1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned long xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags; 100 }; 101 102 struct ata_force_ent { 103 int port; 104 int device; 105 struct ata_force_param param; 106 }; 107 108 static struct ata_force_ent *ata_force_tbl; 109 static int ata_force_tbl_size; 110 111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 112 /* param_buf is thrown away after initialization, disallow read */ 113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 115 #endif 116 117 static int atapi_enabled = 1; 118 module_param(atapi_enabled, int, 0444); 119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 120 121 static int atapi_dmadir = 0; 122 module_param(atapi_dmadir, int, 0444); 123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 124 125 int atapi_passthru16 = 1; 126 module_param(atapi_passthru16, int, 0444); 127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 128 129 int libata_fua = 0; 130 module_param_named(fua, libata_fua, int, 0444); 131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 132 133 static int ata_ignore_hpa; 134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 136 137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 138 module_param_named(dma, libata_dma_mask, int, 0444); 139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 140 141 static int ata_probe_timeout; 142 module_param(ata_probe_timeout, int, 0444); 143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 144 145 int libata_noacpi = 0; 146 module_param_named(noacpi, libata_noacpi, int, 0444); 147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 148 149 int libata_allow_tpm = 0; 150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 152 153 static int atapi_an; 154 module_param(atapi_an, int, 0444); 155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 156 157 MODULE_AUTHOR("Jeff Garzik"); 158 MODULE_DESCRIPTION("Library module for ATA devices"); 159 MODULE_LICENSE("GPL"); 160 MODULE_VERSION(DRV_VERSION); 161 162 static inline bool ata_dev_print_info(struct ata_device *dev) 163 { 164 struct ata_eh_context *ehc = &dev->link->eh_context; 165 166 return ehc->i.flags & ATA_EHI_PRINTINFO; 167 } 168 169 static bool ata_sstatus_online(u32 sstatus) 170 { 171 return (sstatus & 0xf) == 0x3; 172 } 173 174 /** 175 * ata_link_next - link iteration helper 176 * @link: the previous link, NULL to start 177 * @ap: ATA port containing links to iterate 178 * @mode: iteration mode, one of ATA_LITER_* 179 * 180 * LOCKING: 181 * Host lock or EH context. 182 * 183 * RETURNS: 184 * Pointer to the next link. 185 */ 186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 187 enum ata_link_iter_mode mode) 188 { 189 BUG_ON(mode != ATA_LITER_EDGE && 190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 191 192 /* NULL link indicates start of iteration */ 193 if (!link) 194 switch (mode) { 195 case ATA_LITER_EDGE: 196 case ATA_LITER_PMP_FIRST: 197 if (sata_pmp_attached(ap)) 198 return ap->pmp_link; 199 fallthrough; 200 case ATA_LITER_HOST_FIRST: 201 return &ap->link; 202 } 203 204 /* we just iterated over the host link, what's next? */ 205 if (link == &ap->link) 206 switch (mode) { 207 case ATA_LITER_HOST_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 fallthrough; 211 case ATA_LITER_PMP_FIRST: 212 if (unlikely(ap->slave_link)) 213 return ap->slave_link; 214 fallthrough; 215 case ATA_LITER_EDGE: 216 return NULL; 217 } 218 219 /* slave_link excludes PMP */ 220 if (unlikely(link == ap->slave_link)) 221 return NULL; 222 223 /* we were over a PMP link */ 224 if (++link < ap->pmp_link + ap->nr_pmp_links) 225 return link; 226 227 if (mode == ATA_LITER_PMP_FIRST) 228 return &ap->link; 229 230 return NULL; 231 } 232 EXPORT_SYMBOL_GPL(ata_link_next); 233 234 /** 235 * ata_dev_next - device iteration helper 236 * @dev: the previous device, NULL to start 237 * @link: ATA link containing devices to iterate 238 * @mode: iteration mode, one of ATA_DITER_* 239 * 240 * LOCKING: 241 * Host lock or EH context. 242 * 243 * RETURNS: 244 * Pointer to the next device. 245 */ 246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 247 enum ata_dev_iter_mode mode) 248 { 249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 251 252 /* NULL dev indicates start of iteration */ 253 if (!dev) 254 switch (mode) { 255 case ATA_DITER_ENABLED: 256 case ATA_DITER_ALL: 257 dev = link->device; 258 goto check; 259 case ATA_DITER_ENABLED_REVERSE: 260 case ATA_DITER_ALL_REVERSE: 261 dev = link->device + ata_link_max_devices(link) - 1; 262 goto check; 263 } 264 265 next: 266 /* move to the next one */ 267 switch (mode) { 268 case ATA_DITER_ENABLED: 269 case ATA_DITER_ALL: 270 if (++dev < link->device + ata_link_max_devices(link)) 271 goto check; 272 return NULL; 273 case ATA_DITER_ENABLED_REVERSE: 274 case ATA_DITER_ALL_REVERSE: 275 if (--dev >= link->device) 276 goto check; 277 return NULL; 278 } 279 280 check: 281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 282 !ata_dev_enabled(dev)) 283 goto next; 284 return dev; 285 } 286 EXPORT_SYMBOL_GPL(ata_dev_next); 287 288 /** 289 * ata_dev_phys_link - find physical link for a device 290 * @dev: ATA device to look up physical link for 291 * 292 * Look up physical link which @dev is attached to. Note that 293 * this is different from @dev->link only when @dev is on slave 294 * link. For all other cases, it's the same as @dev->link. 295 * 296 * LOCKING: 297 * Don't care. 298 * 299 * RETURNS: 300 * Pointer to the found physical link. 301 */ 302 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 303 { 304 struct ata_port *ap = dev->link->ap; 305 306 if (!ap->slave_link) 307 return dev->link; 308 if (!dev->devno) 309 return &ap->link; 310 return ap->slave_link; 311 } 312 313 #ifdef CONFIG_ATA_FORCE 314 /** 315 * ata_force_cbl - force cable type according to libata.force 316 * @ap: ATA port of interest 317 * 318 * Force cable type according to libata.force and whine about it. 319 * The last entry which has matching port number is used, so it 320 * can be specified as part of device force parameters. For 321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 322 * same effect. 323 * 324 * LOCKING: 325 * EH context. 326 */ 327 void ata_force_cbl(struct ata_port *ap) 328 { 329 int i; 330 331 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 332 const struct ata_force_ent *fe = &ata_force_tbl[i]; 333 334 if (fe->port != -1 && fe->port != ap->print_id) 335 continue; 336 337 if (fe->param.cbl == ATA_CBL_NONE) 338 continue; 339 340 ap->cbl = fe->param.cbl; 341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 342 return; 343 } 344 } 345 346 /** 347 * ata_force_link_limits - force link limits according to libata.force 348 * @link: ATA link of interest 349 * 350 * Force link flags and SATA spd limit according to libata.force 351 * and whine about it. When only the port part is specified 352 * (e.g. 1:), the limit applies to all links connected to both 353 * the host link and all fan-out ports connected via PMP. If the 354 * device part is specified as 0 (e.g. 1.00:), it specifies the 355 * first fan-out link not the host link. Device number 15 always 356 * points to the host link whether PMP is attached or not. If the 357 * controller has slave link, device number 16 points to it. 358 * 359 * LOCKING: 360 * EH context. 361 */ 362 static void ata_force_link_limits(struct ata_link *link) 363 { 364 bool did_spd = false; 365 int linkno = link->pmp; 366 int i; 367 368 if (ata_is_host_link(link)) 369 linkno += 15; 370 371 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 372 const struct ata_force_ent *fe = &ata_force_tbl[i]; 373 374 if (fe->port != -1 && fe->port != link->ap->print_id) 375 continue; 376 377 if (fe->device != -1 && fe->device != linkno) 378 continue; 379 380 /* only honor the first spd limit */ 381 if (!did_spd && fe->param.spd_limit) { 382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 384 fe->param.name); 385 did_spd = true; 386 } 387 388 /* let lflags stack */ 389 if (fe->param.lflags) { 390 link->flags |= fe->param.lflags; 391 ata_link_notice(link, 392 "FORCE: link flag 0x%x forced -> 0x%x\n", 393 fe->param.lflags, link->flags); 394 } 395 } 396 } 397 398 /** 399 * ata_force_xfermask - force xfermask according to libata.force 400 * @dev: ATA device of interest 401 * 402 * Force xfer_mask according to libata.force and whine about it. 403 * For consistency with link selection, device number 15 selects 404 * the first device connected to the host link. 405 * 406 * LOCKING: 407 * EH context. 408 */ 409 static void ata_force_xfermask(struct ata_device *dev) 410 { 411 int devno = dev->link->pmp + dev->devno; 412 int alt_devno = devno; 413 int i; 414 415 /* allow n.15/16 for devices attached to host port */ 416 if (ata_is_host_link(dev->link)) 417 alt_devno += 15; 418 419 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 420 const struct ata_force_ent *fe = &ata_force_tbl[i]; 421 unsigned long pio_mask, mwdma_mask, udma_mask; 422 423 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 424 continue; 425 426 if (fe->device != -1 && fe->device != devno && 427 fe->device != alt_devno) 428 continue; 429 430 if (!fe->param.xfer_mask) 431 continue; 432 433 ata_unpack_xfermask(fe->param.xfer_mask, 434 &pio_mask, &mwdma_mask, &udma_mask); 435 if (udma_mask) 436 dev->udma_mask = udma_mask; 437 else if (mwdma_mask) { 438 dev->udma_mask = 0; 439 dev->mwdma_mask = mwdma_mask; 440 } else { 441 dev->udma_mask = 0; 442 dev->mwdma_mask = 0; 443 dev->pio_mask = pio_mask; 444 } 445 446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 447 fe->param.name); 448 return; 449 } 450 } 451 452 /** 453 * ata_force_horkage - force horkage according to libata.force 454 * @dev: ATA device of interest 455 * 456 * Force horkage according to libata.force and whine about it. 457 * For consistency with link selection, device number 15 selects 458 * the first device connected to the host link. 459 * 460 * LOCKING: 461 * EH context. 462 */ 463 static void ata_force_horkage(struct ata_device *dev) 464 { 465 int devno = dev->link->pmp + dev->devno; 466 int alt_devno = devno; 467 int i; 468 469 /* allow n.15/16 for devices attached to host port */ 470 if (ata_is_host_link(dev->link)) 471 alt_devno += 15; 472 473 for (i = 0; i < ata_force_tbl_size; i++) { 474 const struct ata_force_ent *fe = &ata_force_tbl[i]; 475 476 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 477 continue; 478 479 if (fe->device != -1 && fe->device != devno && 480 fe->device != alt_devno) 481 continue; 482 483 if (!(~dev->horkage & fe->param.horkage_on) && 484 !(dev->horkage & fe->param.horkage_off)) 485 continue; 486 487 dev->horkage |= fe->param.horkage_on; 488 dev->horkage &= ~fe->param.horkage_off; 489 490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 491 fe->param.name); 492 } 493 } 494 #else 495 static inline void ata_force_link_limits(struct ata_link *link) { } 496 static inline void ata_force_xfermask(struct ata_device *dev) { } 497 static inline void ata_force_horkage(struct ata_device *dev) { } 498 #endif 499 500 /** 501 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 502 * @opcode: SCSI opcode 503 * 504 * Determine ATAPI command type from @opcode. 505 * 506 * LOCKING: 507 * None. 508 * 509 * RETURNS: 510 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 511 */ 512 int atapi_cmd_type(u8 opcode) 513 { 514 switch (opcode) { 515 case GPCMD_READ_10: 516 case GPCMD_READ_12: 517 return ATAPI_READ; 518 519 case GPCMD_WRITE_10: 520 case GPCMD_WRITE_12: 521 case GPCMD_WRITE_AND_VERIFY_10: 522 return ATAPI_WRITE; 523 524 case GPCMD_READ_CD: 525 case GPCMD_READ_CD_MSF: 526 return ATAPI_READ_CD; 527 528 case ATA_16: 529 case ATA_12: 530 if (atapi_passthru16) 531 return ATAPI_PASS_THRU; 532 fallthrough; 533 default: 534 return ATAPI_MISC; 535 } 536 } 537 EXPORT_SYMBOL_GPL(atapi_cmd_type); 538 539 static const u8 ata_rw_cmds[] = { 540 /* pio multi */ 541 ATA_CMD_READ_MULTI, 542 ATA_CMD_WRITE_MULTI, 543 ATA_CMD_READ_MULTI_EXT, 544 ATA_CMD_WRITE_MULTI_EXT, 545 0, 546 0, 547 0, 548 ATA_CMD_WRITE_MULTI_FUA_EXT, 549 /* pio */ 550 ATA_CMD_PIO_READ, 551 ATA_CMD_PIO_WRITE, 552 ATA_CMD_PIO_READ_EXT, 553 ATA_CMD_PIO_WRITE_EXT, 554 0, 555 0, 556 0, 557 0, 558 /* dma */ 559 ATA_CMD_READ, 560 ATA_CMD_WRITE, 561 ATA_CMD_READ_EXT, 562 ATA_CMD_WRITE_EXT, 563 0, 564 0, 565 0, 566 ATA_CMD_WRITE_FUA_EXT 567 }; 568 569 /** 570 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 571 * @tf: command to examine and configure 572 * @dev: device tf belongs to 573 * 574 * Examine the device configuration and tf->flags to calculate 575 * the proper read/write commands and protocol to use. 576 * 577 * LOCKING: 578 * caller. 579 */ 580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 581 { 582 u8 cmd; 583 584 int index, fua, lba48, write; 585 586 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 587 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 588 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 589 590 if (dev->flags & ATA_DFLAG_PIO) { 591 tf->protocol = ATA_PROT_PIO; 592 index = dev->multi_count ? 0 : 8; 593 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 594 /* Unable to use DMA due to host limitation */ 595 tf->protocol = ATA_PROT_PIO; 596 index = dev->multi_count ? 0 : 8; 597 } else { 598 tf->protocol = ATA_PROT_DMA; 599 index = 16; 600 } 601 602 cmd = ata_rw_cmds[index + fua + lba48 + write]; 603 if (cmd) { 604 tf->command = cmd; 605 return 0; 606 } 607 return -1; 608 } 609 610 /** 611 * ata_tf_read_block - Read block address from ATA taskfile 612 * @tf: ATA taskfile of interest 613 * @dev: ATA device @tf belongs to 614 * 615 * LOCKING: 616 * None. 617 * 618 * Read block address from @tf. This function can handle all 619 * three address formats - LBA, LBA48 and CHS. tf->protocol and 620 * flags select the address format to use. 621 * 622 * RETURNS: 623 * Block address read from @tf. 624 */ 625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 626 { 627 u64 block = 0; 628 629 if (tf->flags & ATA_TFLAG_LBA) { 630 if (tf->flags & ATA_TFLAG_LBA48) { 631 block |= (u64)tf->hob_lbah << 40; 632 block |= (u64)tf->hob_lbam << 32; 633 block |= (u64)tf->hob_lbal << 24; 634 } else 635 block |= (tf->device & 0xf) << 24; 636 637 block |= tf->lbah << 16; 638 block |= tf->lbam << 8; 639 block |= tf->lbal; 640 } else { 641 u32 cyl, head, sect; 642 643 cyl = tf->lbam | (tf->lbah << 8); 644 head = tf->device & 0xf; 645 sect = tf->lbal; 646 647 if (!sect) { 648 ata_dev_warn(dev, 649 "device reported invalid CHS sector 0\n"); 650 return U64_MAX; 651 } 652 653 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 654 } 655 656 return block; 657 } 658 659 /** 660 * ata_build_rw_tf - Build ATA taskfile for given read/write request 661 * @tf: Target ATA taskfile 662 * @dev: ATA device @tf belongs to 663 * @block: Block address 664 * @n_block: Number of blocks 665 * @tf_flags: RW/FUA etc... 666 * @tag: tag 667 * @class: IO priority class 668 * 669 * LOCKING: 670 * None. 671 * 672 * Build ATA taskfile @tf for read/write request described by 673 * @block, @n_block, @tf_flags and @tag on @dev. 674 * 675 * RETURNS: 676 * 677 * 0 on success, -ERANGE if the request is too large for @dev, 678 * -EINVAL if the request is invalid. 679 */ 680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 681 u64 block, u32 n_block, unsigned int tf_flags, 682 unsigned int tag, int class) 683 { 684 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 685 tf->flags |= tf_flags; 686 687 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { 688 /* yay, NCQ */ 689 if (!lba_48_ok(block, n_block)) 690 return -ERANGE; 691 692 tf->protocol = ATA_PROT_NCQ; 693 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 694 695 if (tf->flags & ATA_TFLAG_WRITE) 696 tf->command = ATA_CMD_FPDMA_WRITE; 697 else 698 tf->command = ATA_CMD_FPDMA_READ; 699 700 tf->nsect = tag << 3; 701 tf->hob_feature = (n_block >> 8) & 0xff; 702 tf->feature = n_block & 0xff; 703 704 tf->hob_lbah = (block >> 40) & 0xff; 705 tf->hob_lbam = (block >> 32) & 0xff; 706 tf->hob_lbal = (block >> 24) & 0xff; 707 tf->lbah = (block >> 16) & 0xff; 708 tf->lbam = (block >> 8) & 0xff; 709 tf->lbal = block & 0xff; 710 711 tf->device = ATA_LBA; 712 if (tf->flags & ATA_TFLAG_FUA) 713 tf->device |= 1 << 7; 714 715 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE && 716 class == IOPRIO_CLASS_RT) 717 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 718 } else if (dev->flags & ATA_DFLAG_LBA) { 719 tf->flags |= ATA_TFLAG_LBA; 720 721 if (lba_28_ok(block, n_block)) { 722 /* use LBA28 */ 723 tf->device |= (block >> 24) & 0xf; 724 } else if (lba_48_ok(block, n_block)) { 725 if (!(dev->flags & ATA_DFLAG_LBA48)) 726 return -ERANGE; 727 728 /* use LBA48 */ 729 tf->flags |= ATA_TFLAG_LBA48; 730 731 tf->hob_nsect = (n_block >> 8) & 0xff; 732 733 tf->hob_lbah = (block >> 40) & 0xff; 734 tf->hob_lbam = (block >> 32) & 0xff; 735 tf->hob_lbal = (block >> 24) & 0xff; 736 } else 737 /* request too large even for LBA48 */ 738 return -ERANGE; 739 740 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 741 return -EINVAL; 742 743 tf->nsect = n_block & 0xff; 744 745 tf->lbah = (block >> 16) & 0xff; 746 tf->lbam = (block >> 8) & 0xff; 747 tf->lbal = block & 0xff; 748 749 tf->device |= ATA_LBA; 750 } else { 751 /* CHS */ 752 u32 sect, head, cyl, track; 753 754 /* The request -may- be too large for CHS addressing. */ 755 if (!lba_28_ok(block, n_block)) 756 return -ERANGE; 757 758 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 759 return -EINVAL; 760 761 /* Convert LBA to CHS */ 762 track = (u32)block / dev->sectors; 763 cyl = track / dev->heads; 764 head = track % dev->heads; 765 sect = (u32)block % dev->sectors + 1; 766 767 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 768 (u32)block, track, cyl, head, sect); 769 770 /* Check whether the converted CHS can fit. 771 Cylinder: 0-65535 772 Head: 0-15 773 Sector: 1-255*/ 774 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 775 return -ERANGE; 776 777 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 778 tf->lbal = sect; 779 tf->lbam = cyl; 780 tf->lbah = cyl >> 8; 781 tf->device |= head; 782 } 783 784 return 0; 785 } 786 787 /** 788 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 789 * @pio_mask: pio_mask 790 * @mwdma_mask: mwdma_mask 791 * @udma_mask: udma_mask 792 * 793 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 794 * unsigned int xfer_mask. 795 * 796 * LOCKING: 797 * None. 798 * 799 * RETURNS: 800 * Packed xfer_mask. 801 */ 802 unsigned long ata_pack_xfermask(unsigned long pio_mask, 803 unsigned long mwdma_mask, 804 unsigned long udma_mask) 805 { 806 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 807 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 808 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 809 } 810 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 811 812 /** 813 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 814 * @xfer_mask: xfer_mask to unpack 815 * @pio_mask: resulting pio_mask 816 * @mwdma_mask: resulting mwdma_mask 817 * @udma_mask: resulting udma_mask 818 * 819 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 820 * Any NULL destination masks will be ignored. 821 */ 822 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 823 unsigned long *mwdma_mask, unsigned long *udma_mask) 824 { 825 if (pio_mask) 826 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 827 if (mwdma_mask) 828 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 829 if (udma_mask) 830 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 831 } 832 833 static const struct ata_xfer_ent { 834 int shift, bits; 835 u8 base; 836 } ata_xfer_tbl[] = { 837 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 838 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 839 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 840 { -1, }, 841 }; 842 843 /** 844 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 845 * @xfer_mask: xfer_mask of interest 846 * 847 * Return matching XFER_* value for @xfer_mask. Only the highest 848 * bit of @xfer_mask is considered. 849 * 850 * LOCKING: 851 * None. 852 * 853 * RETURNS: 854 * Matching XFER_* value, 0xff if no match found. 855 */ 856 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 857 { 858 int highbit = fls(xfer_mask) - 1; 859 const struct ata_xfer_ent *ent; 860 861 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 862 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 863 return ent->base + highbit - ent->shift; 864 return 0xff; 865 } 866 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 867 868 /** 869 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 870 * @xfer_mode: XFER_* of interest 871 * 872 * Return matching xfer_mask for @xfer_mode. 873 * 874 * LOCKING: 875 * None. 876 * 877 * RETURNS: 878 * Matching xfer_mask, 0 if no match found. 879 */ 880 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 881 { 882 const struct ata_xfer_ent *ent; 883 884 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 885 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 886 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 887 & ~((1 << ent->shift) - 1); 888 return 0; 889 } 890 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 891 892 /** 893 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 894 * @xfer_mode: XFER_* of interest 895 * 896 * Return matching xfer_shift for @xfer_mode. 897 * 898 * LOCKING: 899 * None. 900 * 901 * RETURNS: 902 * Matching xfer_shift, -1 if no match found. 903 */ 904 int ata_xfer_mode2shift(unsigned long xfer_mode) 905 { 906 const struct ata_xfer_ent *ent; 907 908 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 909 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 910 return ent->shift; 911 return -1; 912 } 913 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 914 915 /** 916 * ata_mode_string - convert xfer_mask to string 917 * @xfer_mask: mask of bits supported; only highest bit counts. 918 * 919 * Determine string which represents the highest speed 920 * (highest bit in @modemask). 921 * 922 * LOCKING: 923 * None. 924 * 925 * RETURNS: 926 * Constant C string representing highest speed listed in 927 * @mode_mask, or the constant C string "<n/a>". 928 */ 929 const char *ata_mode_string(unsigned long xfer_mask) 930 { 931 static const char * const xfer_mode_str[] = { 932 "PIO0", 933 "PIO1", 934 "PIO2", 935 "PIO3", 936 "PIO4", 937 "PIO5", 938 "PIO6", 939 "MWDMA0", 940 "MWDMA1", 941 "MWDMA2", 942 "MWDMA3", 943 "MWDMA4", 944 "UDMA/16", 945 "UDMA/25", 946 "UDMA/33", 947 "UDMA/44", 948 "UDMA/66", 949 "UDMA/100", 950 "UDMA/133", 951 "UDMA7", 952 }; 953 int highbit; 954 955 highbit = fls(xfer_mask) - 1; 956 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 957 return xfer_mode_str[highbit]; 958 return "<n/a>"; 959 } 960 EXPORT_SYMBOL_GPL(ata_mode_string); 961 962 const char *sata_spd_string(unsigned int spd) 963 { 964 static const char * const spd_str[] = { 965 "1.5 Gbps", 966 "3.0 Gbps", 967 "6.0 Gbps", 968 }; 969 970 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 971 return "<unknown>"; 972 return spd_str[spd - 1]; 973 } 974 975 /** 976 * ata_dev_classify - determine device type based on ATA-spec signature 977 * @tf: ATA taskfile register set for device to be identified 978 * 979 * Determine from taskfile register contents whether a device is 980 * ATA or ATAPI, as per "Signature and persistence" section 981 * of ATA/PI spec (volume 1, sect 5.14). 