1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned long xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags; 100 }; 101 102 struct ata_force_ent { 103 int port; 104 int device; 105 struct ata_force_param param; 106 }; 107 108 static struct ata_force_ent *ata_force_tbl; 109 static int ata_force_tbl_size; 110 111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 112 /* param_buf is thrown away after initialization, disallow read */ 113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 115 #endif 116 117 static int atapi_enabled = 1; 118 module_param(atapi_enabled, int, 0444); 119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 120 121 static int atapi_dmadir = 0; 122 module_param(atapi_dmadir, int, 0444); 123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 124 125 int atapi_passthru16 = 1; 126 module_param(atapi_passthru16, int, 0444); 127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 128 129 int libata_fua = 0; 130 module_param_named(fua, libata_fua, int, 0444); 131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 132 133 static int ata_ignore_hpa; 134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 136 137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 138 module_param_named(dma, libata_dma_mask, int, 0444); 139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 140 141 static int ata_probe_timeout; 142 module_param(ata_probe_timeout, int, 0444); 143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 144 145 int libata_noacpi = 0; 146 module_param_named(noacpi, libata_noacpi, int, 0444); 147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 148 149 int libata_allow_tpm = 0; 150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 152 153 static int atapi_an; 154 module_param(atapi_an, int, 0444); 155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 156 157 MODULE_AUTHOR("Jeff Garzik"); 158 MODULE_DESCRIPTION("Library module for ATA devices"); 159 MODULE_LICENSE("GPL"); 160 MODULE_VERSION(DRV_VERSION); 161 162 163 static bool ata_sstatus_online(u32 sstatus) 164 { 165 return (sstatus & 0xf) == 0x3; 166 } 167 168 /** 169 * ata_link_next - link iteration helper 170 * @link: the previous link, NULL to start 171 * @ap: ATA port containing links to iterate 172 * @mode: iteration mode, one of ATA_LITER_* 173 * 174 * LOCKING: 175 * Host lock or EH context. 176 * 177 * RETURNS: 178 * Pointer to the next link. 179 */ 180 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 181 enum ata_link_iter_mode mode) 182 { 183 BUG_ON(mode != ATA_LITER_EDGE && 184 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 185 186 /* NULL link indicates start of iteration */ 187 if (!link) 188 switch (mode) { 189 case ATA_LITER_EDGE: 190 case ATA_LITER_PMP_FIRST: 191 if (sata_pmp_attached(ap)) 192 return ap->pmp_link; 193 fallthrough; 194 case ATA_LITER_HOST_FIRST: 195 return &ap->link; 196 } 197 198 /* we just iterated over the host link, what's next? */ 199 if (link == &ap->link) 200 switch (mode) { 201 case ATA_LITER_HOST_FIRST: 202 if (sata_pmp_attached(ap)) 203 return ap->pmp_link; 204 fallthrough; 205 case ATA_LITER_PMP_FIRST: 206 if (unlikely(ap->slave_link)) 207 return ap->slave_link; 208 fallthrough; 209 case ATA_LITER_EDGE: 210 return NULL; 211 } 212 213 /* slave_link excludes PMP */ 214 if (unlikely(link == ap->slave_link)) 215 return NULL; 216 217 /* we were over a PMP link */ 218 if (++link < ap->pmp_link + ap->nr_pmp_links) 219 return link; 220 221 if (mode == ATA_LITER_PMP_FIRST) 222 return &ap->link; 223 224 return NULL; 225 } 226 EXPORT_SYMBOL_GPL(ata_link_next); 227 228 /** 229 * ata_dev_next - device iteration helper 230 * @dev: the previous device, NULL to start 231 * @link: ATA link containing devices to iterate 232 * @mode: iteration mode, one of ATA_DITER_* 233 * 234 * LOCKING: 235 * Host lock or EH context. 236 * 237 * RETURNS: 238 * Pointer to the next device. 239 */ 240 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 241 enum ata_dev_iter_mode mode) 242 { 243 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 244 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 245 246 /* NULL dev indicates start of iteration */ 247 if (!dev) 248 switch (mode) { 249 case ATA_DITER_ENABLED: 250 case ATA_DITER_ALL: 251 dev = link->device; 252 goto check; 253 case ATA_DITER_ENABLED_REVERSE: 254 case ATA_DITER_ALL_REVERSE: 255 dev = link->device + ata_link_max_devices(link) - 1; 256 goto check; 257 } 258 259 next: 260 /* move to the next one */ 261 switch (mode) { 262 case ATA_DITER_ENABLED: 263 case ATA_DITER_ALL: 264 if (++dev < link->device + ata_link_max_devices(link)) 265 goto check; 266 return NULL; 267 case ATA_DITER_ENABLED_REVERSE: 268 case ATA_DITER_ALL_REVERSE: 269 if (--dev >= link->device) 270 goto check; 271 return NULL; 272 } 273 274 check: 275 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 276 !ata_dev_enabled(dev)) 277 goto next; 278 return dev; 279 } 280 EXPORT_SYMBOL_GPL(ata_dev_next); 281 282 /** 283 * ata_dev_phys_link - find physical link for a device 284 * @dev: ATA device to look up physical link for 285 * 286 * Look up physical link which @dev is attached to. Note that 287 * this is different from @dev->link only when @dev is on slave 288 * link. For all other cases, it's the same as @dev->link. 289 * 290 * LOCKING: 291 * Don't care. 292 * 293 * RETURNS: 294 * Pointer to the found physical link. 295 */ 296 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 297 { 298 struct ata_port *ap = dev->link->ap; 299 300 if (!ap->slave_link) 301 return dev->link; 302 if (!dev->devno) 303 return &ap->link; 304 return ap->slave_link; 305 } 306 307 #ifdef CONFIG_ATA_FORCE 308 /** 309 * ata_force_cbl - force cable type according to libata.force 310 * @ap: ATA port of interest 311 * 312 * Force cable type according to libata.force and whine about it. 313 * The last entry which has matching port number is used, so it 314 * can be specified as part of device force parameters. For 315 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 316 * same effect. 317 * 318 * LOCKING: 319 * EH context. 320 */ 321 void ata_force_cbl(struct ata_port *ap) 322 { 323 int i; 324 325 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 326 const struct ata_force_ent *fe = &ata_force_tbl[i]; 327 328 if (fe->port != -1 && fe->port != ap->print_id) 329 continue; 330 331 if (fe->param.cbl == ATA_CBL_NONE) 332 continue; 333 334 ap->cbl = fe->param.cbl; 335 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 336 return; 337 } 338 } 339 340 /** 341 * ata_force_link_limits - force link limits according to libata.force 342 * @link: ATA link of interest 343 * 344 * Force link flags and SATA spd limit according to libata.force 345 * and whine about it. When only the port part is specified 346 * (e.g. 1:), the limit applies to all links connected to both 347 * the host link and all fan-out ports connected via PMP. If the 348 * device part is specified as 0 (e.g. 1.00:), it specifies the 349 * first fan-out link not the host link. Device number 15 always 350 * points to the host link whether PMP is attached or not. If the 351 * controller has slave link, device number 16 points to it. 352 * 353 * LOCKING: 354 * EH context. 355 */ 356 static void ata_force_link_limits(struct ata_link *link) 357 { 358 bool did_spd = false; 359 int linkno = link->pmp; 360 int i; 361 362 if (ata_is_host_link(link)) 363 linkno += 15; 364 365 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 366 const struct ata_force_ent *fe = &ata_force_tbl[i]; 367 368 if (fe->port != -1 && fe->port != link->ap->print_id) 369 continue; 370 371 if (fe->device != -1 && fe->device != linkno) 372 continue; 373 374 /* only honor the first spd limit */ 375 if (!did_spd && fe->param.spd_limit) { 376 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 377 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 378 fe->param.name); 379 did_spd = true; 380 } 381 382 /* let lflags stack */ 383 if (fe->param.lflags) { 384 link->flags |= fe->param.lflags; 385 ata_link_notice(link, 386 "FORCE: link flag 0x%x forced -> 0x%x\n", 387 fe->param.lflags, link->flags); 388 } 389 } 390 } 391 392 /** 393 * ata_force_xfermask - force xfermask according to libata.force 394 * @dev: ATA device of interest 395 * 396 * Force xfer_mask according to libata.force and whine about it. 397 * For consistency with link selection, device number 15 selects 398 * the first device connected to the host link. 399 * 400 * LOCKING: 401 * EH context. 402 */ 403 static void ata_force_xfermask(struct ata_device *dev) 404 { 405 int devno = dev->link->pmp + dev->devno; 406 int alt_devno = devno; 407 int i; 408 409 /* allow n.15/16 for devices attached to host port */ 410 if (ata_is_host_link(dev->link)) 411 alt_devno += 15; 412 413 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 414 const struct ata_force_ent *fe = &ata_force_tbl[i]; 415 unsigned long pio_mask, mwdma_mask, udma_mask; 416 417 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 418 continue; 419 420 if (fe->device != -1 && fe->device != devno && 421 fe->device != alt_devno) 422 continue; 423 424 if (!fe->param.xfer_mask) 425 continue; 426 427 ata_unpack_xfermask(fe->param.xfer_mask, 428 &pio_mask, &mwdma_mask, &udma_mask); 429 if (udma_mask) 430 dev->udma_mask = udma_mask; 431 else if (mwdma_mask) { 432 dev->udma_mask = 0; 433 dev->mwdma_mask = mwdma_mask; 434 } else { 435 dev->udma_mask = 0; 436 dev->mwdma_mask = 0; 437 dev->pio_mask = pio_mask; 438 } 439 440 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 441 fe->param.name); 442 return; 443 } 444 } 445 446 /** 447 * ata_force_horkage - force horkage according to libata.force 448 * @dev: ATA device of interest 449 * 450 * Force horkage according to libata.force and whine about it. 451 * For consistency with link selection, device number 15 selects 452 * the first device connected to the host link. 453 * 454 * LOCKING: 455 * EH context. 456 */ 457 static void ata_force_horkage(struct ata_device *dev) 458 { 459 int devno = dev->link->pmp + dev->devno; 460 int alt_devno = devno; 461 int i; 462 463 /* allow n.15/16 for devices attached to host port */ 464 if (ata_is_host_link(dev->link)) 465 alt_devno += 15; 466 467 for (i = 0; i < ata_force_tbl_size; i++) { 468 const struct ata_force_ent *fe = &ata_force_tbl[i]; 469 470 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 471 continue; 472 473 if (fe->device != -1 && fe->device != devno && 474 fe->device != alt_devno) 475 continue; 476 477 if (!(~dev->horkage & fe->param.horkage_on) && 478 !(dev->horkage & fe->param.horkage_off)) 479 continue; 480 481 dev->horkage |= fe->param.horkage_on; 482 dev->horkage &= ~fe->param.horkage_off; 483 484 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 485 fe->param.name); 486 } 487 } 488 #else 489 static inline void ata_force_link_limits(struct ata_link *link) { } 490 static inline void ata_force_xfermask(struct ata_device *dev) { } 491 static inline void ata_force_horkage(struct ata_device *dev) { } 492 #endif 493 494 /** 495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 496 * @opcode: SCSI opcode 497 * 498 * Determine ATAPI command type from @opcode. 499 * 500 * LOCKING: 501 * None. 502 * 503 * RETURNS: 504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 505 */ 506 int atapi_cmd_type(u8 opcode) 507 { 508 switch (opcode) { 509 case GPCMD_READ_10: 510 case GPCMD_READ_12: 511 return ATAPI_READ; 512 513 case GPCMD_WRITE_10: 514 case GPCMD_WRITE_12: 515 case GPCMD_WRITE_AND_VERIFY_10: 516 return ATAPI_WRITE; 517 518 case GPCMD_READ_CD: 519 case GPCMD_READ_CD_MSF: 520 return ATAPI_READ_CD; 521 522 case ATA_16: 523 case ATA_12: 524 if (atapi_passthru16) 525 return ATAPI_PASS_THRU; 526 fallthrough; 527 default: 528 return ATAPI_MISC; 529 } 530 } 531 EXPORT_SYMBOL_GPL(atapi_cmd_type); 532 533 static const u8 ata_rw_cmds[] = { 534 /* pio multi */ 535 ATA_CMD_READ_MULTI, 536 ATA_CMD_WRITE_MULTI, 537 ATA_CMD_READ_MULTI_EXT, 538 ATA_CMD_WRITE_MULTI_EXT, 539 0, 540 0, 541 0, 542 ATA_CMD_WRITE_MULTI_FUA_EXT, 543 /* pio */ 544 ATA_CMD_PIO_READ, 545 ATA_CMD_PIO_WRITE, 546 ATA_CMD_PIO_READ_EXT, 547 ATA_CMD_PIO_WRITE_EXT, 548 0, 549 0, 550 0, 551 0, 552 /* dma */ 553 ATA_CMD_READ, 554 ATA_CMD_WRITE, 555 ATA_CMD_READ_EXT, 556 ATA_CMD_WRITE_EXT, 557 0, 558 0, 559 0, 560 ATA_CMD_WRITE_FUA_EXT 561 }; 562 563 /** 564 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 565 * @tf: command to examine and configure 566 * @dev: device tf belongs to 567 * 568 * Examine the device configuration and tf->flags to calculate 569 * the proper read/write commands and protocol to use. 570 * 571 * LOCKING: 572 * caller. 573 */ 574 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 575 { 576 u8 cmd; 577 578 int index, fua, lba48, write; 579 580 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 581 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 582 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 583 584 if (dev->flags & ATA_DFLAG_PIO) { 585 tf->protocol = ATA_PROT_PIO; 586 index = dev->multi_count ? 0 : 8; 587 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 588 /* Unable to use DMA due to host limitation */ 589 tf->protocol = ATA_PROT_PIO; 590 index = dev->multi_count ? 0 : 8; 591 } else { 592 tf->protocol = ATA_PROT_DMA; 593 index = 16; 594 } 595 596 cmd = ata_rw_cmds[index + fua + lba48 + write]; 597 if (cmd) { 598 tf->command = cmd; 599 return 0; 600 } 601 return -1; 602 } 603 604 /** 605 * ata_tf_read_block - Read block address from ATA taskfile 606 * @tf: ATA taskfile of interest 607 * @dev: ATA device @tf belongs to 608 * 609 * LOCKING: 610 * None. 611 * 612 * Read block address from @tf. This function can handle all 613 * three address formats - LBA, LBA48 and CHS. tf->protocol and 614 * flags select the address format to use. 615 * 616 * RETURNS: 617 * Block address read from @tf. 618 */ 619 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 620 { 621 u64 block = 0; 622 623 if (tf->flags & ATA_TFLAG_LBA) { 624 if (tf->flags & ATA_TFLAG_LBA48) { 625 block |= (u64)tf->hob_lbah << 40; 626 block |= (u64)tf->hob_lbam << 32; 627 block |= (u64)tf->hob_lbal << 24; 628 } else 629 block |= (tf->device & 0xf) << 24; 630 631 block |= tf->lbah << 16; 632 block |= tf->lbam << 8; 633 block |= tf->lbal; 634 } else { 635 u32 cyl, head, sect; 636 637 cyl = tf->lbam | (tf->lbah << 8); 638 head = tf->device & 0xf; 639 sect = tf->lbal; 640 641 if (!sect) { 642 ata_dev_warn(dev, 643 "device reported invalid CHS sector 0\n"); 644 return U64_MAX; 645 } 646 647 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 648 } 649 650 return block; 651 } 652 653 /** 654 * ata_build_rw_tf - Build ATA taskfile for given read/write request 655 * @tf: Target ATA taskfile 656 * @dev: ATA device @tf belongs to 657 * @block: Block address 658 * @n_block: Number of blocks 659 * @tf_flags: RW/FUA etc... 660 * @tag: tag 661 * @class: IO priority class 662 * 663 * LOCKING: 664 * None. 665 * 666 * Build ATA taskfile @tf for read/write request described by 667 * @block, @n_block, @tf_flags and @tag on @dev. 668 * 669 * RETURNS: 670 * 671 * 0 on success, -ERANGE if the request is too large for @dev, 672 * -EINVAL if the request is invalid. 673 */ 674 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 675 u64 block, u32 n_block, unsigned int tf_flags, 676 unsigned int tag, int class) 677 { 678 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 679 tf->flags |= tf_flags; 680 681 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { 682 /* yay, NCQ */ 683 if (!lba_48_ok(block, n_block)) 684 return -ERANGE; 685 686 tf->protocol = ATA_PROT_NCQ; 687 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 688 689 if (tf->flags & ATA_TFLAG_WRITE) 690 tf->command = ATA_CMD_FPDMA_WRITE; 691 else 692 tf->command = ATA_CMD_FPDMA_READ; 693 694 tf->nsect = tag << 3; 695 tf->hob_feature = (n_block >> 8) & 0xff; 696 tf->feature = n_block & 0xff; 697 698 tf->hob_lbah = (block >> 40) & 0xff; 699 tf->hob_lbam = (block >> 32) & 0xff; 700 tf->hob_lbal = (block >> 24) & 0xff; 701 tf->lbah = (block >> 16) & 0xff; 702 tf->lbam = (block >> 8) & 0xff; 703 tf->lbal = block & 0xff; 704 705 tf->device = ATA_LBA; 706 if (tf->flags & ATA_TFLAG_FUA) 707 tf->device |= 1 << 7; 708 709 if (dev->flags & ATA_DFLAG_NCQ_PRIO) { 710 if (class == IOPRIO_CLASS_RT) 711 tf->hob_nsect |= ATA_PRIO_HIGH << 712 ATA_SHIFT_PRIO; 713 } 714 } else if (dev->flags & ATA_DFLAG_LBA) { 715 tf->flags |= ATA_TFLAG_LBA; 716 717 if (lba_28_ok(block, n_block)) { 718 /* use LBA28 */ 719 tf->device |= (block >> 24) & 0xf; 720 } else if (lba_48_ok(block, n_block)) { 721 if (!(dev->flags & ATA_DFLAG_LBA48)) 722 return -ERANGE; 723 724 /* use LBA48 */ 725 tf->flags |= ATA_TFLAG_LBA48; 726 727 tf->hob_nsect = (n_block >> 8) & 0xff; 728 729 tf->hob_lbah = (block >> 40) & 0xff; 730 tf->hob_lbam = (block >> 32) & 0xff; 731 tf->hob_lbal = (block >> 24) & 0xff; 732 } else 733 /* request too large even for LBA48 */ 734 return -ERANGE; 735 736 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 737 return -EINVAL; 738 739 tf->nsect = n_block & 0xff; 740 741 tf->lbah = (block >> 16) & 0xff; 742 tf->lbam = (block >> 8) & 0xff; 743 tf->lbal = block & 0xff; 744 745 tf->device |= ATA_LBA; 746 } else { 747 /* CHS */ 748 u32 sect, head, cyl, track; 749 750 /* The request -may- be too large for CHS addressing. */ 751 if (!lba_28_ok(block, n_block)) 752 return -ERANGE; 753 754 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 755 return -EINVAL; 756 757 /* Convert LBA to CHS */ 758 track = (u32)block / dev->sectors; 759 cyl = track / dev->heads; 760 head = track % dev->heads; 761 sect = (u32)block % dev->sectors + 1; 762 763 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 764 (u32)block, track, cyl, head, sect); 765 766 /* Check whether the converted CHS can fit. 767 Cylinder: 0-65535 768 Head: 0-15 769 Sector: 1-255*/ 770 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 771 return -ERANGE; 772 773 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 774 tf->lbal = sect; 775 tf->lbam = cyl; 776 tf->lbah = cyl >> 8; 777 tf->device |= head; 778 } 779 780 return 0; 781 } 782 783 /** 784 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 785 * @pio_mask: pio_mask 786 * @mwdma_mask: mwdma_mask 787 * @udma_mask: udma_mask 788 * 789 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 790 * unsigned int xfer_mask. 791 * 792 * LOCKING: 793 * None. 794 * 795 * RETURNS: 796 * Packed xfer_mask. 797 */ 798 unsigned long ata_pack_xfermask(unsigned long pio_mask, 799 unsigned long mwdma_mask, 800 unsigned long udma_mask) 801 { 802 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 803 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 804 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 805 } 806 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 807 808 /** 809 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 810 * @xfer_mask: xfer_mask to unpack 811 * @pio_mask: resulting pio_mask 812 * @mwdma_mask: resulting mwdma_mask 813 * @udma_mask: resulting udma_mask 814 * 815 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 816 * Any NULL destination masks will be ignored. 817 */ 818 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 819 unsigned long *mwdma_mask, unsigned long *udma_mask) 820 { 821 if (pio_mask) 822 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 823 if (mwdma_mask) 824 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 825 if (udma_mask) 826 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 827 } 828 829 static const struct ata_xfer_ent { 830 int shift, bits; 831 u8 base; 832 } ata_xfer_tbl[] = { 833 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 834 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 835 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 836 { -1, }, 837 }; 838 839 /** 840 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 841 * @xfer_mask: xfer_mask of interest 842 * 843 * Return matching XFER_* value for @xfer_mask. Only the highest 844 * bit of @xfer_mask is considered. 845 * 846 * LOCKING: 847 * None. 848 * 849 * RETURNS: 850 * Matching XFER_* value, 0xff if no match found. 851 */ 852 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 853 { 854 int highbit = fls(xfer_mask) - 1; 855 const struct ata_xfer_ent *ent; 856 857 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 858 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 859 return ent->base + highbit - ent->shift; 860 return 0xff; 861 } 862 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 863 864 /** 865 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 866 * @xfer_mode: XFER_* of interest 867 * 868 * Return matching xfer_mask for @xfer_mode. 869 * 870 * LOCKING: 871 * None. 872 * 873 * RETURNS: 874 * Matching xfer_mask, 0 if no match found. 875 */ 876 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 877 { 878 const struct ata_xfer_ent *ent; 879 880 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 881 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 882 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 883 & ~((1 << ent->shift) - 1); 884 return 0; 885 } 886 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 887 888 /** 889 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 890 * @xfer_mode: XFER_* of interest 891 * 892 * Return matching xfer_shift for @xfer_mode. 893 * 894 * LOCKING: 895 * None. 896 * 897 * RETURNS: 898 * Matching xfer_shift, -1 if no match found. 899 */ 900 int ata_xfer_mode2shift(unsigned long xfer_mode) 901 { 902 const struct ata_xfer_ent *ent; 903 904 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 905 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 906 return ent->shift; 907 return -1; 908 } 909 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 910 911 /** 912 * ata_mode_string - convert xfer_mask to string 913 * @xfer_mask: mask of bits supported; only highest bit counts. 914 * 915 * Determine string which represents the highest speed 916 * (highest bit in @modemask). 917 * 918 * LOCKING: 919 * None. 920 * 921 * RETURNS: 922 * Constant C string representing highest speed listed in 923 * @mode_mask, or the constant C string "<n/a>". 924 */ 925 const char *ata_mode_string(unsigned long xfer_mask) 926 { 927 static const char * const xfer_mode_str[] = { 928 "PIO0", 929 "PIO1", 930 "PIO2", 931 "PIO3", 932 "PIO4", 933 "PIO5", 934 "PIO6", 935 "MWDMA0", 936 "MWDMA1", 937 "MWDMA2", 938 "MWDMA3", 939 "MWDMA4", 940 "UDMA/16", 941 "UDMA/25", 942 "UDMA/33", 943 "UDMA/44", 944 "UDMA/66", 945 "UDMA/100", 946 "UDMA/133", 947 "UDMA7", 948 }; 949 int highbit; 950 951 highbit = fls(xfer_mask) - 1; 952 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 953 return xfer_mode_str[highbit]; 954 return "<n/a>"; 955 } 956 EXPORT_SYMBOL_GPL(ata_mode_string); 957 958 const char *sata_spd_string(unsigned int spd) 959 { 960 static const char * const spd_str[] = { 961 "1.5 Gbps", 962 "3.0 Gbps", 963 "6.0 Gbps", 964 }; 965 966 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 967 return "<unknown>"; 968 return spd_str[spd - 1]; 969 } 970 971 /** 972 * ata_dev_classify - determine device type based on ATA-spec signature 973 * @tf: ATA taskfile register set for device to be identified 974 * 975 * Determine from taskfile register contents whether a device is 976 * ATA or ATAPI, as per "Signature and persistence" section 977 * of ATA/PI spec (volume 1, sect 5.14). 