xref: /openbmc/linux/drivers/ata/libata-core.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned int	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags_on;
100 	u16		lflags_off;
101 };
102 
103 struct ata_force_ent {
104 	int			port;
105 	int			device;
106 	struct ata_force_param	param;
107 };
108 
109 static struct ata_force_ent *ata_force_tbl;
110 static int ata_force_tbl_size;
111 
112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113 /* param_buf is thrown away after initialization, disallow read */
114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116 #endif
117 
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121 
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125 
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129 
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133 
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137 
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141 
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145 
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149 
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153 
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157 
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162 
163 static inline bool ata_dev_print_info(struct ata_device *dev)
164 {
165 	struct ata_eh_context *ehc = &dev->link->eh_context;
166 
167 	return ehc->i.flags & ATA_EHI_PRINTINFO;
168 }
169 
170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 	return (sstatus & 0xf) == 0x3;
173 }
174 
175 /**
176  *	ata_link_next - link iteration helper
177  *	@link: the previous link, NULL to start
178  *	@ap: ATA port containing links to iterate
179  *	@mode: iteration mode, one of ATA_LITER_*
180  *
181  *	LOCKING:
182  *	Host lock or EH context.
183  *
184  *	RETURNS:
185  *	Pointer to the next link.
186  */
187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 			       enum ata_link_iter_mode mode)
189 {
190 	BUG_ON(mode != ATA_LITER_EDGE &&
191 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192 
193 	/* NULL link indicates start of iteration */
194 	if (!link)
195 		switch (mode) {
196 		case ATA_LITER_EDGE:
197 		case ATA_LITER_PMP_FIRST:
198 			if (sata_pmp_attached(ap))
199 				return ap->pmp_link;
200 			fallthrough;
201 		case ATA_LITER_HOST_FIRST:
202 			return &ap->link;
203 		}
204 
205 	/* we just iterated over the host link, what's next? */
206 	if (link == &ap->link)
207 		switch (mode) {
208 		case ATA_LITER_HOST_FIRST:
209 			if (sata_pmp_attached(ap))
210 				return ap->pmp_link;
211 			fallthrough;
212 		case ATA_LITER_PMP_FIRST:
213 			if (unlikely(ap->slave_link))
214 				return ap->slave_link;
215 			fallthrough;
216 		case ATA_LITER_EDGE:
217 			return NULL;
218 		}
219 
220 	/* slave_link excludes PMP */
221 	if (unlikely(link == ap->slave_link))
222 		return NULL;
223 
224 	/* we were over a PMP link */
225 	if (++link < ap->pmp_link + ap->nr_pmp_links)
226 		return link;
227 
228 	if (mode == ATA_LITER_PMP_FIRST)
229 		return &ap->link;
230 
231 	return NULL;
232 }
233 EXPORT_SYMBOL_GPL(ata_link_next);
234 
235 /**
236  *	ata_dev_next - device iteration helper
237  *	@dev: the previous device, NULL to start
238  *	@link: ATA link containing devices to iterate
239  *	@mode: iteration mode, one of ATA_DITER_*
240  *
241  *	LOCKING:
242  *	Host lock or EH context.
243  *
244  *	RETURNS:
245  *	Pointer to the next device.
246  */
247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 				enum ata_dev_iter_mode mode)
249 {
250 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252 
253 	/* NULL dev indicates start of iteration */
254 	if (!dev)
255 		switch (mode) {
256 		case ATA_DITER_ENABLED:
257 		case ATA_DITER_ALL:
258 			dev = link->device;
259 			goto check;
260 		case ATA_DITER_ENABLED_REVERSE:
261 		case ATA_DITER_ALL_REVERSE:
262 			dev = link->device + ata_link_max_devices(link) - 1;
263 			goto check;
264 		}
265 
266  next:
267 	/* move to the next one */
268 	switch (mode) {
269 	case ATA_DITER_ENABLED:
270 	case ATA_DITER_ALL:
271 		if (++dev < link->device + ata_link_max_devices(link))
272 			goto check;
273 		return NULL;
274 	case ATA_DITER_ENABLED_REVERSE:
275 	case ATA_DITER_ALL_REVERSE:
276 		if (--dev >= link->device)
277 			goto check;
278 		return NULL;
279 	}
280 
281  check:
282 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 	    !ata_dev_enabled(dev))
284 		goto next;
285 	return dev;
286 }
287 EXPORT_SYMBOL_GPL(ata_dev_next);
288 
289 /**
290  *	ata_dev_phys_link - find physical link for a device
291  *	@dev: ATA device to look up physical link for
292  *
293  *	Look up physical link which @dev is attached to.  Note that
294  *	this is different from @dev->link only when @dev is on slave
295  *	link.  For all other cases, it's the same as @dev->link.
296  *
297  *	LOCKING:
298  *	Don't care.
299  *
300  *	RETURNS:
301  *	Pointer to the found physical link.
302  */
303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 	struct ata_port *ap = dev->link->ap;
306 
307 	if (!ap->slave_link)
308 		return dev->link;
309 	if (!dev->devno)
310 		return &ap->link;
311 	return ap->slave_link;
312 }
313 
314 #ifdef CONFIG_ATA_FORCE
315 /**
316  *	ata_force_cbl - force cable type according to libata.force
317  *	@ap: ATA port of interest
318  *
319  *	Force cable type according to libata.force and whine about it.
320  *	The last entry which has matching port number is used, so it
321  *	can be specified as part of device force parameters.  For
322  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323  *	same effect.
324  *
325  *	LOCKING:
326  *	EH context.
327  */
328 void ata_force_cbl(struct ata_port *ap)
329 {
330 	int i;
331 
332 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 		const struct ata_force_ent *fe = &ata_force_tbl[i];
334 
335 		if (fe->port != -1 && fe->port != ap->print_id)
336 			continue;
337 
338 		if (fe->param.cbl == ATA_CBL_NONE)
339 			continue;
340 
341 		ap->cbl = fe->param.cbl;
342 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 		return;
344 	}
345 }
346 
347 /**
348  *	ata_force_link_limits - force link limits according to libata.force
349  *	@link: ATA link of interest
350  *
351  *	Force link flags and SATA spd limit according to libata.force
352  *	and whine about it.  When only the port part is specified
353  *	(e.g. 1:), the limit applies to all links connected to both
354  *	the host link and all fan-out ports connected via PMP.  If the
355  *	device part is specified as 0 (e.g. 1.00:), it specifies the
356  *	first fan-out link not the host link.  Device number 15 always
357  *	points to the host link whether PMP is attached or not.  If the
358  *	controller has slave link, device number 16 points to it.
359  *
360  *	LOCKING:
361  *	EH context.
362  */
363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 	bool did_spd = false;
366 	int linkno = link->pmp;
367 	int i;
368 
369 	if (ata_is_host_link(link))
370 		linkno += 15;
371 
372 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 		const struct ata_force_ent *fe = &ata_force_tbl[i];
374 
375 		if (fe->port != -1 && fe->port != link->ap->print_id)
376 			continue;
377 
378 		if (fe->device != -1 && fe->device != linkno)
379 			continue;
380 
381 		/* only honor the first spd limit */
382 		if (!did_spd && fe->param.spd_limit) {
383 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 					fe->param.name);
386 			did_spd = true;
387 		}
388 
389 		/* let lflags stack */
390 		if (fe->param.lflags_on) {
391 			link->flags |= fe->param.lflags_on;
392 			ata_link_notice(link,
393 					"FORCE: link flag 0x%x forced -> 0x%x\n",
394 					fe->param.lflags_on, link->flags);
395 		}
396 		if (fe->param.lflags_off) {
397 			link->flags &= ~fe->param.lflags_off;
398 			ata_link_notice(link,
399 				"FORCE: link flag 0x%x cleared -> 0x%x\n",
400 				fe->param.lflags_off, link->flags);
401 		}
402 	}
403 }
404 
405 /**
406  *	ata_force_xfermask - force xfermask according to libata.force
407  *	@dev: ATA device of interest
408  *
409  *	Force xfer_mask according to libata.force and whine about it.
410  *	For consistency with link selection, device number 15 selects
411  *	the first device connected to the host link.
412  *
413  *	LOCKING:
414  *	EH context.
415  */
416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 	int devno = dev->link->pmp + dev->devno;
419 	int alt_devno = devno;
420 	int i;
421 
422 	/* allow n.15/16 for devices attached to host port */
423 	if (ata_is_host_link(dev->link))
424 		alt_devno += 15;
425 
426 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 		const struct ata_force_ent *fe = &ata_force_tbl[i];
428 		unsigned int pio_mask, mwdma_mask, udma_mask;
429 
430 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 			continue;
432 
433 		if (fe->device != -1 && fe->device != devno &&
434 		    fe->device != alt_devno)
435 			continue;
436 
437 		if (!fe->param.xfer_mask)
438 			continue;
439 
440 		ata_unpack_xfermask(fe->param.xfer_mask,
441 				    &pio_mask, &mwdma_mask, &udma_mask);
442 		if (udma_mask)
443 			dev->udma_mask = udma_mask;
444 		else if (mwdma_mask) {
445 			dev->udma_mask = 0;
446 			dev->mwdma_mask = mwdma_mask;
447 		} else {
448 			dev->udma_mask = 0;
449 			dev->mwdma_mask = 0;
450 			dev->pio_mask = pio_mask;
451 		}
452 
453 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 			       fe->param.name);
455 		return;
456 	}
457 }
458 
459 /**
460  *	ata_force_horkage - force horkage according to libata.force
461  *	@dev: ATA device of interest
462  *
463  *	Force horkage according to libata.force and whine about it.
464  *	For consistency with link selection, device number 15 selects
465  *	the first device connected to the host link.
466  *
467  *	LOCKING:
468  *	EH context.
469  */
470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 	int devno = dev->link->pmp + dev->devno;
473 	int alt_devno = devno;
474 	int i;
475 
476 	/* allow n.15/16 for devices attached to host port */
477 	if (ata_is_host_link(dev->link))
478 		alt_devno += 15;
479 
480 	for (i = 0; i < ata_force_tbl_size; i++) {
481 		const struct ata_force_ent *fe = &ata_force_tbl[i];
482 
483 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 			continue;
485 
486 		if (fe->device != -1 && fe->device != devno &&
487 		    fe->device != alt_devno)
488 			continue;
489 
490 		if (!(~dev->horkage & fe->param.horkage_on) &&
491 		    !(dev->horkage & fe->param.horkage_off))
492 			continue;
493 
494 		dev->horkage |= fe->param.horkage_on;
495 		dev->horkage &= ~fe->param.horkage_off;
496 
497 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 			       fe->param.name);
499 	}
500 }
501 #else
502 static inline void ata_force_link_limits(struct ata_link *link) { }
503 static inline void ata_force_xfermask(struct ata_device *dev) { }
504 static inline void ata_force_horkage(struct ata_device *dev) { }
505 #endif
506 
507 /**
508  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509  *	@opcode: SCSI opcode
510  *
511  *	Determine ATAPI command type from @opcode.
512  *
513  *	LOCKING:
514  *	None.
515  *
516  *	RETURNS:
517  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518  */
519 int atapi_cmd_type(u8 opcode)
520 {
521 	switch (opcode) {
522 	case GPCMD_READ_10:
523 	case GPCMD_READ_12:
524 		return ATAPI_READ;
525 
526 	case GPCMD_WRITE_10:
527 	case GPCMD_WRITE_12:
528 	case GPCMD_WRITE_AND_VERIFY_10:
529 		return ATAPI_WRITE;
530 
531 	case GPCMD_READ_CD:
532 	case GPCMD_READ_CD_MSF:
533 		return ATAPI_READ_CD;
534 
535 	case ATA_16:
536 	case ATA_12:
537 		if (atapi_passthru16)
538 			return ATAPI_PASS_THRU;
539 		fallthrough;
540 	default:
541 		return ATAPI_MISC;
542 	}
543 }
544 EXPORT_SYMBOL_GPL(atapi_cmd_type);
545 
546 static const u8 ata_rw_cmds[] = {
547 	/* pio multi */
548 	ATA_CMD_READ_MULTI,
549 	ATA_CMD_WRITE_MULTI,
550 	ATA_CMD_READ_MULTI_EXT,
551 	ATA_CMD_WRITE_MULTI_EXT,
552 	0,
553 	0,
554 	0,
555 	ATA_CMD_WRITE_MULTI_FUA_EXT,
556 	/* pio */
557 	ATA_CMD_PIO_READ,
558 	ATA_CMD_PIO_WRITE,
559 	ATA_CMD_PIO_READ_EXT,
560 	ATA_CMD_PIO_WRITE_EXT,
561 	0,
562 	0,
563 	0,
564 	0,
565 	/* dma */
566 	ATA_CMD_READ,
567 	ATA_CMD_WRITE,
568 	ATA_CMD_READ_EXT,
569 	ATA_CMD_WRITE_EXT,
570 	0,
571 	0,
572 	0,
573 	ATA_CMD_WRITE_FUA_EXT
574 };
575 
576 /**
577  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
578  *	@tf: command to examine and configure
579  *	@dev: device tf belongs to
580  *
581  *	Examine the device configuration and tf->flags to calculate
582  *	the proper read/write commands and protocol to use.
583  *
584  *	LOCKING:
585  *	caller.
586  */
587 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
588 {
589 	u8 cmd;
590 
591 	int index, fua, lba48, write;
592 
593 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
594 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
595 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
596 
597 	if (dev->flags & ATA_DFLAG_PIO) {
598 		tf->protocol = ATA_PROT_PIO;
599 		index = dev->multi_count ? 0 : 8;
600 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
601 		/* Unable to use DMA due to host limitation */
602 		tf->protocol = ATA_PROT_PIO;
603 		index = dev->multi_count ? 0 : 8;
604 	} else {
605 		tf->protocol = ATA_PROT_DMA;
606 		index = 16;
607 	}
608 
609 	cmd = ata_rw_cmds[index + fua + lba48 + write];
610 	if (cmd) {
611 		tf->command = cmd;
612 		return 0;
613 	}
614 	return -1;
615 }
616 
617 /**
618  *	ata_tf_read_block - Read block address from ATA taskfile
619  *	@tf: ATA taskfile of interest
620  *	@dev: ATA device @tf belongs to
621  *
622  *	LOCKING:
623  *	None.
624  *
625  *	Read block address from @tf.  This function can handle all
626  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
627  *	flags select the address format to use.
628  *
629  *	RETURNS:
630  *	Block address read from @tf.
631  */
632 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
633 {
634 	u64 block = 0;
635 
636 	if (tf->flags & ATA_TFLAG_LBA) {
637 		if (tf->flags & ATA_TFLAG_LBA48) {
638 			block |= (u64)tf->hob_lbah << 40;
639 			block |= (u64)tf->hob_lbam << 32;
640 			block |= (u64)tf->hob_lbal << 24;
641 		} else
642 			block |= (tf->device & 0xf) << 24;
643 
644 		block |= tf->lbah << 16;
645 		block |= tf->lbam << 8;
646 		block |= tf->lbal;
647 	} else {
648 		u32 cyl, head, sect;
649 
650 		cyl = tf->lbam | (tf->lbah << 8);
651 		head = tf->device & 0xf;
652 		sect = tf->lbal;
653 
654 		if (!sect) {
655 			ata_dev_warn(dev,
656 				     "device reported invalid CHS sector 0\n");
657 			return U64_MAX;
658 		}
659 
660 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
661 	}
662 
663 	return block;
664 }
665 
666 /**
667  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
668  *	@qc: Metadata associated with the taskfile to build
669  *	@block: Block address
670  *	@n_block: Number of blocks
671  *	@tf_flags: RW/FUA etc...
672  *	@class: IO priority class
673  *
674  *	LOCKING:
675  *	None.
676  *
677  *	Build ATA taskfile for the command @qc for read/write request described
678  *	by @block, @n_block, @tf_flags and @class.
679  *
680  *	RETURNS:
681  *
682  *	0 on success, -ERANGE if the request is too large for @dev,
683  *	-EINVAL if the request is invalid.
684  */
685 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
686 		    unsigned int tf_flags, int class)
687 {
688 	struct ata_taskfile *tf = &qc->tf;
689 	struct ata_device *dev = qc->dev;
690 
691 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
692 	tf->flags |= tf_flags;
693 
694 	if (ata_ncq_enabled(dev)) {
695 		/* yay, NCQ */
696 		if (!lba_48_ok(block, n_block))
697 			return -ERANGE;
698 
699 		tf->protocol = ATA_PROT_NCQ;
700 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
701 
702 		if (tf->flags & ATA_TFLAG_WRITE)
703 			tf->command = ATA_CMD_FPDMA_WRITE;
704 		else
705 			tf->command = ATA_CMD_FPDMA_READ;
706 
707 		tf->nsect = qc->hw_tag << 3;
708 		tf->hob_feature = (n_block >> 8) & 0xff;
709 		tf->feature = n_block & 0xff;
710 
711 		tf->hob_lbah = (block >> 40) & 0xff;
712 		tf->hob_lbam = (block >> 32) & 0xff;
713 		tf->hob_lbal = (block >> 24) & 0xff;
714 		tf->lbah = (block >> 16) & 0xff;
715 		tf->lbam = (block >> 8) & 0xff;
716 		tf->lbal = block & 0xff;
717 
718 		tf->device = ATA_LBA;
719 		if (tf->flags & ATA_TFLAG_FUA)
720 			tf->device |= 1 << 7;
721 
722 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
723 		    class == IOPRIO_CLASS_RT)
724 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
725 	} else if (dev->flags & ATA_DFLAG_LBA) {
726 		tf->flags |= ATA_TFLAG_LBA;
727 
728 		if (lba_28_ok(block, n_block)) {
729 			/* use LBA28 */
730 			tf->device |= (block >> 24) & 0xf;
731 		} else if (lba_48_ok(block, n_block)) {
732 			if (!(dev->flags & ATA_DFLAG_LBA48))
733 				return -ERANGE;
734 
735 			/* use LBA48 */
736 			tf->flags |= ATA_TFLAG_LBA48;
737 
738 			tf->hob_nsect = (n_block >> 8) & 0xff;
739 
740 			tf->hob_lbah = (block >> 40) & 0xff;
741 			tf->hob_lbam = (block >> 32) & 0xff;
742 			tf->hob_lbal = (block >> 24) & 0xff;
743 		} else
744 			/* request too large even for LBA48 */
745 			return -ERANGE;
746 
747 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
748 			return -EINVAL;
749 
750 		tf->nsect = n_block & 0xff;
751 
752 		tf->lbah = (block >> 16) & 0xff;
753 		tf->lbam = (block >> 8) & 0xff;
754 		tf->lbal = block & 0xff;
755 
756 		tf->device |= ATA_LBA;
757 	} else {
758 		/* CHS */
759 		u32 sect, head, cyl, track;
760 
761 		/* The request -may- be too large for CHS addressing. */
762 		if (!lba_28_ok(block, n_block))
763 			return -ERANGE;
764 
765 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
766 			return -EINVAL;
767 
768 		/* Convert LBA to CHS */
769 		track = (u32)block / dev->sectors;
770 		cyl   = track / dev->heads;
771 		head  = track % dev->heads;
772 		sect  = (u32)block % dev->sectors + 1;
773 
774 		/* Check whether the converted CHS can fit.
775 		   Cylinder: 0-65535
776 		   Head: 0-15
777 		   Sector: 1-255*/
778 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
779 			return -ERANGE;
780 
781 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
782 		tf->lbal = sect;
783 		tf->lbam = cyl;
784 		tf->lbah = cyl >> 8;
785 		tf->device |= head;
786 	}
787 
788 	return 0;
789 }
790 
791 /**
792  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
793  *	@pio_mask: pio_mask
794  *	@mwdma_mask: mwdma_mask
795  *	@udma_mask: udma_mask
796  *
797  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
798  *	unsigned int xfer_mask.
799  *
800  *	LOCKING:
801  *	None.
802  *
803  *	RETURNS:
804  *	Packed xfer_mask.
805  */
806 unsigned int ata_pack_xfermask(unsigned int pio_mask,
807 			       unsigned int mwdma_mask,
808 			       unsigned int udma_mask)
809 {
810 	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
811 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
812 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
813 }
814 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
815 
816 /**
817  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
818  *	@xfer_mask: xfer_mask to unpack
819  *	@pio_mask: resulting pio_mask
820  *	@mwdma_mask: resulting mwdma_mask
821  *	@udma_mask: resulting udma_mask
822  *
823  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
824  *	Any NULL destination masks will be ignored.
825  */
826 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
827 			 unsigned int *mwdma_mask, unsigned int *udma_mask)
828 {
829 	if (pio_mask)
830 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
831 	if (mwdma_mask)
832 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
833 	if (udma_mask)
834 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
835 }
836 
837 static const struct ata_xfer_ent {
838 	int shift, bits;
839 	u8 base;
840 } ata_xfer_tbl[] = {
841 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
842 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
843 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
844 	{ -1, },
845 };
846 
847 /**
848  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
849  *	@xfer_mask: xfer_mask of interest
850  *
851  *	Return matching XFER_* value for @xfer_mask.  Only the highest
852  *	bit of @xfer_mask is considered.
853  *
854  *	LOCKING:
855  *	None.
856  *
857  *	RETURNS:
858  *	Matching XFER_* value, 0xff if no match found.
859  */
860 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
861 {
862 	int highbit = fls(xfer_mask) - 1;
863 	const struct ata_xfer_ent *ent;
864 
865 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
866 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
867 			return ent->base + highbit - ent->shift;
868 	return 0xff;
869 }
870 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
871 
872 /**
873  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
874  *	@xfer_mode: XFER_* of interest
875  *
876  *	Return matching xfer_mask for @xfer_mode.
877  *
878  *	LOCKING:
879  *	None.
880  *
881  *	RETURNS:
882  *	Matching xfer_mask, 0 if no match found.
883  */
884 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
885 {
886 	const struct ata_xfer_ent *ent;
887 
888 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
889 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
890 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
891 				& ~((1 << ent->shift) - 1);
892 	return 0;
893 }
894 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
895 
896 /**
897  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
898  *	@xfer_mode: XFER_* of interest
899  *
900  *	Return matching xfer_shift for @xfer_mode.
901  *
902  *	LOCKING:
903  *	None.
904  *
905  *	RETURNS:
906  *	Matching xfer_shift, -1 if no match found.
907  */
908 int ata_xfer_mode2shift(u8 xfer_mode)
909 {
910 	const struct ata_xfer_ent *ent;
911 
912 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
913 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
914 			return ent->shift;
915 	return -1;
916 }
917 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
918 
919 /**
920  *	ata_mode_string - convert xfer_mask to string
921  *	@xfer_mask: mask of bits supported; only highest bit counts.
922  *
923  *	Determine string which represents the highest speed
924  *	(highest bit in @modemask).
925  *
926  *	LOCKING:
927  *	None.
928  *
929  *	RETURNS:
930  *	Constant C string representing highest speed listed in
931  *	@mode_mask, or the constant C string "<n/a>".
932  */
933 const char *ata_mode_string(unsigned int xfer_mask)
934 {
935 	static const char * const xfer_mode_str[] = {
936 		"PIO0",
937 		"PIO1",
938 		"PIO2",
939 		"PIO3",
940 		"PIO4",
941 		"PIO5",
942 		"PIO6",
943 		"MWDMA0",
944 		"MWDMA1",
945 		"MWDMA2",
946 		"MWDMA3",
947 		"MWDMA4",
948 		"UDMA/16",
949 		"UDMA/25",
950 		"UDMA/33",
951 		"UDMA/44",
952 		"UDMA/66",
953 		"UDMA/100",
954 		"UDMA/133",
955 		"UDMA7",
956 	};
957 	int highbit;
958 
959 	highbit = fls(xfer_mask) - 1;
960 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
961 		return xfer_mode_str[highbit];
962 	return "<n/a>";
963 }
964 EXPORT_SYMBOL_GPL(ata_mode_string);
965 
966 const char *sata_spd_string(unsigned int spd)
967 {
968 	static const char * const spd_str[] = {
969 		"1.5 Gbps",
970 		"3.0 Gbps",
971 		"6.0 Gbps",
972 	};
973 
974 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
975 		return "<unknown>";
976 	return spd_str[spd - 1];
977 }
978 
979 /**
980  *	ata_dev_classify - determine device type based on ATA-spec signature
981  *	@tf: ATA taskfile register set for device to be identified
982  *
983  *	Determine from taskfile register contents whether a device is
984  *	ATA or ATAPI, as per "Signature and persistence" section
985  *	of ATA/PI spec (volume 1, sect 5.14).
