans have completed
6085 	 * before going further.
6086 	 * Jeff Garzik says this is only within a controller, so we
6087 	 * don't need to wait for port 0, only for later ports.
6088 	 */
6089 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6090 		async_synchronize_cookie(cookie);
6091 
6092 	(void)ata_port_probe(ap);
6093 
6094 	/* in order to keep device order, we need to synchronize at this point */
6095 	async_synchronize_cookie(cookie);
6096 
6097 	ata_scsi_scan_host(ap, 1);
6098 }
6099 
6100 /**
6101  *	ata_host_register - register initialized ATA host
6102  *	@host: ATA host to register
6103  *	@sht: template for SCSI host
6104  *
6105  *	Register initialized ATA host.  @host is allocated using
6106  *	ata_host_alloc() and fully initialized by LLD.  This function
6107  *	starts ports, registers @host with ATA and SCSI layers and
6108  *	probe registered devices.
6109  *
6110  *	LOCKING:
6111  *	Inherited from calling layer (may sleep).
6112  *
6113  *	RETURNS:
6114  *	0 on success, -errno otherwise.
6115  */
6116 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6117 {
6118 	int i, rc;
6119 
6120 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6121 
6122 	/* host must have been started */
6123 	if (!(host->flags & ATA_HOST_STARTED)) {
6124 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6125 		WARN_ON(1);
6126 		return -EINVAL;
6127 	}
6128 
6129 	/* Blow away unused ports.  This happens when LLD can't
6130 	 * determine the exact number of ports to allocate at
6131 	 * allocation time.
6132 	 */
6133 	for (i = host->n_ports; host->ports[i]; i++)
6134 		kfree(host->ports[i]);
6135 
6136 	/* give ports names and add SCSI hosts */
6137 	for (i = 0; i < host->n_ports; i++) {
6138 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6139 		host->ports[i]->local_port_no = i + 1;
6140 	}
6141 
6142 	/* Create associated sysfs transport objects  */
6143 	for (i = 0; i < host->n_ports; i++) {
6144 		rc = ata_tport_add(host->dev,host->ports[i]);
6145 		if (rc) {
6146 			goto err_tadd;
6147 		}
6148 	}
6149 
6150 	rc = ata_scsi_add_hosts(host, sht);
6151 	if (rc)
6152 		goto err_tadd;
6153 
6154 	/* set cable, sata_spd_limit and report */
6155 	for (i = 0; i < host->n_ports; i++) {
6156 		struct ata_port *ap = host->ports[i];
6157 		unsigned long xfer_mask;
6158 
6159 		/* set SATA cable type if still unset */
6160 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6161 			ap->cbl = ATA_CBL_SATA;
6162 
6163 		/* init sata_spd_limit to the current value */
6164 		sata_link_init_spd(&ap->link);
6165 		if (ap->slave_link)
6166 			sata_link_init_spd(ap->slave_link);
6167 
6168 		/* print per-port info to dmesg */
6169 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6170 					      ap->udma_mask);
6171 
6172 		if (!ata_port_is_dummy(ap)) {
6173 			ata_port_info(ap, "%cATA max %s %s\n",
6174 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6175 				      ata_mode_string(xfer_mask),
6176 				      ap->link.eh_info.desc);
6177 			ata_ehi_clear_desc(&ap->link.eh_info);
6178 		} else
6179 			ata_port_info(ap, "DUMMY\n");
6180 	}
6181 
6182 	/* perform each probe asynchronously */
6183 	for (i = 0; i < host->n_ports; i++) {
6184 		struct ata_port *ap = host->ports[i];
6185 		async_schedule(async_port_probe, ap);
6186 	}
6187 
6188 	return 0;
6189 
6190  err_tadd:
6191 	while (--i >= 0) {
6192 		ata_tport_delete(host->ports[i]);
6193 	}
6194 	return rc;
6195 
6196 }
6197 
6198 /**
6199  *	ata_host_activate - start host, request IRQ and register it
6200  *	@host: target ATA host
6201  *	@irq: IRQ to request
6202  *	@irq_handler: irq_handler used when requesting IRQ
6203  *	@irq_flags: irq_flags used when requesting IRQ
6204  *	@sht: scsi_host_template to use when registering the host
6205  *
6206  *	After allocating an ATA host and initializing it, most libata
6207  *	LLDs perform three steps to activate the host - start host,
6208  *	request IRQ and register it.  This helper takes necessasry
6209  *	arguments and performs the three steps in one go.
