xref: /openbmc/linux/drivers/ata/libata-core.c (revision e368cd72)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned long	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags;
100 };
101 
102 struct ata_force_ent {
103 	int			port;
104 	int			device;
105 	struct ata_force_param	param;
106 };
107 
108 static struct ata_force_ent *ata_force_tbl;
109 static int ata_force_tbl_size;
110 
111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112 /* param_buf is thrown away after initialization, disallow read */
113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115 #endif
116 
117 static int atapi_enabled = 1;
118 module_param(atapi_enabled, int, 0444);
119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120 
121 static int atapi_dmadir = 0;
122 module_param(atapi_dmadir, int, 0444);
123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124 
125 int atapi_passthru16 = 1;
126 module_param(atapi_passthru16, int, 0444);
127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128 
129 int libata_fua = 0;
130 module_param_named(fua, libata_fua, int, 0444);
131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132 
133 static int ata_ignore_hpa;
134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136 
137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138 module_param_named(dma, libata_dma_mask, int, 0444);
139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140 
141 static int ata_probe_timeout;
142 module_param(ata_probe_timeout, int, 0444);
143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144 
145 int libata_noacpi = 0;
146 module_param_named(noacpi, libata_noacpi, int, 0444);
147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148 
149 int libata_allow_tpm = 0;
150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152 
153 static int atapi_an;
154 module_param(atapi_an, int, 0444);
155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156 
157 MODULE_AUTHOR("Jeff Garzik");
158 MODULE_DESCRIPTION("Library module for ATA devices");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION);
161 
162 static inline bool ata_dev_print_info(struct ata_device *dev)
163 {
164 	struct ata_eh_context *ehc = &dev->link->eh_context;
165 
166 	return ehc->i.flags & ATA_EHI_PRINTINFO;
167 }
168 
169 static bool ata_sstatus_online(u32 sstatus)
170 {
171 	return (sstatus & 0xf) == 0x3;
172 }
173 
174 /**
175  *	ata_link_next - link iteration helper
176  *	@link: the previous link, NULL to start
177  *	@ap: ATA port containing links to iterate
178  *	@mode: iteration mode, one of ATA_LITER_*
179  *
180  *	LOCKING:
181  *	Host lock or EH context.
182  *
183  *	RETURNS:
184  *	Pointer to the next link.
185  */
186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 			       enum ata_link_iter_mode mode)
188 {
189 	BUG_ON(mode != ATA_LITER_EDGE &&
190 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191 
192 	/* NULL link indicates start of iteration */
193 	if (!link)
194 		switch (mode) {
195 		case ATA_LITER_EDGE:
196 		case ATA_LITER_PMP_FIRST:
197 			if (sata_pmp_attached(ap))
198 				return ap->pmp_link;
199 			fallthrough;
200 		case ATA_LITER_HOST_FIRST:
201 			return &ap->link;
202 		}
203 
204 	/* we just iterated over the host link, what's next? */
205 	if (link == &ap->link)
206 		switch (mode) {
207 		case ATA_LITER_HOST_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			fallthrough;
211 		case ATA_LITER_PMP_FIRST:
212 			if (unlikely(ap->slave_link))
213 				return ap->slave_link;
214 			fallthrough;
215 		case ATA_LITER_EDGE:
216 			return NULL;
217 		}
218 
219 	/* slave_link excludes PMP */
220 	if (unlikely(link == ap->slave_link))
221 		return NULL;
222 
223 	/* we were over a PMP link */
224 	if (++link < ap->pmp_link + ap->nr_pmp_links)
225 		return link;
226 
227 	if (mode == ATA_LITER_PMP_FIRST)
228 		return &ap->link;
229 
230 	return NULL;
231 }
232 EXPORT_SYMBOL_GPL(ata_link_next);
233 
234 /**
235  *	ata_dev_next - device iteration helper
236  *	@dev: the previous device, NULL to start
237  *	@link: ATA link containing devices to iterate
238  *	@mode: iteration mode, one of ATA_DITER_*
239  *
240  *	LOCKING:
241  *	Host lock or EH context.
242  *
243  *	RETURNS:
244  *	Pointer to the next device.
245  */
246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 				enum ata_dev_iter_mode mode)
248 {
249 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251 
252 	/* NULL dev indicates start of iteration */
253 	if (!dev)
254 		switch (mode) {
255 		case ATA_DITER_ENABLED:
256 		case ATA_DITER_ALL:
257 			dev = link->device;
258 			goto check;
259 		case ATA_DITER_ENABLED_REVERSE:
260 		case ATA_DITER_ALL_REVERSE:
261 			dev = link->device + ata_link_max_devices(link) - 1;
262 			goto check;
263 		}
264 
265  next:
266 	/* move to the next one */
267 	switch (mode) {
268 	case ATA_DITER_ENABLED:
269 	case ATA_DITER_ALL:
270 		if (++dev < link->device + ata_link_max_devices(link))
271 			goto check;
272 		return NULL;
273 	case ATA_DITER_ENABLED_REVERSE:
274 	case ATA_DITER_ALL_REVERSE:
275 		if (--dev >= link->device)
276 			goto check;
277 		return NULL;
278 	}
279 
280  check:
281 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 	    !ata_dev_enabled(dev))
283 		goto next;
284 	return dev;
285 }
286 EXPORT_SYMBOL_GPL(ata_dev_next);
287 
288 /**
289  *	ata_dev_phys_link - find physical link for a device
290  *	@dev: ATA device to look up physical link for
291  *
292  *	Look up physical link which @dev is attached to.  Note that
293  *	this is different from @dev->link only when @dev is on slave
294  *	link.  For all other cases, it's the same as @dev->link.
295  *
296  *	LOCKING:
297  *	Don't care.
298  *
299  *	RETURNS:
300  *	Pointer to the found physical link.
301  */
302 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
303 {
304 	struct ata_port *ap = dev->link->ap;
305 
306 	if (!ap->slave_link)
307 		return dev->link;
308 	if (!dev->devno)
309 		return &ap->link;
310 	return ap->slave_link;
311 }
312 
313 #ifdef CONFIG_ATA_FORCE
314 /**
315  *	ata_force_cbl - force cable type according to libata.force
316  *	@ap: ATA port of interest
317  *
318  *	Force cable type according to libata.force and whine about it.
319  *	The last entry which has matching port number is used, so it
320  *	can be specified as part of device force parameters.  For
321  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322  *	same effect.
323  *
324  *	LOCKING:
325  *	EH context.
326  */
327 void ata_force_cbl(struct ata_port *ap)
328 {
329 	int i;
330 
331 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 		const struct ata_force_ent *fe = &ata_force_tbl[i];
333 
334 		if (fe->port != -1 && fe->port != ap->print_id)
335 			continue;
336 
337 		if (fe->param.cbl == ATA_CBL_NONE)
338 			continue;
339 
340 		ap->cbl = fe->param.cbl;
341 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
342 		return;
343 	}
344 }
345 
346 /**
347  *	ata_force_link_limits - force link limits according to libata.force
348  *	@link: ATA link of interest
349  *
350  *	Force link flags and SATA spd limit according to libata.force
351  *	and whine about it.  When only the port part is specified
352  *	(e.g. 1:), the limit applies to all links connected to both
353  *	the host link and all fan-out ports connected via PMP.  If the
354  *	device part is specified as 0 (e.g. 1.00:), it specifies the
355  *	first fan-out link not the host link.  Device number 15 always
356  *	points to the host link whether PMP is attached or not.  If the
357  *	controller has slave link, device number 16 points to it.
358  *
359  *	LOCKING:
360  *	EH context.
361  */
362 static void ata_force_link_limits(struct ata_link *link)
363 {
364 	bool did_spd = false;
365 	int linkno = link->pmp;
366 	int i;
367 
368 	if (ata_is_host_link(link))
369 		linkno += 15;
370 
371 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 		const struct ata_force_ent *fe = &ata_force_tbl[i];
373 
374 		if (fe->port != -1 && fe->port != link->ap->print_id)
375 			continue;
376 
377 		if (fe->device != -1 && fe->device != linkno)
378 			continue;
379 
380 		/* only honor the first spd limit */
381 		if (!did_spd && fe->param.spd_limit) {
382 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
384 					fe->param.name);
385 			did_spd = true;
386 		}
387 
388 		/* let lflags stack */
389 		if (fe->param.lflags) {
390 			link->flags |= fe->param.lflags;
391 			ata_link_notice(link,
392 					"FORCE: link flag 0x%x forced -> 0x%x\n",
393 					fe->param.lflags, link->flags);
394 		}
395 	}
396 }
397 
398 /**
399  *	ata_force_xfermask - force xfermask according to libata.force
400  *	@dev: ATA device of interest
401  *
402  *	Force xfer_mask according to libata.force and whine about it.
403  *	For consistency with link selection, device number 15 selects
404  *	the first device connected to the host link.
405  *
406  *	LOCKING:
407  *	EH context.
408  */
409 static void ata_force_xfermask(struct ata_device *dev)
410 {
411 	int devno = dev->link->pmp + dev->devno;
412 	int alt_devno = devno;
413 	int i;
414 
415 	/* allow n.15/16 for devices attached to host port */
416 	if (ata_is_host_link(dev->link))
417 		alt_devno += 15;
418 
419 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 		const struct ata_force_ent *fe = &ata_force_tbl[i];
421 		unsigned long pio_mask, mwdma_mask, udma_mask;
422 
423 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 			continue;
425 
426 		if (fe->device != -1 && fe->device != devno &&
427 		    fe->device != alt_devno)
428 			continue;
429 
430 		if (!fe->param.xfer_mask)
431 			continue;
432 
433 		ata_unpack_xfermask(fe->param.xfer_mask,
434 				    &pio_mask, &mwdma_mask, &udma_mask);
435 		if (udma_mask)
436 			dev->udma_mask = udma_mask;
437 		else if (mwdma_mask) {
438 			dev->udma_mask = 0;
439 			dev->mwdma_mask = mwdma_mask;
440 		} else {
441 			dev->udma_mask = 0;
442 			dev->mwdma_mask = 0;
443 			dev->pio_mask = pio_mask;
444 		}
445 
446 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
447 			       fe->param.name);
448 		return;
449 	}
450 }
451 
452 /**
453  *	ata_force_horkage - force horkage according to libata.force
454  *	@dev: ATA device of interest
455  *
456  *	Force horkage according to libata.force and whine about it.
457  *	For consistency with link selection, device number 15 selects
458  *	the first device connected to the host link.
459  *
460  *	LOCKING:
461  *	EH context.
462  */
463 static void ata_force_horkage(struct ata_device *dev)
464 {
465 	int devno = dev->link->pmp + dev->devno;
466 	int alt_devno = devno;
467 	int i;
468 
469 	/* allow n.15/16 for devices attached to host port */
470 	if (ata_is_host_link(dev->link))
471 		alt_devno += 15;
472 
473 	for (i = 0; i < ata_force_tbl_size; i++) {
474 		const struct ata_force_ent *fe = &ata_force_tbl[i];
475 
476 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 			continue;
478 
479 		if (fe->device != -1 && fe->device != devno &&
480 		    fe->device != alt_devno)
481 			continue;
482 
483 		if (!(~dev->horkage & fe->param.horkage_on) &&
484 		    !(dev->horkage & fe->param.horkage_off))
485 			continue;
486 
487 		dev->horkage |= fe->param.horkage_on;
488 		dev->horkage &= ~fe->param.horkage_off;
489 
490 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
491 			       fe->param.name);
492 	}
493 }
494 #else
495 static inline void ata_force_link_limits(struct ata_link *link) { }
496 static inline void ata_force_xfermask(struct ata_device *dev) { }
497 static inline void ata_force_horkage(struct ata_device *dev) { }
498 #endif
499 
500 /**
501  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502  *	@opcode: SCSI opcode
503  *
504  *	Determine ATAPI command type from @opcode.
505  *
506  *	LOCKING:
507  *	None.
508  *
509  *	RETURNS:
510  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
511  */
512 int atapi_cmd_type(u8 opcode)
513 {
514 	switch (opcode) {
515 	case GPCMD_READ_10:
516 	case GPCMD_READ_12:
517 		return ATAPI_READ;
518 
519 	case GPCMD_WRITE_10:
520 	case GPCMD_WRITE_12:
521 	case GPCMD_WRITE_AND_VERIFY_10:
522 		return ATAPI_WRITE;
523 
524 	case GPCMD_READ_CD:
525 	case GPCMD_READ_CD_MSF:
526 		return ATAPI_READ_CD;
527 
528 	case ATA_16:
529 	case ATA_12:
530 		if (atapi_passthru16)
531 			return ATAPI_PASS_THRU;
532 		fallthrough;
533 	default:
534 		return ATAPI_MISC;
535 	}
536 }
537 EXPORT_SYMBOL_GPL(atapi_cmd_type);
538 
539 static const u8 ata_rw_cmds[] = {
540 	/* pio multi */
541 	ATA_CMD_READ_MULTI,
542 	ATA_CMD_WRITE_MULTI,
543 	ATA_CMD_READ_MULTI_EXT,
544 	ATA_CMD_WRITE_MULTI_EXT,
545 	0,
546 	0,
547 	0,
548 	ATA_CMD_WRITE_MULTI_FUA_EXT,
549 	/* pio */
550 	ATA_CMD_PIO_READ,
551 	ATA_CMD_PIO_WRITE,
552 	ATA_CMD_PIO_READ_EXT,
553 	ATA_CMD_PIO_WRITE_EXT,
554 	0,
555 	0,
556 	0,
557 	0,
558 	/* dma */
559 	ATA_CMD_READ,
560 	ATA_CMD_WRITE,
561 	ATA_CMD_READ_EXT,
562 	ATA_CMD_WRITE_EXT,
563 	0,
564 	0,
565 	0,
566 	ATA_CMD_WRITE_FUA_EXT
567 };
568 
569 /**
570  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
571  *	@tf: command to examine and configure
572  *	@dev: device tf belongs to
573  *
574  *	Examine the device configuration and tf->flags to calculate
575  *	the proper read/write commands and protocol to use.
576  *
577  *	LOCKING:
578  *	caller.
579  */
580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
581 {
582 	u8 cmd;
583 
584 	int index, fua, lba48, write;
585 
586 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
587 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
588 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
589 
590 	if (dev->flags & ATA_DFLAG_PIO) {
591 		tf->protocol = ATA_PROT_PIO;
592 		index = dev->multi_count ? 0 : 8;
593 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
594 		/* Unable to use DMA due to host limitation */
595 		tf->protocol = ATA_PROT_PIO;
596 		index = dev->multi_count ? 0 : 8;
597 	} else {
598 		tf->protocol = ATA_PROT_DMA;
599 		index = 16;
600 	}
601 
602 	cmd = ata_rw_cmds[index + fua + lba48 + write];
603 	if (cmd) {
604 		tf->command = cmd;
605 		return 0;
606 	}
607 	return -1;
608 }
609 
610 /**
611  *	ata_tf_read_block - Read block address from ATA taskfile
612  *	@tf: ATA taskfile of interest
613  *	@dev: ATA device @tf belongs to
614  *
615  *	LOCKING:
616  *	None.
617  *
618  *	Read block address from @tf.  This function can handle all
619  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
620  *	flags select the address format to use.
621  *
622  *	RETURNS:
623  *	Block address read from @tf.
624  */
625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
626 {
627 	u64 block = 0;
628 
629 	if (tf->flags & ATA_TFLAG_LBA) {
630 		if (tf->flags & ATA_TFLAG_LBA48) {
631 			block |= (u64)tf->hob_lbah << 40;
632 			block |= (u64)tf->hob_lbam << 32;
633 			block |= (u64)tf->hob_lbal << 24;
634 		} else
635 			block |= (tf->device & 0xf) << 24;
636 
637 		block |= tf->lbah << 16;
638 		block |= tf->lbam << 8;
639 		block |= tf->lbal;
640 	} else {
641 		u32 cyl, head, sect;
642 
643 		cyl = tf->lbam | (tf->lbah << 8);
644 		head = tf->device & 0xf;
645 		sect = tf->lbal;
646 
647 		if (!sect) {
648 			ata_dev_warn(dev,
649 				     "device reported invalid CHS sector 0\n");
650 			return U64_MAX;
651 		}
652 
653 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
654 	}
655 
656 	return block;
657 }
658 
659 /**
660  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
661  *	@tf: Target ATA taskfile
662  *	@dev: ATA device @tf belongs to
663  *	@block: Block address
664  *	@n_block: Number of blocks
665  *	@tf_flags: RW/FUA etc...
666  *	@tag: tag
667  *	@class: IO priority class
668  *
669  *	LOCKING:
670  *	None.
671  *
672  *	Build ATA taskfile @tf for read/write request described by
673  *	@block, @n_block, @tf_flags and @tag on @dev.
674  *
675  *	RETURNS:
676  *
677  *	0 on success, -ERANGE if the request is too large for @dev,
678  *	-EINVAL if the request is invalid.
679  */
680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
681 		    u64 block, u32 n_block, unsigned int tf_flags,
682 		    unsigned int tag, int class)
683 {
684 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
685 	tf->flags |= tf_flags;
686 
687 	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
688 		/* yay, NCQ */
689 		if (!lba_48_ok(block, n_block))
690 			return -ERANGE;
691 
692 		tf->protocol = ATA_PROT_NCQ;
693 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
694 
695 		if (tf->flags & ATA_TFLAG_WRITE)
696 			tf->command = ATA_CMD_FPDMA_WRITE;
697 		else
698 			tf->command = ATA_CMD_FPDMA_READ;
699 
700 		tf->nsect = tag << 3;
701 		tf->hob_feature = (n_block >> 8) & 0xff;
702 		tf->feature = n_block & 0xff;
703 
704 		tf->hob_lbah = (block >> 40) & 0xff;
705 		tf->hob_lbam = (block >> 32) & 0xff;
706 		tf->hob_lbal = (block >> 24) & 0xff;
707 		tf->lbah = (block >> 16) & 0xff;
708 		tf->lbam = (block >> 8) & 0xff;
709 		tf->lbal = block & 0xff;
710 
711 		tf->device = ATA_LBA;
712 		if (tf->flags & ATA_TFLAG_FUA)
713 			tf->device |= 1 << 7;
714 
715 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE &&
716 		    class == IOPRIO_CLASS_RT)
717 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
718 	} else if (dev->flags & ATA_DFLAG_LBA) {
719 		tf->flags |= ATA_TFLAG_LBA;
720 
721 		if (lba_28_ok(block, n_block)) {
722 			/* use LBA28 */
723 			tf->device |= (block >> 24) & 0xf;
724 		} else if (lba_48_ok(block, n_block)) {
725 			if (!(dev->flags & ATA_DFLAG_LBA48))
726 				return -ERANGE;
727 
728 			/* use LBA48 */
729 			tf->flags |= ATA_TFLAG_LBA48;
730 
731 			tf->hob_nsect = (n_block >> 8) & 0xff;
732 
733 			tf->hob_lbah = (block >> 40) & 0xff;
734 			tf->hob_lbam = (block >> 32) & 0xff;
735 			tf->hob_lbal = (block >> 24) & 0xff;
736 		} else
737 			/* request too large even for LBA48 */
738 			return -ERANGE;
739 
740 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
741 			return -EINVAL;
742 
743 		tf->nsect = n_block & 0xff;
744 
745 		tf->lbah = (block >> 16) & 0xff;
746 		tf->lbam = (block >> 8) & 0xff;
747 		tf->lbal = block & 0xff;
748 
749 		tf->device |= ATA_LBA;
750 	} else {
751 		/* CHS */
752 		u32 sect, head, cyl, track;
753 
754 		/* The request -may- be too large for CHS addressing. */
755 		if (!lba_28_ok(block, n_block))
756 			return -ERANGE;
757 
758 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
759 			return -EINVAL;
760 
761 		/* Convert LBA to CHS */
762 		track = (u32)block / dev->sectors;
763 		cyl   = track / dev->heads;
764 		head  = track % dev->heads;
765 		sect  = (u32)block % dev->sectors + 1;
766 
767 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
768 			(u32)block, track, cyl, head, sect);
769 
770 		/* Check whether the converted CHS can fit.
771 		   Cylinder: 0-65535
772 		   Head: 0-15
773 		   Sector: 1-255*/
774 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
775 			return -ERANGE;
776 
777 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
778 		tf->lbal = sect;
779 		tf->lbam = cyl;
780 		tf->lbah = cyl >> 8;
781 		tf->device |= head;
782 	}
783 
784 	return 0;
785 }
786 
787 /**
788  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
789  *	@pio_mask: pio_mask
790  *	@mwdma_mask: mwdma_mask
791  *	@udma_mask: udma_mask
792  *
793  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
794  *	unsigned int xfer_mask.
795  *
796  *	LOCKING:
797  *	None.
798  *
799  *	RETURNS:
800  *	Packed xfer_mask.
801  */
802 unsigned long ata_pack_xfermask(unsigned long pio_mask,
803 				unsigned long mwdma_mask,
804 				unsigned long udma_mask)
805 {
806 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
807 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
808 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
809 }
810 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
811 
812 /**
813  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
814  *	@xfer_mask: xfer_mask to unpack
815  *	@pio_mask: resulting pio_mask
816  *	@mwdma_mask: resulting mwdma_mask
817  *	@udma_mask: resulting udma_mask
818  *
819  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
820  *	Any NULL destination masks will be ignored.
821  */
822 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
823 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
824 {
825 	if (pio_mask)
826 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
827 	if (mwdma_mask)
828 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
829 	if (udma_mask)
830 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
831 }
832 
833 static const struct ata_xfer_ent {
834 	int shift, bits;
835 	u8 base;
836 } ata_xfer_tbl[] = {
837 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
838 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
839 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
840 	{ -1, },
841 };
842 
843 /**
844  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
845  *	@xfer_mask: xfer_mask of interest
846  *
847  *	Return matching XFER_* value for @xfer_mask.  Only the highest
848  *	bit of @xfer_mask is considered.
849  *
850  *	LOCKING:
851  *	None.
852  *
853  *	RETURNS:
854  *	Matching XFER_* value, 0xff if no match found.
855  */
856 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
857 {
858 	int highbit = fls(xfer_mask) - 1;
859 	const struct ata_xfer_ent *ent;
860 
861 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
862 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
863 			return ent->base + highbit - ent->shift;
864 	return 0xff;
865 }
866 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
867 
868 /**
869  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
870  *	@xfer_mode: XFER_* of interest
871  *
872  *	Return matching xfer_mask for @xfer_mode.
873  *
874  *	LOCKING:
875  *	None.
876  *
877  *	RETURNS:
878  *	Matching xfer_mask, 0 if no match found.
879  */
880 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
881 {
882 	const struct ata_xfer_ent *ent;
883 
884 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
885 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
886 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
887 				& ~((1 << ent->shift) - 1);
888 	return 0;
889 }
890 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
891 
892 /**
893  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
894  *	@xfer_mode: XFER_* of interest
895  *
896  *	Return matching xfer_shift for @xfer_mode.
897  *
898  *	LOCKING:
899  *	None.
900  *
901  *	RETURNS:
902  *	Matching xfer_shift, -1 if no match found.
903  */
904 int ata_xfer_mode2shift(unsigned long xfer_mode)
905 {
906 	const struct ata_xfer_ent *ent;
907 
908 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
909 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
910 			return ent->shift;
911 	return -1;
912 }
913 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
914 
915 /**
916  *	ata_mode_string - convert xfer_mask to string
917  *	@xfer_mask: mask of bits supported; only highest bit counts.
918  *
919  *	Determine string which represents the highest speed
920  *	(highest bit in @modemask).
921  *
922  *	LOCKING:
923  *	None.
924  *
925  *	RETURNS:
926  *	Constant C string representing highest speed listed in
927  *	@mode_mask, or the constant C string "<n/a>".
