xref: /openbmc/linux/drivers/ata/libata-core.c (revision d5e7cafd)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <linux/glob.h>
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_host.h>
66 #include <linux/libata.h>
67 #include <asm/byteorder.h>
68 #include <linux/cdrom.h>
69 #include <linux/ratelimit.h>
70 #include <linux/pm_runtime.h>
71 #include <linux/platform_device.h>
72 
73 #include "libata.h"
74 #include "libata-transport.h"
75 
76 /* debounce timing parameters in msecs { interval, duration, timeout } */
77 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
78 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
79 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
80 
81 const struct ata_port_operations ata_base_port_ops = {
82 	.prereset		= ata_std_prereset,
83 	.postreset		= ata_std_postreset,
84 	.error_handler		= ata_std_error_handler,
85 	.sched_eh		= ata_std_sched_eh,
86 	.end_eh			= ata_std_end_eh,
87 };
88 
89 const struct ata_port_operations sata_port_ops = {
90 	.inherits		= &ata_base_port_ops,
91 
92 	.qc_defer		= ata_std_qc_defer,
93 	.hardreset		= sata_std_hardreset,
94 };
95 
96 static unsigned int ata_dev_init_params(struct ata_device *dev,
97 					u16 heads, u16 sectors);
98 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
99 static void ata_dev_xfermask(struct ata_device *dev);
100 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
101 
102 atomic_t ata_print_id = ATOMIC_INIT(0);
103 
104 struct ata_force_param {
105 	const char	*name;
106 	unsigned int	cbl;
107 	int		spd_limit;
108 	unsigned long	xfer_mask;
109 	unsigned int	horkage_on;
110 	unsigned int	horkage_off;
111 	unsigned int	lflags;
112 };
113 
114 struct ata_force_ent {
115 	int			port;
116 	int			device;
117 	struct ata_force_param	param;
118 };
119 
120 static struct ata_force_ent *ata_force_tbl;
121 static int ata_force_tbl_size;
122 
123 static char ata_force_param_buf[PAGE_SIZE] __initdata;
124 /* param_buf is thrown away after initialization, disallow read */
125 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
126 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127 
128 static int atapi_enabled = 1;
129 module_param(atapi_enabled, int, 0444);
130 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
131 
132 static int atapi_dmadir = 0;
133 module_param(atapi_dmadir, int, 0444);
134 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
135 
136 int atapi_passthru16 = 1;
137 module_param(atapi_passthru16, int, 0444);
138 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139 
140 int libata_fua = 0;
141 module_param_named(fua, libata_fua, int, 0444);
142 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
143 
144 static int ata_ignore_hpa;
145 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
146 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147 
148 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
149 module_param_named(dma, libata_dma_mask, int, 0444);
150 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151 
152 static int ata_probe_timeout;
153 module_param(ata_probe_timeout, int, 0444);
154 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
155 
156 int libata_noacpi = 0;
157 module_param_named(noacpi, libata_noacpi, int, 0444);
158 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
159 
160 int libata_allow_tpm = 0;
161 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
162 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
163 
164 static int atapi_an;
165 module_param(atapi_an, int, 0444);
166 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
167 
168 MODULE_AUTHOR("Jeff Garzik");
169 MODULE_DESCRIPTION("Library module for ATA devices");
170 MODULE_LICENSE("GPL");
171 MODULE_VERSION(DRV_VERSION);
172 
173 
174 static bool ata_sstatus_online(u32 sstatus)
175 {
176 	return (sstatus & 0xf) == 0x3;
177 }
178 
179 /**
180  *	ata_link_next - link iteration helper
181  *	@link: the previous link, NULL to start
182  *	@ap: ATA port containing links to iterate
183  *	@mode: iteration mode, one of ATA_LITER_*
184  *
185  *	LOCKING:
186  *	Host lock or EH context.
187  *
188  *	RETURNS:
189  *	Pointer to the next link.
190  */
191 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
192 			       enum ata_link_iter_mode mode)
193 {
194 	BUG_ON(mode != ATA_LITER_EDGE &&
195 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
196 
197 	/* NULL link indicates start of iteration */
198 	if (!link)
199 		switch (mode) {
200 		case ATA_LITER_EDGE:
201 		case ATA_LITER_PMP_FIRST:
202 			if (sata_pmp_attached(ap))
203 				return ap->pmp_link;
204 			/* fall through */
205 		case ATA_LITER_HOST_FIRST:
206 			return &ap->link;
207 		}
208 
209 	/* we just iterated over the host link, what's next? */
210 	if (link == &ap->link)
211 		switch (mode) {
212 		case ATA_LITER_HOST_FIRST:
213 			if (sata_pmp_attached(ap))
214 				return ap->pmp_link;
215 			/* fall through */
216 		case ATA_LITER_PMP_FIRST:
217 			if (unlikely(ap->slave_link))
218 				return ap->slave_link;
219 			/* fall through */
220 		case ATA_LITER_EDGE:
221 			return NULL;
222 		}
223 
224 	/* slave_link excludes PMP */
225 	if (unlikely(link == ap->slave_link))
226 		return NULL;
227 
228 	/* we were over a PMP link */
229 	if (++link < ap->pmp_link + ap->nr_pmp_links)
230 		return link;
231 
232 	if (mode == ATA_LITER_PMP_FIRST)
233 		return &ap->link;
234 
235 	return NULL;
236 }
237 
238 /**
239  *	ata_dev_next - device iteration helper
240  *	@dev: the previous device, NULL to start
241  *	@link: ATA link containing devices to iterate
242  *	@mode: iteration mode, one of ATA_DITER_*
243  *
244  *	LOCKING:
245  *	Host lock or EH context.
246  *
247  *	RETURNS:
248  *	Pointer to the next device.
249  */
250 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
251 				enum ata_dev_iter_mode mode)
252 {
253 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
254 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
255 
256 	/* NULL dev indicates start of iteration */
257 	if (!dev)
258 		switch (mode) {
259 		case ATA_DITER_ENABLED:
260 		case ATA_DITER_ALL:
261 			dev = link->device;
262 			goto check;
263 		case ATA_DITER_ENABLED_REVERSE:
264 		case ATA_DITER_ALL_REVERSE:
265 			dev = link->device + ata_link_max_devices(link) - 1;
266 			goto check;
267 		}
268 
269  next:
270 	/* move to the next one */
271 	switch (mode) {
272 	case ATA_DITER_ENABLED:
273 	case ATA_DITER_ALL:
274 		if (++dev < link->device + ata_link_max_devices(link))
275 			goto check;
276 		return NULL;
277 	case ATA_DITER_ENABLED_REVERSE:
278 	case ATA_DITER_ALL_REVERSE:
279 		if (--dev >= link->device)
280 			goto check;
281 		return NULL;
282 	}
283 
284  check:
285 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
286 	    !ata_dev_enabled(dev))
287 		goto next;
288 	return dev;
289 }
290 
291 /**
292  *	ata_dev_phys_link - find physical link for a device
293  *	@dev: ATA device to look up physical link for
294  *
295  *	Look up physical link which @dev is attached to.  Note that
296  *	this is different from @dev->link only when @dev is on slave
297  *	link.  For all other cases, it's the same as @dev->link.
298  *
299  *	LOCKING:
300  *	Don't care.
301  *
302  *	RETURNS:
303  *	Pointer to the found physical link.
304  */
305 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
306 {
307 	struct ata_port *ap = dev->link->ap;
308 
309 	if (!ap->slave_link)
310 		return dev->link;
311 	if (!dev->devno)
312 		return &ap->link;
313 	return ap->slave_link;
314 }
315 
316 /**
317  *	ata_force_cbl - force cable type according to libata.force
318  *	@ap: ATA port of interest
319  *
320  *	Force cable type according to libata.force and whine about it.
321  *	The last entry which has matching port number is used, so it
322  *	can be specified as part of device force parameters.  For
323  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
324  *	same effect.
325  *
326  *	LOCKING:
327  *	EH context.
328  */
329 void ata_force_cbl(struct ata_port *ap)
330 {
331 	int i;
332 
333 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
334 		const struct ata_force_ent *fe = &ata_force_tbl[i];
335 
336 		if (fe->port != -1 && fe->port != ap->print_id)
337 			continue;
338 
339 		if (fe->param.cbl == ATA_CBL_NONE)
340 			continue;
341 
342 		ap->cbl = fe->param.cbl;
343 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
344 		return;
345 	}
346 }
347 
348 /**
349  *	ata_force_link_limits - force link limits according to libata.force
350  *	@link: ATA link of interest
351  *
352  *	Force link flags and SATA spd limit according to libata.force
353  *	and whine about it.  When only the port part is specified
354  *	(e.g. 1:), the limit applies to all links connected to both
355  *	the host link and all fan-out ports connected via PMP.  If the
356  *	device part is specified as 0 (e.g. 1.00:), it specifies the
357  *	first fan-out link not the host link.  Device number 15 always
358  *	points to the host link whether PMP is attached or not.  If the
359  *	controller has slave link, device number 16 points to it.
360  *
361  *	LOCKING:
362  *	EH context.
363  */
364 static void ata_force_link_limits(struct ata_link *link)
365 {
366 	bool did_spd = false;
367 	int linkno = link->pmp;
368 	int i;
369 
370 	if (ata_is_host_link(link))
371 		linkno += 15;
372 
373 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
374 		const struct ata_force_ent *fe = &ata_force_tbl[i];
375 
376 		if (fe->port != -1 && fe->port != link->ap->print_id)
377 			continue;
378 
379 		if (fe->device != -1 && fe->device != linkno)
380 			continue;
381 
382 		/* only honor the first spd limit */
383 		if (!did_spd && fe->param.spd_limit) {
384 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
385 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
386 					fe->param.name);
387 			did_spd = true;
388 		}
389 
390 		/* let lflags stack */
391 		if (fe->param.lflags) {
392 			link->flags |= fe->param.lflags;
393 			ata_link_notice(link,
394 					"FORCE: link flag 0x%x forced -> 0x%x\n",
395 					fe->param.lflags, link->flags);
396 		}
397 	}
398 }
399 
400 /**
401  *	ata_force_xfermask - force xfermask according to libata.force
402  *	@dev: ATA device of interest
403  *
404  *	Force xfer_mask according to libata.force and whine about it.
405  *	For consistency with link selection, device number 15 selects
406  *	the first device connected to the host link.
407  *
408  *	LOCKING:
409  *	EH context.
410  */
411 static void ata_force_xfermask(struct ata_device *dev)
412 {
413 	int devno = dev->link->pmp + dev->devno;
414 	int alt_devno = devno;
415 	int i;
416 
417 	/* allow n.15/16 for devices attached to host port */
418 	if (ata_is_host_link(dev->link))
419 		alt_devno += 15;
420 
421 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
422 		const struct ata_force_ent *fe = &ata_force_tbl[i];
423 		unsigned long pio_mask, mwdma_mask, udma_mask;
424 
425 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
426 			continue;
427 
428 		if (fe->device != -1 && fe->device != devno &&
429 		    fe->device != alt_devno)
430 			continue;
431 
432 		if (!fe->param.xfer_mask)
433 			continue;
434 
435 		ata_unpack_xfermask(fe->param.xfer_mask,
436 				    &pio_mask, &mwdma_mask, &udma_mask);
437 		if (udma_mask)
438 			dev->udma_mask = udma_mask;
439 		else if (mwdma_mask) {
440 			dev->udma_mask = 0;
441 			dev->mwdma_mask = mwdma_mask;
442 		} else {
443 			dev->udma_mask = 0;
444 			dev->mwdma_mask = 0;
445 			dev->pio_mask = pio_mask;
446 		}
447 
448 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
449 			       fe->param.name);
450 		return;
451 	}
452 }
453 
454 /**
455  *	ata_force_horkage - force horkage according to libata.force
456  *	@dev: ATA device of interest
457  *
458  *	Force horkage according to libata.force and whine about it.
459  *	For consistency with link selection, device number 15 selects
460  *	the first device connected to the host link.
461  *
462  *	LOCKING:
463  *	EH context.
464  */
465 static void ata_force_horkage(struct ata_device *dev)
466 {
467 	int devno = dev->link->pmp + dev->devno;
468 	int alt_devno = devno;
469 	int i;
470 
471 	/* allow n.15/16 for devices attached to host port */
472 	if (ata_is_host_link(dev->link))
473 		alt_devno += 15;
474 
475 	for (i = 0; i < ata_force_tbl_size; i++) {
476 		const struct ata_force_ent *fe = &ata_force_tbl[i];
477 
478 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
479 			continue;
480 
481 		if (fe->device != -1 && fe->device != devno &&
482 		    fe->device != alt_devno)
483 			continue;
484 
485 		if (!(~dev->horkage & fe->param.horkage_on) &&
486 		    !(dev->horkage & fe->param.horkage_off))
487 			continue;
488 
489 		dev->horkage |= fe->param.horkage_on;
490 		dev->horkage &= ~fe->param.horkage_off;
491 
492 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
493 			       fe->param.name);
494 	}
495 }
496 
497 /**
498  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
499  *	@opcode: SCSI opcode
500  *
501  *	Determine ATAPI command type from @opcode.
502  *
503  *	LOCKING:
504  *	None.
505  *
506  *	RETURNS:
507  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
508  */
509 int atapi_cmd_type(u8 opcode)
510 {
511 	switch (opcode) {
512 	case GPCMD_READ_10:
513 	case GPCMD_READ_12:
514 		return ATAPI_READ;
515 
516 	case GPCMD_WRITE_10:
517 	case GPCMD_WRITE_12:
518 	case GPCMD_WRITE_AND_VERIFY_10:
519 		return ATAPI_WRITE;
520 
521 	case GPCMD_READ_CD:
522 	case GPCMD_READ_CD_MSF:
523 		return ATAPI_READ_CD;
524 
525 	case ATA_16:
526 	case ATA_12:
527 		if (atapi_passthru16)
528 			return ATAPI_PASS_THRU;
529 		/* fall thru */
530 	default:
531 		return ATAPI_MISC;
532 	}
533 }
534 
535 /**
536  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
537  *	@tf: Taskfile to convert
538  *	@pmp: Port multiplier port
539  *	@is_cmd: This FIS is for command
540  *	@fis: Buffer into which data will output
541  *
542  *	Converts a standard ATA taskfile to a Serial ATA
543  *	FIS structure (Register - Host to Device).
544  *
545  *	LOCKING:
546  *	Inherited from caller.
547  */
548 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
549 {
550 	fis[0] = 0x27;			/* Register - Host to Device FIS */
551 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
552 	if (is_cmd)
553 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
554 
555 	fis[2] = tf->command;
556 	fis[3] = tf->feature;
557 
558 	fis[4] = tf->lbal;
559 	fis[5] = tf->lbam;
560 	fis[6] = tf->lbah;
561 	fis[7] = tf->device;
562 
563 	fis[8] = tf->hob_lbal;
564 	fis[9] = tf->hob_lbam;
565 	fis[10] = tf->hob_lbah;
566 	fis[11] = tf->hob_feature;
567 
568 	fis[12] = tf->nsect;
569 	fis[13] = tf->hob_nsect;
570 	fis[14] = 0;
571 	fis[15] = tf->ctl;
572 
573 	fis[16] = tf->auxiliary & 0xff;
574 	fis[17] = (tf->auxiliary >> 8) & 0xff;
575 	fis[18] = (tf->auxiliary >> 16) & 0xff;
576 	fis[19] = (tf->auxiliary >> 24) & 0xff;
577 }
578 
579 /**
580  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
581  *	@fis: Buffer from which data will be input
582  *	@tf: Taskfile to output
583  *
584  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
585  *
586  *	LOCKING:
587  *	Inherited from caller.
588  */
589 
590 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
591 {
592 	tf->command	= fis[2];	/* status */
593 	tf->feature	= fis[3];	/* error */
594 
595 	tf->lbal	= fis[4];
596 	tf->lbam	= fis[5];
597 	tf->lbah	= fis[6];
598 	tf->device	= fis[7];
599 
600 	tf->hob_lbal	= fis[8];
601 	tf->hob_lbam	= fis[9];
602 	tf->hob_lbah	= fis[10];
603 
604 	tf->nsect	= fis[12];
605 	tf->hob_nsect	= fis[13];
606 }
607 
608 static const u8 ata_rw_cmds[] = {
609 	/* pio multi */
610 	ATA_CMD_READ_MULTI,
611 	ATA_CMD_WRITE_MULTI,
612 	ATA_CMD_READ_MULTI_EXT,
613 	ATA_CMD_WRITE_MULTI_EXT,
614 	0,
615 	0,
616 	0,
617 	ATA_CMD_WRITE_MULTI_FUA_EXT,
618 	/* pio */
619 	ATA_CMD_PIO_READ,
620 	ATA_CMD_PIO_WRITE,
621 	ATA_CMD_PIO_READ_EXT,
622 	ATA_CMD_PIO_WRITE_EXT,
623 	0,
624 	0,
625 	0,
626 	0,
627 	/* dma */
628 	ATA_CMD_READ,
629 	ATA_CMD_WRITE,
630 	ATA_CMD_READ_EXT,
631 	ATA_CMD_WRITE_EXT,
632 	0,
633 	0,
634 	0,
635 	ATA_CMD_WRITE_FUA_EXT
636 };
637 
638 /**
639  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
640  *	@tf: command to examine and configure
641  *	@dev: device tf belongs to
642  *
643  *	Examine the device configuration and tf->flags to calculate
644  *	the proper read/write commands and protocol to use.
645  *
646  *	LOCKING:
647  *	caller.
648  */
649 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
650 {
651 	u8 cmd;
652 
653 	int index, fua, lba48, write;
654 
655 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
656 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
657 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
658 
659 	if (dev->flags & ATA_DFLAG_PIO) {
660 		tf->protocol = ATA_PROT_PIO;
661 		index = dev->multi_count ? 0 : 8;
662 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
663 		/* Unable to use DMA due to host limitation */
664 		tf->protocol = ATA_PROT_PIO;
665 		index = dev->multi_count ? 0 : 8;
666 	} else {
667 		tf->protocol = ATA_PROT_DMA;
668 		index = 16;
669 	}
670 
671 	cmd = ata_rw_cmds[index + fua + lba48 + write];
672 	if (cmd) {
673 		tf->command = cmd;
674 		return 0;
675 	}
676 	return -1;
677 }
678 
679 /**
680  *	ata_tf_read_block - Read block address from ATA taskfile
681  *	@tf: ATA taskfile of interest
682  *	@dev: ATA device @tf belongs to
683  *
684  *	LOCKING:
685  *	None.
686  *
687  *	Read block address from @tf.  This function can handle all
688  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
689  *	flags select the address format to use.
690  *
691  *	RETURNS:
692  *	Block address read from @tf.
693  */
694 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
695 {
696 	u64 block = 0;
697 
698 	if (tf->flags & ATA_TFLAG_LBA) {
699 		if (tf->flags & ATA_TFLAG_LBA48) {
700 			block |= (u64)tf->hob_lbah << 40;
701 			block |= (u64)tf->hob_lbam << 32;
702 			block |= (u64)tf->hob_lbal << 24;
703 		} else
704 			block |= (tf->device & 0xf) << 24;
705 
706 		block |= tf->lbah << 16;
707 		block |= tf->lbam << 8;
708 		block |= tf->lbal;
709 	} else {
710 		u32 cyl, head, sect;
711 
712 		cyl = tf->lbam | (tf->lbah << 8);
713 		head = tf->device & 0xf;
714 		sect = tf->lbal;
715 
716 		if (!sect) {
717 			ata_dev_warn(dev,
718 				     "device reported invalid CHS sector 0\n");
719 			sect = 1; /* oh well */
720 		}
721 
722 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
723 	}
724 
725 	return block;
726 }
727 
728 /**
729  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
730  *	@tf: Target ATA taskfile
731  *	@dev: ATA device @tf belongs to
732  *	@block: Block address
733  *	@n_block: Number of blocks
734  *	@tf_flags: RW/FUA etc...
735  *	@tag: tag
736  *
737  *	LOCKING:
738  *	None.
739  *
740  *	Build ATA taskfile @tf for read/write request described by
741  *	@block, @n_block, @tf_flags and @tag on @dev.
742  *
743  *	RETURNS:
744  *
745  *	0 on success, -ERANGE if the request is too large for @dev,
746  *	-EINVAL if the request is invalid.
747  */
748 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
749 		    u64 block, u32 n_block, unsigned int tf_flags,
750 		    unsigned int tag)
751 {
752 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
753 	tf->flags |= tf_flags;
754 
755 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
756 		/* yay, NCQ */
757 		if (!lba_48_ok(block, n_block))
758 			return -ERANGE;
759 
760 		tf->protocol = ATA_PROT_NCQ;
761 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
762 
763 		if (tf->flags & ATA_TFLAG_WRITE)
764 			tf->command = ATA_CMD_FPDMA_WRITE;
765 		else
766 			tf->command = ATA_CMD_FPDMA_READ;
767 
768 		tf->nsect = tag << 3;
769 		tf->hob_feature = (n_block >> 8) & 0xff;
770 		tf->feature = n_block & 0xff;
771 
772 		tf->hob_lbah = (block >> 40) & 0xff;
773 		tf->hob_lbam = (block >> 32) & 0xff;
774 		tf->hob_lbal = (block >> 24) & 0xff;
775 		tf->lbah = (block >> 16) & 0xff;
776 		tf->lbam = (block >> 8) & 0xff;
777 		tf->lbal = block & 0xff;
778 
779 		tf->device = ATA_LBA;
780 		if (tf->flags & ATA_TFLAG_FUA)
781 			tf->device |= 1 << 7;
782 	} else if (dev->flags & ATA_DFLAG_LBA) {
783 		tf->flags |= ATA_TFLAG_LBA;
784 
785 		if (lba_28_ok(block, n_block)) {
786 			/* use LBA28 */
787 			tf->device |= (block >> 24) & 0xf;
788 		} else if (lba_48_ok(block, n_block)) {
789 			if (!(dev->flags & ATA_DFLAG_LBA48))
790 				return -ERANGE;
791 
792 			/* use LBA48 */
793 			tf->flags |= ATA_TFLAG_LBA48;
794 
795 			tf->hob_nsect = (n_block >> 8) & 0xff;
796 
797 			tf->hob_lbah = (block >> 40) & 0xff;
798 			tf->hob_lbam = (block >> 32) & 0xff;
799 			tf->hob_lbal = (block >> 24) & 0xff;
800 		} else
801 			/* request too large even for LBA48 */
802 			return -ERANGE;
803 
804 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
805 			return -EINVAL;
806 
807 		tf->nsect = n_block & 0xff;
808 
809 		tf->lbah = (block >> 16) & 0xff;
810 		tf->lbam = (block >> 8) & 0xff;
811 		tf->lbal = block & 0xff;
812 
813 		tf->device |= ATA_LBA;
814 	} else {
815 		/* CHS */
816 		u32 sect, head, cyl, track;
817 
818 		/* The request -may- be too large for CHS addressing. */
819 		if (!lba_28_ok(block, n_block))
820 			return -ERANGE;
821 
822 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
823 			return -EINVAL;
824 
825 		/* Convert LBA to CHS */
826 		track = (u32)block / dev->sectors;
827 		cyl   = track / dev->heads;
828 		head  = track % dev->heads;
829 		sect  = (u32)block % dev->sectors + 1;
830 
831 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
832 			(u32)block, track, cyl, head, sect);
833 
834 		/* Check whether the converted CHS can fit.
835 		   Cylinder: 0-65535
836 		   Head: 0-15
837 		   Sector: 1-255*/
838 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
839 			return -ERANGE;
840 
841 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
842 		tf->lbal = sect;
843 		tf->lbam = cyl;
844 		tf->lbah = cyl >> 8;
845 		tf->device |= head;
846 	}
847 
848 	return 0;
849 }
850 
851 /**
852  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
853  *	@pio_mask: pio_mask
854  *	@mwdma_mask: mwdma_mask
855  *	@udma_mask: udma_mask
856  *
857  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
858  *	unsigned int xfer_mask.
859  *
860  *	LOCKING:
861  *	None.
862  *
863  *	RETURNS:
864  *	Packed xfer_mask.
865  */
866 unsigned long ata_pack_xfermask(unsigned long pio_mask,
867 				unsigned long mwdma_mask,
868 				unsigned long udma_mask)
869 {
870 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
871 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
872 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
873 }
874 
875 /**
876  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
877  *	@xfer_mask: xfer_mask to unpack
878  *	@pio_mask: resulting pio_mask
879  *	@mwdma_mask: resulting mwdma_mask
880  *	@udma_mask: resulting udma_mask
881  *
882  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
883  *	Any NULL distination masks will be ignored.
884  */
885 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
886 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
887 {
888 	if (pio_mask)
889 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
890 	if (mwdma_mask)
891 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
892 	if (udma_mask)
893 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
894 }
895 
896 static const struct ata_xfer_ent {
897 	int shift, bits;
898 	u8 base;
899 } ata_xfer_tbl[] = {
900 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
901 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
902 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
903 	{ -1, },
904 };
905 
906 /**
907  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
908  *	@xfer_mask: xfer_mask of interest
909  *
910  *	Return matching XFER_* value for @xfer_mask.  Only the highest
911  *	bit of @xfer_mask is considered.
912  *
913  *	LOCKING:
914  *	None.
915  *
916  *	RETURNS:
917  *	Matching XFER_* value, 0xff if no match found.
918  */
919 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
920 {
921 	int highbit = fls(xfer_mask) - 1;
922 	const struct ata_xfer_ent *ent;
923 
924 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
925 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
926 			return ent->base + highbit - ent->shift;
927 	return 0xff;
928 }
929 
930 /**
931  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
932  *	@xfer_mode: XFER_* of interest
933  *
934  *	Return matching xfer_mask for @xfer_mode.
935  *
936  *	LOCKING:
937  *	None.
938  *
939  *	RETURNS:
940  *	Matching xfer_mask, 0 if no match found.