6210  *
6211  *	An invalid IRQ skips the IRQ registration and expects the host to
6212  *	have set polling mode on the port. In this case, @irq_handler
6213  *	should be NULL.
6214  *
6215  *	LOCKING:
6216  *	Inherited from calling layer (may sleep).
6217  *
6218  *	RETURNS:
6219  *	0 on success, -errno otherwise.
6220  */
6221 int ata_host_activate(struct ata_host *host, int irq,
6222 		      irq_handler_t irq_handler, unsigned long irq_flags,
6223 		      struct scsi_host_template *sht)
6224 {
6225 	int i, rc;
6226 
6227 	rc = ata_host_start(host);
6228 	if (rc)
6229 		return rc;
6230 
6231 	/* Special case for polling mode */
6232 	if (!irq) {
6233 		WARN_ON(irq_handler);
6234 		return ata_host_register(host, sht);
6235 	}
6236 
6237 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6238 			      dev_name(host->dev), host);
6239 	if (rc)
6240 		return rc;
6241 
6242 	for (i = 0; i < host->n_ports; i++)
6243 		ata_port_desc(host->ports[i], "irq %d", irq);
6244 
6245 	rc = ata_host_register(host, sht);
6246 	/* if failed, just free the IRQ and leave ports alone */
6247 	if (rc)
6248 		devm_free_irq(host->dev, irq, host);
6249 
6250 	return rc;
6251 }
6252 
6253 /**
6254  *	ata_port_detach - Detach ATA port in prepration of device removal
6255  *	@ap: ATA port to be detached
6256  *
6257  *	Detach all ATA devices and the associated SCSI devices of @ap;
6258  *	then, remove the associated SCSI host.  @ap is guaranteed to
6259  *	be quiescent on return from this function.
6260  *
6261  *	LOCKING:
6262  *	Kernel thread context (may sleep).
6263  */
6264 static void ata_port_detach(struct ata_port *ap)
6265 {
6266 	unsigned long flags;
6267 	struct ata_link *link;
6268 	struct ata_device *dev;
6269 
6270 	if (!ap->ops->error_handler)
6271 		goto skip_eh;
6272 
6273 	/* tell EH we're leaving & flush EH */
6274 	spin_lock_irqsave(ap->lock, flags);
6275 	ap->pflags |= ATA_PFLAG_UNLOADING;
6276 	ata_port_schedule_eh(ap);
6277 	spin_unlock_irqrestore(ap->lock, flags);
6278 
6279 	/* wait till EH commits suicide */
6280 	ata_port_wait_eh(ap);
6281 
6282 	/* it better be dead now */
6283 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6284 
6285 	cancel_delayed_work_sync(&ap->hotplug_task);
6286 
6287  skip_eh:
6288 	/* clean up zpodd on port removal */
6289 	ata_for_each_link(link, ap, HOST_FIRST) {
6290 		ata_for_each_dev(dev, link, ALL) {
6291 			if (zpodd_dev_enabled(dev))
6292 				zpodd_exit(dev);
6293 		}
6294 	}
6295 	if (ap->pmp_link) {
6296 		int i;
6297 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6298 			ata_tlink_delete(&ap->pmp_link[i]);
6299 	}
6300 	/* remove the associated SCSI host */
6301 	scsi_remove_host(ap->scsi_host);
6302 	ata_tport_delete(ap);
6303 }
6304 
6305 /**
6306  *	ata_host_detach - Detach all ports of an ATA host
6307  *	@host: Host to detach
6308  *
6309  *	Detach all ports of @host.
