1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <linux/glob.h> 63 #include <scsi/scsi.h> 64 #include <scsi/scsi_cmnd.h> 65 #include <scsi/scsi_host.h> 66 #include <linux/libata.h> 67 #include <asm/byteorder.h> 68 #include <linux/cdrom.h> 69 #include <linux/ratelimit.h> 70 #include <linux/pm_runtime.h> 71 #include <linux/platform_device.h> 72 73 #include "libata.h" 74 #include "libata-transport.h" 75 76 /* debounce timing parameters in msecs { interval, duration, timeout } */ 77 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 78 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 79 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 80 81 const struct ata_port_operations ata_base_port_ops = { 82 .prereset = ata_std_prereset, 83 .postreset = ata_std_postreset, 84 .error_handler = ata_std_error_handler, 85 .sched_eh = ata_std_sched_eh, 86 .end_eh = ata_std_end_eh, 87 }; 88 89 const struct ata_port_operations sata_port_ops = { 90 .inherits = &ata_base_port_ops, 91 92 .qc_defer = ata_std_qc_defer, 93 .hardreset = sata_std_hardreset, 94 }; 95 96 static unsigned int ata_dev_init_params(struct ata_device *dev, 97 u16 heads, u16 sectors); 98 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 99 static void ata_dev_xfermask(struct ata_device *dev); 100 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 101 102 atomic_t ata_print_id = ATOMIC_INIT(0); 103 104 struct ata_force_param { 105 const char *name; 106 unsigned int cbl; 107 int spd_limit; 108 unsigned long xfer_mask; 109 unsigned int horkage_on; 110 unsigned int horkage_off; 111 unsigned int lflags; 112 }; 113 114 struct ata_force_ent { 115 int port; 116 int device; 117 struct ata_force_param param; 118 }; 119 120 static struct ata_force_ent *ata_force_tbl; 121 static int ata_force_tbl_size; 122 123 static char ata_force_param_buf[PAGE_SIZE] __initdata; 124 /* param_buf is thrown away after initialization, disallow read */ 125 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 126 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 127 128 static int atapi_enabled = 1; 129 module_param(atapi_enabled, int, 0444); 130 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 131 132 static int atapi_dmadir = 0; 133 module_param(atapi_dmadir, int, 0444); 134 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 135 136 int atapi_passthru16 = 1; 137 module_param(atapi_passthru16, int, 0444); 138 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 139 140 int libata_fua = 0; 141 module_param_named(fua, libata_fua, int, 0444); 142 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 143 144 static int ata_ignore_hpa; 145 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 146 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 147 148 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 149 module_param_named(dma, libata_dma_mask, int, 0444); 150 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 151 152 static int ata_probe_timeout; 153 module_param(ata_probe_timeout, int, 0444); 154 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 155 156 int libata_noacpi = 0; 157 module_param_named(noacpi, libata_noacpi, int, 0444); 158 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 159 160 int libata_allow_tpm = 0; 161 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 162 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 163 164 static int atapi_an; 165 module_param(atapi_an, int, 0444); 166 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 167 168 MODULE_AUTHOR("Jeff Garzik"); 169 MODULE_DESCRIPTION("Library module for ATA devices"); 170 MODULE_LICENSE("GPL"); 171 MODULE_VERSION(DRV_VERSION); 172 173 174 static bool ata_sstatus_online(u32 sstatus) 175 { 176 return (sstatus & 0xf) == 0x3; 177 } 178 179 /** 180 * ata_link_next - link iteration helper 181 * @link: the previous link, NULL to start 182 * @ap: ATA port containing links to iterate 183 * @mode: iteration mode, one of ATA_LITER_* 184 * 185 * LOCKING: 186 * Host lock or EH context. 