941  */
942 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
943 {
944 	const struct ata_xfer_ent *ent;
945 
946 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
949 				& ~((1 << ent->shift) - 1);
950 	return 0;
951 }
952 
953 /**
954  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
955  *	@xfer_mode: XFER_* of interest
956  *
957  *	Return matching xfer_shift for @xfer_mode.
958  *
959  *	LOCKING:
960  *	None.
961  *
962  *	RETURNS:
963  *	Matching xfer_shift, -1 if no match found.
964  */
965 int ata_xfer_mode2shift(unsigned long xfer_mode)
966 {
967 	const struct ata_xfer_ent *ent;
968 
969 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
970 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
971 			return ent->shift;
972 	return -1;
973 }
974 
975 /**
976  *	ata_mode_string - convert xfer_mask to string
977  *	@xfer_mask: mask of bits supported; only highest bit counts.
978  *
979  *	Determine string which represents the highest speed
980  *	(highest bit in @modemask).
981  *
982  *	LOCKING:
983  *	None.
984  *
985  *	RETURNS:
986  *	Constant C string representing highest speed listed in
987  *	@mode_mask, or the constant C string "<n/a>".
988  */
989 const char *ata_mode_string(unsigned long xfer_mask)
990 {
991 	static const char * const xfer_mode_str[] = {
992 		"PIO0",
993 		"PIO1",
994 		"PIO2",
995 		"PIO3",
996 		"PIO4",
997 		"PIO5",
998 		"PIO6",
999 		"MWDMA0",
1000 		"MWDMA1",
1001 		"MWDMA2",
1002 		"MWDMA3",
1003 		"MWDMA4",
1004 		"UDMA/16",
1005 		"UDMA/25",
1006 		"UDMA/33",
1007 		"UDMA/44",
1008 		"UDMA/66",
1009 		"UDMA/100",
1010 		"UDMA/133",
1011 		"UDMA7",
1012 	};
1013 	int highbit;
1014 
1015 	highbit = fls(xfer_mask) - 1;
1016 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1017 		return xfer_mode_str[highbit];
1018 	return "<n/a>";
1019 }
1020 
1021 const char *sata_spd_string(unsigned int spd)
1022 {
1023 	static const char * const spd_str[] = {
1024 		"1.5 Gbps",
1025 		"3.0 Gbps",
1026 		"6.0 Gbps",
1027 	};
1028 
1029 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1030 		return "<unknown>";
1031 	return spd_str[spd - 1];
1032 }
1033 
1034 /**
1035  *	ata_dev_classify - determine device type based on ATA-spec signature
1036  *	@tf: ATA taskfile register set for device to be identified
1037  *
1038  *	Determine from taskfile register contents whether a device is
1039  *	ATA or ATAPI, as per "Signature and persistence" section
1040  *	of ATA/PI spec (volume 1, sect 5.14).
1041  *
1042  *	LOCKING:
1043  *	None.
1044  *
1045  *	RETURNS:
1046  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1047  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1048  */
1049 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1050 {
1051 	/* Apple's open source Darwin code hints that some devices only
1052 	 * put a proper signature into the LBA mid/high registers,
1053 	 * So, we only check those.  It's sufficient for uniqueness.
1054 	 *
1055 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1056 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1057 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1058 	 * spec has never mentioned about using different signatures
1059 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1060 	 * Multiplier specification began to use 0x69/0x96 to identify
1061 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1062 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1063 	 * 0x69/0x96 shortly and described them as reserved for
1064 	 * SerialATA.
1065 	 *
1066 	 * We follow the current spec and consider that 0x69/0x96
1067 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1068 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1069 	 * SEMB signature.  This is worked around in
1070 	 * ata_dev_read_id().
1071 	 */
1072 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1073 		DPRINTK("found ATA device by sig\n");
1074 		return ATA_DEV_ATA;
1075 	}
1076 
1077 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1078 		DPRINTK("found ATAPI device by sig\n");
1079 		return ATA_DEV_ATAPI;
1080 	}
1081 
1082 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1083 		DPRINTK("found PMP device by sig\n");
1084 		return ATA_DEV_PMP;
1085 	}
1086 
1087 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1088 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1089 		return ATA_DEV_SEMB;
1090 	}
1091 
1092 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1093 		DPRINTK("found ZAC device by sig\n");
1094 		return ATA_DEV_ZAC;
1095 	}
1096 
1097 	DPRINTK("unknown device\n");
1098 	return ATA_DEV_UNKNOWN;
1099 }
1100 
1101 /**
1102  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1103  *	@id: IDENTIFY DEVICE results we will examine
1104  *	@s: string into which data is output
1105  *	@ofs: offset into identify device page
1106  *	@len: length of string to return. must be an even number.
1107  *
1108  *	The strings in the IDENTIFY DEVICE page are broken up into
1109  *	16-bit chunks.  Run through the string, and output each
1110  *	8-bit chunk linearly, regardless of platform.
1111  *
1112  *	LOCKING:
1113  *	caller.
1114  */
1115 
1116 void ata_id_string(const u16 *id, unsigned char *s,
1117 		   unsigned int ofs, unsigned int len)
1118 {
1119 	unsigned int c;
1120 
1121 	BUG_ON(len & 1);
1122 
1123 	while (len > 0) {
1124 		c = id[ofs] >> 8;
1125 		*s = c;
1126 		s++;
1127 
1128 		c = id[ofs] & 0xff;
1129 		*s = c;
1130 		s++;
1131 
1132 		ofs++;
1133 		len -= 2;
1134 	}
1135 }
1136 
1137 /**
1138  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1139  *	@id: IDENTIFY DEVICE results we will examine
1140  *	@s: string into which data is output
1141  *	@ofs: offset into identify device page
1142  *	@len: length of string to return. must be an odd number.
1143  *
1144  *	This function is identical to ata_id_string except that it
1145  *	trims trailing spaces and terminates the resulting string with
1146  *	null.  @len must be actual maximum length (even number) + 1.
1147  *
1148  *	LOCKING:
1149  *	caller.
1150  */
1151 void ata_id_c_string(const u16 *id, unsigned char *s,
1152 		     unsigned int ofs, unsigned int len)
1153 {
1154 	unsigned char *p;
1155 
1156 	ata_id_string(id, s, ofs, len - 1);
1157 
1158 	p = s + strnlen(s, len - 1);
1159 	while (p > s && p[-1] == ' ')
1160 		p--;
1161 	*p = '\0';
1162 }
1163 
1164 static u64 ata_id_n_sectors(const u16 *id)
1165 {
1166 	if (ata_id_has_lba(id)) {
1167 		if (ata_id_has_lba48(id))
1168 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1169 		else
1170 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1171 	} else {
1172 		if (ata_id_current_chs_valid(id))
1173 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1174 			       id[ATA_ID_CUR_SECTORS];
1175 		else
1176 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1177 			       id[ATA_ID_SECTORS];
1178 	}
1179 }
1180 
1181 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1182 {
1183 	u64 sectors = 0;
1184 
1185 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1186 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1187 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1188 	sectors |= (tf->lbah & 0xff) << 16;
1189 	sectors |= (tf->lbam & 0xff) << 8;
1190 	sectors |= (tf->lbal & 0xff);
1191 
1192 	return sectors;
1193 }
1194 
1195 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1196 {
1197 	u64 sectors = 0;
1198 
1199 	sectors |= (tf->device & 0x0f) << 24;
1200 	sectors |= (tf->lbah & 0xff) << 16;
1201 	sectors |= (tf->lbam & 0xff) << 8;
1202 	sectors |= (tf->lbal & 0xff);
1203 
1204 	return sectors;
1205 }
1206 
1207 /**
1208  *	ata_read_native_max_address - Read native max address
1209  *	@dev: target device
1210  *	@max_sectors: out parameter for the result native max address
1211  *
1212  *	Perform an LBA48 or LBA28 native size query upon the device in
1213  *	question.
1214  *
1215  *	RETURNS:
1216  *	0 on success, -EACCES if command is aborted by the drive.
1217  *	-EIO on other errors.
1218  */
1219 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1220 {
1221 	unsigned int err_mask;
1222 	struct ata_taskfile tf;
1223 	int lba48 = ata_id_has_lba48(dev->id);
1224 
1225 	ata_tf_init(dev, &tf);
1226 
1227 	/* always clear all address registers */
1228 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1229 
1230 	if (lba48) {
1231 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1232 		tf.flags |= ATA_TFLAG_LBA48;
1233 	} else
1234 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1235 
1236 	tf.protocol |= ATA_PROT_NODATA;
1237 	tf.device |= ATA_LBA;
1238 
1239 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1240 	if (err_mask) {
1241 		ata_dev_warn(dev,
1242 			     "failed to read native max address (err_mask=0x%x)\n",
1243 			     err_mask);
1244 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1245 			return -EACCES;
1246 		return -EIO;
1247 	}
1248 
1249 	if (lba48)
1250 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1251 	else
1252 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1253 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1254 		(*max_sectors)--;
1255 	return 0;
1256 }
1257 
1258 /**
1259  *	ata_set_max_sectors - Set max sectors
1260  *	@dev: target device
1261  *	@new_sectors: new max sectors value to set for the device
1262  *
1263  *	Set max sectors of @dev to @new_sectors.
1264  *
1265  *	RETURNS:
1266  *	0 on success, -EACCES if command is aborted or denied (due to
1267  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1268  *	errors.
1269  */
1270 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1271 {
1272 	unsigned int err_mask;
1273 	struct ata_taskfile tf;
1274 	int lba48 = ata_id_has_lba48(dev->id);
1275 
1276 	new_sectors--;
1277 
1278 	ata_tf_init(dev, &tf);
1279 
1280 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1281 
1282 	if (lba48) {
1283 		tf.command = ATA_CMD_SET_MAX_EXT;
1284 		tf.flags |= ATA_TFLAG_LBA48;
1285 
1286 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1287 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1288 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1289 	} else {
1290 		tf.command = ATA_CMD_SET_MAX;
1291 
1292 		tf.device |= (new_sectors >> 24) & 0xf;
1293 	}
1294 
1295 	tf.protocol |= ATA_PROT_NODATA;
1296 	tf.device |= ATA_LBA;
1297 
1298 	tf.lbal = (new_sectors >> 0) & 0xff;
1299 	tf.lbam = (new_sectors >> 8) & 0xff;
1300 	tf.lbah = (new_sectors >> 16) & 0xff;
1301 
1302 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1303 	if (err_mask) {
1304 		ata_dev_warn(dev,
1305 			     "failed to set max address (err_mask=0x%x)\n",
1306 			     err_mask);
1307 		if (err_mask == AC_ERR_DEV &&
1308 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1309 			return -EACCES;
1310 		return -EIO;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 /**
1317  *	ata_hpa_resize		-	Resize a device with an HPA set
1318  *	@dev: Device to resize
1319  *
1320  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1321  *	it if required to the full size of the media. The caller must check
1322  *	the drive has the HPA feature set enabled.
1323  *
1324  *	RETURNS:
1325  *	0 on success, -errno on failure.
1326  */
1327 static int ata_hpa_resize(struct ata_device *dev)
1328 {
1329 	struct ata_eh_context *ehc = &dev->link->eh_context;
1330 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1331 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1332 	u64 sectors = ata_id_n_sectors(dev->id);
1333 	u64 native_sectors;
1334 	int rc;
1335 
1336 	/* do we need to do it? */
1337 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1338 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1339 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1340 		return 0;
1341 
1342 	/* read native max address */
1343 	rc = ata_read_native_max_address(dev, &native_sectors);
1344 	if (rc) {
1345 		/* If device aborted the command or HPA isn't going to
1346 		 * be unlocked, skip HPA resizing.
1347 		 */
1348 		if (rc == -EACCES || !unlock_hpa) {
1349 			ata_dev_warn(dev,
1350 				     "HPA support seems broken, skipping HPA handling\n");
1351 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1352 
1353 			/* we can continue if device aborted the command */
1354 			if (rc == -EACCES)
1355 				rc = 0;
1356 		}
1357 
1358 		return rc;
1359 	}
1360 	dev->n_native_sectors = native_sectors;
1361 
1362 	/* nothing to do? */
1363 	if (native_sectors <= sectors || !unlock_hpa) {
1364 		if (!print_info || native_sectors == sectors)
1365 			return 0;
1366 
1367 		if (native_sectors > sectors)
1368 			ata_dev_info(dev,
1369 				"HPA detected: current %llu, native %llu\n",
1370 				(unsigned long long)sectors,
1371 				(unsigned long long)native_sectors);
1372 		else if (native_sectors < sectors)
1373 			ata_dev_warn(dev,
1374 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1375 				(unsigned long long)native_sectors,
1376 				(unsigned long long)sectors);
1377 		return 0;
1378 	}
1379 
1380 	/* let's unlock HPA */
1381 	rc = ata_set_max_sectors(dev, native_sectors);
1382 	if (rc == -EACCES) {
1383 		/* if device aborted the command, skip HPA resizing */
1384 		ata_dev_warn(dev,
1385 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1386 			     (unsigned long long)sectors,
1387 			     (unsigned long long)native_sectors);
1388 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1389 		return 0;
1390 	} else if (rc)
1391 		return rc;
1392 
1393 	/* re-read IDENTIFY data */
1394 	rc = ata_dev_reread_id(dev, 0);
1395 	if (rc) {
1396 		ata_dev_err(dev,
1397 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1398 		return rc;
1399 	}
1400 
1401 	if (print_info) {
1402 		u64 new_sectors = ata_id_n_sectors(dev->id);
1403 		ata_dev_info(dev,
1404 			"HPA unlocked: %llu -> %llu, native %llu\n",
1405 			(unsigned long long)sectors,
1406 			(unsigned long long)new_sectors,
1407 			(unsigned long long)native_sectors);
1408 	}
1409 
1410 	return 0;
1411 }
1412 
1413 /**
1414  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1415  *	@id: IDENTIFY DEVICE page to dump
1416  *
1417  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1418  *	page.
1419  *
1420  *	LOCKING:
1421  *	caller.
1422  */
1423 
1424 static inline void ata_dump_id(const u16 *id)
1425 {
1426 	DPRINTK("49==0x%04x  "
1427 		"53==0x%04x  "
1428 		"63==0x%04x  "
1429 		"64==0x%04x  "
1430 		"75==0x%04x  \n",
1431 		id[49],
1432 		id[53],
1433 		id[63],
1434 		id[64],
1435 		id[75]);
1436 	DPRINTK("80==0x%04x  "
1437 		"81==0x%04x  "
1438 		"82==0x%04x  "
1439 		"83==0x%04x  "
1440 		"84==0x%04x  \n",
1441 		id[80],
1442 		id[81],
1443 		id[82],
1444 		id[83],
1445 		id[84]);
1446 	DPRINTK("88==0x%04x  "
1447 		"93==0x%04x\n",
1448 		id[88],
1449 		id[93]);
1450 }
1451 
1452 /**
1453  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1454  *	@id: IDENTIFY data to compute xfer mask from
1455  *
1456  *	Compute the xfermask for this device. This is not as trivial
1457  *	as it seems if we must consider early devices correctly.
1458  *
1459  *	FIXME: pre IDE drive timing (do we care ?).
1460  *
1461  *	LOCKING:
1462  *	None.
1463  *
1464  *	RETURNS:
1465  *	Computed xfermask
1466  */
1467 unsigned long ata_id_xfermask(const u16 *id)
1468 {
1469 	unsigned long pio_mask, mwdma_mask, udma_mask;
1470 
1471 	/* Usual case. Word 53 indicates word 64 is valid */
1472 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1473 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1474 		pio_mask <<= 3;
1475 		pio_mask |= 0x7;
1476 	} else {
1477 		/* If word 64 isn't valid then Word 51 high byte holds
1478 		 * the PIO timing number for the maximum. Turn it into
1479 		 * a mask.
1480 		 */
1481 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1482 		if (mode < 5)	/* Valid PIO range */
1483 			pio_mask = (2 << mode) - 1;
1484 		else
1485 			pio_mask = 1;
1486 
1487 		/* But wait.. there's more. Design your standards by
1488 		 * committee and you too can get a free iordy field to
1489 		 * process. However its the speeds not the modes that
1490 		 * are supported... Note drivers using the timing API
1491 		 * will get this right anyway
1492 		 */
1493 	}
1494 
1495 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1496 
1497 	if (ata_id_is_cfa(id)) {
1498 		/*
1499 		 *	Process compact flash extended modes
1500 		 */
1501 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1502 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1503 
1504 		if (pio)
1505 			pio_mask |= (1 << 5);
1506 		if (pio > 1)
1507 			pio_mask |= (1 << 6);
1508 		if (dma)
1509 			mwdma_mask |= (1 << 3);
1510 		if (dma > 1)
1511 			mwdma_mask |= (1 << 4);
1512 	}
1513 
1514 	udma_mask = 0;
1515 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1516 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1517 
1518 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1519 }
1520 
1521 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1522 {
1523 	struct completion *waiting = qc->private_data;
1524 
1525 	complete(waiting);
1526 }
1527 
1528 /**
1529  *	ata_exec_internal_sg - execute libata internal command
1530  *	@dev: Device to which the command is sent
1531  *	@tf: Taskfile registers for the command and the result
1532  *	@cdb: CDB for packet command
1533  *	@dma_dir: Data transfer direction of the command
1534  *	@sgl: sg list for the data buffer of the command
1535  *	@n_elem: Number of sg entries
1536  *	@timeout: Timeout in msecs (0 for default)
1537  *
1538  *	Executes libata internal command with timeout.  @tf contains
1539  *	command on entry and result on return.  Timeout and error
1540  *	conditions are reported via return value.  No recovery action
1541  *	is taken after a command times out.  It's caller's duty to
1542  *	clean up after timeout.
1543  *
1544  *	LOCKING:
1545  *	None.  Should be called with kernel context, might sleep.
1546  *
1547  *	RETURNS:
1548  *	Zero on success, AC_ERR_* mask on failure
1549  */
1550 unsigned ata_exec_internal_sg(struct ata_device *dev,
1551 			      struct ata_taskfile *tf, const u8 *cdb,
1552 			      int dma_dir, struct scatterlist *sgl,
1553 			      unsigned int n_elem, unsigned long timeout)
1554 {
1555 	struct ata_link *link = dev->link;
1556 	struct ata_port *ap = link->ap;
1557 	u8 command = tf->command;
1558 	int auto_timeout = 0;
1559 	struct ata_queued_cmd *qc;
1560 	unsigned int tag, preempted_tag;
1561 	u32 preempted_sactive, preempted_qc_active;
1562 	int preempted_nr_active_links;
1563 	DECLARE_COMPLETION_ONSTACK(wait);
1564 	unsigned long flags;
1565 	unsigned int err_mask;
1566 	int rc;
1567 
1568 	spin_lock_irqsave(ap->lock, flags);
1569 
1570 	/* no internal command while frozen */
1571 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1572 		spin_unlock_irqrestore(ap->lock, flags);
1573 		return AC_ERR_SYSTEM;
1574 	}
1575 
1576 	/* initialize internal qc */
1577 
1578 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1579 	 * drivers choke if any other tag is given.  This breaks
1580 	 * ata_tag_internal() test for those drivers.  Don't use new
1581 	 * EH stuff without converting to it.
1582 	 */
1583 	if (ap->ops->error_handler)
1584 		tag = ATA_TAG_INTERNAL;
1585 	else
1586 		tag = 0;
1587 
1588 	qc = __ata_qc_from_tag(ap, tag);
1589 
1590 	qc->tag = tag;
1591 	qc->scsicmd = NULL;
1592 	qc->ap = ap;
1593 	qc->dev = dev;
1594 	ata_qc_reinit(qc);
1595 
1596 	preempted_tag = link->active_tag;
1597 	preempted_sactive = link->sactive;
1598 	preempted_qc_active = ap->qc_active;
1599 	preempted_nr_active_links = ap->nr_active_links;
1600 	link->active_tag = ATA_TAG_POISON;
1601 	link->sactive = 0;
1602 	ap->qc_active = 0;
1603 	ap->nr_active_links = 0;
1604 
1605 	/* prepare & issue qc */
1606 	qc->tf = *tf;
1607 	if (cdb)
1608 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1609 
1610 	/* some SATA bridges need us to indicate data xfer direction */
1611 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1612 	    dma_dir == DMA_FROM_DEVICE)
1613 		qc->tf.feature |= ATAPI_DMADIR;
1614 
1615 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1616 	qc->dma_dir = dma_dir;
1617 	if (dma_dir != DMA_NONE) {
1618 		unsigned int i, buflen = 0;
1619 		struct scatterlist *sg;
1620 
1621 		for_each_sg(sgl, sg, n_elem, i)
1622 			buflen += sg->length;
1623 
1624 		ata_sg_init(qc, sgl, n_elem);
1625 		qc->nbytes = buflen;
1626 	}
1627 
1628 	qc->private_data = &wait;
1629 	qc->complete_fn = ata_qc_complete_internal;
1630 
1631 	ata_qc_issue(qc);
1632 
1633 	spin_unlock_irqrestore(ap->lock, flags);
1634 
1635 	if (!timeout) {
1636 		if (ata_probe_timeout)
1637 			timeout = ata_probe_timeout * 1000;
1638 		else {
1639 			timeout = ata_internal_cmd_timeout(dev, command);
1640 			auto_timeout = 1;
1641 		}
1642 	}
1643 
1644 	if (ap->ops->error_handler)
1645 		ata_eh_release(ap);
1646 
1647 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1648 
1649 	if (ap->ops->error_handler)
1650 		ata_eh_acquire(ap);
1651 
1652 	ata_sff_flush_pio_task(ap);
1653 
1654 	if (!rc) {
1655 		spin_lock_irqsave(ap->lock, flags);
1656 
1657 		/* We're racing with irq here.  If we lose, the
1658 		 * following test prevents us from completing the qc
1659 		 * twice.  If we win, the port is frozen and will be
1660 		 * cleaned up by ->post_internal_cmd().
1661 		 */
1662 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1663 			qc->err_mask |= AC_ERR_TIMEOUT;
1664 
1665 			if (ap->ops->error_handler)
1666 				ata_port_freeze(ap);
1667 			else
1668 				ata_qc_complete(qc);
1669 
1670 			if (ata_msg_warn(ap))
1671 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1672 					     command);
1673 		}
1674 
1675 		spin_unlock_irqrestore(ap->lock, flags);
1676 	}
1677 
1678 	/* do post_internal_cmd */
1679 	if (ap->ops->post_internal_cmd)
1680 		ap->ops->post_internal_cmd(qc);
1681 
1682 	/* perform minimal error analysis */
1683 	if (qc->flags & ATA_QCFLAG_FAILED) {
1684 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1685 			qc->err_mask |= AC_ERR_DEV;
1686 
1687 		if (!qc->err_mask)
1688 			qc->err_mask |= AC_ERR_OTHER;
1689 
1690 		if (qc->err_mask & ~AC_ERR_OTHER)
1691 			qc->err_mask &= ~AC_ERR_OTHER;
1692 	}
1693 
1694 	/* finish up */
1695 	spin_lock_irqsave(ap->lock, flags);
1696 
1697 	*tf = qc->result_tf;
1698 	err_mask = qc->err_mask;
1699 
1700 	ata_qc_free(qc);
1701 	link->active_tag = preempted_tag;
1702 	link->sactive = preempted_sactive;
1703 	ap->qc_active = preempted_qc_active;
1704 	ap->nr_active_links = preempted_nr_active_links;
1705 
1706 	spin_unlock_irqrestore(ap->lock, flags);
1707 
1708 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1709 		ata_internal_cmd_timed_out(dev, command);
1710 
1711 	return err_mask;
1712 }
1713 
1714 /**
1715  *	ata_exec_internal - execute libata internal command
1716  *	@dev: Device to which the command is sent
1717  *	@tf: Taskfile registers for the command and the result
1718  *	@cdb: CDB for packet command
1719  *	@dma_dir: Data transfer direction of the command
1720  *	@buf: Data buffer of the command
1721  *	@buflen: Length of data buffer
1722  *	@timeout: Timeout in msecs (0 for default)
1723  *
1724  *	Wrapper around ata_exec_internal_sg() which takes simple
1725  *	buffer instead of sg list.
1726  *
1727  *	LOCKING:
1728  *	None.  Should be called with kernel context, might sleep.
1729  *
1730  *	RETURNS:
1731  *	Zero on success, AC_ERR_* mask on failure
1732  */
1733 unsigned ata_exec_internal(struct ata_device *dev,
1734 			   struct ata_taskfile *tf, const u8 *cdb,
1735 			   int dma_dir, void *buf, unsigned int buflen,
1736 			   unsigned long timeout)
1737 {
1738 	struct scatterlist *psg = NULL, sg;
1739 	unsigned int n_elem = 0;
1740 
1741 	if (dma_dir != DMA_NONE) {
1742 		WARN_ON(!buf);
1743 		sg_init_one(&sg, buf, buflen);
1744 		psg = &sg;
1745 		n_elem++;
1746 	}
1747 
1748 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1749 				    timeout);
1750 }
1751 
1752 /**
1753  *	ata_pio_need_iordy	-	check if iordy needed
1754  *	@adev: ATA device
1755  *
1756  *	Check if the current speed of the device requires IORDY. Used
1757  *	by various controllers for chip configuration.
1758  */
1759 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1760 {
1761 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1762 	 * lead to controller lock up on certain controllers if the
1763 	 * port is not occupied.  See bko#11703 for details.
1764 	 */
1765 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1766 		return 0;
1767 	/* Controller doesn't support IORDY.  Probably a pointless
1768 	 * check as the caller should know this.
1769 	 */
1770 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1771 		return 0;
1772 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1773 	if (ata_id_is_cfa(adev->id)
1774 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1775 		return 0;
1776 	/* PIO3 and higher it is mandatory */
1777 	if (adev->pio_mode > XFER_PIO_2)
1778 		return 1;
1779 	/* We turn it on when possible */
1780 	if (ata_id_has_iordy(adev->id))
1781 		return 1;
1782 	return 0;
1783 }
1784 
1785 /**
1786  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1787  *	@adev: ATA device
1788  *
1789  *	Compute the highest mode possible if we are not using iordy. Return
1790  *	-1 if no iordy mode is available.
