1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned long xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags; 100 }; 101 102 struct ata_force_ent { 103 int port; 104 int device; 105 struct ata_force_param param; 106 }; 107 108 static struct ata_force_ent *ata_force_tbl; 109 static int ata_force_tbl_size; 110 111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 112 /* param_buf is thrown away after initialization, disallow read */ 113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 115 #endif 116 117 static int atapi_enabled = 1; 118 module_param(atapi_enabled, int, 0444); 119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 120 121 static int atapi_dmadir = 0; 122 module_param(atapi_dmadir, int, 0444); 123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 124 125 int atapi_passthru16 = 1; 126 module_param(atapi_passthru16, int, 0444); 127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 128 129 int libata_fua = 0; 130 module_param_named(fua, libata_fua, int, 0444); 131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 132 133 static int ata_ignore_hpa; 134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 136 137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 138 module_param_named(dma, libata_dma_mask, int, 0444); 139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 140 141 static int ata_probe_timeout; 142 module_param(ata_probe_timeout, int, 0444); 143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 144 145 int libata_noacpi = 0; 146 module_param_named(noacpi, libata_noacpi, int, 0444); 147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 148 149 int libata_allow_tpm = 0; 150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 152 153 static int atapi_an; 154 module_param(atapi_an, int, 0444); 155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 156 157 MODULE_AUTHOR("Jeff Garzik"); 158 MODULE_DESCRIPTION("Library module for ATA devices"); 159 MODULE_LICENSE("GPL"); 160 MODULE_VERSION(DRV_VERSION); 161 162 static inline bool ata_dev_print_info(struct ata_device *dev) 163 { 164 struct ata_eh_context *ehc = &dev->link->eh_context; 165 166 return ehc->i.flags & ATA_EHI_PRINTINFO; 167 } 168 169 static bool ata_sstatus_online(u32 sstatus) 170 { 171 return (sstatus & 0xf) == 0x3; 172 } 173 174 /** 175 * ata_link_next - link iteration helper 176 * @link: the previous link, NULL to start 177 * @ap: ATA port containing links to iterate 178 * @mode: iteration mode, one of ATA_LITER_* 179 * 180 * LOCKING: 181 * Host lock or EH context. 182 * 183 * RETURNS: 184 * Pointer to the next link. 185 */ 186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 187 enum ata_link_iter_mode mode) 188 { 189 BUG_ON(mode != ATA_LITER_EDGE && 190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 191 192 /* NULL link indicates start of iteration */ 193 if (!link) 194 switch (mode) { 195 case ATA_LITER_EDGE: 196 case ATA_LITER_PMP_FIRST: 197 if (sata_pmp_attached(ap)) 198 return ap->pmp_link; 199 fallthrough; 200 case ATA_LITER_HOST_FIRST: 201 return &ap->link; 202 } 203 204 /* we just iterated over the host link, what's next? */ 205 if (link == &ap->link) 206 switch (mode) { 207 case ATA_LITER_HOST_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 fallthrough; 211 case ATA_LITER_PMP_FIRST: 212 if (unlikely(ap->slave_link)) 213 return ap->slave_link; 214 fallthrough; 215 case ATA_LITER_EDGE: 216 return NULL; 217 } 218 219 /* slave_link excludes PMP */ 220 if (unlikely(link == ap->slave_link)) 221 return NULL; 222 223 /* we were over a PMP link */ 224 if (++link < ap->pmp_link + ap->nr_pmp_links) 225 return link; 226 227 if (mode == ATA_LITER_PMP_FIRST) 228 return &ap->link; 229 230 return NULL; 231 } 232 EXPORT_SYMBOL_GPL(ata_link_next); 233 234 /** 235 * ata_dev_next - device iteration helper 236 * @dev: the previous device, NULL to start 237 * @link: ATA link containing devices to iterate 238 * @mode: iteration mode, one of ATA_DITER_* 239 * 240 * LOCKING: 241 * Host lock or EH context. 242 * 243 * RETURNS: 244 * Pointer to the next device. 245 */ 246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 247 enum ata_dev_iter_mode mode) 248 { 249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 251 252 /* NULL dev indicates start of iteration */ 253 if (!dev) 254 switch (mode) { 255 case ATA_DITER_ENABLED: 256 case ATA_DITER_ALL: 257 dev = link->device; 258 goto check; 259 case ATA_DITER_ENABLED_REVERSE: 260 case ATA_DITER_ALL_REVERSE: 261 dev = link->device + ata_link_max_devices(link) - 1; 262 goto check; 263 } 264 265 next: 266 /* move to the next one */ 267 switch (mode) { 268 case ATA_DITER_ENABLED: 269 case ATA_DITER_ALL: 270 if (++dev < link->device + ata_link_max_devices(link)) 271 goto check; 272 return NULL; 273 case ATA_DITER_ENABLED_REVERSE: 274 case ATA_DITER_ALL_REVERSE: 275 if (--dev >= link->device) 276 goto check; 277 return NULL; 278 } 279 280 check: 281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 282 !ata_dev_enabled(dev)) 283 goto next; 284 return dev; 285 } 286 EXPORT_SYMBOL_GPL(ata_dev_next); 287 288 /** 289 * ata_dev_phys_link - find physical link for a device 290 * @dev: ATA device to look up physical link for 291 * 292 * Look up physical link which @dev is attached to. Note that 293 * this is different from @dev->link only when @dev is on slave 294 * link. For all other cases, it's the same as @dev->link. 295 * 296 * LOCKING: 297 * Don't care. 298 * 299 * RETURNS: 300 * Pointer to the found physical link. 301 */ 302 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 303 { 304 struct ata_port *ap = dev->link->ap; 305 306 if (!ap->slave_link) 307 return dev->link; 308 if (!dev->devno) 309 return &ap->link; 310 return ap->slave_link; 311 } 312 313 #ifdef CONFIG_ATA_FORCE 314 /** 315 * ata_force_cbl - force cable type according to libata.force 316 * @ap: ATA port of interest 317 * 318 * Force cable type according to libata.force and whine about it. 319 * The last entry which has matching port number is used, so it 320 * can be specified as part of device force parameters. For 321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 322 * same effect. 323 * 324 * LOCKING: 325 * EH context. 326 */ 327 void ata_force_cbl(struct ata_port *ap) 328 { 329 int i; 330 331 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 332 const struct ata_force_ent *fe = &ata_force_tbl[i]; 333 334 if (fe->port != -1 && fe->port != ap->print_id) 335 continue; 336 337 if (fe->param.cbl == ATA_CBL_NONE) 338 continue; 339 340 ap->cbl = fe->param.cbl; 341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 342 return; 343 } 344 } 345 346 /** 347 * ata_force_link_limits - force link limits according to libata.force 348 * @link: ATA link of interest 349 * 350 * Force link flags and SATA spd limit according to libata.force 351 * and whine about it. When only the port part is specified 352 * (e.g. 1:), the limit applies to all links connected to both 353 * the host link and all fan-out ports connected via PMP. If the 354 * device part is specified as 0 (e.g. 1.00:), it specifies the 355 * first fan-out link not the host link. Device number 15 always 356 * points to the host link whether PMP is attached or not. If the 357 * controller has slave link, device number 16 points to it. 358 * 359 * LOCKING: 360 * EH context. 361 */ 362 static void ata_force_link_limits(struct ata_link *link) 363 { 364 bool did_spd = false; 365 int linkno = link->pmp; 366 int i; 367 368 if (ata_is_host_link(link)) 369 linkno += 15; 370 371 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 372 const struct ata_force_ent *fe = &ata_force_tbl[i]; 373 374 if (fe->port != -1 && fe->port != link->ap->print_id) 375 continue; 376 377 if (fe->device != -1 && fe->device != linkno) 378 continue; 379 380 /* only honor the first spd limit */ 381 if (!did_spd && fe->param.spd_limit) { 382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 384 fe->param.name); 385 did_spd = true; 386 } 387 388 /* let lflags stack */ 389 if (fe->param.lflags) { 390 link->flags |= fe->param.lflags; 391 ata_link_notice(link, 392 "FORCE: link flag 0x%x forced -> 0x%x\n", 393 fe->param.lflags, link->flags); 394 } 395 } 396 } 397 398 /** 399 * ata_force_xfermask - force xfermask according to libata.force 400 * @dev: ATA device of interest 401 * 402 * Force xfer_mask according to libata.force and whine about it. 403 * For consistency with link selection, device number 15 selects 404 * the first device connected to the host link. 405 * 406 * LOCKING: 407 * EH context. 408 */ 409 static void ata_force_xfermask(struct ata_device *dev) 410 { 411 int devno = dev->link->pmp + dev->devno; 412 int alt_devno = devno; 413 int i; 414 415 /* allow n.15/16 for devices attached to host port */ 416 if (ata_is_host_link(dev->link)) 417 alt_devno += 15; 418 419 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 420 const struct ata_force_ent *fe = &ata_force_tbl[i]; 421 unsigned long pio_mask, mwdma_mask, udma_mask; 422 423 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 424 continue; 425 426 if (fe->device != -1 && fe->device != devno && 427 fe->device != alt_devno) 428 continue; 429 430 if (!fe->param.xfer_mask) 431 continue; 432 433 ata_unpack_xfermask(fe->param.xfer_mask, 434 &pio_mask, &mwdma_mask, &udma_mask); 435 if (udma_mask) 436 dev->udma_mask = udma_mask; 437 else if (mwdma_mask) { 438 dev->udma_mask = 0; 439 dev->mwdma_mask = mwdma_mask; 440 } else { 441 dev->udma_mask = 0; 442 dev->mwdma_mask = 0; 443 dev->pio_mask = pio_mask; 444 } 445 446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 447 fe->param.name); 448 return; 449 } 450 } 451 452 /** 453 * ata_force_horkage - force horkage according to libata.force 454 * @dev: ATA device of interest 455 * 456 * Force horkage according to libata.force and whine about it. 457 * For consistency with link selection, device number 15 selects 458 * the first device connected to the host link. 459 * 460 * LOCKING: 461 * EH context. 462 */ 463 static void ata_force_horkage(struct ata_device *dev) 464 { 465 int devno = dev->link->pmp + dev->devno; 466 int alt_devno = devno; 467 int i; 468 469 /* allow n.15/16 for devices attached to host port */ 470 if (ata_is_host_link(dev->link)) 471 alt_devno += 15; 472 473 for (i = 0; i < ata_force_tbl_size; i++) { 474 const struct ata_force_ent *fe = &ata_force_tbl[i]; 475 476 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 477 continue; 478 479 if (fe->device != -1 && fe->device != devno && 480 fe->device != alt_devno) 481 continue; 482 483 if (!(~dev->horkage & fe->param.horkage_on) && 484 !(dev->horkage & fe->param.horkage_off)) 485 continue; 486 487 dev->horkage |= fe->param.horkage_on; 488 dev->horkage &= ~fe->param.horkage_off; 489 490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 491 fe->param.name); 492 } 493 } 494 #else 495 static inline void ata_force_link_limits(struct ata_link *link) { } 496 static inline void ata_force_xfermask(struct ata_device *dev) { } 497 static inline void ata_force_horkage(struct ata_device *dev) { } 498 #endif 499 500 /** 501 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 502 * @opcode: SCSI opcode 503 * 504 * Determine ATAPI command type from @opcode. 505 * 506 * LOCKING: 507 * None. 508 * 509 * RETURNS: 510 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 511 */ 512 int atapi_cmd_type(u8 opcode) 513 { 514 switch (opcode) { 515 case GPCMD_READ_10: 516 case GPCMD_READ_12: 517 return ATAPI_READ; 518 519 case GPCMD_WRITE_10: 520 case GPCMD_WRITE_12: 521 case GPCMD_WRITE_AND_VERIFY_10: 522 return ATAPI_WRITE; 523 524 case GPCMD_READ_CD: 525 case GPCMD_READ_CD_MSF: 526 return ATAPI_READ_CD; 527 528 case ATA_16: 529 case ATA_12: 530 if (atapi_passthru16) 531 return ATAPI_PASS_THRU; 532 fallthrough; 533 default: 534 return ATAPI_MISC; 535 } 536 } 537 EXPORT_SYMBOL_GPL(atapi_cmd_type); 538 539 static const u8 ata_rw_cmds[] = { 540 /* pio multi */ 541 ATA_CMD_READ_MULTI, 542 ATA_CMD_WRITE_MULTI, 543 ATA_CMD_READ_MULTI_EXT, 544 ATA_CMD_WRITE_MULTI_EXT, 545 0, 546 0, 547 0, 548 ATA_CMD_WRITE_MULTI_FUA_EXT, 549 /* pio */ 550 ATA_CMD_PIO_READ, 551 ATA_CMD_PIO_WRITE, 552 ATA_CMD_PIO_READ_EXT, 553 ATA_CMD_PIO_WRITE_EXT, 554 0, 555 0, 556 0, 557 0, 558 /* dma */ 559 ATA_CMD_READ, 560 ATA_CMD_WRITE, 561 ATA_CMD_READ_EXT, 562 ATA_CMD_WRITE_EXT, 563 0, 564 0, 565 0, 566 ATA_CMD_WRITE_FUA_EXT 567 }; 568 569 /** 570 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 571 * @tf: command to examine and configure 572 * @dev: device tf belongs to 573 * 574 * Examine the device configuration and tf->flags to calculate 575 * the proper read/write commands and protocol to use. 576 * 577 * LOCKING: 578 * caller. 579 */ 580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 581 { 582 u8 cmd; 583 584 int index, fua, lba48, write; 585 586 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 587 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 588 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 589 590 if (dev->flags & ATA_DFLAG_PIO) { 591 tf->protocol = ATA_PROT_PIO; 592 index = dev->multi_count ? 0 : 8; 593 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 594 /* Unable to use DMA due to host limitation */ 595 tf->protocol = ATA_PROT_PIO; 596 index = dev->multi_count ? 0 : 8; 597 } else { 598 tf->protocol = ATA_PROT_DMA; 599 index = 16; 600 } 601 602 cmd = ata_rw_cmds[index + fua + lba48 + write]; 603 if (cmd) { 604 tf->command = cmd; 605 return 0; 606 } 607 return -1; 608 } 609 610 /** 611 * ata_tf_read_block - Read block address from ATA taskfile 612 * @tf: ATA taskfile of interest 613 * @dev: ATA device @tf belongs to 614 * 615 * LOCKING: 616 * None. 617 * 618 * Read block address from @tf. This function can handle all 619 * three address formats - LBA, LBA48 and CHS. tf->protocol and 620 * flags select the address format to use. 621 * 622 * RETURNS: 623 * Block address read from @tf. 624 */ 625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 626 { 627 u64 block = 0; 628 629 if (tf->flags & ATA_TFLAG_LBA) { 630 if (tf->flags & ATA_TFLAG_LBA48) { 631 block |= (u64)tf->hob_lbah << 40; 632 block |= (u64)tf->hob_lbam << 32; 633 block |= (u64)tf->hob_lbal << 24; 634 } else 635 block |= (tf->device & 0xf) << 24; 636 637 block |= tf->lbah << 16; 638 block |= tf->lbam << 8; 639 block |= tf->lbal; 640 } else { 641 u32 cyl, head, sect; 642 643 cyl = tf->lbam | (tf->lbah << 8); 644 head = tf->device & 0xf; 645 sect = tf->lbal; 646 647 if (!sect) { 648 ata_dev_warn(dev, 649 "device reported invalid CHS sector 0\n"); 650 return U64_MAX; 651 } 652 653 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 654 } 655 656 return block; 657 } 658 659 /** 660 * ata_build_rw_tf - Build ATA taskfile for given read/write request 661 * @tf: Target ATA taskfile 662 * @dev: ATA device @tf belongs to 663 * @block: Block address 664 * @n_block: Number of blocks 665 * @tf_flags: RW/FUA etc... 666 * @tag: tag 667 * @class: IO priority class 668 * 669 * LOCKING: 670 * None. 671 * 672 * Build ATA taskfile @tf for read/write request described by 673 * @block, @n_block, @tf_flags and @tag on @dev. 674 * 675 * RETURNS: 676 * 677 * 0 on success, -ERANGE if the request is too large for @dev, 678 * -EINVAL if the request is invalid. 679 */ 680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 681 u64 block, u32 n_block, unsigned int tf_flags, 682 unsigned int tag, int class) 683 { 684 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 685 tf->flags |= tf_flags; 686 687 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { 688 /* yay, NCQ */ 689 if (!lba_48_ok(block, n_block)) 690 return -ERANGE; 691 692 tf->protocol = ATA_PROT_NCQ; 693 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 694 695 if (tf->flags & ATA_TFLAG_WRITE) 696 tf->command = ATA_CMD_FPDMA_WRITE; 697 else 698 tf->command = ATA_CMD_FPDMA_READ; 699 700 tf->nsect = tag << 3; 701 tf->hob_feature = (n_block >> 8) & 0xff; 702 tf->feature = n_block & 0xff; 703 704 tf->hob_lbah = (block >> 40) & 0xff; 705 tf->hob_lbam = (block >> 32) & 0xff; 706 tf->hob_lbal = (block >> 24) & 0xff; 707 tf->lbah = (block >> 16) & 0xff; 708 tf->lbam = (block >> 8) & 0xff; 709 tf->lbal = block & 0xff; 710 711 tf->device = ATA_LBA; 712 if (tf->flags & ATA_TFLAG_FUA) 713 tf->device |= 1 << 7; 714 715 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE && 716 class == IOPRIO_CLASS_RT) 717 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 718 } else if (dev->flags & ATA_DFLAG_LBA) { 719 tf->flags |= ATA_TFLAG_LBA; 720 721 if (lba_28_ok(block, n_block)) { 722 /* use LBA28 */ 723 tf->device |= (block >> 24) & 0xf; 724 } else if (lba_48_ok(block, n_block)) { 725 if (!(dev->flags & ATA_DFLAG_LBA48)) 726 return -ERANGE; 727 728 /* use LBA48 */ 729 tf->flags |= ATA_TFLAG_LBA48; 730 731 tf->hob_nsect = (n_block >> 8) & 0xff; 732 733 tf->hob_lbah = (block >> 40) & 0xff; 734 tf->hob_lbam = (block >> 32) & 0xff; 735 tf->hob_lbal = (block >> 24) & 0xff; 736 } else 737 /* request too large even for LBA48 */ 738 return -ERANGE; 739 740 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 741 return -EINVAL; 742 743 tf->nsect = n_block & 0xff; 744 745 tf->lbah = (block >> 16) & 0xff; 746 tf->lbam = (block >> 8) & 0xff; 747 tf->lbal = block & 0xff; 748 749 tf->device |= ATA_LBA; 750 } else { 751 /* CHS */ 752 u32 sect, head, cyl, track; 753 754 /* The request -may- be too large for CHS addressing. */ 755 if (!lba_28_ok(block, n_block)) 756 return -ERANGE; 757 758 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 759 return -EINVAL; 760 761 /* Convert LBA to CHS */ 762 track = (u32)block / dev->sectors; 763 cyl = track / dev->heads; 764 head = track % dev->heads; 765 sect = (u32)block % dev->sectors + 1; 766 767 /* Check whether the converted CHS can fit. 768 Cylinder: 0-65535 769 Head: 0-15 770 Sector: 1-255*/ 771 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 772 return -ERANGE; 773 774 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 775 tf->lbal = sect; 776 tf->lbam = cyl; 777 tf->lbah = cyl >> 8; 778 tf->device |= head; 779 } 780 781 return 0; 782 } 783 784 /** 785 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 786 * @pio_mask: pio_mask 787 * @mwdma_mask: mwdma_mask 788 * @udma_mask: udma_mask 789 * 790 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 791 * unsigned int xfer_mask. 792 * 793 * LOCKING: 794 * None. 795 * 796 * RETURNS: 797 * Packed xfer_mask. 798 */ 799 unsigned long ata_pack_xfermask(unsigned long pio_mask, 800 unsigned long mwdma_mask, 801 unsigned long udma_mask) 802 { 803 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 804 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 805 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 806 } 807 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 808 809 /** 810 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 811 * @xfer_mask: xfer_mask to unpack 812 * @pio_mask: resulting pio_mask 813 * @mwdma_mask: resulting mwdma_mask 814 * @udma_mask: resulting udma_mask 815 * 816 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 817 * Any NULL destination masks will be ignored. 818 */ 819 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 820 unsigned long *mwdma_mask, unsigned long *udma_mask) 821 { 822 if (pio_mask) 823 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 824 if (mwdma_mask) 825 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 826 if (udma_mask) 827 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 828 } 829 830 static const struct ata_xfer_ent { 831 int shift, bits; 832 u8 base; 833 } ata_xfer_tbl[] = { 834 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 835 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 836 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 837 { -1, }, 838 }; 839 840 /** 841 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 842 * @xfer_mask: xfer_mask of interest 843 * 844 * Return matching XFER_* value for @xfer_mask. Only the highest 845 * bit of @xfer_mask is considered. 846 * 847 * LOCKING: 848 * None. 849 * 850 * RETURNS: 851 * Matching XFER_* value, 0xff if no match found. 852 */ 853 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 854 { 855 int highbit = fls(xfer_mask) - 1; 856 const struct ata_xfer_ent *ent; 857 858 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 859 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 860 return ent->base + highbit - ent->shift; 861 return 0xff; 862 } 863 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 864 865 /** 866 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 867 * @xfer_mode: XFER_* of interest 868 * 869 * Return matching xfer_mask for @xfer_mode. 870 * 871 * LOCKING: 872 * None. 873 * 874 * RETURNS: 875 * Matching xfer_mask, 0 if no match found. 876 */ 877 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 878 { 879 const struct ata_xfer_ent *ent; 880 881 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 882 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 883 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 884 & ~((1 << ent->shift) - 1); 885 return 0; 886 } 887 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 888 889 /** 890 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 891 * @xfer_mode: XFER_* of interest 892 * 893 * Return matching xfer_shift for @xfer_mode. 894 * 895 * LOCKING: 896 * None. 897 * 898 * RETURNS: 899 * Matching xfer_shift, -1 if no match found. 900 */ 901 int ata_xfer_mode2shift(unsigned long xfer_mode) 902 { 903 const struct ata_xfer_ent *ent; 904 905 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 906 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 907 return ent->shift; 908 return -1; 909 } 910 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 911 912 /** 913 * ata_mode_string - convert xfer_mask to string 914 * @xfer_mask: mask of bits supported; only highest bit counts. 915 * 916 * Determine string which represents the highest speed 917 * (highest bit in @modemask). 918 * 919 * LOCKING: 920 * None. 921 * 922 * RETURNS: 923 * Constant C string representing highest speed listed in 924 * @mode_mask, or the constant C string "<n/a>". 925 */ 926 const char *ata_mode_string(unsigned long xfer_mask) 927 { 928 static const char * const xfer_mode_str[] = { 929 "PIO0", 930 "PIO1", 931 "PIO2", 932 "PIO3", 933 "PIO4", 934 "PIO5", 935 "PIO6", 936 "MWDMA0", 937 "MWDMA1", 938 "MWDMA2", 939 "MWDMA3", 940 "MWDMA4", 941 "UDMA/16", 942 "UDMA/25", 943 "UDMA/33", 944 "UDMA/44", 945 "UDMA/66", 946 "UDMA/100", 947 "UDMA/133", 948 "UDMA7", 949 }; 950 int highbit; 951 952 highbit = fls(xfer_mask) - 1; 953 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 954 return xfer_mode_str[highbit]; 955 return "<n/a>"; 956 } 957 EXPORT_SYMBOL_GPL(ata_mode_string); 958 959 const char *sata_spd_string(unsigned int spd) 960 { 961 static const char * const spd_str[] = { 962 "1.5 Gbps", 963 "3.0 Gbps", 964 "6.0 Gbps", 965 }; 966 967 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 968 return "<unknown>"; 969 return spd_str[spd - 1]; 970 } 971 972 /** 973 * ata_dev_classify - determine device type based on ATA-spec signature 974 * @tf: ATA taskfile register set for device to be identified 975 * 976 * Determine from taskfile register contents whether a device is 977 * ATA or ATAPI, as per "Signature and persistence" section 978 * of ATA/PI spec (volume 1, sect 5.14). 