1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 #include <linux/pm_runtime.h> 70 #include <linux/platform_device.h> 71 72 #include "libata.h" 73 #include "libata-transport.h" 74 75 /* debounce timing parameters in msecs { interval, duration, timeout } */ 76 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 77 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 78 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 79 80 const struct ata_port_operations ata_base_port_ops = { 81 .prereset = ata_std_prereset, 82 .postreset = ata_std_postreset, 83 .error_handler = ata_std_error_handler, 84 .sched_eh = ata_std_sched_eh, 85 .end_eh = ata_std_end_eh, 86 }; 87 88 const struct ata_port_operations sata_port_ops = { 89 .inherits = &ata_base_port_ops, 90 91 .qc_defer = ata_std_qc_defer, 92 .hardreset = sata_std_hardreset, 93 }; 94 95 static unsigned int ata_dev_init_params(struct ata_device *dev, 96 u16 heads, u16 sectors); 97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 98 static void ata_dev_xfermask(struct ata_device *dev); 99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 100 101 atomic_t ata_print_id = ATOMIC_INIT(0); 102 103 struct ata_force_param { 104 const char *name; 105 unsigned int cbl; 106 int spd_limit; 107 unsigned long xfer_mask; 108 unsigned int horkage_on; 109 unsigned int horkage_off; 110 unsigned int lflags; 111 }; 112 113 struct ata_force_ent { 114 int port; 115 int device; 116 struct ata_force_param param; 117 }; 118 119 static struct ata_force_ent *ata_force_tbl; 120 static int ata_force_tbl_size; 121 122 static char ata_force_param_buf[PAGE_SIZE] __initdata; 123 /* param_buf is thrown away after initialization, disallow read */ 124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 126 127 static int atapi_enabled = 1; 128 module_param(atapi_enabled, int, 0444); 129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 130 131 static int atapi_dmadir = 0; 132 module_param(atapi_dmadir, int, 0444); 133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 134 135 int atapi_passthru16 = 1; 136 module_param(atapi_passthru16, int, 0444); 137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 138 139 int libata_fua = 0; 140 module_param_named(fua, libata_fua, int, 0444); 141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 142 143 static int ata_ignore_hpa; 144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 146 147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 148 module_param_named(dma, libata_dma_mask, int, 0444); 149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 150 151 static int ata_probe_timeout; 152 module_param(ata_probe_timeout, int, 0444); 153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 154 155 int libata_noacpi = 0; 156 module_param_named(noacpi, libata_noacpi, int, 0444); 157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 158 159 int libata_allow_tpm = 0; 160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 162 163 static int atapi_an; 164 module_param(atapi_an, int, 0444); 165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 166 167 MODULE_AUTHOR("Jeff Garzik"); 168 MODULE_DESCRIPTION("Library module for ATA devices"); 169 MODULE_LICENSE("GPL"); 170 MODULE_VERSION(DRV_VERSION); 171 172 173 static bool ata_sstatus_online(u32 sstatus) 174 { 175 return (sstatus & 0xf) == 0x3; 176 } 177 178 /** 179 * ata_link_next - link iteration helper 180 * @link: the previous link, NULL to start 181 * @ap: ATA port containing links to iterate 182 * @mode: iteration mode, one of ATA_LITER_* 183 * 184 * LOCKING: 185 * Host lock or EH context. 186 * 187 * RETURNS: 188 * Pointer to the next link. 189 */ 190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 191 enum ata_link_iter_mode mode) 192 { 193 BUG_ON(mode != ATA_LITER_EDGE && 194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 195 196 /* NULL link indicates start of iteration */ 197 if (!link) 198 switch (mode) { 199 case ATA_LITER_EDGE: 200 case ATA_LITER_PMP_FIRST: 201 if (sata_pmp_attached(ap)) 202 return ap->pmp_link; 203 /* fall through */ 204 case ATA_LITER_HOST_FIRST: 205 return &ap->link; 206 } 207 208 /* we just iterated over the host link, what's next? */ 209 if (link == &ap->link) 210 switch (mode) { 211 case ATA_LITER_HOST_FIRST: 212 if (sata_pmp_attached(ap)) 213 return ap->pmp_link; 214 /* fall through */ 215 case ATA_LITER_PMP_FIRST: 216 if (unlikely(ap->slave_link)) 217 return ap->slave_link; 218 /* fall through */ 219 case ATA_LITER_EDGE: 220 return NULL; 221 } 222 223 /* slave_link excludes PMP */ 224 if (unlikely(link == ap->slave_link)) 225 return NULL; 226 227 /* we were over a PMP link */ 228 if (++link < ap->pmp_link + ap->nr_pmp_links) 229 return link; 230 231 if (mode == ATA_LITER_PMP_FIRST) 232 return &ap->link; 233 234 return NULL; 235 } 236 237 /** 238 * ata_dev_next - device iteration helper 239 * @dev: the previous device, NULL to start 240 * @link: ATA link containing devices to iterate 241 * @mode: iteration mode, one of ATA_DITER_* 242 * 243 * LOCKING: 244 * Host lock or EH context. 245 * 246 * RETURNS: 247 * Pointer to the next device. 248 */ 249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 250 enum ata_dev_iter_mode mode) 251 { 252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 254 255 /* NULL dev indicates start of iteration */ 256 if (!dev) 257 switch (mode) { 258 case ATA_DITER_ENABLED: 259 case ATA_DITER_ALL: 260 dev = link->device; 261 goto check; 262 case ATA_DITER_ENABLED_REVERSE: 263 case ATA_DITER_ALL_REVERSE: 264 dev = link->device + ata_link_max_devices(link) - 1; 265 goto check; 266 } 267 268 next: 269 /* move to the next one */ 270 switch (mode) { 271 case ATA_DITER_ENABLED: 272 case ATA_DITER_ALL: 273 if (++dev < link->device + ata_link_max_devices(link)) 274 goto check; 275 return NULL; 276 case ATA_DITER_ENABLED_REVERSE: 277 case ATA_DITER_ALL_REVERSE: 278 if (--dev >= link->device) 279 goto check; 280 return NULL; 281 } 282 283 check: 284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 285 !ata_dev_enabled(dev)) 286 goto next; 287 return dev; 288 } 289 290 /** 291 * ata_dev_phys_link - find physical link for a device 292 * @dev: ATA device to look up physical link for 293 * 294 * Look up physical link which @dev is attached to. Note that 295 * this is different from @dev->link only when @dev is on slave 296 * link. For all other cases, it's the same as @dev->link. 297 * 298 * LOCKING: 299 * Don't care. 300 * 301 * RETURNS: 302 * Pointer to the found physical link. 303 */ 304 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 305 { 306 struct ata_port *ap = dev->link->ap; 307 308 if (!ap->slave_link) 309 return dev->link; 310 if (!dev->devno) 311 return &ap->link; 312 return ap->slave_link; 313 } 314 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags) { 391 link->flags |= fe->param.lflags; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags, link->flags); 395 } 396 } 397 } 398 399 /** 400 * ata_force_xfermask - force xfermask according to libata.force 401 * @dev: ATA device of interest 402 * 403 * Force xfer_mask according to libata.force and whine about it. 404 * For consistency with link selection, device number 15 selects 405 * the first device connected to the host link. 406 * 407 * LOCKING: 408 * EH context. 409 */ 410 static void ata_force_xfermask(struct ata_device *dev) 411 { 412 int devno = dev->link->pmp + dev->devno; 413 int alt_devno = devno; 414 int i; 415 416 /* allow n.15/16 for devices attached to host port */ 417 if (ata_is_host_link(dev->link)) 418 alt_devno += 15; 419 420 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 421 const struct ata_force_ent *fe = &ata_force_tbl[i]; 422 unsigned long pio_mask, mwdma_mask, udma_mask; 423 424 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 425 continue; 426 427 if (fe->device != -1 && fe->device != devno && 428 fe->device != alt_devno) 429 continue; 430 431 if (!fe->param.xfer_mask) 432 continue; 433 434 ata_unpack_xfermask(fe->param.xfer_mask, 435 &pio_mask, &mwdma_mask, &udma_mask); 436 if (udma_mask) 437 dev->udma_mask = udma_mask; 438 else if (mwdma_mask) { 439 dev->udma_mask = 0; 440 dev->mwdma_mask = mwdma_mask; 441 } else { 442 dev->udma_mask = 0; 443 dev->mwdma_mask = 0; 444 dev->pio_mask = pio_mask; 445 } 446 447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 448 fe->param.name); 449 return; 450 } 451 } 452 453 /** 454 * ata_force_horkage - force horkage according to libata.force 455 * @dev: ATA device of interest 456 * 457 * Force horkage according to libata.force and whine about it. 458 * For consistency with link selection, device number 15 selects 459 * the first device connected to the host link. 460 * 461 * LOCKING: 462 * EH context. 463 */ 464 static void ata_force_horkage(struct ata_device *dev) 465 { 466 int devno = dev->link->pmp + dev->devno; 467 int alt_devno = devno; 468 int i; 469 470 /* allow n.15/16 for devices attached to host port */ 471 if (ata_is_host_link(dev->link)) 472 alt_devno += 15; 473 474 for (i = 0; i < ata_force_tbl_size; i++) { 475 const struct ata_force_ent *fe = &ata_force_tbl[i]; 476 477 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 478 continue; 479 480 if (fe->device != -1 && fe->device != devno && 481 fe->device != alt_devno) 482 continue; 483 484 if (!(~dev->horkage & fe->param.horkage_on) && 485 !(dev->horkage & fe->param.horkage_off)) 486 continue; 487 488 dev->horkage |= fe->param.horkage_on; 489 dev->horkage &= ~fe->param.horkage_off; 490 491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 492 fe->param.name); 493 } 494 } 495 496 /** 497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 498 * @opcode: SCSI opcode 499 * 500 * Determine ATAPI command type from @opcode. 501 * 502 * LOCKING: 503 * None. 504 * 505 * RETURNS: 506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 507 */ 508 int atapi_cmd_type(u8 opcode) 509 { 510 switch (opcode) { 511 case GPCMD_READ_10: 512 case GPCMD_READ_12: 513 return ATAPI_READ; 514 515 case GPCMD_WRITE_10: 516 case GPCMD_WRITE_12: 517 case GPCMD_WRITE_AND_VERIFY_10: 518 return ATAPI_WRITE; 519 520 case GPCMD_READ_CD: 521 case GPCMD_READ_CD_MSF: 522 return ATAPI_READ_CD; 523 524 case ATA_16: 525 case ATA_12: 526 if (atapi_passthru16) 527 return ATAPI_PASS_THRU; 528 /* fall thru */ 529 default: 530 return ATAPI_MISC; 531 } 532 } 533 534 /** 535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 536 * @tf: Taskfile to convert 537 * @pmp: Port multiplier port 538 * @is_cmd: This FIS is for command 539 * @fis: Buffer into which data will output 540 * 541 * Converts a standard ATA taskfile to a Serial ATA 542 * FIS structure (Register - Host to Device). 543 * 544 * LOCKING: 545 * Inherited from caller. 546 */ 547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 548 { 549 fis[0] = 0x27; /* Register - Host to Device FIS */ 550 fis[1] = pmp & 0xf; /* Port multiplier number*/ 551 if (is_cmd) 552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 553 554 fis[2] = tf->command; 555 fis[3] = tf->feature; 556 557 fis[4] = tf->lbal; 558 fis[5] = tf->lbam; 559 fis[6] = tf->lbah; 560 fis[7] = tf->device; 561 562 fis[8] = tf->hob_lbal; 563 fis[9] = tf->hob_lbam; 564 fis[10] = tf->hob_lbah; 565 fis[11] = tf->hob_feature; 566 567 fis[12] = tf->nsect; 568 fis[13] = tf->hob_nsect; 569 fis[14] = 0; 570 fis[15] = tf->ctl; 571 572 fis[16] = tf->auxiliary & 0xff; 573 fis[17] = (tf->auxiliary >> 8) & 0xff; 574 fis[18] = (tf->auxiliary >> 16) & 0xff; 575 fis[19] = (tf->auxiliary >> 24) & 0xff; 576 } 577 578 /** 579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 580 * @fis: Buffer from which data will be input 581 * @tf: Taskfile to output 582 * 583 * Converts a serial ATA FIS structure to a standard ATA taskfile. 584 * 585 * LOCKING: 586 * Inherited from caller. 587 */ 588 589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 590 { 591 tf->command = fis[2]; /* status */ 592 tf->feature = fis[3]; /* error */ 593 594 tf->lbal = fis[4]; 595 tf->lbam = fis[5]; 596 tf->lbah = fis[6]; 597 tf->device = fis[7]; 598 599 tf->hob_lbal = fis[8]; 600 tf->hob_lbam = fis[9]; 601 tf->hob_lbah = fis[10]; 602 603 tf->nsect = fis[12]; 604 tf->hob_nsect = fis[13]; 605 } 606 607 static const u8 ata_rw_cmds[] = { 608 /* pio multi */ 609 ATA_CMD_READ_MULTI, 610 ATA_CMD_WRITE_MULTI, 611 ATA_CMD_READ_MULTI_EXT, 612 ATA_CMD_WRITE_MULTI_EXT, 613 0, 614 0, 615 0, 616 ATA_CMD_WRITE_MULTI_FUA_EXT, 617 /* pio */ 618 ATA_CMD_PIO_READ, 619 ATA_CMD_PIO_WRITE, 620 ATA_CMD_PIO_READ_EXT, 621 ATA_CMD_PIO_WRITE_EXT, 622 0, 623 0, 624 0, 625 0, 626 /* dma */ 627 ATA_CMD_READ, 628 ATA_CMD_WRITE, 629 ATA_CMD_READ_EXT, 630 ATA_CMD_WRITE_EXT, 631 0, 632 0, 633 0, 634 ATA_CMD_WRITE_FUA_EXT 635 }; 636 637 /** 638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 639 * @tf: command to examine and configure 640 * @dev: device tf belongs to 641 * 642 * Examine the device configuration and tf->flags to calculate 643 * the proper read/write commands and protocol to use. 644 * 645 * LOCKING: 646 * caller. 647 */ 648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 649 { 650 u8 cmd; 651 652 int index, fua, lba48, write; 653 654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 657 658 if (dev->flags & ATA_DFLAG_PIO) { 659 tf->protocol = ATA_PROT_PIO; 660 index = dev->multi_count ? 0 : 8; 661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 662 /* Unable to use DMA due to host limitation */ 663 tf->protocol = ATA_PROT_PIO; 664 index = dev->multi_count ? 0 : 8; 665 } else { 666 tf->protocol = ATA_PROT_DMA; 667 index = 16; 668 } 669 670 cmd = ata_rw_cmds[index + fua + lba48 + write]; 671 if (cmd) { 672 tf->command = cmd; 673 return 0; 674 } 675 return -1; 676 } 677 678 /** 679 * ata_tf_read_block - Read block address from ATA taskfile 680 * @tf: ATA taskfile of interest 681 * @dev: ATA device @tf belongs to 682 * 683 * LOCKING: 684 * None. 685 * 686 * Read block address from @tf. This function can handle all 687 * three address formats - LBA, LBA48 and CHS. tf->protocol and 688 * flags select the address format to use. 689 * 690 * RETURNS: 691 * Block address read from @tf. 692 */ 693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 694 { 695 u64 block = 0; 696 697 if (tf->flags & ATA_TFLAG_LBA) { 698 if (tf->flags & ATA_TFLAG_LBA48) { 699 block |= (u64)tf->hob_lbah << 40; 700 block |= (u64)tf->hob_lbam << 32; 701 block |= (u64)tf->hob_lbal << 24; 702 } else 703 block |= (tf->device & 0xf) << 24; 704 705 block |= tf->lbah << 16; 706 block |= tf->lbam << 8; 707 block |= tf->lbal; 708 } else { 709 u32 cyl, head, sect; 710 711 cyl = tf->lbam | (tf->lbah << 8); 712 head = tf->device & 0xf; 713 sect = tf->lbal; 714 715 if (!sect) { 716 ata_dev_warn(dev, 717 "device reported invalid CHS sector 0\n"); 718 sect = 1; /* oh well */ 719 } 720 721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 722 } 723 724 return block; 725 } 726 727 /** 728 * ata_build_rw_tf - Build ATA taskfile for given read/write request 729 * @tf: Target ATA taskfile 730 * @dev: ATA device @tf belongs to 731 * @block: Block address 732 * @n_block: Number of blocks 733 * @tf_flags: RW/FUA etc... 734 * @tag: tag 735 * 736 * LOCKING: 737 * None. 738 * 739 * Build ATA taskfile @tf for read/write request described by 740 * @block, @n_block, @tf_flags and @tag on @dev. 741 * 742 * RETURNS: 743 * 744 * 0 on success, -ERANGE if the request is too large for @dev, 745 * -EINVAL if the request is invalid. 746 */ 747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 748 u64 block, u32 n_block, unsigned int tf_flags, 749 unsigned int tag) 750 { 751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 752 tf->flags |= tf_flags; 753 754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 755 /* yay, NCQ */ 756 if (!lba_48_ok(block, n_block)) 757 return -ERANGE; 758 759 tf->protocol = ATA_PROT_NCQ; 760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 761 762 if (tf->flags & ATA_TFLAG_WRITE) 763 tf->command = ATA_CMD_FPDMA_WRITE; 764 else 765 tf->command = ATA_CMD_FPDMA_READ; 766 767 tf->nsect = tag << 3; 768 tf->hob_feature = (n_block >> 8) & 0xff; 769 tf->feature = n_block & 0xff; 770 771 tf->hob_lbah = (block >> 40) & 0xff; 772 tf->hob_lbam = (block >> 32) & 0xff; 773 tf->hob_lbal = (block >> 24) & 0xff; 774 tf->lbah = (block >> 16) & 0xff; 775 tf->lbam = (block >> 8) & 0xff; 776 tf->lbal = block & 0xff; 777 778 tf->device = ATA_LBA; 779 if (tf->flags & ATA_TFLAG_FUA) 780 tf->device |= 1 << 7; 781 } else if (dev->flags & ATA_DFLAG_LBA) { 782 tf->flags |= ATA_TFLAG_LBA; 783 784 if (lba_28_ok(block, n_block)) { 785 /* use LBA28 */ 786 tf->device |= (block >> 24) & 0xf; 787 } else if (lba_48_ok(block, n_block)) { 788 if (!(dev->flags & ATA_DFLAG_LBA48)) 789 return -ERANGE; 790 791 /* use LBA48 */ 792 tf->flags |= ATA_TFLAG_LBA48; 793 794 tf->hob_nsect = (n_block >> 8) & 0xff; 795 796 tf->hob_lbah = (block >> 40) & 0xff; 797 tf->hob_lbam = (block >> 32) & 0xff; 798 tf->hob_lbal = (block >> 24) & 0xff; 799 } else 800 /* request too large even for LBA48 */ 801 return -ERANGE; 802 803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 804 return -EINVAL; 805 806 tf->nsect = n_block & 0xff; 807 808 tf->lbah = (block >> 16) & 0xff; 809 tf->lbam = (block >> 8) & 0xff; 810 tf->lbal = block & 0xff; 811 812 tf->device |= ATA_LBA; 813 } else { 814 /* CHS */ 815 u32 sect, head, cyl, track; 816 817 /* The request -may- be too large for CHS addressing. */ 818 if (!lba_28_ok(block, n_block)) 819 return -ERANGE; 820 821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 822 return -EINVAL; 823 824 /* Convert LBA to CHS */ 825 track = (u32)block / dev->sectors; 826 cyl = track / dev->heads; 827 head = track % dev->heads; 828 sect = (u32)block % dev->sectors + 1; 829 830 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 831 (u32)block, track, cyl, head, sect); 832 833 /* Check whether the converted CHS can fit. 834 Cylinder: 0-65535 835 Head: 0-15 836 Sector: 1-255*/ 837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 838 return -ERANGE; 839 840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 841 tf->lbal = sect; 842 tf->lbam = cyl; 843 tf->lbah = cyl >> 8; 844 tf->device |= head; 845 } 846 847 return 0; 848 } 849 850 /** 851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 852 * @pio_mask: pio_mask 853 * @mwdma_mask: mwdma_mask 854 * @udma_mask: udma_mask 855 * 856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 857 * unsigned int xfer_mask. 858 * 859 * LOCKING: 860 * None. 861 * 862 * RETURNS: 863 * Packed xfer_mask. 864 */ 865 unsigned long ata_pack_xfermask(unsigned long pio_mask, 866 unsigned long mwdma_mask, 867 unsigned long udma_mask) 868 { 869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 872 } 873 874 /** 875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 876 * @xfer_mask: xfer_mask to unpack 877 * @pio_mask: resulting pio_mask 878 * @mwdma_mask: resulting mwdma_mask 879 * @udma_mask: resulting udma_mask 880 * 881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 882 * Any NULL distination masks will be ignored. 883 */ 884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 885 unsigned long *mwdma_mask, unsigned long *udma_mask) 886 { 887 if (pio_mask) 888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 889 if (mwdma_mask) 890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 891 if (udma_mask) 892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 893 } 894 895 static const struct ata_xfer_ent { 896 int shift, bits; 897 u8 base; 898 } ata_xfer_tbl[] = { 899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 902 { -1, }, 903 }; 904 905 /** 906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 907 * @xfer_mask: xfer_mask of interest 908 * 909 * Return matching XFER_* value for @xfer_mask. Only the highest 910 * bit of @xfer_mask is considered. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching XFER_* value, 0xff if no match found. 917 */ 918 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 919 { 920 int highbit = fls(xfer_mask) - 1; 921 const struct ata_xfer_ent *ent; 922 923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 925 return ent->base + highbit - ent->shift; 926 return 0xff; 927 } 928 929 /** 930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 931 * @xfer_mode: XFER_* of interest 932 * 933 * Return matching xfer_mask for @xfer_mode. 934 * 935 * LOCKING: 936 * None. 937 * 938 * RETURNS: 939 * Matching xfer_mask, 0 if no match found. 940 */ 941 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 942 { 943 const struct ata_xfer_ent *ent; 944 945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 948 & ~((1 << ent->shift) - 1); 949 return 0; 950 } 951 952 /** 953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 954 * @xfer_mode: XFER_* of interest 955 * 956 * Return matching xfer_shift for @xfer_mode. 957 * 958 * LOCKING: 959 * None. 960 * 961 * RETURNS: 962 * Matching xfer_shift, -1 if no match found. 963 */ 964 int ata_xfer_mode2shift(unsigned long xfer_mode) 965 { 966 const struct ata_xfer_ent *ent; 967 968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 970 return ent->shift; 971 return -1; 972 } 973 974 /** 975 * ata_mode_string - convert xfer_mask to string 976 * @xfer_mask: mask of bits supported; only highest bit counts. 977 * 978 * Determine string which represents the highest speed 979 * (highest bit in @modemask). 980 * 981 * LOCKING: 982 * None. 983 * 984 * RETURNS: 985 * Constant C string representing highest speed listed in 986 * @mode_mask, or the constant C string "<n/a>". 987 */ 988 const char *ata_mode_string(unsigned long xfer_mask) 989 { 990 static const char * const xfer_mode_str[] = { 991 "PIO0", 992 "PIO1", 993 "PIO2", 994 "PIO3", 995 "PIO4", 996 "PIO5", 997 "PIO6", 998 "MWDMA0", 999 "MWDMA1", 1000 "MWDMA2", 1001 "MWDMA3", 1002 "MWDMA4", 1003 "UDMA/16", 1004 "UDMA/25", 1005 "UDMA/33", 1006 "UDMA/44", 1007 "UDMA/66", 1008 "UDMA/100", 1009 "UDMA/133", 1010 "UDMA7", 1011 }; 1012 int highbit; 1013 1014 highbit = fls(xfer_mask) - 1; 1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1016 return xfer_mode_str[highbit]; 1017 return "<n/a>"; 1018 } 1019 1020 const char *sata_spd_string(unsigned int spd) 1021 { 1022 static const char * const spd_str[] = { 1023 "1.5 Gbps", 1024 "3.0 Gbps", 1025 "6.0 Gbps", 1026 }; 1027 1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1029 return "<unknown>"; 1030 return spd_str[spd - 1]; 1031 } 1032 1033 /** 1034 * ata_dev_classify - determine device type based on ATA-spec signature 1035 * @tf: ATA taskfile register set for device to be identified 1036 * 1037 * Determine from taskfile register contents whether a device is 1038 * ATA or ATAPI, as per "Signature and persistence" section 1039 * of ATA/PI spec (volume 1, sect 5.14). 1040 * 1041 * LOCKING: 1042 * None. 1043 * 1044 * RETURNS: 1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1046 * %ATA_DEV_UNKNOWN the event of failure. 1047 */ 1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1049 { 1050 /* Apple's open source Darwin code hints that some devices only 1051 * put a proper signature into the LBA mid/high registers, 1052 * So, we only check those. It's sufficient for uniqueness. 1053 * 1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1055 * signatures for ATA and ATAPI devices attached on SerialATA, 1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1057 * spec has never mentioned about using different signatures 1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1059 * Multiplier specification began to use 0x69/0x96 to identify 1060 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1062 * 0x69/0x96 shortly and described them as reserved for 1063 * SerialATA. 1064 * 1065 * We follow the current spec and consider that 0x69/0x96 1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1068 * SEMB signature. This is worked around in 1069 * ata_dev_read_id(). 1070 */ 1071 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1072 DPRINTK("found ATA device by sig\n"); 1073 return ATA_DEV_ATA; 1074 } 1075 1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1077 DPRINTK("found ATAPI device by sig\n"); 1078 return ATA_DEV_ATAPI; 1079 } 1080 1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1082 DPRINTK("found PMP device by sig\n"); 1083 return ATA_DEV_PMP; 1084 } 1085 1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1087 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1088 return ATA_DEV_SEMB; 1089 } 1090 1091 DPRINTK("unknown device\n"); 1092 return ATA_DEV_UNKNOWN; 1093 } 1094 1095 /** 1096 * ata_id_string - Convert IDENTIFY DEVICE page into string 1097 * @id: IDENTIFY DEVICE results we will examine 1098 * @s: string into which data is output 1099 * @ofs: offset into identify device page 1100 * @len: length of string to return. must be an even number. 1101 * 1102 * The strings in the IDENTIFY DEVICE page are broken up into 1103 * 16-bit chunks. Run through the string, and output each 1104 * 8-bit chunk linearly, regardless of platform. 