6310  *
6311  *	LOCKING:
6312  *	Kernel thread context (may sleep).
6313  */
6314 void ata_host_detach(struct ata_host *host)
6315 {
6316 	int i;
6317 
6318 	for (i = 0; i < host->n_ports; i++)
6319 		ata_port_detach(host->ports[i]);
6320 
6321 	/* the host is dead now, dissociate ACPI */
6322 	ata_acpi_dissociate(host);
6323 }
6324 
6325 #ifdef CONFIG_PCI
6326 
6327 /**
6328  *	ata_pci_remove_one - PCI layer callback for device removal
6329  *	@pdev: PCI device that was removed
6330  *
6331  *	PCI layer indicates to libata via this hook that hot-unplug or
6332  *	module unload event has occurred.  Detach all ports.  Resource
6333  *	release is handled via devres.
6334  *
6335  *	LOCKING:
6336  *	Inherited from PCI layer (may sleep).
6337  */
6338 void ata_pci_remove_one(struct pci_dev *pdev)
6339 {
6340 	struct ata_host *host = pci_get_drvdata(pdev);
6341 
6342 	ata_host_detach(host);
6343 }
6344 
6345 /* move to PCI subsystem */
6346 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6347 {
6348 	unsigned long tmp = 0;
6349 
6350 	switch (bits->width) {
6351 	case 1: {
6352 		u8 tmp8 = 0;
6353 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6354 		tmp = tmp8;
6355 		break;
6356 	}
6357 	case 2: {
6358 		u16 tmp16 = 0;
6359 		pci_read_config_word(pdev, bits->reg, &tmp16);
6360 		tmp = tmp16;
6361 		break;
6362 	}
6363 	case 4: {
6364 		u32 tmp32 = 0;
6365 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6366 		tmp = tmp32;
6367 		break;
6368 	}
6369 
6370 	default:
6371 		return -EINVAL;
6372 	}
6373 
6374 	tmp &= bits->mask;
6375 
6376 	return (tmp == bits->val) ? 1 : 0;
6377 }
6378 
6379 #ifdef CONFIG_PM
6380 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6381 {
6382 	pci_save_state(pdev);
6383 	pci_disable_device(pdev);
6384 
6385 	if (mesg.event & PM_EVENT_SLEEP)
6386 		pci_set_power_state(pdev, PCI_D3hot);
6387 }
6388 
6389 int ata_pci_device_do_resume(struct pci_dev *pdev)
6390 {
6391 	int rc;
6392 
6393 	pci_set_power_state(pdev, PCI_D0);
6394 	pci_restore_state(pdev);
6395 
6396 	rc = pcim_enable_device(pdev);
6397 	if (rc) {
6398 		dev_err(&pdev->dev,
6399 			"failed to enable device after resume (%d)\n", rc);
6400 		return rc;
6401 	}
6402 
6403 	pci_set_master(pdev);
6404 	return 0;
6405 }
6406 
6407 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6408 {
6409 	struct ata_host *host = pci_get_drvdata(pdev);
6410 	int rc = 0;
6411 
6412 	rc = ata_host_suspend(host, mesg);
6413 	if (rc)
6414 		return rc;
6415 
6416 	ata_pci_device_do_suspend(pdev, mesg);
6417 
6418 	return 0;
6419 }
6420 
6421 int ata_pci_device_resume(struct pci_dev *pdev)
6422 {
6423 	struct ata_host *host = pci_get_drvdata(pdev);
6424 	int rc;
6425 
6426 	rc = ata_pci_device_do_resume(pdev);
6427 	if (rc == 0)
6428 		ata_host_resume(host);
6429 	return rc;
6430 }
6431 #endif /* CONFIG_PM */
6432 
6433 #endif /* CONFIG_PCI */
6434 
6435 /**
6436  *	ata_platform_remove_one - Platform layer callback for device removal
6437  *	@pdev: Platform device that was removed
6438  *
6439  *	Platform layer indicates to libata via this hook that hot-unplug or
6440  *	module unload event has occurred.  Detach all ports.  Resource
6441  *	release is handled via devres.