979 * 980 * LOCKING: 981 * None. 982 * 983 * RETURNS: 984 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 985 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 986 */ 987 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 988 { 989 /* Apple's open source Darwin code hints that some devices only 990 * put a proper signature into the LBA mid/high registers, 991 * So, we only check those. It's sufficient for uniqueness. 992 * 993 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 994 * signatures for ATA and ATAPI devices attached on SerialATA, 995 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 996 * spec has never mentioned about using different signatures 997 * for ATA/ATAPI devices. Then, Serial ATA II: Port 998 * Multiplier specification began to use 0x69/0x96 to identify 999 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1000 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1001 * 0x69/0x96 shortly and described them as reserved for 1002 * SerialATA. 1003 * 1004 * We follow the current spec and consider that 0x69/0x96 1005 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1006 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1007 * SEMB signature. This is worked around in 1008 * ata_dev_read_id(). 1009 */ 1010 if (tf->lbam == 0 && tf->lbah == 0) 1011 return ATA_DEV_ATA; 1012 1013 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1014 return ATA_DEV_ATAPI; 1015 1016 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1017 return ATA_DEV_PMP; 1018 1019 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1020 return ATA_DEV_SEMB; 1021 1022 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1023 return ATA_DEV_ZAC; 1024 1025 return ATA_DEV_UNKNOWN; 1026 } 1027 EXPORT_SYMBOL_GPL(ata_dev_classify); 1028 1029 /** 1030 * ata_id_string - Convert IDENTIFY DEVICE page into string 1031 * @id: IDENTIFY DEVICE results we will examine 1032 * @s: string into which data is output 1033 * @ofs: offset into identify device page 1034 * @len: length of string to return. must be an even number. 1035 * 1036 * The strings in the IDENTIFY DEVICE page are broken up into 1037 * 16-bit chunks. Run through the string, and output each 1038 * 8-bit chunk linearly, regardless of platform. 1039 * 1040 * LOCKING: 1041 * caller. 1042 */ 1043 1044 void ata_id_string(const u16 *id, unsigned char *s, 1045 unsigned int ofs, unsigned int len) 1046 { 1047 unsigned int c; 1048 1049 BUG_ON(len & 1); 1050 1051 while (len > 0) { 1052 c = id[ofs] >> 8; 1053 *s = c; 1054 s++; 1055 1056 c = id[ofs] & 0xff; 1057 *s = c; 1058 s++; 1059 1060 ofs++; 1061 len -= 2; 1062 } 1063 } 1064 EXPORT_SYMBOL_GPL(ata_id_string); 1065 1066 /** 1067 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1068 * @id: IDENTIFY DEVICE results we will examine 1069 * @s: string into which data is output 1070 * @ofs: offset into identify device page 1071 * @len: length of string to return. must be an odd number. 1072 * 1073 * This function is identical to ata_id_string except that it 1074 * trims trailing spaces and terminates the resulting string with 1075 * null. @len must be actual maximum length (even number) + 1. 1076 * 1077 * LOCKING: 1078 * caller. 1079 */ 1080 void ata_id_c_string(const u16 *id, unsigned char *s, 1081 unsigned int ofs, unsigned int len) 1082 { 1083 unsigned char *p; 1084 1085 ata_id_string(id, s, ofs, len - 1); 1086 1087 p = s + strnlen(s, len - 1); 1088 while (p > s && p[-1] == ' ') 1089 p--; 1090 *p = '\0'; 1091 } 1092 EXPORT_SYMBOL_GPL(ata_id_c_string); 1093 1094 static u64 ata_id_n_sectors(const u16 *id) 1095 { 1096 if (ata_id_has_lba(id)) { 1097 if (ata_id_has_lba48(id)) 1098 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1099 else 1100 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1101 } else { 1102 if (ata_id_current_chs_valid(id)) 1103 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1104 id[ATA_ID_CUR_SECTORS]; 1105 else 1106 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1107 id[ATA_ID_SECTORS]; 1108 } 1109 } 1110 1111 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1112 { 1113 u64 sectors = 0; 1114 1115 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1116 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1117 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1118 sectors |= (tf->lbah & 0xff) << 16; 1119 sectors |= (tf->lbam & 0xff) << 8; 1120 sectors |= (tf->lbal & 0xff); 1121 1122 return sectors; 1123 } 1124 1125 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1126 { 1127 u64 sectors = 0; 1128 1129 sectors |= (tf->device & 0x0f) << 24; 1130 sectors |= (tf->lbah & 0xff) << 16; 1131 sectors |= (tf->lbam & 0xff) << 8; 1132 sectors |= (tf->lbal & 0xff); 1133 1134 return sectors; 1135 } 1136 1137 /** 1138 * ata_read_native_max_address - Read native max address 1139 * @dev: target device 1140 * @max_sectors: out parameter for the result native max address 1141 * 1142 * Perform an LBA48 or LBA28 native size query upon the device in 1143 * question. 1144 * 1145 * RETURNS: 1146 * 0 on success, -EACCES if command is aborted by the drive. 1147 * -EIO on other errors. 1148 */ 1149 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1150 { 1151 unsigned int err_mask; 1152 struct ata_taskfile tf; 1153 int lba48 = ata_id_has_lba48(dev->id); 1154 1155 ata_tf_init(dev, &tf); 1156 1157 /* always clear all address registers */ 1158 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1159 1160 if (lba48) { 1161 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1162 tf.flags |= ATA_TFLAG_LBA48; 1163 } else 1164 tf.command = ATA_CMD_READ_NATIVE_MAX; 1165 1166 tf.protocol = ATA_PROT_NODATA; 1167 tf.device |= ATA_LBA; 1168 1169 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1170 if (err_mask) { 1171 ata_dev_warn(dev, 1172 "failed to read native max address (err_mask=0x%x)\n", 1173 err_mask); 1174 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1175 return -EACCES; 1176 return -EIO; 1177 } 1178 1179 if (lba48) 1180 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1181 else 1182 *max_sectors = ata_tf_to_lba(&tf) + 1; 1183 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1184 (*max_sectors)--; 1185 return 0; 1186 } 1187 1188 /** 1189 * ata_set_max_sectors - Set max sectors 1190 * @dev: target device 1191 * @new_sectors: new max sectors value to set for the device 1192 * 1193 * Set max sectors of @dev to @new_sectors. 1194 * 1195 * RETURNS: 1196 * 0 on success, -EACCES if command is aborted or denied (due to 1197 * previous non-volatile SET_MAX) by the drive. -EIO on other 1198 * errors. 1199 */ 1200 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1201 { 1202 unsigned int err_mask; 1203 struct ata_taskfile tf; 1204 int lba48 = ata_id_has_lba48(dev->id); 1205 1206 new_sectors--; 1207 1208 ata_tf_init(dev, &tf); 1209 1210 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1211 1212 if (lba48) { 1213 tf.command = ATA_CMD_SET_MAX_EXT; 1214 tf.flags |= ATA_TFLAG_LBA48; 1215 1216 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1217 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1218 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1219 } else { 1220 tf.command = ATA_CMD_SET_MAX; 1221 1222 tf.device |= (new_sectors >> 24) & 0xf; 1223 } 1224 1225 tf.protocol = ATA_PROT_NODATA; 1226 tf.device |= ATA_LBA; 1227 1228 tf.lbal = (new_sectors >> 0) & 0xff; 1229 tf.lbam = (new_sectors >> 8) & 0xff; 1230 tf.lbah = (new_sectors >> 16) & 0xff; 1231 1232 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1233 if (err_mask) { 1234 ata_dev_warn(dev, 1235 "failed to set max address (err_mask=0x%x)\n", 1236 err_mask); 1237 if (err_mask == AC_ERR_DEV && 1238 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1239 return -EACCES; 1240 return -EIO; 1241 } 1242 1243 return 0; 1244 } 1245 1246 /** 1247 * ata_hpa_resize - Resize a device with an HPA set 1248 * @dev: Device to resize 1249 * 1250 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1251 * it if required to the full size of the media. The caller must check 1252 * the drive has the HPA feature set enabled. 1253 * 1254 * RETURNS: 1255 * 0 on success, -errno on failure. 1256 */ 1257 static int ata_hpa_resize(struct ata_device *dev) 1258 { 1259 bool print_info = ata_dev_print_info(dev); 1260 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1261 u64 sectors = ata_id_n_sectors(dev->id); 1262 u64 native_sectors; 1263 int rc; 1264 1265 /* do we need to do it? */ 1266 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1267 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1268 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1269 return 0; 1270 1271 /* read native max address */ 1272 rc = ata_read_native_max_address(dev, &native_sectors); 1273 if (rc) { 1274 /* If device aborted the command or HPA isn't going to 1275 * be unlocked, skip HPA resizing. 1276 */ 1277 if (rc == -EACCES || !unlock_hpa) { 1278 ata_dev_warn(dev, 1279 "HPA support seems broken, skipping HPA handling\n"); 1280 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1281 1282 /* we can continue if device aborted the command */ 1283 if (rc == -EACCES) 1284 rc = 0; 1285 } 1286 1287 return rc; 1288 } 1289 dev->n_native_sectors = native_sectors; 1290 1291 /* nothing to do? */ 1292 if (native_sectors <= sectors || !unlock_hpa) { 1293 if (!print_info || native_sectors == sectors) 1294 return 0; 1295 1296 if (native_sectors > sectors) 1297 ata_dev_info(dev, 1298 "HPA detected: current %llu, native %llu\n", 1299 (unsigned long long)sectors, 1300 (unsigned long long)native_sectors); 1301 else if (native_sectors < sectors) 1302 ata_dev_warn(dev, 1303 "native sectors (%llu) is smaller than sectors (%llu)\n", 1304 (unsigned long long)native_sectors, 1305 (unsigned long long)sectors); 1306 return 0; 1307 } 1308 1309 /* let's unlock HPA */ 1310 rc = ata_set_max_sectors(dev, native_sectors); 1311 if (rc == -EACCES) { 1312 /* if device aborted the command, skip HPA resizing */ 1313 ata_dev_warn(dev, 1314 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1315 (unsigned long long)sectors, 1316 (unsigned long long)native_sectors); 1317 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1318 return 0; 1319 } else if (rc) 1320 return rc; 1321 1322 /* re-read IDENTIFY data */ 1323 rc = ata_dev_reread_id(dev, 0); 1324 if (rc) { 1325 ata_dev_err(dev, 1326 "failed to re-read IDENTIFY data after HPA resizing\n"); 1327 return rc; 1328 } 1329 1330 if (print_info) { 1331 u64 new_sectors = ata_id_n_sectors(dev->id); 1332 ata_dev_info(dev, 1333 "HPA unlocked: %llu -> %llu, native %llu\n", 1334 (unsigned long long)sectors, 1335 (unsigned long long)new_sectors, 1336 (unsigned long long)native_sectors); 1337 } 1338 1339 return 0; 1340 } 1341 1342 /** 1343 * ata_dump_id - IDENTIFY DEVICE info debugging output 1344 * @dev: device from which the information is fetched 1345 * @id: IDENTIFY DEVICE page to dump 1346 * 1347 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1348 * page. 1349 * 1350 * LOCKING: 1351 * caller. 1352 */ 1353 1354 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1355 { 1356 ata_dev_dbg(dev, 1357 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1358 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1359 "88==0x%04x 93==0x%04x\n", 1360 id[49], id[53], id[63], id[64], id[75], id[80], 1361 id[81], id[82], id[83], id[84], id[88], id[93]); 1362 } 1363 1364 /** 1365 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1366 * @id: IDENTIFY data to compute xfer mask from 1367 * 1368 * Compute the xfermask for this device. This is not as trivial 1369 * as it seems if we must consider early devices correctly. 1370 * 1371 * FIXME: pre IDE drive timing (do we care ?). 1372 * 1373 * LOCKING: 1374 * None. 1375 * 1376 * RETURNS: 1377 * Computed xfermask 1378 */ 1379 unsigned long ata_id_xfermask(const u16 *id) 1380 { 1381 unsigned long pio_mask, mwdma_mask, udma_mask; 1382 1383 /* Usual case. Word 53 indicates word 64 is valid */ 1384 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1385 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1386 pio_mask <<= 3; 1387 pio_mask |= 0x7; 1388 } else { 1389 /* If word 64 isn't valid then Word 51 high byte holds 1390 * the PIO timing number for the maximum. Turn it into 1391 * a mask. 1392 */ 1393 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1394 if (mode < 5) /* Valid PIO range */ 1395 pio_mask = (2 << mode) - 1; 1396 else 1397 pio_mask = 1; 1398 1399 /* But wait.. there's more. Design your standards by 1400 * committee and you too can get a free iordy field to 1401 * process. However its the speeds not the modes that 1402 * are supported... Note drivers using the timing API 1403 * will get this right anyway 1404 */ 1405 } 1406 1407 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1408 1409 if (ata_id_is_cfa(id)) { 1410 /* 1411 * Process compact flash extended modes 1412 */ 1413 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1414 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1415 1416 if (pio) 1417 pio_mask |= (1 << 5); 1418 if (pio > 1) 1419 pio_mask |= (1 << 6); 1420 if (dma) 1421 mwdma_mask |= (1 << 3); 1422 if (dma > 1) 1423 mwdma_mask |= (1 << 4); 1424 } 1425 1426 udma_mask = 0; 1427 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1428 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1429 1430 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1431 } 1432 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1433 1434 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1435 { 1436 struct completion *waiting = qc->private_data; 1437 1438 complete(waiting); 1439 } 1440 1441 /** 1442 * ata_exec_internal_sg - execute libata internal command 1443 * @dev: Device to which the command is sent 1444 * @tf: Taskfile registers for the command and the result 1445 * @cdb: CDB for packet command 1446 * @dma_dir: Data transfer direction of the command 1447 * @sgl: sg list for the data buffer of the command 1448 * @n_elem: Number of sg entries 1449 * @timeout: Timeout in msecs (0 for default) 1450 * 1451 * Executes libata internal command with timeout. @tf contains 1452 * command on entry and result on return. Timeout and error 1453 * conditions are reported via return value. No recovery action 1454 * is taken after a command times out. It's caller's duty to 1455 * clean up after timeout. 1456 * 1457 * LOCKING: 1458 * None. Should be called with kernel context, might sleep. 1459 * 1460 * RETURNS: 1461 * Zero on success, AC_ERR_* mask on failure 1462 */ 1463 unsigned ata_exec_internal_sg(struct ata_device *dev, 1464 struct ata_taskfile *tf, const u8 *cdb, 1465 int dma_dir, struct scatterlist *sgl, 1466 unsigned int n_elem, unsigned long timeout) 1467 { 1468 struct ata_link *link = dev->link; 1469 struct ata_port *ap = link->ap; 1470 u8 command = tf->command; 1471 int auto_timeout = 0; 1472 struct ata_queued_cmd *qc; 1473 unsigned int preempted_tag; 1474 u32 preempted_sactive; 1475 u64 preempted_qc_active; 1476 int preempted_nr_active_links; 1477 DECLARE_COMPLETION_ONSTACK(wait); 1478 unsigned long flags; 1479 unsigned int err_mask; 1480 int rc; 1481 1482 spin_lock_irqsave(ap->lock, flags); 1483 1484 /* no internal command while frozen */ 1485 if (ap->pflags & ATA_PFLAG_FROZEN) { 1486 spin_unlock_irqrestore(ap->lock, flags); 1487 return AC_ERR_SYSTEM; 1488 } 1489 1490 /* initialize internal qc */ 1491 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1492 1493 qc->tag = ATA_TAG_INTERNAL; 1494 qc->hw_tag = 0; 1495 qc->scsicmd = NULL; 1496 qc->ap = ap; 1497 qc->dev = dev; 1498 ata_qc_reinit(qc); 1499 1500 preempted_tag = link->active_tag; 1501 preempted_sactive = link->sactive; 1502 preempted_qc_active = ap->qc_active; 1503 preempted_nr_active_links = ap->nr_active_links; 1504 link->active_tag = ATA_TAG_POISON; 1505 link->sactive = 0; 1506 ap->qc_active = 0; 1507 ap->nr_active_links = 0; 1508 1509 /* prepare & issue qc */ 1510 qc->tf = *tf; 1511 if (cdb) 1512 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1513 1514 /* some SATA bridges need us to indicate data xfer direction */ 1515 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1516 dma_dir == DMA_FROM_DEVICE) 1517 qc->tf.feature |= ATAPI_DMADIR; 1518 1519 qc->flags |= ATA_QCFLAG_RESULT_TF; 1520 qc->dma_dir = dma_dir; 1521 if (dma_dir != DMA_NONE) { 1522 unsigned int i, buflen = 0; 1523 struct scatterlist *sg; 1524 1525 for_each_sg(sgl, sg, n_elem, i) 1526 buflen += sg->length; 1527 1528 ata_sg_init(qc, sgl, n_elem); 1529 qc->nbytes = buflen; 1530 } 1531 1532 qc->private_data = &wait; 1533 qc->complete_fn = ata_qc_complete_internal; 1534 1535 ata_qc_issue(qc); 1536 1537 spin_unlock_irqrestore(ap->lock, flags); 1538 1539 if (!timeout) { 1540 if (ata_probe_timeout) 1541 timeout = ata_probe_timeout * 1000; 1542 else { 1543 timeout = ata_internal_cmd_timeout(dev, command); 1544 auto_timeout = 1; 1545 } 1546 } 1547 1548 if (ap->ops->error_handler) 1549 ata_eh_release(ap); 1550 1551 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1552 1553 if (ap->ops->error_handler) 1554 ata_eh_acquire(ap); 1555 1556 ata_sff_flush_pio_task(ap); 1557 1558 if (!rc) { 1559 spin_lock_irqsave(ap->lock, flags); 1560 1561 /* We're racing with irq here. If we lose, the 1562 * following test prevents us from completing the qc 1563 * twice. If we win, the port is frozen and will be 1564 * cleaned up by ->post_internal_cmd(). 1565 */ 1566 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1567 qc->err_mask |= AC_ERR_TIMEOUT; 1568 1569 if (ap->ops->error_handler) 1570 ata_port_freeze(ap); 1571 else 1572 ata_qc_complete(qc); 1573 1574 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1575 command); 1576 } 1577 1578 spin_unlock_irqrestore(ap->lock, flags); 1579 } 1580 1581 /* do post_internal_cmd */ 1582 if (ap->ops->post_internal_cmd) 1583 ap->ops->post_internal_cmd(qc); 1584 1585 /* perform minimal error analysis */ 1586 if (qc->flags & ATA_QCFLAG_FAILED) { 1587 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1588 qc->err_mask |= AC_ERR_DEV; 1589 1590 if (!qc->err_mask) 1591 qc->err_mask |= AC_ERR_OTHER; 1592 1593 if (qc->err_mask & ~AC_ERR_OTHER) 1594 qc->err_mask &= ~AC_ERR_OTHER; 1595 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1596 qc->result_tf.command |= ATA_SENSE; 1597 } 1598 1599 /* finish up */ 1600 spin_lock_irqsave(ap->lock, flags); 1601 1602 *tf = qc->result_tf; 1603 err_mask = qc->err_mask; 1604 1605 ata_qc_free(qc); 1606 link->active_tag = preempted_tag; 1607 link->sactive = preempted_sactive; 1608 ap->qc_active = preempted_qc_active; 1609 ap->nr_active_links = preempted_nr_active_links; 1610 1611 spin_unlock_irqrestore(ap->lock, flags); 1612 1613 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1614 ata_internal_cmd_timed_out(dev, command); 1615 1616 return err_mask; 1617 } 1618 1619 /** 1620 * ata_exec_internal - execute libata internal command 1621 * @dev: Device to which the command is sent 1622 * @tf: Taskfile registers for the command and the result 1623 * @cdb: CDB for packet command 1624 * @dma_dir: Data transfer direction of the command 1625 * @buf: Data buffer of the command 1626 * @buflen: Length of data buffer 1627 * @timeout: Timeout in msecs (0 for default) 1628 * 1629 * Wrapper around ata_exec_internal_sg() which takes simple 1630 * buffer instead of sg list. 1631 * 1632 * LOCKING: 1633 * None. Should be called with kernel context, might sleep. 1634 * 1635 * RETURNS: 1636 * Zero on success, AC_ERR_* mask on failure 1637 */ 1638 unsigned ata_exec_internal(struct ata_device *dev, 1639 struct ata_taskfile *tf, const u8 *cdb, 1640 int dma_dir, void *buf, unsigned int buflen, 1641 unsigned long timeout) 1642 { 1643 struct scatterlist *psg = NULL, sg; 1644 unsigned int n_elem = 0; 1645 1646 if (dma_dir != DMA_NONE) { 1647 WARN_ON(!buf); 1648 sg_init_one(&sg, buf, buflen); 1649 psg = &sg; 1650 n_elem++; 1651 } 1652 1653 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1654 timeout); 1655 } 1656 1657 /** 1658 * ata_pio_need_iordy - check if iordy needed 1659 * @adev: ATA device 1660 * 1661 * Check if the current speed of the device requires IORDY. Used 1662 * by various controllers for chip configuration. 1663 */ 1664 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1665 { 1666 /* Don't set IORDY if we're preparing for reset. IORDY may 1667 * lead to controller lock up on certain controllers if the 1668 * port is not occupied. See bko#11703 for details. 1669 */ 1670 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1671 return 0; 1672 /* Controller doesn't support IORDY. Probably a pointless 1673 * check as the caller should know this. 1674 */ 1675 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1676 return 0; 1677 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1678 if (ata_id_is_cfa(adev->id) 1679 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1680 return 0; 1681 /* PIO3 and higher it is mandatory */ 1682 if (adev->pio_mode > XFER_PIO_2) 1683 return 1; 1684 /* We turn it on when possible */ 1685 if (ata_id_has_iordy(adev->id)) 1686 return 1; 1687 return 0; 1688 } 1689 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1690 1691 /** 1692 * ata_pio_mask_no_iordy - Return the non IORDY mask 1693 * @adev: ATA device 1694 * 1695 * Compute the highest mode possible if we are not using iordy. Return 1696 * -1 if no iordy mode is available. 1697 */ 1698 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1699 { 1700 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1701 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1702 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1703 /* Is the speed faster than the drive allows non IORDY ? */ 1704 if (pio) { 1705 /* This is cycle times not frequency - watch the logic! */ 1706 if (pio > 240) /* PIO2 is 240nS per cycle */ 1707 return 3 << ATA_SHIFT_PIO; 1708 return 7 << ATA_SHIFT_PIO; 1709 } 1710 } 1711 return 3 << ATA_SHIFT_PIO; 1712 } 1713 1714 /** 1715 * ata_do_dev_read_id - default ID read method 1716 * @dev: device 1717 * @tf: proposed taskfile 1718 * @id: data buffer 1719 * 1720 * Issue the identify taskfile and hand back the buffer containing 1721 * identify data. For some RAID controllers and for pre ATA devices 1722 * this function is wrapped or replaced by the driver 1723 */ 1724 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1725 struct ata_taskfile *tf, __le16 *id) 1726 { 1727 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1728 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1729 } 1730 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1731 1732 /** 1733 * ata_dev_read_id - Read ID data from the specified device 1734 * @dev: target device 1735 * @p_class: pointer to class of the target device (may be changed) 1736 * @flags: ATA_READID_* flags 1737 * @id: buffer to read IDENTIFY data into 1738 * 1739 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1740 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1741 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1742 * for pre-ATA4 drives. 1743 * 1744 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1745 * now we abort if we hit that case. 1746 * 1747 * LOCKING: 1748 * Kernel thread context (may sleep) 1749 * 1750 * RETURNS: 1751 * 0 on success, -errno otherwise. 