1791  */
1792 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1793 {
1794 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1795 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1796 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1797 		/* Is the speed faster than the drive allows non IORDY ? */
1798 		if (pio) {
1799 			/* This is cycle times not frequency - watch the logic! */
1800 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1801 				return 3 << ATA_SHIFT_PIO;
1802 			return 7 << ATA_SHIFT_PIO;
1803 		}
1804 	}
1805 	return 3 << ATA_SHIFT_PIO;
1806 }
1807 
1808 /**
1809  *	ata_do_dev_read_id		-	default ID read method
1810  *	@dev: device
1811  *	@tf: proposed taskfile
1812  *	@id: data buffer
1813  *
1814  *	Issue the identify taskfile and hand back the buffer containing
1815  *	identify data. For some RAID controllers and for pre ATA devices
1816  *	this function is wrapped or replaced by the driver
1817  */
1818 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1819 					struct ata_taskfile *tf, u16 *id)
1820 {
1821 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1822 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1823 }
1824 
1825 /**
1826  *	ata_dev_read_id - Read ID data from the specified device
1827  *	@dev: target device
1828  *	@p_class: pointer to class of the target device (may be changed)
1829  *	@flags: ATA_READID_* flags
1830  *	@id: buffer to read IDENTIFY data into
1831  *
1832  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1833  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1834  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1835  *	for pre-ATA4 drives.
1836  *
1837  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1838  *	now we abort if we hit that case.
1839  *
1840  *	LOCKING:
1841  *	Kernel thread context (may sleep)
1842  *
1843  *	RETURNS:
1844  *	0 on success, -errno otherwise.
1845  */
1846 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1847 		    unsigned int flags, u16 *id)
1848 {
1849 	struct ata_port *ap = dev->link->ap;
1850 	unsigned int class = *p_class;
1851 	struct ata_taskfile tf;
1852 	unsigned int err_mask = 0;
1853 	const char *reason;
1854 	bool is_semb = class == ATA_DEV_SEMB;
1855 	int may_fallback = 1, tried_spinup = 0;
1856 	int rc;
1857 
1858 	if (ata_msg_ctl(ap))
1859 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1860 
1861 retry:
1862 	ata_tf_init(dev, &tf);
1863 
1864 	switch (class) {
1865 	case ATA_DEV_SEMB:
1866 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1867 	case ATA_DEV_ATA:
1868 	case ATA_DEV_ZAC:
1869 		tf.command = ATA_CMD_ID_ATA;
1870 		break;
1871 	case ATA_DEV_ATAPI:
1872 		tf.command = ATA_CMD_ID_ATAPI;
1873 		break;
1874 	default:
1875 		rc = -ENODEV;
1876 		reason = "unsupported class";
1877 		goto err_out;
1878 	}
1879 
1880 	tf.protocol = ATA_PROT_PIO;
1881 
1882 	/* Some devices choke if TF registers contain garbage.  Make
1883 	 * sure those are properly initialized.
1884 	 */
1885 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1886 
1887 	/* Device presence detection is unreliable on some
1888 	 * controllers.  Always poll IDENTIFY if available.
1889 	 */
1890 	tf.flags |= ATA_TFLAG_POLLING;
1891 
1892 	if (ap->ops->read_id)
1893 		err_mask = ap->ops->read_id(dev, &tf, id);
1894 	else
1895 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1896 
1897 	if (err_mask) {
1898 		if (err_mask & AC_ERR_NODEV_HINT) {
1899 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1900 			return -ENOENT;
1901 		}
1902 
1903 		if (is_semb) {
1904 			ata_dev_info(dev,
1905 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1906 			/* SEMB is not supported yet */
1907 			*p_class = ATA_DEV_SEMB_UNSUP;
1908 			return 0;
1909 		}
1910 
1911 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1912 			/* Device or controller might have reported
1913 			 * the wrong device class.  Give a shot at the
1914 			 * other IDENTIFY if the current one is
1915 			 * aborted by the device.
1916 			 */
1917 			if (may_fallback) {
1918 				may_fallback = 0;
1919 
1920 				if (class == ATA_DEV_ATA)
1921 					class = ATA_DEV_ATAPI;
1922 				else
1923 					class = ATA_DEV_ATA;
1924 				goto retry;
1925 			}
1926 
1927 			/* Control reaches here iff the device aborted
1928 			 * both flavors of IDENTIFYs which happens
1929 			 * sometimes with phantom devices.
1930 			 */
1931 			ata_dev_dbg(dev,
1932 				    "both IDENTIFYs aborted, assuming NODEV\n");
1933 			return -ENOENT;
1934 		}
1935 
1936 		rc = -EIO;
1937 		reason = "I/O error";
1938 		goto err_out;
1939 	}
1940 
1941 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1942 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1943 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1944 			    class, may_fallback, tried_spinup);
1945 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1946 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1947 	}
1948 
1949 	/* Falling back doesn't make sense if ID data was read
1950 	 * successfully at least once.
1951 	 */
1952 	may_fallback = 0;
1953 
1954 	swap_buf_le16(id, ATA_ID_WORDS);
1955 
1956 	/* sanity check */
1957 	rc = -EINVAL;
1958 	reason = "device reports invalid type";
1959 
1960 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1961 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1962 			goto err_out;
1963 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1964 							ata_id_is_ata(id)) {
1965 			ata_dev_dbg(dev,
1966 				"host indicates ignore ATA devices, ignored\n");
1967 			return -ENOENT;
1968 		}
1969 	} else {
1970 		if (ata_id_is_ata(id))
1971 			goto err_out;
1972 	}
1973 
1974 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1975 		tried_spinup = 1;
1976 		/*
1977 		 * Drive powered-up in standby mode, and requires a specific
1978 		 * SET_FEATURES spin-up subcommand before it will accept
1979 		 * anything other than the original IDENTIFY command.
1980 		 */
1981 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1982 		if (err_mask && id[2] != 0x738c) {
1983 			rc = -EIO;
1984 			reason = "SPINUP failed";
1985 			goto err_out;
1986 		}
1987 		/*
1988 		 * If the drive initially returned incomplete IDENTIFY info,
1989 		 * we now must reissue the IDENTIFY command.
1990 		 */
1991 		if (id[2] == 0x37c8)
1992 			goto retry;
1993 	}
1994 
1995 	if ((flags & ATA_READID_POSTRESET) &&
1996 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1997 		/*
1998 		 * The exact sequence expected by certain pre-ATA4 drives is:
1999 		 * SRST RESET
2000 		 * IDENTIFY (optional in early ATA)
2001 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2002 		 * anything else..
2003 		 * Some drives were very specific about that exact sequence.
2004 		 *
2005 		 * Note that ATA4 says lba is mandatory so the second check
2006 		 * should never trigger.
2007 		 */
2008 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2009 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2010 			if (err_mask) {
2011 				rc = -EIO;
2012 				reason = "INIT_DEV_PARAMS failed";
2013 				goto err_out;
2014 			}
2015 
2016 			/* current CHS translation info (id[53-58]) might be
2017 			 * changed. reread the identify device info.
2018 			 */
2019 			flags &= ~ATA_READID_POSTRESET;
2020 			goto retry;
2021 		}
2022 	}
2023 
2024 	*p_class = class;
2025 
2026 	return 0;
2027 
2028  err_out:
2029 	if (ata_msg_warn(ap))
2030 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2031 			     reason, err_mask);
2032 	return rc;
2033 }
2034 
2035 static int ata_do_link_spd_horkage(struct ata_device *dev)
2036 {
2037 	struct ata_link *plink = ata_dev_phys_link(dev);
2038 	u32 target, target_limit;
2039 
2040 	if (!sata_scr_valid(plink))
2041 		return 0;
2042 
2043 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2044 		target = 1;
2045 	else
2046 		return 0;
2047 
2048 	target_limit = (1 << target) - 1;
2049 
2050 	/* if already on stricter limit, no need to push further */
2051 	if (plink->sata_spd_limit <= target_limit)
2052 		return 0;
2053 
2054 	plink->sata_spd_limit = target_limit;
2055 
2056 	/* Request another EH round by returning -EAGAIN if link is
2057 	 * going faster than the target speed.  Forward progress is
2058 	 * guaranteed by setting sata_spd_limit to target_limit above.
2059 	 */
2060 	if (plink->sata_spd > target) {
2061 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2062 			     sata_spd_string(target));
2063 		return -EAGAIN;
2064 	}
2065 	return 0;
2066 }
2067 
2068 static inline u8 ata_dev_knobble(struct ata_device *dev)
2069 {
2070 	struct ata_port *ap = dev->link->ap;
2071 
2072 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2073 		return 0;
2074 
2075 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2076 }
2077 
2078 static int ata_dev_config_ncq(struct ata_device *dev,
2079 			       char *desc, size_t desc_sz)
2080 {
2081 	struct ata_port *ap = dev->link->ap;
2082 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2083 	unsigned int err_mask;
2084 	char *aa_desc = "";
2085 
2086 	if (!ata_id_has_ncq(dev->id)) {
2087 		desc[0] = '\0';
2088 		return 0;
2089 	}
2090 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2091 		snprintf(desc, desc_sz, "NCQ (not used)");
2092 		return 0;
2093 	}
2094 	if (ap->flags & ATA_FLAG_NCQ) {
2095 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2096 		dev->flags |= ATA_DFLAG_NCQ;
2097 	}
2098 
2099 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2100 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2101 		ata_id_has_fpdma_aa(dev->id)) {
2102 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2103 			SATA_FPDMA_AA);
2104 		if (err_mask) {
2105 			ata_dev_err(dev,
2106 				    "failed to enable AA (error_mask=0x%x)\n",
2107 				    err_mask);
2108 			if (err_mask != AC_ERR_DEV) {
2109 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2110 				return -EIO;
2111 			}
2112 		} else
2113 			aa_desc = ", AA";
2114 	}
2115 
2116 	if (hdepth >= ddepth)
2117 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2118 	else
2119 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2120 			ddepth, aa_desc);
2121 
2122 	if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2123 	    ata_id_has_ncq_send_and_recv(dev->id)) {
2124 		err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2125 					     0, ap->sector_buf, 1);
2126 		if (err_mask) {
2127 			ata_dev_dbg(dev,
2128 				    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2129 				    err_mask);
2130 		} else {
2131 			u8 *cmds = dev->ncq_send_recv_cmds;
2132 
2133 			dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2134 			memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2135 
2136 			if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2137 				ata_dev_dbg(dev, "disabling queued TRIM support\n");
2138 				cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2139 					~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2140 			}
2141 		}
2142 	}
2143 
2144 	return 0;
2145 }
2146 
2147 /**
2148  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2149  *	@dev: Target device to configure
2150  *
2151  *	Configure @dev according to @dev->id.  Generic and low-level
2152  *	driver specific fixups are also applied.
2153  *
2154  *	LOCKING:
2155  *	Kernel thread context (may sleep)
2156  *
2157  *	RETURNS:
2158  *	0 on success, -errno otherwise
2159  */
2160 int ata_dev_configure(struct ata_device *dev)
2161 {
2162 	struct ata_port *ap = dev->link->ap;
2163 	struct ata_eh_context *ehc = &dev->link->eh_context;
2164 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2165 	const u16 *id = dev->id;
2166 	unsigned long xfer_mask;
2167 	unsigned int err_mask;
2168 	char revbuf[7];		/* XYZ-99\0 */
2169 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2170 	char modelbuf[ATA_ID_PROD_LEN+1];
2171 	int rc;
2172 
2173 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2174 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2175 		return 0;
2176 	}
2177 
2178 	if (ata_msg_probe(ap))
2179 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2180 
2181 	/* set horkage */
2182 	dev->horkage |= ata_dev_blacklisted(dev);
2183 	ata_force_horkage(dev);
2184 
2185 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2186 		ata_dev_info(dev, "unsupported device, disabling\n");
2187 		ata_dev_disable(dev);
2188 		return 0;
2189 	}
2190 
2191 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2192 	    dev->class == ATA_DEV_ATAPI) {
2193 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2194 			     atapi_enabled ? "not supported with this driver"
2195 			     : "disabled");
2196 		ata_dev_disable(dev);
2197 		return 0;
2198 	}
2199 
2200 	rc = ata_do_link_spd_horkage(dev);
2201 	if (rc)
2202 		return rc;
2203 
2204 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2205 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2206 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2207 		dev->horkage |= ATA_HORKAGE_NOLPM;
2208 
2209 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2210 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2211 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2212 	}
2213 
2214 	/* let ACPI work its magic */
2215 	rc = ata_acpi_on_devcfg(dev);
2216 	if (rc)
2217 		return rc;
2218 
2219 	/* massage HPA, do it early as it might change IDENTIFY data */
2220 	rc = ata_hpa_resize(dev);
2221 	if (rc)
2222 		return rc;
2223 
2224 	/* print device capabilities */
2225 	if (ata_msg_probe(ap))
2226 		ata_dev_dbg(dev,
2227 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2228 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2229 			    __func__,
2230 			    id[49], id[82], id[83], id[84],
2231 			    id[85], id[86], id[87], id[88]);
2232 
2233 	/* initialize to-be-configured parameters */
2234 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2235 	dev->max_sectors = 0;
2236 	dev->cdb_len = 0;
2237 	dev->n_sectors = 0;
2238 	dev->cylinders = 0;
2239 	dev->heads = 0;
2240 	dev->sectors = 0;
2241 	dev->multi_count = 0;
2242 
2243 	/*
2244 	 * common ATA, ATAPI feature tests
2245 	 */
2246 
2247 	/* find max transfer mode; for printk only */
2248 	xfer_mask = ata_id_xfermask(id);
2249 
2250 	if (ata_msg_probe(ap))
2251 		ata_dump_id(id);
2252 
2253 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2254 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2255 			sizeof(fwrevbuf));
2256 
2257 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2258 			sizeof(modelbuf));
2259 
2260 	/* ATA-specific feature tests */
2261 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2262 		if (ata_id_is_cfa(id)) {
2263 			/* CPRM may make this media unusable */
2264 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2265 				ata_dev_warn(dev,
2266 	"supports DRM functions and may not be fully accessible\n");
2267 			snprintf(revbuf, 7, "CFA");
2268 		} else {
2269 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2270 			/* Warn the user if the device has TPM extensions */
2271 			if (ata_id_has_tpm(id))
2272 				ata_dev_warn(dev,
2273 	"supports DRM functions and may not be fully accessible\n");
2274 		}
2275 
2276 		dev->n_sectors = ata_id_n_sectors(id);
2277 
2278 		/* get current R/W Multiple count setting */
2279 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2280 			unsigned int max = dev->id[47] & 0xff;
2281 			unsigned int cnt = dev->id[59] & 0xff;
2282 			/* only recognize/allow powers of two here */
2283 			if (is_power_of_2(max) && is_power_of_2(cnt))
2284 				if (cnt <= max)
2285 					dev->multi_count = cnt;
2286 		}
2287 
2288 		if (ata_id_has_lba(id)) {
2289 			const char *lba_desc;
2290 			char ncq_desc[24];
2291 
2292 			lba_desc = "LBA";
2293 			dev->flags |= ATA_DFLAG_LBA;
2294 			if (ata_id_has_lba48(id)) {
2295 				dev->flags |= ATA_DFLAG_LBA48;
2296 				lba_desc = "LBA48";
2297 
2298 				if (dev->n_sectors >= (1UL << 28) &&
2299 				    ata_id_has_flush_ext(id))
2300 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2301 			}
2302 
2303 			/* config NCQ */
2304 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2305 			if (rc)
2306 				return rc;
2307 
2308 			/* print device info to dmesg */
2309 			if (ata_msg_drv(ap) && print_info) {
2310 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2311 					     revbuf, modelbuf, fwrevbuf,
2312 					     ata_mode_string(xfer_mask));
2313 				ata_dev_info(dev,
2314 					     "%llu sectors, multi %u: %s %s\n",
2315 					(unsigned long long)dev->n_sectors,
2316 					dev->multi_count, lba_desc, ncq_desc);
2317 			}
2318 		} else {
2319 			/* CHS */
2320 
2321 			/* Default translation */
2322 			dev->cylinders	= id[1];
2323 			dev->heads	= id[3];
2324 			dev->sectors	= id[6];
2325 
2326 			if (ata_id_current_chs_valid(id)) {
2327 				/* Current CHS translation is valid. */
2328 				dev->cylinders = id[54];
2329 				dev->heads     = id[55];
2330 				dev->sectors   = id[56];
2331 			}
2332 
2333 			/* print device info to dmesg */
2334 			if (ata_msg_drv(ap) && print_info) {
2335 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2336 					     revbuf,	modelbuf, fwrevbuf,
2337 					     ata_mode_string(xfer_mask));
2338 				ata_dev_info(dev,
2339 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2340 					     (unsigned long long)dev->n_sectors,
2341 					     dev->multi_count, dev->cylinders,
2342 					     dev->heads, dev->sectors);
2343 			}
2344 		}
2345 
2346 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2347 		 * from SATA Settings page of Identify Device Data Log.
2348 		 */
2349 		if (ata_id_has_devslp(dev->id)) {
2350 			u8 *sata_setting = ap->sector_buf;
2351 			int i, j;
2352 
2353 			dev->flags |= ATA_DFLAG_DEVSLP;
2354 			err_mask = ata_read_log_page(dev,
2355 						     ATA_LOG_SATA_ID_DEV_DATA,
2356 						     ATA_LOG_SATA_SETTINGS,
2357 						     sata_setting,
2358 						     1);
2359 			if (err_mask)
2360 				ata_dev_dbg(dev,
2361 					    "failed to get Identify Device Data, Emask 0x%x\n",
2362 					    err_mask);
2363 			else
2364 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2365 					j = ATA_LOG_DEVSLP_OFFSET + i;
2366 					dev->devslp_timing[i] = sata_setting[j];
2367 				}
2368 		}
2369 
2370 		dev->cdb_len = 16;
2371 	}
2372 
2373 	/* ATAPI-specific feature tests */
2374 	else if (dev->class == ATA_DEV_ATAPI) {
2375 		const char *cdb_intr_string = "";
2376 		const char *atapi_an_string = "";
2377 		const char *dma_dir_string = "";
2378 		u32 sntf;
2379 
2380 		rc = atapi_cdb_len(id);
2381 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2382 			if (ata_msg_warn(ap))
2383 				ata_dev_warn(dev, "unsupported CDB len\n");
2384 			rc = -EINVAL;
2385 			goto err_out_nosup;
2386 		}
2387 		dev->cdb_len = (unsigned int) rc;
2388 
2389 		/* Enable ATAPI AN if both the host and device have
2390 		 * the support.  If PMP is attached, SNTF is required
2391 		 * to enable ATAPI AN to discern between PHY status
2392 		 * changed notifications and ATAPI ANs.
2393 		 */
2394 		if (atapi_an &&
2395 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2396 		    (!sata_pmp_attached(ap) ||
2397 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2398 			/* issue SET feature command to turn this on */
2399 			err_mask = ata_dev_set_feature(dev,
2400 					SETFEATURES_SATA_ENABLE, SATA_AN);
2401 			if (err_mask)
2402 				ata_dev_err(dev,
2403 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2404 					    err_mask);
2405 			else {
2406 				dev->flags |= ATA_DFLAG_AN;
2407 				atapi_an_string = ", ATAPI AN";
2408 			}
2409 		}
2410 
2411 		if (ata_id_cdb_intr(dev->id)) {
2412 			dev->flags |= ATA_DFLAG_CDB_INTR;
2413 			cdb_intr_string = ", CDB intr";
2414 		}
2415 
2416 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2417 			dev->flags |= ATA_DFLAG_DMADIR;
2418 			dma_dir_string = ", DMADIR";
2419 		}
2420 
2421 		if (ata_id_has_da(dev->id)) {
2422 			dev->flags |= ATA_DFLAG_DA;
2423 			zpodd_init(dev);
2424 		}
2425 
2426 		/* print device info to dmesg */
2427 		if (ata_msg_drv(ap) && print_info)
2428 			ata_dev_info(dev,
2429 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2430 				     modelbuf, fwrevbuf,
2431 				     ata_mode_string(xfer_mask),
2432 				     cdb_intr_string, atapi_an_string,
2433 				     dma_dir_string);
2434 	}
2435 
2436 	/* determine max_sectors */
2437 	dev->max_sectors = ATA_MAX_SECTORS;
2438 	if (dev->flags & ATA_DFLAG_LBA48)
2439 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2440 
2441 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2442 	   200 sectors */
2443 	if (ata_dev_knobble(dev)) {
2444 		if (ata_msg_drv(ap) && print_info)
2445 			ata_dev_info(dev, "applying bridge limits\n");
2446 		dev->udma_mask &= ATA_UDMA5;
2447 		dev->max_sectors = ATA_MAX_SECTORS;
2448 	}
2449 
2450 	if ((dev->class == ATA_DEV_ATAPI) &&
2451 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2452 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2453 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2454 	}
2455 
2456 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2457 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2458 					 dev->max_sectors);
2459 
2460 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2461 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2462 
2463 	if (ap->ops->dev_config)
2464 		ap->ops->dev_config(dev);
2465 
2466 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2467 		/* Let the user know. We don't want to disallow opens for
2468 		   rescue purposes, or in case the vendor is just a blithering
2469 		   idiot. Do this after the dev_config call as some controllers
2470 		   with buggy firmware may want to avoid reporting false device
2471 		   bugs */
2472 
2473 		if (print_info) {
2474 			ata_dev_warn(dev,
2475 "Drive reports diagnostics failure. This may indicate a drive\n");
2476 			ata_dev_warn(dev,
2477 "fault or invalid emulation. Contact drive vendor for information.\n");
2478 		}
2479 	}
2480 
2481 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2482 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2483 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2484 	}
2485 
2486 	return 0;
2487 
2488 err_out_nosup:
2489 	if (ata_msg_probe(ap))
2490 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2491 	return rc;
2492 }
2493 
2494 /**
2495  *	ata_cable_40wire	-	return 40 wire cable type
2496  *	@ap: port
2497  *
2498  *	Helper method for drivers which want to hardwire 40 wire cable
2499  *	detection.
2500  */
2501 
2502 int ata_cable_40wire(struct ata_port *ap)
2503 {
2504 	return ATA_CBL_PATA40;
2505 }
2506 
2507 /**
2508  *	ata_cable_80wire	-	return 80 wire cable type
2509  *	@ap: port
2510  *
2511  *	Helper method for drivers which want to hardwire 80 wire cable
2512  *	detection.
2513  */
2514 
2515 int ata_cable_80wire(struct ata_port *ap)
2516 {
2517 	return ATA_CBL_PATA80;
2518 }
2519 
2520 /**
2521  *	ata_cable_unknown	-	return unknown PATA cable.
2522  *	@ap: port
2523  *
2524  *	Helper method for drivers which have no PATA cable detection.
2525  */
2526 
2527 int ata_cable_unknown(struct ata_port *ap)
2528 {
2529 	return ATA_CBL_PATA_UNK;
2530 }
2531 
2532 /**
2533  *	ata_cable_ignore	-	return ignored PATA cable.
2534  *	@ap: port
2535  *
2536  *	Helper method for drivers which don't use cable type to limit
2537  *	transfer mode.
2538  */
2539 int ata_cable_ignore(struct ata_port *ap)
2540 {
2541 	return ATA_CBL_PATA_IGN;
2542 }
2543 
2544 /**
2545  *	ata_cable_sata	-	return SATA cable type
2546  *	@ap: port
2547  *
2548  *	Helper method for drivers which have SATA cables
2549  */
2550 
2551 int ata_cable_sata(struct ata_port *ap)
2552 {
2553 	return ATA_CBL_SATA;
2554 }
2555 
2556 /**
2557  *	ata_bus_probe - Reset and probe ATA bus
2558  *	@ap: Bus to probe
2559  *
2560  *	Master ATA bus probing function.  Initiates a hardware-dependent
2561  *	bus reset, then attempts to identify any devices found on
2562  *	the bus.
2563  *
2564  *	LOCKING:
2565  *	PCI/etc. bus probe sem.
2566  *
2567  *	RETURNS:
2568  *	Zero on success, negative errno otherwise.
2569  */
2570 
2571 int ata_bus_probe(struct ata_port *ap)
2572 {
2573 	unsigned int classes[ATA_MAX_DEVICES];
2574 	int tries[ATA_MAX_DEVICES];
2575 	int rc;
2576 	struct ata_device *dev;
2577 
2578 	ata_for_each_dev(dev, &ap->link, ALL)
2579 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2580 
2581  retry:
2582 	ata_for_each_dev(dev, &ap->link, ALL) {
2583 		/* If we issue an SRST then an ATA drive (not ATAPI)
2584 		 * may change configuration and be in PIO0 timing. If
2585 		 * we do a hard reset (or are coming from power on)
2586 		 * this is true for ATA or ATAPI. Until we've set a
2587 		 * suitable controller mode we should not touch the
2588 		 * bus as we may be talking too fast.
2589 		 */
2590 		dev->pio_mode = XFER_PIO_0;
2591 		dev->dma_mode = 0xff;
2592 
2593 		/* If the controller has a pio mode setup function
2594 		 * then use it to set the chipset to rights. Don't
2595 		 * touch the DMA setup as that will be dealt with when
2596 		 * configuring devices.