928  */
929 const char *ata_mode_string(unsigned long xfer_mask)
930 {
931 	static const char * const xfer_mode_str[] = {
932 		"PIO0",
933 		"PIO1",
934 		"PIO2",
935 		"PIO3",
936 		"PIO4",
937 		"PIO5",
938 		"PIO6",
939 		"MWDMA0",
940 		"MWDMA1",
941 		"MWDMA2",
942 		"MWDMA3",
943 		"MWDMA4",
944 		"UDMA/16",
945 		"UDMA/25",
946 		"UDMA/33",
947 		"UDMA/44",
948 		"UDMA/66",
949 		"UDMA/100",
950 		"UDMA/133",
951 		"UDMA7",
952 	};
953 	int highbit;
954 
955 	highbit = fls(xfer_mask) - 1;
956 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
957 		return xfer_mode_str[highbit];
958 	return "<n/a>";
959 }
960 EXPORT_SYMBOL_GPL(ata_mode_string);
961 
962 const char *sata_spd_string(unsigned int spd)
963 {
964 	static const char * const spd_str[] = {
965 		"1.5 Gbps",
966 		"3.0 Gbps",
967 		"6.0 Gbps",
968 	};
969 
970 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
971 		return "<unknown>";
972 	return spd_str[spd - 1];
973 }
974 
975 /**
976  *	ata_dev_classify - determine device type based on ATA-spec signature
977  *	@tf: ATA taskfile register set for device to be identified
978  *
979  *	Determine from taskfile register contents whether a device is
980  *	ATA or ATAPI, as per "Signature and persistence" section
981  *	of ATA/PI spec (volume 1, sect 5.14).
982  *
983  *	LOCKING:
984  *	None.
985  *
986  *	RETURNS:
987  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
988  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
989  */
990 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
991 {
992 	/* Apple's open source Darwin code hints that some devices only
993 	 * put a proper signature into the LBA mid/high registers,
994 	 * So, we only check those.  It's sufficient for uniqueness.
995 	 *
996 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
997 	 * signatures for ATA and ATAPI devices attached on SerialATA,
998 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
999 	 * spec has never mentioned about using different signatures
1000 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1001 	 * Multiplier specification began to use 0x69/0x96 to identify
1002 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1003 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1004 	 * 0x69/0x96 shortly and described them as reserved for
1005 	 * SerialATA.
1006 	 *
1007 	 * We follow the current spec and consider that 0x69/0x96
1008 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1009 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1010 	 * SEMB signature.  This is worked around in
1011 	 * ata_dev_read_id().
1012 	 */
1013 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1014 		DPRINTK("found ATA device by sig\n");
1015 		return ATA_DEV_ATA;
1016 	}
1017 
1018 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1019 		DPRINTK("found ATAPI device by sig\n");
1020 		return ATA_DEV_ATAPI;
1021 	}
1022 
1023 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1024 		DPRINTK("found PMP device by sig\n");
1025 		return ATA_DEV_PMP;
1026 	}
1027 
1028 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1029 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1030 		return ATA_DEV_SEMB;
1031 	}
1032 
1033 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1034 		DPRINTK("found ZAC device by sig\n");
1035 		return ATA_DEV_ZAC;
1036 	}
1037 
1038 	DPRINTK("unknown device\n");
1039 	return ATA_DEV_UNKNOWN;
1040 }
1041 EXPORT_SYMBOL_GPL(ata_dev_classify);
1042 
1043 /**
1044  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1045  *	@id: IDENTIFY DEVICE results we will examine
1046  *	@s: string into which data is output
1047  *	@ofs: offset into identify device page
1048  *	@len: length of string to return. must be an even number.
1049  *
1050  *	The strings in the IDENTIFY DEVICE page are broken up into
1051  *	16-bit chunks.  Run through the string, and output each
1052  *	8-bit chunk linearly, regardless of platform.
1053  *
1054  *	LOCKING:
1055  *	caller.
1056  */
1057 
1058 void ata_id_string(const u16 *id, unsigned char *s,
1059 		   unsigned int ofs, unsigned int len)
1060 {
1061 	unsigned int c;
1062 
1063 	BUG_ON(len & 1);
1064 
1065 	while (len > 0) {
1066 		c = id[ofs] >> 8;
1067 		*s = c;
1068 		s++;
1069 
1070 		c = id[ofs] & 0xff;
1071 		*s = c;
1072 		s++;
1073 
1074 		ofs++;
1075 		len -= 2;
1076 	}
1077 }
1078 EXPORT_SYMBOL_GPL(ata_id_string);
1079 
1080 /**
1081  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1082  *	@id: IDENTIFY DEVICE results we will examine
1083  *	@s: string into which data is output
1084  *	@ofs: offset into identify device page
1085  *	@len: length of string to return. must be an odd number.
1086  *
1087  *	This function is identical to ata_id_string except that it
1088  *	trims trailing spaces and terminates the resulting string with
1089  *	null.  @len must be actual maximum length (even number) + 1.
1090  *
1091  *	LOCKING:
1092  *	caller.
1093  */
1094 void ata_id_c_string(const u16 *id, unsigned char *s,
1095 		     unsigned int ofs, unsigned int len)
1096 {
1097 	unsigned char *p;
1098 
1099 	ata_id_string(id, s, ofs, len - 1);
1100 
1101 	p = s + strnlen(s, len - 1);
1102 	while (p > s && p[-1] == ' ')
1103 		p--;
1104 	*p = '\0';
1105 }
1106 EXPORT_SYMBOL_GPL(ata_id_c_string);
1107 
1108 static u64 ata_id_n_sectors(const u16 *id)
1109 {
1110 	if (ata_id_has_lba(id)) {
1111 		if (ata_id_has_lba48(id))
1112 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1113 		else
1114 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1115 	} else {
1116 		if (ata_id_current_chs_valid(id))
1117 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1118 			       id[ATA_ID_CUR_SECTORS];
1119 		else
1120 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1121 			       id[ATA_ID_SECTORS];
1122 	}
1123 }
1124 
1125 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1126 {
1127 	u64 sectors = 0;
1128 
1129 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1130 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1131 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1132 	sectors |= (tf->lbah & 0xff) << 16;
1133 	sectors |= (tf->lbam & 0xff) << 8;
1134 	sectors |= (tf->lbal & 0xff);
1135 
1136 	return sectors;
1137 }
1138 
1139 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1140 {
1141 	u64 sectors = 0;
1142 
1143 	sectors |= (tf->device & 0x0f) << 24;
1144 	sectors |= (tf->lbah & 0xff) << 16;
1145 	sectors |= (tf->lbam & 0xff) << 8;
1146 	sectors |= (tf->lbal & 0xff);
1147 
1148 	return sectors;
1149 }
1150 
1151 /**
1152  *	ata_read_native_max_address - Read native max address
1153  *	@dev: target device
1154  *	@max_sectors: out parameter for the result native max address
1155  *
1156  *	Perform an LBA48 or LBA28 native size query upon the device in
1157  *	question.
1158  *
1159  *	RETURNS:
1160  *	0 on success, -EACCES if command is aborted by the drive.
1161  *	-EIO on other errors.
1162  */
1163 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1164 {
1165 	unsigned int err_mask;
1166 	struct ata_taskfile tf;
1167 	int lba48 = ata_id_has_lba48(dev->id);
1168 
1169 	ata_tf_init(dev, &tf);
1170 
1171 	/* always clear all address registers */
1172 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1173 
1174 	if (lba48) {
1175 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1176 		tf.flags |= ATA_TFLAG_LBA48;
1177 	} else
1178 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1179 
1180 	tf.protocol = ATA_PROT_NODATA;
1181 	tf.device |= ATA_LBA;
1182 
1183 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1184 	if (err_mask) {
1185 		ata_dev_warn(dev,
1186 			     "failed to read native max address (err_mask=0x%x)\n",
1187 			     err_mask);
1188 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1189 			return -EACCES;
1190 		return -EIO;
1191 	}
1192 
1193 	if (lba48)
1194 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1195 	else
1196 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1197 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1198 		(*max_sectors)--;
1199 	return 0;
1200 }
1201 
1202 /**
1203  *	ata_set_max_sectors - Set max sectors
1204  *	@dev: target device
1205  *	@new_sectors: new max sectors value to set for the device
1206  *
1207  *	Set max sectors of @dev to @new_sectors.
1208  *
1209  *	RETURNS:
1210  *	0 on success, -EACCES if command is aborted or denied (due to
1211  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1212  *	errors.
1213  */
1214 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1215 {
1216 	unsigned int err_mask;
1217 	struct ata_taskfile tf;
1218 	int lba48 = ata_id_has_lba48(dev->id);
1219 
1220 	new_sectors--;
1221 
1222 	ata_tf_init(dev, &tf);
1223 
1224 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1225 
1226 	if (lba48) {
1227 		tf.command = ATA_CMD_SET_MAX_EXT;
1228 		tf.flags |= ATA_TFLAG_LBA48;
1229 
1230 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1231 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1232 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1233 	} else {
1234 		tf.command = ATA_CMD_SET_MAX;
1235 
1236 		tf.device |= (new_sectors >> 24) & 0xf;
1237 	}
1238 
1239 	tf.protocol = ATA_PROT_NODATA;
1240 	tf.device |= ATA_LBA;
1241 
1242 	tf.lbal = (new_sectors >> 0) & 0xff;
1243 	tf.lbam = (new_sectors >> 8) & 0xff;
1244 	tf.lbah = (new_sectors >> 16) & 0xff;
1245 
1246 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1247 	if (err_mask) {
1248 		ata_dev_warn(dev,
1249 			     "failed to set max address (err_mask=0x%x)\n",
1250 			     err_mask);
1251 		if (err_mask == AC_ERR_DEV &&
1252 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1253 			return -EACCES;
1254 		return -EIO;
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 /**
1261  *	ata_hpa_resize		-	Resize a device with an HPA set
1262  *	@dev: Device to resize
1263  *
1264  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1265  *	it if required to the full size of the media. The caller must check
1266  *	the drive has the HPA feature set enabled.
1267  *
1268  *	RETURNS:
1269  *	0 on success, -errno on failure.
1270  */
1271 static int ata_hpa_resize(struct ata_device *dev)
1272 {
1273 	bool print_info = ata_dev_print_info(dev);
1274 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1275 	u64 sectors = ata_id_n_sectors(dev->id);
1276 	u64 native_sectors;
1277 	int rc;
1278 
1279 	/* do we need to do it? */
1280 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1281 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1282 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1283 		return 0;
1284 
1285 	/* read native max address */
1286 	rc = ata_read_native_max_address(dev, &native_sectors);
1287 	if (rc) {
1288 		/* If device aborted the command or HPA isn't going to
1289 		 * be unlocked, skip HPA resizing.
1290 		 */
1291 		if (rc == -EACCES || !unlock_hpa) {
1292 			ata_dev_warn(dev,
1293 				     "HPA support seems broken, skipping HPA handling\n");
1294 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1295 
1296 			/* we can continue if device aborted the command */
1297 			if (rc == -EACCES)
1298 				rc = 0;
1299 		}
1300 
1301 		return rc;
1302 	}
1303 	dev->n_native_sectors = native_sectors;
1304 
1305 	/* nothing to do? */
1306 	if (native_sectors <= sectors || !unlock_hpa) {
1307 		if (!print_info || native_sectors == sectors)
1308 			return 0;
1309 
1310 		if (native_sectors > sectors)
1311 			ata_dev_info(dev,
1312 				"HPA detected: current %llu, native %llu\n",
1313 				(unsigned long long)sectors,
1314 				(unsigned long long)native_sectors);
1315 		else if (native_sectors < sectors)
1316 			ata_dev_warn(dev,
1317 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1318 				(unsigned long long)native_sectors,
1319 				(unsigned long long)sectors);
1320 		return 0;
1321 	}
1322 
1323 	/* let's unlock HPA */
1324 	rc = ata_set_max_sectors(dev, native_sectors);
1325 	if (rc == -EACCES) {
1326 		/* if device aborted the command, skip HPA resizing */
1327 		ata_dev_warn(dev,
1328 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1329 			     (unsigned long long)sectors,
1330 			     (unsigned long long)native_sectors);
1331 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1332 		return 0;
1333 	} else if (rc)
1334 		return rc;
1335 
1336 	/* re-read IDENTIFY data */
1337 	rc = ata_dev_reread_id(dev, 0);
1338 	if (rc) {
1339 		ata_dev_err(dev,
1340 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1341 		return rc;
1342 	}
1343 
1344 	if (print_info) {
1345 		u64 new_sectors = ata_id_n_sectors(dev->id);
1346 		ata_dev_info(dev,
1347 			"HPA unlocked: %llu -> %llu, native %llu\n",
1348 			(unsigned long long)sectors,
1349 			(unsigned long long)new_sectors,
1350 			(unsigned long long)native_sectors);
1351 	}
1352 
1353 	return 0;
1354 }
1355 
1356 /**
1357  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1358  *	@id: IDENTIFY DEVICE page to dump
1359  *
1360  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1361  *	page.
1362  *
1363  *	LOCKING:
1364  *	caller.
1365  */
1366 
1367 static inline void ata_dump_id(const u16 *id)
1368 {
1369 	DPRINTK("49==0x%04x  "
1370 		"53==0x%04x  "
1371 		"63==0x%04x  "
1372 		"64==0x%04x  "
1373 		"75==0x%04x  \n",
1374 		id[49],
1375 		id[53],
1376 		id[63],
1377 		id[64],
1378 		id[75]);
1379 	DPRINTK("80==0x%04x  "
1380 		"81==0x%04x  "
1381 		"82==0x%04x  "
1382 		"83==0x%04x  "
1383 		"84==0x%04x  \n",
1384 		id[80],
1385 		id[81],
1386 		id[82],
1387 		id[83],
1388 		id[84]);
1389 	DPRINTK("88==0x%04x  "
1390 		"93==0x%04x\n",
1391 		id[88],
1392 		id[93]);
1393 }
1394 
1395 /**
1396  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1397  *	@id: IDENTIFY data to compute xfer mask from
1398  *
1399  *	Compute the xfermask for this device. This is not as trivial
1400  *	as it seems if we must consider early devices correctly.
1401  *
1402  *	FIXME: pre IDE drive timing (do we care ?).
1403  *
1404  *	LOCKING:
1405  *	None.
1406  *
1407  *	RETURNS:
1408  *	Computed xfermask
1409  */
1410 unsigned long ata_id_xfermask(const u16 *id)
1411 {
1412 	unsigned long pio_mask, mwdma_mask, udma_mask;
1413 
1414 	/* Usual case. Word 53 indicates word 64 is valid */
1415 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1416 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1417 		pio_mask <<= 3;
1418 		pio_mask |= 0x7;
1419 	} else {
1420 		/* If word 64 isn't valid then Word 51 high byte holds
1421 		 * the PIO timing number for the maximum. Turn it into
1422 		 * a mask.
1423 		 */
1424 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1425 		if (mode < 5)	/* Valid PIO range */
1426 			pio_mask = (2 << mode) - 1;
1427 		else
1428 			pio_mask = 1;
1429 
1430 		/* But wait.. there's more. Design your standards by
1431 		 * committee and you too can get a free iordy field to
1432 		 * process. However its the speeds not the modes that
1433 		 * are supported... Note drivers using the timing API
1434 		 * will get this right anyway
1435 		 */
1436 	}
1437 
1438 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1439 
1440 	if (ata_id_is_cfa(id)) {
1441 		/*
1442 		 *	Process compact flash extended modes
1443 		 */
1444 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1445 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1446 
1447 		if (pio)
1448 			pio_mask |= (1 << 5);
1449 		if (pio > 1)
1450 			pio_mask |= (1 << 6);
1451 		if (dma)
1452 			mwdma_mask |= (1 << 3);
1453 		if (dma > 1)
1454 			mwdma_mask |= (1 << 4);
1455 	}
1456 
1457 	udma_mask = 0;
1458 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1459 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1460 
1461 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1462 }
1463 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1464 
1465 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1466 {
1467 	struct completion *waiting = qc->private_data;
1468 
1469 	complete(waiting);
1470 }
1471 
1472 /**
1473  *	ata_exec_internal_sg - execute libata internal command
1474  *	@dev: Device to which the command is sent
1475  *	@tf: Taskfile registers for the command and the result
1476  *	@cdb: CDB for packet command
1477  *	@dma_dir: Data transfer direction of the command
1478  *	@sgl: sg list for the data buffer of the command
1479  *	@n_elem: Number of sg entries
1480  *	@timeout: Timeout in msecs (0 for default)
1481  *
1482  *	Executes libata internal command with timeout.  @tf contains
1483  *	command on entry and result on return.  Timeout and error
1484  *	conditions are reported via return value.  No recovery action
1485  *	is taken after a command times out.  It's caller's duty to
1486  *	clean up after timeout.
1487  *
1488  *	LOCKING:
1489  *	None.  Should be called with kernel context, might sleep.
1490  *
1491  *	RETURNS:
1492  *	Zero on success, AC_ERR_* mask on failure
1493  */
1494 unsigned ata_exec_internal_sg(struct ata_device *dev,
1495 			      struct ata_taskfile *tf, const u8 *cdb,
1496 			      int dma_dir, struct scatterlist *sgl,
1497 			      unsigned int n_elem, unsigned long timeout)
1498 {
1499 	struct ata_link *link = dev->link;
1500 	struct ata_port *ap = link->ap;
1501 	u8 command = tf->command;
1502 	int auto_timeout = 0;
1503 	struct ata_queued_cmd *qc;
1504 	unsigned int preempted_tag;
1505 	u32 preempted_sactive;
1506 	u64 preempted_qc_active;
1507 	int preempted_nr_active_links;
1508 	DECLARE_COMPLETION_ONSTACK(wait);
1509 	unsigned long flags;
1510 	unsigned int err_mask;
1511 	int rc;
1512 
1513 	spin_lock_irqsave(ap->lock, flags);
1514 
1515 	/* no internal command while frozen */
1516 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1517 		spin_unlock_irqrestore(ap->lock, flags);
1518 		return AC_ERR_SYSTEM;
1519 	}
1520 
1521 	/* initialize internal qc */
1522 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1523 
1524 	qc->tag = ATA_TAG_INTERNAL;
1525 	qc->hw_tag = 0;
1526 	qc->scsicmd = NULL;
1527 	qc->ap = ap;
1528 	qc->dev = dev;
1529 	ata_qc_reinit(qc);
1530 
1531 	preempted_tag = link->active_tag;
1532 	preempted_sactive = link->sactive;
1533 	preempted_qc_active = ap->qc_active;
1534 	preempted_nr_active_links = ap->nr_active_links;
1535 	link->active_tag = ATA_TAG_POISON;
1536 	link->sactive = 0;
1537 	ap->qc_active = 0;
1538 	ap->nr_active_links = 0;
1539 
1540 	/* prepare & issue qc */
1541 	qc->tf = *tf;
1542 	if (cdb)
1543 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1544 
1545 	/* some SATA bridges need us to indicate data xfer direction */
1546 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1547 	    dma_dir == DMA_FROM_DEVICE)
1548 		qc->tf.feature |= ATAPI_DMADIR;
1549 
1550 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1551 	qc->dma_dir = dma_dir;
1552 	if (dma_dir != DMA_NONE) {
1553 		unsigned int i, buflen = 0;
1554 		struct scatterlist *sg;
1555 
1556 		for_each_sg(sgl, sg, n_elem, i)
1557 			buflen += sg->length;
1558 
1559 		ata_sg_init(qc, sgl, n_elem);
1560 		qc->nbytes = buflen;
1561 	}
1562 
1563 	qc->private_data = &wait;
1564 	qc->complete_fn = ata_qc_complete_internal;
1565 
1566 	ata_qc_issue(qc);
1567 
1568 	spin_unlock_irqrestore(ap->lock, flags);
1569 
1570 	if (!timeout) {
1571 		if (ata_probe_timeout)
1572 			timeout = ata_probe_timeout * 1000;
1573 		else {
1574 			timeout = ata_internal_cmd_timeout(dev, command);
1575 			auto_timeout = 1;
1576 		}
1577 	}
1578 
1579 	if (ap->ops->error_handler)
1580 		ata_eh_release(ap);
1581 
1582 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1583 
1584 	if (ap->ops->error_handler)
1585 		ata_eh_acquire(ap);
1586 
1587 	ata_sff_flush_pio_task(ap);
1588 
1589 	if (!rc) {
1590 		spin_lock_irqsave(ap->lock, flags);
1591 
1592 		/* We're racing with irq here.  If we lose, the
1593 		 * following test prevents us from completing the qc
1594 		 * twice.  If we win, the port is frozen and will be
1595 		 * cleaned up by ->post_internal_cmd().
1596 		 */
1597 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1598 			qc->err_mask |= AC_ERR_TIMEOUT;
1599 
1600 			if (ap->ops->error_handler)
1601 				ata_port_freeze(ap);
1602 			else
1603 				ata_qc_complete(qc);
1604 
1605 			if (ata_msg_warn(ap))
1606 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1607 					     command);
1608 		}
1609 
1610 		spin_unlock_irqrestore(ap->lock, flags);
1611 	}
1612 
1613 	/* do post_internal_cmd */
1614 	if (ap->ops->post_internal_cmd)
1615 		ap->ops->post_internal_cmd(qc);
1616 
1617 	/* perform minimal error analysis */
1618 	if (qc->flags & ATA_QCFLAG_FAILED) {
1619 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1620 			qc->err_mask |= AC_ERR_DEV;
1621 
1622 		if (!qc->err_mask)
1623 			qc->err_mask |= AC_ERR_OTHER;
1624 
1625 		if (qc->err_mask & ~AC_ERR_OTHER)
1626 			qc->err_mask &= ~AC_ERR_OTHER;
1627 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1628 		qc->result_tf.command |= ATA_SENSE;
1629 	}
1630 
1631 	/* finish up */
1632 	spin_lock_irqsave(ap->lock, flags);
1633 
1634 	*tf = qc->result_tf;
1635 	err_mask = qc->err_mask;
1636 
1637 	ata_qc_free(qc);
1638 	link->active_tag = preempted_tag;
1639 	link->sactive = preempted_sactive;
1640 	ap->qc_active = preempted_qc_active;
1641 	ap->nr_active_links = preempted_nr_active_links;
1642 
1643 	spin_unlock_irqrestore(ap->lock, flags);
1644 
1645 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1646 		ata_internal_cmd_timed_out(dev, command);
1647 
1648 	return err_mask;
1649 }
1650 
1651 /**
1652  *	ata_exec_internal - execute libata internal command
1653  *	@dev: Device to which the command is sent
1654  *	@tf: Taskfile registers for the command and the result
1655  *	@cdb: CDB for packet command
1656  *	@dma_dir: Data transfer direction of the command
1657  *	@buf: Data buffer of the command
1658  *	@buflen: Length of data buffer
1659  *	@timeout: Timeout in msecs (0 for default)
1660  *
1661  *	Wrapper around ata_exec_internal_sg() which takes simple
1662  *	buffer instead of sg list.
1663  *
1664  *	LOCKING:
1665  *	None.  Should be called with kernel context, might sleep.
1666  *
1667  *	RETURNS:
1668  *	Zero on success, AC_ERR_* mask on failure
1669  */
1670 unsigned ata_exec_internal(struct ata_device *dev,
1671 			   struct ata_taskfile *tf, const u8 *cdb,
1672 			   int dma_dir, void *buf, unsigned int buflen,
1673 			   unsigned long timeout)
1674 {
1675 	struct scatterlist *psg = NULL, sg;
1676 	unsigned int n_elem = 0;
1677 
1678 	if (dma_dir != DMA_NONE) {
1679 		WARN_ON(!buf);
1680 		sg_init_one(&sg, buf, buflen);
1681 		psg = &sg;
1682 		n_elem++;
1683 	}
1684 
1685 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1686 				    timeout);
1687 }
1688 
1689 /**
1690  *	ata_pio_need_iordy	-	check if iordy needed
1691  *	@adev: ATA device
1692  *
1693  *	Check if the current speed of the device requires IORDY. Used
1694  *	by various controllers for chip configuration.
1695  */
1696 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1697 {
1698 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1699 	 * lead to controller lock up on certain controllers if the
1700 	 * port is not occupied.  See bko#11703 for details.
1701 	 */
1702 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1703 		return 0;
1704 	/* Controller doesn't support IORDY.  Probably a pointless
1705 	 * check as the caller should know this.