187 * 188 * RETURNS: 189 * Pointer to the next link. 190 */ 191 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 192 enum ata_link_iter_mode mode) 193 { 194 BUG_ON(mode != ATA_LITER_EDGE && 195 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 196 197 /* NULL link indicates start of iteration */ 198 if (!link) 199 switch (mode) { 200 case ATA_LITER_EDGE: 201 case ATA_LITER_PMP_FIRST: 202 if (sata_pmp_attached(ap)) 203 return ap->pmp_link; 204 /* fall through */ 205 case ATA_LITER_HOST_FIRST: 206 return &ap->link; 207 } 208 209 /* we just iterated over the host link, what's next? */ 210 if (link == &ap->link) 211 switch (mode) { 212 case ATA_LITER_HOST_FIRST: 213 if (sata_pmp_attached(ap)) 214 return ap->pmp_link; 215 /* fall through */ 216 case ATA_LITER_PMP_FIRST: 217 if (unlikely(ap->slave_link)) 218 return ap->slave_link; 219 /* fall through */ 220 case ATA_LITER_EDGE: 221 return NULL; 222 } 223 224 /* slave_link excludes PMP */ 225 if (unlikely(link == ap->slave_link)) 226 return NULL; 227 228 /* we were over a PMP link */ 229 if (++link < ap->pmp_link + ap->nr_pmp_links) 230 return link; 231 232 if (mode == ATA_LITER_PMP_FIRST) 233 return &ap->link; 234 235 return NULL; 236 } 237 238 /** 239 * ata_dev_next - device iteration helper 240 * @dev: the previous device, NULL to start 241 * @link: ATA link containing devices to iterate 242 * @mode: iteration mode, one of ATA_DITER_* 243 * 244 * LOCKING: 245 * Host lock or EH context. 246 * 247 * RETURNS: 248 * Pointer to the next device. 249 */ 250 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 251 enum ata_dev_iter_mode mode) 252 { 253 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 254 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 255 256 /* NULL dev indicates start of iteration */ 257 if (!dev) 258 switch (mode) { 259 case ATA_DITER_ENABLED: 260 case ATA_DITER_ALL: 261 dev = link->device; 262 goto check; 263 case ATA_DITER_ENABLED_REVERSE: 264 case ATA_DITER_ALL_REVERSE: 265 dev = link->device + ata_link_max_devices(link) - 1; 266 goto check; 267 } 268 269 next: 270 /* move to the next one */ 271 switch (mode) { 272 case ATA_DITER_ENABLED: 273 case ATA_DITER_ALL: 274 if (++dev < link->device + ata_link_max_devices(link)) 275 goto check; 276 return NULL; 277 case ATA_DITER_ENABLED_REVERSE: 278 case ATA_DITER_ALL_REVERSE: 279 if (--dev >= link->device) 280 goto check; 281 return NULL; 282 } 283 284 check: 285 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 286 !ata_dev_enabled(dev)) 287 goto next; 288 return dev; 289 } 290 291 /** 292 * ata_dev_phys_link - find physical link for a device 293 * @dev: ATA device to look up physical link for 294 * 295 * Look up physical link which @dev is attached to. Note that 296 * this is different from @dev->link only when @dev is on slave 297 * link. For all other cases, it's the same as @dev->link. 298 * 299 * LOCKING: 300 * Don't care. 301 * 302 * RETURNS: 303 * Pointer to the found physical link. 304 */ 305 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 306 { 307 struct ata_port *ap = dev->link->ap; 308 309 if (!ap->slave_link) 310 return dev->link; 311 if (!dev->devno) 312 return &ap->link; 313 return ap->slave_link; 314 } 315 316 /** 317 * ata_force_cbl - force cable type according to libata.force 318 * @ap: ATA port of interest 319 * 320 * Force cable type according to libata.force and whine about it. 321 * The last entry which has matching port number is used, so it 322 * can be specified as part of device force parameters. For 323 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 324 * same effect. 325 * 326 * LOCKING: 327 * EH context. 328 */ 329 void ata_force_cbl(struct ata_port *ap) 330 { 331 int i; 332 333 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 334 const struct ata_force_ent *fe = &ata_force_tbl[i]; 335 336 if (fe->port != -1 && fe->port != ap->print_id) 337 continue; 338 339 if (fe->param.cbl == ATA_CBL_NONE) 340 continue; 341 342 ap->cbl = fe->param.cbl; 343 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 344 return; 345 } 346 } 347 348 /** 349 * ata_force_link_limits - force link limits according to libata.force 350 * @link: ATA link of interest 351 * 352 * Force link flags and SATA spd limit according to libata.force 353 * and whine about it. When only the port part is specified 354 * (e.g. 1:), the limit applies to all links connected to both 355 * the host link and all fan-out ports connected via PMP. If the 356 * device part is specified as 0 (e.g. 1.00:), it specifies the 357 * first fan-out link not the host link. Device number 15 always 358 * points to the host link whether PMP is attached or not. If the 359 * controller has slave link, device number 16 points to it. 360 * 361 * LOCKING: 362 * EH context. 