982 * 983 * LOCKING: 984 * None. 985 * 986 * RETURNS: 987 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 988 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 989 */ 990 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 991 { 992 /* Apple's open source Darwin code hints that some devices only 993 * put a proper signature into the LBA mid/high registers, 994 * So, we only check those. It's sufficient for uniqueness. 995 * 996 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 997 * signatures for ATA and ATAPI devices attached on SerialATA, 998 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 999 * spec has never mentioned about using different signatures 1000 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1001 * Multiplier specification began to use 0x69/0x96 to identify 1002 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1003 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1004 * 0x69/0x96 shortly and described them as reserved for 1005 * SerialATA. 1006 * 1007 * We follow the current spec and consider that 0x69/0x96 1008 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1009 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1010 * SEMB signature. This is worked around in 1011 * ata_dev_read_id(). 1012 */ 1013 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1014 DPRINTK("found ATA device by sig\n"); 1015 return ATA_DEV_ATA; 1016 } 1017 1018 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1019 DPRINTK("found ATAPI device by sig\n"); 1020 return ATA_DEV_ATAPI; 1021 } 1022 1023 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1024 DPRINTK("found PMP device by sig\n"); 1025 return ATA_DEV_PMP; 1026 } 1027 1028 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1029 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1030 return ATA_DEV_SEMB; 1031 } 1032 1033 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1034 DPRINTK("found ZAC device by sig\n"); 1035 return ATA_DEV_ZAC; 1036 } 1037 1038 DPRINTK("unknown device\n"); 1039 return ATA_DEV_UNKNOWN; 1040 } 1041 EXPORT_SYMBOL_GPL(ata_dev_classify); 1042 1043 /** 1044 * ata_id_string - Convert IDENTIFY DEVICE page into string 1045 * @id: IDENTIFY DEVICE results we will examine 1046 * @s: string into which data is output 1047 * @ofs: offset into identify device page 1048 * @len: length of string to return. must be an even number. 1049 * 1050 * The strings in the IDENTIFY DEVICE page are broken up into 1051 * 16-bit chunks. Run through the string, and output each 1052 * 8-bit chunk linearly, regardless of platform. 1053 * 1054 * LOCKING: 1055 * caller. 1056 */ 1057 1058 void ata_id_string(const u16 *id, unsigned char *s, 1059 unsigned int ofs, unsigned int len) 1060 { 1061 unsigned int c; 1062 1063 BUG_ON(len & 1); 1064 1065 while (len > 0) { 1066 c = id[ofs] >> 8; 1067 *s = c; 1068 s++; 1069 1070 c = id[ofs] & 0xff; 1071 *s = c; 1072 s++; 1073 1074 ofs++; 1075 len -= 2; 1076 } 1077 } 1078 EXPORT_SYMBOL_GPL(ata_id_string); 1079 1080 /** 1081 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1082 * @id: IDENTIFY DEVICE results we will examine 1083 * @s: string into which data is output 1084 * @ofs: offset into identify device page 1085 * @len: length of string to return. must be an odd number. 1086 * 1087 * This function is identical to ata_id_string except that it 1088 * trims trailing spaces and terminates the resulting string with 1089 * null. @len must be actual maximum length (even number) + 1. 1090 * 1091 * LOCKING: 1092 * caller. 1093 */ 1094 void ata_id_c_string(const u16 *id, unsigned char *s, 1095 unsigned int ofs, unsigned int len) 1096 { 1097 unsigned char *p; 1098 1099 ata_id_string(id, s, ofs, len - 1); 1100 1101 p = s + strnlen(s, len - 1); 1102 while (p > s && p[-1] == ' ') 1103 p--; 1104 *p = '\0'; 1105 } 1106 EXPORT_SYMBOL_GPL(ata_id_c_string); 1107 1108 static u64 ata_id_n_sectors(const u16 *id) 1109 { 1110 if (ata_id_has_lba(id)) { 1111 if (ata_id_has_lba48(id)) 1112 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1113 else 1114 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1115 } else { 1116 if (ata_id_current_chs_valid(id)) 1117 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1118 id[ATA_ID_CUR_SECTORS]; 1119 else 1120 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1121 id[ATA_ID_SECTORS]; 1122 } 1123 } 1124 1125 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1126 { 1127 u64 sectors = 0; 1128 1129 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1130 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1131 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1132 sectors |= (tf->lbah & 0xff) << 16; 1133 sectors |= (tf->lbam & 0xff) << 8; 1134 sectors |= (tf->lbal & 0xff); 1135 1136 return sectors; 1137 } 1138 1139 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1140 { 1141 u64 sectors = 0; 1142 1143 sectors |= (tf->device & 0x0f) << 24; 1144 sectors |= (tf->lbah & 0xff) << 16; 1145 sectors |= (tf->lbam & 0xff) << 8; 1146 sectors |= (tf->lbal & 0xff); 1147 1148 return sectors; 1149 } 1150 1151 /** 1152 * ata_read_native_max_address - Read native max address 1153 * @dev: target device 1154 * @max_sectors: out parameter for the result native max address 1155 * 1156 * Perform an LBA48 or LBA28 native size query upon the device in 1157 * question. 1158 * 1159 * RETURNS: 1160 * 0 on success, -EACCES if command is aborted by the drive. 1161 * -EIO on other errors. 1162 */ 1163 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1164 { 1165 unsigned int err_mask; 1166 struct ata_taskfile tf; 1167 int lba48 = ata_id_has_lba48(dev->id); 1168 1169 ata_tf_init(dev, &tf); 1170 1171 /* always clear all address registers */ 1172 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1173 1174 if (lba48) { 1175 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1176 tf.flags |= ATA_TFLAG_LBA48; 1177 } else 1178 tf.command = ATA_CMD_READ_NATIVE_MAX; 1179 1180 tf.protocol = ATA_PROT_NODATA; 1181 tf.device |= ATA_LBA; 1182 1183 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1184 if (err_mask) { 1185 ata_dev_warn(dev, 1186 "failed to read native max address (err_mask=0x%x)\n", 1187 err_mask); 1188 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1189 return -EACCES; 1190 return -EIO; 1191 } 1192 1193 if (lba48) 1194 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1195 else 1196 *max_sectors = ata_tf_to_lba(&tf) + 1; 1197 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1198 (*max_sectors)--; 1199 return 0; 1200 } 1201 1202 /** 1203 * ata_set_max_sectors - Set max sectors 1204 * @dev: target device 1205 * @new_sectors: new max sectors value to set for the device 1206 * 1207 * Set max sectors of @dev to @new_sectors. 1208 * 1209 * RETURNS: 1210 * 0 on success, -EACCES if command is aborted or denied (due to 1211 * previous non-volatile SET_MAX) by the drive. -EIO on other 1212 * errors. 1213 */ 1214 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1215 { 1216 unsigned int err_mask; 1217 struct ata_taskfile tf; 1218 int lba48 = ata_id_has_lba48(dev->id); 1219 1220 new_sectors--; 1221 1222 ata_tf_init(dev, &tf); 1223 1224 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1225 1226 if (lba48) { 1227 tf.command = ATA_CMD_SET_MAX_EXT; 1228 tf.flags |= ATA_TFLAG_LBA48; 1229 1230 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1231 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1232 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1233 } else { 1234 tf.command = ATA_CMD_SET_MAX; 1235 1236 tf.device |= (new_sectors >> 24) & 0xf; 1237 } 1238 1239 tf.protocol = ATA_PROT_NODATA; 1240 tf.device |= ATA_LBA; 1241 1242 tf.lbal = (new_sectors >> 0) & 0xff; 1243 tf.lbam = (new_sectors >> 8) & 0xff; 1244 tf.lbah = (new_sectors >> 16) & 0xff; 1245 1246 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1247 if (err_mask) { 1248 ata_dev_warn(dev, 1249 "failed to set max address (err_mask=0x%x)\n", 1250 err_mask); 1251 if (err_mask == AC_ERR_DEV && 1252 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1253 return -EACCES; 1254 return -EIO; 1255 } 1256 1257 return 0; 1258 } 1259 1260 /** 1261 * ata_hpa_resize - Resize a device with an HPA set 1262 * @dev: Device to resize 1263 * 1264 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1265 * it if required to the full size of the media. The caller must check 1266 * the drive has the HPA feature set enabled. 1267 * 1268 * RETURNS: 1269 * 0 on success, -errno on failure. 1270 */ 1271 static int ata_hpa_resize(struct ata_device *dev) 1272 { 1273 bool print_info = ata_dev_print_info(dev); 1274 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1275 u64 sectors = ata_id_n_sectors(dev->id); 1276 u64 native_sectors; 1277 int rc; 1278 1279 /* do we need to do it? */ 1280 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1281 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1282 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1283 return 0; 1284 1285 /* read native max address */ 1286 rc = ata_read_native_max_address(dev, &native_sectors); 1287 if (rc) { 1288 /* If device aborted the command or HPA isn't going to 1289 * be unlocked, skip HPA resizing. 1290 */ 1291 if (rc == -EACCES || !unlock_hpa) { 1292 ata_dev_warn(dev, 1293 "HPA support seems broken, skipping HPA handling\n"); 1294 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1295 1296 /* we can continue if device aborted the command */ 1297 if (rc == -EACCES) 1298 rc = 0; 1299 } 1300 1301 return rc; 1302 } 1303 dev->n_native_sectors = native_sectors; 1304 1305 /* nothing to do? */ 1306 if (native_sectors <= sectors || !unlock_hpa) { 1307 if (!print_info || native_sectors == sectors) 1308 return 0; 1309 1310 if (native_sectors > sectors) 1311 ata_dev_info(dev, 1312 "HPA detected: current %llu, native %llu\n", 1313 (unsigned long long)sectors, 1314 (unsigned long long)native_sectors); 1315 else if (native_sectors < sectors) 1316 ata_dev_warn(dev, 1317 "native sectors (%llu) is smaller than sectors (%llu)\n", 1318 (unsigned long long)native_sectors, 1319 (unsigned long long)sectors); 1320 return 0; 1321 } 1322 1323 /* let's unlock HPA */ 1324 rc = ata_set_max_sectors(dev, native_sectors); 1325 if (rc == -EACCES) { 1326 /* if device aborted the command, skip HPA resizing */ 1327 ata_dev_warn(dev, 1328 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1329 (unsigned long long)sectors, 1330 (unsigned long long)native_sectors); 1331 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1332 return 0; 1333 } else if (rc) 1334 return rc; 1335 1336 /* re-read IDENTIFY data */ 1337 rc = ata_dev_reread_id(dev, 0); 1338 if (rc) { 1339 ata_dev_err(dev, 1340 "failed to re-read IDENTIFY data after HPA resizing\n"); 1341 return rc; 1342 } 1343 1344 if (print_info) { 1345 u64 new_sectors = ata_id_n_sectors(dev->id); 1346 ata_dev_info(dev, 1347 "HPA unlocked: %llu -> %llu, native %llu\n", 1348 (unsigned long long)sectors, 1349 (unsigned long long)new_sectors, 1350 (unsigned long long)native_sectors); 1351 } 1352 1353 return 0; 1354 } 1355 1356 /** 1357 * ata_dump_id - IDENTIFY DEVICE info debugging output 1358 * @id: IDENTIFY DEVICE page to dump 1359 * 1360 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1361 * page. 1362 * 1363 * LOCKING: 1364 * caller. 1365 */ 1366 1367 static inline void ata_dump_id(const u16 *id) 1368 { 1369 DPRINTK("49==0x%04x " 1370 "53==0x%04x " 1371 "63==0x%04x " 1372 "64==0x%04x " 1373 "75==0x%04x \n", 1374 id[49], 1375 id[53], 1376 id[63], 1377 id[64], 1378 id[75]); 1379 DPRINTK("80==0x%04x " 1380 "81==0x%04x " 1381 "82==0x%04x " 1382 "83==0x%04x " 1383 "84==0x%04x \n", 1384 id[80], 1385 id[81], 1386 id[82], 1387 id[83], 1388 id[84]); 1389 DPRINTK("88==0x%04x " 1390 "93==0x%04x\n", 1391 id[88], 1392 id[93]); 1393 } 1394 1395 /** 1396 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1397 * @id: IDENTIFY data to compute xfer mask from 1398 * 1399 * Compute the xfermask for this device. This is not as trivial 1400 * as it seems if we must consider early devices correctly. 1401 * 1402 * FIXME: pre IDE drive timing (do we care ?). 1403 * 1404 * LOCKING: 1405 * None. 1406 * 1407 * RETURNS: 1408 * Computed xfermask 1409 */ 1410 unsigned long ata_id_xfermask(const u16 *id) 1411 { 1412 unsigned long pio_mask, mwdma_mask, udma_mask; 1413 1414 /* Usual case. Word 53 indicates word 64 is valid */ 1415 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1416 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1417 pio_mask <<= 3; 1418 pio_mask |= 0x7; 1419 } else { 1420 /* If word 64 isn't valid then Word 51 high byte holds 1421 * the PIO timing number for the maximum. Turn it into 1422 * a mask. 1423 */ 1424 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1425 if (mode < 5) /* Valid PIO range */ 1426 pio_mask = (2 << mode) - 1; 1427 else 1428 pio_mask = 1; 1429 1430 /* But wait.. there's more. Design your standards by 1431 * committee and you too can get a free iordy field to 1432 * process. However its the speeds not the modes that 1433 * are supported... Note drivers using the timing API 1434 * will get this right anyway 1435 */ 1436 } 1437 1438 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1439 1440 if (ata_id_is_cfa(id)) { 1441 /* 1442 * Process compact flash extended modes 1443 */ 1444 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1445 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1446 1447 if (pio) 1448 pio_mask |= (1 << 5); 1449 if (pio > 1) 1450 pio_mask |= (1 << 6); 1451 if (dma) 1452 mwdma_mask |= (1 << 3); 1453 if (dma > 1) 1454 mwdma_mask |= (1 << 4); 1455 } 1456 1457 udma_mask = 0; 1458 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1459 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1460 1461 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1462 } 1463 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1464 1465 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1466 { 1467 struct completion *waiting = qc->private_data; 1468 1469 complete(waiting); 1470 } 1471 1472 /** 1473 * ata_exec_internal_sg - execute libata internal command 1474 * @dev: Device to which the command is sent 1475 * @tf: Taskfile registers for the command and the result 1476 * @cdb: CDB for packet command 1477 * @dma_dir: Data transfer direction of the command 1478 * @sgl: sg list for the data buffer of the command 1479 * @n_elem: Number of sg entries 1480 * @timeout: Timeout in msecs (0 for default) 1481 * 1482 * Executes libata internal command with timeout. @tf contains 1483 * command on entry and result on return. Timeout and error 1484 * conditions are reported via return value. No recovery action 1485 * is taken after a command times out. It's caller's duty to 1486 * clean up after timeout. 1487 * 1488 * LOCKING: 1489 * None. Should be called with kernel context, might sleep. 1490 * 1491 * RETURNS: 1492 * Zero on success, AC_ERR_* mask on failure 1493 */ 1494 unsigned ata_exec_internal_sg(struct ata_device *dev, 1495 struct ata_taskfile *tf, const u8 *cdb, 1496 int dma_dir, struct scatterlist *sgl, 1497 unsigned int n_elem, unsigned long timeout) 1498 { 1499 struct ata_link *link = dev->link; 1500 struct ata_port *ap = link->ap; 1501 u8 command = tf->command; 1502 int auto_timeout = 0; 1503 struct ata_queued_cmd *qc; 1504 unsigned int preempted_tag; 1505 u32 preempted_sactive; 1506 u64 preempted_qc_active; 1507 int preempted_nr_active_links; 1508 DECLARE_COMPLETION_ONSTACK(wait); 1509 unsigned long flags; 1510 unsigned int err_mask; 1511 int rc; 1512 1513 spin_lock_irqsave(ap->lock, flags); 1514 1515 /* no internal command while frozen */ 1516 if (ap->pflags & ATA_PFLAG_FROZEN) { 1517 spin_unlock_irqrestore(ap->lock, flags); 1518 return AC_ERR_SYSTEM; 1519 } 1520 1521 /* initialize internal qc */ 1522 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1523 1524 qc->tag = ATA_TAG_INTERNAL; 1525 qc->hw_tag = 0; 1526 qc->scsicmd = NULL; 1527 qc->ap = ap; 1528 qc->dev = dev; 1529 ata_qc_reinit(qc); 1530 1531 preempted_tag = link->active_tag; 1532 preempted_sactive = link->sactive; 1533 preempted_qc_active = ap->qc_active; 1534 preempted_nr_active_links = ap->nr_active_links; 1535 link->active_tag = ATA_TAG_POISON; 1536 link->sactive = 0; 1537 ap->qc_active = 0; 1538 ap->nr_active_links = 0; 1539 1540 /* prepare & issue qc */ 1541 qc->tf = *tf; 1542 if (cdb) 1543 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1544 1545 /* some SATA bridges need us to indicate data xfer direction */ 1546 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1547 dma_dir == DMA_FROM_DEVICE) 1548 qc->tf.feature |= ATAPI_DMADIR; 1549 1550 qc->flags |= ATA_QCFLAG_RESULT_TF; 1551 qc->dma_dir = dma_dir; 1552 if (dma_dir != DMA_NONE) { 1553 unsigned int i, buflen = 0; 1554 struct scatterlist *sg; 1555 1556 for_each_sg(sgl, sg, n_elem, i) 1557 buflen += sg->length; 1558 1559 ata_sg_init(qc, sgl, n_elem); 1560 qc->nbytes = buflen; 1561 } 1562 1563 qc->private_data = &wait; 1564 qc->complete_fn = ata_qc_complete_internal; 1565 1566 ata_qc_issue(qc); 1567 1568 spin_unlock_irqrestore(ap->lock, flags); 1569 1570 if (!timeout) { 1571 if (ata_probe_timeout) 1572 timeout = ata_probe_timeout * 1000; 1573 else { 1574 timeout = ata_internal_cmd_timeout(dev, command); 1575 auto_timeout = 1; 1576 } 1577 } 1578 1579 if (ap->ops->error_handler) 1580 ata_eh_release(ap); 1581 1582 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1583 1584 if (ap->ops->error_handler) 1585 ata_eh_acquire(ap); 1586 1587 ata_sff_flush_pio_task(ap); 1588 1589 if (!rc) { 1590 spin_lock_irqsave(ap->lock, flags); 1591 1592 /* We're racing with irq here. If we lose, the 1593 * following test prevents us from completing the qc 1594 * twice. If we win, the port is frozen and will be 1595 * cleaned up by ->post_internal_cmd(). 1596 */ 1597 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1598 qc->err_mask |= AC_ERR_TIMEOUT; 1599 1600 if (ap->ops->error_handler) 1601 ata_port_freeze(ap); 1602 else 1603 ata_qc_complete(qc); 1604 1605 if (ata_msg_warn(ap)) 1606 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1607 command); 1608 } 1609 1610 spin_unlock_irqrestore(ap->lock, flags); 1611 } 1612 1613 /* do post_internal_cmd */ 1614 if (ap->ops->post_internal_cmd) 1615 ap->ops->post_internal_cmd(qc); 1616 1617 /* perform minimal error analysis */ 1618 if (qc->flags & ATA_QCFLAG_FAILED) { 1619 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1620 qc->err_mask |= AC_ERR_DEV; 1621 1622 if (!qc->err_mask) 1623 qc->err_mask |= AC_ERR_OTHER; 1624 1625 if (qc->err_mask & ~AC_ERR_OTHER) 1626 qc->err_mask &= ~AC_ERR_OTHER; 1627 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1628 qc->result_tf.command |= ATA_SENSE; 1629 } 1630 1631 /* finish up */ 1632 spin_lock_irqsave(ap->lock, flags); 1633 1634 *tf = qc->result_tf; 1635 err_mask = qc->err_mask; 1636 1637 ata_qc_free(qc); 1638 link->active_tag = preempted_tag; 1639 link->sactive = preempted_sactive; 1640 ap->qc_active = preempted_qc_active; 1641 ap->nr_active_links = preempted_nr_active_links; 1642 1643 spin_unlock_irqrestore(ap->lock, flags); 1644 1645 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1646 ata_internal_cmd_timed_out(dev, command); 1647 1648 return err_mask; 1649 } 1650 1651 /** 1652 * ata_exec_internal - execute libata internal command 1653 * @dev: Device to which the command is sent 1654 * @tf: Taskfile registers for the command and the result 1655 * @cdb: CDB for packet command 1656 * @dma_dir: Data transfer direction of the command 1657 * @buf: Data buffer of the command 1658 * @buflen: Length of data buffer 1659 * @timeout: Timeout in msecs (0 for default) 1660 * 1661 * Wrapper around ata_exec_internal_sg() which takes simple 1662 * buffer instead of sg list. 1663 * 1664 * LOCKING: 1665 * None. Should be called with kernel context, might sleep. 1666 * 1667 * RETURNS: 1668 * Zero on success, AC_ERR_* mask on failure 1669 */ 1670 unsigned ata_exec_internal(struct ata_device *dev, 1671 struct ata_taskfile *tf, const u8 *cdb, 1672 int dma_dir, void *buf, unsigned int buflen, 1673 unsigned long timeout) 1674 { 1675 struct scatterlist *psg = NULL, sg; 1676 unsigned int n_elem = 0; 1677 1678 if (dma_dir != DMA_NONE) { 1679 WARN_ON(!buf); 1680 sg_init_one(&sg, buf, buflen); 1681 psg = &sg; 1682 n_elem++; 1683 } 1684 1685 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1686 timeout); 1687 } 1688 1689 /** 1690 * ata_pio_need_iordy - check if iordy needed 1691 * @adev: ATA device 1692 * 1693 * Check if the current speed of the device requires IORDY. Used 1694 * by various controllers for chip configuration. 1695 */ 1696 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1697 { 1698 /* Don't set IORDY if we're preparing for reset. IORDY may 1699 * lead to controller lock up on certain controllers if the 1700 * port is not occupied. See bko#11703 for details. 1701 */ 1702 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1703 return 0; 1704 /* Controller doesn't support IORDY. Probably a pointless 1705 * check as the caller should know this. 1706 */ 1707 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1708 return 0; 1709 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1710 if (ata_id_is_cfa(adev->id) 1711 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1712 return 0; 1713 /* PIO3 and higher it is mandatory */ 1714 if (adev->pio_mode > XFER_PIO_2) 1715 return 1; 1716 /* We turn it on when possible */ 1717 if (ata_id_has_iordy(adev->id)) 1718 return 1; 1719 return 0; 1720 } 1721 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1722 1723 /** 1724 * ata_pio_mask_no_iordy - Return the non IORDY mask 1725 * @adev: ATA device 1726 * 1727 * Compute the highest mode possible if we are not using iordy. Return 1728 * -1 if no iordy mode is available. 1729 */ 1730 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1731 { 1732 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1733 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1734 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1735 /* Is the speed faster than the drive allows non IORDY ? */ 1736 if (pio) { 1737 /* This is cycle times not frequency - watch the logic! */ 1738 if (pio > 240) /* PIO2 is 240nS per cycle */ 1739 return 3 << ATA_SHIFT_PIO; 1740 return 7 << ATA_SHIFT_PIO; 1741 } 1742 } 1743 return 3 << ATA_SHIFT_PIO; 1744 } 1745 1746 /** 1747 * ata_do_dev_read_id - default ID read method 1748 * @dev: device 1749 * @tf: proposed taskfile 1750 * @id: data buffer 1751 * 1752 * Issue the identify taskfile and hand back the buffer containing 1753 * identify data. For some RAID controllers and for pre ATA devices 1754 * this function is wrapped or replaced by the driver 1755 */ 1756 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1757 struct ata_taskfile *tf, u16 *id) 1758 { 1759 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1760 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1761 } 1762 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1763 1764 /** 1765 * ata_dev_read_id - Read ID data from the specified device 1766 * @dev: target device 1767 * @p_class: pointer to class of the target device (may be changed) 1768 * @flags: ATA_READID_* flags 1769 * @id: buffer to read IDENTIFY data into 1770 * 1771 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1772 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1773 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1774 * for pre-ATA4 drives. 