986  *
987  *	LOCKING:
988  *	None.
989  *
990  *	RETURNS:
991  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
992  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
993  */
994 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
995 {
996 	/* Apple's open source Darwin code hints that some devices only
997 	 * put a proper signature into the LBA mid/high registers,
998 	 * So, we only check those.  It's sufficient for uniqueness.
999 	 *
1000 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1001 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1002 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1003 	 * spec has never mentioned about using different signatures
1004 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1005 	 * Multiplier specification began to use 0x69/0x96 to identify
1006 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1007 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1008 	 * 0x69/0x96 shortly and described them as reserved for
1009 	 * SerialATA.
1010 	 *
1011 	 * We follow the current spec and consider that 0x69/0x96
1012 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1013 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1014 	 * SEMB signature.  This is worked around in
1015 	 * ata_dev_read_id().
1016 	 */
1017 	if (tf->lbam == 0 && tf->lbah == 0)
1018 		return ATA_DEV_ATA;
1019 
1020 	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1021 		return ATA_DEV_ATAPI;
1022 
1023 	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1024 		return ATA_DEV_PMP;
1025 
1026 	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1027 		return ATA_DEV_SEMB;
1028 
1029 	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1030 		return ATA_DEV_ZAC;
1031 
1032 	return ATA_DEV_UNKNOWN;
1033 }
1034 EXPORT_SYMBOL_GPL(ata_dev_classify);
1035 
1036 /**
1037  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1038  *	@id: IDENTIFY DEVICE results we will examine
1039  *	@s: string into which data is output
1040  *	@ofs: offset into identify device page
1041  *	@len: length of string to return. must be an even number.
1042  *
1043  *	The strings in the IDENTIFY DEVICE page are broken up into
1044  *	16-bit chunks.  Run through the string, and output each
1045  *	8-bit chunk linearly, regardless of platform.
1046  *
1047  *	LOCKING:
1048  *	caller.
1049  */
1050 
1051 void ata_id_string(const u16 *id, unsigned char *s,
1052 		   unsigned int ofs, unsigned int len)
1053 {
1054 	unsigned int c;
1055 
1056 	BUG_ON(len & 1);
1057 
1058 	while (len > 0) {
1059 		c = id[ofs] >> 8;
1060 		*s = c;
1061 		s++;
1062 
1063 		c = id[ofs] & 0xff;
1064 		*s = c;
1065 		s++;
1066 
1067 		ofs++;
1068 		len -= 2;
1069 	}
1070 }
1071 EXPORT_SYMBOL_GPL(ata_id_string);
1072 
1073 /**
1074  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1075  *	@id: IDENTIFY DEVICE results we will examine
1076  *	@s: string into which data is output
1077  *	@ofs: offset into identify device page
1078  *	@len: length of string to return. must be an odd number.
1079  *
1080  *	This function is identical to ata_id_string except that it
1081  *	trims trailing spaces and terminates the resulting string with
1082  *	null.  @len must be actual maximum length (even number) + 1.
1083  *
1084  *	LOCKING:
1085  *	caller.
1086  */
1087 void ata_id_c_string(const u16 *id, unsigned char *s,
1088 		     unsigned int ofs, unsigned int len)
1089 {
1090 	unsigned char *p;
1091 
1092 	ata_id_string(id, s, ofs, len - 1);
1093 
1094 	p = s + strnlen(s, len - 1);
1095 	while (p > s && p[-1] == ' ')
1096 		p--;
1097 	*p = '\0';
1098 }
1099 EXPORT_SYMBOL_GPL(ata_id_c_string);
1100 
1101 static u64 ata_id_n_sectors(const u16 *id)
1102 {
1103 	if (ata_id_has_lba(id)) {
1104 		if (ata_id_has_lba48(id))
1105 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1106 
1107 		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1108 	}
1109 
1110 	if (ata_id_current_chs_valid(id))
1111 		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1112 		       (u32)id[ATA_ID_CUR_SECTORS];
1113 
1114 	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1115 	       (u32)id[ATA_ID_SECTORS];
1116 }
1117 
1118 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1119 {
1120 	u64 sectors = 0;
1121 
1122 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1123 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1124 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1125 	sectors |= (tf->lbah & 0xff) << 16;
1126 	sectors |= (tf->lbam & 0xff) << 8;
1127 	sectors |= (tf->lbal & 0xff);
1128 
1129 	return sectors;
1130 }
1131 
1132 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1133 {
1134 	u64 sectors = 0;
1135 
1136 	sectors |= (tf->device & 0x0f) << 24;
1137 	sectors |= (tf->lbah & 0xff) << 16;
1138 	sectors |= (tf->lbam & 0xff) << 8;
1139 	sectors |= (tf->lbal & 0xff);
1140 
1141 	return sectors;
1142 }
1143 
1144 /**
1145  *	ata_read_native_max_address - Read native max address
1146  *	@dev: target device
1147  *	@max_sectors: out parameter for the result native max address
1148  *
1149  *	Perform an LBA48 or LBA28 native size query upon the device in
1150  *	question.
1151  *
1152  *	RETURNS:
1153  *	0 on success, -EACCES if command is aborted by the drive.
1154  *	-EIO on other errors.
1155  */
1156 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1157 {
1158 	unsigned int err_mask;
1159 	struct ata_taskfile tf;
1160 	int lba48 = ata_id_has_lba48(dev->id);
1161 
1162 	ata_tf_init(dev, &tf);
1163 
1164 	/* always clear all address registers */
1165 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1166 
1167 	if (lba48) {
1168 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1169 		tf.flags |= ATA_TFLAG_LBA48;
1170 	} else
1171 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1172 
1173 	tf.protocol = ATA_PROT_NODATA;
1174 	tf.device |= ATA_LBA;
1175 
1176 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1177 	if (err_mask) {
1178 		ata_dev_warn(dev,
1179 			     "failed to read native max address (err_mask=0x%x)\n",
1180 			     err_mask);
1181 		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1182 			return -EACCES;
1183 		return -EIO;
1184 	}
1185 
1186 	if (lba48)
1187 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1188 	else
1189 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1190 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1191 		(*max_sectors)--;
1192 	return 0;
1193 }
1194 
1195 /**
1196  *	ata_set_max_sectors - Set max sectors
1197  *	@dev: target device
1198  *	@new_sectors: new max sectors value to set for the device
1199  *
1200  *	Set max sectors of @dev to @new_sectors.
1201  *
1202  *	RETURNS:
1203  *	0 on success, -EACCES if command is aborted or denied (due to
1204  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1205  *	errors.
1206  */
1207 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1208 {
1209 	unsigned int err_mask;
1210 	struct ata_taskfile tf;
1211 	int lba48 = ata_id_has_lba48(dev->id);
1212 
1213 	new_sectors--;
1214 
1215 	ata_tf_init(dev, &tf);
1216 
1217 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218 
1219 	if (lba48) {
1220 		tf.command = ATA_CMD_SET_MAX_EXT;
1221 		tf.flags |= ATA_TFLAG_LBA48;
1222 
1223 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1224 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1225 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1226 	} else {
1227 		tf.command = ATA_CMD_SET_MAX;
1228 
1229 		tf.device |= (new_sectors >> 24) & 0xf;
1230 	}
1231 
1232 	tf.protocol = ATA_PROT_NODATA;
1233 	tf.device |= ATA_LBA;
1234 
1235 	tf.lbal = (new_sectors >> 0) & 0xff;
1236 	tf.lbam = (new_sectors >> 8) & 0xff;
1237 	tf.lbah = (new_sectors >> 16) & 0xff;
1238 
1239 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1240 	if (err_mask) {
1241 		ata_dev_warn(dev,
1242 			     "failed to set max address (err_mask=0x%x)\n",
1243 			     err_mask);
1244 		if (err_mask == AC_ERR_DEV &&
1245 		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1246 			return -EACCES;
1247 		return -EIO;
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 /**
1254  *	ata_hpa_resize		-	Resize a device with an HPA set
1255  *	@dev: Device to resize
1256  *
1257  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1258  *	it if required to the full size of the media. The caller must check
1259  *	the drive has the HPA feature set enabled.
1260  *
1261  *	RETURNS:
1262  *	0 on success, -errno on failure.
1263  */
1264 static int ata_hpa_resize(struct ata_device *dev)
1265 {
1266 	bool print_info = ata_dev_print_info(dev);
1267 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1268 	u64 sectors = ata_id_n_sectors(dev->id);
1269 	u64 native_sectors;
1270 	int rc;
1271 
1272 	/* do we need to do it? */
1273 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1274 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1275 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1276 		return 0;
1277 
1278 	/* read native max address */
1279 	rc = ata_read_native_max_address(dev, &native_sectors);
1280 	if (rc) {
1281 		/* If device aborted the command or HPA isn't going to
1282 		 * be unlocked, skip HPA resizing.
1283 		 */
1284 		if (rc == -EACCES || !unlock_hpa) {
1285 			ata_dev_warn(dev,
1286 				     "HPA support seems broken, skipping HPA handling\n");
1287 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1288 
1289 			/* we can continue if device aborted the command */
1290 			if (rc == -EACCES)
1291 				rc = 0;
1292 		}
1293 
1294 		return rc;
1295 	}
1296 	dev->n_native_sectors = native_sectors;
1297 
1298 	/* nothing to do? */
1299 	if (native_sectors <= sectors || !unlock_hpa) {
1300 		if (!print_info || native_sectors == sectors)
1301 			return 0;
1302 
1303 		if (native_sectors > sectors)
1304 			ata_dev_info(dev,
1305 				"HPA detected: current %llu, native %llu\n",
1306 				(unsigned long long)sectors,
1307 				(unsigned long long)native_sectors);
1308 		else if (native_sectors < sectors)
1309 			ata_dev_warn(dev,
1310 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1311 				(unsigned long long)native_sectors,
1312 				(unsigned long long)sectors);
1313 		return 0;
1314 	}
1315 
1316 	/* let's unlock HPA */
1317 	rc = ata_set_max_sectors(dev, native_sectors);
1318 	if (rc == -EACCES) {
1319 		/* if device aborted the command, skip HPA resizing */
1320 		ata_dev_warn(dev,
1321 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1322 			     (unsigned long long)sectors,
1323 			     (unsigned long long)native_sectors);
1324 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1325 		return 0;
1326 	} else if (rc)
1327 		return rc;
1328 
1329 	/* re-read IDENTIFY data */
1330 	rc = ata_dev_reread_id(dev, 0);
1331 	if (rc) {
1332 		ata_dev_err(dev,
1333 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1334 		return rc;
1335 	}
1336 
1337 	if (print_info) {
1338 		u64 new_sectors = ata_id_n_sectors(dev->id);
1339 		ata_dev_info(dev,
1340 			"HPA unlocked: %llu -> %llu, native %llu\n",
1341 			(unsigned long long)sectors,
1342 			(unsigned long long)new_sectors,
1343 			(unsigned long long)native_sectors);
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 /**
1350  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1351  *	@dev: device from which the information is fetched
1352  *	@id: IDENTIFY DEVICE page to dump
1353  *
1354  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1355  *	page.
1356  *
1357  *	LOCKING:
1358  *	caller.
1359  */
1360 
1361 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1362 {
1363 	ata_dev_dbg(dev,
1364 		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1365 		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1366 		"88==0x%04x  93==0x%04x\n",
1367 		id[49], id[53], id[63], id[64], id[75], id[80],
1368 		id[81], id[82], id[83], id[84], id[88], id[93]);
1369 }
1370 
1371 /**
1372  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1373  *	@id: IDENTIFY data to compute xfer mask from
1374  *
1375  *	Compute the xfermask for this device. This is not as trivial
1376  *	as it seems if we must consider early devices correctly.
1377  *
1378  *	FIXME: pre IDE drive timing (do we care ?).
1379  *
1380  *	LOCKING:
1381  *	None.
1382  *
1383  *	RETURNS:
1384  *	Computed xfermask
1385  */
1386 unsigned int ata_id_xfermask(const u16 *id)
1387 {
1388 	unsigned int pio_mask, mwdma_mask, udma_mask;
1389 
1390 	/* Usual case. Word 53 indicates word 64 is valid */
1391 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1392 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1393 		pio_mask <<= 3;
1394 		pio_mask |= 0x7;
1395 	} else {
1396 		/* If word 64 isn't valid then Word 51 high byte holds
1397 		 * the PIO timing number for the maximum. Turn it into
1398 		 * a mask.
1399 		 */
1400 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1401 		if (mode < 5)	/* Valid PIO range */
1402 			pio_mask = (2 << mode) - 1;
1403 		else
1404 			pio_mask = 1;
1405 
1406 		/* But wait.. there's more. Design your standards by
1407 		 * committee and you too can get a free iordy field to
1408 		 * process. However it is the speeds not the modes that
1409 		 * are supported... Note drivers using the timing API
1410 		 * will get this right anyway
1411 		 */
1412 	}
1413 
1414 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1415 
1416 	if (ata_id_is_cfa(id)) {
1417 		/*
1418 		 *	Process compact flash extended modes
1419 		 */
1420 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1421 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1422 
1423 		if (pio)
1424 			pio_mask |= (1 << 5);
1425 		if (pio > 1)
1426 			pio_mask |= (1 << 6);
1427 		if (dma)
1428 			mwdma_mask |= (1 << 3);
1429 		if (dma > 1)
1430 			mwdma_mask |= (1 << 4);
1431 	}
1432 
1433 	udma_mask = 0;
1434 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1435 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1436 
1437 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1438 }
1439 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1440 
1441 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1442 {
1443 	struct completion *waiting = qc->private_data;
1444 
1445 	complete(waiting);
1446 }
1447 
1448 /**
1449  *	ata_exec_internal_sg - execute libata internal command
1450  *	@dev: Device to which the command is sent
1451  *	@tf: Taskfile registers for the command and the result
1452  *	@cdb: CDB for packet command
1453  *	@dma_dir: Data transfer direction of the command
1454  *	@sgl: sg list for the data buffer of the command
1455  *	@n_elem: Number of sg entries
1456  *	@timeout: Timeout in msecs (0 for default)
1457  *
1458  *	Executes libata internal command with timeout.  @tf contains
1459  *	command on entry and result on return.  Timeout and error
1460  *	conditions are reported via return value.  No recovery action
1461  *	is taken after a command times out.  It's caller's duty to
1462  *	clean up after timeout.
1463  *
1464  *	LOCKING:
1465  *	None.  Should be called with kernel context, might sleep.
1466  *
1467  *	RETURNS:
1468  *	Zero on success, AC_ERR_* mask on failure
1469  */
1470 static unsigned ata_exec_internal_sg(struct ata_device *dev,
1471 				     struct ata_taskfile *tf, const u8 *cdb,
1472 				     int dma_dir, struct scatterlist *sgl,
1473 				     unsigned int n_elem, unsigned int timeout)
1474 {
1475 	struct ata_link *link = dev->link;
1476 	struct ata_port *ap = link->ap;
1477 	u8 command = tf->command;
1478 	int auto_timeout = 0;
1479 	struct ata_queued_cmd *qc;
1480 	unsigned int preempted_tag;
1481 	u32 preempted_sactive;
1482 	u64 preempted_qc_active;
1483 	int preempted_nr_active_links;
1484 	DECLARE_COMPLETION_ONSTACK(wait);
1485 	unsigned long flags;
1486 	unsigned int err_mask;
1487 	int rc;
1488 
1489 	spin_lock_irqsave(ap->lock, flags);
1490 
1491 	/* no internal command while frozen */
1492 	if (ata_port_is_frozen(ap)) {
1493 		spin_unlock_irqrestore(ap->lock, flags);
1494 		return AC_ERR_SYSTEM;
1495 	}
1496 
1497 	/* initialize internal qc */
1498 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1499 
1500 	qc->tag = ATA_TAG_INTERNAL;
1501 	qc->hw_tag = 0;
1502 	qc->scsicmd = NULL;
1503 	qc->ap = ap;
1504 	qc->dev = dev;
1505 	ata_qc_reinit(qc);
1506 
1507 	preempted_tag = link->active_tag;
1508 	preempted_sactive = link->sactive;
1509 	preempted_qc_active = ap->qc_active;
1510 	preempted_nr_active_links = ap->nr_active_links;
1511 	link->active_tag = ATA_TAG_POISON;
1512 	link->sactive = 0;
1513 	ap->qc_active = 0;
1514 	ap->nr_active_links = 0;
1515 
1516 	/* prepare & issue qc */
1517 	qc->tf = *tf;
1518 	if (cdb)
1519 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1520 
1521 	/* some SATA bridges need us to indicate data xfer direction */
1522 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1523 	    dma_dir == DMA_FROM_DEVICE)
1524 		qc->tf.feature |= ATAPI_DMADIR;
1525 
1526 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1527 	qc->dma_dir = dma_dir;
1528 	if (dma_dir != DMA_NONE) {
1529 		unsigned int i, buflen = 0;
1530 		struct scatterlist *sg;
1531 
1532 		for_each_sg(sgl, sg, n_elem, i)
1533 			buflen += sg->length;
1534 
1535 		ata_sg_init(qc, sgl, n_elem);
1536 		qc->nbytes = buflen;
1537 	}
1538 
1539 	qc->private_data = &wait;
1540 	qc->complete_fn = ata_qc_complete_internal;
1541 
1542 	ata_qc_issue(qc);
1543 
1544 	spin_unlock_irqrestore(ap->lock, flags);
1545 
1546 	if (!timeout) {
1547 		if (ata_probe_timeout)
1548 			timeout = ata_probe_timeout * 1000;
1549 		else {
1550 			timeout = ata_internal_cmd_timeout(dev, command);
1551 			auto_timeout = 1;
1552 		}
1553 	}
1554 
1555 	if (ap->ops->error_handler)
1556 		ata_eh_release(ap);
1557 
1558 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1559 
1560 	if (ap->ops->error_handler)
1561 		ata_eh_acquire(ap);
1562 
1563 	ata_sff_flush_pio_task(ap);
1564 
1565 	if (!rc) {
1566 		spin_lock_irqsave(ap->lock, flags);
1567 
1568 		/* We're racing with irq here.  If we lose, the
1569 		 * following test prevents us from completing the qc
1570 		 * twice.  If we win, the port is frozen and will be
1571 		 * cleaned up by ->post_internal_cmd().
1572 		 */
1573 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1574 			qc->err_mask |= AC_ERR_TIMEOUT;
1575 
1576 			if (ap->ops->error_handler)
1577 				ata_port_freeze(ap);
1578 			else
1579 				ata_qc_complete(qc);
1580 
1581 			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1582 				     timeout, command);
1583 		}
1584 
1585 		spin_unlock_irqrestore(ap->lock, flags);
1586 	}
1587 
1588 	/* do post_internal_cmd */
1589 	if (ap->ops->post_internal_cmd)
1590 		ap->ops->post_internal_cmd(qc);
1591 
1592 	/* perform minimal error analysis */
1593 	if (qc->flags & ATA_QCFLAG_FAILED) {
1594 		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1595 			qc->err_mask |= AC_ERR_DEV;
1596 
1597 		if (!qc->err_mask)
1598 			qc->err_mask |= AC_ERR_OTHER;
1599 
1600 		if (qc->err_mask & ~AC_ERR_OTHER)
1601 			qc->err_mask &= ~AC_ERR_OTHER;
1602 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1603 		qc->result_tf.status |= ATA_SENSE;
1604 	}
1605 
1606 	/* finish up */
1607 	spin_lock_irqsave(ap->lock, flags);
1608 
1609 	*tf = qc->result_tf;
1610 	err_mask = qc->err_mask;
1611 
1612 	ata_qc_free(qc);
1613 	link->active_tag = preempted_tag;
1614 	link->sactive = preempted_sactive;
1615 	ap->qc_active = preempted_qc_active;
1616 	ap->nr_active_links = preempted_nr_active_links;
1617 
1618 	spin_unlock_irqrestore(ap->lock, flags);
1619 
1620 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1621 		ata_internal_cmd_timed_out(dev, command);
1622 
1623 	return err_mask;
1624 }
1625 
1626 /**
1627  *	ata_exec_internal - execute libata internal command
1628  *	@dev: Device to which the command is sent
1629  *	@tf: Taskfile registers for the command and the result
1630  *	@cdb: CDB for packet command
1631  *	@dma_dir: Data transfer direction of the command
1632  *	@buf: Data buffer of the command
1633  *	@buflen: Length of data buffer
1634  *	@timeout: Timeout in msecs (0 for default)
1635  *
1636  *	Wrapper around ata_exec_internal_sg() which takes simple
1637  *	buffer instead of sg list.
1638  *
1639  *	LOCKING:
1640  *	None.  Should be called with kernel context, might sleep.
1641  *
1642  *	RETURNS:
1643  *	Zero on success, AC_ERR_* mask on failure
1644  */
1645 unsigned ata_exec_internal(struct ata_device *dev,
1646 			   struct ata_taskfile *tf, const u8 *cdb,
1647 			   int dma_dir, void *buf, unsigned int buflen,
1648 			   unsigned int timeout)
1649 {
1650 	struct scatterlist *psg = NULL, sg;
1651 	unsigned int n_elem = 0;
1652 
1653 	if (dma_dir != DMA_NONE) {
1654 		WARN_ON(!buf);
1655 		sg_init_one(&sg, buf, buflen);
1656 		psg = &sg;
1657 		n_elem++;
1658 	}
1659 
1660 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1661 				    timeout);
1662 }
1663 
1664 /**
1665  *	ata_pio_need_iordy	-	check if iordy needed
1666  *	@adev: ATA device
1667  *
1668  *	Check if the current speed of the device requires IORDY. Used
1669  *	by various controllers for chip configuration.
1670  */
1671 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1672 {
1673 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1674 	 * lead to controller lock up on certain controllers if the
1675 	 * port is not occupied.  See bko#11703 for details.
1676 	 */
1677 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1678 		return 0;
1679 	/* Controller doesn't support IORDY.  Probably a pointless
1680 	 * check as the caller should know this.
1681 	 */
1682 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1683 		return 0;
1684 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1685 	if (ata_id_is_cfa(adev->id)
1686 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1687 		return 0;
1688 	/* PIO3 and higher it is mandatory */
1689 	if (adev->pio_mode > XFER_PIO_2)
1690 		return 1;
1691 	/* We turn it on when possible */
1692 	if (ata_id_has_iordy(adev->id))
1693 		return 1;
1694 	return 0;
1695 }
1696 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1697 
1698 /**
1699  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1700  *	@adev: ATA device
1701  *
1702  *	Compute the highest mode possible if we are not using iordy. Return
1703  *	-1 if no iordy mode is available.
1704  */
1705 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1706 {
1707 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1708 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1709 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1710 		/* Is the speed faster than the drive allows non IORDY ? */
1711 		if (pio) {
1712 			/* This is cycle times not frequency - watch the logic! */
1713 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1714 				return 3 << ATA_SHIFT_PIO;
1715 			return 7 << ATA_SHIFT_PIO;
1716 		}
1717 	}
1718 	return 3 << ATA_SHIFT_PIO;
1719 }
1720 
1721 /**
1722  *	ata_do_dev_read_id		-	default ID read method
1723  *	@dev: device
1724  *	@tf: proposed taskfile
1725  *	@id: data buffer
1726  *
1727  *	Issue the identify taskfile and hand back the buffer containing
1728  *	identify data. For some RAID controllers and for pre ATA devices
1729  *	this function is wrapped or replaced by the driver
1730  */
1731 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1732 				struct ata_taskfile *tf, __le16 *id)
1733 {
1734 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1735 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1736 }
1737 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1738 
1739 /**
1740  *	ata_dev_read_id - Read ID data from the specified device
1741  *	@dev: target device
1742  *	@p_class: pointer to class of the target device (may be changed)
1743  *	@flags: ATA_READID_* flags
1744  *	@id: buffer to read IDENTIFY data into
1745  *
1746  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1747  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1748  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1749  *	for pre-ATA4 drives.
1750  *
1751  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1752  *	now we abort if we hit that case.
1753  *
1754  *	LOCKING:
1755  *	Kernel thread context (may sleep)
1756  *
1757  *	RETURNS:
1758  *	0 on success, -errno otherwise.