363 */ 364 static void ata_force_link_limits(struct ata_link *link) 365 { 366 bool did_spd = false; 367 int linkno = link->pmp; 368 int i; 369 370 if (ata_is_host_link(link)) 371 linkno += 15; 372 373 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 374 const struct ata_force_ent *fe = &ata_force_tbl[i]; 375 376 if (fe->port != -1 && fe->port != link->ap->print_id) 377 continue; 378 379 if (fe->device != -1 && fe->device != linkno) 380 continue; 381 382 /* only honor the first spd limit */ 383 if (!did_spd && fe->param.spd_limit) { 384 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 385 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 386 fe->param.name); 387 did_spd = true; 388 } 389 390 /* let lflags stack */ 391 if (fe->param.lflags) { 392 link->flags |= fe->param.lflags; 393 ata_link_notice(link, 394 "FORCE: link flag 0x%x forced -> 0x%x\n", 395 fe->param.lflags, link->flags); 396 } 397 } 398 } 399 400 /** 401 * ata_force_xfermask - force xfermask according to libata.force 402 * @dev: ATA device of interest 403 * 404 * Force xfer_mask according to libata.force and whine about it. 405 * For consistency with link selection, device number 15 selects 406 * the first device connected to the host link. 407 * 408 * LOCKING: 409 * EH context. 410 */ 411 static void ata_force_xfermask(struct ata_device *dev) 412 { 413 int devno = dev->link->pmp + dev->devno; 414 int alt_devno = devno; 415 int i; 416 417 /* allow n.15/16 for devices attached to host port */ 418 if (ata_is_host_link(dev->link)) 419 alt_devno += 15; 420 421 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 422 const struct ata_force_ent *fe = &ata_force_tbl[i]; 423 unsigned long pio_mask, mwdma_mask, udma_mask; 424 425 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 426 continue; 427 428 if (fe->device != -1 && fe->device != devno && 429 fe->device != alt_devno) 430 continue; 431 432 if (!fe->param.xfer_mask) 433 continue; 434 435 ata_unpack_xfermask(fe->param.xfer_mask, 436 &pio_mask, &mwdma_mask, &udma_mask); 437 if (udma_mask) 438 dev->udma_mask = udma_mask; 439 else if (mwdma_mask) { 440 dev->udma_mask = 0; 441 dev->mwdma_mask = mwdma_mask; 442 } else { 443 dev->udma_mask = 0; 444 dev->mwdma_mask = 0; 445 dev->pio_mask = pio_mask; 446 } 447 448 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 449 fe->param.name); 450 return; 451 } 452 } 453 454 /** 455 * ata_force_horkage - force horkage according to libata.force 456 * @dev: ATA device of interest 457 * 458 * Force horkage according to libata.force and whine about it. 459 * For consistency with link selection, device number 15 selects 460 * the first device connected to the host link. 461 * 462 * LOCKING: 463 * EH context. 464 */ 465 static void ata_force_horkage(struct ata_device *dev) 466 { 467 int devno = dev->link->pmp + dev->devno; 468 int alt_devno = devno; 469 int i; 470 471 /* allow n.15/16 for devices attached to host port */ 472 if (ata_is_host_link(dev->link)) 473 alt_devno += 15; 474 475 for (i = 0; i < ata_force_tbl_size; i++) { 476 const struct ata_force_ent *fe = &ata_force_tbl[i]; 477 478 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 479 continue; 480 481 if (fe->device != -1 && fe->device != devno && 482 fe->device != alt_devno) 483 continue; 484 485 if (!(~dev->horkage & fe->param.horkage_on) && 486 !(dev->horkage & fe->param.horkage_off)) 487 continue; 488 489 dev->horkage |= fe->param.horkage_on; 490 dev->horkage &= ~fe->param.horkage_off; 491 492 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 493 fe->param.name); 494 } 495 } 496 497 /** 498 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 499 * @opcode: SCSI opcode 500 * 501 * Determine ATAPI command type from @opcode. 502 * 503 * LOCKING: 504 * None. 505 * 506 * RETURNS: 507 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 508 */ 509 int atapi_cmd_type(u8 opcode) 510 { 511 switch (opcode) { 512 case GPCMD_READ_10: 513 case GPCMD_READ_12: 514 return ATAPI_READ; 515 516 case GPCMD_WRITE_10: 517 case GPCMD_WRITE_12: 518 case GPCMD_WRITE_AND_VERIFY_10: 519 return ATAPI_WRITE; 520 521 case GPCMD_READ_CD: 522 case GPCMD_READ_CD_MSF: 523 return ATAPI_READ_CD; 524 525 case ATA_16: 526 case ATA_12: 527 if (atapi_passthru16) 528 return ATAPI_PASS_THRU; 529 /* fall thru */ 530 default: 531 return ATAPI_MISC; 532 } 533 } 534 535 /** 536 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 537 * @tf: Taskfile to convert 538 * @pmp: Port multiplier port 539 * @is_cmd: This FIS is for command 540 * @fis: Buffer into which data will output 541 * 542 * Converts a standard ATA taskfile to a Serial ATA 543 * FIS structure (Register - Host to Device). 544 * 545 * LOCKING: 546 * Inherited from caller. 