1105 * 1106 * LOCKING: 1107 * caller. 1108 */ 1109 1110 void ata_id_string(const u16 *id, unsigned char *s, 1111 unsigned int ofs, unsigned int len) 1112 { 1113 unsigned int c; 1114 1115 BUG_ON(len & 1); 1116 1117 while (len > 0) { 1118 c = id[ofs] >> 8; 1119 *s = c; 1120 s++; 1121 1122 c = id[ofs] & 0xff; 1123 *s = c; 1124 s++; 1125 1126 ofs++; 1127 len -= 2; 1128 } 1129 } 1130 1131 /** 1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1133 * @id: IDENTIFY DEVICE results we will examine 1134 * @s: string into which data is output 1135 * @ofs: offset into identify device page 1136 * @len: length of string to return. must be an odd number. 1137 * 1138 * This function is identical to ata_id_string except that it 1139 * trims trailing spaces and terminates the resulting string with 1140 * null. @len must be actual maximum length (even number) + 1. 1141 * 1142 * LOCKING: 1143 * caller. 1144 */ 1145 void ata_id_c_string(const u16 *id, unsigned char *s, 1146 unsigned int ofs, unsigned int len) 1147 { 1148 unsigned char *p; 1149 1150 ata_id_string(id, s, ofs, len - 1); 1151 1152 p = s + strnlen(s, len - 1); 1153 while (p > s && p[-1] == ' ') 1154 p--; 1155 *p = '\0'; 1156 } 1157 1158 static u64 ata_id_n_sectors(const u16 *id) 1159 { 1160 if (ata_id_has_lba(id)) { 1161 if (ata_id_has_lba48(id)) 1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1163 else 1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1165 } else { 1166 if (ata_id_current_chs_valid(id)) 1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1168 id[ATA_ID_CUR_SECTORS]; 1169 else 1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1171 id[ATA_ID_SECTORS]; 1172 } 1173 } 1174 1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1176 { 1177 u64 sectors = 0; 1178 1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1182 sectors |= (tf->lbah & 0xff) << 16; 1183 sectors |= (tf->lbam & 0xff) << 8; 1184 sectors |= (tf->lbal & 0xff); 1185 1186 return sectors; 1187 } 1188 1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1190 { 1191 u64 sectors = 0; 1192 1193 sectors |= (tf->device & 0x0f) << 24; 1194 sectors |= (tf->lbah & 0xff) << 16; 1195 sectors |= (tf->lbam & 0xff) << 8; 1196 sectors |= (tf->lbal & 0xff); 1197 1198 return sectors; 1199 } 1200 1201 /** 1202 * ata_read_native_max_address - Read native max address 1203 * @dev: target device 1204 * @max_sectors: out parameter for the result native max address 1205 * 1206 * Perform an LBA48 or LBA28 native size query upon the device in 1207 * question. 1208 * 1209 * RETURNS: 1210 * 0 on success, -EACCES if command is aborted by the drive. 1211 * -EIO on other errors. 1212 */ 1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1214 { 1215 unsigned int err_mask; 1216 struct ata_taskfile tf; 1217 int lba48 = ata_id_has_lba48(dev->id); 1218 1219 ata_tf_init(dev, &tf); 1220 1221 /* always clear all address registers */ 1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1223 1224 if (lba48) { 1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1226 tf.flags |= ATA_TFLAG_LBA48; 1227 } else 1228 tf.command = ATA_CMD_READ_NATIVE_MAX; 1229 1230 tf.protocol |= ATA_PROT_NODATA; 1231 tf.device |= ATA_LBA; 1232 1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1234 if (err_mask) { 1235 ata_dev_warn(dev, 1236 "failed to read native max address (err_mask=0x%x)\n", 1237 err_mask); 1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1239 return -EACCES; 1240 return -EIO; 1241 } 1242 1243 if (lba48) 1244 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1245 else 1246 *max_sectors = ata_tf_to_lba(&tf) + 1; 1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1248 (*max_sectors)--; 1249 return 0; 1250 } 1251 1252 /** 1253 * ata_set_max_sectors - Set max sectors 1254 * @dev: target device 1255 * @new_sectors: new max sectors value to set for the device 1256 * 1257 * Set max sectors of @dev to @new_sectors. 1258 * 1259 * RETURNS: 1260 * 0 on success, -EACCES if command is aborted or denied (due to 1261 * previous non-volatile SET_MAX) by the drive. -EIO on other 1262 * errors. 1263 */ 1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1265 { 1266 unsigned int err_mask; 1267 struct ata_taskfile tf; 1268 int lba48 = ata_id_has_lba48(dev->id); 1269 1270 new_sectors--; 1271 1272 ata_tf_init(dev, &tf); 1273 1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1275 1276 if (lba48) { 1277 tf.command = ATA_CMD_SET_MAX_EXT; 1278 tf.flags |= ATA_TFLAG_LBA48; 1279 1280 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1281 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1282 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1283 } else { 1284 tf.command = ATA_CMD_SET_MAX; 1285 1286 tf.device |= (new_sectors >> 24) & 0xf; 1287 } 1288 1289 tf.protocol |= ATA_PROT_NODATA; 1290 tf.device |= ATA_LBA; 1291 1292 tf.lbal = (new_sectors >> 0) & 0xff; 1293 tf.lbam = (new_sectors >> 8) & 0xff; 1294 tf.lbah = (new_sectors >> 16) & 0xff; 1295 1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1297 if (err_mask) { 1298 ata_dev_warn(dev, 1299 "failed to set max address (err_mask=0x%x)\n", 1300 err_mask); 1301 if (err_mask == AC_ERR_DEV && 1302 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1303 return -EACCES; 1304 return -EIO; 1305 } 1306 1307 return 0; 1308 } 1309 1310 /** 1311 * ata_hpa_resize - Resize a device with an HPA set 1312 * @dev: Device to resize 1313 * 1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1315 * it if required to the full size of the media. The caller must check 1316 * the drive has the HPA feature set enabled. 1317 * 1318 * RETURNS: 1319 * 0 on success, -errno on failure. 1320 */ 1321 static int ata_hpa_resize(struct ata_device *dev) 1322 { 1323 struct ata_eh_context *ehc = &dev->link->eh_context; 1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1326 u64 sectors = ata_id_n_sectors(dev->id); 1327 u64 native_sectors; 1328 int rc; 1329 1330 /* do we need to do it? */ 1331 if (dev->class != ATA_DEV_ATA || 1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1334 return 0; 1335 1336 /* read native max address */ 1337 rc = ata_read_native_max_address(dev, &native_sectors); 1338 if (rc) { 1339 /* If device aborted the command or HPA isn't going to 1340 * be unlocked, skip HPA resizing. 1341 */ 1342 if (rc == -EACCES || !unlock_hpa) { 1343 ata_dev_warn(dev, 1344 "HPA support seems broken, skipping HPA handling\n"); 1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1346 1347 /* we can continue if device aborted the command */ 1348 if (rc == -EACCES) 1349 rc = 0; 1350 } 1351 1352 return rc; 1353 } 1354 dev->n_native_sectors = native_sectors; 1355 1356 /* nothing to do? */ 1357 if (native_sectors <= sectors || !unlock_hpa) { 1358 if (!print_info || native_sectors == sectors) 1359 return 0; 1360 1361 if (native_sectors > sectors) 1362 ata_dev_info(dev, 1363 "HPA detected: current %llu, native %llu\n", 1364 (unsigned long long)sectors, 1365 (unsigned long long)native_sectors); 1366 else if (native_sectors < sectors) 1367 ata_dev_warn(dev, 1368 "native sectors (%llu) is smaller than sectors (%llu)\n", 1369 (unsigned long long)native_sectors, 1370 (unsigned long long)sectors); 1371 return 0; 1372 } 1373 1374 /* let's unlock HPA */ 1375 rc = ata_set_max_sectors(dev, native_sectors); 1376 if (rc == -EACCES) { 1377 /* if device aborted the command, skip HPA resizing */ 1378 ata_dev_warn(dev, 1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1380 (unsigned long long)sectors, 1381 (unsigned long long)native_sectors); 1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1383 return 0; 1384 } else if (rc) 1385 return rc; 1386 1387 /* re-read IDENTIFY data */ 1388 rc = ata_dev_reread_id(dev, 0); 1389 if (rc) { 1390 ata_dev_err(dev, 1391 "failed to re-read IDENTIFY data after HPA resizing\n"); 1392 return rc; 1393 } 1394 1395 if (print_info) { 1396 u64 new_sectors = ata_id_n_sectors(dev->id); 1397 ata_dev_info(dev, 1398 "HPA unlocked: %llu -> %llu, native %llu\n", 1399 (unsigned long long)sectors, 1400 (unsigned long long)new_sectors, 1401 (unsigned long long)native_sectors); 1402 } 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * ata_dump_id - IDENTIFY DEVICE info debugging output 1409 * @id: IDENTIFY DEVICE page to dump 1410 * 1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1412 * page. 1413 * 1414 * LOCKING: 1415 * caller. 1416 */ 1417 1418 static inline void ata_dump_id(const u16 *id) 1419 { 1420 DPRINTK("49==0x%04x " 1421 "53==0x%04x " 1422 "63==0x%04x " 1423 "64==0x%04x " 1424 "75==0x%04x \n", 1425 id[49], 1426 id[53], 1427 id[63], 1428 id[64], 1429 id[75]); 1430 DPRINTK("80==0x%04x " 1431 "81==0x%04x " 1432 "82==0x%04x " 1433 "83==0x%04x " 1434 "84==0x%04x \n", 1435 id[80], 1436 id[81], 1437 id[82], 1438 id[83], 1439 id[84]); 1440 DPRINTK("88==0x%04x " 1441 "93==0x%04x\n", 1442 id[88], 1443 id[93]); 1444 } 1445 1446 /** 1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1448 * @id: IDENTIFY data to compute xfer mask from 1449 * 1450 * Compute the xfermask for this device. This is not as trivial 1451 * as it seems if we must consider early devices correctly. 1452 * 1453 * FIXME: pre IDE drive timing (do we care ?). 1454 * 1455 * LOCKING: 1456 * None. 1457 * 1458 * RETURNS: 1459 * Computed xfermask 1460 */ 1461 unsigned long ata_id_xfermask(const u16 *id) 1462 { 1463 unsigned long pio_mask, mwdma_mask, udma_mask; 1464 1465 /* Usual case. Word 53 indicates word 64 is valid */ 1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1468 pio_mask <<= 3; 1469 pio_mask |= 0x7; 1470 } else { 1471 /* If word 64 isn't valid then Word 51 high byte holds 1472 * the PIO timing number for the maximum. Turn it into 1473 * a mask. 1474 */ 1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1476 if (mode < 5) /* Valid PIO range */ 1477 pio_mask = (2 << mode) - 1; 1478 else 1479 pio_mask = 1; 1480 1481 /* But wait.. there's more. Design your standards by 1482 * committee and you too can get a free iordy field to 1483 * process. However its the speeds not the modes that 1484 * are supported... Note drivers using the timing API 1485 * will get this right anyway 1486 */ 1487 } 1488 1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1490 1491 if (ata_id_is_cfa(id)) { 1492 /* 1493 * Process compact flash extended modes 1494 */ 1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1497 1498 if (pio) 1499 pio_mask |= (1 << 5); 1500 if (pio > 1) 1501 pio_mask |= (1 << 6); 1502 if (dma) 1503 mwdma_mask |= (1 << 3); 1504 if (dma > 1) 1505 mwdma_mask |= (1 << 4); 1506 } 1507 1508 udma_mask = 0; 1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1511 1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1513 } 1514 1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1516 { 1517 struct completion *waiting = qc->private_data; 1518 1519 complete(waiting); 1520 } 1521 1522 /** 1523 * ata_exec_internal_sg - execute libata internal command 1524 * @dev: Device to which the command is sent 1525 * @tf: Taskfile registers for the command and the result 1526 * @cdb: CDB for packet command 1527 * @dma_dir: Data transfer direction of the command 1528 * @sgl: sg list for the data buffer of the command 1529 * @n_elem: Number of sg entries 1530 * @timeout: Timeout in msecs (0 for default) 1531 * 1532 * Executes libata internal command with timeout. @tf contains 1533 * command on entry and result on return. Timeout and error 1534 * conditions are reported via return value. No recovery action 1535 * is taken after a command times out. It's caller's duty to 1536 * clean up after timeout. 1537 * 1538 * LOCKING: 1539 * None. Should be called with kernel context, might sleep. 1540 * 1541 * RETURNS: 1542 * Zero on success, AC_ERR_* mask on failure 1543 */ 1544 unsigned ata_exec_internal_sg(struct ata_device *dev, 1545 struct ata_taskfile *tf, const u8 *cdb, 1546 int dma_dir, struct scatterlist *sgl, 1547 unsigned int n_elem, unsigned long timeout) 1548 { 1549 struct ata_link *link = dev->link; 1550 struct ata_port *ap = link->ap; 1551 u8 command = tf->command; 1552 int auto_timeout = 0; 1553 struct ata_queued_cmd *qc; 1554 unsigned int tag, preempted_tag; 1555 u32 preempted_sactive, preempted_qc_active; 1556 int preempted_nr_active_links; 1557 DECLARE_COMPLETION_ONSTACK(wait); 1558 unsigned long flags; 1559 unsigned int err_mask; 1560 int rc; 1561 1562 spin_lock_irqsave(ap->lock, flags); 1563 1564 /* no internal command while frozen */ 1565 if (ap->pflags & ATA_PFLAG_FROZEN) { 1566 spin_unlock_irqrestore(ap->lock, flags); 1567 return AC_ERR_SYSTEM; 1568 } 1569 1570 /* initialize internal qc */ 1571 1572 /* XXX: Tag 0 is used for drivers with legacy EH as some 1573 * drivers choke if any other tag is given. This breaks 1574 * ata_tag_internal() test for those drivers. Don't use new 1575 * EH stuff without converting to it. 1576 */ 1577 if (ap->ops->error_handler) 1578 tag = ATA_TAG_INTERNAL; 1579 else 1580 tag = 0; 1581 1582 if (test_and_set_bit(tag, &ap->qc_allocated)) 1583 BUG(); 1584 qc = __ata_qc_from_tag(ap, tag); 1585 1586 qc->tag = tag; 1587 qc->scsicmd = NULL; 1588 qc->ap = ap; 1589 qc->dev = dev; 1590 ata_qc_reinit(qc); 1591 1592 preempted_tag = link->active_tag; 1593 preempted_sactive = link->sactive; 1594 preempted_qc_active = ap->qc_active; 1595 preempted_nr_active_links = ap->nr_active_links; 1596 link->active_tag = ATA_TAG_POISON; 1597 link->sactive = 0; 1598 ap->qc_active = 0; 1599 ap->nr_active_links = 0; 1600 1601 /* prepare & issue qc */ 1602 qc->tf = *tf; 1603 if (cdb) 1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1605 1606 /* some SATA bridges need us to indicate data xfer direction */ 1607 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1608 dma_dir == DMA_FROM_DEVICE) 1609 qc->tf.feature |= ATAPI_DMADIR; 1610 1611 qc->flags |= ATA_QCFLAG_RESULT_TF; 1612 qc->dma_dir = dma_dir; 1613 if (dma_dir != DMA_NONE) { 1614 unsigned int i, buflen = 0; 1615 struct scatterlist *sg; 1616 1617 for_each_sg(sgl, sg, n_elem, i) 1618 buflen += sg->length; 1619 1620 ata_sg_init(qc, sgl, n_elem); 1621 qc->nbytes = buflen; 1622 } 1623 1624 qc->private_data = &wait; 1625 qc->complete_fn = ata_qc_complete_internal; 1626 1627 ata_qc_issue(qc); 1628 1629 spin_unlock_irqrestore(ap->lock, flags); 1630 1631 if (!timeout) { 1632 if (ata_probe_timeout) 1633 timeout = ata_probe_timeout * 1000; 1634 else { 1635 timeout = ata_internal_cmd_timeout(dev, command); 1636 auto_timeout = 1; 1637 } 1638 } 1639 1640 if (ap->ops->error_handler) 1641 ata_eh_release(ap); 1642 1643 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1644 1645 if (ap->ops->error_handler) 1646 ata_eh_acquire(ap); 1647 1648 ata_sff_flush_pio_task(ap); 1649 1650 if (!rc) { 1651 spin_lock_irqsave(ap->lock, flags); 1652 1653 /* We're racing with irq here. If we lose, the 1654 * following test prevents us from completing the qc 1655 * twice. If we win, the port is frozen and will be 1656 * cleaned up by ->post_internal_cmd(). 1657 */ 1658 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1659 qc->err_mask |= AC_ERR_TIMEOUT; 1660 1661 if (ap->ops->error_handler) 1662 ata_port_freeze(ap); 1663 else 1664 ata_qc_complete(qc); 1665 1666 if (ata_msg_warn(ap)) 1667 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1668 command); 1669 } 1670 1671 spin_unlock_irqrestore(ap->lock, flags); 1672 } 1673 1674 /* do post_internal_cmd */ 1675 if (ap->ops->post_internal_cmd) 1676 ap->ops->post_internal_cmd(qc); 1677 1678 /* perform minimal error analysis */ 1679 if (qc->flags & ATA_QCFLAG_FAILED) { 1680 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1681 qc->err_mask |= AC_ERR_DEV; 1682 1683 if (!qc->err_mask) 1684 qc->err_mask |= AC_ERR_OTHER; 1685 1686 if (qc->err_mask & ~AC_ERR_OTHER) 1687 qc->err_mask &= ~AC_ERR_OTHER; 1688 } 1689 1690 /* finish up */ 1691 spin_lock_irqsave(ap->lock, flags); 1692 1693 *tf = qc->result_tf; 1694 err_mask = qc->err_mask; 1695 1696 ata_qc_free(qc); 1697 link->active_tag = preempted_tag; 1698 link->sactive = preempted_sactive; 1699 ap->qc_active = preempted_qc_active; 1700 ap->nr_active_links = preempted_nr_active_links; 1701 1702 spin_unlock_irqrestore(ap->lock, flags); 1703 1704 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1705 ata_internal_cmd_timed_out(dev, command); 1706 1707 return err_mask; 1708 } 1709 1710 /** 1711 * ata_exec_internal - execute libata internal command 1712 * @dev: Device to which the command is sent 1713 * @tf: Taskfile registers for the command and the result 1714 * @cdb: CDB for packet command 1715 * @dma_dir: Data transfer direction of the command 1716 * @buf: Data buffer of the command 1717 * @buflen: Length of data buffer 1718 * @timeout: Timeout in msecs (0 for default) 1719 * 1720 * Wrapper around ata_exec_internal_sg() which takes simple 1721 * buffer instead of sg list. 1722 * 1723 * LOCKING: 1724 * None. Should be called with kernel context, might sleep. 1725 * 1726 * RETURNS: 1727 * Zero on success, AC_ERR_* mask on failure 1728 */ 1729 unsigned ata_exec_internal(struct ata_device *dev, 1730 struct ata_taskfile *tf, const u8 *cdb, 1731 int dma_dir, void *buf, unsigned int buflen, 1732 unsigned long timeout) 1733 { 1734 struct scatterlist *psg = NULL, sg; 1735 unsigned int n_elem = 0; 1736 1737 if (dma_dir != DMA_NONE) { 1738 WARN_ON(!buf); 1739 sg_init_one(&sg, buf, buflen); 1740 psg = &sg; 1741 n_elem++; 1742 } 1743 1744 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1745 timeout); 1746 } 1747 1748 /** 1749 * ata_do_simple_cmd - execute simple internal command 1750 * @dev: Device to which the command is sent 1751 * @cmd: Opcode to execute 1752 * 1753 * Execute a 'simple' command, that only consists of the opcode 1754 * 'cmd' itself, without filling any other registers 1755 * 1756 * LOCKING: 1757 * Kernel thread context (may sleep). 1758 * 1759 * RETURNS: 1760 * Zero on success, AC_ERR_* mask on failure 1761 */ 1762 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1763 { 1764 struct ata_taskfile tf; 1765 1766 ata_tf_init(dev, &tf); 1767 1768 tf.command = cmd; 1769 tf.flags |= ATA_TFLAG_DEVICE; 1770 tf.protocol = ATA_PROT_NODATA; 1771 1772 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1773 } 1774 1775 /** 1776 * ata_pio_need_iordy - check if iordy needed 1777 * @adev: ATA device 1778 * 1779 * Check if the current speed of the device requires IORDY. Used 1780 * by various controllers for chip configuration. 1781 */ 1782 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1783 { 1784 /* Don't set IORDY if we're preparing for reset. IORDY may 1785 * lead to controller lock up on certain controllers if the 1786 * port is not occupied. See bko#11703 for details. 1787 */ 1788 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1789 return 0; 1790 /* Controller doesn't support IORDY. Probably a pointless 1791 * check as the caller should know this. 1792 */ 1793 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1794 return 0; 1795 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1796 if (ata_id_is_cfa(adev->id) 1797 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1798 return 0; 1799 /* PIO3 and higher it is mandatory */ 1800 if (adev->pio_mode > XFER_PIO_2) 1801 return 1; 1802 /* We turn it on when possible */ 1803 if (ata_id_has_iordy(adev->id)) 1804 return 1; 1805 return 0; 1806 } 1807 1808 /** 1809 * ata_pio_mask_no_iordy - Return the non IORDY mask 1810 * @adev: ATA device 1811 * 1812 * Compute the highest mode possible if we are not using iordy. Return 1813 * -1 if no iordy mode is available. 1814 */ 1815 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1816 { 1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1818 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1819 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1820 /* Is the speed faster than the drive allows non IORDY ? */ 1821 if (pio) { 1822 /* This is cycle times not frequency - watch the logic! */ 1823 if (pio > 240) /* PIO2 is 240nS per cycle */ 1824 return 3 << ATA_SHIFT_PIO; 1825 return 7 << ATA_SHIFT_PIO; 1826 } 1827 } 1828 return 3 << ATA_SHIFT_PIO; 1829 } 1830 1831 /** 1832 * ata_do_dev_read_id - default ID read method 1833 * @dev: device 1834 * @tf: proposed taskfile 1835 * @id: data buffer 1836 * 1837 * Issue the identify taskfile and hand back the buffer containing 1838 * identify data. For some RAID controllers and for pre ATA devices 1839 * this function is wrapped or replaced by the driver 1840 */ 1841 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1842 struct ata_taskfile *tf, u16 *id) 1843 { 1844 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1845 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1846 } 1847 1848 /** 1849 * ata_dev_read_id - Read ID data from the specified device 1850 * @dev: target device 1851 * @p_class: pointer to class of the target device (may be changed) 1852 * @flags: ATA_READID_* flags 1853 * @id: buffer to read IDENTIFY data into 1854 * 1855 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1856 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1857 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1858 * for pre-ATA4 drives. 1859 * 1860 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1861 * now we abort if we hit that case. 1862 * 1863 * LOCKING: 1864 * Kernel thread context (may sleep) 1865 * 1866 * RETURNS: 1867 * 0 on success, -errno otherwise. 1868 */ 1869 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1870 unsigned int flags, u16 *id) 1871 { 1872 struct ata_port *ap = dev->link->ap; 1873 unsigned int class = *p_class; 1874 struct ata_taskfile tf; 1875 unsigned int err_mask = 0; 1876 const char *reason; 1877 bool is_semb = class == ATA_DEV_SEMB; 1878 int may_fallback = 1, tried_spinup = 0; 1879 int rc; 1880 1881 if (ata_msg_ctl(ap)) 1882 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1883 1884 retry: 1885 ata_tf_init(dev, &tf); 1886 1887 switch (class) { 1888 case ATA_DEV_SEMB: 1889 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1890 case ATA_DEV_ATA: 1891 tf.command = ATA_CMD_ID_ATA; 1892 break; 1893 case ATA_DEV_ATAPI: 1894 tf.command = ATA_CMD_ID_ATAPI; 1895 break; 1896 default: 1897 rc = -ENODEV; 1898 reason = "unsupported class"; 1899 goto err_out; 1900 } 1901 1902 tf.protocol = ATA_PROT_PIO; 1903 1904 /* Some devices choke if TF registers contain garbage. Make 1905 * sure those are properly initialized. 1906 */ 1907 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1908 1909 /* Device presence detection is unreliable on some 1910 * controllers. Always poll IDENTIFY if available. 1911 */ 1912 tf.flags |= ATA_TFLAG_POLLING; 1913 1914 if (ap->ops->read_id) 1915 err_mask = ap->ops->read_id(dev, &tf, id); 1916 else 1917 err_mask = ata_do_dev_read_id(dev, &tf, id); 1918 1919 if (err_mask) { 1920 if (err_mask & AC_ERR_NODEV_HINT) { 1921 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1922 return -ENOENT; 1923 } 1924 1925 if (is_semb) { 1926 ata_dev_info(dev, 1927 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1928 /* SEMB is not supported yet */ 1929 *p_class = ATA_DEV_SEMB_UNSUP; 1930 return 0; 1931 } 1932 1933 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1934 /* Device or controller might have reported 1935 * the wrong device class. Give a shot at the 1936 * other IDENTIFY if the current one is 1937 * aborted by the device. 1938 */ 1939 if (may_fallback) { 1940 may_fallback = 0; 1941 1942 if (class == ATA_DEV_ATA) 1943 class = ATA_DEV_ATAPI; 1944 else 1945 class = ATA_DEV_ATA; 1946 goto retry; 1947 } 1948 1949 /* Control reaches here iff the device aborted 1950 * both flavors of IDENTIFYs which happens 1951 * sometimes with phantom devices. 1952 */ 1953 ata_dev_dbg(dev, 1954 "both IDENTIFYs aborted, assuming NODEV\n"); 1955 return -ENOENT; 1956 } 1957 1958 rc = -EIO; 1959 reason = "I/O error"; 1960 goto err_out; 1961 } 1962 1963 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1964 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1965 "class=%d may_fallback=%d tried_spinup=%d\n", 1966 class, may_fallback, tried_spinup); 1967 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1968 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1969 } 1970 1971 /* Falling back doesn't make sense if ID data was read 1972 * successfully at least once. 1973 */ 1974 may_fallback = 0; 1975 1976 swap_buf_le16(id, ATA_ID_WORDS); 1977 1978 /* sanity check */ 1979 rc = -EINVAL; 1980 reason = "device reports invalid type"; 1981 1982 if (class == ATA_DEV_ATA) { 1983 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1984 goto err_out; 1985 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1986 ata_id_is_ata(id)) { 1987 ata_dev_dbg(dev, 1988 "host indicates ignore ATA devices, ignored\n"); 1989 return -ENOENT; 1990 } 1991 } else { 1992 if (ata_id_is_ata(id)) 1993 goto err_out; 1994 } 1995 1996 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1997 tried_spinup = 1; 1998 /* 1999 * Drive powered-up in standby mode, and requires a specific 2000 * SET_FEATURES spin-up subcommand before it will accept 2001 * anything other than the original IDENTIFY command. 