1775 * 1776 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1777 * now we abort if we hit that case. 1778 * 1779 * LOCKING: 1780 * Kernel thread context (may sleep) 1781 * 1782 * RETURNS: 1783 * 0 on success, -errno otherwise. 1784 */ 1785 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1786 unsigned int flags, u16 *id) 1787 { 1788 struct ata_port *ap = dev->link->ap; 1789 unsigned int class = *p_class; 1790 struct ata_taskfile tf; 1791 unsigned int err_mask = 0; 1792 const char *reason; 1793 bool is_semb = class == ATA_DEV_SEMB; 1794 int may_fallback = 1, tried_spinup = 0; 1795 int rc; 1796 1797 if (ata_msg_ctl(ap)) 1798 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1799 1800 retry: 1801 ata_tf_init(dev, &tf); 1802 1803 switch (class) { 1804 case ATA_DEV_SEMB: 1805 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1806 fallthrough; 1807 case ATA_DEV_ATA: 1808 case ATA_DEV_ZAC: 1809 tf.command = ATA_CMD_ID_ATA; 1810 break; 1811 case ATA_DEV_ATAPI: 1812 tf.command = ATA_CMD_ID_ATAPI; 1813 break; 1814 default: 1815 rc = -ENODEV; 1816 reason = "unsupported class"; 1817 goto err_out; 1818 } 1819 1820 tf.protocol = ATA_PROT_PIO; 1821 1822 /* Some devices choke if TF registers contain garbage. Make 1823 * sure those are properly initialized. 1824 */ 1825 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1826 1827 /* Device presence detection is unreliable on some 1828 * controllers. Always poll IDENTIFY if available. 1829 */ 1830 tf.flags |= ATA_TFLAG_POLLING; 1831 1832 if (ap->ops->read_id) 1833 err_mask = ap->ops->read_id(dev, &tf, id); 1834 else 1835 err_mask = ata_do_dev_read_id(dev, &tf, id); 1836 1837 if (err_mask) { 1838 if (err_mask & AC_ERR_NODEV_HINT) { 1839 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1840 return -ENOENT; 1841 } 1842 1843 if (is_semb) { 1844 ata_dev_info(dev, 1845 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1846 /* SEMB is not supported yet */ 1847 *p_class = ATA_DEV_SEMB_UNSUP; 1848 return 0; 1849 } 1850 1851 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1852 /* Device or controller might have reported 1853 * the wrong device class. Give a shot at the 1854 * other IDENTIFY if the current one is 1855 * aborted by the device. 1856 */ 1857 if (may_fallback) { 1858 may_fallback = 0; 1859 1860 if (class == ATA_DEV_ATA) 1861 class = ATA_DEV_ATAPI; 1862 else 1863 class = ATA_DEV_ATA; 1864 goto retry; 1865 } 1866 1867 /* Control reaches here iff the device aborted 1868 * both flavors of IDENTIFYs which happens 1869 * sometimes with phantom devices. 1870 */ 1871 ata_dev_dbg(dev, 1872 "both IDENTIFYs aborted, assuming NODEV\n"); 1873 return -ENOENT; 1874 } 1875 1876 rc = -EIO; 1877 reason = "I/O error"; 1878 goto err_out; 1879 } 1880 1881 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1882 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1883 "class=%d may_fallback=%d tried_spinup=%d\n", 1884 class, may_fallback, tried_spinup); 1885 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1886 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1887 } 1888 1889 /* Falling back doesn't make sense if ID data was read 1890 * successfully at least once. 1891 */ 1892 may_fallback = 0; 1893 1894 swap_buf_le16(id, ATA_ID_WORDS); 1895 1896 /* sanity check */ 1897 rc = -EINVAL; 1898 reason = "device reports invalid type"; 1899 1900 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1901 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1902 goto err_out; 1903 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1904 ata_id_is_ata(id)) { 1905 ata_dev_dbg(dev, 1906 "host indicates ignore ATA devices, ignored\n"); 1907 return -ENOENT; 1908 } 1909 } else { 1910 if (ata_id_is_ata(id)) 1911 goto err_out; 1912 } 1913 1914 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1915 tried_spinup = 1; 1916 /* 1917 * Drive powered-up in standby mode, and requires a specific 1918 * SET_FEATURES spin-up subcommand before it will accept 1919 * anything other than the original IDENTIFY command. 1920 */ 1921 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1922 if (err_mask && id[2] != 0x738c) { 1923 rc = -EIO; 1924 reason = "SPINUP failed"; 1925 goto err_out; 1926 } 1927 /* 1928 * If the drive initially returned incomplete IDENTIFY info, 1929 * we now must reissue the IDENTIFY command. 1930 */ 1931 if (id[2] == 0x37c8) 1932 goto retry; 1933 } 1934 1935 if ((flags & ATA_READID_POSTRESET) && 1936 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1937 /* 1938 * The exact sequence expected by certain pre-ATA4 drives is: 1939 * SRST RESET 1940 * IDENTIFY (optional in early ATA) 1941 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1942 * anything else.. 1943 * Some drives were very specific about that exact sequence. 1944 * 1945 * Note that ATA4 says lba is mandatory so the second check 1946 * should never trigger. 1947 */ 1948 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1949 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1950 if (err_mask) { 1951 rc = -EIO; 1952 reason = "INIT_DEV_PARAMS failed"; 1953 goto err_out; 1954 } 1955 1956 /* current CHS translation info (id[53-58]) might be 1957 * changed. reread the identify device info. 1958 */ 1959 flags &= ~ATA_READID_POSTRESET; 1960 goto retry; 1961 } 1962 } 1963 1964 *p_class = class; 1965 1966 return 0; 1967 1968 err_out: 1969 if (ata_msg_warn(ap)) 1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1971 reason, err_mask); 1972 return rc; 1973 } 1974 1975 /** 1976 * ata_read_log_page - read a specific log page 1977 * @dev: target device 1978 * @log: log to read 1979 * @page: page to read 1980 * @buf: buffer to store read page 1981 * @sectors: number of sectors to read 1982 * 1983 * Read log page using READ_LOG_EXT command. 1984 * 1985 * LOCKING: 1986 * Kernel thread context (may sleep). 1987 * 1988 * RETURNS: 1989 * 0 on success, AC_ERR_* mask otherwise. 1990 */ 1991 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1992 u8 page, void *buf, unsigned int sectors) 1993 { 1994 unsigned long ap_flags = dev->link->ap->flags; 1995 struct ata_taskfile tf; 1996 unsigned int err_mask; 1997 bool dma = false; 1998 1999 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page); 2000 2001 /* 2002 * Return error without actually issuing the command on controllers 2003 * which e.g. lockup on a read log page. 2004 */ 2005 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2006 return AC_ERR_DEV; 2007 2008 retry: 2009 ata_tf_init(dev, &tf); 2010 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) && 2011 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2012 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2013 tf.protocol = ATA_PROT_DMA; 2014 dma = true; 2015 } else { 2016 tf.command = ATA_CMD_READ_LOG_EXT; 2017 tf.protocol = ATA_PROT_PIO; 2018 dma = false; 2019 } 2020 tf.lbal = log; 2021 tf.lbam = page; 2022 tf.nsect = sectors; 2023 tf.hob_nsect = sectors >> 8; 2024 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2025 2026 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2027 buf, sectors * ATA_SECT_SIZE, 0); 2028 2029 if (err_mask) { 2030 if (dma) { 2031 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2032 goto retry; 2033 } 2034 ata_dev_err(dev, "Read log page 0x%02x failed, Emask 0x%x\n", 2035 (unsigned int)page, err_mask); 2036 } 2037 2038 return err_mask; 2039 } 2040 2041 static bool ata_log_supported(struct ata_device *dev, u8 log) 2042 { 2043 struct ata_port *ap = dev->link->ap; 2044 2045 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2046 return false; 2047 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; 2048 } 2049 2050 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2051 { 2052 struct ata_port *ap = dev->link->ap; 2053 unsigned int err, i; 2054 2055 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2056 ata_dev_warn(dev, "ATA Identify Device Log not supported\n"); 2057 return false; 2058 } 2059 2060 /* 2061 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2062 * supported. 2063 */ 2064 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2065 1); 2066 if (err) 2067 return false; 2068 2069 for (i = 0; i < ap->sector_buf[8]; i++) { 2070 if (ap->sector_buf[9 + i] == page) 2071 return true; 2072 } 2073 2074 return false; 2075 } 2076 2077 static int ata_do_link_spd_horkage(struct ata_device *dev) 2078 { 2079 struct ata_link *plink = ata_dev_phys_link(dev); 2080 u32 target, target_limit; 2081 2082 if (!sata_scr_valid(plink)) 2083 return 0; 2084 2085 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2086 target = 1; 2087 else 2088 return 0; 2089 2090 target_limit = (1 << target) - 1; 2091 2092 /* if already on stricter limit, no need to push further */ 2093 if (plink->sata_spd_limit <= target_limit) 2094 return 0; 2095 2096 plink->sata_spd_limit = target_limit; 2097 2098 /* Request another EH round by returning -EAGAIN if link is 2099 * going faster than the target speed. Forward progress is 2100 * guaranteed by setting sata_spd_limit to target_limit above. 2101 */ 2102 if (plink->sata_spd > target) { 2103 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2104 sata_spd_string(target)); 2105 return -EAGAIN; 2106 } 2107 return 0; 2108 } 2109 2110 static inline u8 ata_dev_knobble(struct ata_device *dev) 2111 { 2112 struct ata_port *ap = dev->link->ap; 2113 2114 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2115 return 0; 2116 2117 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2118 } 2119 2120 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2121 { 2122 struct ata_port *ap = dev->link->ap; 2123 unsigned int err_mask; 2124 2125 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2126 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2127 return; 2128 } 2129 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2130 0, ap->sector_buf, 1); 2131 if (!err_mask) { 2132 u8 *cmds = dev->ncq_send_recv_cmds; 2133 2134 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2135 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2136 2137 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2138 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2139 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2140 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2141 } 2142 } 2143 } 2144 2145 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2146 { 2147 struct ata_port *ap = dev->link->ap; 2148 unsigned int err_mask; 2149 2150 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2151 ata_dev_warn(dev, 2152 "NCQ Send/Recv Log not supported\n"); 2153 return; 2154 } 2155 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2156 0, ap->sector_buf, 1); 2157 if (!err_mask) { 2158 u8 *cmds = dev->ncq_non_data_cmds; 2159 2160 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2161 } 2162 } 2163 2164 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2165 { 2166 struct ata_port *ap = dev->link->ap; 2167 unsigned int err_mask; 2168 2169 err_mask = ata_read_log_page(dev, 2170 ATA_LOG_IDENTIFY_DEVICE, 2171 ATA_LOG_SATA_SETTINGS, 2172 ap->sector_buf, 2173 1); 2174 if (err_mask) 2175 goto not_supported; 2176 2177 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2178 goto not_supported; 2179 2180 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2181 2182 return; 2183 2184 not_supported: 2185 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE; 2186 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2187 } 2188 2189 static int ata_dev_config_ncq(struct ata_device *dev, 2190 char *desc, size_t desc_sz) 2191 { 2192 struct ata_port *ap = dev->link->ap; 2193 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2194 unsigned int err_mask; 2195 char *aa_desc = ""; 2196 2197 if (!ata_id_has_ncq(dev->id)) { 2198 desc[0] = '\0'; 2199 return 0; 2200 } 2201 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2202 return 0; 2203 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2204 snprintf(desc, desc_sz, "NCQ (not used)"); 2205 return 0; 2206 } 2207 if (ap->flags & ATA_FLAG_NCQ) { 2208 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2209 dev->flags |= ATA_DFLAG_NCQ; 2210 } 2211 2212 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2213 (ap->flags & ATA_FLAG_FPDMA_AA) && 2214 ata_id_has_fpdma_aa(dev->id)) { 2215 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2216 SATA_FPDMA_AA); 2217 if (err_mask) { 2218 ata_dev_err(dev, 2219 "failed to enable AA (error_mask=0x%x)\n", 2220 err_mask); 2221 if (err_mask != AC_ERR_DEV) { 2222 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2223 return -EIO; 2224 } 2225 } else 2226 aa_desc = ", AA"; 2227 } 2228 2229 if (hdepth >= ddepth) 2230 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2231 else 2232 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2233 ddepth, aa_desc); 2234 2235 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2236 if (ata_id_has_ncq_send_and_recv(dev->id)) 2237 ata_dev_config_ncq_send_recv(dev); 2238 if (ata_id_has_ncq_non_data(dev->id)) 2239 ata_dev_config_ncq_non_data(dev); 2240 if (ata_id_has_ncq_prio(dev->id)) 2241 ata_dev_config_ncq_prio(dev); 2242 } 2243 2244 return 0; 2245 } 2246 2247 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2248 { 2249 unsigned int err_mask; 2250 2251 if (!ata_id_has_sense_reporting(dev->id)) 2252 return; 2253 2254 if (ata_id_sense_reporting_enabled(dev->id)) 2255 return; 2256 2257 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2258 if (err_mask) { 2259 ata_dev_dbg(dev, 2260 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2261 err_mask); 2262 } 2263 } 2264 2265 static void ata_dev_config_zac(struct ata_device *dev) 2266 { 2267 struct ata_port *ap = dev->link->ap; 2268 unsigned int err_mask; 2269 u8 *identify_buf = ap->sector_buf; 2270 2271 dev->zac_zones_optimal_open = U32_MAX; 2272 dev->zac_zones_optimal_nonseq = U32_MAX; 2273 dev->zac_zones_max_open = U32_MAX; 2274 2275 /* 2276 * Always set the 'ZAC' flag for Host-managed devices. 2277 */ 2278 if (dev->class == ATA_DEV_ZAC) 2279 dev->flags |= ATA_DFLAG_ZAC; 2280 else if (ata_id_zoned_cap(dev->id) == 0x01) 2281 /* 2282 * Check for host-aware devices. 2283 */ 2284 dev->flags |= ATA_DFLAG_ZAC; 2285 2286 if (!(dev->flags & ATA_DFLAG_ZAC)) 2287 return; 2288 2289 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2290 ata_dev_warn(dev, 2291 "ATA Zoned Information Log not supported\n"); 2292 return; 2293 } 2294 2295 /* 2296 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2297 */ 2298 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2299 ATA_LOG_ZONED_INFORMATION, 2300 identify_buf, 1); 2301 if (!err_mask) { 2302 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2303 2304 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2305 if ((zoned_cap >> 63)) 2306 dev->zac_zoned_cap = (zoned_cap & 1); 2307 opt_open = get_unaligned_le64(&identify_buf[24]); 2308 if ((opt_open >> 63)) 2309 dev->zac_zones_optimal_open = (u32)opt_open; 2310 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2311 if ((opt_nonseq >> 63)) 2312 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2313 max_open = get_unaligned_le64(&identify_buf[40]); 2314 if ((max_open >> 63)) 2315 dev->zac_zones_max_open = (u32)max_open; 2316 } 2317 } 2318 2319 static void ata_dev_config_trusted(struct ata_device *dev) 2320 { 2321 struct ata_port *ap = dev->link->ap; 2322 u64 trusted_cap; 2323 unsigned int err; 2324 2325 if (!ata_id_has_trusted(dev->id)) 2326 return; 2327 2328 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2329 ata_dev_warn(dev, 2330 "Security Log not supported\n"); 2331 return; 2332 } 2333 2334 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2335 ap->sector_buf, 1); 2336 if (err) 2337 return; 2338 2339 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2340 if (!(trusted_cap & (1ULL << 63))) { 2341 ata_dev_dbg(dev, 2342 "Trusted Computing capability qword not valid!\n"); 2343 return; 2344 } 2345 2346 if (trusted_cap & (1 << 0)) 2347 dev->flags |= ATA_DFLAG_TRUSTED; 2348 } 2349 2350 static int ata_dev_config_lba(struct ata_device *dev) 2351 { 2352 struct ata_port *ap = dev->link->ap; 2353 const u16 *id = dev->id; 2354 const char *lba_desc; 2355 char ncq_desc[24]; 2356 int ret; 2357 2358 dev->flags |= ATA_DFLAG_LBA; 2359 2360 if (ata_id_has_lba48(id)) { 2361 lba_desc = "LBA48"; 2362 dev->flags |= ATA_DFLAG_LBA48; 2363 if (dev->n_sectors >= (1UL << 28) && 2364 ata_id_has_flush_ext(id)) 2365 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2366 } else { 2367 lba_desc = "LBA"; 2368 } 2369 2370 /* config NCQ */ 2371 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2372 2373 /* print device info to dmesg */ 2374 if (ata_msg_drv(ap) && ata_dev_print_info(dev)) 2375 ata_dev_info(dev, 2376 "%llu sectors, multi %u: %s %s\n", 2377 (unsigned long long)dev->n_sectors, 2378 dev->multi_count, lba_desc, ncq_desc); 2379 2380 return ret; 2381 } 2382 2383 static void ata_dev_config_chs(struct ata_device *dev) 2384 { 2385 struct ata_port *ap = dev->link->ap; 2386 const u16 *id = dev->id; 2387 2388 if (ata_id_current_chs_valid(id)) { 2389 /* Current CHS translation is valid. */ 2390 dev->cylinders = id[54]; 2391 dev->heads = id[55]; 2392 dev->sectors = id[56]; 2393 } else { 2394 /* Default translation */ 2395 dev->cylinders = id[1]; 2396 dev->heads = id[3]; 2397 dev->sectors = id[6]; 2398 } 2399 2400 /* print device info to dmesg */ 2401 if (ata_msg_drv(ap) && ata_dev_print_info(dev)) 2402 ata_dev_info(dev, 2403 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2404 (unsigned long long)dev->n_sectors, 2405 dev->multi_count, dev->cylinders, 2406 dev->heads, dev->sectors); 2407 } 2408 2409 static void ata_dev_config_devslp(struct ata_device *dev) 2410 { 2411 u8 *sata_setting = dev->link->ap->sector_buf; 2412 unsigned int err_mask; 2413 int i, j; 2414 2415 /* 2416 * Check device sleep capability. Get DevSlp timing variables 2417 * from SATA Settings page of Identify Device Data Log. 2418 */ 2419 if (!ata_id_has_devslp(dev->id)) 2420 return; 2421 2422 err_mask = ata_read_log_page(dev, 2423 ATA_LOG_IDENTIFY_DEVICE, 2424 ATA_LOG_SATA_SETTINGS, 2425 sata_setting, 1); 2426 if (err_mask) 2427 return; 2428 2429 dev->flags |= ATA_DFLAG_DEVSLP; 2430 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2431 j = ATA_LOG_DEVSLP_OFFSET + i; 2432 dev->devslp_timing[i] = sata_setting[j]; 2433 } 2434 } 2435 2436 static void ata_dev_print_features(struct ata_device *dev) 2437 { 2438 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2439 return; 2440 2441 ata_dev_info(dev, 2442 "Features:%s%s%s%s%s\n", 2443 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2444 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2445 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2446 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2447 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : ""); 2448 } 2449 2450 /** 2451 * ata_dev_configure - Configure the specified ATA/ATAPI device 2452 * @dev: Target device to configure 2453 * 2454 * Configure @dev according to @dev->id. Generic and low-level 2455 * driver specific fixups are also applied. 2456 * 2457 * LOCKING: 2458 * Kernel thread context (may sleep) 2459 * 2460 * RETURNS: 2461 * 0 on success, -errno otherwise 2462 */ 2463 int ata_dev_configure(struct ata_device *dev) 2464 { 2465 struct ata_port *ap = dev->link->ap; 2466 bool print_info = ata_dev_print_info(dev); 2467 const u16 *id = dev->id; 2468 unsigned long xfer_mask; 2469 unsigned int err_mask; 2470 char revbuf[7]; /* XYZ-99\0 */ 2471 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2472 char modelbuf[ATA_ID_PROD_LEN+1]; 2473 int rc; 2474 2475 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2476 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2477 return 0; 2478 } 2479 2480 if (ata_msg_probe(ap)) 2481 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2482 2483 /* set horkage */ 2484 dev->horkage |= ata_dev_blacklisted(dev); 2485 ata_force_horkage(dev); 2486 2487 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2488 ata_dev_info(dev, "unsupported device, disabling\n"); 2489 ata_dev_disable(dev); 2490 return 0; 2491 } 2492 2493 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2494 dev->class == ATA_DEV_ATAPI) { 2495 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2496 atapi_enabled ? "not supported with this driver" 2497 : "disabled"); 2498 ata_dev_disable(dev); 2499 return 0; 2500 } 2501 2502 rc = ata_do_link_spd_horkage(dev); 2503 if (rc) 2504 return rc; 2505 2506 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2507 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2508 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2509 dev->horkage |= ATA_HORKAGE_NOLPM; 2510 2511 if (ap->flags & ATA_FLAG_NO_LPM) 2512 dev->horkage |= ATA_HORKAGE_NOLPM; 2513 2514 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2515 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2516 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2517 } 2518 2519 /* let ACPI work its magic */ 2520 rc = ata_acpi_on_devcfg(dev); 2521 if (rc) 2522 return rc; 2523 2524 /* massage HPA, do it early as it might change IDENTIFY data */ 2525 rc = ata_hpa_resize(dev); 2526 if (rc) 2527 return rc; 2528 2529 /* print device capabilities */ 2530 if (ata_msg_probe(ap)) 2531 ata_dev_dbg(dev, 2532 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2533 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2534 __func__, 2535 id[49], id[82], id[83], id[84], 2536 id[85], id[86], id[87], id[88]); 2537 2538 /* initialize to-be-configured parameters */ 2539 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2540 dev->max_sectors = 0; 2541 dev->cdb_len = 0; 2542 dev->n_sectors = 0; 2543 dev->cylinders = 0; 2544 dev->heads = 0; 2545 dev->sectors = 0; 2546 dev->multi_count = 0; 2547 2548 /* 2549 * common ATA, ATAPI feature tests 2550 */ 2551 2552 /* find max transfer mode; for printk only */ 2553 xfer_mask = ata_id_xfermask(id); 2554 2555 if (ata_msg_probe(ap)) 2556 ata_dump_id(id); 2557 2558 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2559 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2560 sizeof(fwrevbuf)); 2561 2562 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2563 sizeof(modelbuf)); 2564 2565 /* ATA-specific feature tests */ 2566 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2567 if (ata_id_is_cfa(id)) { 2568 /* CPRM may make this media unusable */ 2569 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2570 ata_dev_warn(dev, 2571 "supports DRM functions and may not be fully accessible\n"); 2572 snprintf(revbuf, 7, "CFA"); 2573 } else { 2574 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2575 /* Warn the user if the device has TPM extensions */ 2576 if (ata_id_has_tpm(id)) 2577 ata_dev_warn(dev, 2578 "supports DRM functions and may not be fully accessible\n"); 2579 } 2580 2581 dev->n_sectors = ata_id_n_sectors(id); 2582 2583 /* get current R/W Multiple count setting */ 2584 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2585 unsigned int max = dev->id[47] & 0xff; 2586 unsigned int cnt = dev->id[59] & 0xff; 2587 /* only recognize/allow powers of two here */ 2588 if (is_power_of_2(max) && is_power_of_2(cnt)) 2589 if (cnt <= max) 2590 dev->multi_count = cnt; 2591 } 2592 2593 /* print device info to dmesg */ 2594 if (ata_msg_drv(ap) && print_info) 2595 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2596 revbuf, modelbuf, fwrevbuf, 2597 ata_mode_string(xfer_mask)); 2598 2599 if (ata_id_has_lba(id)) { 2600 rc = ata_dev_config_lba(dev); 2601 if (rc) 2602 return rc; 2603 } else { 2604 ata_dev_config_chs(dev); 2605 } 2606 2607 ata_dev_config_devslp(dev); 2608 ata_dev_config_sense_reporting(dev); 2609 ata_dev_config_zac(dev); 2610 ata_dev_config_trusted(dev); 2611 dev->cdb_len = 32; 2612 2613 if (ata_msg_drv(ap) && print_info) 2614 ata_dev_print_features(dev); 2615 } 2616 2617 /* ATAPI-specific feature tests */ 2618 else if (dev->class == ATA_DEV_ATAPI) { 2619 const char *cdb_intr_string = ""; 2620 const char *atapi_an_string = ""; 2621 const char *dma_dir_string = ""; 2622 u32 sntf; 2623 2624 rc = atapi_cdb_len(id); 2625 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2626 if (ata_msg_warn(ap)) 2627 ata_dev_warn(dev, "unsupported CDB len\n"); 2628 rc = -EINVAL; 2629 goto err_out_nosup; 2630 } 2631 dev->cdb_len = (unsigned int) rc; 2632 2633 /* Enable ATAPI AN if both the host and device have 2634 * the support. If PMP is attached, SNTF is required 2635 * to enable ATAPI AN to discern between PHY status 2636 * changed notifications and ATAPI ANs. 2637 */ 2638 if (atapi_an && 2639 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2640 (!sata_pmp_attached(ap) || 2641 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2642 /* issue SET feature command to turn this on */ 2643 err_mask = ata_dev_set_feature(dev, 2644 SETFEATURES_SATA_ENABLE, SATA_AN); 2645 if (err_mask) 2646 ata_dev_err(dev, 2647 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2648 err_mask); 2649 else { 2650 dev->flags |= ATA_DFLAG_AN; 2651 atapi_an_string = ", ATAPI AN"; 2652 } 2653 } 2654 2655 if (ata_id_cdb_intr(dev->id)) { 2656 dev->flags |= ATA_DFLAG_CDB_INTR; 2657 cdb_intr_string = ", CDB intr"; 2658 } 2659 2660 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2661 dev->flags |= ATA_DFLAG_DMADIR; 2662 dma_dir_string = ", DMADIR"; 2663 } 2664 2665 if (ata_id_has_da(dev->id)) { 2666 dev->flags |= ATA_DFLAG_DA; 2667 zpodd_init(dev); 2668 } 2669 2670 /* print device info to dmesg */ 2671 if (ata_msg_drv(ap) && print_info) 2672 ata_dev_info(dev, 2673 "ATAPI: %s, %s, max %s%s%s%s\n", 2674 modelbuf, fwrevbuf, 2675 ata_mode_string(xfer_mask), 2676 cdb_intr_string, atapi_an_string, 2677 dma_dir_string); 2678 } 2679 2680 /* determine max_sectors */ 2681 dev->max_sectors = ATA_MAX_SECTORS; 2682 if (dev->flags & ATA_DFLAG_LBA48) 2683 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2684 2685 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2686 200 sectors */ 2687 if (ata_dev_knobble(dev)) { 2688 if (ata_msg_drv(ap) && print_info) 2689 ata_dev_info(dev, "applying bridge limits\n"); 2690 dev->udma_mask &= ATA_UDMA5; 2691 dev->max_sectors = ATA_MAX_SECTORS; 2692 } 2693 2694 if ((dev->class == ATA_DEV_ATAPI) && 2695 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2696 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2697 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2698 } 2699 2700 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2701 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2702 dev->max_sectors); 2703 2704 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2705 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2706 dev->max_sectors); 2707 2708 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2709 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2710 2711 if (ap->ops->dev_config) 2712 ap->ops->dev_config(dev); 2713 2714 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2715 /* Let the user know. We don't want to disallow opens for 2716 rescue purposes, or in case the vendor is just a blithering 2717 idiot. Do this after the dev_config call as some controllers 2718 with buggy firmware may want to avoid reporting false device 2719 bugs */ 2720 2721 if (print_info) { 2722 ata_dev_warn(dev, 2723 "Drive reports diagnostics failure. This may indicate a drive\n"); 2724 ata_dev_warn(dev, 2725 "fault or invalid emulation. Contact drive vendor for information.\n"); 2726 } 2727 } 2728 2729 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2730 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2731 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2732 } 2733 2734 return 0; 2735 2736 err_out_nosup: 2737 if (ata_msg_probe(ap)) 2738 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2739 return rc; 2740 } 2741 2742 /** 2743 * ata_cable_40wire - return 40 wire cable type 2744 * @ap: port 2745 * 2746 * Helper method for drivers which want to hardwire 40 wire cable 2747 * detection. 2748 */ 2749 2750 int ata_cable_40wire(struct ata_port *ap) 2751 { 2752 return ATA_CBL_PATA40; 2753 } 2754 EXPORT_SYMBOL_GPL(ata_cable_40wire); 2755 2756 /** 2757 * ata_cable_80wire - return 80 wire cable type 2758 * @ap: port 2759 * 2760 * Helper method for drivers which want to hardwire 80 wire cable 2761 * detection. 2762 */ 2763 2764 int ata_cable_80wire(struct ata_port *ap) 2765 { 2766 return ATA_CBL_PATA80; 2767 } 2768 EXPORT_SYMBOL_GPL(ata_cable_80wire); 2769 2770 /** 2771 * ata_cable_unknown - return unknown PATA cable. 2772 * @ap: port 2773 * 2774 * Helper method for drivers which have no PATA cable detection. 2775 */ 2776 2777 int ata_cable_unknown(struct ata_port *ap) 2778 { 2779 return ATA_CBL_PATA_UNK; 2780 } 2781 EXPORT_SYMBOL_GPL(ata_cable_unknown); 2782 2783 /** 2784 * ata_cable_ignore - return ignored PATA cable. 2785 * @ap: port 2786 * 2787 * Helper method for drivers which don't use cable type to limit 2788 * transfer mode. 2789 */ 2790 int ata_cable_ignore(struct ata_port *ap) 2791 { 2792 return ATA_CBL_PATA_IGN; 2793 } 2794 EXPORT_SYMBOL_GPL(ata_cable_ignore); 2795 2796 /** 2797 * ata_cable_sata - return SATA cable type 2798 * @ap: port 2799 * 2800 * Helper method for drivers which have SATA cables 2801 */ 2802 2803 int ata_cable_sata(struct ata_port *ap) 2804 { 2805 return ATA_CBL_SATA; 2806 } 2807 EXPORT_SYMBOL_GPL(ata_cable_sata); 2808 2809 /** 2810 * ata_bus_probe - Reset and probe ATA bus 2811 * @ap: Bus to probe 2812 * 2813 * Master ATA bus probing function. Initiates a hardware-dependent 2814 * bus reset, then attempts to identify any devices found on 2815 * the bus. 2816 * 2817 * LOCKING: 2818 * PCI/etc. bus probe sem. 2819 * 2820 * RETURNS: 2821 * Zero on success, negative errno otherwise. 2822 */ 2823 2824 int ata_bus_probe(struct ata_port *ap) 2825 { 2826 unsigned int classes[ATA_MAX_DEVICES]; 2827 int tries[ATA_MAX_DEVICES]; 2828 int rc; 2829 struct ata_device *dev; 2830 2831 ata_for_each_dev(dev, &ap->link, ALL) 2832 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2833 2834 retry: 2835 ata_for_each_dev(dev, &ap->link, ALL) { 2836 /* If we issue an SRST then an ATA drive (not ATAPI) 2837 * may change configuration and be in PIO0 timing. If 2838 * we do a hard reset (or are coming from power on) 2839 * this is true for ATA or ATAPI. Until we've set a 2840 * suitable controller mode we should not touch the 2841 * bus as we may be talking too fast. 2842 */ 2843 dev->pio_mode = XFER_PIO_0; 2844 dev->dma_mode = 0xff; 2845 2846 /* If the controller has a pio mode setup function 2847 * then use it to set the chipset to rights. Don't 2848 * touch the DMA setup as that will be dealt with when 2849 * configuring devices. 2850 */ 2851 if (ap->ops->set_piomode) 2852 ap->ops->set_piomode(ap, dev); 2853 } 2854 2855 /* reset and determine device classes */ 2856 ap->ops->phy_reset(ap); 2857 2858 ata_for_each_dev(dev, &ap->link, ALL) { 2859 if (dev->class != ATA_DEV_UNKNOWN) 2860 classes[dev->devno] = dev->class; 2861 else 2862 classes[dev->devno] = ATA_DEV_NONE; 2863 2864 dev->class = ATA_DEV_UNKNOWN; 2865 } 2866 2867 /* read IDENTIFY page and configure devices. We have to do the identify 2868 specific sequence bass-ackwards so that PDIAG- is released by 2869 the slave device */ 2870 2871 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2872 if (tries[dev->devno]) 2873 dev->class = classes[dev->devno]; 2874 2875 if (!ata_dev_enabled(dev)) 2876 continue; 2877 2878 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2879 dev->id); 2880 if (rc) 2881 goto fail; 2882 } 2883 2884 /* Now ask for the cable type as PDIAG- should have been released */ 2885 if (ap->ops->cable_detect) 2886 ap->cbl = ap->ops->cable_detect(ap); 2887 2888 /* We may have SATA bridge glue hiding here irrespective of 2889 * the reported cable types and sensed types. When SATA 2890 * drives indicate we have a bridge, we don't know which end 2891 * of the link the bridge is which is a problem. 2892 */ 2893 ata_for_each_dev(dev, &ap->link, ENABLED) 2894 if (ata_id_is_sata(dev->id)) 2895 ap->cbl = ATA_CBL_SATA; 2896 2897 /* After the identify sequence we can now set up the devices. We do 2898 this in the normal order so that the user doesn't get confused */ 2899 2900 ata_for_each_dev(dev, &ap->link, ENABLED) { 2901 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2902 rc = ata_dev_configure(dev); 2903 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2904 if (rc) 2905 goto fail; 2906 } 2907 2908 /* configure transfer mode */ 2909 rc = ata_set_mode(&ap->link, &dev); 2910 if (rc) 2911 goto fail; 2912 2913 ata_for_each_dev(dev, &ap->link, ENABLED) 2914 return 0; 2915 2916 return -ENODEV; 2917 2918 fail: 2919 tries[dev->devno]--; 2920 2921 switch (rc) { 2922 case -EINVAL: 2923 /* eeek, something went very wrong, give up */ 2924 tries[dev->devno] = 0; 2925 break; 2926 2927 case -ENODEV: 2928 /* give it just one more chance */ 2929 tries[dev->devno] = min(tries[dev->devno], 1); 2930 fallthrough; 2931 case -EIO: 2932 if (tries[dev->devno] == 1) { 2933 /* This is the last chance, better to slow 2934 * down than lose it. 2935 */ 2936 sata_down_spd_limit(&ap->link, 0); 2937 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2938 } 2939 } 2940 2941 if (!tries[dev->devno]) 2942 ata_dev_disable(dev); 2943 2944 goto retry; 2945 } 2946 2947 /** 2948 * sata_print_link_status - Print SATA link status 2949 * @link: SATA link to printk link status about 2950 * 2951 * This function prints link speed and status of a SATA link. 2952 * 2953 * LOCKING: 2954 * None. 2955 */ 2956 static void sata_print_link_status(struct ata_link *link) 2957 { 2958 u32 sstatus, scontrol, tmp; 2959 2960 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2961 return; 2962 sata_scr_read(link, SCR_CONTROL, &scontrol); 2963 2964 if (ata_phys_link_online(link)) { 2965 tmp = (sstatus >> 4) & 0xf; 2966 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2967 sata_spd_string(tmp), sstatus, scontrol); 2968 } else { 2969 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2970 sstatus, scontrol); 2971 } 2972 } 2973 2974 /** 2975 * ata_dev_pair - return other device on cable 2976 * @adev: device 2977 * 2978 * Obtain the other device on the same cable, or if none is 2979 * present NULL is returned 2980 */ 2981 2982 struct ata_device *ata_dev_pair(struct ata_device *adev) 2983 { 2984 struct ata_link *link = adev->link; 2985 struct ata_device *pair = &link->device[1 - adev->devno]; 2986 if (!ata_dev_enabled(pair)) 2987 return NULL; 2988 return pair; 2989 } 2990 EXPORT_SYMBOL_GPL(ata_dev_pair); 2991 2992 /** 2993 * sata_down_spd_limit - adjust SATA spd limit downward 2994 * @link: Link to adjust SATA spd limit for 2995 * @spd_limit: Additional limit 2996 * 2997 * Adjust SATA spd limit of @link downward. Note that this 2998 * function only adjusts the limit. The change must be applied 2999 * using sata_set_spd(). 3000 * 3001 * If @spd_limit is non-zero, the speed is limited to equal to or 3002 * lower than @spd_limit if such speed is supported. If 3003 * @spd_limit is slower than any supported speed, only the lowest 3004 * supported speed is allowed. 3005 * 3006 * LOCKING: 3007 * Inherited from caller. 3008 * 3009 * RETURNS: 3010 * 0 on success, negative errno on failure 3011 */ 3012 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3013 { 3014 u32 sstatus, spd, mask; 3015 int rc, bit; 3016 3017 if (!sata_scr_valid(link)) 3018 return -EOPNOTSUPP; 3019 3020 /* If SCR can be read, use it to determine the current SPD. 3021 * If not, use cached value in link->sata_spd. 3022 */ 3023 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3024 if (rc == 0 && ata_sstatus_online(sstatus)) 3025 spd = (sstatus >> 4) & 0xf; 3026 else 3027 spd = link->sata_spd; 3028 3029 mask = link->sata_spd_limit; 3030 if (mask <= 1) 3031 return -EINVAL; 3032 3033 /* unconditionally mask off the highest bit */ 3034 bit = fls(mask) - 1; 3035 mask &= ~(1 << bit); 3036 3037 /* 3038 * Mask off all speeds higher than or equal to the current one. At 3039 * this point, if current SPD is not available and we previously 3040 * recorded the link speed from SStatus, the driver has already 3041 * masked off the highest bit so mask should already be 1 or 0. 3042 * Otherwise, we should not force 1.5Gbps on a link where we have 3043 * not previously recorded speed from SStatus. Just return in this 3044 * case. 3045 */ 3046 if (spd > 1) 3047 mask &= (1 << (spd - 1)) - 1; 3048 else 3049 return -EINVAL; 3050 3051 /* were we already at the bottom? */ 3052 if (!mask) 3053 return -EINVAL; 3054 3055 if (spd_limit) { 3056 if (mask & ((1 << spd_limit) - 1)) 3057 mask &= (1 << spd_limit) - 1; 3058 else { 3059 bit = ffs(mask) - 1; 3060 mask = 1 << bit; 3061 } 3062 } 3063 3064 link->sata_spd_limit = mask; 3065 3066 ata_link_warn(link, "limiting SATA link speed to %s\n", 3067 sata_spd_string(fls(mask))); 3068 3069 return 0; 3070 } 3071 3072 #ifdef CONFIG_ATA_ACPI 3073 /** 3074 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3075 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3076 * @cycle: cycle duration in ns 3077 * 3078 * Return matching xfer mode for @cycle. The returned mode is of 3079 * the transfer type specified by @xfer_shift. If @cycle is too 3080 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3081 * than the fastest known mode, the fasted mode is returned. 3082 * 3083 * LOCKING: 3084 * None. 3085 * 3086 * RETURNS: 3087 * Matching xfer_mode, 0xff if no match found. 3088 */ 3089 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3090 { 3091 u8 base_mode = 0xff, last_mode = 0xff; 3092 const struct ata_xfer_ent *ent; 3093 const struct ata_timing *t; 3094 3095 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3096 if (ent->shift == xfer_shift) 3097 base_mode = ent->base; 3098 3099 for (t = ata_timing_find_mode(base_mode); 3100 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3101 unsigned short this_cycle; 3102 3103 switch (xfer_shift) { 3104 case ATA_SHIFT_PIO: 3105 case ATA_SHIFT_MWDMA: 3106 this_cycle = t->cycle; 3107 break; 3108 case ATA_SHIFT_UDMA: 3109 this_cycle = t->udma; 3110 break; 3111 default: 3112 return 0xff; 3113 } 3114 3115 if (cycle > this_cycle) 3116 break; 3117 3118 last_mode = t->mode; 3119 } 3120 3121 return last_mode; 3122 } 3123 #endif 3124 3125 /** 3126 * ata_down_xfermask_limit - adjust dev xfer masks downward 3127 * @dev: Device to adjust xfer masks 3128 * @sel: ATA_DNXFER_* selector 3129 * 3130 * Adjust xfer masks of @dev downward. Note that this function 3131 * does not apply the change. Invoking ata_set_mode() afterwards 3132 * will apply the limit. 3133 * 3134 * LOCKING: 3135 * Inherited from caller. 3136 * 3137 * RETURNS: 3138 * 0 on success, negative errno on failure 3139 */ 3140 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3141 { 3142 char buf[32]; 3143 unsigned long orig_mask, xfer_mask; 3144 unsigned long pio_mask, mwdma_mask, udma_mask; 3145 int quiet, highbit; 3146 3147 quiet = !!(sel & ATA_DNXFER_QUIET); 3148 sel &= ~ATA_DNXFER_QUIET; 3149 3150 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3151 dev->mwdma_mask, 3152 dev->udma_mask); 3153 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3154 3155 switch (sel) { 3156 case ATA_DNXFER_PIO: 3157 highbit = fls(pio_mask) - 1; 3158 pio_mask &= ~(1 << highbit); 3159 break; 3160 3161 case ATA_DNXFER_DMA: 3162 if (udma_mask) { 3163 highbit = fls(udma_mask) - 1; 3164 udma_mask &= ~(1 << highbit); 3165 if (!udma_mask) 3166 return -ENOENT; 3167 } else if (mwdma_mask) { 3168 highbit = fls(mwdma_mask) - 1; 3169 mwdma_mask &= ~(1 << highbit); 3170 if (!mwdma_mask) 3171 return -ENOENT; 3172 } 3173 break; 3174 3175 case ATA_DNXFER_40C: 3176 udma_mask &= ATA_UDMA_MASK_40C; 3177 break; 3178 3179 case ATA_DNXFER_FORCE_PIO0: 3180 pio_mask &= 1; 3181 fallthrough; 3182 case ATA_DNXFER_FORCE_PIO: 3183 mwdma_mask = 0; 3184 udma_mask = 0; 3185 break; 3186 3187 default: 3188 BUG(); 3189 } 3190 3191 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3192 3193 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3194 return -ENOENT; 3195 3196 if (!quiet) { 3197 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3198 snprintf(buf, sizeof(buf), "%s:%s", 3199 ata_mode_string(xfer_mask), 3200 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3201 else 3202 snprintf(buf, sizeof(buf), "%s", 3203 ata_mode_string(xfer_mask)); 3204 3205 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3206 } 3207 3208 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3209 &dev->udma_mask); 3210 3211 return 0; 3212 } 3213 3214 static int ata_dev_set_mode(struct ata_device *dev) 3215 { 3216 struct ata_port *ap = dev->link->ap; 3217 struct ata_eh_context *ehc = &dev->link->eh_context; 3218 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3219 const char *dev_err_whine = ""; 3220 int ign_dev_err = 0; 3221 unsigned int err_mask = 0; 3222 int rc; 3223 3224 dev->flags &= ~ATA_DFLAG_PIO; 3225 if (dev->xfer_shift == ATA_SHIFT_PIO) 3226 dev->flags |= ATA_DFLAG_PIO; 3227 3228 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3229 dev_err_whine = " (SET_XFERMODE skipped)"; 3230 else { 3231 if (nosetxfer) 3232 ata_dev_warn(dev, 3233 "NOSETXFER but PATA detected - can't " 3234 "skip SETXFER, might malfunction\n"); 3235 err_mask = ata_dev_set_xfermode(dev); 3236 } 3237 3238 if (err_mask & ~AC_ERR_DEV) 3239 goto fail; 3240 3241 /* revalidate */ 3242 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3243 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3244 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3245 if (rc) 3246 return rc; 3247 3248 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3249 /* Old CFA may refuse this command, which is just fine */ 3250 if (ata_id_is_cfa(dev->id)) 3251 ign_dev_err = 1; 3252 /* Catch several broken garbage emulations plus some pre 3253 ATA devices */ 3254 if (ata_id_major_version(dev->id) == 0 && 3255 dev->pio_mode <= XFER_PIO_2) 3256 ign_dev_err = 1; 3257 /* Some very old devices and some bad newer ones fail 3258 any kind of SET_XFERMODE request but support PIO0-2 3259 timings and no IORDY */ 3260 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3261 ign_dev_err = 1; 3262 } 3263 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3264 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3265 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3266 dev->dma_mode == XFER_MW_DMA_0 && 3267 (dev->id[63] >> 8) & 1) 3268 ign_dev_err = 1; 3269 3270 /* if the device is actually configured correctly, ignore dev err */ 3271 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3272 ign_dev_err = 1; 3273 3274 if (err_mask & AC_ERR_DEV) { 3275 if (!ign_dev_err) 3276 goto fail; 3277 else 3278 dev_err_whine = " (device error ignored)"; 3279 } 3280 3281 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3282 dev->xfer_shift, (int)dev->xfer_mode); 3283 3284 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3285 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3286 ata_dev_info(dev, "configured for %s%s\n", 3287 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3288 dev_err_whine); 3289 3290 return 0; 3291 3292 fail: 3293 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3294 return -EIO; 3295 } 3296 3297 /** 3298 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3299 * @link: link on which timings will be programmed 3300 * @r_failed_dev: out parameter for failed device 3301 * 3302 * Standard implementation of the function used to tune and set 3303 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3304 * ata_dev_set_mode() fails, pointer to the failing device is 3305 * returned in @r_failed_dev. 3306 * 3307 * LOCKING: 3308 * PCI/etc. bus probe sem. 3309 * 3310 * RETURNS: 3311 * 0 on success, negative errno otherwise 3312 */ 3313 3314 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3315 { 3316 struct ata_port *ap = link->ap; 3317 struct ata_device *dev; 3318 int rc = 0, used_dma = 0, found = 0; 3319 3320 /* step 1: calculate xfer_mask */ 3321 ata_for_each_dev(dev, link, ENABLED) { 3322 unsigned long pio_mask, dma_mask; 3323 unsigned int mode_mask; 3324 3325 mode_mask = ATA_DMA_MASK_ATA; 3326 if (dev->class == ATA_DEV_ATAPI) 3327 mode_mask = ATA_DMA_MASK_ATAPI; 3328 else if (ata_id_is_cfa(dev->id)) 3329 mode_mask = ATA_DMA_MASK_CFA; 3330 3331 ata_dev_xfermask(dev); 3332 ata_force_xfermask(dev); 3333 3334 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3335 3336 if (libata_dma_mask & mode_mask) 3337 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3338 dev->udma_mask); 3339 else 3340 dma_mask = 0; 3341 3342 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3343 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3344 3345 found = 1; 3346 if (ata_dma_enabled(dev)) 3347 used_dma = 1; 3348 } 3349 if (!found) 3350 goto out; 3351 3352 /* step 2: always set host PIO timings */ 3353 ata_for_each_dev(dev, link, ENABLED) { 3354 if (dev->pio_mode == 0xff) { 3355 ata_dev_warn(dev, "no PIO support\n"); 3356 rc = -EINVAL; 3357 goto out; 3358 } 3359 3360 dev->xfer_mode = dev->pio_mode; 3361 dev->xfer_shift = ATA_SHIFT_PIO; 3362 if (ap->ops->set_piomode) 3363 ap->ops->set_piomode(ap, dev); 3364 } 3365 3366 /* step 3: set host DMA timings */ 3367 ata_for_each_dev(dev, link, ENABLED) { 3368 if (!ata_dma_enabled(dev)) 3369 continue; 3370 3371 dev->xfer_mode = dev->dma_mode; 3372 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3373 if (ap->ops->set_dmamode) 3374 ap->ops->set_dmamode(ap, dev); 3375 } 3376 3377 /* step 4: update devices' xfer mode */ 3378 ata_for_each_dev(dev, link, ENABLED) { 3379 rc = ata_dev_set_mode(dev); 3380 if (rc) 3381 goto out; 3382 } 3383 3384 /* Record simplex status. If we selected DMA then the other 3385 * host channels are not permitted to do so. 3386 */ 3387 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3388 ap->host->simplex_claimed = ap; 3389 3390 out: 3391 if (rc) 3392 *r_failed_dev = dev; 3393 return rc; 3394 } 3395 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3396 3397 /** 3398 * ata_wait_ready - wait for link to become ready 3399 * @link: link to be waited on 3400 * @deadline: deadline jiffies for the operation 3401 * @check_ready: callback to check link readiness 3402 * 3403 * Wait for @link to become ready. @check_ready should return 3404 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3405 * link doesn't seem to be occupied, other errno for other error 3406 * conditions. 