547 */ 548 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 549 { 550 fis[0] = 0x27; /* Register - Host to Device FIS */ 551 fis[1] = pmp & 0xf; /* Port multiplier number*/ 552 if (is_cmd) 553 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 554 555 fis[2] = tf->command; 556 fis[3] = tf->feature; 557 558 fis[4] = tf->lbal; 559 fis[5] = tf->lbam; 560 fis[6] = tf->lbah; 561 fis[7] = tf->device; 562 563 fis[8] = tf->hob_lbal; 564 fis[9] = tf->hob_lbam; 565 fis[10] = tf->hob_lbah; 566 fis[11] = tf->hob_feature; 567 568 fis[12] = tf->nsect; 569 fis[13] = tf->hob_nsect; 570 fis[14] = 0; 571 fis[15] = tf->ctl; 572 573 fis[16] = tf->auxiliary & 0xff; 574 fis[17] = (tf->auxiliary >> 8) & 0xff; 575 fis[18] = (tf->auxiliary >> 16) & 0xff; 576 fis[19] = (tf->auxiliary >> 24) & 0xff; 577 } 578 579 /** 580 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 581 * @fis: Buffer from which data will be input 582 * @tf: Taskfile to output 583 * 584 * Converts a serial ATA FIS structure to a standard ATA taskfile. 585 * 586 * LOCKING: 587 * Inherited from caller. 588 */ 589 590 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 591 { 592 tf->command = fis[2]; /* status */ 593 tf->feature = fis[3]; /* error */ 594 595 tf->lbal = fis[4]; 596 tf->lbam = fis[5]; 597 tf->lbah = fis[6]; 598 tf->device = fis[7]; 599 600 tf->hob_lbal = fis[8]; 601 tf->hob_lbam = fis[9]; 602 tf->hob_lbah = fis[10]; 603 604 tf->nsect = fis[12]; 605 tf->hob_nsect = fis[13]; 606 } 607 608 static const u8 ata_rw_cmds[] = { 609 /* pio multi */ 610 ATA_CMD_READ_MULTI, 611 ATA_CMD_WRITE_MULTI, 612 ATA_CMD_READ_MULTI_EXT, 613 ATA_CMD_WRITE_MULTI_EXT, 614 0, 615 0, 616 0, 617 ATA_CMD_WRITE_MULTI_FUA_EXT, 618 /* pio */ 619 ATA_CMD_PIO_READ, 620 ATA_CMD_PIO_WRITE, 621 ATA_CMD_PIO_READ_EXT, 622 ATA_CMD_PIO_WRITE_EXT, 623 0, 624 0, 625 0, 626 0, 627 /* dma */ 628 ATA_CMD_READ, 629 ATA_CMD_WRITE, 630 ATA_CMD_READ_EXT, 631 ATA_CMD_WRITE_EXT, 632 0, 633 0, 634 0, 635 ATA_CMD_WRITE_FUA_EXT 636 }; 637 638 /** 639 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 640 * @tf: command to examine and configure 641 * @dev: device tf belongs to 642 * 643 * Examine the device configuration and tf->flags to calculate 644 * the proper read/write commands and protocol to use. 645 * 646 * LOCKING: 647 * caller. 648 */ 649 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 650 { 651 u8 cmd; 652 653 int index, fua, lba48, write; 654 655 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 656 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 657 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 658 659 if (dev->flags & ATA_DFLAG_PIO) { 660 tf->protocol = ATA_PROT_PIO; 661 index = dev->multi_count ? 0 : 8; 662 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 663 /* Unable to use DMA due to host limitation */ 664 tf->protocol = ATA_PROT_PIO; 665 index = dev->multi_count ? 0 : 8; 666 } else { 667 tf->protocol = ATA_PROT_DMA; 668 index = 16; 669 } 670 671 cmd = ata_rw_cmds[index + fua + lba48 + write]; 672 if (cmd) { 673 tf->command = cmd; 674 return 0; 675 } 676 return -1; 677 } 678 679 /** 680 * ata_tf_read_block - Read block address from ATA taskfile 681 * @tf: ATA taskfile of interest 682 * @dev: ATA device @tf belongs to 683 * 684 * LOCKING: 685 * None. 686 * 687 * Read block address from @tf. This function can handle all 688 * three address formats - LBA, LBA48 and CHS. tf->protocol and 689 * flags select the address format to use. 690 * 691 * RETURNS: 692 * Block address read from @tf. 693 */ 694 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 695 { 696 u64 block = 0; 697 698 if (tf->flags & ATA_TFLAG_LBA) { 699 if (tf->flags & ATA_TFLAG_LBA48) { 700 block |= (u64)tf->hob_lbah << 40; 701 block |= (u64)tf->hob_lbam << 32; 702 block |= (u64)tf->hob_lbal << 24; 703 } else 704 block |= (tf->device & 0xf) << 24; 705 706 block |= tf->lbah << 16; 707 block |= tf->lbam << 8; 708 block |= tf->lbal; 709 } else { 710 u32 cyl, head, sect; 711 712 cyl = tf->lbam | (tf->lbah << 8); 713 head = tf->device & 0xf; 714 sect = tf->lbal; 715 716 if (!sect) { 717 ata_dev_warn(dev, 718 "device reported invalid CHS sector 0\n"); 719 sect = 1; /* oh well */ 720 } 721 722 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 723 } 724 725 return block; 726 } 727 728 /** 729 * ata_build_rw_tf - Build ATA taskfile for given read/write request 730 * @tf: Target ATA taskfile 731 * @dev: ATA device @tf belongs to 732 * @block: Block address 733 * @n_block: Number of blocks 734 * @tf_flags: RW/FUA etc... 735 * @tag: tag 736 * 737 * LOCKING: 738 * None. 739 * 740 * Build ATA taskfile @tf for read/write request described by 741 * @block, @n_block, @tf_flags and @tag on @dev. 742 * 743 * RETURNS: 744 * 745 * 0 on success, -ERANGE if the request is too large for @dev, 746 * -EINVAL if the request is invalid. 