1759  */
1760 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1761 		    unsigned int flags, u16 *id)
1762 {
1763 	struct ata_port *ap = dev->link->ap;
1764 	unsigned int class = *p_class;
1765 	struct ata_taskfile tf;
1766 	unsigned int err_mask = 0;
1767 	const char *reason;
1768 	bool is_semb = class == ATA_DEV_SEMB;
1769 	int may_fallback = 1, tried_spinup = 0;
1770 	int rc;
1771 
1772 retry:
1773 	ata_tf_init(dev, &tf);
1774 
1775 	switch (class) {
1776 	case ATA_DEV_SEMB:
1777 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1778 		fallthrough;
1779 	case ATA_DEV_ATA:
1780 	case ATA_DEV_ZAC:
1781 		tf.command = ATA_CMD_ID_ATA;
1782 		break;
1783 	case ATA_DEV_ATAPI:
1784 		tf.command = ATA_CMD_ID_ATAPI;
1785 		break;
1786 	default:
1787 		rc = -ENODEV;
1788 		reason = "unsupported class";
1789 		goto err_out;
1790 	}
1791 
1792 	tf.protocol = ATA_PROT_PIO;
1793 
1794 	/* Some devices choke if TF registers contain garbage.  Make
1795 	 * sure those are properly initialized.
1796 	 */
1797 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1798 
1799 	/* Device presence detection is unreliable on some
1800 	 * controllers.  Always poll IDENTIFY if available.
1801 	 */
1802 	tf.flags |= ATA_TFLAG_POLLING;
1803 
1804 	if (ap->ops->read_id)
1805 		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1806 	else
1807 		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1808 
1809 	if (err_mask) {
1810 		if (err_mask & AC_ERR_NODEV_HINT) {
1811 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1812 			return -ENOENT;
1813 		}
1814 
1815 		if (is_semb) {
1816 			ata_dev_info(dev,
1817 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1818 			/* SEMB is not supported yet */
1819 			*p_class = ATA_DEV_SEMB_UNSUP;
1820 			return 0;
1821 		}
1822 
1823 		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1824 			/* Device or controller might have reported
1825 			 * the wrong device class.  Give a shot at the
1826 			 * other IDENTIFY if the current one is
1827 			 * aborted by the device.
1828 			 */
1829 			if (may_fallback) {
1830 				may_fallback = 0;
1831 
1832 				if (class == ATA_DEV_ATA)
1833 					class = ATA_DEV_ATAPI;
1834 				else
1835 					class = ATA_DEV_ATA;
1836 				goto retry;
1837 			}
1838 
1839 			/* Control reaches here iff the device aborted
1840 			 * both flavors of IDENTIFYs which happens
1841 			 * sometimes with phantom devices.
1842 			 */
1843 			ata_dev_dbg(dev,
1844 				    "both IDENTIFYs aborted, assuming NODEV\n");
1845 			return -ENOENT;
1846 		}
1847 
1848 		rc = -EIO;
1849 		reason = "I/O error";
1850 		goto err_out;
1851 	}
1852 
1853 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1854 		ata_dev_info(dev, "dumping IDENTIFY data, "
1855 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1856 			    class, may_fallback, tried_spinup);
1857 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1858 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1859 	}
1860 
1861 	/* Falling back doesn't make sense if ID data was read
1862 	 * successfully at least once.
1863 	 */
1864 	may_fallback = 0;
1865 
1866 	swap_buf_le16(id, ATA_ID_WORDS);
1867 
1868 	/* sanity check */
1869 	rc = -EINVAL;
1870 	reason = "device reports invalid type";
1871 
1872 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1873 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1874 			goto err_out;
1875 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1876 							ata_id_is_ata(id)) {
1877 			ata_dev_dbg(dev,
1878 				"host indicates ignore ATA devices, ignored\n");
1879 			return -ENOENT;
1880 		}
1881 	} else {
1882 		if (ata_id_is_ata(id))
1883 			goto err_out;
1884 	}
1885 
1886 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1887 		tried_spinup = 1;
1888 		/*
1889 		 * Drive powered-up in standby mode, and requires a specific
1890 		 * SET_FEATURES spin-up subcommand before it will accept
1891 		 * anything other than the original IDENTIFY command.
1892 		 */
1893 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1894 		if (err_mask && id[2] != 0x738c) {
1895 			rc = -EIO;
1896 			reason = "SPINUP failed";
1897 			goto err_out;
1898 		}
1899 		/*
1900 		 * If the drive initially returned incomplete IDENTIFY info,
1901 		 * we now must reissue the IDENTIFY command.
1902 		 */
1903 		if (id[2] == 0x37c8)
1904 			goto retry;
1905 	}
1906 
1907 	if ((flags & ATA_READID_POSTRESET) &&
1908 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1909 		/*
1910 		 * The exact sequence expected by certain pre-ATA4 drives is:
1911 		 * SRST RESET
1912 		 * IDENTIFY (optional in early ATA)
1913 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1914 		 * anything else..
1915 		 * Some drives were very specific about that exact sequence.
1916 		 *
1917 		 * Note that ATA4 says lba is mandatory so the second check
1918 		 * should never trigger.
1919 		 */
1920 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1921 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1922 			if (err_mask) {
1923 				rc = -EIO;
1924 				reason = "INIT_DEV_PARAMS failed";
1925 				goto err_out;
1926 			}
1927 
1928 			/* current CHS translation info (id[53-58]) might be
1929 			 * changed. reread the identify device info.
1930 			 */
1931 			flags &= ~ATA_READID_POSTRESET;
1932 			goto retry;
1933 		}
1934 	}
1935 
1936 	*p_class = class;
1937 
1938 	return 0;
1939 
1940  err_out:
1941 	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1942 		     reason, err_mask);
1943 	return rc;
1944 }
1945 
1946 /**
1947  *	ata_read_log_page - read a specific log page
1948  *	@dev: target device
1949  *	@log: log to read
1950  *	@page: page to read
1951  *	@buf: buffer to store read page
1952  *	@sectors: number of sectors to read
1953  *
1954  *	Read log page using READ_LOG_EXT command.
1955  *
1956  *	LOCKING:
1957  *	Kernel thread context (may sleep).
1958  *
1959  *	RETURNS:
1960  *	0 on success, AC_ERR_* mask otherwise.
1961  */
1962 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1963 			       u8 page, void *buf, unsigned int sectors)
1964 {
1965 	unsigned long ap_flags = dev->link->ap->flags;
1966 	struct ata_taskfile tf;
1967 	unsigned int err_mask;
1968 	bool dma = false;
1969 
1970 	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
1971 
1972 	/*
1973 	 * Return error without actually issuing the command on controllers
1974 	 * which e.g. lockup on a read log page.
1975 	 */
1976 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
1977 		return AC_ERR_DEV;
1978 
1979 retry:
1980 	ata_tf_init(dev, &tf);
1981 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
1982 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
1983 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
1984 		tf.protocol = ATA_PROT_DMA;
1985 		dma = true;
1986 	} else {
1987 		tf.command = ATA_CMD_READ_LOG_EXT;
1988 		tf.protocol = ATA_PROT_PIO;
1989 		dma = false;
1990 	}
1991 	tf.lbal = log;
1992 	tf.lbam = page;
1993 	tf.nsect = sectors;
1994 	tf.hob_nsect = sectors >> 8;
1995 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
1996 
1997 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1998 				     buf, sectors * ATA_SECT_SIZE, 0);
1999 
2000 	if (err_mask) {
2001 		if (dma) {
2002 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2003 			if (!ata_port_is_frozen(dev->link->ap))
2004 				goto retry;
2005 		}
2006 		ata_dev_err(dev,
2007 			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2008 			    (unsigned int)log, (unsigned int)page, err_mask);
2009 	}
2010 
2011 	return err_mask;
2012 }
2013 
2014 static int ata_log_supported(struct ata_device *dev, u8 log)
2015 {
2016 	struct ata_port *ap = dev->link->ap;
2017 
2018 	if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2019 		return 0;
2020 
2021 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2022 		return 0;
2023 	return get_unaligned_le16(&ap->sector_buf[log * 2]);
2024 }
2025 
2026 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2027 {
2028 	struct ata_port *ap = dev->link->ap;
2029 	unsigned int err, i;
2030 
2031 	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2032 		return false;
2033 
2034 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2035 		/*
2036 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2037 		 * with ACS-3 (ATA version 10). Warn about the missing log
2038 		 * for drives which implement this ATA level or above.
2039 		 */
2040 		if (ata_id_major_version(dev->id) >= 10)
2041 			ata_dev_warn(dev,
2042 				"ATA Identify Device Log not supported\n");
2043 		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2044 		return false;
2045 	}
2046 
2047 	/*
2048 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2049 	 * supported.
2050 	 */
2051 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2052 				1);
2053 	if (err)
2054 		return false;
2055 
2056 	for (i = 0; i < ap->sector_buf[8]; i++) {
2057 		if (ap->sector_buf[9 + i] == page)
2058 			return true;
2059 	}
2060 
2061 	return false;
2062 }
2063 
2064 static int ata_do_link_spd_horkage(struct ata_device *dev)
2065 {
2066 	struct ata_link *plink = ata_dev_phys_link(dev);
2067 	u32 target, target_limit;
2068 
2069 	if (!sata_scr_valid(plink))
2070 		return 0;
2071 
2072 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2073 		target = 1;
2074 	else
2075 		return 0;
2076 
2077 	target_limit = (1 << target) - 1;
2078 
2079 	/* if already on stricter limit, no need to push further */
2080 	if (plink->sata_spd_limit <= target_limit)
2081 		return 0;
2082 
2083 	plink->sata_spd_limit = target_limit;
2084 
2085 	/* Request another EH round by returning -EAGAIN if link is
2086 	 * going faster than the target speed.  Forward progress is
2087 	 * guaranteed by setting sata_spd_limit to target_limit above.
2088 	 */
2089 	if (plink->sata_spd > target) {
2090 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2091 			     sata_spd_string(target));
2092 		return -EAGAIN;
2093 	}
2094 	return 0;
2095 }
2096 
2097 static inline u8 ata_dev_knobble(struct ata_device *dev)
2098 {
2099 	struct ata_port *ap = dev->link->ap;
2100 
2101 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2102 		return 0;
2103 
2104 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2105 }
2106 
2107 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2108 {
2109 	struct ata_port *ap = dev->link->ap;
2110 	unsigned int err_mask;
2111 
2112 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2113 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2114 		return;
2115 	}
2116 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2117 				     0, ap->sector_buf, 1);
2118 	if (!err_mask) {
2119 		u8 *cmds = dev->ncq_send_recv_cmds;
2120 
2121 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2122 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2123 
2124 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2125 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2126 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2127 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2128 		}
2129 	}
2130 }
2131 
2132 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2133 {
2134 	struct ata_port *ap = dev->link->ap;
2135 	unsigned int err_mask;
2136 
2137 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2138 		ata_dev_warn(dev,
2139 			     "NCQ Send/Recv Log not supported\n");
2140 		return;
2141 	}
2142 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2143 				     0, ap->sector_buf, 1);
2144 	if (!err_mask) {
2145 		u8 *cmds = dev->ncq_non_data_cmds;
2146 
2147 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2148 	}
2149 }
2150 
2151 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2152 {
2153 	struct ata_port *ap = dev->link->ap;
2154 	unsigned int err_mask;
2155 
2156 	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2157 		return;
2158 
2159 	err_mask = ata_read_log_page(dev,
2160 				     ATA_LOG_IDENTIFY_DEVICE,
2161 				     ATA_LOG_SATA_SETTINGS,
2162 				     ap->sector_buf,
2163 				     1);
2164 	if (err_mask)
2165 		goto not_supported;
2166 
2167 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2168 		goto not_supported;
2169 
2170 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2171 
2172 	return;
2173 
2174 not_supported:
2175 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2176 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2177 }
2178 
2179 static bool ata_dev_check_adapter(struct ata_device *dev,
2180 				  unsigned short vendor_id)
2181 {
2182 	struct pci_dev *pcidev = NULL;
2183 	struct device *parent_dev = NULL;
2184 
2185 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2186 	     parent_dev = parent_dev->parent) {
2187 		if (dev_is_pci(parent_dev)) {
2188 			pcidev = to_pci_dev(parent_dev);
2189 			if (pcidev->vendor == vendor_id)
2190 				return true;
2191 			break;
2192 		}
2193 	}
2194 
2195 	return false;
2196 }
2197 
2198 static int ata_dev_config_ncq(struct ata_device *dev,
2199 			       char *desc, size_t desc_sz)
2200 {
2201 	struct ata_port *ap = dev->link->ap;
2202 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2203 	unsigned int err_mask;
2204 	char *aa_desc = "";
2205 
2206 	if (!ata_id_has_ncq(dev->id)) {
2207 		desc[0] = '\0';
2208 		return 0;
2209 	}
2210 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2211 		return 0;
2212 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2213 		snprintf(desc, desc_sz, "NCQ (not used)");
2214 		return 0;
2215 	}
2216 
2217 	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2218 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2219 		snprintf(desc, desc_sz, "NCQ (not used)");
2220 		return 0;
2221 	}
2222 
2223 	if (ap->flags & ATA_FLAG_NCQ) {
2224 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2225 		dev->flags |= ATA_DFLAG_NCQ;
2226 	}
2227 
2228 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2229 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2230 		ata_id_has_fpdma_aa(dev->id)) {
2231 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2232 			SATA_FPDMA_AA);
2233 		if (err_mask) {
2234 			ata_dev_err(dev,
2235 				    "failed to enable AA (error_mask=0x%x)\n",
2236 				    err_mask);
2237 			if (err_mask != AC_ERR_DEV) {
2238 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2239 				return -EIO;
2240 			}
2241 		} else
2242 			aa_desc = ", AA";
2243 	}
2244 
2245 	if (hdepth >= ddepth)
2246 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2247 	else
2248 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2249 			ddepth, aa_desc);
2250 
2251 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2252 		if (ata_id_has_ncq_send_and_recv(dev->id))
2253 			ata_dev_config_ncq_send_recv(dev);
2254 		if (ata_id_has_ncq_non_data(dev->id))
2255 			ata_dev_config_ncq_non_data(dev);
2256 		if (ata_id_has_ncq_prio(dev->id))
2257 			ata_dev_config_ncq_prio(dev);
2258 	}
2259 
2260 	return 0;
2261 }
2262 
2263 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2264 {
2265 	unsigned int err_mask;
2266 
2267 	if (!ata_id_has_sense_reporting(dev->id))
2268 		return;
2269 
2270 	if (ata_id_sense_reporting_enabled(dev->id))
2271 		return;
2272 
2273 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2274 	if (err_mask) {
2275 		ata_dev_dbg(dev,
2276 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2277 			    err_mask);
2278 	}
2279 }
2280 
2281 static void ata_dev_config_zac(struct ata_device *dev)
2282 {
2283 	struct ata_port *ap = dev->link->ap;
2284 	unsigned int err_mask;
2285 	u8 *identify_buf = ap->sector_buf;
2286 
2287 	dev->zac_zones_optimal_open = U32_MAX;
2288 	dev->zac_zones_optimal_nonseq = U32_MAX;
2289 	dev->zac_zones_max_open = U32_MAX;
2290 
2291 	/*
2292 	 * Always set the 'ZAC' flag for Host-managed devices.
2293 	 */
2294 	if (dev->class == ATA_DEV_ZAC)
2295 		dev->flags |= ATA_DFLAG_ZAC;
2296 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2297 		/*
2298 		 * Check for host-aware devices.
2299 		 */
2300 		dev->flags |= ATA_DFLAG_ZAC;
2301 
2302 	if (!(dev->flags & ATA_DFLAG_ZAC))
2303 		return;
2304 
2305 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2306 		ata_dev_warn(dev,
2307 			     "ATA Zoned Information Log not supported\n");
2308 		return;
2309 	}
2310 
2311 	/*
2312 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2313 	 */
2314 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2315 				     ATA_LOG_ZONED_INFORMATION,
2316 				     identify_buf, 1);
2317 	if (!err_mask) {
2318 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2319 
2320 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2321 		if ((zoned_cap >> 63))
2322 			dev->zac_zoned_cap = (zoned_cap & 1);
2323 		opt_open = get_unaligned_le64(&identify_buf[24]);
2324 		if ((opt_open >> 63))
2325 			dev->zac_zones_optimal_open = (u32)opt_open;
2326 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2327 		if ((opt_nonseq >> 63))
2328 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2329 		max_open = get_unaligned_le64(&identify_buf[40]);
2330 		if ((max_open >> 63))
2331 			dev->zac_zones_max_open = (u32)max_open;
2332 	}
2333 }
2334 
2335 static void ata_dev_config_trusted(struct ata_device *dev)
2336 {
2337 	struct ata_port *ap = dev->link->ap;
2338 	u64 trusted_cap;
2339 	unsigned int err;
2340 
2341 	if (!ata_id_has_trusted(dev->id))
2342 		return;
2343 
2344 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2345 		ata_dev_warn(dev,
2346 			     "Security Log not supported\n");
2347 		return;
2348 	}
2349 
2350 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2351 			ap->sector_buf, 1);
2352 	if (err)
2353 		return;
2354 
2355 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2356 	if (!(trusted_cap & (1ULL << 63))) {
2357 		ata_dev_dbg(dev,
2358 			    "Trusted Computing capability qword not valid!\n");
2359 		return;
2360 	}
2361 
2362 	if (trusted_cap & (1 << 0))
2363 		dev->flags |= ATA_DFLAG_TRUSTED;
2364 }
2365 
2366 static int ata_dev_config_lba(struct ata_device *dev)
2367 {
2368 	const u16 *id = dev->id;
2369 	const char *lba_desc;
2370 	char ncq_desc[24];
2371 	int ret;
2372 
2373 	dev->flags |= ATA_DFLAG_LBA;
2374 
2375 	if (ata_id_has_lba48(id)) {
2376 		lba_desc = "LBA48";
2377 		dev->flags |= ATA_DFLAG_LBA48;
2378 		if (dev->n_sectors >= (1UL << 28) &&
2379 		    ata_id_has_flush_ext(id))
2380 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2381 	} else {
2382 		lba_desc = "LBA";
2383 	}
2384 
2385 	/* config NCQ */
2386 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2387 
2388 	/* print device info to dmesg */
2389 	if (ata_dev_print_info(dev))
2390 		ata_dev_info(dev,
2391 			     "%llu sectors, multi %u: %s %s\n",
2392 			     (unsigned long long)dev->n_sectors,
2393 			     dev->multi_count, lba_desc, ncq_desc);
2394 
2395 	return ret;
2396 }
2397 
2398 static void ata_dev_config_chs(struct ata_device *dev)
2399 {
2400 	const u16 *id = dev->id;
2401 
2402 	if (ata_id_current_chs_valid(id)) {
2403 		/* Current CHS translation is valid. */
2404 		dev->cylinders = id[54];
2405 		dev->heads     = id[55];
2406 		dev->sectors   = id[56];
2407 	} else {
2408 		/* Default translation */
2409 		dev->cylinders	= id[1];
2410 		dev->heads	= id[3];
2411 		dev->sectors	= id[6];
2412 	}
2413 
2414 	/* print device info to dmesg */
2415 	if (ata_dev_print_info(dev))
2416 		ata_dev_info(dev,
2417 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2418 			     (unsigned long long)dev->n_sectors,
2419 			     dev->multi_count, dev->cylinders,
2420 			     dev->heads, dev->sectors);
2421 }
2422 
2423 static void ata_dev_config_devslp(struct ata_device *dev)
2424 {
2425 	u8 *sata_setting = dev->link->ap->sector_buf;
2426 	unsigned int err_mask;
2427 	int i, j;
2428 
2429 	/*
2430 	 * Check device sleep capability. Get DevSlp timing variables
2431 	 * from SATA Settings page of Identify Device Data Log.
2432 	 */
2433 	if (!ata_id_has_devslp(dev->id) ||
2434 	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2435 		return;
2436 
2437 	err_mask = ata_read_log_page(dev,
2438 				     ATA_LOG_IDENTIFY_DEVICE,
2439 				     ATA_LOG_SATA_SETTINGS,
2440 				     sata_setting, 1);
2441 	if (err_mask)
2442 		return;
2443 
2444 	dev->flags |= ATA_DFLAG_DEVSLP;
2445 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2446 		j = ATA_LOG_DEVSLP_OFFSET + i;
2447 		dev->devslp_timing[i] = sata_setting[j];
2448 	}
2449 }
2450 
2451 static void ata_dev_config_cpr(struct ata_device *dev)
2452 {
2453 	unsigned int err_mask;
2454 	size_t buf_len;
2455 	int i, nr_cpr = 0;
2456 	struct ata_cpr_log *cpr_log = NULL;
2457 	u8 *desc, *buf = NULL;
2458 
2459 	if (ata_id_major_version(dev->id) < 11)
2460 		goto out;
2461 
2462 	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2463 	if (buf_len == 0)
2464 		goto out;
2465 
2466 	/*
2467 	 * Read the concurrent positioning ranges log (0x47). We can have at
2468 	 * most 255 32B range descriptors plus a 64B header. This log varies in
2469 	 * size, so use the size reported in the GPL directory. Reading beyond
2470 	 * the supported length will result in an error.
2471 	 */
2472 	buf_len <<= 9;
2473 	buf = kzalloc(buf_len, GFP_KERNEL);
2474 	if (!buf)
2475 		goto out;
2476 
2477 	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2478 				     0, buf, buf_len >> 9);
2479 	if (err_mask)
2480 		goto out;
2481 
2482 	nr_cpr = buf[0];
2483 	if (!nr_cpr)
2484 		goto out;
2485 
2486 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2487 	if (!cpr_log)
2488 		goto out;
2489 
2490 	cpr_log->nr_cpr = nr_cpr;
2491 	desc = &buf[64];
2492 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2493 		cpr_log->cpr[i].num = desc[0];
2494 		cpr_log->cpr[i].num_storage_elements = desc[1];
2495 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2496 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2497 	}
2498 
2499 out:
2500 	swap(dev->cpr_log, cpr_log);
2501 	kfree(cpr_log);
2502 	kfree(buf);
2503 }
2504 
2505 static void ata_dev_print_features(struct ata_device *dev)
2506 {
2507 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2508 		return;
2509 
2510 	ata_dev_info(dev,
2511 		     "Features:%s%s%s%s%s%s\n",
2512 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2513 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2514 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2515 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2516 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2517 		     dev->cpr_log ? " CPR" : "");
2518 }
2519 
2520 /**
2521  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2522  *	@dev: Target device to configure
2523  *
2524  *	Configure @dev according to @dev->id.  Generic and low-level
2525  *	driver specific fixups are also applied.