1706 	 */
1707 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1708 		return 0;
1709 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1710 	if (ata_id_is_cfa(adev->id)
1711 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1712 		return 0;
1713 	/* PIO3 and higher it is mandatory */
1714 	if (adev->pio_mode > XFER_PIO_2)
1715 		return 1;
1716 	/* We turn it on when possible */
1717 	if (ata_id_has_iordy(adev->id))
1718 		return 1;
1719 	return 0;
1720 }
1721 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1722 
1723 /**
1724  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1725  *	@adev: ATA device
1726  *
1727  *	Compute the highest mode possible if we are not using iordy. Return
1728  *	-1 if no iordy mode is available.
1729  */
1730 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1731 {
1732 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1733 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1734 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1735 		/* Is the speed faster than the drive allows non IORDY ? */
1736 		if (pio) {
1737 			/* This is cycle times not frequency - watch the logic! */
1738 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1739 				return 3 << ATA_SHIFT_PIO;
1740 			return 7 << ATA_SHIFT_PIO;
1741 		}
1742 	}
1743 	return 3 << ATA_SHIFT_PIO;
1744 }
1745 
1746 /**
1747  *	ata_do_dev_read_id		-	default ID read method
1748  *	@dev: device
1749  *	@tf: proposed taskfile
1750  *	@id: data buffer
1751  *
1752  *	Issue the identify taskfile and hand back the buffer containing
1753  *	identify data. For some RAID controllers and for pre ATA devices
1754  *	this function is wrapped or replaced by the driver
1755  */
1756 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1757 					struct ata_taskfile *tf, u16 *id)
1758 {
1759 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1760 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1761 }
1762 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1763 
1764 /**
1765  *	ata_dev_read_id - Read ID data from the specified device
1766  *	@dev: target device
1767  *	@p_class: pointer to class of the target device (may be changed)
1768  *	@flags: ATA_READID_* flags
1769  *	@id: buffer to read IDENTIFY data into
1770  *
1771  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1772  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1773  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1774  *	for pre-ATA4 drives.
1775  *
1776  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1777  *	now we abort if we hit that case.
1778  *
1779  *	LOCKING:
1780  *	Kernel thread context (may sleep)
1781  *
1782  *	RETURNS:
1783  *	0 on success, -errno otherwise.
1784  */
1785 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1786 		    unsigned int flags, u16 *id)
1787 {
1788 	struct ata_port *ap = dev->link->ap;
1789 	unsigned int class = *p_class;
1790 	struct ata_taskfile tf;
1791 	unsigned int err_mask = 0;
1792 	const char *reason;
1793 	bool is_semb = class == ATA_DEV_SEMB;
1794 	int may_fallback = 1, tried_spinup = 0;
1795 	int rc;
1796 
1797 	if (ata_msg_ctl(ap))
1798 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1799 
1800 retry:
1801 	ata_tf_init(dev, &tf);
1802 
1803 	switch (class) {
1804 	case ATA_DEV_SEMB:
1805 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1806 		fallthrough;
1807 	case ATA_DEV_ATA:
1808 	case ATA_DEV_ZAC:
1809 		tf.command = ATA_CMD_ID_ATA;
1810 		break;
1811 	case ATA_DEV_ATAPI:
1812 		tf.command = ATA_CMD_ID_ATAPI;
1813 		break;
1814 	default:
1815 		rc = -ENODEV;
1816 		reason = "unsupported class";
1817 		goto err_out;
1818 	}
1819 
1820 	tf.protocol = ATA_PROT_PIO;
1821 
1822 	/* Some devices choke if TF registers contain garbage.  Make
1823 	 * sure those are properly initialized.
1824 	 */
1825 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1826 
1827 	/* Device presence detection is unreliable on some
1828 	 * controllers.  Always poll IDENTIFY if available.
1829 	 */
1830 	tf.flags |= ATA_TFLAG_POLLING;
1831 
1832 	if (ap->ops->read_id)
1833 		err_mask = ap->ops->read_id(dev, &tf, id);
1834 	else
1835 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1836 
1837 	if (err_mask) {
1838 		if (err_mask & AC_ERR_NODEV_HINT) {
1839 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1840 			return -ENOENT;
1841 		}
1842 
1843 		if (is_semb) {
1844 			ata_dev_info(dev,
1845 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1846 			/* SEMB is not supported yet */
1847 			*p_class = ATA_DEV_SEMB_UNSUP;
1848 			return 0;
1849 		}
1850 
1851 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1852 			/* Device or controller might have reported
1853 			 * the wrong device class.  Give a shot at the
1854 			 * other IDENTIFY if the current one is
1855 			 * aborted by the device.
1856 			 */
1857 			if (may_fallback) {
1858 				may_fallback = 0;
1859 
1860 				if (class == ATA_DEV_ATA)
1861 					class = ATA_DEV_ATAPI;
1862 				else
1863 					class = ATA_DEV_ATA;
1864 				goto retry;
1865 			}
1866 
1867 			/* Control reaches here iff the device aborted
1868 			 * both flavors of IDENTIFYs which happens
1869 			 * sometimes with phantom devices.
1870 			 */
1871 			ata_dev_dbg(dev,
1872 				    "both IDENTIFYs aborted, assuming NODEV\n");
1873 			return -ENOENT;
1874 		}
1875 
1876 		rc = -EIO;
1877 		reason = "I/O error";
1878 		goto err_out;
1879 	}
1880 
1881 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1882 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1883 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1884 			    class, may_fallback, tried_spinup);
1885 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1886 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1887 	}
1888 
1889 	/* Falling back doesn't make sense if ID data was read
1890 	 * successfully at least once.
1891 	 */
1892 	may_fallback = 0;
1893 
1894 	swap_buf_le16(id, ATA_ID_WORDS);
1895 
1896 	/* sanity check */
1897 	rc = -EINVAL;
1898 	reason = "device reports invalid type";
1899 
1900 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1901 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1902 			goto err_out;
1903 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1904 							ata_id_is_ata(id)) {
1905 			ata_dev_dbg(dev,
1906 				"host indicates ignore ATA devices, ignored\n");
1907 			return -ENOENT;
1908 		}
1909 	} else {
1910 		if (ata_id_is_ata(id))
1911 			goto err_out;
1912 	}
1913 
1914 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1915 		tried_spinup = 1;
1916 		/*
1917 		 * Drive powered-up in standby mode, and requires a specific
1918 		 * SET_FEATURES spin-up subcommand before it will accept
1919 		 * anything other than the original IDENTIFY command.
1920 		 */
1921 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1922 		if (err_mask && id[2] != 0x738c) {
1923 			rc = -EIO;
1924 			reason = "SPINUP failed";
1925 			goto err_out;
1926 		}
1927 		/*
1928 		 * If the drive initially returned incomplete IDENTIFY info,
1929 		 * we now must reissue the IDENTIFY command.
1930 		 */
1931 		if (id[2] == 0x37c8)
1932 			goto retry;
1933 	}
1934 
1935 	if ((flags & ATA_READID_POSTRESET) &&
1936 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1937 		/*
1938 		 * The exact sequence expected by certain pre-ATA4 drives is:
1939 		 * SRST RESET
1940 		 * IDENTIFY (optional in early ATA)
1941 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1942 		 * anything else..
1943 		 * Some drives were very specific about that exact sequence.
1944 		 *
1945 		 * Note that ATA4 says lba is mandatory so the second check
1946 		 * should never trigger.
1947 		 */
1948 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1949 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1950 			if (err_mask) {
1951 				rc = -EIO;
1952 				reason = "INIT_DEV_PARAMS failed";
1953 				goto err_out;
1954 			}
1955 
1956 			/* current CHS translation info (id[53-58]) might be
1957 			 * changed. reread the identify device info.
1958 			 */
1959 			flags &= ~ATA_READID_POSTRESET;
1960 			goto retry;
1961 		}
1962 	}
1963 
1964 	*p_class = class;
1965 
1966 	return 0;
1967 
1968  err_out:
1969 	if (ata_msg_warn(ap))
1970 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971 			     reason, err_mask);
1972 	return rc;
1973 }
1974 
1975 /**
1976  *	ata_read_log_page - read a specific log page
1977  *	@dev: target device
1978  *	@log: log to read
1979  *	@page: page to read
1980  *	@buf: buffer to store read page
1981  *	@sectors: number of sectors to read
1982  *
1983  *	Read log page using READ_LOG_EXT command.
1984  *
1985  *	LOCKING:
1986  *	Kernel thread context (may sleep).
1987  *
1988  *	RETURNS:
1989  *	0 on success, AC_ERR_* mask otherwise.
1990  */
1991 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1992 			       u8 page, void *buf, unsigned int sectors)
1993 {
1994 	unsigned long ap_flags = dev->link->ap->flags;
1995 	struct ata_taskfile tf;
1996 	unsigned int err_mask;
1997 	bool dma = false;
1998 
1999 	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2000 
2001 	/*
2002 	 * Return error without actually issuing the command on controllers
2003 	 * which e.g. lockup on a read log page.
2004 	 */
2005 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2006 		return AC_ERR_DEV;
2007 
2008 retry:
2009 	ata_tf_init(dev, &tf);
2010 	if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2011 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2012 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2013 		tf.protocol = ATA_PROT_DMA;
2014 		dma = true;
2015 	} else {
2016 		tf.command = ATA_CMD_READ_LOG_EXT;
2017 		tf.protocol = ATA_PROT_PIO;
2018 		dma = false;
2019 	}
2020 	tf.lbal = log;
2021 	tf.lbam = page;
2022 	tf.nsect = sectors;
2023 	tf.hob_nsect = sectors >> 8;
2024 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2025 
2026 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2027 				     buf, sectors * ATA_SECT_SIZE, 0);
2028 
2029 	if (err_mask) {
2030 		if (dma) {
2031 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2032 			goto retry;
2033 		}
2034 		ata_dev_err(dev, "Read log page 0x%02x failed, Emask 0x%x\n",
2035 			    (unsigned int)page, err_mask);
2036 	}
2037 
2038 	return err_mask;
2039 }
2040 
2041 static bool ata_log_supported(struct ata_device *dev, u8 log)
2042 {
2043 	struct ata_port *ap = dev->link->ap;
2044 
2045 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2046 		return false;
2047 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2048 }
2049 
2050 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2051 {
2052 	struct ata_port *ap = dev->link->ap;
2053 	unsigned int err, i;
2054 
2055 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2056 		ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2057 		return false;
2058 	}
2059 
2060 	/*
2061 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2062 	 * supported.
2063 	 */
2064 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2065 				1);
2066 	if (err)
2067 		return false;
2068 
2069 	for (i = 0; i < ap->sector_buf[8]; i++) {
2070 		if (ap->sector_buf[9 + i] == page)
2071 			return true;
2072 	}
2073 
2074 	return false;
2075 }
2076 
2077 static int ata_do_link_spd_horkage(struct ata_device *dev)
2078 {
2079 	struct ata_link *plink = ata_dev_phys_link(dev);
2080 	u32 target, target_limit;
2081 
2082 	if (!sata_scr_valid(plink))
2083 		return 0;
2084 
2085 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2086 		target = 1;
2087 	else
2088 		return 0;
2089 
2090 	target_limit = (1 << target) - 1;
2091 
2092 	/* if already on stricter limit, no need to push further */
2093 	if (plink->sata_spd_limit <= target_limit)
2094 		return 0;
2095 
2096 	plink->sata_spd_limit = target_limit;
2097 
2098 	/* Request another EH round by returning -EAGAIN if link is
2099 	 * going faster than the target speed.  Forward progress is
2100 	 * guaranteed by setting sata_spd_limit to target_limit above.
2101 	 */
2102 	if (plink->sata_spd > target) {
2103 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2104 			     sata_spd_string(target));
2105 		return -EAGAIN;
2106 	}
2107 	return 0;
2108 }
2109 
2110 static inline u8 ata_dev_knobble(struct ata_device *dev)
2111 {
2112 	struct ata_port *ap = dev->link->ap;
2113 
2114 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2115 		return 0;
2116 
2117 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2118 }
2119 
2120 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2121 {
2122 	struct ata_port *ap = dev->link->ap;
2123 	unsigned int err_mask;
2124 
2125 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2126 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2127 		return;
2128 	}
2129 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2130 				     0, ap->sector_buf, 1);
2131 	if (!err_mask) {
2132 		u8 *cmds = dev->ncq_send_recv_cmds;
2133 
2134 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2135 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2136 
2137 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2138 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2139 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2140 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2141 		}
2142 	}
2143 }
2144 
2145 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2146 {
2147 	struct ata_port *ap = dev->link->ap;
2148 	unsigned int err_mask;
2149 
2150 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2151 		ata_dev_warn(dev,
2152 			     "NCQ Send/Recv Log not supported\n");
2153 		return;
2154 	}
2155 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2156 				     0, ap->sector_buf, 1);
2157 	if (!err_mask) {
2158 		u8 *cmds = dev->ncq_non_data_cmds;
2159 
2160 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2161 	}
2162 }
2163 
2164 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2165 {
2166 	struct ata_port *ap = dev->link->ap;
2167 	unsigned int err_mask;
2168 
2169 	err_mask = ata_read_log_page(dev,
2170 				     ATA_LOG_IDENTIFY_DEVICE,
2171 				     ATA_LOG_SATA_SETTINGS,
2172 				     ap->sector_buf,
2173 				     1);
2174 	if (err_mask)
2175 		goto not_supported;
2176 
2177 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2178 		goto not_supported;
2179 
2180 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2181 
2182 	return;
2183 
2184 not_supported:
2185 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
2186 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2187 }
2188 
2189 static int ata_dev_config_ncq(struct ata_device *dev,
2190 			       char *desc, size_t desc_sz)
2191 {
2192 	struct ata_port *ap = dev->link->ap;
2193 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2194 	unsigned int err_mask;
2195 	char *aa_desc = "";
2196 
2197 	if (!ata_id_has_ncq(dev->id)) {
2198 		desc[0] = '\0';
2199 		return 0;
2200 	}
2201 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2202 		return 0;
2203 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2204 		snprintf(desc, desc_sz, "NCQ (not used)");
2205 		return 0;
2206 	}
2207 	if (ap->flags & ATA_FLAG_NCQ) {
2208 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2209 		dev->flags |= ATA_DFLAG_NCQ;
2210 	}
2211 
2212 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2213 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2214 		ata_id_has_fpdma_aa(dev->id)) {
2215 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2216 			SATA_FPDMA_AA);
2217 		if (err_mask) {
2218 			ata_dev_err(dev,
2219 				    "failed to enable AA (error_mask=0x%x)\n",
2220 				    err_mask);
2221 			if (err_mask != AC_ERR_DEV) {
2222 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2223 				return -EIO;
2224 			}
2225 		} else
2226 			aa_desc = ", AA";
2227 	}
2228 
2229 	if (hdepth >= ddepth)
2230 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2231 	else
2232 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2233 			ddepth, aa_desc);
2234 
2235 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2236 		if (ata_id_has_ncq_send_and_recv(dev->id))
2237 			ata_dev_config_ncq_send_recv(dev);
2238 		if (ata_id_has_ncq_non_data(dev->id))
2239 			ata_dev_config_ncq_non_data(dev);
2240 		if (ata_id_has_ncq_prio(dev->id))
2241 			ata_dev_config_ncq_prio(dev);
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2248 {
2249 	unsigned int err_mask;
2250 
2251 	if (!ata_id_has_sense_reporting(dev->id))
2252 		return;
2253 
2254 	if (ata_id_sense_reporting_enabled(dev->id))
2255 		return;
2256 
2257 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2258 	if (err_mask) {
2259 		ata_dev_dbg(dev,
2260 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2261 			    err_mask);
2262 	}
2263 }
2264 
2265 static void ata_dev_config_zac(struct ata_device *dev)
2266 {
2267 	struct ata_port *ap = dev->link->ap;
2268 	unsigned int err_mask;
2269 	u8 *identify_buf = ap->sector_buf;
2270 
2271 	dev->zac_zones_optimal_open = U32_MAX;
2272 	dev->zac_zones_optimal_nonseq = U32_MAX;
2273 	dev->zac_zones_max_open = U32_MAX;
2274 
2275 	/*
2276 	 * Always set the 'ZAC' flag for Host-managed devices.
2277 	 */
2278 	if (dev->class == ATA_DEV_ZAC)
2279 		dev->flags |= ATA_DFLAG_ZAC;
2280 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2281 		/*
2282 		 * Check for host-aware devices.
2283 		 */
2284 		dev->flags |= ATA_DFLAG_ZAC;
2285 
2286 	if (!(dev->flags & ATA_DFLAG_ZAC))
2287 		return;
2288 
2289 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2290 		ata_dev_warn(dev,
2291 			     "ATA Zoned Information Log not supported\n");
2292 		return;
2293 	}
2294 
2295 	/*
2296 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2297 	 */
2298 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2299 				     ATA_LOG_ZONED_INFORMATION,
2300 				     identify_buf, 1);
2301 	if (!err_mask) {
2302 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2303 
2304 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2305 		if ((zoned_cap >> 63))
2306 			dev->zac_zoned_cap = (zoned_cap & 1);
2307 		opt_open = get_unaligned_le64(&identify_buf[24]);
2308 		if ((opt_open >> 63))
2309 			dev->zac_zones_optimal_open = (u32)opt_open;
2310 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2311 		if ((opt_nonseq >> 63))
2312 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2313 		max_open = get_unaligned_le64(&identify_buf[40]);
2314 		if ((max_open >> 63))
2315 			dev->zac_zones_max_open = (u32)max_open;
2316 	}
2317 }
2318 
2319 static void ata_dev_config_trusted(struct ata_device *dev)
2320 {
2321 	struct ata_port *ap = dev->link->ap;
2322 	u64 trusted_cap;
2323 	unsigned int err;
2324 
2325 	if (!ata_id_has_trusted(dev->id))
2326 		return;
2327 
2328 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2329 		ata_dev_warn(dev,
2330 			     "Security Log not supported\n");
2331 		return;
2332 	}
2333 
2334 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2335 			ap->sector_buf, 1);
2336 	if (err)
2337 		return;
2338 
2339 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2340 	if (!(trusted_cap & (1ULL << 63))) {
2341 		ata_dev_dbg(dev,
2342 			    "Trusted Computing capability qword not valid!\n");
2343 		return;
2344 	}
2345 
2346 	if (trusted_cap & (1 << 0))
2347 		dev->flags |= ATA_DFLAG_TRUSTED;
2348 }
2349 
2350 static int ata_dev_config_lba(struct ata_device *dev)
2351 {
2352 	struct ata_port *ap = dev->link->ap;
2353 	const u16 *id = dev->id;
2354 	const char *lba_desc;
2355 	char ncq_desc[24];
2356 	int ret;
2357 
2358 	dev->flags |= ATA_DFLAG_LBA;
2359 
2360 	if (ata_id_has_lba48(id)) {
2361 		lba_desc = "LBA48";
2362 		dev->flags |= ATA_DFLAG_LBA48;
2363 		if (dev->n_sectors >= (1UL << 28) &&
2364 		    ata_id_has_flush_ext(id))
2365 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2366 	} else {
2367 		lba_desc = "LBA";
2368 	}
2369 
2370 	/* config NCQ */
2371 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2372 
2373 	/* print device info to dmesg */
2374 	if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2375 		ata_dev_info(dev,
2376 			     "%llu sectors, multi %u: %s %s\n",
2377 			     (unsigned long long)dev->n_sectors,
2378 			     dev->multi_count, lba_desc, ncq_desc);
2379 
2380 	return ret;
2381 }
2382 
2383 static void ata_dev_config_chs(struct ata_device *dev)
2384 {
2385 	struct ata_port *ap = dev->link->ap;
2386 	const u16 *id = dev->id;
2387 
2388 	if (ata_id_current_chs_valid(id)) {
2389 		/* Current CHS translation is valid. */
2390 		dev->cylinders = id[54];
2391 		dev->heads     = id[55];
2392 		dev->sectors   = id[56];
2393 	} else {
2394 		/* Default translation */
2395 		dev->cylinders	= id[1];
2396 		dev->heads	= id[3];
2397 		dev->sectors	= id[6];
2398 	}
2399 
2400 	/* print device info to dmesg */
2401 	if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2402 		ata_dev_info(dev,
2403 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2404 			     (unsigned long long)dev->n_sectors,
2405 			     dev->multi_count, dev->cylinders,
2406 			     dev->heads, dev->sectors);
2407 }
2408 
2409 static void ata_dev_config_devslp(struct ata_device *dev)
2410 {
2411 	u8 *sata_setting = dev->link->ap->sector_buf;
2412 	unsigned int err_mask;
2413 	int i, j;
2414 
2415 	/*
2416 	 * Check device sleep capability. Get DevSlp timing variables
2417 	 * from SATA Settings page of Identify Device Data Log.
2418 	 */
2419 	if (!ata_id_has_devslp(dev->id))
2420 		return;
2421 
2422 	err_mask = ata_read_log_page(dev,
2423 				     ATA_LOG_IDENTIFY_DEVICE,
2424 				     ATA_LOG_SATA_SETTINGS,
2425 				     sata_setting, 1);
2426 	if (err_mask)
2427 		return;
2428 
2429 	dev->flags |= ATA_DFLAG_DEVSLP;
2430 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2431 		j = ATA_LOG_DEVSLP_OFFSET + i;
2432 		dev->devslp_timing[i] = sata_setting[j];
2433 	}
2434 }
2435 
2436 static void ata_dev_print_features(struct ata_device *dev)
2437 {
2438 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2439 		return;
2440 
2441 	ata_dev_info(dev,
2442 		     "Features:%s%s%s%s%s\n",
2443 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2444 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2445 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2446 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2447 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "");
2448 }
2449 
2450 /**
2451  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2452  *	@dev: Target device to configure
2453  *
2454  *	Configure @dev according to @dev->id.  Generic and low-level
2455  *	driver specific fixups are also applied.