747 */ 748 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 749 u64 block, u32 n_block, unsigned int tf_flags, 750 unsigned int tag) 751 { 752 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 753 tf->flags |= tf_flags; 754 755 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 756 /* yay, NCQ */ 757 if (!lba_48_ok(block, n_block)) 758 return -ERANGE; 759 760 tf->protocol = ATA_PROT_NCQ; 761 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 762 763 if (tf->flags & ATA_TFLAG_WRITE) 764 tf->command = ATA_CMD_FPDMA_WRITE; 765 else 766 tf->command = ATA_CMD_FPDMA_READ; 767 768 tf->nsect = tag << 3; 769 tf->hob_feature = (n_block >> 8) & 0xff; 770 tf->feature = n_block & 0xff; 771 772 tf->hob_lbah = (block >> 40) & 0xff; 773 tf->hob_lbam = (block >> 32) & 0xff; 774 tf->hob_lbal = (block >> 24) & 0xff; 775 tf->lbah = (block >> 16) & 0xff; 776 tf->lbam = (block >> 8) & 0xff; 777 tf->lbal = block & 0xff; 778 779 tf->device = ATA_LBA; 780 if (tf->flags & ATA_TFLAG_FUA) 781 tf->device |= 1 << 7; 782 } else if (dev->flags & ATA_DFLAG_LBA) { 783 tf->flags |= ATA_TFLAG_LBA; 784 785 if (lba_28_ok(block, n_block)) { 786 /* use LBA28 */ 787 tf->device |= (block >> 24) & 0xf; 788 } else if (lba_48_ok(block, n_block)) { 789 if (!(dev->flags & ATA_DFLAG_LBA48)) 790 return -ERANGE; 791 792 /* use LBA48 */ 793 tf->flags |= ATA_TFLAG_LBA48; 794 795 tf->hob_nsect = (n_block >> 8) & 0xff; 796 797 tf->hob_lbah = (block >> 40) & 0xff; 798 tf->hob_lbam = (block >> 32) & 0xff; 799 tf->hob_lbal = (block >> 24) & 0xff; 800 } else 801 /* request too large even for LBA48 */ 802 return -ERANGE; 803 804 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 805 return -EINVAL; 806 807 tf->nsect = n_block & 0xff; 808 809 tf->lbah = (block >> 16) & 0xff; 810 tf->lbam = (block >> 8) & 0xff; 811 tf->lbal = block & 0xff; 812 813 tf->device |= ATA_LBA; 814 } else { 815 /* CHS */ 816 u32 sect, head, cyl, track; 817 818 /* The request -may- be too large for CHS addressing. */ 819 if (!lba_28_ok(block, n_block)) 820 return -ERANGE; 821 822 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 823 return -EINVAL; 824 825 /* Convert LBA to CHS */ 826 track = (u32)block / dev->sectors; 827 cyl = track / dev->heads; 828 head = track % dev->heads; 829 sect = (u32)block % dev->sectors + 1; 830 831 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 832 (u32)block, track, cyl, head, sect); 833 834 /* Check whether the converted CHS can fit. 835 Cylinder: 0-65535 836 Head: 0-15 837 Sector: 1-255*/ 838 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 839 return -ERANGE; 840 841 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 842 tf->lbal = sect; 843 tf->lbam = cyl; 844 tf->lbah = cyl >> 8; 845 tf->device |= head; 846 } 847 848 return 0; 849 } 850 851 /** 852 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 853 * @pio_mask: pio_mask 854 * @mwdma_mask: mwdma_mask 855 * @udma_mask: udma_mask 856 * 857 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 858 * unsigned int xfer_mask. 859 * 860 * LOCKING: 861 * None. 862 * 863 * RETURNS: 864 * Packed xfer_mask. 865 */ 866 unsigned long ata_pack_xfermask(unsigned long pio_mask, 867 unsigned long mwdma_mask, 868 unsigned long udma_mask) 869 { 870 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 871 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 872 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 873 } 874 875 /** 876 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 877 * @xfer_mask: xfer_mask to unpack 878 * @pio_mask: resulting pio_mask 879 * @mwdma_mask: resulting mwdma_mask 880 * @udma_mask: resulting udma_mask 881 * 882 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 883 * Any NULL distination masks will be ignored. 884 */ 885 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 886 unsigned long *mwdma_mask, unsigned long *udma_mask) 887 { 888 if (pio_mask) 889 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 890 if (mwdma_mask) 891 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 892 if (udma_mask) 893 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 894 } 895 896 static const struct ata_xfer_ent { 897 int shift, bits; 898 u8 base; 899 } ata_xfer_tbl[] = { 900 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 901 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 902 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 903 { -1, }, 904 }; 905 906 /** 907 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 908 * @xfer_mask: xfer_mask of interest 909 * 910 * Return matching XFER_* value for @xfer_mask. Only the highest 911 * bit of @xfer_mask is considered. 