978 * 979 * LOCKING: 980 * None. 981 * 982 * RETURNS: 983 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 984 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 985 */ 986 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 987 { 988 /* Apple's open source Darwin code hints that some devices only 989 * put a proper signature into the LBA mid/high registers, 990 * So, we only check those. It's sufficient for uniqueness. 991 * 992 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 993 * signatures for ATA and ATAPI devices attached on SerialATA, 994 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 995 * spec has never mentioned about using different signatures 996 * for ATA/ATAPI devices. Then, Serial ATA II: Port 997 * Multiplier specification began to use 0x69/0x96 to identify 998 * port multpliers and 0x3c/0xc3 to identify SEMB device. 999 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1000 * 0x69/0x96 shortly and described them as reserved for 1001 * SerialATA. 1002 * 1003 * We follow the current spec and consider that 0x69/0x96 1004 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1005 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1006 * SEMB signature. This is worked around in 1007 * ata_dev_read_id(). 1008 */ 1009 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1010 DPRINTK("found ATA device by sig\n"); 1011 return ATA_DEV_ATA; 1012 } 1013 1014 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1015 DPRINTK("found ATAPI device by sig\n"); 1016 return ATA_DEV_ATAPI; 1017 } 1018 1019 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1020 DPRINTK("found PMP device by sig\n"); 1021 return ATA_DEV_PMP; 1022 } 1023 1024 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1025 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1026 return ATA_DEV_SEMB; 1027 } 1028 1029 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1030 DPRINTK("found ZAC device by sig\n"); 1031 return ATA_DEV_ZAC; 1032 } 1033 1034 DPRINTK("unknown device\n"); 1035 return ATA_DEV_UNKNOWN; 1036 } 1037 EXPORT_SYMBOL_GPL(ata_dev_classify); 1038 1039 /** 1040 * ata_id_string - Convert IDENTIFY DEVICE page into string 1041 * @id: IDENTIFY DEVICE results we will examine 1042 * @s: string into which data is output 1043 * @ofs: offset into identify device page 1044 * @len: length of string to return. must be an even number. 1045 * 1046 * The strings in the IDENTIFY DEVICE page are broken up into 1047 * 16-bit chunks. Run through the string, and output each 1048 * 8-bit chunk linearly, regardless of platform. 1049 * 1050 * LOCKING: 1051 * caller. 1052 */ 1053 1054 void ata_id_string(const u16 *id, unsigned char *s, 1055 unsigned int ofs, unsigned int len) 1056 { 1057 unsigned int c; 1058 1059 BUG_ON(len & 1); 1060 1061 while (len > 0) { 1062 c = id[ofs] >> 8; 1063 *s = c; 1064 s++; 1065 1066 c = id[ofs] & 0xff; 1067 *s = c; 1068 s++; 1069 1070 ofs++; 1071 len -= 2; 1072 } 1073 } 1074 EXPORT_SYMBOL_GPL(ata_id_string); 1075 1076 /** 1077 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1078 * @id: IDENTIFY DEVICE results we will examine 1079 * @s: string into which data is output 1080 * @ofs: offset into identify device page 1081 * @len: length of string to return. must be an odd number. 1082 * 1083 * This function is identical to ata_id_string except that it 1084 * trims trailing spaces and terminates the resulting string with 1085 * null. @len must be actual maximum length (even number) + 1. 1086 * 1087 * LOCKING: 1088 * caller. 1089 */ 1090 void ata_id_c_string(const u16 *id, unsigned char *s, 1091 unsigned int ofs, unsigned int len) 1092 { 1093 unsigned char *p; 1094 1095 ata_id_string(id, s, ofs, len - 1); 1096 1097 p = s + strnlen(s, len - 1); 1098 while (p > s && p[-1] == ' ') 1099 p--; 1100 *p = '\0'; 1101 } 1102 EXPORT_SYMBOL_GPL(ata_id_c_string); 1103 1104 static u64 ata_id_n_sectors(const u16 *id) 1105 { 1106 if (ata_id_has_lba(id)) { 1107 if (ata_id_has_lba48(id)) 1108 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1109 else 1110 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1111 } else { 1112 if (ata_id_current_chs_valid(id)) 1113 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1114 id[ATA_ID_CUR_SECTORS]; 1115 else 1116 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1117 id[ATA_ID_SECTORS]; 1118 } 1119 } 1120 1121 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1122 { 1123 u64 sectors = 0; 1124 1125 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1126 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1127 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1128 sectors |= (tf->lbah & 0xff) << 16; 1129 sectors |= (tf->lbam & 0xff) << 8; 1130 sectors |= (tf->lbal & 0xff); 1131 1132 return sectors; 1133 } 1134 1135 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1136 { 1137 u64 sectors = 0; 1138 1139 sectors |= (tf->device & 0x0f) << 24; 1140 sectors |= (tf->lbah & 0xff) << 16; 1141 sectors |= (tf->lbam & 0xff) << 8; 1142 sectors |= (tf->lbal & 0xff); 1143 1144 return sectors; 1145 } 1146 1147 /** 1148 * ata_read_native_max_address - Read native max address 1149 * @dev: target device 1150 * @max_sectors: out parameter for the result native max address 1151 * 1152 * Perform an LBA48 or LBA28 native size query upon the device in 1153 * question. 1154 * 1155 * RETURNS: 1156 * 0 on success, -EACCES if command is aborted by the drive. 1157 * -EIO on other errors. 1158 */ 1159 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1160 { 1161 unsigned int err_mask; 1162 struct ata_taskfile tf; 1163 int lba48 = ata_id_has_lba48(dev->id); 1164 1165 ata_tf_init(dev, &tf); 1166 1167 /* always clear all address registers */ 1168 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1169 1170 if (lba48) { 1171 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1172 tf.flags |= ATA_TFLAG_LBA48; 1173 } else 1174 tf.command = ATA_CMD_READ_NATIVE_MAX; 1175 1176 tf.protocol = ATA_PROT_NODATA; 1177 tf.device |= ATA_LBA; 1178 1179 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1180 if (err_mask) { 1181 ata_dev_warn(dev, 1182 "failed to read native max address (err_mask=0x%x)\n", 1183 err_mask); 1184 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1185 return -EACCES; 1186 return -EIO; 1187 } 1188 1189 if (lba48) 1190 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1191 else 1192 *max_sectors = ata_tf_to_lba(&tf) + 1; 1193 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1194 (*max_sectors)--; 1195 return 0; 1196 } 1197 1198 /** 1199 * ata_set_max_sectors - Set max sectors 1200 * @dev: target device 1201 * @new_sectors: new max sectors value to set for the device 1202 * 1203 * Set max sectors of @dev to @new_sectors. 1204 * 1205 * RETURNS: 1206 * 0 on success, -EACCES if command is aborted or denied (due to 1207 * previous non-volatile SET_MAX) by the drive. -EIO on other 1208 * errors. 1209 */ 1210 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1211 { 1212 unsigned int err_mask; 1213 struct ata_taskfile tf; 1214 int lba48 = ata_id_has_lba48(dev->id); 1215 1216 new_sectors--; 1217 1218 ata_tf_init(dev, &tf); 1219 1220 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1221 1222 if (lba48) { 1223 tf.command = ATA_CMD_SET_MAX_EXT; 1224 tf.flags |= ATA_TFLAG_LBA48; 1225 1226 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1227 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1228 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1229 } else { 1230 tf.command = ATA_CMD_SET_MAX; 1231 1232 tf.device |= (new_sectors >> 24) & 0xf; 1233 } 1234 1235 tf.protocol = ATA_PROT_NODATA; 1236 tf.device |= ATA_LBA; 1237 1238 tf.lbal = (new_sectors >> 0) & 0xff; 1239 tf.lbam = (new_sectors >> 8) & 0xff; 1240 tf.lbah = (new_sectors >> 16) & 0xff; 1241 1242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1243 if (err_mask) { 1244 ata_dev_warn(dev, 1245 "failed to set max address (err_mask=0x%x)\n", 1246 err_mask); 1247 if (err_mask == AC_ERR_DEV && 1248 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1249 return -EACCES; 1250 return -EIO; 1251 } 1252 1253 return 0; 1254 } 1255 1256 /** 1257 * ata_hpa_resize - Resize a device with an HPA set 1258 * @dev: Device to resize 1259 * 1260 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1261 * it if required to the full size of the media. The caller must check 1262 * the drive has the HPA feature set enabled. 1263 * 1264 * RETURNS: 1265 * 0 on success, -errno on failure. 1266 */ 1267 static int ata_hpa_resize(struct ata_device *dev) 1268 { 1269 struct ata_eh_context *ehc = &dev->link->eh_context; 1270 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1271 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1272 u64 sectors = ata_id_n_sectors(dev->id); 1273 u64 native_sectors; 1274 int rc; 1275 1276 /* do we need to do it? */ 1277 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1278 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1279 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1280 return 0; 1281 1282 /* read native max address */ 1283 rc = ata_read_native_max_address(dev, &native_sectors); 1284 if (rc) { 1285 /* If device aborted the command or HPA isn't going to 1286 * be unlocked, skip HPA resizing. 1287 */ 1288 if (rc == -EACCES || !unlock_hpa) { 1289 ata_dev_warn(dev, 1290 "HPA support seems broken, skipping HPA handling\n"); 1291 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1292 1293 /* we can continue if device aborted the command */ 1294 if (rc == -EACCES) 1295 rc = 0; 1296 } 1297 1298 return rc; 1299 } 1300 dev->n_native_sectors = native_sectors; 1301 1302 /* nothing to do? */ 1303 if (native_sectors <= sectors || !unlock_hpa) { 1304 if (!print_info || native_sectors == sectors) 1305 return 0; 1306 1307 if (native_sectors > sectors) 1308 ata_dev_info(dev, 1309 "HPA detected: current %llu, native %llu\n", 1310 (unsigned long long)sectors, 1311 (unsigned long long)native_sectors); 1312 else if (native_sectors < sectors) 1313 ata_dev_warn(dev, 1314 "native sectors (%llu) is smaller than sectors (%llu)\n", 1315 (unsigned long long)native_sectors, 1316 (unsigned long long)sectors); 1317 return 0; 1318 } 1319 1320 /* let's unlock HPA */ 1321 rc = ata_set_max_sectors(dev, native_sectors); 1322 if (rc == -EACCES) { 1323 /* if device aborted the command, skip HPA resizing */ 1324 ata_dev_warn(dev, 1325 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1326 (unsigned long long)sectors, 1327 (unsigned long long)native_sectors); 1328 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1329 return 0; 1330 } else if (rc) 1331 return rc; 1332 1333 /* re-read IDENTIFY data */ 1334 rc = ata_dev_reread_id(dev, 0); 1335 if (rc) { 1336 ata_dev_err(dev, 1337 "failed to re-read IDENTIFY data after HPA resizing\n"); 1338 return rc; 1339 } 1340 1341 if (print_info) { 1342 u64 new_sectors = ata_id_n_sectors(dev->id); 1343 ata_dev_info(dev, 1344 "HPA unlocked: %llu -> %llu, native %llu\n", 1345 (unsigned long long)sectors, 1346 (unsigned long long)new_sectors, 1347 (unsigned long long)native_sectors); 1348 } 1349 1350 return 0; 1351 } 1352 1353 /** 1354 * ata_dump_id - IDENTIFY DEVICE info debugging output 1355 * @id: IDENTIFY DEVICE page to dump 1356 * 1357 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1358 * page. 1359 * 1360 * LOCKING: 1361 * caller. 1362 */ 1363 1364 static inline void ata_dump_id(const u16 *id) 1365 { 1366 DPRINTK("49==0x%04x " 1367 "53==0x%04x " 1368 "63==0x%04x " 1369 "64==0x%04x " 1370 "75==0x%04x \n", 1371 id[49], 1372 id[53], 1373 id[63], 1374 id[64], 1375 id[75]); 1376 DPRINTK("80==0x%04x " 1377 "81==0x%04x " 1378 "82==0x%04x " 1379 "83==0x%04x " 1380 "84==0x%04x \n", 1381 id[80], 1382 id[81], 1383 id[82], 1384 id[83], 1385 id[84]); 1386 DPRINTK("88==0x%04x " 1387 "93==0x%04x\n", 1388 id[88], 1389 id[93]); 1390 } 1391 1392 /** 1393 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1394 * @id: IDENTIFY data to compute xfer mask from 1395 * 1396 * Compute the xfermask for this device. This is not as trivial 1397 * as it seems if we must consider early devices correctly. 1398 * 1399 * FIXME: pre IDE drive timing (do we care ?). 1400 * 1401 * LOCKING: 1402 * None. 1403 * 1404 * RETURNS: 1405 * Computed xfermask 1406 */ 1407 unsigned long ata_id_xfermask(const u16 *id) 1408 { 1409 unsigned long pio_mask, mwdma_mask, udma_mask; 1410 1411 /* Usual case. Word 53 indicates word 64 is valid */ 1412 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1413 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1414 pio_mask <<= 3; 1415 pio_mask |= 0x7; 1416 } else { 1417 /* If word 64 isn't valid then Word 51 high byte holds 1418 * the PIO timing number for the maximum. Turn it into 1419 * a mask. 1420 */ 1421 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1422 if (mode < 5) /* Valid PIO range */ 1423 pio_mask = (2 << mode) - 1; 1424 else 1425 pio_mask = 1; 1426 1427 /* But wait.. there's more. Design your standards by 1428 * committee and you too can get a free iordy field to 1429 * process. However its the speeds not the modes that 1430 * are supported... Note drivers using the timing API 1431 * will get this right anyway 1432 */ 1433 } 1434 1435 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1436 1437 if (ata_id_is_cfa(id)) { 1438 /* 1439 * Process compact flash extended modes 1440 */ 1441 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1442 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1443 1444 if (pio) 1445 pio_mask |= (1 << 5); 1446 if (pio > 1) 1447 pio_mask |= (1 << 6); 1448 if (dma) 1449 mwdma_mask |= (1 << 3); 1450 if (dma > 1) 1451 mwdma_mask |= (1 << 4); 1452 } 1453 1454 udma_mask = 0; 1455 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1456 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1457 1458 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1459 } 1460 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1461 1462 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1463 { 1464 struct completion *waiting = qc->private_data; 1465 1466 complete(waiting); 1467 } 1468 1469 /** 1470 * ata_exec_internal_sg - execute libata internal command 1471 * @dev: Device to which the command is sent 1472 * @tf: Taskfile registers for the command and the result 1473 * @cdb: CDB for packet command 1474 * @dma_dir: Data transfer direction of the command 1475 * @sgl: sg list for the data buffer of the command 1476 * @n_elem: Number of sg entries 1477 * @timeout: Timeout in msecs (0 for default) 1478 * 1479 * Executes libata internal command with timeout. @tf contains 1480 * command on entry and result on return. Timeout and error 1481 * conditions are reported via return value. No recovery action 1482 * is taken after a command times out. It's caller's duty to 1483 * clean up after timeout. 1484 * 1485 * LOCKING: 1486 * None. Should be called with kernel context, might sleep. 1487 * 1488 * RETURNS: 1489 * Zero on success, AC_ERR_* mask on failure 1490 */ 1491 unsigned ata_exec_internal_sg(struct ata_device *dev, 1492 struct ata_taskfile *tf, const u8 *cdb, 1493 int dma_dir, struct scatterlist *sgl, 1494 unsigned int n_elem, unsigned long timeout) 1495 { 1496 struct ata_link *link = dev->link; 1497 struct ata_port *ap = link->ap; 1498 u8 command = tf->command; 1499 int auto_timeout = 0; 1500 struct ata_queued_cmd *qc; 1501 unsigned int preempted_tag; 1502 u32 preempted_sactive; 1503 u64 preempted_qc_active; 1504 int preempted_nr_active_links; 1505 DECLARE_COMPLETION_ONSTACK(wait); 1506 unsigned long flags; 1507 unsigned int err_mask; 1508 int rc; 1509 1510 spin_lock_irqsave(ap->lock, flags); 1511 1512 /* no internal command while frozen */ 1513 if (ap->pflags & ATA_PFLAG_FROZEN) { 1514 spin_unlock_irqrestore(ap->lock, flags); 1515 return AC_ERR_SYSTEM; 1516 } 1517 1518 /* initialize internal qc */ 1519 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1520 1521 qc->tag = ATA_TAG_INTERNAL; 1522 qc->hw_tag = 0; 1523 qc->scsicmd = NULL; 1524 qc->ap = ap; 1525 qc->dev = dev; 1526 ata_qc_reinit(qc); 1527 1528 preempted_tag = link->active_tag; 1529 preempted_sactive = link->sactive; 1530 preempted_qc_active = ap->qc_active; 1531 preempted_nr_active_links = ap->nr_active_links; 1532 link->active_tag = ATA_TAG_POISON; 1533 link->sactive = 0; 1534 ap->qc_active = 0; 1535 ap->nr_active_links = 0; 1536 1537 /* prepare & issue qc */ 1538 qc->tf = *tf; 1539 if (cdb) 1540 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1541 1542 /* some SATA bridges need us to indicate data xfer direction */ 1543 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1544 dma_dir == DMA_FROM_DEVICE) 1545 qc->tf.feature |= ATAPI_DMADIR; 1546 1547 qc->flags |= ATA_QCFLAG_RESULT_TF; 1548 qc->dma_dir = dma_dir; 1549 if (dma_dir != DMA_NONE) { 1550 unsigned int i, buflen = 0; 1551 struct scatterlist *sg; 1552 1553 for_each_sg(sgl, sg, n_elem, i) 1554 buflen += sg->length; 1555 1556 ata_sg_init(qc, sgl, n_elem); 1557 qc->nbytes = buflen; 1558 } 1559 1560 qc->private_data = &wait; 1561 qc->complete_fn = ata_qc_complete_internal; 1562 1563 ata_qc_issue(qc); 1564 1565 spin_unlock_irqrestore(ap->lock, flags); 1566 1567 if (!timeout) { 1568 if (ata_probe_timeout) 1569 timeout = ata_probe_timeout * 1000; 1570 else { 1571 timeout = ata_internal_cmd_timeout(dev, command); 1572 auto_timeout = 1; 1573 } 1574 } 1575 1576 if (ap->ops->error_handler) 1577 ata_eh_release(ap); 1578 1579 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1580 1581 if (ap->ops->error_handler) 1582 ata_eh_acquire(ap); 1583 1584 ata_sff_flush_pio_task(ap); 1585 1586 if (!rc) { 1587 spin_lock_irqsave(ap->lock, flags); 1588 1589 /* We're racing with irq here. If we lose, the 1590 * following test prevents us from completing the qc 1591 * twice. If we win, the port is frozen and will be 1592 * cleaned up by ->post_internal_cmd(). 1593 */ 1594 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1595 qc->err_mask |= AC_ERR_TIMEOUT; 1596 1597 if (ap->ops->error_handler) 1598 ata_port_freeze(ap); 1599 else 1600 ata_qc_complete(qc); 1601 1602 if (ata_msg_warn(ap)) 1603 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1604 command); 1605 } 1606 1607 spin_unlock_irqrestore(ap->lock, flags); 1608 } 1609 1610 /* do post_internal_cmd */ 1611 if (ap->ops->post_internal_cmd) 1612 ap->ops->post_internal_cmd(qc); 1613 1614 /* perform minimal error analysis */ 1615 if (qc->flags & ATA_QCFLAG_FAILED) { 1616 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1617 qc->err_mask |= AC_ERR_DEV; 1618 1619 if (!qc->err_mask) 1620 qc->err_mask |= AC_ERR_OTHER; 1621 1622 if (qc->err_mask & ~AC_ERR_OTHER) 1623 qc->err_mask &= ~AC_ERR_OTHER; 1624 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1625 qc->result_tf.command |= ATA_SENSE; 1626 } 1627 1628 /* finish up */ 1629 spin_lock_irqsave(ap->lock, flags); 1630 1631 *tf = qc->result_tf; 1632 err_mask = qc->err_mask; 1633 1634 ata_qc_free(qc); 1635 link->active_tag = preempted_tag; 1636 link->sactive = preempted_sactive; 1637 ap->qc_active = preempted_qc_active; 1638 ap->nr_active_links = preempted_nr_active_links; 1639 1640 spin_unlock_irqrestore(ap->lock, flags); 1641 1642 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1643 ata_internal_cmd_timed_out(dev, command); 1644 1645 return err_mask; 1646 } 1647 1648 /** 1649 * ata_exec_internal - execute libata internal command 1650 * @dev: Device to which the command is sent 1651 * @tf: Taskfile registers for the command and the result 1652 * @cdb: CDB for packet command 1653 * @dma_dir: Data transfer direction of the command 1654 * @buf: Data buffer of the command 1655 * @buflen: Length of data buffer 1656 * @timeout: Timeout in msecs (0 for default) 1657 * 1658 * Wrapper around ata_exec_internal_sg() which takes simple 1659 * buffer instead of sg list. 1660 * 1661 * LOCKING: 1662 * None. Should be called with kernel context, might sleep. 1663 * 1664 * RETURNS: 1665 * Zero on success, AC_ERR_* mask on failure 1666 */ 1667 unsigned ata_exec_internal(struct ata_device *dev, 1668 struct ata_taskfile *tf, const u8 *cdb, 1669 int dma_dir, void *buf, unsigned int buflen, 1670 unsigned long timeout) 1671 { 1672 struct scatterlist *psg = NULL, sg; 1673 unsigned int n_elem = 0; 1674 1675 if (dma_dir != DMA_NONE) { 1676 WARN_ON(!buf); 1677 sg_init_one(&sg, buf, buflen); 1678 psg = &sg; 1679 n_elem++; 1680 } 1681 1682 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1683 timeout); 1684 } 1685 1686 /** 1687 * ata_pio_need_iordy - check if iordy needed 1688 * @adev: ATA device 1689 * 1690 * Check if the current speed of the device requires IORDY. Used 1691 * by various controllers for chip configuration. 1692 */ 1693 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1694 { 1695 /* Don't set IORDY if we're preparing for reset. IORDY may 1696 * lead to controller lock up on certain controllers if the 1697 * port is not occupied. See bko#11703 for details. 1698 */ 1699 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1700 return 0; 1701 /* Controller doesn't support IORDY. Probably a pointless 1702 * check as the caller should know this. 1703 */ 1704 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1705 return 0; 1706 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1707 if (ata_id_is_cfa(adev->id) 1708 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1709 return 0; 1710 /* PIO3 and higher it is mandatory */ 1711 if (adev->pio_mode > XFER_PIO_2) 1712 return 1; 1713 /* We turn it on when possible */ 1714 if (ata_id_has_iordy(adev->id)) 1715 return 1; 1716 return 0; 1717 } 1718 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1719 1720 /** 1721 * ata_pio_mask_no_iordy - Return the non IORDY mask 1722 * @adev: ATA device 1723 * 1724 * Compute the highest mode possible if we are not using iordy. Return 1725 * -1 if no iordy mode is available. 1726 */ 1727 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1728 { 1729 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1730 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1731 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1732 /* Is the speed faster than the drive allows non IORDY ? */ 1733 if (pio) { 1734 /* This is cycle times not frequency - watch the logic! */ 1735 if (pio > 240) /* PIO2 is 240nS per cycle */ 1736 return 3 << ATA_SHIFT_PIO; 1737 return 7 << ATA_SHIFT_PIO; 1738 } 1739 } 1740 return 3 << ATA_SHIFT_PIO; 1741 } 1742 1743 /** 1744 * ata_do_dev_read_id - default ID read method 1745 * @dev: device 1746 * @tf: proposed taskfile 1747 * @id: data buffer 1748 * 1749 * Issue the identify taskfile and hand back the buffer containing 1750 * identify data. For some RAID controllers and for pre ATA devices 1751 * this function is wrapped or replaced by the driver 1752 */ 1753 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1754 struct ata_taskfile *tf, u16 *id) 1755 { 1756 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1757 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1758 } 1759 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1760 1761 /** 1762 * ata_dev_read_id - Read ID data from the specified device 1763 * @dev: target device 1764 * @p_class: pointer to class of the target device (may be changed) 1765 * @flags: ATA_READID_* flags 1766 * @id: buffer to read IDENTIFY data into 1767 * 1768 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1769 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1770 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1771 * for pre-ATA4 drives. 