1752 */ 1753 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1754 unsigned int flags, u16 *id) 1755 { 1756 struct ata_port *ap = dev->link->ap; 1757 unsigned int class = *p_class; 1758 struct ata_taskfile tf; 1759 unsigned int err_mask = 0; 1760 const char *reason; 1761 bool is_semb = class == ATA_DEV_SEMB; 1762 int may_fallback = 1, tried_spinup = 0; 1763 int rc; 1764 1765 retry: 1766 ata_tf_init(dev, &tf); 1767 1768 switch (class) { 1769 case ATA_DEV_SEMB: 1770 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1771 fallthrough; 1772 case ATA_DEV_ATA: 1773 case ATA_DEV_ZAC: 1774 tf.command = ATA_CMD_ID_ATA; 1775 break; 1776 case ATA_DEV_ATAPI: 1777 tf.command = ATA_CMD_ID_ATAPI; 1778 break; 1779 default: 1780 rc = -ENODEV; 1781 reason = "unsupported class"; 1782 goto err_out; 1783 } 1784 1785 tf.protocol = ATA_PROT_PIO; 1786 1787 /* Some devices choke if TF registers contain garbage. Make 1788 * sure those are properly initialized. 1789 */ 1790 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1791 1792 /* Device presence detection is unreliable on some 1793 * controllers. Always poll IDENTIFY if available. 1794 */ 1795 tf.flags |= ATA_TFLAG_POLLING; 1796 1797 if (ap->ops->read_id) 1798 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1799 else 1800 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1801 1802 if (err_mask) { 1803 if (err_mask & AC_ERR_NODEV_HINT) { 1804 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1805 return -ENOENT; 1806 } 1807 1808 if (is_semb) { 1809 ata_dev_info(dev, 1810 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1811 /* SEMB is not supported yet */ 1812 *p_class = ATA_DEV_SEMB_UNSUP; 1813 return 0; 1814 } 1815 1816 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1817 /* Device or controller might have reported 1818 * the wrong device class. Give a shot at the 1819 * other IDENTIFY if the current one is 1820 * aborted by the device. 1821 */ 1822 if (may_fallback) { 1823 may_fallback = 0; 1824 1825 if (class == ATA_DEV_ATA) 1826 class = ATA_DEV_ATAPI; 1827 else 1828 class = ATA_DEV_ATA; 1829 goto retry; 1830 } 1831 1832 /* Control reaches here iff the device aborted 1833 * both flavors of IDENTIFYs which happens 1834 * sometimes with phantom devices. 1835 */ 1836 ata_dev_dbg(dev, 1837 "both IDENTIFYs aborted, assuming NODEV\n"); 1838 return -ENOENT; 1839 } 1840 1841 rc = -EIO; 1842 reason = "I/O error"; 1843 goto err_out; 1844 } 1845 1846 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1847 ata_dev_info(dev, "dumping IDENTIFY data, " 1848 "class=%d may_fallback=%d tried_spinup=%d\n", 1849 class, may_fallback, tried_spinup); 1850 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1851 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1852 } 1853 1854 /* Falling back doesn't make sense if ID data was read 1855 * successfully at least once. 1856 */ 1857 may_fallback = 0; 1858 1859 swap_buf_le16(id, ATA_ID_WORDS); 1860 1861 /* sanity check */ 1862 rc = -EINVAL; 1863 reason = "device reports invalid type"; 1864 1865 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1866 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1867 goto err_out; 1868 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1869 ata_id_is_ata(id)) { 1870 ata_dev_dbg(dev, 1871 "host indicates ignore ATA devices, ignored\n"); 1872 return -ENOENT; 1873 } 1874 } else { 1875 if (ata_id_is_ata(id)) 1876 goto err_out; 1877 } 1878 1879 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1880 tried_spinup = 1; 1881 /* 1882 * Drive powered-up in standby mode, and requires a specific 1883 * SET_FEATURES spin-up subcommand before it will accept 1884 * anything other than the original IDENTIFY command. 1885 */ 1886 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1887 if (err_mask && id[2] != 0x738c) { 1888 rc = -EIO; 1889 reason = "SPINUP failed"; 1890 goto err_out; 1891 } 1892 /* 1893 * If the drive initially returned incomplete IDENTIFY info, 1894 * we now must reissue the IDENTIFY command. 1895 */ 1896 if (id[2] == 0x37c8) 1897 goto retry; 1898 } 1899 1900 if ((flags & ATA_READID_POSTRESET) && 1901 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1902 /* 1903 * The exact sequence expected by certain pre-ATA4 drives is: 1904 * SRST RESET 1905 * IDENTIFY (optional in early ATA) 1906 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1907 * anything else.. 1908 * Some drives were very specific about that exact sequence. 1909 * 1910 * Note that ATA4 says lba is mandatory so the second check 1911 * should never trigger. 1912 */ 1913 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1914 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1915 if (err_mask) { 1916 rc = -EIO; 1917 reason = "INIT_DEV_PARAMS failed"; 1918 goto err_out; 1919 } 1920 1921 /* current CHS translation info (id[53-58]) might be 1922 * changed. reread the identify device info. 1923 */ 1924 flags &= ~ATA_READID_POSTRESET; 1925 goto retry; 1926 } 1927 } 1928 1929 *p_class = class; 1930 1931 return 0; 1932 1933 err_out: 1934 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1935 reason, err_mask); 1936 return rc; 1937 } 1938 1939 /** 1940 * ata_read_log_page - read a specific log page 1941 * @dev: target device 1942 * @log: log to read 1943 * @page: page to read 1944 * @buf: buffer to store read page 1945 * @sectors: number of sectors to read 1946 * 1947 * Read log page using READ_LOG_EXT command. 1948 * 1949 * LOCKING: 1950 * Kernel thread context (may sleep). 1951 * 1952 * RETURNS: 1953 * 0 on success, AC_ERR_* mask otherwise. 1954 */ 1955 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1956 u8 page, void *buf, unsigned int sectors) 1957 { 1958 unsigned long ap_flags = dev->link->ap->flags; 1959 struct ata_taskfile tf; 1960 unsigned int err_mask; 1961 bool dma = false; 1962 1963 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 1964 1965 /* 1966 * Return error without actually issuing the command on controllers 1967 * which e.g. lockup on a read log page. 1968 */ 1969 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 1970 return AC_ERR_DEV; 1971 1972 retry: 1973 ata_tf_init(dev, &tf); 1974 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 1975 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 1976 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 1977 tf.protocol = ATA_PROT_DMA; 1978 dma = true; 1979 } else { 1980 tf.command = ATA_CMD_READ_LOG_EXT; 1981 tf.protocol = ATA_PROT_PIO; 1982 dma = false; 1983 } 1984 tf.lbal = log; 1985 tf.lbam = page; 1986 tf.nsect = sectors; 1987 tf.hob_nsect = sectors >> 8; 1988 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 1989 1990 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1991 buf, sectors * ATA_SECT_SIZE, 0); 1992 1993 if (err_mask) { 1994 if (dma) { 1995 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 1996 goto retry; 1997 } 1998 ata_dev_err(dev, 1999 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2000 (unsigned int)log, (unsigned int)page, err_mask); 2001 } 2002 2003 return err_mask; 2004 } 2005 2006 static bool ata_log_supported(struct ata_device *dev, u8 log) 2007 { 2008 struct ata_port *ap = dev->link->ap; 2009 2010 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR) 2011 return false; 2012 2013 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2014 return false; 2015 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; 2016 } 2017 2018 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2019 { 2020 struct ata_port *ap = dev->link->ap; 2021 unsigned int err, i; 2022 2023 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2024 return false; 2025 2026 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2027 /* 2028 * IDENTIFY DEVICE data log is defined as mandatory starting 2029 * with ACS-3 (ATA version 10). Warn about the missing log 2030 * for drives which implement this ATA level or above. 2031 */ 2032 if (ata_id_major_version(dev->id) >= 10) 2033 ata_dev_warn(dev, 2034 "ATA Identify Device Log not supported\n"); 2035 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2036 return false; 2037 } 2038 2039 /* 2040 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2041 * supported. 2042 */ 2043 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2044 1); 2045 if (err) 2046 return false; 2047 2048 for (i = 0; i < ap->sector_buf[8]; i++) { 2049 if (ap->sector_buf[9 + i] == page) 2050 return true; 2051 } 2052 2053 return false; 2054 } 2055 2056 static int ata_do_link_spd_horkage(struct ata_device *dev) 2057 { 2058 struct ata_link *plink = ata_dev_phys_link(dev); 2059 u32 target, target_limit; 2060 2061 if (!sata_scr_valid(plink)) 2062 return 0; 2063 2064 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2065 target = 1; 2066 else 2067 return 0; 2068 2069 target_limit = (1 << target) - 1; 2070 2071 /* if already on stricter limit, no need to push further */ 2072 if (plink->sata_spd_limit <= target_limit) 2073 return 0; 2074 2075 plink->sata_spd_limit = target_limit; 2076 2077 /* Request another EH round by returning -EAGAIN if link is 2078 * going faster than the target speed. Forward progress is 2079 * guaranteed by setting sata_spd_limit to target_limit above. 2080 */ 2081 if (plink->sata_spd > target) { 2082 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2083 sata_spd_string(target)); 2084 return -EAGAIN; 2085 } 2086 return 0; 2087 } 2088 2089 static inline u8 ata_dev_knobble(struct ata_device *dev) 2090 { 2091 struct ata_port *ap = dev->link->ap; 2092 2093 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2094 return 0; 2095 2096 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2097 } 2098 2099 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2100 { 2101 struct ata_port *ap = dev->link->ap; 2102 unsigned int err_mask; 2103 2104 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2105 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2106 return; 2107 } 2108 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2109 0, ap->sector_buf, 1); 2110 if (!err_mask) { 2111 u8 *cmds = dev->ncq_send_recv_cmds; 2112 2113 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2114 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2115 2116 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2117 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2118 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2119 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2120 } 2121 } 2122 } 2123 2124 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2125 { 2126 struct ata_port *ap = dev->link->ap; 2127 unsigned int err_mask; 2128 2129 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2130 ata_dev_warn(dev, 2131 "NCQ Send/Recv Log not supported\n"); 2132 return; 2133 } 2134 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2135 0, ap->sector_buf, 1); 2136 if (!err_mask) { 2137 u8 *cmds = dev->ncq_non_data_cmds; 2138 2139 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2140 } 2141 } 2142 2143 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2144 { 2145 struct ata_port *ap = dev->link->ap; 2146 unsigned int err_mask; 2147 2148 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2149 return; 2150 2151 err_mask = ata_read_log_page(dev, 2152 ATA_LOG_IDENTIFY_DEVICE, 2153 ATA_LOG_SATA_SETTINGS, 2154 ap->sector_buf, 2155 1); 2156 if (err_mask) 2157 goto not_supported; 2158 2159 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2160 goto not_supported; 2161 2162 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2163 2164 return; 2165 2166 not_supported: 2167 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE; 2168 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2169 } 2170 2171 static bool ata_dev_check_adapter(struct ata_device *dev, 2172 unsigned short vendor_id) 2173 { 2174 struct pci_dev *pcidev = NULL; 2175 struct device *parent_dev = NULL; 2176 2177 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2178 parent_dev = parent_dev->parent) { 2179 if (dev_is_pci(parent_dev)) { 2180 pcidev = to_pci_dev(parent_dev); 2181 if (pcidev->vendor == vendor_id) 2182 return true; 2183 break; 2184 } 2185 } 2186 2187 return false; 2188 } 2189 2190 static int ata_dev_config_ncq(struct ata_device *dev, 2191 char *desc, size_t desc_sz) 2192 { 2193 struct ata_port *ap = dev->link->ap; 2194 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2195 unsigned int err_mask; 2196 char *aa_desc = ""; 2197 2198 if (!ata_id_has_ncq(dev->id)) { 2199 desc[0] = '\0'; 2200 return 0; 2201 } 2202 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2203 return 0; 2204 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2205 snprintf(desc, desc_sz, "NCQ (not used)"); 2206 return 0; 2207 } 2208 2209 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2210 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2211 snprintf(desc, desc_sz, "NCQ (not used)"); 2212 return 0; 2213 } 2214 2215 if (ap->flags & ATA_FLAG_NCQ) { 2216 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2217 dev->flags |= ATA_DFLAG_NCQ; 2218 } 2219 2220 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2221 (ap->flags & ATA_FLAG_FPDMA_AA) && 2222 ata_id_has_fpdma_aa(dev->id)) { 2223 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2224 SATA_FPDMA_AA); 2225 if (err_mask) { 2226 ata_dev_err(dev, 2227 "failed to enable AA (error_mask=0x%x)\n", 2228 err_mask); 2229 if (err_mask != AC_ERR_DEV) { 2230 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2231 return -EIO; 2232 } 2233 } else 2234 aa_desc = ", AA"; 2235 } 2236 2237 if (hdepth >= ddepth) 2238 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2239 else 2240 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2241 ddepth, aa_desc); 2242 2243 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2244 if (ata_id_has_ncq_send_and_recv(dev->id)) 2245 ata_dev_config_ncq_send_recv(dev); 2246 if (ata_id_has_ncq_non_data(dev->id)) 2247 ata_dev_config_ncq_non_data(dev); 2248 if (ata_id_has_ncq_prio(dev->id)) 2249 ata_dev_config_ncq_prio(dev); 2250 } 2251 2252 return 0; 2253 } 2254 2255 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2256 { 2257 unsigned int err_mask; 2258 2259 if (!ata_id_has_sense_reporting(dev->id)) 2260 return; 2261 2262 if (ata_id_sense_reporting_enabled(dev->id)) 2263 return; 2264 2265 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2266 if (err_mask) { 2267 ata_dev_dbg(dev, 2268 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2269 err_mask); 2270 } 2271 } 2272 2273 static void ata_dev_config_zac(struct ata_device *dev) 2274 { 2275 struct ata_port *ap = dev->link->ap; 2276 unsigned int err_mask; 2277 u8 *identify_buf = ap->sector_buf; 2278 2279 dev->zac_zones_optimal_open = U32_MAX; 2280 dev->zac_zones_optimal_nonseq = U32_MAX; 2281 dev->zac_zones_max_open = U32_MAX; 2282 2283 /* 2284 * Always set the 'ZAC' flag for Host-managed devices. 2285 */ 2286 if (dev->class == ATA_DEV_ZAC) 2287 dev->flags |= ATA_DFLAG_ZAC; 2288 else if (ata_id_zoned_cap(dev->id) == 0x01) 2289 /* 2290 * Check for host-aware devices. 2291 */ 2292 dev->flags |= ATA_DFLAG_ZAC; 2293 2294 if (!(dev->flags & ATA_DFLAG_ZAC)) 2295 return; 2296 2297 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2298 ata_dev_warn(dev, 2299 "ATA Zoned Information Log not supported\n"); 2300 return; 2301 } 2302 2303 /* 2304 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2305 */ 2306 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2307 ATA_LOG_ZONED_INFORMATION, 2308 identify_buf, 1); 2309 if (!err_mask) { 2310 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2311 2312 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2313 if ((zoned_cap >> 63)) 2314 dev->zac_zoned_cap = (zoned_cap & 1); 2315 opt_open = get_unaligned_le64(&identify_buf[24]); 2316 if ((opt_open >> 63)) 2317 dev->zac_zones_optimal_open = (u32)opt_open; 2318 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2319 if ((opt_nonseq >> 63)) 2320 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2321 max_open = get_unaligned_le64(&identify_buf[40]); 2322 if ((max_open >> 63)) 2323 dev->zac_zones_max_open = (u32)max_open; 2324 } 2325 } 2326 2327 static void ata_dev_config_trusted(struct ata_device *dev) 2328 { 2329 struct ata_port *ap = dev->link->ap; 2330 u64 trusted_cap; 2331 unsigned int err; 2332 2333 if (!ata_id_has_trusted(dev->id)) 2334 return; 2335 2336 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2337 ata_dev_warn(dev, 2338 "Security Log not supported\n"); 2339 return; 2340 } 2341 2342 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2343 ap->sector_buf, 1); 2344 if (err) 2345 return; 2346 2347 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2348 if (!(trusted_cap & (1ULL << 63))) { 2349 ata_dev_dbg(dev, 2350 "Trusted Computing capability qword not valid!\n"); 2351 return; 2352 } 2353 2354 if (trusted_cap & (1 << 0)) 2355 dev->flags |= ATA_DFLAG_TRUSTED; 2356 } 2357 2358 static int ata_dev_config_lba(struct ata_device *dev) 2359 { 2360 const u16 *id = dev->id; 2361 const char *lba_desc; 2362 char ncq_desc[24]; 2363 int ret; 2364 2365 dev->flags |= ATA_DFLAG_LBA; 2366 2367 if (ata_id_has_lba48(id)) { 2368 lba_desc = "LBA48"; 2369 dev->flags |= ATA_DFLAG_LBA48; 2370 if (dev->n_sectors >= (1UL << 28) && 2371 ata_id_has_flush_ext(id)) 2372 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2373 } else { 2374 lba_desc = "LBA"; 2375 } 2376 2377 /* config NCQ */ 2378 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2379 2380 /* print device info to dmesg */ 2381 if (ata_dev_print_info(dev)) 2382 ata_dev_info(dev, 2383 "%llu sectors, multi %u: %s %s\n", 2384 (unsigned long long)dev->n_sectors, 2385 dev->multi_count, lba_desc, ncq_desc); 2386 2387 return ret; 2388 } 2389 2390 static void ata_dev_config_chs(struct ata_device *dev) 2391 { 2392 const u16 *id = dev->id; 2393 2394 if (ata_id_current_chs_valid(id)) { 2395 /* Current CHS translation is valid. */ 2396 dev->cylinders = id[54]; 2397 dev->heads = id[55]; 2398 dev->sectors = id[56]; 2399 } else { 2400 /* Default translation */ 2401 dev->cylinders = id[1]; 2402 dev->heads = id[3]; 2403 dev->sectors = id[6]; 2404 } 2405 2406 /* print device info to dmesg */ 2407 if (ata_dev_print_info(dev)) 2408 ata_dev_info(dev, 2409 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2410 (unsigned long long)dev->n_sectors, 2411 dev->multi_count, dev->cylinders, 2412 dev->heads, dev->sectors); 2413 } 2414 2415 static void ata_dev_config_devslp(struct ata_device *dev) 2416 { 2417 u8 *sata_setting = dev->link->ap->sector_buf; 2418 unsigned int err_mask; 2419 int i, j; 2420 2421 /* 2422 * Check device sleep capability. Get DevSlp timing variables 2423 * from SATA Settings page of Identify Device Data Log. 2424 */ 2425 if (!ata_id_has_devslp(dev->id) || 2426 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2427 return; 2428 2429 err_mask = ata_read_log_page(dev, 2430 ATA_LOG_IDENTIFY_DEVICE, 2431 ATA_LOG_SATA_SETTINGS, 2432 sata_setting, 1); 2433 if (err_mask) 2434 return; 2435 2436 dev->flags |= ATA_DFLAG_DEVSLP; 2437 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2438 j = ATA_LOG_DEVSLP_OFFSET + i; 2439 dev->devslp_timing[i] = sata_setting[j]; 2440 } 2441 } 2442 2443 static void ata_dev_config_cpr(struct ata_device *dev) 2444 { 2445 unsigned int err_mask; 2446 size_t buf_len; 2447 int i, nr_cpr = 0; 2448 struct ata_cpr_log *cpr_log = NULL; 2449 u8 *desc, *buf = NULL; 2450 2451 if (ata_id_major_version(dev->id) < 11 || 2452 !ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES)) 2453 goto out; 2454 2455 /* 2456 * Read the concurrent positioning ranges log (0x47). We can have at 2457 * most 255 32B range descriptors plus a 64B header. 2458 */ 2459 buf_len = (64 + 255 * 32 + 511) & ~511; 2460 buf = kzalloc(buf_len, GFP_KERNEL); 2461 if (!buf) 2462 goto out; 2463 2464 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2465 0, buf, buf_len >> 9); 2466 if (err_mask) 2467 goto out; 2468 2469 nr_cpr = buf[0]; 2470 if (!nr_cpr) 2471 goto out; 2472 2473 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2474 if (!cpr_log) 2475 goto out; 2476 2477 cpr_log->nr_cpr = nr_cpr; 2478 desc = &buf[64]; 2479 for (i = 0; i < nr_cpr; i++, desc += 32) { 2480 cpr_log->cpr[i].num = desc[0]; 2481 cpr_log->cpr[i].num_storage_elements = desc[1]; 2482 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2483 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2484 } 2485 2486 out: 2487 swap(dev->cpr_log, cpr_log); 2488 kfree(cpr_log); 2489 kfree(buf); 2490 } 2491 2492 static void ata_dev_print_features(struct ata_device *dev) 2493 { 2494 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2495 return; 2496 2497 ata_dev_info(dev, 2498 "Features:%s%s%s%s%s%s\n", 2499 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2500 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2501 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2502 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2503 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2504 dev->cpr_log ? " CPR" : ""); 2505 } 2506 2507 /** 2508 * ata_dev_configure - Configure the specified ATA/ATAPI device 2509 * @dev: Target device to configure 2510 * 2511 * Configure @dev according to @dev->id. Generic and low-level 2512 * driver specific fixups are also applied. 