2597 		 */
2598 		if (ap->ops->set_piomode)
2599 			ap->ops->set_piomode(ap, dev);
2600 	}
2601 
2602 	/* reset and determine device classes */
2603 	ap->ops->phy_reset(ap);
2604 
2605 	ata_for_each_dev(dev, &ap->link, ALL) {
2606 		if (dev->class != ATA_DEV_UNKNOWN)
2607 			classes[dev->devno] = dev->class;
2608 		else
2609 			classes[dev->devno] = ATA_DEV_NONE;
2610 
2611 		dev->class = ATA_DEV_UNKNOWN;
2612 	}
2613 
2614 	/* read IDENTIFY page and configure devices. We have to do the identify
2615 	   specific sequence bass-ackwards so that PDIAG- is released by
2616 	   the slave device */
2617 
2618 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2619 		if (tries[dev->devno])
2620 			dev->class = classes[dev->devno];
2621 
2622 		if (!ata_dev_enabled(dev))
2623 			continue;
2624 
2625 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2626 				     dev->id);
2627 		if (rc)
2628 			goto fail;
2629 	}
2630 
2631 	/* Now ask for the cable type as PDIAG- should have been released */
2632 	if (ap->ops->cable_detect)
2633 		ap->cbl = ap->ops->cable_detect(ap);
2634 
2635 	/* We may have SATA bridge glue hiding here irrespective of
2636 	 * the reported cable types and sensed types.  When SATA
2637 	 * drives indicate we have a bridge, we don't know which end
2638 	 * of the link the bridge is which is a problem.
2639 	 */
2640 	ata_for_each_dev(dev, &ap->link, ENABLED)
2641 		if (ata_id_is_sata(dev->id))
2642 			ap->cbl = ATA_CBL_SATA;
2643 
2644 	/* After the identify sequence we can now set up the devices. We do
2645 	   this in the normal order so that the user doesn't get confused */
2646 
2647 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2648 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2649 		rc = ata_dev_configure(dev);
2650 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2651 		if (rc)
2652 			goto fail;
2653 	}
2654 
2655 	/* configure transfer mode */
2656 	rc = ata_set_mode(&ap->link, &dev);
2657 	if (rc)
2658 		goto fail;
2659 
2660 	ata_for_each_dev(dev, &ap->link, ENABLED)
2661 		return 0;
2662 
2663 	return -ENODEV;
2664 
2665  fail:
2666 	tries[dev->devno]--;
2667 
2668 	switch (rc) {
2669 	case -EINVAL:
2670 		/* eeek, something went very wrong, give up */
2671 		tries[dev->devno] = 0;
2672 		break;
2673 
2674 	case -ENODEV:
2675 		/* give it just one more chance */
2676 		tries[dev->devno] = min(tries[dev->devno], 1);
2677 	case -EIO:
2678 		if (tries[dev->devno] == 1) {
2679 			/* This is the last chance, better to slow
2680 			 * down than lose it.
2681 			 */
2682 			sata_down_spd_limit(&ap->link, 0);
2683 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2684 		}
2685 	}
2686 
2687 	if (!tries[dev->devno])
2688 		ata_dev_disable(dev);
2689 
2690 	goto retry;
2691 }
2692 
2693 /**
2694  *	sata_print_link_status - Print SATA link status
2695  *	@link: SATA link to printk link status about
2696  *
2697  *	This function prints link speed and status of a SATA link.
2698  *
2699  *	LOCKING:
2700  *	None.
2701  */
2702 static void sata_print_link_status(struct ata_link *link)
2703 {
2704 	u32 sstatus, scontrol, tmp;
2705 
2706 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2707 		return;
2708 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2709 
2710 	if (ata_phys_link_online(link)) {
2711 		tmp = (sstatus >> 4) & 0xf;
2712 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2713 			      sata_spd_string(tmp), sstatus, scontrol);
2714 	} else {
2715 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2716 			      sstatus, scontrol);
2717 	}
2718 }
2719 
2720 /**
2721  *	ata_dev_pair		-	return other device on cable
2722  *	@adev: device
2723  *
2724  *	Obtain the other device on the same cable, or if none is
2725  *	present NULL is returned
2726  */
2727 
2728 struct ata_device *ata_dev_pair(struct ata_device *adev)
2729 {
2730 	struct ata_link *link = adev->link;
2731 	struct ata_device *pair = &link->device[1 - adev->devno];
2732 	if (!ata_dev_enabled(pair))
2733 		return NULL;
2734 	return pair;
2735 }
2736 
2737 /**
2738  *	sata_down_spd_limit - adjust SATA spd limit downward
2739  *	@link: Link to adjust SATA spd limit for
2740  *	@spd_limit: Additional limit
2741  *
2742  *	Adjust SATA spd limit of @link downward.  Note that this
2743  *	function only adjusts the limit.  The change must be applied
2744  *	using sata_set_spd().
2745  *
2746  *	If @spd_limit is non-zero, the speed is limited to equal to or
2747  *	lower than @spd_limit if such speed is supported.  If
2748  *	@spd_limit is slower than any supported speed, only the lowest
2749  *	supported speed is allowed.
2750  *
2751  *	LOCKING:
2752  *	Inherited from caller.
2753  *
2754  *	RETURNS:
2755  *	0 on success, negative errno on failure
2756  */
2757 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2758 {
2759 	u32 sstatus, spd, mask;
2760 	int rc, bit;
2761 
2762 	if (!sata_scr_valid(link))
2763 		return -EOPNOTSUPP;
2764 
2765 	/* If SCR can be read, use it to determine the current SPD.
2766 	 * If not, use cached value in link->sata_spd.
2767 	 */
2768 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2769 	if (rc == 0 && ata_sstatus_online(sstatus))
2770 		spd = (sstatus >> 4) & 0xf;
2771 	else
2772 		spd = link->sata_spd;
2773 
2774 	mask = link->sata_spd_limit;
2775 	if (mask <= 1)
2776 		return -EINVAL;
2777 
2778 	/* unconditionally mask off the highest bit */
2779 	bit = fls(mask) - 1;
2780 	mask &= ~(1 << bit);
2781 
2782 	/* Mask off all speeds higher than or equal to the current
2783 	 * one.  Force 1.5Gbps if current SPD is not available.
2784 	 */
2785 	if (spd > 1)
2786 		mask &= (1 << (spd - 1)) - 1;
2787 	else
2788 		mask &= 1;
2789 
2790 	/* were we already at the bottom? */
2791 	if (!mask)
2792 		return -EINVAL;
2793 
2794 	if (spd_limit) {
2795 		if (mask & ((1 << spd_limit) - 1))
2796 			mask &= (1 << spd_limit) - 1;
2797 		else {
2798 			bit = ffs(mask) - 1;
2799 			mask = 1 << bit;
2800 		}
2801 	}
2802 
2803 	link->sata_spd_limit = mask;
2804 
2805 	ata_link_warn(link, "limiting SATA link speed to %s\n",
2806 		      sata_spd_string(fls(mask)));
2807 
2808 	return 0;
2809 }
2810 
2811 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2812 {
2813 	struct ata_link *host_link = &link->ap->link;
2814 	u32 limit, target, spd;
2815 
2816 	limit = link->sata_spd_limit;
2817 
2818 	/* Don't configure downstream link faster than upstream link.
2819 	 * It doesn't speed up anything and some PMPs choke on such
2820 	 * configuration.
2821 	 */
2822 	if (!ata_is_host_link(link) && host_link->sata_spd)
2823 		limit &= (1 << host_link->sata_spd) - 1;
2824 
2825 	if (limit == UINT_MAX)
2826 		target = 0;
2827 	else
2828 		target = fls(limit);
2829 
2830 	spd = (*scontrol >> 4) & 0xf;
2831 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2832 
2833 	return spd != target;
2834 }
2835 
2836 /**
2837  *	sata_set_spd_needed - is SATA spd configuration needed
2838  *	@link: Link in question
2839  *
2840  *	Test whether the spd limit in SControl matches
2841  *	@link->sata_spd_limit.  This function is used to determine
2842  *	whether hardreset is necessary to apply SATA spd
2843  *	configuration.
2844  *
2845  *	LOCKING:
2846  *	Inherited from caller.
2847  *
2848  *	RETURNS:
2849  *	1 if SATA spd configuration is needed, 0 otherwise.
2850  */
2851 static int sata_set_spd_needed(struct ata_link *link)
2852 {
2853 	u32 scontrol;
2854 
2855 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2856 		return 1;
2857 
2858 	return __sata_set_spd_needed(link, &scontrol);
2859 }
2860 
2861 /**
2862  *	sata_set_spd - set SATA spd according to spd limit
2863  *	@link: Link to set SATA spd for
2864  *
2865  *	Set SATA spd of @link according to sata_spd_limit.
2866  *
2867  *	LOCKING:
2868  *	Inherited from caller.
2869  *
2870  *	RETURNS:
2871  *	0 if spd doesn't need to be changed, 1 if spd has been
2872  *	changed.  Negative errno if SCR registers are inaccessible.
2873  */
2874 int sata_set_spd(struct ata_link *link)
2875 {
2876 	u32 scontrol;
2877 	int rc;
2878 
2879 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2880 		return rc;
2881 
2882 	if (!__sata_set_spd_needed(link, &scontrol))
2883 		return 0;
2884 
2885 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2886 		return rc;
2887 
2888 	return 1;
2889 }
2890 
2891 /*
2892  * This mode timing computation functionality is ported over from
2893  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2894  */
2895 /*
2896  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2897  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2898  * for UDMA6, which is currently supported only by Maxtor drives.
2899  *
2900  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2901  */
2902 
2903 static const struct ata_timing ata_timing[] = {
2904 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2905 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2906 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2907 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2908 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2909 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2910 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2911 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2912 
2913 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2914 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2915 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2916 
2917 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2918 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2919 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2920 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2921 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2922 
2923 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2924 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2925 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2926 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2927 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2928 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2929 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2930 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2931 
2932 	{ 0xFF }
2933 };
2934 
2935 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2936 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2937 
2938 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2939 {
2940 	q->setup	= EZ(t->setup      * 1000,  T);
2941 	q->act8b	= EZ(t->act8b      * 1000,  T);
2942 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2943 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2944 	q->active	= EZ(t->active     * 1000,  T);
2945 	q->recover	= EZ(t->recover    * 1000,  T);
2946 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2947 	q->cycle	= EZ(t->cycle      * 1000,  T);
2948 	q->udma		= EZ(t->udma       * 1000, UT);
2949 }
2950 
2951 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2952 		      struct ata_timing *m, unsigned int what)
2953 {
2954 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2955 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2956 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2957 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2958 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2959 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2960 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2961 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2962 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2963 }
2964 
2965 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2966 {
2967 	const struct ata_timing *t = ata_timing;
2968 
2969 	while (xfer_mode > t->mode)
2970 		t++;
2971 
2972 	if (xfer_mode == t->mode)
2973 		return t;
2974 
2975 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2976 			__func__, xfer_mode);
2977 
2978 	return NULL;
2979 }
2980 
2981 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2982 		       struct ata_timing *t, int T, int UT)
2983 {
2984 	const u16 *id = adev->id;
2985 	const struct ata_timing *s;
2986 	struct ata_timing p;
2987 
2988 	/*
2989 	 * Find the mode.
2990 	 */
2991 
2992 	if (!(s = ata_timing_find_mode(speed)))
2993 		return -EINVAL;
2994 
2995 	memcpy(t, s, sizeof(*s));
2996 
2997 	/*
2998 	 * If the drive is an EIDE drive, it can tell us it needs extended
2999 	 * PIO/MW_DMA cycle timing.
3000 	 */
3001 
3002 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3003 		memset(&p, 0, sizeof(p));
3004 
3005 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3006 			if (speed <= XFER_PIO_2)
3007 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3008 			else if ((speed <= XFER_PIO_4) ||
3009 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3010 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3011 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3012 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3013 
3014 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3015 	}
3016 
3017 	/*
3018 	 * Convert the timing to bus clock counts.
3019 	 */
3020 
3021 	ata_timing_quantize(t, t, T, UT);
3022 
3023 	/*
3024 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3025 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3026 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3027 	 */
3028 
3029 	if (speed > XFER_PIO_6) {
3030 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3031 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3032 	}
3033 
3034 	/*
3035 	 * Lengthen active & recovery time so that cycle time is correct.
3036 	 */
3037 
3038 	if (t->act8b + t->rec8b < t->cyc8b) {
3039 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3040 		t->rec8b = t->cyc8b - t->act8b;
3041 	}
3042 
3043 	if (t->active + t->recover < t->cycle) {
3044 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3045 		t->recover = t->cycle - t->active;
3046 	}
3047 
3048 	/* In a few cases quantisation may produce enough errors to
3049 	   leave t->cycle too low for the sum of active and recovery
3050 	   if so we must correct this */
3051 	if (t->active + t->recover > t->cycle)
3052 		t->cycle = t->active + t->recover;
3053 
3054 	return 0;
3055 }
3056 
3057 /**
3058  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3059  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3060  *	@cycle: cycle duration in ns
3061  *
3062  *	Return matching xfer mode for @cycle.  The returned mode is of
3063  *	the transfer type specified by @xfer_shift.  If @cycle is too
3064  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3065  *	than the fastest known mode, the fasted mode is returned.
3066  *
3067  *	LOCKING:
3068  *	None.
3069  *
3070  *	RETURNS:
3071  *	Matching xfer_mode, 0xff if no match found.
3072  */
3073 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3074 {
3075 	u8 base_mode = 0xff, last_mode = 0xff;
3076 	const struct ata_xfer_ent *ent;
3077 	const struct ata_timing *t;
3078 
3079 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3080 		if (ent->shift == xfer_shift)
3081 			base_mode = ent->base;
3082 
3083 	for (t = ata_timing_find_mode(base_mode);
3084 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3085 		unsigned short this_cycle;
3086 
3087 		switch (xfer_shift) {
3088 		case ATA_SHIFT_PIO:
3089 		case ATA_SHIFT_MWDMA:
3090 			this_cycle = t->cycle;
3091 			break;
3092 		case ATA_SHIFT_UDMA:
3093 			this_cycle = t->udma;
3094 			break;
3095 		default:
3096 			return 0xff;
3097 		}
3098 
3099 		if (cycle > this_cycle)
3100 			break;
3101 
3102 		last_mode = t->mode;
3103 	}
3104 
3105 	return last_mode;
3106 }
3107 
3108 /**
3109  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3110  *	@dev: Device to adjust xfer masks
3111  *	@sel: ATA_DNXFER_* selector
3112  *
3113  *	Adjust xfer masks of @dev downward.  Note that this function
3114  *	does not apply the change.  Invoking ata_set_mode() afterwards
3115  *	will apply the limit.
3116  *
3117  *	LOCKING:
3118  *	Inherited from caller.
3119  *
3120  *	RETURNS:
3121  *	0 on success, negative errno on failure
3122  */
3123 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3124 {
3125 	char buf[32];
3126 	unsigned long orig_mask, xfer_mask;
3127 	unsigned long pio_mask, mwdma_mask, udma_mask;
3128 	int quiet, highbit;
3129 
3130 	quiet = !!(sel & ATA_DNXFER_QUIET);
3131 	sel &= ~ATA_DNXFER_QUIET;
3132 
3133 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3134 						  dev->mwdma_mask,
3135 						  dev->udma_mask);
3136 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3137 
3138 	switch (sel) {
3139 	case ATA_DNXFER_PIO:
3140 		highbit = fls(pio_mask) - 1;
3141 		pio_mask &= ~(1 << highbit);
3142 		break;
3143 
3144 	case ATA_DNXFER_DMA:
3145 		if (udma_mask) {
3146 			highbit = fls(udma_mask) - 1;
3147 			udma_mask &= ~(1 << highbit);
3148 			if (!udma_mask)
3149 				return -ENOENT;
3150 		} else if (mwdma_mask) {
3151 			highbit = fls(mwdma_mask) - 1;
3152 			mwdma_mask &= ~(1 << highbit);
3153 			if (!mwdma_mask)
3154 				return -ENOENT;
3155 		}
3156 		break;
3157 
3158 	case ATA_DNXFER_40C:
3159 		udma_mask &= ATA_UDMA_MASK_40C;
3160 		break;
3161 
3162 	case ATA_DNXFER_FORCE_PIO0:
3163 		pio_mask &= 1;
3164 	case ATA_DNXFER_FORCE_PIO:
3165 		mwdma_mask = 0;
3166 		udma_mask = 0;
3167 		break;
3168 
3169 	default:
3170 		BUG();
3171 	}
3172 
3173 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3174 
3175 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3176 		return -ENOENT;
3177 
3178 	if (!quiet) {
3179 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3180 			snprintf(buf, sizeof(buf), "%s:%s",
3181 				 ata_mode_string(xfer_mask),
3182 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3183 		else
3184 			snprintf(buf, sizeof(buf), "%s",
3185 				 ata_mode_string(xfer_mask));
3186 
3187 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3188 	}
3189 
3190 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3191 			    &dev->udma_mask);
3192 
3193 	return 0;
3194 }
3195 
3196 static int ata_dev_set_mode(struct ata_device *dev)
3197 {
3198 	struct ata_port *ap = dev->link->ap;
3199 	struct ata_eh_context *ehc = &dev->link->eh_context;
3200 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3201 	const char *dev_err_whine = "";
3202 	int ign_dev_err = 0;
3203 	unsigned int err_mask = 0;
3204 	int rc;
3205 
3206 	dev->flags &= ~ATA_DFLAG_PIO;
3207 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3208 		dev->flags |= ATA_DFLAG_PIO;
3209 
3210 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3211 		dev_err_whine = " (SET_XFERMODE skipped)";
3212 	else {
3213 		if (nosetxfer)
3214 			ata_dev_warn(dev,
3215 				     "NOSETXFER but PATA detected - can't "
3216 				     "skip SETXFER, might malfunction\n");
3217 		err_mask = ata_dev_set_xfermode(dev);
3218 	}
3219 
3220 	if (err_mask & ~AC_ERR_DEV)
3221 		goto fail;
3222 
3223 	/* revalidate */
3224 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3225 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3226 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3227 	if (rc)
3228 		return rc;
3229 
3230 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3231 		/* Old CFA may refuse this command, which is just fine */
3232 		if (ata_id_is_cfa(dev->id))
3233 			ign_dev_err = 1;
3234 		/* Catch several broken garbage emulations plus some pre
3235 		   ATA devices */
3236 		if (ata_id_major_version(dev->id) == 0 &&
3237 					dev->pio_mode <= XFER_PIO_2)
3238 			ign_dev_err = 1;
3239 		/* Some very old devices and some bad newer ones fail
3240 		   any kind of SET_XFERMODE request but support PIO0-2
3241 		   timings and no IORDY */
3242 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3243 			ign_dev_err = 1;
3244 	}
3245 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3246 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3247 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3248 	    dev->dma_mode == XFER_MW_DMA_0 &&
3249 	    (dev->id[63] >> 8) & 1)
3250 		ign_dev_err = 1;
3251 
3252 	/* if the device is actually configured correctly, ignore dev err */
3253 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3254 		ign_dev_err = 1;
3255 
3256 	if (err_mask & AC_ERR_DEV) {
3257 		if (!ign_dev_err)
3258 			goto fail;
3259 		else
3260 			dev_err_whine = " (device error ignored)";
3261 	}
3262 
3263 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3264 		dev->xfer_shift, (int)dev->xfer_mode);
3265 
3266 	ata_dev_info(dev, "configured for %s%s\n",
3267 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3268 		     dev_err_whine);
3269 
3270 	return 0;
3271 
3272  fail:
3273 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3274 	return -EIO;
3275 }
3276 
3277 /**
3278  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3279  *	@link: link on which timings will be programmed
3280  *	@r_failed_dev: out parameter for failed device
3281  *
3282  *	Standard implementation of the function used to tune and set
3283  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3284  *	ata_dev_set_mode() fails, pointer to the failing device is
3285  *	returned in @r_failed_dev.
3286  *
3287  *	LOCKING:
3288  *	PCI/etc. bus probe sem.
3289  *
3290  *	RETURNS:
3291  *	0 on success, negative errno otherwise
3292  */
3293 
3294 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3295 {
3296 	struct ata_port *ap = link->ap;
3297 	struct ata_device *dev;
3298 	int rc = 0, used_dma = 0, found = 0;
3299 
3300 	/* step 1: calculate xfer_mask */
3301 	ata_for_each_dev(dev, link, ENABLED) {
3302 		unsigned long pio_mask, dma_mask;
3303 		unsigned int mode_mask;
3304 
3305 		mode_mask = ATA_DMA_MASK_ATA;
3306 		if (dev->class == ATA_DEV_ATAPI)
3307 			mode_mask = ATA_DMA_MASK_ATAPI;
3308 		else if (ata_id_is_cfa(dev->id))
3309 			mode_mask = ATA_DMA_MASK_CFA;
3310 
3311 		ata_dev_xfermask(dev);
3312 		ata_force_xfermask(dev);
3313 
3314 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3315 
3316 		if (libata_dma_mask & mode_mask)
3317 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3318 						     dev->udma_mask);
3319 		else
3320 			dma_mask = 0;
3321 
3322 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3323 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3324 
3325 		found = 1;
3326 		if (ata_dma_enabled(dev))
3327 			used_dma = 1;
3328 	}
3329 	if (!found)
3330 		goto out;
3331 
3332 	/* step 2: always set host PIO timings */
3333 	ata_for_each_dev(dev, link, ENABLED) {
3334 		if (dev->pio_mode == 0xff) {
3335 			ata_dev_warn(dev, "no PIO support\n");
3336 			rc = -EINVAL;
3337 			goto out;
3338 		}
3339 
3340 		dev->xfer_mode = dev->pio_mode;
3341 		dev->xfer_shift = ATA_SHIFT_PIO;
3342 		if (ap->ops->set_piomode)
3343 			ap->ops->set_piomode(ap, dev);
3344 	}
3345 
3346 	/* step 3: set host DMA timings */
3347 	ata_for_each_dev(dev, link, ENABLED) {
3348 		if (!ata_dma_enabled(dev))
3349 			continue;
3350 
3351 		dev->xfer_mode = dev->dma_mode;
3352 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3353 		if (ap->ops->set_dmamode)
3354 			ap->ops->set_dmamode(ap, dev);
3355 	}
3356 
3357 	/* step 4: update devices' xfer mode */
3358 	ata_for_each_dev(dev, link, ENABLED) {
3359 		rc = ata_dev_set_mode(dev);
3360 		if (rc)
3361 			goto out;
3362 	}
3363 
3364 	/* Record simplex status. If we selected DMA then the other
3365 	 * host channels are not permitted to do so.
3366 	 */
3367 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3368 		ap->host->simplex_claimed = ap;
3369 
3370  out:
3371 	if (rc)
3372 		*r_failed_dev = dev;
3373 	return rc;
3374 }
3375 
3376 /**
3377  *	ata_wait_ready - wait for link to become ready
3378  *	@link: link to be waited on
3379  *	@deadline: deadline jiffies for the operation
3380  *	@check_ready: callback to check link readiness
3381  *
3382  *	Wait for @link to become ready.  @check_ready should return
3383  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3384  *	link doesn't seem to be occupied, other errno for other error
3385  *	conditions.
3386  *
3387  *	Transient -ENODEV conditions are allowed for
3388  *	ATA_TMOUT_FF_WAIT.
3389  *
3390  *	LOCKING:
3391  *	EH context.
3392  *
3393  *	RETURNS:
3394  *	0 if @linke is ready before @deadline; otherwise, -errno.
3395  */
3396 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3397 		   int (*check_ready)(struct ata_link *link))
3398 {
3399 	unsigned long start = jiffies;
3400 	unsigned long nodev_deadline;
3401 	int warned = 0;
3402 
3403 	/* choose which 0xff timeout to use, read comment in libata.h */
3404 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3405 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3406 	else
3407 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3408 
3409 	/* Slave readiness can't be tested separately from master.  On
3410 	 * M/S emulation configuration, this function should be called
3411 	 * only on the master and it will handle both master and slave.
3412 	 */
3413 	WARN_ON(link == link->ap->slave_link);
3414 
3415 	if (time_after(nodev_deadline, deadline))
3416 		nodev_deadline = deadline;
3417 
3418 	while (1) {
3419 		unsigned long now = jiffies;
3420 		int ready, tmp;
3421 
3422 		ready = tmp = check_ready(link);
3423 		if (ready > 0)
3424 			return 0;
3425 
3426 		/*
3427 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3428 		 * is online.  Also, some SATA devices take a long
3429 		 * time to clear 0xff after reset.  Wait for
3430 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3431 		 * offline.
3432 		 *
3433 		 * Note that some PATA controllers (pata_ali) explode
3434 		 * if status register is read more than once when
3435 		 * there's no device attached.
3436 		 */
3437 		if (ready == -ENODEV) {
3438 			if (ata_link_online(link))
3439 				ready = 0;
3440 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3441 				 !ata_link_offline(link) &&
3442 				 time_before(now, nodev_deadline))
3443 				ready = 0;
3444 		}
3445 
3446 		if (ready)
3447 			return ready;
3448 		if (time_after(now, deadline))
3449 			return -EBUSY;
3450 
3451 		if (!warned && time_after(now, start + 5 * HZ) &&
3452 		    (deadline - now > 3 * HZ)) {
3453 			ata_link_warn(link,
3454 				"link is slow to respond, please be patient "
3455 				"(ready=%d)\n", tmp);
3456 			warned = 1;
3457 		}
3458 
3459 		ata_msleep(link->ap, 50);
3460 	}
3461 }
3462 
3463 /**
3464  *	ata_wait_after_reset - wait for link to become ready after reset
3465  *	@link: link to be waited on
3466  *	@deadline: deadline jiffies for the operation
3467  *	@check_ready: callback to check link readiness
3468  *
3469  *	Wait for @link to become ready after reset.
3470  *
3471  *	LOCKING:
3472  *	EH context.
3473  *
3474  *	RETURNS:
3475  *	0 if @linke is ready before @deadline; otherwise, -errno.
3476  */
3477 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3478 				int (*check_ready)(struct ata_link *link))
3479 {
3480 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3481 
3482 	return ata_wait_ready(link, deadline, check_ready);
3483 }
3484 
3485 /**
3486  *	sata_link_debounce - debounce SATA phy status
3487  *	@link: ATA link to debounce SATA phy status for
3488  *	@params: timing parameters { interval, duratinon, timeout } in msec
3489  *	@deadline: deadline jiffies for the operation
3490  *
3491  *	Make sure SStatus of @link reaches stable state, determined by
3492  *	holding the same value where DET is not 1 for @duration polled
3493  *	every @interval, before @timeout.  Timeout constraints the
3494  *	beginning of the stable state.  Because DET gets stuck at 1 on
3495  *	some controllers after hot unplugging, this functions waits
3496  *	until timeout then returns 0 if DET is stable at 1.