3407 * 3408 * Transient -ENODEV conditions are allowed for 3409 * ATA_TMOUT_FF_WAIT. 3410 * 3411 * LOCKING: 3412 * EH context. 3413 * 3414 * RETURNS: 3415 * 0 if @link is ready before @deadline; otherwise, -errno. 3416 */ 3417 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3418 int (*check_ready)(struct ata_link *link)) 3419 { 3420 unsigned long start = jiffies; 3421 unsigned long nodev_deadline; 3422 int warned = 0; 3423 3424 /* choose which 0xff timeout to use, read comment in libata.h */ 3425 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3426 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3427 else 3428 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3429 3430 /* Slave readiness can't be tested separately from master. On 3431 * M/S emulation configuration, this function should be called 3432 * only on the master and it will handle both master and slave. 3433 */ 3434 WARN_ON(link == link->ap->slave_link); 3435 3436 if (time_after(nodev_deadline, deadline)) 3437 nodev_deadline = deadline; 3438 3439 while (1) { 3440 unsigned long now = jiffies; 3441 int ready, tmp; 3442 3443 ready = tmp = check_ready(link); 3444 if (ready > 0) 3445 return 0; 3446 3447 /* 3448 * -ENODEV could be transient. Ignore -ENODEV if link 3449 * is online. Also, some SATA devices take a long 3450 * time to clear 0xff after reset. Wait for 3451 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3452 * offline. 3453 * 3454 * Note that some PATA controllers (pata_ali) explode 3455 * if status register is read more than once when 3456 * there's no device attached. 3457 */ 3458 if (ready == -ENODEV) { 3459 if (ata_link_online(link)) 3460 ready = 0; 3461 else if ((link->ap->flags & ATA_FLAG_SATA) && 3462 !ata_link_offline(link) && 3463 time_before(now, nodev_deadline)) 3464 ready = 0; 3465 } 3466 3467 if (ready) 3468 return ready; 3469 if (time_after(now, deadline)) 3470 return -EBUSY; 3471 3472 if (!warned && time_after(now, start + 5 * HZ) && 3473 (deadline - now > 3 * HZ)) { 3474 ata_link_warn(link, 3475 "link is slow to respond, please be patient " 3476 "(ready=%d)\n", tmp); 3477 warned = 1; 3478 } 3479 3480 ata_msleep(link->ap, 50); 3481 } 3482 } 3483 3484 /** 3485 * ata_wait_after_reset - wait for link to become ready after reset 3486 * @link: link to be waited on 3487 * @deadline: deadline jiffies for the operation 3488 * @check_ready: callback to check link readiness 3489 * 3490 * Wait for @link to become ready after reset. 3491 * 3492 * LOCKING: 3493 * EH context. 3494 * 3495 * RETURNS: 3496 * 0 if @link is ready before @deadline; otherwise, -errno. 3497 */ 3498 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3499 int (*check_ready)(struct ata_link *link)) 3500 { 3501 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3502 3503 return ata_wait_ready(link, deadline, check_ready); 3504 } 3505 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3506 3507 /** 3508 * ata_std_prereset - prepare for reset 3509 * @link: ATA link to be reset 3510 * @deadline: deadline jiffies for the operation 3511 * 3512 * @link is about to be reset. Initialize it. Failure from 3513 * prereset makes libata abort whole reset sequence and give up 3514 * that port, so prereset should be best-effort. It does its 3515 * best to prepare for reset sequence but if things go wrong, it 3516 * should just whine, not fail. 3517 * 3518 * LOCKING: 3519 * Kernel thread context (may sleep) 3520 * 3521 * RETURNS: 3522 * 0 on success, -errno otherwise. 3523 */ 3524 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3525 { 3526 struct ata_port *ap = link->ap; 3527 struct ata_eh_context *ehc = &link->eh_context; 3528 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3529 int rc; 3530 3531 /* if we're about to do hardreset, nothing more to do */ 3532 if (ehc->i.action & ATA_EH_HARDRESET) 3533 return 0; 3534 3535 /* if SATA, resume link */ 3536 if (ap->flags & ATA_FLAG_SATA) { 3537 rc = sata_link_resume(link, timing, deadline); 3538 /* whine about phy resume failure but proceed */ 3539 if (rc && rc != -EOPNOTSUPP) 3540 ata_link_warn(link, 3541 "failed to resume link for reset (errno=%d)\n", 3542 rc); 3543 } 3544 3545 /* no point in trying softreset on offline link */ 3546 if (ata_phys_link_offline(link)) 3547 ehc->i.action &= ~ATA_EH_SOFTRESET; 3548 3549 return 0; 3550 } 3551 EXPORT_SYMBOL_GPL(ata_std_prereset); 3552 3553 /** 3554 * sata_std_hardreset - COMRESET w/o waiting or classification 3555 * @link: link to reset 3556 * @class: resulting class of attached device 3557 * @deadline: deadline jiffies for the operation 3558 * 3559 * Standard SATA COMRESET w/o waiting or classification. 3560 * 3561 * LOCKING: 3562 * Kernel thread context (may sleep) 3563 * 3564 * RETURNS: 3565 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3566 */ 3567 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3568 unsigned long deadline) 3569 { 3570 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3571 bool online; 3572 int rc; 3573 3574 /* do hardreset */ 3575 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3576 return online ? -EAGAIN : rc; 3577 } 3578 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3579 3580 /** 3581 * ata_std_postreset - standard postreset callback 3582 * @link: the target ata_link 3583 * @classes: classes of attached devices 3584 * 3585 * This function is invoked after a successful reset. Note that 3586 * the device might have been reset more than once using 3587 * different reset methods before postreset is invoked. 3588 * 3589 * LOCKING: 3590 * Kernel thread context (may sleep) 3591 */ 3592 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3593 { 3594 u32 serror; 3595 3596 DPRINTK("ENTER\n"); 3597 3598 /* reset complete, clear SError */ 3599 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3600 sata_scr_write(link, SCR_ERROR, serror); 3601 3602 /* print link status */ 3603 sata_print_link_status(link); 3604 3605 DPRINTK("EXIT\n"); 3606 } 3607 EXPORT_SYMBOL_GPL(ata_std_postreset); 3608 3609 /** 3610 * ata_dev_same_device - Determine whether new ID matches configured device 3611 * @dev: device to compare against 3612 * @new_class: class of the new device 3613 * @new_id: IDENTIFY page of the new device 3614 * 3615 * Compare @new_class and @new_id against @dev and determine 3616 * whether @dev is the device indicated by @new_class and 3617 * @new_id. 3618 * 3619 * LOCKING: 3620 * None. 3621 * 3622 * RETURNS: 3623 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3624 */ 3625 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3626 const u16 *new_id) 3627 { 3628 const u16 *old_id = dev->id; 3629 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3630 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3631 3632 if (dev->class != new_class) { 3633 ata_dev_info(dev, "class mismatch %d != %d\n", 3634 dev->class, new_class); 3635 return 0; 3636 } 3637 3638 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3639 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3640 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3641 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3642 3643 if (strcmp(model[0], model[1])) { 3644 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3645 model[0], model[1]); 3646 return 0; 3647 } 3648 3649 if (strcmp(serial[0], serial[1])) { 3650 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3651 serial[0], serial[1]); 3652 return 0; 3653 } 3654 3655 return 1; 3656 } 3657 3658 /** 3659 * ata_dev_reread_id - Re-read IDENTIFY data 3660 * @dev: target ATA device 3661 * @readid_flags: read ID flags 3662 * 3663 * Re-read IDENTIFY page and make sure @dev is still attached to 3664 * the port. 3665 * 3666 * LOCKING: 3667 * Kernel thread context (may sleep) 3668 * 3669 * RETURNS: 3670 * 0 on success, negative errno otherwise 3671 */ 3672 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3673 { 3674 unsigned int class = dev->class; 3675 u16 *id = (void *)dev->link->ap->sector_buf; 3676 int rc; 3677 3678 /* read ID data */ 3679 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3680 if (rc) 3681 return rc; 3682 3683 /* is the device still there? */ 3684 if (!ata_dev_same_device(dev, class, id)) 3685 return -ENODEV; 3686 3687 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3688 return 0; 3689 } 3690 3691 /** 3692 * ata_dev_revalidate - Revalidate ATA device 3693 * @dev: device to revalidate 3694 * @new_class: new class code 3695 * @readid_flags: read ID flags 3696 * 3697 * Re-read IDENTIFY page, make sure @dev is still attached to the 3698 * port and reconfigure it according to the new IDENTIFY page. 3699 * 3700 * LOCKING: 3701 * Kernel thread context (may sleep) 3702 * 3703 * RETURNS: 3704 * 0 on success, negative errno otherwise 3705 */ 3706 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3707 unsigned int readid_flags) 3708 { 3709 u64 n_sectors = dev->n_sectors; 3710 u64 n_native_sectors = dev->n_native_sectors; 3711 int rc; 3712 3713 if (!ata_dev_enabled(dev)) 3714 return -ENODEV; 3715 3716 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3717 if (ata_class_enabled(new_class) && 3718 new_class != ATA_DEV_ATA && 3719 new_class != ATA_DEV_ATAPI && 3720 new_class != ATA_DEV_ZAC && 3721 new_class != ATA_DEV_SEMB) { 3722 ata_dev_info(dev, "class mismatch %u != %u\n", 3723 dev->class, new_class); 3724 rc = -ENODEV; 3725 goto fail; 3726 } 3727 3728 /* re-read ID */ 3729 rc = ata_dev_reread_id(dev, readid_flags); 3730 if (rc) 3731 goto fail; 3732 3733 /* configure device according to the new ID */ 3734 rc = ata_dev_configure(dev); 3735 if (rc) 3736 goto fail; 3737 3738 /* verify n_sectors hasn't changed */ 3739 if (dev->class != ATA_DEV_ATA || !n_sectors || 3740 dev->n_sectors == n_sectors) 3741 return 0; 3742 3743 /* n_sectors has changed */ 3744 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3745 (unsigned long long)n_sectors, 3746 (unsigned long long)dev->n_sectors); 3747 3748 /* 3749 * Something could have caused HPA to be unlocked 3750 * involuntarily. If n_native_sectors hasn't changed and the 3751 * new size matches it, keep the device. 3752 */ 3753 if (dev->n_native_sectors == n_native_sectors && 3754 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3755 ata_dev_warn(dev, 3756 "new n_sectors matches native, probably " 3757 "late HPA unlock, n_sectors updated\n"); 3758 /* use the larger n_sectors */ 3759 return 0; 3760 } 3761 3762 /* 3763 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3764 * unlocking HPA in those cases. 3765 * 3766 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3767 */ 3768 if (dev->n_native_sectors == n_native_sectors && 3769 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3770 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3771 ata_dev_warn(dev, 3772 "old n_sectors matches native, probably " 3773 "late HPA lock, will try to unlock HPA\n"); 3774 /* try unlocking HPA */ 3775 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3776 rc = -EIO; 3777 } else 3778 rc = -ENODEV; 3779 3780 /* restore original n_[native_]sectors and fail */ 3781 dev->n_native_sectors = n_native_sectors; 3782 dev->n_sectors = n_sectors; 3783 fail: 3784 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3785 return rc; 3786 } 3787 3788 struct ata_blacklist_entry { 3789 const char *model_num; 3790 const char *model_rev; 3791 unsigned long horkage; 3792 }; 3793 3794 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3795 /* Devices with DMA related problems under Linux */ 3796 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3797 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3798 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3799 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3800 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3801 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3802 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3803 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3804 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3805 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 3806 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3807 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3808 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3809 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3810 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3811 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 3812 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3813 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3814 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3815 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3816 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3817 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3818 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3819 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3820 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3821 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3822 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3823 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3824 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 3825 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 3826 /* Odd clown on sil3726/4726 PMPs */ 3827 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3828 3829 /* Weird ATAPI devices */ 3830 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3831 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 3832 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3833 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3834 3835 /* 3836 * Causes silent data corruption with higher max sects. 3837 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3838 */ 3839 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 3840 3841 /* 3842 * These devices time out with higher max sects. 3843 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3844 */ 3845 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3846 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3847 3848 /* Devices we expect to fail diagnostics */ 3849 3850 /* Devices where NCQ should be avoided */ 3851 /* NCQ is slow */ 3852 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3853 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3854 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3855 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3856 /* NCQ is broken */ 3857 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3858 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3859 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3860 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3861 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 3862 3863 /* Seagate NCQ + FLUSH CACHE firmware bug */ 3864 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3865 ATA_HORKAGE_FIRMWARE_WARN }, 3866 3867 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3868 ATA_HORKAGE_FIRMWARE_WARN }, 3869 3870 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3871 ATA_HORKAGE_FIRMWARE_WARN }, 3872 3873 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3874 ATA_HORKAGE_FIRMWARE_WARN }, 3875 3876 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 3877 the ST disks also have LPM issues */ 3878 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 3879 ATA_HORKAGE_NOLPM, }, 3880 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 3881 3882 /* Blacklist entries taken from Silicon Image 3124/3132 3883 Windows driver .inf file - also several Linux problem reports */ 3884 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3885 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3886 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3887 3888 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 3889 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 3890 3891 /* Sandisk SD7/8/9s lock up hard on large trims */ 3892 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M, }, 3893 3894 /* devices which puke on READ_NATIVE_MAX */ 3895 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3896 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3897 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3898 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3899 3900 /* this one allows HPA unlocking but fails IOs on the area */ 3901 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 3902 3903 /* Devices which report 1 sector over size HPA */ 3904 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3905 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3906 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3907 3908 /* Devices which get the IVB wrong */ 3909 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 3910 /* Maybe we should just blacklist TSSTcorp... */ 3911 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 3912 3913 /* Devices that do not need bridging limits applied */ 3914 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 3915 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 3916 3917 /* Devices which aren't very happy with higher link speeds */ 3918 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 3919 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 3920 3921 /* 3922 * Devices which choke on SETXFER. Applies only if both the 3923 * device and controller are SATA. 3924 */ 3925 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 3926 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 3927 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 3928 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 3929 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 3930 3931 /* Crucial BX100 SSD 500GB has broken LPM support */ 3932 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 3933 3934 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 3935 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3936 ATA_HORKAGE_ZERO_AFTER_TRIM | 3937 ATA_HORKAGE_NOLPM, }, 3938 /* 512GB MX100 with newer firmware has only LPM issues */ 3939 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 3940 ATA_HORKAGE_NOLPM, }, 3941 3942 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 3943 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3944 ATA_HORKAGE_ZERO_AFTER_TRIM | 3945 ATA_HORKAGE_NOLPM, }, 3946 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3947 ATA_HORKAGE_ZERO_AFTER_TRIM | 3948 ATA_HORKAGE_NOLPM, }, 3949 3950 /* These specific Samsung models/firmware-revs do not handle LPM well */ 3951 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, }, 3952 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, }, 3953 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, }, 3954 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, }, 3955 3956 /* devices that don't properly handle queued TRIM commands */ 3957 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3958 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3959 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3960 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3961 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3962 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3963 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3964 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3965 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3966 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3967 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3968 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3969 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3970 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3971 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3972 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3973 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3974 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3975 3976 /* devices that don't properly handle TRIM commands */ 3977 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 3978 3979 /* 3980 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 3981 * (Return Zero After Trim) flags in the ATA Command Set are 3982 * unreliable in the sense that they only define what happens if 3983 * the device successfully executed the DSM TRIM command. TRIM 3984 * is only advisory, however, and the device is free to silently 3985 * ignore all or parts of the request. 3986 * 3987 * Whitelist drives that are known to reliably return zeroes 3988 * after TRIM. 3989 */ 3990 3991 /* 3992 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 3993 * that model before whitelisting all other intel SSDs. 3994 */ 3995 { "INTEL*SSDSC2MH*", NULL, 0, }, 3996 3997 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3998 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3999 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4000 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4001 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4002 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4003 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4004 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4005 4006 /* 4007 * Some WD SATA-I drives spin up and down erratically when the link 4008 * is put into the slumber mode. We don't have full list of the 4009 * affected devices. Disable LPM if the device matches one of the 4010 * known prefixes and is SATA-1. As a side effect LPM partial is 4011 * lost too. 4012 * 4013 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4014 */ 4015 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4016 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4017 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4018 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4019 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4020 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4021 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4022 4023 /* End Marker */ 4024 { } 4025 }; 4026 4027 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4028 { 4029 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4030 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4031 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4032 4033 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4034 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4035 4036 while (ad->model_num) { 4037 if (glob_match(ad->model_num, model_num)) { 4038 if (ad->model_rev == NULL) 4039 return ad->horkage; 4040 if (glob_match(ad->model_rev, model_rev)) 4041 return ad->horkage; 4042 } 4043 ad++; 4044 } 4045 return 0; 4046 } 4047 4048 static int ata_dma_blacklisted(const struct ata_device *dev) 4049 { 4050 /* We don't support polling DMA. 4051 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4052 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4053 */ 4054 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4055 (dev->flags & ATA_DFLAG_CDB_INTR)) 4056 return 1; 4057 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4058 } 4059 4060 /** 4061 * ata_is_40wire - check drive side detection 4062 * @dev: device 4063 * 4064 * Perform drive side detection decoding, allowing for device vendors 4065 * who can't follow the documentation. 