2513 * 2514 * LOCKING: 2515 * Kernel thread context (may sleep) 2516 * 2517 * RETURNS: 2518 * 0 on success, -errno otherwise 2519 */ 2520 int ata_dev_configure(struct ata_device *dev) 2521 { 2522 struct ata_port *ap = dev->link->ap; 2523 bool print_info = ata_dev_print_info(dev); 2524 const u16 *id = dev->id; 2525 unsigned long xfer_mask; 2526 unsigned int err_mask; 2527 char revbuf[7]; /* XYZ-99\0 */ 2528 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2529 char modelbuf[ATA_ID_PROD_LEN+1]; 2530 int rc; 2531 2532 if (!ata_dev_enabled(dev)) { 2533 ata_dev_dbg(dev, "no device\n"); 2534 return 0; 2535 } 2536 2537 /* set horkage */ 2538 dev->horkage |= ata_dev_blacklisted(dev); 2539 ata_force_horkage(dev); 2540 2541 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2542 ata_dev_info(dev, "unsupported device, disabling\n"); 2543 ata_dev_disable(dev); 2544 return 0; 2545 } 2546 2547 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2548 dev->class == ATA_DEV_ATAPI) { 2549 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2550 atapi_enabled ? "not supported with this driver" 2551 : "disabled"); 2552 ata_dev_disable(dev); 2553 return 0; 2554 } 2555 2556 rc = ata_do_link_spd_horkage(dev); 2557 if (rc) 2558 return rc; 2559 2560 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2561 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2562 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2563 dev->horkage |= ATA_HORKAGE_NOLPM; 2564 2565 if (ap->flags & ATA_FLAG_NO_LPM) 2566 dev->horkage |= ATA_HORKAGE_NOLPM; 2567 2568 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2569 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2570 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2571 } 2572 2573 /* let ACPI work its magic */ 2574 rc = ata_acpi_on_devcfg(dev); 2575 if (rc) 2576 return rc; 2577 2578 /* massage HPA, do it early as it might change IDENTIFY data */ 2579 rc = ata_hpa_resize(dev); 2580 if (rc) 2581 return rc; 2582 2583 /* print device capabilities */ 2584 ata_dev_dbg(dev, 2585 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2586 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2587 __func__, 2588 id[49], id[82], id[83], id[84], 2589 id[85], id[86], id[87], id[88]); 2590 2591 /* initialize to-be-configured parameters */ 2592 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2593 dev->max_sectors = 0; 2594 dev->cdb_len = 0; 2595 dev->n_sectors = 0; 2596 dev->cylinders = 0; 2597 dev->heads = 0; 2598 dev->sectors = 0; 2599 dev->multi_count = 0; 2600 2601 /* 2602 * common ATA, ATAPI feature tests 2603 */ 2604 2605 /* find max transfer mode; for printk only */ 2606 xfer_mask = ata_id_xfermask(id); 2607 2608 ata_dump_id(dev, id); 2609 2610 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2611 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2612 sizeof(fwrevbuf)); 2613 2614 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2615 sizeof(modelbuf)); 2616 2617 /* ATA-specific feature tests */ 2618 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2619 if (ata_id_is_cfa(id)) { 2620 /* CPRM may make this media unusable */ 2621 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2622 ata_dev_warn(dev, 2623 "supports DRM functions and may not be fully accessible\n"); 2624 snprintf(revbuf, 7, "CFA"); 2625 } else { 2626 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2627 /* Warn the user if the device has TPM extensions */ 2628 if (ata_id_has_tpm(id)) 2629 ata_dev_warn(dev, 2630 "supports DRM functions and may not be fully accessible\n"); 2631 } 2632 2633 dev->n_sectors = ata_id_n_sectors(id); 2634 2635 /* get current R/W Multiple count setting */ 2636 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2637 unsigned int max = dev->id[47] & 0xff; 2638 unsigned int cnt = dev->id[59] & 0xff; 2639 /* only recognize/allow powers of two here */ 2640 if (is_power_of_2(max) && is_power_of_2(cnt)) 2641 if (cnt <= max) 2642 dev->multi_count = cnt; 2643 } 2644 2645 /* print device info to dmesg */ 2646 if (print_info) 2647 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2648 revbuf, modelbuf, fwrevbuf, 2649 ata_mode_string(xfer_mask)); 2650 2651 if (ata_id_has_lba(id)) { 2652 rc = ata_dev_config_lba(dev); 2653 if (rc) 2654 return rc; 2655 } else { 2656 ata_dev_config_chs(dev); 2657 } 2658 2659 ata_dev_config_devslp(dev); 2660 ata_dev_config_sense_reporting(dev); 2661 ata_dev_config_zac(dev); 2662 ata_dev_config_trusted(dev); 2663 ata_dev_config_cpr(dev); 2664 dev->cdb_len = 32; 2665 2666 if (print_info) 2667 ata_dev_print_features(dev); 2668 } 2669 2670 /* ATAPI-specific feature tests */ 2671 else if (dev->class == ATA_DEV_ATAPI) { 2672 const char *cdb_intr_string = ""; 2673 const char *atapi_an_string = ""; 2674 const char *dma_dir_string = ""; 2675 u32 sntf; 2676 2677 rc = atapi_cdb_len(id); 2678 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2679 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 2680 rc = -EINVAL; 2681 goto err_out_nosup; 2682 } 2683 dev->cdb_len = (unsigned int) rc; 2684 2685 /* Enable ATAPI AN if both the host and device have 2686 * the support. If PMP is attached, SNTF is required 2687 * to enable ATAPI AN to discern between PHY status 2688 * changed notifications and ATAPI ANs. 2689 */ 2690 if (atapi_an && 2691 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2692 (!sata_pmp_attached(ap) || 2693 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2694 /* issue SET feature command to turn this on */ 2695 err_mask = ata_dev_set_feature(dev, 2696 SETFEATURES_SATA_ENABLE, SATA_AN); 2697 if (err_mask) 2698 ata_dev_err(dev, 2699 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2700 err_mask); 2701 else { 2702 dev->flags |= ATA_DFLAG_AN; 2703 atapi_an_string = ", ATAPI AN"; 2704 } 2705 } 2706 2707 if (ata_id_cdb_intr(dev->id)) { 2708 dev->flags |= ATA_DFLAG_CDB_INTR; 2709 cdb_intr_string = ", CDB intr"; 2710 } 2711 2712 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2713 dev->flags |= ATA_DFLAG_DMADIR; 2714 dma_dir_string = ", DMADIR"; 2715 } 2716 2717 if (ata_id_has_da(dev->id)) { 2718 dev->flags |= ATA_DFLAG_DA; 2719 zpodd_init(dev); 2720 } 2721 2722 /* print device info to dmesg */ 2723 if (print_info) 2724 ata_dev_info(dev, 2725 "ATAPI: %s, %s, max %s%s%s%s\n", 2726 modelbuf, fwrevbuf, 2727 ata_mode_string(xfer_mask), 2728 cdb_intr_string, atapi_an_string, 2729 dma_dir_string); 2730 } 2731 2732 /* determine max_sectors */ 2733 dev->max_sectors = ATA_MAX_SECTORS; 2734 if (dev->flags & ATA_DFLAG_LBA48) 2735 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2736 2737 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2738 200 sectors */ 2739 if (ata_dev_knobble(dev)) { 2740 if (print_info) 2741 ata_dev_info(dev, "applying bridge limits\n"); 2742 dev->udma_mask &= ATA_UDMA5; 2743 dev->max_sectors = ATA_MAX_SECTORS; 2744 } 2745 2746 if ((dev->class == ATA_DEV_ATAPI) && 2747 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2748 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2749 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2750 } 2751 2752 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2753 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2754 dev->max_sectors); 2755 2756 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2757 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2758 dev->max_sectors); 2759 2760 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2761 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2762 2763 if (ap->ops->dev_config) 2764 ap->ops->dev_config(dev); 2765 2766 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2767 /* Let the user know. We don't want to disallow opens for 2768 rescue purposes, or in case the vendor is just a blithering 2769 idiot. Do this after the dev_config call as some controllers 2770 with buggy firmware may want to avoid reporting false device 2771 bugs */ 2772 2773 if (print_info) { 2774 ata_dev_warn(dev, 2775 "Drive reports diagnostics failure. This may indicate a drive\n"); 2776 ata_dev_warn(dev, 2777 "fault or invalid emulation. Contact drive vendor for information.\n"); 2778 } 2779 } 2780 2781 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2782 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2783 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2784 } 2785 2786 return 0; 2787 2788 err_out_nosup: 2789 return rc; 2790 } 2791 2792 /** 2793 * ata_cable_40wire - return 40 wire cable type 2794 * @ap: port 2795 * 2796 * Helper method for drivers which want to hardwire 40 wire cable 2797 * detection. 2798 */ 2799 2800 int ata_cable_40wire(struct ata_port *ap) 2801 { 2802 return ATA_CBL_PATA40; 2803 } 2804 EXPORT_SYMBOL_GPL(ata_cable_40wire); 2805 2806 /** 2807 * ata_cable_80wire - return 80 wire cable type 2808 * @ap: port 2809 * 2810 * Helper method for drivers which want to hardwire 80 wire cable 2811 * detection. 2812 */ 2813 2814 int ata_cable_80wire(struct ata_port *ap) 2815 { 2816 return ATA_CBL_PATA80; 2817 } 2818 EXPORT_SYMBOL_GPL(ata_cable_80wire); 2819 2820 /** 2821 * ata_cable_unknown - return unknown PATA cable. 2822 * @ap: port 2823 * 2824 * Helper method for drivers which have no PATA cable detection. 2825 */ 2826 2827 int ata_cable_unknown(struct ata_port *ap) 2828 { 2829 return ATA_CBL_PATA_UNK; 2830 } 2831 EXPORT_SYMBOL_GPL(ata_cable_unknown); 2832 2833 /** 2834 * ata_cable_ignore - return ignored PATA cable. 2835 * @ap: port 2836 * 2837 * Helper method for drivers which don't use cable type to limit 2838 * transfer mode. 2839 */ 2840 int ata_cable_ignore(struct ata_port *ap) 2841 { 2842 return ATA_CBL_PATA_IGN; 2843 } 2844 EXPORT_SYMBOL_GPL(ata_cable_ignore); 2845 2846 /** 2847 * ata_cable_sata - return SATA cable type 2848 * @ap: port 2849 * 2850 * Helper method for drivers which have SATA cables 2851 */ 2852 2853 int ata_cable_sata(struct ata_port *ap) 2854 { 2855 return ATA_CBL_SATA; 2856 } 2857 EXPORT_SYMBOL_GPL(ata_cable_sata); 2858 2859 /** 2860 * ata_bus_probe - Reset and probe ATA bus 2861 * @ap: Bus to probe 2862 * 2863 * Master ATA bus probing function. Initiates a hardware-dependent 2864 * bus reset, then attempts to identify any devices found on 2865 * the bus. 2866 * 2867 * LOCKING: 2868 * PCI/etc. bus probe sem. 2869 * 2870 * RETURNS: 2871 * Zero on success, negative errno otherwise. 2872 */ 2873 2874 int ata_bus_probe(struct ata_port *ap) 2875 { 2876 unsigned int classes[ATA_MAX_DEVICES]; 2877 int tries[ATA_MAX_DEVICES]; 2878 int rc; 2879 struct ata_device *dev; 2880 2881 ata_for_each_dev(dev, &ap->link, ALL) 2882 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2883 2884 retry: 2885 ata_for_each_dev(dev, &ap->link, ALL) { 2886 /* If we issue an SRST then an ATA drive (not ATAPI) 2887 * may change configuration and be in PIO0 timing. If 2888 * we do a hard reset (or are coming from power on) 2889 * this is true for ATA or ATAPI. Until we've set a 2890 * suitable controller mode we should not touch the 2891 * bus as we may be talking too fast. 2892 */ 2893 dev->pio_mode = XFER_PIO_0; 2894 dev->dma_mode = 0xff; 2895 2896 /* If the controller has a pio mode setup function 2897 * then use it to set the chipset to rights. Don't 2898 * touch the DMA setup as that will be dealt with when 2899 * configuring devices. 2900 */ 2901 if (ap->ops->set_piomode) 2902 ap->ops->set_piomode(ap, dev); 2903 } 2904 2905 /* reset and determine device classes */ 2906 ap->ops->phy_reset(ap); 2907 2908 ata_for_each_dev(dev, &ap->link, ALL) { 2909 if (dev->class != ATA_DEV_UNKNOWN) 2910 classes[dev->devno] = dev->class; 2911 else 2912 classes[dev->devno] = ATA_DEV_NONE; 2913 2914 dev->class = ATA_DEV_UNKNOWN; 2915 } 2916 2917 /* read IDENTIFY page and configure devices. We have to do the identify 2918 specific sequence bass-ackwards so that PDIAG- is released by 2919 the slave device */ 2920 2921 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2922 if (tries[dev->devno]) 2923 dev->class = classes[dev->devno]; 2924 2925 if (!ata_dev_enabled(dev)) 2926 continue; 2927 2928 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2929 dev->id); 2930 if (rc) 2931 goto fail; 2932 } 2933 2934 /* Now ask for the cable type as PDIAG- should have been released */ 2935 if (ap->ops->cable_detect) 2936 ap->cbl = ap->ops->cable_detect(ap); 2937 2938 /* We may have SATA bridge glue hiding here irrespective of 2939 * the reported cable types and sensed types. When SATA 2940 * drives indicate we have a bridge, we don't know which end 2941 * of the link the bridge is which is a problem. 2942 */ 2943 ata_for_each_dev(dev, &ap->link, ENABLED) 2944 if (ata_id_is_sata(dev->id)) 2945 ap->cbl = ATA_CBL_SATA; 2946 2947 /* After the identify sequence we can now set up the devices. We do 2948 this in the normal order so that the user doesn't get confused */ 2949 2950 ata_for_each_dev(dev, &ap->link, ENABLED) { 2951 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2952 rc = ata_dev_configure(dev); 2953 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2954 if (rc) 2955 goto fail; 2956 } 2957 2958 /* configure transfer mode */ 2959 rc = ata_set_mode(&ap->link, &dev); 2960 if (rc) 2961 goto fail; 2962 2963 ata_for_each_dev(dev, &ap->link, ENABLED) 2964 return 0; 2965 2966 return -ENODEV; 2967 2968 fail: 2969 tries[dev->devno]--; 2970 2971 switch (rc) { 2972 case -EINVAL: 2973 /* eeek, something went very wrong, give up */ 2974 tries[dev->devno] = 0; 2975 break; 2976 2977 case -ENODEV: 2978 /* give it just one more chance */ 2979 tries[dev->devno] = min(tries[dev->devno], 1); 2980 fallthrough; 2981 case -EIO: 2982 if (tries[dev->devno] == 1) { 2983 /* This is the last chance, better to slow 2984 * down than lose it. 2985 */ 2986 sata_down_spd_limit(&ap->link, 0); 2987 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2988 } 2989 } 2990 2991 if (!tries[dev->devno]) 2992 ata_dev_disable(dev); 2993 2994 goto retry; 2995 } 2996 2997 /** 2998 * sata_print_link_status - Print SATA link status 2999 * @link: SATA link to printk link status about 3000 * 3001 * This function prints link speed and status of a SATA link. 3002 * 3003 * LOCKING: 3004 * None. 3005 */ 3006 static void sata_print_link_status(struct ata_link *link) 3007 { 3008 u32 sstatus, scontrol, tmp; 3009 3010 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3011 return; 3012 sata_scr_read(link, SCR_CONTROL, &scontrol); 3013 3014 if (ata_phys_link_online(link)) { 3015 tmp = (sstatus >> 4) & 0xf; 3016 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3017 sata_spd_string(tmp), sstatus, scontrol); 3018 } else { 3019 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3020 sstatus, scontrol); 3021 } 3022 } 3023 3024 /** 3025 * ata_dev_pair - return other device on cable 3026 * @adev: device 3027 * 3028 * Obtain the other device on the same cable, or if none is 3029 * present NULL is returned 3030 */ 3031 3032 struct ata_device *ata_dev_pair(struct ata_device *adev) 3033 { 3034 struct ata_link *link = adev->link; 3035 struct ata_device *pair = &link->device[1 - adev->devno]; 3036 if (!ata_dev_enabled(pair)) 3037 return NULL; 3038 return pair; 3039 } 3040 EXPORT_SYMBOL_GPL(ata_dev_pair); 3041 3042 /** 3043 * sata_down_spd_limit - adjust SATA spd limit downward 3044 * @link: Link to adjust SATA spd limit for 3045 * @spd_limit: Additional limit 3046 * 3047 * Adjust SATA spd limit of @link downward. Note that this 3048 * function only adjusts the limit. The change must be applied 3049 * using sata_set_spd(). 3050 * 3051 * If @spd_limit is non-zero, the speed is limited to equal to or 3052 * lower than @spd_limit if such speed is supported. If 3053 * @spd_limit is slower than any supported speed, only the lowest 3054 * supported speed is allowed. 3055 * 3056 * LOCKING: 3057 * Inherited from caller. 3058 * 3059 * RETURNS: 3060 * 0 on success, negative errno on failure 3061 */ 3062 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3063 { 3064 u32 sstatus, spd, mask; 3065 int rc, bit; 3066 3067 if (!sata_scr_valid(link)) 3068 return -EOPNOTSUPP; 3069 3070 /* If SCR can be read, use it to determine the current SPD. 3071 * If not, use cached value in link->sata_spd. 3072 */ 3073 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3074 if (rc == 0 && ata_sstatus_online(sstatus)) 3075 spd = (sstatus >> 4) & 0xf; 3076 else 3077 spd = link->sata_spd; 3078 3079 mask = link->sata_spd_limit; 3080 if (mask <= 1) 3081 return -EINVAL; 3082 3083 /* unconditionally mask off the highest bit */ 3084 bit = fls(mask) - 1; 3085 mask &= ~(1 << bit); 3086 3087 /* 3088 * Mask off all speeds higher than or equal to the current one. At 3089 * this point, if current SPD is not available and we previously 3090 * recorded the link speed from SStatus, the driver has already 3091 * masked off the highest bit so mask should already be 1 or 0. 3092 * Otherwise, we should not force 1.5Gbps on a link where we have 3093 * not previously recorded speed from SStatus. Just return in this 3094 * case. 3095 */ 3096 if (spd > 1) 3097 mask &= (1 << (spd - 1)) - 1; 3098 else 3099 return -EINVAL; 3100 3101 /* were we already at the bottom? */ 3102 if (!mask) 3103 return -EINVAL; 3104 3105 if (spd_limit) { 3106 if (mask & ((1 << spd_limit) - 1)) 3107 mask &= (1 << spd_limit) - 1; 3108 else { 3109 bit = ffs(mask) - 1; 3110 mask = 1 << bit; 3111 } 3112 } 3113 3114 link->sata_spd_limit = mask; 3115 3116 ata_link_warn(link, "limiting SATA link speed to %s\n", 3117 sata_spd_string(fls(mask))); 3118 3119 return 0; 3120 } 3121 3122 #ifdef CONFIG_ATA_ACPI 3123 /** 3124 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3125 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3126 * @cycle: cycle duration in ns 3127 * 3128 * Return matching xfer mode for @cycle. The returned mode is of 3129 * the transfer type specified by @xfer_shift. If @cycle is too 3130 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3131 * than the fastest known mode, the fasted mode is returned. 3132 * 3133 * LOCKING: 3134 * None. 3135 * 3136 * RETURNS: 3137 * Matching xfer_mode, 0xff if no match found. 3138 */ 3139 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3140 { 3141 u8 base_mode = 0xff, last_mode = 0xff; 3142 const struct ata_xfer_ent *ent; 3143 const struct ata_timing *t; 3144 3145 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3146 if (ent->shift == xfer_shift) 3147 base_mode = ent->base; 3148 3149 for (t = ata_timing_find_mode(base_mode); 3150 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3151 unsigned short this_cycle; 3152 3153 switch (xfer_shift) { 3154 case ATA_SHIFT_PIO: 3155 case ATA_SHIFT_MWDMA: 3156 this_cycle = t->cycle; 3157 break; 3158 case ATA_SHIFT_UDMA: 3159 this_cycle = t->udma; 3160 break; 3161 default: 3162 return 0xff; 3163 } 3164 3165 if (cycle > this_cycle) 3166 break; 3167 3168 last_mode = t->mode; 3169 } 3170 3171 return last_mode; 3172 } 3173 #endif 3174 3175 /** 3176 * ata_down_xfermask_limit - adjust dev xfer masks downward 3177 * @dev: Device to adjust xfer masks 3178 * @sel: ATA_DNXFER_* selector 3179 * 3180 * Adjust xfer masks of @dev downward. Note that this function 3181 * does not apply the change. Invoking ata_set_mode() afterwards 3182 * will apply the limit. 3183 * 3184 * LOCKING: 3185 * Inherited from caller. 3186 * 3187 * RETURNS: 3188 * 0 on success, negative errno on failure 3189 */ 3190 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3191 { 3192 char buf[32]; 3193 unsigned long orig_mask, xfer_mask; 3194 unsigned long pio_mask, mwdma_mask, udma_mask; 3195 int quiet, highbit; 3196 3197 quiet = !!(sel & ATA_DNXFER_QUIET); 3198 sel &= ~ATA_DNXFER_QUIET; 3199 3200 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3201 dev->mwdma_mask, 3202 dev->udma_mask); 3203 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3204 3205 switch (sel) { 3206 case ATA_DNXFER_PIO: 3207 highbit = fls(pio_mask) - 1; 3208 pio_mask &= ~(1 << highbit); 3209 break; 3210 3211 case ATA_DNXFER_DMA: 3212 if (udma_mask) { 3213 highbit = fls(udma_mask) - 1; 3214 udma_mask &= ~(1 << highbit); 3215 if (!udma_mask) 3216 return -ENOENT; 3217 } else if (mwdma_mask) { 3218 highbit = fls(mwdma_mask) - 1; 3219 mwdma_mask &= ~(1 << highbit); 3220 if (!mwdma_mask) 3221 return -ENOENT; 3222 } 3223 break; 3224 3225 case ATA_DNXFER_40C: 3226 udma_mask &= ATA_UDMA_MASK_40C; 3227 break; 3228 3229 case ATA_DNXFER_FORCE_PIO0: 3230 pio_mask &= 1; 3231 fallthrough; 3232 case ATA_DNXFER_FORCE_PIO: 3233 mwdma_mask = 0; 3234 udma_mask = 0; 3235 break; 3236 3237 default: 3238 BUG(); 3239 } 3240 3241 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3242 3243 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3244 return -ENOENT; 3245 3246 if (!quiet) { 3247 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3248 snprintf(buf, sizeof(buf), "%s:%s", 3249 ata_mode_string(xfer_mask), 3250 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3251 else 3252 snprintf(buf, sizeof(buf), "%s", 3253 ata_mode_string(xfer_mask)); 3254 3255 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3256 } 3257 3258 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3259 &dev->udma_mask); 3260 3261 return 0; 3262 } 3263 3264 static int ata_dev_set_mode(struct ata_device *dev) 3265 { 3266 struct ata_port *ap = dev->link->ap; 3267 struct ata_eh_context *ehc = &dev->link->eh_context; 3268 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3269 const char *dev_err_whine = ""; 3270 int ign_dev_err = 0; 3271 unsigned int err_mask = 0; 3272 int rc; 3273 3274 dev->flags &= ~ATA_DFLAG_PIO; 3275 if (dev->xfer_shift == ATA_SHIFT_PIO) 3276 dev->flags |= ATA_DFLAG_PIO; 3277 3278 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3279 dev_err_whine = " (SET_XFERMODE skipped)"; 3280 else { 3281 if (nosetxfer) 3282 ata_dev_warn(dev, 3283 "NOSETXFER but PATA detected - can't " 3284 "skip SETXFER, might malfunction\n"); 3285 err_mask = ata_dev_set_xfermode(dev); 3286 } 3287 3288 if (err_mask & ~AC_ERR_DEV) 3289 goto fail; 3290 3291 /* revalidate */ 3292 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3293 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3294 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3295 if (rc) 3296 return rc; 3297 3298 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3299 /* Old CFA may refuse this command, which is just fine */ 3300 if (ata_id_is_cfa(dev->id)) 3301 ign_dev_err = 1; 3302 /* Catch several broken garbage emulations plus some pre 3303 ATA devices */ 3304 if (ata_id_major_version(dev->id) == 0 && 3305 dev->pio_mode <= XFER_PIO_2) 3306 ign_dev_err = 1; 3307 /* Some very old devices and some bad newer ones fail 3308 any kind of SET_XFERMODE request but support PIO0-2 3309 timings and no IORDY */ 3310 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3311 ign_dev_err = 1; 3312 } 3313 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3314 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3315 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3316 dev->dma_mode == XFER_MW_DMA_0 && 3317 (dev->id[63] >> 8) & 1) 3318 ign_dev_err = 1; 3319 3320 /* if the device is actually configured correctly, ignore dev err */ 3321 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3322 ign_dev_err = 1; 3323 3324 if (err_mask & AC_ERR_DEV) { 3325 if (!ign_dev_err) 3326 goto fail; 3327 else 3328 dev_err_whine = " (device error ignored)"; 3329 } 3330 3331 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3332 dev->xfer_shift, (int)dev->xfer_mode); 3333 3334 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3335 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3336 ata_dev_info(dev, "configured for %s%s\n", 3337 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3338 dev_err_whine); 3339 3340 return 0; 3341 3342 fail: 3343 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3344 return -EIO; 3345 } 3346 3347 /** 3348 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3349 * @link: link on which timings will be programmed 3350 * @r_failed_dev: out parameter for failed device 3351 * 3352 * Standard implementation of the function used to tune and set 3353 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3354 * ata_dev_set_mode() fails, pointer to the failing device is 3355 * returned in @r_failed_dev. 3356 * 3357 * LOCKING: 3358 * PCI/etc. bus probe sem. 3359 * 3360 * RETURNS: 3361 * 0 on success, negative errno otherwise 3362 */ 3363 3364 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3365 { 3366 struct ata_port *ap = link->ap; 3367 struct ata_device *dev; 3368 int rc = 0, used_dma = 0, found = 0; 3369 3370 /* step 1: calculate xfer_mask */ 3371 ata_for_each_dev(dev, link, ENABLED) { 3372 unsigned long pio_mask, dma_mask; 3373 unsigned int mode_mask; 3374 3375 mode_mask = ATA_DMA_MASK_ATA; 3376 if (dev->class == ATA_DEV_ATAPI) 3377 mode_mask = ATA_DMA_MASK_ATAPI; 3378 else if (ata_id_is_cfa(dev->id)) 3379 mode_mask = ATA_DMA_MASK_CFA; 3380 3381 ata_dev_xfermask(dev); 3382 ata_force_xfermask(dev); 3383 3384 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3385 3386 if (libata_dma_mask & mode_mask) 3387 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3388 dev->udma_mask); 3389 else 3390 dma_mask = 0; 3391 3392 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3393 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3394 3395 found = 1; 3396 if (ata_dma_enabled(dev)) 3397 used_dma = 1; 3398 } 3399 if (!found) 3400 goto out; 3401 3402 /* step 2: always set host PIO timings */ 3403 ata_for_each_dev(dev, link, ENABLED) { 3404 if (dev->pio_mode == 0xff) { 3405 ata_dev_warn(dev, "no PIO support\n"); 3406 rc = -EINVAL; 3407 goto out; 3408 } 3409 3410 dev->xfer_mode = dev->pio_mode; 3411 dev->xfer_shift = ATA_SHIFT_PIO; 3412 if (ap->ops->set_piomode) 3413 ap->ops->set_piomode(ap, dev); 3414 } 3415 3416 /* step 3: set host DMA timings */ 3417 ata_for_each_dev(dev, link, ENABLED) { 3418 if (!ata_dma_enabled(dev)) 3419 continue; 3420 3421 dev->xfer_mode = dev->dma_mode; 3422 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3423 if (ap->ops->set_dmamode) 3424 ap->ops->set_dmamode(ap, dev); 3425 } 3426 3427 /* step 4: update devices' xfer mode */ 3428 ata_for_each_dev(dev, link, ENABLED) { 3429 rc = ata_dev_set_mode(dev); 3430 if (rc) 3431 goto out; 3432 } 3433 3434 /* Record simplex status. If we selected DMA then the other 3435 * host channels are not permitted to do so. 3436 */ 3437 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3438 ap->host->simplex_claimed = ap; 3439 3440 out: 3441 if (rc) 3442 *r_failed_dev = dev; 3443 return rc; 3444 } 3445 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3446 3447 /** 3448 * ata_wait_ready - wait for link to become ready 3449 * @link: link to be waited on 3450 * @deadline: deadline jiffies for the operation 3451 * @check_ready: callback to check link readiness 3452 * 3453 * Wait for @link to become ready. @check_ready should return 3454 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3455 * link doesn't seem to be occupied, other errno for other error 3456 * conditions. 