1772 * 1773 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1774 * now we abort if we hit that case. 1775 * 1776 * LOCKING: 1777 * Kernel thread context (may sleep) 1778 * 1779 * RETURNS: 1780 * 0 on success, -errno otherwise. 1781 */ 1782 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1783 unsigned int flags, u16 *id) 1784 { 1785 struct ata_port *ap = dev->link->ap; 1786 unsigned int class = *p_class; 1787 struct ata_taskfile tf; 1788 unsigned int err_mask = 0; 1789 const char *reason; 1790 bool is_semb = class == ATA_DEV_SEMB; 1791 int may_fallback = 1, tried_spinup = 0; 1792 int rc; 1793 1794 if (ata_msg_ctl(ap)) 1795 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1796 1797 retry: 1798 ata_tf_init(dev, &tf); 1799 1800 switch (class) { 1801 case ATA_DEV_SEMB: 1802 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1803 fallthrough; 1804 case ATA_DEV_ATA: 1805 case ATA_DEV_ZAC: 1806 tf.command = ATA_CMD_ID_ATA; 1807 break; 1808 case ATA_DEV_ATAPI: 1809 tf.command = ATA_CMD_ID_ATAPI; 1810 break; 1811 default: 1812 rc = -ENODEV; 1813 reason = "unsupported class"; 1814 goto err_out; 1815 } 1816 1817 tf.protocol = ATA_PROT_PIO; 1818 1819 /* Some devices choke if TF registers contain garbage. Make 1820 * sure those are properly initialized. 1821 */ 1822 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1823 1824 /* Device presence detection is unreliable on some 1825 * controllers. Always poll IDENTIFY if available. 1826 */ 1827 tf.flags |= ATA_TFLAG_POLLING; 1828 1829 if (ap->ops->read_id) 1830 err_mask = ap->ops->read_id(dev, &tf, id); 1831 else 1832 err_mask = ata_do_dev_read_id(dev, &tf, id); 1833 1834 if (err_mask) { 1835 if (err_mask & AC_ERR_NODEV_HINT) { 1836 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1837 return -ENOENT; 1838 } 1839 1840 if (is_semb) { 1841 ata_dev_info(dev, 1842 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1843 /* SEMB is not supported yet */ 1844 *p_class = ATA_DEV_SEMB_UNSUP; 1845 return 0; 1846 } 1847 1848 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1849 /* Device or controller might have reported 1850 * the wrong device class. Give a shot at the 1851 * other IDENTIFY if the current one is 1852 * aborted by the device. 1853 */ 1854 if (may_fallback) { 1855 may_fallback = 0; 1856 1857 if (class == ATA_DEV_ATA) 1858 class = ATA_DEV_ATAPI; 1859 else 1860 class = ATA_DEV_ATA; 1861 goto retry; 1862 } 1863 1864 /* Control reaches here iff the device aborted 1865 * both flavors of IDENTIFYs which happens 1866 * sometimes with phantom devices. 1867 */ 1868 ata_dev_dbg(dev, 1869 "both IDENTIFYs aborted, assuming NODEV\n"); 1870 return -ENOENT; 1871 } 1872 1873 rc = -EIO; 1874 reason = "I/O error"; 1875 goto err_out; 1876 } 1877 1878 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1879 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1880 "class=%d may_fallback=%d tried_spinup=%d\n", 1881 class, may_fallback, tried_spinup); 1882 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1883 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1884 } 1885 1886 /* Falling back doesn't make sense if ID data was read 1887 * successfully at least once. 1888 */ 1889 may_fallback = 0; 1890 1891 swap_buf_le16(id, ATA_ID_WORDS); 1892 1893 /* sanity check */ 1894 rc = -EINVAL; 1895 reason = "device reports invalid type"; 1896 1897 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1898 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1899 goto err_out; 1900 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1901 ata_id_is_ata(id)) { 1902 ata_dev_dbg(dev, 1903 "host indicates ignore ATA devices, ignored\n"); 1904 return -ENOENT; 1905 } 1906 } else { 1907 if (ata_id_is_ata(id)) 1908 goto err_out; 1909 } 1910 1911 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1912 tried_spinup = 1; 1913 /* 1914 * Drive powered-up in standby mode, and requires a specific 1915 * SET_FEATURES spin-up subcommand before it will accept 1916 * anything other than the original IDENTIFY command. 1917 */ 1918 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1919 if (err_mask && id[2] != 0x738c) { 1920 rc = -EIO; 1921 reason = "SPINUP failed"; 1922 goto err_out; 1923 } 1924 /* 1925 * If the drive initially returned incomplete IDENTIFY info, 1926 * we now must reissue the IDENTIFY command. 1927 */ 1928 if (id[2] == 0x37c8) 1929 goto retry; 1930 } 1931 1932 if ((flags & ATA_READID_POSTRESET) && 1933 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1934 /* 1935 * The exact sequence expected by certain pre-ATA4 drives is: 1936 * SRST RESET 1937 * IDENTIFY (optional in early ATA) 1938 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1939 * anything else.. 1940 * Some drives were very specific about that exact sequence. 1941 * 1942 * Note that ATA4 says lba is mandatory so the second check 1943 * should never trigger. 1944 */ 1945 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1946 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1947 if (err_mask) { 1948 rc = -EIO; 1949 reason = "INIT_DEV_PARAMS failed"; 1950 goto err_out; 1951 } 1952 1953 /* current CHS translation info (id[53-58]) might be 1954 * changed. reread the identify device info. 1955 */ 1956 flags &= ~ATA_READID_POSTRESET; 1957 goto retry; 1958 } 1959 } 1960 1961 *p_class = class; 1962 1963 return 0; 1964 1965 err_out: 1966 if (ata_msg_warn(ap)) 1967 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1968 reason, err_mask); 1969 return rc; 1970 } 1971 1972 /** 1973 * ata_read_log_page - read a specific log page 1974 * @dev: target device 1975 * @log: log to read 1976 * @page: page to read 1977 * @buf: buffer to store read page 1978 * @sectors: number of sectors to read 1979 * 1980 * Read log page using READ_LOG_EXT command. 1981 * 1982 * LOCKING: 1983 * Kernel thread context (may sleep). 1984 * 1985 * RETURNS: 1986 * 0 on success, AC_ERR_* mask otherwise. 1987 */ 1988 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1989 u8 page, void *buf, unsigned int sectors) 1990 { 1991 unsigned long ap_flags = dev->link->ap->flags; 1992 struct ata_taskfile tf; 1993 unsigned int err_mask; 1994 bool dma = false; 1995 1996 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page); 1997 1998 /* 1999 * Return error without actually issuing the command on controllers 2000 * which e.g. lockup on a read log page. 2001 */ 2002 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2003 return AC_ERR_DEV; 2004 2005 retry: 2006 ata_tf_init(dev, &tf); 2007 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) && 2008 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2009 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2010 tf.protocol = ATA_PROT_DMA; 2011 dma = true; 2012 } else { 2013 tf.command = ATA_CMD_READ_LOG_EXT; 2014 tf.protocol = ATA_PROT_PIO; 2015 dma = false; 2016 } 2017 tf.lbal = log; 2018 tf.lbam = page; 2019 tf.nsect = sectors; 2020 tf.hob_nsect = sectors >> 8; 2021 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2022 2023 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2024 buf, sectors * ATA_SECT_SIZE, 0); 2025 2026 if (err_mask && dma) { 2027 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2028 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n"); 2029 goto retry; 2030 } 2031 2032 DPRINTK("EXIT, err_mask=%x\n", err_mask); 2033 return err_mask; 2034 } 2035 2036 static bool ata_log_supported(struct ata_device *dev, u8 log) 2037 { 2038 struct ata_port *ap = dev->link->ap; 2039 2040 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2041 return false; 2042 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; 2043 } 2044 2045 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2046 { 2047 struct ata_port *ap = dev->link->ap; 2048 unsigned int err, i; 2049 2050 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2051 ata_dev_warn(dev, "ATA Identify Device Log not supported\n"); 2052 return false; 2053 } 2054 2055 /* 2056 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2057 * supported. 2058 */ 2059 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2060 1); 2061 if (err) { 2062 ata_dev_info(dev, 2063 "failed to get Device Identify Log Emask 0x%x\n", 2064 err); 2065 return false; 2066 } 2067 2068 for (i = 0; i < ap->sector_buf[8]; i++) { 2069 if (ap->sector_buf[9 + i] == page) 2070 return true; 2071 } 2072 2073 return false; 2074 } 2075 2076 static int ata_do_link_spd_horkage(struct ata_device *dev) 2077 { 2078 struct ata_link *plink = ata_dev_phys_link(dev); 2079 u32 target, target_limit; 2080 2081 if (!sata_scr_valid(plink)) 2082 return 0; 2083 2084 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2085 target = 1; 2086 else 2087 return 0; 2088 2089 target_limit = (1 << target) - 1; 2090 2091 /* if already on stricter limit, no need to push further */ 2092 if (plink->sata_spd_limit <= target_limit) 2093 return 0; 2094 2095 plink->sata_spd_limit = target_limit; 2096 2097 /* Request another EH round by returning -EAGAIN if link is 2098 * going faster than the target speed. Forward progress is 2099 * guaranteed by setting sata_spd_limit to target_limit above. 2100 */ 2101 if (plink->sata_spd > target) { 2102 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2103 sata_spd_string(target)); 2104 return -EAGAIN; 2105 } 2106 return 0; 2107 } 2108 2109 static inline u8 ata_dev_knobble(struct ata_device *dev) 2110 { 2111 struct ata_port *ap = dev->link->ap; 2112 2113 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2114 return 0; 2115 2116 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2117 } 2118 2119 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2120 { 2121 struct ata_port *ap = dev->link->ap; 2122 unsigned int err_mask; 2123 2124 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2125 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2126 return; 2127 } 2128 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2129 0, ap->sector_buf, 1); 2130 if (err_mask) { 2131 ata_dev_dbg(dev, 2132 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2133 err_mask); 2134 } else { 2135 u8 *cmds = dev->ncq_send_recv_cmds; 2136 2137 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2138 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2139 2140 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2141 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2142 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2143 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2144 } 2145 } 2146 } 2147 2148 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2149 { 2150 struct ata_port *ap = dev->link->ap; 2151 unsigned int err_mask; 2152 2153 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2154 ata_dev_warn(dev, 2155 "NCQ Send/Recv Log not supported\n"); 2156 return; 2157 } 2158 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2159 0, ap->sector_buf, 1); 2160 if (err_mask) { 2161 ata_dev_dbg(dev, 2162 "failed to get NCQ Non-Data Log Emask 0x%x\n", 2163 err_mask); 2164 } else { 2165 u8 *cmds = dev->ncq_non_data_cmds; 2166 2167 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2168 } 2169 } 2170 2171 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2172 { 2173 struct ata_port *ap = dev->link->ap; 2174 unsigned int err_mask; 2175 2176 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) { 2177 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2178 return; 2179 } 2180 2181 err_mask = ata_read_log_page(dev, 2182 ATA_LOG_IDENTIFY_DEVICE, 2183 ATA_LOG_SATA_SETTINGS, 2184 ap->sector_buf, 2185 1); 2186 if (err_mask) { 2187 ata_dev_dbg(dev, 2188 "failed to get Identify Device data, Emask 0x%x\n", 2189 err_mask); 2190 return; 2191 } 2192 2193 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) { 2194 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2195 } else { 2196 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2197 ata_dev_dbg(dev, "SATA page does not support priority\n"); 2198 } 2199 2200 } 2201 2202 static int ata_dev_config_ncq(struct ata_device *dev, 2203 char *desc, size_t desc_sz) 2204 { 2205 struct ata_port *ap = dev->link->ap; 2206 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2207 unsigned int err_mask; 2208 char *aa_desc = ""; 2209 2210 if (!ata_id_has_ncq(dev->id)) { 2211 desc[0] = '\0'; 2212 return 0; 2213 } 2214 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2215 return 0; 2216 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2217 snprintf(desc, desc_sz, "NCQ (not used)"); 2218 return 0; 2219 } 2220 if (ap->flags & ATA_FLAG_NCQ) { 2221 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2222 dev->flags |= ATA_DFLAG_NCQ; 2223 } 2224 2225 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2226 (ap->flags & ATA_FLAG_FPDMA_AA) && 2227 ata_id_has_fpdma_aa(dev->id)) { 2228 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2229 SATA_FPDMA_AA); 2230 if (err_mask) { 2231 ata_dev_err(dev, 2232 "failed to enable AA (error_mask=0x%x)\n", 2233 err_mask); 2234 if (err_mask != AC_ERR_DEV) { 2235 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2236 return -EIO; 2237 } 2238 } else 2239 aa_desc = ", AA"; 2240 } 2241 2242 if (hdepth >= ddepth) 2243 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2244 else 2245 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2246 ddepth, aa_desc); 2247 2248 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2249 if (ata_id_has_ncq_send_and_recv(dev->id)) 2250 ata_dev_config_ncq_send_recv(dev); 2251 if (ata_id_has_ncq_non_data(dev->id)) 2252 ata_dev_config_ncq_non_data(dev); 2253 if (ata_id_has_ncq_prio(dev->id)) 2254 ata_dev_config_ncq_prio(dev); 2255 } 2256 2257 return 0; 2258 } 2259 2260 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2261 { 2262 unsigned int err_mask; 2263 2264 if (!ata_id_has_sense_reporting(dev->id)) 2265 return; 2266 2267 if (ata_id_sense_reporting_enabled(dev->id)) 2268 return; 2269 2270 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2271 if (err_mask) { 2272 ata_dev_dbg(dev, 2273 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2274 err_mask); 2275 } 2276 } 2277 2278 static void ata_dev_config_zac(struct ata_device *dev) 2279 { 2280 struct ata_port *ap = dev->link->ap; 2281 unsigned int err_mask; 2282 u8 *identify_buf = ap->sector_buf; 2283 2284 dev->zac_zones_optimal_open = U32_MAX; 2285 dev->zac_zones_optimal_nonseq = U32_MAX; 2286 dev->zac_zones_max_open = U32_MAX; 2287 2288 /* 2289 * Always set the 'ZAC' flag for Host-managed devices. 2290 */ 2291 if (dev->class == ATA_DEV_ZAC) 2292 dev->flags |= ATA_DFLAG_ZAC; 2293 else if (ata_id_zoned_cap(dev->id) == 0x01) 2294 /* 2295 * Check for host-aware devices. 2296 */ 2297 dev->flags |= ATA_DFLAG_ZAC; 2298 2299 if (!(dev->flags & ATA_DFLAG_ZAC)) 2300 return; 2301 2302 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2303 ata_dev_warn(dev, 2304 "ATA Zoned Information Log not supported\n"); 2305 return; 2306 } 2307 2308 /* 2309 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2310 */ 2311 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2312 ATA_LOG_ZONED_INFORMATION, 2313 identify_buf, 1); 2314 if (!err_mask) { 2315 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2316 2317 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2318 if ((zoned_cap >> 63)) 2319 dev->zac_zoned_cap = (zoned_cap & 1); 2320 opt_open = get_unaligned_le64(&identify_buf[24]); 2321 if ((opt_open >> 63)) 2322 dev->zac_zones_optimal_open = (u32)opt_open; 2323 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2324 if ((opt_nonseq >> 63)) 2325 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2326 max_open = get_unaligned_le64(&identify_buf[40]); 2327 if ((max_open >> 63)) 2328 dev->zac_zones_max_open = (u32)max_open; 2329 } 2330 } 2331 2332 static void ata_dev_config_trusted(struct ata_device *dev) 2333 { 2334 struct ata_port *ap = dev->link->ap; 2335 u64 trusted_cap; 2336 unsigned int err; 2337 2338 if (!ata_id_has_trusted(dev->id)) 2339 return; 2340 2341 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2342 ata_dev_warn(dev, 2343 "Security Log not supported\n"); 2344 return; 2345 } 2346 2347 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2348 ap->sector_buf, 1); 2349 if (err) { 2350 ata_dev_dbg(dev, 2351 "failed to read Security Log, Emask 0x%x\n", err); 2352 return; 2353 } 2354 2355 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2356 if (!(trusted_cap & (1ULL << 63))) { 2357 ata_dev_dbg(dev, 2358 "Trusted Computing capability qword not valid!\n"); 2359 return; 2360 } 2361 2362 if (trusted_cap & (1 << 0)) 2363 dev->flags |= ATA_DFLAG_TRUSTED; 2364 } 2365 2366 /** 2367 * ata_dev_configure - Configure the specified ATA/ATAPI device 2368 * @dev: Target device to configure 2369 * 2370 * Configure @dev according to @dev->id. Generic and low-level 2371 * driver specific fixups are also applied. 2372 * 2373 * LOCKING: 2374 * Kernel thread context (may sleep) 2375 * 2376 * RETURNS: 2377 * 0 on success, -errno otherwise 2378 */ 2379 int ata_dev_configure(struct ata_device *dev) 2380 { 2381 struct ata_port *ap = dev->link->ap; 2382 struct ata_eh_context *ehc = &dev->link->eh_context; 2383 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2384 const u16 *id = dev->id; 2385 unsigned long xfer_mask; 2386 unsigned int err_mask; 2387 char revbuf[7]; /* XYZ-99\0 */ 2388 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2389 char modelbuf[ATA_ID_PROD_LEN+1]; 2390 int rc; 2391 2392 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2393 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2394 return 0; 2395 } 2396 2397 if (ata_msg_probe(ap)) 2398 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2399 2400 /* set horkage */ 2401 dev->horkage |= ata_dev_blacklisted(dev); 2402 ata_force_horkage(dev); 2403 2404 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2405 ata_dev_info(dev, "unsupported device, disabling\n"); 2406 ata_dev_disable(dev); 2407 return 0; 2408 } 2409 2410 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2411 dev->class == ATA_DEV_ATAPI) { 2412 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2413 atapi_enabled ? "not supported with this driver" 2414 : "disabled"); 2415 ata_dev_disable(dev); 2416 return 0; 2417 } 2418 2419 rc = ata_do_link_spd_horkage(dev); 2420 if (rc) 2421 return rc; 2422 2423 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2424 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2425 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2426 dev->horkage |= ATA_HORKAGE_NOLPM; 2427 2428 if (ap->flags & ATA_FLAG_NO_LPM) 2429 dev->horkage |= ATA_HORKAGE_NOLPM; 2430 2431 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2432 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2433 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2434 } 2435 2436 /* let ACPI work its magic */ 2437 rc = ata_acpi_on_devcfg(dev); 2438 if (rc) 2439 return rc; 2440 2441 /* massage HPA, do it early as it might change IDENTIFY data */ 2442 rc = ata_hpa_resize(dev); 2443 if (rc) 2444 return rc; 2445 2446 /* print device capabilities */ 2447 if (ata_msg_probe(ap)) 2448 ata_dev_dbg(dev, 2449 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2450 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2451 __func__, 2452 id[49], id[82], id[83], id[84], 2453 id[85], id[86], id[87], id[88]); 2454 2455 /* initialize to-be-configured parameters */ 2456 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2457 dev->max_sectors = 0; 2458 dev->cdb_len = 0; 2459 dev->n_sectors = 0; 2460 dev->cylinders = 0; 2461 dev->heads = 0; 2462 dev->sectors = 0; 2463 dev->multi_count = 0; 2464 2465 /* 2466 * common ATA, ATAPI feature tests 2467 */ 2468 2469 /* find max transfer mode; for printk only */ 2470 xfer_mask = ata_id_xfermask(id); 2471 2472 if (ata_msg_probe(ap)) 2473 ata_dump_id(id); 2474 2475 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2476 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2477 sizeof(fwrevbuf)); 2478 2479 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2480 sizeof(modelbuf)); 2481 2482 /* ATA-specific feature tests */ 2483 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2484 if (ata_id_is_cfa(id)) { 2485 /* CPRM may make this media unusable */ 2486 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2487 ata_dev_warn(dev, 2488 "supports DRM functions and may not be fully accessible\n"); 2489 snprintf(revbuf, 7, "CFA"); 2490 } else { 2491 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2492 /* Warn the user if the device has TPM extensions */ 2493 if (ata_id_has_tpm(id)) 2494 ata_dev_warn(dev, 2495 "supports DRM functions and may not be fully accessible\n"); 2496 } 2497 2498 dev->n_sectors = ata_id_n_sectors(id); 2499 2500 /* get current R/W Multiple count setting */ 2501 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2502 unsigned int max = dev->id[47] & 0xff; 2503 unsigned int cnt = dev->id[59] & 0xff; 2504 /* only recognize/allow powers of two here */ 2505 if (is_power_of_2(max) && is_power_of_2(cnt)) 2506 if (cnt <= max) 2507 dev->multi_count = cnt; 2508 } 2509 2510 if (ata_id_has_lba(id)) { 2511 const char *lba_desc; 2512 char ncq_desc[24]; 2513 2514 lba_desc = "LBA"; 2515 dev->flags |= ATA_DFLAG_LBA; 2516 if (ata_id_has_lba48(id)) { 2517 dev->flags |= ATA_DFLAG_LBA48; 2518 lba_desc = "LBA48"; 2519 2520 if (dev->n_sectors >= (1UL << 28) && 2521 ata_id_has_flush_ext(id)) 2522 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2523 } 2524 2525 /* config NCQ */ 2526 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2527 if (rc) 2528 return rc; 2529 2530 /* print device info to dmesg */ 2531 if (ata_msg_drv(ap) && print_info) { 2532 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2533 revbuf, modelbuf, fwrevbuf, 2534 ata_mode_string(xfer_mask)); 2535 ata_dev_info(dev, 2536 "%llu sectors, multi %u: %s %s\n", 2537 (unsigned long long)dev->n_sectors, 2538 dev->multi_count, lba_desc, ncq_desc); 2539 } 2540 } else { 2541 /* CHS */ 2542 2543 /* Default translation */ 2544 dev->cylinders = id[1]; 2545 dev->heads = id[3]; 2546 dev->sectors = id[6]; 2547 2548 if (ata_id_current_chs_valid(id)) { 2549 /* Current CHS translation is valid. */ 2550 dev->cylinders = id[54]; 2551 dev->heads = id[55]; 2552 dev->sectors = id[56]; 2553 } 2554 2555 /* print device info to dmesg */ 2556 if (ata_msg_drv(ap) && print_info) { 2557 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2558 revbuf, modelbuf, fwrevbuf, 2559 ata_mode_string(xfer_mask)); 2560 ata_dev_info(dev, 2561 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2562 (unsigned long long)dev->n_sectors, 2563 dev->multi_count, dev->cylinders, 2564 dev->heads, dev->sectors); 2565 } 2566 } 2567 2568 /* Check and mark DevSlp capability. Get DevSlp timing variables 2569 * from SATA Settings page of Identify Device Data Log. 2570 */ 2571 if (ata_id_has_devslp(dev->id)) { 2572 u8 *sata_setting = ap->sector_buf; 2573 int i, j; 2574 2575 dev->flags |= ATA_DFLAG_DEVSLP; 2576 err_mask = ata_read_log_page(dev, 2577 ATA_LOG_IDENTIFY_DEVICE, 2578 ATA_LOG_SATA_SETTINGS, 2579 sata_setting, 2580 1); 2581 if (err_mask) 2582 ata_dev_dbg(dev, 2583 "failed to get Identify Device Data, Emask 0x%x\n", 2584 err_mask); 2585 else 2586 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2587 j = ATA_LOG_DEVSLP_OFFSET + i; 2588 dev->devslp_timing[i] = sata_setting[j]; 2589 } 2590 } 2591 ata_dev_config_sense_reporting(dev); 2592 ata_dev_config_zac(dev); 2593 ata_dev_config_trusted(dev); 2594 dev->cdb_len = 32; 2595 } 2596 2597 /* ATAPI-specific feature tests */ 2598 else if (dev->class == ATA_DEV_ATAPI) { 2599 const char *cdb_intr_string = ""; 2600 const char *atapi_an_string = ""; 2601 const char *dma_dir_string = ""; 2602 u32 sntf; 2603 2604 rc = atapi_cdb_len(id); 2605 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2606 if (ata_msg_warn(ap)) 2607 ata_dev_warn(dev, "unsupported CDB len\n"); 2608 rc = -EINVAL; 2609 goto err_out_nosup; 2610 } 2611 dev->cdb_len = (unsigned int) rc; 2612 2613 /* Enable ATAPI AN if both the host and device have 2614 * the support. If PMP is attached, SNTF is required 2615 * to enable ATAPI AN to discern between PHY status 2616 * changed notifications and ATAPI ANs. 2617 */ 2618 if (atapi_an && 2619 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2620 (!sata_pmp_attached(ap) || 2621 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2622 /* issue SET feature command to turn this on */ 2623 err_mask = ata_dev_set_feature(dev, 2624 SETFEATURES_SATA_ENABLE, SATA_AN); 2625 if (err_mask) 2626 ata_dev_err(dev, 2627 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2628 err_mask); 2629 else { 2630 dev->flags |= ATA_DFLAG_AN; 2631 atapi_an_string = ", ATAPI AN"; 2632 } 2633 } 2634 2635 if (ata_id_cdb_intr(dev->id)) { 2636 dev->flags |= ATA_DFLAG_CDB_INTR; 2637 cdb_intr_string = ", CDB intr"; 2638 } 2639 2640 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2641 dev->flags |= ATA_DFLAG_DMADIR; 2642 dma_dir_string = ", DMADIR"; 2643 } 2644 2645 if (ata_id_has_da(dev->id)) { 2646 dev->flags |= ATA_DFLAG_DA; 2647 zpodd_init(dev); 2648 } 2649 2650 /* print device info to dmesg */ 2651 if (ata_msg_drv(ap) && print_info) 2652 ata_dev_info(dev, 2653 "ATAPI: %s, %s, max %s%s%s%s\n", 2654 modelbuf, fwrevbuf, 2655 ata_mode_string(xfer_mask), 2656 cdb_intr_string, atapi_an_string, 2657 dma_dir_string); 2658 } 2659 2660 /* determine max_sectors */ 2661 dev->max_sectors = ATA_MAX_SECTORS; 2662 if (dev->flags & ATA_DFLAG_LBA48) 2663 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2664 2665 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2666 200 sectors */ 2667 if (ata_dev_knobble(dev)) { 2668 if (ata_msg_drv(ap) && print_info) 2669 ata_dev_info(dev, "applying bridge limits\n"); 2670 dev->udma_mask &= ATA_UDMA5; 2671 dev->max_sectors = ATA_MAX_SECTORS; 2672 } 2673 2674 if ((dev->class == ATA_DEV_ATAPI) && 2675 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2676 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2677 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2678 } 2679 2680 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2681 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2682 dev->max_sectors); 2683 2684 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2685 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2686 dev->max_sectors); 2687 2688 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2689 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2690 2691 if (ap->ops->dev_config) 2692 ap->ops->dev_config(dev); 2693 2694 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2695 /* Let the user know. We don't want to disallow opens for 2696 rescue purposes, or in case the vendor is just a blithering 2697 idiot. Do this after the dev_config call as some controllers 2698 with buggy firmware may want to avoid reporting false device 2699 bugs */ 2700 2701 if (print_info) { 2702 ata_dev_warn(dev, 2703 "Drive reports diagnostics failure. This may indicate a drive\n"); 2704 ata_dev_warn(dev, 2705 "fault or invalid emulation. Contact drive vendor for information.\n"); 2706 } 2707 } 2708 2709 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2710 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2711 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2712 } 2713 2714 return 0; 2715 2716 err_out_nosup: 2717 if (ata_msg_probe(ap)) 2718 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2719 return rc; 2720 } 2721 2722 /** 2723 * ata_cable_40wire - return 40 wire cable type 2724 * @ap: port 2725 * 2726 * Helper method for drivers which want to hardwire 40 wire cable 2727 * detection. 2728 */ 2729 2730 int ata_cable_40wire(struct ata_port *ap) 2731 { 2732 return ATA_CBL_PATA40; 2733 } 2734 EXPORT_SYMBOL_GPL(ata_cable_40wire); 2735 2736 /** 2737 * ata_cable_80wire - return 80 wire cable type 2738 * @ap: port 2739 * 2740 * Helper method for drivers which want to hardwire 80 wire cable 2741 * detection. 2742 */ 2743 2744 int ata_cable_80wire(struct ata_port *ap) 2745 { 2746 return ATA_CBL_PATA80; 2747 } 2748 EXPORT_SYMBOL_GPL(ata_cable_80wire); 2749 2750 /** 2751 * ata_cable_unknown - return unknown PATA cable. 2752 * @ap: port 2753 * 2754 * Helper method for drivers which have no PATA cable detection. 2755 */ 2756 2757 int ata_cable_unknown(struct ata_port *ap) 2758 { 2759 return ATA_CBL_PATA_UNK; 2760 } 2761 EXPORT_SYMBOL_GPL(ata_cable_unknown); 2762 2763 /** 2764 * ata_cable_ignore - return ignored PATA cable. 2765 * @ap: port 2766 * 2767 * Helper method for drivers which don't use cable type to limit 2768 * transfer mode. 2769 */ 2770 int ata_cable_ignore(struct ata_port *ap) 2771 { 2772 return ATA_CBL_PATA_IGN; 2773 } 2774 EXPORT_SYMBOL_GPL(ata_cable_ignore); 2775 2776 /** 2777 * ata_cable_sata - return SATA cable type 2778 * @ap: port 2779 * 2780 * Helper method for drivers which have SATA cables 2781 */ 2782 2783 int ata_cable_sata(struct ata_port *ap) 2784 { 2785 return ATA_CBL_SATA; 2786 } 2787 EXPORT_SYMBOL_GPL(ata_cable_sata); 2788 2789 /** 2790 * ata_bus_probe - Reset and probe ATA bus 2791 * @ap: Bus to probe 2792 * 2793 * Master ATA bus probing function. Initiates a hardware-dependent 2794 * bus reset, then attempts to identify any devices found on 2795 * the bus. 2796 * 2797 * LOCKING: 2798 * PCI/etc. bus probe sem. 2799 * 2800 * RETURNS: 2801 * Zero on success, negative errno otherwise. 2802 */ 2803 2804 int ata_bus_probe(struct ata_port *ap) 2805 { 2806 unsigned int classes[ATA_MAX_DEVICES]; 2807 int tries[ATA_MAX_DEVICES]; 2808 int rc; 2809 struct ata_device *dev; 2810 2811 ata_for_each_dev(dev, &ap->link, ALL) 2812 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2813 2814 retry: 2815 ata_for_each_dev(dev, &ap->link, ALL) { 2816 /* If we issue an SRST then an ATA drive (not ATAPI) 2817 * may change configuration and be in PIO0 timing. If 2818 * we do a hard reset (or are coming from power on) 2819 * this is true for ATA or ATAPI. Until we've set a 2820 * suitable controller mode we should not touch the 2821 * bus as we may be talking too fast. 2822 */ 2823 dev->pio_mode = XFER_PIO_0; 2824 dev->dma_mode = 0xff; 2825 2826 /* If the controller has a pio mode setup function 2827 * then use it to set the chipset to rights. Don't 2828 * touch the DMA setup as that will be dealt with when 2829 * configuring devices. 2830 */ 2831 if (ap->ops->set_piomode) 2832 ap->ops->set_piomode(ap, dev); 2833 } 2834 2835 /* reset and determine device classes */ 2836 ap->ops->phy_reset(ap); 2837 2838 ata_for_each_dev(dev, &ap->link, ALL) { 2839 if (dev->class != ATA_DEV_UNKNOWN) 2840 classes[dev->devno] = dev->class; 2841 else 2842 classes[dev->devno] = ATA_DEV_NONE; 2843 2844 dev->class = ATA_DEV_UNKNOWN; 2845 } 2846 2847 /* read IDENTIFY page and configure devices. We have to do the identify 2848 specific sequence bass-ackwards so that PDIAG- is released by 2849 the slave device */ 2850 2851 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2852 if (tries[dev->devno]) 2853 dev->class = classes[dev->devno]; 2854 2855 if (!ata_dev_enabled(dev)) 2856 continue; 2857 2858 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2859 dev->id); 2860 if (rc) 2861 goto fail; 2862 } 2863 2864 /* Now ask for the cable type as PDIAG- should have been released */ 2865 if (ap->ops->cable_detect) 2866 ap->cbl = ap->ops->cable_detect(ap); 2867 2868 /* We may have SATA bridge glue hiding here irrespective of 2869 * the reported cable types and sensed types. When SATA 2870 * drives indicate we have a bridge, we don't know which end 2871 * of the link the bridge is which is a problem. 2872 */ 2873 ata_for_each_dev(dev, &ap->link, ENABLED) 2874 if (ata_id_is_sata(dev->id)) 2875 ap->cbl = ATA_CBL_SATA; 2876 2877 /* After the identify sequence we can now set up the devices. We do 2878 this in the normal order so that the user doesn't get confused */ 2879 2880 ata_for_each_dev(dev, &ap->link, ENABLED) { 2881 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2882 rc = ata_dev_configure(dev); 2883 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2884 if (rc) 2885 goto fail; 2886 } 2887 2888 /* configure transfer mode */ 2889 rc = ata_set_mode(&ap->link, &dev); 2890 if (rc) 2891 goto fail; 2892 2893 ata_for_each_dev(dev, &ap->link, ENABLED) 2894 return 0; 2895 2896 return -ENODEV; 2897 2898 fail: 2899 tries[dev->devno]--; 2900 2901 switch (rc) { 2902 case -EINVAL: 2903 /* eeek, something went very wrong, give up */ 2904 tries[dev->devno] = 0; 2905 break; 2906 2907 case -ENODEV: 2908 /* give it just one more chance */ 2909 tries[dev->devno] = min(tries[dev->devno], 1); 2910 fallthrough; 2911 case -EIO: 2912 if (tries[dev->devno] == 1) { 2913 /* This is the last chance, better to slow 2914 * down than lose it. 2915 */ 2916 sata_down_spd_limit(&ap->link, 0); 2917 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2918 } 2919 } 2920 2921 if (!tries[dev->devno]) 2922 ata_dev_disable(dev); 2923 2924 goto retry; 2925 } 2926 2927 /** 2928 * sata_print_link_status - Print SATA link status 2929 * @link: SATA link to printk link status about 2930 * 2931 * This function prints link speed and status of a SATA link. 2932 * 2933 * LOCKING: 2934 * None. 2935 */ 2936 static void sata_print_link_status(struct ata_link *link) 2937 { 2938 u32 sstatus, scontrol, tmp; 2939 2940 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2941 return; 2942 sata_scr_read(link, SCR_CONTROL, &scontrol); 2943 2944 if (ata_phys_link_online(link)) { 2945 tmp = (sstatus >> 4) & 0xf; 2946 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2947 sata_spd_string(tmp), sstatus, scontrol); 2948 } else { 2949 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2950 sstatus, scontrol); 2951 } 2952 } 2953 2954 /** 2955 * ata_dev_pair - return other device on cable 2956 * @adev: device 2957 * 2958 * Obtain the other device on the same cable, or if none is 2959 * present NULL is returned 2960 */ 2961 2962 struct ata_device *ata_dev_pair(struct ata_device *adev) 2963 { 2964 struct ata_link *link = adev->link; 2965 struct ata_device *pair = &link->device[1 - adev->devno]; 2966 if (!ata_dev_enabled(pair)) 2967 return NULL; 2968 return pair; 2969 } 2970 EXPORT_SYMBOL_GPL(ata_dev_pair); 2971 2972 /** 2973 * sata_down_spd_limit - adjust SATA spd limit downward 2974 * @link: Link to adjust SATA spd limit for 2975 * @spd_limit: Additional limit 2976 * 2977 * Adjust SATA spd limit of @link downward. Note that this 2978 * function only adjusts the limit. The change must be applied 2979 * using sata_set_spd(). 2980 * 2981 * If @spd_limit is non-zero, the speed is limited to equal to or 2982 * lower than @spd_limit if such speed is supported. If 2983 * @spd_limit is slower than any supported speed, only the lowest 2984 * supported speed is allowed. 2985 * 2986 * LOCKING: 2987 * Inherited from caller. 2988 * 2989 * RETURNS: 2990 * 0 on success, negative errno on failure 2991 */ 2992 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2993 { 2994 u32 sstatus, spd, mask; 2995 int rc, bit; 2996 2997 if (!sata_scr_valid(link)) 2998 return -EOPNOTSUPP; 2999 3000 /* If SCR can be read, use it to determine the current SPD. 3001 * If not, use cached value in link->sata_spd. 3002 */ 3003 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3004 if (rc == 0 && ata_sstatus_online(sstatus)) 3005 spd = (sstatus >> 4) & 0xf; 3006 else 3007 spd = link->sata_spd; 3008 3009 mask = link->sata_spd_limit; 3010 if (mask <= 1) 3011 return -EINVAL; 3012 3013 /* unconditionally mask off the highest bit */ 3014 bit = fls(mask) - 1; 3015 mask &= ~(1 << bit); 3016 3017 /* 3018 * Mask off all speeds higher than or equal to the current one. At 3019 * this point, if current SPD is not available and we previously 3020 * recorded the link speed from SStatus, the driver has already 3021 * masked off the highest bit so mask should already be 1 or 0. 3022 * Otherwise, we should not force 1.5Gbps on a link where we have 3023 * not previously recorded speed from SStatus. Just return in this 3024 * case. 3025 */ 3026 if (spd > 1) 3027 mask &= (1 << (spd - 1)) - 1; 3028 else 3029 return -EINVAL; 3030 3031 /* were we already at the bottom? */ 3032 if (!mask) 3033 return -EINVAL; 3034 3035 if (spd_limit) { 3036 if (mask & ((1 << spd_limit) - 1)) 3037 mask &= (1 << spd_limit) - 1; 3038 else { 3039 bit = ffs(mask) - 1; 3040 mask = 1 << bit; 3041 } 3042 } 3043 3044 link->sata_spd_limit = mask; 3045 3046 ata_link_warn(link, "limiting SATA link speed to %s\n", 3047 sata_spd_string(fls(mask))); 3048 3049 return 0; 3050 } 3051 3052 #ifdef CONFIG_ATA_ACPI 3053 /** 3054 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3055 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3056 * @cycle: cycle duration in ns 3057 * 3058 * Return matching xfer mode for @cycle. The returned mode is of 3059 * the transfer type specified by @xfer_shift. If @cycle is too 3060 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3061 * than the fastest known mode, the fasted mode is returned. 3062 * 3063 * LOCKING: 3064 * None. 3065 * 3066 * RETURNS: 3067 * Matching xfer_mode, 0xff if no match found. 3068 */ 3069 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3070 { 3071 u8 base_mode = 0xff, last_mode = 0xff; 3072 const struct ata_xfer_ent *ent; 3073 const struct ata_timing *t; 3074 3075 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3076 if (ent->shift == xfer_shift) 3077 base_mode = ent->base; 3078 3079 for (t = ata_timing_find_mode(base_mode); 3080 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3081 unsigned short this_cycle; 3082 3083 switch (xfer_shift) { 3084 case ATA_SHIFT_PIO: 3085 case ATA_SHIFT_MWDMA: 3086 this_cycle = t->cycle; 3087 break; 3088 case ATA_SHIFT_UDMA: 3089 this_cycle = t->udma; 3090 break; 3091 default: 3092 return 0xff; 3093 } 3094 3095 if (cycle > this_cycle) 3096 break; 3097 3098 last_mode = t->mode; 3099 } 3100 3101 return last_mode; 3102 } 3103 #endif 3104 3105 /** 3106 * ata_down_xfermask_limit - adjust dev xfer masks downward 3107 * @dev: Device to adjust xfer masks 3108 * @sel: ATA_DNXFER_* selector 3109 * 3110 * Adjust xfer masks of @dev downward. Note that this function 3111 * does not apply the change. Invoking ata_set_mode() afterwards 3112 * will apply the limit. 3113 * 3114 * LOCKING: 3115 * Inherited from caller. 3116 * 3117 * RETURNS: 3118 * 0 on success, negative errno on failure 3119 */ 3120 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3121 { 3122 char buf[32]; 3123 unsigned long orig_mask, xfer_mask; 3124 unsigned long pio_mask, mwdma_mask, udma_mask; 3125 int quiet, highbit; 3126 3127 quiet = !!(sel & ATA_DNXFER_QUIET); 3128 sel &= ~ATA_DNXFER_QUIET; 3129 3130 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3131 dev->mwdma_mask, 3132 dev->udma_mask); 3133 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3134 3135 switch (sel) { 3136 case ATA_DNXFER_PIO: 3137 highbit = fls(pio_mask) - 1; 3138 pio_mask &= ~(1 << highbit); 3139 break; 3140 3141 case ATA_DNXFER_DMA: 3142 if (udma_mask) { 3143 highbit = fls(udma_mask) - 1; 3144 udma_mask &= ~(1 << highbit); 3145 if (!udma_mask) 3146 return -ENOENT; 3147 } else if (mwdma_mask) { 3148 highbit = fls(mwdma_mask) - 1; 3149 mwdma_mask &= ~(1 << highbit); 3150 if (!mwdma_mask) 3151 return -ENOENT; 3152 } 3153 break; 3154 3155 case ATA_DNXFER_40C: 3156 udma_mask &= ATA_UDMA_MASK_40C; 3157 break; 3158 3159 case ATA_DNXFER_FORCE_PIO0: 3160 pio_mask &= 1; 3161 fallthrough; 3162 case ATA_DNXFER_FORCE_PIO: 3163 mwdma_mask = 0; 3164 udma_mask = 0; 3165 break; 3166 3167 default: 3168 BUG(); 3169 } 3170 3171 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3172 3173 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3174 return -ENOENT; 3175 3176 if (!quiet) { 3177 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3178 snprintf(buf, sizeof(buf), "%s:%s", 3179 ata_mode_string(xfer_mask), 3180 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3181 else 3182 snprintf(buf, sizeof(buf), "%s", 3183 ata_mode_string(xfer_mask)); 3184 3185 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3186 } 3187 3188 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3189 &dev->udma_mask); 3190 3191 return 0; 3192 } 3193 3194 static int ata_dev_set_mode(struct ata_device *dev) 3195 { 3196 struct ata_port *ap = dev->link->ap; 3197 struct ata_eh_context *ehc = &dev->link->eh_context; 3198 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3199 const char *dev_err_whine = ""; 3200 int ign_dev_err = 0; 3201 unsigned int err_mask = 0; 3202 int rc; 3203 3204 dev->flags &= ~ATA_DFLAG_PIO; 3205 if (dev->xfer_shift == ATA_SHIFT_PIO) 3206 dev->flags |= ATA_DFLAG_PIO; 3207 3208 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3209 dev_err_whine = " (SET_XFERMODE skipped)"; 3210 else { 3211 if (nosetxfer) 3212 ata_dev_warn(dev, 3213 "NOSETXFER but PATA detected - can't " 3214 "skip SETXFER, might malfunction\n"); 3215 err_mask = ata_dev_set_xfermode(dev); 3216 } 3217 3218 if (err_mask & ~AC_ERR_DEV) 3219 goto fail; 3220 3221 /* revalidate */ 3222 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3223 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3224 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3225 if (rc) 3226 return rc; 3227 3228 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3229 /* Old CFA may refuse this command, which is just fine */ 3230 if (ata_id_is_cfa(dev->id)) 3231 ign_dev_err = 1; 3232 /* Catch several broken garbage emulations plus some pre 3233 ATA devices */ 3234 if (ata_id_major_version(dev->id) == 0 && 3235 dev->pio_mode <= XFER_PIO_2) 3236 ign_dev_err = 1; 3237 /* Some very old devices and some bad newer ones fail 3238 any kind of SET_XFERMODE request but support PIO0-2 3239 timings and no IORDY */ 3240 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3241 ign_dev_err = 1; 3242 } 3243 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3244 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3245 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3246 dev->dma_mode == XFER_MW_DMA_0 && 3247 (dev->id[63] >> 8) & 1) 3248 ign_dev_err = 1; 3249 3250 /* if the device is actually configured correctly, ignore dev err */ 3251 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3252 ign_dev_err = 1; 3253 3254 if (err_mask & AC_ERR_DEV) { 3255 if (!ign_dev_err) 3256 goto fail; 3257 else 3258 dev_err_whine = " (device error ignored)"; 3259 } 3260 3261 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3262 dev->xfer_shift, (int)dev->xfer_mode); 3263 3264 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3265 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3266 ata_dev_info(dev, "configured for %s%s\n", 3267 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3268 dev_err_whine); 3269 3270 return 0; 3271 3272 fail: 3273 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3274 return -EIO; 3275 } 3276 3277 /** 3278 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3279 * @link: link on which timings will be programmed 3280 * @r_failed_dev: out parameter for failed device 3281 * 3282 * Standard implementation of the function used to tune and set 3283 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3284 * ata_dev_set_mode() fails, pointer to the failing device is 3285 * returned in @r_failed_dev. 3286 * 3287 * LOCKING: 3288 * PCI/etc. bus probe sem. 3289 * 3290 * RETURNS: 3291 * 0 on success, negative errno otherwise 3292 */ 3293 3294 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3295 { 3296 struct ata_port *ap = link->ap; 3297 struct ata_device *dev; 3298 int rc = 0, used_dma = 0, found = 0; 3299 3300 /* step 1: calculate xfer_mask */ 3301 ata_for_each_dev(dev, link, ENABLED) { 3302 unsigned long pio_mask, dma_mask; 3303 unsigned int mode_mask; 3304 3305 mode_mask = ATA_DMA_MASK_ATA; 3306 if (dev->class == ATA_DEV_ATAPI) 3307 mode_mask = ATA_DMA_MASK_ATAPI; 3308 else if (ata_id_is_cfa(dev->id)) 3309 mode_mask = ATA_DMA_MASK_CFA; 3310 3311 ata_dev_xfermask(dev); 3312 ata_force_xfermask(dev); 3313 3314 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3315 3316 if (libata_dma_mask & mode_mask) 3317 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3318 dev->udma_mask); 3319 else 3320 dma_mask = 0; 3321 3322 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3323 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3324 3325 found = 1; 3326 if (ata_dma_enabled(dev)) 3327 used_dma = 1; 3328 } 3329 if (!found) 3330 goto out; 3331 3332 /* step 2: always set host PIO timings */ 3333 ata_for_each_dev(dev, link, ENABLED) { 3334 if (dev->pio_mode == 0xff) { 3335 ata_dev_warn(dev, "no PIO support\n"); 3336 rc = -EINVAL; 3337 goto out; 3338 } 3339 3340 dev->xfer_mode = dev->pio_mode; 3341 dev->xfer_shift = ATA_SHIFT_PIO; 3342 if (ap->ops->set_piomode) 3343 ap->ops->set_piomode(ap, dev); 3344 } 3345 3346 /* step 3: set host DMA timings */ 3347 ata_for_each_dev(dev, link, ENABLED) { 3348 if (!ata_dma_enabled(dev)) 3349 continue; 3350 3351 dev->xfer_mode = dev->dma_mode; 3352 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3353 if (ap->ops->set_dmamode) 3354 ap->ops->set_dmamode(ap, dev); 3355 } 3356 3357 /* step 4: update devices' xfer mode */ 3358 ata_for_each_dev(dev, link, ENABLED) { 3359 rc = ata_dev_set_mode(dev); 3360 if (rc) 3361 goto out; 3362 } 3363 3364 /* Record simplex status. If we selected DMA then the other 3365 * host channels are not permitted to do so. 3366 */ 3367 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3368 ap->host->simplex_claimed = ap; 3369 3370 out: 3371 if (rc) 3372 *r_failed_dev = dev; 3373 return rc; 3374 } 3375 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3376 3377 /** 3378 * ata_wait_ready - wait for link to become ready 3379 * @link: link to be waited on 3380 * @deadline: deadline jiffies for the operation 3381 * @check_ready: callback to check link readiness 3382 * 3383 * Wait for @link to become ready. @check_ready should return 3384 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3385 * link doesn't seem to be occupied, other errno for other error 3386 * conditions. 