912 * 913 * LOCKING: 914 * None. 915 * 916 * RETURNS: 917 * Matching XFER_* value, 0xff if no match found. 918 */ 919 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 920 { 921 int highbit = fls(xfer_mask) - 1; 922 const struct ata_xfer_ent *ent; 923 924 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 925 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 926 return ent->base + highbit - ent->shift; 927 return 0xff; 928 } 929 930 /** 931 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 932 * @xfer_mode: XFER_* of interest 933 * 934 * Return matching xfer_mask for @xfer_mode. 935 * 936 * LOCKING: 937 * None. 938 * 939 * RETURNS: 940 * Matching xfer_mask, 0 if no match found. 941 */ 942 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 943 { 944 const struct ata_xfer_ent *ent; 945 946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 948 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 949 & ~((1 << ent->shift) - 1); 950 return 0; 951 } 952 953 /** 954 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 955 * @xfer_mode: XFER_* of interest 956 * 957 * Return matching xfer_shift for @xfer_mode. 958 * 959 * LOCKING: 960 * None. 961 * 962 * RETURNS: 963 * Matching xfer_shift, -1 if no match found. 964 */ 965 int ata_xfer_mode2shift(unsigned long xfer_mode) 966 { 967 const struct ata_xfer_ent *ent; 968 969 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 970 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 971 return ent->shift; 972 return -1; 973 } 974 975 /** 976 * ata_mode_string - convert xfer_mask to string 977 * @xfer_mask: mask of bits supported; only highest bit counts. 978 * 979 * Determine string which represents the highest speed 980 * (highest bit in @modemask). 981 * 982 * LOCKING: 983 * None. 984 * 985 * RETURNS: 986 * Constant C string representing highest speed listed in 987 * @mode_mask, or the constant C string "<n/a>". 988 */ 989 const char *ata_mode_string(unsigned long xfer_mask) 990 { 991 static const char * const xfer_mode_str[] = { 992 "PIO0", 993 "PIO1", 994 "PIO2", 995 "PIO3", 996 "PIO4", 997 "PIO5", 998 "PIO6", 999 "MWDMA0", 1000 "MWDMA1", 1001 "MWDMA2", 1002 "MWDMA3", 1003 "MWDMA4", 1004 "UDMA/16", 1005 "UDMA/25", 1006 "UDMA/33", 1007 "UDMA/44", 1008 "UDMA/66", 1009 "UDMA/100", 1010 "UDMA/133", 1011 "UDMA7", 1012 }; 1013 int highbit; 1014 1015 highbit = fls(xfer_mask) - 1; 1016 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1017 return xfer_mode_str[highbit]; 1018 return "<n/a>"; 1019 } 1020 1021 const char *sata_spd_string(unsigned int spd) 1022 { 1023 static const char * const spd_str[] = { 1024 "1.5 Gbps", 1025 "3.0 Gbps", 1026 "6.0 Gbps", 1027 }; 1028 1029 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1030 return "<unknown>"; 1031 return spd_str[spd - 1]; 1032 } 1033 1034 /** 1035 * ata_dev_classify - determine device type based on ATA-spec signature 1036 * @tf: ATA taskfile register set for device to be identified 1037 * 1038 * Determine from taskfile register contents whether a device is 1039 * ATA or ATAPI, as per "Signature and persistence" section 1040 * of ATA/PI spec (volume 1, sect 5.14). 1041 * 1042 * LOCKING: 1043 * None. 1044 * 1045 * RETURNS: 1046 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1047 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1048 */ 1049 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1050 { 1051 /* Apple's open source Darwin code hints that some devices only 1052 * put a proper signature into the LBA mid/high registers, 1053 * So, we only check those. It's sufficient for uniqueness. 1054 * 1055 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1056 * signatures for ATA and ATAPI devices attached on SerialATA, 1057 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1058 * spec has never mentioned about using different signatures 1059 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1060 * Multiplier specification began to use 0x69/0x96 to identify 1061 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1062 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1063 * 0x69/0x96 shortly and described them as reserved for 1064 * SerialATA. 