4066 */ 4067 4068 static int ata_is_40wire(struct ata_device *dev) 4069 { 4070 if (dev->horkage & ATA_HORKAGE_IVB) 4071 return ata_drive_40wire_relaxed(dev->id); 4072 return ata_drive_40wire(dev->id); 4073 } 4074 4075 /** 4076 * cable_is_40wire - 40/80/SATA decider 4077 * @ap: port to consider 4078 * 4079 * This function encapsulates the policy for speed management 4080 * in one place. At the moment we don't cache the result but 4081 * there is a good case for setting ap->cbl to the result when 4082 * we are called with unknown cables (and figuring out if it 4083 * impacts hotplug at all). 4084 * 4085 * Return 1 if the cable appears to be 40 wire. 4086 */ 4087 4088 static int cable_is_40wire(struct ata_port *ap) 4089 { 4090 struct ata_link *link; 4091 struct ata_device *dev; 4092 4093 /* If the controller thinks we are 40 wire, we are. */ 4094 if (ap->cbl == ATA_CBL_PATA40) 4095 return 1; 4096 4097 /* If the controller thinks we are 80 wire, we are. */ 4098 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4099 return 0; 4100 4101 /* If the system is known to be 40 wire short cable (eg 4102 * laptop), then we allow 80 wire modes even if the drive 4103 * isn't sure. 4104 */ 4105 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4106 return 0; 4107 4108 /* If the controller doesn't know, we scan. 4109 * 4110 * Note: We look for all 40 wire detects at this point. Any 4111 * 80 wire detect is taken to be 80 wire cable because 4112 * - in many setups only the one drive (slave if present) will 4113 * give a valid detect 4114 * - if you have a non detect capable drive you don't want it 4115 * to colour the choice 4116 */ 4117 ata_for_each_link(link, ap, EDGE) { 4118 ata_for_each_dev(dev, link, ENABLED) { 4119 if (!ata_is_40wire(dev)) 4120 return 0; 4121 } 4122 } 4123 return 1; 4124 } 4125 4126 /** 4127 * ata_dev_xfermask - Compute supported xfermask of the given device 4128 * @dev: Device to compute xfermask for 4129 * 4130 * Compute supported xfermask of @dev and store it in 4131 * dev->*_mask. This function is responsible for applying all 4132 * known limits including host controller limits, device 4133 * blacklist, etc... 4134 * 4135 * LOCKING: 4136 * None. 4137 */ 4138 static void ata_dev_xfermask(struct ata_device *dev) 4139 { 4140 struct ata_link *link = dev->link; 4141 struct ata_port *ap = link->ap; 4142 struct ata_host *host = ap->host; 4143 unsigned long xfer_mask; 4144 4145 /* controller modes available */ 4146 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4147 ap->mwdma_mask, ap->udma_mask); 4148 4149 /* drive modes available */ 4150 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4151 dev->mwdma_mask, dev->udma_mask); 4152 xfer_mask &= ata_id_xfermask(dev->id); 4153 4154 /* 4155 * CFA Advanced TrueIDE timings are not allowed on a shared 4156 * cable 4157 */ 4158 if (ata_dev_pair(dev)) { 4159 /* No PIO5 or PIO6 */ 4160 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4161 /* No MWDMA3 or MWDMA 4 */ 4162 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4163 } 4164 4165 if (ata_dma_blacklisted(dev)) { 4166 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4167 ata_dev_warn(dev, 4168 "device is on DMA blacklist, disabling DMA\n"); 4169 } 4170 4171 if ((host->flags & ATA_HOST_SIMPLEX) && 4172 host->simplex_claimed && host->simplex_claimed != ap) { 4173 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4174 ata_dev_warn(dev, 4175 "simplex DMA is claimed by other device, disabling DMA\n"); 4176 } 4177 4178 if (ap->flags & ATA_FLAG_NO_IORDY) 4179 xfer_mask &= ata_pio_mask_no_iordy(dev); 4180 4181 if (ap->ops->mode_filter) 4182 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4183 4184 /* Apply cable rule here. Don't apply it early because when 4185 * we handle hot plug the cable type can itself change. 4186 * Check this last so that we know if the transfer rate was 4187 * solely limited by the cable. 4188 * Unknown or 80 wire cables reported host side are checked 4189 * drive side as well. Cases where we know a 40wire cable 4190 * is used safely for 80 are not checked here. 4191 */ 4192 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4193 /* UDMA/44 or higher would be available */ 4194 if (cable_is_40wire(ap)) { 4195 ata_dev_warn(dev, 4196 "limited to UDMA/33 due to 40-wire cable\n"); 4197 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4198 } 4199 4200 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4201 &dev->mwdma_mask, &dev->udma_mask); 4202 } 4203 4204 /** 4205 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4206 * @dev: Device to which command will be sent 4207 * 4208 * Issue SET FEATURES - XFER MODE command to device @dev 4209 * on port @ap. 4210 * 4211 * LOCKING: 4212 * PCI/etc. bus probe sem. 4213 * 4214 * RETURNS: 4215 * 0 on success, AC_ERR_* mask otherwise. 4216 */ 4217 4218 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4219 { 4220 struct ata_taskfile tf; 4221 unsigned int err_mask; 4222 4223 /* set up set-features taskfile */ 4224 DPRINTK("set features - xfer mode\n"); 4225 4226 /* Some controllers and ATAPI devices show flaky interrupt 4227 * behavior after setting xfer mode. Use polling instead. 4228 */ 4229 ata_tf_init(dev, &tf); 4230 tf.command = ATA_CMD_SET_FEATURES; 4231 tf.feature = SETFEATURES_XFER; 4232 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4233 tf.protocol = ATA_PROT_NODATA; 4234 /* If we are using IORDY we must send the mode setting command */ 4235 if (ata_pio_need_iordy(dev)) 4236 tf.nsect = dev->xfer_mode; 4237 /* If the device has IORDY and the controller does not - turn it off */ 4238 else if (ata_id_has_iordy(dev->id)) 4239 tf.nsect = 0x01; 4240 else /* In the ancient relic department - skip all of this */ 4241 return 0; 4242 4243 /* On some disks, this command causes spin-up, so we need longer timeout */ 4244 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4245 4246 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4247 return err_mask; 4248 } 4249 4250 /** 4251 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4252 * @dev: Device to which command will be sent 4253 * @enable: Whether to enable or disable the feature 4254 * @feature: The sector count represents the feature to set 4255 * 4256 * Issue SET FEATURES - SATA FEATURES command to device @dev 4257 * on port @ap with sector count 4258 * 4259 * LOCKING: 4260 * PCI/etc. bus probe sem. 4261 * 4262 * RETURNS: 4263 * 0 on success, AC_ERR_* mask otherwise. 4264 */ 4265 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4266 { 4267 struct ata_taskfile tf; 4268 unsigned int err_mask; 4269 unsigned long timeout = 0; 4270 4271 /* set up set-features taskfile */ 4272 DPRINTK("set features - SATA features\n"); 4273 4274 ata_tf_init(dev, &tf); 4275 tf.command = ATA_CMD_SET_FEATURES; 4276 tf.feature = enable; 4277 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4278 tf.protocol = ATA_PROT_NODATA; 4279 tf.nsect = feature; 4280 4281 if (enable == SETFEATURES_SPINUP) 4282 timeout = ata_probe_timeout ? 4283 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4284 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4285 4286 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4287 return err_mask; 4288 } 4289 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4290 4291 /** 4292 * ata_dev_init_params - Issue INIT DEV PARAMS command 4293 * @dev: Device to which command will be sent 4294 * @heads: Number of heads (taskfile parameter) 4295 * @sectors: Number of sectors (taskfile parameter) 4296 * 4297 * LOCKING: 4298 * Kernel thread context (may sleep) 4299 * 4300 * RETURNS: 4301 * 0 on success, AC_ERR_* mask otherwise. 4302 */ 4303 static unsigned int ata_dev_init_params(struct ata_device *dev, 4304 u16 heads, u16 sectors) 4305 { 4306 struct ata_taskfile tf; 4307 unsigned int err_mask; 4308 4309 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4310 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4311 return AC_ERR_INVALID; 4312 4313 /* set up init dev params taskfile */ 4314 DPRINTK("init dev params \n"); 4315 4316 ata_tf_init(dev, &tf); 4317 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4318 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4319 tf.protocol = ATA_PROT_NODATA; 4320 tf.nsect = sectors; 4321 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4322 4323 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4324 /* A clean abort indicates an original or just out of spec drive 4325 and we should continue as we issue the setup based on the 4326 drive reported working geometry */ 4327 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4328 err_mask = 0; 4329 4330 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4331 return err_mask; 4332 } 4333 4334 /** 4335 * atapi_check_dma - Check whether ATAPI DMA can be supported 4336 * @qc: Metadata associated with taskfile to check 4337 * 4338 * Allow low-level driver to filter ATA PACKET commands, returning 4339 * a status indicating whether or not it is OK to use DMA for the 4340 * supplied PACKET command. 4341 * 4342 * LOCKING: 4343 * spin_lock_irqsave(host lock) 4344 * 4345 * RETURNS: 0 when ATAPI DMA can be used 4346 * nonzero otherwise 4347 */ 4348 int atapi_check_dma(struct ata_queued_cmd *qc) 4349 { 4350 struct ata_port *ap = qc->ap; 4351 4352 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4353 * few ATAPI devices choke on such DMA requests. 4354 */ 4355 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4356 unlikely(qc->nbytes & 15)) 4357 return 1; 4358 4359 if (ap->ops->check_atapi_dma) 4360 return ap->ops->check_atapi_dma(qc); 4361 4362 return 0; 4363 } 4364 4365 /** 4366 * ata_std_qc_defer - Check whether a qc needs to be deferred 4367 * @qc: ATA command in question 4368 * 4369 * Non-NCQ commands cannot run with any other command, NCQ or 4370 * not. As upper layer only knows the queue depth, we are 4371 * responsible for maintaining exclusion. This function checks 4372 * whether a new command @qc can be issued. 4373 * 4374 * LOCKING: 4375 * spin_lock_irqsave(host lock) 4376 * 4377 * RETURNS: 4378 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4379 */ 4380 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4381 { 4382 struct ata_link *link = qc->dev->link; 4383 4384 if (ata_is_ncq(qc->tf.protocol)) { 4385 if (!ata_tag_valid(link->active_tag)) 4386 return 0; 4387 } else { 4388 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4389 return 0; 4390 } 4391 4392 return ATA_DEFER_LINK; 4393 } 4394 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4395 4396 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4397 { 4398 return AC_ERR_OK; 4399 } 4400 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4401 4402 /** 4403 * ata_sg_init - Associate command with scatter-gather table. 4404 * @qc: Command to be associated 4405 * @sg: Scatter-gather table. 4406 * @n_elem: Number of elements in s/g table. 4407 * 4408 * Initialize the data-related elements of queued_cmd @qc 4409 * to point to a scatter-gather table @sg, containing @n_elem 4410 * elements. 4411 * 4412 * LOCKING: 4413 * spin_lock_irqsave(host lock) 4414 */ 4415 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4416 unsigned int n_elem) 4417 { 4418 qc->sg = sg; 4419 qc->n_elem = n_elem; 4420 qc->cursg = qc->sg; 4421 } 4422 4423 #ifdef CONFIG_HAS_DMA 4424 4425 /** 4426 * ata_sg_clean - Unmap DMA memory associated with command 4427 * @qc: Command containing DMA memory to be released 4428 * 4429 * Unmap all mapped DMA memory associated with this command. 4430 * 4431 * LOCKING: 4432 * spin_lock_irqsave(host lock) 4433 */ 4434 static void ata_sg_clean(struct ata_queued_cmd *qc) 4435 { 4436 struct ata_port *ap = qc->ap; 4437 struct scatterlist *sg = qc->sg; 4438 int dir = qc->dma_dir; 4439 4440 WARN_ON_ONCE(sg == NULL); 4441 4442 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4443 4444 if (qc->n_elem) 4445 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4446 4447 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4448 qc->sg = NULL; 4449 } 4450 4451 /** 4452 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4453 * @qc: Command with scatter-gather table to be mapped. 4454 * 4455 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4456 * 4457 * LOCKING: 4458 * spin_lock_irqsave(host lock) 4459 * 4460 * RETURNS: 4461 * Zero on success, negative on error. 4462 * 4463 */ 4464 static int ata_sg_setup(struct ata_queued_cmd *qc) 4465 { 4466 struct ata_port *ap = qc->ap; 4467 unsigned int n_elem; 4468 4469 VPRINTK("ENTER, ata%u\n", ap->print_id); 4470 4471 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4472 if (n_elem < 1) 4473 return -1; 4474 4475 VPRINTK("%d sg elements mapped\n", n_elem); 4476 qc->orig_n_elem = qc->n_elem; 4477 qc->n_elem = n_elem; 4478 qc->flags |= ATA_QCFLAG_DMAMAP; 4479 4480 return 0; 4481 } 4482 4483 #else /* !CONFIG_HAS_DMA */ 4484 4485 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4486 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4487 4488 #endif /* !CONFIG_HAS_DMA */ 4489 4490 /** 4491 * swap_buf_le16 - swap halves of 16-bit words in place 4492 * @buf: Buffer to swap 4493 * @buf_words: Number of 16-bit words in buffer. 4494 * 4495 * Swap halves of 16-bit words if needed to convert from 4496 * little-endian byte order to native cpu byte order, or 4497 * vice-versa. 4498 * 4499 * LOCKING: 4500 * Inherited from caller. 4501 */ 4502 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4503 { 4504 #ifdef __BIG_ENDIAN 4505 unsigned int i; 4506 4507 for (i = 0; i < buf_words; i++) 4508 buf[i] = le16_to_cpu(buf[i]); 4509 #endif /* __BIG_ENDIAN */ 4510 } 4511 4512 /** 4513 * ata_qc_new_init - Request an available ATA command, and initialize it 4514 * @dev: Device from whom we request an available command structure 4515 * @tag: tag 4516 * 4517 * LOCKING: 4518 * None. 4519 */ 4520 4521 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 4522 { 4523 struct ata_port *ap = dev->link->ap; 4524 struct ata_queued_cmd *qc; 4525 4526 /* no command while frozen */ 4527 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4528 return NULL; 4529 4530 /* libsas case */ 4531 if (ap->flags & ATA_FLAG_SAS_HOST) { 4532 tag = ata_sas_allocate_tag(ap); 4533 if (tag < 0) 4534 return NULL; 4535 } 4536 4537 qc = __ata_qc_from_tag(ap, tag); 4538 qc->tag = qc->hw_tag = tag; 4539 qc->scsicmd = NULL; 4540 qc->ap = ap; 4541 qc->dev = dev; 4542 4543 ata_qc_reinit(qc); 4544 4545 return qc; 4546 } 4547 4548 /** 4549 * ata_qc_free - free unused ata_queued_cmd 4550 * @qc: Command to complete 4551 * 4552 * Designed to free unused ata_queued_cmd object 4553 * in case something prevents using it. 4554 * 4555 * LOCKING: 4556 * spin_lock_irqsave(host lock) 4557 */ 4558 void ata_qc_free(struct ata_queued_cmd *qc) 4559 { 4560 struct ata_port *ap; 4561 unsigned int tag; 4562 4563 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4564 ap = qc->ap; 4565 4566 qc->flags = 0; 4567 tag = qc->tag; 4568 if (ata_tag_valid(tag)) { 4569 qc->tag = ATA_TAG_POISON; 4570 if (ap->flags & ATA_FLAG_SAS_HOST) 4571 ata_sas_free_tag(tag, ap); 4572 } 4573 } 4574 4575 void __ata_qc_complete(struct ata_queued_cmd *qc) 4576 { 4577 struct ata_port *ap; 4578 struct ata_link *link; 4579 4580 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4581 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4582 ap = qc->ap; 4583 link = qc->dev->link; 4584 4585 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4586 ata_sg_clean(qc); 4587 4588 /* command should be marked inactive atomically with qc completion */ 4589 if (ata_is_ncq(qc->tf.protocol)) { 4590 link->sactive &= ~(1 << qc->hw_tag); 4591 if (!link->sactive) 4592 ap->nr_active_links--; 4593 } else { 4594 link->active_tag = ATA_TAG_POISON; 4595 ap->nr_active_links--; 4596 } 4597 4598 /* clear exclusive status */ 4599 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4600 ap->excl_link == link)) 4601 ap->excl_link = NULL; 4602 4603 /* atapi: mark qc as inactive to prevent the interrupt handler 4604 * from completing the command twice later, before the error handler 4605 * is called. (when rc != 0 and atapi request sense is needed) 4606 */ 4607 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4608 ap->qc_active &= ~(1ULL << qc->tag); 4609 4610 /* call completion callback */ 4611 qc->complete_fn(qc); 4612 } 4613 4614 static void fill_result_tf(struct ata_queued_cmd *qc) 4615 { 4616 struct ata_port *ap = qc->ap; 4617 4618 qc->result_tf.flags = qc->tf.flags; 4619 ap->ops->qc_fill_rtf(qc); 4620 } 4621 4622 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4623 { 4624 struct ata_device *dev = qc->dev; 4625 4626 if (!ata_is_data(qc->tf.protocol)) 4627 return; 4628 4629 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4630 return; 4631 4632 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4633 } 4634 4635 /** 4636 * ata_qc_complete - Complete an active ATA command 4637 * @qc: Command to complete 4638 * 4639 * Indicate to the mid and upper layers that an ATA command has 4640 * completed, with either an ok or not-ok status. 4641 * 4642 * Refrain from calling this function multiple times when 4643 * successfully completing multiple NCQ commands. 4644 * ata_qc_complete_multiple() should be used instead, which will 4645 * properly update IRQ expect state. 4646 * 4647 * LOCKING: 4648 * spin_lock_irqsave(host lock) 4649 */ 4650 void ata_qc_complete(struct ata_queued_cmd *qc) 4651 { 4652 struct ata_port *ap = qc->ap; 4653 4654 /* Trigger the LED (if available) */ 4655 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4656 4657 /* XXX: New EH and old EH use different mechanisms to 4658 * synchronize EH with regular execution path. 4659 * 4660 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4661 * Normal execution path is responsible for not accessing a 4662 * failed qc. libata core enforces the rule by returning NULL 4663 * from ata_qc_from_tag() for failed qcs. 4664 * 4665 * Old EH depends on ata_qc_complete() nullifying completion 4666 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4667 * not synchronize with interrupt handler. Only PIO task is 4668 * taken care of. 4669 */ 4670 if (ap->ops->error_handler) { 4671 struct ata_device *dev = qc->dev; 4672 struct ata_eh_info *ehi = &dev->link->eh_info; 4673 4674 if (unlikely(qc->err_mask)) 4675 qc->flags |= ATA_QCFLAG_FAILED; 4676 4677 /* 4678 * Finish internal commands without any further processing 4679 * and always with the result TF filled. 4680 */ 4681 if (unlikely(ata_tag_internal(qc->tag))) { 4682 fill_result_tf(qc); 4683 trace_ata_qc_complete_internal(qc); 4684 __ata_qc_complete(qc); 4685 return; 4686 } 4687 4688 /* 4689 * Non-internal qc has failed. Fill the result TF and 4690 * summon EH. 4691 */ 4692 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4693 fill_result_tf(qc); 4694 trace_ata_qc_complete_failed(qc); 4695 ata_qc_schedule_eh(qc); 4696 return; 4697 } 4698 4699 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4700 4701 /* read result TF if requested */ 4702 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4703 fill_result_tf(qc); 4704 4705 trace_ata_qc_complete_done(qc); 4706 /* Some commands need post-processing after successful 4707 * completion. 4708 */ 4709 switch (qc->tf.command) { 4710 case ATA_CMD_SET_FEATURES: 4711 if (qc->tf.feature != SETFEATURES_WC_ON && 4712 qc->tf.feature != SETFEATURES_WC_OFF && 4713 qc->tf.feature != SETFEATURES_RA_ON && 4714 qc->tf.feature != SETFEATURES_RA_OFF) 4715 break; 4716 fallthrough; 4717 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4718 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4719 /* revalidate device */ 4720 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4721 ata_port_schedule_eh(ap); 4722 break; 4723 4724 case ATA_CMD_SLEEP: 4725 dev->flags |= ATA_DFLAG_SLEEPING; 4726 break; 4727 } 4728 4729 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4730 ata_verify_xfer(qc); 4731 4732 __ata_qc_complete(qc); 4733 } else { 4734 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4735 return; 4736 4737 /* read result TF if failed or requested */ 4738 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4739 fill_result_tf(qc); 4740 4741 __ata_qc_complete(qc); 4742 } 4743 } 4744 EXPORT_SYMBOL_GPL(ata_qc_complete); 4745 4746 /** 4747 * ata_qc_get_active - get bitmask of active qcs 4748 * @ap: port in question 4749 * 4750 * LOCKING: 4751 * spin_lock_irqsave(host lock) 4752 * 4753 * RETURNS: 4754 * Bitmask of active qcs 4755 */ 4756 u64 ata_qc_get_active(struct ata_port *ap) 4757 { 4758 u64 qc_active = ap->qc_active; 4759 4760 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4761 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4762 qc_active |= (1 << 0); 4763 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4764 } 4765 4766 return qc_active; 4767 } 4768 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4769 4770 /** 4771 * ata_qc_issue - issue taskfile to device 4772 * @qc: command to issue to device 4773 * 4774 * Prepare an ATA command to submission to device. 4775 * This includes mapping the data into a DMA-able 4776 * area, filling in the S/G table, and finally 4777 * writing the taskfile to hardware, starting the command. 4778 * 4779 * LOCKING: 4780 * spin_lock_irqsave(host lock) 4781 */ 4782 void ata_qc_issue(struct ata_queued_cmd *qc) 4783 { 4784 struct ata_port *ap = qc->ap; 4785 struct ata_link *link = qc->dev->link; 4786 u8 prot = qc->tf.protocol; 4787 4788 /* Make sure only one non-NCQ command is outstanding. The 4789 * check is skipped for old EH because it reuses active qc to 4790 * request ATAPI sense. 4791 */ 4792 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4793 4794 if (ata_is_ncq(prot)) { 4795 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4796 4797 if (!link->sactive) 4798 ap->nr_active_links++; 4799 link->sactive |= 1 << qc->hw_tag; 4800 } else { 4801 WARN_ON_ONCE(link->sactive); 4802 4803 ap->nr_active_links++; 4804 link->active_tag = qc->tag; 4805 } 4806 4807 qc->flags |= ATA_QCFLAG_ACTIVE; 4808 ap->qc_active |= 1ULL << qc->tag; 4809 4810 /* 4811 * We guarantee to LLDs that they will have at least one 4812 * non-zero sg if the command is a data command. 4813 */ 4814 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4815 goto sys_err; 4816 4817 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4818 (ap->flags & ATA_FLAG_PIO_DMA))) 4819 if (ata_sg_setup(qc)) 4820 goto sys_err; 4821 4822 /* if device is sleeping, schedule reset and abort the link */ 4823 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4824 link->eh_info.action |= ATA_EH_RESET; 4825 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4826 ata_link_abort(link); 4827 return; 4828 } 4829 4830 qc->err_mask |= ap->ops->qc_prep(qc); 4831 if (unlikely(qc->err_mask)) 4832 goto err; 4833 trace_ata_qc_issue(qc); 4834 qc->err_mask |= ap->ops->qc_issue(qc); 4835 if (unlikely(qc->err_mask)) 4836 goto err; 4837 return; 4838 4839 sys_err: 4840 qc->err_mask |= AC_ERR_SYSTEM; 4841 err: 4842 ata_qc_complete(qc); 4843 } 4844 4845 /** 4846 * ata_phys_link_online - test whether the given link is online 4847 * @link: ATA link to test 4848 * 4849 * Test whether @link is online. Note that this function returns 4850 * 0 if online status of @link cannot be obtained, so 4851 * ata_link_online(link) != !ata_link_offline(link). 