2002 */ 2003 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2004 if (err_mask && id[2] != 0x738c) { 2005 rc = -EIO; 2006 reason = "SPINUP failed"; 2007 goto err_out; 2008 } 2009 /* 2010 * If the drive initially returned incomplete IDENTIFY info, 2011 * we now must reissue the IDENTIFY command. 2012 */ 2013 if (id[2] == 0x37c8) 2014 goto retry; 2015 } 2016 2017 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2018 /* 2019 * The exact sequence expected by certain pre-ATA4 drives is: 2020 * SRST RESET 2021 * IDENTIFY (optional in early ATA) 2022 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2023 * anything else.. 2024 * Some drives were very specific about that exact sequence. 2025 * 2026 * Note that ATA4 says lba is mandatory so the second check 2027 * should never trigger. 2028 */ 2029 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2030 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2031 if (err_mask) { 2032 rc = -EIO; 2033 reason = "INIT_DEV_PARAMS failed"; 2034 goto err_out; 2035 } 2036 2037 /* current CHS translation info (id[53-58]) might be 2038 * changed. reread the identify device info. 2039 */ 2040 flags &= ~ATA_READID_POSTRESET; 2041 goto retry; 2042 } 2043 } 2044 2045 *p_class = class; 2046 2047 return 0; 2048 2049 err_out: 2050 if (ata_msg_warn(ap)) 2051 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2052 reason, err_mask); 2053 return rc; 2054 } 2055 2056 static int ata_do_link_spd_horkage(struct ata_device *dev) 2057 { 2058 struct ata_link *plink = ata_dev_phys_link(dev); 2059 u32 target, target_limit; 2060 2061 if (!sata_scr_valid(plink)) 2062 return 0; 2063 2064 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2065 target = 1; 2066 else 2067 return 0; 2068 2069 target_limit = (1 << target) - 1; 2070 2071 /* if already on stricter limit, no need to push further */ 2072 if (plink->sata_spd_limit <= target_limit) 2073 return 0; 2074 2075 plink->sata_spd_limit = target_limit; 2076 2077 /* Request another EH round by returning -EAGAIN if link is 2078 * going faster than the target speed. Forward progress is 2079 * guaranteed by setting sata_spd_limit to target_limit above. 2080 */ 2081 if (plink->sata_spd > target) { 2082 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2083 sata_spd_string(target)); 2084 return -EAGAIN; 2085 } 2086 return 0; 2087 } 2088 2089 static inline u8 ata_dev_knobble(struct ata_device *dev) 2090 { 2091 struct ata_port *ap = dev->link->ap; 2092 2093 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2094 return 0; 2095 2096 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2097 } 2098 2099 static int ata_dev_config_ncq(struct ata_device *dev, 2100 char *desc, size_t desc_sz) 2101 { 2102 struct ata_port *ap = dev->link->ap; 2103 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2104 unsigned int err_mask; 2105 char *aa_desc = ""; 2106 2107 if (!ata_id_has_ncq(dev->id)) { 2108 desc[0] = '\0'; 2109 return 0; 2110 } 2111 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2112 snprintf(desc, desc_sz, "NCQ (not used)"); 2113 return 0; 2114 } 2115 if (ap->flags & ATA_FLAG_NCQ) { 2116 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2117 dev->flags |= ATA_DFLAG_NCQ; 2118 } 2119 2120 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2121 (ap->flags & ATA_FLAG_FPDMA_AA) && 2122 ata_id_has_fpdma_aa(dev->id)) { 2123 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2124 SATA_FPDMA_AA); 2125 if (err_mask) { 2126 ata_dev_err(dev, 2127 "failed to enable AA (error_mask=0x%x)\n", 2128 err_mask); 2129 if (err_mask != AC_ERR_DEV) { 2130 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2131 return -EIO; 2132 } 2133 } else 2134 aa_desc = ", AA"; 2135 } 2136 2137 if (hdepth >= ddepth) 2138 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2139 else 2140 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2141 ddepth, aa_desc); 2142 2143 if ((ap->flags & ATA_FLAG_FPDMA_AUX) && 2144 ata_id_has_ncq_send_and_recv(dev->id)) { 2145 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2146 0, ap->sector_buf, 1); 2147 if (err_mask) { 2148 ata_dev_dbg(dev, 2149 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2150 err_mask); 2151 } else { 2152 u8 *cmds = dev->ncq_send_recv_cmds; 2153 2154 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2155 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2156 2157 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2158 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2159 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2160 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2161 } 2162 } 2163 } 2164 2165 return 0; 2166 } 2167 2168 /** 2169 * ata_dev_configure - Configure the specified ATA/ATAPI device 2170 * @dev: Target device to configure 2171 * 2172 * Configure @dev according to @dev->id. Generic and low-level 2173 * driver specific fixups are also applied. 2174 * 2175 * LOCKING: 2176 * Kernel thread context (may sleep) 2177 * 2178 * RETURNS: 2179 * 0 on success, -errno otherwise 2180 */ 2181 int ata_dev_configure(struct ata_device *dev) 2182 { 2183 struct ata_port *ap = dev->link->ap; 2184 struct ata_eh_context *ehc = &dev->link->eh_context; 2185 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2186 const u16 *id = dev->id; 2187 unsigned long xfer_mask; 2188 unsigned int err_mask; 2189 char revbuf[7]; /* XYZ-99\0 */ 2190 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2191 char modelbuf[ATA_ID_PROD_LEN+1]; 2192 int rc; 2193 2194 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2195 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2196 return 0; 2197 } 2198 2199 if (ata_msg_probe(ap)) 2200 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2201 2202 /* set horkage */ 2203 dev->horkage |= ata_dev_blacklisted(dev); 2204 ata_force_horkage(dev); 2205 2206 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2207 ata_dev_info(dev, "unsupported device, disabling\n"); 2208 ata_dev_disable(dev); 2209 return 0; 2210 } 2211 2212 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2213 dev->class == ATA_DEV_ATAPI) { 2214 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2215 atapi_enabled ? "not supported with this driver" 2216 : "disabled"); 2217 ata_dev_disable(dev); 2218 return 0; 2219 } 2220 2221 rc = ata_do_link_spd_horkage(dev); 2222 if (rc) 2223 return rc; 2224 2225 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2226 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2227 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2228 dev->horkage |= ATA_HORKAGE_NOLPM; 2229 2230 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2231 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2232 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2233 } 2234 2235 /* let ACPI work its magic */ 2236 rc = ata_acpi_on_devcfg(dev); 2237 if (rc) 2238 return rc; 2239 2240 /* massage HPA, do it early as it might change IDENTIFY data */ 2241 rc = ata_hpa_resize(dev); 2242 if (rc) 2243 return rc; 2244 2245 /* print device capabilities */ 2246 if (ata_msg_probe(ap)) 2247 ata_dev_dbg(dev, 2248 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2249 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2250 __func__, 2251 id[49], id[82], id[83], id[84], 2252 id[85], id[86], id[87], id[88]); 2253 2254 /* initialize to-be-configured parameters */ 2255 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2256 dev->max_sectors = 0; 2257 dev->cdb_len = 0; 2258 dev->n_sectors = 0; 2259 dev->cylinders = 0; 2260 dev->heads = 0; 2261 dev->sectors = 0; 2262 dev->multi_count = 0; 2263 2264 /* 2265 * common ATA, ATAPI feature tests 2266 */ 2267 2268 /* find max transfer mode; for printk only */ 2269 xfer_mask = ata_id_xfermask(id); 2270 2271 if (ata_msg_probe(ap)) 2272 ata_dump_id(id); 2273 2274 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2275 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2276 sizeof(fwrevbuf)); 2277 2278 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2279 sizeof(modelbuf)); 2280 2281 /* ATA-specific feature tests */ 2282 if (dev->class == ATA_DEV_ATA) { 2283 if (ata_id_is_cfa(id)) { 2284 /* CPRM may make this media unusable */ 2285 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2286 ata_dev_warn(dev, 2287 "supports DRM functions and may not be fully accessible\n"); 2288 snprintf(revbuf, 7, "CFA"); 2289 } else { 2290 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2291 /* Warn the user if the device has TPM extensions */ 2292 if (ata_id_has_tpm(id)) 2293 ata_dev_warn(dev, 2294 "supports DRM functions and may not be fully accessible\n"); 2295 } 2296 2297 dev->n_sectors = ata_id_n_sectors(id); 2298 2299 /* get current R/W Multiple count setting */ 2300 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2301 unsigned int max = dev->id[47] & 0xff; 2302 unsigned int cnt = dev->id[59] & 0xff; 2303 /* only recognize/allow powers of two here */ 2304 if (is_power_of_2(max) && is_power_of_2(cnt)) 2305 if (cnt <= max) 2306 dev->multi_count = cnt; 2307 } 2308 2309 if (ata_id_has_lba(id)) { 2310 const char *lba_desc; 2311 char ncq_desc[24]; 2312 2313 lba_desc = "LBA"; 2314 dev->flags |= ATA_DFLAG_LBA; 2315 if (ata_id_has_lba48(id)) { 2316 dev->flags |= ATA_DFLAG_LBA48; 2317 lba_desc = "LBA48"; 2318 2319 if (dev->n_sectors >= (1UL << 28) && 2320 ata_id_has_flush_ext(id)) 2321 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2322 } 2323 2324 /* config NCQ */ 2325 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2326 if (rc) 2327 return rc; 2328 2329 /* print device info to dmesg */ 2330 if (ata_msg_drv(ap) && print_info) { 2331 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2332 revbuf, modelbuf, fwrevbuf, 2333 ata_mode_string(xfer_mask)); 2334 ata_dev_info(dev, 2335 "%llu sectors, multi %u: %s %s\n", 2336 (unsigned long long)dev->n_sectors, 2337 dev->multi_count, lba_desc, ncq_desc); 2338 } 2339 } else { 2340 /* CHS */ 2341 2342 /* Default translation */ 2343 dev->cylinders = id[1]; 2344 dev->heads = id[3]; 2345 dev->sectors = id[6]; 2346 2347 if (ata_id_current_chs_valid(id)) { 2348 /* Current CHS translation is valid. */ 2349 dev->cylinders = id[54]; 2350 dev->heads = id[55]; 2351 dev->sectors = id[56]; 2352 } 2353 2354 /* print device info to dmesg */ 2355 if (ata_msg_drv(ap) && print_info) { 2356 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2357 revbuf, modelbuf, fwrevbuf, 2358 ata_mode_string(xfer_mask)); 2359 ata_dev_info(dev, 2360 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2361 (unsigned long long)dev->n_sectors, 2362 dev->multi_count, dev->cylinders, 2363 dev->heads, dev->sectors); 2364 } 2365 } 2366 2367 /* Check and mark DevSlp capability. Get DevSlp timing variables 2368 * from SATA Settings page of Identify Device Data Log. 2369 */ 2370 if (ata_id_has_devslp(dev->id)) { 2371 u8 *sata_setting = ap->sector_buf; 2372 int i, j; 2373 2374 dev->flags |= ATA_DFLAG_DEVSLP; 2375 err_mask = ata_read_log_page(dev, 2376 ATA_LOG_SATA_ID_DEV_DATA, 2377 ATA_LOG_SATA_SETTINGS, 2378 sata_setting, 2379 1); 2380 if (err_mask) 2381 ata_dev_dbg(dev, 2382 "failed to get Identify Device Data, Emask 0x%x\n", 2383 err_mask); 2384 else 2385 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2386 j = ATA_LOG_DEVSLP_OFFSET + i; 2387 dev->devslp_timing[i] = sata_setting[j]; 2388 } 2389 } 2390 2391 dev->cdb_len = 16; 2392 } 2393 2394 /* ATAPI-specific feature tests */ 2395 else if (dev->class == ATA_DEV_ATAPI) { 2396 const char *cdb_intr_string = ""; 2397 const char *atapi_an_string = ""; 2398 const char *dma_dir_string = ""; 2399 u32 sntf; 2400 2401 rc = atapi_cdb_len(id); 2402 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2403 if (ata_msg_warn(ap)) 2404 ata_dev_warn(dev, "unsupported CDB len\n"); 2405 rc = -EINVAL; 2406 goto err_out_nosup; 2407 } 2408 dev->cdb_len = (unsigned int) rc; 2409 2410 /* Enable ATAPI AN if both the host and device have 2411 * the support. If PMP is attached, SNTF is required 2412 * to enable ATAPI AN to discern between PHY status 2413 * changed notifications and ATAPI ANs. 2414 */ 2415 if (atapi_an && 2416 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2417 (!sata_pmp_attached(ap) || 2418 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2419 /* issue SET feature command to turn this on */ 2420 err_mask = ata_dev_set_feature(dev, 2421 SETFEATURES_SATA_ENABLE, SATA_AN); 2422 if (err_mask) 2423 ata_dev_err(dev, 2424 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2425 err_mask); 2426 else { 2427 dev->flags |= ATA_DFLAG_AN; 2428 atapi_an_string = ", ATAPI AN"; 2429 } 2430 } 2431 2432 if (ata_id_cdb_intr(dev->id)) { 2433 dev->flags |= ATA_DFLAG_CDB_INTR; 2434 cdb_intr_string = ", CDB intr"; 2435 } 2436 2437 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2438 dev->flags |= ATA_DFLAG_DMADIR; 2439 dma_dir_string = ", DMADIR"; 2440 } 2441 2442 if (ata_id_has_da(dev->id)) { 2443 dev->flags |= ATA_DFLAG_DA; 2444 zpodd_init(dev); 2445 } 2446 2447 /* print device info to dmesg */ 2448 if (ata_msg_drv(ap) && print_info) 2449 ata_dev_info(dev, 2450 "ATAPI: %s, %s, max %s%s%s%s\n", 2451 modelbuf, fwrevbuf, 2452 ata_mode_string(xfer_mask), 2453 cdb_intr_string, atapi_an_string, 2454 dma_dir_string); 2455 } 2456 2457 /* determine max_sectors */ 2458 dev->max_sectors = ATA_MAX_SECTORS; 2459 if (dev->flags & ATA_DFLAG_LBA48) 2460 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2461 2462 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2463 200 sectors */ 2464 if (ata_dev_knobble(dev)) { 2465 if (ata_msg_drv(ap) && print_info) 2466 ata_dev_info(dev, "applying bridge limits\n"); 2467 dev->udma_mask &= ATA_UDMA5; 2468 dev->max_sectors = ATA_MAX_SECTORS; 2469 } 2470 2471 if ((dev->class == ATA_DEV_ATAPI) && 2472 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2473 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2474 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2475 } 2476 2477 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2478 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2479 dev->max_sectors); 2480 2481 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2482 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2483 2484 if (ap->ops->dev_config) 2485 ap->ops->dev_config(dev); 2486 2487 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2488 /* Let the user know. We don't want to disallow opens for 2489 rescue purposes, or in case the vendor is just a blithering 2490 idiot. Do this after the dev_config call as some controllers 2491 with buggy firmware may want to avoid reporting false device 2492 bugs */ 2493 2494 if (print_info) { 2495 ata_dev_warn(dev, 2496 "Drive reports diagnostics failure. This may indicate a drive\n"); 2497 ata_dev_warn(dev, 2498 "fault or invalid emulation. Contact drive vendor for information.\n"); 2499 } 2500 } 2501 2502 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2503 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2504 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2505 } 2506 2507 return 0; 2508 2509 err_out_nosup: 2510 if (ata_msg_probe(ap)) 2511 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2512 return rc; 2513 } 2514 2515 /** 2516 * ata_cable_40wire - return 40 wire cable type 2517 * @ap: port 2518 * 2519 * Helper method for drivers which want to hardwire 40 wire cable 2520 * detection. 2521 */ 2522 2523 int ata_cable_40wire(struct ata_port *ap) 2524 { 2525 return ATA_CBL_PATA40; 2526 } 2527 2528 /** 2529 * ata_cable_80wire - return 80 wire cable type 2530 * @ap: port 2531 * 2532 * Helper method for drivers which want to hardwire 80 wire cable 2533 * detection. 2534 */ 2535 2536 int ata_cable_80wire(struct ata_port *ap) 2537 { 2538 return ATA_CBL_PATA80; 2539 } 2540 2541 /** 2542 * ata_cable_unknown - return unknown PATA cable. 2543 * @ap: port 2544 * 2545 * Helper method for drivers which have no PATA cable detection. 2546 */ 2547 2548 int ata_cable_unknown(struct ata_port *ap) 2549 { 2550 return ATA_CBL_PATA_UNK; 2551 } 2552 2553 /** 2554 * ata_cable_ignore - return ignored PATA cable. 2555 * @ap: port 2556 * 2557 * Helper method for drivers which don't use cable type to limit 2558 * transfer mode. 2559 */ 2560 int ata_cable_ignore(struct ata_port *ap) 2561 { 2562 return ATA_CBL_PATA_IGN; 2563 } 2564 2565 /** 2566 * ata_cable_sata - return SATA cable type 2567 * @ap: port 2568 * 2569 * Helper method for drivers which have SATA cables 2570 */ 2571 2572 int ata_cable_sata(struct ata_port *ap) 2573 { 2574 return ATA_CBL_SATA; 2575 } 2576 2577 /** 2578 * ata_bus_probe - Reset and probe ATA bus 2579 * @ap: Bus to probe 2580 * 2581 * Master ATA bus probing function. Initiates a hardware-dependent 2582 * bus reset, then attempts to identify any devices found on 2583 * the bus. 2584 * 2585 * LOCKING: 2586 * PCI/etc. bus probe sem. 2587 * 2588 * RETURNS: 2589 * Zero on success, negative errno otherwise. 2590 */ 2591 2592 int ata_bus_probe(struct ata_port *ap) 2593 { 2594 unsigned int classes[ATA_MAX_DEVICES]; 2595 int tries[ATA_MAX_DEVICES]; 2596 int rc; 2597 struct ata_device *dev; 2598 2599 ata_for_each_dev(dev, &ap->link, ALL) 2600 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2601 2602 retry: 2603 ata_for_each_dev(dev, &ap->link, ALL) { 2604 /* If we issue an SRST then an ATA drive (not ATAPI) 2605 * may change configuration and be in PIO0 timing. If 2606 * we do a hard reset (or are coming from power on) 2607 * this is true for ATA or ATAPI. Until we've set a 2608 * suitable controller mode we should not touch the 2609 * bus as we may be talking too fast. 2610 */ 2611 dev->pio_mode = XFER_PIO_0; 2612 dev->dma_mode = 0xff; 2613 2614 /* If the controller has a pio mode setup function 2615 * then use it to set the chipset to rights. Don't 2616 * touch the DMA setup as that will be dealt with when 2617 * configuring devices. 2618 */ 2619 if (ap->ops->set_piomode) 2620 ap->ops->set_piomode(ap, dev); 2621 } 2622 2623 /* reset and determine device classes */ 2624 ap->ops->phy_reset(ap); 2625 2626 ata_for_each_dev(dev, &ap->link, ALL) { 2627 if (dev->class != ATA_DEV_UNKNOWN) 2628 classes[dev->devno] = dev->class; 2629 else 2630 classes[dev->devno] = ATA_DEV_NONE; 2631 2632 dev->class = ATA_DEV_UNKNOWN; 2633 } 2634 2635 /* read IDENTIFY page and configure devices. We have to do the identify 2636 specific sequence bass-ackwards so that PDIAG- is released by 2637 the slave device */ 2638 2639 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2640 if (tries[dev->devno]) 2641 dev->class = classes[dev->devno]; 2642 2643 if (!ata_dev_enabled(dev)) 2644 continue; 2645 2646 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2647 dev->id); 2648 if (rc) 2649 goto fail; 2650 } 2651 2652 /* Now ask for the cable type as PDIAG- should have been released */ 2653 if (ap->ops->cable_detect) 2654 ap->cbl = ap->ops->cable_detect(ap); 2655 2656 /* We may have SATA bridge glue hiding here irrespective of 2657 * the reported cable types and sensed types. When SATA 2658 * drives indicate we have a bridge, we don't know which end 2659 * of the link the bridge is which is a problem. 2660 */ 2661 ata_for_each_dev(dev, &ap->link, ENABLED) 2662 if (ata_id_is_sata(dev->id)) 2663 ap->cbl = ATA_CBL_SATA; 2664 2665 /* After the identify sequence we can now set up the devices. We do 2666 this in the normal order so that the user doesn't get confused */ 2667 2668 ata_for_each_dev(dev, &ap->link, ENABLED) { 2669 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2670 rc = ata_dev_configure(dev); 2671 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2672 if (rc) 2673 goto fail; 2674 } 2675 2676 /* configure transfer mode */ 2677 rc = ata_set_mode(&ap->link, &dev); 2678 if (rc) 2679 goto fail; 2680 2681 ata_for_each_dev(dev, &ap->link, ENABLED) 2682 return 0; 2683 2684 return -ENODEV; 2685 2686 fail: 2687 tries[dev->devno]--; 2688 2689 switch (rc) { 2690 case -EINVAL: 2691 /* eeek, something went very wrong, give up */ 2692 tries[dev->devno] = 0; 2693 break; 2694 2695 case -ENODEV: 2696 /* give it just one more chance */ 2697 tries[dev->devno] = min(tries[dev->devno], 1); 2698 case -EIO: 2699 if (tries[dev->devno] == 1) { 2700 /* This is the last chance, better to slow 2701 * down than lose it. 2702 */ 2703 sata_down_spd_limit(&ap->link, 0); 2704 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2705 } 2706 } 2707 2708 if (!tries[dev->devno]) 2709 ata_dev_disable(dev); 2710 2711 goto retry; 2712 } 2713 2714 /** 2715 * sata_print_link_status - Print SATA link status 2716 * @link: SATA link to printk link status about 2717 * 2718 * This function prints link speed and status of a SATA link. 2719 * 2720 * LOCKING: 2721 * None. 2722 */ 2723 static void sata_print_link_status(struct ata_link *link) 2724 { 2725 u32 sstatus, scontrol, tmp; 2726 2727 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2728 return; 2729 sata_scr_read(link, SCR_CONTROL, &scontrol); 2730 2731 if (ata_phys_link_online(link)) { 2732 tmp = (sstatus >> 4) & 0xf; 2733 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2734 sata_spd_string(tmp), sstatus, scontrol); 2735 } else { 2736 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2737 sstatus, scontrol); 2738 } 2739 } 2740 2741 /** 2742 * ata_dev_pair - return other device on cable 2743 * @adev: device 2744 * 2745 * Obtain the other device on the same cable, or if none is 2746 * present NULL is returned 2747 */ 2748 2749 struct ata_device *ata_dev_pair(struct ata_device *adev) 2750 { 2751 struct ata_link *link = adev->link; 2752 struct ata_device *pair = &link->device[1 - adev->devno]; 2753 if (!ata_dev_enabled(pair)) 2754 return NULL; 2755 return pair; 2756 } 2757 2758 /** 2759 * sata_down_spd_limit - adjust SATA spd limit downward 2760 * @link: Link to adjust SATA spd limit for 2761 * @spd_limit: Additional limit 2762 * 2763 * Adjust SATA spd limit of @link downward. Note that this 2764 * function only adjusts the limit. The change must be applied 2765 * using sata_set_spd(). 2766 * 2767 * If @spd_limit is non-zero, the speed is limited to equal to or 2768 * lower than @spd_limit if such speed is supported. If 2769 * @spd_limit is slower than any supported speed, only the lowest 2770 * supported speed is allowed. 2771 * 2772 * LOCKING: 2773 * Inherited from caller. 2774 * 2775 * RETURNS: 2776 * 0 on success, negative errno on failure 2777 */ 2778 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2779 { 2780 u32 sstatus, spd, mask; 2781 int rc, bit; 2782 2783 if (!sata_scr_valid(link)) 2784 return -EOPNOTSUPP; 2785 2786 /* If SCR can be read, use it to determine the current SPD. 2787 * If not, use cached value in link->sata_spd. 2788 */ 2789 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2790 if (rc == 0 && ata_sstatus_online(sstatus)) 2791 spd = (sstatus >> 4) & 0xf; 2792 else 2793 spd = link->sata_spd; 2794 2795 mask = link->sata_spd_limit; 2796 if (mask <= 1) 2797 return -EINVAL; 2798 2799 /* unconditionally mask off the highest bit */ 2800 bit = fls(mask) - 1; 2801 mask &= ~(1 << bit); 2802 2803 /* Mask off all speeds higher than or equal to the current 2804 * one. Force 1.5Gbps if current SPD is not available. 2805 */ 2806 if (spd > 1) 2807 mask &= (1 << (spd - 1)) - 1; 2808 else 2809 mask &= 1; 2810 2811 /* were we already at the bottom? */ 2812 if (!mask) 2813 return -EINVAL; 2814 2815 if (spd_limit) { 2816 if (mask & ((1 << spd_limit) - 1)) 2817 mask &= (1 << spd_limit) - 1; 2818 else { 2819 bit = ffs(mask) - 1; 2820 mask = 1 << bit; 2821 } 2822 } 2823 2824 link->sata_spd_limit = mask; 2825 2826 ata_link_warn(link, "limiting SATA link speed to %s\n", 2827 sata_spd_string(fls(mask))); 2828 2829 return 0; 2830 } 2831 2832 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2833 { 2834 struct ata_link *host_link = &link->ap->link; 2835 u32 limit, target, spd; 2836 2837 limit = link->sata_spd_limit; 2838 2839 /* Don't configure downstream link faster than upstream link. 2840 * It doesn't speed up anything and some PMPs choke on such 2841 * configuration. 2842 */ 2843 if (!ata_is_host_link(link) && host_link->sata_spd) 2844 limit &= (1 << host_link->sata_spd) - 1; 2845 2846 if (limit == UINT_MAX) 2847 target = 0; 2848 else 2849 target = fls(limit); 2850 2851 spd = (*scontrol >> 4) & 0xf; 2852 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2853 2854 return spd != target; 2855 } 2856 2857 /** 2858 * sata_set_spd_needed - is SATA spd configuration needed 2859 * @link: Link in question 2860 * 2861 * Test whether the spd limit in SControl matches 2862 * @link->sata_spd_limit. This function is used to determine 2863 * whether hardreset is necessary to apply SATA spd 2864 * configuration. 2865 * 2866 * LOCKING: 2867 * Inherited from caller. 2868 * 2869 * RETURNS: 2870 * 1 if SATA spd configuration is needed, 0 otherwise. 