2526  *
2527  *	LOCKING:
2528  *	Kernel thread context (may sleep)
2529  *
2530  *	RETURNS:
2531  *	0 on success, -errno otherwise
2532  */
2533 int ata_dev_configure(struct ata_device *dev)
2534 {
2535 	struct ata_port *ap = dev->link->ap;
2536 	bool print_info = ata_dev_print_info(dev);
2537 	const u16 *id = dev->id;
2538 	unsigned int xfer_mask;
2539 	unsigned int err_mask;
2540 	char revbuf[7];		/* XYZ-99\0 */
2541 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2542 	char modelbuf[ATA_ID_PROD_LEN+1];
2543 	int rc;
2544 
2545 	if (!ata_dev_enabled(dev)) {
2546 		ata_dev_dbg(dev, "no device\n");
2547 		return 0;
2548 	}
2549 
2550 	/* set horkage */
2551 	dev->horkage |= ata_dev_blacklisted(dev);
2552 	ata_force_horkage(dev);
2553 
2554 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2555 		ata_dev_info(dev, "unsupported device, disabling\n");
2556 		ata_dev_disable(dev);
2557 		return 0;
2558 	}
2559 
2560 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2561 	    dev->class == ATA_DEV_ATAPI) {
2562 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2563 			     atapi_enabled ? "not supported with this driver"
2564 			     : "disabled");
2565 		ata_dev_disable(dev);
2566 		return 0;
2567 	}
2568 
2569 	rc = ata_do_link_spd_horkage(dev);
2570 	if (rc)
2571 		return rc;
2572 
2573 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2574 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2575 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2576 		dev->horkage |= ATA_HORKAGE_NOLPM;
2577 
2578 	if (ap->flags & ATA_FLAG_NO_LPM)
2579 		dev->horkage |= ATA_HORKAGE_NOLPM;
2580 
2581 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2582 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2583 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2584 	}
2585 
2586 	/* let ACPI work its magic */
2587 	rc = ata_acpi_on_devcfg(dev);
2588 	if (rc)
2589 		return rc;
2590 
2591 	/* massage HPA, do it early as it might change IDENTIFY data */
2592 	rc = ata_hpa_resize(dev);
2593 	if (rc)
2594 		return rc;
2595 
2596 	/* print device capabilities */
2597 	ata_dev_dbg(dev,
2598 		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2599 		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2600 		    __func__,
2601 		    id[49], id[82], id[83], id[84],
2602 		    id[85], id[86], id[87], id[88]);
2603 
2604 	/* initialize to-be-configured parameters */
2605 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2606 	dev->max_sectors = 0;
2607 	dev->cdb_len = 0;
2608 	dev->n_sectors = 0;
2609 	dev->cylinders = 0;
2610 	dev->heads = 0;
2611 	dev->sectors = 0;
2612 	dev->multi_count = 0;
2613 
2614 	/*
2615 	 * common ATA, ATAPI feature tests
2616 	 */
2617 
2618 	/* find max transfer mode; for printk only */
2619 	xfer_mask = ata_id_xfermask(id);
2620 
2621 	ata_dump_id(dev, id);
2622 
2623 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2624 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2625 			sizeof(fwrevbuf));
2626 
2627 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2628 			sizeof(modelbuf));
2629 
2630 	/* ATA-specific feature tests */
2631 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2632 		if (ata_id_is_cfa(id)) {
2633 			/* CPRM may make this media unusable */
2634 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2635 				ata_dev_warn(dev,
2636 	"supports DRM functions and may not be fully accessible\n");
2637 			snprintf(revbuf, 7, "CFA");
2638 		} else {
2639 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2640 			/* Warn the user if the device has TPM extensions */
2641 			if (ata_id_has_tpm(id))
2642 				ata_dev_warn(dev,
2643 	"supports DRM functions and may not be fully accessible\n");
2644 		}
2645 
2646 		dev->n_sectors = ata_id_n_sectors(id);
2647 
2648 		/* get current R/W Multiple count setting */
2649 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2650 			unsigned int max = dev->id[47] & 0xff;
2651 			unsigned int cnt = dev->id[59] & 0xff;
2652 			/* only recognize/allow powers of two here */
2653 			if (is_power_of_2(max) && is_power_of_2(cnt))
2654 				if (cnt <= max)
2655 					dev->multi_count = cnt;
2656 		}
2657 
2658 		/* print device info to dmesg */
2659 		if (print_info)
2660 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2661 				     revbuf, modelbuf, fwrevbuf,
2662 				     ata_mode_string(xfer_mask));
2663 
2664 		if (ata_id_has_lba(id)) {
2665 			rc = ata_dev_config_lba(dev);
2666 			if (rc)
2667 				return rc;
2668 		} else {
2669 			ata_dev_config_chs(dev);
2670 		}
2671 
2672 		ata_dev_config_devslp(dev);
2673 		ata_dev_config_sense_reporting(dev);
2674 		ata_dev_config_zac(dev);
2675 		ata_dev_config_trusted(dev);
2676 		ata_dev_config_cpr(dev);
2677 		dev->cdb_len = 32;
2678 
2679 		if (print_info)
2680 			ata_dev_print_features(dev);
2681 	}
2682 
2683 	/* ATAPI-specific feature tests */
2684 	else if (dev->class == ATA_DEV_ATAPI) {
2685 		const char *cdb_intr_string = "";
2686 		const char *atapi_an_string = "";
2687 		const char *dma_dir_string = "";
2688 		u32 sntf;
2689 
2690 		rc = atapi_cdb_len(id);
2691 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2692 			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2693 			rc = -EINVAL;
2694 			goto err_out_nosup;
2695 		}
2696 		dev->cdb_len = (unsigned int) rc;
2697 
2698 		/* Enable ATAPI AN if both the host and device have
2699 		 * the support.  If PMP is attached, SNTF is required
2700 		 * to enable ATAPI AN to discern between PHY status
2701 		 * changed notifications and ATAPI ANs.
2702 		 */
2703 		if (atapi_an &&
2704 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2705 		    (!sata_pmp_attached(ap) ||
2706 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2707 			/* issue SET feature command to turn this on */
2708 			err_mask = ata_dev_set_feature(dev,
2709 					SETFEATURES_SATA_ENABLE, SATA_AN);
2710 			if (err_mask)
2711 				ata_dev_err(dev,
2712 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2713 					    err_mask);
2714 			else {
2715 				dev->flags |= ATA_DFLAG_AN;
2716 				atapi_an_string = ", ATAPI AN";
2717 			}
2718 		}
2719 
2720 		if (ata_id_cdb_intr(dev->id)) {
2721 			dev->flags |= ATA_DFLAG_CDB_INTR;
2722 			cdb_intr_string = ", CDB intr";
2723 		}
2724 
2725 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2726 			dev->flags |= ATA_DFLAG_DMADIR;
2727 			dma_dir_string = ", DMADIR";
2728 		}
2729 
2730 		if (ata_id_has_da(dev->id)) {
2731 			dev->flags |= ATA_DFLAG_DA;
2732 			zpodd_init(dev);
2733 		}
2734 
2735 		/* print device info to dmesg */
2736 		if (print_info)
2737 			ata_dev_info(dev,
2738 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2739 				     modelbuf, fwrevbuf,
2740 				     ata_mode_string(xfer_mask),
2741 				     cdb_intr_string, atapi_an_string,
2742 				     dma_dir_string);
2743 	}
2744 
2745 	/* determine max_sectors */
2746 	dev->max_sectors = ATA_MAX_SECTORS;
2747 	if (dev->flags & ATA_DFLAG_LBA48)
2748 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2749 
2750 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2751 	   200 sectors */
2752 	if (ata_dev_knobble(dev)) {
2753 		if (print_info)
2754 			ata_dev_info(dev, "applying bridge limits\n");
2755 		dev->udma_mask &= ATA_UDMA5;
2756 		dev->max_sectors = ATA_MAX_SECTORS;
2757 	}
2758 
2759 	if ((dev->class == ATA_DEV_ATAPI) &&
2760 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2761 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2762 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2763 	}
2764 
2765 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2766 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2767 					 dev->max_sectors);
2768 
2769 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2770 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2771 					 dev->max_sectors);
2772 
2773 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2774 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2775 
2776 	if (ap->ops->dev_config)
2777 		ap->ops->dev_config(dev);
2778 
2779 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2780 		/* Let the user know. We don't want to disallow opens for
2781 		   rescue purposes, or in case the vendor is just a blithering
2782 		   idiot. Do this after the dev_config call as some controllers
2783 		   with buggy firmware may want to avoid reporting false device
2784 		   bugs */
2785 
2786 		if (print_info) {
2787 			ata_dev_warn(dev,
2788 "Drive reports diagnostics failure. This may indicate a drive\n");
2789 			ata_dev_warn(dev,
2790 "fault or invalid emulation. Contact drive vendor for information.\n");
2791 		}
2792 	}
2793 
2794 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2795 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2796 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2797 	}
2798 
2799 	return 0;
2800 
2801 err_out_nosup:
2802 	return rc;
2803 }
2804 
2805 /**
2806  *	ata_cable_40wire	-	return 40 wire cable type
2807  *	@ap: port
2808  *
2809  *	Helper method for drivers which want to hardwire 40 wire cable
2810  *	detection.
2811  */
2812 
2813 int ata_cable_40wire(struct ata_port *ap)
2814 {
2815 	return ATA_CBL_PATA40;
2816 }
2817 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2818 
2819 /**
2820  *	ata_cable_80wire	-	return 80 wire cable type
2821  *	@ap: port
2822  *
2823  *	Helper method for drivers which want to hardwire 80 wire cable
2824  *	detection.
2825  */
2826 
2827 int ata_cable_80wire(struct ata_port *ap)
2828 {
2829 	return ATA_CBL_PATA80;
2830 }
2831 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2832 
2833 /**
2834  *	ata_cable_unknown	-	return unknown PATA cable.
2835  *	@ap: port
2836  *
2837  *	Helper method for drivers which have no PATA cable detection.
2838  */
2839 
2840 int ata_cable_unknown(struct ata_port *ap)
2841 {
2842 	return ATA_CBL_PATA_UNK;
2843 }
2844 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2845 
2846 /**
2847  *	ata_cable_ignore	-	return ignored PATA cable.
2848  *	@ap: port
2849  *
2850  *	Helper method for drivers which don't use cable type to limit
2851  *	transfer mode.
2852  */
2853 int ata_cable_ignore(struct ata_port *ap)
2854 {
2855 	return ATA_CBL_PATA_IGN;
2856 }
2857 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2858 
2859 /**
2860  *	ata_cable_sata	-	return SATA cable type
2861  *	@ap: port
2862  *
2863  *	Helper method for drivers which have SATA cables
2864  */
2865 
2866 int ata_cable_sata(struct ata_port *ap)
2867 {
2868 	return ATA_CBL_SATA;
2869 }
2870 EXPORT_SYMBOL_GPL(ata_cable_sata);
2871 
2872 /**
2873  *	ata_bus_probe - Reset and probe ATA bus
2874  *	@ap: Bus to probe
2875  *
2876  *	Master ATA bus probing function.  Initiates a hardware-dependent
2877  *	bus reset, then attempts to identify any devices found on
2878  *	the bus.
2879  *
2880  *	LOCKING:
2881  *	PCI/etc. bus probe sem.
2882  *
2883  *	RETURNS:
2884  *	Zero on success, negative errno otherwise.
2885  */
2886 
2887 int ata_bus_probe(struct ata_port *ap)
2888 {
2889 	unsigned int classes[ATA_MAX_DEVICES];
2890 	int tries[ATA_MAX_DEVICES];
2891 	int rc;
2892 	struct ata_device *dev;
2893 
2894 	ata_for_each_dev(dev, &ap->link, ALL)
2895 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2896 
2897  retry:
2898 	ata_for_each_dev(dev, &ap->link, ALL) {
2899 		/* If we issue an SRST then an ATA drive (not ATAPI)
2900 		 * may change configuration and be in PIO0 timing. If
2901 		 * we do a hard reset (or are coming from power on)
2902 		 * this is true for ATA or ATAPI. Until we've set a
2903 		 * suitable controller mode we should not touch the
2904 		 * bus as we may be talking too fast.
2905 		 */
2906 		dev->pio_mode = XFER_PIO_0;
2907 		dev->dma_mode = 0xff;
2908 
2909 		/* If the controller has a pio mode setup function
2910 		 * then use it to set the chipset to rights. Don't
2911 		 * touch the DMA setup as that will be dealt with when
2912 		 * configuring devices.
2913 		 */
2914 		if (ap->ops->set_piomode)
2915 			ap->ops->set_piomode(ap, dev);
2916 	}
2917 
2918 	/* reset and determine device classes */
2919 	ap->ops->phy_reset(ap);
2920 
2921 	ata_for_each_dev(dev, &ap->link, ALL) {
2922 		if (dev->class != ATA_DEV_UNKNOWN)
2923 			classes[dev->devno] = dev->class;
2924 		else
2925 			classes[dev->devno] = ATA_DEV_NONE;
2926 
2927 		dev->class = ATA_DEV_UNKNOWN;
2928 	}
2929 
2930 	/* read IDENTIFY page and configure devices. We have to do the identify
2931 	   specific sequence bass-ackwards so that PDIAG- is released by
2932 	   the slave device */
2933 
2934 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2935 		if (tries[dev->devno])
2936 			dev->class = classes[dev->devno];
2937 
2938 		if (!ata_dev_enabled(dev))
2939 			continue;
2940 
2941 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2942 				     dev->id);
2943 		if (rc)
2944 			goto fail;
2945 	}
2946 
2947 	/* Now ask for the cable type as PDIAG- should have been released */
2948 	if (ap->ops->cable_detect)
2949 		ap->cbl = ap->ops->cable_detect(ap);
2950 
2951 	/* We may have SATA bridge glue hiding here irrespective of
2952 	 * the reported cable types and sensed types.  When SATA
2953 	 * drives indicate we have a bridge, we don't know which end
2954 	 * of the link the bridge is which is a problem.
2955 	 */
2956 	ata_for_each_dev(dev, &ap->link, ENABLED)
2957 		if (ata_id_is_sata(dev->id))
2958 			ap->cbl = ATA_CBL_SATA;
2959 
2960 	/* After the identify sequence we can now set up the devices. We do
2961 	   this in the normal order so that the user doesn't get confused */
2962 
2963 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2964 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2965 		rc = ata_dev_configure(dev);
2966 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2967 		if (rc)
2968 			goto fail;
2969 	}
2970 
2971 	/* configure transfer mode */
2972 	rc = ata_set_mode(&ap->link, &dev);
2973 	if (rc)
2974 		goto fail;
2975 
2976 	ata_for_each_dev(dev, &ap->link, ENABLED)
2977 		return 0;
2978 
2979 	return -ENODEV;
2980 
2981  fail:
2982 	tries[dev->devno]--;
2983 
2984 	switch (rc) {
2985 	case -EINVAL:
2986 		/* eeek, something went very wrong, give up */
2987 		tries[dev->devno] = 0;
2988 		break;
2989 
2990 	case -ENODEV:
2991 		/* give it just one more chance */
2992 		tries[dev->devno] = min(tries[dev->devno], 1);
2993 		fallthrough;
2994 	case -EIO:
2995 		if (tries[dev->devno] == 1) {
2996 			/* This is the last chance, better to slow
2997 			 * down than lose it.
2998 			 */
2999 			sata_down_spd_limit(&ap->link, 0);
3000 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
3001 		}
3002 	}
3003 
3004 	if (!tries[dev->devno])
3005 		ata_dev_disable(dev);
3006 
3007 	goto retry;
3008 }
3009 
3010 /**
3011  *	sata_print_link_status - Print SATA link status
3012  *	@link: SATA link to printk link status about
3013  *
3014  *	This function prints link speed and status of a SATA link.
3015  *
3016  *	LOCKING:
3017  *	None.
3018  */
3019 static void sata_print_link_status(struct ata_link *link)
3020 {
3021 	u32 sstatus, scontrol, tmp;
3022 
3023 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3024 		return;
3025 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3026 		return;
3027 
3028 	if (ata_phys_link_online(link)) {
3029 		tmp = (sstatus >> 4) & 0xf;
3030 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3031 			      sata_spd_string(tmp), sstatus, scontrol);
3032 	} else {
3033 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3034 			      sstatus, scontrol);
3035 	}
3036 }
3037 
3038 /**
3039  *	ata_dev_pair		-	return other device on cable
3040  *	@adev: device
3041  *
3042  *	Obtain the other device on the same cable, or if none is
3043  *	present NULL is returned
3044  */
3045 
3046 struct ata_device *ata_dev_pair(struct ata_device *adev)
3047 {
3048 	struct ata_link *link = adev->link;
3049 	struct ata_device *pair = &link->device[1 - adev->devno];
3050 	if (!ata_dev_enabled(pair))
3051 		return NULL;
3052 	return pair;
3053 }
3054 EXPORT_SYMBOL_GPL(ata_dev_pair);
3055 
3056 /**
3057  *	sata_down_spd_limit - adjust SATA spd limit downward
3058  *	@link: Link to adjust SATA spd limit for
3059  *	@spd_limit: Additional limit
3060  *
3061  *	Adjust SATA spd limit of @link downward.  Note that this
3062  *	function only adjusts the limit.  The change must be applied
3063  *	using sata_set_spd().
3064  *
3065  *	If @spd_limit is non-zero, the speed is limited to equal to or
3066  *	lower than @spd_limit if such speed is supported.  If
3067  *	@spd_limit is slower than any supported speed, only the lowest
3068  *	supported speed is allowed.
3069  *
3070  *	LOCKING:
3071  *	Inherited from caller.
3072  *
3073  *	RETURNS:
3074  *	0 on success, negative errno on failure
3075  */
3076 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3077 {
3078 	u32 sstatus, spd, mask;
3079 	int rc, bit;
3080 
3081 	if (!sata_scr_valid(link))
3082 		return -EOPNOTSUPP;
3083 
3084 	/* If SCR can be read, use it to determine the current SPD.
3085 	 * If not, use cached value in link->sata_spd.
3086 	 */
3087 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3088 	if (rc == 0 && ata_sstatus_online(sstatus))
3089 		spd = (sstatus >> 4) & 0xf;
3090 	else
3091 		spd = link->sata_spd;
3092 
3093 	mask = link->sata_spd_limit;
3094 	if (mask <= 1)
3095 		return -EINVAL;
3096 
3097 	/* unconditionally mask off the highest bit */
3098 	bit = fls(mask) - 1;
3099 	mask &= ~(1 << bit);
3100 
3101 	/*
3102 	 * Mask off all speeds higher than or equal to the current one.  At
3103 	 * this point, if current SPD is not available and we previously
3104 	 * recorded the link speed from SStatus, the driver has already
3105 	 * masked off the highest bit so mask should already be 1 or 0.
3106 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3107 	 * not previously recorded speed from SStatus.  Just return in this
3108 	 * case.
3109 	 */
3110 	if (spd > 1)
3111 		mask &= (1 << (spd - 1)) - 1;
3112 	else
3113 		return -EINVAL;
3114 
3115 	/* were we already at the bottom? */
3116 	if (!mask)
3117 		return -EINVAL;
3118 
3119 	if (spd_limit) {
3120 		if (mask & ((1 << spd_limit) - 1))
3121 			mask &= (1 << spd_limit) - 1;
3122 		else {
3123 			bit = ffs(mask) - 1;
3124 			mask = 1 << bit;
3125 		}
3126 	}
3127 
3128 	link->sata_spd_limit = mask;
3129 
3130 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3131 		      sata_spd_string(fls(mask)));
3132 
3133 	return 0;
3134 }
3135 
3136 #ifdef CONFIG_ATA_ACPI
3137 /**
3138  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3139  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3140  *	@cycle: cycle duration in ns
3141  *
3142  *	Return matching xfer mode for @cycle.  The returned mode is of
3143  *	the transfer type specified by @xfer_shift.  If @cycle is too
3144  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3145  *	than the fastest known mode, the fasted mode is returned.
3146  *
3147  *	LOCKING:
3148  *	None.
3149  *
3150  *	RETURNS:
3151  *	Matching xfer_mode, 0xff if no match found.
3152  */
3153 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3154 {
3155 	u8 base_mode = 0xff, last_mode = 0xff;
3156 	const struct ata_xfer_ent *ent;
3157 	const struct ata_timing *t;
3158 
3159 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3160 		if (ent->shift == xfer_shift)
3161 			base_mode = ent->base;
3162 
3163 	for (t = ata_timing_find_mode(base_mode);
3164 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3165 		unsigned short this_cycle;
3166 
3167 		switch (xfer_shift) {
3168 		case ATA_SHIFT_PIO:
3169 		case ATA_SHIFT_MWDMA:
3170 			this_cycle = t->cycle;
3171 			break;
3172 		case ATA_SHIFT_UDMA:
3173 			this_cycle = t->udma;
3174 			break;
3175 		default:
3176 			return 0xff;
3177 		}
3178 
3179 		if (cycle > this_cycle)
3180 			break;
3181 
3182 		last_mode = t->mode;
3183 	}
3184 
3185 	return last_mode;
3186 }
3187 #endif
3188 
3189 /**
3190  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3191  *	@dev: Device to adjust xfer masks
3192  *	@sel: ATA_DNXFER_* selector
3193  *
3194  *	Adjust xfer masks of @dev downward.  Note that this function
3195  *	does not apply the change.  Invoking ata_set_mode() afterwards
3196  *	will apply the limit.
3197  *
3198  *	LOCKING:
3199  *	Inherited from caller.
3200  *
3201  *	RETURNS:
3202  *	0 on success, negative errno on failure
3203  */
3204 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3205 {
3206 	char buf[32];
3207 	unsigned int orig_mask, xfer_mask;
3208 	unsigned int pio_mask, mwdma_mask, udma_mask;
3209 	int quiet, highbit;
3210 
3211 	quiet = !!(sel & ATA_DNXFER_QUIET);
3212 	sel &= ~ATA_DNXFER_QUIET;
3213 
3214 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3215 						  dev->mwdma_mask,
3216 						  dev->udma_mask);
3217 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3218 
3219 	switch (sel) {
3220 	case ATA_DNXFER_PIO:
3221 		highbit = fls(pio_mask) - 1;
3222 		pio_mask &= ~(1 << highbit);
3223 		break;
3224 
3225 	case ATA_DNXFER_DMA:
3226 		if (udma_mask) {
3227 			highbit = fls(udma_mask) - 1;
3228 			udma_mask &= ~(1 << highbit);
3229 			if (!udma_mask)
3230 				return -ENOENT;
3231 		} else if (mwdma_mask) {
3232 			highbit = fls(mwdma_mask) - 1;
3233 			mwdma_mask &= ~(1 << highbit);
3234 			if (!mwdma_mask)
3235 				return -ENOENT;
3236 		}
3237 		break;
3238 
3239 	case ATA_DNXFER_40C:
3240 		udma_mask &= ATA_UDMA_MASK_40C;
3241 		break;
3242 
3243 	case ATA_DNXFER_FORCE_PIO0:
3244 		pio_mask &= 1;
3245 		fallthrough;
3246 	case ATA_DNXFER_FORCE_PIO:
3247 		mwdma_mask = 0;
3248 		udma_mask = 0;
3249 		break;
3250 
3251 	default:
3252 		BUG();
3253 	}
3254 
3255 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3256 
3257 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3258 		return -ENOENT;
3259 
3260 	if (!quiet) {
3261 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3262 			snprintf(buf, sizeof(buf), "%s:%s",
3263 				 ata_mode_string(xfer_mask),
3264 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3265 		else
3266 			snprintf(buf, sizeof(buf), "%s",
3267 				 ata_mode_string(xfer_mask));
3268 
3269 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3270 	}
3271 
3272 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3273 			    &dev->udma_mask);
3274 
3275 	return 0;
3276 }
3277 
3278 static int ata_dev_set_mode(struct ata_device *dev)
3279 {
3280 	struct ata_port *ap = dev->link->ap;
3281 	struct ata_eh_context *ehc = &dev->link->eh_context;
3282 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3283 	const char *dev_err_whine = "";
3284 	int ign_dev_err = 0;
3285 	unsigned int err_mask = 0;
3286 	int rc;
3287 
3288 	dev->flags &= ~ATA_DFLAG_PIO;
3289 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3290 		dev->flags |= ATA_DFLAG_PIO;
3291 
3292 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3293 		dev_err_whine = " (SET_XFERMODE skipped)";
3294 	else {
3295 		if (nosetxfer)
3296 			ata_dev_warn(dev,
3297 				     "NOSETXFER but PATA detected - can't "
3298 				     "skip SETXFER, might malfunction\n");
3299 		err_mask = ata_dev_set_xfermode(dev);
3300 	}
3301 
3302 	if (err_mask & ~AC_ERR_DEV)
3303 		goto fail;
3304 
3305 	/* revalidate */
3306 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3307 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3308 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3309 	if (rc)
3310 		return rc;
3311 
3312 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3313 		/* Old CFA may refuse this command, which is just fine */
3314 		if (ata_id_is_cfa(dev->id))
3315 			ign_dev_err = 1;
3316 		/* Catch several broken garbage emulations plus some pre
3317 		   ATA devices */
3318 		if (ata_id_major_version(dev->id) == 0 &&
3319 					dev->pio_mode <= XFER_PIO_2)
3320 			ign_dev_err = 1;
3321 		/* Some very old devices and some bad newer ones fail
3322 		   any kind of SET_XFERMODE request but support PIO0-2
3323 		   timings and no IORDY */
3324 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3325 			ign_dev_err = 1;
3326 	}
3327 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3328 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3329 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3330 	    dev->dma_mode == XFER_MW_DMA_0 &&
3331 	    (dev->id[63] >> 8) & 1)
3332 		ign_dev_err = 1;
3333 
3334 	/* if the device is actually configured correctly, ignore dev err */
3335 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3336 		ign_dev_err = 1;
3337 
3338 	if (err_mask & AC_ERR_DEV) {
3339 		if (!ign_dev_err)
3340 			goto fail;
3341 		else
3342 			dev_err_whine = " (device error ignored)";
3343 	}
3344 
3345 	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3346 		    dev->xfer_shift, (int)dev->xfer_mode);
3347 
3348 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3349 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3350 		ata_dev_info(dev, "configured for %s%s\n",
3351 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3352 			     dev_err_whine);
3353 
3354 	return 0;
3355 
3356  fail:
3357 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3358 	return -EIO;
3359 }
3360 
3361 /**
3362  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3363  *	@link: link on which timings will be programmed
3364  *	@r_failed_dev: out parameter for failed device
3365  *
3366  *	Standard implementation of the function used to tune and set
3367  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3368  *	ata_dev_set_mode() fails, pointer to the failing device is
3369  *	returned in @r_failed_dev.