1065 * 1066 * We follow the current spec and consider that 0x69/0x96 1067 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1068 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1069 * SEMB signature. This is worked around in 1070 * ata_dev_read_id(). 1071 */ 1072 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1073 DPRINTK("found ATA device by sig\n"); 1074 return ATA_DEV_ATA; 1075 } 1076 1077 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1078 DPRINTK("found ATAPI device by sig\n"); 1079 return ATA_DEV_ATAPI; 1080 } 1081 1082 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1083 DPRINTK("found PMP device by sig\n"); 1084 return ATA_DEV_PMP; 1085 } 1086 1087 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1088 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1089 return ATA_DEV_SEMB; 1090 } 1091 1092 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1093 DPRINTK("found ZAC device by sig\n"); 1094 return ATA_DEV_ZAC; 1095 } 1096 1097 DPRINTK("unknown device\n"); 1098 return ATA_DEV_UNKNOWN; 1099 } 1100 1101 /** 1102 * ata_id_string - Convert IDENTIFY DEVICE page into string 1103 * @id: IDENTIFY DEVICE results we will examine 1104 * @s: string into which data is output 1105 * @ofs: offset into identify device page 1106 * @len: length of string to return. must be an even number. 1107 * 1108 * The strings in the IDENTIFY DEVICE page are broken up into 1109 * 16-bit chunks. Run through the string, and output each 1110 * 8-bit chunk linearly, regardless of platform. 1111 * 1112 * LOCKING: 1113 * caller. 1114 */ 1115 1116 void ata_id_string(const u16 *id, unsigned char *s, 1117 unsigned int ofs, unsigned int len) 1118 { 1119 unsigned int c; 1120 1121 BUG_ON(len & 1); 1122 1123 while (len > 0) { 1124 c = id[ofs] >> 8; 1125 *s = c; 1126 s++; 1127 1128 c = id[ofs] & 0xff; 1129 *s = c; 1130 s++; 1131 1132 ofs++; 1133 len -= 2; 1134 } 1135 } 1136 1137 /** 1138 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1139 * @id: IDENTIFY DEVICE results we will examine 1140 * @s: string into which data is output 1141 * @ofs: offset into identify device page 1142 * @len: length of string to return. must be an odd number. 1143 * 1144 * This function is identical to ata_id_string except that it 1145 * trims trailing spaces and terminates the resulting string with 1146 * null. @len must be actual maximum length (even number) + 1. 1147 * 1148 * LOCKING: 1149 * caller. 1150 */ 1151 void ata_id_c_string(const u16 *id, unsigned char *s, 1152 unsigned int ofs, unsigned int len) 1153 { 1154 unsigned char *p; 1155 1156 ata_id_string(id, s, ofs, len - 1); 1157 1158 p = s + strnlen(s, len - 1); 1159 while (p > s && p[-1] == ' ') 1160 p--; 1161 *p = '\0'; 1162 } 1163 1164 static u64 ata_id_n_sectors(const u16 *id) 1165 { 1166 if (ata_id_has_lba(id)) { 1167 if (ata_id_has_lba48(id)) 1168 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1169 else 1170 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1171 } else { 1172 if (ata_id_current_chs_valid(id)) 1173 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1174 id[ATA_ID_CUR_SECTORS]; 1175 else 1176 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1177 id[ATA_ID_SECTORS]; 1178 } 1179 } 1180 1181 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1182 { 1183 u64 sectors = 0; 1184 1185 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1186 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1187 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1188 sectors |= (tf->lbah & 0xff) << 16; 1189 sectors |= (tf->lbam & 0xff) << 8; 1190 sectors |= (tf->lbal & 0xff); 1191 1192 return sectors; 1193 } 1194 1195 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1196 { 1197 u64 sectors = 0; 1198 1199 sectors |= (tf->device & 0x0f) << 24; 1200 sectors |= (tf->lbah & 0xff) << 16; 1201 sectors |= (tf->lbam & 0xff) << 8; 1202 sectors |= (tf->lbal & 0xff); 1203 1204 return sectors; 1205 } 1206 1207 /** 1208 * ata_read_native_max_address - Read native max address 1209 * @dev: target device 1210 * @max_sectors: out parameter for the result native max address 1211 * 1212 * Perform an LBA48 or LBA28 native size query upon the device in 1213 * question. 1214 * 1215 * RETURNS: 1216 * 0 on success, -EACCES if command is aborted by the drive. 1217 * -EIO on other errors. 