3387 * 3388 * Transient -ENODEV conditions are allowed for 3389 * ATA_TMOUT_FF_WAIT. 3390 * 3391 * LOCKING: 3392 * EH context. 3393 * 3394 * RETURNS: 3395 * 0 if @link is ready before @deadline; otherwise, -errno. 3396 */ 3397 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3398 int (*check_ready)(struct ata_link *link)) 3399 { 3400 unsigned long start = jiffies; 3401 unsigned long nodev_deadline; 3402 int warned = 0; 3403 3404 /* choose which 0xff timeout to use, read comment in libata.h */ 3405 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3406 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3407 else 3408 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3409 3410 /* Slave readiness can't be tested separately from master. On 3411 * M/S emulation configuration, this function should be called 3412 * only on the master and it will handle both master and slave. 3413 */ 3414 WARN_ON(link == link->ap->slave_link); 3415 3416 if (time_after(nodev_deadline, deadline)) 3417 nodev_deadline = deadline; 3418 3419 while (1) { 3420 unsigned long now = jiffies; 3421 int ready, tmp; 3422 3423 ready = tmp = check_ready(link); 3424 if (ready > 0) 3425 return 0; 3426 3427 /* 3428 * -ENODEV could be transient. Ignore -ENODEV if link 3429 * is online. Also, some SATA devices take a long 3430 * time to clear 0xff after reset. Wait for 3431 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3432 * offline. 3433 * 3434 * Note that some PATA controllers (pata_ali) explode 3435 * if status register is read more than once when 3436 * there's no device attached. 3437 */ 3438 if (ready == -ENODEV) { 3439 if (ata_link_online(link)) 3440 ready = 0; 3441 else if ((link->ap->flags & ATA_FLAG_SATA) && 3442 !ata_link_offline(link) && 3443 time_before(now, nodev_deadline)) 3444 ready = 0; 3445 } 3446 3447 if (ready) 3448 return ready; 3449 if (time_after(now, deadline)) 3450 return -EBUSY; 3451 3452 if (!warned && time_after(now, start + 5 * HZ) && 3453 (deadline - now > 3 * HZ)) { 3454 ata_link_warn(link, 3455 "link is slow to respond, please be patient " 3456 "(ready=%d)\n", tmp); 3457 warned = 1; 3458 } 3459 3460 ata_msleep(link->ap, 50); 3461 } 3462 } 3463 3464 /** 3465 * ata_wait_after_reset - wait for link to become ready after reset 3466 * @link: link to be waited on 3467 * @deadline: deadline jiffies for the operation 3468 * @check_ready: callback to check link readiness 3469 * 3470 * Wait for @link to become ready after reset. 3471 * 3472 * LOCKING: 3473 * EH context. 3474 * 3475 * RETURNS: 3476 * 0 if @link is ready before @deadline; otherwise, -errno. 3477 */ 3478 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3479 int (*check_ready)(struct ata_link *link)) 3480 { 3481 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3482 3483 return ata_wait_ready(link, deadline, check_ready); 3484 } 3485 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3486 3487 /** 3488 * ata_std_prereset - prepare for reset 3489 * @link: ATA link to be reset 3490 * @deadline: deadline jiffies for the operation 3491 * 3492 * @link is about to be reset. Initialize it. Failure from 3493 * prereset makes libata abort whole reset sequence and give up 3494 * that port, so prereset should be best-effort. It does its 3495 * best to prepare for reset sequence but if things go wrong, it 3496 * should just whine, not fail. 3497 * 3498 * LOCKING: 3499 * Kernel thread context (may sleep) 3500 * 3501 * RETURNS: 3502 * 0 on success, -errno otherwise. 3503 */ 3504 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3505 { 3506 struct ata_port *ap = link->ap; 3507 struct ata_eh_context *ehc = &link->eh_context; 3508 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3509 int rc; 3510 3511 /* if we're about to do hardreset, nothing more to do */ 3512 if (ehc->i.action & ATA_EH_HARDRESET) 3513 return 0; 3514 3515 /* if SATA, resume link */ 3516 if (ap->flags & ATA_FLAG_SATA) { 3517 rc = sata_link_resume(link, timing, deadline); 3518 /* whine about phy resume failure but proceed */ 3519 if (rc && rc != -EOPNOTSUPP) 3520 ata_link_warn(link, 3521 "failed to resume link for reset (errno=%d)\n", 3522 rc); 3523 } 3524 3525 /* no point in trying softreset on offline link */ 3526 if (ata_phys_link_offline(link)) 3527 ehc->i.action &= ~ATA_EH_SOFTRESET; 3528 3529 return 0; 3530 } 3531 EXPORT_SYMBOL_GPL(ata_std_prereset); 3532 3533 /** 3534 * sata_std_hardreset - COMRESET w/o waiting or classification 3535 * @link: link to reset 3536 * @class: resulting class of attached device 3537 * @deadline: deadline jiffies for the operation 3538 * 3539 * Standard SATA COMRESET w/o waiting or classification. 3540 * 3541 * LOCKING: 3542 * Kernel thread context (may sleep) 3543 * 3544 * RETURNS: 3545 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3546 */ 3547 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3548 unsigned long deadline) 3549 { 3550 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3551 bool online; 3552 int rc; 3553 3554 /* do hardreset */ 3555 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3556 return online ? -EAGAIN : rc; 3557 } 3558 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3559 3560 /** 3561 * ata_std_postreset - standard postreset callback 3562 * @link: the target ata_link 3563 * @classes: classes of attached devices 3564 * 3565 * This function is invoked after a successful reset. Note that 3566 * the device might have been reset more than once using 3567 * different reset methods before postreset is invoked. 3568 * 3569 * LOCKING: 3570 * Kernel thread context (may sleep) 3571 */ 3572 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3573 { 3574 u32 serror; 3575 3576 DPRINTK("ENTER\n"); 3577 3578 /* reset complete, clear SError */ 3579 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3580 sata_scr_write(link, SCR_ERROR, serror); 3581 3582 /* print link status */ 3583 sata_print_link_status(link); 3584 3585 DPRINTK("EXIT\n"); 3586 } 3587 EXPORT_SYMBOL_GPL(ata_std_postreset); 3588 3589 /** 3590 * ata_dev_same_device - Determine whether new ID matches configured device 3591 * @dev: device to compare against 3592 * @new_class: class of the new device 3593 * @new_id: IDENTIFY page of the new device 3594 * 3595 * Compare @new_class and @new_id against @dev and determine 3596 * whether @dev is the device indicated by @new_class and 3597 * @new_id. 3598 * 3599 * LOCKING: 3600 * None. 3601 * 3602 * RETURNS: 3603 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3604 */ 3605 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3606 const u16 *new_id) 3607 { 3608 const u16 *old_id = dev->id; 3609 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3610 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3611 3612 if (dev->class != new_class) { 3613 ata_dev_info(dev, "class mismatch %d != %d\n", 3614 dev->class, new_class); 3615 return 0; 3616 } 3617 3618 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3619 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3620 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3621 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3622 3623 if (strcmp(model[0], model[1])) { 3624 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3625 model[0], model[1]); 3626 return 0; 3627 } 3628 3629 if (strcmp(serial[0], serial[1])) { 3630 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3631 serial[0], serial[1]); 3632 return 0; 3633 } 3634 3635 return 1; 3636 } 3637 3638 /** 3639 * ata_dev_reread_id - Re-read IDENTIFY data 3640 * @dev: target ATA device 3641 * @readid_flags: read ID flags 3642 * 3643 * Re-read IDENTIFY page and make sure @dev is still attached to 3644 * the port. 3645 * 3646 * LOCKING: 3647 * Kernel thread context (may sleep) 3648 * 3649 * RETURNS: 3650 * 0 on success, negative errno otherwise 3651 */ 3652 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3653 { 3654 unsigned int class = dev->class; 3655 u16 *id = (void *)dev->link->ap->sector_buf; 3656 int rc; 3657 3658 /* read ID data */ 3659 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3660 if (rc) 3661 return rc; 3662 3663 /* is the device still there? */ 3664 if (!ata_dev_same_device(dev, class, id)) 3665 return -ENODEV; 3666 3667 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3668 return 0; 3669 } 3670 3671 /** 3672 * ata_dev_revalidate - Revalidate ATA device 3673 * @dev: device to revalidate 3674 * @new_class: new class code 3675 * @readid_flags: read ID flags 3676 * 3677 * Re-read IDENTIFY page, make sure @dev is still attached to the 3678 * port and reconfigure it according to the new IDENTIFY page. 3679 * 3680 * LOCKING: 3681 * Kernel thread context (may sleep) 3682 * 3683 * RETURNS: 3684 * 0 on success, negative errno otherwise 3685 */ 3686 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3687 unsigned int readid_flags) 3688 { 3689 u64 n_sectors = dev->n_sectors; 3690 u64 n_native_sectors = dev->n_native_sectors; 3691 int rc; 3692 3693 if (!ata_dev_enabled(dev)) 3694 return -ENODEV; 3695 3696 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3697 if (ata_class_enabled(new_class) && 3698 new_class != ATA_DEV_ATA && 3699 new_class != ATA_DEV_ATAPI && 3700 new_class != ATA_DEV_ZAC && 3701 new_class != ATA_DEV_SEMB) { 3702 ata_dev_info(dev, "class mismatch %u != %u\n", 3703 dev->class, new_class); 3704 rc = -ENODEV; 3705 goto fail; 3706 } 3707 3708 /* re-read ID */ 3709 rc = ata_dev_reread_id(dev, readid_flags); 3710 if (rc) 3711 goto fail; 3712 3713 /* configure device according to the new ID */ 3714 rc = ata_dev_configure(dev); 3715 if (rc) 3716 goto fail; 3717 3718 /* verify n_sectors hasn't changed */ 3719 if (dev->class != ATA_DEV_ATA || !n_sectors || 3720 dev->n_sectors == n_sectors) 3721 return 0; 3722 3723 /* n_sectors has changed */ 3724 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3725 (unsigned long long)n_sectors, 3726 (unsigned long long)dev->n_sectors); 3727 3728 /* 3729 * Something could have caused HPA to be unlocked 3730 * involuntarily. If n_native_sectors hasn't changed and the 3731 * new size matches it, keep the device. 3732 */ 3733 if (dev->n_native_sectors == n_native_sectors && 3734 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3735 ata_dev_warn(dev, 3736 "new n_sectors matches native, probably " 3737 "late HPA unlock, n_sectors updated\n"); 3738 /* use the larger n_sectors */ 3739 return 0; 3740 } 3741 3742 /* 3743 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3744 * unlocking HPA in those cases. 3745 * 3746 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3747 */ 3748 if (dev->n_native_sectors == n_native_sectors && 3749 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3750 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3751 ata_dev_warn(dev, 3752 "old n_sectors matches native, probably " 3753 "late HPA lock, will try to unlock HPA\n"); 3754 /* try unlocking HPA */ 3755 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3756 rc = -EIO; 3757 } else 3758 rc = -ENODEV; 3759 3760 /* restore original n_[native_]sectors and fail */ 3761 dev->n_native_sectors = n_native_sectors; 3762 dev->n_sectors = n_sectors; 3763 fail: 3764 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3765 return rc; 3766 } 3767 3768 struct ata_blacklist_entry { 3769 const char *model_num; 3770 const char *model_rev; 3771 unsigned long horkage; 3772 }; 3773 3774 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3775 /* Devices with DMA related problems under Linux */ 3776 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3777 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3778 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3779 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3780 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3781 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3782 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3783 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3784 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3785 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 3786 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3787 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3788 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3789 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3790 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3791 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 3792 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3793 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3794 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3795 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3796 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3797 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3798 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3799 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3800 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3801 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3802 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3803 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3804 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 3805 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 3806 /* Odd clown on sil3726/4726 PMPs */ 3807 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3808 3809 /* Weird ATAPI devices */ 3810 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3811 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 3812 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3813 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3814 3815 /* 3816 * Causes silent data corruption with higher max sects. 3817 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3818 */ 3819 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 3820 3821 /* 3822 * These devices time out with higher max sects. 3823 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3824 */ 3825 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3826 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3827 3828 /* Devices we expect to fail diagnostics */ 3829 3830 /* Devices where NCQ should be avoided */ 3831 /* NCQ is slow */ 3832 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3833 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3834 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3835 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3836 /* NCQ is broken */ 3837 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3838 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3839 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3840 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3841 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 3842 3843 /* Seagate NCQ + FLUSH CACHE firmware bug */ 3844 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3845 ATA_HORKAGE_FIRMWARE_WARN }, 3846 3847 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3848 ATA_HORKAGE_FIRMWARE_WARN }, 3849 3850 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3851 ATA_HORKAGE_FIRMWARE_WARN }, 3852 3853 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3854 ATA_HORKAGE_FIRMWARE_WARN }, 3855 3856 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 3857 the ST disks also have LPM issues */ 3858 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 3859 ATA_HORKAGE_NOLPM, }, 3860 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 3861 3862 /* Blacklist entries taken from Silicon Image 3124/3132 3863 Windows driver .inf file - also several Linux problem reports */ 3864 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3865 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3866 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3867 3868 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 3869 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 3870 3871 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on 3872 SD7SN6S256G and SD8SN8U256G */ 3873 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, }, 3874 3875 /* devices which puke on READ_NATIVE_MAX */ 3876 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3877 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3878 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3879 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3880 3881 /* this one allows HPA unlocking but fails IOs on the area */ 3882 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 3883 3884 /* Devices which report 1 sector over size HPA */ 3885 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3886 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3887 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3888 3889 /* Devices which get the IVB wrong */ 3890 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 3891 /* Maybe we should just blacklist TSSTcorp... */ 3892 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 3893 3894 /* Devices that do not need bridging limits applied */ 3895 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 3896 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 3897 3898 /* Devices which aren't very happy with higher link speeds */ 3899 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 3900 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 3901 3902 /* 3903 * Devices which choke on SETXFER. Applies only if both the 3904 * device and controller are SATA. 3905 */ 3906 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 3907 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 3908 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 3909 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 3910 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 3911 3912 /* Crucial BX100 SSD 500GB has broken LPM support */ 3913 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 3914 3915 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 3916 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3917 ATA_HORKAGE_ZERO_AFTER_TRIM | 3918 ATA_HORKAGE_NOLPM, }, 3919 /* 512GB MX100 with newer firmware has only LPM issues */ 3920 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 3921 ATA_HORKAGE_NOLPM, }, 3922 3923 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 3924 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3925 ATA_HORKAGE_ZERO_AFTER_TRIM | 3926 ATA_HORKAGE_NOLPM, }, 3927 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3928 ATA_HORKAGE_ZERO_AFTER_TRIM | 3929 ATA_HORKAGE_NOLPM, }, 3930 3931 /* These specific Samsung models/firmware-revs do not handle LPM well */ 3932 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, }, 3933 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, }, 3934 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, }, 3935 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, }, 3936 3937 /* devices that don't properly handle queued TRIM commands */ 3938 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3939 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3940 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3941 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3942 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3943 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3944 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3945 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3946 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3947 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3948 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3949 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3950 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3951 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3952 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3953 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3954 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3955 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3956 3957 /* devices that don't properly handle TRIM commands */ 3958 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 3959 3960 /* 3961 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 3962 * (Return Zero After Trim) flags in the ATA Command Set are 3963 * unreliable in the sense that they only define what happens if 3964 * the device successfully executed the DSM TRIM command. TRIM 3965 * is only advisory, however, and the device is free to silently 3966 * ignore all or parts of the request. 3967 * 3968 * Whitelist drives that are known to reliably return zeroes 3969 * after TRIM. 3970 */ 3971 3972 /* 3973 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 3974 * that model before whitelisting all other intel SSDs. 3975 */ 3976 { "INTEL*SSDSC2MH*", NULL, 0, }, 3977 3978 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3979 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3980 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3981 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3982 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3983 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3984 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3985 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3986 3987 /* 3988 * Some WD SATA-I drives spin up and down erratically when the link 3989 * is put into the slumber mode. We don't have full list of the 3990 * affected devices. Disable LPM if the device matches one of the 3991 * known prefixes and is SATA-1. As a side effect LPM partial is 3992 * lost too. 3993 * 3994 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 3995 */ 3996 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 3997 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 3998 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 3999 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4000 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4001 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4002 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4003 4004 /* End Marker */ 4005 { } 4006 }; 4007 4008 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4009 { 4010 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4011 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4012 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4013 4014 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4015 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4016 4017 while (ad->model_num) { 4018 if (glob_match(ad->model_num, model_num)) { 4019 if (ad->model_rev == NULL) 4020 return ad->horkage; 4021 if (glob_match(ad->model_rev, model_rev)) 4022 return ad->horkage; 4023 } 4024 ad++; 4025 } 4026 return 0; 4027 } 4028 4029 static int ata_dma_blacklisted(const struct ata_device *dev) 4030 { 4031 /* We don't support polling DMA. 4032 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4033 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4034 */ 4035 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4036 (dev->flags & ATA_DFLAG_CDB_INTR)) 4037 return 1; 4038 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4039 } 4040 4041 /** 4042 * ata_is_40wire - check drive side detection 4043 * @dev: device 4044 * 4045 * Perform drive side detection decoding, allowing for device vendors 4046 * who can't follow the documentation. 