3370  *
3371  *	LOCKING:
3372  *	PCI/etc. bus probe sem.
3373  *
3374  *	RETURNS:
3375  *	0 on success, negative errno otherwise
3376  */
3377 
3378 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3379 {
3380 	struct ata_port *ap = link->ap;
3381 	struct ata_device *dev;
3382 	int rc = 0, used_dma = 0, found = 0;
3383 
3384 	/* step 1: calculate xfer_mask */
3385 	ata_for_each_dev(dev, link, ENABLED) {
3386 		unsigned int pio_mask, dma_mask;
3387 		unsigned int mode_mask;
3388 
3389 		mode_mask = ATA_DMA_MASK_ATA;
3390 		if (dev->class == ATA_DEV_ATAPI)
3391 			mode_mask = ATA_DMA_MASK_ATAPI;
3392 		else if (ata_id_is_cfa(dev->id))
3393 			mode_mask = ATA_DMA_MASK_CFA;
3394 
3395 		ata_dev_xfermask(dev);
3396 		ata_force_xfermask(dev);
3397 
3398 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3399 
3400 		if (libata_dma_mask & mode_mask)
3401 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3402 						     dev->udma_mask);
3403 		else
3404 			dma_mask = 0;
3405 
3406 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3407 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3408 
3409 		found = 1;
3410 		if (ata_dma_enabled(dev))
3411 			used_dma = 1;
3412 	}
3413 	if (!found)
3414 		goto out;
3415 
3416 	/* step 2: always set host PIO timings */
3417 	ata_for_each_dev(dev, link, ENABLED) {
3418 		if (dev->pio_mode == 0xff) {
3419 			ata_dev_warn(dev, "no PIO support\n");
3420 			rc = -EINVAL;
3421 			goto out;
3422 		}
3423 
3424 		dev->xfer_mode = dev->pio_mode;
3425 		dev->xfer_shift = ATA_SHIFT_PIO;
3426 		if (ap->ops->set_piomode)
3427 			ap->ops->set_piomode(ap, dev);
3428 	}
3429 
3430 	/* step 3: set host DMA timings */
3431 	ata_for_each_dev(dev, link, ENABLED) {
3432 		if (!ata_dma_enabled(dev))
3433 			continue;
3434 
3435 		dev->xfer_mode = dev->dma_mode;
3436 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3437 		if (ap->ops->set_dmamode)
3438 			ap->ops->set_dmamode(ap, dev);
3439 	}
3440 
3441 	/* step 4: update devices' xfer mode */
3442 	ata_for_each_dev(dev, link, ENABLED) {
3443 		rc = ata_dev_set_mode(dev);
3444 		if (rc)
3445 			goto out;
3446 	}
3447 
3448 	/* Record simplex status. If we selected DMA then the other
3449 	 * host channels are not permitted to do so.
3450 	 */
3451 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3452 		ap->host->simplex_claimed = ap;
3453 
3454  out:
3455 	if (rc)
3456 		*r_failed_dev = dev;
3457 	return rc;
3458 }
3459 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3460 
3461 /**
3462  *	ata_wait_ready - wait for link to become ready
3463  *	@link: link to be waited on
3464  *	@deadline: deadline jiffies for the operation
3465  *	@check_ready: callback to check link readiness
3466  *
3467  *	Wait for @link to become ready.  @check_ready should return
3468  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3469  *	link doesn't seem to be occupied, other errno for other error
3470  *	conditions.
3471  *
3472  *	Transient -ENODEV conditions are allowed for
3473  *	ATA_TMOUT_FF_WAIT.
3474  *
3475  *	LOCKING:
3476  *	EH context.
3477  *
3478  *	RETURNS:
3479  *	0 if @link is ready before @deadline; otherwise, -errno.
3480  */
3481 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3482 		   int (*check_ready)(struct ata_link *link))
3483 {
3484 	unsigned long start = jiffies;
3485 	unsigned long nodev_deadline;
3486 	int warned = 0;
3487 
3488 	/* choose which 0xff timeout to use, read comment in libata.h */
3489 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3490 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3491 	else
3492 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3493 
3494 	/* Slave readiness can't be tested separately from master.  On
3495 	 * M/S emulation configuration, this function should be called
3496 	 * only on the master and it will handle both master and slave.
3497 	 */
3498 	WARN_ON(link == link->ap->slave_link);
3499 
3500 	if (time_after(nodev_deadline, deadline))
3501 		nodev_deadline = deadline;
3502 
3503 	while (1) {
3504 		unsigned long now = jiffies;
3505 		int ready, tmp;
3506 
3507 		ready = tmp = check_ready(link);
3508 		if (ready > 0)
3509 			return 0;
3510 
3511 		/*
3512 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3513 		 * is online.  Also, some SATA devices take a long
3514 		 * time to clear 0xff after reset.  Wait for
3515 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3516 		 * offline.
3517 		 *
3518 		 * Note that some PATA controllers (pata_ali) explode
3519 		 * if status register is read more than once when
3520 		 * there's no device attached.
3521 		 */
3522 		if (ready == -ENODEV) {
3523 			if (ata_link_online(link))
3524 				ready = 0;
3525 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3526 				 !ata_link_offline(link) &&
3527 				 time_before(now, nodev_deadline))
3528 				ready = 0;
3529 		}
3530 
3531 		if (ready)
3532 			return ready;
3533 		if (time_after(now, deadline))
3534 			return -EBUSY;
3535 
3536 		if (!warned && time_after(now, start + 5 * HZ) &&
3537 		    (deadline - now > 3 * HZ)) {
3538 			ata_link_warn(link,
3539 				"link is slow to respond, please be patient "
3540 				"(ready=%d)\n", tmp);
3541 			warned = 1;
3542 		}
3543 
3544 		ata_msleep(link->ap, 50);
3545 	}
3546 }
3547 
3548 /**
3549  *	ata_wait_after_reset - wait for link to become ready after reset
3550  *	@link: link to be waited on
3551  *	@deadline: deadline jiffies for the operation
3552  *	@check_ready: callback to check link readiness
3553  *
3554  *	Wait for @link to become ready after reset.
3555  *
3556  *	LOCKING:
3557  *	EH context.
3558  *
3559  *	RETURNS:
3560  *	0 if @link is ready before @deadline; otherwise, -errno.
3561  */
3562 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3563 				int (*check_ready)(struct ata_link *link))
3564 {
3565 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3566 
3567 	return ata_wait_ready(link, deadline, check_ready);
3568 }
3569 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3570 
3571 /**
3572  *	ata_std_prereset - prepare for reset
3573  *	@link: ATA link to be reset
3574  *	@deadline: deadline jiffies for the operation
3575  *
3576  *	@link is about to be reset.  Initialize it.  Failure from
3577  *	prereset makes libata abort whole reset sequence and give up
3578  *	that port, so prereset should be best-effort.  It does its
3579  *	best to prepare for reset sequence but if things go wrong, it
3580  *	should just whine, not fail.
3581  *
3582  *	LOCKING:
3583  *	Kernel thread context (may sleep)
3584  *
3585  *	RETURNS:
3586  *	Always 0.
3587  */
3588 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3589 {
3590 	struct ata_port *ap = link->ap;
3591 	struct ata_eh_context *ehc = &link->eh_context;
3592 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3593 	int rc;
3594 
3595 	/* if we're about to do hardreset, nothing more to do */
3596 	if (ehc->i.action & ATA_EH_HARDRESET)
3597 		return 0;
3598 
3599 	/* if SATA, resume link */
3600 	if (ap->flags & ATA_FLAG_SATA) {
3601 		rc = sata_link_resume(link, timing, deadline);
3602 		/* whine about phy resume failure but proceed */
3603 		if (rc && rc != -EOPNOTSUPP)
3604 			ata_link_warn(link,
3605 				      "failed to resume link for reset (errno=%d)\n",
3606 				      rc);
3607 	}
3608 
3609 	/* no point in trying softreset on offline link */
3610 	if (ata_phys_link_offline(link))
3611 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3612 
3613 	return 0;
3614 }
3615 EXPORT_SYMBOL_GPL(ata_std_prereset);
3616 
3617 /**
3618  *	sata_std_hardreset - COMRESET w/o waiting or classification
3619  *	@link: link to reset
3620  *	@class: resulting class of attached device
3621  *	@deadline: deadline jiffies for the operation
3622  *
3623  *	Standard SATA COMRESET w/o waiting or classification.
3624  *
3625  *	LOCKING:
3626  *	Kernel thread context (may sleep)
3627  *
3628  *	RETURNS:
3629  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3630  */
3631 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3632 		       unsigned long deadline)
3633 {
3634 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3635 	bool online;
3636 	int rc;
3637 
3638 	/* do hardreset */
3639 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3640 	return online ? -EAGAIN : rc;
3641 }
3642 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3643 
3644 /**
3645  *	ata_std_postreset - standard postreset callback
3646  *	@link: the target ata_link
3647  *	@classes: classes of attached devices
3648  *
3649  *	This function is invoked after a successful reset.  Note that
3650  *	the device might have been reset more than once using
3651  *	different reset methods before postreset is invoked.
3652  *
3653  *	LOCKING:
3654  *	Kernel thread context (may sleep)
3655  */
3656 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3657 {
3658 	u32 serror;
3659 
3660 	/* reset complete, clear SError */
3661 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3662 		sata_scr_write(link, SCR_ERROR, serror);
3663 
3664 	/* print link status */
3665 	sata_print_link_status(link);
3666 }
3667 EXPORT_SYMBOL_GPL(ata_std_postreset);
3668 
3669 /**
3670  *	ata_dev_same_device - Determine whether new ID matches configured device
3671  *	@dev: device to compare against
3672  *	@new_class: class of the new device
3673  *	@new_id: IDENTIFY page of the new device
3674  *
3675  *	Compare @new_class and @new_id against @dev and determine
3676  *	whether @dev is the device indicated by @new_class and
3677  *	@new_id.
3678  *
3679  *	LOCKING:
3680  *	None.
3681  *
3682  *	RETURNS:
3683  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3684  */
3685 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3686 			       const u16 *new_id)
3687 {
3688 	const u16 *old_id = dev->id;
3689 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3690 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3691 
3692 	if (dev->class != new_class) {
3693 		ata_dev_info(dev, "class mismatch %d != %d\n",
3694 			     dev->class, new_class);
3695 		return 0;
3696 	}
3697 
3698 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3699 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3700 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3701 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3702 
3703 	if (strcmp(model[0], model[1])) {
3704 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3705 			     model[0], model[1]);
3706 		return 0;
3707 	}
3708 
3709 	if (strcmp(serial[0], serial[1])) {
3710 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3711 			     serial[0], serial[1]);
3712 		return 0;
3713 	}
3714 
3715 	return 1;
3716 }
3717 
3718 /**
3719  *	ata_dev_reread_id - Re-read IDENTIFY data
3720  *	@dev: target ATA device
3721  *	@readid_flags: read ID flags
3722  *
3723  *	Re-read IDENTIFY page and make sure @dev is still attached to
3724  *	the port.
3725  *
3726  *	LOCKING:
3727  *	Kernel thread context (may sleep)
3728  *
3729  *	RETURNS:
3730  *	0 on success, negative errno otherwise
3731  */
3732 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3733 {
3734 	unsigned int class = dev->class;
3735 	u16 *id = (void *)dev->link->ap->sector_buf;
3736 	int rc;
3737 
3738 	/* read ID data */
3739 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3740 	if (rc)
3741 		return rc;
3742 
3743 	/* is the device still there? */
3744 	if (!ata_dev_same_device(dev, class, id))
3745 		return -ENODEV;
3746 
3747 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3748 	return 0;
3749 }
3750 
3751 /**
3752  *	ata_dev_revalidate - Revalidate ATA device
3753  *	@dev: device to revalidate
3754  *	@new_class: new class code
3755  *	@readid_flags: read ID flags
3756  *
3757  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3758  *	port and reconfigure it according to the new IDENTIFY page.
3759  *
3760  *	LOCKING:
3761  *	Kernel thread context (may sleep)
3762  *
3763  *	RETURNS:
3764  *	0 on success, negative errno otherwise
3765  */
3766 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3767 		       unsigned int readid_flags)
3768 {
3769 	u64 n_sectors = dev->n_sectors;
3770 	u64 n_native_sectors = dev->n_native_sectors;
3771 	int rc;
3772 
3773 	if (!ata_dev_enabled(dev))
3774 		return -ENODEV;
3775 
3776 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3777 	if (ata_class_enabled(new_class) &&
3778 	    new_class != ATA_DEV_ATA &&
3779 	    new_class != ATA_DEV_ATAPI &&
3780 	    new_class != ATA_DEV_ZAC &&
3781 	    new_class != ATA_DEV_SEMB) {
3782 		ata_dev_info(dev, "class mismatch %u != %u\n",
3783 			     dev->class, new_class);
3784 		rc = -ENODEV;
3785 		goto fail;
3786 	}
3787 
3788 	/* re-read ID */
3789 	rc = ata_dev_reread_id(dev, readid_flags);
3790 	if (rc)
3791 		goto fail;
3792 
3793 	/* configure device according to the new ID */
3794 	rc = ata_dev_configure(dev);
3795 	if (rc)
3796 		goto fail;
3797 
3798 	/* verify n_sectors hasn't changed */
3799 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3800 	    dev->n_sectors == n_sectors)
3801 		return 0;
3802 
3803 	/* n_sectors has changed */
3804 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3805 		     (unsigned long long)n_sectors,
3806 		     (unsigned long long)dev->n_sectors);
3807 
3808 	/*
3809 	 * Something could have caused HPA to be unlocked
3810 	 * involuntarily.  If n_native_sectors hasn't changed and the
3811 	 * new size matches it, keep the device.
3812 	 */
3813 	if (dev->n_native_sectors == n_native_sectors &&
3814 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3815 		ata_dev_warn(dev,
3816 			     "new n_sectors matches native, probably "
3817 			     "late HPA unlock, n_sectors updated\n");
3818 		/* use the larger n_sectors */
3819 		return 0;
3820 	}
3821 
3822 	/*
3823 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3824 	 * unlocking HPA in those cases.
3825 	 *
3826 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3827 	 */
3828 	if (dev->n_native_sectors == n_native_sectors &&
3829 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3830 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3831 		ata_dev_warn(dev,
3832 			     "old n_sectors matches native, probably "
3833 			     "late HPA lock, will try to unlock HPA\n");
3834 		/* try unlocking HPA */
3835 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3836 		rc = -EIO;
3837 	} else
3838 		rc = -ENODEV;
3839 
3840 	/* restore original n_[native_]sectors and fail */
3841 	dev->n_native_sectors = n_native_sectors;
3842 	dev->n_sectors = n_sectors;
3843  fail:
3844 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3845 	return rc;
3846 }
3847 
3848 struct ata_blacklist_entry {
3849 	const char *model_num;
3850 	const char *model_rev;
3851 	unsigned long horkage;
3852 };
3853 
3854 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3855 	/* Devices with DMA related problems under Linux */
3856 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3857 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3858 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3859 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3860 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3861 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3862 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3863 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3864 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3865 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3866 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3867 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3868 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3869 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3870 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3871 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3872 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3873 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3874 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3875 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3876 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3877 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3878 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3879 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3880 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3881 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3882 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3883 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3884 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3885 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3886 	/* Odd clown on sil3726/4726 PMPs */
3887 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3888 	/* Similar story with ASMedia 1092 */
3889 	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
3890 
3891 	/* Weird ATAPI devices */
3892 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3893 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3894 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3895 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3896 
3897 	/*
3898 	 * Causes silent data corruption with higher max sects.
3899 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3900 	 */
3901 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3902 
3903 	/*
3904 	 * These devices time out with higher max sects.
3905 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3906 	 */
3907 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3908 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3909 
3910 	/* Devices we expect to fail diagnostics */
3911 
3912 	/* Devices where NCQ should be avoided */
3913 	/* NCQ is slow */
3914 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3915 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ },
3916 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3917 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3918 	/* NCQ is broken */
3919 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3920 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3921 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3922 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3923 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3924 
3925 	/* Seagate NCQ + FLUSH CACHE firmware bug */
3926 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3927 						ATA_HORKAGE_FIRMWARE_WARN },
3928 
3929 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3930 						ATA_HORKAGE_FIRMWARE_WARN },
3931 
3932 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3933 						ATA_HORKAGE_FIRMWARE_WARN },
3934 
3935 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3936 						ATA_HORKAGE_FIRMWARE_WARN },
3937 
3938 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3939 	   the ST disks also have LPM issues */
3940 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3941 						ATA_HORKAGE_NOLPM },
3942 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3943 
3944 	/* Blacklist entries taken from Silicon Image 3124/3132
3945 	   Windows driver .inf file - also several Linux problem reports */
3946 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ },
3947 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ },
3948 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ },
3949 
3950 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3951 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ },
3952 
3953 	/* Sandisk SD7/8/9s lock up hard on large trims */
3954 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M },
3955 
3956 	/* devices which puke on READ_NATIVE_MAX */
3957 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA },
3958 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3959 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3960 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3961 
3962 	/* this one allows HPA unlocking but fails IOs on the area */
3963 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3964 
3965 	/* Devices which report 1 sector over size HPA */
3966 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE },
3967 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE },
3968 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE },
3969 
3970 	/* Devices which get the IVB wrong */
3971 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
3972 	/* Maybe we should just blacklist TSSTcorp... */
3973 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB },
3974 
3975 	/* Devices that do not need bridging limits applied */
3976 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK },
3977 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK },
3978 
3979 	/* Devices which aren't very happy with higher link speeds */
3980 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS },
3981 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS },
3982 
3983 	/*
3984 	 * Devices which choke on SETXFER.  Applies only if both the
3985 	 * device and controller are SATA.
3986 	 */
3987 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
3988 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
3989 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
3990 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
3991 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
3992 
3993 	/* These specific Pioneer models have LPM issues */
3994 	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_HORKAGE_NOLPM },
3995 	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_HORKAGE_NOLPM },
3996 
3997 	/* Crucial BX100 SSD 500GB has broken LPM support */
3998 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
3999 
4000 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4001 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4002 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4003 						ATA_HORKAGE_NOLPM },
4004 	/* 512GB MX100 with newer firmware has only LPM issues */
4005 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4006 						ATA_HORKAGE_NOLPM },
4007 
4008 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4009 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4010 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4011 						ATA_HORKAGE_NOLPM },
4012 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4013 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4014 						ATA_HORKAGE_NOLPM },
4015 
4016 	/* These specific Samsung models/firmware-revs do not handle LPM well */
4017 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4018 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM },
4019 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM },
4020 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4021 
4022 	/* devices that don't properly handle queued TRIM commands */
4023 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4024 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4025 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4026 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4027 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4028 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4029 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4030 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4031 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4032 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4033 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4034 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4035 	{ "Samsung SSD 840 EVO*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4036 						ATA_HORKAGE_NO_DMA_LOG |
4037 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4038 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4039 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4040 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4041 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4042 	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4043 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4044 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4045 	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4046 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4047 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4048 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4049 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4050 
4051 	/* devices that don't properly handle TRIM commands */
4052 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM },
4053 	{ "M88V29*",			NULL,	ATA_HORKAGE_NOTRIM },
4054 
4055 	/*
4056 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4057 	 * (Return Zero After Trim) flags in the ATA Command Set are
4058 	 * unreliable in the sense that they only define what happens if
4059 	 * the device successfully executed the DSM TRIM command. TRIM
4060 	 * is only advisory, however, and the device is free to silently
4061 	 * ignore all or parts of the request.
4062 	 *
4063 	 * Whitelist drives that are known to reliably return zeroes
4064 	 * after TRIM.
4065 	 */
4066 
4067 	/*
4068 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4069 	 * that model before whitelisting all other intel SSDs.
4070 	 */
4071 	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4072 
4073 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4074 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4075 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4076 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4077 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4078 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4079 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4080 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4081 
4082 	/*
4083 	 * Some WD SATA-I drives spin up and down erratically when the link
4084 	 * is put into the slumber mode.  We don't have full list of the
4085 	 * affected devices.  Disable LPM if the device matches one of the
4086 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4087 	 * lost too.
4088 	 *
4089 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4090 	 */
4091 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4092 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4093 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4094 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4095 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4096 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4097 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4098 
4099 	/*
4100 	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4101 	 * log page is accessed. Ensure we never ask for this log page with
4102 	 * these devices.
4103 	 */
4104 	{ "SATADOM-ML 3ME",		NULL,	ATA_HORKAGE_NO_LOG_DIR },
4105 
4106 	/* End Marker */
4107 	{ }
4108 };
4109 
4110 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4111 {
4112 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4113 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4114 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4115 
4116 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4117 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4118 
4119 	while (ad->model_num) {
4120 		if (glob_match(ad->model_num, model_num)) {
4121 			if (ad->model_rev == NULL)
4122 				return ad->horkage;
4123 			if (glob_match(ad->model_rev, model_rev))
4124 				return ad->horkage;
4125 		}
4126 		ad++;
4127 	}
4128 	return 0;
4129 }
4130 
4131 static int ata_dma_blacklisted(const struct ata_device *dev)
4132 {
4133 	/* We don't support polling DMA.
4134 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4135 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4136 	 */
4137 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4138 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4139 		return 1;
4140 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4141 }
4142 
4143 /**
4144  *	ata_is_40wire		-	check drive side detection
4145  *	@dev: device
4146  *
4147  *	Perform drive side detection decoding, allowing for device vendors
4148  *	who can't follow the documentation.
4149  */
4150 
4151 static int ata_is_40wire(struct ata_device *dev)
4152 {
4153 	if (dev->horkage & ATA_HORKAGE_IVB)
4154 		return ata_drive_40wire_relaxed(dev->id);
4155 	return ata_drive_40wire(dev->id);
4156 }
4157 
4158 /**
4159  *	cable_is_40wire		-	40/80/SATA decider
4160  *	@ap: port to consider
4161  *
4162  *	This function encapsulates the policy for speed management
4163  *	in one place. At the moment we don't cache the result but
4164  *	there is a good case for setting ap->cbl to the result when
4165  *	we are called with unknown cables (and figuring out if it
4166  *	impacts hotplug at all).
4167  *
4168  *	Return 1 if the cable appears to be 40 wire.
4169  */
4170 
4171 static int cable_is_40wire(struct ata_port *ap)
4172 {
4173 	struct ata_link *link;
4174 	struct ata_device *dev;
4175 
4176 	/* If the controller thinks we are 40 wire, we are. */
4177 	if (ap->cbl == ATA_CBL_PATA40)
4178 		return 1;
4179 
4180 	/* If the controller thinks we are 80 wire, we are. */
4181 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4182 		return 0;
4183 
4184 	/* If the system is known to be 40 wire short cable (eg
4185 	 * laptop), then we allow 80 wire modes even if the drive
4186 	 * isn't sure.
4187 	 */
4188 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4189 		return 0;
4190 
4191 	/* If the controller doesn't know, we scan.
4192 	 *
4193 	 * Note: We look for all 40 wire detects at this point.  Any
4194 	 *       80 wire detect is taken to be 80 wire cable because
4195 	 * - in many setups only the one drive (slave if present) will
4196 	 *   give a valid detect
4197 	 * - if you have a non detect capable drive you don't want it
4198 	 *   to colour the choice
4199 	 */
4200 	ata_for_each_link(link, ap, EDGE) {
4201 		ata_for_each_dev(dev, link, ENABLED) {
4202 			if (!ata_is_40wire(dev))
4203 				return 0;
4204 		}
4205 	}
4206 	return 1;
4207 }
4208 
4209 /**
4210  *	ata_dev_xfermask - Compute supported xfermask of the given device
4211  *	@dev: Device to compute xfermask for
4212  *
4213  *	Compute supported xfermask of @dev and store it in
4214  *	dev->*_mask.  This function is responsible for applying all
4215  *	known limits including host controller limits, device
4216  *	blacklist, etc...