6442  *
6443  *	LOCKING:
6444  *	Inherited from platform layer (may sleep).
6445  */
6446 int ata_platform_remove_one(struct platform_device *pdev)
6447 {
6448 	struct ata_host *host = platform_get_drvdata(pdev);
6449 
6450 	ata_host_detach(host);
6451 
6452 	return 0;
6453 }
6454 
6455 static int __init ata_parse_force_one(char **cur,
6456 				      struct ata_force_ent *force_ent,
6457 				      const char **reason)
6458 {
6459 	/* FIXME: Currently, there's no way to tag init const data and
6460 	 * using __initdata causes build failure on some versions of
6461 	 * gcc.  Once __initdataconst is implemented, add const to the
6462 	 * following structure.
6463 	 */
6464 	static struct ata_force_param force_tbl[] __initdata = {
6465 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6466 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6467 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6468 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6469 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6470 		{ "sata",	.cbl		= ATA_CBL_SATA },
6471 		{ "1.5Gbps",	.spd_limit	= 1 },
6472 		{ "3.0Gbps",	.spd_limit	= 2 },
6473 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6474 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6475 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6476 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6477 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6478 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6479 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6480 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6481 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6482 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6483 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6484 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6485 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6486 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6487 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6488 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6489 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6490 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6491 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6492 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6493 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6494 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6495 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6496 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6497 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6498 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6499 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6500 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6501 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6502 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6503 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6504 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6505 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6506 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6507 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6508 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6509 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6510 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6511 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6512 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6513 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6514 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6515 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6516 	};
6517 	char *start = *cur, *p = *cur;
6518 	char *id, *val, *endp;
6519 	const struct ata_force_param *match_fp = NULL;
6520 	int nr_matches = 0, i;
6521 
6522 	/* find where this param ends and update *cur */
6523 	while (*p != '\0' && *p != ',')
6524 		p++;
6525 
6526 	if (*p == '\0')
6527 		*cur = p;
6528 	else
6529 		*cur = p + 1;
6530 
6531 	*p = '\0';
6532 
6533 	/* parse */
6534 	p = strchr(start, ':');
6535 	if (!p) {
6536 		val = strstrip(start);
6537 		goto parse_val;
6538 	}
6539 	*p = '\0';
6540 
6541 	id = strstrip(start);
6542 	val = strstrip(p + 1);
6543 
6544 	/* parse id */
6545 	p = strchr(id, '.');
6546 	if (p) {
6547 		*p++ = '\0';
6548 		force_ent->device = simple_strtoul(p, &endp, 10);
6549 		if (p == endp || *endp != '\0') {
6550 			*reason = "invalid device";