3457 * 3458 * Transient -ENODEV conditions are allowed for 3459 * ATA_TMOUT_FF_WAIT. 3460 * 3461 * LOCKING: 3462 * EH context. 3463 * 3464 * RETURNS: 3465 * 0 if @link is ready before @deadline; otherwise, -errno. 3466 */ 3467 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3468 int (*check_ready)(struct ata_link *link)) 3469 { 3470 unsigned long start = jiffies; 3471 unsigned long nodev_deadline; 3472 int warned = 0; 3473 3474 /* choose which 0xff timeout to use, read comment in libata.h */ 3475 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3476 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3477 else 3478 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3479 3480 /* Slave readiness can't be tested separately from master. On 3481 * M/S emulation configuration, this function should be called 3482 * only on the master and it will handle both master and slave. 3483 */ 3484 WARN_ON(link == link->ap->slave_link); 3485 3486 if (time_after(nodev_deadline, deadline)) 3487 nodev_deadline = deadline; 3488 3489 while (1) { 3490 unsigned long now = jiffies; 3491 int ready, tmp; 3492 3493 ready = tmp = check_ready(link); 3494 if (ready > 0) 3495 return 0; 3496 3497 /* 3498 * -ENODEV could be transient. Ignore -ENODEV if link 3499 * is online. Also, some SATA devices take a long 3500 * time to clear 0xff after reset. Wait for 3501 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3502 * offline. 3503 * 3504 * Note that some PATA controllers (pata_ali) explode 3505 * if status register is read more than once when 3506 * there's no device attached. 3507 */ 3508 if (ready == -ENODEV) { 3509 if (ata_link_online(link)) 3510 ready = 0; 3511 else if ((link->ap->flags & ATA_FLAG_SATA) && 3512 !ata_link_offline(link) && 3513 time_before(now, nodev_deadline)) 3514 ready = 0; 3515 } 3516 3517 if (ready) 3518 return ready; 3519 if (time_after(now, deadline)) 3520 return -EBUSY; 3521 3522 if (!warned && time_after(now, start + 5 * HZ) && 3523 (deadline - now > 3 * HZ)) { 3524 ata_link_warn(link, 3525 "link is slow to respond, please be patient " 3526 "(ready=%d)\n", tmp); 3527 warned = 1; 3528 } 3529 3530 ata_msleep(link->ap, 50); 3531 } 3532 } 3533 3534 /** 3535 * ata_wait_after_reset - wait for link to become ready after reset 3536 * @link: link to be waited on 3537 * @deadline: deadline jiffies for the operation 3538 * @check_ready: callback to check link readiness 3539 * 3540 * Wait for @link to become ready after reset. 3541 * 3542 * LOCKING: 3543 * EH context. 3544 * 3545 * RETURNS: 3546 * 0 if @link is ready before @deadline; otherwise, -errno. 3547 */ 3548 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3549 int (*check_ready)(struct ata_link *link)) 3550 { 3551 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3552 3553 return ata_wait_ready(link, deadline, check_ready); 3554 } 3555 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3556 3557 /** 3558 * ata_std_prereset - prepare for reset 3559 * @link: ATA link to be reset 3560 * @deadline: deadline jiffies for the operation 3561 * 3562 * @link is about to be reset. Initialize it. Failure from 3563 * prereset makes libata abort whole reset sequence and give up 3564 * that port, so prereset should be best-effort. It does its 3565 * best to prepare for reset sequence but if things go wrong, it 3566 * should just whine, not fail. 3567 * 3568 * LOCKING: 3569 * Kernel thread context (may sleep) 3570 * 3571 * RETURNS: 3572 * 0 on success, -errno otherwise. 3573 */ 3574 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3575 { 3576 struct ata_port *ap = link->ap; 3577 struct ata_eh_context *ehc = &link->eh_context; 3578 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3579 int rc; 3580 3581 /* if we're about to do hardreset, nothing more to do */ 3582 if (ehc->i.action & ATA_EH_HARDRESET) 3583 return 0; 3584 3585 /* if SATA, resume link */ 3586 if (ap->flags & ATA_FLAG_SATA) { 3587 rc = sata_link_resume(link, timing, deadline); 3588 /* whine about phy resume failure but proceed */ 3589 if (rc && rc != -EOPNOTSUPP) 3590 ata_link_warn(link, 3591 "failed to resume link for reset (errno=%d)\n", 3592 rc); 3593 } 3594 3595 /* no point in trying softreset on offline link */ 3596 if (ata_phys_link_offline(link)) 3597 ehc->i.action &= ~ATA_EH_SOFTRESET; 3598 3599 return 0; 3600 } 3601 EXPORT_SYMBOL_GPL(ata_std_prereset); 3602 3603 /** 3604 * sata_std_hardreset - COMRESET w/o waiting or classification 3605 * @link: link to reset 3606 * @class: resulting class of attached device 3607 * @deadline: deadline jiffies for the operation 3608 * 3609 * Standard SATA COMRESET w/o waiting or classification. 3610 * 3611 * LOCKING: 3612 * Kernel thread context (may sleep) 3613 * 3614 * RETURNS: 3615 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3616 */ 3617 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3618 unsigned long deadline) 3619 { 3620 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3621 bool online; 3622 int rc; 3623 3624 /* do hardreset */ 3625 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3626 return online ? -EAGAIN : rc; 3627 } 3628 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3629 3630 /** 3631 * ata_std_postreset - standard postreset callback 3632 * @link: the target ata_link 3633 * @classes: classes of attached devices 3634 * 3635 * This function is invoked after a successful reset. Note that 3636 * the device might have been reset more than once using 3637 * different reset methods before postreset is invoked. 3638 * 3639 * LOCKING: 3640 * Kernel thread context (may sleep) 3641 */ 3642 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3643 { 3644 u32 serror; 3645 3646 /* reset complete, clear SError */ 3647 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3648 sata_scr_write(link, SCR_ERROR, serror); 3649 3650 /* print link status */ 3651 sata_print_link_status(link); 3652 } 3653 EXPORT_SYMBOL_GPL(ata_std_postreset); 3654 3655 /** 3656 * ata_dev_same_device - Determine whether new ID matches configured device 3657 * @dev: device to compare against 3658 * @new_class: class of the new device 3659 * @new_id: IDENTIFY page of the new device 3660 * 3661 * Compare @new_class and @new_id against @dev and determine 3662 * whether @dev is the device indicated by @new_class and 3663 * @new_id. 3664 * 3665 * LOCKING: 3666 * None. 3667 * 3668 * RETURNS: 3669 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3670 */ 3671 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3672 const u16 *new_id) 3673 { 3674 const u16 *old_id = dev->id; 3675 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3676 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3677 3678 if (dev->class != new_class) { 3679 ata_dev_info(dev, "class mismatch %d != %d\n", 3680 dev->class, new_class); 3681 return 0; 3682 } 3683 3684 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3685 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3686 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3687 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3688 3689 if (strcmp(model[0], model[1])) { 3690 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3691 model[0], model[1]); 3692 return 0; 3693 } 3694 3695 if (strcmp(serial[0], serial[1])) { 3696 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3697 serial[0], serial[1]); 3698 return 0; 3699 } 3700 3701 return 1; 3702 } 3703 3704 /** 3705 * ata_dev_reread_id - Re-read IDENTIFY data 3706 * @dev: target ATA device 3707 * @readid_flags: read ID flags 3708 * 3709 * Re-read IDENTIFY page and make sure @dev is still attached to 3710 * the port. 3711 * 3712 * LOCKING: 3713 * Kernel thread context (may sleep) 3714 * 3715 * RETURNS: 3716 * 0 on success, negative errno otherwise 3717 */ 3718 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3719 { 3720 unsigned int class = dev->class; 3721 u16 *id = (void *)dev->link->ap->sector_buf; 3722 int rc; 3723 3724 /* read ID data */ 3725 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3726 if (rc) 3727 return rc; 3728 3729 /* is the device still there? */ 3730 if (!ata_dev_same_device(dev, class, id)) 3731 return -ENODEV; 3732 3733 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3734 return 0; 3735 } 3736 3737 /** 3738 * ata_dev_revalidate - Revalidate ATA device 3739 * @dev: device to revalidate 3740 * @new_class: new class code 3741 * @readid_flags: read ID flags 3742 * 3743 * Re-read IDENTIFY page, make sure @dev is still attached to the 3744 * port and reconfigure it according to the new IDENTIFY page. 3745 * 3746 * LOCKING: 3747 * Kernel thread context (may sleep) 3748 * 3749 * RETURNS: 3750 * 0 on success, negative errno otherwise 3751 */ 3752 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3753 unsigned int readid_flags) 3754 { 3755 u64 n_sectors = dev->n_sectors; 3756 u64 n_native_sectors = dev->n_native_sectors; 3757 int rc; 3758 3759 if (!ata_dev_enabled(dev)) 3760 return -ENODEV; 3761 3762 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3763 if (ata_class_enabled(new_class) && 3764 new_class != ATA_DEV_ATA && 3765 new_class != ATA_DEV_ATAPI && 3766 new_class != ATA_DEV_ZAC && 3767 new_class != ATA_DEV_SEMB) { 3768 ata_dev_info(dev, "class mismatch %u != %u\n", 3769 dev->class, new_class); 3770 rc = -ENODEV; 3771 goto fail; 3772 } 3773 3774 /* re-read ID */ 3775 rc = ata_dev_reread_id(dev, readid_flags); 3776 if (rc) 3777 goto fail; 3778 3779 /* configure device according to the new ID */ 3780 rc = ata_dev_configure(dev); 3781 if (rc) 3782 goto fail; 3783 3784 /* verify n_sectors hasn't changed */ 3785 if (dev->class != ATA_DEV_ATA || !n_sectors || 3786 dev->n_sectors == n_sectors) 3787 return 0; 3788 3789 /* n_sectors has changed */ 3790 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3791 (unsigned long long)n_sectors, 3792 (unsigned long long)dev->n_sectors); 3793 3794 /* 3795 * Something could have caused HPA to be unlocked 3796 * involuntarily. If n_native_sectors hasn't changed and the 3797 * new size matches it, keep the device. 3798 */ 3799 if (dev->n_native_sectors == n_native_sectors && 3800 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3801 ata_dev_warn(dev, 3802 "new n_sectors matches native, probably " 3803 "late HPA unlock, n_sectors updated\n"); 3804 /* use the larger n_sectors */ 3805 return 0; 3806 } 3807 3808 /* 3809 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3810 * unlocking HPA in those cases. 3811 * 3812 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3813 */ 3814 if (dev->n_native_sectors == n_native_sectors && 3815 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3816 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3817 ata_dev_warn(dev, 3818 "old n_sectors matches native, probably " 3819 "late HPA lock, will try to unlock HPA\n"); 3820 /* try unlocking HPA */ 3821 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3822 rc = -EIO; 3823 } else 3824 rc = -ENODEV; 3825 3826 /* restore original n_[native_]sectors and fail */ 3827 dev->n_native_sectors = n_native_sectors; 3828 dev->n_sectors = n_sectors; 3829 fail: 3830 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3831 return rc; 3832 } 3833 3834 struct ata_blacklist_entry { 3835 const char *model_num; 3836 const char *model_rev; 3837 unsigned long horkage; 3838 }; 3839 3840 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3841 /* Devices with DMA related problems under Linux */ 3842 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3843 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3844 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3845 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3846 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3847 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3848 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3849 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3850 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3851 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 3852 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3853 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3854 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3855 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3856 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3857 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 3858 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3859 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3860 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3861 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3862 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3863 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3864 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3865 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3866 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3867 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3868 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3869 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3870 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 3871 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 3872 /* Odd clown on sil3726/4726 PMPs */ 3873 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3874 /* Similar story with ASMedia 1092 */ 3875 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 3876 3877 /* Weird ATAPI devices */ 3878 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3879 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 3880 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3881 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3882 3883 /* 3884 * Causes silent data corruption with higher max sects. 3885 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3886 */ 3887 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 3888 3889 /* 3890 * These devices time out with higher max sects. 3891 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3892 */ 3893 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3894 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3895 3896 /* Devices we expect to fail diagnostics */ 3897 3898 /* Devices where NCQ should be avoided */ 3899 /* NCQ is slow */ 3900 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3901 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3902 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3903 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3904 /* NCQ is broken */ 3905 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3906 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3907 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3908 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3909 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 3910 3911 /* Seagate NCQ + FLUSH CACHE firmware bug */ 3912 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3913 ATA_HORKAGE_FIRMWARE_WARN }, 3914 3915 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3916 ATA_HORKAGE_FIRMWARE_WARN }, 3917 3918 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3919 ATA_HORKAGE_FIRMWARE_WARN }, 3920 3921 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3922 ATA_HORKAGE_FIRMWARE_WARN }, 3923 3924 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 3925 the ST disks also have LPM issues */ 3926 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 3927 ATA_HORKAGE_NOLPM, }, 3928 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 3929 3930 /* Blacklist entries taken from Silicon Image 3124/3132 3931 Windows driver .inf file - also several Linux problem reports */ 3932 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3933 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3934 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3935 3936 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 3937 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 3938 3939 /* Sandisk SD7/8/9s lock up hard on large trims */ 3940 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M, }, 3941 3942 /* devices which puke on READ_NATIVE_MAX */ 3943 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3944 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3945 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3946 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3947 3948 /* this one allows HPA unlocking but fails IOs on the area */ 3949 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 3950 3951 /* Devices which report 1 sector over size HPA */ 3952 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3953 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3954 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3955 3956 /* Devices which get the IVB wrong */ 3957 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 3958 /* Maybe we should just blacklist TSSTcorp... */ 3959 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 3960 3961 /* Devices that do not need bridging limits applied */ 3962 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 3963 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 3964 3965 /* Devices which aren't very happy with higher link speeds */ 3966 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 3967 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 3968 3969 /* 3970 * Devices which choke on SETXFER. Applies only if both the 3971 * device and controller are SATA. 3972 */ 3973 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 3974 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 3975 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 3976 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 3977 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 3978 3979 /* Crucial BX100 SSD 500GB has broken LPM support */ 3980 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 3981 3982 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 3983 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3984 ATA_HORKAGE_ZERO_AFTER_TRIM | 3985 ATA_HORKAGE_NOLPM, }, 3986 /* 512GB MX100 with newer firmware has only LPM issues */ 3987 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 3988 ATA_HORKAGE_NOLPM, }, 3989 3990 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 3991 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3992 ATA_HORKAGE_ZERO_AFTER_TRIM | 3993 ATA_HORKAGE_NOLPM, }, 3994 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3995 ATA_HORKAGE_ZERO_AFTER_TRIM | 3996 ATA_HORKAGE_NOLPM, }, 3997 3998 /* These specific Samsung models/firmware-revs do not handle LPM well */ 3999 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, }, 4000 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, }, 4001 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, }, 4002 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, }, 4003 4004 /* devices that don't properly handle queued TRIM commands */ 4005 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4006 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4007 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4008 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4009 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4010 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4011 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4012 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4013 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4014 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4015 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4016 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4017 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4018 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4019 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4020 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4021 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4022 ATA_HORKAGE_ZERO_AFTER_TRIM | 4023 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4024 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4025 ATA_HORKAGE_ZERO_AFTER_TRIM | 4026 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4027 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4028 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4029 4030 /* devices that don't properly handle TRIM commands */ 4031 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 4032 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM, }, 4033 4034 /* 4035 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4036 * (Return Zero After Trim) flags in the ATA Command Set are 4037 * unreliable in the sense that they only define what happens if 4038 * the device successfully executed the DSM TRIM command. TRIM 4039 * is only advisory, however, and the device is free to silently 4040 * ignore all or parts of the request. 4041 * 4042 * Whitelist drives that are known to reliably return zeroes 4043 * after TRIM. 4044 */ 4045 4046 /* 4047 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4048 * that model before whitelisting all other intel SSDs. 4049 */ 4050 { "INTEL*SSDSC2MH*", NULL, 0, }, 4051 4052 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4053 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4054 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4055 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4056 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4057 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4058 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4059 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4060 4061 /* 4062 * Some WD SATA-I drives spin up and down erratically when the link 4063 * is put into the slumber mode. We don't have full list of the 4064 * affected devices. Disable LPM if the device matches one of the 4065 * known prefixes and is SATA-1. As a side effect LPM partial is 4066 * lost too. 4067 * 4068 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4069 */ 4070 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4071 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4072 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4073 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4074 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4075 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4076 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4077 4078 /* 4079 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4080 * log page is accessed. Ensure we never ask for this log page with 4081 * these devices. 