4217  *
4218  *	LOCKING:
4219  *	None.
4220  */
4221 static void ata_dev_xfermask(struct ata_device *dev)
4222 {
4223 	struct ata_link *link = dev->link;
4224 	struct ata_port *ap = link->ap;
4225 	struct ata_host *host = ap->host;
4226 	unsigned int xfer_mask;
4227 
4228 	/* controller modes available */
4229 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4230 				      ap->mwdma_mask, ap->udma_mask);
4231 
4232 	/* drive modes available */
4233 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4234 				       dev->mwdma_mask, dev->udma_mask);
4235 	xfer_mask &= ata_id_xfermask(dev->id);
4236 
4237 	/*
4238 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4239 	 *	cable
4240 	 */
4241 	if (ata_dev_pair(dev)) {
4242 		/* No PIO5 or PIO6 */
4243 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4244 		/* No MWDMA3 or MWDMA 4 */
4245 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4246 	}
4247 
4248 	if (ata_dma_blacklisted(dev)) {
4249 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4250 		ata_dev_warn(dev,
4251 			     "device is on DMA blacklist, disabling DMA\n");
4252 	}
4253 
4254 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4255 	    host->simplex_claimed && host->simplex_claimed != ap) {
4256 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4257 		ata_dev_warn(dev,
4258 			     "simplex DMA is claimed by other device, disabling DMA\n");
4259 	}
4260 
4261 	if (ap->flags & ATA_FLAG_NO_IORDY)
4262 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4263 
4264 	if (ap->ops->mode_filter)
4265 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4266 
4267 	/* Apply cable rule here.  Don't apply it early because when
4268 	 * we handle hot plug the cable type can itself change.
4269 	 * Check this last so that we know if the transfer rate was
4270 	 * solely limited by the cable.
4271 	 * Unknown or 80 wire cables reported host side are checked
4272 	 * drive side as well. Cases where we know a 40wire cable
4273 	 * is used safely for 80 are not checked here.
4274 	 */
4275 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4276 		/* UDMA/44 or higher would be available */
4277 		if (cable_is_40wire(ap)) {
4278 			ata_dev_warn(dev,
4279 				     "limited to UDMA/33 due to 40-wire cable\n");
4280 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4281 		}
4282 
4283 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4284 			    &dev->mwdma_mask, &dev->udma_mask);
4285 }
4286 
4287 /**
4288  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4289  *	@dev: Device to which command will be sent
4290  *
4291  *	Issue SET FEATURES - XFER MODE command to device @dev
4292  *	on port @ap.
4293  *
4294  *	LOCKING:
4295  *	PCI/etc. bus probe sem.
4296  *
4297  *	RETURNS:
4298  *	0 on success, AC_ERR_* mask otherwise.
4299  */
4300 
4301 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4302 {
4303 	struct ata_taskfile tf;
4304 
4305 	/* set up set-features taskfile */
4306 	ata_dev_dbg(dev, "set features - xfer mode\n");
4307 
4308 	/* Some controllers and ATAPI devices show flaky interrupt
4309 	 * behavior after setting xfer mode.  Use polling instead.
4310 	 */
4311 	ata_tf_init(dev, &tf);
4312 	tf.command = ATA_CMD_SET_FEATURES;
4313 	tf.feature = SETFEATURES_XFER;
4314 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4315 	tf.protocol = ATA_PROT_NODATA;
4316 	/* If we are using IORDY we must send the mode setting command */
4317 	if (ata_pio_need_iordy(dev))
4318 		tf.nsect = dev->xfer_mode;
4319 	/* If the device has IORDY and the controller does not - turn it off */
4320  	else if (ata_id_has_iordy(dev->id))
4321 		tf.nsect = 0x01;
4322 	else /* In the ancient relic department - skip all of this */
4323 		return 0;
4324 
4325 	/*
4326 	 * On some disks, this command causes spin-up, so we need longer
4327 	 * timeout.
4328 	 */
4329 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4330 }
4331 
4332 /**
4333  *	ata_dev_set_feature - Issue SET FEATURES
4334  *	@dev: Device to which command will be sent
4335  *	@subcmd: The SET FEATURES subcommand to be sent
4336  *	@action: The sector count represents a subcommand specific action
4337  *
4338  *	Issue SET FEATURES command to device @dev on port @ap with sector count
4339  *
4340  *	LOCKING:
4341  *	PCI/etc. bus probe sem.
4342  *
4343  *	RETURNS:
4344  *	0 on success, AC_ERR_* mask otherwise.
4345  */
4346 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4347 {
4348 	struct ata_taskfile tf;
4349 	unsigned int timeout = 0;
4350 
4351 	/* set up set-features taskfile */
4352 	ata_dev_dbg(dev, "set features\n");
4353 
4354 	ata_tf_init(dev, &tf);
4355 	tf.command = ATA_CMD_SET_FEATURES;
4356 	tf.feature = subcmd;
4357 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4358 	tf.protocol = ATA_PROT_NODATA;
4359 	tf.nsect = action;
4360 
4361 	if (subcmd == SETFEATURES_SPINUP)
4362 		timeout = ata_probe_timeout ?
4363 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4364 
4365 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4366 }
4367 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4368 
4369 /**
4370  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4371  *	@dev: Device to which command will be sent
4372  *	@heads: Number of heads (taskfile parameter)
4373  *	@sectors: Number of sectors (taskfile parameter)
4374  *
4375  *	LOCKING:
4376  *	Kernel thread context (may sleep)
4377  *
4378  *	RETURNS:
4379  *	0 on success, AC_ERR_* mask otherwise.
4380  */
4381 static unsigned int ata_dev_init_params(struct ata_device *dev,
4382 					u16 heads, u16 sectors)
4383 {
4384 	struct ata_taskfile tf;
4385 	unsigned int err_mask;
4386 
4387 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4388 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4389 		return AC_ERR_INVALID;
4390 
4391 	/* set up init dev params taskfile */
4392 	ata_dev_dbg(dev, "init dev params \n");
4393 
4394 	ata_tf_init(dev, &tf);
4395 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4396 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4397 	tf.protocol = ATA_PROT_NODATA;
4398 	tf.nsect = sectors;
4399 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4400 
4401 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4402 	/* A clean abort indicates an original or just out of spec drive
4403 	   and we should continue as we issue the setup based on the
4404 	   drive reported working geometry */
4405 	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4406 		err_mask = 0;
4407 
4408 	return err_mask;
4409 }
4410 
4411 /**
4412  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4413  *	@qc: Metadata associated with taskfile to check
4414  *
4415  *	Allow low-level driver to filter ATA PACKET commands, returning
4416  *	a status indicating whether or not it is OK to use DMA for the
4417  *	supplied PACKET command.
4418  *
4419  *	LOCKING:
4420  *	spin_lock_irqsave(host lock)
4421  *
4422  *	RETURNS: 0 when ATAPI DMA can be used
4423  *               nonzero otherwise
4424  */
4425 int atapi_check_dma(struct ata_queued_cmd *qc)
4426 {
4427 	struct ata_port *ap = qc->ap;
4428 
4429 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4430 	 * few ATAPI devices choke on such DMA requests.
4431 	 */
4432 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4433 	    unlikely(qc->nbytes & 15))
4434 		return 1;
4435 
4436 	if (ap->ops->check_atapi_dma)
4437 		return ap->ops->check_atapi_dma(qc);
4438 
4439 	return 0;
4440 }
4441 
4442 /**
4443  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4444  *	@qc: ATA command in question
4445  *
4446  *	Non-NCQ commands cannot run with any other command, NCQ or
4447  *	not.  As upper layer only knows the queue depth, we are
4448  *	responsible for maintaining exclusion.  This function checks
4449  *	whether a new command @qc can be issued.
4450  *
4451  *	LOCKING:
4452  *	spin_lock_irqsave(host lock)
4453  *
4454  *	RETURNS:
4455  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4456  */
4457 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4458 {
4459 	struct ata_link *link = qc->dev->link;
4460 
4461 	if (ata_is_ncq(qc->tf.protocol)) {
4462 		if (!ata_tag_valid(link->active_tag))
4463 			return 0;
4464 	} else {
4465 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4466 			return 0;
4467 	}
4468 
4469 	return ATA_DEFER_LINK;
4470 }
4471 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4472 
4473 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4474 {
4475 	return AC_ERR_OK;
4476 }
4477 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4478 
4479 /**
4480  *	ata_sg_init - Associate command with scatter-gather table.
4481  *	@qc: Command to be associated
4482  *	@sg: Scatter-gather table.
4483  *	@n_elem: Number of elements in s/g table.
4484  *
4485  *	Initialize the data-related elements of queued_cmd @qc
4486  *	to point to a scatter-gather table @sg, containing @n_elem
4487  *	elements.
4488  *
4489  *	LOCKING:
4490  *	spin_lock_irqsave(host lock)
4491  */
4492 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4493 		 unsigned int n_elem)
4494 {
4495 	qc->sg = sg;
4496 	qc->n_elem = n_elem;
4497 	qc->cursg = qc->sg;
4498 }
4499 
4500 #ifdef CONFIG_HAS_DMA
4501 
4502 /**
4503  *	ata_sg_clean - Unmap DMA memory associated with command
4504  *	@qc: Command containing DMA memory to be released
4505  *
4506  *	Unmap all mapped DMA memory associated with this command.
4507  *
4508  *	LOCKING:
4509  *	spin_lock_irqsave(host lock)
4510  */
4511 static void ata_sg_clean(struct ata_queued_cmd *qc)
4512 {
4513 	struct ata_port *ap = qc->ap;
4514 	struct scatterlist *sg = qc->sg;
4515 	int dir = qc->dma_dir;
4516 
4517 	WARN_ON_ONCE(sg == NULL);
4518 
4519 	if (qc->n_elem)
4520 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4521 
4522 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4523 	qc->sg = NULL;
4524 }
4525 
4526 /**
4527  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4528  *	@qc: Command with scatter-gather table to be mapped.
4529  *
4530  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4531  *
4532  *	LOCKING:
4533  *	spin_lock_irqsave(host lock)
4534  *
4535  *	RETURNS:
4536  *	Zero on success, negative on error.
4537  *
4538  */
4539 static int ata_sg_setup(struct ata_queued_cmd *qc)
4540 {
4541 	struct ata_port *ap = qc->ap;
4542 	unsigned int n_elem;
4543 
4544 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4545 	if (n_elem < 1)
4546 		return -1;
4547 
4548 	qc->orig_n_elem = qc->n_elem;
4549 	qc->n_elem = n_elem;
4550 	qc->flags |= ATA_QCFLAG_DMAMAP;
4551 
4552 	return 0;
4553 }
4554 
4555 #else /* !CONFIG_HAS_DMA */
4556 
4557 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4558 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4559 
4560 #endif /* !CONFIG_HAS_DMA */
4561 
4562 /**
4563  *	swap_buf_le16 - swap halves of 16-bit words in place
4564  *	@buf:  Buffer to swap
4565  *	@buf_words:  Number of 16-bit words in buffer.
4566  *
4567  *	Swap halves of 16-bit words if needed to convert from
4568  *	little-endian byte order to native cpu byte order, or
4569  *	vice-versa.
4570  *
4571  *	LOCKING:
4572  *	Inherited from caller.
4573  */
4574 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4575 {
4576 #ifdef __BIG_ENDIAN
4577 	unsigned int i;
4578 
4579 	for (i = 0; i < buf_words; i++)
4580 		buf[i] = le16_to_cpu(buf[i]);
4581 #endif /* __BIG_ENDIAN */
4582 }
4583 
4584 /**
4585  *	ata_qc_free - free unused ata_queued_cmd
4586  *	@qc: Command to complete
4587  *
4588  *	Designed to free unused ata_queued_cmd object
4589  *	in case something prevents using it.
4590  *
4591  *	LOCKING:
4592  *	spin_lock_irqsave(host lock)
4593  */
4594 void ata_qc_free(struct ata_queued_cmd *qc)
4595 {
4596 	qc->flags = 0;
4597 	if (ata_tag_valid(qc->tag))
4598 		qc->tag = ATA_TAG_POISON;
4599 }
4600 
4601 void __ata_qc_complete(struct ata_queued_cmd *qc)
4602 {
4603 	struct ata_port *ap;
4604 	struct ata_link *link;
4605 
4606 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4607 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4608 	ap = qc->ap;
4609 	link = qc->dev->link;
4610 
4611 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4612 		ata_sg_clean(qc);
4613 
4614 	/* command should be marked inactive atomically with qc completion */
4615 	if (ata_is_ncq(qc->tf.protocol)) {
4616 		link->sactive &= ~(1 << qc->hw_tag);
4617 		if (!link->sactive)
4618 			ap->nr_active_links--;
4619 	} else {
4620 		link->active_tag = ATA_TAG_POISON;
4621 		ap->nr_active_links--;
4622 	}
4623 
4624 	/* clear exclusive status */
4625 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4626 		     ap->excl_link == link))
4627 		ap->excl_link = NULL;
4628 
4629 	/* atapi: mark qc as inactive to prevent the interrupt handler
4630 	 * from completing the command twice later, before the error handler
4631 	 * is called. (when rc != 0 and atapi request sense is needed)
4632 	 */
4633 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4634 	ap->qc_active &= ~(1ULL << qc->tag);
4635 
4636 	/* call completion callback */
4637 	qc->complete_fn(qc);
4638 }
4639 
4640 static void fill_result_tf(struct ata_queued_cmd *qc)
4641 {
4642 	struct ata_port *ap = qc->ap;
4643 
4644 	qc->result_tf.flags = qc->tf.flags;
4645 	ap->ops->qc_fill_rtf(qc);
4646 }
4647 
4648 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4649 {
4650 	struct ata_device *dev = qc->dev;
4651 
4652 	if (!ata_is_data(qc->tf.protocol))
4653 		return;
4654 
4655 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4656 		return;
4657 
4658 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4659 }
4660 
4661 /**
4662  *	ata_qc_complete - Complete an active ATA command
4663  *	@qc: Command to complete
4664  *
4665  *	Indicate to the mid and upper layers that an ATA command has
4666  *	completed, with either an ok or not-ok status.
4667  *
4668  *	Refrain from calling this function multiple times when
4669  *	successfully completing multiple NCQ commands.
4670  *	ata_qc_complete_multiple() should be used instead, which will
4671  *	properly update IRQ expect state.
4672  *
4673  *	LOCKING:
4674  *	spin_lock_irqsave(host lock)
4675  */
4676 void ata_qc_complete(struct ata_queued_cmd *qc)
4677 {
4678 	struct ata_port *ap = qc->ap;
4679 
4680 	/* Trigger the LED (if available) */
4681 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4682 
4683 	/* XXX: New EH and old EH use different mechanisms to
4684 	 * synchronize EH with regular execution path.
4685 	 *
4686 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4687 	 * Normal execution path is responsible for not accessing a
4688 	 * failed qc.  libata core enforces the rule by returning NULL
4689 	 * from ata_qc_from_tag() for failed qcs.
4690 	 *
4691 	 * Old EH depends on ata_qc_complete() nullifying completion
4692 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4693 	 * not synchronize with interrupt handler.  Only PIO task is
4694 	 * taken care of.
4695 	 */
4696 	if (ap->ops->error_handler) {
4697 		struct ata_device *dev = qc->dev;
4698 		struct ata_eh_info *ehi = &dev->link->eh_info;
4699 
4700 		if (unlikely(qc->err_mask))
4701 			qc->flags |= ATA_QCFLAG_FAILED;
4702 
4703 		/*
4704 		 * Finish internal commands without any further processing
4705 		 * and always with the result TF filled.
4706 		 */
4707 		if (unlikely(ata_tag_internal(qc->tag))) {
4708 			fill_result_tf(qc);
4709 			trace_ata_qc_complete_internal(qc);
4710 			__ata_qc_complete(qc);
4711 			return;
4712 		}
4713 
4714 		/*
4715 		 * Non-internal qc has failed.  Fill the result TF and
4716 		 * summon EH.
4717 		 */
4718 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4719 			fill_result_tf(qc);
4720 			trace_ata_qc_complete_failed(qc);
4721 			ata_qc_schedule_eh(qc);
4722 			return;
4723 		}
4724 
4725 		WARN_ON_ONCE(ata_port_is_frozen(ap));
4726 
4727 		/* read result TF if requested */
4728 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4729 			fill_result_tf(qc);
4730 
4731 		trace_ata_qc_complete_done(qc);
4732 		/* Some commands need post-processing after successful
4733 		 * completion.
4734 		 */
4735 		switch (qc->tf.command) {
4736 		case ATA_CMD_SET_FEATURES:
4737 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4738 			    qc->tf.feature != SETFEATURES_WC_OFF &&
4739 			    qc->tf.feature != SETFEATURES_RA_ON &&
4740 			    qc->tf.feature != SETFEATURES_RA_OFF)
4741 				break;
4742 			fallthrough;
4743 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4744 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4745 			/* revalidate device */
4746 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4747 			ata_port_schedule_eh(ap);
4748 			break;
4749 
4750 		case ATA_CMD_SLEEP:
4751 			dev->flags |= ATA_DFLAG_SLEEPING;
4752 			break;
4753 		}
4754 
4755 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4756 			ata_verify_xfer(qc);
4757 
4758 		__ata_qc_complete(qc);
4759 	} else {
4760 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4761 			return;
4762 
4763 		/* read result TF if failed or requested */
4764 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4765 			fill_result_tf(qc);
4766 
4767 		__ata_qc_complete(qc);
4768 	}
4769 }
4770 EXPORT_SYMBOL_GPL(ata_qc_complete);
4771 
4772 /**
4773  *	ata_qc_get_active - get bitmask of active qcs
4774  *	@ap: port in question
4775  *
4776  *	LOCKING:
4777  *	spin_lock_irqsave(host lock)
4778  *
4779  *	RETURNS:
4780  *	Bitmask of active qcs
4781  */
4782 u64 ata_qc_get_active(struct ata_port *ap)
4783 {
4784 	u64 qc_active = ap->qc_active;
4785 
4786 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4787 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4788 		qc_active |= (1 << 0);
4789 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4790 	}
4791 
4792 	return qc_active;
4793 }
4794 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4795 
4796 /**
4797  *	ata_qc_issue - issue taskfile to device
4798  *	@qc: command to issue to device
4799  *
4800  *	Prepare an ATA command to submission to device.
4801  *	This includes mapping the data into a DMA-able
4802  *	area, filling in the S/G table, and finally
4803  *	writing the taskfile to hardware, starting the command.
4804  *
4805  *	LOCKING:
4806  *	spin_lock_irqsave(host lock)
4807  */
4808 void ata_qc_issue(struct ata_queued_cmd *qc)
4809 {
4810 	struct ata_port *ap = qc->ap;
4811 	struct ata_link *link = qc->dev->link;
4812 	u8 prot = qc->tf.protocol;
4813 
4814 	/* Make sure only one non-NCQ command is outstanding.  The
4815 	 * check is skipped for old EH because it reuses active qc to
4816 	 * request ATAPI sense.
4817 	 */
4818 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4819 
4820 	if (ata_is_ncq(prot)) {
4821 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4822 
4823 		if (!link->sactive)
4824 			ap->nr_active_links++;
4825 		link->sactive |= 1 << qc->hw_tag;
4826 	} else {
4827 		WARN_ON_ONCE(link->sactive);
4828 
4829 		ap->nr_active_links++;
4830 		link->active_tag = qc->tag;
4831 	}
4832 
4833 	qc->flags |= ATA_QCFLAG_ACTIVE;
4834 	ap->qc_active |= 1ULL << qc->tag;
4835 
4836 	/*
4837 	 * We guarantee to LLDs that they will have at least one
4838 	 * non-zero sg if the command is a data command.
4839 	 */
4840 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4841 		goto sys_err;
4842 
4843 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4844 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4845 		if (ata_sg_setup(qc))
4846 			goto sys_err;
4847 
4848 	/* if device is sleeping, schedule reset and abort the link */
4849 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4850 		link->eh_info.action |= ATA_EH_RESET;
4851 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4852 		ata_link_abort(link);
4853 		return;
4854 	}
4855 
4856 	trace_ata_qc_prep(qc);
4857 	qc->err_mask |= ap->ops->qc_prep(qc);
4858 	if (unlikely(qc->err_mask))
4859 		goto err;
4860 	trace_ata_qc_issue(qc);
4861 	qc->err_mask |= ap->ops->qc_issue(qc);
4862 	if (unlikely(qc->err_mask))
4863 		goto err;
4864 	return;
4865 
4866 sys_err:
4867 	qc->err_mask |= AC_ERR_SYSTEM;
4868 err:
4869 	ata_qc_complete(qc);
4870 }
4871 
4872 /**
4873  *	ata_phys_link_online - test whether the given link is online
4874  *	@link: ATA link to test
4875  *
4876  *	Test whether @link is online.  Note that this function returns
4877  *	0 if online status of @link cannot be obtained, so
4878  *	ata_link_online(link) != !ata_link_offline(link).
4879  *
4880  *	LOCKING:
4881  *	None.
4882  *
4883  *	RETURNS:
4884  *	True if the port online status is available and online.
4885  */
4886 bool ata_phys_link_online(struct ata_link *link)
4887 {
4888 	u32 sstatus;
4889 
4890 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4891 	    ata_sstatus_online(sstatus))
4892 		return true;
4893 	return false;
4894 }
4895 
4896 /**
4897  *	ata_phys_link_offline - test whether the given link is offline
4898  *	@link: ATA link to test
4899  *
4900  *	Test whether @link is offline.  Note that this function
4901  *	returns 0 if offline status of @link cannot be obtained, so
4902  *	ata_link_online(link) != !ata_link_offline(link).
4903  *
4904  *	LOCKING:
4905  *	None.
4906  *
4907  *	RETURNS:
4908  *	True if the port offline status is available and offline.
4909  */
4910 bool ata_phys_link_offline(struct ata_link *link)
4911 {
4912 	u32 sstatus;
4913 
4914 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4915 	    !ata_sstatus_online(sstatus))
4916 		return true;
4917 	return false;
4918 }
4919 
4920 /**
4921  *	ata_link_online - test whether the given link is online
4922  *	@link: ATA link to test
4923  *
4924  *	Test whether @link is online.  This is identical to
4925  *	ata_phys_link_online() when there's no slave link.  When
4926  *	there's a slave link, this function should only be called on
4927  *	the master link and will return true if any of M/S links is
4928  *	online.
4929  *
4930  *	LOCKING:
4931  *	None.
4932  *
4933  *	RETURNS:
4934  *	True if the port online status is available and online.
4935  */
4936 bool ata_link_online(struct ata_link *link)
4937 {
4938 	struct ata_link *slave = link->ap->slave_link;
4939 
4940 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4941 
4942 	return ata_phys_link_online(link) ||
4943 		(slave && ata_phys_link_online(slave));
4944 }
4945 EXPORT_SYMBOL_GPL(ata_link_online);
4946 
4947 /**
4948  *	ata_link_offline - test whether the given link is offline
4949  *	@link: ATA link to test
4950  *
4951  *	Test whether @link is offline.  This is identical to
4952  *	ata_phys_link_offline() when there's no slave link.  When
4953  *	there's a slave link, this function should only be called on
4954  *	the master link and will return true if both M/S links are
4955  *	offline.
4956  *
4957  *	LOCKING:
4958  *	None.
4959  *
4960  *	RETURNS:
4961  *	True if the port offline status is available and offline.
4962  */
4963 bool ata_link_offline(struct ata_link *link)
4964 {
4965 	struct ata_link *slave = link->ap->slave_link;
4966 
4967 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4968 
4969 	return ata_phys_link_offline(link) &&
4970 		(!slave || ata_phys_link_offline(slave));
4971 }
4972 EXPORT_SYMBOL_GPL(ata_link_offline);
4973 
4974 #ifdef CONFIG_PM
4975 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4976 				unsigned int action, unsigned int ehi_flags,
4977 				bool async)
4978 {
4979 	struct ata_link *link;
4980 	unsigned long flags;
4981 
4982 	/* Previous resume operation might still be in
4983 	 * progress.  Wait for PM_PENDING to clear.