2456  *
2457  *	LOCKING:
2458  *	Kernel thread context (may sleep)
2459  *
2460  *	RETURNS:
2461  *	0 on success, -errno otherwise
2462  */
2463 int ata_dev_configure(struct ata_device *dev)
2464 {
2465 	struct ata_port *ap = dev->link->ap;
2466 	bool print_info = ata_dev_print_info(dev);
2467 	const u16 *id = dev->id;
2468 	unsigned long xfer_mask;
2469 	unsigned int err_mask;
2470 	char revbuf[7];		/* XYZ-99\0 */
2471 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2472 	char modelbuf[ATA_ID_PROD_LEN+1];
2473 	int rc;
2474 
2475 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2476 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2477 		return 0;
2478 	}
2479 
2480 	if (ata_msg_probe(ap))
2481 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2482 
2483 	/* set horkage */
2484 	dev->horkage |= ata_dev_blacklisted(dev);
2485 	ata_force_horkage(dev);
2486 
2487 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2488 		ata_dev_info(dev, "unsupported device, disabling\n");
2489 		ata_dev_disable(dev);
2490 		return 0;
2491 	}
2492 
2493 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2494 	    dev->class == ATA_DEV_ATAPI) {
2495 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2496 			     atapi_enabled ? "not supported with this driver"
2497 			     : "disabled");
2498 		ata_dev_disable(dev);
2499 		return 0;
2500 	}
2501 
2502 	rc = ata_do_link_spd_horkage(dev);
2503 	if (rc)
2504 		return rc;
2505 
2506 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2507 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2508 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2509 		dev->horkage |= ATA_HORKAGE_NOLPM;
2510 
2511 	if (ap->flags & ATA_FLAG_NO_LPM)
2512 		dev->horkage |= ATA_HORKAGE_NOLPM;
2513 
2514 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2515 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2516 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2517 	}
2518 
2519 	/* let ACPI work its magic */
2520 	rc = ata_acpi_on_devcfg(dev);
2521 	if (rc)
2522 		return rc;
2523 
2524 	/* massage HPA, do it early as it might change IDENTIFY data */
2525 	rc = ata_hpa_resize(dev);
2526 	if (rc)
2527 		return rc;
2528 
2529 	/* print device capabilities */
2530 	if (ata_msg_probe(ap))
2531 		ata_dev_dbg(dev,
2532 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2533 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2534 			    __func__,
2535 			    id[49], id[82], id[83], id[84],
2536 			    id[85], id[86], id[87], id[88]);
2537 
2538 	/* initialize to-be-configured parameters */
2539 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2540 	dev->max_sectors = 0;
2541 	dev->cdb_len = 0;
2542 	dev->n_sectors = 0;
2543 	dev->cylinders = 0;
2544 	dev->heads = 0;
2545 	dev->sectors = 0;
2546 	dev->multi_count = 0;
2547 
2548 	/*
2549 	 * common ATA, ATAPI feature tests
2550 	 */
2551 
2552 	/* find max transfer mode; for printk only */
2553 	xfer_mask = ata_id_xfermask(id);
2554 
2555 	if (ata_msg_probe(ap))
2556 		ata_dump_id(id);
2557 
2558 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2559 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2560 			sizeof(fwrevbuf));
2561 
2562 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2563 			sizeof(modelbuf));
2564 
2565 	/* ATA-specific feature tests */
2566 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2567 		if (ata_id_is_cfa(id)) {
2568 			/* CPRM may make this media unusable */
2569 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2570 				ata_dev_warn(dev,
2571 	"supports DRM functions and may not be fully accessible\n");
2572 			snprintf(revbuf, 7, "CFA");
2573 		} else {
2574 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2575 			/* Warn the user if the device has TPM extensions */
2576 			if (ata_id_has_tpm(id))
2577 				ata_dev_warn(dev,
2578 	"supports DRM functions and may not be fully accessible\n");
2579 		}
2580 
2581 		dev->n_sectors = ata_id_n_sectors(id);
2582 
2583 		/* get current R/W Multiple count setting */
2584 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2585 			unsigned int max = dev->id[47] & 0xff;
2586 			unsigned int cnt = dev->id[59] & 0xff;
2587 			/* only recognize/allow powers of two here */
2588 			if (is_power_of_2(max) && is_power_of_2(cnt))
2589 				if (cnt <= max)
2590 					dev->multi_count = cnt;
2591 		}
2592 
2593 		/* print device info to dmesg */
2594 		if (ata_msg_drv(ap) && print_info)
2595 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2596 				     revbuf, modelbuf, fwrevbuf,
2597 				     ata_mode_string(xfer_mask));
2598 
2599 		if (ata_id_has_lba(id)) {
2600 			rc = ata_dev_config_lba(dev);
2601 			if (rc)
2602 				return rc;
2603 		} else {
2604 			ata_dev_config_chs(dev);
2605 		}
2606 
2607 		ata_dev_config_devslp(dev);
2608 		ata_dev_config_sense_reporting(dev);
2609 		ata_dev_config_zac(dev);
2610 		ata_dev_config_trusted(dev);
2611 		dev->cdb_len = 32;
2612 
2613 		if (ata_msg_drv(ap) && print_info)
2614 			ata_dev_print_features(dev);
2615 	}
2616 
2617 	/* ATAPI-specific feature tests */
2618 	else if (dev->class == ATA_DEV_ATAPI) {
2619 		const char *cdb_intr_string = "";
2620 		const char *atapi_an_string = "";
2621 		const char *dma_dir_string = "";
2622 		u32 sntf;
2623 
2624 		rc = atapi_cdb_len(id);
2625 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2626 			if (ata_msg_warn(ap))
2627 				ata_dev_warn(dev, "unsupported CDB len\n");
2628 			rc = -EINVAL;
2629 			goto err_out_nosup;
2630 		}
2631 		dev->cdb_len = (unsigned int) rc;
2632 
2633 		/* Enable ATAPI AN if both the host and device have
2634 		 * the support.  If PMP is attached, SNTF is required
2635 		 * to enable ATAPI AN to discern between PHY status
2636 		 * changed notifications and ATAPI ANs.
2637 		 */
2638 		if (atapi_an &&
2639 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2640 		    (!sata_pmp_attached(ap) ||
2641 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2642 			/* issue SET feature command to turn this on */
2643 			err_mask = ata_dev_set_feature(dev,
2644 					SETFEATURES_SATA_ENABLE, SATA_AN);
2645 			if (err_mask)
2646 				ata_dev_err(dev,
2647 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2648 					    err_mask);
2649 			else {
2650 				dev->flags |= ATA_DFLAG_AN;
2651 				atapi_an_string = ", ATAPI AN";
2652 			}
2653 		}
2654 
2655 		if (ata_id_cdb_intr(dev->id)) {
2656 			dev->flags |= ATA_DFLAG_CDB_INTR;
2657 			cdb_intr_string = ", CDB intr";
2658 		}
2659 
2660 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2661 			dev->flags |= ATA_DFLAG_DMADIR;
2662 			dma_dir_string = ", DMADIR";
2663 		}
2664 
2665 		if (ata_id_has_da(dev->id)) {
2666 			dev->flags |= ATA_DFLAG_DA;
2667 			zpodd_init(dev);
2668 		}
2669 
2670 		/* print device info to dmesg */
2671 		if (ata_msg_drv(ap) && print_info)
2672 			ata_dev_info(dev,
2673 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2674 				     modelbuf, fwrevbuf,
2675 				     ata_mode_string(xfer_mask),
2676 				     cdb_intr_string, atapi_an_string,
2677 				     dma_dir_string);
2678 	}
2679 
2680 	/* determine max_sectors */
2681 	dev->max_sectors = ATA_MAX_SECTORS;
2682 	if (dev->flags & ATA_DFLAG_LBA48)
2683 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2684 
2685 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2686 	   200 sectors */
2687 	if (ata_dev_knobble(dev)) {
2688 		if (ata_msg_drv(ap) && print_info)
2689 			ata_dev_info(dev, "applying bridge limits\n");
2690 		dev->udma_mask &= ATA_UDMA5;
2691 		dev->max_sectors = ATA_MAX_SECTORS;
2692 	}
2693 
2694 	if ((dev->class == ATA_DEV_ATAPI) &&
2695 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2696 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2697 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2698 	}
2699 
2700 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2701 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2702 					 dev->max_sectors);
2703 
2704 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2705 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2706 					 dev->max_sectors);
2707 
2708 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2709 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2710 
2711 	if (ap->ops->dev_config)
2712 		ap->ops->dev_config(dev);
2713 
2714 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2715 		/* Let the user know. We don't want to disallow opens for
2716 		   rescue purposes, or in case the vendor is just a blithering
2717 		   idiot. Do this after the dev_config call as some controllers
2718 		   with buggy firmware may want to avoid reporting false device
2719 		   bugs */
2720 
2721 		if (print_info) {
2722 			ata_dev_warn(dev,
2723 "Drive reports diagnostics failure. This may indicate a drive\n");
2724 			ata_dev_warn(dev,
2725 "fault or invalid emulation. Contact drive vendor for information.\n");
2726 		}
2727 	}
2728 
2729 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2730 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2731 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2732 	}
2733 
2734 	return 0;
2735 
2736 err_out_nosup:
2737 	if (ata_msg_probe(ap))
2738 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2739 	return rc;
2740 }
2741 
2742 /**
2743  *	ata_cable_40wire	-	return 40 wire cable type
2744  *	@ap: port
2745  *
2746  *	Helper method for drivers which want to hardwire 40 wire cable
2747  *	detection.
2748  */
2749 
2750 int ata_cable_40wire(struct ata_port *ap)
2751 {
2752 	return ATA_CBL_PATA40;
2753 }
2754 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2755 
2756 /**
2757  *	ata_cable_80wire	-	return 80 wire cable type
2758  *	@ap: port
2759  *
2760  *	Helper method for drivers which want to hardwire 80 wire cable
2761  *	detection.
2762  */
2763 
2764 int ata_cable_80wire(struct ata_port *ap)
2765 {
2766 	return ATA_CBL_PATA80;
2767 }
2768 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2769 
2770 /**
2771  *	ata_cable_unknown	-	return unknown PATA cable.
2772  *	@ap: port
2773  *
2774  *	Helper method for drivers which have no PATA cable detection.
2775  */
2776 
2777 int ata_cable_unknown(struct ata_port *ap)
2778 {
2779 	return ATA_CBL_PATA_UNK;
2780 }
2781 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2782 
2783 /**
2784  *	ata_cable_ignore	-	return ignored PATA cable.
2785  *	@ap: port
2786  *
2787  *	Helper method for drivers which don't use cable type to limit
2788  *	transfer mode.
2789  */
2790 int ata_cable_ignore(struct ata_port *ap)
2791 {
2792 	return ATA_CBL_PATA_IGN;
2793 }
2794 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2795 
2796 /**
2797  *	ata_cable_sata	-	return SATA cable type
2798  *	@ap: port
2799  *
2800  *	Helper method for drivers which have SATA cables
2801  */
2802 
2803 int ata_cable_sata(struct ata_port *ap)
2804 {
2805 	return ATA_CBL_SATA;
2806 }
2807 EXPORT_SYMBOL_GPL(ata_cable_sata);
2808 
2809 /**
2810  *	ata_bus_probe - Reset and probe ATA bus
2811  *	@ap: Bus to probe
2812  *
2813  *	Master ATA bus probing function.  Initiates a hardware-dependent
2814  *	bus reset, then attempts to identify any devices found on
2815  *	the bus.
2816  *
2817  *	LOCKING:
2818  *	PCI/etc. bus probe sem.
2819  *
2820  *	RETURNS:
2821  *	Zero on success, negative errno otherwise.
2822  */
2823 
2824 int ata_bus_probe(struct ata_port *ap)
2825 {
2826 	unsigned int classes[ATA_MAX_DEVICES];
2827 	int tries[ATA_MAX_DEVICES];
2828 	int rc;
2829 	struct ata_device *dev;
2830 
2831 	ata_for_each_dev(dev, &ap->link, ALL)
2832 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2833 
2834  retry:
2835 	ata_for_each_dev(dev, &ap->link, ALL) {
2836 		/* If we issue an SRST then an ATA drive (not ATAPI)
2837 		 * may change configuration and be in PIO0 timing. If
2838 		 * we do a hard reset (or are coming from power on)
2839 		 * this is true for ATA or ATAPI. Until we've set a
2840 		 * suitable controller mode we should not touch the
2841 		 * bus as we may be talking too fast.
2842 		 */
2843 		dev->pio_mode = XFER_PIO_0;
2844 		dev->dma_mode = 0xff;
2845 
2846 		/* If the controller has a pio mode setup function
2847 		 * then use it to set the chipset to rights. Don't
2848 		 * touch the DMA setup as that will be dealt with when
2849 		 * configuring devices.
2850 		 */
2851 		if (ap->ops->set_piomode)
2852 			ap->ops->set_piomode(ap, dev);
2853 	}
2854 
2855 	/* reset and determine device classes */
2856 	ap->ops->phy_reset(ap);
2857 
2858 	ata_for_each_dev(dev, &ap->link, ALL) {
2859 		if (dev->class != ATA_DEV_UNKNOWN)
2860 			classes[dev->devno] = dev->class;
2861 		else
2862 			classes[dev->devno] = ATA_DEV_NONE;
2863 
2864 		dev->class = ATA_DEV_UNKNOWN;
2865 	}
2866 
2867 	/* read IDENTIFY page and configure devices. We have to do the identify
2868 	   specific sequence bass-ackwards so that PDIAG- is released by
2869 	   the slave device */
2870 
2871 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2872 		if (tries[dev->devno])
2873 			dev->class = classes[dev->devno];
2874 
2875 		if (!ata_dev_enabled(dev))
2876 			continue;
2877 
2878 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2879 				     dev->id);
2880 		if (rc)
2881 			goto fail;
2882 	}
2883 
2884 	/* Now ask for the cable type as PDIAG- should have been released */
2885 	if (ap->ops->cable_detect)
2886 		ap->cbl = ap->ops->cable_detect(ap);
2887 
2888 	/* We may have SATA bridge glue hiding here irrespective of
2889 	 * the reported cable types and sensed types.  When SATA
2890 	 * drives indicate we have a bridge, we don't know which end
2891 	 * of the link the bridge is which is a problem.
2892 	 */
2893 	ata_for_each_dev(dev, &ap->link, ENABLED)
2894 		if (ata_id_is_sata(dev->id))
2895 			ap->cbl = ATA_CBL_SATA;
2896 
2897 	/* After the identify sequence we can now set up the devices. We do
2898 	   this in the normal order so that the user doesn't get confused */
2899 
2900 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2901 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2902 		rc = ata_dev_configure(dev);
2903 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2904 		if (rc)
2905 			goto fail;
2906 	}
2907 
2908 	/* configure transfer mode */
2909 	rc = ata_set_mode(&ap->link, &dev);
2910 	if (rc)
2911 		goto fail;
2912 
2913 	ata_for_each_dev(dev, &ap->link, ENABLED)
2914 		return 0;
2915 
2916 	return -ENODEV;
2917 
2918  fail:
2919 	tries[dev->devno]--;
2920 
2921 	switch (rc) {
2922 	case -EINVAL:
2923 		/* eeek, something went very wrong, give up */
2924 		tries[dev->devno] = 0;
2925 		break;
2926 
2927 	case -ENODEV:
2928 		/* give it just one more chance */
2929 		tries[dev->devno] = min(tries[dev->devno], 1);
2930 		fallthrough;
2931 	case -EIO:
2932 		if (tries[dev->devno] == 1) {
2933 			/* This is the last chance, better to slow
2934 			 * down than lose it.
2935 			 */
2936 			sata_down_spd_limit(&ap->link, 0);
2937 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2938 		}
2939 	}
2940 
2941 	if (!tries[dev->devno])
2942 		ata_dev_disable(dev);
2943 
2944 	goto retry;
2945 }
2946 
2947 /**
2948  *	sata_print_link_status - Print SATA link status
2949  *	@link: SATA link to printk link status about
2950  *
2951  *	This function prints link speed and status of a SATA link.
2952  *
2953  *	LOCKING:
2954  *	None.
2955  */
2956 static void sata_print_link_status(struct ata_link *link)
2957 {
2958 	u32 sstatus, scontrol, tmp;
2959 
2960 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2961 		return;
2962 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2963 
2964 	if (ata_phys_link_online(link)) {
2965 		tmp = (sstatus >> 4) & 0xf;
2966 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2967 			      sata_spd_string(tmp), sstatus, scontrol);
2968 	} else {
2969 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2970 			      sstatus, scontrol);
2971 	}
2972 }
2973 
2974 /**
2975  *	ata_dev_pair		-	return other device on cable
2976  *	@adev: device
2977  *
2978  *	Obtain the other device on the same cable, or if none is
2979  *	present NULL is returned
2980  */
2981 
2982 struct ata_device *ata_dev_pair(struct ata_device *adev)
2983 {
2984 	struct ata_link *link = adev->link;
2985 	struct ata_device *pair = &link->device[1 - adev->devno];
2986 	if (!ata_dev_enabled(pair))
2987 		return NULL;
2988 	return pair;
2989 }
2990 EXPORT_SYMBOL_GPL(ata_dev_pair);
2991 
2992 /**
2993  *	sata_down_spd_limit - adjust SATA spd limit downward
2994  *	@link: Link to adjust SATA spd limit for
2995  *	@spd_limit: Additional limit
2996  *
2997  *	Adjust SATA spd limit of @link downward.  Note that this
2998  *	function only adjusts the limit.  The change must be applied
2999  *	using sata_set_spd().
3000  *
3001  *	If @spd_limit is non-zero, the speed is limited to equal to or
3002  *	lower than @spd_limit if such speed is supported.  If
3003  *	@spd_limit is slower than any supported speed, only the lowest
3004  *	supported speed is allowed.
3005  *
3006  *	LOCKING:
3007  *	Inherited from caller.
3008  *
3009  *	RETURNS:
3010  *	0 on success, negative errno on failure
3011  */
3012 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3013 {
3014 	u32 sstatus, spd, mask;
3015 	int rc, bit;
3016 
3017 	if (!sata_scr_valid(link))
3018 		return -EOPNOTSUPP;
3019 
3020 	/* If SCR can be read, use it to determine the current SPD.
3021 	 * If not, use cached value in link->sata_spd.
3022 	 */
3023 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3024 	if (rc == 0 && ata_sstatus_online(sstatus))
3025 		spd = (sstatus >> 4) & 0xf;
3026 	else
3027 		spd = link->sata_spd;
3028 
3029 	mask = link->sata_spd_limit;
3030 	if (mask <= 1)
3031 		return -EINVAL;
3032 
3033 	/* unconditionally mask off the highest bit */
3034 	bit = fls(mask) - 1;
3035 	mask &= ~(1 << bit);
3036 
3037 	/*
3038 	 * Mask off all speeds higher than or equal to the current one.  At
3039 	 * this point, if current SPD is not available and we previously
3040 	 * recorded the link speed from SStatus, the driver has already
3041 	 * masked off the highest bit so mask should already be 1 or 0.
3042 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3043 	 * not previously recorded speed from SStatus.  Just return in this
3044 	 * case.
3045 	 */
3046 	if (spd > 1)
3047 		mask &= (1 << (spd - 1)) - 1;
3048 	else
3049 		return -EINVAL;
3050 
3051 	/* were we already at the bottom? */
3052 	if (!mask)
3053 		return -EINVAL;
3054 
3055 	if (spd_limit) {
3056 		if (mask & ((1 << spd_limit) - 1))
3057 			mask &= (1 << spd_limit) - 1;
3058 		else {
3059 			bit = ffs(mask) - 1;
3060 			mask = 1 << bit;
3061 		}
3062 	}
3063 
3064 	link->sata_spd_limit = mask;
3065 
3066 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3067 		      sata_spd_string(fls(mask)));
3068 
3069 	return 0;
3070 }
3071 
3072 #ifdef CONFIG_ATA_ACPI
3073 /**
3074  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3075  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3076  *	@cycle: cycle duration in ns
3077  *
3078  *	Return matching xfer mode for @cycle.  The returned mode is of
3079  *	the transfer type specified by @xfer_shift.  If @cycle is too
3080  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3081  *	than the fastest known mode, the fasted mode is returned.
3082  *
3083  *	LOCKING:
3084  *	None.
3085  *
3086  *	RETURNS:
3087  *	Matching xfer_mode, 0xff if no match found.
3088  */
3089 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3090 {
3091 	u8 base_mode = 0xff, last_mode = 0xff;
3092 	const struct ata_xfer_ent *ent;
3093 	const struct ata_timing *t;
3094 
3095 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3096 		if (ent->shift == xfer_shift)
3097 			base_mode = ent->base;
3098 
3099 	for (t = ata_timing_find_mode(base_mode);
3100 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3101 		unsigned short this_cycle;
3102 
3103 		switch (xfer_shift) {
3104 		case ATA_SHIFT_PIO:
3105 		case ATA_SHIFT_MWDMA:
3106 			this_cycle = t->cycle;
3107 			break;
3108 		case ATA_SHIFT_UDMA:
3109 			this_cycle = t->udma;
3110 			break;
3111 		default:
3112 			return 0xff;
3113 		}
3114 
3115 		if (cycle > this_cycle)
3116 			break;
3117 
3118 		last_mode = t->mode;
3119 	}
3120 
3121 	return last_mode;
3122 }
3123 #endif
3124 
3125 /**
3126  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3127  *	@dev: Device to adjust xfer masks
3128  *	@sel: ATA_DNXFER_* selector
3129  *
3130  *	Adjust xfer masks of @dev downward.  Note that this function
3131  *	does not apply the change.  Invoking ata_set_mode() afterwards
3132  *	will apply the limit.
3133  *
3134  *	LOCKING:
3135  *	Inherited from caller.
3136  *
3137  *	RETURNS:
3138  *	0 on success, negative errno on failure
3139  */
3140 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3141 {
3142 	char buf[32];
3143 	unsigned long orig_mask, xfer_mask;
3144 	unsigned long pio_mask, mwdma_mask, udma_mask;
3145 	int quiet, highbit;
3146 
3147 	quiet = !!(sel & ATA_DNXFER_QUIET);
3148 	sel &= ~ATA_DNXFER_QUIET;
3149 
3150 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3151 						  dev->mwdma_mask,
3152 						  dev->udma_mask);
3153 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3154 
3155 	switch (sel) {
3156 	case ATA_DNXFER_PIO:
3157 		highbit = fls(pio_mask) - 1;
3158 		pio_mask &= ~(1 << highbit);
3159 		break;
3160 
3161 	case ATA_DNXFER_DMA:
3162 		if (udma_mask) {
3163 			highbit = fls(udma_mask) - 1;
3164 			udma_mask &= ~(1 << highbit);
3165 			if (!udma_mask)
3166 				return -ENOENT;
3167 		} else if (mwdma_mask) {
3168 			highbit = fls(mwdma_mask) - 1;
3169 			mwdma_mask &= ~(1 << highbit);
3170 			if (!mwdma_mask)
3171 				return -ENOENT;
3172 		}
3173 		break;
3174 
3175 	case ATA_DNXFER_40C:
3176 		udma_mask &= ATA_UDMA_MASK_40C;
3177 		break;
3178 
3179 	case ATA_DNXFER_FORCE_PIO0:
3180 		pio_mask &= 1;
3181 		fallthrough;
3182 	case ATA_DNXFER_FORCE_PIO:
3183 		mwdma_mask = 0;
3184 		udma_mask = 0;
3185 		break;
3186 
3187 	default:
3188 		BUG();
3189 	}
3190 
3191 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3192 
3193 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3194 		return -ENOENT;
3195 
3196 	if (!quiet) {
3197 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3198 			snprintf(buf, sizeof(buf), "%s:%s",
3199 				 ata_mode_string(xfer_mask),
3200 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3201 		else
3202 			snprintf(buf, sizeof(buf), "%s",
3203 				 ata_mode_string(xfer_mask));
3204 
3205 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3206 	}
3207 
3208 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3209 			    &dev->udma_mask);
3210 
3211 	return 0;
3212 }
3213 
3214 static int ata_dev_set_mode(struct ata_device *dev)
3215 {
3216 	struct ata_port *ap = dev->link->ap;
3217 	struct ata_eh_context *ehc = &dev->link->eh_context;
3218 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3219 	const char *dev_err_whine = "";
3220 	int ign_dev_err = 0;
3221 	unsigned int err_mask = 0;
3222 	int rc;
3223 
3224 	dev->flags &= ~ATA_DFLAG_PIO;
3225 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3226 		dev->flags |= ATA_DFLAG_PIO;
3227 
3228 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3229 		dev_err_whine = " (SET_XFERMODE skipped)";
3230 	else {
3231 		if (nosetxfer)
3232 			ata_dev_warn(dev,
3233 				     "NOSETXFER but PATA detected - can't "
3234 				     "skip SETXFER, might malfunction\n");
3235 		err_mask = ata_dev_set_xfermode(dev);
3236 	}
3237 
3238 	if (err_mask & ~AC_ERR_DEV)
3239 		goto fail;
3240 
3241 	/* revalidate */
3242 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3243 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3244 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3245 	if (rc)
3246 		return rc;
3247 
3248 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3249 		/* Old CFA may refuse this command, which is just fine */
3250 		if (ata_id_is_cfa(dev->id))
3251 			ign_dev_err = 1;
3252 		/* Catch several broken garbage emulations plus some pre
3253 		   ATA devices */
3254 		if (ata_id_major_version(dev->id) == 0 &&
3255 					dev->pio_mode <= XFER_PIO_2)
3256 			ign_dev_err = 1;
3257 		/* Some very old devices and some bad newer ones fail
3258 		   any kind of SET_XFERMODE request but support PIO0-2
3259 		   timings and no IORDY */
3260 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3261 			ign_dev_err = 1;
3262 	}
3263 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3264 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3265 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3266 	    dev->dma_mode == XFER_MW_DMA_0 &&
3267 	    (dev->id[63] >> 8) & 1)
3268 		ign_dev_err = 1;
3269 
3270 	/* if the device is actually configured correctly, ignore dev err */
3271 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3272 		ign_dev_err = 1;
3273 
3274 	if (err_mask & AC_ERR_DEV) {
3275 		if (!ign_dev_err)
3276 			goto fail;
3277 		else
3278 			dev_err_whine = " (device error ignored)";
3279 	}
3280 
3281 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3282 		dev->xfer_shift, (int)dev->xfer_mode);
3283 
3284 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3285 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3286 		ata_dev_info(dev, "configured for %s%s\n",
3287 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3288 			     dev_err_whine);
3289 
3290 	return 0;
3291 
3292  fail:
3293 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3294 	return -EIO;
3295 }
3296 
3297 /**
3298  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3299  *	@link: link on which timings will be programmed
3300  *	@r_failed_dev: out parameter for failed device
3301  *
3302  *	Standard implementation of the function used to tune and set
3303  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3304  *	ata_dev_set_mode() fails, pointer to the failing device is
3305  *	returned in @r_failed_dev.