6551 			return -EINVAL;
6552 		}
6553 	}
6554 
6555 	force_ent->port = simple_strtoul(id, &endp, 10);
6556 	if (p == endp || *endp != '\0') {
6557 		*reason = "invalid port/link";
6558 		return -EINVAL;
6559 	}
6560 
6561  parse_val:
6562 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6563 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6564 		const struct ata_force_param *fp = &force_tbl[i];
6565 
6566 		if (strncasecmp(val, fp->name, strlen(val)))
6567 			continue;
6568 
6569 		nr_matches++;
6570 		match_fp = fp;
6571 
6572 		if (strcasecmp(val, fp->name) == 0) {
6573 			nr_matches = 1;
6574 			break;
6575 		}
6576 	}
6577 
6578 	if (!nr_matches) {
6579 		*reason = "unknown value";
6580 		return -EINVAL;
6581 	}
6582 	if (nr_matches > 1) {
6583 		*reason = "ambigious value";
6584 		return -EINVAL;
6585 	}
6586 
6587 	force_ent->param = *match_fp;
6588 
6589 	return 0;
6590 }
6591 
6592 static void __init ata_parse_force_param(void)
6593 {
6594 	int idx = 0, size = 1;
6595 	int last_port = -1, last_device = -1;
6596 	char *p, *cur, *next;
6597 
6598 	/* calculate maximum number of params and allocate force_tbl */
6599 	for (p = ata_force_param_buf; *p; p++)
6600 		if (*p == ',')
6601 			size++;
6602 
6603 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6604 	if (!ata_force_tbl) {
6605 		printk(KERN_WARNING "ata: failed to extend force table, "
6606 		       "libata.force ignored\n");
6607 		return;
6608 	}
6609 
6610 	/* parse and populate the table */
6611 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6612 		const char *reason = "";
6613 		struct ata_force_ent te = { .port = -1, .device = -1 };
6614 
6615 		next = cur;
6616 		if (ata_parse_force_one(&next, &te, &reason)) {
6617 			printk(KERN_WARNING "ata: failed to parse force "
6618 			       "parameter \"%s\" (%s)\n",
6619 			       cur, reason);
6620 			continue;
6621 		}
6622 
6623 		if (te.port == -1) {
6624 			te.port = last_port;
6625 			te.device = last_device;
6626 		}
6627 
6628 		ata_force_tbl[idx++] = te;
6629 
6630 		last_port = te.port;
6631 		last_device = te.device;
6632 	}
6633 
6634 	ata_force_tbl_size = idx;
6635 }
6636 
6637 static int __init ata_init(void)
6638 {
6639 	int rc;
6640 
6641 	ata_parse_force_param();
6642 
6643 	rc = ata_sff_init();
6644 	if (rc) {
6645 		kfree(ata_force_tbl);
6646 		return rc;
6647 	}
6648 
6649 	libata_transport_init();
6650 	ata_scsi_transport_template = ata_attach_transport();
6651 	if (!ata_scsi_transport_template) {
6652 		ata_sff_exit();
6653 		rc = -ENOMEM;
6654 		goto err_out;
6655 	}
6656 
6657 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6658 	return 0;
6659 
6660 err_out:
6661 	return rc;
6662 }
6663 
6664 static void __exit ata_exit(void)
6665 {
6666 	ata_release_transport(ata_scsi_transport_template);
6667 	libata_transport_exit();
6668 	ata_sff_exit();
6669 	kfree(ata_force_tbl);
6670 }
6671 
6672 subsys_initcall(ata_init);
6673 module_exit(ata_exit);
6674 
6675 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6676 
6677 int ata_ratelimit(void)
6678 {
6679 	return __ratelimit(&ratelimit);
6680 }
6681 
6682 /**
6683  *	ata_msleep - ATA EH owner aware msleep
6684  *	@ap: ATA port to attribute the sleep to
6685  *	@msecs: duration to sleep in milliseconds
6686  *
6687  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6688  *	ownership is released before going to sleep and reacquired
6689  *	after the sleep is complete.  IOW, other ports sharing the
6690  *	@ap->host will be allowed to own the EH while this task is
6691  *	sleeping.
6692  *
6693  *	LOCKING:
6694  *	Might sleep.
6695  */
6696 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6697 {
6698 	bool owns_eh = ap && ap->host->eh_owner == current;
6699 
6700 	if (owns_eh)
6701 		ata_eh_release(ap);
6702 
6703 	msleep(msecs);
6704 
6705 	if (owns_eh)
6706 		ata_eh_acquire(ap);
6707 }
6708 
6709 /**
6710  *	ata_wait_register - wait until register value changes
6711  *	@ap: ATA port to wait register for, can be NULL
6712  *	@reg: IO-mapped register
6713  *	@mask: Mask to apply to read register value
6714  *	@val: Wait condition
6715  *	@interval: polling interval in milliseconds
6716  *	@timeout: timeout in milliseconds
6717  *
6718  *	Waiting for some bits of register to change is a common
6719  *	operation for ATA controllers.  This function reads 32bit LE
6720  *	IO-mapped register @reg and tests for the following condition.