2871 */ 2872 static int sata_set_spd_needed(struct ata_link *link) 2873 { 2874 u32 scontrol; 2875 2876 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2877 return 1; 2878 2879 return __sata_set_spd_needed(link, &scontrol); 2880 } 2881 2882 /** 2883 * sata_set_spd - set SATA spd according to spd limit 2884 * @link: Link to set SATA spd for 2885 * 2886 * Set SATA spd of @link according to sata_spd_limit. 2887 * 2888 * LOCKING: 2889 * Inherited from caller. 2890 * 2891 * RETURNS: 2892 * 0 if spd doesn't need to be changed, 1 if spd has been 2893 * changed. Negative errno if SCR registers are inaccessible. 2894 */ 2895 int sata_set_spd(struct ata_link *link) 2896 { 2897 u32 scontrol; 2898 int rc; 2899 2900 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2901 return rc; 2902 2903 if (!__sata_set_spd_needed(link, &scontrol)) 2904 return 0; 2905 2906 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2907 return rc; 2908 2909 return 1; 2910 } 2911 2912 /* 2913 * This mode timing computation functionality is ported over from 2914 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2915 */ 2916 /* 2917 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2918 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2919 * for UDMA6, which is currently supported only by Maxtor drives. 2920 * 2921 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2922 */ 2923 2924 static const struct ata_timing ata_timing[] = { 2925 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2926 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2927 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2928 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2929 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2930 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2931 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2932 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2933 2934 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2935 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2936 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2937 2938 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2939 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2940 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2941 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2942 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2943 2944 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2945 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2946 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2947 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2948 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2949 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2950 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2951 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2952 2953 { 0xFF } 2954 }; 2955 2956 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2957 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2958 2959 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2960 { 2961 q->setup = EZ(t->setup * 1000, T); 2962 q->act8b = EZ(t->act8b * 1000, T); 2963 q->rec8b = EZ(t->rec8b * 1000, T); 2964 q->cyc8b = EZ(t->cyc8b * 1000, T); 2965 q->active = EZ(t->active * 1000, T); 2966 q->recover = EZ(t->recover * 1000, T); 2967 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2968 q->cycle = EZ(t->cycle * 1000, T); 2969 q->udma = EZ(t->udma * 1000, UT); 2970 } 2971 2972 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2973 struct ata_timing *m, unsigned int what) 2974 { 2975 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2976 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2977 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2978 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2979 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2980 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2981 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2982 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2983 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2984 } 2985 2986 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2987 { 2988 const struct ata_timing *t = ata_timing; 2989 2990 while (xfer_mode > t->mode) 2991 t++; 2992 2993 if (xfer_mode == t->mode) 2994 return t; 2995 2996 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 2997 __func__, xfer_mode); 2998 2999 return NULL; 3000 } 3001 3002 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3003 struct ata_timing *t, int T, int UT) 3004 { 3005 const u16 *id = adev->id; 3006 const struct ata_timing *s; 3007 struct ata_timing p; 3008 3009 /* 3010 * Find the mode. 3011 */ 3012 3013 if (!(s = ata_timing_find_mode(speed))) 3014 return -EINVAL; 3015 3016 memcpy(t, s, sizeof(*s)); 3017 3018 /* 3019 * If the drive is an EIDE drive, it can tell us it needs extended 3020 * PIO/MW_DMA cycle timing. 3021 */ 3022 3023 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3024 memset(&p, 0, sizeof(p)); 3025 3026 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 3027 if (speed <= XFER_PIO_2) 3028 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3029 else if ((speed <= XFER_PIO_4) || 3030 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3031 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3032 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3033 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3034 3035 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3036 } 3037 3038 /* 3039 * Convert the timing to bus clock counts. 3040 */ 3041 3042 ata_timing_quantize(t, t, T, UT); 3043 3044 /* 3045 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3046 * S.M.A.R.T * and some other commands. We have to ensure that the 3047 * DMA cycle timing is slower/equal than the fastest PIO timing. 3048 */ 3049 3050 if (speed > XFER_PIO_6) { 3051 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3052 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3053 } 3054 3055 /* 3056 * Lengthen active & recovery time so that cycle time is correct. 3057 */ 3058 3059 if (t->act8b + t->rec8b < t->cyc8b) { 3060 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3061 t->rec8b = t->cyc8b - t->act8b; 3062 } 3063 3064 if (t->active + t->recover < t->cycle) { 3065 t->active += (t->cycle - (t->active + t->recover)) / 2; 3066 t->recover = t->cycle - t->active; 3067 } 3068 3069 /* In a few cases quantisation may produce enough errors to 3070 leave t->cycle too low for the sum of active and recovery 3071 if so we must correct this */ 3072 if (t->active + t->recover > t->cycle) 3073 t->cycle = t->active + t->recover; 3074 3075 return 0; 3076 } 3077 3078 /** 3079 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3080 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3081 * @cycle: cycle duration in ns 3082 * 3083 * Return matching xfer mode for @cycle. The returned mode is of 3084 * the transfer type specified by @xfer_shift. If @cycle is too 3085 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3086 * than the fastest known mode, the fasted mode is returned. 3087 * 3088 * LOCKING: 3089 * None. 3090 * 3091 * RETURNS: 3092 * Matching xfer_mode, 0xff if no match found. 3093 */ 3094 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3095 { 3096 u8 base_mode = 0xff, last_mode = 0xff; 3097 const struct ata_xfer_ent *ent; 3098 const struct ata_timing *t; 3099 3100 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3101 if (ent->shift == xfer_shift) 3102 base_mode = ent->base; 3103 3104 for (t = ata_timing_find_mode(base_mode); 3105 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3106 unsigned short this_cycle; 3107 3108 switch (xfer_shift) { 3109 case ATA_SHIFT_PIO: 3110 case ATA_SHIFT_MWDMA: 3111 this_cycle = t->cycle; 3112 break; 3113 case ATA_SHIFT_UDMA: 3114 this_cycle = t->udma; 3115 break; 3116 default: 3117 return 0xff; 3118 } 3119 3120 if (cycle > this_cycle) 3121 break; 3122 3123 last_mode = t->mode; 3124 } 3125 3126 return last_mode; 3127 } 3128 3129 /** 3130 * ata_down_xfermask_limit - adjust dev xfer masks downward 3131 * @dev: Device to adjust xfer masks 3132 * @sel: ATA_DNXFER_* selector 3133 * 3134 * Adjust xfer masks of @dev downward. Note that this function 3135 * does not apply the change. Invoking ata_set_mode() afterwards 3136 * will apply the limit. 3137 * 3138 * LOCKING: 3139 * Inherited from caller. 3140 * 3141 * RETURNS: 3142 * 0 on success, negative errno on failure 3143 */ 3144 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3145 { 3146 char buf[32]; 3147 unsigned long orig_mask, xfer_mask; 3148 unsigned long pio_mask, mwdma_mask, udma_mask; 3149 int quiet, highbit; 3150 3151 quiet = !!(sel & ATA_DNXFER_QUIET); 3152 sel &= ~ATA_DNXFER_QUIET; 3153 3154 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3155 dev->mwdma_mask, 3156 dev->udma_mask); 3157 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3158 3159 switch (sel) { 3160 case ATA_DNXFER_PIO: 3161 highbit = fls(pio_mask) - 1; 3162 pio_mask &= ~(1 << highbit); 3163 break; 3164 3165 case ATA_DNXFER_DMA: 3166 if (udma_mask) { 3167 highbit = fls(udma_mask) - 1; 3168 udma_mask &= ~(1 << highbit); 3169 if (!udma_mask) 3170 return -ENOENT; 3171 } else if (mwdma_mask) { 3172 highbit = fls(mwdma_mask) - 1; 3173 mwdma_mask &= ~(1 << highbit); 3174 if (!mwdma_mask) 3175 return -ENOENT; 3176 } 3177 break; 3178 3179 case ATA_DNXFER_40C: 3180 udma_mask &= ATA_UDMA_MASK_40C; 3181 break; 3182 3183 case ATA_DNXFER_FORCE_PIO0: 3184 pio_mask &= 1; 3185 case ATA_DNXFER_FORCE_PIO: 3186 mwdma_mask = 0; 3187 udma_mask = 0; 3188 break; 3189 3190 default: 3191 BUG(); 3192 } 3193 3194 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3195 3196 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3197 return -ENOENT; 3198 3199 if (!quiet) { 3200 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3201 snprintf(buf, sizeof(buf), "%s:%s", 3202 ata_mode_string(xfer_mask), 3203 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3204 else 3205 snprintf(buf, sizeof(buf), "%s", 3206 ata_mode_string(xfer_mask)); 3207 3208 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3209 } 3210 3211 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3212 &dev->udma_mask); 3213 3214 return 0; 3215 } 3216 3217 static int ata_dev_set_mode(struct ata_device *dev) 3218 { 3219 struct ata_port *ap = dev->link->ap; 3220 struct ata_eh_context *ehc = &dev->link->eh_context; 3221 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3222 const char *dev_err_whine = ""; 3223 int ign_dev_err = 0; 3224 unsigned int err_mask = 0; 3225 int rc; 3226 3227 dev->flags &= ~ATA_DFLAG_PIO; 3228 if (dev->xfer_shift == ATA_SHIFT_PIO) 3229 dev->flags |= ATA_DFLAG_PIO; 3230 3231 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3232 dev_err_whine = " (SET_XFERMODE skipped)"; 3233 else { 3234 if (nosetxfer) 3235 ata_dev_warn(dev, 3236 "NOSETXFER but PATA detected - can't " 3237 "skip SETXFER, might malfunction\n"); 3238 err_mask = ata_dev_set_xfermode(dev); 3239 } 3240 3241 if (err_mask & ~AC_ERR_DEV) 3242 goto fail; 3243 3244 /* revalidate */ 3245 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3246 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3247 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3248 if (rc) 3249 return rc; 3250 3251 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3252 /* Old CFA may refuse this command, which is just fine */ 3253 if (ata_id_is_cfa(dev->id)) 3254 ign_dev_err = 1; 3255 /* Catch several broken garbage emulations plus some pre 3256 ATA devices */ 3257 if (ata_id_major_version(dev->id) == 0 && 3258 dev->pio_mode <= XFER_PIO_2) 3259 ign_dev_err = 1; 3260 /* Some very old devices and some bad newer ones fail 3261 any kind of SET_XFERMODE request but support PIO0-2 3262 timings and no IORDY */ 3263 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3264 ign_dev_err = 1; 3265 } 3266 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3267 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3268 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3269 dev->dma_mode == XFER_MW_DMA_0 && 3270 (dev->id[63] >> 8) & 1) 3271 ign_dev_err = 1; 3272 3273 /* if the device is actually configured correctly, ignore dev err */ 3274 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3275 ign_dev_err = 1; 3276 3277 if (err_mask & AC_ERR_DEV) { 3278 if (!ign_dev_err) 3279 goto fail; 3280 else 3281 dev_err_whine = " (device error ignored)"; 3282 } 3283 3284 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3285 dev->xfer_shift, (int)dev->xfer_mode); 3286 3287 ata_dev_info(dev, "configured for %s%s\n", 3288 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3289 dev_err_whine); 3290 3291 return 0; 3292 3293 fail: 3294 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3295 return -EIO; 3296 } 3297 3298 /** 3299 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3300 * @link: link on which timings will be programmed 3301 * @r_failed_dev: out parameter for failed device 3302 * 3303 * Standard implementation of the function used to tune and set 3304 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3305 * ata_dev_set_mode() fails, pointer to the failing device is 3306 * returned in @r_failed_dev. 3307 * 3308 * LOCKING: 3309 * PCI/etc. bus probe sem. 3310 * 3311 * RETURNS: 3312 * 0 on success, negative errno otherwise 3313 */ 3314 3315 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3316 { 3317 struct ata_port *ap = link->ap; 3318 struct ata_device *dev; 3319 int rc = 0, used_dma = 0, found = 0; 3320 3321 /* step 1: calculate xfer_mask */ 3322 ata_for_each_dev(dev, link, ENABLED) { 3323 unsigned long pio_mask, dma_mask; 3324 unsigned int mode_mask; 3325 3326 mode_mask = ATA_DMA_MASK_ATA; 3327 if (dev->class == ATA_DEV_ATAPI) 3328 mode_mask = ATA_DMA_MASK_ATAPI; 3329 else if (ata_id_is_cfa(dev->id)) 3330 mode_mask = ATA_DMA_MASK_CFA; 3331 3332 ata_dev_xfermask(dev); 3333 ata_force_xfermask(dev); 3334 3335 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3336 3337 if (libata_dma_mask & mode_mask) 3338 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3339 dev->udma_mask); 3340 else 3341 dma_mask = 0; 3342 3343 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3344 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3345 3346 found = 1; 3347 if (ata_dma_enabled(dev)) 3348 used_dma = 1; 3349 } 3350 if (!found) 3351 goto out; 3352 3353 /* step 2: always set host PIO timings */ 3354 ata_for_each_dev(dev, link, ENABLED) { 3355 if (dev->pio_mode == 0xff) { 3356 ata_dev_warn(dev, "no PIO support\n"); 3357 rc = -EINVAL; 3358 goto out; 3359 } 3360 3361 dev->xfer_mode = dev->pio_mode; 3362 dev->xfer_shift = ATA_SHIFT_PIO; 3363 if (ap->ops->set_piomode) 3364 ap->ops->set_piomode(ap, dev); 3365 } 3366 3367 /* step 3: set host DMA timings */ 3368 ata_for_each_dev(dev, link, ENABLED) { 3369 if (!ata_dma_enabled(dev)) 3370 continue; 3371 3372 dev->xfer_mode = dev->dma_mode; 3373 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3374 if (ap->ops->set_dmamode) 3375 ap->ops->set_dmamode(ap, dev); 3376 } 3377 3378 /* step 4: update devices' xfer mode */ 3379 ata_for_each_dev(dev, link, ENABLED) { 3380 rc = ata_dev_set_mode(dev); 3381 if (rc) 3382 goto out; 3383 } 3384 3385 /* Record simplex status. If we selected DMA then the other 3386 * host channels are not permitted to do so. 3387 */ 3388 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3389 ap->host->simplex_claimed = ap; 3390 3391 out: 3392 if (rc) 3393 *r_failed_dev = dev; 3394 return rc; 3395 } 3396 3397 /** 3398 * ata_wait_ready - wait for link to become ready 3399 * @link: link to be waited on 3400 * @deadline: deadline jiffies for the operation 3401 * @check_ready: callback to check link readiness 3402 * 3403 * Wait for @link to become ready. @check_ready should return 3404 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3405 * link doesn't seem to be occupied, other errno for other error 3406 * conditions. 3407 * 3408 * Transient -ENODEV conditions are allowed for 3409 * ATA_TMOUT_FF_WAIT. 3410 * 3411 * LOCKING: 3412 * EH context. 3413 * 3414 * RETURNS: 3415 * 0 if @linke is ready before @deadline; otherwise, -errno. 3416 */ 3417 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3418 int (*check_ready)(struct ata_link *link)) 3419 { 3420 unsigned long start = jiffies; 3421 unsigned long nodev_deadline; 3422 int warned = 0; 3423 3424 /* choose which 0xff timeout to use, read comment in libata.h */ 3425 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3426 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3427 else 3428 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3429 3430 /* Slave readiness can't be tested separately from master. On 3431 * M/S emulation configuration, this function should be called 3432 * only on the master and it will handle both master and slave. 3433 */ 3434 WARN_ON(link == link->ap->slave_link); 3435 3436 if (time_after(nodev_deadline, deadline)) 3437 nodev_deadline = deadline; 3438 3439 while (1) { 3440 unsigned long now = jiffies; 3441 int ready, tmp; 3442 3443 ready = tmp = check_ready(link); 3444 if (ready > 0) 3445 return 0; 3446 3447 /* 3448 * -ENODEV could be transient. Ignore -ENODEV if link 3449 * is online. Also, some SATA devices take a long 3450 * time to clear 0xff after reset. Wait for 3451 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3452 * offline. 3453 * 3454 * Note that some PATA controllers (pata_ali) explode 3455 * if status register is read more than once when 3456 * there's no device attached. 3457 */ 3458 if (ready == -ENODEV) { 3459 if (ata_link_online(link)) 3460 ready = 0; 3461 else if ((link->ap->flags & ATA_FLAG_SATA) && 3462 !ata_link_offline(link) && 3463 time_before(now, nodev_deadline)) 3464 ready = 0; 3465 } 3466 3467 if (ready) 3468 return ready; 3469 if (time_after(now, deadline)) 3470 return -EBUSY; 3471 3472 if (!warned && time_after(now, start + 5 * HZ) && 3473 (deadline - now > 3 * HZ)) { 3474 ata_link_warn(link, 3475 "link is slow to respond, please be patient " 3476 "(ready=%d)\n", tmp); 3477 warned = 1; 3478 } 3479 3480 ata_msleep(link->ap, 50); 3481 } 3482 } 3483 3484 /** 3485 * ata_wait_after_reset - wait for link to become ready after reset 3486 * @link: link to be waited on 3487 * @deadline: deadline jiffies for the operation 3488 * @check_ready: callback to check link readiness 3489 * 3490 * Wait for @link to become ready after reset. 3491 * 3492 * LOCKING: 3493 * EH context. 3494 * 3495 * RETURNS: 3496 * 0 if @linke is ready before @deadline; otherwise, -errno. 3497 */ 3498 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3499 int (*check_ready)(struct ata_link *link)) 3500 { 3501 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3502 3503 return ata_wait_ready(link, deadline, check_ready); 3504 } 3505 3506 /** 3507 * sata_link_debounce - debounce SATA phy status 3508 * @link: ATA link to debounce SATA phy status for 3509 * @params: timing parameters { interval, duratinon, timeout } in msec 3510 * @deadline: deadline jiffies for the operation 3511 * 3512 * Make sure SStatus of @link reaches stable state, determined by 3513 * holding the same value where DET is not 1 for @duration polled 3514 * every @interval, before @timeout. Timeout constraints the 3515 * beginning of the stable state. Because DET gets stuck at 1 on 3516 * some controllers after hot unplugging, this functions waits 3517 * until timeout then returns 0 if DET is stable at 1. 3518 * 3519 * @timeout is further limited by @deadline. The sooner of the 3520 * two is used. 3521 * 3522 * LOCKING: 3523 * Kernel thread context (may sleep) 3524 * 3525 * RETURNS: 3526 * 0 on success, -errno on failure. 3527 */ 3528 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3529 unsigned long deadline) 3530 { 3531 unsigned long interval = params[0]; 3532 unsigned long duration = params[1]; 3533 unsigned long last_jiffies, t; 3534 u32 last, cur; 3535 int rc; 3536 3537 t = ata_deadline(jiffies, params[2]); 3538 if (time_before(t, deadline)) 3539 deadline = t; 3540 3541 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3542 return rc; 3543 cur &= 0xf; 3544 3545 last = cur; 3546 last_jiffies = jiffies; 3547 3548 while (1) { 3549 ata_msleep(link->ap, interval); 3550 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3551 return rc; 3552 cur &= 0xf; 3553 3554 /* DET stable? */ 3555 if (cur == last) { 3556 if (cur == 1 && time_before(jiffies, deadline)) 3557 continue; 3558 if (time_after(jiffies, 3559 ata_deadline(last_jiffies, duration))) 3560 return 0; 3561 continue; 3562 } 3563 3564 /* unstable, start over */ 3565 last = cur; 3566 last_jiffies = jiffies; 3567 3568 /* Check deadline. If debouncing failed, return 3569 * -EPIPE to tell upper layer to lower link speed. 3570 */ 3571 if (time_after(jiffies, deadline)) 3572 return -EPIPE; 3573 } 3574 } 3575 3576 /** 3577 * sata_link_resume - resume SATA link 3578 * @link: ATA link to resume SATA 3579 * @params: timing parameters { interval, duratinon, timeout } in msec 3580 * @deadline: deadline jiffies for the operation 3581 * 3582 * Resume SATA phy @link and debounce it. 3583 * 3584 * LOCKING: 3585 * Kernel thread context (may sleep) 3586 * 3587 * RETURNS: 3588 * 0 on success, -errno on failure. 3589 */ 3590 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3591 unsigned long deadline) 3592 { 3593 int tries = ATA_LINK_RESUME_TRIES; 3594 u32 scontrol, serror; 3595 int rc; 3596 3597 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3598 return rc; 3599 3600 /* 3601 * Writes to SControl sometimes get ignored under certain 3602 * controllers (ata_piix SIDPR). Make sure DET actually is 3603 * cleared. 3604 */ 3605 do { 3606 scontrol = (scontrol & 0x0f0) | 0x300; 3607 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3608 return rc; 3609 /* 3610 * Some PHYs react badly if SStatus is pounded 3611 * immediately after resuming. Delay 200ms before 3612 * debouncing. 3613 */ 3614 ata_msleep(link->ap, 200); 3615 3616 /* is SControl restored correctly? */ 3617 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3618 return rc; 3619 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3620 3621 if ((scontrol & 0xf0f) != 0x300) { 3622 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3623 scontrol); 3624 return 0; 3625 } 3626 3627 if (tries < ATA_LINK_RESUME_TRIES) 3628 ata_link_warn(link, "link resume succeeded after %d retries\n", 3629 ATA_LINK_RESUME_TRIES - tries); 3630 3631 if ((rc = sata_link_debounce(link, params, deadline))) 3632 return rc; 3633 3634 /* clear SError, some PHYs require this even for SRST to work */ 3635 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3636 rc = sata_scr_write(link, SCR_ERROR, serror); 3637 3638 return rc != -EINVAL ? rc : 0; 3639 } 3640 3641 /** 3642 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3643 * @link: ATA link to manipulate SControl for 3644 * @policy: LPM policy to configure 3645 * @spm_wakeup: initiate LPM transition to active state 3646 * 3647 * Manipulate the IPM field of the SControl register of @link 3648 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3649 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3650 * the link. This function also clears PHYRDY_CHG before 3651 * returning. 3652 * 3653 * LOCKING: 3654 * EH context. 3655 * 3656 * RETURNS: 3657 * 0 on succes, -errno otherwise. 3658 */ 3659 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3660 bool spm_wakeup) 3661 { 3662 struct ata_eh_context *ehc = &link->eh_context; 3663 bool woken_up = false; 3664 u32 scontrol; 3665 int rc; 3666 3667 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3668 if (rc) 3669 return rc; 3670 3671 switch (policy) { 3672 case ATA_LPM_MAX_POWER: 3673 /* disable all LPM transitions */ 3674 scontrol |= (0x7 << 8); 3675 /* initiate transition to active state */ 3676 if (spm_wakeup) { 3677 scontrol |= (0x4 << 12); 3678 woken_up = true; 3679 } 3680 break; 3681 case ATA_LPM_MED_POWER: 3682 /* allow LPM to PARTIAL */ 3683 scontrol &= ~(0x1 << 8); 3684 scontrol |= (0x6 << 8); 3685 break; 3686 case ATA_LPM_MIN_POWER: 3687 if (ata_link_nr_enabled(link) > 0) 3688 /* no restrictions on LPM transitions */ 3689 scontrol &= ~(0x7 << 8); 3690 else { 3691 /* empty port, power off */ 3692 scontrol &= ~0xf; 3693 scontrol |= (0x1 << 2); 3694 } 3695 break; 3696 default: 3697 WARN_ON(1); 3698 } 3699 3700 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3701 if (rc) 3702 return rc; 3703 3704 /* give the link time to transit out of LPM state */ 3705 if (woken_up) 3706 msleep(10); 3707 3708 /* clear PHYRDY_CHG from SError */ 3709 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3710 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3711 } 3712 3713 /** 3714 * ata_std_prereset - prepare for reset 3715 * @link: ATA link to be reset 3716 * @deadline: deadline jiffies for the operation 3717 * 3718 * @link is about to be reset. Initialize it. Failure from 3719 * prereset makes libata abort whole reset sequence and give up 3720 * that port, so prereset should be best-effort. It does its 3721 * best to prepare for reset sequence but if things go wrong, it 3722 * should just whine, not fail. 3723 * 3724 * LOCKING: 3725 * Kernel thread context (may sleep) 3726 * 3727 * RETURNS: 3728 * 0 on success, -errno otherwise. 