3497  *
3498  *	@timeout is further limited by @deadline.  The sooner of the
3499  *	two is used.
3500  *
3501  *	LOCKING:
3502  *	Kernel thread context (may sleep)
3503  *
3504  *	RETURNS:
3505  *	0 on success, -errno on failure.
3506  */
3507 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3508 		       unsigned long deadline)
3509 {
3510 	unsigned long interval = params[0];
3511 	unsigned long duration = params[1];
3512 	unsigned long last_jiffies, t;
3513 	u32 last, cur;
3514 	int rc;
3515 
3516 	t = ata_deadline(jiffies, params[2]);
3517 	if (time_before(t, deadline))
3518 		deadline = t;
3519 
3520 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3521 		return rc;
3522 	cur &= 0xf;
3523 
3524 	last = cur;
3525 	last_jiffies = jiffies;
3526 
3527 	while (1) {
3528 		ata_msleep(link->ap, interval);
3529 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3530 			return rc;
3531 		cur &= 0xf;
3532 
3533 		/* DET stable? */
3534 		if (cur == last) {
3535 			if (cur == 1 && time_before(jiffies, deadline))
3536 				continue;
3537 			if (time_after(jiffies,
3538 				       ata_deadline(last_jiffies, duration)))
3539 				return 0;
3540 			continue;
3541 		}
3542 
3543 		/* unstable, start over */
3544 		last = cur;
3545 		last_jiffies = jiffies;
3546 
3547 		/* Check deadline.  If debouncing failed, return
3548 		 * -EPIPE to tell upper layer to lower link speed.
3549 		 */
3550 		if (time_after(jiffies, deadline))
3551 			return -EPIPE;
3552 	}
3553 }
3554 
3555 /**
3556  *	sata_link_resume - resume SATA link
3557  *	@link: ATA link to resume SATA
3558  *	@params: timing parameters { interval, duratinon, timeout } in msec
3559  *	@deadline: deadline jiffies for the operation
3560  *
3561  *	Resume SATA phy @link and debounce it.
3562  *
3563  *	LOCKING:
3564  *	Kernel thread context (may sleep)
3565  *
3566  *	RETURNS:
3567  *	0 on success, -errno on failure.
3568  */
3569 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3570 		     unsigned long deadline)
3571 {
3572 	int tries = ATA_LINK_RESUME_TRIES;
3573 	u32 scontrol, serror;
3574 	int rc;
3575 
3576 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3577 		return rc;
3578 
3579 	/*
3580 	 * Writes to SControl sometimes get ignored under certain
3581 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3582 	 * cleared.
3583 	 */
3584 	do {
3585 		scontrol = (scontrol & 0x0f0) | 0x300;
3586 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3587 			return rc;
3588 		/*
3589 		 * Some PHYs react badly if SStatus is pounded
3590 		 * immediately after resuming.  Delay 200ms before
3591 		 * debouncing.
3592 		 */
3593 		ata_msleep(link->ap, 200);
3594 
3595 		/* is SControl restored correctly? */
3596 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3597 			return rc;
3598 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3599 
3600 	if ((scontrol & 0xf0f) != 0x300) {
3601 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3602 			     scontrol);
3603 		return 0;
3604 	}
3605 
3606 	if (tries < ATA_LINK_RESUME_TRIES)
3607 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3608 			      ATA_LINK_RESUME_TRIES - tries);
3609 
3610 	if ((rc = sata_link_debounce(link, params, deadline)))
3611 		return rc;
3612 
3613 	/* clear SError, some PHYs require this even for SRST to work */
3614 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3615 		rc = sata_scr_write(link, SCR_ERROR, serror);
3616 
3617 	return rc != -EINVAL ? rc : 0;
3618 }
3619 
3620 /**
3621  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3622  *	@link: ATA link to manipulate SControl for
3623  *	@policy: LPM policy to configure
3624  *	@spm_wakeup: initiate LPM transition to active state
3625  *
3626  *	Manipulate the IPM field of the SControl register of @link
3627  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3628  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3629  *	the link.  This function also clears PHYRDY_CHG before
3630  *	returning.
3631  *
3632  *	LOCKING:
3633  *	EH context.
3634  *
3635  *	RETURNS:
3636  *	0 on succes, -errno otherwise.
3637  */
3638 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3639 		      bool spm_wakeup)
3640 {
3641 	struct ata_eh_context *ehc = &link->eh_context;
3642 	bool woken_up = false;
3643 	u32 scontrol;
3644 	int rc;
3645 
3646 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3647 	if (rc)
3648 		return rc;
3649 
3650 	switch (policy) {
3651 	case ATA_LPM_MAX_POWER:
3652 		/* disable all LPM transitions */
3653 		scontrol |= (0x7 << 8);
3654 		/* initiate transition to active state */
3655 		if (spm_wakeup) {
3656 			scontrol |= (0x4 << 12);
3657 			woken_up = true;
3658 		}
3659 		break;
3660 	case ATA_LPM_MED_POWER:
3661 		/* allow LPM to PARTIAL */
3662 		scontrol &= ~(0x1 << 8);
3663 		scontrol |= (0x6 << 8);
3664 		break;
3665 	case ATA_LPM_MIN_POWER:
3666 		if (ata_link_nr_enabled(link) > 0)
3667 			/* no restrictions on LPM transitions */
3668 			scontrol &= ~(0x7 << 8);
3669 		else {
3670 			/* empty port, power off */
3671 			scontrol &= ~0xf;
3672 			scontrol |= (0x1 << 2);
3673 		}
3674 		break;
3675 	default:
3676 		WARN_ON(1);
3677 	}
3678 
3679 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3680 	if (rc)
3681 		return rc;
3682 
3683 	/* give the link time to transit out of LPM state */
3684 	if (woken_up)
3685 		msleep(10);
3686 
3687 	/* clear PHYRDY_CHG from SError */
3688 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3689 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3690 }
3691 
3692 /**
3693  *	ata_std_prereset - prepare for reset
3694  *	@link: ATA link to be reset
3695  *	@deadline: deadline jiffies for the operation
3696  *
3697  *	@link is about to be reset.  Initialize it.  Failure from
3698  *	prereset makes libata abort whole reset sequence and give up
3699  *	that port, so prereset should be best-effort.  It does its
3700  *	best to prepare for reset sequence but if things go wrong, it
3701  *	should just whine, not fail.
3702  *
3703  *	LOCKING:
3704  *	Kernel thread context (may sleep)
3705  *
3706  *	RETURNS:
3707  *	0 on success, -errno otherwise.
3708  */
3709 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3710 {
3711 	struct ata_port *ap = link->ap;
3712 	struct ata_eh_context *ehc = &link->eh_context;
3713 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3714 	int rc;
3715 
3716 	/* if we're about to do hardreset, nothing more to do */
3717 	if (ehc->i.action & ATA_EH_HARDRESET)
3718 		return 0;
3719 
3720 	/* if SATA, resume link */
3721 	if (ap->flags & ATA_FLAG_SATA) {
3722 		rc = sata_link_resume(link, timing, deadline);
3723 		/* whine about phy resume failure but proceed */
3724 		if (rc && rc != -EOPNOTSUPP)
3725 			ata_link_warn(link,
3726 				      "failed to resume link for reset (errno=%d)\n",
3727 				      rc);
3728 	}
3729 
3730 	/* no point in trying softreset on offline link */
3731 	if (ata_phys_link_offline(link))
3732 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3733 
3734 	return 0;
3735 }
3736 
3737 /**
3738  *	sata_link_hardreset - reset link via SATA phy reset
3739  *	@link: link to reset
3740  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3741  *	@deadline: deadline jiffies for the operation
3742  *	@online: optional out parameter indicating link onlineness
3743  *	@check_ready: optional callback to check link readiness
3744  *
3745  *	SATA phy-reset @link using DET bits of SControl register.
3746  *	After hardreset, link readiness is waited upon using
3747  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3748  *	allowed to not specify @check_ready and wait itself after this
3749  *	function returns.  Device classification is LLD's
3750  *	responsibility.
3751  *
3752  *	*@online is set to one iff reset succeeded and @link is online
3753  *	after reset.
3754  *
3755  *	LOCKING:
3756  *	Kernel thread context (may sleep)
3757  *
3758  *	RETURNS:
3759  *	0 on success, -errno otherwise.
3760  */
3761 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3762 			unsigned long deadline,
3763 			bool *online, int (*check_ready)(struct ata_link *))
3764 {
3765 	u32 scontrol;
3766 	int rc;
3767 
3768 	DPRINTK("ENTER\n");
3769 
3770 	if (online)
3771 		*online = false;
3772 
3773 	if (sata_set_spd_needed(link)) {
3774 		/* SATA spec says nothing about how to reconfigure
3775 		 * spd.  To be on the safe side, turn off phy during
3776 		 * reconfiguration.  This works for at least ICH7 AHCI
3777 		 * and Sil3124.
3778 		 */
3779 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3780 			goto out;
3781 
3782 		scontrol = (scontrol & 0x0f0) | 0x304;
3783 
3784 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3785 			goto out;
3786 
3787 		sata_set_spd(link);
3788 	}
3789 
3790 	/* issue phy wake/reset */
3791 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3792 		goto out;
3793 
3794 	scontrol = (scontrol & 0x0f0) | 0x301;
3795 
3796 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3797 		goto out;
3798 
3799 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3800 	 * 10.4.2 says at least 1 ms.
3801 	 */
3802 	ata_msleep(link->ap, 1);
3803 
3804 	/* bring link back */
3805 	rc = sata_link_resume(link, timing, deadline);
3806 	if (rc)
3807 		goto out;
3808 	/* if link is offline nothing more to do */
3809 	if (ata_phys_link_offline(link))
3810 		goto out;
3811 
3812 	/* Link is online.  From this point, -ENODEV too is an error. */
3813 	if (online)
3814 		*online = true;
3815 
3816 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3817 		/* If PMP is supported, we have to do follow-up SRST.
3818 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3819 		 * the first port is empty.  Wait only for
3820 		 * ATA_TMOUT_PMP_SRST_WAIT.
3821 		 */
3822 		if (check_ready) {
3823 			unsigned long pmp_deadline;
3824 
3825 			pmp_deadline = ata_deadline(jiffies,
3826 						    ATA_TMOUT_PMP_SRST_WAIT);
3827 			if (time_after(pmp_deadline, deadline))
3828 				pmp_deadline = deadline;
3829 			ata_wait_ready(link, pmp_deadline, check_ready);
3830 		}
3831 		rc = -EAGAIN;
3832 		goto out;
3833 	}
3834 
3835 	rc = 0;
3836 	if (check_ready)
3837 		rc = ata_wait_ready(link, deadline, check_ready);
3838  out:
3839 	if (rc && rc != -EAGAIN) {
3840 		/* online is set iff link is online && reset succeeded */
3841 		if (online)
3842 			*online = false;
3843 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3844 	}
3845 	DPRINTK("EXIT, rc=%d\n", rc);
3846 	return rc;
3847 }
3848 
3849 /**
3850  *	sata_std_hardreset - COMRESET w/o waiting or classification
3851  *	@link: link to reset
3852  *	@class: resulting class of attached device
3853  *	@deadline: deadline jiffies for the operation
3854  *
3855  *	Standard SATA COMRESET w/o waiting or classification.
3856  *
3857  *	LOCKING:
3858  *	Kernel thread context (may sleep)
3859  *
3860  *	RETURNS:
3861  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3862  */
3863 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3864 		       unsigned long deadline)
3865 {
3866 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3867 	bool online;
3868 	int rc;
3869 
3870 	/* do hardreset */
3871 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3872 	return online ? -EAGAIN : rc;
3873 }
3874 
3875 /**
3876  *	ata_std_postreset - standard postreset callback
3877  *	@link: the target ata_link
3878  *	@classes: classes of attached devices
3879  *
3880  *	This function is invoked after a successful reset.  Note that
3881  *	the device might have been reset more than once using
3882  *	different reset methods before postreset is invoked.
3883  *
3884  *	LOCKING:
3885  *	Kernel thread context (may sleep)
3886  */
3887 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3888 {
3889 	u32 serror;
3890 
3891 	DPRINTK("ENTER\n");
3892 
3893 	/* reset complete, clear SError */
3894 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3895 		sata_scr_write(link, SCR_ERROR, serror);
3896 
3897 	/* print link status */
3898 	sata_print_link_status(link);
3899 
3900 	DPRINTK("EXIT\n");
3901 }
3902 
3903 /**
3904  *	ata_dev_same_device - Determine whether new ID matches configured device
3905  *	@dev: device to compare against
3906  *	@new_class: class of the new device
3907  *	@new_id: IDENTIFY page of the new device
3908  *
3909  *	Compare @new_class and @new_id against @dev and determine
3910  *	whether @dev is the device indicated by @new_class and
3911  *	@new_id.
3912  *
3913  *	LOCKING:
3914  *	None.
3915  *
3916  *	RETURNS:
3917  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3918  */
3919 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3920 			       const u16 *new_id)
3921 {
3922 	const u16 *old_id = dev->id;
3923 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3924 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3925 
3926 	if (dev->class != new_class) {
3927 		ata_dev_info(dev, "class mismatch %d != %d\n",
3928 			     dev->class, new_class);
3929 		return 0;
3930 	}
3931 
3932 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3933 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3934 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3935 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3936 
3937 	if (strcmp(model[0], model[1])) {
3938 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3939 			     model[0], model[1]);
3940 		return 0;
3941 	}
3942 
3943 	if (strcmp(serial[0], serial[1])) {
3944 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3945 			     serial[0], serial[1]);
3946 		return 0;
3947 	}
3948 
3949 	return 1;
3950 }
3951 
3952 /**
3953  *	ata_dev_reread_id - Re-read IDENTIFY data
3954  *	@dev: target ATA device
3955  *	@readid_flags: read ID flags
3956  *
3957  *	Re-read IDENTIFY page and make sure @dev is still attached to
3958  *	the port.
3959  *
3960  *	LOCKING:
3961  *	Kernel thread context (may sleep)
3962  *
3963  *	RETURNS:
3964  *	0 on success, negative errno otherwise
3965  */
3966 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3967 {
3968 	unsigned int class = dev->class;
3969 	u16 *id = (void *)dev->link->ap->sector_buf;
3970 	int rc;
3971 
3972 	/* read ID data */
3973 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3974 	if (rc)
3975 		return rc;
3976 
3977 	/* is the device still there? */
3978 	if (!ata_dev_same_device(dev, class, id))
3979 		return -ENODEV;
3980 
3981 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3982 	return 0;
3983 }
3984 
3985 /**
3986  *	ata_dev_revalidate - Revalidate ATA device
3987  *	@dev: device to revalidate
3988  *	@new_class: new class code
3989  *	@readid_flags: read ID flags
3990  *
3991  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3992  *	port and reconfigure it according to the new IDENTIFY page.
3993  *
3994  *	LOCKING:
3995  *	Kernel thread context (may sleep)
3996  *
3997  *	RETURNS:
3998  *	0 on success, negative errno otherwise
3999  */
4000 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4001 		       unsigned int readid_flags)
4002 {
4003 	u64 n_sectors = dev->n_sectors;
4004 	u64 n_native_sectors = dev->n_native_sectors;
4005 	int rc;
4006 
4007 	if (!ata_dev_enabled(dev))
4008 		return -ENODEV;
4009 
4010 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4011 	if (ata_class_enabled(new_class) &&
4012 	    new_class != ATA_DEV_ATA &&
4013 	    new_class != ATA_DEV_ATAPI &&
4014 	    new_class != ATA_DEV_ZAC &&
4015 	    new_class != ATA_DEV_SEMB) {
4016 		ata_dev_info(dev, "class mismatch %u != %u\n",
4017 			     dev->class, new_class);
4018 		rc = -ENODEV;
4019 		goto fail;
4020 	}
4021 
4022 	/* re-read ID */
4023 	rc = ata_dev_reread_id(dev, readid_flags);
4024 	if (rc)
4025 		goto fail;
4026 
4027 	/* configure device according to the new ID */
4028 	rc = ata_dev_configure(dev);
4029 	if (rc)
4030 		goto fail;
4031 
4032 	/* verify n_sectors hasn't changed */
4033 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4034 	    dev->n_sectors == n_sectors)
4035 		return 0;
4036 
4037 	/* n_sectors has changed */
4038 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4039 		     (unsigned long long)n_sectors,
4040 		     (unsigned long long)dev->n_sectors);
4041 
4042 	/*
4043 	 * Something could have caused HPA to be unlocked
4044 	 * involuntarily.  If n_native_sectors hasn't changed and the
4045 	 * new size matches it, keep the device.
4046 	 */
4047 	if (dev->n_native_sectors == n_native_sectors &&
4048 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4049 		ata_dev_warn(dev,
4050 			     "new n_sectors matches native, probably "
4051 			     "late HPA unlock, n_sectors updated\n");
4052 		/* use the larger n_sectors */
4053 		return 0;
4054 	}
4055 
4056 	/*
4057 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4058 	 * unlocking HPA in those cases.
4059 	 *
4060 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4061 	 */
4062 	if (dev->n_native_sectors == n_native_sectors &&
4063 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4064 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4065 		ata_dev_warn(dev,
4066 			     "old n_sectors matches native, probably "
4067 			     "late HPA lock, will try to unlock HPA\n");
4068 		/* try unlocking HPA */
4069 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4070 		rc = -EIO;
4071 	} else
4072 		rc = -ENODEV;
4073 
4074 	/* restore original n_[native_]sectors and fail */
4075 	dev->n_native_sectors = n_native_sectors;
4076 	dev->n_sectors = n_sectors;
4077  fail:
4078 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4079 	return rc;
4080 }
4081 
4082 struct ata_blacklist_entry {
4083 	const char *model_num;
4084 	const char *model_rev;
4085 	unsigned long horkage;
4086 };
4087 
4088 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4089 	/* Devices with DMA related problems under Linux */
4090 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4091 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4092 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4093 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4094 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4095 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4096 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4097 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4098 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4099 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4100 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4101 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4102 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4103 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4104 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4105 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4106 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4107 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4108 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4109 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4110 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4111 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4112 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4113 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4114 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4115 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4116 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4117 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4118 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4119 	/* Odd clown on sil3726/4726 PMPs */
4120 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4121 
4122 	/* Weird ATAPI devices */
4123 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4124 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4125 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4126 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4127 
4128 	/* Devices we expect to fail diagnostics */
4129 
4130 	/* Devices where NCQ should be avoided */
4131 	/* NCQ is slow */
4132 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4133 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4134 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4135 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4136 	/* NCQ is broken */
4137 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4138 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4139 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4140 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4141 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4142 
4143 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4144 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4145 						ATA_HORKAGE_FIRMWARE_WARN },
4146 
4147 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4148 						ATA_HORKAGE_FIRMWARE_WARN },
4149 
4150 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4151 						ATA_HORKAGE_FIRMWARE_WARN },
4152 
4153 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4154 						ATA_HORKAGE_FIRMWARE_WARN },
4155 
4156 	/* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4157 	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4158 	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4159 
4160 	/* Blacklist entries taken from Silicon Image 3124/3132
4161 	   Windows driver .inf file - also several Linux problem reports */
4162 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4163 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4164 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4165 
4166 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4167 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4168 
4169 	/* devices which puke on READ_NATIVE_MAX */
4170 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4171 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4172 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4173 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4174 
4175 	/* this one allows HPA unlocking but fails IOs on the area */
4176 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4177 
4178 	/* Devices which report 1 sector over size HPA */
4179 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4180 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4181 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4182 
4183 	/* Devices which get the IVB wrong */
4184 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4185 	/* Maybe we should just blacklist TSSTcorp... */
4186 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4187 
4188 	/* Devices that do not need bridging limits applied */
4189 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4190 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4191 
4192 	/* Devices which aren't very happy with higher link speeds */
4193 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4194 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4195 
4196 	/*
4197 	 * Devices which choke on SETXFER.  Applies only if both the
4198 	 * device and controller are SATA.
4199 	 */
4200 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4201 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4202 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4203 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4204 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4205 
4206 	/* devices that don't properly handle queued TRIM commands */
4207 	{ "Micron_M[56]*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4208 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4209 	{ "Crucial_CT*SSD*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM, },
4210 
4211 	/*
4212 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4213 	 * (Return Zero After Trim) flags in the ATA Command Set are
4214 	 * unreliable in the sense that they only define what happens if
4215 	 * the device successfully executed the DSM TRIM command. TRIM
4216 	 * is only advisory, however, and the device is free to silently
4217 	 * ignore all or parts of the request.
4218 	 *
4219 	 * Whitelist drives that are known to reliably return zeroes
4220 	 * after TRIM.
4221 	 */
4222 
4223 	/*
4224 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4225 	 * that model before whitelisting all other intel SSDs.
4226 	 */
4227 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4228 
4229 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4230 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4231 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4232 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4233 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4234 
4235 	/*
4236 	 * Some WD SATA-I drives spin up and down erratically when the link
4237 	 * is put into the slumber mode.  We don't have full list of the
4238 	 * affected devices.  Disable LPM if the device matches one of the
4239 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4240 	 * lost too.
4241 	 *
4242 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4243 	 */
4244 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4245 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4246 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4247 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4248 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4249 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4250 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4251 
4252 	/* End Marker */
4253 	{ }
4254 };
4255 
4256 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4257 {
4258 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4259 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4260 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4261 
4262 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4263 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4264 
4265 	while (ad->model_num) {
4266 		if (glob_match(ad->model_num, model_num)) {
4267 			if (ad->model_rev == NULL)
4268 				return ad->horkage;
4269 			if (glob_match(ad->model_rev, model_rev))
4270 				return ad->horkage;
4271 		}
4272 		ad++;
4273 	}
4274 	return 0;
4275 }
4276 
4277 static int ata_dma_blacklisted(const struct ata_device *dev)
4278 {
4279 	/* We don't support polling DMA.
4280 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4281 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4282 	 */
4283 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4284 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4285 		return 1;
4286 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4287 }
4288 
4289 /**
4290  *	ata_is_40wire		-	check drive side detection
4291  *	@dev: device
4292  *
4293  *	Perform drive side detection decoding, allowing for device vendors
4294  *	who can't follow the documentation.
4295  */
4296 
4297 static int ata_is_40wire(struct ata_device *dev)
4298 {
4299 	if (dev->horkage & ATA_HORKAGE_IVB)
4300 		return ata_drive_40wire_relaxed(dev->id);
4301 	return ata_drive_40wire(dev->id);
4302 }
4303 
4304 /**
4305  *	cable_is_40wire		-	40/80/SATA decider
4306  *	@ap: port to consider
4307  *
4308  *	This function encapsulates the policy for speed management
4309  *	in one place. At the moment we don't cache the result but
4310  *	there is a good case for setting ap->cbl to the result when
4311  *	we are called with unknown cables (and figuring out if it
4312  *	impacts hotplug at all).
4313  *
4314  *	Return 1 if the cable appears to be 40 wire.
4315  */
4316 
4317 static int cable_is_40wire(struct ata_port *ap)
4318 {
4319 	struct ata_link *link;
4320 	struct ata_device *dev;
4321 
4322 	/* If the controller thinks we are 40 wire, we are. */
4323 	if (ap->cbl == ATA_CBL_PATA40)
4324 		return 1;
4325 
4326 	/* If the controller thinks we are 80 wire, we are. */
4327 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4328 		return 0;
4329 
4330 	/* If the system is known to be 40 wire short cable (eg
4331 	 * laptop), then we allow 80 wire modes even if the drive
4332 	 * isn't sure.
4333 	 */
4334 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4335 		return 0;
4336 
4337 	/* If the controller doesn't know, we scan.
4338 	 *
4339 	 * Note: We look for all 40 wire detects at this point.  Any
4340 	 *       80 wire detect is taken to be 80 wire cable because
4341 	 * - in many setups only the one drive (slave if present) will
4342 	 *   give a valid detect
4343 	 * - if you have a non detect capable drive you don't want it
4344 	 *   to colour the choice
4345 	 */
4346 	ata_for_each_link(link, ap, EDGE) {
4347 		ata_for_each_dev(dev, link, ENABLED) {
4348 			if (!ata_is_40wire(dev))
4349 				return 0;
4350 		}
4351 	}
4352 	return 1;
4353 }
4354 
4355 /**
4356  *	ata_dev_xfermask - Compute supported xfermask of the given device
4357  *	@dev: Device to compute xfermask for
4358  *
4359  *	Compute supported xfermask of @dev and store it in
4360  *	dev->*_mask.  This function is responsible for applying all
4361  *	known limits including host controller limits, device
4362  *	blacklist, etc...
4363  *
4364  *	LOCKING:
4365  *	None.
4366  */
4367 static void ata_dev_xfermask(struct ata_device *dev)
4368 {
4369 	struct ata_link *link = dev->link;
4370 	struct ata_port *ap = link->ap;
4371 	struct ata_host *host = ap->host;
4372 	unsigned long xfer_mask;
4373 
4374 	/* controller modes available */
4375 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4376 				      ap->mwdma_mask, ap->udma_mask);
4377 
4378 	/* drive modes available */
4379 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4380 				       dev->mwdma_mask, dev->udma_mask);
4381 	xfer_mask &= ata_id_xfermask(dev->id);
4382 
4383 	/*
4384 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4385 	 *	cable
4386 	 */
4387 	if (ata_dev_pair(dev)) {
4388 		/* No PIO5 or PIO6 */
4389 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4390 		/* No MWDMA3 or MWDMA 4 */
4391 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4392 	}
4393 
4394 	if (ata_dma_blacklisted(dev)) {
4395 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4396 		ata_dev_warn(dev,
4397 			     "device is on DMA blacklist, disabling DMA\n");
4398 	}
4399 
4400 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4401 	    host->simplex_claimed && host->simplex_claimed != ap) {
4402 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4403 		ata_dev_warn(dev,
4404 			     "simplex DMA is claimed by other device, disabling DMA\n");
4405 	}
4406 
4407 	if (ap->flags & ATA_FLAG_NO_IORDY)
4408 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4409 
4410 	if (ap->ops->mode_filter)
4411 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4412 
4413 	/* Apply cable rule here.  Don't apply it early because when
4414 	 * we handle hot plug the cable type can itself change.