4047 */ 4048 4049 static int ata_is_40wire(struct ata_device *dev) 4050 { 4051 if (dev->horkage & ATA_HORKAGE_IVB) 4052 return ata_drive_40wire_relaxed(dev->id); 4053 return ata_drive_40wire(dev->id); 4054 } 4055 4056 /** 4057 * cable_is_40wire - 40/80/SATA decider 4058 * @ap: port to consider 4059 * 4060 * This function encapsulates the policy for speed management 4061 * in one place. At the moment we don't cache the result but 4062 * there is a good case for setting ap->cbl to the result when 4063 * we are called with unknown cables (and figuring out if it 4064 * impacts hotplug at all). 4065 * 4066 * Return 1 if the cable appears to be 40 wire. 4067 */ 4068 4069 static int cable_is_40wire(struct ata_port *ap) 4070 { 4071 struct ata_link *link; 4072 struct ata_device *dev; 4073 4074 /* If the controller thinks we are 40 wire, we are. */ 4075 if (ap->cbl == ATA_CBL_PATA40) 4076 return 1; 4077 4078 /* If the controller thinks we are 80 wire, we are. */ 4079 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4080 return 0; 4081 4082 /* If the system is known to be 40 wire short cable (eg 4083 * laptop), then we allow 80 wire modes even if the drive 4084 * isn't sure. 4085 */ 4086 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4087 return 0; 4088 4089 /* If the controller doesn't know, we scan. 4090 * 4091 * Note: We look for all 40 wire detects at this point. Any 4092 * 80 wire detect is taken to be 80 wire cable because 4093 * - in many setups only the one drive (slave if present) will 4094 * give a valid detect 4095 * - if you have a non detect capable drive you don't want it 4096 * to colour the choice 4097 */ 4098 ata_for_each_link(link, ap, EDGE) { 4099 ata_for_each_dev(dev, link, ENABLED) { 4100 if (!ata_is_40wire(dev)) 4101 return 0; 4102 } 4103 } 4104 return 1; 4105 } 4106 4107 /** 4108 * ata_dev_xfermask - Compute supported xfermask of the given device 4109 * @dev: Device to compute xfermask for 4110 * 4111 * Compute supported xfermask of @dev and store it in 4112 * dev->*_mask. This function is responsible for applying all 4113 * known limits including host controller limits, device 4114 * blacklist, etc... 4115 * 4116 * LOCKING: 4117 * None. 4118 */ 4119 static void ata_dev_xfermask(struct ata_device *dev) 4120 { 4121 struct ata_link *link = dev->link; 4122 struct ata_port *ap = link->ap; 4123 struct ata_host *host = ap->host; 4124 unsigned long xfer_mask; 4125 4126 /* controller modes available */ 4127 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4128 ap->mwdma_mask, ap->udma_mask); 4129 4130 /* drive modes available */ 4131 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4132 dev->mwdma_mask, dev->udma_mask); 4133 xfer_mask &= ata_id_xfermask(dev->id); 4134 4135 /* 4136 * CFA Advanced TrueIDE timings are not allowed on a shared 4137 * cable 4138 */ 4139 if (ata_dev_pair(dev)) { 4140 /* No PIO5 or PIO6 */ 4141 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4142 /* No MWDMA3 or MWDMA 4 */ 4143 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4144 } 4145 4146 if (ata_dma_blacklisted(dev)) { 4147 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4148 ata_dev_warn(dev, 4149 "device is on DMA blacklist, disabling DMA\n"); 4150 } 4151 4152 if ((host->flags & ATA_HOST_SIMPLEX) && 4153 host->simplex_claimed && host->simplex_claimed != ap) { 4154 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4155 ata_dev_warn(dev, 4156 "simplex DMA is claimed by other device, disabling DMA\n"); 4157 } 4158 4159 if (ap->flags & ATA_FLAG_NO_IORDY) 4160 xfer_mask &= ata_pio_mask_no_iordy(dev); 4161 4162 if (ap->ops->mode_filter) 4163 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4164 4165 /* Apply cable rule here. Don't apply it early because when 4166 * we handle hot plug the cable type can itself change. 4167 * Check this last so that we know if the transfer rate was 4168 * solely limited by the cable. 4169 * Unknown or 80 wire cables reported host side are checked 4170 * drive side as well. Cases where we know a 40wire cable 4171 * is used safely for 80 are not checked here. 4172 */ 4173 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4174 /* UDMA/44 or higher would be available */ 4175 if (cable_is_40wire(ap)) { 4176 ata_dev_warn(dev, 4177 "limited to UDMA/33 due to 40-wire cable\n"); 4178 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4179 } 4180 4181 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4182 &dev->mwdma_mask, &dev->udma_mask); 4183 } 4184 4185 /** 4186 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4187 * @dev: Device to which command will be sent 4188 * 4189 * Issue SET FEATURES - XFER MODE command to device @dev 4190 * on port @ap. 4191 * 4192 * LOCKING: 4193 * PCI/etc. bus probe sem. 4194 * 4195 * RETURNS: 4196 * 0 on success, AC_ERR_* mask otherwise. 4197 */ 4198 4199 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4200 { 4201 struct ata_taskfile tf; 4202 unsigned int err_mask; 4203 4204 /* set up set-features taskfile */ 4205 DPRINTK("set features - xfer mode\n"); 4206 4207 /* Some controllers and ATAPI devices show flaky interrupt 4208 * behavior after setting xfer mode. Use polling instead. 4209 */ 4210 ata_tf_init(dev, &tf); 4211 tf.command = ATA_CMD_SET_FEATURES; 4212 tf.feature = SETFEATURES_XFER; 4213 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4214 tf.protocol = ATA_PROT_NODATA; 4215 /* If we are using IORDY we must send the mode setting command */ 4216 if (ata_pio_need_iordy(dev)) 4217 tf.nsect = dev->xfer_mode; 4218 /* If the device has IORDY and the controller does not - turn it off */ 4219 else if (ata_id_has_iordy(dev->id)) 4220 tf.nsect = 0x01; 4221 else /* In the ancient relic department - skip all of this */ 4222 return 0; 4223 4224 /* On some disks, this command causes spin-up, so we need longer timeout */ 4225 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4226 4227 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4228 return err_mask; 4229 } 4230 4231 /** 4232 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4233 * @dev: Device to which command will be sent 4234 * @enable: Whether to enable or disable the feature 4235 * @feature: The sector count represents the feature to set 4236 * 4237 * Issue SET FEATURES - SATA FEATURES command to device @dev 4238 * on port @ap with sector count 4239 * 4240 * LOCKING: 4241 * PCI/etc. bus probe sem. 4242 * 4243 * RETURNS: 4244 * 0 on success, AC_ERR_* mask otherwise. 4245 */ 4246 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4247 { 4248 struct ata_taskfile tf; 4249 unsigned int err_mask; 4250 unsigned long timeout = 0; 4251 4252 /* set up set-features taskfile */ 4253 DPRINTK("set features - SATA features\n"); 4254 4255 ata_tf_init(dev, &tf); 4256 tf.command = ATA_CMD_SET_FEATURES; 4257 tf.feature = enable; 4258 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4259 tf.protocol = ATA_PROT_NODATA; 4260 tf.nsect = feature; 4261 4262 if (enable == SETFEATURES_SPINUP) 4263 timeout = ata_probe_timeout ? 4264 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4265 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4266 4267 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4268 return err_mask; 4269 } 4270 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4271 4272 /** 4273 * ata_dev_init_params - Issue INIT DEV PARAMS command 4274 * @dev: Device to which command will be sent 4275 * @heads: Number of heads (taskfile parameter) 4276 * @sectors: Number of sectors (taskfile parameter) 4277 * 4278 * LOCKING: 4279 * Kernel thread context (may sleep) 4280 * 4281 * RETURNS: 4282 * 0 on success, AC_ERR_* mask otherwise. 4283 */ 4284 static unsigned int ata_dev_init_params(struct ata_device *dev, 4285 u16 heads, u16 sectors) 4286 { 4287 struct ata_taskfile tf; 4288 unsigned int err_mask; 4289 4290 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4291 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4292 return AC_ERR_INVALID; 4293 4294 /* set up init dev params taskfile */ 4295 DPRINTK("init dev params \n"); 4296 4297 ata_tf_init(dev, &tf); 4298 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4299 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4300 tf.protocol = ATA_PROT_NODATA; 4301 tf.nsect = sectors; 4302 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4303 4304 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4305 /* A clean abort indicates an original or just out of spec drive 4306 and we should continue as we issue the setup based on the 4307 drive reported working geometry */ 4308 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4309 err_mask = 0; 4310 4311 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4312 return err_mask; 4313 } 4314 4315 /** 4316 * atapi_check_dma - Check whether ATAPI DMA can be supported 4317 * @qc: Metadata associated with taskfile to check 4318 * 4319 * Allow low-level driver to filter ATA PACKET commands, returning 4320 * a status indicating whether or not it is OK to use DMA for the 4321 * supplied PACKET command. 4322 * 4323 * LOCKING: 4324 * spin_lock_irqsave(host lock) 4325 * 4326 * RETURNS: 0 when ATAPI DMA can be used 4327 * nonzero otherwise 4328 */ 4329 int atapi_check_dma(struct ata_queued_cmd *qc) 4330 { 4331 struct ata_port *ap = qc->ap; 4332 4333 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4334 * few ATAPI devices choke on such DMA requests. 4335 */ 4336 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4337 unlikely(qc->nbytes & 15)) 4338 return 1; 4339 4340 if (ap->ops->check_atapi_dma) 4341 return ap->ops->check_atapi_dma(qc); 4342 4343 return 0; 4344 } 4345 4346 /** 4347 * ata_std_qc_defer - Check whether a qc needs to be deferred 4348 * @qc: ATA command in question 4349 * 4350 * Non-NCQ commands cannot run with any other command, NCQ or 4351 * not. As upper layer only knows the queue depth, we are 4352 * responsible for maintaining exclusion. This function checks 4353 * whether a new command @qc can be issued. 4354 * 4355 * LOCKING: 4356 * spin_lock_irqsave(host lock) 4357 * 4358 * RETURNS: 4359 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4360 */ 4361 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4362 { 4363 struct ata_link *link = qc->dev->link; 4364 4365 if (ata_is_ncq(qc->tf.protocol)) { 4366 if (!ata_tag_valid(link->active_tag)) 4367 return 0; 4368 } else { 4369 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4370 return 0; 4371 } 4372 4373 return ATA_DEFER_LINK; 4374 } 4375 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4376 4377 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4378 { 4379 return AC_ERR_OK; 4380 } 4381 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4382 4383 /** 4384 * ata_sg_init - Associate command with scatter-gather table. 4385 * @qc: Command to be associated 4386 * @sg: Scatter-gather table. 4387 * @n_elem: Number of elements in s/g table. 4388 * 4389 * Initialize the data-related elements of queued_cmd @qc 4390 * to point to a scatter-gather table @sg, containing @n_elem 4391 * elements. 4392 * 4393 * LOCKING: 4394 * spin_lock_irqsave(host lock) 4395 */ 4396 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4397 unsigned int n_elem) 4398 { 4399 qc->sg = sg; 4400 qc->n_elem = n_elem; 4401 qc->cursg = qc->sg; 4402 } 4403 4404 #ifdef CONFIG_HAS_DMA 4405 4406 /** 4407 * ata_sg_clean - Unmap DMA memory associated with command 4408 * @qc: Command containing DMA memory to be released 4409 * 4410 * Unmap all mapped DMA memory associated with this command. 4411 * 4412 * LOCKING: 4413 * spin_lock_irqsave(host lock) 4414 */ 4415 static void ata_sg_clean(struct ata_queued_cmd *qc) 4416 { 4417 struct ata_port *ap = qc->ap; 4418 struct scatterlist *sg = qc->sg; 4419 int dir = qc->dma_dir; 4420 4421 WARN_ON_ONCE(sg == NULL); 4422 4423 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4424 4425 if (qc->n_elem) 4426 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4427 4428 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4429 qc->sg = NULL; 4430 } 4431 4432 /** 4433 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4434 * @qc: Command with scatter-gather table to be mapped. 4435 * 4436 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4437 * 4438 * LOCKING: 4439 * spin_lock_irqsave(host lock) 4440 * 4441 * RETURNS: 4442 * Zero on success, negative on error. 4443 * 4444 */ 4445 static int ata_sg_setup(struct ata_queued_cmd *qc) 4446 { 4447 struct ata_port *ap = qc->ap; 4448 unsigned int n_elem; 4449 4450 VPRINTK("ENTER, ata%u\n", ap->print_id); 4451 4452 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4453 if (n_elem < 1) 4454 return -1; 4455 4456 VPRINTK("%d sg elements mapped\n", n_elem); 4457 qc->orig_n_elem = qc->n_elem; 4458 qc->n_elem = n_elem; 4459 qc->flags |= ATA_QCFLAG_DMAMAP; 4460 4461 return 0; 4462 } 4463 4464 #else /* !CONFIG_HAS_DMA */ 4465 4466 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4467 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4468 4469 #endif /* !CONFIG_HAS_DMA */ 4470 4471 /** 4472 * swap_buf_le16 - swap halves of 16-bit words in place 4473 * @buf: Buffer to swap 4474 * @buf_words: Number of 16-bit words in buffer. 4475 * 4476 * Swap halves of 16-bit words if needed to convert from 4477 * little-endian byte order to native cpu byte order, or 4478 * vice-versa. 4479 * 4480 * LOCKING: 4481 * Inherited from caller. 4482 */ 4483 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4484 { 4485 #ifdef __BIG_ENDIAN 4486 unsigned int i; 4487 4488 for (i = 0; i < buf_words; i++) 4489 buf[i] = le16_to_cpu(buf[i]); 4490 #endif /* __BIG_ENDIAN */ 4491 } 4492 4493 /** 4494 * ata_qc_new_init - Request an available ATA command, and initialize it 4495 * @dev: Device from whom we request an available command structure 4496 * @tag: tag 4497 * 4498 * LOCKING: 4499 * None. 4500 */ 4501 4502 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 4503 { 4504 struct ata_port *ap = dev->link->ap; 4505 struct ata_queued_cmd *qc; 4506 4507 /* no command while frozen */ 4508 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4509 return NULL; 4510 4511 /* libsas case */ 4512 if (ap->flags & ATA_FLAG_SAS_HOST) { 4513 tag = ata_sas_allocate_tag(ap); 4514 if (tag < 0) 4515 return NULL; 4516 } 4517 4518 qc = __ata_qc_from_tag(ap, tag); 4519 qc->tag = qc->hw_tag = tag; 4520 qc->scsicmd = NULL; 4521 qc->ap = ap; 4522 qc->dev = dev; 4523 4524 ata_qc_reinit(qc); 4525 4526 return qc; 4527 } 4528 4529 /** 4530 * ata_qc_free - free unused ata_queued_cmd 4531 * @qc: Command to complete 4532 * 4533 * Designed to free unused ata_queued_cmd object 4534 * in case something prevents using it. 4535 * 4536 * LOCKING: 4537 * spin_lock_irqsave(host lock) 4538 */ 4539 void ata_qc_free(struct ata_queued_cmd *qc) 4540 { 4541 struct ata_port *ap; 4542 unsigned int tag; 4543 4544 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4545 ap = qc->ap; 4546 4547 qc->flags = 0; 4548 tag = qc->tag; 4549 if (ata_tag_valid(tag)) { 4550 qc->tag = ATA_TAG_POISON; 4551 if (ap->flags & ATA_FLAG_SAS_HOST) 4552 ata_sas_free_tag(tag, ap); 4553 } 4554 } 4555 4556 void __ata_qc_complete(struct ata_queued_cmd *qc) 4557 { 4558 struct ata_port *ap; 4559 struct ata_link *link; 4560 4561 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4562 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4563 ap = qc->ap; 4564 link = qc->dev->link; 4565 4566 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4567 ata_sg_clean(qc); 4568 4569 /* command should be marked inactive atomically with qc completion */ 4570 if (ata_is_ncq(qc->tf.protocol)) { 4571 link->sactive &= ~(1 << qc->hw_tag); 4572 if (!link->sactive) 4573 ap->nr_active_links--; 4574 } else { 4575 link->active_tag = ATA_TAG_POISON; 4576 ap->nr_active_links--; 4577 } 4578 4579 /* clear exclusive status */ 4580 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4581 ap->excl_link == link)) 4582 ap->excl_link = NULL; 4583 4584 /* atapi: mark qc as inactive to prevent the interrupt handler 4585 * from completing the command twice later, before the error handler 4586 * is called. (when rc != 0 and atapi request sense is needed) 4587 */ 4588 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4589 ap->qc_active &= ~(1ULL << qc->tag); 4590 4591 /* call completion callback */ 4592 qc->complete_fn(qc); 4593 } 4594 4595 static void fill_result_tf(struct ata_queued_cmd *qc) 4596 { 4597 struct ata_port *ap = qc->ap; 4598 4599 qc->result_tf.flags = qc->tf.flags; 4600 ap->ops->qc_fill_rtf(qc); 4601 } 4602 4603 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4604 { 4605 struct ata_device *dev = qc->dev; 4606 4607 if (!ata_is_data(qc->tf.protocol)) 4608 return; 4609 4610 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4611 return; 4612 4613 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4614 } 4615 4616 /** 4617 * ata_qc_complete - Complete an active ATA command 4618 * @qc: Command to complete 4619 * 4620 * Indicate to the mid and upper layers that an ATA command has 4621 * completed, with either an ok or not-ok status. 4622 * 4623 * Refrain from calling this function multiple times when 4624 * successfully completing multiple NCQ commands. 4625 * ata_qc_complete_multiple() should be used instead, which will 4626 * properly update IRQ expect state. 4627 * 4628 * LOCKING: 4629 * spin_lock_irqsave(host lock) 4630 */ 4631 void ata_qc_complete(struct ata_queued_cmd *qc) 4632 { 4633 struct ata_port *ap = qc->ap; 4634 4635 /* Trigger the LED (if available) */ 4636 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4637 4638 /* XXX: New EH and old EH use different mechanisms to 4639 * synchronize EH with regular execution path. 4640 * 4641 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4642 * Normal execution path is responsible for not accessing a 4643 * failed qc. libata core enforces the rule by returning NULL 4644 * from ata_qc_from_tag() for failed qcs. 4645 * 4646 * Old EH depends on ata_qc_complete() nullifying completion 4647 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4648 * not synchronize with interrupt handler. Only PIO task is 4649 * taken care of. 4650 */ 4651 if (ap->ops->error_handler) { 4652 struct ata_device *dev = qc->dev; 4653 struct ata_eh_info *ehi = &dev->link->eh_info; 4654 4655 if (unlikely(qc->err_mask)) 4656 qc->flags |= ATA_QCFLAG_FAILED; 4657 4658 /* 4659 * Finish internal commands without any further processing 4660 * and always with the result TF filled. 4661 */ 4662 if (unlikely(ata_tag_internal(qc->tag))) { 4663 fill_result_tf(qc); 4664 trace_ata_qc_complete_internal(qc); 4665 __ata_qc_complete(qc); 4666 return; 4667 } 4668 4669 /* 4670 * Non-internal qc has failed. Fill the result TF and 4671 * summon EH. 4672 */ 4673 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4674 fill_result_tf(qc); 4675 trace_ata_qc_complete_failed(qc); 4676 ata_qc_schedule_eh(qc); 4677 return; 4678 } 4679 4680 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4681 4682 /* read result TF if requested */ 4683 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4684 fill_result_tf(qc); 4685 4686 trace_ata_qc_complete_done(qc); 4687 /* Some commands need post-processing after successful 4688 * completion. 4689 */ 4690 switch (qc->tf.command) { 4691 case ATA_CMD_SET_FEATURES: 4692 if (qc->tf.feature != SETFEATURES_WC_ON && 4693 qc->tf.feature != SETFEATURES_WC_OFF && 4694 qc->tf.feature != SETFEATURES_RA_ON && 4695 qc->tf.feature != SETFEATURES_RA_OFF) 4696 break; 4697 fallthrough; 4698 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4699 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4700 /* revalidate device */ 4701 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4702 ata_port_schedule_eh(ap); 4703 break; 4704 4705 case ATA_CMD_SLEEP: 4706 dev->flags |= ATA_DFLAG_SLEEPING; 4707 break; 4708 } 4709 4710 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4711 ata_verify_xfer(qc); 4712 4713 __ata_qc_complete(qc); 4714 } else { 4715 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4716 return; 4717 4718 /* read result TF if failed or requested */ 4719 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4720 fill_result_tf(qc); 4721 4722 __ata_qc_complete(qc); 4723 } 4724 } 4725 EXPORT_SYMBOL_GPL(ata_qc_complete); 4726 4727 /** 4728 * ata_qc_get_active - get bitmask of active qcs 4729 * @ap: port in question 4730 * 4731 * LOCKING: 4732 * spin_lock_irqsave(host lock) 4733 * 4734 * RETURNS: 4735 * Bitmask of active qcs 4736 */ 4737 u64 ata_qc_get_active(struct ata_port *ap) 4738 { 4739 u64 qc_active = ap->qc_active; 4740 4741 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4742 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4743 qc_active |= (1 << 0); 4744 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4745 } 4746 4747 return qc_active; 4748 } 4749 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4750 4751 /** 4752 * ata_qc_issue - issue taskfile to device 4753 * @qc: command to issue to device 4754 * 4755 * Prepare an ATA command to submission to device. 4756 * This includes mapping the data into a DMA-able 4757 * area, filling in the S/G table, and finally 4758 * writing the taskfile to hardware, starting the command. 4759 * 4760 * LOCKING: 4761 * spin_lock_irqsave(host lock) 4762 */ 4763 void ata_qc_issue(struct ata_queued_cmd *qc) 4764 { 4765 struct ata_port *ap = qc->ap; 4766 struct ata_link *link = qc->dev->link; 4767 u8 prot = qc->tf.protocol; 4768 4769 /* Make sure only one non-NCQ command is outstanding. The 4770 * check is skipped for old EH because it reuses active qc to 4771 * request ATAPI sense. 4772 */ 4773 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4774 4775 if (ata_is_ncq(prot)) { 4776 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4777 4778 if (!link->sactive) 4779 ap->nr_active_links++; 4780 link->sactive |= 1 << qc->hw_tag; 4781 } else { 4782 WARN_ON_ONCE(link->sactive); 4783 4784 ap->nr_active_links++; 4785 link->active_tag = qc->tag; 4786 } 4787 4788 qc->flags |= ATA_QCFLAG_ACTIVE; 4789 ap->qc_active |= 1ULL << qc->tag; 4790 4791 /* 4792 * We guarantee to LLDs that they will have at least one 4793 * non-zero sg if the command is a data command. 4794 */ 4795 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4796 goto sys_err; 4797 4798 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4799 (ap->flags & ATA_FLAG_PIO_DMA))) 4800 if (ata_sg_setup(qc)) 4801 goto sys_err; 4802 4803 /* if device is sleeping, schedule reset and abort the link */ 4804 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4805 link->eh_info.action |= ATA_EH_RESET; 4806 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4807 ata_link_abort(link); 4808 return; 4809 } 4810 4811 qc->err_mask |= ap->ops->qc_prep(qc); 4812 if (unlikely(qc->err_mask)) 4813 goto err; 4814 trace_ata_qc_issue(qc); 4815 qc->err_mask |= ap->ops->qc_issue(qc); 4816 if (unlikely(qc->err_mask)) 4817 goto err; 4818 return; 4819 4820 sys_err: 4821 qc->err_mask |= AC_ERR_SYSTEM; 4822 err: 4823 ata_qc_complete(qc); 4824 } 4825 4826 /** 4827 * ata_phys_link_online - test whether the given link is online 4828 * @link: ATA link to test 4829 * 4830 * Test whether @link is online. Note that this function returns 4831 * 0 if online status of @link cannot be obtained, so 4832 * ata_link_online(link) != !ata_link_offline(link). 