3729 */ 3730 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3731 { 3732 struct ata_port *ap = link->ap; 3733 struct ata_eh_context *ehc = &link->eh_context; 3734 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3735 int rc; 3736 3737 /* if we're about to do hardreset, nothing more to do */ 3738 if (ehc->i.action & ATA_EH_HARDRESET) 3739 return 0; 3740 3741 /* if SATA, resume link */ 3742 if (ap->flags & ATA_FLAG_SATA) { 3743 rc = sata_link_resume(link, timing, deadline); 3744 /* whine about phy resume failure but proceed */ 3745 if (rc && rc != -EOPNOTSUPP) 3746 ata_link_warn(link, 3747 "failed to resume link for reset (errno=%d)\n", 3748 rc); 3749 } 3750 3751 /* no point in trying softreset on offline link */ 3752 if (ata_phys_link_offline(link)) 3753 ehc->i.action &= ~ATA_EH_SOFTRESET; 3754 3755 return 0; 3756 } 3757 3758 /** 3759 * sata_link_hardreset - reset link via SATA phy reset 3760 * @link: link to reset 3761 * @timing: timing parameters { interval, duratinon, timeout } in msec 3762 * @deadline: deadline jiffies for the operation 3763 * @online: optional out parameter indicating link onlineness 3764 * @check_ready: optional callback to check link readiness 3765 * 3766 * SATA phy-reset @link using DET bits of SControl register. 3767 * After hardreset, link readiness is waited upon using 3768 * ata_wait_ready() if @check_ready is specified. LLDs are 3769 * allowed to not specify @check_ready and wait itself after this 3770 * function returns. Device classification is LLD's 3771 * responsibility. 3772 * 3773 * *@online is set to one iff reset succeeded and @link is online 3774 * after reset. 3775 * 3776 * LOCKING: 3777 * Kernel thread context (may sleep) 3778 * 3779 * RETURNS: 3780 * 0 on success, -errno otherwise. 3781 */ 3782 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3783 unsigned long deadline, 3784 bool *online, int (*check_ready)(struct ata_link *)) 3785 { 3786 u32 scontrol; 3787 int rc; 3788 3789 DPRINTK("ENTER\n"); 3790 3791 if (online) 3792 *online = false; 3793 3794 if (sata_set_spd_needed(link)) { 3795 /* SATA spec says nothing about how to reconfigure 3796 * spd. To be on the safe side, turn off phy during 3797 * reconfiguration. This works for at least ICH7 AHCI 3798 * and Sil3124. 3799 */ 3800 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3801 goto out; 3802 3803 scontrol = (scontrol & 0x0f0) | 0x304; 3804 3805 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3806 goto out; 3807 3808 sata_set_spd(link); 3809 } 3810 3811 /* issue phy wake/reset */ 3812 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3813 goto out; 3814 3815 scontrol = (scontrol & 0x0f0) | 0x301; 3816 3817 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3818 goto out; 3819 3820 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3821 * 10.4.2 says at least 1 ms. 3822 */ 3823 ata_msleep(link->ap, 1); 3824 3825 /* bring link back */ 3826 rc = sata_link_resume(link, timing, deadline); 3827 if (rc) 3828 goto out; 3829 /* if link is offline nothing more to do */ 3830 if (ata_phys_link_offline(link)) 3831 goto out; 3832 3833 /* Link is online. From this point, -ENODEV too is an error. */ 3834 if (online) 3835 *online = true; 3836 3837 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3838 /* If PMP is supported, we have to do follow-up SRST. 3839 * Some PMPs don't send D2H Reg FIS after hardreset if 3840 * the first port is empty. Wait only for 3841 * ATA_TMOUT_PMP_SRST_WAIT. 3842 */ 3843 if (check_ready) { 3844 unsigned long pmp_deadline; 3845 3846 pmp_deadline = ata_deadline(jiffies, 3847 ATA_TMOUT_PMP_SRST_WAIT); 3848 if (time_after(pmp_deadline, deadline)) 3849 pmp_deadline = deadline; 3850 ata_wait_ready(link, pmp_deadline, check_ready); 3851 } 3852 rc = -EAGAIN; 3853 goto out; 3854 } 3855 3856 rc = 0; 3857 if (check_ready) 3858 rc = ata_wait_ready(link, deadline, check_ready); 3859 out: 3860 if (rc && rc != -EAGAIN) { 3861 /* online is set iff link is online && reset succeeded */ 3862 if (online) 3863 *online = false; 3864 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3865 } 3866 DPRINTK("EXIT, rc=%d\n", rc); 3867 return rc; 3868 } 3869 3870 /** 3871 * sata_std_hardreset - COMRESET w/o waiting or classification 3872 * @link: link to reset 3873 * @class: resulting class of attached device 3874 * @deadline: deadline jiffies for the operation 3875 * 3876 * Standard SATA COMRESET w/o waiting or classification. 3877 * 3878 * LOCKING: 3879 * Kernel thread context (may sleep) 3880 * 3881 * RETURNS: 3882 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3883 */ 3884 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3885 unsigned long deadline) 3886 { 3887 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3888 bool online; 3889 int rc; 3890 3891 /* do hardreset */ 3892 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3893 return online ? -EAGAIN : rc; 3894 } 3895 3896 /** 3897 * ata_std_postreset - standard postreset callback 3898 * @link: the target ata_link 3899 * @classes: classes of attached devices 3900 * 3901 * This function is invoked after a successful reset. Note that 3902 * the device might have been reset more than once using 3903 * different reset methods before postreset is invoked. 3904 * 3905 * LOCKING: 3906 * Kernel thread context (may sleep) 3907 */ 3908 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3909 { 3910 u32 serror; 3911 3912 DPRINTK("ENTER\n"); 3913 3914 /* reset complete, clear SError */ 3915 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3916 sata_scr_write(link, SCR_ERROR, serror); 3917 3918 /* print link status */ 3919 sata_print_link_status(link); 3920 3921 DPRINTK("EXIT\n"); 3922 } 3923 3924 /** 3925 * ata_dev_same_device - Determine whether new ID matches configured device 3926 * @dev: device to compare against 3927 * @new_class: class of the new device 3928 * @new_id: IDENTIFY page of the new device 3929 * 3930 * Compare @new_class and @new_id against @dev and determine 3931 * whether @dev is the device indicated by @new_class and 3932 * @new_id. 3933 * 3934 * LOCKING: 3935 * None. 3936 * 3937 * RETURNS: 3938 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3939 */ 3940 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3941 const u16 *new_id) 3942 { 3943 const u16 *old_id = dev->id; 3944 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3945 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3946 3947 if (dev->class != new_class) { 3948 ata_dev_info(dev, "class mismatch %d != %d\n", 3949 dev->class, new_class); 3950 return 0; 3951 } 3952 3953 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3954 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3955 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3956 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3957 3958 if (strcmp(model[0], model[1])) { 3959 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3960 model[0], model[1]); 3961 return 0; 3962 } 3963 3964 if (strcmp(serial[0], serial[1])) { 3965 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3966 serial[0], serial[1]); 3967 return 0; 3968 } 3969 3970 return 1; 3971 } 3972 3973 /** 3974 * ata_dev_reread_id - Re-read IDENTIFY data 3975 * @dev: target ATA device 3976 * @readid_flags: read ID flags 3977 * 3978 * Re-read IDENTIFY page and make sure @dev is still attached to 3979 * the port. 3980 * 3981 * LOCKING: 3982 * Kernel thread context (may sleep) 3983 * 3984 * RETURNS: 3985 * 0 on success, negative errno otherwise 3986 */ 3987 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3988 { 3989 unsigned int class = dev->class; 3990 u16 *id = (void *)dev->link->ap->sector_buf; 3991 int rc; 3992 3993 /* read ID data */ 3994 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3995 if (rc) 3996 return rc; 3997 3998 /* is the device still there? */ 3999 if (!ata_dev_same_device(dev, class, id)) 4000 return -ENODEV; 4001 4002 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4003 return 0; 4004 } 4005 4006 /** 4007 * ata_dev_revalidate - Revalidate ATA device 4008 * @dev: device to revalidate 4009 * @new_class: new class code 4010 * @readid_flags: read ID flags 4011 * 4012 * Re-read IDENTIFY page, make sure @dev is still attached to the 4013 * port and reconfigure it according to the new IDENTIFY page. 4014 * 4015 * LOCKING: 4016 * Kernel thread context (may sleep) 4017 * 4018 * RETURNS: 4019 * 0 on success, negative errno otherwise 4020 */ 4021 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4022 unsigned int readid_flags) 4023 { 4024 u64 n_sectors = dev->n_sectors; 4025 u64 n_native_sectors = dev->n_native_sectors; 4026 int rc; 4027 4028 if (!ata_dev_enabled(dev)) 4029 return -ENODEV; 4030 4031 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4032 if (ata_class_enabled(new_class) && 4033 new_class != ATA_DEV_ATA && 4034 new_class != ATA_DEV_ATAPI && 4035 new_class != ATA_DEV_SEMB) { 4036 ata_dev_info(dev, "class mismatch %u != %u\n", 4037 dev->class, new_class); 4038 rc = -ENODEV; 4039 goto fail; 4040 } 4041 4042 /* re-read ID */ 4043 rc = ata_dev_reread_id(dev, readid_flags); 4044 if (rc) 4045 goto fail; 4046 4047 /* configure device according to the new ID */ 4048 rc = ata_dev_configure(dev); 4049 if (rc) 4050 goto fail; 4051 4052 /* verify n_sectors hasn't changed */ 4053 if (dev->class != ATA_DEV_ATA || !n_sectors || 4054 dev->n_sectors == n_sectors) 4055 return 0; 4056 4057 /* n_sectors has changed */ 4058 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4059 (unsigned long long)n_sectors, 4060 (unsigned long long)dev->n_sectors); 4061 4062 /* 4063 * Something could have caused HPA to be unlocked 4064 * involuntarily. If n_native_sectors hasn't changed and the 4065 * new size matches it, keep the device. 4066 */ 4067 if (dev->n_native_sectors == n_native_sectors && 4068 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4069 ata_dev_warn(dev, 4070 "new n_sectors matches native, probably " 4071 "late HPA unlock, n_sectors updated\n"); 4072 /* use the larger n_sectors */ 4073 return 0; 4074 } 4075 4076 /* 4077 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4078 * unlocking HPA in those cases. 4079 * 4080 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4081 */ 4082 if (dev->n_native_sectors == n_native_sectors && 4083 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4084 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4085 ata_dev_warn(dev, 4086 "old n_sectors matches native, probably " 4087 "late HPA lock, will try to unlock HPA\n"); 4088 /* try unlocking HPA */ 4089 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4090 rc = -EIO; 4091 } else 4092 rc = -ENODEV; 4093 4094 /* restore original n_[native_]sectors and fail */ 4095 dev->n_native_sectors = n_native_sectors; 4096 dev->n_sectors = n_sectors; 4097 fail: 4098 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4099 return rc; 4100 } 4101 4102 struct ata_blacklist_entry { 4103 const char *model_num; 4104 const char *model_rev; 4105 unsigned long horkage; 4106 }; 4107 4108 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4109 /* Devices with DMA related problems under Linux */ 4110 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4111 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4112 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4113 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4114 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4115 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4116 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4117 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4118 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4119 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4120 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4121 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4122 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4123 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4124 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4125 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4126 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4127 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4128 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4129 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4130 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4131 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4132 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4133 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4134 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4135 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4136 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4137 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4138 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4139 /* Odd clown on sil3726/4726 PMPs */ 4140 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4141 4142 /* Weird ATAPI devices */ 4143 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4144 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4145 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4146 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4147 4148 /* Devices we expect to fail diagnostics */ 4149 4150 /* Devices where NCQ should be avoided */ 4151 /* NCQ is slow */ 4152 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4153 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4154 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4155 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4156 /* NCQ is broken */ 4157 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4158 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4159 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4160 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4161 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4162 4163 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4164 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4165 ATA_HORKAGE_FIRMWARE_WARN }, 4166 4167 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4168 ATA_HORKAGE_FIRMWARE_WARN }, 4169 4170 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4171 ATA_HORKAGE_FIRMWARE_WARN }, 4172 4173 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4174 ATA_HORKAGE_FIRMWARE_WARN }, 4175 4176 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */ 4177 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4178 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4179 4180 /* Blacklist entries taken from Silicon Image 3124/3132 4181 Windows driver .inf file - also several Linux problem reports */ 4182 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4183 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4184 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4185 4186 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4187 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4188 4189 /* devices which puke on READ_NATIVE_MAX */ 4190 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4191 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4192 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4193 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4194 4195 /* this one allows HPA unlocking but fails IOs on the area */ 4196 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4197 4198 /* Devices which report 1 sector over size HPA */ 4199 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4200 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4201 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4202 4203 /* Devices which get the IVB wrong */ 4204 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4205 /* Maybe we should just blacklist TSSTcorp... */ 4206 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4207 4208 /* Devices that do not need bridging limits applied */ 4209 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4210 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4211 4212 /* Devices which aren't very happy with higher link speeds */ 4213 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4214 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4215 4216 /* 4217 * Devices which choke on SETXFER. Applies only if both the 4218 * device and controller are SATA. 4219 */ 4220 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4221 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4222 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4223 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4224 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4225 4226 /* devices that don't properly handle queued TRIM commands */ 4227 { "Micron_M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, }, 4228 { "Crucial_CT???M500SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, }, 4229 { "Micron_M550*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, }, 4230 { "Crucial_CT???M550SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, }, 4231 4232 /* 4233 * Some WD SATA-I drives spin up and down erratically when the link 4234 * is put into the slumber mode. We don't have full list of the 4235 * affected devices. Disable LPM if the device matches one of the 4236 * known prefixes and is SATA-1. As a side effect LPM partial is 4237 * lost too. 4238 * 4239 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4240 */ 4241 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4242 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4243 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4244 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4245 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4246 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4247 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4248 4249 /* End Marker */ 4250 { } 4251 }; 4252 4253 /** 4254 * glob_match - match a text string against a glob-style pattern 4255 * @text: the string to be examined 4256 * @pattern: the glob-style pattern to be matched against 4257 * 4258 * Either/both of text and pattern can be empty strings. 4259 * 4260 * Match text against a glob-style pattern, with wildcards and simple sets: 4261 * 4262 * ? matches any single character. 4263 * * matches any run of characters. 4264 * [xyz] matches a single character from the set: x, y, or z. 4265 * [a-d] matches a single character from the range: a, b, c, or d. 4266 * [a-d0-9] matches a single character from either range. 4267 * 4268 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4269 * Behaviour with malformed patterns is undefined, though generally reasonable. 4270 * 4271 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4272 * 4273 * This function uses one level of recursion per '*' in pattern. 4274 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4275 * this will not cause stack problems for any reasonable use here. 4276 * 4277 * RETURNS: 4278 * 0 on match, 1 otherwise. 4279 */ 4280 static int glob_match (const char *text, const char *pattern) 4281 { 4282 do { 4283 /* Match single character or a '?' wildcard */ 4284 if (*text == *pattern || *pattern == '?') { 4285 if (!*pattern++) 4286 return 0; /* End of both strings: match */ 4287 } else { 4288 /* Match single char against a '[' bracketed ']' pattern set */ 4289 if (!*text || *pattern != '[') 4290 break; /* Not a pattern set */ 4291 while (*++pattern && *pattern != ']' && *text != *pattern) { 4292 if (*pattern == '-' && *(pattern - 1) != '[') 4293 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4294 ++pattern; 4295 break; 4296 } 4297 } 4298 if (!*pattern || *pattern == ']') 4299 return 1; /* No match */ 4300 while (*pattern && *pattern++ != ']'); 4301 } 4302 } while (*++text && *pattern); 4303 4304 /* Match any run of chars against a '*' wildcard */ 4305 if (*pattern == '*') { 4306 if (!*++pattern) 4307 return 0; /* Match: avoid recursion at end of pattern */ 4308 /* Loop to handle additional pattern chars after the wildcard */ 4309 while (*text) { 4310 if (glob_match(text, pattern) == 0) 4311 return 0; /* Remainder matched */ 4312 ++text; /* Absorb (match) this char and try again */ 4313 } 4314 } 4315 if (!*text && !*pattern) 4316 return 0; /* End of both strings: match */ 4317 return 1; /* No match */ 4318 } 4319 4320 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4321 { 4322 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4323 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4324 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4325 4326 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4327 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4328 4329 while (ad->model_num) { 4330 if (!glob_match(model_num, ad->model_num)) { 4331 if (ad->model_rev == NULL) 4332 return ad->horkage; 4333 if (!glob_match(model_rev, ad->model_rev)) 4334 return ad->horkage; 4335 } 4336 ad++; 4337 } 4338 return 0; 4339 } 4340 4341 static int ata_dma_blacklisted(const struct ata_device *dev) 4342 { 4343 /* We don't support polling DMA. 4344 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4345 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4346 */ 4347 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4348 (dev->flags & ATA_DFLAG_CDB_INTR)) 4349 return 1; 4350 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4351 } 4352 4353 /** 4354 * ata_is_40wire - check drive side detection 4355 * @dev: device 4356 * 4357 * Perform drive side detection decoding, allowing for device vendors 4358 * who can't follow the documentation. 4359 */ 4360 4361 static int ata_is_40wire(struct ata_device *dev) 4362 { 4363 if (dev->horkage & ATA_HORKAGE_IVB) 4364 return ata_drive_40wire_relaxed(dev->id); 4365 return ata_drive_40wire(dev->id); 4366 } 4367 4368 /** 4369 * cable_is_40wire - 40/80/SATA decider 4370 * @ap: port to consider 4371 * 4372 * This function encapsulates the policy for speed management 4373 * in one place. At the moment we don't cache the result but 4374 * there is a good case for setting ap->cbl to the result when 4375 * we are called with unknown cables (and figuring out if it 4376 * impacts hotplug at all). 4377 * 4378 * Return 1 if the cable appears to be 40 wire. 4379 */ 4380 4381 static int cable_is_40wire(struct ata_port *ap) 4382 { 4383 struct ata_link *link; 4384 struct ata_device *dev; 4385 4386 /* If the controller thinks we are 40 wire, we are. */ 4387 if (ap->cbl == ATA_CBL_PATA40) 4388 return 1; 4389 4390 /* If the controller thinks we are 80 wire, we are. */ 4391 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4392 return 0; 4393 4394 /* If the system is known to be 40 wire short cable (eg 4395 * laptop), then we allow 80 wire modes even if the drive 4396 * isn't sure. 4397 */ 4398 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4399 return 0; 4400 4401 /* If the controller doesn't know, we scan. 4402 * 4403 * Note: We look for all 40 wire detects at this point. Any 4404 * 80 wire detect is taken to be 80 wire cable because 4405 * - in many setups only the one drive (slave if present) will 4406 * give a valid detect 4407 * - if you have a non detect capable drive you don't want it 4408 * to colour the choice 4409 */ 4410 ata_for_each_link(link, ap, EDGE) { 4411 ata_for_each_dev(dev, link, ENABLED) { 4412 if (!ata_is_40wire(dev)) 4413 return 0; 4414 } 4415 } 4416 return 1; 4417 } 4418 4419 /** 4420 * ata_dev_xfermask - Compute supported xfermask of the given device 4421 * @dev: Device to compute xfermask for 4422 * 4423 * Compute supported xfermask of @dev and store it in 4424 * dev->*_mask. This function is responsible for applying all 4425 * known limits including host controller limits, device 4426 * blacklist, etc... 4427 * 4428 * LOCKING: 4429 * None. 4430 */ 4431 static void ata_dev_xfermask(struct ata_device *dev) 4432 { 4433 struct ata_link *link = dev->link; 4434 struct ata_port *ap = link->ap; 4435 struct ata_host *host = ap->host; 4436 unsigned long xfer_mask; 4437 4438 /* controller modes available */ 4439 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4440 ap->mwdma_mask, ap->udma_mask); 4441 4442 /* drive modes available */ 4443 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4444 dev->mwdma_mask, dev->udma_mask); 4445 xfer_mask &= ata_id_xfermask(dev->id); 4446 4447 /* 4448 * CFA Advanced TrueIDE timings are not allowed on a shared 4449 * cable 4450 */ 4451 if (ata_dev_pair(dev)) { 4452 /* No PIO5 or PIO6 */ 4453 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4454 /* No MWDMA3 or MWDMA 4 */ 4455 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4456 } 4457 4458 if (ata_dma_blacklisted(dev)) { 4459 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4460 ata_dev_warn(dev, 4461 "device is on DMA blacklist, disabling DMA\n"); 4462 } 4463 4464 if ((host->flags & ATA_HOST_SIMPLEX) && 4465 host->simplex_claimed && host->simplex_claimed != ap) { 4466 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4467 ata_dev_warn(dev, 4468 "simplex DMA is claimed by other device, disabling DMA\n"); 4469 } 4470 4471 if (ap->flags & ATA_FLAG_NO_IORDY) 4472 xfer_mask &= ata_pio_mask_no_iordy(dev); 4473 4474 if (ap->ops->mode_filter) 4475 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4476 4477 /* Apply cable rule here. Don't apply it early because when 4478 * we handle hot plug the cable type can itself change. 