3306  *
3307  *	LOCKING:
3308  *	PCI/etc. bus probe sem.
3309  *
3310  *	RETURNS:
3311  *	0 on success, negative errno otherwise
3312  */
3313 
3314 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3315 {
3316 	struct ata_port *ap = link->ap;
3317 	struct ata_device *dev;
3318 	int rc = 0, used_dma = 0, found = 0;
3319 
3320 	/* step 1: calculate xfer_mask */
3321 	ata_for_each_dev(dev, link, ENABLED) {
3322 		unsigned long pio_mask, dma_mask;
3323 		unsigned int mode_mask;
3324 
3325 		mode_mask = ATA_DMA_MASK_ATA;
3326 		if (dev->class == ATA_DEV_ATAPI)
3327 			mode_mask = ATA_DMA_MASK_ATAPI;
3328 		else if (ata_id_is_cfa(dev->id))
3329 			mode_mask = ATA_DMA_MASK_CFA;
3330 
3331 		ata_dev_xfermask(dev);
3332 		ata_force_xfermask(dev);
3333 
3334 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3335 
3336 		if (libata_dma_mask & mode_mask)
3337 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3338 						     dev->udma_mask);
3339 		else
3340 			dma_mask = 0;
3341 
3342 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3343 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3344 
3345 		found = 1;
3346 		if (ata_dma_enabled(dev))
3347 			used_dma = 1;
3348 	}
3349 	if (!found)
3350 		goto out;
3351 
3352 	/* step 2: always set host PIO timings */
3353 	ata_for_each_dev(dev, link, ENABLED) {
3354 		if (dev->pio_mode == 0xff) {
3355 			ata_dev_warn(dev, "no PIO support\n");
3356 			rc = -EINVAL;
3357 			goto out;
3358 		}
3359 
3360 		dev->xfer_mode = dev->pio_mode;
3361 		dev->xfer_shift = ATA_SHIFT_PIO;
3362 		if (ap->ops->set_piomode)
3363 			ap->ops->set_piomode(ap, dev);
3364 	}
3365 
3366 	/* step 3: set host DMA timings */
3367 	ata_for_each_dev(dev, link, ENABLED) {
3368 		if (!ata_dma_enabled(dev))
3369 			continue;
3370 
3371 		dev->xfer_mode = dev->dma_mode;
3372 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3373 		if (ap->ops->set_dmamode)
3374 			ap->ops->set_dmamode(ap, dev);
3375 	}
3376 
3377 	/* step 4: update devices' xfer mode */
3378 	ata_for_each_dev(dev, link, ENABLED) {
3379 		rc = ata_dev_set_mode(dev);
3380 		if (rc)
3381 			goto out;
3382 	}
3383 
3384 	/* Record simplex status. If we selected DMA then the other
3385 	 * host channels are not permitted to do so.
3386 	 */
3387 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3388 		ap->host->simplex_claimed = ap;
3389 
3390  out:
3391 	if (rc)
3392 		*r_failed_dev = dev;
3393 	return rc;
3394 }
3395 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3396 
3397 /**
3398  *	ata_wait_ready - wait for link to become ready
3399  *	@link: link to be waited on
3400  *	@deadline: deadline jiffies for the operation
3401  *	@check_ready: callback to check link readiness
3402  *
3403  *	Wait for @link to become ready.  @check_ready should return
3404  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3405  *	link doesn't seem to be occupied, other errno for other error
3406  *	conditions.
3407  *
3408  *	Transient -ENODEV conditions are allowed for
3409  *	ATA_TMOUT_FF_WAIT.
3410  *
3411  *	LOCKING:
3412  *	EH context.
3413  *
3414  *	RETURNS:
3415  *	0 if @link is ready before @deadline; otherwise, -errno.
3416  */
3417 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3418 		   int (*check_ready)(struct ata_link *link))
3419 {
3420 	unsigned long start = jiffies;
3421 	unsigned long nodev_deadline;
3422 	int warned = 0;
3423 
3424 	/* choose which 0xff timeout to use, read comment in libata.h */
3425 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3426 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3427 	else
3428 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3429 
3430 	/* Slave readiness can't be tested separately from master.  On
3431 	 * M/S emulation configuration, this function should be called
3432 	 * only on the master and it will handle both master and slave.
3433 	 */
3434 	WARN_ON(link == link->ap->slave_link);
3435 
3436 	if (time_after(nodev_deadline, deadline))
3437 		nodev_deadline = deadline;
3438 
3439 	while (1) {
3440 		unsigned long now = jiffies;
3441 		int ready, tmp;
3442 
3443 		ready = tmp = check_ready(link);
3444 		if (ready > 0)
3445 			return 0;
3446 
3447 		/*
3448 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3449 		 * is online.  Also, some SATA devices take a long
3450 		 * time to clear 0xff after reset.  Wait for
3451 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3452 		 * offline.
3453 		 *
3454 		 * Note that some PATA controllers (pata_ali) explode
3455 		 * if status register is read more than once when
3456 		 * there's no device attached.
3457 		 */
3458 		if (ready == -ENODEV) {
3459 			if (ata_link_online(link))
3460 				ready = 0;
3461 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3462 				 !ata_link_offline(link) &&
3463 				 time_before(now, nodev_deadline))
3464 				ready = 0;
3465 		}
3466 
3467 		if (ready)
3468 			return ready;
3469 		if (time_after(now, deadline))
3470 			return -EBUSY;
3471 
3472 		if (!warned && time_after(now, start + 5 * HZ) &&
3473 		    (deadline - now > 3 * HZ)) {
3474 			ata_link_warn(link,
3475 				"link is slow to respond, please be patient "
3476 				"(ready=%d)\n", tmp);
3477 			warned = 1;
3478 		}
3479 
3480 		ata_msleep(link->ap, 50);
3481 	}
3482 }
3483 
3484 /**
3485  *	ata_wait_after_reset - wait for link to become ready after reset
3486  *	@link: link to be waited on
3487  *	@deadline: deadline jiffies for the operation
3488  *	@check_ready: callback to check link readiness
3489  *
3490  *	Wait for @link to become ready after reset.
3491  *
3492  *	LOCKING:
3493  *	EH context.
3494  *
3495  *	RETURNS:
3496  *	0 if @link is ready before @deadline; otherwise, -errno.
3497  */
3498 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3499 				int (*check_ready)(struct ata_link *link))
3500 {
3501 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3502 
3503 	return ata_wait_ready(link, deadline, check_ready);
3504 }
3505 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3506 
3507 /**
3508  *	ata_std_prereset - prepare for reset
3509  *	@link: ATA link to be reset
3510  *	@deadline: deadline jiffies for the operation
3511  *
3512  *	@link is about to be reset.  Initialize it.  Failure from
3513  *	prereset makes libata abort whole reset sequence and give up
3514  *	that port, so prereset should be best-effort.  It does its
3515  *	best to prepare for reset sequence but if things go wrong, it
3516  *	should just whine, not fail.
3517  *
3518  *	LOCKING:
3519  *	Kernel thread context (may sleep)
3520  *
3521  *	RETURNS:
3522  *	0 on success, -errno otherwise.
3523  */
3524 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3525 {
3526 	struct ata_port *ap = link->ap;
3527 	struct ata_eh_context *ehc = &link->eh_context;
3528 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3529 	int rc;
3530 
3531 	/* if we're about to do hardreset, nothing more to do */
3532 	if (ehc->i.action & ATA_EH_HARDRESET)
3533 		return 0;
3534 
3535 	/* if SATA, resume link */
3536 	if (ap->flags & ATA_FLAG_SATA) {
3537 		rc = sata_link_resume(link, timing, deadline);
3538 		/* whine about phy resume failure but proceed */
3539 		if (rc && rc != -EOPNOTSUPP)
3540 			ata_link_warn(link,
3541 				      "failed to resume link for reset (errno=%d)\n",
3542 				      rc);
3543 	}
3544 
3545 	/* no point in trying softreset on offline link */
3546 	if (ata_phys_link_offline(link))
3547 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3548 
3549 	return 0;
3550 }
3551 EXPORT_SYMBOL_GPL(ata_std_prereset);
3552 
3553 /**
3554  *	sata_std_hardreset - COMRESET w/o waiting or classification
3555  *	@link: link to reset
3556  *	@class: resulting class of attached device
3557  *	@deadline: deadline jiffies for the operation
3558  *
3559  *	Standard SATA COMRESET w/o waiting or classification.
3560  *
3561  *	LOCKING:
3562  *	Kernel thread context (may sleep)
3563  *
3564  *	RETURNS:
3565  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3566  */
3567 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3568 		       unsigned long deadline)
3569 {
3570 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3571 	bool online;
3572 	int rc;
3573 
3574 	/* do hardreset */
3575 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3576 	return online ? -EAGAIN : rc;
3577 }
3578 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3579 
3580 /**
3581  *	ata_std_postreset - standard postreset callback
3582  *	@link: the target ata_link
3583  *	@classes: classes of attached devices
3584  *
3585  *	This function is invoked after a successful reset.  Note that
3586  *	the device might have been reset more than once using
3587  *	different reset methods before postreset is invoked.
3588  *
3589  *	LOCKING:
3590  *	Kernel thread context (may sleep)
3591  */
3592 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3593 {
3594 	u32 serror;
3595 
3596 	DPRINTK("ENTER\n");
3597 
3598 	/* reset complete, clear SError */
3599 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3600 		sata_scr_write(link, SCR_ERROR, serror);
3601 
3602 	/* print link status */
3603 	sata_print_link_status(link);
3604 
3605 	DPRINTK("EXIT\n");
3606 }
3607 EXPORT_SYMBOL_GPL(ata_std_postreset);
3608 
3609 /**
3610  *	ata_dev_same_device - Determine whether new ID matches configured device
3611  *	@dev: device to compare against
3612  *	@new_class: class of the new device
3613  *	@new_id: IDENTIFY page of the new device
3614  *
3615  *	Compare @new_class and @new_id against @dev and determine
3616  *	whether @dev is the device indicated by @new_class and
3617  *	@new_id.
3618  *
3619  *	LOCKING:
3620  *	None.
3621  *
3622  *	RETURNS:
3623  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3624  */
3625 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3626 			       const u16 *new_id)
3627 {
3628 	const u16 *old_id = dev->id;
3629 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3630 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3631 
3632 	if (dev->class != new_class) {
3633 		ata_dev_info(dev, "class mismatch %d != %d\n",
3634 			     dev->class, new_class);
3635 		return 0;
3636 	}
3637 
3638 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3639 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3640 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3641 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3642 
3643 	if (strcmp(model[0], model[1])) {
3644 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3645 			     model[0], model[1]);
3646 		return 0;
3647 	}
3648 
3649 	if (strcmp(serial[0], serial[1])) {
3650 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3651 			     serial[0], serial[1]);
3652 		return 0;
3653 	}
3654 
3655 	return 1;
3656 }
3657 
3658 /**
3659  *	ata_dev_reread_id - Re-read IDENTIFY data
3660  *	@dev: target ATA device
3661  *	@readid_flags: read ID flags
3662  *
3663  *	Re-read IDENTIFY page and make sure @dev is still attached to
3664  *	the port.
3665  *
3666  *	LOCKING:
3667  *	Kernel thread context (may sleep)
3668  *
3669  *	RETURNS:
3670  *	0 on success, negative errno otherwise
3671  */
3672 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3673 {
3674 	unsigned int class = dev->class;
3675 	u16 *id = (void *)dev->link->ap->sector_buf;
3676 	int rc;
3677 
3678 	/* read ID data */
3679 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3680 	if (rc)
3681 		return rc;
3682 
3683 	/* is the device still there? */
3684 	if (!ata_dev_same_device(dev, class, id))
3685 		return -ENODEV;
3686 
3687 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3688 	return 0;
3689 }
3690 
3691 /**
3692  *	ata_dev_revalidate - Revalidate ATA device
3693  *	@dev: device to revalidate
3694  *	@new_class: new class code
3695  *	@readid_flags: read ID flags
3696  *
3697  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3698  *	port and reconfigure it according to the new IDENTIFY page.
3699  *
3700  *	LOCKING:
3701  *	Kernel thread context (may sleep)
3702  *
3703  *	RETURNS:
3704  *	0 on success, negative errno otherwise
3705  */
3706 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3707 		       unsigned int readid_flags)
3708 {
3709 	u64 n_sectors = dev->n_sectors;
3710 	u64 n_native_sectors = dev->n_native_sectors;
3711 	int rc;
3712 
3713 	if (!ata_dev_enabled(dev))
3714 		return -ENODEV;
3715 
3716 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3717 	if (ata_class_enabled(new_class) &&
3718 	    new_class != ATA_DEV_ATA &&
3719 	    new_class != ATA_DEV_ATAPI &&
3720 	    new_class != ATA_DEV_ZAC &&
3721 	    new_class != ATA_DEV_SEMB) {
3722 		ata_dev_info(dev, "class mismatch %u != %u\n",
3723 			     dev->class, new_class);
3724 		rc = -ENODEV;
3725 		goto fail;
3726 	}
3727 
3728 	/* re-read ID */
3729 	rc = ata_dev_reread_id(dev, readid_flags);
3730 	if (rc)
3731 		goto fail;
3732 
3733 	/* configure device according to the new ID */
3734 	rc = ata_dev_configure(dev);
3735 	if (rc)
3736 		goto fail;
3737 
3738 	/* verify n_sectors hasn't changed */
3739 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3740 	    dev->n_sectors == n_sectors)
3741 		return 0;
3742 
3743 	/* n_sectors has changed */
3744 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3745 		     (unsigned long long)n_sectors,
3746 		     (unsigned long long)dev->n_sectors);
3747 
3748 	/*
3749 	 * Something could have caused HPA to be unlocked
3750 	 * involuntarily.  If n_native_sectors hasn't changed and the
3751 	 * new size matches it, keep the device.
3752 	 */
3753 	if (dev->n_native_sectors == n_native_sectors &&
3754 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3755 		ata_dev_warn(dev,
3756 			     "new n_sectors matches native, probably "
3757 			     "late HPA unlock, n_sectors updated\n");
3758 		/* use the larger n_sectors */
3759 		return 0;
3760 	}
3761 
3762 	/*
3763 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3764 	 * unlocking HPA in those cases.
3765 	 *
3766 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3767 	 */
3768 	if (dev->n_native_sectors == n_native_sectors &&
3769 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3770 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3771 		ata_dev_warn(dev,
3772 			     "old n_sectors matches native, probably "
3773 			     "late HPA lock, will try to unlock HPA\n");
3774 		/* try unlocking HPA */
3775 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3776 		rc = -EIO;
3777 	} else
3778 		rc = -ENODEV;
3779 
3780 	/* restore original n_[native_]sectors and fail */
3781 	dev->n_native_sectors = n_native_sectors;
3782 	dev->n_sectors = n_sectors;
3783  fail:
3784 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3785 	return rc;
3786 }
3787 
3788 struct ata_blacklist_entry {
3789 	const char *model_num;
3790 	const char *model_rev;
3791 	unsigned long horkage;
3792 };
3793 
3794 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3795 	/* Devices with DMA related problems under Linux */
3796 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3797 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3798 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3799 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3800 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3801 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3802 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3803 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3804 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3805 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3806 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3807 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3808 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3809 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3810 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3811 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3812 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3813 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3814 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3815 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3816 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3817 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3818 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3819 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3820 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3821 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3822 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3823 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3824 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3825 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3826 	/* Odd clown on sil3726/4726 PMPs */
3827 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3828 
3829 	/* Weird ATAPI devices */
3830 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3831 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3832 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3833 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3834 
3835 	/*
3836 	 * Causes silent data corruption with higher max sects.
3837 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3838 	 */
3839 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3840 
3841 	/*
3842 	 * These devices time out with higher max sects.
3843 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3844 	 */
3845 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3846 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3847 
3848 	/* Devices we expect to fail diagnostics */
3849 
3850 	/* Devices where NCQ should be avoided */
3851 	/* NCQ is slow */
3852 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3853 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3854 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3855 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3856 	/* NCQ is broken */
3857 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3858 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3859 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3860 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3861 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3862 
3863 	/* Seagate NCQ + FLUSH CACHE firmware bug */
3864 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3865 						ATA_HORKAGE_FIRMWARE_WARN },
3866 
3867 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3868 						ATA_HORKAGE_FIRMWARE_WARN },
3869 
3870 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3871 						ATA_HORKAGE_FIRMWARE_WARN },
3872 
3873 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3874 						ATA_HORKAGE_FIRMWARE_WARN },
3875 
3876 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3877 	   the ST disks also have LPM issues */
3878 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3879 						ATA_HORKAGE_NOLPM, },
3880 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3881 
3882 	/* Blacklist entries taken from Silicon Image 3124/3132
3883 	   Windows driver .inf file - also several Linux problem reports */
3884 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3885 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3886 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3887 
3888 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3889 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
3890 
3891 	/* Sandisk SD7/8/9s lock up hard on large trims */
3892 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M, },
3893 
3894 	/* devices which puke on READ_NATIVE_MAX */
3895 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
3896 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3897 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3898 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3899 
3900 	/* this one allows HPA unlocking but fails IOs on the area */
3901 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3902 
3903 	/* Devices which report 1 sector over size HPA */
3904 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3905 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3906 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3907 
3908 	/* Devices which get the IVB wrong */
3909 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3910 	/* Maybe we should just blacklist TSSTcorp... */
3911 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
3912 
3913 	/* Devices that do not need bridging limits applied */
3914 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3915 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3916 
3917 	/* Devices which aren't very happy with higher link speeds */
3918 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
3919 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
3920 
3921 	/*
3922 	 * Devices which choke on SETXFER.  Applies only if both the
3923 	 * device and controller are SATA.
3924 	 */
3925 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
3926 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
3927 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
3928 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
3929 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
3930 
3931 	/* Crucial BX100 SSD 500GB has broken LPM support */
3932 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
3933 
3934 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3935 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3936 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3937 						ATA_HORKAGE_NOLPM, },
3938 	/* 512GB MX100 with newer firmware has only LPM issues */
3939 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
3940 						ATA_HORKAGE_NOLPM, },
3941 
3942 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3943 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3944 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3945 						ATA_HORKAGE_NOLPM, },
3946 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3947 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3948 						ATA_HORKAGE_NOLPM, },
3949 
3950 	/* These specific Samsung models/firmware-revs do not handle LPM well */
3951 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
3952 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
3953 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
3954 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
3955 
3956 	/* devices that don't properly handle queued TRIM commands */
3957 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3958 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3959 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3960 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3961 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3962 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3963 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3964 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3965 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3966 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3967 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3968 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3969 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3970 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3971 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3972 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3973 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3974 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3975 
3976 	/* devices that don't properly handle TRIM commands */
3977 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
3978 
3979 	/*
3980 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
3981 	 * (Return Zero After Trim) flags in the ATA Command Set are
3982 	 * unreliable in the sense that they only define what happens if
3983 	 * the device successfully executed the DSM TRIM command. TRIM
3984 	 * is only advisory, however, and the device is free to silently
3985 	 * ignore all or parts of the request.
3986 	 *
3987 	 * Whitelist drives that are known to reliably return zeroes
3988 	 * after TRIM.
3989 	 */
3990 
3991 	/*
3992 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
3993 	 * that model before whitelisting all other intel SSDs.
3994 	 */
3995 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
3996 
3997 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3998 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3999 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4000 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4001 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4002 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4003 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4004 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4005 
4006 	/*
4007 	 * Some WD SATA-I drives spin up and down erratically when the link
4008 	 * is put into the slumber mode.  We don't have full list of the
4009 	 * affected devices.  Disable LPM if the device matches one of the
4010 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4011 	 * lost too.
4012 	 *
4013 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4014 	 */
4015 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4016 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4017 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4018 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4019 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4020 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4021 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4022 
4023 	/* End Marker */
4024 	{ }
4025 };
4026 
4027 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4028 {
4029 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4030 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4031 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4032 
4033 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4034 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4035 
4036 	while (ad->model_num) {
4037 		if (glob_match(ad->model_num, model_num)) {
4038 			if (ad->model_rev == NULL)
4039 				return ad->horkage;
4040 			if (glob_match(ad->model_rev, model_rev))
4041 				return ad->horkage;
4042 		}
4043 		ad++;
4044 	}
4045 	return 0;
4046 }
4047 
4048 static int ata_dma_blacklisted(const struct ata_device *dev)
4049 {
4050 	/* We don't support polling DMA.
4051 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4052 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4053 	 */
4054 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4055 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4056 		return 1;
4057 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4058 }
4059 
4060 /**
4061  *	ata_is_40wire		-	check drive side detection
4062  *	@dev: device
4063  *
4064  *	Perform drive side detection decoding, allowing for device vendors
4065  *	who can't follow the documentation.
4066  */
4067 
4068 static int ata_is_40wire(struct ata_device *dev)
4069 {
4070 	if (dev->horkage & ATA_HORKAGE_IVB)
4071 		return ata_drive_40wire_relaxed(dev->id);
4072 	return ata_drive_40wire(dev->id);
4073 }
4074 
4075 /**
4076  *	cable_is_40wire		-	40/80/SATA decider
4077  *	@ap: port to consider
4078  *
4079  *	This function encapsulates the policy for speed management
4080  *	in one place. At the moment we don't cache the result but
4081  *	there is a good case for setting ap->cbl to the result when
4082  *	we are called with unknown cables (and figuring out if it
4083  *	impacts hotplug at all).
4084  *
4085  *	Return 1 if the cable appears to be 40 wire.
4086  */
4087 
4088 static int cable_is_40wire(struct ata_port *ap)
4089 {
4090 	struct ata_link *link;
4091 	struct ata_device *dev;
4092 
4093 	/* If the controller thinks we are 40 wire, we are. */
4094 	if (ap->cbl == ATA_CBL_PATA40)
4095 		return 1;
4096 
4097 	/* If the controller thinks we are 80 wire, we are. */
4098 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4099 		return 0;
4100 
4101 	/* If the system is known to be 40 wire short cable (eg
4102 	 * laptop), then we allow 80 wire modes even if the drive
4103 	 * isn't sure.
4104 	 */
4105 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4106 		return 0;
4107 
4108 	/* If the controller doesn't know, we scan.
4109 	 *
4110 	 * Note: We look for all 40 wire detects at this point.  Any
4111 	 *       80 wire detect is taken to be 80 wire cable because
4112 	 * - in many setups only the one drive (slave if present) will
4113 	 *   give a valid detect
4114 	 * - if you have a non detect capable drive you don't want it
4115 	 *   to colour the choice
4116 	 */
4117 	ata_for_each_link(link, ap, EDGE) {
4118 		ata_for_each_dev(dev, link, ENABLED) {
4119 			if (!ata_is_40wire(dev))
4120 				return 0;
4121 		}
4122 	}
4123 	return 1;
4124 }
4125 
4126 /**
4127  *	ata_dev_xfermask - Compute supported xfermask of the given device
4128  *	@dev: Device to compute xfermask for
4129  *
4130  *	Compute supported xfermask of @dev and store it in
4131  *	dev->*_mask.  This function is responsible for applying all
4132  *	known limits including host controller limits, device
4133  *	blacklist, etc...
4134  *
4135  *	LOCKING:
4136  *	None.