6721  *
6722  *	(*@reg & mask) != val
6723  *
6724  *	If the condition is met, it returns; otherwise, the process is
6725  *	repeated after @interval_msec until timeout.
6726  *
6727  *	LOCKING:
6728  *	Kernel thread context (may sleep)
6729  *
6730  *	RETURNS:
6731  *	The final register value.
6732  */
6733 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6734 		      unsigned long interval, unsigned long timeout)
6735 {
6736 	unsigned long deadline;
6737 	u32 tmp;
6738 
6739 	tmp = ioread32(reg);
6740 
6741 	/* Calculate timeout _after_ the first read to make sure
6742 	 * preceding writes reach the controller before starting to
6743 	 * eat away the timeout.
6744 	 */
6745 	deadline = ata_deadline(jiffies, timeout);
6746 
6747 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6748 		ata_msleep(ap, interval);
6749 		tmp = ioread32(reg);
6750 	}
6751 
6752 	return tmp;
6753 }
6754 
6755 /*
6756  * Dummy port_ops
6757  */
6758 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6759 {
6760 	return AC_ERR_SYSTEM;
6761 }
6762 
6763 static void ata_dummy_error_handler(struct ata_port *ap)
6764 {
6765 	/* truly dummy */
6766 }
6767 
6768 struct ata_port_operations ata_dummy_port_ops = {
6769 	.qc_prep		= ata_noop_qc_prep,
6770 	.qc_issue		= ata_dummy_qc_issue,
6771 	.error_handler		= ata_dummy_error_handler,
6772 	.sched_eh		= ata_std_sched_eh,
6773 	.end_eh			= ata_std_end_eh,
6774 };
6775 
6776 const struct ata_port_info ata_dummy_port_info = {
6777 	.port_ops		= &ata_dummy_port_ops,
6778 };
6779 
6780 /*
6781  * Utility print functions
6782  */
6783 void ata_port_printk(const struct ata_port *ap, const char *level,
6784 		     const char *fmt, ...)
6785 {
6786 	struct va_format vaf;
6787 	va_list args;
6788 
6789 	va_start(args, fmt);
6790 
6791 	vaf.fmt = fmt;
6792 	vaf.va = &args;
6793 
6794 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
6795 
6796 	va_end(args);
6797 }
6798 EXPORT_SYMBOL(ata_port_printk);
6799 
6800 void ata_link_printk(const struct ata_link *link, const char *level,
6801 		     const char *fmt, ...)
6802 {
6803 	struct va_format vaf;
6804 	va_list args;
6805 
6806 	va_start(args, fmt);
6807 
6808 	vaf.fmt = fmt;
6809 	vaf.va = &args;
6810 
6811 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6812 		printk("%sata%u.%02u: %pV",
6813 		       level, link->ap->print_id, link->pmp, &vaf);
6814 	else
6815 		printk("%sata%u: %pV",
6816 		       level, link->ap->print_id, &vaf);
6817 
6818 	va_end(args);
6819 }
6820 EXPORT_SYMBOL(ata_link_printk);
6821 
6822 void ata_dev_printk(const struct ata_device *dev, const char *level,
6823 		    const char *fmt, ...)
6824 {
6825 	struct va_format vaf;
6826 	va_list args;
6827 
6828 	va_start(args, fmt);
6829 
6830 	vaf.fmt = fmt;
6831 	vaf.va = &args;
6832 
6833 	printk("%sata%u.%02u: %pV",
6834 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6835 	       &vaf);
6836 
6837 	va_end(args);
6838 }
6839 EXPORT_SYMBOL(ata_dev_printk);
6840 
6841 void ata_print_version(const struct device *dev, const char *version)
6842 {
6843 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6844 }
6845 EXPORT_SYMBOL(ata_print_version);
6846 
6847 /*
6848  * libata is essentially a library of internal helper functions for
6849  * low-level ATA host controller drivers.  As such, the API/ABI is
6850  * likely to change as new drivers are added and updated.
6851  * Do not depend on ABI/API stability.