4479 * Check this last so that we know if the transfer rate was 4480 * solely limited by the cable. 4481 * Unknown or 80 wire cables reported host side are checked 4482 * drive side as well. Cases where we know a 40wire cable 4483 * is used safely for 80 are not checked here. 4484 */ 4485 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4486 /* UDMA/44 or higher would be available */ 4487 if (cable_is_40wire(ap)) { 4488 ata_dev_warn(dev, 4489 "limited to UDMA/33 due to 40-wire cable\n"); 4490 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4491 } 4492 4493 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4494 &dev->mwdma_mask, &dev->udma_mask); 4495 } 4496 4497 /** 4498 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4499 * @dev: Device to which command will be sent 4500 * 4501 * Issue SET FEATURES - XFER MODE command to device @dev 4502 * on port @ap. 4503 * 4504 * LOCKING: 4505 * PCI/etc. bus probe sem. 4506 * 4507 * RETURNS: 4508 * 0 on success, AC_ERR_* mask otherwise. 4509 */ 4510 4511 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4512 { 4513 struct ata_taskfile tf; 4514 unsigned int err_mask; 4515 4516 /* set up set-features taskfile */ 4517 DPRINTK("set features - xfer mode\n"); 4518 4519 /* Some controllers and ATAPI devices show flaky interrupt 4520 * behavior after setting xfer mode. Use polling instead. 4521 */ 4522 ata_tf_init(dev, &tf); 4523 tf.command = ATA_CMD_SET_FEATURES; 4524 tf.feature = SETFEATURES_XFER; 4525 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4526 tf.protocol = ATA_PROT_NODATA; 4527 /* If we are using IORDY we must send the mode setting command */ 4528 if (ata_pio_need_iordy(dev)) 4529 tf.nsect = dev->xfer_mode; 4530 /* If the device has IORDY and the controller does not - turn it off */ 4531 else if (ata_id_has_iordy(dev->id)) 4532 tf.nsect = 0x01; 4533 else /* In the ancient relic department - skip all of this */ 4534 return 0; 4535 4536 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4537 4538 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4539 return err_mask; 4540 } 4541 4542 /** 4543 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4544 * @dev: Device to which command will be sent 4545 * @enable: Whether to enable or disable the feature 4546 * @feature: The sector count represents the feature to set 4547 * 4548 * Issue SET FEATURES - SATA FEATURES command to device @dev 4549 * on port @ap with sector count 4550 * 4551 * LOCKING: 4552 * PCI/etc. bus probe sem. 4553 * 4554 * RETURNS: 4555 * 0 on success, AC_ERR_* mask otherwise. 4556 */ 4557 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4558 { 4559 struct ata_taskfile tf; 4560 unsigned int err_mask; 4561 4562 /* set up set-features taskfile */ 4563 DPRINTK("set features - SATA features\n"); 4564 4565 ata_tf_init(dev, &tf); 4566 tf.command = ATA_CMD_SET_FEATURES; 4567 tf.feature = enable; 4568 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4569 tf.protocol = ATA_PROT_NODATA; 4570 tf.nsect = feature; 4571 4572 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4573 4574 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4575 return err_mask; 4576 } 4577 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4578 4579 /** 4580 * ata_dev_init_params - Issue INIT DEV PARAMS command 4581 * @dev: Device to which command will be sent 4582 * @heads: Number of heads (taskfile parameter) 4583 * @sectors: Number of sectors (taskfile parameter) 4584 * 4585 * LOCKING: 4586 * Kernel thread context (may sleep) 4587 * 4588 * RETURNS: 4589 * 0 on success, AC_ERR_* mask otherwise. 4590 */ 4591 static unsigned int ata_dev_init_params(struct ata_device *dev, 4592 u16 heads, u16 sectors) 4593 { 4594 struct ata_taskfile tf; 4595 unsigned int err_mask; 4596 4597 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4598 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4599 return AC_ERR_INVALID; 4600 4601 /* set up init dev params taskfile */ 4602 DPRINTK("init dev params \n"); 4603 4604 ata_tf_init(dev, &tf); 4605 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4606 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4607 tf.protocol = ATA_PROT_NODATA; 4608 tf.nsect = sectors; 4609 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4610 4611 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4612 /* A clean abort indicates an original or just out of spec drive 4613 and we should continue as we issue the setup based on the 4614 drive reported working geometry */ 4615 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4616 err_mask = 0; 4617 4618 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4619 return err_mask; 4620 } 4621 4622 /** 4623 * ata_sg_clean - Unmap DMA memory associated with command 4624 * @qc: Command containing DMA memory to be released 4625 * 4626 * Unmap all mapped DMA memory associated with this command. 4627 * 4628 * LOCKING: 4629 * spin_lock_irqsave(host lock) 4630 */ 4631 void ata_sg_clean(struct ata_queued_cmd *qc) 4632 { 4633 struct ata_port *ap = qc->ap; 4634 struct scatterlist *sg = qc->sg; 4635 int dir = qc->dma_dir; 4636 4637 WARN_ON_ONCE(sg == NULL); 4638 4639 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4640 4641 if (qc->n_elem) 4642 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4643 4644 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4645 qc->sg = NULL; 4646 } 4647 4648 /** 4649 * atapi_check_dma - Check whether ATAPI DMA can be supported 4650 * @qc: Metadata associated with taskfile to check 4651 * 4652 * Allow low-level driver to filter ATA PACKET commands, returning 4653 * a status indicating whether or not it is OK to use DMA for the 4654 * supplied PACKET command. 4655 * 4656 * LOCKING: 4657 * spin_lock_irqsave(host lock) 4658 * 4659 * RETURNS: 0 when ATAPI DMA can be used 4660 * nonzero otherwise 4661 */ 4662 int atapi_check_dma(struct ata_queued_cmd *qc) 4663 { 4664 struct ata_port *ap = qc->ap; 4665 4666 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4667 * few ATAPI devices choke on such DMA requests. 4668 */ 4669 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4670 unlikely(qc->nbytes & 15)) 4671 return 1; 4672 4673 if (ap->ops->check_atapi_dma) 4674 return ap->ops->check_atapi_dma(qc); 4675 4676 return 0; 4677 } 4678 4679 /** 4680 * ata_std_qc_defer - Check whether a qc needs to be deferred 4681 * @qc: ATA command in question 4682 * 4683 * Non-NCQ commands cannot run with any other command, NCQ or 4684 * not. As upper layer only knows the queue depth, we are 4685 * responsible for maintaining exclusion. This function checks 4686 * whether a new command @qc can be issued. 4687 * 4688 * LOCKING: 4689 * spin_lock_irqsave(host lock) 4690 * 4691 * RETURNS: 4692 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4693 */ 4694 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4695 { 4696 struct ata_link *link = qc->dev->link; 4697 4698 if (qc->tf.protocol == ATA_PROT_NCQ) { 4699 if (!ata_tag_valid(link->active_tag)) 4700 return 0; 4701 } else { 4702 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4703 return 0; 4704 } 4705 4706 return ATA_DEFER_LINK; 4707 } 4708 4709 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4710 4711 /** 4712 * ata_sg_init - Associate command with scatter-gather table. 4713 * @qc: Command to be associated 4714 * @sg: Scatter-gather table. 4715 * @n_elem: Number of elements in s/g table. 4716 * 4717 * Initialize the data-related elements of queued_cmd @qc 4718 * to point to a scatter-gather table @sg, containing @n_elem 4719 * elements. 4720 * 4721 * LOCKING: 4722 * spin_lock_irqsave(host lock) 4723 */ 4724 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4725 unsigned int n_elem) 4726 { 4727 qc->sg = sg; 4728 qc->n_elem = n_elem; 4729 qc->cursg = qc->sg; 4730 } 4731 4732 /** 4733 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4734 * @qc: Command with scatter-gather table to be mapped. 4735 * 4736 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4737 * 4738 * LOCKING: 4739 * spin_lock_irqsave(host lock) 4740 * 4741 * RETURNS: 4742 * Zero on success, negative on error. 4743 * 4744 */ 4745 static int ata_sg_setup(struct ata_queued_cmd *qc) 4746 { 4747 struct ata_port *ap = qc->ap; 4748 unsigned int n_elem; 4749 4750 VPRINTK("ENTER, ata%u\n", ap->print_id); 4751 4752 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4753 if (n_elem < 1) 4754 return -1; 4755 4756 DPRINTK("%d sg elements mapped\n", n_elem); 4757 qc->orig_n_elem = qc->n_elem; 4758 qc->n_elem = n_elem; 4759 qc->flags |= ATA_QCFLAG_DMAMAP; 4760 4761 return 0; 4762 } 4763 4764 /** 4765 * swap_buf_le16 - swap halves of 16-bit words in place 4766 * @buf: Buffer to swap 4767 * @buf_words: Number of 16-bit words in buffer. 4768 * 4769 * Swap halves of 16-bit words if needed to convert from 4770 * little-endian byte order to native cpu byte order, or 4771 * vice-versa. 4772 * 4773 * LOCKING: 4774 * Inherited from caller. 4775 */ 4776 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4777 { 4778 #ifdef __BIG_ENDIAN 4779 unsigned int i; 4780 4781 for (i = 0; i < buf_words; i++) 4782 buf[i] = le16_to_cpu(buf[i]); 4783 #endif /* __BIG_ENDIAN */ 4784 } 4785 4786 /** 4787 * ata_qc_new - Request an available ATA command, for queueing 4788 * @ap: target port 4789 * 4790 * LOCKING: 4791 * None. 4792 */ 4793 4794 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4795 { 4796 struct ata_queued_cmd *qc = NULL; 4797 unsigned int i, tag; 4798 4799 /* no command while frozen */ 4800 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4801 return NULL; 4802 4803 for (i = 0; i < ATA_MAX_QUEUE; i++) { 4804 tag = (i + ap->last_tag + 1) % ATA_MAX_QUEUE; 4805 4806 /* the last tag is reserved for internal command. */ 4807 if (tag == ATA_TAG_INTERNAL) 4808 continue; 4809 4810 if (!test_and_set_bit(tag, &ap->qc_allocated)) { 4811 qc = __ata_qc_from_tag(ap, tag); 4812 qc->tag = tag; 4813 ap->last_tag = tag; 4814 break; 4815 } 4816 } 4817 4818 return qc; 4819 } 4820 4821 /** 4822 * ata_qc_new_init - Request an available ATA command, and initialize it 4823 * @dev: Device from whom we request an available command structure 4824 * 4825 * LOCKING: 4826 * None. 4827 */ 4828 4829 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4830 { 4831 struct ata_port *ap = dev->link->ap; 4832 struct ata_queued_cmd *qc; 4833 4834 qc = ata_qc_new(ap); 4835 if (qc) { 4836 qc->scsicmd = NULL; 4837 qc->ap = ap; 4838 qc->dev = dev; 4839 4840 ata_qc_reinit(qc); 4841 } 4842 4843 return qc; 4844 } 4845 4846 /** 4847 * ata_qc_free - free unused ata_queued_cmd 4848 * @qc: Command to complete 4849 * 4850 * Designed to free unused ata_queued_cmd object 4851 * in case something prevents using it. 4852 * 4853 * LOCKING: 4854 * spin_lock_irqsave(host lock) 4855 */ 4856 void ata_qc_free(struct ata_queued_cmd *qc) 4857 { 4858 struct ata_port *ap; 4859 unsigned int tag; 4860 4861 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4862 ap = qc->ap; 4863 4864 qc->flags = 0; 4865 tag = qc->tag; 4866 if (likely(ata_tag_valid(tag))) { 4867 qc->tag = ATA_TAG_POISON; 4868 clear_bit(tag, &ap->qc_allocated); 4869 } 4870 } 4871 4872 void __ata_qc_complete(struct ata_queued_cmd *qc) 4873 { 4874 struct ata_port *ap; 4875 struct ata_link *link; 4876 4877 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4878 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4879 ap = qc->ap; 4880 link = qc->dev->link; 4881 4882 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4883 ata_sg_clean(qc); 4884 4885 /* command should be marked inactive atomically with qc completion */ 4886 if (qc->tf.protocol == ATA_PROT_NCQ) { 4887 link->sactive &= ~(1 << qc->tag); 4888 if (!link->sactive) 4889 ap->nr_active_links--; 4890 } else { 4891 link->active_tag = ATA_TAG_POISON; 4892 ap->nr_active_links--; 4893 } 4894 4895 /* clear exclusive status */ 4896 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4897 ap->excl_link == link)) 4898 ap->excl_link = NULL; 4899 4900 /* atapi: mark qc as inactive to prevent the interrupt handler 4901 * from completing the command twice later, before the error handler 4902 * is called. (when rc != 0 and atapi request sense is needed) 4903 */ 4904 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4905 ap->qc_active &= ~(1 << qc->tag); 4906 4907 /* call completion callback */ 4908 qc->complete_fn(qc); 4909 } 4910 4911 static void fill_result_tf(struct ata_queued_cmd *qc) 4912 { 4913 struct ata_port *ap = qc->ap; 4914 4915 qc->result_tf.flags = qc->tf.flags; 4916 ap->ops->qc_fill_rtf(qc); 4917 } 4918 4919 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4920 { 4921 struct ata_device *dev = qc->dev; 4922 4923 if (ata_is_nodata(qc->tf.protocol)) 4924 return; 4925 4926 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4927 return; 4928 4929 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4930 } 4931 4932 /** 4933 * ata_qc_complete - Complete an active ATA command 4934 * @qc: Command to complete 4935 * 4936 * Indicate to the mid and upper layers that an ATA command has 4937 * completed, with either an ok or not-ok status. 4938 * 4939 * Refrain from calling this function multiple times when 4940 * successfully completing multiple NCQ commands. 4941 * ata_qc_complete_multiple() should be used instead, which will 4942 * properly update IRQ expect state. 4943 * 4944 * LOCKING: 4945 * spin_lock_irqsave(host lock) 4946 */ 4947 void ata_qc_complete(struct ata_queued_cmd *qc) 4948 { 4949 struct ata_port *ap = qc->ap; 4950 4951 /* XXX: New EH and old EH use different mechanisms to 4952 * synchronize EH with regular execution path. 4953 * 4954 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4955 * Normal execution path is responsible for not accessing a 4956 * failed qc. libata core enforces the rule by returning NULL 4957 * from ata_qc_from_tag() for failed qcs. 4958 * 4959 * Old EH depends on ata_qc_complete() nullifying completion 4960 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4961 * not synchronize with interrupt handler. Only PIO task is 4962 * taken care of. 4963 */ 4964 if (ap->ops->error_handler) { 4965 struct ata_device *dev = qc->dev; 4966 struct ata_eh_info *ehi = &dev->link->eh_info; 4967 4968 if (unlikely(qc->err_mask)) 4969 qc->flags |= ATA_QCFLAG_FAILED; 4970 4971 /* 4972 * Finish internal commands without any further processing 4973 * and always with the result TF filled. 4974 */ 4975 if (unlikely(ata_tag_internal(qc->tag))) { 4976 fill_result_tf(qc); 4977 __ata_qc_complete(qc); 4978 return; 4979 } 4980 4981 /* 4982 * Non-internal qc has failed. Fill the result TF and 4983 * summon EH. 4984 */ 4985 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4986 fill_result_tf(qc); 4987 ata_qc_schedule_eh(qc); 4988 return; 4989 } 4990 4991 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4992 4993 /* read result TF if requested */ 4994 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4995 fill_result_tf(qc); 4996 4997 /* Some commands need post-processing after successful 4998 * completion. 4999 */ 5000 switch (qc->tf.command) { 5001 case ATA_CMD_SET_FEATURES: 5002 if (qc->tf.feature != SETFEATURES_WC_ON && 5003 qc->tf.feature != SETFEATURES_WC_OFF) 5004 break; 5005 /* fall through */ 5006 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5007 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5008 /* revalidate device */ 5009 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5010 ata_port_schedule_eh(ap); 5011 break; 5012 5013 case ATA_CMD_SLEEP: 5014 dev->flags |= ATA_DFLAG_SLEEPING; 5015 break; 5016 } 5017 5018 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5019 ata_verify_xfer(qc); 5020 5021 __ata_qc_complete(qc); 5022 } else { 5023 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5024 return; 5025 5026 /* read result TF if failed or requested */ 5027 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5028 fill_result_tf(qc); 5029 5030 __ata_qc_complete(qc); 5031 } 5032 } 5033 5034 /** 5035 * ata_qc_complete_multiple - Complete multiple qcs successfully 5036 * @ap: port in question 5037 * @qc_active: new qc_active mask 5038 * 5039 * Complete in-flight commands. This functions is meant to be 5040 * called from low-level driver's interrupt routine to complete 5041 * requests normally. ap->qc_active and @qc_active is compared 5042 * and commands are completed accordingly. 5043 * 5044 * Always use this function when completing multiple NCQ commands 5045 * from IRQ handlers instead of calling ata_qc_complete() 5046 * multiple times to keep IRQ expect status properly in sync. 5047 * 5048 * LOCKING: 5049 * spin_lock_irqsave(host lock) 5050 * 5051 * RETURNS: 5052 * Number of completed commands on success, -errno otherwise. 5053 */ 5054 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5055 { 5056 int nr_done = 0; 5057 u32 done_mask; 5058 5059 done_mask = ap->qc_active ^ qc_active; 5060 5061 if (unlikely(done_mask & qc_active)) { 5062 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 5063 ap->qc_active, qc_active); 5064 return -EINVAL; 5065 } 5066 5067 while (done_mask) { 5068 struct ata_queued_cmd *qc; 5069 unsigned int tag = __ffs(done_mask); 5070 5071 qc = ata_qc_from_tag(ap, tag); 5072 if (qc) { 5073 ata_qc_complete(qc); 5074 nr_done++; 5075 } 5076 done_mask &= ~(1 << tag); 5077 } 5078 5079 return nr_done; 5080 } 5081 5082 /** 5083 * ata_qc_issue - issue taskfile to device 5084 * @qc: command to issue to device 5085 * 5086 * Prepare an ATA command to submission to device. 5087 * This includes mapping the data into a DMA-able 5088 * area, filling in the S/G table, and finally 5089 * writing the taskfile to hardware, starting the command. 5090 * 5091 * LOCKING: 5092 * spin_lock_irqsave(host lock) 5093 */ 5094 void ata_qc_issue(struct ata_queued_cmd *qc) 5095 { 5096 struct ata_port *ap = qc->ap; 5097 struct ata_link *link = qc->dev->link; 5098 u8 prot = qc->tf.protocol; 5099 5100 /* Make sure only one non-NCQ command is outstanding. The 5101 * check is skipped for old EH because it reuses active qc to 5102 * request ATAPI sense. 5103 */ 5104 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5105 5106 if (ata_is_ncq(prot)) { 5107 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5108 5109 if (!link->sactive) 5110 ap->nr_active_links++; 5111 link->sactive |= 1 << qc->tag; 5112 } else { 5113 WARN_ON_ONCE(link->sactive); 5114 5115 ap->nr_active_links++; 5116 link->active_tag = qc->tag; 5117 } 5118 5119 qc->flags |= ATA_QCFLAG_ACTIVE; 5120 ap->qc_active |= 1 << qc->tag; 5121 5122 /* 5123 * We guarantee to LLDs that they will have at least one 5124 * non-zero sg if the command is a data command. 5125 */ 5126 if (WARN_ON_ONCE(ata_is_data(prot) && 5127 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5128 goto sys_err; 5129 5130 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5131 (ap->flags & ATA_FLAG_PIO_DMA))) 5132 if (ata_sg_setup(qc)) 5133 goto sys_err; 5134 5135 /* if device is sleeping, schedule reset and abort the link */ 5136 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5137 link->eh_info.action |= ATA_EH_RESET; 5138 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5139 ata_link_abort(link); 5140 return; 5141 } 5142 5143 ap->ops->qc_prep(qc); 5144 5145 qc->err_mask |= ap->ops->qc_issue(qc); 5146 if (unlikely(qc->err_mask)) 5147 goto err; 5148 return; 5149 5150 sys_err: 5151 qc->err_mask |= AC_ERR_SYSTEM; 5152 err: 5153 ata_qc_complete(qc); 5154 } 5155 5156 /** 5157 * sata_scr_valid - test whether SCRs are accessible 5158 * @link: ATA link to test SCR accessibility for 5159 * 5160 * Test whether SCRs are accessible for @link. 5161 * 5162 * LOCKING: 5163 * None. 5164 * 5165 * RETURNS: 5166 * 1 if SCRs are accessible, 0 otherwise. 5167 */ 5168 int sata_scr_valid(struct ata_link *link) 5169 { 5170 struct ata_port *ap = link->ap; 5171 5172 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5173 } 5174 5175 /** 5176 * sata_scr_read - read SCR register of the specified port 5177 * @link: ATA link to read SCR for 5178 * @reg: SCR to read 5179 * @val: Place to store read value 5180 * 5181 * Read SCR register @reg of @link into *@val. This function is 5182 * guaranteed to succeed if @link is ap->link, the cable type of 5183 * the port is SATA and the port implements ->scr_read. 5184 * 5185 * LOCKING: 5186 * None if @link is ap->link. Kernel thread context otherwise. 5187 * 5188 * RETURNS: 5189 * 0 on success, negative errno on failure. 5190 */ 5191 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5192 { 5193 if (ata_is_host_link(link)) { 5194 if (sata_scr_valid(link)) 5195 return link->ap->ops->scr_read(link, reg, val); 5196 return -EOPNOTSUPP; 5197 } 5198 5199 return sata_pmp_scr_read(link, reg, val); 5200 } 5201 5202 /** 5203 * sata_scr_write - write SCR register of the specified port 5204 * @link: ATA link to write SCR for 5205 * @reg: SCR to write 5206 * @val: value to write 5207 * 5208 * Write @val to SCR register @reg of @link. This function is 5209 * guaranteed to succeed if @link is ap->link, the cable type of 5210 * the port is SATA and the port implements ->scr_read. 5211 * 5212 * LOCKING: 5213 * None if @link is ap->link. Kernel thread context otherwise. 5214 * 5215 * RETURNS: 5216 * 0 on success, negative errno on failure. 5217 */ 5218 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5219 { 5220 if (ata_is_host_link(link)) { 5221 if (sata_scr_valid(link)) 5222 return link->ap->ops->scr_write(link, reg, val); 5223 return -EOPNOTSUPP; 5224 } 5225 5226 return sata_pmp_scr_write(link, reg, val); 5227 } 5228 5229 /** 5230 * sata_scr_write_flush - write SCR register of the specified port and flush 5231 * @link: ATA link to write SCR for 5232 * @reg: SCR to write 5233 * @val: value to write 5234 * 5235 * This function is identical to sata_scr_write() except that this 5236 * function performs flush after writing to the register. 5237 * 5238 * LOCKING: 5239 * None if @link is ap->link. Kernel thread context otherwise. 5240 * 5241 * RETURNS: 5242 * 0 on success, negative errno on failure. 5243 */ 5244 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5245 { 5246 if (ata_is_host_link(link)) { 5247 int rc; 5248 5249 if (sata_scr_valid(link)) { 5250 rc = link->ap->ops->scr_write(link, reg, val); 5251 if (rc == 0) 5252 rc = link->ap->ops->scr_read(link, reg, &val); 5253 return rc; 5254 } 5255 return -EOPNOTSUPP; 5256 } 5257 5258 return sata_pmp_scr_write(link, reg, val); 5259 } 5260 5261 /** 5262 * ata_phys_link_online - test whether the given link is online 5263 * @link: ATA link to test 5264 * 5265 * Test whether @link is online. Note that this function returns 5266 * 0 if online status of @link cannot be obtained, so 5267 * ata_link_online(link) != !ata_link_offline(link). 5268 * 5269 * LOCKING: 5270 * None. 5271 * 5272 * RETURNS: 5273 * True if the port online status is available and online. 5274 */ 5275 bool ata_phys_link_online(struct ata_link *link) 5276 { 5277 u32 sstatus; 5278 5279 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5280 ata_sstatus_online(sstatus)) 5281 return true; 5282 return false; 5283 } 5284 5285 /** 5286 * ata_phys_link_offline - test whether the given link is offline 5287 * @link: ATA link to test 5288 * 5289 * Test whether @link is offline. Note that this function 5290 * returns 0 if offline status of @link cannot be obtained, so 5291 * ata_link_online(link) != !ata_link_offline(link). 5292 * 5293 * LOCKING: 5294 * None. 5295 * 5296 * RETURNS: 5297 * True if the port offline status is available and offline. 5298 */ 5299 bool ata_phys_link_offline(struct ata_link *link) 5300 { 5301 u32 sstatus; 5302 5303 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5304 !ata_sstatus_online(sstatus)) 5305 return true; 5306 return false; 5307 } 5308 5309 /** 5310 * ata_link_online - test whether the given link is online 5311 * @link: ATA link to test 5312 * 5313 * Test whether @link is online. This is identical to 5314 * ata_phys_link_online() when there's no slave link. When 5315 * there's a slave link, this function should only be called on 5316 * the master link and will return true if any of M/S links is 5317 * online. 5318 * 5319 * LOCKING: 5320 * None. 5321 * 5322 * RETURNS: 5323 * True if the port online status is available and online. 