4082 */ 4083 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR }, 4084 4085 /* End Marker */ 4086 { } 4087 }; 4088 4089 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4090 { 4091 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4092 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4093 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4094 4095 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4096 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4097 4098 while (ad->model_num) { 4099 if (glob_match(ad->model_num, model_num)) { 4100 if (ad->model_rev == NULL) 4101 return ad->horkage; 4102 if (glob_match(ad->model_rev, model_rev)) 4103 return ad->horkage; 4104 } 4105 ad++; 4106 } 4107 return 0; 4108 } 4109 4110 static int ata_dma_blacklisted(const struct ata_device *dev) 4111 { 4112 /* We don't support polling DMA. 4113 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4114 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4115 */ 4116 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4117 (dev->flags & ATA_DFLAG_CDB_INTR)) 4118 return 1; 4119 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4120 } 4121 4122 /** 4123 * ata_is_40wire - check drive side detection 4124 * @dev: device 4125 * 4126 * Perform drive side detection decoding, allowing for device vendors 4127 * who can't follow the documentation. 4128 */ 4129 4130 static int ata_is_40wire(struct ata_device *dev) 4131 { 4132 if (dev->horkage & ATA_HORKAGE_IVB) 4133 return ata_drive_40wire_relaxed(dev->id); 4134 return ata_drive_40wire(dev->id); 4135 } 4136 4137 /** 4138 * cable_is_40wire - 40/80/SATA decider 4139 * @ap: port to consider 4140 * 4141 * This function encapsulates the policy for speed management 4142 * in one place. At the moment we don't cache the result but 4143 * there is a good case for setting ap->cbl to the result when 4144 * we are called with unknown cables (and figuring out if it 4145 * impacts hotplug at all). 4146 * 4147 * Return 1 if the cable appears to be 40 wire. 4148 */ 4149 4150 static int cable_is_40wire(struct ata_port *ap) 4151 { 4152 struct ata_link *link; 4153 struct ata_device *dev; 4154 4155 /* If the controller thinks we are 40 wire, we are. */ 4156 if (ap->cbl == ATA_CBL_PATA40) 4157 return 1; 4158 4159 /* If the controller thinks we are 80 wire, we are. */ 4160 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4161 return 0; 4162 4163 /* If the system is known to be 40 wire short cable (eg 4164 * laptop), then we allow 80 wire modes even if the drive 4165 * isn't sure. 4166 */ 4167 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4168 return 0; 4169 4170 /* If the controller doesn't know, we scan. 4171 * 4172 * Note: We look for all 40 wire detects at this point. Any 4173 * 80 wire detect is taken to be 80 wire cable because 4174 * - in many setups only the one drive (slave if present) will 4175 * give a valid detect 4176 * - if you have a non detect capable drive you don't want it 4177 * to colour the choice 4178 */ 4179 ata_for_each_link(link, ap, EDGE) { 4180 ata_for_each_dev(dev, link, ENABLED) { 4181 if (!ata_is_40wire(dev)) 4182 return 0; 4183 } 4184 } 4185 return 1; 4186 } 4187 4188 /** 4189 * ata_dev_xfermask - Compute supported xfermask of the given device 4190 * @dev: Device to compute xfermask for 4191 * 4192 * Compute supported xfermask of @dev and store it in 4193 * dev->*_mask. This function is responsible for applying all 4194 * known limits including host controller limits, device 4195 * blacklist, etc... 4196 * 4197 * LOCKING: 4198 * None. 4199 */ 4200 static void ata_dev_xfermask(struct ata_device *dev) 4201 { 4202 struct ata_link *link = dev->link; 4203 struct ata_port *ap = link->ap; 4204 struct ata_host *host = ap->host; 4205 unsigned long xfer_mask; 4206 4207 /* controller modes available */ 4208 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4209 ap->mwdma_mask, ap->udma_mask); 4210 4211 /* drive modes available */ 4212 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4213 dev->mwdma_mask, dev->udma_mask); 4214 xfer_mask &= ata_id_xfermask(dev->id); 4215 4216 /* 4217 * CFA Advanced TrueIDE timings are not allowed on a shared 4218 * cable 4219 */ 4220 if (ata_dev_pair(dev)) { 4221 /* No PIO5 or PIO6 */ 4222 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4223 /* No MWDMA3 or MWDMA 4 */ 4224 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4225 } 4226 4227 if (ata_dma_blacklisted(dev)) { 4228 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4229 ata_dev_warn(dev, 4230 "device is on DMA blacklist, disabling DMA\n"); 4231 } 4232 4233 if ((host->flags & ATA_HOST_SIMPLEX) && 4234 host->simplex_claimed && host->simplex_claimed != ap) { 4235 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4236 ata_dev_warn(dev, 4237 "simplex DMA is claimed by other device, disabling DMA\n"); 4238 } 4239 4240 if (ap->flags & ATA_FLAG_NO_IORDY) 4241 xfer_mask &= ata_pio_mask_no_iordy(dev); 4242 4243 if (ap->ops->mode_filter) 4244 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4245 4246 /* Apply cable rule here. Don't apply it early because when 4247 * we handle hot plug the cable type can itself change. 4248 * Check this last so that we know if the transfer rate was 4249 * solely limited by the cable. 4250 * Unknown or 80 wire cables reported host side are checked 4251 * drive side as well. Cases where we know a 40wire cable 4252 * is used safely for 80 are not checked here. 4253 */ 4254 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4255 /* UDMA/44 or higher would be available */ 4256 if (cable_is_40wire(ap)) { 4257 ata_dev_warn(dev, 4258 "limited to UDMA/33 due to 40-wire cable\n"); 4259 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4260 } 4261 4262 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4263 &dev->mwdma_mask, &dev->udma_mask); 4264 } 4265 4266 /** 4267 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4268 * @dev: Device to which command will be sent 4269 * 4270 * Issue SET FEATURES - XFER MODE command to device @dev 4271 * on port @ap. 4272 * 4273 * LOCKING: 4274 * PCI/etc. bus probe sem. 4275 * 4276 * RETURNS: 4277 * 0 on success, AC_ERR_* mask otherwise. 4278 */ 4279 4280 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4281 { 4282 struct ata_taskfile tf; 4283 unsigned int err_mask; 4284 4285 /* set up set-features taskfile */ 4286 ata_dev_dbg(dev, "set features - xfer mode\n"); 4287 4288 /* Some controllers and ATAPI devices show flaky interrupt 4289 * behavior after setting xfer mode. Use polling instead. 4290 */ 4291 ata_tf_init(dev, &tf); 4292 tf.command = ATA_CMD_SET_FEATURES; 4293 tf.feature = SETFEATURES_XFER; 4294 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4295 tf.protocol = ATA_PROT_NODATA; 4296 /* If we are using IORDY we must send the mode setting command */ 4297 if (ata_pio_need_iordy(dev)) 4298 tf.nsect = dev->xfer_mode; 4299 /* If the device has IORDY and the controller does not - turn it off */ 4300 else if (ata_id_has_iordy(dev->id)) 4301 tf.nsect = 0x01; 4302 else /* In the ancient relic department - skip all of this */ 4303 return 0; 4304 4305 /* On some disks, this command causes spin-up, so we need longer timeout */ 4306 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4307 4308 return err_mask; 4309 } 4310 4311 /** 4312 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4313 * @dev: Device to which command will be sent 4314 * @enable: Whether to enable or disable the feature 4315 * @feature: The sector count represents the feature to set 4316 * 4317 * Issue SET FEATURES - SATA FEATURES command to device @dev 4318 * on port @ap with sector count 4319 * 4320 * LOCKING: 4321 * PCI/etc. bus probe sem. 4322 * 4323 * RETURNS: 4324 * 0 on success, AC_ERR_* mask otherwise. 4325 */ 4326 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4327 { 4328 struct ata_taskfile tf; 4329 unsigned int err_mask; 4330 unsigned long timeout = 0; 4331 4332 /* set up set-features taskfile */ 4333 ata_dev_dbg(dev, "set features - SATA features\n"); 4334 4335 ata_tf_init(dev, &tf); 4336 tf.command = ATA_CMD_SET_FEATURES; 4337 tf.feature = enable; 4338 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4339 tf.protocol = ATA_PROT_NODATA; 4340 tf.nsect = feature; 4341 4342 if (enable == SETFEATURES_SPINUP) 4343 timeout = ata_probe_timeout ? 4344 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4345 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4346 4347 return err_mask; 4348 } 4349 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4350 4351 /** 4352 * ata_dev_init_params - Issue INIT DEV PARAMS command 4353 * @dev: Device to which command will be sent 4354 * @heads: Number of heads (taskfile parameter) 4355 * @sectors: Number of sectors (taskfile parameter) 4356 * 4357 * LOCKING: 4358 * Kernel thread context (may sleep) 4359 * 4360 * RETURNS: 4361 * 0 on success, AC_ERR_* mask otherwise. 4362 */ 4363 static unsigned int ata_dev_init_params(struct ata_device *dev, 4364 u16 heads, u16 sectors) 4365 { 4366 struct ata_taskfile tf; 4367 unsigned int err_mask; 4368 4369 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4370 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4371 return AC_ERR_INVALID; 4372 4373 /* set up init dev params taskfile */ 4374 ata_dev_dbg(dev, "init dev params \n"); 4375 4376 ata_tf_init(dev, &tf); 4377 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4378 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4379 tf.protocol = ATA_PROT_NODATA; 4380 tf.nsect = sectors; 4381 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4382 4383 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4384 /* A clean abort indicates an original or just out of spec drive 4385 and we should continue as we issue the setup based on the 4386 drive reported working geometry */ 4387 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4388 err_mask = 0; 4389 4390 return err_mask; 4391 } 4392 4393 /** 4394 * atapi_check_dma - Check whether ATAPI DMA can be supported 4395 * @qc: Metadata associated with taskfile to check 4396 * 4397 * Allow low-level driver to filter ATA PACKET commands, returning 4398 * a status indicating whether or not it is OK to use DMA for the 4399 * supplied PACKET command. 4400 * 4401 * LOCKING: 4402 * spin_lock_irqsave(host lock) 4403 * 4404 * RETURNS: 0 when ATAPI DMA can be used 4405 * nonzero otherwise 4406 */ 4407 int atapi_check_dma(struct ata_queued_cmd *qc) 4408 { 4409 struct ata_port *ap = qc->ap; 4410 4411 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4412 * few ATAPI devices choke on such DMA requests. 4413 */ 4414 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4415 unlikely(qc->nbytes & 15)) 4416 return 1; 4417 4418 if (ap->ops->check_atapi_dma) 4419 return ap->ops->check_atapi_dma(qc); 4420 4421 return 0; 4422 } 4423 4424 /** 4425 * ata_std_qc_defer - Check whether a qc needs to be deferred 4426 * @qc: ATA command in question 4427 * 4428 * Non-NCQ commands cannot run with any other command, NCQ or 4429 * not. As upper layer only knows the queue depth, we are 4430 * responsible for maintaining exclusion. This function checks 4431 * whether a new command @qc can be issued. 4432 * 4433 * LOCKING: 4434 * spin_lock_irqsave(host lock) 4435 * 4436 * RETURNS: 4437 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4438 */ 4439 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4440 { 4441 struct ata_link *link = qc->dev->link; 4442 4443 if (ata_is_ncq(qc->tf.protocol)) { 4444 if (!ata_tag_valid(link->active_tag)) 4445 return 0; 4446 } else { 4447 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4448 return 0; 4449 } 4450 4451 return ATA_DEFER_LINK; 4452 } 4453 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4454 4455 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4456 { 4457 return AC_ERR_OK; 4458 } 4459 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4460 4461 /** 4462 * ata_sg_init - Associate command with scatter-gather table. 4463 * @qc: Command to be associated 4464 * @sg: Scatter-gather table. 4465 * @n_elem: Number of elements in s/g table. 4466 * 4467 * Initialize the data-related elements of queued_cmd @qc 4468 * to point to a scatter-gather table @sg, containing @n_elem 4469 * elements. 4470 * 4471 * LOCKING: 4472 * spin_lock_irqsave(host lock) 4473 */ 4474 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4475 unsigned int n_elem) 4476 { 4477 qc->sg = sg; 4478 qc->n_elem = n_elem; 4479 qc->cursg = qc->sg; 4480 } 4481 4482 #ifdef CONFIG_HAS_DMA 4483 4484 /** 4485 * ata_sg_clean - Unmap DMA memory associated with command 4486 * @qc: Command containing DMA memory to be released 4487 * 4488 * Unmap all mapped DMA memory associated with this command. 4489 * 4490 * LOCKING: 4491 * spin_lock_irqsave(host lock) 4492 */ 4493 static void ata_sg_clean(struct ata_queued_cmd *qc) 4494 { 4495 struct ata_port *ap = qc->ap; 4496 struct scatterlist *sg = qc->sg; 4497 int dir = qc->dma_dir; 4498 4499 WARN_ON_ONCE(sg == NULL); 4500 4501 if (qc->n_elem) 4502 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4503 4504 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4505 qc->sg = NULL; 4506 } 4507 4508 /** 4509 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4510 * @qc: Command with scatter-gather table to be mapped. 4511 * 4512 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4513 * 4514 * LOCKING: 4515 * spin_lock_irqsave(host lock) 4516 * 4517 * RETURNS: 4518 * Zero on success, negative on error. 4519 * 4520 */ 4521 static int ata_sg_setup(struct ata_queued_cmd *qc) 4522 { 4523 struct ata_port *ap = qc->ap; 4524 unsigned int n_elem; 4525 4526 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4527 if (n_elem < 1) 4528 return -1; 4529 4530 qc->orig_n_elem = qc->n_elem; 4531 qc->n_elem = n_elem; 4532 qc->flags |= ATA_QCFLAG_DMAMAP; 4533 4534 return 0; 4535 } 4536 4537 #else /* !CONFIG_HAS_DMA */ 4538 4539 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4540 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4541 4542 #endif /* !CONFIG_HAS_DMA */ 4543 4544 /** 4545 * swap_buf_le16 - swap halves of 16-bit words in place 4546 * @buf: Buffer to swap 4547 * @buf_words: Number of 16-bit words in buffer. 4548 * 4549 * Swap halves of 16-bit words if needed to convert from 4550 * little-endian byte order to native cpu byte order, or 4551 * vice-versa. 4552 * 4553 * LOCKING: 4554 * Inherited from caller. 4555 */ 4556 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4557 { 4558 #ifdef __BIG_ENDIAN 4559 unsigned int i; 4560 4561 for (i = 0; i < buf_words; i++) 4562 buf[i] = le16_to_cpu(buf[i]); 4563 #endif /* __BIG_ENDIAN */ 4564 } 4565 4566 /** 4567 * ata_qc_new_init - Request an available ATA command, and initialize it 4568 * @dev: Device from whom we request an available command structure 4569 * @tag: tag 4570 * 4571 * LOCKING: 4572 * None. 4573 */ 4574 4575 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 4576 { 4577 struct ata_port *ap = dev->link->ap; 4578 struct ata_queued_cmd *qc; 4579 4580 /* no command while frozen */ 4581 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4582 return NULL; 4583 4584 /* libsas case */ 4585 if (ap->flags & ATA_FLAG_SAS_HOST) { 4586 tag = ata_sas_allocate_tag(ap); 4587 if (tag < 0) 4588 return NULL; 4589 } 4590 4591 qc = __ata_qc_from_tag(ap, tag); 4592 qc->tag = qc->hw_tag = tag; 4593 qc->scsicmd = NULL; 4594 qc->ap = ap; 4595 qc->dev = dev; 4596 4597 ata_qc_reinit(qc); 4598 4599 return qc; 4600 } 4601 4602 /** 4603 * ata_qc_free - free unused ata_queued_cmd 4604 * @qc: Command to complete 4605 * 4606 * Designed to free unused ata_queued_cmd object 4607 * in case something prevents using it. 4608 * 4609 * LOCKING: 4610 * spin_lock_irqsave(host lock) 4611 */ 4612 void ata_qc_free(struct ata_queued_cmd *qc) 4613 { 4614 struct ata_port *ap; 4615 unsigned int tag; 4616 4617 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4618 ap = qc->ap; 4619 4620 qc->flags = 0; 4621 tag = qc->tag; 4622 if (ata_tag_valid(tag)) { 4623 qc->tag = ATA_TAG_POISON; 4624 if (ap->flags & ATA_FLAG_SAS_HOST) 4625 ata_sas_free_tag(tag, ap); 4626 } 4627 } 4628 4629 void __ata_qc_complete(struct ata_queued_cmd *qc) 4630 { 4631 struct ata_port *ap; 4632 struct ata_link *link; 4633 4634 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4635 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4636 ap = qc->ap; 4637 link = qc->dev->link; 4638 4639 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4640 ata_sg_clean(qc); 4641 4642 /* command should be marked inactive atomically with qc completion */ 4643 if (ata_is_ncq(qc->tf.protocol)) { 4644 link->sactive &= ~(1 << qc->hw_tag); 4645 if (!link->sactive) 4646 ap->nr_active_links--; 4647 } else { 4648 link->active_tag = ATA_TAG_POISON; 4649 ap->nr_active_links--; 4650 } 4651 4652 /* clear exclusive status */ 4653 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4654 ap->excl_link == link)) 4655 ap->excl_link = NULL; 4656 4657 /* atapi: mark qc as inactive to prevent the interrupt handler 4658 * from completing the command twice later, before the error handler 4659 * is called. (when rc != 0 and atapi request sense is needed) 4660 */ 4661 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4662 ap->qc_active &= ~(1ULL << qc->tag); 4663 4664 /* call completion callback */ 4665 qc->complete_fn(qc); 4666 } 4667 4668 static void fill_result_tf(struct ata_queued_cmd *qc) 4669 { 4670 struct ata_port *ap = qc->ap; 4671 4672 qc->result_tf.flags = qc->tf.flags; 4673 ap->ops->qc_fill_rtf(qc); 4674 } 4675 4676 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4677 { 4678 struct ata_device *dev = qc->dev; 4679 4680 if (!ata_is_data(qc->tf.protocol)) 4681 return; 4682 4683 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4684 return; 4685 4686 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4687 } 4688 4689 /** 4690 * ata_qc_complete - Complete an active ATA command 4691 * @qc: Command to complete 4692 * 4693 * Indicate to the mid and upper layers that an ATA command has 4694 * completed, with either an ok or not-ok status. 4695 * 4696 * Refrain from calling this function multiple times when 4697 * successfully completing multiple NCQ commands. 4698 * ata_qc_complete_multiple() should be used instead, which will 4699 * properly update IRQ expect state. 4700 * 4701 * LOCKING: 4702 * spin_lock_irqsave(host lock) 4703 */ 4704 void ata_qc_complete(struct ata_queued_cmd *qc) 4705 { 4706 struct ata_port *ap = qc->ap; 4707 4708 /* Trigger the LED (if available) */ 4709 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4710 4711 /* XXX: New EH and old EH use different mechanisms to 4712 * synchronize EH with regular execution path. 4713 * 4714 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4715 * Normal execution path is responsible for not accessing a 4716 * failed qc. libata core enforces the rule by returning NULL 4717 * from ata_qc_from_tag() for failed qcs. 4718 * 4719 * Old EH depends on ata_qc_complete() nullifying completion 4720 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4721 * not synchronize with interrupt handler. Only PIO task is 4722 * taken care of. 4723 */ 4724 if (ap->ops->error_handler) { 4725 struct ata_device *dev = qc->dev; 4726 struct ata_eh_info *ehi = &dev->link->eh_info; 4727 4728 if (unlikely(qc->err_mask)) 4729 qc->flags |= ATA_QCFLAG_FAILED; 4730 4731 /* 4732 * Finish internal commands without any further processing 4733 * and always with the result TF filled. 4734 */ 4735 if (unlikely(ata_tag_internal(qc->tag))) { 4736 fill_result_tf(qc); 4737 trace_ata_qc_complete_internal(qc); 4738 __ata_qc_complete(qc); 4739 return; 4740 } 4741 4742 /* 4743 * Non-internal qc has failed. Fill the result TF and 4744 * summon EH. 4745 */ 4746 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4747 fill_result_tf(qc); 4748 trace_ata_qc_complete_failed(qc); 4749 ata_qc_schedule_eh(qc); 4750 return; 4751 } 4752 4753 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4754 4755 /* read result TF if requested */ 4756 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4757 fill_result_tf(qc); 4758 4759 trace_ata_qc_complete_done(qc); 4760 /* Some commands need post-processing after successful 4761 * completion. 4762 */ 4763 switch (qc->tf.command) { 4764 case ATA_CMD_SET_FEATURES: 4765 if (qc->tf.feature != SETFEATURES_WC_ON && 4766 qc->tf.feature != SETFEATURES_WC_OFF && 4767 qc->tf.feature != SETFEATURES_RA_ON && 4768 qc->tf.feature != SETFEATURES_RA_OFF) 4769 break; 4770 fallthrough; 4771 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4772 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4773 /* revalidate device */ 4774 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4775 ata_port_schedule_eh(ap); 4776 break; 4777 4778 case ATA_CMD_SLEEP: 4779 dev->flags |= ATA_DFLAG_SLEEPING; 4780 break; 4781 } 4782 4783 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4784 ata_verify_xfer(qc); 4785 4786 __ata_qc_complete(qc); 4787 } else { 4788 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4789 return; 4790 4791 /* read result TF if failed or requested */ 4792 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4793 fill_result_tf(qc); 4794 4795 __ata_qc_complete(qc); 4796 } 4797 } 4798 EXPORT_SYMBOL_GPL(ata_qc_complete); 4799 4800 /** 4801 * ata_qc_get_active - get bitmask of active qcs 4802 * @ap: port in question 4803 * 4804 * LOCKING: 4805 * spin_lock_irqsave(host lock) 4806 * 4807 * RETURNS: 4808 * Bitmask of active qcs 4809 */ 4810 u64 ata_qc_get_active(struct ata_port *ap) 4811 { 4812 u64 qc_active = ap->qc_active; 4813 4814 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4815 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4816 qc_active |= (1 << 0); 4817 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4818 } 4819 4820 return qc_active; 4821 } 4822 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4823 4824 /** 4825 * ata_qc_issue - issue taskfile to device 4826 * @qc: command to issue to device 4827 * 4828 * Prepare an ATA command to submission to device. 4829 * This includes mapping the data into a DMA-able 4830 * area, filling in the S/G table, and finally 4831 * writing the taskfile to hardware, starting the command. 4832 * 4833 * LOCKING: 4834 * spin_lock_irqsave(host lock) 4835 */ 4836 void ata_qc_issue(struct ata_queued_cmd *qc) 4837 { 4838 struct ata_port *ap = qc->ap; 4839 struct ata_link *link = qc->dev->link; 4840 u8 prot = qc->tf.protocol; 4841 4842 /* Make sure only one non-NCQ command is outstanding. The 4843 * check is skipped for old EH because it reuses active qc to 4844 * request ATAPI sense. 