6852  */
6853 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6854 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6855 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6856 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6857 EXPORT_SYMBOL_GPL(sata_port_ops);
6858 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6859 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6860 EXPORT_SYMBOL_GPL(ata_link_next);
6861 EXPORT_SYMBOL_GPL(ata_dev_next);
6862 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6863 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6864 EXPORT_SYMBOL_GPL(ata_host_init);
6865 EXPORT_SYMBOL_GPL(ata_host_alloc);
6866 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6867 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6868 EXPORT_SYMBOL_GPL(ata_host_start);
6869 EXPORT_SYMBOL_GPL(ata_host_register);
6870 EXPORT_SYMBOL_GPL(ata_host_activate);
6871 EXPORT_SYMBOL_GPL(ata_host_detach);
6872 EXPORT_SYMBOL_GPL(ata_sg_init);
6873 EXPORT_SYMBOL_GPL(ata_qc_complete);
6874 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6875 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6876 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6877 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6878 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6879 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6880 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6881 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6882 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6883 EXPORT_SYMBOL_GPL(ata_mode_string);
6884 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6885 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6886 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6887 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6888 EXPORT_SYMBOL_GPL(ata_dev_disable);
6889 EXPORT_SYMBOL_GPL(sata_set_spd);
6890 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6891 EXPORT_SYMBOL_GPL(sata_link_debounce);
6892 EXPORT_SYMBOL_GPL(sata_link_resume);
6893 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6894 EXPORT_SYMBOL_GPL(ata_std_prereset);
6895 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6896 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6897 EXPORT_SYMBOL_GPL(ata_std_postreset);
6898 EXPORT_SYMBOL_GPL(ata_dev_classify);
6899 EXPORT_SYMBOL_GPL(ata_dev_pair);
6900 EXPORT_SYMBOL_GPL(ata_ratelimit);
6901 EXPORT_SYMBOL_GPL(ata_msleep);
6902 EXPORT_SYMBOL_GPL(ata_wait_register);
6903 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6904 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6905 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6906 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6907 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6908 EXPORT_SYMBOL_GPL(sata_scr_valid);
6909 EXPORT_SYMBOL_GPL(sata_scr_read);
6910 EXPORT_SYMBOL_GPL(sata_scr_write);
6911 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6912 EXPORT_SYMBOL_GPL(ata_link_online);
6913 EXPORT_SYMBOL_GPL(ata_link_offline);
6914 #ifdef CONFIG_PM
6915 EXPORT_SYMBOL_GPL(ata_host_suspend);
6916 EXPORT_SYMBOL_GPL(ata_host_resume);
6917 #endif /* CONFIG_PM */
6918 EXPORT_SYMBOL_GPL(ata_id_string);
6919 EXPORT_SYMBOL_GPL(ata_id_c_string);
6920 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6921 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6922 
6923 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6924 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6925 EXPORT_SYMBOL_GPL(ata_timing_compute);
6926 EXPORT_SYMBOL_GPL(ata_timing_merge);
6927 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6928 
6929 #ifdef CONFIG_PCI
6930 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6931 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6932 #ifdef CONFIG_PM
6933 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6934 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6935 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6936 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6937 #endif /* CONFIG_PM */
6938 #endif /* CONFIG_PCI */
6939 
6940 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6941 
6942 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6943 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6944 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6945 EXPORT_SYMBOL_GPL(ata_port_desc);
6946 #ifdef CONFIG_PCI
6947 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6948 #endif /* CONFIG_PCI */
6949 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6950 EXPORT_SYMBOL_GPL(ata_link_abort);
6951 EXPORT_SYMBOL_GPL(ata_port_abort);
6952 EXPORT_SYMBOL_GPL(ata_port_freeze);
6953 EXPORT_SYMBOL_GPL(sata_async_notification);
6954 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6955 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6956 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6957 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6958 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6959 EXPORT_SYMBOL_GPL(ata_do_eh);
6960 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6961 
6962 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6963 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6964 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6965 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6966 EXPORT_SYMBOL_GPL(ata_cable_sata);
6967