5324 */ 5325 bool ata_link_online(struct ata_link *link) 5326 { 5327 struct ata_link *slave = link->ap->slave_link; 5328 5329 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5330 5331 return ata_phys_link_online(link) || 5332 (slave && ata_phys_link_online(slave)); 5333 } 5334 5335 /** 5336 * ata_link_offline - test whether the given link is offline 5337 * @link: ATA link to test 5338 * 5339 * Test whether @link is offline. This is identical to 5340 * ata_phys_link_offline() when there's no slave link. When 5341 * there's a slave link, this function should only be called on 5342 * the master link and will return true if both M/S links are 5343 * offline. 5344 * 5345 * LOCKING: 5346 * None. 5347 * 5348 * RETURNS: 5349 * True if the port offline status is available and offline. 5350 */ 5351 bool ata_link_offline(struct ata_link *link) 5352 { 5353 struct ata_link *slave = link->ap->slave_link; 5354 5355 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5356 5357 return ata_phys_link_offline(link) && 5358 (!slave || ata_phys_link_offline(slave)); 5359 } 5360 5361 #ifdef CONFIG_PM 5362 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5363 unsigned int action, unsigned int ehi_flags, 5364 bool async) 5365 { 5366 struct ata_link *link; 5367 unsigned long flags; 5368 5369 /* Previous resume operation might still be in 5370 * progress. Wait for PM_PENDING to clear. 5371 */ 5372 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5373 ata_port_wait_eh(ap); 5374 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5375 } 5376 5377 /* request PM ops to EH */ 5378 spin_lock_irqsave(ap->lock, flags); 5379 5380 ap->pm_mesg = mesg; 5381 ap->pflags |= ATA_PFLAG_PM_PENDING; 5382 ata_for_each_link(link, ap, HOST_FIRST) { 5383 link->eh_info.action |= action; 5384 link->eh_info.flags |= ehi_flags; 5385 } 5386 5387 ata_port_schedule_eh(ap); 5388 5389 spin_unlock_irqrestore(ap->lock, flags); 5390 5391 if (!async) { 5392 ata_port_wait_eh(ap); 5393 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5394 } 5395 } 5396 5397 /* 5398 * On some hardware, device fails to respond after spun down for suspend. As 5399 * the device won't be used before being resumed, we don't need to touch the 5400 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5401 * 5402 * http://thread.gmane.org/gmane.linux.ide/46764 5403 */ 5404 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5405 | ATA_EHI_NO_AUTOPSY 5406 | ATA_EHI_NO_RECOVERY; 5407 5408 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5409 { 5410 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5411 } 5412 5413 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5414 { 5415 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5416 } 5417 5418 static int ata_port_pm_suspend(struct device *dev) 5419 { 5420 struct ata_port *ap = to_ata_port(dev); 5421 5422 if (pm_runtime_suspended(dev)) 5423 return 0; 5424 5425 ata_port_suspend(ap, PMSG_SUSPEND); 5426 return 0; 5427 } 5428 5429 static int ata_port_pm_freeze(struct device *dev) 5430 { 5431 struct ata_port *ap = to_ata_port(dev); 5432 5433 if (pm_runtime_suspended(dev)) 5434 return 0; 5435 5436 ata_port_suspend(ap, PMSG_FREEZE); 5437 return 0; 5438 } 5439 5440 static int ata_port_pm_poweroff(struct device *dev) 5441 { 5442 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5443 return 0; 5444 } 5445 5446 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5447 | ATA_EHI_QUIET; 5448 5449 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5450 { 5451 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5452 } 5453 5454 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5455 { 5456 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5457 } 5458 5459 static int ata_port_pm_resume(struct device *dev) 5460 { 5461 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5462 pm_runtime_disable(dev); 5463 pm_runtime_set_active(dev); 5464 pm_runtime_enable(dev); 5465 return 0; 5466 } 5467 5468 /* 5469 * For ODDs, the upper layer will poll for media change every few seconds, 5470 * which will make it enter and leave suspend state every few seconds. And 5471 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5472 * is very little and the ODD may malfunction after constantly being reset. 5473 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5474 * ODD is attached to the port. 5475 */ 5476 static int ata_port_runtime_idle(struct device *dev) 5477 { 5478 struct ata_port *ap = to_ata_port(dev); 5479 struct ata_link *link; 5480 struct ata_device *adev; 5481 5482 ata_for_each_link(link, ap, HOST_FIRST) { 5483 ata_for_each_dev(adev, link, ENABLED) 5484 if (adev->class == ATA_DEV_ATAPI && 5485 !zpodd_dev_enabled(adev)) 5486 return -EBUSY; 5487 } 5488 5489 return 0; 5490 } 5491 5492 static int ata_port_runtime_suspend(struct device *dev) 5493 { 5494 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5495 return 0; 5496 } 5497 5498 static int ata_port_runtime_resume(struct device *dev) 5499 { 5500 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5501 return 0; 5502 } 5503 5504 static const struct dev_pm_ops ata_port_pm_ops = { 5505 .suspend = ata_port_pm_suspend, 5506 .resume = ata_port_pm_resume, 5507 .freeze = ata_port_pm_freeze, 5508 .thaw = ata_port_pm_resume, 5509 .poweroff = ata_port_pm_poweroff, 5510 .restore = ata_port_pm_resume, 5511 5512 .runtime_suspend = ata_port_runtime_suspend, 5513 .runtime_resume = ata_port_runtime_resume, 5514 .runtime_idle = ata_port_runtime_idle, 5515 }; 5516 5517 /* sas ports don't participate in pm runtime management of ata_ports, 5518 * and need to resume ata devices at the domain level, not the per-port 5519 * level. sas suspend/resume is async to allow parallel port recovery 5520 * since sas has multiple ata_port instances per Scsi_Host. 5521 */ 5522 void ata_sas_port_suspend(struct ata_port *ap) 5523 { 5524 ata_port_suspend_async(ap, PMSG_SUSPEND); 5525 } 5526 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5527 5528 void ata_sas_port_resume(struct ata_port *ap) 5529 { 5530 ata_port_resume_async(ap, PMSG_RESUME); 5531 } 5532 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5533 5534 /** 5535 * ata_host_suspend - suspend host 5536 * @host: host to suspend 5537 * @mesg: PM message 5538 * 5539 * Suspend @host. Actual operation is performed by port suspend. 5540 */ 5541 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5542 { 5543 host->dev->power.power_state = mesg; 5544 return 0; 5545 } 5546 5547 /** 5548 * ata_host_resume - resume host 5549 * @host: host to resume 5550 * 5551 * Resume @host. Actual operation is performed by port resume. 5552 */ 5553 void ata_host_resume(struct ata_host *host) 5554 { 5555 host->dev->power.power_state = PMSG_ON; 5556 } 5557 #endif 5558 5559 struct device_type ata_port_type = { 5560 .name = "ata_port", 5561 #ifdef CONFIG_PM 5562 .pm = &ata_port_pm_ops, 5563 #endif 5564 }; 5565 5566 /** 5567 * ata_dev_init - Initialize an ata_device structure 5568 * @dev: Device structure to initialize 5569 * 5570 * Initialize @dev in preparation for probing. 5571 * 5572 * LOCKING: 5573 * Inherited from caller. 5574 */ 5575 void ata_dev_init(struct ata_device *dev) 5576 { 5577 struct ata_link *link = ata_dev_phys_link(dev); 5578 struct ata_port *ap = link->ap; 5579 unsigned long flags; 5580 5581 /* SATA spd limit is bound to the attached device, reset together */ 5582 link->sata_spd_limit = link->hw_sata_spd_limit; 5583 link->sata_spd = 0; 5584 5585 /* High bits of dev->flags are used to record warm plug 5586 * requests which occur asynchronously. Synchronize using 5587 * host lock. 5588 */ 5589 spin_lock_irqsave(ap->lock, flags); 5590 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5591 dev->horkage = 0; 5592 spin_unlock_irqrestore(ap->lock, flags); 5593 5594 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5595 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5596 dev->pio_mask = UINT_MAX; 5597 dev->mwdma_mask = UINT_MAX; 5598 dev->udma_mask = UINT_MAX; 5599 } 5600 5601 /** 5602 * ata_link_init - Initialize an ata_link structure 5603 * @ap: ATA port link is attached to 5604 * @link: Link structure to initialize 5605 * @pmp: Port multiplier port number 5606 * 5607 * Initialize @link. 5608 * 5609 * LOCKING: 5610 * Kernel thread context (may sleep) 5611 */ 5612 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5613 { 5614 int i; 5615 5616 /* clear everything except for devices */ 5617 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5618 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5619 5620 link->ap = ap; 5621 link->pmp = pmp; 5622 link->active_tag = ATA_TAG_POISON; 5623 link->hw_sata_spd_limit = UINT_MAX; 5624 5625 /* can't use iterator, ap isn't initialized yet */ 5626 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5627 struct ata_device *dev = &link->device[i]; 5628 5629 dev->link = link; 5630 dev->devno = dev - link->device; 5631 #ifdef CONFIG_ATA_ACPI 5632 dev->gtf_filter = ata_acpi_gtf_filter; 5633 #endif 5634 ata_dev_init(dev); 5635 } 5636 } 5637 5638 /** 5639 * sata_link_init_spd - Initialize link->sata_spd_limit 5640 * @link: Link to configure sata_spd_limit for 5641 * 5642 * Initialize @link->[hw_]sata_spd_limit to the currently 5643 * configured value. 5644 * 5645 * LOCKING: 5646 * Kernel thread context (may sleep). 5647 * 5648 * RETURNS: 5649 * 0 on success, -errno on failure. 5650 */ 5651 int sata_link_init_spd(struct ata_link *link) 5652 { 5653 u8 spd; 5654 int rc; 5655 5656 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5657 if (rc) 5658 return rc; 5659 5660 spd = (link->saved_scontrol >> 4) & 0xf; 5661 if (spd) 5662 link->hw_sata_spd_limit &= (1 << spd) - 1; 5663 5664 ata_force_link_limits(link); 5665 5666 link->sata_spd_limit = link->hw_sata_spd_limit; 5667 5668 return 0; 5669 } 5670 5671 /** 5672 * ata_port_alloc - allocate and initialize basic ATA port resources 5673 * @host: ATA host this allocated port belongs to 5674 * 5675 * Allocate and initialize basic ATA port resources. 5676 * 5677 * RETURNS: 5678 * Allocate ATA port on success, NULL on failure. 5679 * 5680 * LOCKING: 5681 * Inherited from calling layer (may sleep). 5682 */ 5683 struct ata_port *ata_port_alloc(struct ata_host *host) 5684 { 5685 struct ata_port *ap; 5686 5687 DPRINTK("ENTER\n"); 5688 5689 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5690 if (!ap) 5691 return NULL; 5692 5693 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5694 ap->lock = &host->lock; 5695 ap->print_id = -1; 5696 ap->local_port_no = -1; 5697 ap->host = host; 5698 ap->dev = host->dev; 5699 5700 #if defined(ATA_VERBOSE_DEBUG) 5701 /* turn on all debugging levels */ 5702 ap->msg_enable = 0x00FF; 5703 #elif defined(ATA_DEBUG) 5704 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5705 #else 5706 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5707 #endif 5708 5709 mutex_init(&ap->scsi_scan_mutex); 5710 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5711 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5712 INIT_LIST_HEAD(&ap->eh_done_q); 5713 init_waitqueue_head(&ap->eh_wait_q); 5714 init_completion(&ap->park_req_pending); 5715 init_timer_deferrable(&ap->fastdrain_timer); 5716 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5717 ap->fastdrain_timer.data = (unsigned long)ap; 5718 5719 ap->cbl = ATA_CBL_NONE; 5720 5721 ata_link_init(ap, &ap->link, 0); 5722 5723 #ifdef ATA_IRQ_TRAP 5724 ap->stats.unhandled_irq = 1; 5725 ap->stats.idle_irq = 1; 5726 #endif 5727 ata_sff_port_init(ap); 5728 5729 return ap; 5730 } 5731 5732 static void ata_host_release(struct device *gendev, void *res) 5733 { 5734 struct ata_host *host = dev_get_drvdata(gendev); 5735 int i; 5736 5737 for (i = 0; i < host->n_ports; i++) { 5738 struct ata_port *ap = host->ports[i]; 5739 5740 if (!ap) 5741 continue; 5742 5743 if (ap->scsi_host) 5744 scsi_host_put(ap->scsi_host); 5745 5746 kfree(ap->pmp_link); 5747 kfree(ap->slave_link); 5748 kfree(ap); 5749 host->ports[i] = NULL; 5750 } 5751 5752 dev_set_drvdata(gendev, NULL); 5753 } 5754 5755 /** 5756 * ata_host_alloc - allocate and init basic ATA host resources 5757 * @dev: generic device this host is associated with 5758 * @max_ports: maximum number of ATA ports associated with this host 5759 * 5760 * Allocate and initialize basic ATA host resources. LLD calls 5761 * this function to allocate a host, initializes it fully and 5762 * attaches it using ata_host_register(). 5763 * 5764 * @max_ports ports are allocated and host->n_ports is 5765 * initialized to @max_ports. The caller is allowed to decrease 5766 * host->n_ports before calling ata_host_register(). The unused 5767 * ports will be automatically freed on registration. 5768 * 5769 * RETURNS: 5770 * Allocate ATA host on success, NULL on failure. 5771 * 5772 * LOCKING: 5773 * Inherited from calling layer (may sleep). 5774 */ 5775 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5776 { 5777 struct ata_host *host; 5778 size_t sz; 5779 int i; 5780 5781 DPRINTK("ENTER\n"); 5782 5783 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5784 return NULL; 5785 5786 /* alloc a container for our list of ATA ports (buses) */ 5787 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5788 /* alloc a container for our list of ATA ports (buses) */ 5789 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5790 if (!host) 5791 goto err_out; 5792 5793 devres_add(dev, host); 5794 dev_set_drvdata(dev, host); 5795 5796 spin_lock_init(&host->lock); 5797 mutex_init(&host->eh_mutex); 5798 host->dev = dev; 5799 host->n_ports = max_ports; 5800 5801 /* allocate ports bound to this host */ 5802 for (i = 0; i < max_ports; i++) { 5803 struct ata_port *ap; 5804 5805 ap = ata_port_alloc(host); 5806 if (!ap) 5807 goto err_out; 5808 5809 ap->port_no = i; 5810 host->ports[i] = ap; 5811 } 5812 5813 devres_remove_group(dev, NULL); 5814 return host; 5815 5816 err_out: 5817 devres_release_group(dev, NULL); 5818 return NULL; 5819 } 5820 5821 /** 5822 * ata_host_alloc_pinfo - alloc host and init with port_info array 5823 * @dev: generic device this host is associated with 5824 * @ppi: array of ATA port_info to initialize host with 5825 * @n_ports: number of ATA ports attached to this host 5826 * 5827 * Allocate ATA host and initialize with info from @ppi. If NULL 5828 * terminated, @ppi may contain fewer entries than @n_ports. The 5829 * last entry will be used for the remaining ports. 5830 * 5831 * RETURNS: 5832 * Allocate ATA host on success, NULL on failure. 5833 * 5834 * LOCKING: 5835 * Inherited from calling layer (may sleep). 5836 */ 5837 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5838 const struct ata_port_info * const * ppi, 5839 int n_ports) 5840 { 5841 const struct ata_port_info *pi; 5842 struct ata_host *host; 5843 int i, j; 5844 5845 host = ata_host_alloc(dev, n_ports); 5846 if (!host) 5847 return NULL; 5848 5849 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5850 struct ata_port *ap = host->ports[i]; 5851 5852 if (ppi[j]) 5853 pi = ppi[j++]; 5854 5855 ap->pio_mask = pi->pio_mask; 5856 ap->mwdma_mask = pi->mwdma_mask; 5857 ap->udma_mask = pi->udma_mask; 5858 ap->flags |= pi->flags; 5859 ap->link.flags |= pi->link_flags; 5860 ap->ops = pi->port_ops; 5861 5862 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5863 host->ops = pi->port_ops; 5864 } 5865 5866 return host; 5867 } 5868 5869 /** 5870 * ata_slave_link_init - initialize slave link 5871 * @ap: port to initialize slave link for 5872 * 5873 * Create and initialize slave link for @ap. This enables slave 5874 * link handling on the port. 5875 * 5876 * In libata, a port contains links and a link contains devices. 5877 * There is single host link but if a PMP is attached to it, 5878 * there can be multiple fan-out links. On SATA, there's usually 5879 * a single device connected to a link but PATA and SATA 5880 * controllers emulating TF based interface can have two - master 5881 * and slave. 5882 * 5883 * However, there are a few controllers which don't fit into this 5884 * abstraction too well - SATA controllers which emulate TF 5885 * interface with both master and slave devices but also have 5886 * separate SCR register sets for each device. These controllers 5887 * need separate links for physical link handling 5888 * (e.g. onlineness, link speed) but should be treated like a 5889 * traditional M/S controller for everything else (e.g. command 5890 * issue, softreset). 5891 * 5892 * slave_link is libata's way of handling this class of 5893 * controllers without impacting core layer too much. For 5894 * anything other than physical link handling, the default host 5895 * link is used for both master and slave. For physical link 5896 * handling, separate @ap->slave_link is used. All dirty details 5897 * are implemented inside libata core layer. From LLD's POV, the 5898 * only difference is that prereset, hardreset and postreset are 5899 * called once more for the slave link, so the reset sequence 5900 * looks like the following. 5901 * 5902 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5903 * softreset(M) -> postreset(M) -> postreset(S) 5904 * 5905 * Note that softreset is called only for the master. Softreset 5906 * resets both M/S by definition, so SRST on master should handle 5907 * both (the standard method will work just fine). 5908 * 5909 * LOCKING: 5910 * Should be called before host is registered. 5911 * 5912 * RETURNS: 5913 * 0 on success, -errno on failure. 5914 */ 5915 int ata_slave_link_init(struct ata_port *ap) 5916 { 5917 struct ata_link *link; 5918 5919 WARN_ON(ap->slave_link); 5920 WARN_ON(ap->flags & ATA_FLAG_PMP); 5921 5922 link = kzalloc(sizeof(*link), GFP_KERNEL); 5923 if (!link) 5924 return -ENOMEM; 5925 5926 ata_link_init(ap, link, 1); 5927 ap->slave_link = link; 5928 return 0; 5929 } 5930 5931 static void ata_host_stop(struct device *gendev, void *res) 5932 { 5933 struct ata_host *host = dev_get_drvdata(gendev); 5934 int i; 5935 5936 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5937 5938 for (i = 0; i < host->n_ports; i++) { 5939 struct ata_port *ap = host->ports[i]; 5940 5941 if (ap->ops->port_stop) 5942 ap->ops->port_stop(ap); 5943 } 5944 5945 if (host->ops->host_stop) 5946 host->ops->host_stop(host); 5947 } 5948 5949 /** 5950 * ata_finalize_port_ops - finalize ata_port_operations 5951 * @ops: ata_port_operations to finalize 5952 * 5953 * An ata_port_operations can inherit from another ops and that 5954 * ops can again inherit from another. This can go on as many 5955 * times as necessary as long as there is no loop in the 5956 * inheritance chain. 5957 * 5958 * Ops tables are finalized when the host is started. NULL or 5959 * unspecified entries are inherited from the closet ancestor 5960 * which has the method and the entry is populated with it. 5961 * After finalization, the ops table directly points to all the 5962 * methods and ->inherits is no longer necessary and cleared. 5963 * 5964 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5965 * 5966 * LOCKING: 5967 * None. 5968 */ 5969 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5970 { 5971 static DEFINE_SPINLOCK(lock); 5972 const struct ata_port_operations *cur; 5973 void **begin = (void **)ops; 5974 void **end = (void **)&ops->inherits; 5975 void **pp; 5976 5977 if (!ops || !ops->inherits) 5978 return; 5979 5980 spin_lock(&lock); 5981 5982 for (cur = ops->inherits; cur; cur = cur->inherits) { 5983 void **inherit = (void **)cur; 5984 5985 for (pp = begin; pp < end; pp++, inherit++) 5986 if (!*pp) 5987 *pp = *inherit; 5988 } 5989 5990 for (pp = begin; pp < end; pp++) 5991 if (IS_ERR(*pp)) 5992 *pp = NULL; 5993 5994 ops->inherits = NULL; 5995 5996 spin_unlock(&lock); 5997 } 5998 5999 /** 6000 * ata_host_start - start and freeze ports of an ATA host 6001 * @host: ATA host to start ports for 6002 * 6003 * Start and then freeze ports of @host. Started status is 6004 * recorded in host->flags, so this function can be called 6005 * multiple times. Ports are guaranteed to get started only 6006 * once. If host->ops isn't initialized yet, its set to the 6007 * first non-dummy port ops. 6008 * 6009 * LOCKING: 6010 * Inherited from calling layer (may sleep). 6011 * 6012 * RETURNS: 6013 * 0 if all ports are started successfully, -errno otherwise. 6014 */ 6015 int ata_host_start(struct ata_host *host) 6016 { 6017 int have_stop = 0; 6018 void *start_dr = NULL; 6019 int i, rc; 6020 6021 if (host->flags & ATA_HOST_STARTED) 6022 return 0; 6023 6024 ata_finalize_port_ops(host->ops); 6025 6026 for (i = 0; i < host->n_ports; i++) { 6027 struct ata_port *ap = host->ports[i]; 6028 6029 ata_finalize_port_ops(ap->ops); 6030 6031 if (!host->ops && !ata_port_is_dummy(ap)) 6032 host->ops = ap->ops; 6033 6034 if (ap->ops->port_stop) 6035 have_stop = 1; 6036 } 6037 6038 if (host->ops->host_stop) 6039 have_stop = 1; 6040 6041 if (have_stop) { 6042 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 6043 if (!start_dr) 6044 return -ENOMEM; 6045 } 6046 6047 for (i = 0; i < host->n_ports; i++) { 6048 struct ata_port *ap = host->ports[i]; 6049 6050 if (ap->ops->port_start) { 6051 rc = ap->ops->port_start(ap); 6052 if (rc) { 6053 if (rc != -ENODEV) 6054 dev_err(host->dev, 6055 "failed to start port %d (errno=%d)\n", 6056 i, rc); 6057 goto err_out; 6058 } 6059 } 6060 ata_eh_freeze_port(ap); 6061 } 6062 6063 if (start_dr) 6064 devres_add(host->dev, start_dr); 6065 host->flags |= ATA_HOST_STARTED; 6066 return 0; 6067 6068 err_out: 6069 while (--i >= 0) { 6070 struct ata_port *ap = host->ports[i]; 6071 6072 if (ap->ops->port_stop) 6073 ap->ops->port_stop(ap); 6074 } 6075 devres_free(start_dr); 6076 return rc; 6077 } 6078 6079 /** 6080 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6081 * @host: host to initialize 6082 * @dev: device host is attached to 6083 * @ops: port_ops 6084 * 6085 */ 6086 void ata_host_init(struct ata_host *host, struct device *dev, 6087 struct ata_port_operations *ops) 6088 { 6089 spin_lock_init(&host->lock); 6090 mutex_init(&host->eh_mutex); 6091 host->dev = dev; 6092 host->ops = ops; 6093 } 6094 6095 void __ata_port_probe(struct ata_port *ap) 6096 { 6097 struct ata_eh_info *ehi = &ap->link.eh_info; 6098 unsigned long flags; 6099 6100 /* kick EH for boot probing */ 6101 spin_lock_irqsave(ap->lock, flags); 6102 6103 ehi->probe_mask |= ATA_ALL_DEVICES; 6104 ehi->action |= ATA_EH_RESET; 6105 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6106 6107 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6108 ap->pflags |= ATA_PFLAG_LOADING; 6109 ata_port_schedule_eh(ap); 6110 6111 spin_unlock_irqrestore(ap->lock, flags); 6112 } 6113 6114 int ata_port_probe(struct ata_port *ap) 6115 { 6116 int rc = 0; 6117 6118 if (ap->ops->error_handler) { 6119 __ata_port_probe(ap); 6120 ata_port_wait_eh(ap); 6121 } else { 6122 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6123 rc = ata_bus_probe(ap); 6124 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6125 } 6126 return rc; 6127 } 6128 6129 6130 static void async_port_probe(void *data, async_cookie_t cookie) 6131 { 6132 struct ata_port *ap = data; 6133 6134 /* 6135 * If we're not allowed to scan this host in parallel, 6136 * we need to wait until all previous scans have completed 6137 * before going further. 6138 * Jeff Garzik says this is only within a controller, so we 6139 * don't need to wait for port 0, only for later ports. 6140 */ 6141 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6142 async_synchronize_cookie(cookie); 6143 6144 (void)ata_port_probe(ap); 6145 6146 /* in order to keep device order, we need to synchronize at this point */ 6147 async_synchronize_cookie(cookie); 6148 6149 ata_scsi_scan_host(ap, 1); 6150 } 6151 6152 /** 6153 * ata_host_register - register initialized ATA host 6154 * @host: ATA host to register 6155 * @sht: template for SCSI host 6156 * 6157 * Register initialized ATA host. @host is allocated using 6158 * ata_host_alloc() and fully initialized by LLD. This function 6159 * starts ports, registers @host with ATA and SCSI layers and 6160 * probe registered devices. 6161 * 6162 * LOCKING: 6163 * Inherited from calling layer (may sleep). 6164 * 6165 * RETURNS: 6166 * 0 on success, -errno otherwise. 6167 */ 6168 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6169 { 6170 int i, rc; 6171 6172 /* host must have been started */ 6173 if (!