4415 	 * Check this last so that we know if the transfer rate was
4416 	 * solely limited by the cable.
4417 	 * Unknown or 80 wire cables reported host side are checked
4418 	 * drive side as well. Cases where we know a 40wire cable
4419 	 * is used safely for 80 are not checked here.
4420 	 */
4421 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4422 		/* UDMA/44 or higher would be available */
4423 		if (cable_is_40wire(ap)) {
4424 			ata_dev_warn(dev,
4425 				     "limited to UDMA/33 due to 40-wire cable\n");
4426 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4427 		}
4428 
4429 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4430 			    &dev->mwdma_mask, &dev->udma_mask);
4431 }
4432 
4433 /**
4434  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4435  *	@dev: Device to which command will be sent
4436  *
4437  *	Issue SET FEATURES - XFER MODE command to device @dev
4438  *	on port @ap.
4439  *
4440  *	LOCKING:
4441  *	PCI/etc. bus probe sem.
4442  *
4443  *	RETURNS:
4444  *	0 on success, AC_ERR_* mask otherwise.
4445  */
4446 
4447 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4448 {
4449 	struct ata_taskfile tf;
4450 	unsigned int err_mask;
4451 
4452 	/* set up set-features taskfile */
4453 	DPRINTK("set features - xfer mode\n");
4454 
4455 	/* Some controllers and ATAPI devices show flaky interrupt
4456 	 * behavior after setting xfer mode.  Use polling instead.
4457 	 */
4458 	ata_tf_init(dev, &tf);
4459 	tf.command = ATA_CMD_SET_FEATURES;
4460 	tf.feature = SETFEATURES_XFER;
4461 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4462 	tf.protocol = ATA_PROT_NODATA;
4463 	/* If we are using IORDY we must send the mode setting command */
4464 	if (ata_pio_need_iordy(dev))
4465 		tf.nsect = dev->xfer_mode;
4466 	/* If the device has IORDY and the controller does not - turn it off */
4467  	else if (ata_id_has_iordy(dev->id))
4468 		tf.nsect = 0x01;
4469 	else /* In the ancient relic department - skip all of this */
4470 		return 0;
4471 
4472 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4473 
4474 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4475 	return err_mask;
4476 }
4477 
4478 /**
4479  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4480  *	@dev: Device to which command will be sent
4481  *	@enable: Whether to enable or disable the feature
4482  *	@feature: The sector count represents the feature to set
4483  *
4484  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4485  *	on port @ap with sector count
4486  *
4487  *	LOCKING:
4488  *	PCI/etc. bus probe sem.
4489  *
4490  *	RETURNS:
4491  *	0 on success, AC_ERR_* mask otherwise.
4492  */
4493 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4494 {
4495 	struct ata_taskfile tf;
4496 	unsigned int err_mask;
4497 
4498 	/* set up set-features taskfile */
4499 	DPRINTK("set features - SATA features\n");
4500 
4501 	ata_tf_init(dev, &tf);
4502 	tf.command = ATA_CMD_SET_FEATURES;
4503 	tf.feature = enable;
4504 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4505 	tf.protocol = ATA_PROT_NODATA;
4506 	tf.nsect = feature;
4507 
4508 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4509 
4510 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4511 	return err_mask;
4512 }
4513 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4514 
4515 /**
4516  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4517  *	@dev: Device to which command will be sent
4518  *	@heads: Number of heads (taskfile parameter)
4519  *	@sectors: Number of sectors (taskfile parameter)
4520  *
4521  *	LOCKING:
4522  *	Kernel thread context (may sleep)
4523  *
4524  *	RETURNS:
4525  *	0 on success, AC_ERR_* mask otherwise.
4526  */
4527 static unsigned int ata_dev_init_params(struct ata_device *dev,
4528 					u16 heads, u16 sectors)
4529 {
4530 	struct ata_taskfile tf;
4531 	unsigned int err_mask;
4532 
4533 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4534 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4535 		return AC_ERR_INVALID;
4536 
4537 	/* set up init dev params taskfile */
4538 	DPRINTK("init dev params \n");
4539 
4540 	ata_tf_init(dev, &tf);
4541 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4542 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4543 	tf.protocol = ATA_PROT_NODATA;
4544 	tf.nsect = sectors;
4545 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4546 
4547 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4548 	/* A clean abort indicates an original or just out of spec drive
4549 	   and we should continue as we issue the setup based on the
4550 	   drive reported working geometry */
4551 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4552 		err_mask = 0;
4553 
4554 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4555 	return err_mask;
4556 }
4557 
4558 /**
4559  *	ata_sg_clean - Unmap DMA memory associated with command
4560  *	@qc: Command containing DMA memory to be released
4561  *
4562  *	Unmap all mapped DMA memory associated with this command.
4563  *
4564  *	LOCKING:
4565  *	spin_lock_irqsave(host lock)
4566  */
4567 void ata_sg_clean(struct ata_queued_cmd *qc)
4568 {
4569 	struct ata_port *ap = qc->ap;
4570 	struct scatterlist *sg = qc->sg;
4571 	int dir = qc->dma_dir;
4572 
4573 	WARN_ON_ONCE(sg == NULL);
4574 
4575 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4576 
4577 	if (qc->n_elem)
4578 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4579 
4580 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4581 	qc->sg = NULL;
4582 }
4583 
4584 /**
4585  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4586  *	@qc: Metadata associated with taskfile to check
4587  *
4588  *	Allow low-level driver to filter ATA PACKET commands, returning
4589  *	a status indicating whether or not it is OK to use DMA for the
4590  *	supplied PACKET command.
4591  *
4592  *	LOCKING:
4593  *	spin_lock_irqsave(host lock)
4594  *
4595  *	RETURNS: 0 when ATAPI DMA can be used
4596  *               nonzero otherwise
4597  */
4598 int atapi_check_dma(struct ata_queued_cmd *qc)
4599 {
4600 	struct ata_port *ap = qc->ap;
4601 
4602 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4603 	 * few ATAPI devices choke on such DMA requests.
4604 	 */
4605 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4606 	    unlikely(qc->nbytes & 15))
4607 		return 1;
4608 
4609 	if (ap->ops->check_atapi_dma)
4610 		return ap->ops->check_atapi_dma(qc);
4611 
4612 	return 0;
4613 }
4614 
4615 /**
4616  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4617  *	@qc: ATA command in question
4618  *
4619  *	Non-NCQ commands cannot run with any other command, NCQ or
4620  *	not.  As upper layer only knows the queue depth, we are
4621  *	responsible for maintaining exclusion.  This function checks
4622  *	whether a new command @qc can be issued.
4623  *
4624  *	LOCKING:
4625  *	spin_lock_irqsave(host lock)
4626  *
4627  *	RETURNS:
4628  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4629  */
4630 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4631 {
4632 	struct ata_link *link = qc->dev->link;
4633 
4634 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4635 		if (!ata_tag_valid(link->active_tag))
4636 			return 0;
4637 	} else {
4638 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4639 			return 0;
4640 	}
4641 
4642 	return ATA_DEFER_LINK;
4643 }
4644 
4645 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4646 
4647 /**
4648  *	ata_sg_init - Associate command with scatter-gather table.
4649  *	@qc: Command to be associated
4650  *	@sg: Scatter-gather table.
4651  *	@n_elem: Number of elements in s/g table.
4652  *
4653  *	Initialize the data-related elements of queued_cmd @qc
4654  *	to point to a scatter-gather table @sg, containing @n_elem
4655  *	elements.
4656  *
4657  *	LOCKING:
4658  *	spin_lock_irqsave(host lock)
4659  */
4660 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4661 		 unsigned int n_elem)
4662 {
4663 	qc->sg = sg;
4664 	qc->n_elem = n_elem;
4665 	qc->cursg = qc->sg;
4666 }
4667 
4668 /**
4669  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4670  *	@qc: Command with scatter-gather table to be mapped.
4671  *
4672  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4673  *
4674  *	LOCKING:
4675  *	spin_lock_irqsave(host lock)
4676  *
4677  *	RETURNS:
4678  *	Zero on success, negative on error.
4679  *
4680  */
4681 static int ata_sg_setup(struct ata_queued_cmd *qc)
4682 {
4683 	struct ata_port *ap = qc->ap;
4684 	unsigned int n_elem;
4685 
4686 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4687 
4688 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4689 	if (n_elem < 1)
4690 		return -1;
4691 
4692 	DPRINTK("%d sg elements mapped\n", n_elem);
4693 	qc->orig_n_elem = qc->n_elem;
4694 	qc->n_elem = n_elem;
4695 	qc->flags |= ATA_QCFLAG_DMAMAP;
4696 
4697 	return 0;
4698 }
4699 
4700 /**
4701  *	swap_buf_le16 - swap halves of 16-bit words in place
4702  *	@buf:  Buffer to swap
4703  *	@buf_words:  Number of 16-bit words in buffer.
4704  *
4705  *	Swap halves of 16-bit words if needed to convert from
4706  *	little-endian byte order to native cpu byte order, or
4707  *	vice-versa.
4708  *
4709  *	LOCKING:
4710  *	Inherited from caller.
4711  */
4712 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4713 {
4714 #ifdef __BIG_ENDIAN
4715 	unsigned int i;
4716 
4717 	for (i = 0; i < buf_words; i++)
4718 		buf[i] = le16_to_cpu(buf[i]);
4719 #endif /* __BIG_ENDIAN */
4720 }
4721 
4722 /**
4723  *	ata_qc_new_init - Request an available ATA command, and initialize it
4724  *	@dev: Device from whom we request an available command structure
4725  *
4726  *	LOCKING:
4727  *	None.
4728  */
4729 
4730 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4731 {
4732 	struct ata_port *ap = dev->link->ap;
4733 	struct ata_queued_cmd *qc;
4734 
4735 	/* no command while frozen */
4736 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4737 		return NULL;
4738 
4739 	/* libsas case */
4740 	if (!ap->scsi_host) {
4741 		tag = ata_sas_allocate_tag(ap);
4742 		if (tag < 0)
4743 			return NULL;
4744 	}
4745 
4746 	qc = __ata_qc_from_tag(ap, tag);
4747 	qc->tag = tag;
4748 	qc->scsicmd = NULL;
4749 	qc->ap = ap;
4750 	qc->dev = dev;
4751 
4752 	ata_qc_reinit(qc);
4753 
4754 	return qc;
4755 }
4756 
4757 /**
4758  *	ata_qc_free - free unused ata_queued_cmd
4759  *	@qc: Command to complete
4760  *
4761  *	Designed to free unused ata_queued_cmd object
4762  *	in case something prevents using it.
4763  *
4764  *	LOCKING:
4765  *	spin_lock_irqsave(host lock)
4766  */
4767 void ata_qc_free(struct ata_queued_cmd *qc)
4768 {
4769 	struct ata_port *ap;
4770 	unsigned int tag;
4771 
4772 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4773 	ap = qc->ap;
4774 
4775 	qc->flags = 0;
4776 	tag = qc->tag;
4777 	if (likely(ata_tag_valid(tag))) {
4778 		qc->tag = ATA_TAG_POISON;
4779 		if (!ap->scsi_host)
4780 			ata_sas_free_tag(tag, ap);
4781 	}
4782 }
4783 
4784 void __ata_qc_complete(struct ata_queued_cmd *qc)
4785 {
4786 	struct ata_port *ap;
4787 	struct ata_link *link;
4788 
4789 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4790 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4791 	ap = qc->ap;
4792 	link = qc->dev->link;
4793 
4794 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4795 		ata_sg_clean(qc);
4796 
4797 	/* command should be marked inactive atomically with qc completion */
4798 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4799 		link->sactive &= ~(1 << qc->tag);
4800 		if (!link->sactive)
4801 			ap->nr_active_links--;
4802 	} else {
4803 		link->active_tag = ATA_TAG_POISON;
4804 		ap->nr_active_links--;
4805 	}
4806 
4807 	/* clear exclusive status */
4808 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4809 		     ap->excl_link == link))
4810 		ap->excl_link = NULL;
4811 
4812 	/* atapi: mark qc as inactive to prevent the interrupt handler
4813 	 * from completing the command twice later, before the error handler
4814 	 * is called. (when rc != 0 and atapi request sense is needed)
4815 	 */
4816 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4817 	ap->qc_active &= ~(1 << qc->tag);
4818 
4819 	/* call completion callback */
4820 	qc->complete_fn(qc);
4821 }
4822 
4823 static void fill_result_tf(struct ata_queued_cmd *qc)
4824 {
4825 	struct ata_port *ap = qc->ap;
4826 
4827 	qc->result_tf.flags = qc->tf.flags;
4828 	ap->ops->qc_fill_rtf(qc);
4829 }
4830 
4831 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4832 {
4833 	struct ata_device *dev = qc->dev;
4834 
4835 	if (ata_is_nodata(qc->tf.protocol))
4836 		return;
4837 
4838 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4839 		return;
4840 
4841 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4842 }
4843 
4844 /**
4845  *	ata_qc_complete - Complete an active ATA command
4846  *	@qc: Command to complete
4847  *
4848  *	Indicate to the mid and upper layers that an ATA command has
4849  *	completed, with either an ok or not-ok status.
4850  *
4851  *	Refrain from calling this function multiple times when
4852  *	successfully completing multiple NCQ commands.
4853  *	ata_qc_complete_multiple() should be used instead, which will
4854  *	properly update IRQ expect state.
4855  *
4856  *	LOCKING:
4857  *	spin_lock_irqsave(host lock)
4858  */
4859 void ata_qc_complete(struct ata_queued_cmd *qc)
4860 {
4861 	struct ata_port *ap = qc->ap;
4862 
4863 	/* XXX: New EH and old EH use different mechanisms to
4864 	 * synchronize EH with regular execution path.
4865 	 *
4866 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4867 	 * Normal execution path is responsible for not accessing a
4868 	 * failed qc.  libata core enforces the rule by returning NULL
4869 	 * from ata_qc_from_tag() for failed qcs.
4870 	 *
4871 	 * Old EH depends on ata_qc_complete() nullifying completion
4872 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4873 	 * not synchronize with interrupt handler.  Only PIO task is
4874 	 * taken care of.
4875 	 */
4876 	if (ap->ops->error_handler) {
4877 		struct ata_device *dev = qc->dev;
4878 		struct ata_eh_info *ehi = &dev->link->eh_info;
4879 
4880 		if (unlikely(qc->err_mask))
4881 			qc->flags |= ATA_QCFLAG_FAILED;
4882 
4883 		/*
4884 		 * Finish internal commands without any further processing
4885 		 * and always with the result TF filled.
4886 		 */
4887 		if (unlikely(ata_tag_internal(qc->tag))) {
4888 			fill_result_tf(qc);
4889 			__ata_qc_complete(qc);
4890 			return;
4891 		}
4892 
4893 		/*
4894 		 * Non-internal qc has failed.  Fill the result TF and
4895 		 * summon EH.
4896 		 */
4897 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4898 			fill_result_tf(qc);
4899 			ata_qc_schedule_eh(qc);
4900 			return;
4901 		}
4902 
4903 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4904 
4905 		/* read result TF if requested */
4906 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4907 			fill_result_tf(qc);
4908 
4909 		/* Some commands need post-processing after successful
4910 		 * completion.
4911 		 */
4912 		switch (qc->tf.command) {
4913 		case ATA_CMD_SET_FEATURES:
4914 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4915 			    qc->tf.feature != SETFEATURES_WC_OFF)
4916 				break;
4917 			/* fall through */
4918 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4919 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4920 			/* revalidate device */
4921 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4922 			ata_port_schedule_eh(ap);
4923 			break;
4924 
4925 		case ATA_CMD_SLEEP:
4926 			dev->flags |= ATA_DFLAG_SLEEPING;
4927 			break;
4928 		}
4929 
4930 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4931 			ata_verify_xfer(qc);
4932 
4933 		__ata_qc_complete(qc);
4934 	} else {
4935 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4936 			return;
4937 
4938 		/* read result TF if failed or requested */
4939 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4940 			fill_result_tf(qc);
4941 
4942 		__ata_qc_complete(qc);
4943 	}
4944 }
4945 
4946 /**
4947  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4948  *	@ap: port in question
4949  *	@qc_active: new qc_active mask
4950  *
4951  *	Complete in-flight commands.  This functions is meant to be
4952  *	called from low-level driver's interrupt routine to complete
4953  *	requests normally.  ap->qc_active and @qc_active is compared
4954  *	and commands are completed accordingly.
4955  *
4956  *	Always use this function when completing multiple NCQ commands
4957  *	from IRQ handlers instead of calling ata_qc_complete()
4958  *	multiple times to keep IRQ expect status properly in sync.
4959  *
4960  *	LOCKING:
4961  *	spin_lock_irqsave(host lock)
4962  *
4963  *	RETURNS:
4964  *	Number of completed commands on success, -errno otherwise.
4965  */
4966 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4967 {
4968 	int nr_done = 0;
4969 	u32 done_mask;
4970 
4971 	done_mask = ap->qc_active ^ qc_active;
4972 
4973 	if (unlikely(done_mask & qc_active)) {
4974 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4975 			     ap->qc_active, qc_active);
4976 		return -EINVAL;
4977 	}
4978 
4979 	while (done_mask) {
4980 		struct ata_queued_cmd *qc;
4981 		unsigned int tag = __ffs(done_mask);
4982 
4983 		qc = ata_qc_from_tag(ap, tag);
4984 		if (qc) {
4985 			ata_qc_complete(qc);
4986 			nr_done++;
4987 		}
4988 		done_mask &= ~(1 << tag);
4989 	}
4990 
4991 	return nr_done;
4992 }
4993 
4994 /**
4995  *	ata_qc_issue - issue taskfile to device
4996  *	@qc: command to issue to device
4997  *
4998  *	Prepare an ATA command to submission to device.
4999  *	This includes mapping the data into a DMA-able
5000  *	area, filling in the S/G table, and finally
5001  *	writing the taskfile to hardware, starting the command.
5002  *
5003  *	LOCKING:
5004  *	spin_lock_irqsave(host lock)
5005  */
5006 void ata_qc_issue(struct ata_queued_cmd *qc)
5007 {
5008 	struct ata_port *ap = qc->ap;
5009 	struct ata_link *link = qc->dev->link;
5010 	u8 prot = qc->tf.protocol;
5011 
5012 	/* Make sure only one non-NCQ command is outstanding.  The
5013 	 * check is skipped for old EH because it reuses active qc to
5014 	 * request ATAPI sense.
5015 	 */
5016 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5017 
5018 	if (ata_is_ncq(prot)) {
5019 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5020 
5021 		if (!link->sactive)
5022 			ap->nr_active_links++;
5023 		link->sactive |= 1 << qc->tag;
5024 	} else {
5025 		WARN_ON_ONCE(link->sactive);
5026 
5027 		ap->nr_active_links++;
5028 		link->active_tag = qc->tag;
5029 	}
5030 
5031 	qc->flags |= ATA_QCFLAG_ACTIVE;
5032 	ap->qc_active |= 1 << qc->tag;
5033 
5034 	/*
5035 	 * We guarantee to LLDs that they will have at least one
5036 	 * non-zero sg if the command is a data command.
5037 	 */
5038 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5039 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5040 		goto sys_err;
5041 
5042 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5043 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5044 		if (ata_sg_setup(qc))
5045 			goto sys_err;
5046 
5047 	/* if device is sleeping, schedule reset and abort the link */
5048 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5049 		link->eh_info.action |= ATA_EH_RESET;
5050 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5051 		ata_link_abort(link);
5052 		return;
5053 	}
5054 
5055 	ap->ops->qc_prep(qc);
5056 
5057 	qc->err_mask |= ap->ops->qc_issue(qc);
5058 	if (unlikely(qc->err_mask))
5059 		goto err;
5060 	return;
5061 
5062 sys_err:
5063 	qc->err_mask |= AC_ERR_SYSTEM;
5064 err:
5065 	ata_qc_complete(qc);
5066 }
5067 
5068 /**
5069  *	sata_scr_valid - test whether SCRs are accessible
5070  *	@link: ATA link to test SCR accessibility for
5071  *
5072  *	Test whether SCRs are accessible for @link.
5073  *
5074  *	LOCKING:
5075  *	None.
5076  *
5077  *	RETURNS:
5078  *	1 if SCRs are accessible, 0 otherwise.
5079  */
5080 int sata_scr_valid(struct ata_link *link)
5081 {
5082 	struct ata_port *ap = link->ap;
5083 
5084 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5085 }
5086 
5087 /**
5088  *	sata_scr_read - read SCR register of the specified port
5089  *	@link: ATA link to read SCR for
5090  *	@reg: SCR to read
5091  *	@val: Place to store read value
5092  *
5093  *	Read SCR register @reg of @link into *@val.  This function is
5094  *	guaranteed to succeed if @link is ap->link, the cable type of
5095  *	the port is SATA and the port implements ->scr_read.
5096  *
5097  *	LOCKING:
5098  *	None if @link is ap->link.  Kernel thread context otherwise.
5099  *
5100  *	RETURNS:
5101  *	0 on success, negative errno on failure.
5102  */
5103 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5104 {
5105 	if (ata_is_host_link(link)) {
5106 		if (sata_scr_valid(link))
5107 			return link->ap->ops->scr_read(link, reg, val);
5108 		return -EOPNOTSUPP;
5109 	}
5110 
5111 	return sata_pmp_scr_read(link, reg, val);
5112 }
5113 
5114 /**
5115  *	sata_scr_write - write SCR register of the specified port
5116  *	@link: ATA link to write SCR for
5117  *	@reg: SCR to write
5118  *	@val: value to write
5119  *
5120  *	Write @val to SCR register @reg of @link.  This function is
5121  *	guaranteed to succeed if @link is ap->link, the cable type of
5122  *	the port is SATA and the port implements ->scr_read.
5123  *
5124  *	LOCKING:
5125  *	None if @link is ap->link.  Kernel thread context otherwise.
5126  *
5127  *	RETURNS:
5128  *	0 on success, negative errno on failure.
5129  */
5130 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5131 {
5132 	if (ata_is_host_link(link)) {
5133 		if (sata_scr_valid(link))
5134 			return link->ap->ops->scr_write(link, reg, val);
5135 		return -EOPNOTSUPP;
5136 	}
5137 
5138 	return sata_pmp_scr_write(link, reg, val);
5139 }
5140 
5141 /**
5142  *	sata_scr_write_flush - write SCR register of the specified port and flush
5143  *	@link: ATA link to write SCR for
5144  *	@reg: SCR to write
5145  *	@val: value to write
5146  *
5147  *	This function is identical to sata_scr_write() except that this
5148  *	function performs flush after writing to the register.
5149  *
5150  *	LOCKING:
5151  *	None if @link is ap->link.  Kernel thread context otherwise.
5152  *
5153  *	RETURNS:
5154  *	0 on success, negative errno on failure.
5155  */
5156 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5157 {
5158 	if (ata_is_host_link(link)) {
5159 		int rc;
5160 
5161 		if (sata_scr_valid(link)) {
5162 			rc = link->ap->ops->scr_write(link, reg, val);
5163 			if (rc == 0)
5164 				rc = link->ap->ops->scr_read(link, reg, &val);
5165 			return rc;
5166 		}
5167 		return -EOPNOTSUPP;
5168 	}
5169 
5170 	return sata_pmp_scr_write(link, reg, val);
5171 }
5172 
5173 /**
5174  *	ata_phys_link_online - test whether the given link is online
5175  *	@link: ATA link to test
5176  *
5177  *	Test whether @link is online.  Note that this function returns
5178  *	0 if online status of @link cannot be obtained, so
5179  *	ata_link_online(link) != !ata_link_offline(link).
5180  *
5181  *	LOCKING:
5182  *	None.
5183  *
5184  *	RETURNS:
5185  *	True if the port online status is available and online.
5186  */
5187 bool ata_phys_link_online(struct ata_link *link)
5188 {
5189 	u32 sstatus;
5190 
5191 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5192 	    ata_sstatus_online(sstatus))
5193 		return true;
5194 	return false;
5195 }
5196 
5197 /**
5198  *	ata_phys_link_offline - test whether the given link is offline
5199  *	@link: ATA link to test
5200  *
5201  *	Test whether @link is offline.  Note that this function
5202  *	returns 0 if offline status of @link cannot be obtained, so
5203  *	ata_link_online(link) != !ata_link_offline(link).
5204  *
5205  *	LOCKING:
5206  *	None.
5207  *
5208  *	RETURNS:
5209  *	True if the port offline status is available and offline.
5210  */
5211 bool ata_phys_link_offline(struct ata_link *link)
5212 {
5213 	u32 sstatus;
5214 
5215 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5216 	    !ata_sstatus_online(sstatus))
5217 		return true;
5218 	return false;
5219 }
5220 
5221 /**
5222  *	ata_link_online - test whether the given link is online
5223  *	@link: ATA link to test
5224  *
5225  *	Test whether @link is online.  This is identical to
5226  *	ata_phys_link_online() when there's no slave link.  When
5227  *	there's a slave link, this function should only be called on
5228  *	the master link and will return true if any of M/S links is
5229  *	online.
5230  *
5231  *	LOCKING:
5232  *	None.
5233  *
5234  *	RETURNS:
5235  *	True if the port online status is available and online.