4984 	 */
4985 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4986 		ata_port_wait_eh(ap);
4987 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4988 	}
4989 
4990 	/* request PM ops to EH */
4991 	spin_lock_irqsave(ap->lock, flags);
4992 
4993 	ap->pm_mesg = mesg;
4994 	ap->pflags |= ATA_PFLAG_PM_PENDING;
4995 	ata_for_each_link(link, ap, HOST_FIRST) {
4996 		link->eh_info.action |= action;
4997 		link->eh_info.flags |= ehi_flags;
4998 	}
4999 
5000 	ata_port_schedule_eh(ap);
5001 
5002 	spin_unlock_irqrestore(ap->lock, flags);
5003 
5004 	if (!async) {
5005 		ata_port_wait_eh(ap);
5006 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5007 	}
5008 }
5009 
5010 /*
5011  * On some hardware, device fails to respond after spun down for suspend.  As
5012  * the device won't be used before being resumed, we don't need to touch the
5013  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5014  *
5015  * http://thread.gmane.org/gmane.linux.ide/46764
5016  */
5017 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5018 						 | ATA_EHI_NO_AUTOPSY
5019 						 | ATA_EHI_NO_RECOVERY;
5020 
5021 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5022 {
5023 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5024 }
5025 
5026 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5027 {
5028 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5029 }
5030 
5031 static int ata_port_pm_suspend(struct device *dev)
5032 {
5033 	struct ata_port *ap = to_ata_port(dev);
5034 
5035 	if (pm_runtime_suspended(dev))
5036 		return 0;
5037 
5038 	ata_port_suspend(ap, PMSG_SUSPEND);
5039 	return 0;
5040 }
5041 
5042 static int ata_port_pm_freeze(struct device *dev)
5043 {
5044 	struct ata_port *ap = to_ata_port(dev);
5045 
5046 	if (pm_runtime_suspended(dev))
5047 		return 0;
5048 
5049 	ata_port_suspend(ap, PMSG_FREEZE);
5050 	return 0;
5051 }
5052 
5053 static int ata_port_pm_poweroff(struct device *dev)
5054 {
5055 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5056 	return 0;
5057 }
5058 
5059 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5060 						| ATA_EHI_QUIET;
5061 
5062 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5063 {
5064 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5065 }
5066 
5067 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5068 {
5069 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5070 }
5071 
5072 static int ata_port_pm_resume(struct device *dev)
5073 {
5074 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5075 	pm_runtime_disable(dev);
5076 	pm_runtime_set_active(dev);
5077 	pm_runtime_enable(dev);
5078 	return 0;
5079 }
5080 
5081 /*
5082  * For ODDs, the upper layer will poll for media change every few seconds,
5083  * which will make it enter and leave suspend state every few seconds. And
5084  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5085  * is very little and the ODD may malfunction after constantly being reset.
5086  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5087  * ODD is attached to the port.
5088  */
5089 static int ata_port_runtime_idle(struct device *dev)
5090 {
5091 	struct ata_port *ap = to_ata_port(dev);
5092 	struct ata_link *link;
5093 	struct ata_device *adev;
5094 
5095 	ata_for_each_link(link, ap, HOST_FIRST) {
5096 		ata_for_each_dev(adev, link, ENABLED)
5097 			if (adev->class == ATA_DEV_ATAPI &&
5098 			    !zpodd_dev_enabled(adev))
5099 				return -EBUSY;
5100 	}
5101 
5102 	return 0;
5103 }
5104 
5105 static int ata_port_runtime_suspend(struct device *dev)
5106 {
5107 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5108 	return 0;
5109 }
5110 
5111 static int ata_port_runtime_resume(struct device *dev)
5112 {
5113 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5114 	return 0;
5115 }
5116 
5117 static const struct dev_pm_ops ata_port_pm_ops = {
5118 	.suspend = ata_port_pm_suspend,
5119 	.resume = ata_port_pm_resume,
5120 	.freeze = ata_port_pm_freeze,
5121 	.thaw = ata_port_pm_resume,
5122 	.poweroff = ata_port_pm_poweroff,
5123 	.restore = ata_port_pm_resume,
5124 
5125 	.runtime_suspend = ata_port_runtime_suspend,
5126 	.runtime_resume = ata_port_runtime_resume,
5127 	.runtime_idle = ata_port_runtime_idle,
5128 };
5129 
5130 /* sas ports don't participate in pm runtime management of ata_ports,
5131  * and need to resume ata devices at the domain level, not the per-port
5132  * level. sas suspend/resume is async to allow parallel port recovery
5133  * since sas has multiple ata_port instances per Scsi_Host.
5134  */
5135 void ata_sas_port_suspend(struct ata_port *ap)
5136 {
5137 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5138 }
5139 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5140 
5141 void ata_sas_port_resume(struct ata_port *ap)
5142 {
5143 	ata_port_resume_async(ap, PMSG_RESUME);
5144 }
5145 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5146 
5147 /**
5148  *	ata_host_suspend - suspend host
5149  *	@host: host to suspend
5150  *	@mesg: PM message
5151  *
5152  *	Suspend @host.  Actual operation is performed by port suspend.
5153  */
5154 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5155 {
5156 	host->dev->power.power_state = mesg;
5157 }
5158 EXPORT_SYMBOL_GPL(ata_host_suspend);
5159 
5160 /**
5161  *	ata_host_resume - resume host
5162  *	@host: host to resume
5163  *
5164  *	Resume @host.  Actual operation is performed by port resume.
5165  */
5166 void ata_host_resume(struct ata_host *host)
5167 {
5168 	host->dev->power.power_state = PMSG_ON;
5169 }
5170 EXPORT_SYMBOL_GPL(ata_host_resume);
5171 #endif
5172 
5173 const struct device_type ata_port_type = {
5174 	.name = "ata_port",
5175 #ifdef CONFIG_PM
5176 	.pm = &ata_port_pm_ops,
5177 #endif
5178 };
5179 
5180 /**
5181  *	ata_dev_init - Initialize an ata_device structure
5182  *	@dev: Device structure to initialize
5183  *
5184  *	Initialize @dev in preparation for probing.
5185  *
5186  *	LOCKING:
5187  *	Inherited from caller.
5188  */
5189 void ata_dev_init(struct ata_device *dev)
5190 {
5191 	struct ata_link *link = ata_dev_phys_link(dev);
5192 	struct ata_port *ap = link->ap;
5193 	unsigned long flags;
5194 
5195 	/* SATA spd limit is bound to the attached device, reset together */
5196 	link->sata_spd_limit = link->hw_sata_spd_limit;
5197 	link->sata_spd = 0;
5198 
5199 	/* High bits of dev->flags are used to record warm plug
5200 	 * requests which occur asynchronously.  Synchronize using
5201 	 * host lock.
5202 	 */
5203 	spin_lock_irqsave(ap->lock, flags);
5204 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5205 	dev->horkage = 0;
5206 	spin_unlock_irqrestore(ap->lock, flags);
5207 
5208 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5209 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5210 	dev->pio_mask = UINT_MAX;
5211 	dev->mwdma_mask = UINT_MAX;
5212 	dev->udma_mask = UINT_MAX;
5213 }
5214 
5215 /**
5216  *	ata_link_init - Initialize an ata_link structure
5217  *	@ap: ATA port link is attached to
5218  *	@link: Link structure to initialize
5219  *	@pmp: Port multiplier port number
5220  *
5221  *	Initialize @link.
5222  *
5223  *	LOCKING:
5224  *	Kernel thread context (may sleep)
5225  */
5226 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5227 {
5228 	int i;
5229 
5230 	/* clear everything except for devices */
5231 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5232 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5233 
5234 	link->ap = ap;
5235 	link->pmp = pmp;
5236 	link->active_tag = ATA_TAG_POISON;
5237 	link->hw_sata_spd_limit = UINT_MAX;
5238 
5239 	/* can't use iterator, ap isn't initialized yet */
5240 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5241 		struct ata_device *dev = &link->device[i];
5242 
5243 		dev->link = link;
5244 		dev->devno = dev - link->device;
5245 #ifdef CONFIG_ATA_ACPI
5246 		dev->gtf_filter = ata_acpi_gtf_filter;
5247 #endif
5248 		ata_dev_init(dev);
5249 	}
5250 }
5251 
5252 /**
5253  *	sata_link_init_spd - Initialize link->sata_spd_limit
5254  *	@link: Link to configure sata_spd_limit for
5255  *
5256  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5257  *	configured value.
5258  *
5259  *	LOCKING:
5260  *	Kernel thread context (may sleep).
5261  *
5262  *	RETURNS:
5263  *	0 on success, -errno on failure.
5264  */
5265 int sata_link_init_spd(struct ata_link *link)
5266 {
5267 	u8 spd;
5268 	int rc;
5269 
5270 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5271 	if (rc)
5272 		return rc;
5273 
5274 	spd = (link->saved_scontrol >> 4) & 0xf;
5275 	if (spd)
5276 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5277 
5278 	ata_force_link_limits(link);
5279 
5280 	link->sata_spd_limit = link->hw_sata_spd_limit;
5281 
5282 	return 0;
5283 }
5284 
5285 /**
5286  *	ata_port_alloc - allocate and initialize basic ATA port resources
5287  *	@host: ATA host this allocated port belongs to
5288  *
5289  *	Allocate and initialize basic ATA port resources.
5290  *
5291  *	RETURNS:
5292  *	Allocate ATA port on success, NULL on failure.
5293  *
5294  *	LOCKING:
5295  *	Inherited from calling layer (may sleep).
5296  */
5297 struct ata_port *ata_port_alloc(struct ata_host *host)
5298 {
5299 	struct ata_port *ap;
5300 
5301 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5302 	if (!ap)
5303 		return NULL;
5304 
5305 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5306 	ap->lock = &host->lock;
5307 	ap->print_id = -1;
5308 	ap->local_port_no = -1;
5309 	ap->host = host;
5310 	ap->dev = host->dev;
5311 
5312 	mutex_init(&ap->scsi_scan_mutex);
5313 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5314 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5315 	INIT_LIST_HEAD(&ap->eh_done_q);
5316 	init_waitqueue_head(&ap->eh_wait_q);
5317 	init_completion(&ap->park_req_pending);
5318 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5319 		    TIMER_DEFERRABLE);
5320 
5321 	ap->cbl = ATA_CBL_NONE;
5322 
5323 	ata_link_init(ap, &ap->link, 0);
5324 
5325 #ifdef ATA_IRQ_TRAP
5326 	ap->stats.unhandled_irq = 1;
5327 	ap->stats.idle_irq = 1;
5328 #endif
5329 	ata_sff_port_init(ap);
5330 
5331 	return ap;
5332 }
5333 
5334 static void ata_devres_release(struct device *gendev, void *res)
5335 {
5336 	struct ata_host *host = dev_get_drvdata(gendev);
5337 	int i;
5338 
5339 	for (i = 0; i < host->n_ports; i++) {
5340 		struct ata_port *ap = host->ports[i];
5341 
5342 		if (!ap)
5343 			continue;
5344 
5345 		if (ap->scsi_host)
5346 			scsi_host_put(ap->scsi_host);
5347 
5348 	}
5349 
5350 	dev_set_drvdata(gendev, NULL);
5351 	ata_host_put(host);
5352 }
5353 
5354 static void ata_host_release(struct kref *kref)
5355 {
5356 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5357 	int i;
5358 
5359 	for (i = 0; i < host->n_ports; i++) {
5360 		struct ata_port *ap = host->ports[i];
5361 
5362 		kfree(ap->pmp_link);
5363 		kfree(ap->slave_link);
5364 		kfree(ap);
5365 		host->ports[i] = NULL;
5366 	}
5367 	kfree(host);
5368 }
5369 
5370 void ata_host_get(struct ata_host *host)
5371 {
5372 	kref_get(&host->kref);
5373 }
5374 
5375 void ata_host_put(struct ata_host *host)
5376 {
5377 	kref_put(&host->kref, ata_host_release);
5378 }
5379 EXPORT_SYMBOL_GPL(ata_host_put);
5380 
5381 /**
5382  *	ata_host_alloc - allocate and init basic ATA host resources
5383  *	@dev: generic device this host is associated with
5384  *	@max_ports: maximum number of ATA ports associated with this host
5385  *
5386  *	Allocate and initialize basic ATA host resources.  LLD calls
5387  *	this function to allocate a host, initializes it fully and
5388  *	attaches it using ata_host_register().
5389  *
5390  *	@max_ports ports are allocated and host->n_ports is
5391  *	initialized to @max_ports.  The caller is allowed to decrease
5392  *	host->n_ports before calling ata_host_register().  The unused
5393  *	ports will be automatically freed on registration.
5394  *
5395  *	RETURNS:
5396  *	Allocate ATA host on success, NULL on failure.
5397  *
5398  *	LOCKING:
5399  *	Inherited from calling layer (may sleep).
5400  */
5401 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5402 {
5403 	struct ata_host *host;
5404 	size_t sz;
5405 	int i;
5406 	void *dr;
5407 
5408 	/* alloc a container for our list of ATA ports (buses) */
5409 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5410 	host = kzalloc(sz, GFP_KERNEL);
5411 	if (!host)
5412 		return NULL;
5413 
5414 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5415 		goto err_free;
5416 
5417 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5418 	if (!dr)
5419 		goto err_out;
5420 
5421 	devres_add(dev, dr);
5422 	dev_set_drvdata(dev, host);
5423 
5424 	spin_lock_init(&host->lock);
5425 	mutex_init(&host->eh_mutex);
5426 	host->dev = dev;
5427 	host->n_ports = max_ports;
5428 	kref_init(&host->kref);
5429 
5430 	/* allocate ports bound to this host */
5431 	for (i = 0; i < max_ports; i++) {
5432 		struct ata_port *ap;
5433 
5434 		ap = ata_port_alloc(host);
5435 		if (!ap)
5436 			goto err_out;
5437 
5438 		ap->port_no = i;
5439 		host->ports[i] = ap;
5440 	}
5441 
5442 	devres_remove_group(dev, NULL);
5443 	return host;
5444 
5445  err_out:
5446 	devres_release_group(dev, NULL);
5447  err_free:
5448 	kfree(host);
5449 	return NULL;
5450 }
5451 EXPORT_SYMBOL_GPL(ata_host_alloc);
5452 
5453 /**
5454  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5455  *	@dev: generic device this host is associated with
5456  *	@ppi: array of ATA port_info to initialize host with
5457  *	@n_ports: number of ATA ports attached to this host
5458  *
5459  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5460  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5461  *	last entry will be used for the remaining ports.
5462  *
5463  *	RETURNS:
5464  *	Allocate ATA host on success, NULL on failure.
5465  *
5466  *	LOCKING:
5467  *	Inherited from calling layer (may sleep).
5468  */
5469 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5470 				      const struct ata_port_info * const * ppi,
5471 				      int n_ports)
5472 {
5473 	const struct ata_port_info *pi = &ata_dummy_port_info;
5474 	struct ata_host *host;
5475 	int i, j;
5476 
5477 	host = ata_host_alloc(dev, n_ports);
5478 	if (!host)
5479 		return NULL;
5480 
5481 	for (i = 0, j = 0; i < host->n_ports; i++) {
5482 		struct ata_port *ap = host->ports[i];
5483 
5484 		if (ppi[j])
5485 			pi = ppi[j++];
5486 
5487 		ap->pio_mask = pi->pio_mask;
5488 		ap->mwdma_mask = pi->mwdma_mask;
5489 		ap->udma_mask = pi->udma_mask;
5490 		ap->flags |= pi->flags;
5491 		ap->link.flags |= pi->link_flags;
5492 		ap->ops = pi->port_ops;
5493 
5494 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5495 			host->ops = pi->port_ops;
5496 	}
5497 
5498 	return host;
5499 }
5500 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5501 
5502 static void ata_host_stop(struct device *gendev, void *res)
5503 {
5504 	struct ata_host *host = dev_get_drvdata(gendev);
5505 	int i;
5506 
5507 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5508 
5509 	for (i = 0; i < host->n_ports; i++) {
5510 		struct ata_port *ap = host->ports[i];
5511 
5512 		if (ap->ops->port_stop)
5513 			ap->ops->port_stop(ap);
5514 	}
5515 
5516 	if (host->ops->host_stop)
5517 		host->ops->host_stop(host);
5518 }
5519 
5520 /**
5521  *	ata_finalize_port_ops - finalize ata_port_operations
5522  *	@ops: ata_port_operations to finalize
5523  *
5524  *	An ata_port_operations can inherit from another ops and that
5525  *	ops can again inherit from another.  This can go on as many
5526  *	times as necessary as long as there is no loop in the
5527  *	inheritance chain.
5528  *
5529  *	Ops tables are finalized when the host is started.  NULL or
5530  *	unspecified entries are inherited from the closet ancestor
5531  *	which has the method and the entry is populated with it.
5532  *	After finalization, the ops table directly points to all the
5533  *	methods and ->inherits is no longer necessary and cleared.
5534  *
5535  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5536  *
5537  *	LOCKING:
5538  *	None.
5539  */
5540 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5541 {
5542 	static DEFINE_SPINLOCK(lock);
5543 	const struct ata_port_operations *cur;
5544 	void **begin = (void **)ops;
5545 	void **end = (void **)&ops->inherits;
5546 	void **pp;
5547 
5548 	if (!ops || !ops->inherits)
5549 		return;
5550 
5551 	spin_lock(&lock);
5552 
5553 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5554 		void **inherit = (void **)cur;
5555 
5556 		for (pp = begin; pp < end; pp++, inherit++)
5557 			if (!*pp)
5558 				*pp = *inherit;
5559 	}
5560 
5561 	for (pp = begin; pp < end; pp++)
5562 		if (IS_ERR(*pp))
5563 			*pp = NULL;
5564 
5565 	ops->inherits = NULL;
5566 
5567 	spin_unlock(&lock);
5568 }
5569 
5570 /**
5571  *	ata_host_start - start and freeze ports of an ATA host
5572  *	@host: ATA host to start ports for
5573  *
5574  *	Start and then freeze ports of @host.  Started status is
5575  *	recorded in host->flags, so this function can be called
5576  *	multiple times.  Ports are guaranteed to get started only
5577  *	once.  If host->ops is not initialized yet, it is set to the
5578  *	first non-dummy port ops.
5579  *
5580  *	LOCKING:
5581  *	Inherited from calling layer (may sleep).
5582  *
5583  *	RETURNS:
5584  *	0 if all ports are started successfully, -errno otherwise.
5585  */
5586 int ata_host_start(struct ata_host *host)
5587 {
5588 	int have_stop = 0;
5589 	void *start_dr = NULL;
5590 	int i, rc;
5591 
5592 	if (host->flags & ATA_HOST_STARTED)
5593 		return 0;
5594 
5595 	ata_finalize_port_ops(host->ops);
5596 
5597 	for (i = 0; i < host->n_ports; i++) {
5598 		struct ata_port *ap = host->ports[i];
5599 
5600 		ata_finalize_port_ops(ap->ops);
5601 
5602 		if (!host->ops && !ata_port_is_dummy(ap))
5603 			host->ops = ap->ops;
5604 
5605 		if (ap->ops->port_stop)
5606 			have_stop = 1;
5607 	}
5608 
5609 	if (host->ops && host->ops->host_stop)
5610 		have_stop = 1;
5611 
5612 	if (have_stop) {
5613 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5614 		if (!start_dr)
5615 			return -ENOMEM;
5616 	}
5617 
5618 	for (i = 0; i < host->n_ports; i++) {
5619 		struct ata_port *ap = host->ports[i];
5620 
5621 		if (ap->ops->port_start) {
5622 			rc = ap->ops->port_start(ap);
5623 			if (rc) {
5624 				if (rc != -ENODEV)
5625 					dev_err(host->dev,
5626 						"failed to start port %d (errno=%d)\n",
5627 						i, rc);
5628 				goto err_out;
5629 			}
5630 		}
5631 		ata_eh_freeze_port(ap);
5632 	}
5633 
5634 	if (start_dr)
5635 		devres_add(host->dev, start_dr);
5636 	host->flags |= ATA_HOST_STARTED;
5637 	return 0;
5638 
5639  err_out:
5640 	while (--i >= 0) {
5641 		struct ata_port *ap = host->ports[i];
5642 
5643 		if (ap->ops->port_stop)
5644 			ap->ops->port_stop(ap);
5645 	}
5646 	devres_free(start_dr);
5647 	return rc;
5648 }
5649 EXPORT_SYMBOL_GPL(ata_host_start);
5650 
5651 /**
5652  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5653  *	@host:	host to initialize
5654  *	@dev:	device host is attached to
5655  *	@ops:	port_ops
5656  *
5657  */
5658 void ata_host_init(struct ata_host *host, struct device *dev,
5659 		   struct ata_port_operations *ops)
5660 {
5661 	spin_lock_init(&host->lock);
5662 	mutex_init(&host->eh_mutex);
5663 	host->n_tags = ATA_MAX_QUEUE;
5664 	host->dev = dev;
5665 	host->ops = ops;
5666 	kref_init(&host->kref);
5667 }
5668 EXPORT_SYMBOL_GPL(ata_host_init);
5669 
5670 void __ata_port_probe(struct ata_port *ap)
5671 {
5672 	struct ata_eh_info *ehi = &ap->link.eh_info;
5673 	unsigned long flags;
5674 
5675 	/* kick EH for boot probing */
5676 	spin_lock_irqsave(ap->lock, flags);
5677 
5678 	ehi->probe_mask |= ATA_ALL_DEVICES;
5679 	ehi->action |= ATA_EH_RESET;
5680 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5681 
5682 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5683 	ap->pflags |= ATA_PFLAG_LOADING;
5684 	ata_port_schedule_eh(ap);
5685 
5686 	spin_unlock_irqrestore(ap->lock, flags);
5687 }
5688 
5689 int ata_port_probe(struct ata_port *ap)
5690 {
5691 	int rc = 0;
5692 
5693 	if (ap->ops->error_handler) {
5694 		__ata_port_probe(ap);
5695 		ata_port_wait_eh(ap);
5696 	} else {
5697 		rc = ata_bus_probe(ap);
5698 	}
5699 	return rc;
5700 }
5701 
5702 
5703 static void async_port_probe(void *data, async_cookie_t cookie)
5704 {
5705 	struct ata_port *ap = data;
5706 
5707 	/*
5708 	 * If we're not allowed to scan this host in parallel,
5709 	 * we need to wait until all previous scans have completed
5710 	 * before going further.
5711 	 * Jeff Garzik says this is only within a controller, so we
5712 	 * don't need to wait for port 0, only for later ports.
5713 	 */
5714 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5715 		async_synchronize_cookie(cookie);
5716 
5717 	(void)ata_port_probe(ap);
5718 
5719 	/* in order to keep device order, we need to synchronize at this point */
5720 	async_synchronize_cookie(cookie);
5721 
5722 	ata_scsi_scan_host(ap, 1);
5723 }
5724 
5725 /**
5726  *	ata_host_register - register initialized ATA host
5727  *	@host: ATA host to register
5728  *	@sht: template for SCSI host
5729  *
5730  *	Register initialized ATA host.  @host is allocated using
5731  *	ata_host_alloc() and fully initialized by LLD.  This function
5732  *	starts ports, registers @host with ATA and SCSI layers and
5733  *	probe registered devices.
5734  *
5735  *	LOCKING:
5736  *	Inherited from calling layer (may sleep).
5737  *
5738  *	RETURNS:
5739  *	0 on success, -errno otherwise.
5740  */
5741 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5742 {
5743 	int i, rc;
5744 
5745 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5746 
5747 	/* host must have been started */
5748 	if (!(host->flags & ATA_HOST_STARTED)) {
5749 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5750 		WARN_ON(1);
5751 		return -EINVAL;
5752 	}
5753 
5754 	/* Blow away unused ports.  This happens when LLD can't
5755 	 * determine the exact number of ports to allocate at
5756 	 * allocation time.