4845 */ 4846 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4847 4848 if (ata_is_ncq(prot)) { 4849 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4850 4851 if (!link->sactive) 4852 ap->nr_active_links++; 4853 link->sactive |= 1 << qc->hw_tag; 4854 } else { 4855 WARN_ON_ONCE(link->sactive); 4856 4857 ap->nr_active_links++; 4858 link->active_tag = qc->tag; 4859 } 4860 4861 qc->flags |= ATA_QCFLAG_ACTIVE; 4862 ap->qc_active |= 1ULL << qc->tag; 4863 4864 /* 4865 * We guarantee to LLDs that they will have at least one 4866 * non-zero sg if the command is a data command. 4867 */ 4868 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4869 goto sys_err; 4870 4871 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4872 (ap->flags & ATA_FLAG_PIO_DMA))) 4873 if (ata_sg_setup(qc)) 4874 goto sys_err; 4875 4876 /* if device is sleeping, schedule reset and abort the link */ 4877 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4878 link->eh_info.action |= ATA_EH_RESET; 4879 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4880 ata_link_abort(link); 4881 return; 4882 } 4883 4884 trace_ata_qc_prep(qc); 4885 qc->err_mask |= ap->ops->qc_prep(qc); 4886 if (unlikely(qc->err_mask)) 4887 goto err; 4888 trace_ata_qc_issue(qc); 4889 qc->err_mask |= ap->ops->qc_issue(qc); 4890 if (unlikely(qc->err_mask)) 4891 goto err; 4892 return; 4893 4894 sys_err: 4895 qc->err_mask |= AC_ERR_SYSTEM; 4896 err: 4897 ata_qc_complete(qc); 4898 } 4899 4900 /** 4901 * ata_phys_link_online - test whether the given link is online 4902 * @link: ATA link to test 4903 * 4904 * Test whether @link is online. Note that this function returns 4905 * 0 if online status of @link cannot be obtained, so 4906 * ata_link_online(link) != !ata_link_offline(link). 4907 * 4908 * LOCKING: 4909 * None. 4910 * 4911 * RETURNS: 4912 * True if the port online status is available and online. 4913 */ 4914 bool ata_phys_link_online(struct ata_link *link) 4915 { 4916 u32 sstatus; 4917 4918 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4919 ata_sstatus_online(sstatus)) 4920 return true; 4921 return false; 4922 } 4923 4924 /** 4925 * ata_phys_link_offline - test whether the given link is offline 4926 * @link: ATA link to test 4927 * 4928 * Test whether @link is offline. Note that this function 4929 * returns 0 if offline status of @link cannot be obtained, so 4930 * ata_link_online(link) != !ata_link_offline(link). 4931 * 4932 * LOCKING: 4933 * None. 4934 * 4935 * RETURNS: 4936 * True if the port offline status is available and offline. 4937 */ 4938 bool ata_phys_link_offline(struct ata_link *link) 4939 { 4940 u32 sstatus; 4941 4942 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4943 !ata_sstatus_online(sstatus)) 4944 return true; 4945 return false; 4946 } 4947 4948 /** 4949 * ata_link_online - test whether the given link is online 4950 * @link: ATA link to test 4951 * 4952 * Test whether @link is online. This is identical to 4953 * ata_phys_link_online() when there's no slave link. When 4954 * there's a slave link, this function should only be called on 4955 * the master link and will return true if any of M/S links is 4956 * online. 4957 * 4958 * LOCKING: 4959 * None. 4960 * 4961 * RETURNS: 4962 * True if the port online status is available and online. 4963 */ 4964 bool ata_link_online(struct ata_link *link) 4965 { 4966 struct ata_link *slave = link->ap->slave_link; 4967 4968 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4969 4970 return ata_phys_link_online(link) || 4971 (slave && ata_phys_link_online(slave)); 4972 } 4973 EXPORT_SYMBOL_GPL(ata_link_online); 4974 4975 /** 4976 * ata_link_offline - test whether the given link is offline 4977 * @link: ATA link to test 4978 * 4979 * Test whether @link is offline. This is identical to 4980 * ata_phys_link_offline() when there's no slave link. When 4981 * there's a slave link, this function should only be called on 4982 * the master link and will return true if both M/S links are 4983 * offline. 4984 * 4985 * LOCKING: 4986 * None. 4987 * 4988 * RETURNS: 4989 * True if the port offline status is available and offline. 4990 */ 4991 bool ata_link_offline(struct ata_link *link) 4992 { 4993 struct ata_link *slave = link->ap->slave_link; 4994 4995 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4996 4997 return ata_phys_link_offline(link) && 4998 (!slave || ata_phys_link_offline(slave)); 4999 } 5000 EXPORT_SYMBOL_GPL(ata_link_offline); 5001 5002 #ifdef CONFIG_PM 5003 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5004 unsigned int action, unsigned int ehi_flags, 5005 bool async) 5006 { 5007 struct ata_link *link; 5008 unsigned long flags; 5009 5010 /* Previous resume operation might still be in 5011 * progress. Wait for PM_PENDING to clear. 5012 */ 5013 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5014 ata_port_wait_eh(ap); 5015 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5016 } 5017 5018 /* request PM ops to EH */ 5019 spin_lock_irqsave(ap->lock, flags); 5020 5021 ap->pm_mesg = mesg; 5022 ap->pflags |= ATA_PFLAG_PM_PENDING; 5023 ata_for_each_link(link, ap, HOST_FIRST) { 5024 link->eh_info.action |= action; 5025 link->eh_info.flags |= ehi_flags; 5026 } 5027 5028 ata_port_schedule_eh(ap); 5029 5030 spin_unlock_irqrestore(ap->lock, flags); 5031 5032 if (!async) { 5033 ata_port_wait_eh(ap); 5034 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5035 } 5036 } 5037 5038 /* 5039 * On some hardware, device fails to respond after spun down for suspend. As 5040 * the device won't be used before being resumed, we don't need to touch the 5041 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5042 * 5043 * http://thread.gmane.org/gmane.linux.ide/46764 5044 */ 5045 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5046 | ATA_EHI_NO_AUTOPSY 5047 | ATA_EHI_NO_RECOVERY; 5048 5049 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5050 { 5051 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5052 } 5053 5054 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5055 { 5056 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5057 } 5058 5059 static int ata_port_pm_suspend(struct device *dev) 5060 { 5061 struct ata_port *ap = to_ata_port(dev); 5062 5063 if (pm_runtime_suspended(dev)) 5064 return 0; 5065 5066 ata_port_suspend(ap, PMSG_SUSPEND); 5067 return 0; 5068 } 5069 5070 static int ata_port_pm_freeze(struct device *dev) 5071 { 5072 struct ata_port *ap = to_ata_port(dev); 5073 5074 if (pm_runtime_suspended(dev)) 5075 return 0; 5076 5077 ata_port_suspend(ap, PMSG_FREEZE); 5078 return 0; 5079 } 5080 5081 static int ata_port_pm_poweroff(struct device *dev) 5082 { 5083 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5084 return 0; 5085 } 5086 5087 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5088 | ATA_EHI_QUIET; 5089 5090 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5091 { 5092 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5093 } 5094 5095 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5096 { 5097 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5098 } 5099 5100 static int ata_port_pm_resume(struct device *dev) 5101 { 5102 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5103 pm_runtime_disable(dev); 5104 pm_runtime_set_active(dev); 5105 pm_runtime_enable(dev); 5106 return 0; 5107 } 5108 5109 /* 5110 * For ODDs, the upper layer will poll for media change every few seconds, 5111 * which will make it enter and leave suspend state every few seconds. And 5112 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5113 * is very little and the ODD may malfunction after constantly being reset. 5114 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5115 * ODD is attached to the port. 5116 */ 5117 static int ata_port_runtime_idle(struct device *dev) 5118 { 5119 struct ata_port *ap = to_ata_port(dev); 5120 struct ata_link *link; 5121 struct ata_device *adev; 5122 5123 ata_for_each_link(link, ap, HOST_FIRST) { 5124 ata_for_each_dev(adev, link, ENABLED) 5125 if (adev->class == ATA_DEV_ATAPI && 5126 !zpodd_dev_enabled(adev)) 5127 return -EBUSY; 5128 } 5129 5130 return 0; 5131 } 5132 5133 static int ata_port_runtime_suspend(struct device *dev) 5134 { 5135 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5136 return 0; 5137 } 5138 5139 static int ata_port_runtime_resume(struct device *dev) 5140 { 5141 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5142 return 0; 5143 } 5144 5145 static const struct dev_pm_ops ata_port_pm_ops = { 5146 .suspend = ata_port_pm_suspend, 5147 .resume = ata_port_pm_resume, 5148 .freeze = ata_port_pm_freeze, 5149 .thaw = ata_port_pm_resume, 5150 .poweroff = ata_port_pm_poweroff, 5151 .restore = ata_port_pm_resume, 5152 5153 .runtime_suspend = ata_port_runtime_suspend, 5154 .runtime_resume = ata_port_runtime_resume, 5155 .runtime_idle = ata_port_runtime_idle, 5156 }; 5157 5158 /* sas ports don't participate in pm runtime management of ata_ports, 5159 * and need to resume ata devices at the domain level, not the per-port 5160 * level. sas suspend/resume is async to allow parallel port recovery 5161 * since sas has multiple ata_port instances per Scsi_Host. 5162 */ 5163 void ata_sas_port_suspend(struct ata_port *ap) 5164 { 5165 ata_port_suspend_async(ap, PMSG_SUSPEND); 5166 } 5167 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5168 5169 void ata_sas_port_resume(struct ata_port *ap) 5170 { 5171 ata_port_resume_async(ap, PMSG_RESUME); 5172 } 5173 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5174 5175 /** 5176 * ata_host_suspend - suspend host 5177 * @host: host to suspend 5178 * @mesg: PM message 5179 * 5180 * Suspend @host. Actual operation is performed by port suspend. 5181 */ 5182 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5183 { 5184 host->dev->power.power_state = mesg; 5185 return 0; 5186 } 5187 EXPORT_SYMBOL_GPL(ata_host_suspend); 5188 5189 /** 5190 * ata_host_resume - resume host 5191 * @host: host to resume 5192 * 5193 * Resume @host. Actual operation is performed by port resume. 5194 */ 5195 void ata_host_resume(struct ata_host *host) 5196 { 5197 host->dev->power.power_state = PMSG_ON; 5198 } 5199 EXPORT_SYMBOL_GPL(ata_host_resume); 5200 #endif 5201 5202 const struct device_type ata_port_type = { 5203 .name = "ata_port", 5204 #ifdef CONFIG_PM 5205 .pm = &ata_port_pm_ops, 5206 #endif 5207 }; 5208 5209 /** 5210 * ata_dev_init - Initialize an ata_device structure 5211 * @dev: Device structure to initialize 5212 * 5213 * Initialize @dev in preparation for probing. 5214 * 5215 * LOCKING: 5216 * Inherited from caller. 5217 */ 5218 void ata_dev_init(struct ata_device *dev) 5219 { 5220 struct ata_link *link = ata_dev_phys_link(dev); 5221 struct ata_port *ap = link->ap; 5222 unsigned long flags; 5223 5224 /* SATA spd limit is bound to the attached device, reset together */ 5225 link->sata_spd_limit = link->hw_sata_spd_limit; 5226 link->sata_spd = 0; 5227 5228 /* High bits of dev->flags are used to record warm plug 5229 * requests which occur asynchronously. Synchronize using 5230 * host lock. 5231 */ 5232 spin_lock_irqsave(ap->lock, flags); 5233 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5234 dev->horkage = 0; 5235 spin_unlock_irqrestore(ap->lock, flags); 5236 5237 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5238 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5239 dev->pio_mask = UINT_MAX; 5240 dev->mwdma_mask = UINT_MAX; 5241 dev->udma_mask = UINT_MAX; 5242 } 5243 5244 /** 5245 * ata_link_init - Initialize an ata_link structure 5246 * @ap: ATA port link is attached to 5247 * @link: Link structure to initialize 5248 * @pmp: Port multiplier port number 5249 * 5250 * Initialize @link. 5251 * 5252 * LOCKING: 5253 * Kernel thread context (may sleep) 5254 */ 5255 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5256 { 5257 int i; 5258 5259 /* clear everything except for devices */ 5260 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5261 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5262 5263 link->ap = ap; 5264 link->pmp = pmp; 5265 link->active_tag = ATA_TAG_POISON; 5266 link->hw_sata_spd_limit = UINT_MAX; 5267 5268 /* can't use iterator, ap isn't initialized yet */ 5269 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5270 struct ata_device *dev = &link->device[i]; 5271 5272 dev->link = link; 5273 dev->devno = dev - link->device; 5274 #ifdef CONFIG_ATA_ACPI 5275 dev->gtf_filter = ata_acpi_gtf_filter; 5276 #endif 5277 ata_dev_init(dev); 5278 } 5279 } 5280 5281 /** 5282 * sata_link_init_spd - Initialize link->sata_spd_limit 5283 * @link: Link to configure sata_spd_limit for 5284 * 5285 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5286 * configured value. 5287 * 5288 * LOCKING: 5289 * Kernel thread context (may sleep). 5290 * 5291 * RETURNS: 5292 * 0 on success, -errno on failure. 5293 */ 5294 int sata_link_init_spd(struct ata_link *link) 5295 { 5296 u8 spd; 5297 int rc; 5298 5299 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5300 if (rc) 5301 return rc; 5302 5303 spd = (link->saved_scontrol >> 4) & 0xf; 5304 if (spd) 5305 link->hw_sata_spd_limit &= (1 << spd) - 1; 5306 5307 ata_force_link_limits(link); 5308 5309 link->sata_spd_limit = link->hw_sata_spd_limit; 5310 5311 return 0; 5312 } 5313 5314 /** 5315 * ata_port_alloc - allocate and initialize basic ATA port resources 5316 * @host: ATA host this allocated port belongs to 5317 * 5318 * Allocate and initialize basic ATA port resources. 5319 * 5320 * RETURNS: 5321 * Allocate ATA port on success, NULL on failure. 5322 * 5323 * LOCKING: 5324 * Inherited from calling layer (may sleep). 5325 */ 5326 struct ata_port *ata_port_alloc(struct ata_host *host) 5327 { 5328 struct ata_port *ap; 5329 5330 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5331 if (!ap) 5332 return NULL; 5333 5334 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5335 ap->lock = &host->lock; 5336 ap->print_id = -1; 5337 ap->local_port_no = -1; 5338 ap->host = host; 5339 ap->dev = host->dev; 5340 5341 mutex_init(&ap->scsi_scan_mutex); 5342 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5343 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5344 INIT_LIST_HEAD(&ap->eh_done_q); 5345 init_waitqueue_head(&ap->eh_wait_q); 5346 init_completion(&ap->park_req_pending); 5347 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5348 TIMER_DEFERRABLE); 5349 5350 ap->cbl = ATA_CBL_NONE; 5351 5352 ata_link_init(ap, &ap->link, 0); 5353 5354 #ifdef ATA_IRQ_TRAP 5355 ap->stats.unhandled_irq = 1; 5356 ap->stats.idle_irq = 1; 5357 #endif 5358 ata_sff_port_init(ap); 5359 5360 return ap; 5361 } 5362 5363 static void ata_devres_release(struct device *gendev, void *res) 5364 { 5365 struct ata_host *host = dev_get_drvdata(gendev); 5366 int i; 5367 5368 for (i = 0; i < host->n_ports; i++) { 5369 struct ata_port *ap = host->ports[i]; 5370 5371 if (!ap) 5372 continue; 5373 5374 if (ap->scsi_host) 5375 scsi_host_put(ap->scsi_host); 5376 5377 } 5378 5379 dev_set_drvdata(gendev, NULL); 5380 ata_host_put(host); 5381 } 5382 5383 static void ata_host_release(struct kref *kref) 5384 { 5385 struct ata_host *host = container_of(kref, struct ata_host, kref); 5386 int i; 5387 5388 for (i = 0; i < host->n_ports; i++) { 5389 struct ata_port *ap = host->ports[i]; 5390 5391 kfree(ap->pmp_link); 5392 kfree(ap->slave_link); 5393 kfree(ap); 5394 host->ports[i] = NULL; 5395 } 5396 kfree(host); 5397 } 5398 5399 void ata_host_get(struct ata_host *host) 5400 { 5401 kref_get(&host->kref); 5402 } 5403 5404 void ata_host_put(struct ata_host *host) 5405 { 5406 kref_put(&host->kref, ata_host_release); 5407 } 5408 EXPORT_SYMBOL_GPL(ata_host_put); 5409 5410 /** 5411 * ata_host_alloc - allocate and init basic ATA host resources 5412 * @dev: generic device this host is associated with 5413 * @max_ports: maximum number of ATA ports associated with this host 5414 * 5415 * Allocate and initialize basic ATA host resources. LLD calls 5416 * this function to allocate a host, initializes it fully and 5417 * attaches it using ata_host_register(). 5418 * 5419 * @max_ports ports are allocated and host->n_ports is 5420 * initialized to @max_ports. The caller is allowed to decrease 5421 * host->n_ports before calling ata_host_register(). The unused 5422 * ports will be automatically freed on registration. 5423 * 5424 * RETURNS: 5425 * Allocate ATA host on success, NULL on failure. 5426 * 5427 * LOCKING: 5428 * Inherited from calling layer (may sleep). 5429 */ 5430 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5431 { 5432 struct ata_host *host; 5433 size_t sz; 5434 int i; 5435 void *dr; 5436 5437 /* alloc a container for our list of ATA ports (buses) */ 5438 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5439 host = kzalloc(sz, GFP_KERNEL); 5440 if (!host) 5441 return NULL; 5442 5443 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5444 goto err_free; 5445 5446 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5447 if (!dr) 5448 goto err_out; 5449 5450 devres_add(dev, dr); 5451 dev_set_drvdata(dev, host); 5452 5453 spin_lock_init(&host->lock); 5454 mutex_init(&host->eh_mutex); 5455 host->dev = dev; 5456 host->n_ports = max_ports; 5457 kref_init(&host->kref); 5458 5459 /* allocate ports bound to this host */ 5460 for (i = 0; i < max_ports; i++) { 5461 struct ata_port *ap; 5462 5463 ap = ata_port_alloc(host); 5464 if (!ap) 5465 goto err_out; 5466 5467 ap->port_no = i; 5468 host->ports[i] = ap; 5469 } 5470 5471 devres_remove_group(dev, NULL); 5472 return host; 5473 5474 err_out: 5475 devres_release_group(dev, NULL); 5476 err_free: 5477 kfree(host); 5478 return NULL; 5479 } 5480 EXPORT_SYMBOL_GPL(ata_host_alloc); 5481 5482 /** 5483 * ata_host_alloc_pinfo - alloc host and init with port_info array 5484 * @dev: generic device this host is associated with 5485 * @ppi: array of ATA port_info to initialize host with 5486 * @n_ports: number of ATA ports attached to this host 5487 * 5488 * Allocate ATA host and initialize with info from @ppi. If NULL 5489 * terminated, @ppi may contain fewer entries than @n_ports. The 5490 * last entry will be used for the remaining ports. 5491 * 5492 * RETURNS: 5493 * Allocate ATA host on success, NULL on failure. 5494 * 5495 * LOCKING: 5496 * Inherited from calling layer (may sleep). 5497 */ 5498 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5499 const struct ata_port_info * const * ppi, 5500 int n_ports) 5501 { 5502 const struct ata_port_info *pi; 5503 struct ata_host *host; 5504 int i, j; 5505 5506 host = ata_host_alloc(dev, n_ports); 5507 if (!host) 5508 return NULL; 5509 5510 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5511 struct ata_port *ap = host->ports[i]; 5512 5513 if (ppi[j]) 5514 pi = ppi[j++]; 5515 5516 ap->pio_mask = pi->pio_mask; 5517 ap->mwdma_mask = pi->mwdma_mask; 5518 ap->udma_mask = pi->udma_mask; 5519 ap->flags |= pi->flags; 5520 ap->link.flags |= pi->link_flags; 5521 ap->ops = pi->port_ops; 5522 5523 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5524 host->ops = pi->port_ops; 5525 } 5526 5527 return host; 5528 } 5529 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5530 5531 static void ata_host_stop(struct device *gendev, void *res) 5532 { 5533 struct ata_host *host = dev_get_drvdata(gendev); 5534 int i; 5535 5536 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5537 5538 for (i = 0; i < host->n_ports; i++) { 5539 struct ata_port *ap = host->ports[i]; 5540 5541 if (ap->ops->port_stop) 5542 ap->ops->port_stop(ap); 5543 } 5544 5545 if (host->ops->host_stop) 5546 host->ops->host_stop(host); 5547 } 5548 5549 /** 5550 * ata_finalize_port_ops - finalize ata_port_operations 5551 * @ops: ata_port_operations to finalize 5552 * 5553 * An ata_port_operations can inherit from another ops and that 5554 * ops can again inherit from another. This can go on as many 5555 * times as necessary as long as there is no loop in the 5556 * inheritance chain. 5557 * 5558 * Ops tables are finalized when the host is started. NULL or 5559 * unspecified entries are inherited from the closet ancestor 5560 * which has the method and the entry is populated with it. 5561 * After finalization, the ops table directly points to all the 5562 * methods and ->inherits is no longer necessary and cleared. 5563 * 5564 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5565 * 5566 * LOCKING: 5567 * None. 5568 */ 5569 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5570 { 5571 static DEFINE_SPINLOCK(lock); 5572 const struct ata_port_operations *cur; 5573 void **begin = (void **)ops; 5574 void **end = (void **)&ops->inherits; 5575 void **pp; 5576 5577 if (!ops || !ops->inherits) 5578 return; 5579 5580 spin_lock(&lock); 5581 5582 for (cur = ops->inherits; cur; cur = cur->inherits) { 5583 void **inherit = (void **)cur; 5584 5585 for (pp = begin; pp < end; pp++, inherit++) 5586 if (!*pp) 5587 *pp = *inherit; 5588 } 5589 5590 for (pp = begin; pp < end; pp++) 5591 if (IS_ERR(*pp)) 5592 *pp = NULL; 5593 5594 ops->inherits = NULL; 5595 5596 spin_unlock(&lock); 5597 } 5598 5599 /** 5600 * ata_host_start - start and freeze ports of an ATA host 5601 * @host: ATA host to start ports for 5602 * 5603 * Start and then freeze ports of @host. Started status is 5604 * recorded in host->flags, so this function can be called 5605 * multiple times. Ports are guaranteed to get started only 5606 * once. If host->ops isn't initialized yet, its set to the 5607 * first non-dummy port ops. 5608 * 5609 * LOCKING: 5610 * Inherited from calling layer (may sleep). 5611 * 5612 * RETURNS: 5613 * 0 if all ports are started successfully, -errno otherwise. 5614 */ 5615 int ata_host_start(struct ata_host *host) 5616 { 5617 int have_stop = 0; 5618 void *start_dr = NULL; 5619 int i, rc; 5620 5621 if (host->flags & ATA_HOST_STARTED) 5622 return 0; 5623 5624 ata_finalize_port_ops(host->ops); 5625 5626 for (i = 0; i < host->n_ports; i++) { 5627 struct ata_port *ap = host->ports[i]; 5628 5629 ata_finalize_port_ops(ap->ops); 5630 5631 if (!host->ops && !ata_port_is_dummy(ap)) 5632 host->ops = ap->ops; 5633 5634 if (ap->ops->port_stop) 5635 have_stop = 1; 5636 } 5637 5638 if (host->ops && host->ops->host_stop) 5639 have_stop = 1; 5640 5641 if (have_stop) { 5642 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5643 if (!start_dr) 5644 return -ENOMEM; 5645 } 5646 5647 for (i = 0; i < host->n_ports; i++) { 5648 struct ata_port *ap = host->ports[i]; 5649 5650 if (ap->ops->port_start) { 5651 rc = ap->ops->port_start(ap); 5652 if (rc) { 5653 if (rc != -ENODEV) 5654 dev_err(host->dev, 5655 "failed to start port %d (errno=%d)\n", 5656 i, rc); 5657 goto err_out; 5658 } 5659 } 5660 ata_eh_freeze_port(ap); 5661 } 5662 5663 if (start_dr) 5664 devres_add(host->dev, start_dr); 5665 host->flags |= ATA_HOST_STARTED; 5666 return 0; 5667 5668 err_out: 5669 while (--i >= 0) { 5670 struct ata_port *ap = host->ports[i]; 5671 5672 if (ap->ops->port_stop) 5673 ap->ops->port_stop(ap); 5674 } 5675 devres_free(start_dr); 5676 return rc; 5677 } 5678 EXPORT_SYMBOL_GPL(ata_host_start); 5679 5680 /** 5681 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5682 * @host: host to initialize 5683 * @dev: device host is attached to 5684 * @ops: port_ops 5685 * 5686 */ 5687 void ata_host_init(struct ata_host *host, struct device *dev, 5688 struct ata_port_operations *ops) 5689 { 5690 spin_lock_init(&host->lock); 5691 mutex_init(&host->eh_mutex); 5692 host->n_tags = ATA_MAX_QUEUE; 5693 host->dev = dev; 5694 host->ops = ops; 5695 kref_init(&host->kref); 5696 } 5697 EXPORT_SYMBOL_GPL(ata_host_init); 5698 5699 void __ata_port_probe(struct ata_port *ap) 5700 { 5701 struct ata_eh_info *ehi = &ap->link.eh_info; 5702 unsigned long flags; 5703 5704 /* kick EH for boot probing */ 5705 spin_lock_irqsave(ap->lock, flags); 5706 5707 ehi->probe_mask |= ATA_ALL_DEVICES; 5708 ehi->action |= ATA_EH_RESET; 5709 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5710 5711 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5712 ap->pflags |= ATA_PFLAG_LOADING; 5713 ata_port_schedule_eh(ap); 5714 5715 spin_unlock_irqrestore(ap->lock, flags); 5716 } 5717 5718 int ata_port_probe(struct ata_port *ap) 5719 { 5720 int rc = 0; 5721 5722 if (ap->ops->error_handler) { 5723 __ata_port_probe(ap); 5724 ata_port_wait_eh(ap); 5725 } else { 5726 rc = ata_bus_probe(ap); 5727 } 5728 return rc; 5729 } 5730 5731 5732 static void async_port_probe(void *data, async_cookie_t cookie) 5733 { 5734 struct ata_port *ap = data; 5735 5736 /* 5737 * If we're not allowed to scan this host in parallel, 5738 * we need to wait until all previous scans have completed 5739 * before going further. 