4137  */
4138 static void ata_dev_xfermask(struct ata_device *dev)
4139 {
4140 	struct ata_link *link = dev->link;
4141 	struct ata_port *ap = link->ap;
4142 	struct ata_host *host = ap->host;
4143 	unsigned long xfer_mask;
4144 
4145 	/* controller modes available */
4146 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4147 				      ap->mwdma_mask, ap->udma_mask);
4148 
4149 	/* drive modes available */
4150 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4151 				       dev->mwdma_mask, dev->udma_mask);
4152 	xfer_mask &= ata_id_xfermask(dev->id);
4153 
4154 	/*
4155 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4156 	 *	cable
4157 	 */
4158 	if (ata_dev_pair(dev)) {
4159 		/* No PIO5 or PIO6 */
4160 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4161 		/* No MWDMA3 or MWDMA 4 */
4162 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4163 	}
4164 
4165 	if (ata_dma_blacklisted(dev)) {
4166 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4167 		ata_dev_warn(dev,
4168 			     "device is on DMA blacklist, disabling DMA\n");
4169 	}
4170 
4171 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4172 	    host->simplex_claimed && host->simplex_claimed != ap) {
4173 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4174 		ata_dev_warn(dev,
4175 			     "simplex DMA is claimed by other device, disabling DMA\n");
4176 	}
4177 
4178 	if (ap->flags & ATA_FLAG_NO_IORDY)
4179 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4180 
4181 	if (ap->ops->mode_filter)
4182 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4183 
4184 	/* Apply cable rule here.  Don't apply it early because when
4185 	 * we handle hot plug the cable type can itself change.
4186 	 * Check this last so that we know if the transfer rate was
4187 	 * solely limited by the cable.
4188 	 * Unknown or 80 wire cables reported host side are checked
4189 	 * drive side as well. Cases where we know a 40wire cable
4190 	 * is used safely for 80 are not checked here.
4191 	 */
4192 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4193 		/* UDMA/44 or higher would be available */
4194 		if (cable_is_40wire(ap)) {
4195 			ata_dev_warn(dev,
4196 				     "limited to UDMA/33 due to 40-wire cable\n");
4197 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4198 		}
4199 
4200 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4201 			    &dev->mwdma_mask, &dev->udma_mask);
4202 }
4203 
4204 /**
4205  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4206  *	@dev: Device to which command will be sent
4207  *
4208  *	Issue SET FEATURES - XFER MODE command to device @dev
4209  *	on port @ap.
4210  *
4211  *	LOCKING:
4212  *	PCI/etc. bus probe sem.
4213  *
4214  *	RETURNS:
4215  *	0 on success, AC_ERR_* mask otherwise.
4216  */
4217 
4218 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4219 {
4220 	struct ata_taskfile tf;
4221 	unsigned int err_mask;
4222 
4223 	/* set up set-features taskfile */
4224 	DPRINTK("set features - xfer mode\n");
4225 
4226 	/* Some controllers and ATAPI devices show flaky interrupt
4227 	 * behavior after setting xfer mode.  Use polling instead.
4228 	 */
4229 	ata_tf_init(dev, &tf);
4230 	tf.command = ATA_CMD_SET_FEATURES;
4231 	tf.feature = SETFEATURES_XFER;
4232 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4233 	tf.protocol = ATA_PROT_NODATA;
4234 	/* If we are using IORDY we must send the mode setting command */
4235 	if (ata_pio_need_iordy(dev))
4236 		tf.nsect = dev->xfer_mode;
4237 	/* If the device has IORDY and the controller does not - turn it off */
4238  	else if (ata_id_has_iordy(dev->id))
4239 		tf.nsect = 0x01;
4240 	else /* In the ancient relic department - skip all of this */
4241 		return 0;
4242 
4243 	/* On some disks, this command causes spin-up, so we need longer timeout */
4244 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4245 
4246 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4247 	return err_mask;
4248 }
4249 
4250 /**
4251  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4252  *	@dev: Device to which command will be sent
4253  *	@enable: Whether to enable or disable the feature
4254  *	@feature: The sector count represents the feature to set
4255  *
4256  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4257  *	on port @ap with sector count
4258  *
4259  *	LOCKING:
4260  *	PCI/etc. bus probe sem.
4261  *
4262  *	RETURNS:
4263  *	0 on success, AC_ERR_* mask otherwise.
4264  */
4265 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4266 {
4267 	struct ata_taskfile tf;
4268 	unsigned int err_mask;
4269 	unsigned long timeout = 0;
4270 
4271 	/* set up set-features taskfile */
4272 	DPRINTK("set features - SATA features\n");
4273 
4274 	ata_tf_init(dev, &tf);
4275 	tf.command = ATA_CMD_SET_FEATURES;
4276 	tf.feature = enable;
4277 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4278 	tf.protocol = ATA_PROT_NODATA;
4279 	tf.nsect = feature;
4280 
4281 	if (enable == SETFEATURES_SPINUP)
4282 		timeout = ata_probe_timeout ?
4283 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4284 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4285 
4286 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4287 	return err_mask;
4288 }
4289 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4290 
4291 /**
4292  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4293  *	@dev: Device to which command will be sent
4294  *	@heads: Number of heads (taskfile parameter)
4295  *	@sectors: Number of sectors (taskfile parameter)
4296  *
4297  *	LOCKING:
4298  *	Kernel thread context (may sleep)
4299  *
4300  *	RETURNS:
4301  *	0 on success, AC_ERR_* mask otherwise.
4302  */
4303 static unsigned int ata_dev_init_params(struct ata_device *dev,
4304 					u16 heads, u16 sectors)
4305 {
4306 	struct ata_taskfile tf;
4307 	unsigned int err_mask;
4308 
4309 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4310 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4311 		return AC_ERR_INVALID;
4312 
4313 	/* set up init dev params taskfile */
4314 	DPRINTK("init dev params \n");
4315 
4316 	ata_tf_init(dev, &tf);
4317 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4318 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4319 	tf.protocol = ATA_PROT_NODATA;
4320 	tf.nsect = sectors;
4321 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4322 
4323 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4324 	/* A clean abort indicates an original or just out of spec drive
4325 	   and we should continue as we issue the setup based on the
4326 	   drive reported working geometry */
4327 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4328 		err_mask = 0;
4329 
4330 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4331 	return err_mask;
4332 }
4333 
4334 /**
4335  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4336  *	@qc: Metadata associated with taskfile to check
4337  *
4338  *	Allow low-level driver to filter ATA PACKET commands, returning
4339  *	a status indicating whether or not it is OK to use DMA for the
4340  *	supplied PACKET command.
4341  *
4342  *	LOCKING:
4343  *	spin_lock_irqsave(host lock)
4344  *
4345  *	RETURNS: 0 when ATAPI DMA can be used
4346  *               nonzero otherwise
4347  */
4348 int atapi_check_dma(struct ata_queued_cmd *qc)
4349 {
4350 	struct ata_port *ap = qc->ap;
4351 
4352 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4353 	 * few ATAPI devices choke on such DMA requests.
4354 	 */
4355 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4356 	    unlikely(qc->nbytes & 15))
4357 		return 1;
4358 
4359 	if (ap->ops->check_atapi_dma)
4360 		return ap->ops->check_atapi_dma(qc);
4361 
4362 	return 0;
4363 }
4364 
4365 /**
4366  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4367  *	@qc: ATA command in question
4368  *
4369  *	Non-NCQ commands cannot run with any other command, NCQ or
4370  *	not.  As upper layer only knows the queue depth, we are
4371  *	responsible for maintaining exclusion.  This function checks
4372  *	whether a new command @qc can be issued.
4373  *
4374  *	LOCKING:
4375  *	spin_lock_irqsave(host lock)
4376  *
4377  *	RETURNS:
4378  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4379  */
4380 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4381 {
4382 	struct ata_link *link = qc->dev->link;
4383 
4384 	if (ata_is_ncq(qc->tf.protocol)) {
4385 		if (!ata_tag_valid(link->active_tag))
4386 			return 0;
4387 	} else {
4388 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4389 			return 0;
4390 	}
4391 
4392 	return ATA_DEFER_LINK;
4393 }
4394 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4395 
4396 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4397 {
4398 	return AC_ERR_OK;
4399 }
4400 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4401 
4402 /**
4403  *	ata_sg_init - Associate command with scatter-gather table.
4404  *	@qc: Command to be associated
4405  *	@sg: Scatter-gather table.
4406  *	@n_elem: Number of elements in s/g table.
4407  *
4408  *	Initialize the data-related elements of queued_cmd @qc
4409  *	to point to a scatter-gather table @sg, containing @n_elem
4410  *	elements.
4411  *
4412  *	LOCKING:
4413  *	spin_lock_irqsave(host lock)
4414  */
4415 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4416 		 unsigned int n_elem)
4417 {
4418 	qc->sg = sg;
4419 	qc->n_elem = n_elem;
4420 	qc->cursg = qc->sg;
4421 }
4422 
4423 #ifdef CONFIG_HAS_DMA
4424 
4425 /**
4426  *	ata_sg_clean - Unmap DMA memory associated with command
4427  *	@qc: Command containing DMA memory to be released
4428  *
4429  *	Unmap all mapped DMA memory associated with this command.
4430  *
4431  *	LOCKING:
4432  *	spin_lock_irqsave(host lock)
4433  */
4434 static void ata_sg_clean(struct ata_queued_cmd *qc)
4435 {
4436 	struct ata_port *ap = qc->ap;
4437 	struct scatterlist *sg = qc->sg;
4438 	int dir = qc->dma_dir;
4439 
4440 	WARN_ON_ONCE(sg == NULL);
4441 
4442 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4443 
4444 	if (qc->n_elem)
4445 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4446 
4447 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4448 	qc->sg = NULL;
4449 }
4450 
4451 /**
4452  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4453  *	@qc: Command with scatter-gather table to be mapped.
4454  *
4455  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4456  *
4457  *	LOCKING:
4458  *	spin_lock_irqsave(host lock)
4459  *
4460  *	RETURNS:
4461  *	Zero on success, negative on error.
4462  *
4463  */
4464 static int ata_sg_setup(struct ata_queued_cmd *qc)
4465 {
4466 	struct ata_port *ap = qc->ap;
4467 	unsigned int n_elem;
4468 
4469 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4470 
4471 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4472 	if (n_elem < 1)
4473 		return -1;
4474 
4475 	VPRINTK("%d sg elements mapped\n", n_elem);
4476 	qc->orig_n_elem = qc->n_elem;
4477 	qc->n_elem = n_elem;
4478 	qc->flags |= ATA_QCFLAG_DMAMAP;
4479 
4480 	return 0;
4481 }
4482 
4483 #else /* !CONFIG_HAS_DMA */
4484 
4485 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4486 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4487 
4488 #endif /* !CONFIG_HAS_DMA */
4489 
4490 /**
4491  *	swap_buf_le16 - swap halves of 16-bit words in place
4492  *	@buf:  Buffer to swap
4493  *	@buf_words:  Number of 16-bit words in buffer.
4494  *
4495  *	Swap halves of 16-bit words if needed to convert from
4496  *	little-endian byte order to native cpu byte order, or
4497  *	vice-versa.
4498  *
4499  *	LOCKING:
4500  *	Inherited from caller.
4501  */
4502 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4503 {
4504 #ifdef __BIG_ENDIAN
4505 	unsigned int i;
4506 
4507 	for (i = 0; i < buf_words; i++)
4508 		buf[i] = le16_to_cpu(buf[i]);
4509 #endif /* __BIG_ENDIAN */
4510 }
4511 
4512 /**
4513  *	ata_qc_new_init - Request an available ATA command, and initialize it
4514  *	@dev: Device from whom we request an available command structure
4515  *	@tag: tag
4516  *
4517  *	LOCKING:
4518  *	None.
4519  */
4520 
4521 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4522 {
4523 	struct ata_port *ap = dev->link->ap;
4524 	struct ata_queued_cmd *qc;
4525 
4526 	/* no command while frozen */
4527 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4528 		return NULL;
4529 
4530 	/* libsas case */
4531 	if (ap->flags & ATA_FLAG_SAS_HOST) {
4532 		tag = ata_sas_allocate_tag(ap);
4533 		if (tag < 0)
4534 			return NULL;
4535 	}
4536 
4537 	qc = __ata_qc_from_tag(ap, tag);
4538 	qc->tag = qc->hw_tag = tag;
4539 	qc->scsicmd = NULL;
4540 	qc->ap = ap;
4541 	qc->dev = dev;
4542 
4543 	ata_qc_reinit(qc);
4544 
4545 	return qc;
4546 }
4547 
4548 /**
4549  *	ata_qc_free - free unused ata_queued_cmd
4550  *	@qc: Command to complete
4551  *
4552  *	Designed to free unused ata_queued_cmd object
4553  *	in case something prevents using it.
4554  *
4555  *	LOCKING:
4556  *	spin_lock_irqsave(host lock)
4557  */
4558 void ata_qc_free(struct ata_queued_cmd *qc)
4559 {
4560 	struct ata_port *ap;
4561 	unsigned int tag;
4562 
4563 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4564 	ap = qc->ap;
4565 
4566 	qc->flags = 0;
4567 	tag = qc->tag;
4568 	if (ata_tag_valid(tag)) {
4569 		qc->tag = ATA_TAG_POISON;
4570 		if (ap->flags & ATA_FLAG_SAS_HOST)
4571 			ata_sas_free_tag(tag, ap);
4572 	}
4573 }
4574 
4575 void __ata_qc_complete(struct ata_queued_cmd *qc)
4576 {
4577 	struct ata_port *ap;
4578 	struct ata_link *link;
4579 
4580 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4581 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4582 	ap = qc->ap;
4583 	link = qc->dev->link;
4584 
4585 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4586 		ata_sg_clean(qc);
4587 
4588 	/* command should be marked inactive atomically with qc completion */
4589 	if (ata_is_ncq(qc->tf.protocol)) {
4590 		link->sactive &= ~(1 << qc->hw_tag);
4591 		if (!link->sactive)
4592 			ap->nr_active_links--;
4593 	} else {
4594 		link->active_tag = ATA_TAG_POISON;
4595 		ap->nr_active_links--;
4596 	}
4597 
4598 	/* clear exclusive status */
4599 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4600 		     ap->excl_link == link))
4601 		ap->excl_link = NULL;
4602 
4603 	/* atapi: mark qc as inactive to prevent the interrupt handler
4604 	 * from completing the command twice later, before the error handler
4605 	 * is called. (when rc != 0 and atapi request sense is needed)
4606 	 */
4607 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4608 	ap->qc_active &= ~(1ULL << qc->tag);
4609 
4610 	/* call completion callback */
4611 	qc->complete_fn(qc);
4612 }
4613 
4614 static void fill_result_tf(struct ata_queued_cmd *qc)
4615 {
4616 	struct ata_port *ap = qc->ap;
4617 
4618 	qc->result_tf.flags = qc->tf.flags;
4619 	ap->ops->qc_fill_rtf(qc);
4620 }
4621 
4622 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4623 {
4624 	struct ata_device *dev = qc->dev;
4625 
4626 	if (!ata_is_data(qc->tf.protocol))
4627 		return;
4628 
4629 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4630 		return;
4631 
4632 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4633 }
4634 
4635 /**
4636  *	ata_qc_complete - Complete an active ATA command
4637  *	@qc: Command to complete
4638  *
4639  *	Indicate to the mid and upper layers that an ATA command has
4640  *	completed, with either an ok or not-ok status.
4641  *
4642  *	Refrain from calling this function multiple times when
4643  *	successfully completing multiple NCQ commands.
4644  *	ata_qc_complete_multiple() should be used instead, which will
4645  *	properly update IRQ expect state.
4646  *
4647  *	LOCKING:
4648  *	spin_lock_irqsave(host lock)
4649  */
4650 void ata_qc_complete(struct ata_queued_cmd *qc)
4651 {
4652 	struct ata_port *ap = qc->ap;
4653 
4654 	/* Trigger the LED (if available) */
4655 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4656 
4657 	/* XXX: New EH and old EH use different mechanisms to
4658 	 * synchronize EH with regular execution path.
4659 	 *
4660 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4661 	 * Normal execution path is responsible for not accessing a
4662 	 * failed qc.  libata core enforces the rule by returning NULL
4663 	 * from ata_qc_from_tag() for failed qcs.
4664 	 *
4665 	 * Old EH depends on ata_qc_complete() nullifying completion
4666 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4667 	 * not synchronize with interrupt handler.  Only PIO task is
4668 	 * taken care of.
4669 	 */
4670 	if (ap->ops->error_handler) {
4671 		struct ata_device *dev = qc->dev;
4672 		struct ata_eh_info *ehi = &dev->link->eh_info;
4673 
4674 		if (unlikely(qc->err_mask))
4675 			qc->flags |= ATA_QCFLAG_FAILED;
4676 
4677 		/*
4678 		 * Finish internal commands without any further processing
4679 		 * and always with the result TF filled.
4680 		 */
4681 		if (unlikely(ata_tag_internal(qc->tag))) {
4682 			fill_result_tf(qc);
4683 			trace_ata_qc_complete_internal(qc);
4684 			__ata_qc_complete(qc);
4685 			return;
4686 		}
4687 
4688 		/*
4689 		 * Non-internal qc has failed.  Fill the result TF and
4690 		 * summon EH.
4691 		 */
4692 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4693 			fill_result_tf(qc);
4694 			trace_ata_qc_complete_failed(qc);
4695 			ata_qc_schedule_eh(qc);
4696 			return;
4697 		}
4698 
4699 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4700 
4701 		/* read result TF if requested */
4702 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4703 			fill_result_tf(qc);
4704 
4705 		trace_ata_qc_complete_done(qc);
4706 		/* Some commands need post-processing after successful
4707 		 * completion.
4708 		 */
4709 		switch (qc->tf.command) {
4710 		case ATA_CMD_SET_FEATURES:
4711 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4712 			    qc->tf.feature != SETFEATURES_WC_OFF &&
4713 			    qc->tf.feature != SETFEATURES_RA_ON &&
4714 			    qc->tf.feature != SETFEATURES_RA_OFF)
4715 				break;
4716 			fallthrough;
4717 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4718 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4719 			/* revalidate device */
4720 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4721 			ata_port_schedule_eh(ap);
4722 			break;
4723 
4724 		case ATA_CMD_SLEEP:
4725 			dev->flags |= ATA_DFLAG_SLEEPING;
4726 			break;
4727 		}
4728 
4729 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4730 			ata_verify_xfer(qc);
4731 
4732 		__ata_qc_complete(qc);
4733 	} else {
4734 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4735 			return;
4736 
4737 		/* read result TF if failed or requested */
4738 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4739 			fill_result_tf(qc);
4740 
4741 		__ata_qc_complete(qc);
4742 	}
4743 }
4744 EXPORT_SYMBOL_GPL(ata_qc_complete);
4745 
4746 /**
4747  *	ata_qc_get_active - get bitmask of active qcs
4748  *	@ap: port in question
4749  *
4750  *	LOCKING:
4751  *	spin_lock_irqsave(host lock)
4752  *
4753  *	RETURNS:
4754  *	Bitmask of active qcs
4755  */
4756 u64 ata_qc_get_active(struct ata_port *ap)
4757 {
4758 	u64 qc_active = ap->qc_active;
4759 
4760 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4761 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4762 		qc_active |= (1 << 0);
4763 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4764 	}
4765 
4766 	return qc_active;
4767 }
4768 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4769 
4770 /**
4771  *	ata_qc_issue - issue taskfile to device
4772  *	@qc: command to issue to device
4773  *
4774  *	Prepare an ATA command to submission to device.
4775  *	This includes mapping the data into a DMA-able
4776  *	area, filling in the S/G table, and finally
4777  *	writing the taskfile to hardware, starting the command.
4778  *
4779  *	LOCKING:
4780  *	spin_lock_irqsave(host lock)
4781  */
4782 void ata_qc_issue(struct ata_queued_cmd *qc)
4783 {
4784 	struct ata_port *ap = qc->ap;
4785 	struct ata_link *link = qc->dev->link;
4786 	u8 prot = qc->tf.protocol;
4787 
4788 	/* Make sure only one non-NCQ command is outstanding.  The
4789 	 * check is skipped for old EH because it reuses active qc to
4790 	 * request ATAPI sense.
4791 	 */
4792 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4793 
4794 	if (ata_is_ncq(prot)) {
4795 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4796 
4797 		if (!link->sactive)
4798 			ap->nr_active_links++;
4799 		link->sactive |= 1 << qc->hw_tag;
4800 	} else {
4801 		WARN_ON_ONCE(link->sactive);
4802 
4803 		ap->nr_active_links++;
4804 		link->active_tag = qc->tag;
4805 	}
4806 
4807 	qc->flags |= ATA_QCFLAG_ACTIVE;
4808 	ap->qc_active |= 1ULL << qc->tag;
4809 
4810 	/*
4811 	 * We guarantee to LLDs that they will have at least one
4812 	 * non-zero sg if the command is a data command.
4813 	 */
4814 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4815 		goto sys_err;
4816 
4817 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4818 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4819 		if (ata_sg_setup(qc))
4820 			goto sys_err;
4821 
4822 	/* if device is sleeping, schedule reset and abort the link */
4823 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4824 		link->eh_info.action |= ATA_EH_RESET;
4825 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4826 		ata_link_abort(link);
4827 		return;
4828 	}
4829 
4830 	qc->err_mask |= ap->ops->qc_prep(qc);
4831 	if (unlikely(qc->err_mask))
4832 		goto err;
4833 	trace_ata_qc_issue(qc);
4834 	qc->err_mask |= ap->ops->qc_issue(qc);
4835 	if (unlikely(qc->err_mask))
4836 		goto err;
4837 	return;
4838 
4839 sys_err:
4840 	qc->err_mask |= AC_ERR_SYSTEM;
4841 err:
4842 	ata_qc_complete(qc);
4843 }
4844 
4845 /**
4846  *	ata_phys_link_online - test whether the given link is online
4847  *	@link: ATA link to test
4848  *
4849  *	Test whether @link is online.  Note that this function returns
4850  *	0 if online status of @link cannot be obtained, so
4851  *	ata_link_online(link) != !ata_link_offline(link).
4852  *
4853  *	LOCKING:
4854  *	None.
4855  *
4856  *	RETURNS:
4857  *	True if the port online status is available and online.
4858  */
4859 bool ata_phys_link_online(struct ata_link *link)
4860 {
4861 	u32 sstatus;
4862 
4863 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4864 	    ata_sstatus_online(sstatus))
4865 		return true;
4866 	return false;
4867 }
4868 
4869 /**
4870  *	ata_phys_link_offline - test whether the given link is offline
4871  *	@link: ATA link to test
4872  *
4873  *	Test whether @link is offline.  Note that this function
4874  *	returns 0 if offline status of @link cannot be obtained, so
4875  *	ata_link_online(link) != !ata_link_offline(link).
4876  *
4877  *	LOCKING:
4878  *	None.
4879  *
4880  *	RETURNS:
4881  *	True if the port offline status is available and offline.
4882  */
4883 bool ata_phys_link_offline(struct ata_link *link)
4884 {
4885 	u32 sstatus;
4886 
4887 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4888 	    !ata_sstatus_online(sstatus))
4889 		return true;
4890 	return false;
4891 }
4892 
4893 /**
4894  *	ata_link_online - test whether the given link is online
4895  *	@link: ATA link to test
4896  *
4897  *	Test whether @link is online.  This is identical to
4898  *	ata_phys_link_online() when there's no slave link.  When
4899  *	there's a slave link, this function should only be called on
4900  *	the master link and will return true if any of M/S links is
4901  *	online.
4902  *
4903  *	LOCKING:
4904  *	None.
4905  *
4906  *	RETURNS:
4907  *	True if the port online status is available and online.
4908  */
4909 bool ata_link_online(struct ata_link *link)
4910 {
4911 	struct ata_link *slave = link->ap->slave_link;
4912 
4913 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4914 
4915 	return ata_phys_link_online(link) ||
4916 		(slave && ata_phys_link_online(slave));
4917 }
4918 EXPORT_SYMBOL_GPL(ata_link_online);
4919 
4920 /**
4921  *	ata_link_offline - test whether the given link is offline
4922  *	@link: ATA link to test
4923  *
4924  *	Test whether @link is offline.  This is identical to
4925  *	ata_phys_link_offline() when there's no slave link.  When
4926  *	there's a slave link, this function should only be called on
4927  *	the master link and will return true if both M/S links are
4928  *	offline.