5757 	 */
5758 	for (i = host->n_ports; host->ports[i]; i++)
5759 		kfree(host->ports[i]);
5760 
5761 	/* give ports names and add SCSI hosts */
5762 	for (i = 0; i < host->n_ports; i++) {
5763 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5764 		host->ports[i]->local_port_no = i + 1;
5765 	}
5766 
5767 	/* Create associated sysfs transport objects  */
5768 	for (i = 0; i < host->n_ports; i++) {
5769 		rc = ata_tport_add(host->dev,host->ports[i]);
5770 		if (rc) {
5771 			goto err_tadd;
5772 		}
5773 	}
5774 
5775 	rc = ata_scsi_add_hosts(host, sht);
5776 	if (rc)
5777 		goto err_tadd;
5778 
5779 	/* set cable, sata_spd_limit and report */
5780 	for (i = 0; i < host->n_ports; i++) {
5781 		struct ata_port *ap = host->ports[i];
5782 		unsigned int xfer_mask;
5783 
5784 		/* set SATA cable type if still unset */
5785 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5786 			ap->cbl = ATA_CBL_SATA;
5787 
5788 		/* init sata_spd_limit to the current value */
5789 		sata_link_init_spd(&ap->link);
5790 		if (ap->slave_link)
5791 			sata_link_init_spd(ap->slave_link);
5792 
5793 		/* print per-port info to dmesg */
5794 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5795 					      ap->udma_mask);
5796 
5797 		if (!ata_port_is_dummy(ap)) {
5798 			ata_port_info(ap, "%cATA max %s %s\n",
5799 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5800 				      ata_mode_string(xfer_mask),
5801 				      ap->link.eh_info.desc);
5802 			ata_ehi_clear_desc(&ap->link.eh_info);
5803 		} else
5804 			ata_port_info(ap, "DUMMY\n");
5805 	}
5806 
5807 	/* perform each probe asynchronously */
5808 	for (i = 0; i < host->n_ports; i++) {
5809 		struct ata_port *ap = host->ports[i];
5810 		ap->cookie = async_schedule(async_port_probe, ap);
5811 	}
5812 
5813 	return 0;
5814 
5815  err_tadd:
5816 	while (--i >= 0) {
5817 		ata_tport_delete(host->ports[i]);
5818 	}
5819 	return rc;
5820 
5821 }
5822 EXPORT_SYMBOL_GPL(ata_host_register);
5823 
5824 /**
5825  *	ata_host_activate - start host, request IRQ and register it
5826  *	@host: target ATA host
5827  *	@irq: IRQ to request
5828  *	@irq_handler: irq_handler used when requesting IRQ
5829  *	@irq_flags: irq_flags used when requesting IRQ
5830  *	@sht: scsi_host_template to use when registering the host
5831  *
5832  *	After allocating an ATA host and initializing it, most libata
5833  *	LLDs perform three steps to activate the host - start host,
5834  *	request IRQ and register it.  This helper takes necessary
5835  *	arguments and performs the three steps in one go.
5836  *
5837  *	An invalid IRQ skips the IRQ registration and expects the host to
5838  *	have set polling mode on the port. In this case, @irq_handler
5839  *	should be NULL.
5840  *
5841  *	LOCKING:
5842  *	Inherited from calling layer (may sleep).
5843  *
5844  *	RETURNS:
5845  *	0 on success, -errno otherwise.
5846  */
5847 int ata_host_activate(struct ata_host *host, int irq,
5848 		      irq_handler_t irq_handler, unsigned long irq_flags,
5849 		      struct scsi_host_template *sht)
5850 {
5851 	int i, rc;
5852 	char *irq_desc;
5853 
5854 	rc = ata_host_start(host);
5855 	if (rc)
5856 		return rc;
5857 
5858 	/* Special case for polling mode */
5859 	if (!irq) {
5860 		WARN_ON(irq_handler);
5861 		return ata_host_register(host, sht);
5862 	}
5863 
5864 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5865 				  dev_driver_string(host->dev),
5866 				  dev_name(host->dev));
5867 	if (!irq_desc)
5868 		return -ENOMEM;
5869 
5870 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5871 			      irq_desc, host);
5872 	if (rc)
5873 		return rc;
5874 
5875 	for (i = 0; i < host->n_ports; i++)
5876 		ata_port_desc(host->ports[i], "irq %d", irq);
5877 
5878 	rc = ata_host_register(host, sht);
5879 	/* if failed, just free the IRQ and leave ports alone */
5880 	if (rc)
5881 		devm_free_irq(host->dev, irq, host);
5882 
5883 	return rc;
5884 }
5885 EXPORT_SYMBOL_GPL(ata_host_activate);
5886 
5887 /**
5888  *	ata_port_detach - Detach ATA port in preparation of device removal
5889  *	@ap: ATA port to be detached
5890  *
5891  *	Detach all ATA devices and the associated SCSI devices of @ap;
5892  *	then, remove the associated SCSI host.  @ap is guaranteed to
5893  *	be quiescent on return from this function.
5894  *
5895  *	LOCKING:
5896  *	Kernel thread context (may sleep).
5897  */
5898 static void ata_port_detach(struct ata_port *ap)
5899 {
5900 	unsigned long flags;
5901 	struct ata_link *link;
5902 	struct ata_device *dev;
5903 
5904 	if (!ap->ops->error_handler)
5905 		goto skip_eh;
5906 
5907 	/* tell EH we're leaving & flush EH */
5908 	spin_lock_irqsave(ap->lock, flags);
5909 	ap->pflags |= ATA_PFLAG_UNLOADING;
5910 	ata_port_schedule_eh(ap);
5911 	spin_unlock_irqrestore(ap->lock, flags);
5912 
5913 	/* wait till EH commits suicide */
5914 	ata_port_wait_eh(ap);
5915 
5916 	/* it better be dead now */
5917 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5918 
5919 	cancel_delayed_work_sync(&ap->hotplug_task);
5920 
5921  skip_eh:
5922 	/* clean up zpodd on port removal */
5923 	ata_for_each_link(link, ap, HOST_FIRST) {
5924 		ata_for_each_dev(dev, link, ALL) {
5925 			if (zpodd_dev_enabled(dev))
5926 				zpodd_exit(dev);
5927 		}
5928 	}
5929 	if (ap->pmp_link) {
5930 		int i;
5931 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5932 			ata_tlink_delete(&ap->pmp_link[i]);
5933 	}
5934 	/* remove the associated SCSI host */
5935 	scsi_remove_host(ap->scsi_host);
5936 	ata_tport_delete(ap);
5937 }
5938 
5939 /**
5940  *	ata_host_detach - Detach all ports of an ATA host
5941  *	@host: Host to detach
5942  *
5943  *	Detach all ports of @host.
5944  *
5945  *	LOCKING:
5946  *	Kernel thread context (may sleep).
5947  */
5948 void ata_host_detach(struct ata_host *host)
5949 {
5950 	int i;
5951 
5952 	for (i = 0; i < host->n_ports; i++) {
5953 		/* Ensure ata_port probe has completed */
5954 		async_synchronize_cookie(host->ports[i]->cookie + 1);
5955 		ata_port_detach(host->ports[i]);
5956 	}
5957 
5958 	/* the host is dead now, dissociate ACPI */
5959 	ata_acpi_dissociate(host);
5960 }
5961 EXPORT_SYMBOL_GPL(ata_host_detach);
5962 
5963 #ifdef CONFIG_PCI
5964 
5965 /**
5966  *	ata_pci_remove_one - PCI layer callback for device removal
5967  *	@pdev: PCI device that was removed
5968  *
5969  *	PCI layer indicates to libata via this hook that hot-unplug or
5970  *	module unload event has occurred.  Detach all ports.  Resource
5971  *	release is handled via devres.
5972  *
5973  *	LOCKING:
5974  *	Inherited from PCI layer (may sleep).
5975  */
5976 void ata_pci_remove_one(struct pci_dev *pdev)
5977 {
5978 	struct ata_host *host = pci_get_drvdata(pdev);
5979 
5980 	ata_host_detach(host);
5981 }
5982 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5983 
5984 void ata_pci_shutdown_one(struct pci_dev *pdev)
5985 {
5986 	struct ata_host *host = pci_get_drvdata(pdev);
5987 	int i;
5988 
5989 	for (i = 0; i < host->n_ports; i++) {
5990 		struct ata_port *ap = host->ports[i];
5991 
5992 		ap->pflags |= ATA_PFLAG_FROZEN;
5993 
5994 		/* Disable port interrupts */
5995 		if (ap->ops->freeze)
5996 			ap->ops->freeze(ap);
5997 
5998 		/* Stop the port DMA engines */
5999 		if (ap->ops->port_stop)
6000 			ap->ops->port_stop(ap);
6001 	}
6002 }
6003 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6004 
6005 /* move to PCI subsystem */
6006 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6007 {
6008 	unsigned long tmp = 0;
6009 
6010 	switch (bits->width) {
6011 	case 1: {
6012 		u8 tmp8 = 0;
6013 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6014 		tmp = tmp8;
6015 		break;
6016 	}
6017 	case 2: {
6018 		u16 tmp16 = 0;
6019 		pci_read_config_word(pdev, bits->reg, &tmp16);
6020 		tmp = tmp16;
6021 		break;
6022 	}
6023 	case 4: {
6024 		u32 tmp32 = 0;
6025 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6026 		tmp = tmp32;
6027 		break;
6028 	}
6029 
6030 	default:
6031 		return -EINVAL;
6032 	}
6033 
6034 	tmp &= bits->mask;
6035 
6036 	return (tmp == bits->val) ? 1 : 0;
6037 }
6038 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6039 
6040 #ifdef CONFIG_PM
6041 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6042 {
6043 	pci_save_state(pdev);
6044 	pci_disable_device(pdev);
6045 
6046 	if (mesg.event & PM_EVENT_SLEEP)
6047 		pci_set_power_state(pdev, PCI_D3hot);
6048 }
6049 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6050 
6051 int ata_pci_device_do_resume(struct pci_dev *pdev)
6052 {
6053 	int rc;
6054 
6055 	pci_set_power_state(pdev, PCI_D0);
6056 	pci_restore_state(pdev);
6057 
6058 	rc = pcim_enable_device(pdev);
6059 	if (rc) {
6060 		dev_err(&pdev->dev,
6061 			"failed to enable device after resume (%d)\n", rc);
6062 		return rc;
6063 	}
6064 
6065 	pci_set_master(pdev);
6066 	return 0;
6067 }
6068 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6069 
6070 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6071 {
6072 	struct ata_host *host = pci_get_drvdata(pdev);
6073 
6074 	ata_host_suspend(host, mesg);
6075 
6076 	ata_pci_device_do_suspend(pdev, mesg);
6077 
6078 	return 0;
6079 }
6080 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6081 
6082 int ata_pci_device_resume(struct pci_dev *pdev)
6083 {
6084 	struct ata_host *host = pci_get_drvdata(pdev);
6085 	int rc;
6086 
6087 	rc = ata_pci_device_do_resume(pdev);
6088 	if (rc == 0)
6089 		ata_host_resume(host);
6090 	return rc;
6091 }
6092 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6093 #endif /* CONFIG_PM */
6094 #endif /* CONFIG_PCI */
6095 
6096 /**
6097  *	ata_platform_remove_one - Platform layer callback for device removal
6098  *	@pdev: Platform device that was removed
6099  *
6100  *	Platform layer indicates to libata via this hook that hot-unplug or
6101  *	module unload event has occurred.  Detach all ports.  Resource
6102  *	release is handled via devres.
6103  *
6104  *	LOCKING:
6105  *	Inherited from platform layer (may sleep).
6106  */
6107 int ata_platform_remove_one(struct platform_device *pdev)
6108 {
6109 	struct ata_host *host = platform_get_drvdata(pdev);
6110 
6111 	ata_host_detach(host);
6112 
6113 	return 0;
6114 }
6115 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6116 
6117 #ifdef CONFIG_ATA_FORCE
6118 
6119 #define force_cbl(name, flag)				\
6120 	{ #name,	.cbl		= (flag) }
6121 
6122 #define force_spd_limit(spd, val)			\
6123 	{ #spd,	.spd_limit		= (val) }
6124 
6125 #define force_xfer(mode, shift)				\
6126 	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6127 
6128 #define force_lflag_on(name, flags)			\
6129 	{ #name,	.lflags_on	= (flags) }
6130 
6131 #define force_lflag_onoff(name, flags)			\
6132 	{ "no" #name,	.lflags_on	= (flags) },	\
6133 	{ #name,	.lflags_off	= (flags) }
6134 
6135 #define force_horkage_on(name, flag)			\
6136 	{ #name,	.horkage_on	= (flag) }
6137 
6138 #define force_horkage_onoff(name, flag)			\
6139 	{ "no" #name,	.horkage_on	= (flag) },	\
6140 	{ #name,	.horkage_off	= (flag) }
6141 
6142 static const struct ata_force_param force_tbl[] __initconst = {
6143 	force_cbl(40c,			ATA_CBL_PATA40),
6144 	force_cbl(80c,			ATA_CBL_PATA80),
6145 	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6146 	force_cbl(unk,			ATA_CBL_PATA_UNK),
6147 	force_cbl(ign,			ATA_CBL_PATA_IGN),
6148 	force_cbl(sata,			ATA_CBL_SATA),
6149 
6150 	force_spd_limit(1.5Gbps,	1),
6151 	force_spd_limit(3.0Gbps,	2),
6152 
6153 	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6154 	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6155 	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6156 	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6157 	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6158 	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6159 	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6160 	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6161 	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6162 	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6163 	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6164 	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6165 	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6166 	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6167 	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6168 	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6169 	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6170 	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6171 	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6172 	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6173 	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6174 	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6175 	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6176 	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6177 	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6178 	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6179 	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6180 	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6181 	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6182 	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6183 	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6184 	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6185 	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6186 	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6187 
6188 	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6189 	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6190 	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6191 	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6192 	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6193 
6194 	force_horkage_onoff(ncq,	ATA_HORKAGE_NONCQ),
6195 	force_horkage_onoff(ncqtrim,	ATA_HORKAGE_NO_NCQ_TRIM),
6196 	force_horkage_onoff(ncqati,	ATA_HORKAGE_NO_NCQ_ON_ATI),
6197 
6198 	force_horkage_onoff(trim,	ATA_HORKAGE_NOTRIM),
6199 	force_horkage_on(trim_zero,	ATA_HORKAGE_ZERO_AFTER_TRIM),
6200 	force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6201 
6202 	force_horkage_onoff(dma,	ATA_HORKAGE_NODMA),
6203 	force_horkage_on(atapi_dmadir,	ATA_HORKAGE_ATAPI_DMADIR),
6204 	force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6205 
6206 	force_horkage_onoff(dmalog,	ATA_HORKAGE_NO_DMA_LOG),
6207 	force_horkage_onoff(iddevlog,	ATA_HORKAGE_NO_ID_DEV_LOG),
6208 	force_horkage_onoff(logdir,	ATA_HORKAGE_NO_LOG_DIR),
6209 
6210 	force_horkage_on(max_sec_128,	ATA_HORKAGE_MAX_SEC_128),
6211 	force_horkage_on(max_sec_1024,	ATA_HORKAGE_MAX_SEC_1024),
6212 	force_horkage_on(max_sec_lba48,	ATA_HORKAGE_MAX_SEC_LBA48),
6213 
6214 	force_horkage_onoff(lpm,	ATA_HORKAGE_NOLPM),
6215 	force_horkage_onoff(setxfer,	ATA_HORKAGE_NOSETXFER),
6216 	force_horkage_on(dump_id,	ATA_HORKAGE_DUMP_ID),
6217 
6218 	force_horkage_on(disable,	ATA_HORKAGE_DISABLE),
6219 };
6220 
6221 static int __init ata_parse_force_one(char **cur,
6222 				      struct ata_force_ent *force_ent,
6223 				      const char **reason)
6224 {
6225 	char *start = *cur, *p = *cur;
6226 	char *id, *val, *endp;
6227 	const struct ata_force_param *match_fp = NULL;
6228 	int nr_matches = 0, i;
6229 
6230 	/* find where this param ends and update *cur */
6231 	while (*p != '\0' && *p != ',')
6232 		p++;
6233 
6234 	if (*p == '\0')
6235 		*cur = p;
6236 	else
6237 		*cur = p + 1;
6238 
6239 	*p = '\0';
6240 
6241 	/* parse */
6242 	p = strchr(start, ':');
6243 	if (!p) {
6244 		val = strstrip(start);
6245 		goto parse_val;
6246 	}
6247 	*p = '\0';
6248 
6249 	id = strstrip(start);
6250 	val = strstrip(p + 1);
6251 
6252 	/* parse id */
6253 	p = strchr(id, '.');
6254 	if (p) {
6255 		*p++ = '\0';
6256 		force_ent->device = simple_strtoul(p, &endp, 10);
6257 		if (p == endp || *endp != '\0') {
6258 			*reason = "invalid device";
6259 			return -EINVAL;
6260 		}
6261 	}
6262 
6263 	force_ent->port = simple_strtoul(id, &endp, 10);
6264 	if (id == endp || *endp != '\0') {
6265 		*reason = "invalid port/link";
6266 		return -EINVAL;
6267 	}
6268 
6269  parse_val:
6270 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6271 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6272 		const struct ata_force_param *fp = &force_tbl[i];
6273 
6274 		if (strncasecmp(val, fp->name, strlen(val)))
6275 			continue;
6276 
6277 		nr_matches++;
6278 		match_fp = fp;
6279 
6280 		if (strcasecmp(val, fp->name) == 0) {
6281 			nr_matches = 1;
6282 			break;
6283 		}
6284 	}
6285 
6286 	if (!nr_matches) {
6287 		*reason = "unknown value";
6288 		return -EINVAL;
6289 	}
6290 	if (nr_matches > 1) {
6291 		*reason = "ambiguous value";
6292 		return -EINVAL;
6293 	}
6294 
6295 	force_ent->param = *match_fp;
6296 
6297 	return 0;
6298 }
6299 
6300 static void __init ata_parse_force_param(void)
6301 {
6302 	int idx = 0, size = 1;
6303 	int last_port = -1, last_device = -1;
6304 	char *p, *cur, *next;
6305 
6306 	/* Calculate maximum number of params and allocate ata_force_tbl */
6307 	for (p = ata_force_param_buf; *p; p++)
6308 		if (*p == ',')
6309 			size++;
6310 
6311 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6312 	if (!ata_force_tbl) {
6313 		printk(KERN_WARNING "ata: failed to extend force table, "
6314 		       "libata.force ignored\n");
6315 		return;
6316 	}
6317 
6318 	/* parse and populate the table */
6319 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6320 		const char *reason = "";
6321 		struct ata_force_ent te = { .port = -1, .device = -1 };
6322 
6323 		next = cur;
6324 		if (ata_parse_force_one(&next, &te, &reason)) {
6325 			printk(KERN_WARNING "ata: failed to parse force "
6326 			       "parameter \"%s\" (%s)\n",
6327 			       cur, reason);
6328 			continue;
6329 		}
6330 
6331 		if (te.port == -1) {
6332 			te.port = last_port;
6333 			te.device = last_device;
6334 		}
6335 
6336 		ata_force_tbl[idx++] = te;
6337 
6338 		last_port = te.port;
6339 		last_device = te.device;
6340 	}
6341 
6342 	ata_force_tbl_size = idx;
6343 }
6344 
6345 static void ata_free_force_param(void)
6346 {
6347 	kfree(ata_force_tbl);
6348 }
6349 #else
6350 static inline void ata_parse_force_param(void) { }
6351 static inline void ata_free_force_param(void) { }
6352 #endif
6353 
6354 static int __init ata_init(void)
6355 {
6356 	int rc;
6357 
6358 	ata_parse_force_param();
6359 
6360 	rc = ata_sff_init();
6361 	if (rc) {
6362 		ata_free_force_param();
6363 		return rc;
6364 	}
6365 
6366 	libata_transport_init();
6367 	ata_scsi_transport_template = ata_attach_transport();
6368 	if (!ata_scsi_transport_template) {
6369 		ata_sff_exit();
6370 		rc = -ENOMEM;
6371 		goto err_out;
6372 	}
6373 
6374 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6375 	return 0;
6376 
6377 err_out:
6378 	return rc;
6379 }
6380 
6381 static void __exit ata_exit(void)
6382 {
6383 	ata_release_transport(ata_scsi_transport_template);
6384 	libata_transport_exit();
6385 	ata_sff_exit();
6386 	ata_free_force_param();
6387 }
6388 
6389 subsys_initcall(ata_init);
6390 module_exit(ata_exit);
6391 
6392 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6393 
6394 int ata_ratelimit(void)
6395 {
6396 	return __ratelimit(&ratelimit);
6397 }
6398 EXPORT_SYMBOL_GPL(ata_ratelimit);
6399 
6400 /**
6401  *	ata_msleep - ATA EH owner aware msleep
6402  *	@ap: ATA port to attribute the sleep to
6403  *	@msecs: duration to sleep in milliseconds
6404  *
6405  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6406  *	ownership is released before going to sleep and reacquired
6407  *	after the sleep is complete.  IOW, other ports sharing the
6408  *	@ap->host will be allowed to own the EH while this task is
6409  *	sleeping.
6410  *
6411  *	LOCKING:
6412  *	Might sleep.
6413  */
6414 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6415 {
6416 	bool owns_eh = ap && ap->host->eh_owner == current;
6417 
6418 	if (owns_eh)
6419 		ata_eh_release(ap);
6420 
6421 	if (msecs < 20) {
6422 		unsigned long usecs = msecs * USEC_PER_MSEC;
6423 		usleep_range(usecs, usecs + 50);
6424 	} else {
6425 		msleep(msecs);
6426 	}
6427 
6428 	if (owns_eh)
6429 		ata_eh_acquire(ap);
6430 }
6431 EXPORT_SYMBOL_GPL(ata_msleep);
6432 
6433 /**
6434  *	ata_wait_register - wait until register value changes
6435  *	@ap: ATA port to wait register for, can be NULL
6436  *	@reg: IO-mapped register
6437  *	@mask: Mask to apply to read register value
6438  *	@val: Wait condition
6439  *	@interval: polling interval in milliseconds
6440  *	@timeout: timeout in milliseconds
6441  *
6442  *	Waiting for some bits of register to change is a common
6443  *	operation for ATA controllers.  This function reads 32bit LE
6444  *	IO-mapped register @reg and tests for the following condition.
6445  *
6446  *	(*@reg & mask) != val
6447  *
6448  *	If the condition is met, it returns; otherwise, the process is
6449  *	repeated after @interval_msec until timeout.
6450  *
6451  *	LOCKING:
6452  *	Kernel thread context (may sleep)
6453  *
6454  *	RETURNS:
6455  *	The final register value.
6456  */
6457 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6458 		      unsigned long interval, unsigned long timeout)
6459 {
6460 	unsigned long deadline;
6461 	u32 tmp;
6462 
6463 	tmp = ioread32(reg);
6464 
6465 	/* Calculate timeout _after_ the first read to make sure
6466 	 * preceding writes reach the controller before starting to
6467 	 * eat away the timeout.
6468 	 */
6469 	deadline = ata_deadline(jiffies, timeout);
6470 
6471 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6472 		ata_msleep(ap, interval);
6473 		tmp = ioread32(reg);
6474 	}
6475 
6476 	return tmp;
6477 }
6478 EXPORT_SYMBOL_GPL(ata_wait_register);
6479 
6480 /*
6481  * Dummy port_ops
6482  */
6483 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6484 {
6485 	return AC_ERR_SYSTEM;
6486 }
6487 
6488 static void ata_dummy_error_handler(struct ata_port *ap)
6489 {
6490 	/* truly dummy */
6491 }
6492 
6493 struct ata_port_operations ata_dummy_port_ops = {
6494 	.qc_prep		= ata_noop_qc_prep,
6495 	.qc_issue		= ata_dummy_qc_issue,
6496 	.error_handler		= ata_dummy_error_handler,
6497 	.sched_eh		= ata_std_sched_eh,
6498 	.end_eh			= ata_std_end_eh,
6499 };
6500 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6501 
6502 const struct ata_port_info ata_dummy_port_info = {
6503 	.port_ops		= &ata_dummy_port_ops,
6504 };
6505 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6506 
6507 void ata_print_version(const struct device *dev, const char *version)
6508 {
6509 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6510 }
6511 EXPORT_SYMBOL(ata_print_version);
6512 
6513 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6514 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6515 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6516 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6517 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6518