5236  */
5237 bool ata_link_online(struct ata_link *link)
5238 {
5239 	struct ata_link *slave = link->ap->slave_link;
5240 
5241 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5242 
5243 	return ata_phys_link_online(link) ||
5244 		(slave && ata_phys_link_online(slave));
5245 }
5246 
5247 /**
5248  *	ata_link_offline - test whether the given link is offline
5249  *	@link: ATA link to test
5250  *
5251  *	Test whether @link is offline.  This is identical to
5252  *	ata_phys_link_offline() when there's no slave link.  When
5253  *	there's a slave link, this function should only be called on
5254  *	the master link and will return true if both M/S links are
5255  *	offline.
5256  *
5257  *	LOCKING:
5258  *	None.
5259  *
5260  *	RETURNS:
5261  *	True if the port offline status is available and offline.
5262  */
5263 bool ata_link_offline(struct ata_link *link)
5264 {
5265 	struct ata_link *slave = link->ap->slave_link;
5266 
5267 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5268 
5269 	return ata_phys_link_offline(link) &&
5270 		(!slave || ata_phys_link_offline(slave));
5271 }
5272 
5273 #ifdef CONFIG_PM
5274 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5275 				unsigned int action, unsigned int ehi_flags,
5276 				bool async)
5277 {
5278 	struct ata_link *link;
5279 	unsigned long flags;
5280 
5281 	/* Previous resume operation might still be in
5282 	 * progress.  Wait for PM_PENDING to clear.
5283 	 */
5284 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5285 		ata_port_wait_eh(ap);
5286 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5287 	}
5288 
5289 	/* request PM ops to EH */
5290 	spin_lock_irqsave(ap->lock, flags);
5291 
5292 	ap->pm_mesg = mesg;
5293 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5294 	ata_for_each_link(link, ap, HOST_FIRST) {
5295 		link->eh_info.action |= action;
5296 		link->eh_info.flags |= ehi_flags;
5297 	}
5298 
5299 	ata_port_schedule_eh(ap);
5300 
5301 	spin_unlock_irqrestore(ap->lock, flags);
5302 
5303 	if (!async) {
5304 		ata_port_wait_eh(ap);
5305 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5306 	}
5307 }
5308 
5309 /*
5310  * On some hardware, device fails to respond after spun down for suspend.  As
5311  * the device won't be used before being resumed, we don't need to touch the
5312  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5313  *
5314  * http://thread.gmane.org/gmane.linux.ide/46764
5315  */
5316 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5317 						 | ATA_EHI_NO_AUTOPSY
5318 						 | ATA_EHI_NO_RECOVERY;
5319 
5320 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5321 {
5322 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5323 }
5324 
5325 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5326 {
5327 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5328 }
5329 
5330 static int ata_port_pm_suspend(struct device *dev)
5331 {
5332 	struct ata_port *ap = to_ata_port(dev);
5333 
5334 	if (pm_runtime_suspended(dev))
5335 		return 0;
5336 
5337 	ata_port_suspend(ap, PMSG_SUSPEND);
5338 	return 0;
5339 }
5340 
5341 static int ata_port_pm_freeze(struct device *dev)
5342 {
5343 	struct ata_port *ap = to_ata_port(dev);
5344 
5345 	if (pm_runtime_suspended(dev))
5346 		return 0;
5347 
5348 	ata_port_suspend(ap, PMSG_FREEZE);
5349 	return 0;
5350 }
5351 
5352 static int ata_port_pm_poweroff(struct device *dev)
5353 {
5354 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5355 	return 0;
5356 }
5357 
5358 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5359 						| ATA_EHI_QUIET;
5360 
5361 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5362 {
5363 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5364 }
5365 
5366 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5367 {
5368 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5369 }
5370 
5371 static int ata_port_pm_resume(struct device *dev)
5372 {
5373 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5374 	pm_runtime_disable(dev);
5375 	pm_runtime_set_active(dev);
5376 	pm_runtime_enable(dev);
5377 	return 0;
5378 }
5379 
5380 /*
5381  * For ODDs, the upper layer will poll for media change every few seconds,
5382  * which will make it enter and leave suspend state every few seconds. And
5383  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5384  * is very little and the ODD may malfunction after constantly being reset.
5385  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5386  * ODD is attached to the port.
5387  */
5388 static int ata_port_runtime_idle(struct device *dev)
5389 {
5390 	struct ata_port *ap = to_ata_port(dev);
5391 	struct ata_link *link;
5392 	struct ata_device *adev;
5393 
5394 	ata_for_each_link(link, ap, HOST_FIRST) {
5395 		ata_for_each_dev(adev, link, ENABLED)
5396 			if (adev->class == ATA_DEV_ATAPI &&
5397 			    !zpodd_dev_enabled(adev))
5398 				return -EBUSY;
5399 	}
5400 
5401 	return 0;
5402 }
5403 
5404 static int ata_port_runtime_suspend(struct device *dev)
5405 {
5406 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5407 	return 0;
5408 }
5409 
5410 static int ata_port_runtime_resume(struct device *dev)
5411 {
5412 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5413 	return 0;
5414 }
5415 
5416 static const struct dev_pm_ops ata_port_pm_ops = {
5417 	.suspend = ata_port_pm_suspend,
5418 	.resume = ata_port_pm_resume,
5419 	.freeze = ata_port_pm_freeze,
5420 	.thaw = ata_port_pm_resume,
5421 	.poweroff = ata_port_pm_poweroff,
5422 	.restore = ata_port_pm_resume,
5423 
5424 	.runtime_suspend = ata_port_runtime_suspend,
5425 	.runtime_resume = ata_port_runtime_resume,
5426 	.runtime_idle = ata_port_runtime_idle,
5427 };
5428 
5429 /* sas ports don't participate in pm runtime management of ata_ports,
5430  * and need to resume ata devices at the domain level, not the per-port
5431  * level. sas suspend/resume is async to allow parallel port recovery
5432  * since sas has multiple ata_port instances per Scsi_Host.
5433  */
5434 void ata_sas_port_suspend(struct ata_port *ap)
5435 {
5436 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5437 }
5438 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5439 
5440 void ata_sas_port_resume(struct ata_port *ap)
5441 {
5442 	ata_port_resume_async(ap, PMSG_RESUME);
5443 }
5444 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5445 
5446 /**
5447  *	ata_host_suspend - suspend host
5448  *	@host: host to suspend
5449  *	@mesg: PM message
5450  *
5451  *	Suspend @host.  Actual operation is performed by port suspend.
5452  */
5453 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5454 {
5455 	host->dev->power.power_state = mesg;
5456 	return 0;
5457 }
5458 
5459 /**
5460  *	ata_host_resume - resume host
5461  *	@host: host to resume
5462  *
5463  *	Resume @host.  Actual operation is performed by port resume.
5464  */
5465 void ata_host_resume(struct ata_host *host)
5466 {
5467 	host->dev->power.power_state = PMSG_ON;
5468 }
5469 #endif
5470 
5471 struct device_type ata_port_type = {
5472 	.name = "ata_port",
5473 #ifdef CONFIG_PM
5474 	.pm = &ata_port_pm_ops,
5475 #endif
5476 };
5477 
5478 /**
5479  *	ata_dev_init - Initialize an ata_device structure
5480  *	@dev: Device structure to initialize
5481  *
5482  *	Initialize @dev in preparation for probing.
5483  *
5484  *	LOCKING:
5485  *	Inherited from caller.
5486  */
5487 void ata_dev_init(struct ata_device *dev)
5488 {
5489 	struct ata_link *link = ata_dev_phys_link(dev);
5490 	struct ata_port *ap = link->ap;
5491 	unsigned long flags;
5492 
5493 	/* SATA spd limit is bound to the attached device, reset together */
5494 	link->sata_spd_limit = link->hw_sata_spd_limit;
5495 	link->sata_spd = 0;
5496 
5497 	/* High bits of dev->flags are used to record warm plug
5498 	 * requests which occur asynchronously.  Synchronize using
5499 	 * host lock.
5500 	 */
5501 	spin_lock_irqsave(ap->lock, flags);
5502 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5503 	dev->horkage = 0;
5504 	spin_unlock_irqrestore(ap->lock, flags);
5505 
5506 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5507 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5508 	dev->pio_mask = UINT_MAX;
5509 	dev->mwdma_mask = UINT_MAX;
5510 	dev->udma_mask = UINT_MAX;
5511 }
5512 
5513 /**
5514  *	ata_link_init - Initialize an ata_link structure
5515  *	@ap: ATA port link is attached to
5516  *	@link: Link structure to initialize
5517  *	@pmp: Port multiplier port number
5518  *
5519  *	Initialize @link.
5520  *
5521  *	LOCKING:
5522  *	Kernel thread context (may sleep)
5523  */
5524 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5525 {
5526 	int i;
5527 
5528 	/* clear everything except for devices */
5529 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5530 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5531 
5532 	link->ap = ap;
5533 	link->pmp = pmp;
5534 	link->active_tag = ATA_TAG_POISON;
5535 	link->hw_sata_spd_limit = UINT_MAX;
5536 
5537 	/* can't use iterator, ap isn't initialized yet */
5538 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5539 		struct ata_device *dev = &link->device[i];
5540 
5541 		dev->link = link;
5542 		dev->devno = dev - link->device;
5543 #ifdef CONFIG_ATA_ACPI
5544 		dev->gtf_filter = ata_acpi_gtf_filter;
5545 #endif
5546 		ata_dev_init(dev);
5547 	}
5548 }
5549 
5550 /**
5551  *	sata_link_init_spd - Initialize link->sata_spd_limit
5552  *	@link: Link to configure sata_spd_limit for
5553  *
5554  *	Initialize @link->[hw_]sata_spd_limit to the currently
5555  *	configured value.
5556  *
5557  *	LOCKING:
5558  *	Kernel thread context (may sleep).
5559  *
5560  *	RETURNS:
5561  *	0 on success, -errno on failure.
5562  */
5563 int sata_link_init_spd(struct ata_link *link)
5564 {
5565 	u8 spd;
5566 	int rc;
5567 
5568 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5569 	if (rc)
5570 		return rc;
5571 
5572 	spd = (link->saved_scontrol >> 4) & 0xf;
5573 	if (spd)
5574 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5575 
5576 	ata_force_link_limits(link);
5577 
5578 	link->sata_spd_limit = link->hw_sata_spd_limit;
5579 
5580 	return 0;
5581 }
5582 
5583 /**
5584  *	ata_port_alloc - allocate and initialize basic ATA port resources
5585  *	@host: ATA host this allocated port belongs to
5586  *
5587  *	Allocate and initialize basic ATA port resources.
5588  *
5589  *	RETURNS:
5590  *	Allocate ATA port on success, NULL on failure.
5591  *
5592  *	LOCKING:
5593  *	Inherited from calling layer (may sleep).
5594  */
5595 struct ata_port *ata_port_alloc(struct ata_host *host)
5596 {
5597 	struct ata_port *ap;
5598 
5599 	DPRINTK("ENTER\n");
5600 
5601 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5602 	if (!ap)
5603 		return NULL;
5604 
5605 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5606 	ap->lock = &host->lock;
5607 	ap->print_id = -1;
5608 	ap->local_port_no = -1;
5609 	ap->host = host;
5610 	ap->dev = host->dev;
5611 
5612 #if defined(ATA_VERBOSE_DEBUG)
5613 	/* turn on all debugging levels */
5614 	ap->msg_enable = 0x00FF;
5615 #elif defined(ATA_DEBUG)
5616 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5617 #else
5618 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5619 #endif
5620 
5621 	mutex_init(&ap->scsi_scan_mutex);
5622 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5623 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5624 	INIT_LIST_HEAD(&ap->eh_done_q);
5625 	init_waitqueue_head(&ap->eh_wait_q);
5626 	init_completion(&ap->park_req_pending);
5627 	init_timer_deferrable(&ap->fastdrain_timer);
5628 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5629 	ap->fastdrain_timer.data = (unsigned long)ap;
5630 
5631 	ap->cbl = ATA_CBL_NONE;
5632 
5633 	ata_link_init(ap, &ap->link, 0);
5634 
5635 #ifdef ATA_IRQ_TRAP
5636 	ap->stats.unhandled_irq = 1;
5637 	ap->stats.idle_irq = 1;
5638 #endif
5639 	ata_sff_port_init(ap);
5640 
5641 	return ap;
5642 }
5643 
5644 static void ata_host_release(struct device *gendev, void *res)
5645 {
5646 	struct ata_host *host = dev_get_drvdata(gendev);
5647 	int i;
5648 
5649 	for (i = 0; i < host->n_ports; i++) {
5650 		struct ata_port *ap = host->ports[i];
5651 
5652 		if (!ap)
5653 			continue;
5654 
5655 		if (ap->scsi_host)
5656 			scsi_host_put(ap->scsi_host);
5657 
5658 		kfree(ap->pmp_link);
5659 		kfree(ap->slave_link);
5660 		kfree(ap);
5661 		host->ports[i] = NULL;
5662 	}
5663 
5664 	dev_set_drvdata(gendev, NULL);
5665 }
5666 
5667 /**
5668  *	ata_host_alloc - allocate and init basic ATA host resources
5669  *	@dev: generic device this host is associated with
5670  *	@max_ports: maximum number of ATA ports associated with this host
5671  *
5672  *	Allocate and initialize basic ATA host resources.  LLD calls
5673  *	this function to allocate a host, initializes it fully and
5674  *	attaches it using ata_host_register().
5675  *
5676  *	@max_ports ports are allocated and host->n_ports is
5677  *	initialized to @max_ports.  The caller is allowed to decrease
5678  *	host->n_ports before calling ata_host_register().  The unused
5679  *	ports will be automatically freed on registration.
5680  *
5681  *	RETURNS:
5682  *	Allocate ATA host on success, NULL on failure.
5683  *
5684  *	LOCKING:
5685  *	Inherited from calling layer (may sleep).
5686  */
5687 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5688 {
5689 	struct ata_host *host;
5690 	size_t sz;
5691 	int i;
5692 
5693 	DPRINTK("ENTER\n");
5694 
5695 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5696 		return NULL;
5697 
5698 	/* alloc a container for our list of ATA ports (buses) */
5699 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5700 	/* alloc a container for our list of ATA ports (buses) */
5701 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5702 	if (!host)
5703 		goto err_out;
5704 
5705 	devres_add(dev, host);
5706 	dev_set_drvdata(dev, host);
5707 
5708 	spin_lock_init(&host->lock);
5709 	mutex_init(&host->eh_mutex);
5710 	host->dev = dev;
5711 	host->n_ports = max_ports;
5712 
5713 	/* allocate ports bound to this host */
5714 	for (i = 0; i < max_ports; i++) {
5715 		struct ata_port *ap;
5716 
5717 		ap = ata_port_alloc(host);
5718 		if (!ap)
5719 			goto err_out;
5720 
5721 		ap->port_no = i;
5722 		host->ports[i] = ap;
5723 	}
5724 
5725 	devres_remove_group(dev, NULL);
5726 	return host;
5727 
5728  err_out:
5729 	devres_release_group(dev, NULL);
5730 	return NULL;
5731 }
5732 
5733 /**
5734  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5735  *	@dev: generic device this host is associated with
5736  *	@ppi: array of ATA port_info to initialize host with
5737  *	@n_ports: number of ATA ports attached to this host
5738  *
5739  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5740  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5741  *	last entry will be used for the remaining ports.
5742  *
5743  *	RETURNS:
5744  *	Allocate ATA host on success, NULL on failure.
5745  *
5746  *	LOCKING:
5747  *	Inherited from calling layer (may sleep).
5748  */
5749 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5750 				      const struct ata_port_info * const * ppi,
5751 				      int n_ports)
5752 {
5753 	const struct ata_port_info *pi;
5754 	struct ata_host *host;
5755 	int i, j;
5756 
5757 	host = ata_host_alloc(dev, n_ports);
5758 	if (!host)
5759 		return NULL;
5760 
5761 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5762 		struct ata_port *ap = host->ports[i];
5763 
5764 		if (ppi[j])
5765 			pi = ppi[j++];
5766 
5767 		ap->pio_mask = pi->pio_mask;
5768 		ap->mwdma_mask = pi->mwdma_mask;
5769 		ap->udma_mask = pi->udma_mask;
5770 		ap->flags |= pi->flags;
5771 		ap->link.flags |= pi->link_flags;
5772 		ap->ops = pi->port_ops;
5773 
5774 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5775 			host->ops = pi->port_ops;
5776 	}
5777 
5778 	return host;
5779 }
5780 
5781 /**
5782  *	ata_slave_link_init - initialize slave link
5783  *	@ap: port to initialize slave link for
5784  *
5785  *	Create and initialize slave link for @ap.  This enables slave
5786  *	link handling on the port.
5787  *
5788  *	In libata, a port contains links and a link contains devices.
5789  *	There is single host link but if a PMP is attached to it,
5790  *	there can be multiple fan-out links.  On SATA, there's usually
5791  *	a single device connected to a link but PATA and SATA
5792  *	controllers emulating TF based interface can have two - master
5793  *	and slave.
5794  *
5795  *	However, there are a few controllers which don't fit into this
5796  *	abstraction too well - SATA controllers which emulate TF
5797  *	interface with both master and slave devices but also have
5798  *	separate SCR register sets for each device.  These controllers
5799  *	need separate links for physical link handling
5800  *	(e.g. onlineness, link speed) but should be treated like a
5801  *	traditional M/S controller for everything else (e.g. command
5802  *	issue, softreset).
5803  *
5804  *	slave_link is libata's way of handling this class of
5805  *	controllers without impacting core layer too much.  For
5806  *	anything other than physical link handling, the default host
5807  *	link is used for both master and slave.  For physical link
5808  *	handling, separate @ap->slave_link is used.  All dirty details
5809  *	are implemented inside libata core layer.  From LLD's POV, the
5810  *	only difference is that prereset, hardreset and postreset are
5811  *	called once more for the slave link, so the reset sequence
5812  *	looks like the following.
5813  *
5814  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5815  *	softreset(M) -> postreset(M) -> postreset(S)
5816  *
5817  *	Note that softreset is called only for the master.  Softreset
5818  *	resets both M/S by definition, so SRST on master should handle
5819  *	both (the standard method will work just fine).
5820  *
5821  *	LOCKING:
5822  *	Should be called before host is registered.
5823  *
5824  *	RETURNS:
5825  *	0 on success, -errno on failure.
5826  */
5827 int ata_slave_link_init(struct ata_port *ap)
5828 {
5829 	struct ata_link *link;
5830 
5831 	WARN_ON(ap->slave_link);
5832 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5833 
5834 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5835 	if (!link)
5836 		return -ENOMEM;
5837 
5838 	ata_link_init(ap, link, 1);
5839 	ap->slave_link = link;
5840 	return 0;
5841 }
5842 
5843 static void ata_host_stop(struct device *gendev, void *res)
5844 {
5845 	struct ata_host *host = dev_get_drvdata(gendev);
5846 	int i;
5847 
5848 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5849 
5850 	for (i = 0; i < host->n_ports; i++) {
5851 		struct ata_port *ap = host->ports[i];
5852 
5853 		if (ap->ops->port_stop)
5854 			ap->ops->port_stop(ap);
5855 	}
5856 
5857 	if (host->ops->host_stop)
5858 		host->ops->host_stop(host);
5859 }
5860 
5861 /**
5862  *	ata_finalize_port_ops - finalize ata_port_operations
5863  *	@ops: ata_port_operations to finalize
5864  *
5865  *	An ata_port_operations can inherit from another ops and that
5866  *	ops can again inherit from another.  This can go on as many
5867  *	times as necessary as long as there is no loop in the
5868  *	inheritance chain.
5869  *
5870  *	Ops tables are finalized when the host is started.  NULL or
5871  *	unspecified entries are inherited from the closet ancestor
5872  *	which has the method and the entry is populated with it.
5873  *	After finalization, the ops table directly points to all the
5874  *	methods and ->inherits is no longer necessary and cleared.
5875  *
5876  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5877  *
5878  *	LOCKING:
5879  *	None.
5880  */
5881 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5882 {
5883 	static DEFINE_SPINLOCK(lock);
5884 	const struct ata_port_operations *cur;
5885 	void **begin = (void **)ops;
5886 	void **end = (void **)&ops->inherits;
5887 	void **pp;
5888 
5889 	if (!ops || !ops->inherits)
5890 		return;
5891 
5892 	spin_lock(&lock);
5893 
5894 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5895 		void **inherit = (void **)cur;
5896 
5897 		for (pp = begin; pp < end; pp++, inherit++)
5898 			if (!*pp)
5899 				*pp = *inherit;
5900 	}
5901 
5902 	for (pp = begin; pp < end; pp++)
5903 		if (IS_ERR(*pp))
5904 			*pp = NULL;
5905 
5906 	ops->inherits = NULL;
5907 
5908 	spin_unlock(&lock);
5909 }
5910 
5911 /**
5912  *	ata_host_start - start and freeze ports of an ATA host
5913  *	@host: ATA host to start ports for
5914  *
5915  *	Start and then freeze ports of @host.  Started status is
5916  *	recorded in host->flags, so this function can be called
5917  *	multiple times.  Ports are guaranteed to get started only
5918  *	once.  If host->ops isn't initialized yet, its set to the
5919  *	first non-dummy port ops.
5920  *
5921  *	LOCKING:
5922  *	Inherited from calling layer (may sleep).
5923  *
5924  *	RETURNS:
5925  *	0 if all ports are started successfully, -errno otherwise.
5926  */
5927 int ata_host_start(struct ata_host *host)
5928 {
5929 	int have_stop = 0;
5930 	void *start_dr = NULL;
5931 	int i, rc;
5932 
5933 	if (host->flags & ATA_HOST_STARTED)
5934 		return 0;
5935 
5936 	ata_finalize_port_ops(host->ops);
5937 
5938 	for (i = 0; i < host->n_ports; i++) {
5939 		struct ata_port *ap = host->ports[i];
5940 
5941 		ata_finalize_port_ops(ap->ops);
5942 
5943 		if (!host->ops && !ata_port_is_dummy(ap))
5944 			host->ops = ap->ops;
5945 
5946 		if (ap->ops->port_stop)
5947 			have_stop = 1;
5948 	}
5949 
5950 	if (host->ops->host_stop)
5951 		have_stop = 1;
5952 
5953 	if (have_stop) {
5954 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5955 		if (!start_dr)
5956 			return -ENOMEM;
5957 	}
5958 
5959 	for (i = 0; i < host->n_ports; i++) {
5960 		struct ata_port *ap = host->ports[i];
5961 
5962 		if (ap->ops->port_start) {
5963 			rc = ap->ops->port_start(ap);
5964 			if (rc) {
5965 				if (rc != -ENODEV)
5966 					dev_err(host->dev,
5967 						"failed to start port %d (errno=%d)\n",
5968 						i, rc);
5969 				goto err_out;
5970 			}
5971 		}
5972 		ata_eh_freeze_port(ap);
5973 	}
5974 
5975 	if (start_dr)
5976 		devres_add(host->dev, start_dr);
5977 	host->flags |= ATA_HOST_STARTED;
5978 	return 0;
5979 
5980  err_out:
5981 	while (--i >= 0) {
5982 		struct ata_port *ap = host->ports[i];
5983 
5984 		if (ap->ops->port_stop)
5985 			ap->ops->port_stop(ap);
5986 	}
5987 	devres_free(start_dr);
5988 	return rc;
5989 }
5990 
5991 /**
5992  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
5993  *	@host:	host to initialize
5994  *	@dev:	device host is attached to
5995  *	@ops:	port_ops
5996  *
5997  */
5998 void ata_host_init(struct ata_host *host, struct device *dev,
5999 		   struct ata_port_operations *ops)
6000 {
6001 	spin_lock_init(&host->lock);
6002 	mutex_init(&host->eh_mutex);
6003 	host->n_tags = ATA_MAX_QUEUE - 1;
6004 	host->dev = dev;
6005 	host->ops = ops;
6006 }
6007 
6008 void __ata_port_probe(struct ata_port *ap)
6009 {
6010 	struct ata_eh_info *ehi = &ap->link.eh_info;
6011 	unsigned long flags;
6012 
6013 	/* kick EH for boot probing */
6014 	spin_lock_irqsave(ap->lock, flags);
6015 
6016 	ehi->probe_mask |= ATA_ALL_DEVICES;
6017 	ehi->action |= ATA_EH_RESET;
6018 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6019 
6020 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6021 	ap->pflags |= ATA_PFLAG_LOADING;
6022 	ata_port_schedule_eh(ap);
6023 
6024 	spin_unlock_irqrestore(ap->lock, flags);
6025 }
6026 
6027 int ata_port_probe(struct ata_port *ap)
6028 {
6029 	int rc = 0;
6030 
6031 	if (ap->ops->error_handler) {
6032 		__ata_port_probe(ap);
6033 		ata_port_wait_eh(ap);
6034 	} else {
6035 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6036 		rc = ata_bus_probe(ap);
6037 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6038 	}
6039 	return rc;
6040 }
6041 
6042 
6043 static void async_port_probe(void *data, async_cookie_t cookie)
6044 {
6045 	struct ata_port *ap = data;
6046 
6047 	/*
6048 	 * If we're not allowed to scan this host in parallel,
6049 	 * we need to wait until all previous scans have completed
6050 	 * before going further.
6051 	 * Jeff Garzik says this is only within a controller, so we
6052 	 * don't need to wait for port 0, only for later ports.
6053 	 */
6054 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6055 		async_synchronize_cookie(cookie);
6056 
6057 	(void)ata_port_probe(ap);
6058 
6059 	/* in order to keep device order, we need to synchronize at this point */
6060 	async_synchronize_cookie(cookie);
6061 
6062 	ata_scsi_scan_host(ap, 1);
6063 }
6064 
6065 /**
6066  *	ata_host_register - register initialized ATA host
6067  *	@host: ATA host to register
6068  *	@sht: template for SCSI host
6069  *
6070  *	Register initialized ATA host.  @host is allocated using
6071  *	ata_host_alloc() and fully initialized by LLD.  This function
6072  *	starts ports, registers @host with ATA and SCSI layers and
6073  *	probe registered devices.
6074  *
6075  *	LOCKING:
6076  *	Inherited from calling layer (may sleep).