4929  *
4930  *	LOCKING:
4931  *	None.
4932  *
4933  *	RETURNS:
4934  *	True if the port offline status is available and offline.
4935  */
4936 bool ata_link_offline(struct ata_link *link)
4937 {
4938 	struct ata_link *slave = link->ap->slave_link;
4939 
4940 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4941 
4942 	return ata_phys_link_offline(link) &&
4943 		(!slave || ata_phys_link_offline(slave));
4944 }
4945 EXPORT_SYMBOL_GPL(ata_link_offline);
4946 
4947 #ifdef CONFIG_PM
4948 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4949 				unsigned int action, unsigned int ehi_flags,
4950 				bool async)
4951 {
4952 	struct ata_link *link;
4953 	unsigned long flags;
4954 
4955 	/* Previous resume operation might still be in
4956 	 * progress.  Wait for PM_PENDING to clear.
4957 	 */
4958 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4959 		ata_port_wait_eh(ap);
4960 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4961 	}
4962 
4963 	/* request PM ops to EH */
4964 	spin_lock_irqsave(ap->lock, flags);
4965 
4966 	ap->pm_mesg = mesg;
4967 	ap->pflags |= ATA_PFLAG_PM_PENDING;
4968 	ata_for_each_link(link, ap, HOST_FIRST) {
4969 		link->eh_info.action |= action;
4970 		link->eh_info.flags |= ehi_flags;
4971 	}
4972 
4973 	ata_port_schedule_eh(ap);
4974 
4975 	spin_unlock_irqrestore(ap->lock, flags);
4976 
4977 	if (!async) {
4978 		ata_port_wait_eh(ap);
4979 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4980 	}
4981 }
4982 
4983 /*
4984  * On some hardware, device fails to respond after spun down for suspend.  As
4985  * the device won't be used before being resumed, we don't need to touch the
4986  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
4987  *
4988  * http://thread.gmane.org/gmane.linux.ide/46764
4989  */
4990 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
4991 						 | ATA_EHI_NO_AUTOPSY
4992 						 | ATA_EHI_NO_RECOVERY;
4993 
4994 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
4995 {
4996 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
4997 }
4998 
4999 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5000 {
5001 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5002 }
5003 
5004 static int ata_port_pm_suspend(struct device *dev)
5005 {
5006 	struct ata_port *ap = to_ata_port(dev);
5007 
5008 	if (pm_runtime_suspended(dev))
5009 		return 0;
5010 
5011 	ata_port_suspend(ap, PMSG_SUSPEND);
5012 	return 0;
5013 }
5014 
5015 static int ata_port_pm_freeze(struct device *dev)
5016 {
5017 	struct ata_port *ap = to_ata_port(dev);
5018 
5019 	if (pm_runtime_suspended(dev))
5020 		return 0;
5021 
5022 	ata_port_suspend(ap, PMSG_FREEZE);
5023 	return 0;
5024 }
5025 
5026 static int ata_port_pm_poweroff(struct device *dev)
5027 {
5028 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5029 	return 0;
5030 }
5031 
5032 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5033 						| ATA_EHI_QUIET;
5034 
5035 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5036 {
5037 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5038 }
5039 
5040 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5041 {
5042 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5043 }
5044 
5045 static int ata_port_pm_resume(struct device *dev)
5046 {
5047 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5048 	pm_runtime_disable(dev);
5049 	pm_runtime_set_active(dev);
5050 	pm_runtime_enable(dev);
5051 	return 0;
5052 }
5053 
5054 /*
5055  * For ODDs, the upper layer will poll for media change every few seconds,
5056  * which will make it enter and leave suspend state every few seconds. And
5057  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5058  * is very little and the ODD may malfunction after constantly being reset.
5059  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5060  * ODD is attached to the port.
5061  */
5062 static int ata_port_runtime_idle(struct device *dev)
5063 {
5064 	struct ata_port *ap = to_ata_port(dev);
5065 	struct ata_link *link;
5066 	struct ata_device *adev;
5067 
5068 	ata_for_each_link(link, ap, HOST_FIRST) {
5069 		ata_for_each_dev(adev, link, ENABLED)
5070 			if (adev->class == ATA_DEV_ATAPI &&
5071 			    !zpodd_dev_enabled(adev))
5072 				return -EBUSY;
5073 	}
5074 
5075 	return 0;
5076 }
5077 
5078 static int ata_port_runtime_suspend(struct device *dev)
5079 {
5080 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5081 	return 0;
5082 }
5083 
5084 static int ata_port_runtime_resume(struct device *dev)
5085 {
5086 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5087 	return 0;
5088 }
5089 
5090 static const struct dev_pm_ops ata_port_pm_ops = {
5091 	.suspend = ata_port_pm_suspend,
5092 	.resume = ata_port_pm_resume,
5093 	.freeze = ata_port_pm_freeze,
5094 	.thaw = ata_port_pm_resume,
5095 	.poweroff = ata_port_pm_poweroff,
5096 	.restore = ata_port_pm_resume,
5097 
5098 	.runtime_suspend = ata_port_runtime_suspend,
5099 	.runtime_resume = ata_port_runtime_resume,
5100 	.runtime_idle = ata_port_runtime_idle,
5101 };
5102 
5103 /* sas ports don't participate in pm runtime management of ata_ports,
5104  * and need to resume ata devices at the domain level, not the per-port
5105  * level. sas suspend/resume is async to allow parallel port recovery
5106  * since sas has multiple ata_port instances per Scsi_Host.
5107  */
5108 void ata_sas_port_suspend(struct ata_port *ap)
5109 {
5110 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5111 }
5112 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5113 
5114 void ata_sas_port_resume(struct ata_port *ap)
5115 {
5116 	ata_port_resume_async(ap, PMSG_RESUME);
5117 }
5118 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5119 
5120 /**
5121  *	ata_host_suspend - suspend host
5122  *	@host: host to suspend
5123  *	@mesg: PM message
5124  *
5125  *	Suspend @host.  Actual operation is performed by port suspend.
5126  */
5127 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5128 {
5129 	host->dev->power.power_state = mesg;
5130 	return 0;
5131 }
5132 EXPORT_SYMBOL_GPL(ata_host_suspend);
5133 
5134 /**
5135  *	ata_host_resume - resume host
5136  *	@host: host to resume
5137  *
5138  *	Resume @host.  Actual operation is performed by port resume.
5139  */
5140 void ata_host_resume(struct ata_host *host)
5141 {
5142 	host->dev->power.power_state = PMSG_ON;
5143 }
5144 EXPORT_SYMBOL_GPL(ata_host_resume);
5145 #endif
5146 
5147 const struct device_type ata_port_type = {
5148 	.name = "ata_port",
5149 #ifdef CONFIG_PM
5150 	.pm = &ata_port_pm_ops,
5151 #endif
5152 };
5153 
5154 /**
5155  *	ata_dev_init - Initialize an ata_device structure
5156  *	@dev: Device structure to initialize
5157  *
5158  *	Initialize @dev in preparation for probing.
5159  *
5160  *	LOCKING:
5161  *	Inherited from caller.
5162  */
5163 void ata_dev_init(struct ata_device *dev)
5164 {
5165 	struct ata_link *link = ata_dev_phys_link(dev);
5166 	struct ata_port *ap = link->ap;
5167 	unsigned long flags;
5168 
5169 	/* SATA spd limit is bound to the attached device, reset together */
5170 	link->sata_spd_limit = link->hw_sata_spd_limit;
5171 	link->sata_spd = 0;
5172 
5173 	/* High bits of dev->flags are used to record warm plug
5174 	 * requests which occur asynchronously.  Synchronize using
5175 	 * host lock.
5176 	 */
5177 	spin_lock_irqsave(ap->lock, flags);
5178 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5179 	dev->horkage = 0;
5180 	spin_unlock_irqrestore(ap->lock, flags);
5181 
5182 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5183 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5184 	dev->pio_mask = UINT_MAX;
5185 	dev->mwdma_mask = UINT_MAX;
5186 	dev->udma_mask = UINT_MAX;
5187 }
5188 
5189 /**
5190  *	ata_link_init - Initialize an ata_link structure
5191  *	@ap: ATA port link is attached to
5192  *	@link: Link structure to initialize
5193  *	@pmp: Port multiplier port number
5194  *
5195  *	Initialize @link.
5196  *
5197  *	LOCKING:
5198  *	Kernel thread context (may sleep)
5199  */
5200 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5201 {
5202 	int i;
5203 
5204 	/* clear everything except for devices */
5205 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5206 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5207 
5208 	link->ap = ap;
5209 	link->pmp = pmp;
5210 	link->active_tag = ATA_TAG_POISON;
5211 	link->hw_sata_spd_limit = UINT_MAX;
5212 
5213 	/* can't use iterator, ap isn't initialized yet */
5214 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5215 		struct ata_device *dev = &link->device[i];
5216 
5217 		dev->link = link;
5218 		dev->devno = dev - link->device;
5219 #ifdef CONFIG_ATA_ACPI
5220 		dev->gtf_filter = ata_acpi_gtf_filter;
5221 #endif
5222 		ata_dev_init(dev);
5223 	}
5224 }
5225 
5226 /**
5227  *	sata_link_init_spd - Initialize link->sata_spd_limit
5228  *	@link: Link to configure sata_spd_limit for
5229  *
5230  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5231  *	configured value.
5232  *
5233  *	LOCKING:
5234  *	Kernel thread context (may sleep).
5235  *
5236  *	RETURNS:
5237  *	0 on success, -errno on failure.
5238  */
5239 int sata_link_init_spd(struct ata_link *link)
5240 {
5241 	u8 spd;
5242 	int rc;
5243 
5244 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5245 	if (rc)
5246 		return rc;
5247 
5248 	spd = (link->saved_scontrol >> 4) & 0xf;
5249 	if (spd)
5250 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5251 
5252 	ata_force_link_limits(link);
5253 
5254 	link->sata_spd_limit = link->hw_sata_spd_limit;
5255 
5256 	return 0;
5257 }
5258 
5259 /**
5260  *	ata_port_alloc - allocate and initialize basic ATA port resources
5261  *	@host: ATA host this allocated port belongs to
5262  *
5263  *	Allocate and initialize basic ATA port resources.
5264  *
5265  *	RETURNS:
5266  *	Allocate ATA port on success, NULL on failure.
5267  *
5268  *	LOCKING:
5269  *	Inherited from calling layer (may sleep).
5270  */
5271 struct ata_port *ata_port_alloc(struct ata_host *host)
5272 {
5273 	struct ata_port *ap;
5274 
5275 	DPRINTK("ENTER\n");
5276 
5277 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5278 	if (!ap)
5279 		return NULL;
5280 
5281 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5282 	ap->lock = &host->lock;
5283 	ap->print_id = -1;
5284 	ap->local_port_no = -1;
5285 	ap->host = host;
5286 	ap->dev = host->dev;
5287 
5288 #if defined(ATA_VERBOSE_DEBUG)
5289 	/* turn on all debugging levels */
5290 	ap->msg_enable = 0x00FF;
5291 #elif defined(ATA_DEBUG)
5292 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5293 #else
5294 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5295 #endif
5296 
5297 	mutex_init(&ap->scsi_scan_mutex);
5298 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5299 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5300 	INIT_LIST_HEAD(&ap->eh_done_q);
5301 	init_waitqueue_head(&ap->eh_wait_q);
5302 	init_completion(&ap->park_req_pending);
5303 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5304 		    TIMER_DEFERRABLE);
5305 
5306 	ap->cbl = ATA_CBL_NONE;
5307 
5308 	ata_link_init(ap, &ap->link, 0);
5309 
5310 #ifdef ATA_IRQ_TRAP
5311 	ap->stats.unhandled_irq = 1;
5312 	ap->stats.idle_irq = 1;
5313 #endif
5314 	ata_sff_port_init(ap);
5315 
5316 	return ap;
5317 }
5318 
5319 static void ata_devres_release(struct device *gendev, void *res)
5320 {
5321 	struct ata_host *host = dev_get_drvdata(gendev);
5322 	int i;
5323 
5324 	for (i = 0; i < host->n_ports; i++) {
5325 		struct ata_port *ap = host->ports[i];
5326 
5327 		if (!ap)
5328 			continue;
5329 
5330 		if (ap->scsi_host)
5331 			scsi_host_put(ap->scsi_host);
5332 
5333 	}
5334 
5335 	dev_set_drvdata(gendev, NULL);
5336 	ata_host_put(host);
5337 }
5338 
5339 static void ata_host_release(struct kref *kref)
5340 {
5341 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5342 	int i;
5343 
5344 	for (i = 0; i < host->n_ports; i++) {
5345 		struct ata_port *ap = host->ports[i];
5346 
5347 		kfree(ap->pmp_link);
5348 		kfree(ap->slave_link);
5349 		kfree(ap);
5350 		host->ports[i] = NULL;
5351 	}
5352 	kfree(host);
5353 }
5354 
5355 void ata_host_get(struct ata_host *host)
5356 {
5357 	kref_get(&host->kref);
5358 }
5359 
5360 void ata_host_put(struct ata_host *host)
5361 {
5362 	kref_put(&host->kref, ata_host_release);
5363 }
5364 EXPORT_SYMBOL_GPL(ata_host_put);
5365 
5366 /**
5367  *	ata_host_alloc - allocate and init basic ATA host resources
5368  *	@dev: generic device this host is associated with
5369  *	@max_ports: maximum number of ATA ports associated with this host
5370  *
5371  *	Allocate and initialize basic ATA host resources.  LLD calls
5372  *	this function to allocate a host, initializes it fully and
5373  *	attaches it using ata_host_register().
5374  *
5375  *	@max_ports ports are allocated and host->n_ports is
5376  *	initialized to @max_ports.  The caller is allowed to decrease
5377  *	host->n_ports before calling ata_host_register().  The unused
5378  *	ports will be automatically freed on registration.
5379  *
5380  *	RETURNS:
5381  *	Allocate ATA host on success, NULL on failure.
5382  *
5383  *	LOCKING:
5384  *	Inherited from calling layer (may sleep).
5385  */
5386 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5387 {
5388 	struct ata_host *host;
5389 	size_t sz;
5390 	int i;
5391 	void *dr;
5392 
5393 	DPRINTK("ENTER\n");
5394 
5395 	/* alloc a container for our list of ATA ports (buses) */
5396 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5397 	host = kzalloc(sz, GFP_KERNEL);
5398 	if (!host)
5399 		return NULL;
5400 
5401 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5402 		goto err_free;
5403 
5404 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5405 	if (!dr)
5406 		goto err_out;
5407 
5408 	devres_add(dev, dr);
5409 	dev_set_drvdata(dev, host);
5410 
5411 	spin_lock_init(&host->lock);
5412 	mutex_init(&host->eh_mutex);
5413 	host->dev = dev;
5414 	host->n_ports = max_ports;
5415 	kref_init(&host->kref);
5416 
5417 	/* allocate ports bound to this host */
5418 	for (i = 0; i < max_ports; i++) {
5419 		struct ata_port *ap;
5420 
5421 		ap = ata_port_alloc(host);
5422 		if (!ap)
5423 			goto err_out;
5424 
5425 		ap->port_no = i;
5426 		host->ports[i] = ap;
5427 	}
5428 
5429 	devres_remove_group(dev, NULL);
5430 	return host;
5431 
5432  err_out:
5433 	devres_release_group(dev, NULL);
5434  err_free:
5435 	kfree(host);
5436 	return NULL;
5437 }
5438 EXPORT_SYMBOL_GPL(ata_host_alloc);
5439 
5440 /**
5441  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5442  *	@dev: generic device this host is associated with
5443  *	@ppi: array of ATA port_info to initialize host with
5444  *	@n_ports: number of ATA ports attached to this host
5445  *
5446  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5447  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5448  *	last entry will be used for the remaining ports.
5449  *
5450  *	RETURNS:
5451  *	Allocate ATA host on success, NULL on failure.
5452  *
5453  *	LOCKING:
5454  *	Inherited from calling layer (may sleep).
5455  */
5456 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5457 				      const struct ata_port_info * const * ppi,
5458 				      int n_ports)
5459 {
5460 	const struct ata_port_info *pi;
5461 	struct ata_host *host;
5462 	int i, j;
5463 
5464 	host = ata_host_alloc(dev, n_ports);
5465 	if (!host)
5466 		return NULL;
5467 
5468 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5469 		struct ata_port *ap = host->ports[i];
5470 
5471 		if (ppi[j])
5472 			pi = ppi[j++];
5473 
5474 		ap->pio_mask = pi->pio_mask;
5475 		ap->mwdma_mask = pi->mwdma_mask;
5476 		ap->udma_mask = pi->udma_mask;
5477 		ap->flags |= pi->flags;
5478 		ap->link.flags |= pi->link_flags;
5479 		ap->ops = pi->port_ops;
5480 
5481 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5482 			host->ops = pi->port_ops;
5483 	}
5484 
5485 	return host;
5486 }
5487 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5488 
5489 static void ata_host_stop(struct device *gendev, void *res)
5490 {
5491 	struct ata_host *host = dev_get_drvdata(gendev);
5492 	int i;
5493 
5494 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5495 
5496 	for (i = 0; i < host->n_ports; i++) {
5497 		struct ata_port *ap = host->ports[i];
5498 
5499 		if (ap->ops->port_stop)
5500 			ap->ops->port_stop(ap);
5501 	}
5502 
5503 	if (host->ops->host_stop)
5504 		host->ops->host_stop(host);
5505 }
5506 
5507 /**
5508  *	ata_finalize_port_ops - finalize ata_port_operations
5509  *	@ops: ata_port_operations to finalize
5510  *
5511  *	An ata_port_operations can inherit from another ops and that
5512  *	ops can again inherit from another.  This can go on as many
5513  *	times as necessary as long as there is no loop in the
5514  *	inheritance chain.
5515  *
5516  *	Ops tables are finalized when the host is started.  NULL or
5517  *	unspecified entries are inherited from the closet ancestor
5518  *	which has the method and the entry is populated with it.
5519  *	After finalization, the ops table directly points to all the
5520  *	methods and ->inherits is no longer necessary and cleared.
5521  *
5522  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5523  *
5524  *	LOCKING:
5525  *	None.
5526  */
5527 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5528 {
5529 	static DEFINE_SPINLOCK(lock);
5530 	const struct ata_port_operations *cur;
5531 	void **begin = (void **)ops;
5532 	void **end = (void **)&ops->inherits;
5533 	void **pp;
5534 
5535 	if (!ops || !ops->inherits)
5536 		return;
5537 
5538 	spin_lock(&lock);
5539 
5540 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5541 		void **inherit = (void **)cur;
5542 
5543 		for (pp = begin; pp < end; pp++, inherit++)
5544 			if (!*pp)
5545 				*pp = *inherit;
5546 	}
5547 
5548 	for (pp = begin; pp < end; pp++)
5549 		if (IS_ERR(*pp))
5550 			*pp = NULL;
5551 
5552 	ops->inherits = NULL;
5553 
5554 	spin_unlock(&lock);
5555 }
5556 
5557 /**
5558  *	ata_host_start - start and freeze ports of an ATA host
5559  *	@host: ATA host to start ports for
5560  *
5561  *	Start and then freeze ports of @host.  Started status is
5562  *	recorded in host->flags, so this function can be called
5563  *	multiple times.  Ports are guaranteed to get started only
5564  *	once.  If host->ops isn't initialized yet, its set to the
5565  *	first non-dummy port ops.
5566  *
5567  *	LOCKING:
5568  *	Inherited from calling layer (may sleep).
5569  *
5570  *	RETURNS:
5571  *	0 if all ports are started successfully, -errno otherwise.
5572  */
5573 int ata_host_start(struct ata_host *host)
5574 {
5575 	int have_stop = 0;
5576 	void *start_dr = NULL;
5577 	int i, rc;
5578 
5579 	if (host->flags & ATA_HOST_STARTED)
5580 		return 0;
5581 
5582 	ata_finalize_port_ops(host->ops);
5583 
5584 	for (i = 0; i < host->n_ports; i++) {
5585 		struct ata_port *ap = host->ports[i];
5586 
5587 		ata_finalize_port_ops(ap->ops);
5588 
5589 		if (!host->ops && !ata_port_is_dummy(ap))
5590 			host->ops = ap->ops;
5591 
5592 		if (ap->ops->port_stop)
5593 			have_stop = 1;
5594 	}
5595 
5596 	if (host->ops && host->ops->host_stop)
5597 		have_stop = 1;
5598 
5599 	if (have_stop) {
5600 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5601 		if (!start_dr)
5602 			return -ENOMEM;
5603 	}
5604 
5605 	for (i = 0; i < host->n_ports; i++) {
5606 		struct ata_port *ap = host->ports[i];
5607 
5608 		if (ap->ops->port_start) {
5609 			rc = ap->ops->port_start(ap);
5610 			if (rc) {
5611 				if (rc != -ENODEV)
5612 					dev_err(host->dev,
5613 						"failed to start port %d (errno=%d)\n",
5614 						i, rc);
5615 				goto err_out;
5616 			}
5617 		}
5618 		ata_eh_freeze_port(ap);
5619 	}
5620 
5621 	if (start_dr)
5622 		devres_add(host->dev, start_dr);
5623 	host->flags |= ATA_HOST_STARTED;
5624 	return 0;
5625 
5626  err_out:
5627 	while (--i >= 0) {
5628 		struct ata_port *ap = host->ports[i];
5629 
5630 		if (ap->ops->port_stop)
5631 			ap->ops->port_stop(ap);
5632 	}
5633 	devres_free(start_dr);
5634 	return rc;
5635 }
5636 EXPORT_SYMBOL_GPL(ata_host_start);
5637 
5638 /**
5639  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5640  *	@host:	host to initialize
5641  *	@dev:	device host is attached to
5642  *	@ops:	port_ops
5643  *
5644  */
5645 void ata_host_init(struct ata_host *host, struct device *dev,
5646 		   struct ata_port_operations *ops)
5647 {
5648 	spin_lock_init(&host->lock);
5649 	mutex_init(&host->eh_mutex);
5650 	host->n_tags = ATA_MAX_QUEUE;
5651 	host->dev = dev;
5652 	host->ops = ops;
5653 	kref_init(&host->kref);
5654 }
5655 EXPORT_SYMBOL_GPL(ata_host_init);
5656 
5657 void __ata_port_probe(struct ata_port *ap)
5658 {
5659 	struct ata_eh_info *ehi = &ap->link.eh_info;
5660 	unsigned long flags;
5661 
5662 	/* kick EH for boot probing */
5663 	spin_lock_irqsave(ap->lock, flags);
5664 
5665 	ehi->probe_mask |= ATA_ALL_DEVICES;
5666 	ehi->action |= ATA_EH_RESET;
5667 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5668 
5669 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5670 	ap->pflags |= ATA_PFLAG_LOADING;
5671 	ata_port_schedule_eh(ap);
5672 
5673 	spin_unlock_irqrestore(ap->lock, flags);
5674 }
5675 
5676 int ata_port_probe(struct ata_port *ap)
5677 {
5678 	int rc = 0;
5679 
5680 	if (ap->ops->error_handler) {
5681 		__ata_port_probe(ap);
5682 		ata_port_wait_eh(ap);
5683 	} else {
5684 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5685 		rc = ata_bus_probe(ap);
5686 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
5687 	}
5688 	return rc;
5689 }
5690 
5691 
5692 static void async_port_probe(void *data, async_cookie_t cookie)
5693 {
5694 	struct ata_port *ap = data;
5695 
5696 	/*
5697 	 * If we're not allowed to scan this host in parallel,
5698 	 * we need to wait until all previous scans have completed
5699 	 * before going further.
5700 	 * Jeff Garzik says this is only within a controller, so we
5701 	 * don't need to wait for port 0, only for later ports.
5702 	 */
5703 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5704 		async_synchronize_cookie(cookie);
5705 
5706 	(void)ata_port_probe(ap);
5707 
5708 	/* in order to keep device order, we need to synchronize at this point */
5709 	async_synchronize_cookie(cookie);
5710 
5711 	ata_scsi_scan_host(ap, 1);
5712 }
5713 
5714 /**
5715  *	ata_host_register - register initialized ATA host
5716  *	@host: ATA host to register
5717  *	@sht: template for SCSI host
5718  *
5719  *	Register initialized ATA host.  @host is allocated using
5720  *	ata_host_alloc() and fully initialized by LLD.  This function
5721  *	starts ports, registers @host with ATA and SCSI layers and
5722  *	probe registered devices.