(host->flags & ATA_HOST_STARTED)) { 6174 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6175 WARN_ON(1); 6176 return -EINVAL; 6177 } 6178 6179 /* Blow away unused ports. This happens when LLD can't 6180 * determine the exact number of ports to allocate at 6181 * allocation time. 6182 */ 6183 for (i = host->n_ports; host->ports[i]; i++) 6184 kfree(host->ports[i]); 6185 6186 /* give ports names and add SCSI hosts */ 6187 for (i = 0; i < host->n_ports; i++) { 6188 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6189 host->ports[i]->local_port_no = i + 1; 6190 } 6191 6192 /* Create associated sysfs transport objects */ 6193 for (i = 0; i < host->n_ports; i++) { 6194 rc = ata_tport_add(host->dev,host->ports[i]); 6195 if (rc) { 6196 goto err_tadd; 6197 } 6198 } 6199 6200 rc = ata_scsi_add_hosts(host, sht); 6201 if (rc) 6202 goto err_tadd; 6203 6204 /* set cable, sata_spd_limit and report */ 6205 for (i = 0; i < host->n_ports; i++) { 6206 struct ata_port *ap = host->ports[i]; 6207 unsigned long xfer_mask; 6208 6209 /* set SATA cable type if still unset */ 6210 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6211 ap->cbl = ATA_CBL_SATA; 6212 6213 /* init sata_spd_limit to the current value */ 6214 sata_link_init_spd(&ap->link); 6215 if (ap->slave_link) 6216 sata_link_init_spd(ap->slave_link); 6217 6218 /* print per-port info to dmesg */ 6219 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6220 ap->udma_mask); 6221 6222 if (!ata_port_is_dummy(ap)) { 6223 ata_port_info(ap, "%cATA max %s %s\n", 6224 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6225 ata_mode_string(xfer_mask), 6226 ap->link.eh_info.desc); 6227 ata_ehi_clear_desc(&ap->link.eh_info); 6228 } else 6229 ata_port_info(ap, "DUMMY\n"); 6230 } 6231 6232 /* perform each probe asynchronously */ 6233 for (i = 0; i < host->n_ports; i++) { 6234 struct ata_port *ap = host->ports[i]; 6235 async_schedule(async_port_probe, ap); 6236 } 6237 6238 return 0; 6239 6240 err_tadd: 6241 while (--i >= 0) { 6242 ata_tport_delete(host->ports[i]); 6243 } 6244 return rc; 6245 6246 } 6247 6248 /** 6249 * ata_host_activate - start host, request IRQ and register it 6250 * @host: target ATA host 6251 * @irq: IRQ to request 6252 * @irq_handler: irq_handler used when requesting IRQ 6253 * @irq_flags: irq_flags used when requesting IRQ 6254 * @sht: scsi_host_template to use when registering the host 6255 * 6256 * After allocating an ATA host and initializing it, most libata 6257 * LLDs perform three steps to activate the host - start host, 6258 * request IRQ and register it. This helper takes necessasry 6259 * arguments and performs the three steps in one go. 6260 * 6261 * An invalid IRQ skips the IRQ registration and expects the host to 6262 * have set polling mode on the port. In this case, @irq_handler 6263 * should be NULL. 6264 * 6265 * LOCKING: 6266 * Inherited from calling layer (may sleep). 6267 * 6268 * RETURNS: 6269 * 0 on success, -errno otherwise. 6270 */ 6271 int ata_host_activate(struct ata_host *host, int irq, 6272 irq_handler_t irq_handler, unsigned long irq_flags, 6273 struct scsi_host_template *sht) 6274 { 6275 int i, rc; 6276 6277 rc = ata_host_start(host); 6278 if (rc) 6279 return rc; 6280 6281 /* Special case for polling mode */ 6282 if (!irq) { 6283 WARN_ON(irq_handler); 6284 return ata_host_register(host, sht); 6285 } 6286 6287 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6288 dev_driver_string(host->dev), host); 6289 if (rc) 6290 return rc; 6291 6292 for (i = 0; i < host->n_ports; i++) 6293 ata_port_desc(host->ports[i], "irq %d", irq); 6294 6295 rc = ata_host_register(host, sht); 6296 /* if failed, just free the IRQ and leave ports alone */ 6297 if (rc) 6298 devm_free_irq(host->dev, irq, host); 6299 6300 return rc; 6301 } 6302 6303 /** 6304 * ata_port_detach - Detach ATA port in prepration of device removal 6305 * @ap: ATA port to be detached 6306 * 6307 * Detach all ATA devices and the associated SCSI devices of @ap; 6308 * then, remove the associated SCSI host. @ap is guaranteed to 6309 * be quiescent on return from this function. 6310 * 6311 * LOCKING: 6312 * Kernel thread context (may sleep). 6313 */ 6314 static void ata_port_detach(struct ata_port *ap) 6315 { 6316 unsigned long flags; 6317 struct ata_link *link; 6318 struct ata_device *dev; 6319 6320 if (!ap->ops->error_handler) 6321 goto skip_eh; 6322 6323 /* tell EH we're leaving & flush EH */ 6324 spin_lock_irqsave(ap->lock, flags); 6325 ap->pflags |= ATA_PFLAG_UNLOADING; 6326 ata_port_schedule_eh(ap); 6327 spin_unlock_irqrestore(ap->lock, flags); 6328 6329 /* wait till EH commits suicide */ 6330 ata_port_wait_eh(ap); 6331 6332 /* it better be dead now */ 6333 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6334 6335 cancel_delayed_work_sync(&ap->hotplug_task); 6336 6337 skip_eh: 6338 /* clean up zpodd on port removal */ 6339 ata_for_each_link(link, ap, HOST_FIRST) { 6340 ata_for_each_dev(dev, link, ALL) { 6341 if (zpodd_dev_enabled(dev)) 6342 zpodd_exit(dev); 6343 } 6344 } 6345 if (ap->pmp_link) { 6346 int i; 6347 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6348 ata_tlink_delete(&ap->pmp_link[i]); 6349 } 6350 /* remove the associated SCSI host */ 6351 scsi_remove_host(ap->scsi_host); 6352 ata_tport_delete(ap); 6353 } 6354 6355 /** 6356 * ata_host_detach - Detach all ports of an ATA host 6357 * @host: Host to detach 6358 * 6359 * Detach all ports of @host. 6360 * 6361 * LOCKING: 6362 * Kernel thread context (may sleep). 6363 */ 6364 void ata_host_detach(struct ata_host *host) 6365 { 6366 int i; 6367 6368 for (i = 0; i < host->n_ports; i++) 6369 ata_port_detach(host->ports[i]); 6370 6371 /* the host is dead now, dissociate ACPI */ 6372 ata_acpi_dissociate(host); 6373 } 6374 6375 #ifdef CONFIG_PCI 6376 6377 /** 6378 * ata_pci_remove_one - PCI layer callback for device removal 6379 * @pdev: PCI device that was removed 6380 * 6381 * PCI layer indicates to libata via this hook that hot-unplug or 6382 * module unload event has occurred. Detach all ports. Resource 6383 * release is handled via devres. 6384 * 6385 * LOCKING: 6386 * Inherited from PCI layer (may sleep). 6387 */ 6388 void ata_pci_remove_one(struct pci_dev *pdev) 6389 { 6390 struct ata_host *host = pci_get_drvdata(pdev); 6391 6392 ata_host_detach(host); 6393 } 6394 6395 /* move to PCI subsystem */ 6396 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6397 { 6398 unsigned long tmp = 0; 6399 6400 switch (bits->width) { 6401 case 1: { 6402 u8 tmp8 = 0; 6403 pci_read_config_byte(pdev, bits->reg, &tmp8); 6404 tmp = tmp8; 6405 break; 6406 } 6407 case 2: { 6408 u16 tmp16 = 0; 6409 pci_read_config_word(pdev, bits->reg, &tmp16); 6410 tmp = tmp16; 6411 break; 6412 } 6413 case 4: { 6414 u32 tmp32 = 0; 6415 pci_read_config_dword(pdev, bits->reg, &tmp32); 6416 tmp = tmp32; 6417 break; 6418 } 6419 6420 default: 6421 return -EINVAL; 6422 } 6423 6424 tmp &= bits->mask; 6425 6426 return (tmp == bits->val) ? 1 : 0; 6427 } 6428 6429 #ifdef CONFIG_PM 6430 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6431 { 6432 pci_save_state(pdev); 6433 pci_disable_device(pdev); 6434 6435 if (mesg.event & PM_EVENT_SLEEP) 6436 pci_set_power_state(pdev, PCI_D3hot); 6437 } 6438 6439 int ata_pci_device_do_resume(struct pci_dev *pdev) 6440 { 6441 int rc; 6442 6443 pci_set_power_state(pdev, PCI_D0); 6444 pci_restore_state(pdev); 6445 6446 rc = pcim_enable_device(pdev); 6447 if (rc) { 6448 dev_err(&pdev->dev, 6449 "failed to enable device after resume (%d)\n", rc); 6450 return rc; 6451 } 6452 6453 pci_set_master(pdev); 6454 return 0; 6455 } 6456 6457 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6458 { 6459 struct ata_host *host = pci_get_drvdata(pdev); 6460 int rc = 0; 6461 6462 rc = ata_host_suspend(host, mesg); 6463 if (rc) 6464 return rc; 6465 6466 ata_pci_device_do_suspend(pdev, mesg); 6467 6468 return 0; 6469 } 6470 6471 int ata_pci_device_resume(struct pci_dev *pdev) 6472 { 6473 struct ata_host *host = pci_get_drvdata(pdev); 6474 int rc; 6475 6476 rc = ata_pci_device_do_resume(pdev); 6477 if (rc == 0) 6478 ata_host_resume(host); 6479 return rc; 6480 } 6481 #endif /* CONFIG_PM */ 6482 6483 #endif /* CONFIG_PCI */ 6484 6485 /** 6486 * ata_platform_remove_one - Platform layer callback for device removal 6487 * @pdev: Platform device that was removed 6488 * 6489 * Platform layer indicates to libata via this hook that hot-unplug or 6490 * module unload event has occurred. Detach all ports. Resource 6491 * release is handled via devres. 6492 * 6493 * LOCKING: 6494 * Inherited from platform layer (may sleep). 6495 */ 6496 int ata_platform_remove_one(struct platform_device *pdev) 6497 { 6498 struct ata_host *host = platform_get_drvdata(pdev); 6499 6500 ata_host_detach(host); 6501 6502 return 0; 6503 } 6504 6505 static int __init ata_parse_force_one(char **cur, 6506 struct ata_force_ent *force_ent, 6507 const char **reason) 6508 { 6509 /* FIXME: Currently, there's no way to tag init const data and 6510 * using __initdata causes build failure on some versions of 6511 * gcc. Once __initdataconst is implemented, add const to the 6512 * following structure. 6513 */ 6514 static struct ata_force_param force_tbl[] __initdata = { 6515 { "40c", .cbl = ATA_CBL_PATA40 }, 6516 { "80c", .cbl = ATA_CBL_PATA80 }, 6517 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6518 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6519 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6520 { "sata", .cbl = ATA_CBL_SATA }, 6521 { "1.5Gbps", .spd_limit = 1 }, 6522 { "3.0Gbps", .spd_limit = 2 }, 6523 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6524 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6525 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6526 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6527 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6528 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6529 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6530 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6531 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6532 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6533 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6534 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6535 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6536 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6537 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6538 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6539 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6540 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6541 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6542 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6543 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6544 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6545 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6546 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6547 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6548 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6549 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6550 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6551 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6552 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6553 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6554 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6555 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6556 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6557 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6558 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6559 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6560 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6561 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6562 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6563 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6564 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6565 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6566 }; 6567 char *start = *cur, *p = *cur; 6568 char *id, *val, *endp; 6569 const struct ata_force_param *match_fp = NULL; 6570 int nr_matches = 0, i; 6571 6572 /* find where this param ends and update *cur */ 6573 while (*p != '\0' && *p != ',') 6574 p++; 6575 6576 if (*p == '\0') 6577 *cur = p; 6578 else 6579 *cur = p + 1; 6580 6581 *p = '\0'; 6582 6583 /* parse */ 6584 p = strchr(start, ':'); 6585 if (!p) { 6586 val = strstrip(start); 6587 goto parse_val; 6588 } 6589 *p = '\0'; 6590 6591 id = strstrip(start); 6592 val = strstrip(p + 1); 6593 6594 /* parse id */ 6595 p = strchr(id, '.'); 6596 if (p) { 6597 *p++ = '\0'; 6598 force_ent->device = simple_strtoul(p, &endp, 10); 6599 if (p == endp || *endp != '\0') { 6600 *reason = "invalid device"; 6601 return -EINVAL; 6602 } 6603 } 6604 6605 force_ent->port = simple_strtoul(id, &endp, 10); 6606 if (p == endp || *endp != '\0') { 6607 *reason = "invalid port/link"; 6608 return -EINVAL; 6609 } 6610 6611 parse_val: 6612 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6613 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6614 const struct ata_force_param *fp = &force_tbl[i]; 6615 6616 if (strncasecmp(val, fp->name, strlen(val))) 6617 continue; 6618 6619 nr_matches++; 6620 match_fp = fp; 6621 6622 if (strcasecmp(val, fp->name) == 0) { 6623 nr_matches = 1; 6624 break; 6625 } 6626 } 6627 6628 if (!nr_matches) { 6629 *reason = "unknown value"; 6630 return -EINVAL; 6631 } 6632 if (nr_matches > 1) { 6633 *reason = "ambigious value"; 6634 return -EINVAL; 6635 } 6636 6637 force_ent->param = *match_fp; 6638 6639 return 0; 6640 } 6641 6642 static void __init ata_parse_force_param(void) 6643 { 6644 int idx = 0, size = 1; 6645 int last_port = -1, last_device = -1; 6646 char *p, *cur, *next; 6647 6648 /* calculate maximum number of params and allocate force_tbl */ 6649 for (p = ata_force_param_buf; *p; p++) 6650 if (*p == ',') 6651 size++; 6652 6653 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6654 if (!ata_force_tbl) { 6655 printk(KERN_WARNING "ata: failed to extend force table, " 6656 "libata.force ignored\n"); 6657 return; 6658 } 6659 6660 /* parse and populate the table */ 6661 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6662 const char *reason = ""; 6663 struct ata_force_ent te = { .port = -1, .device = -1 }; 6664 6665 next = cur; 6666 if (ata_parse_force_one(&next, &te, &reason)) { 6667 printk(KERN_WARNING "ata: failed to parse force " 6668 "parameter \"%s\" (%s)\n", 6669 cur, reason); 6670 continue; 6671 } 6672 6673 if (te.port == -1) { 6674 te.port = last_port; 6675 te.device = last_device; 6676 } 6677 6678 ata_force_tbl[idx++] = te; 6679 6680 last_port = te.port; 6681 last_device = te.device; 6682 } 6683 6684 ata_force_tbl_size = idx; 6685 } 6686 6687 static int __init ata_init(void) 6688 { 6689 int rc; 6690 6691 ata_parse_force_param(); 6692 6693 rc = ata_sff_init(); 6694 if (rc) { 6695 kfree(ata_force_tbl); 6696 return rc; 6697 } 6698 6699 libata_transport_init(); 6700 ata_scsi_transport_template = ata_attach_transport(); 6701 if (!ata_scsi_transport_template) { 6702 ata_sff_exit(); 6703 rc = -ENOMEM; 6704 goto err_out; 6705 } 6706 6707 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6708 return 0; 6709 6710 err_out: 6711 return rc; 6712 } 6713 6714 static void __exit ata_exit(void) 6715 { 6716 ata_release_transport(ata_scsi_transport_template); 6717 libata_transport_exit(); 6718 ata_sff_exit(); 6719 kfree(ata_force_tbl); 6720 } 6721 6722 subsys_initcall(ata_init); 6723 module_exit(ata_exit); 6724 6725 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6726 6727 int ata_ratelimit(void) 6728 { 6729 return __ratelimit(&ratelimit); 6730 } 6731 6732 /** 6733 * ata_msleep - ATA EH owner aware msleep 6734 * @ap: ATA port to attribute the sleep to 6735 * @msecs: duration to sleep in milliseconds 6736 * 6737 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6738 * ownership is released before going to sleep and reacquired 6739 * after the sleep is complete. IOW, other ports sharing the 6740 * @ap->host will be allowed to own the EH while this task is 6741 * sleeping. 6742 * 6743 * LOCKING: 6744 * Might sleep. 6745 */ 6746 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6747 { 6748 bool owns_eh = ap && ap->host->eh_owner == current; 6749 6750 if (owns_eh) 6751 ata_eh_release(ap); 6752 6753 msleep(msecs); 6754 6755 if (owns_eh) 6756 ata_eh_acquire(ap); 6757 } 6758 6759 /** 6760 * ata_wait_register - wait until register value changes 6761 * @ap: ATA port to wait register for, can be NULL 6762 * @reg: IO-mapped register 6763 * @mask: Mask to apply to read register value 6764 * @val: Wait condition 6765 * @interval: polling interval in milliseconds 6766 * @timeout: timeout in milliseconds 6767 * 6768 * Waiting for some bits of register to change is a common 6769 * operation for ATA controllers. This function reads 32bit LE 6770 * IO-mapped register @reg and tests for the following condition. 6771 * 6772 * (*@reg & mask) != val 6773 * 6774 * If the condition is met, it returns; otherwise, the process is 6775 * repeated after @interval_msec until timeout. 6776 * 6777 * LOCKING: 6778 * Kernel thread context (may sleep) 6779 * 6780 * RETURNS: 6781 * The final register value. 6782 */ 6783 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6784 unsigned long interval, unsigned long timeout) 6785 { 6786 unsigned long deadline; 6787 u32 tmp; 6788 6789 tmp = ioread32(reg); 6790 6791 /* Calculate timeout _after_ the first read to make sure 6792 * preceding writes reach the controller before starting to 6793 * eat away the timeout. 6794 */ 6795 deadline = ata_deadline(jiffies, timeout); 6796 6797 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6798 ata_msleep(ap, interval); 6799 tmp = ioread32(reg); 6800 } 6801 6802 return tmp; 6803 } 6804 6805 /* 6806 * Dummy port_ops 6807 */ 6808 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6809 { 6810 return AC_ERR_SYSTEM; 6811 } 6812 6813 static void ata_dummy_error_handler(struct ata_port *ap) 6814 { 6815 /* truly dummy */ 6816 } 6817 6818 struct ata_port_operations ata_dummy_port_ops = { 6819 .qc_prep = ata_noop_qc_prep, 6820 .qc_issue = ata_dummy_qc_issue, 6821 .error_handler = ata_dummy_error_handler, 6822 .sched_eh = ata_std_sched_eh, 6823 .end_eh = ata_std_end_eh, 6824 }; 6825 6826 const struct ata_port_info ata_dummy_port_info = { 6827 .port_ops = &ata_dummy_port_ops, 6828 }; 6829 6830 /* 6831 * Utility print functions 6832 */ 6833 int ata_port_printk(const struct ata_port *ap, const char *level, 6834 const char *fmt, ...) 6835 { 6836 struct va_format vaf; 6837 va_list args; 6838 int r; 6839 6840 va_start(args, fmt); 6841 6842 vaf.fmt = fmt; 6843 vaf.va = &args; 6844 6845 r = printk("%sata%u: %pV", level, ap->print_id, &vaf); 6846 6847 va_end(args); 6848 6849 return r; 6850 } 6851 EXPORT_SYMBOL(ata_port_printk); 6852 6853 int ata_link_printk(const struct ata_link *link, const char *level, 6854 const char *fmt, ...) 6855 { 6856 struct va_format vaf; 6857 va_list args; 6858 int r; 6859 6860 va_start(args, fmt); 6861 6862 vaf.fmt = fmt; 6863 vaf.va = &args; 6864 6865 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6866 r = printk("%sata%u.%02u: %pV", 6867 level, link->ap->print_id, link->pmp, &vaf); 6868 else 6869 r = printk("%sata%u: %pV", 6870 level, link->ap->print_id, &vaf); 6871 6872 va_end(args); 6873 6874 return r; 6875 } 6876 EXPORT_SYMBOL(ata_link_printk); 6877 6878 int ata_dev_printk(const struct ata_device *dev, const char *level, 6879 const char *fmt, ...) 6880 { 6881 struct va_format vaf; 6882 va_list args; 6883 int r; 6884 6885 va_start(args, fmt); 6886 6887 vaf.fmt = fmt; 6888 vaf.va = &args; 6889 6890 r = printk("%sata%u.%02u: %pV", 6891 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6892 &vaf); 6893 6894 va_end(args); 6895 6896 return r; 6897 } 6898 EXPORT_SYMBOL(ata_dev_printk); 6899 6900 void ata_print_version(const struct device *dev, const char *version) 6901 { 6902 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6903 } 6904 EXPORT_SYMBOL(ata_print_version); 6905 6906 /* 6907 * libata is essentially a library of internal helper functions for 6908 * low-level ATA host controller drivers. As such, the API/ABI is 6909 * likely to change as new drivers are added and updated. 6910 * Do not depend on ABI/API stability. 6911 */ 6912 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6913 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6914 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6915 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6916 EXPORT_SYMBOL_GPL(sata_port_ops); 6917 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6918 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6919 EXPORT_SYMBOL_GPL(ata_link_next); 6920 EXPORT_SYMBOL_GPL(ata_dev_next); 6921 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6922 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6923 EXPORT_SYMBOL_GPL(ata_host_init); 6924 EXPORT_SYMBOL_GPL(ata_host_alloc); 6925 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6926 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6927 EXPORT_SYMBOL_GPL(ata_host_start); 6928 EXPORT_SYMBOL_GPL(ata_host_register); 6929 EXPORT_SYMBOL_GPL(ata_host_activate); 6930 EXPORT_SYMBOL_GPL(ata_host_detach); 6931 EXPORT_SYMBOL_GPL(ata_sg_init); 6932 EXPORT_SYMBOL_GPL(ata_qc_complete); 6933 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6934 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6935 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6936 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6937 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6938 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6939 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6940 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6941 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6942 EXPORT_SYMBOL_GPL(ata_mode_string); 6943 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6944 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6945 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6946 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6947 EXPORT_SYMBOL_GPL(ata_dev_disable); 6948 EXPORT_SYMBOL_GPL(sata_set_spd); 6949 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6950 EXPORT_SYMBOL_GPL(sata_link_debounce); 6951 EXPORT_SYMBOL_GPL(sata_link_resume); 6952 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6953 EXPORT_SYMBOL_GPL(ata_std_prereset); 6954 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6955 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6956 EXPORT_SYMBOL_GPL(ata_std_postreset); 6957 EXPORT_SYMBOL_GPL(ata_dev_classify); 6958 EXPORT_SYMBOL_GPL(ata_dev_pair); 6959 EXPORT_SYMBOL_GPL(ata_ratelimit); 6960 EXPORT_SYMBOL_GPL(ata_msleep); 6961 EXPORT_SYMBOL_GPL(ata_wait_register); 6962 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6963 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6964 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6965 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6966 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6967 EXPORT_SYMBOL_GPL(sata_scr_valid); 6968 EXPORT_SYMBOL_GPL(sata_scr_read); 6969 EXPORT_SYMBOL_GPL(sata_scr_write); 6970 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6971 EXPORT_SYMBOL_GPL(ata_link_online); 6972 EXPORT_SYMBOL_GPL(ata_link_offline); 6973 #ifdef CONFIG_PM 6974 EXPORT_SYMBOL_GPL(ata_host_suspend); 6975 EXPORT_SYMBOL_GPL(ata_host_resume); 6976 #endif /* CONFIG_PM */ 6977 EXPORT_SYMBOL_GPL(ata_id_string); 6978 EXPORT_SYMBOL_GPL(ata_id_c_string); 6979 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6980 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6981 6982 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6983 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6984 EXPORT_SYMBOL_GPL(ata_timing_compute); 6985 EXPORT_SYMBOL_GPL(ata_timing_merge); 6986 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6987 6988 #ifdef CONFIG_PCI 6989 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6990 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6991 #ifdef CONFIG_PM 6992 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6993 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6994 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6995 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6996 #endif /* CONFIG_PM */ 6997 #endif /* CONFIG_PCI */ 6998 6999 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 7000 7001 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 7002 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 7003 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 7004 EXPORT_SYMBOL_GPL(ata_port_desc); 7005 #ifdef CONFIG_PCI 7006 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 7007 #endif /* CONFIG_PCI */ 7008 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 7009 EXPORT_SYMBOL_GPL(ata_link_abort); 7010 EXPORT_SYMBOL_GPL(ata_port_abort); 7011 EXPORT_SYMBOL_GPL(ata_port_freeze); 7012 EXPORT_SYMBOL_GPL(sata_async_notification); 7013 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 7014 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 7015 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 7016 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 7017 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 7018 EXPORT_SYMBOL_GPL(ata_do_eh); 7019 EXPORT_SYMBOL_GPL(ata_std_error_handler); 7020 7021 EXPORT_SYMBOL_GPL(ata_cable_40wire); 7022 EXPORT_SYMBOL_GPL(ata_cable_80wire); 7023 EXPORT_SYMBOL_GPL(ata_cable_unknown); 7024 EXPORT_SYMBOL_GPL(ata_cable_ignore); 7025 EXPORT_SYMBOL_GPL(ata_cable_sata); 7026