4833 * 4834 * LOCKING: 4835 * None. 4836 * 4837 * RETURNS: 4838 * True if the port online status is available and online. 4839 */ 4840 bool ata_phys_link_online(struct ata_link *link) 4841 { 4842 u32 sstatus; 4843 4844 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4845 ata_sstatus_online(sstatus)) 4846 return true; 4847 return false; 4848 } 4849 4850 /** 4851 * ata_phys_link_offline - test whether the given link is offline 4852 * @link: ATA link to test 4853 * 4854 * Test whether @link is offline. Note that this function 4855 * returns 0 if offline status of @link cannot be obtained, so 4856 * ata_link_online(link) != !ata_link_offline(link). 4857 * 4858 * LOCKING: 4859 * None. 4860 * 4861 * RETURNS: 4862 * True if the port offline status is available and offline. 4863 */ 4864 bool ata_phys_link_offline(struct ata_link *link) 4865 { 4866 u32 sstatus; 4867 4868 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4869 !ata_sstatus_online(sstatus)) 4870 return true; 4871 return false; 4872 } 4873 4874 /** 4875 * ata_link_online - test whether the given link is online 4876 * @link: ATA link to test 4877 * 4878 * Test whether @link is online. This is identical to 4879 * ata_phys_link_online() when there's no slave link. When 4880 * there's a slave link, this function should only be called on 4881 * the master link and will return true if any of M/S links is 4882 * online. 4883 * 4884 * LOCKING: 4885 * None. 4886 * 4887 * RETURNS: 4888 * True if the port online status is available and online. 4889 */ 4890 bool ata_link_online(struct ata_link *link) 4891 { 4892 struct ata_link *slave = link->ap->slave_link; 4893 4894 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4895 4896 return ata_phys_link_online(link) || 4897 (slave && ata_phys_link_online(slave)); 4898 } 4899 EXPORT_SYMBOL_GPL(ata_link_online); 4900 4901 /** 4902 * ata_link_offline - test whether the given link is offline 4903 * @link: ATA link to test 4904 * 4905 * Test whether @link is offline. This is identical to 4906 * ata_phys_link_offline() when there's no slave link. When 4907 * there's a slave link, this function should only be called on 4908 * the master link and will return true if both M/S links are 4909 * offline. 4910 * 4911 * LOCKING: 4912 * None. 4913 * 4914 * RETURNS: 4915 * True if the port offline status is available and offline. 4916 */ 4917 bool ata_link_offline(struct ata_link *link) 4918 { 4919 struct ata_link *slave = link->ap->slave_link; 4920 4921 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4922 4923 return ata_phys_link_offline(link) && 4924 (!slave || ata_phys_link_offline(slave)); 4925 } 4926 EXPORT_SYMBOL_GPL(ata_link_offline); 4927 4928 #ifdef CONFIG_PM 4929 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 4930 unsigned int action, unsigned int ehi_flags, 4931 bool async) 4932 { 4933 struct ata_link *link; 4934 unsigned long flags; 4935 4936 /* Previous resume operation might still be in 4937 * progress. Wait for PM_PENDING to clear. 4938 */ 4939 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 4940 ata_port_wait_eh(ap); 4941 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4942 } 4943 4944 /* request PM ops to EH */ 4945 spin_lock_irqsave(ap->lock, flags); 4946 4947 ap->pm_mesg = mesg; 4948 ap->pflags |= ATA_PFLAG_PM_PENDING; 4949 ata_for_each_link(link, ap, HOST_FIRST) { 4950 link->eh_info.action |= action; 4951 link->eh_info.flags |= ehi_flags; 4952 } 4953 4954 ata_port_schedule_eh(ap); 4955 4956 spin_unlock_irqrestore(ap->lock, flags); 4957 4958 if (!async) { 4959 ata_port_wait_eh(ap); 4960 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4961 } 4962 } 4963 4964 /* 4965 * On some hardware, device fails to respond after spun down for suspend. As 4966 * the device won't be used before being resumed, we don't need to touch the 4967 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 4968 * 4969 * http://thread.gmane.org/gmane.linux.ide/46764 4970 */ 4971 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 4972 | ATA_EHI_NO_AUTOPSY 4973 | ATA_EHI_NO_RECOVERY; 4974 4975 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 4976 { 4977 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 4978 } 4979 4980 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 4981 { 4982 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 4983 } 4984 4985 static int ata_port_pm_suspend(struct device *dev) 4986 { 4987 struct ata_port *ap = to_ata_port(dev); 4988 4989 if (pm_runtime_suspended(dev)) 4990 return 0; 4991 4992 ata_port_suspend(ap, PMSG_SUSPEND); 4993 return 0; 4994 } 4995 4996 static int ata_port_pm_freeze(struct device *dev) 4997 { 4998 struct ata_port *ap = to_ata_port(dev); 4999 5000 if (pm_runtime_suspended(dev)) 5001 return 0; 5002 5003 ata_port_suspend(ap, PMSG_FREEZE); 5004 return 0; 5005 } 5006 5007 static int ata_port_pm_poweroff(struct device *dev) 5008 { 5009 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5010 return 0; 5011 } 5012 5013 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5014 | ATA_EHI_QUIET; 5015 5016 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5017 { 5018 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5019 } 5020 5021 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5022 { 5023 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5024 } 5025 5026 static int ata_port_pm_resume(struct device *dev) 5027 { 5028 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5029 pm_runtime_disable(dev); 5030 pm_runtime_set_active(dev); 5031 pm_runtime_enable(dev); 5032 return 0; 5033 } 5034 5035 /* 5036 * For ODDs, the upper layer will poll for media change every few seconds, 5037 * which will make it enter and leave suspend state every few seconds. And 5038 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5039 * is very little and the ODD may malfunction after constantly being reset. 5040 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5041 * ODD is attached to the port. 5042 */ 5043 static int ata_port_runtime_idle(struct device *dev) 5044 { 5045 struct ata_port *ap = to_ata_port(dev); 5046 struct ata_link *link; 5047 struct ata_device *adev; 5048 5049 ata_for_each_link(link, ap, HOST_FIRST) { 5050 ata_for_each_dev(adev, link, ENABLED) 5051 if (adev->class == ATA_DEV_ATAPI && 5052 !zpodd_dev_enabled(adev)) 5053 return -EBUSY; 5054 } 5055 5056 return 0; 5057 } 5058 5059 static int ata_port_runtime_suspend(struct device *dev) 5060 { 5061 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5062 return 0; 5063 } 5064 5065 static int ata_port_runtime_resume(struct device *dev) 5066 { 5067 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5068 return 0; 5069 } 5070 5071 static const struct dev_pm_ops ata_port_pm_ops = { 5072 .suspend = ata_port_pm_suspend, 5073 .resume = ata_port_pm_resume, 5074 .freeze = ata_port_pm_freeze, 5075 .thaw = ata_port_pm_resume, 5076 .poweroff = ata_port_pm_poweroff, 5077 .restore = ata_port_pm_resume, 5078 5079 .runtime_suspend = ata_port_runtime_suspend, 5080 .runtime_resume = ata_port_runtime_resume, 5081 .runtime_idle = ata_port_runtime_idle, 5082 }; 5083 5084 /* sas ports don't participate in pm runtime management of ata_ports, 5085 * and need to resume ata devices at the domain level, not the per-port 5086 * level. sas suspend/resume is async to allow parallel port recovery 5087 * since sas has multiple ata_port instances per Scsi_Host. 5088 */ 5089 void ata_sas_port_suspend(struct ata_port *ap) 5090 { 5091 ata_port_suspend_async(ap, PMSG_SUSPEND); 5092 } 5093 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5094 5095 void ata_sas_port_resume(struct ata_port *ap) 5096 { 5097 ata_port_resume_async(ap, PMSG_RESUME); 5098 } 5099 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5100 5101 /** 5102 * ata_host_suspend - suspend host 5103 * @host: host to suspend 5104 * @mesg: PM message 5105 * 5106 * Suspend @host. Actual operation is performed by port suspend. 5107 */ 5108 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5109 { 5110 host->dev->power.power_state = mesg; 5111 return 0; 5112 } 5113 EXPORT_SYMBOL_GPL(ata_host_suspend); 5114 5115 /** 5116 * ata_host_resume - resume host 5117 * @host: host to resume 5118 * 5119 * Resume @host. Actual operation is performed by port resume. 5120 */ 5121 void ata_host_resume(struct ata_host *host) 5122 { 5123 host->dev->power.power_state = PMSG_ON; 5124 } 5125 EXPORT_SYMBOL_GPL(ata_host_resume); 5126 #endif 5127 5128 const struct device_type ata_port_type = { 5129 .name = "ata_port", 5130 #ifdef CONFIG_PM 5131 .pm = &ata_port_pm_ops, 5132 #endif 5133 }; 5134 5135 /** 5136 * ata_dev_init - Initialize an ata_device structure 5137 * @dev: Device structure to initialize 5138 * 5139 * Initialize @dev in preparation for probing. 5140 * 5141 * LOCKING: 5142 * Inherited from caller. 5143 */ 5144 void ata_dev_init(struct ata_device *dev) 5145 { 5146 struct ata_link *link = ata_dev_phys_link(dev); 5147 struct ata_port *ap = link->ap; 5148 unsigned long flags; 5149 5150 /* SATA spd limit is bound to the attached device, reset together */ 5151 link->sata_spd_limit = link->hw_sata_spd_limit; 5152 link->sata_spd = 0; 5153 5154 /* High bits of dev->flags are used to record warm plug 5155 * requests which occur asynchronously. Synchronize using 5156 * host lock. 5157 */ 5158 spin_lock_irqsave(ap->lock, flags); 5159 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5160 dev->horkage = 0; 5161 spin_unlock_irqrestore(ap->lock, flags); 5162 5163 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5164 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5165 dev->pio_mask = UINT_MAX; 5166 dev->mwdma_mask = UINT_MAX; 5167 dev->udma_mask = UINT_MAX; 5168 } 5169 5170 /** 5171 * ata_link_init - Initialize an ata_link structure 5172 * @ap: ATA port link is attached to 5173 * @link: Link structure to initialize 5174 * @pmp: Port multiplier port number 5175 * 5176 * Initialize @link. 5177 * 5178 * LOCKING: 5179 * Kernel thread context (may sleep) 5180 */ 5181 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5182 { 5183 int i; 5184 5185 /* clear everything except for devices */ 5186 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5187 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5188 5189 link->ap = ap; 5190 link->pmp = pmp; 5191 link->active_tag = ATA_TAG_POISON; 5192 link->hw_sata_spd_limit = UINT_MAX; 5193 5194 /* can't use iterator, ap isn't initialized yet */ 5195 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5196 struct ata_device *dev = &link->device[i]; 5197 5198 dev->link = link; 5199 dev->devno = dev - link->device; 5200 #ifdef CONFIG_ATA_ACPI 5201 dev->gtf_filter = ata_acpi_gtf_filter; 5202 #endif 5203 ata_dev_init(dev); 5204 } 5205 } 5206 5207 /** 5208 * sata_link_init_spd - Initialize link->sata_spd_limit 5209 * @link: Link to configure sata_spd_limit for 5210 * 5211 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5212 * configured value. 5213 * 5214 * LOCKING: 5215 * Kernel thread context (may sleep). 5216 * 5217 * RETURNS: 5218 * 0 on success, -errno on failure. 5219 */ 5220 int sata_link_init_spd(struct ata_link *link) 5221 { 5222 u8 spd; 5223 int rc; 5224 5225 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5226 if (rc) 5227 return rc; 5228 5229 spd = (link->saved_scontrol >> 4) & 0xf; 5230 if (spd) 5231 link->hw_sata_spd_limit &= (1 << spd) - 1; 5232 5233 ata_force_link_limits(link); 5234 5235 link->sata_spd_limit = link->hw_sata_spd_limit; 5236 5237 return 0; 5238 } 5239 5240 /** 5241 * ata_port_alloc - allocate and initialize basic ATA port resources 5242 * @host: ATA host this allocated port belongs to 5243 * 5244 * Allocate and initialize basic ATA port resources. 5245 * 5246 * RETURNS: 5247 * Allocate ATA port on success, NULL on failure. 5248 * 5249 * LOCKING: 5250 * Inherited from calling layer (may sleep). 5251 */ 5252 struct ata_port *ata_port_alloc(struct ata_host *host) 5253 { 5254 struct ata_port *ap; 5255 5256 DPRINTK("ENTER\n"); 5257 5258 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5259 if (!ap) 5260 return NULL; 5261 5262 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5263 ap->lock = &host->lock; 5264 ap->print_id = -1; 5265 ap->local_port_no = -1; 5266 ap->host = host; 5267 ap->dev = host->dev; 5268 5269 #if defined(ATA_VERBOSE_DEBUG) 5270 /* turn on all debugging levels */ 5271 ap->msg_enable = 0x00FF; 5272 #elif defined(ATA_DEBUG) 5273 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5274 #else 5275 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5276 #endif 5277 5278 mutex_init(&ap->scsi_scan_mutex); 5279 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5280 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5281 INIT_LIST_HEAD(&ap->eh_done_q); 5282 init_waitqueue_head(&ap->eh_wait_q); 5283 init_completion(&ap->park_req_pending); 5284 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5285 TIMER_DEFERRABLE); 5286 5287 ap->cbl = ATA_CBL_NONE; 5288 5289 ata_link_init(ap, &ap->link, 0); 5290 5291 #ifdef ATA_IRQ_TRAP 5292 ap->stats.unhandled_irq = 1; 5293 ap->stats.idle_irq = 1; 5294 #endif 5295 ata_sff_port_init(ap); 5296 5297 return ap; 5298 } 5299 5300 static void ata_devres_release(struct device *gendev, void *res) 5301 { 5302 struct ata_host *host = dev_get_drvdata(gendev); 5303 int i; 5304 5305 for (i = 0; i < host->n_ports; i++) { 5306 struct ata_port *ap = host->ports[i]; 5307 5308 if (!ap) 5309 continue; 5310 5311 if (ap->scsi_host) 5312 scsi_host_put(ap->scsi_host); 5313 5314 } 5315 5316 dev_set_drvdata(gendev, NULL); 5317 ata_host_put(host); 5318 } 5319 5320 static void ata_host_release(struct kref *kref) 5321 { 5322 struct ata_host *host = container_of(kref, struct ata_host, kref); 5323 int i; 5324 5325 for (i = 0; i < host->n_ports; i++) { 5326 struct ata_port *ap = host->ports[i]; 5327 5328 kfree(ap->pmp_link); 5329 kfree(ap->slave_link); 5330 kfree(ap); 5331 host->ports[i] = NULL; 5332 } 5333 kfree(host); 5334 } 5335 5336 void ata_host_get(struct ata_host *host) 5337 { 5338 kref_get(&host->kref); 5339 } 5340 5341 void ata_host_put(struct ata_host *host) 5342 { 5343 kref_put(&host->kref, ata_host_release); 5344 } 5345 EXPORT_SYMBOL_GPL(ata_host_put); 5346 5347 /** 5348 * ata_host_alloc - allocate and init basic ATA host resources 5349 * @dev: generic device this host is associated with 5350 * @max_ports: maximum number of ATA ports associated with this host 5351 * 5352 * Allocate and initialize basic ATA host resources. LLD calls 5353 * this function to allocate a host, initializes it fully and 5354 * attaches it using ata_host_register(). 5355 * 5356 * @max_ports ports are allocated and host->n_ports is 5357 * initialized to @max_ports. The caller is allowed to decrease 5358 * host->n_ports before calling ata_host_register(). The unused 5359 * ports will be automatically freed on registration. 5360 * 5361 * RETURNS: 5362 * Allocate ATA host on success, NULL on failure. 5363 * 5364 * LOCKING: 5365 * Inherited from calling layer (may sleep). 5366 */ 5367 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5368 { 5369 struct ata_host *host; 5370 size_t sz; 5371 int i; 5372 void *dr; 5373 5374 DPRINTK("ENTER\n"); 5375 5376 /* alloc a container for our list of ATA ports (buses) */ 5377 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5378 host = kzalloc(sz, GFP_KERNEL); 5379 if (!host) 5380 return NULL; 5381 5382 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5383 goto err_free; 5384 5385 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5386 if (!dr) 5387 goto err_out; 5388 5389 devres_add(dev, dr); 5390 dev_set_drvdata(dev, host); 5391 5392 spin_lock_init(&host->lock); 5393 mutex_init(&host->eh_mutex); 5394 host->dev = dev; 5395 host->n_ports = max_ports; 5396 kref_init(&host->kref); 5397 5398 /* allocate ports bound to this host */ 5399 for (i = 0; i < max_ports; i++) { 5400 struct ata_port *ap; 5401 5402 ap = ata_port_alloc(host); 5403 if (!ap) 5404 goto err_out; 5405 5406 ap->port_no = i; 5407 host->ports[i] = ap; 5408 } 5409 5410 devres_remove_group(dev, NULL); 5411 return host; 5412 5413 err_out: 5414 devres_release_group(dev, NULL); 5415 err_free: 5416 kfree(host); 5417 return NULL; 5418 } 5419 EXPORT_SYMBOL_GPL(ata_host_alloc); 5420 5421 /** 5422 * ata_host_alloc_pinfo - alloc host and init with port_info array 5423 * @dev: generic device this host is associated with 5424 * @ppi: array of ATA port_info to initialize host with 5425 * @n_ports: number of ATA ports attached to this host 5426 * 5427 * Allocate ATA host and initialize with info from @ppi. If NULL 5428 * terminated, @ppi may contain fewer entries than @n_ports. The 5429 * last entry will be used for the remaining ports. 5430 * 5431 * RETURNS: 5432 * Allocate ATA host on success, NULL on failure. 5433 * 5434 * LOCKING: 5435 * Inherited from calling layer (may sleep). 5436 */ 5437 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5438 const struct ata_port_info * const * ppi, 5439 int n_ports) 5440 { 5441 const struct ata_port_info *pi; 5442 struct ata_host *host; 5443 int i, j; 5444 5445 host = ata_host_alloc(dev, n_ports); 5446 if (!host) 5447 return NULL; 5448 5449 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5450 struct ata_port *ap = host->ports[i]; 5451 5452 if (ppi[j]) 5453 pi = ppi[j++]; 5454 5455 ap->pio_mask = pi->pio_mask; 5456 ap->mwdma_mask = pi->mwdma_mask; 5457 ap->udma_mask = pi->udma_mask; 5458 ap->flags |= pi->flags; 5459 ap->link.flags |= pi->link_flags; 5460 ap->ops = pi->port_ops; 5461 5462 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5463 host->ops = pi->port_ops; 5464 } 5465 5466 return host; 5467 } 5468 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5469 5470 static void ata_host_stop(struct device *gendev, void *res) 5471 { 5472 struct ata_host *host = dev_get_drvdata(gendev); 5473 int i; 5474 5475 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5476 5477 for (i = 0; i < host->n_ports; i++) { 5478 struct ata_port *ap = host->ports[i]; 5479 5480 if (ap->ops->port_stop) 5481 ap->ops->port_stop(ap); 5482 } 5483 5484 if (host->ops->host_stop) 5485 host->ops->host_stop(host); 5486 } 5487 5488 /** 5489 * ata_finalize_port_ops - finalize ata_port_operations 5490 * @ops: ata_port_operations to finalize 5491 * 5492 * An ata_port_operations can inherit from another ops and that 5493 * ops can again inherit from another. This can go on as many 5494 * times as necessary as long as there is no loop in the 5495 * inheritance chain. 5496 * 5497 * Ops tables are finalized when the host is started. NULL or 5498 * unspecified entries are inherited from the closet ancestor 5499 * which has the method and the entry is populated with it. 5500 * After finalization, the ops table directly points to all the 5501 * methods and ->inherits is no longer necessary and cleared. 5502 * 5503 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5504 * 5505 * LOCKING: 5506 * None. 5507 */ 5508 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5509 { 5510 static DEFINE_SPINLOCK(lock); 5511 const struct ata_port_operations *cur; 5512 void **begin = (void **)ops; 5513 void **end = (void **)&ops->inherits; 5514 void **pp; 5515 5516 if (!ops || !ops->inherits) 5517 return; 5518 5519 spin_lock(&lock); 5520 5521 for (cur = ops->inherits; cur; cur = cur->inherits) { 5522 void **inherit = (void **)cur; 5523 5524 for (pp = begin; pp < end; pp++, inherit++) 5525 if (!*pp) 5526 *pp = *inherit; 5527 } 5528 5529 for (pp = begin; pp < end; pp++) 5530 if (IS_ERR(*pp)) 5531 *pp = NULL; 5532 5533 ops->inherits = NULL; 5534 5535 spin_unlock(&lock); 5536 } 5537 5538 /** 5539 * ata_host_start - start and freeze ports of an ATA host 5540 * @host: ATA host to start ports for 5541 * 5542 * Start and then freeze ports of @host. Started status is 5543 * recorded in host->flags, so this function can be called 5544 * multiple times. Ports are guaranteed to get started only 5545 * once. If host->ops isn't initialized yet, its set to the 5546 * first non-dummy port ops. 5547 * 5548 * LOCKING: 5549 * Inherited from calling layer (may sleep). 5550 * 5551 * RETURNS: 5552 * 0 if all ports are started successfully, -errno otherwise. 5553 */ 5554 int ata_host_start(struct ata_host *host) 5555 { 5556 int have_stop = 0; 5557 void *start_dr = NULL; 5558 int i, rc; 5559 5560 if (host->flags & ATA_HOST_STARTED) 5561 return 0; 5562 5563 ata_finalize_port_ops(host->ops); 5564 5565 for (i = 0; i < host->n_ports; i++) { 5566 struct ata_port *ap = host->ports[i]; 5567 5568 ata_finalize_port_ops(ap->ops); 5569 5570 if (!host->ops && !ata_port_is_dummy(ap)) 5571 host->ops = ap->ops; 5572 5573 if (ap->ops->port_stop) 5574 have_stop = 1; 5575 } 5576 5577 if (host->ops->host_stop) 5578 have_stop = 1; 5579 5580 if (have_stop) { 5581 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5582 if (!start_dr) 5583 return -ENOMEM; 5584 } 5585 5586 for (i = 0; i < host->n_ports; i++) { 5587 struct ata_port *ap = host->ports[i]; 5588 5589 if (ap->ops->port_start) { 5590 rc = ap->ops->port_start(ap); 5591 if (rc) { 5592 if (rc != -ENODEV) 5593 dev_err(host->dev, 5594 "failed to start port %d (errno=%d)\n", 5595 i, rc); 5596 goto err_out; 5597 } 5598 } 5599 ata_eh_freeze_port(ap); 5600 } 5601 5602 if (start_dr) 5603 devres_add(host->dev, start_dr); 5604 host->flags |= ATA_HOST_STARTED; 5605 return 0; 5606 5607 err_out: 5608 while (--i >= 0) { 5609 struct ata_port *ap = host->ports[i]; 5610 5611 if (ap->ops->port_stop) 5612 ap->ops->port_stop(ap); 5613 } 5614 devres_free(start_dr); 5615 return rc; 5616 } 5617 EXPORT_SYMBOL_GPL(ata_host_start); 5618 5619 /** 5620 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 5621 * @host: host to initialize 5622 * @dev: device host is attached to 5623 * @ops: port_ops 5624 * 5625 */ 5626 void ata_host_init(struct ata_host *host, struct device *dev, 5627 struct ata_port_operations *ops) 5628 { 5629 spin_lock_init(&host->lock); 5630 mutex_init(&host->eh_mutex); 5631 host->n_tags = ATA_MAX_QUEUE; 5632 host->dev = dev; 5633 host->ops = ops; 5634 kref_init(&host->kref); 5635 } 5636 EXPORT_SYMBOL_GPL(ata_host_init); 5637 5638 void __ata_port_probe(struct ata_port *ap) 5639 { 5640 struct ata_eh_info *ehi = &ap->link.eh_info; 5641 unsigned long flags; 5642 5643 /* kick EH for boot probing */ 5644 spin_lock_irqsave(ap->lock, flags); 5645 5646 ehi->probe_mask |= ATA_ALL_DEVICES; 5647 ehi->action |= ATA_EH_RESET; 5648 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5649 5650 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5651 ap->pflags |= ATA_PFLAG_LOADING; 5652 ata_port_schedule_eh(ap); 5653 5654 spin_unlock_irqrestore(ap->lock, flags); 5655 } 5656 5657 int ata_port_probe(struct ata_port *ap) 5658 { 5659 int rc = 0; 5660 5661 if (ap->ops->error_handler) { 5662 __ata_port_probe(ap); 5663 ata_port_wait_eh(ap); 5664 } else { 5665 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5666 rc = ata_bus_probe(ap); 5667 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5668 } 5669 return rc; 5670 } 5671 5672 5673 static void async_port_probe(void *data, async_cookie_t cookie) 5674 { 5675 struct ata_port *ap = data; 5676 5677 /* 5678 * If we're not allowed to scan this host in parallel, 5679 * we need to wait until all previous scans have completed 5680 * before going further. 