4852 * 4853 * LOCKING: 4854 * None. 4855 * 4856 * RETURNS: 4857 * True if the port online status is available and online. 4858 */ 4859 bool ata_phys_link_online(struct ata_link *link) 4860 { 4861 u32 sstatus; 4862 4863 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4864 ata_sstatus_online(sstatus)) 4865 return true; 4866 return false; 4867 } 4868 4869 /** 4870 * ata_phys_link_offline - test whether the given link is offline 4871 * @link: ATA link to test 4872 * 4873 * Test whether @link is offline. Note that this function 4874 * returns 0 if offline status of @link cannot be obtained, so 4875 * ata_link_online(link) != !ata_link_offline(link). 4876 * 4877 * LOCKING: 4878 * None. 4879 * 4880 * RETURNS: 4881 * True if the port offline status is available and offline. 4882 */ 4883 bool ata_phys_link_offline(struct ata_link *link) 4884 { 4885 u32 sstatus; 4886 4887 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4888 !ata_sstatus_online(sstatus)) 4889 return true; 4890 return false; 4891 } 4892 4893 /** 4894 * ata_link_online - test whether the given link is online 4895 * @link: ATA link to test 4896 * 4897 * Test whether @link is online. This is identical to 4898 * ata_phys_link_online() when there's no slave link. When 4899 * there's a slave link, this function should only be called on 4900 * the master link and will return true if any of M/S links is 4901 * online. 4902 * 4903 * LOCKING: 4904 * None. 4905 * 4906 * RETURNS: 4907 * True if the port online status is available and online. 4908 */ 4909 bool ata_link_online(struct ata_link *link) 4910 { 4911 struct ata_link *slave = link->ap->slave_link; 4912 4913 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4914 4915 return ata_phys_link_online(link) || 4916 (slave && ata_phys_link_online(slave)); 4917 } 4918 EXPORT_SYMBOL_GPL(ata_link_online); 4919 4920 /** 4921 * ata_link_offline - test whether the given link is offline 4922 * @link: ATA link to test 4923 * 4924 * Test whether @link is offline. This is identical to 4925 * ata_phys_link_offline() when there's no slave link. When 4926 * there's a slave link, this function should only be called on 4927 * the master link and will return true if both M/S links are 4928 * offline. 4929 * 4930 * LOCKING: 4931 * None. 4932 * 4933 * RETURNS: 4934 * True if the port offline status is available and offline. 4935 */ 4936 bool ata_link_offline(struct ata_link *link) 4937 { 4938 struct ata_link *slave = link->ap->slave_link; 4939 4940 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4941 4942 return ata_phys_link_offline(link) && 4943 (!slave || ata_phys_link_offline(slave)); 4944 } 4945 EXPORT_SYMBOL_GPL(ata_link_offline); 4946 4947 #ifdef CONFIG_PM 4948 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 4949 unsigned int action, unsigned int ehi_flags, 4950 bool async) 4951 { 4952 struct ata_link *link; 4953 unsigned long flags; 4954 4955 /* Previous resume operation might still be in 4956 * progress. Wait for PM_PENDING to clear. 4957 */ 4958 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 4959 ata_port_wait_eh(ap); 4960 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4961 } 4962 4963 /* request PM ops to EH */ 4964 spin_lock_irqsave(ap->lock, flags); 4965 4966 ap->pm_mesg = mesg; 4967 ap->pflags |= ATA_PFLAG_PM_PENDING; 4968 ata_for_each_link(link, ap, HOST_FIRST) { 4969 link->eh_info.action |= action; 4970 link->eh_info.flags |= ehi_flags; 4971 } 4972 4973 ata_port_schedule_eh(ap); 4974 4975 spin_unlock_irqrestore(ap->lock, flags); 4976 4977 if (!async) { 4978 ata_port_wait_eh(ap); 4979 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4980 } 4981 } 4982 4983 /* 4984 * On some hardware, device fails to respond after spun down for suspend. As 4985 * the device won't be used before being resumed, we don't need to touch the 4986 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 4987 * 4988 * http://thread.gmane.org/gmane.linux.ide/46764 4989 */ 4990 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 4991 | ATA_EHI_NO_AUTOPSY 4992 | ATA_EHI_NO_RECOVERY; 4993 4994 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 4995 { 4996 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 4997 } 4998 4999 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5000 { 5001 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5002 } 5003 5004 static int ata_port_pm_suspend(struct device *dev) 5005 { 5006 struct ata_port *ap = to_ata_port(dev); 5007 5008 if (pm_runtime_suspended(dev)) 5009 return 0; 5010 5011 ata_port_suspend(ap, PMSG_SUSPEND); 5012 return 0; 5013 } 5014 5015 static int ata_port_pm_freeze(struct device *dev) 5016 { 5017 struct ata_port *ap = to_ata_port(dev); 5018 5019 if (pm_runtime_suspended(dev)) 5020 return 0; 5021 5022 ata_port_suspend(ap, PMSG_FREEZE); 5023 return 0; 5024 } 5025 5026 static int ata_port_pm_poweroff(struct device *dev) 5027 { 5028 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5029 return 0; 5030 } 5031 5032 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5033 | ATA_EHI_QUIET; 5034 5035 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5036 { 5037 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5038 } 5039 5040 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5041 { 5042 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5043 } 5044 5045 static int ata_port_pm_resume(struct device *dev) 5046 { 5047 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5048 pm_runtime_disable(dev); 5049 pm_runtime_set_active(dev); 5050 pm_runtime_enable(dev); 5051 return 0; 5052 } 5053 5054 /* 5055 * For ODDs, the upper layer will poll for media change every few seconds, 5056 * which will make it enter and leave suspend state every few seconds. And 5057 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5058 * is very little and the ODD may malfunction after constantly being reset. 5059 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5060 * ODD is attached to the port. 5061 */ 5062 static int ata_port_runtime_idle(struct device *dev) 5063 { 5064 struct ata_port *ap = to_ata_port(dev); 5065 struct ata_link *link; 5066 struct ata_device *adev; 5067 5068 ata_for_each_link(link, ap, HOST_FIRST) { 5069 ata_for_each_dev(adev, link, ENABLED) 5070 if (adev->class == ATA_DEV_ATAPI && 5071 !zpodd_dev_enabled(adev)) 5072 return -EBUSY; 5073 } 5074 5075 return 0; 5076 } 5077 5078 static int ata_port_runtime_suspend(struct device *dev) 5079 { 5080 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5081 return 0; 5082 } 5083 5084 static int ata_port_runtime_resume(struct device *dev) 5085 { 5086 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5087 return 0; 5088 } 5089 5090 static const struct dev_pm_ops ata_port_pm_ops = { 5091 .suspend = ata_port_pm_suspend, 5092 .resume = ata_port_pm_resume, 5093 .freeze = ata_port_pm_freeze, 5094 .thaw = ata_port_pm_resume, 5095 .poweroff = ata_port_pm_poweroff, 5096 .restore = ata_port_pm_resume, 5097 5098 .runtime_suspend = ata_port_runtime_suspend, 5099 .runtime_resume = ata_port_runtime_resume, 5100 .runtime_idle = ata_port_runtime_idle, 5101 }; 5102 5103 /* sas ports don't participate in pm runtime management of ata_ports, 5104 * and need to resume ata devices at the domain level, not the per-port 5105 * level. sas suspend/resume is async to allow parallel port recovery 5106 * since sas has multiple ata_port instances per Scsi_Host. 5107 */ 5108 void ata_sas_port_suspend(struct ata_port *ap) 5109 { 5110 ata_port_suspend_async(ap, PMSG_SUSPEND); 5111 } 5112 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5113 5114 void ata_sas_port_resume(struct ata_port *ap) 5115 { 5116 ata_port_resume_async(ap, PMSG_RESUME); 5117 } 5118 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5119 5120 /** 5121 * ata_host_suspend - suspend host 5122 * @host: host to suspend 5123 * @mesg: PM message 5124 * 5125 * Suspend @host. Actual operation is performed by port suspend. 5126 */ 5127 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5128 { 5129 host->dev->power.power_state = mesg; 5130 return 0; 5131 } 5132 EXPORT_SYMBOL_GPL(ata_host_suspend); 5133 5134 /** 5135 * ata_host_resume - resume host 5136 * @host: host to resume 5137 * 5138 * Resume @host. Actual operation is performed by port resume. 5139 */ 5140 void ata_host_resume(struct ata_host *host) 5141 { 5142 host->dev->power.power_state = PMSG_ON; 5143 } 5144 EXPORT_SYMBOL_GPL(ata_host_resume); 5145 #endif 5146 5147 const struct device_type ata_port_type = { 5148 .name = "ata_port", 5149 #ifdef CONFIG_PM 5150 .pm = &ata_port_pm_ops, 5151 #endif 5152 }; 5153 5154 /** 5155 * ata_dev_init - Initialize an ata_device structure 5156 * @dev: Device structure to initialize 5157 * 5158 * Initialize @dev in preparation for probing. 5159 * 5160 * LOCKING: 5161 * Inherited from caller. 5162 */ 5163 void ata_dev_init(struct ata_device *dev) 5164 { 5165 struct ata_link *link = ata_dev_phys_link(dev); 5166 struct ata_port *ap = link->ap; 5167 unsigned long flags; 5168 5169 /* SATA spd limit is bound to the attached device, reset together */ 5170 link->sata_spd_limit = link->hw_sata_spd_limit; 5171 link->sata_spd = 0; 5172 5173 /* High bits of dev->flags are used to record warm plug 5174 * requests which occur asynchronously. Synchronize using 5175 * host lock. 5176 */ 5177 spin_lock_irqsave(ap->lock, flags); 5178 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5179 dev->horkage = 0; 5180 spin_unlock_irqrestore(ap->lock, flags); 5181 5182 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5183 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5184 dev->pio_mask = UINT_MAX; 5185 dev->mwdma_mask = UINT_MAX; 5186 dev->udma_mask = UINT_MAX; 5187 } 5188 5189 /** 5190 * ata_link_init - Initialize an ata_link structure 5191 * @ap: ATA port link is attached to 5192 * @link: Link structure to initialize 5193 * @pmp: Port multiplier port number 5194 * 5195 * Initialize @link. 5196 * 5197 * LOCKING: 5198 * Kernel thread context (may sleep) 5199 */ 5200 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5201 { 5202 int i; 5203 5204 /* clear everything except for devices */ 5205 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5206 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5207 5208 link->ap = ap; 5209 link->pmp = pmp; 5210 link->active_tag = ATA_TAG_POISON; 5211 link->hw_sata_spd_limit = UINT_MAX; 5212 5213 /* can't use iterator, ap isn't initialized yet */ 5214 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5215 struct ata_device *dev = &link->device[i]; 5216 5217 dev->link = link; 5218 dev->devno = dev - link->device; 5219 #ifdef CONFIG_ATA_ACPI 5220 dev->gtf_filter = ata_acpi_gtf_filter; 5221 #endif 5222 ata_dev_init(dev); 5223 } 5224 } 5225 5226 /** 5227 * sata_link_init_spd - Initialize link->sata_spd_limit 5228 * @link: Link to configure sata_spd_limit for 5229 * 5230 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5231 * configured value. 5232 * 5233 * LOCKING: 5234 * Kernel thread context (may sleep). 5235 * 5236 * RETURNS: 5237 * 0 on success, -errno on failure. 5238 */ 5239 int sata_link_init_spd(struct ata_link *link) 5240 { 5241 u8 spd; 5242 int rc; 5243 5244 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5245 if (rc) 5246 return rc; 5247 5248 spd = (link->saved_scontrol >> 4) & 0xf; 5249 if (spd) 5250 link->hw_sata_spd_limit &= (1 << spd) - 1; 5251 5252 ata_force_link_limits(link); 5253 5254 link->sata_spd_limit = link->hw_sata_spd_limit; 5255 5256 return 0; 5257 } 5258 5259 /** 5260 * ata_port_alloc - allocate and initialize basic ATA port resources 5261 * @host: ATA host this allocated port belongs to 5262 * 5263 * Allocate and initialize basic ATA port resources. 5264 * 5265 * RETURNS: 5266 * Allocate ATA port on success, NULL on failure. 5267 * 5268 * LOCKING: 5269 * Inherited from calling layer (may sleep). 5270 */ 5271 struct ata_port *ata_port_alloc(struct ata_host *host) 5272 { 5273 struct ata_port *ap; 5274 5275 DPRINTK("ENTER\n"); 5276 5277 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5278 if (!ap) 5279 return NULL; 5280 5281 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5282 ap->lock = &host->lock; 5283 ap->print_id = -1; 5284 ap->local_port_no = -1; 5285 ap->host = host; 5286 ap->dev = host->dev; 5287 5288 #if defined(ATA_VERBOSE_DEBUG) 5289 /* turn on all debugging levels */ 5290 ap->msg_enable = 0x00FF; 5291 #elif defined(ATA_DEBUG) 5292 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5293 #else 5294 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5295 #endif 5296 5297 mutex_init(&ap->scsi_scan_mutex); 5298 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5299 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5300 INIT_LIST_HEAD(&ap->eh_done_q); 5301 init_waitqueue_head(&ap->eh_wait_q); 5302 init_completion(&ap->park_req_pending); 5303 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5304 TIMER_DEFERRABLE); 5305 5306 ap->cbl = ATA_CBL_NONE; 5307 5308 ata_link_init(ap, &ap->link, 0); 5309 5310 #ifdef ATA_IRQ_TRAP 5311 ap->stats.unhandled_irq = 1; 5312 ap->stats.idle_irq = 1; 5313 #endif 5314 ata_sff_port_init(ap); 5315 5316 return ap; 5317 } 5318 5319 static void ata_devres_release(struct device *gendev, void *res) 5320 { 5321 struct ata_host *host = dev_get_drvdata(gendev); 5322 int i; 5323 5324 for (i = 0; i < host->n_ports; i++) { 5325 struct ata_port *ap = host->ports[i]; 5326 5327 if (!ap) 5328 continue; 5329 5330 if (ap->scsi_host) 5331 scsi_host_put(ap->scsi_host); 5332 5333 } 5334 5335 dev_set_drvdata(gendev, NULL); 5336 ata_host_put(host); 5337 } 5338 5339 static void ata_host_release(struct kref *kref) 5340 { 5341 struct ata_host *host = container_of(kref, struct ata_host, kref); 5342 int i; 5343 5344 for (i = 0; i < host->n_ports; i++) { 5345 struct ata_port *ap = host->ports[i]; 5346 5347 kfree(ap->pmp_link); 5348 kfree(ap->slave_link); 5349 kfree(ap); 5350 host->ports[i] = NULL; 5351 } 5352 kfree(host); 5353 } 5354 5355 void ata_host_get(struct ata_host *host) 5356 { 5357 kref_get(&host->kref); 5358 } 5359 5360 void ata_host_put(struct ata_host *host) 5361 { 5362 kref_put(&host->kref, ata_host_release); 5363 } 5364 EXPORT_SYMBOL_GPL(ata_host_put); 5365 5366 /** 5367 * ata_host_alloc - allocate and init basic ATA host resources 5368 * @dev: generic device this host is associated with 5369 * @max_ports: maximum number of ATA ports associated with this host 5370 * 5371 * Allocate and initialize basic ATA host resources. LLD calls 5372 * this function to allocate a host, initializes it fully and 5373 * attaches it using ata_host_register(). 5374 * 5375 * @max_ports ports are allocated and host->n_ports is 5376 * initialized to @max_ports. The caller is allowed to decrease 5377 * host->n_ports before calling ata_host_register(). The unused 5378 * ports will be automatically freed on registration. 5379 * 5380 * RETURNS: 5381 * Allocate ATA host on success, NULL on failure. 5382 * 5383 * LOCKING: 5384 * Inherited from calling layer (may sleep). 5385 */ 5386 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5387 { 5388 struct ata_host *host; 5389 size_t sz; 5390 int i; 5391 void *dr; 5392 5393 DPRINTK("ENTER\n"); 5394 5395 /* alloc a container for our list of ATA ports (buses) */ 5396 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5397 host = kzalloc(sz, GFP_KERNEL); 5398 if (!host) 5399 return NULL; 5400 5401 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5402 goto err_free; 5403 5404 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5405 if (!dr) 5406 goto err_out; 5407 5408 devres_add(dev, dr); 5409 dev_set_drvdata(dev, host); 5410 5411 spin_lock_init(&host->lock); 5412 mutex_init(&host->eh_mutex); 5413 host->dev = dev; 5414 host->n_ports = max_ports; 5415 kref_init(&host->kref); 5416 5417 /* allocate ports bound to this host */ 5418 for (i = 0; i < max_ports; i++) { 5419 struct ata_port *ap; 5420 5421 ap = ata_port_alloc(host); 5422 if (!ap) 5423 goto err_out; 5424 5425 ap->port_no = i; 5426 host->ports[i] = ap; 5427 } 5428 5429 devres_remove_group(dev, NULL); 5430 return host; 5431 5432 err_out: 5433 devres_release_group(dev, NULL); 5434 err_free: 5435 kfree(host); 5436 return NULL; 5437 } 5438 EXPORT_SYMBOL_GPL(ata_host_alloc); 5439 5440 /** 5441 * ata_host_alloc_pinfo - alloc host and init with port_info array 5442 * @dev: generic device this host is associated with 5443 * @ppi: array of ATA port_info to initialize host with 5444 * @n_ports: number of ATA ports attached to this host 5445 * 5446 * Allocate ATA host and initialize with info from @ppi. If NULL 5447 * terminated, @ppi may contain fewer entries than @n_ports. The 5448 * last entry will be used for the remaining ports. 5449 * 5450 * RETURNS: 5451 * Allocate ATA host on success, NULL on failure. 5452 * 5453 * LOCKING: 5454 * Inherited from calling layer (may sleep). 5455 */ 5456 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5457 const struct ata_port_info * const * ppi, 5458 int n_ports) 5459 { 5460 const struct ata_port_info *pi; 5461 struct ata_host *host; 5462 int i, j; 5463 5464 host = ata_host_alloc(dev, n_ports); 5465 if (!host) 5466 return NULL; 5467 5468 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5469 struct ata_port *ap = host->ports[i]; 5470 5471 if (ppi[j]) 5472 pi = ppi[j++]; 5473 5474 ap->pio_mask = pi->pio_mask; 5475 ap->mwdma_mask = pi->mwdma_mask; 5476 ap->udma_mask = pi->udma_mask; 5477 ap->flags |= pi->flags; 5478 ap->link.flags |= pi->link_flags; 5479 ap->ops = pi->port_ops; 5480 5481 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5482 host->ops = pi->port_ops; 5483 } 5484 5485 return host; 5486 } 5487 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5488 5489 static void ata_host_stop(struct device *gendev, void *res) 5490 { 5491 struct ata_host *host = dev_get_drvdata(gendev); 5492 int i; 5493 5494 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5495 5496 for (i = 0; i < host->n_ports; i++) { 5497 struct ata_port *ap = host->ports[i]; 5498 5499 if (ap->ops->port_stop) 5500 ap->ops->port_stop(ap); 5501 } 5502 5503 if (host->ops->host_stop) 5504 host->ops->host_stop(host); 5505 } 5506 5507 /** 5508 * ata_finalize_port_ops - finalize ata_port_operations 5509 * @ops: ata_port_operations to finalize 5510 * 5511 * An ata_port_operations can inherit from another ops and that 5512 * ops can again inherit from another. This can go on as many 5513 * times as necessary as long as there is no loop in the 5514 * inheritance chain. 5515 * 5516 * Ops tables are finalized when the host is started. NULL or 5517 * unspecified entries are inherited from the closet ancestor 5518 * which has the method and the entry is populated with it. 5519 * After finalization, the ops table directly points to all the 5520 * methods and ->inherits is no longer necessary and cleared. 5521 * 5522 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5523 * 5524 * LOCKING: 5525 * None. 5526 */ 5527 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5528 { 5529 static DEFINE_SPINLOCK(lock); 5530 const struct ata_port_operations *cur; 5531 void **begin = (void **)ops; 5532 void **end = (void **)&ops->inherits; 5533 void **pp; 5534 5535 if (!ops || !ops->inherits) 5536 return; 5537 5538 spin_lock(&lock); 5539 5540 for (cur = ops->inherits; cur; cur = cur->inherits) { 5541 void **inherit = (void **)cur; 5542 5543 for (pp = begin; pp < end; pp++, inherit++) 5544 if (!*pp) 5545 *pp = *inherit; 5546 } 5547 5548 for (pp = begin; pp < end; pp++) 5549 if (IS_ERR(*pp)) 5550 *pp = NULL; 5551 5552 ops->inherits = NULL; 5553 5554 spin_unlock(&lock); 5555 } 5556 5557 /** 5558 * ata_host_start - start and freeze ports of an ATA host 5559 * @host: ATA host to start ports for 5560 * 5561 * Start and then freeze ports of @host. Started status is 5562 * recorded in host->flags, so this function can be called 5563 * multiple times. Ports are guaranteed to get started only 5564 * once. If host->ops isn't initialized yet, its set to the 5565 * first non-dummy port ops. 5566 * 5567 * LOCKING: 5568 * Inherited from calling layer (may sleep). 5569 * 5570 * RETURNS: 5571 * 0 if all ports are started successfully, -errno otherwise. 5572 */ 5573 int ata_host_start(struct ata_host *host) 5574 { 5575 int have_stop = 0; 5576 void *start_dr = NULL; 5577 int i, rc; 5578 5579 if (host->flags & ATA_HOST_STARTED) 5580 return 0; 5581 5582 ata_finalize_port_ops(host->ops); 5583 5584 for (i = 0; i < host->n_ports; i++) { 5585 struct ata_port *ap = host->ports[i]; 5586 5587 ata_finalize_port_ops(ap->ops); 5588 5589 if (!host->ops && !ata_port_is_dummy(ap)) 5590 host->ops = ap->ops; 5591 5592 if (ap->ops->port_stop) 5593 have_stop = 1; 5594 } 5595 5596 if (host->ops && host->ops->host_stop) 5597 have_stop = 1; 5598 5599 if (have_stop) { 5600 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5601 if (!start_dr) 5602 return -ENOMEM; 5603 } 5604 5605 for (i = 0; i < host->n_ports; i++) { 5606 struct ata_port *ap = host->ports[i]; 5607 5608 if (ap->ops->port_start) { 5609 rc = ap->ops->port_start(ap); 5610 if (rc) { 5611 if (rc != -ENODEV) 5612 dev_err(host->dev, 5613 "failed to start port %d (errno=%d)\n", 5614 i, rc); 5615 goto err_out; 5616 } 5617 } 5618 ata_eh_freeze_port(ap); 5619 } 5620 5621 if (start_dr) 5622 devres_add(host->dev, start_dr); 5623 host->flags |= ATA_HOST_STARTED; 5624 return 0; 5625 5626 err_out: 5627 while (--i >= 0) { 5628 struct ata_port *ap = host->ports[i]; 5629 5630 if (ap->ops->port_stop) 5631 ap->ops->port_stop(ap); 5632 } 5633 devres_free(start_dr); 5634 return rc; 5635 } 5636 EXPORT_SYMBOL_GPL(ata_host_start); 5637 5638 /** 5639 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5640 * @host: host to initialize 5641 * @dev: device host is attached to 5642 * @ops: port_ops 5643 * 5644 */ 5645 void ata_host_init(struct ata_host *host, struct device *dev, 5646 struct ata_port_operations *ops) 5647 { 5648 spin_lock_init(&host->lock); 5649 mutex_init(&host->eh_mutex); 5650 host->n_tags = ATA_MAX_QUEUE; 5651 host->dev = dev; 5652 host->ops = ops; 5653 kref_init(&host->kref); 5654 } 5655 EXPORT_SYMBOL_GPL(ata_host_init); 5656 5657 void __ata_port_probe(struct ata_port *ap) 5658 { 5659 struct ata_eh_info *ehi = &ap->link.eh_info; 5660 unsigned long flags; 5661 5662 /* kick EH for boot probing */ 5663 spin_lock_irqsave(ap->lock, flags); 5664 5665 ehi->probe_mask |= ATA_ALL_DEVICES; 5666 ehi->action |= ATA_EH_RESET; 5667 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5668 5669 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5670 ap->pflags |= ATA_PFLAG_LOADING; 5671 ata_port_schedule_eh(ap); 5672 5673 spin_unlock_irqrestore(ap->lock, flags); 5674 } 5675 5676 int ata_port_probe(struct ata_port *ap) 5677 { 5678 int rc = 0; 5679 5680 if (ap->ops->error_handler) { 5681 __ata_port_probe(ap); 5682 ata_port_wait_eh(ap); 5683 } else { 5684 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5685 rc = ata_bus_probe(ap); 5686 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5687 } 5688 return rc; 5689 } 5690 5691 5692 static void async_port_probe(void *data, async_cookie_t cookie) 5693 { 5694 struct ata_port *ap = data; 5695 5696 /* 5697 * If we're not allowed to scan this host in parallel, 5698 * we need to wait until all previous scans have completed 5699 * before going further. 