6077  *
6078  *	RETURNS:
6079  *	0 on success, -errno otherwise.
6080  */
6081 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6082 {
6083 	int i, rc;
6084 
6085 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6086 
6087 	/* host must have been started */
6088 	if (!(host->flags & ATA_HOST_STARTED)) {
6089 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6090 		WARN_ON(1);
6091 		return -EINVAL;
6092 	}
6093 
6094 	/* Blow away unused ports.  This happens when LLD can't
6095 	 * determine the exact number of ports to allocate at
6096 	 * allocation time.
6097 	 */
6098 	for (i = host->n_ports; host->ports[i]; i++)
6099 		kfree(host->ports[i]);
6100 
6101 	/* give ports names and add SCSI hosts */
6102 	for (i = 0; i < host->n_ports; i++) {
6103 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6104 		host->ports[i]->local_port_no = i + 1;
6105 	}
6106 
6107 	/* Create associated sysfs transport objects  */
6108 	for (i = 0; i < host->n_ports; i++) {
6109 		rc = ata_tport_add(host->dev,host->ports[i]);
6110 		if (rc) {
6111 			goto err_tadd;
6112 		}
6113 	}
6114 
6115 	rc = ata_scsi_add_hosts(host, sht);
6116 	if (rc)
6117 		goto err_tadd;
6118 
6119 	/* set cable, sata_spd_limit and report */
6120 	for (i = 0; i < host->n_ports; i++) {
6121 		struct ata_port *ap = host->ports[i];
6122 		unsigned long xfer_mask;
6123 
6124 		/* set SATA cable type if still unset */
6125 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6126 			ap->cbl = ATA_CBL_SATA;
6127 
6128 		/* init sata_spd_limit to the current value */
6129 		sata_link_init_spd(&ap->link);
6130 		if (ap->slave_link)
6131 			sata_link_init_spd(ap->slave_link);
6132 
6133 		/* print per-port info to dmesg */
6134 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6135 					      ap->udma_mask);
6136 
6137 		if (!ata_port_is_dummy(ap)) {
6138 			ata_port_info(ap, "%cATA max %s %s\n",
6139 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6140 				      ata_mode_string(xfer_mask),
6141 				      ap->link.eh_info.desc);
6142 			ata_ehi_clear_desc(&ap->link.eh_info);
6143 		} else
6144 			ata_port_info(ap, "DUMMY\n");
6145 	}
6146 
6147 	/* perform each probe asynchronously */
6148 	for (i = 0; i < host->n_ports; i++) {
6149 		struct ata_port *ap = host->ports[i];
6150 		async_schedule(async_port_probe, ap);
6151 	}
6152 
6153 	return 0;
6154 
6155  err_tadd:
6156 	while (--i >= 0) {
6157 		ata_tport_delete(host->ports[i]);
6158 	}
6159 	return rc;
6160 
6161 }
6162 
6163 /**
6164  *	ata_host_activate - start host, request IRQ and register it
6165  *	@host: target ATA host
6166  *	@irq: IRQ to request
6167  *	@irq_handler: irq_handler used when requesting IRQ
6168  *	@irq_flags: irq_flags used when requesting IRQ
6169  *	@sht: scsi_host_template to use when registering the host
6170  *
6171  *	After allocating an ATA host and initializing it, most libata
6172  *	LLDs perform three steps to activate the host - start host,
6173  *	request IRQ and register it.  This helper takes necessasry
6174  *	arguments and performs the three steps in one go.
6175  *
6176  *	An invalid IRQ skips the IRQ registration and expects the host to
6177  *	have set polling mode on the port. In this case, @irq_handler
6178  *	should be NULL.
6179  *
6180  *	LOCKING:
6181  *	Inherited from calling layer (may sleep).
6182  *
6183  *	RETURNS:
6184  *	0 on success, -errno otherwise.
6185  */
6186 int ata_host_activate(struct ata_host *host, int irq,
6187 		      irq_handler_t irq_handler, unsigned long irq_flags,
6188 		      struct scsi_host_template *sht)
6189 {
6190 	int i, rc;
6191 
6192 	rc = ata_host_start(host);
6193 	if (rc)
6194 		return rc;
6195 
6196 	/* Special case for polling mode */
6197 	if (!irq) {
6198 		WARN_ON(irq_handler);
6199 		return ata_host_register(host, sht);
6200 	}
6201 
6202 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6203 			      dev_name(host->dev), host);
6204 	if (rc)
6205 		return rc;
6206 
6207 	for (i = 0; i < host->n_ports; i++)
6208 		ata_port_desc(host->ports[i], "irq %d", irq);
6209 
6210 	rc = ata_host_register(host, sht);
6211 	/* if failed, just free the IRQ and leave ports alone */
6212 	if (rc)
6213 		devm_free_irq(host->dev, irq, host);
6214 
6215 	return rc;
6216 }
6217 
6218 /**
6219  *	ata_port_detach - Detach ATA port in prepration of device removal
6220  *	@ap: ATA port to be detached
6221  *
6222  *	Detach all ATA devices and the associated SCSI devices of @ap;
6223  *	then, remove the associated SCSI host.  @ap is guaranteed to
6224  *	be quiescent on return from this function.
6225  *
6226  *	LOCKING:
6227  *	Kernel thread context (may sleep).
6228  */
6229 static void ata_port_detach(struct ata_port *ap)
6230 {
6231 	unsigned long flags;
6232 	struct ata_link *link;
6233 	struct ata_device *dev;
6234 
6235 	if (!ap->ops->error_handler)
6236 		goto skip_eh;
6237 
6238 	/* tell EH we're leaving & flush EH */
6239 	spin_lock_irqsave(ap->lock, flags);
6240 	ap->pflags |= ATA_PFLAG_UNLOADING;
6241 	ata_port_schedule_eh(ap);
6242 	spin_unlock_irqrestore(ap->lock, flags);
6243 
6244 	/* wait till EH commits suicide */
6245 	ata_port_wait_eh(ap);
6246 
6247 	/* it better be dead now */
6248 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6249 
6250 	cancel_delayed_work_sync(&ap->hotplug_task);
6251 
6252  skip_eh:
6253 	/* clean up zpodd on port removal */
6254 	ata_for_each_link(link, ap, HOST_FIRST) {
6255 		ata_for_each_dev(dev, link, ALL) {
6256 			if (zpodd_dev_enabled(dev))
6257 				zpodd_exit(dev);
6258 		}
6259 	}
6260 	if (ap->pmp_link) {
6261 		int i;
6262 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6263 			ata_tlink_delete(&ap->pmp_link[i]);
6264 	}
6265 	/* remove the associated SCSI host */
6266 	scsi_remove_host(ap->scsi_host);
6267 	ata_tport_delete(ap);
6268 }
6269 
6270 /**
6271  *	ata_host_detach - Detach all ports of an ATA host
6272  *	@host: Host to detach
6273  *
6274  *	Detach all ports of @host.
6275  *
6276  *	LOCKING:
6277  *	Kernel thread context (may sleep).
6278  */
6279 void ata_host_detach(struct ata_host *host)
6280 {
6281 	int i;
6282 
6283 	for (i = 0; i < host->n_ports; i++)
6284 		ata_port_detach(host->ports[i]);
6285 
6286 	/* the host is dead now, dissociate ACPI */
6287 	ata_acpi_dissociate(host);
6288 }
6289 
6290 #ifdef CONFIG_PCI
6291 
6292 /**
6293  *	ata_pci_remove_one - PCI layer callback for device removal
6294  *	@pdev: PCI device that was removed
6295  *
6296  *	PCI layer indicates to libata via this hook that hot-unplug or
6297  *	module unload event has occurred.  Detach all ports.  Resource
6298  *	release is handled via devres.
6299  *
6300  *	LOCKING:
6301  *	Inherited from PCI layer (may sleep).
6302  */
6303 void ata_pci_remove_one(struct pci_dev *pdev)
6304 {
6305 	struct ata_host *host = pci_get_drvdata(pdev);
6306 
6307 	ata_host_detach(host);
6308 }
6309 
6310 /* move to PCI subsystem */
6311 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6312 {
6313 	unsigned long tmp = 0;
6314 
6315 	switch (bits->width) {
6316 	case 1: {
6317 		u8 tmp8 = 0;
6318 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6319 		tmp = tmp8;
6320 		break;
6321 	}
6322 	case 2: {
6323 		u16 tmp16 = 0;
6324 		pci_read_config_word(pdev, bits->reg, &tmp16);
6325 		tmp = tmp16;
6326 		break;
6327 	}
6328 	case 4: {
6329 		u32 tmp32 = 0;
6330 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6331 		tmp = tmp32;
6332 		break;
6333 	}
6334 
6335 	default:
6336 		return -EINVAL;
6337 	}
6338 
6339 	tmp &= bits->mask;
6340 
6341 	return (tmp == bits->val) ? 1 : 0;
6342 }
6343 
6344 #ifdef CONFIG_PM
6345 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6346 {
6347 	pci_save_state(pdev);
6348 	pci_disable_device(pdev);
6349 
6350 	if (mesg.event & PM_EVENT_SLEEP)
6351 		pci_set_power_state(pdev, PCI_D3hot);
6352 }
6353 
6354 int ata_pci_device_do_resume(struct pci_dev *pdev)
6355 {
6356 	int rc;
6357 
6358 	pci_set_power_state(pdev, PCI_D0);
6359 	pci_restore_state(pdev);
6360 
6361 	rc = pcim_enable_device(pdev);
6362 	if (rc) {
6363 		dev_err(&pdev->dev,
6364 			"failed to enable device after resume (%d)\n", rc);
6365 		return rc;
6366 	}
6367 
6368 	pci_set_master(pdev);
6369 	return 0;
6370 }
6371 
6372 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6373 {
6374 	struct ata_host *host = pci_get_drvdata(pdev);
6375 	int rc = 0;
6376 
6377 	rc = ata_host_suspend(host, mesg);
6378 	if (rc)
6379 		return rc;
6380 
6381 	ata_pci_device_do_suspend(pdev, mesg);
6382 
6383 	return 0;
6384 }
6385 
6386 int ata_pci_device_resume(struct pci_dev *pdev)
6387 {
6388 	struct ata_host *host = pci_get_drvdata(pdev);
6389 	int rc;
6390 
6391 	rc = ata_pci_device_do_resume(pdev);
6392 	if (rc == 0)
6393 		ata_host_resume(host);
6394 	return rc;
6395 }
6396 #endif /* CONFIG_PM */
6397 
6398 #endif /* CONFIG_PCI */
6399 
6400 /**
6401  *	ata_platform_remove_one - Platform layer callback for device removal
6402  *	@pdev: Platform device that was removed
6403  *
6404  *	Platform layer indicates to libata via this hook that hot-unplug or
6405  *	module unload event has occurred.  Detach all ports.  Resource
6406  *	release is handled via devres.
6407  *
6408  *	LOCKING:
6409  *	Inherited from platform layer (may sleep).
6410  */
6411 int ata_platform_remove_one(struct platform_device *pdev)
6412 {
6413 	struct ata_host *host = platform_get_drvdata(pdev);
6414 
6415 	ata_host_detach(host);
6416 
6417 	return 0;
6418 }
6419 
6420 static int __init ata_parse_force_one(char **cur,
6421 				      struct ata_force_ent *force_ent,
6422 				      const char **reason)
6423 {
6424 	/* FIXME: Currently, there's no way to tag init const data and
6425 	 * using __initdata causes build failure on some versions of
6426 	 * gcc.  Once __initdataconst is implemented, add const to the
6427 	 * following structure.
6428 	 */
6429 	static struct ata_force_param force_tbl[] __initdata = {
6430 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6431 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6432 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6433 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6434 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6435 		{ "sata",	.cbl		= ATA_CBL_SATA },
6436 		{ "1.5Gbps",	.spd_limit	= 1 },
6437 		{ "3.0Gbps",	.spd_limit	= 2 },
6438 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6439 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6440 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6441 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6442 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6443 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6444 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6445 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6446 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6447 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6448 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6449 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6450 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6451 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6452 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6453 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6454 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6455 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6456 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6457 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6458 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6459 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6460 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6461 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6462 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6463 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6464 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6465 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6466 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6467 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6468 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6469 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6470 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6471 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6472 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6473 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6474 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6475 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6476 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6477 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6478 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6479 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6480 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6481 	};
6482 	char *start = *cur, *p = *cur;
6483 	char *id, *val, *endp;
6484 	const struct ata_force_param *match_fp = NULL;
6485 	int nr_matches = 0, i;
6486 
6487 	/* find where this param ends and update *cur */
6488 	while (*p != '\0' && *p != ',')
6489 		p++;
6490 
6491 	if (*p == '\0')
6492 		*cur = p;
6493 	else
6494 		*cur = p + 1;
6495 
6496 	*p = '\0';
6497 
6498 	/* parse */
6499 	p = strchr(start, ':');
6500 	if (!p) {
6501 		val = strstrip(start);
6502 		goto parse_val;
6503 	}
6504 	*p = '\0';
6505 
6506 	id = strstrip(start);
6507 	val = strstrip(p + 1);
6508 
6509 	/* parse id */
6510 	p = strchr(id, '.');
6511 	if (p) {
6512 		*p++ = '\0';
6513 		force_ent->device = simple_strtoul(p, &endp, 10);
6514 		if (p == endp || *endp != '\0') {
6515 			*reason = "invalid device";
6516 			return -EINVAL;
6517 		}
6518 	}
6519 
6520 	force_ent->port = simple_strtoul(id, &endp, 10);
6521 	if (p == endp || *endp != '\0') {
6522 		*reason = "invalid port/link";
6523 		return -EINVAL;
6524 	}
6525 
6526  parse_val:
6527 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6528 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6529 		const struct ata_force_param *fp = &force_tbl[i];
6530 
6531 		if (strncasecmp(val, fp->name, strlen(val)))
6532 			continue;
6533 
6534 		nr_matches++;
6535 		match_fp = fp;
6536 
6537 		if (strcasecmp(val, fp->name) == 0) {
6538 			nr_matches = 1;
6539 			break;
6540 		}
6541 	}
6542 
6543 	if (!nr_matches) {
6544 		*reason = "unknown value";
6545 		return -EINVAL;
6546 	}
6547 	if (nr_matches > 1) {
6548 		*reason = "ambigious value";
6549 		return -EINVAL;
6550 	}
6551 
6552 	force_ent->param = *match_fp;
6553 
6554 	return 0;
6555 }
6556 
6557 static void __init ata_parse_force_param(void)
6558 {
6559 	int idx = 0, size = 1;
6560 	int last_port = -1, last_device = -1;
6561 	char *p, *cur, *next;
6562 
6563 	/* calculate maximum number of params and allocate force_tbl */
6564 	for (p = ata_force_param_buf; *p; p++)
6565 		if (*p == ',')
6566 			size++;
6567 
6568 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6569 	if (!ata_force_tbl) {
6570 		printk(KERN_WARNING "ata: failed to extend force table, "
6571 		       "libata.force ignored\n");
6572 		return;
6573 	}
6574 
6575 	/* parse and populate the table */
6576 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6577 		const char *reason = "";
6578 		struct ata_force_ent te = { .port = -1, .device = -1 };
6579 
6580 		next = cur;
6581 		if (ata_parse_force_one(&next, &te, &reason)) {
6582 			printk(KERN_WARNING "ata: failed to parse force "
6583 			       "parameter \"%s\" (%s)\n",
6584 			       cur, reason);
6585 			continue;
6586 		}
6587 
6588 		if (te.port == -1) {
6589 			te.port = last_port;
6590 			te.device = last_device;
6591 		}
6592 
6593 		ata_force_tbl[idx++] = te;
6594 
6595 		last_port = te.port;
6596 		last_device = te.device;
6597 	}
6598 
6599 	ata_force_tbl_size = idx;
6600 }
6601 
6602 static int __init ata_init(void)
6603 {
6604 	int rc;
6605 
6606 	ata_parse_force_param();
6607 
6608 	rc = ata_sff_init();
6609 	if (rc) {
6610 		kfree(ata_force_tbl);
6611 		return rc;
6612 	}
6613 
6614 	libata_transport_init();
6615 	ata_scsi_transport_template = ata_attach_transport();
6616 	if (!ata_scsi_transport_template) {
6617 		ata_sff_exit();
6618 		rc = -ENOMEM;
6619 		goto err_out;
6620 	}
6621 
6622 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6623 	return 0;
6624 
6625 err_out:
6626 	return rc;
6627 }
6628 
6629 static void __exit ata_exit(void)
6630 {
6631 	ata_release_transport(ata_scsi_transport_template);
6632 	libata_transport_exit();
6633 	ata_sff_exit();
6634 	kfree(ata_force_tbl);
6635 }
6636 
6637 subsys_initcall(ata_init);
6638 module_exit(ata_exit);
6639 
6640 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6641 
6642 int ata_ratelimit(void)
6643 {
6644 	return __ratelimit(&ratelimit);
6645 }
6646 
6647 /**
6648  *	ata_msleep - ATA EH owner aware msleep
6649  *	@ap: ATA port to attribute the sleep to
6650  *	@msecs: duration to sleep in milliseconds
6651  *
6652  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6653  *	ownership is released before going to sleep and reacquired
6654  *	after the sleep is complete.  IOW, other ports sharing the
6655  *	@ap->host will be allowed to own the EH while this task is
6656  *	sleeping.
6657  *
6658  *	LOCKING:
6659  *	Might sleep.
6660  */
6661 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6662 {
6663 	bool owns_eh = ap && ap->host->eh_owner == current;
6664 
6665 	if (owns_eh)
6666 		ata_eh_release(ap);
6667 
6668 	msleep(msecs);
6669 
6670 	if (owns_eh)
6671 		ata_eh_acquire(ap);
6672 }
6673 
6674 /**
6675  *	ata_wait_register - wait until register value changes
6676  *	@ap: ATA port to wait register for, can be NULL
6677  *	@reg: IO-mapped register
6678  *	@mask: Mask to apply to read register value
6679  *	@val: Wait condition
6680  *	@interval: polling interval in milliseconds
6681  *	@timeout: timeout in milliseconds
6682  *
6683  *	Waiting for some bits of register to change is a common
6684  *	operation for ATA controllers.  This function reads 32bit LE
6685  *	IO-mapped register @reg and tests for the following condition.
6686  *
6687  *	(*@reg & mask) != val
6688  *
6689  *	If the condition is met, it returns; otherwise, the process is
6690  *	repeated after @interval_msec until timeout.
6691  *
6692  *	LOCKING:
6693  *	Kernel thread context (may sleep)
6694  *
6695  *	RETURNS:
6696  *	The final register value.
6697  */
6698 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6699 		      unsigned long interval, unsigned long timeout)
6700 {
6701 	unsigned long deadline;
6702 	u32 tmp;
6703 
6704 	tmp = ioread32(reg);
6705 
6706 	/* Calculate timeout _after_ the first read to make sure
6707 	 * preceding writes reach the controller before starting to
6708 	 * eat away the timeout.
6709 	 */
6710 	deadline = ata_deadline(jiffies, timeout);
6711 
6712 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6713 		ata_msleep(ap, interval);
6714 		tmp = ioread32(reg);
6715 	}
6716 
6717 	return tmp;
6718 }
6719 
6720 /*
6721  * Dummy port_ops
6722  */
6723 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6724 {
6725 	return AC_ERR_SYSTEM;
6726 }
6727 
6728 static void ata_dummy_error_handler(struct ata_port *ap)
6729 {
6730 	/* truly dummy */
6731 }
6732 
6733 struct ata_port_operations ata_dummy_port_ops = {
6734 	.qc_prep		= ata_noop_qc_prep,
6735 	.qc_issue		= ata_dummy_qc_issue,
6736 	.error_handler		= ata_dummy_error_handler,
6737 	.sched_eh		= ata_std_sched_eh,
6738 	.end_eh			= ata_std_end_eh,
6739 };
6740 
6741 const struct ata_port_info ata_dummy_port_info = {
6742 	.port_ops		= &ata_dummy_port_ops,
6743 };
6744 
6745 /*
6746  * Utility print functions
6747  */
6748 void ata_port_printk(const struct ata_port *ap, const char *level,
6749 		     const char *fmt, ...)
6750 {
6751 	struct va_format vaf;
6752 	va_list args;
6753 
6754 	va_start(args, fmt);
6755 
6756 	vaf.fmt = fmt;
6757 	vaf.va = &args;
6758 
6759 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
6760 
6761 	va_end(args);
6762 }
6763 EXPORT_SYMBOL(ata_port_printk);
6764 
6765 void ata_link_printk(const struct ata_link *link, const char *level,
6766 		     const char *fmt, ...)
6767 {
6768 	struct va_format vaf;
6769 	va_list args;
6770 
6771 	va_start(args, fmt);
6772 
6773 	vaf.fmt = fmt;
6774 	vaf.va = &args;
6775 
6776 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6777 		printk("%sata%u.%02u: %pV",
6778 		       level, link->ap->print_id, link->pmp, &vaf);
6779 	else
6780 		printk("%sata%u: %pV",
6781 		       level, link->ap->print_id, &vaf);
6782 
6783 	va_end(args);
6784 }
6785 EXPORT_SYMBOL(ata_link_printk);
6786 
6787 void ata_dev_printk(const struct ata_device *dev, const char *level,
6788 		    const char *fmt, ...)
6789 {
6790 	struct va_format vaf;
6791 	va_list args;
6792 
6793 	va_start(args, fmt);
6794 
6795 	vaf.fmt = fmt;
6796 	vaf.va = &args;
6797 
6798 	printk("%sata%u.%02u: %pV",
6799 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6800 	       &vaf);
6801 
6802 	va_end(args);
6803 }
6804 EXPORT_SYMBOL(ata_dev_printk);
6805 
6806 void ata_print_version(const struct device *dev, const char *version)
6807 {
6808 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6809 }
6810 EXPORT_SYMBOL(ata_print_version);
6811 
6812 /*
6813  * libata is essentially a library of internal helper functions for
6814  * low-level ATA host controller drivers.  As such, the API/ABI is
6815  * likely to change as new drivers are added and updated.
6816  * Do not depend on ABI/API stability.
6817  */
6818 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6819 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6820 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6821 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6822 EXPORT_SYMBOL_GPL(sata_port_ops);
6823 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6824 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6825 EXPORT_SYMBOL_GPL(ata_link_next);
6826 EXPORT_SYMBOL_GPL(ata_dev_next);
6827 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6828 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6829 EXPORT_SYMBOL_GPL(ata_host_init);
6830 EXPORT_SYMBOL_GPL(ata_host_alloc);
6831 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6832 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6833 EXPORT_SYMBOL_GPL(ata_host_start);
6834 EXPORT_SYMBOL_GPL(ata_host_register);
6835 EXPORT_SYMBOL_GPL(ata_host_activate);
6836 EXPORT_SYMBOL_GPL(ata_host_detach);
6837 EXPORT_SYMBOL_GPL(ata_sg_init);
6838 EXPORT_SYMBOL_GPL(ata_qc_complete);
6839 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6840 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6841 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6842 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6843 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6844 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6845 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6846 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6847 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6848 EXPORT_SYMBOL_GPL(ata_mode_string);
6849 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6850 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6851 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6852 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6853 EXPORT_SYMBOL_GPL(ata_dev_disable);
6854 EXPORT_SYMBOL_GPL(sata_set_spd);
6855 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6856 EXPORT_SYMBOL_GPL(sata_link_debounce);
6857 EXPORT_SYMBOL_GPL(sata_link_resume);
6858 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6859 EXPORT_SYMBOL_GPL(ata_std_prereset);
6860 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6861 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6862 EXPORT_SYMBOL_GPL(ata_std_postreset);
6863 EXPORT_SYMBOL_GPL(ata_dev_classify);
6864 EXPORT_SYMBOL_GPL(ata_dev_pair);
6865 EXPORT_SYMBOL_GPL(ata_ratelimit);
6866 EXPORT_SYMBOL_GPL(ata_msleep);
6867 EXPORT_SYMBOL_GPL(ata_wait_register);
6868 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6869 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6870 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6871 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6872 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6873 EXPORT_SYMBOL_GPL(sata_scr_valid);
6874 EXPORT_SYMBOL_GPL(sata_scr_read);
6875 EXPORT_SYMBOL_GPL(sata_scr_write);
6876 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6877 EXPORT_SYMBOL_GPL(ata_link_online);
6878 EXPORT_SYMBOL_GPL(ata_link_offline);
6879 #ifdef CONFIG_PM
6880 EXPORT_SYMBOL_GPL(ata_host_suspend);
6881 EXPORT_SYMBOL_GPL(ata_host_resume);
6882 #endif /* CONFIG_PM */
6883 EXPORT_SYMBOL_GPL(ata_id_string);
6884 EXPORT_SYMBOL_GPL(ata_id_c_string);
6885 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6886 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6887 
6888 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6889 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6890 EXPORT_SYMBOL_GPL(ata_timing_compute);
6891 EXPORT_SYMBOL_GPL(ata_timing_merge);
6892 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6893 
6894 #ifdef CONFIG_PCI
6895 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6896 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6897 #ifdef CONFIG_PM
6898 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6899 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6900 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6901 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6902 #endif /* CONFIG_PM */
6903 #endif /* CONFIG_PCI */
6904 
6905 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6906 
6907 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6908 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6909 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6910 EXPORT_SYMBOL_GPL(ata_port_desc);
6911 #ifdef CONFIG_PCI
6912 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6913 #endif /* CONFIG_PCI */
6914 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6915 EXPORT_SYMBOL_GPL(ata_link_abort);
6916 EXPORT_SYMBOL_GPL(ata_port_abort);
6917 EXPORT_SYMBOL_GPL(ata_port_freeze);
6918 EXPORT_SYMBOL_GPL(sata_async_notification);
6919 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6920 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6921 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6922 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6923 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6924 EXPORT_SYMBOL_GPL(ata_do_eh);
6925 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6926 
6927 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6928 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6929 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6930 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6931 EXPORT_SYMBOL_GPL(ata_cable_sata);
6932