5723  *
5724  *	LOCKING:
5725  *	Inherited from calling layer (may sleep).
5726  *
5727  *	RETURNS:
5728  *	0 on success, -errno otherwise.
5729  */
5730 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5731 {
5732 	int i, rc;
5733 
5734 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5735 
5736 	/* host must have been started */
5737 	if (!(host->flags & ATA_HOST_STARTED)) {
5738 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5739 		WARN_ON(1);
5740 		return -EINVAL;
5741 	}
5742 
5743 	/* Blow away unused ports.  This happens when LLD can't
5744 	 * determine the exact number of ports to allocate at
5745 	 * allocation time.
5746 	 */
5747 	for (i = host->n_ports; host->ports[i]; i++)
5748 		kfree(host->ports[i]);
5749 
5750 	/* give ports names and add SCSI hosts */
5751 	for (i = 0; i < host->n_ports; i++) {
5752 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5753 		host->ports[i]->local_port_no = i + 1;
5754 	}
5755 
5756 	/* Create associated sysfs transport objects  */
5757 	for (i = 0; i < host->n_ports; i++) {
5758 		rc = ata_tport_add(host->dev,host->ports[i]);
5759 		if (rc) {
5760 			goto err_tadd;
5761 		}
5762 	}
5763 
5764 	rc = ata_scsi_add_hosts(host, sht);
5765 	if (rc)
5766 		goto err_tadd;
5767 
5768 	/* set cable, sata_spd_limit and report */
5769 	for (i = 0; i < host->n_ports; i++) {
5770 		struct ata_port *ap = host->ports[i];
5771 		unsigned long xfer_mask;
5772 
5773 		/* set SATA cable type if still unset */
5774 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5775 			ap->cbl = ATA_CBL_SATA;
5776 
5777 		/* init sata_spd_limit to the current value */
5778 		sata_link_init_spd(&ap->link);
5779 		if (ap->slave_link)
5780 			sata_link_init_spd(ap->slave_link);
5781 
5782 		/* print per-port info to dmesg */
5783 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5784 					      ap->udma_mask);
5785 
5786 		if (!ata_port_is_dummy(ap)) {
5787 			ata_port_info(ap, "%cATA max %s %s\n",
5788 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5789 				      ata_mode_string(xfer_mask),
5790 				      ap->link.eh_info.desc);
5791 			ata_ehi_clear_desc(&ap->link.eh_info);
5792 		} else
5793 			ata_port_info(ap, "DUMMY\n");
5794 	}
5795 
5796 	/* perform each probe asynchronously */
5797 	for (i = 0; i < host->n_ports; i++) {
5798 		struct ata_port *ap = host->ports[i];
5799 		ap->cookie = async_schedule(async_port_probe, ap);
5800 	}
5801 
5802 	return 0;
5803 
5804  err_tadd:
5805 	while (--i >= 0) {
5806 		ata_tport_delete(host->ports[i]);
5807 	}
5808 	return rc;
5809 
5810 }
5811 EXPORT_SYMBOL_GPL(ata_host_register);
5812 
5813 /**
5814  *	ata_host_activate - start host, request IRQ and register it
5815  *	@host: target ATA host
5816  *	@irq: IRQ to request
5817  *	@irq_handler: irq_handler used when requesting IRQ
5818  *	@irq_flags: irq_flags used when requesting IRQ
5819  *	@sht: scsi_host_template to use when registering the host
5820  *
5821  *	After allocating an ATA host and initializing it, most libata
5822  *	LLDs perform three steps to activate the host - start host,
5823  *	request IRQ and register it.  This helper takes necessary
5824  *	arguments and performs the three steps in one go.
5825  *
5826  *	An invalid IRQ skips the IRQ registration and expects the host to
5827  *	have set polling mode on the port. In this case, @irq_handler
5828  *	should be NULL.
5829  *
5830  *	LOCKING:
5831  *	Inherited from calling layer (may sleep).
5832  *
5833  *	RETURNS:
5834  *	0 on success, -errno otherwise.
5835  */
5836 int ata_host_activate(struct ata_host *host, int irq,
5837 		      irq_handler_t irq_handler, unsigned long irq_flags,
5838 		      struct scsi_host_template *sht)
5839 {
5840 	int i, rc;
5841 	char *irq_desc;
5842 
5843 	rc = ata_host_start(host);
5844 	if (rc)
5845 		return rc;
5846 
5847 	/* Special case for polling mode */
5848 	if (!irq) {
5849 		WARN_ON(irq_handler);
5850 		return ata_host_register(host, sht);
5851 	}
5852 
5853 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5854 				  dev_driver_string(host->dev),
5855 				  dev_name(host->dev));
5856 	if (!irq_desc)
5857 		return -ENOMEM;
5858 
5859 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5860 			      irq_desc, host);
5861 	if (rc)
5862 		return rc;
5863 
5864 	for (i = 0; i < host->n_ports; i++)
5865 		ata_port_desc(host->ports[i], "irq %d", irq);
5866 
5867 	rc = ata_host_register(host, sht);
5868 	/* if failed, just free the IRQ and leave ports alone */
5869 	if (rc)
5870 		devm_free_irq(host->dev, irq, host);
5871 
5872 	return rc;
5873 }
5874 EXPORT_SYMBOL_GPL(ata_host_activate);
5875 
5876 /**
5877  *	ata_port_detach - Detach ATA port in preparation of device removal
5878  *	@ap: ATA port to be detached
5879  *
5880  *	Detach all ATA devices and the associated SCSI devices of @ap;
5881  *	then, remove the associated SCSI host.  @ap is guaranteed to
5882  *	be quiescent on return from this function.
5883  *
5884  *	LOCKING:
5885  *	Kernel thread context (may sleep).
5886  */
5887 static void ata_port_detach(struct ata_port *ap)
5888 {
5889 	unsigned long flags;
5890 	struct ata_link *link;
5891 	struct ata_device *dev;
5892 
5893 	if (!ap->ops->error_handler)
5894 		goto skip_eh;
5895 
5896 	/* tell EH we're leaving & flush EH */
5897 	spin_lock_irqsave(ap->lock, flags);
5898 	ap->pflags |= ATA_PFLAG_UNLOADING;
5899 	ata_port_schedule_eh(ap);
5900 	spin_unlock_irqrestore(ap->lock, flags);
5901 
5902 	/* wait till EH commits suicide */
5903 	ata_port_wait_eh(ap);
5904 
5905 	/* it better be dead now */
5906 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5907 
5908 	cancel_delayed_work_sync(&ap->hotplug_task);
5909 
5910  skip_eh:
5911 	/* clean up zpodd on port removal */
5912 	ata_for_each_link(link, ap, HOST_FIRST) {
5913 		ata_for_each_dev(dev, link, ALL) {
5914 			if (zpodd_dev_enabled(dev))
5915 				zpodd_exit(dev);
5916 		}
5917 	}
5918 	if (ap->pmp_link) {
5919 		int i;
5920 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5921 			ata_tlink_delete(&ap->pmp_link[i]);
5922 	}
5923 	/* remove the associated SCSI host */
5924 	scsi_remove_host(ap->scsi_host);
5925 	ata_tport_delete(ap);
5926 }
5927 
5928 /**
5929  *	ata_host_detach - Detach all ports of an ATA host
5930  *	@host: Host to detach
5931  *
5932  *	Detach all ports of @host.
5933  *
5934  *	LOCKING:
5935  *	Kernel thread context (may sleep).
5936  */
5937 void ata_host_detach(struct ata_host *host)
5938 {
5939 	int i;
5940 
5941 	for (i = 0; i < host->n_ports; i++) {
5942 		/* Ensure ata_port probe has completed */
5943 		async_synchronize_cookie(host->ports[i]->cookie + 1);
5944 		ata_port_detach(host->ports[i]);
5945 	}
5946 
5947 	/* the host is dead now, dissociate ACPI */
5948 	ata_acpi_dissociate(host);
5949 }
5950 EXPORT_SYMBOL_GPL(ata_host_detach);
5951 
5952 #ifdef CONFIG_PCI
5953 
5954 /**
5955  *	ata_pci_remove_one - PCI layer callback for device removal
5956  *	@pdev: PCI device that was removed
5957  *
5958  *	PCI layer indicates to libata via this hook that hot-unplug or
5959  *	module unload event has occurred.  Detach all ports.  Resource
5960  *	release is handled via devres.
5961  *
5962  *	LOCKING:
5963  *	Inherited from PCI layer (may sleep).
5964  */
5965 void ata_pci_remove_one(struct pci_dev *pdev)
5966 {
5967 	struct ata_host *host = pci_get_drvdata(pdev);
5968 
5969 	ata_host_detach(host);
5970 }
5971 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5972 
5973 void ata_pci_shutdown_one(struct pci_dev *pdev)
5974 {
5975 	struct ata_host *host = pci_get_drvdata(pdev);
5976 	int i;
5977 
5978 	for (i = 0; i < host->n_ports; i++) {
5979 		struct ata_port *ap = host->ports[i];
5980 
5981 		ap->pflags |= ATA_PFLAG_FROZEN;
5982 
5983 		/* Disable port interrupts */
5984 		if (ap->ops->freeze)
5985 			ap->ops->freeze(ap);
5986 
5987 		/* Stop the port DMA engines */
5988 		if (ap->ops->port_stop)
5989 			ap->ops->port_stop(ap);
5990 	}
5991 }
5992 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
5993 
5994 /* move to PCI subsystem */
5995 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5996 {
5997 	unsigned long tmp = 0;
5998 
5999 	switch (bits->width) {
6000 	case 1: {
6001 		u8 tmp8 = 0;
6002 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6003 		tmp = tmp8;
6004 		break;
6005 	}
6006 	case 2: {
6007 		u16 tmp16 = 0;
6008 		pci_read_config_word(pdev, bits->reg, &tmp16);
6009 		tmp = tmp16;
6010 		break;
6011 	}
6012 	case 4: {
6013 		u32 tmp32 = 0;
6014 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6015 		tmp = tmp32;
6016 		break;
6017 	}
6018 
6019 	default:
6020 		return -EINVAL;
6021 	}
6022 
6023 	tmp &= bits->mask;
6024 
6025 	return (tmp == bits->val) ? 1 : 0;
6026 }
6027 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6028 
6029 #ifdef CONFIG_PM
6030 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6031 {
6032 	pci_save_state(pdev);
6033 	pci_disable_device(pdev);
6034 
6035 	if (mesg.event & PM_EVENT_SLEEP)
6036 		pci_set_power_state(pdev, PCI_D3hot);
6037 }
6038 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6039 
6040 int ata_pci_device_do_resume(struct pci_dev *pdev)
6041 {
6042 	int rc;
6043 
6044 	pci_set_power_state(pdev, PCI_D0);
6045 	pci_restore_state(pdev);
6046 
6047 	rc = pcim_enable_device(pdev);
6048 	if (rc) {
6049 		dev_err(&pdev->dev,
6050 			"failed to enable device after resume (%d)\n", rc);
6051 		return rc;
6052 	}
6053 
6054 	pci_set_master(pdev);
6055 	return 0;
6056 }
6057 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6058 
6059 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6060 {
6061 	struct ata_host *host = pci_get_drvdata(pdev);
6062 	int rc = 0;
6063 
6064 	rc = ata_host_suspend(host, mesg);
6065 	if (rc)
6066 		return rc;
6067 
6068 	ata_pci_device_do_suspend(pdev, mesg);
6069 
6070 	return 0;
6071 }
6072 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6073 
6074 int ata_pci_device_resume(struct pci_dev *pdev)
6075 {
6076 	struct ata_host *host = pci_get_drvdata(pdev);
6077 	int rc;
6078 
6079 	rc = ata_pci_device_do_resume(pdev);
6080 	if (rc == 0)
6081 		ata_host_resume(host);
6082 	return rc;
6083 }
6084 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6085 #endif /* CONFIG_PM */
6086 #endif /* CONFIG_PCI */
6087 
6088 /**
6089  *	ata_platform_remove_one - Platform layer callback for device removal
6090  *	@pdev: Platform device that was removed
6091  *
6092  *	Platform layer indicates to libata via this hook that hot-unplug or
6093  *	module unload event has occurred.  Detach all ports.  Resource
6094  *	release is handled via devres.
6095  *
6096  *	LOCKING:
6097  *	Inherited from platform layer (may sleep).
6098  */
6099 int ata_platform_remove_one(struct platform_device *pdev)
6100 {
6101 	struct ata_host *host = platform_get_drvdata(pdev);
6102 
6103 	ata_host_detach(host);
6104 
6105 	return 0;
6106 }
6107 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6108 
6109 #ifdef CONFIG_ATA_FORCE
6110 static int __init ata_parse_force_one(char **cur,
6111 				      struct ata_force_ent *force_ent,
6112 				      const char **reason)
6113 {
6114 	static const struct ata_force_param force_tbl[] __initconst = {
6115 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6116 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6117 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6118 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6119 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6120 		{ "sata",	.cbl		= ATA_CBL_SATA },
6121 		{ "1.5Gbps",	.spd_limit	= 1 },
6122 		{ "3.0Gbps",	.spd_limit	= 2 },
6123 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6124 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6125 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6126 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6127 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6128 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6129 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6130 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6131 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6132 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6133 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6134 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6135 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6136 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6137 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6138 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6139 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6140 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6141 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6142 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6143 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6144 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6145 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6146 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6147 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6148 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6149 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6150 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6151 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6152 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6153 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6154 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6155 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6156 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6157 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6158 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6159 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6160 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6161 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6162 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6163 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6164 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6165 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6166 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6167 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6168 	};
6169 	char *start = *cur, *p = *cur;
6170 	char *id, *val, *endp;
6171 	const struct ata_force_param *match_fp = NULL;
6172 	int nr_matches = 0, i;
6173 
6174 	/* find where this param ends and update *cur */
6175 	while (*p != '\0' && *p != ',')
6176 		p++;
6177 
6178 	if (*p == '\0')
6179 		*cur = p;
6180 	else
6181 		*cur = p + 1;
6182 
6183 	*p = '\0';
6184 
6185 	/* parse */
6186 	p = strchr(start, ':');
6187 	if (!p) {
6188 		val = strstrip(start);
6189 		goto parse_val;
6190 	}
6191 	*p = '\0';
6192 
6193 	id = strstrip(start);
6194 	val = strstrip(p + 1);
6195 
6196 	/* parse id */
6197 	p = strchr(id, '.');
6198 	if (p) {
6199 		*p++ = '\0';
6200 		force_ent->device = simple_strtoul(p, &endp, 10);
6201 		if (p == endp || *endp != '\0') {
6202 			*reason = "invalid device";
6203 			return -EINVAL;
6204 		}
6205 	}
6206 
6207 	force_ent->port = simple_strtoul(id, &endp, 10);
6208 	if (id == endp || *endp != '\0') {
6209 		*reason = "invalid port/link";
6210 		return -EINVAL;
6211 	}
6212 
6213  parse_val:
6214 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6215 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6216 		const struct ata_force_param *fp = &force_tbl[i];
6217 
6218 		if (strncasecmp(val, fp->name, strlen(val)))
6219 			continue;
6220 
6221 		nr_matches++;
6222 		match_fp = fp;
6223 
6224 		if (strcasecmp(val, fp->name) == 0) {
6225 			nr_matches = 1;
6226 			break;
6227 		}
6228 	}
6229 
6230 	if (!nr_matches) {
6231 		*reason = "unknown value";
6232 		return -EINVAL;
6233 	}
6234 	if (nr_matches > 1) {
6235 		*reason = "ambiguous value";
6236 		return -EINVAL;
6237 	}
6238 
6239 	force_ent->param = *match_fp;
6240 
6241 	return 0;
6242 }
6243 
6244 static void __init ata_parse_force_param(void)
6245 {
6246 	int idx = 0, size = 1;
6247 	int last_port = -1, last_device = -1;
6248 	char *p, *cur, *next;
6249 
6250 	/* calculate maximum number of params and allocate force_tbl */
6251 	for (p = ata_force_param_buf; *p; p++)
6252 		if (*p == ',')
6253 			size++;
6254 
6255 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6256 	if (!ata_force_tbl) {
6257 		printk(KERN_WARNING "ata: failed to extend force table, "
6258 		       "libata.force ignored\n");
6259 		return;
6260 	}
6261 
6262 	/* parse and populate the table */
6263 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6264 		const char *reason = "";
6265 		struct ata_force_ent te = { .port = -1, .device = -1 };
6266 
6267 		next = cur;
6268 		if (ata_parse_force_one(&next, &te, &reason)) {
6269 			printk(KERN_WARNING "ata: failed to parse force "
6270 			       "parameter \"%s\" (%s)\n",
6271 			       cur, reason);
6272 			continue;
6273 		}
6274 
6275 		if (te.port == -1) {
6276 			te.port = last_port;
6277 			te.device = last_device;
6278 		}
6279 
6280 		ata_force_tbl[idx++] = te;
6281 
6282 		last_port = te.port;
6283 		last_device = te.device;
6284 	}
6285 
6286 	ata_force_tbl_size = idx;
6287 }
6288 
6289 static void ata_free_force_param(void)
6290 {
6291 	kfree(ata_force_tbl);
6292 }
6293 #else
6294 static inline void ata_parse_force_param(void) { }
6295 static inline void ata_free_force_param(void) { }
6296 #endif
6297 
6298 static int __init ata_init(void)
6299 {
6300 	int rc;
6301 
6302 	ata_parse_force_param();
6303 
6304 	rc = ata_sff_init();
6305 	if (rc) {
6306 		ata_free_force_param();
6307 		return rc;
6308 	}
6309 
6310 	libata_transport_init();
6311 	ata_scsi_transport_template = ata_attach_transport();
6312 	if (!ata_scsi_transport_template) {
6313 		ata_sff_exit();
6314 		rc = -ENOMEM;
6315 		goto err_out;
6316 	}
6317 
6318 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6319 	return 0;
6320 
6321 err_out:
6322 	return rc;
6323 }
6324 
6325 static void __exit ata_exit(void)
6326 {
6327 	ata_release_transport(ata_scsi_transport_template);
6328 	libata_transport_exit();
6329 	ata_sff_exit();
6330 	ata_free_force_param();
6331 }
6332 
6333 subsys_initcall(ata_init);
6334 module_exit(ata_exit);
6335 
6336 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6337 
6338 int ata_ratelimit(void)
6339 {
6340 	return __ratelimit(&ratelimit);
6341 }
6342 EXPORT_SYMBOL_GPL(ata_ratelimit);
6343 
6344 /**
6345  *	ata_msleep - ATA EH owner aware msleep
6346  *	@ap: ATA port to attribute the sleep to
6347  *	@msecs: duration to sleep in milliseconds
6348  *
6349  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6350  *	ownership is released before going to sleep and reacquired
6351  *	after the sleep is complete.  IOW, other ports sharing the
6352  *	@ap->host will be allowed to own the EH while this task is
6353  *	sleeping.
6354  *
6355  *	LOCKING:
6356  *	Might sleep.
6357  */
6358 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6359 {
6360 	bool owns_eh = ap && ap->host->eh_owner == current;
6361 
6362 	if (owns_eh)
6363 		ata_eh_release(ap);
6364 
6365 	if (msecs < 20) {
6366 		unsigned long usecs = msecs * USEC_PER_MSEC;
6367 		usleep_range(usecs, usecs + 50);
6368 	} else {
6369 		msleep(msecs);
6370 	}
6371 
6372 	if (owns_eh)
6373 		ata_eh_acquire(ap);
6374 }
6375 EXPORT_SYMBOL_GPL(ata_msleep);
6376 
6377 /**
6378  *	ata_wait_register - wait until register value changes
6379  *	@ap: ATA port to wait register for, can be NULL
6380  *	@reg: IO-mapped register
6381  *	@mask: Mask to apply to read register value
6382  *	@val: Wait condition
6383  *	@interval: polling interval in milliseconds
6384  *	@timeout: timeout in milliseconds
6385  *
6386  *	Waiting for some bits of register to change is a common
6387  *	operation for ATA controllers.  This function reads 32bit LE
6388  *	IO-mapped register @reg and tests for the following condition.
6389  *
6390  *	(*@reg & mask) != val
6391  *
6392  *	If the condition is met, it returns; otherwise, the process is
6393  *	repeated after @interval_msec until timeout.
6394  *
6395  *	LOCKING:
6396  *	Kernel thread context (may sleep)
6397  *
6398  *	RETURNS:
6399  *	The final register value.
6400  */
6401 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6402 		      unsigned long interval, unsigned long timeout)
6403 {
6404 	unsigned long deadline;
6405 	u32 tmp;
6406 
6407 	tmp = ioread32(reg);
6408 
6409 	/* Calculate timeout _after_ the first read to make sure
6410 	 * preceding writes reach the controller before starting to
6411 	 * eat away the timeout.
6412 	 */
6413 	deadline = ata_deadline(jiffies, timeout);
6414 
6415 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6416 		ata_msleep(ap, interval);
6417 		tmp = ioread32(reg);
6418 	}
6419 
6420 	return tmp;
6421 }
6422 EXPORT_SYMBOL_GPL(ata_wait_register);
6423 
6424 /*
6425  * Dummy port_ops
6426  */
6427 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6428 {
6429 	return AC_ERR_SYSTEM;
6430 }
6431 
6432 static void ata_dummy_error_handler(struct ata_port *ap)
6433 {
6434 	/* truly dummy */
6435 }
6436 
6437 struct ata_port_operations ata_dummy_port_ops = {
6438 	.qc_prep		= ata_noop_qc_prep,
6439 	.qc_issue		= ata_dummy_qc_issue,
6440 	.error_handler		= ata_dummy_error_handler,
6441 	.sched_eh		= ata_std_sched_eh,
6442 	.end_eh			= ata_std_end_eh,
6443 };
6444 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6445 
6446 const struct ata_port_info ata_dummy_port_info = {
6447 	.port_ops		= &ata_dummy_port_ops,
6448 };
6449 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6450 
6451 /*
6452  * Utility print functions
6453  */
6454 void ata_port_printk(const struct ata_port *ap, const char *level,
6455 		     const char *fmt, ...)
6456 {
6457 	struct va_format vaf;
6458 	va_list args;
6459 
6460 	va_start(args, fmt);
6461 
6462 	vaf.fmt = fmt;
6463 	vaf.va = &args;
6464 
6465 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
6466 
6467 	va_end(args);
6468 }
6469 EXPORT_SYMBOL(ata_port_printk);
6470 
6471 void ata_link_printk(const struct ata_link *link, const char *level,
6472 		     const char *fmt, ...)
6473 {
6474 	struct va_format vaf;
6475 	va_list args;
6476 
6477 	va_start(args, fmt);
6478 
6479 	vaf.fmt = fmt;
6480 	vaf.va = &args;
6481 
6482 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6483 		printk("%sata%u.%02u: %pV",
6484 		       level, link->ap->print_id, link->pmp, &vaf);
6485 	else
6486 		printk("%sata%u: %pV",
6487 		       level, link->ap->print_id, &vaf);
6488 
6489 	va_end(args);
6490 }
6491 EXPORT_SYMBOL(ata_link_printk);
6492 
6493 void ata_dev_printk(const struct ata_device *dev, const char *level,
6494 		    const char *fmt, ...)
6495 {
6496 	struct va_format vaf;
6497 	va_list args;
6498 
6499 	va_start(args, fmt);
6500 
6501 	vaf.fmt = fmt;
6502 	vaf.va = &args;
6503 
6504 	printk("%sata%u.%02u: %pV",
6505 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6506 	       &vaf);
6507 
6508 	va_end(args);
6509 }
6510 EXPORT_SYMBOL(ata_dev_printk);
6511 
6512 void ata_print_version(const struct device *dev, const char *version)
6513 {
6514 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6515 }
6516 EXPORT_SYMBOL(ata_print_version);
6517