5740 * Jeff Garzik says this is only within a controller, so we 5741 * don't need to wait for port 0, only for later ports. 5742 */ 5743 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5744 async_synchronize_cookie(cookie); 5745 5746 (void)ata_port_probe(ap); 5747 5748 /* in order to keep device order, we need to synchronize at this point */ 5749 async_synchronize_cookie(cookie); 5750 5751 ata_scsi_scan_host(ap, 1); 5752 } 5753 5754 /** 5755 * ata_host_register - register initialized ATA host 5756 * @host: ATA host to register 5757 * @sht: template for SCSI host 5758 * 5759 * Register initialized ATA host. @host is allocated using 5760 * ata_host_alloc() and fully initialized by LLD. This function 5761 * starts ports, registers @host with ATA and SCSI layers and 5762 * probe registered devices. 5763 * 5764 * LOCKING: 5765 * Inherited from calling layer (may sleep). 5766 * 5767 * RETURNS: 5768 * 0 on success, -errno otherwise. 5769 */ 5770 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5771 { 5772 int i, rc; 5773 5774 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5775 5776 /* host must have been started */ 5777 if (!(host->flags & ATA_HOST_STARTED)) { 5778 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5779 WARN_ON(1); 5780 return -EINVAL; 5781 } 5782 5783 /* Blow away unused ports. This happens when LLD can't 5784 * determine the exact number of ports to allocate at 5785 * allocation time. 5786 */ 5787 for (i = host->n_ports; host->ports[i]; i++) 5788 kfree(host->ports[i]); 5789 5790 /* give ports names and add SCSI hosts */ 5791 for (i = 0; i < host->n_ports; i++) { 5792 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5793 host->ports[i]->local_port_no = i + 1; 5794 } 5795 5796 /* Create associated sysfs transport objects */ 5797 for (i = 0; i < host->n_ports; i++) { 5798 rc = ata_tport_add(host->dev,host->ports[i]); 5799 if (rc) { 5800 goto err_tadd; 5801 } 5802 } 5803 5804 rc = ata_scsi_add_hosts(host, sht); 5805 if (rc) 5806 goto err_tadd; 5807 5808 /* set cable, sata_spd_limit and report */ 5809 for (i = 0; i < host->n_ports; i++) { 5810 struct ata_port *ap = host->ports[i]; 5811 unsigned long xfer_mask; 5812 5813 /* set SATA cable type if still unset */ 5814 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5815 ap->cbl = ATA_CBL_SATA; 5816 5817 /* init sata_spd_limit to the current value */ 5818 sata_link_init_spd(&ap->link); 5819 if (ap->slave_link) 5820 sata_link_init_spd(ap->slave_link); 5821 5822 /* print per-port info to dmesg */ 5823 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5824 ap->udma_mask); 5825 5826 if (!ata_port_is_dummy(ap)) { 5827 ata_port_info(ap, "%cATA max %s %s\n", 5828 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5829 ata_mode_string(xfer_mask), 5830 ap->link.eh_info.desc); 5831 ata_ehi_clear_desc(&ap->link.eh_info); 5832 } else 5833 ata_port_info(ap, "DUMMY\n"); 5834 } 5835 5836 /* perform each probe asynchronously */ 5837 for (i = 0; i < host->n_ports; i++) { 5838 struct ata_port *ap = host->ports[i]; 5839 ap->cookie = async_schedule(async_port_probe, ap); 5840 } 5841 5842 return 0; 5843 5844 err_tadd: 5845 while (--i >= 0) { 5846 ata_tport_delete(host->ports[i]); 5847 } 5848 return rc; 5849 5850 } 5851 EXPORT_SYMBOL_GPL(ata_host_register); 5852 5853 /** 5854 * ata_host_activate - start host, request IRQ and register it 5855 * @host: target ATA host 5856 * @irq: IRQ to request 5857 * @irq_handler: irq_handler used when requesting IRQ 5858 * @irq_flags: irq_flags used when requesting IRQ 5859 * @sht: scsi_host_template to use when registering the host 5860 * 5861 * After allocating an ATA host and initializing it, most libata 5862 * LLDs perform three steps to activate the host - start host, 5863 * request IRQ and register it. This helper takes necessary 5864 * arguments and performs the three steps in one go. 5865 * 5866 * An invalid IRQ skips the IRQ registration and expects the host to 5867 * have set polling mode on the port. In this case, @irq_handler 5868 * should be NULL. 5869 * 5870 * LOCKING: 5871 * Inherited from calling layer (may sleep). 5872 * 5873 * RETURNS: 5874 * 0 on success, -errno otherwise. 5875 */ 5876 int ata_host_activate(struct ata_host *host, int irq, 5877 irq_handler_t irq_handler, unsigned long irq_flags, 5878 struct scsi_host_template *sht) 5879 { 5880 int i, rc; 5881 char *irq_desc; 5882 5883 rc = ata_host_start(host); 5884 if (rc) 5885 return rc; 5886 5887 /* Special case for polling mode */ 5888 if (!irq) { 5889 WARN_ON(irq_handler); 5890 return ata_host_register(host, sht); 5891 } 5892 5893 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5894 dev_driver_string(host->dev), 5895 dev_name(host->dev)); 5896 if (!irq_desc) 5897 return -ENOMEM; 5898 5899 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5900 irq_desc, host); 5901 if (rc) 5902 return rc; 5903 5904 for (i = 0; i < host->n_ports; i++) 5905 ata_port_desc(host->ports[i], "irq %d", irq); 5906 5907 rc = ata_host_register(host, sht); 5908 /* if failed, just free the IRQ and leave ports alone */ 5909 if (rc) 5910 devm_free_irq(host->dev, irq, host); 5911 5912 return rc; 5913 } 5914 EXPORT_SYMBOL_GPL(ata_host_activate); 5915 5916 /** 5917 * ata_port_detach - Detach ATA port in preparation of device removal 5918 * @ap: ATA port to be detached 5919 * 5920 * Detach all ATA devices and the associated SCSI devices of @ap; 5921 * then, remove the associated SCSI host. @ap is guaranteed to 5922 * be quiescent on return from this function. 5923 * 5924 * LOCKING: 5925 * Kernel thread context (may sleep). 5926 */ 5927 static void ata_port_detach(struct ata_port *ap) 5928 { 5929 unsigned long flags; 5930 struct ata_link *link; 5931 struct ata_device *dev; 5932 5933 if (!ap->ops->error_handler) 5934 goto skip_eh; 5935 5936 /* tell EH we're leaving & flush EH */ 5937 spin_lock_irqsave(ap->lock, flags); 5938 ap->pflags |= ATA_PFLAG_UNLOADING; 5939 ata_port_schedule_eh(ap); 5940 spin_unlock_irqrestore(ap->lock, flags); 5941 5942 /* wait till EH commits suicide */ 5943 ata_port_wait_eh(ap); 5944 5945 /* it better be dead now */ 5946 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 5947 5948 cancel_delayed_work_sync(&ap->hotplug_task); 5949 5950 skip_eh: 5951 /* clean up zpodd on port removal */ 5952 ata_for_each_link(link, ap, HOST_FIRST) { 5953 ata_for_each_dev(dev, link, ALL) { 5954 if (zpodd_dev_enabled(dev)) 5955 zpodd_exit(dev); 5956 } 5957 } 5958 if (ap->pmp_link) { 5959 int i; 5960 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 5961 ata_tlink_delete(&ap->pmp_link[i]); 5962 } 5963 /* remove the associated SCSI host */ 5964 scsi_remove_host(ap->scsi_host); 5965 ata_tport_delete(ap); 5966 } 5967 5968 /** 5969 * ata_host_detach - Detach all ports of an ATA host 5970 * @host: Host to detach 5971 * 5972 * Detach all ports of @host. 5973 * 5974 * LOCKING: 5975 * Kernel thread context (may sleep). 5976 */ 5977 void ata_host_detach(struct ata_host *host) 5978 { 5979 int i; 5980 5981 for (i = 0; i < host->n_ports; i++) { 5982 /* Ensure ata_port probe has completed */ 5983 async_synchronize_cookie(host->ports[i]->cookie + 1); 5984 ata_port_detach(host->ports[i]); 5985 } 5986 5987 /* the host is dead now, dissociate ACPI */ 5988 ata_acpi_dissociate(host); 5989 } 5990 EXPORT_SYMBOL_GPL(ata_host_detach); 5991 5992 #ifdef CONFIG_PCI 5993 5994 /** 5995 * ata_pci_remove_one - PCI layer callback for device removal 5996 * @pdev: PCI device that was removed 5997 * 5998 * PCI layer indicates to libata via this hook that hot-unplug or 5999 * module unload event has occurred. Detach all ports. Resource 6000 * release is handled via devres. 6001 * 6002 * LOCKING: 6003 * Inherited from PCI layer (may sleep). 6004 */ 6005 void ata_pci_remove_one(struct pci_dev *pdev) 6006 { 6007 struct ata_host *host = pci_get_drvdata(pdev); 6008 6009 ata_host_detach(host); 6010 } 6011 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6012 6013 void ata_pci_shutdown_one(struct pci_dev *pdev) 6014 { 6015 struct ata_host *host = pci_get_drvdata(pdev); 6016 int i; 6017 6018 for (i = 0; i < host->n_ports; i++) { 6019 struct ata_port *ap = host->ports[i]; 6020 6021 ap->pflags |= ATA_PFLAG_FROZEN; 6022 6023 /* Disable port interrupts */ 6024 if (ap->ops->freeze) 6025 ap->ops->freeze(ap); 6026 6027 /* Stop the port DMA engines */ 6028 if (ap->ops->port_stop) 6029 ap->ops->port_stop(ap); 6030 } 6031 } 6032 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6033 6034 /* move to PCI subsystem */ 6035 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6036 { 6037 unsigned long tmp = 0; 6038 6039 switch (bits->width) { 6040 case 1: { 6041 u8 tmp8 = 0; 6042 pci_read_config_byte(pdev, bits->reg, &tmp8); 6043 tmp = tmp8; 6044 break; 6045 } 6046 case 2: { 6047 u16 tmp16 = 0; 6048 pci_read_config_word(pdev, bits->reg, &tmp16); 6049 tmp = tmp16; 6050 break; 6051 } 6052 case 4: { 6053 u32 tmp32 = 0; 6054 pci_read_config_dword(pdev, bits->reg, &tmp32); 6055 tmp = tmp32; 6056 break; 6057 } 6058 6059 default: 6060 return -EINVAL; 6061 } 6062 6063 tmp &= bits->mask; 6064 6065 return (tmp == bits->val) ? 1 : 0; 6066 } 6067 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6068 6069 #ifdef CONFIG_PM 6070 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6071 { 6072 pci_save_state(pdev); 6073 pci_disable_device(pdev); 6074 6075 if (mesg.event & PM_EVENT_SLEEP) 6076 pci_set_power_state(pdev, PCI_D3hot); 6077 } 6078 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6079 6080 int ata_pci_device_do_resume(struct pci_dev *pdev) 6081 { 6082 int rc; 6083 6084 pci_set_power_state(pdev, PCI_D0); 6085 pci_restore_state(pdev); 6086 6087 rc = pcim_enable_device(pdev); 6088 if (rc) { 6089 dev_err(&pdev->dev, 6090 "failed to enable device after resume (%d)\n", rc); 6091 return rc; 6092 } 6093 6094 pci_set_master(pdev); 6095 return 0; 6096 } 6097 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6098 6099 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6100 { 6101 struct ata_host *host = pci_get_drvdata(pdev); 6102 int rc = 0; 6103 6104 rc = ata_host_suspend(host, mesg); 6105 if (rc) 6106 return rc; 6107 6108 ata_pci_device_do_suspend(pdev, mesg); 6109 6110 return 0; 6111 } 6112 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6113 6114 int ata_pci_device_resume(struct pci_dev *pdev) 6115 { 6116 struct ata_host *host = pci_get_drvdata(pdev); 6117 int rc; 6118 6119 rc = ata_pci_device_do_resume(pdev); 6120 if (rc == 0) 6121 ata_host_resume(host); 6122 return rc; 6123 } 6124 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6125 #endif /* CONFIG_PM */ 6126 #endif /* CONFIG_PCI */ 6127 6128 /** 6129 * ata_platform_remove_one - Platform layer callback for device removal 6130 * @pdev: Platform device that was removed 6131 * 6132 * Platform layer indicates to libata via this hook that hot-unplug or 6133 * module unload event has occurred. Detach all ports. Resource 6134 * release is handled via devres. 6135 * 6136 * LOCKING: 6137 * Inherited from platform layer (may sleep). 6138 */ 6139 int ata_platform_remove_one(struct platform_device *pdev) 6140 { 6141 struct ata_host *host = platform_get_drvdata(pdev); 6142 6143 ata_host_detach(host); 6144 6145 return 0; 6146 } 6147 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6148 6149 #ifdef CONFIG_ATA_FORCE 6150 static int __init ata_parse_force_one(char **cur, 6151 struct ata_force_ent *force_ent, 6152 const char **reason) 6153 { 6154 static const struct ata_force_param force_tbl[] __initconst = { 6155 { "40c", .cbl = ATA_CBL_PATA40 }, 6156 { "80c", .cbl = ATA_CBL_PATA80 }, 6157 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6158 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6159 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6160 { "sata", .cbl = ATA_CBL_SATA }, 6161 { "1.5Gbps", .spd_limit = 1 }, 6162 { "3.0Gbps", .spd_limit = 2 }, 6163 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6164 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6165 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6166 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6167 { "noncqati", .horkage_on = ATA_HORKAGE_NO_NCQ_ON_ATI }, 6168 { "ncqati", .horkage_off = ATA_HORKAGE_NO_NCQ_ON_ATI }, 6169 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6170 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6171 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6172 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6173 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6174 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6175 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6176 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6177 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6178 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6179 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6180 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6181 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6182 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6183 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6184 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6185 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6186 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6187 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6188 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6189 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6190 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6191 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6192 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6193 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6194 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6195 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6196 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6197 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6198 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6199 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6200 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6201 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6202 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6203 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6204 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6205 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6206 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6207 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6208 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6209 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6210 }; 6211 char *start = *cur, *p = *cur; 6212 char *id, *val, *endp; 6213 const struct ata_force_param *match_fp = NULL; 6214 int nr_matches = 0, i; 6215 6216 /* find where this param ends and update *cur */ 6217 while (*p != '\0' && *p != ',') 6218 p++; 6219 6220 if (*p == '\0') 6221 *cur = p; 6222 else 6223 *cur = p + 1; 6224 6225 *p = '\0'; 6226 6227 /* parse */ 6228 p = strchr(start, ':'); 6229 if (!p) { 6230 val = strstrip(start); 6231 goto parse_val; 6232 } 6233 *p = '\0'; 6234 6235 id = strstrip(start); 6236 val = strstrip(p + 1); 6237 6238 /* parse id */ 6239 p = strchr(id, '.'); 6240 if (p) { 6241 *p++ = '\0'; 6242 force_ent->device = simple_strtoul(p, &endp, 10); 6243 if (p == endp || *endp != '\0') { 6244 *reason = "invalid device"; 6245 return -EINVAL; 6246 } 6247 } 6248 6249 force_ent->port = simple_strtoul(id, &endp, 10); 6250 if (id == endp || *endp != '\0') { 6251 *reason = "invalid port/link"; 6252 return -EINVAL; 6253 } 6254 6255 parse_val: 6256 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6257 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6258 const struct ata_force_param *fp = &force_tbl[i]; 6259 6260 if (strncasecmp(val, fp->name, strlen(val))) 6261 continue; 6262 6263 nr_matches++; 6264 match_fp = fp; 6265 6266 if (strcasecmp(val, fp->name) == 0) { 6267 nr_matches = 1; 6268 break; 6269 } 6270 } 6271 6272 if (!nr_matches) { 6273 *reason = "unknown value"; 6274 return -EINVAL; 6275 } 6276 if (nr_matches > 1) { 6277 *reason = "ambiguous value"; 6278 return -EINVAL; 6279 } 6280 6281 force_ent->param = *match_fp; 6282 6283 return 0; 6284 } 6285 6286 static void __init ata_parse_force_param(void) 6287 { 6288 int idx = 0, size = 1; 6289 int last_port = -1, last_device = -1; 6290 char *p, *cur, *next; 6291 6292 /* calculate maximum number of params and allocate force_tbl */ 6293 for (p = ata_force_param_buf; *p; p++) 6294 if (*p == ',') 6295 size++; 6296 6297 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6298 if (!ata_force_tbl) { 6299 printk(KERN_WARNING "ata: failed to extend force table, " 6300 "libata.force ignored\n"); 6301 return; 6302 } 6303 6304 /* parse and populate the table */ 6305 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6306 const char *reason = ""; 6307 struct ata_force_ent te = { .port = -1, .device = -1 }; 6308 6309 next = cur; 6310 if (ata_parse_force_one(&next, &te, &reason)) { 6311 printk(KERN_WARNING "ata: failed to parse force " 6312 "parameter \"%s\" (%s)\n", 6313 cur, reason); 6314 continue; 6315 } 6316 6317 if (te.port == -1) { 6318 te.port = last_port; 6319 te.device = last_device; 6320 } 6321 6322 ata_force_tbl[idx++] = te; 6323 6324 last_port = te.port; 6325 last_device = te.device; 6326 } 6327 6328 ata_force_tbl_size = idx; 6329 } 6330 6331 static void ata_free_force_param(void) 6332 { 6333 kfree(ata_force_tbl); 6334 } 6335 #else 6336 static inline void ata_parse_force_param(void) { } 6337 static inline void ata_free_force_param(void) { } 6338 #endif 6339 6340 static int __init ata_init(void) 6341 { 6342 int rc; 6343 6344 ata_parse_force_param(); 6345 6346 rc = ata_sff_init(); 6347 if (rc) { 6348 ata_free_force_param(); 6349 return rc; 6350 } 6351 6352 libata_transport_init(); 6353 ata_scsi_transport_template = ata_attach_transport(); 6354 if (!ata_scsi_transport_template) { 6355 ata_sff_exit(); 6356 rc = -ENOMEM; 6357 goto err_out; 6358 } 6359 6360 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6361 return 0; 6362 6363 err_out: 6364 return rc; 6365 } 6366 6367 static void __exit ata_exit(void) 6368 { 6369 ata_release_transport(ata_scsi_transport_template); 6370 libata_transport_exit(); 6371 ata_sff_exit(); 6372 ata_free_force_param(); 6373 } 6374 6375 subsys_initcall(ata_init); 6376 module_exit(ata_exit); 6377 6378 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6379 6380 int ata_ratelimit(void) 6381 { 6382 return __ratelimit(&ratelimit); 6383 } 6384 EXPORT_SYMBOL_GPL(ata_ratelimit); 6385 6386 /** 6387 * ata_msleep - ATA EH owner aware msleep 6388 * @ap: ATA port to attribute the sleep to 6389 * @msecs: duration to sleep in milliseconds 6390 * 6391 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6392 * ownership is released before going to sleep and reacquired 6393 * after the sleep is complete. IOW, other ports sharing the 6394 * @ap->host will be allowed to own the EH while this task is 6395 * sleeping. 6396 * 6397 * LOCKING: 6398 * Might sleep. 6399 */ 6400 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6401 { 6402 bool owns_eh = ap && ap->host->eh_owner == current; 6403 6404 if (owns_eh) 6405 ata_eh_release(ap); 6406 6407 if (msecs < 20) { 6408 unsigned long usecs = msecs * USEC_PER_MSEC; 6409 usleep_range(usecs, usecs + 50); 6410 } else { 6411 msleep(msecs); 6412 } 6413 6414 if (owns_eh) 6415 ata_eh_acquire(ap); 6416 } 6417 EXPORT_SYMBOL_GPL(ata_msleep); 6418 6419 /** 6420 * ata_wait_register - wait until register value changes 6421 * @ap: ATA port to wait register for, can be NULL 6422 * @reg: IO-mapped register 6423 * @mask: Mask to apply to read register value 6424 * @val: Wait condition 6425 * @interval: polling interval in milliseconds 6426 * @timeout: timeout in milliseconds 6427 * 6428 * Waiting for some bits of register to change is a common 6429 * operation for ATA controllers. This function reads 32bit LE 6430 * IO-mapped register @reg and tests for the following condition. 6431 * 6432 * (*@reg & mask) != val 6433 * 6434 * If the condition is met, it returns; otherwise, the process is 6435 * repeated after @interval_msec until timeout. 6436 * 6437 * LOCKING: 6438 * Kernel thread context (may sleep) 6439 * 6440 * RETURNS: 6441 * The final register value. 6442 */ 6443 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6444 unsigned long interval, unsigned long timeout) 6445 { 6446 unsigned long deadline; 6447 u32 tmp; 6448 6449 tmp = ioread32(reg); 6450 6451 /* Calculate timeout _after_ the first read to make sure 6452 * preceding writes reach the controller before starting to 6453 * eat away the timeout. 6454 */ 6455 deadline = ata_deadline(jiffies, timeout); 6456 6457 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6458 ata_msleep(ap, interval); 6459 tmp = ioread32(reg); 6460 } 6461 6462 return tmp; 6463 } 6464 EXPORT_SYMBOL_GPL(ata_wait_register); 6465 6466 /* 6467 * Dummy port_ops 6468 */ 6469 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6470 { 6471 return AC_ERR_SYSTEM; 6472 } 6473 6474 static void ata_dummy_error_handler(struct ata_port *ap) 6475 { 6476 /* truly dummy */ 6477 } 6478 6479 struct ata_port_operations ata_dummy_port_ops = { 6480 .qc_prep = ata_noop_qc_prep, 6481 .qc_issue = ata_dummy_qc_issue, 6482 .error_handler = ata_dummy_error_handler, 6483 .sched_eh = ata_std_sched_eh, 6484 .end_eh = ata_std_end_eh, 6485 }; 6486 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6487 6488 const struct ata_port_info ata_dummy_port_info = { 6489 .port_ops = &ata_dummy_port_ops, 6490 }; 6491 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6492 6493 void ata_print_version(const struct device *dev, const char *version) 6494 { 6495 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6496 } 6497 EXPORT_SYMBOL(ata_print_version); 6498 6499 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6500 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6501 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6502 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6503 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6504