5700 * Jeff Garzik says this is only within a controller, so we 5701 * don't need to wait for port 0, only for later ports. 5702 */ 5703 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5704 async_synchronize_cookie(cookie); 5705 5706 (void)ata_port_probe(ap); 5707 5708 /* in order to keep device order, we need to synchronize at this point */ 5709 async_synchronize_cookie(cookie); 5710 5711 ata_scsi_scan_host(ap, 1); 5712 } 5713 5714 /** 5715 * ata_host_register - register initialized ATA host 5716 * @host: ATA host to register 5717 * @sht: template for SCSI host 5718 * 5719 * Register initialized ATA host. @host is allocated using 5720 * ata_host_alloc() and fully initialized by LLD. This function 5721 * starts ports, registers @host with ATA and SCSI layers and 5722 * probe registered devices. 5723 * 5724 * LOCKING: 5725 * Inherited from calling layer (may sleep). 5726 * 5727 * RETURNS: 5728 * 0 on success, -errno otherwise. 5729 */ 5730 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5731 { 5732 int i, rc; 5733 5734 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5735 5736 /* host must have been started */ 5737 if (!(host->flags & ATA_HOST_STARTED)) { 5738 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5739 WARN_ON(1); 5740 return -EINVAL; 5741 } 5742 5743 /* Blow away unused ports. This happens when LLD can't 5744 * determine the exact number of ports to allocate at 5745 * allocation time. 5746 */ 5747 for (i = host->n_ports; host->ports[i]; i++) 5748 kfree(host->ports[i]); 5749 5750 /* give ports names and add SCSI hosts */ 5751 for (i = 0; i < host->n_ports; i++) { 5752 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5753 host->ports[i]->local_port_no = i + 1; 5754 } 5755 5756 /* Create associated sysfs transport objects */ 5757 for (i = 0; i < host->n_ports; i++) { 5758 rc = ata_tport_add(host->dev,host->ports[i]); 5759 if (rc) { 5760 goto err_tadd; 5761 } 5762 } 5763 5764 rc = ata_scsi_add_hosts(host, sht); 5765 if (rc) 5766 goto err_tadd; 5767 5768 /* set cable, sata_spd_limit and report */ 5769 for (i = 0; i < host->n_ports; i++) { 5770 struct ata_port *ap = host->ports[i]; 5771 unsigned long xfer_mask; 5772 5773 /* set SATA cable type if still unset */ 5774 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5775 ap->cbl = ATA_CBL_SATA; 5776 5777 /* init sata_spd_limit to the current value */ 5778 sata_link_init_spd(&ap->link); 5779 if (ap->slave_link) 5780 sata_link_init_spd(ap->slave_link); 5781 5782 /* print per-port info to dmesg */ 5783 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5784 ap->udma_mask); 5785 5786 if (!ata_port_is_dummy(ap)) { 5787 ata_port_info(ap, "%cATA max %s %s\n", 5788 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5789 ata_mode_string(xfer_mask), 5790 ap->link.eh_info.desc); 5791 ata_ehi_clear_desc(&ap->link.eh_info); 5792 } else 5793 ata_port_info(ap, "DUMMY\n"); 5794 } 5795 5796 /* perform each probe asynchronously */ 5797 for (i = 0; i < host->n_ports; i++) { 5798 struct ata_port *ap = host->ports[i]; 5799 ap->cookie = async_schedule(async_port_probe, ap); 5800 } 5801 5802 return 0; 5803 5804 err_tadd: 5805 while (--i >= 0) { 5806 ata_tport_delete(host->ports[i]); 5807 } 5808 return rc; 5809 5810 } 5811 EXPORT_SYMBOL_GPL(ata_host_register); 5812 5813 /** 5814 * ata_host_activate - start host, request IRQ and register it 5815 * @host: target ATA host 5816 * @irq: IRQ to request 5817 * @irq_handler: irq_handler used when requesting IRQ 5818 * @irq_flags: irq_flags used when requesting IRQ 5819 * @sht: scsi_host_template to use when registering the host 5820 * 5821 * After allocating an ATA host and initializing it, most libata 5822 * LLDs perform three steps to activate the host - start host, 5823 * request IRQ and register it. This helper takes necessary 5824 * arguments and performs the three steps in one go. 5825 * 5826 * An invalid IRQ skips the IRQ registration and expects the host to 5827 * have set polling mode on the port. In this case, @irq_handler 5828 * should be NULL. 5829 * 5830 * LOCKING: 5831 * Inherited from calling layer (may sleep). 5832 * 5833 * RETURNS: 5834 * 0 on success, -errno otherwise. 5835 */ 5836 int ata_host_activate(struct ata_host *host, int irq, 5837 irq_handler_t irq_handler, unsigned long irq_flags, 5838 struct scsi_host_template *sht) 5839 { 5840 int i, rc; 5841 char *irq_desc; 5842 5843 rc = ata_host_start(host); 5844 if (rc) 5845 return rc; 5846 5847 /* Special case for polling mode */ 5848 if (!irq) { 5849 WARN_ON(irq_handler); 5850 return ata_host_register(host, sht); 5851 } 5852 5853 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5854 dev_driver_string(host->dev), 5855 dev_name(host->dev)); 5856 if (!irq_desc) 5857 return -ENOMEM; 5858 5859 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5860 irq_desc, host); 5861 if (rc) 5862 return rc; 5863 5864 for (i = 0; i < host->n_ports; i++) 5865 ata_port_desc(host->ports[i], "irq %d", irq); 5866 5867 rc = ata_host_register(host, sht); 5868 /* if failed, just free the IRQ and leave ports alone */ 5869 if (rc) 5870 devm_free_irq(host->dev, irq, host); 5871 5872 return rc; 5873 } 5874 EXPORT_SYMBOL_GPL(ata_host_activate); 5875 5876 /** 5877 * ata_port_detach - Detach ATA port in preparation of device removal 5878 * @ap: ATA port to be detached 5879 * 5880 * Detach all ATA devices and the associated SCSI devices of @ap; 5881 * then, remove the associated SCSI host. @ap is guaranteed to 5882 * be quiescent on return from this function. 5883 * 5884 * LOCKING: 5885 * Kernel thread context (may sleep). 5886 */ 5887 static void ata_port_detach(struct ata_port *ap) 5888 { 5889 unsigned long flags; 5890 struct ata_link *link; 5891 struct ata_device *dev; 5892 5893 if (!ap->ops->error_handler) 5894 goto skip_eh; 5895 5896 /* tell EH we're leaving & flush EH */ 5897 spin_lock_irqsave(ap->lock, flags); 5898 ap->pflags |= ATA_PFLAG_UNLOADING; 5899 ata_port_schedule_eh(ap); 5900 spin_unlock_irqrestore(ap->lock, flags); 5901 5902 /* wait till EH commits suicide */ 5903 ata_port_wait_eh(ap); 5904 5905 /* it better be dead now */ 5906 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 5907 5908 cancel_delayed_work_sync(&ap->hotplug_task); 5909 5910 skip_eh: 5911 /* clean up zpodd on port removal */ 5912 ata_for_each_link(link, ap, HOST_FIRST) { 5913 ata_for_each_dev(dev, link, ALL) { 5914 if (zpodd_dev_enabled(dev)) 5915 zpodd_exit(dev); 5916 } 5917 } 5918 if (ap->pmp_link) { 5919 int i; 5920 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 5921 ata_tlink_delete(&ap->pmp_link[i]); 5922 } 5923 /* remove the associated SCSI host */ 5924 scsi_remove_host(ap->scsi_host); 5925 ata_tport_delete(ap); 5926 } 5927 5928 /** 5929 * ata_host_detach - Detach all ports of an ATA host 5930 * @host: Host to detach 5931 * 5932 * Detach all ports of @host. 5933 * 5934 * LOCKING: 5935 * Kernel thread context (may sleep). 5936 */ 5937 void ata_host_detach(struct ata_host *host) 5938 { 5939 int i; 5940 5941 for (i = 0; i < host->n_ports; i++) { 5942 /* Ensure ata_port probe has completed */ 5943 async_synchronize_cookie(host->ports[i]->cookie + 1); 5944 ata_port_detach(host->ports[i]); 5945 } 5946 5947 /* the host is dead now, dissociate ACPI */ 5948 ata_acpi_dissociate(host); 5949 } 5950 EXPORT_SYMBOL_GPL(ata_host_detach); 5951 5952 #ifdef CONFIG_PCI 5953 5954 /** 5955 * ata_pci_remove_one - PCI layer callback for device removal 5956 * @pdev: PCI device that was removed 5957 * 5958 * PCI layer indicates to libata via this hook that hot-unplug or 5959 * module unload event has occurred. Detach all ports. Resource 5960 * release is handled via devres. 5961 * 5962 * LOCKING: 5963 * Inherited from PCI layer (may sleep). 5964 */ 5965 void ata_pci_remove_one(struct pci_dev *pdev) 5966 { 5967 struct ata_host *host = pci_get_drvdata(pdev); 5968 5969 ata_host_detach(host); 5970 } 5971 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 5972 5973 void ata_pci_shutdown_one(struct pci_dev *pdev) 5974 { 5975 struct ata_host *host = pci_get_drvdata(pdev); 5976 int i; 5977 5978 for (i = 0; i < host->n_ports; i++) { 5979 struct ata_port *ap = host->ports[i]; 5980 5981 ap->pflags |= ATA_PFLAG_FROZEN; 5982 5983 /* Disable port interrupts */ 5984 if (ap->ops->freeze) 5985 ap->ops->freeze(ap); 5986 5987 /* Stop the port DMA engines */ 5988 if (ap->ops->port_stop) 5989 ap->ops->port_stop(ap); 5990 } 5991 } 5992 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 5993 5994 /* move to PCI subsystem */ 5995 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 5996 { 5997 unsigned long tmp = 0; 5998 5999 switch (bits->width) { 6000 case 1: { 6001 u8 tmp8 = 0; 6002 pci_read_config_byte(pdev, bits->reg, &tmp8); 6003 tmp = tmp8; 6004 break; 6005 } 6006 case 2: { 6007 u16 tmp16 = 0; 6008 pci_read_config_word(pdev, bits->reg, &tmp16); 6009 tmp = tmp16; 6010 break; 6011 } 6012 case 4: { 6013 u32 tmp32 = 0; 6014 pci_read_config_dword(pdev, bits->reg, &tmp32); 6015 tmp = tmp32; 6016 break; 6017 } 6018 6019 default: 6020 return -EINVAL; 6021 } 6022 6023 tmp &= bits->mask; 6024 6025 return (tmp == bits->val) ? 1 : 0; 6026 } 6027 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6028 6029 #ifdef CONFIG_PM 6030 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6031 { 6032 pci_save_state(pdev); 6033 pci_disable_device(pdev); 6034 6035 if (mesg.event & PM_EVENT_SLEEP) 6036 pci_set_power_state(pdev, PCI_D3hot); 6037 } 6038 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6039 6040 int ata_pci_device_do_resume(struct pci_dev *pdev) 6041 { 6042 int rc; 6043 6044 pci_set_power_state(pdev, PCI_D0); 6045 pci_restore_state(pdev); 6046 6047 rc = pcim_enable_device(pdev); 6048 if (rc) { 6049 dev_err(&pdev->dev, 6050 "failed to enable device after resume (%d)\n", rc); 6051 return rc; 6052 } 6053 6054 pci_set_master(pdev); 6055 return 0; 6056 } 6057 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6058 6059 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6060 { 6061 struct ata_host *host = pci_get_drvdata(pdev); 6062 int rc = 0; 6063 6064 rc = ata_host_suspend(host, mesg); 6065 if (rc) 6066 return rc; 6067 6068 ata_pci_device_do_suspend(pdev, mesg); 6069 6070 return 0; 6071 } 6072 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6073 6074 int ata_pci_device_resume(struct pci_dev *pdev) 6075 { 6076 struct ata_host *host = pci_get_drvdata(pdev); 6077 int rc; 6078 6079 rc = ata_pci_device_do_resume(pdev); 6080 if (rc == 0) 6081 ata_host_resume(host); 6082 return rc; 6083 } 6084 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6085 #endif /* CONFIG_PM */ 6086 #endif /* CONFIG_PCI */ 6087 6088 /** 6089 * ata_platform_remove_one - Platform layer callback for device removal 6090 * @pdev: Platform device that was removed 6091 * 6092 * Platform layer indicates to libata via this hook that hot-unplug or 6093 * module unload event has occurred. Detach all ports. Resource 6094 * release is handled via devres. 6095 * 6096 * LOCKING: 6097 * Inherited from platform layer (may sleep). 6098 */ 6099 int ata_platform_remove_one(struct platform_device *pdev) 6100 { 6101 struct ata_host *host = platform_get_drvdata(pdev); 6102 6103 ata_host_detach(host); 6104 6105 return 0; 6106 } 6107 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6108 6109 #ifdef CONFIG_ATA_FORCE 6110 static int __init ata_parse_force_one(char **cur, 6111 struct ata_force_ent *force_ent, 6112 const char **reason) 6113 { 6114 static const struct ata_force_param force_tbl[] __initconst = { 6115 { "40c", .cbl = ATA_CBL_PATA40 }, 6116 { "80c", .cbl = ATA_CBL_PATA80 }, 6117 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6118 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6119 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6120 { "sata", .cbl = ATA_CBL_SATA }, 6121 { "1.5Gbps", .spd_limit = 1 }, 6122 { "3.0Gbps", .spd_limit = 2 }, 6123 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6124 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6125 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6126 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6127 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6128 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6129 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6130 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6131 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6132 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6133 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6134 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6135 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6136 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6137 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6138 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6139 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6140 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6141 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6142 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6143 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6144 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6145 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6146 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6147 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6148 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6149 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6150 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6151 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6152 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6153 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6154 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6155 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6156 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6157 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6158 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6159 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6160 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6161 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6162 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6163 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6164 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6165 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6166 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6167 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6168 }; 6169 char *start = *cur, *p = *cur; 6170 char *id, *val, *endp; 6171 const struct ata_force_param *match_fp = NULL; 6172 int nr_matches = 0, i; 6173 6174 /* find where this param ends and update *cur */ 6175 while (*p != '\0' && *p != ',') 6176 p++; 6177 6178 if (*p == '\0') 6179 *cur = p; 6180 else 6181 *cur = p + 1; 6182 6183 *p = '\0'; 6184 6185 /* parse */ 6186 p = strchr(start, ':'); 6187 if (!p) { 6188 val = strstrip(start); 6189 goto parse_val; 6190 } 6191 *p = '\0'; 6192 6193 id = strstrip(start); 6194 val = strstrip(p + 1); 6195 6196 /* parse id */ 6197 p = strchr(id, '.'); 6198 if (p) { 6199 *p++ = '\0'; 6200 force_ent->device = simple_strtoul(p, &endp, 10); 6201 if (p == endp || *endp != '\0') { 6202 *reason = "invalid device"; 6203 return -EINVAL; 6204 } 6205 } 6206 6207 force_ent->port = simple_strtoul(id, &endp, 10); 6208 if (id == endp || *endp != '\0') { 6209 *reason = "invalid port/link"; 6210 return -EINVAL; 6211 } 6212 6213 parse_val: 6214 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6215 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6216 const struct ata_force_param *fp = &force_tbl[i]; 6217 6218 if (strncasecmp(val, fp->name, strlen(val))) 6219 continue; 6220 6221 nr_matches++; 6222 match_fp = fp; 6223 6224 if (strcasecmp(val, fp->name) == 0) { 6225 nr_matches = 1; 6226 break; 6227 } 6228 } 6229 6230 if (!nr_matches) { 6231 *reason = "unknown value"; 6232 return -EINVAL; 6233 } 6234 if (nr_matches > 1) { 6235 *reason = "ambiguous value"; 6236 return -EINVAL; 6237 } 6238 6239 force_ent->param = *match_fp; 6240 6241 return 0; 6242 } 6243 6244 static void __init ata_parse_force_param(void) 6245 { 6246 int idx = 0, size = 1; 6247 int last_port = -1, last_device = -1; 6248 char *p, *cur, *next; 6249 6250 /* calculate maximum number of params and allocate force_tbl */ 6251 for (p = ata_force_param_buf; *p; p++) 6252 if (*p == ',') 6253 size++; 6254 6255 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6256 if (!ata_force_tbl) { 6257 printk(KERN_WARNING "ata: failed to extend force table, " 6258 "libata.force ignored\n"); 6259 return; 6260 } 6261 6262 /* parse and populate the table */ 6263 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6264 const char *reason = ""; 6265 struct ata_force_ent te = { .port = -1, .device = -1 }; 6266 6267 next = cur; 6268 if (ata_parse_force_one(&next, &te, &reason)) { 6269 printk(KERN_WARNING "ata: failed to parse force " 6270 "parameter \"%s\" (%s)\n", 6271 cur, reason); 6272 continue; 6273 } 6274 6275 if (te.port == -1) { 6276 te.port = last_port; 6277 te.device = last_device; 6278 } 6279 6280 ata_force_tbl[idx++] = te; 6281 6282 last_port = te.port; 6283 last_device = te.device; 6284 } 6285 6286 ata_force_tbl_size = idx; 6287 } 6288 6289 static void ata_free_force_param(void) 6290 { 6291 kfree(ata_force_tbl); 6292 } 6293 #else 6294 static inline void ata_parse_force_param(void) { } 6295 static inline void ata_free_force_param(void) { } 6296 #endif 6297 6298 static int __init ata_init(void) 6299 { 6300 int rc; 6301 6302 ata_parse_force_param(); 6303 6304 rc = ata_sff_init(); 6305 if (rc) { 6306 ata_free_force_param(); 6307 return rc; 6308 } 6309 6310 libata_transport_init(); 6311 ata_scsi_transport_template = ata_attach_transport(); 6312 if (!ata_scsi_transport_template) { 6313 ata_sff_exit(); 6314 rc = -ENOMEM; 6315 goto err_out; 6316 } 6317 6318 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6319 return 0; 6320 6321 err_out: 6322 return rc; 6323 } 6324 6325 static void __exit ata_exit(void) 6326 { 6327 ata_release_transport(ata_scsi_transport_template); 6328 libata_transport_exit(); 6329 ata_sff_exit(); 6330 ata_free_force_param(); 6331 } 6332 6333 subsys_initcall(ata_init); 6334 module_exit(ata_exit); 6335 6336 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6337 6338 int ata_ratelimit(void) 6339 { 6340 return __ratelimit(&ratelimit); 6341 } 6342 EXPORT_SYMBOL_GPL(ata_ratelimit); 6343 6344 /** 6345 * ata_msleep - ATA EH owner aware msleep 6346 * @ap: ATA port to attribute the sleep to 6347 * @msecs: duration to sleep in milliseconds 6348 * 6349 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6350 * ownership is released before going to sleep and reacquired 6351 * after the sleep is complete. IOW, other ports sharing the 6352 * @ap->host will be allowed to own the EH while this task is 6353 * sleeping. 6354 * 6355 * LOCKING: 6356 * Might sleep. 6357 */ 6358 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6359 { 6360 bool owns_eh = ap && ap->host->eh_owner == current; 6361 6362 if (owns_eh) 6363 ata_eh_release(ap); 6364 6365 if (msecs < 20) { 6366 unsigned long usecs = msecs * USEC_PER_MSEC; 6367 usleep_range(usecs, usecs + 50); 6368 } else { 6369 msleep(msecs); 6370 } 6371 6372 if (owns_eh) 6373 ata_eh_acquire(ap); 6374 } 6375 EXPORT_SYMBOL_GPL(ata_msleep); 6376 6377 /** 6378 * ata_wait_register - wait until register value changes 6379 * @ap: ATA port to wait register for, can be NULL 6380 * @reg: IO-mapped register 6381 * @mask: Mask to apply to read register value 6382 * @val: Wait condition 6383 * @interval: polling interval in milliseconds 6384 * @timeout: timeout in milliseconds 6385 * 6386 * Waiting for some bits of register to change is a common 6387 * operation for ATA controllers. This function reads 32bit LE 6388 * IO-mapped register @reg and tests for the following condition. 6389 * 6390 * (*@reg & mask) != val 6391 * 6392 * If the condition is met, it returns; otherwise, the process is 6393 * repeated after @interval_msec until timeout. 6394 * 6395 * LOCKING: 6396 * Kernel thread context (may sleep) 6397 * 6398 * RETURNS: 6399 * The final register value. 6400 */ 6401 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6402 unsigned long interval, unsigned long timeout) 6403 { 6404 unsigned long deadline; 6405 u32 tmp; 6406 6407 tmp = ioread32(reg); 6408 6409 /* Calculate timeout _after_ the first read to make sure 6410 * preceding writes reach the controller before starting to 6411 * eat away the timeout. 6412 */ 6413 deadline = ata_deadline(jiffies, timeout); 6414 6415 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6416 ata_msleep(ap, interval); 6417 tmp = ioread32(reg); 6418 } 6419 6420 return tmp; 6421 } 6422 EXPORT_SYMBOL_GPL(ata_wait_register); 6423 6424 /* 6425 * Dummy port_ops 6426 */ 6427 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6428 { 6429 return AC_ERR_SYSTEM; 6430 } 6431 6432 static void ata_dummy_error_handler(struct ata_port *ap) 6433 { 6434 /* truly dummy */ 6435 } 6436 6437 struct ata_port_operations ata_dummy_port_ops = { 6438 .qc_prep = ata_noop_qc_prep, 6439 .qc_issue = ata_dummy_qc_issue, 6440 .error_handler = ata_dummy_error_handler, 6441 .sched_eh = ata_std_sched_eh, 6442 .end_eh = ata_std_end_eh, 6443 }; 6444 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6445 6446 const struct ata_port_info ata_dummy_port_info = { 6447 .port_ops = &ata_dummy_port_ops, 6448 }; 6449 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6450 6451 /* 6452 * Utility print functions 6453 */ 6454 void ata_port_printk(const struct ata_port *ap, const char *level, 6455 const char *fmt, ...) 6456 { 6457 struct va_format vaf; 6458 va_list args; 6459 6460 va_start(args, fmt); 6461 6462 vaf.fmt = fmt; 6463 vaf.va = &args; 6464 6465 printk("%sata%u: %pV", level, ap->print_id, &vaf); 6466 6467 va_end(args); 6468 } 6469 EXPORT_SYMBOL(ata_port_printk); 6470 6471 void ata_link_printk(const struct ata_link *link, const char *level, 6472 const char *fmt, ...) 6473 { 6474 struct va_format vaf; 6475 va_list args; 6476 6477 va_start(args, fmt); 6478 6479 vaf.fmt = fmt; 6480 vaf.va = &args; 6481 6482 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6483 printk("%sata%u.%02u: %pV", 6484 level, link->ap->print_id, link->pmp, &vaf); 6485 else 6486 printk("%sata%u: %pV", 6487 level, link->ap->print_id, &vaf); 6488 6489 va_end(args); 6490 } 6491 EXPORT_SYMBOL(ata_link_printk); 6492 6493 void ata_dev_printk(const struct ata_device *dev, const char *level, 6494 const char *fmt, ...) 6495 { 6496 struct va_format vaf; 6497 va_list args; 6498 6499 va_start(args, fmt); 6500 6501 vaf.fmt = fmt; 6502 vaf.va = &args; 6503 6504 printk("%sata%u.%02u: %pV", 6505 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6506 &vaf); 6507 6508 va_end(args); 6509 } 6510 EXPORT_SYMBOL(ata_dev_printk); 6511 6512 void ata_print_version(const struct device *dev, const char *version) 6513 { 6514 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6515 } 6516 EXPORT_SYMBOL(ata_print_version); 6517