5681 * Jeff Garzik says this is only within a controller, so we 5682 * don't need to wait for port 0, only for later ports. 5683 */ 5684 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5685 async_synchronize_cookie(cookie); 5686 5687 (void)ata_port_probe(ap); 5688 5689 /* in order to keep device order, we need to synchronize at this point */ 5690 async_synchronize_cookie(cookie); 5691 5692 ata_scsi_scan_host(ap, 1); 5693 } 5694 5695 /** 5696 * ata_host_register - register initialized ATA host 5697 * @host: ATA host to register 5698 * @sht: template for SCSI host 5699 * 5700 * Register initialized ATA host. @host is allocated using 5701 * ata_host_alloc() and fully initialized by LLD. This function 5702 * starts ports, registers @host with ATA and SCSI layers and 5703 * probe registered devices. 5704 * 5705 * LOCKING: 5706 * Inherited from calling layer (may sleep). 5707 * 5708 * RETURNS: 5709 * 0 on success, -errno otherwise. 5710 */ 5711 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5712 { 5713 int i, rc; 5714 5715 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5716 5717 /* host must have been started */ 5718 if (!(host->flags & ATA_HOST_STARTED)) { 5719 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5720 WARN_ON(1); 5721 return -EINVAL; 5722 } 5723 5724 /* Blow away unused ports. This happens when LLD can't 5725 * determine the exact number of ports to allocate at 5726 * allocation time. 5727 */ 5728 for (i = host->n_ports; host->ports[i]; i++) 5729 kfree(host->ports[i]); 5730 5731 /* give ports names and add SCSI hosts */ 5732 for (i = 0; i < host->n_ports; i++) { 5733 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5734 host->ports[i]->local_port_no = i + 1; 5735 } 5736 5737 /* Create associated sysfs transport objects */ 5738 for (i = 0; i < host->n_ports; i++) { 5739 rc = ata_tport_add(host->dev,host->ports[i]); 5740 if (rc) { 5741 goto err_tadd; 5742 } 5743 } 5744 5745 rc = ata_scsi_add_hosts(host, sht); 5746 if (rc) 5747 goto err_tadd; 5748 5749 /* set cable, sata_spd_limit and report */ 5750 for (i = 0; i < host->n_ports; i++) { 5751 struct ata_port *ap = host->ports[i]; 5752 unsigned long xfer_mask; 5753 5754 /* set SATA cable type if still unset */ 5755 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5756 ap->cbl = ATA_CBL_SATA; 5757 5758 /* init sata_spd_limit to the current value */ 5759 sata_link_init_spd(&ap->link); 5760 if (ap->slave_link) 5761 sata_link_init_spd(ap->slave_link); 5762 5763 /* print per-port info to dmesg */ 5764 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5765 ap->udma_mask); 5766 5767 if (!ata_port_is_dummy(ap)) { 5768 ata_port_info(ap, "%cATA max %s %s\n", 5769 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5770 ata_mode_string(xfer_mask), 5771 ap->link.eh_info.desc); 5772 ata_ehi_clear_desc(&ap->link.eh_info); 5773 } else 5774 ata_port_info(ap, "DUMMY\n"); 5775 } 5776 5777 /* perform each probe asynchronously */ 5778 for (i = 0; i < host->n_ports; i++) { 5779 struct ata_port *ap = host->ports[i]; 5780 ap->cookie = async_schedule(async_port_probe, ap); 5781 } 5782 5783 return 0; 5784 5785 err_tadd: 5786 while (--i >= 0) { 5787 ata_tport_delete(host->ports[i]); 5788 } 5789 return rc; 5790 5791 } 5792 EXPORT_SYMBOL_GPL(ata_host_register); 5793 5794 /** 5795 * ata_host_activate - start host, request IRQ and register it 5796 * @host: target ATA host 5797 * @irq: IRQ to request 5798 * @irq_handler: irq_handler used when requesting IRQ 5799 * @irq_flags: irq_flags used when requesting IRQ 5800 * @sht: scsi_host_template to use when registering the host 5801 * 5802 * After allocating an ATA host and initializing it, most libata 5803 * LLDs perform three steps to activate the host - start host, 5804 * request IRQ and register it. This helper takes necessary 5805 * arguments and performs the three steps in one go. 5806 * 5807 * An invalid IRQ skips the IRQ registration and expects the host to 5808 * have set polling mode on the port. In this case, @irq_handler 5809 * should be NULL. 5810 * 5811 * LOCKING: 5812 * Inherited from calling layer (may sleep). 5813 * 5814 * RETURNS: 5815 * 0 on success, -errno otherwise. 5816 */ 5817 int ata_host_activate(struct ata_host *host, int irq, 5818 irq_handler_t irq_handler, unsigned long irq_flags, 5819 struct scsi_host_template *sht) 5820 { 5821 int i, rc; 5822 char *irq_desc; 5823 5824 rc = ata_host_start(host); 5825 if (rc) 5826 return rc; 5827 5828 /* Special case for polling mode */ 5829 if (!irq) { 5830 WARN_ON(irq_handler); 5831 return ata_host_register(host, sht); 5832 } 5833 5834 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5835 dev_driver_string(host->dev), 5836 dev_name(host->dev)); 5837 if (!irq_desc) 5838 return -ENOMEM; 5839 5840 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5841 irq_desc, host); 5842 if (rc) 5843 return rc; 5844 5845 for (i = 0; i < host->n_ports; i++) 5846 ata_port_desc(host->ports[i], "irq %d", irq); 5847 5848 rc = ata_host_register(host, sht); 5849 /* if failed, just free the IRQ and leave ports alone */ 5850 if (rc) 5851 devm_free_irq(host->dev, irq, host); 5852 5853 return rc; 5854 } 5855 EXPORT_SYMBOL_GPL(ata_host_activate); 5856 5857 /** 5858 * ata_port_detach - Detach ATA port in preparation of device removal 5859 * @ap: ATA port to be detached 5860 * 5861 * Detach all ATA devices and the associated SCSI devices of @ap; 5862 * then, remove the associated SCSI host. @ap is guaranteed to 5863 * be quiescent on return from this function. 5864 * 5865 * LOCKING: 5866 * Kernel thread context (may sleep). 5867 */ 5868 static void ata_port_detach(struct ata_port *ap) 5869 { 5870 unsigned long flags; 5871 struct ata_link *link; 5872 struct ata_device *dev; 5873 5874 if (!ap->ops->error_handler) 5875 goto skip_eh; 5876 5877 /* tell EH we're leaving & flush EH */ 5878 spin_lock_irqsave(ap->lock, flags); 5879 ap->pflags |= ATA_PFLAG_UNLOADING; 5880 ata_port_schedule_eh(ap); 5881 spin_unlock_irqrestore(ap->lock, flags); 5882 5883 /* wait till EH commits suicide */ 5884 ata_port_wait_eh(ap); 5885 5886 /* it better be dead now */ 5887 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 5888 5889 cancel_delayed_work_sync(&ap->hotplug_task); 5890 5891 skip_eh: 5892 /* clean up zpodd on port removal */ 5893 ata_for_each_link(link, ap, HOST_FIRST) { 5894 ata_for_each_dev(dev, link, ALL) { 5895 if (zpodd_dev_enabled(dev)) 5896 zpodd_exit(dev); 5897 } 5898 } 5899 if (ap->pmp_link) { 5900 int i; 5901 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 5902 ata_tlink_delete(&ap->pmp_link[i]); 5903 } 5904 /* remove the associated SCSI host */ 5905 scsi_remove_host(ap->scsi_host); 5906 ata_tport_delete(ap); 5907 } 5908 5909 /** 5910 * ata_host_detach - Detach all ports of an ATA host 5911 * @host: Host to detach 5912 * 5913 * Detach all ports of @host. 5914 * 5915 * LOCKING: 5916 * Kernel thread context (may sleep). 5917 */ 5918 void ata_host_detach(struct ata_host *host) 5919 { 5920 int i; 5921 5922 for (i = 0; i < host->n_ports; i++) { 5923 /* Ensure ata_port probe has completed */ 5924 async_synchronize_cookie(host->ports[i]->cookie + 1); 5925 ata_port_detach(host->ports[i]); 5926 } 5927 5928 /* the host is dead now, dissociate ACPI */ 5929 ata_acpi_dissociate(host); 5930 } 5931 EXPORT_SYMBOL_GPL(ata_host_detach); 5932 5933 #ifdef CONFIG_PCI 5934 5935 /** 5936 * ata_pci_remove_one - PCI layer callback for device removal 5937 * @pdev: PCI device that was removed 5938 * 5939 * PCI layer indicates to libata via this hook that hot-unplug or 5940 * module unload event has occurred. Detach all ports. Resource 5941 * release is handled via devres. 5942 * 5943 * LOCKING: 5944 * Inherited from PCI layer (may sleep). 5945 */ 5946 void ata_pci_remove_one(struct pci_dev *pdev) 5947 { 5948 struct ata_host *host = pci_get_drvdata(pdev); 5949 5950 ata_host_detach(host); 5951 } 5952 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 5953 5954 void ata_pci_shutdown_one(struct pci_dev *pdev) 5955 { 5956 struct ata_host *host = pci_get_drvdata(pdev); 5957 int i; 5958 5959 for (i = 0; i < host->n_ports; i++) { 5960 struct ata_port *ap = host->ports[i]; 5961 5962 ap->pflags |= ATA_PFLAG_FROZEN; 5963 5964 /* Disable port interrupts */ 5965 if (ap->ops->freeze) 5966 ap->ops->freeze(ap); 5967 5968 /* Stop the port DMA engines */ 5969 if (ap->ops->port_stop) 5970 ap->ops->port_stop(ap); 5971 } 5972 } 5973 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 5974 5975 /* move to PCI subsystem */ 5976 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 5977 { 5978 unsigned long tmp = 0; 5979 5980 switch (bits->width) { 5981 case 1: { 5982 u8 tmp8 = 0; 5983 pci_read_config_byte(pdev, bits->reg, &tmp8); 5984 tmp = tmp8; 5985 break; 5986 } 5987 case 2: { 5988 u16 tmp16 = 0; 5989 pci_read_config_word(pdev, bits->reg, &tmp16); 5990 tmp = tmp16; 5991 break; 5992 } 5993 case 4: { 5994 u32 tmp32 = 0; 5995 pci_read_config_dword(pdev, bits->reg, &tmp32); 5996 tmp = tmp32; 5997 break; 5998 } 5999 6000 default: 6001 return -EINVAL; 6002 } 6003 6004 tmp &= bits->mask; 6005 6006 return (tmp == bits->val) ? 1 : 0; 6007 } 6008 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6009 6010 #ifdef CONFIG_PM 6011 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6012 { 6013 pci_save_state(pdev); 6014 pci_disable_device(pdev); 6015 6016 if (mesg.event & PM_EVENT_SLEEP) 6017 pci_set_power_state(pdev, PCI_D3hot); 6018 } 6019 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6020 6021 int ata_pci_device_do_resume(struct pci_dev *pdev) 6022 { 6023 int rc; 6024 6025 pci_set_power_state(pdev, PCI_D0); 6026 pci_restore_state(pdev); 6027 6028 rc = pcim_enable_device(pdev); 6029 if (rc) { 6030 dev_err(&pdev->dev, 6031 "failed to enable device after resume (%d)\n", rc); 6032 return rc; 6033 } 6034 6035 pci_set_master(pdev); 6036 return 0; 6037 } 6038 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6039 6040 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6041 { 6042 struct ata_host *host = pci_get_drvdata(pdev); 6043 int rc = 0; 6044 6045 rc = ata_host_suspend(host, mesg); 6046 if (rc) 6047 return rc; 6048 6049 ata_pci_device_do_suspend(pdev, mesg); 6050 6051 return 0; 6052 } 6053 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6054 6055 int ata_pci_device_resume(struct pci_dev *pdev) 6056 { 6057 struct ata_host *host = pci_get_drvdata(pdev); 6058 int rc; 6059 6060 rc = ata_pci_device_do_resume(pdev); 6061 if (rc == 0) 6062 ata_host_resume(host); 6063 return rc; 6064 } 6065 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6066 #endif /* CONFIG_PM */ 6067 #endif /* CONFIG_PCI */ 6068 6069 /** 6070 * ata_platform_remove_one - Platform layer callback for device removal 6071 * @pdev: Platform device that was removed 6072 * 6073 * Platform layer indicates to libata via this hook that hot-unplug or 6074 * module unload event has occurred. Detach all ports. Resource 6075 * release is handled via devres. 6076 * 6077 * LOCKING: 6078 * Inherited from platform layer (may sleep). 6079 */ 6080 int ata_platform_remove_one(struct platform_device *pdev) 6081 { 6082 struct ata_host *host = platform_get_drvdata(pdev); 6083 6084 ata_host_detach(host); 6085 6086 return 0; 6087 } 6088 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6089 6090 #ifdef CONFIG_ATA_FORCE 6091 static int __init ata_parse_force_one(char **cur, 6092 struct ata_force_ent *force_ent, 6093 const char **reason) 6094 { 6095 static const struct ata_force_param force_tbl[] __initconst = { 6096 { "40c", .cbl = ATA_CBL_PATA40 }, 6097 { "80c", .cbl = ATA_CBL_PATA80 }, 6098 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6099 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6100 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6101 { "sata", .cbl = ATA_CBL_SATA }, 6102 { "1.5Gbps", .spd_limit = 1 }, 6103 { "3.0Gbps", .spd_limit = 2 }, 6104 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6105 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6106 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6107 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6108 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6109 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6110 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6111 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6112 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6113 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6114 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6115 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6116 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6117 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6118 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6119 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6120 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6121 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6122 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6123 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6124 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6125 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6126 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6127 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6128 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6129 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6130 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6131 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6132 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6133 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6134 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6135 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6136 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6137 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6138 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6139 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6140 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6141 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6142 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6143 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6144 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6145 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6146 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6147 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6148 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6149 }; 6150 char *start = *cur, *p = *cur; 6151 char *id, *val, *endp; 6152 const struct ata_force_param *match_fp = NULL; 6153 int nr_matches = 0, i; 6154 6155 /* find where this param ends and update *cur */ 6156 while (*p != '\0' && *p != ',') 6157 p++; 6158 6159 if (*p == '\0') 6160 *cur = p; 6161 else 6162 *cur = p + 1; 6163 6164 *p = '\0'; 6165 6166 /* parse */ 6167 p = strchr(start, ':'); 6168 if (!p) { 6169 val = strstrip(start); 6170 goto parse_val; 6171 } 6172 *p = '\0'; 6173 6174 id = strstrip(start); 6175 val = strstrip(p + 1); 6176 6177 /* parse id */ 6178 p = strchr(id, '.'); 6179 if (p) { 6180 *p++ = '\0'; 6181 force_ent->device = simple_strtoul(p, &endp, 10); 6182 if (p == endp || *endp != '\0') { 6183 *reason = "invalid device"; 6184 return -EINVAL; 6185 } 6186 } 6187 6188 force_ent->port = simple_strtoul(id, &endp, 10); 6189 if (id == endp || *endp != '\0') { 6190 *reason = "invalid port/link"; 6191 return -EINVAL; 6192 } 6193 6194 parse_val: 6195 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6196 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6197 const struct ata_force_param *fp = &force_tbl[i]; 6198 6199 if (strncasecmp(val, fp->name, strlen(val))) 6200 continue; 6201 6202 nr_matches++; 6203 match_fp = fp; 6204 6205 if (strcasecmp(val, fp->name) == 0) { 6206 nr_matches = 1; 6207 break; 6208 } 6209 } 6210 6211 if (!nr_matches) { 6212 *reason = "unknown value"; 6213 return -EINVAL; 6214 } 6215 if (nr_matches > 1) { 6216 *reason = "ambiguous value"; 6217 return -EINVAL; 6218 } 6219 6220 force_ent->param = *match_fp; 6221 6222 return 0; 6223 } 6224 6225 static void __init ata_parse_force_param(void) 6226 { 6227 int idx = 0, size = 1; 6228 int last_port = -1, last_device = -1; 6229 char *p, *cur, *next; 6230 6231 /* calculate maximum number of params and allocate force_tbl */ 6232 for (p = ata_force_param_buf; *p; p++) 6233 if (*p == ',') 6234 size++; 6235 6236 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6237 if (!ata_force_tbl) { 6238 printk(KERN_WARNING "ata: failed to extend force table, " 6239 "libata.force ignored\n"); 6240 return; 6241 } 6242 6243 /* parse and populate the table */ 6244 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6245 const char *reason = ""; 6246 struct ata_force_ent te = { .port = -1, .device = -1 }; 6247 6248 next = cur; 6249 if (ata_parse_force_one(&next, &te, &reason)) { 6250 printk(KERN_WARNING "ata: failed to parse force " 6251 "parameter \"%s\" (%s)\n", 6252 cur, reason); 6253 continue; 6254 } 6255 6256 if (te.port == -1) { 6257 te.port = last_port; 6258 te.device = last_device; 6259 } 6260 6261 ata_force_tbl[idx++] = te; 6262 6263 last_port = te.port; 6264 last_device = te.device; 6265 } 6266 6267 ata_force_tbl_size = idx; 6268 } 6269 6270 static void ata_free_force_param(void) 6271 { 6272 kfree(ata_force_tbl); 6273 } 6274 #else 6275 static inline void ata_parse_force_param(void) { } 6276 static inline void ata_free_force_param(void) { } 6277 #endif 6278 6279 static int __init ata_init(void) 6280 { 6281 int rc; 6282 6283 ata_parse_force_param(); 6284 6285 rc = ata_sff_init(); 6286 if (rc) { 6287 ata_free_force_param(); 6288 return rc; 6289 } 6290 6291 libata_transport_init(); 6292 ata_scsi_transport_template = ata_attach_transport(); 6293 if (!ata_scsi_transport_template) { 6294 ata_sff_exit(); 6295 rc = -ENOMEM; 6296 goto err_out; 6297 } 6298 6299 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6300 return 0; 6301 6302 err_out: 6303 return rc; 6304 } 6305 6306 static void __exit ata_exit(void) 6307 { 6308 ata_release_transport(ata_scsi_transport_template); 6309 libata_transport_exit(); 6310 ata_sff_exit(); 6311 ata_free_force_param(); 6312 } 6313 6314 subsys_initcall(ata_init); 6315 module_exit(ata_exit); 6316 6317 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6318 6319 int ata_ratelimit(void) 6320 { 6321 return __ratelimit(&ratelimit); 6322 } 6323 EXPORT_SYMBOL_GPL(ata_ratelimit); 6324 6325 /** 6326 * ata_msleep - ATA EH owner aware msleep 6327 * @ap: ATA port to attribute the sleep to 6328 * @msecs: duration to sleep in milliseconds 6329 * 6330 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6331 * ownership is released before going to sleep and reacquired 6332 * after the sleep is complete. IOW, other ports sharing the 6333 * @ap->host will be allowed to own the EH while this task is 6334 * sleeping. 6335 * 6336 * LOCKING: 6337 * Might sleep. 6338 */ 6339 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6340 { 6341 bool owns_eh = ap && ap->host->eh_owner == current; 6342 6343 if (owns_eh) 6344 ata_eh_release(ap); 6345 6346 if (msecs < 20) { 6347 unsigned long usecs = msecs * USEC_PER_MSEC; 6348 usleep_range(usecs, usecs + 50); 6349 } else { 6350 msleep(msecs); 6351 } 6352 6353 if (owns_eh) 6354 ata_eh_acquire(ap); 6355 } 6356 EXPORT_SYMBOL_GPL(ata_msleep); 6357 6358 /** 6359 * ata_wait_register - wait until register value changes 6360 * @ap: ATA port to wait register for, can be NULL 6361 * @reg: IO-mapped register 6362 * @mask: Mask to apply to read register value 6363 * @val: Wait condition 6364 * @interval: polling interval in milliseconds 6365 * @timeout: timeout in milliseconds 6366 * 6367 * Waiting for some bits of register to change is a common 6368 * operation for ATA controllers. This function reads 32bit LE 6369 * IO-mapped register @reg and tests for the following condition. 6370 * 6371 * (*@reg & mask) != val 6372 * 6373 * If the condition is met, it returns; otherwise, the process is 6374 * repeated after @interval_msec until timeout. 6375 * 6376 * LOCKING: 6377 * Kernel thread context (may sleep) 6378 * 6379 * RETURNS: 6380 * The final register value. 6381 */ 6382 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6383 unsigned long interval, unsigned long timeout) 6384 { 6385 unsigned long deadline; 6386 u32 tmp; 6387 6388 tmp = ioread32(reg); 6389 6390 /* Calculate timeout _after_ the first read to make sure 6391 * preceding writes reach the controller before starting to 6392 * eat away the timeout. 6393 */ 6394 deadline = ata_deadline(jiffies, timeout); 6395 6396 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6397 ata_msleep(ap, interval); 6398 tmp = ioread32(reg); 6399 } 6400 6401 return tmp; 6402 } 6403 EXPORT_SYMBOL_GPL(ata_wait_register); 6404 6405 /* 6406 * Dummy port_ops 6407 */ 6408 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6409 { 6410 return AC_ERR_SYSTEM; 6411 } 6412 6413 static void ata_dummy_error_handler(struct ata_port *ap) 6414 { 6415 /* truly dummy */ 6416 } 6417 6418 struct ata_port_operations ata_dummy_port_ops = { 6419 .qc_prep = ata_noop_qc_prep, 6420 .qc_issue = ata_dummy_qc_issue, 6421 .error_handler = ata_dummy_error_handler, 6422 .sched_eh = ata_std_sched_eh, 6423 .end_eh = ata_std_end_eh, 6424 }; 6425 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6426 6427 const struct ata_port_info ata_dummy_port_info = { 6428 .port_ops = &ata_dummy_port_ops, 6429 }; 6430 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6431 6432 /* 6433 * Utility print functions 6434 */ 6435 void ata_port_printk(const struct ata_port *ap, const char *level, 6436 const char *fmt, ...) 6437 { 6438 struct va_format vaf; 6439 va_list args; 6440 6441 va_start(args, fmt); 6442 6443 vaf.fmt = fmt; 6444 vaf.va = &args; 6445 6446 printk("%sata%u: %pV", level, ap->print_id, &vaf); 6447 6448 va_end(args); 6449 } 6450 EXPORT_SYMBOL(ata_port_printk); 6451 6452 void ata_link_printk(const struct ata_link *link, const char *level, 6453 const char *fmt, ...) 6454 { 6455 struct va_format vaf; 6456 va_list args; 6457 6458 va_start(args, fmt); 6459 6460 vaf.fmt = fmt; 6461 vaf.va = &args; 6462 6463 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6464 printk("%sata%u.%02u: %pV", 6465 level, link->ap->print_id, link->pmp, &vaf); 6466 else 6467 printk("%sata%u: %pV", 6468 level, link->ap->print_id, &vaf); 6469 6470 va_end(args); 6471 } 6472 EXPORT_SYMBOL(ata_link_printk); 6473 6474 void ata_dev_printk(const struct ata_device *dev, const char *level, 6475 const char *fmt, ...) 6476 { 6477 struct va_format vaf; 6478 va_list args; 6479 6480 va_start(args, fmt); 6481 6482 vaf.fmt = fmt; 6483 vaf.va = &args; 6484 6485 printk("%sata%u.%02u: %pV", 6486 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6487 &vaf); 6488 6489 va_end(args); 6490 } 6491 EXPORT_SYMBOL(ata_dev_printk); 6492 6493 void ata_print_version(const struct device *dev, const char *version) 6494 { 6495 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6496 } 6497 EXPORT_SYMBOL(ata_print_version); 6498