1218 */ 1219 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1220 { 1221 unsigned int err_mask; 1222 struct ata_taskfile tf; 1223 int lba48 = ata_id_has_lba48(dev->id); 1224 1225 ata_tf_init(dev, &tf); 1226 1227 /* always clear all address registers */ 1228 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1229 1230 if (lba48) { 1231 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1232 tf.flags |= ATA_TFLAG_LBA48; 1233 } else 1234 tf.command = ATA_CMD_READ_NATIVE_MAX; 1235 1236 tf.protocol |= ATA_PROT_NODATA; 1237 tf.device |= ATA_LBA; 1238 1239 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1240 if (err_mask) { 1241 ata_dev_warn(dev, 1242 "failed to read native max address (err_mask=0x%x)\n", 1243 err_mask); 1244 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1245 return -EACCES; 1246 return -EIO; 1247 } 1248 1249 if (lba48) 1250 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1251 else 1252 *max_sectors = ata_tf_to_lba(&tf) + 1; 1253 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1254 (*max_sectors)--; 1255 return 0; 1256 } 1257 1258 /** 1259 * ata_set_max_sectors - Set max sectors 1260 * @dev: target device 1261 * @new_sectors: new max sectors value to set for the device 1262 * 1263 * Set max sectors of @dev to @new_sectors. 1264 * 1265 * RETURNS: 1266 * 0 on success, -EACCES if command is aborted or denied (due to 1267 * previous non-volatile SET_MAX) by the drive. -EIO on other 1268 * errors. 1269 */ 1270 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1271 { 1272 unsigned int err_mask; 1273 struct ata_taskfile tf; 1274 int lba48 = ata_id_has_lba48(dev->id); 1275 1276 new_sectors--; 1277 1278 ata_tf_init(dev, &tf); 1279 1280 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1281 1282 if (lba48) { 1283 tf.command = ATA_CMD_SET_MAX_EXT; 1284 tf.flags |= ATA_TFLAG_LBA48; 1285 1286 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1287 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1288 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1289 } else { 1290 tf.command = ATA_CMD_SET_MAX; 1291 1292 tf.device |= (new_sectors >> 24) & 0xf; 1293 } 1294 1295 tf.protocol |= ATA_PROT_NODATA; 1296 tf.device |= ATA_LBA; 1297 1298 tf.lbal = (new_sectors >> 0) & 0xff; 1299 tf.lbam = (new_sectors >> 8) & 0xff; 1300 tf.lbah = (new_sectors >> 16) & 0xff; 1301 1302 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1303 if (err_mask) { 1304 ata_dev_warn(dev, 1305 "failed to set max address (err_mask=0x%x)\n", 1306 err_mask); 1307 if (err_mask == AC_ERR_DEV && 1308 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1309 return -EACCES; 1310 return -EIO; 1311 } 1312 1313 return 0; 1314 } 1315 1316 /** 1317 * ata_hpa_resize - Resize a device with an HPA set 1318 * @dev: Device to resize 1319 * 1320 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1321 * it if required to the full size of the media. The caller must check 1322 * the drive has the HPA feature set enabled. 1323 * 1324 * RETURNS: 1325 * 0 on success, -errno on failure. 1326 */ 1327 static int ata_hpa_resize(struct ata_device *dev) 1328 { 1329 struct ata_eh_context *ehc = &dev->link->eh_context; 1330 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1331 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1332 u64 sectors = ata_id_n_sectors(dev->id); 1333 u64 native_sectors; 1334 int rc; 1335 1336 /* do we need to do it? */ 1337 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1338 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1339 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1340 return 0; 1341 1342 /* read native max address */ 1343 rc = ata_read_native_max_address(dev, &native_sectors); 1344 if (rc) { 1345 /* If device aborted the command or HPA isn't going to 1346 * be unlocked, skip HPA resizing. 1347 */ 1348 if (rc == -EACCES || !unlock_hpa) { 1349 ata_dev_warn(dev, 1350 "HPA support seems broken, skipping HPA handling\n"); 1351 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1352 1353 /* we can continue if device aborted the command */ 1354 if (rc == -EACCES) 1355 rc = 0; 1356 } 1357 1358 return rc; 1359 } 1360 dev->n_native_sectors = native_sectors; 1361 1362 /* nothing to do? */ 1363 if (native_sectors <= sectors || !unlock_hpa) { 1364 if (!print_info || native_sectors == sectors) 1365 return 0; 1366 1367 if (native_sectors > sectors) 1368 ata_dev_info(dev, 1369 "HPA detected: current %llu, native %llu\n", 1370 (unsigned long long)sectors, 1371 (unsigned long long)native_sectors); 1372 else if (native_sectors < sectors) 1373 ata_dev_warn(dev, 1374 "native sectors (%llu) is smaller than sectors (%llu)\n", 1375 (unsigned long long)native_sectors, 1376 (unsigned long long)sectors); 1377 return 0; 1378 } 1379 1380 /* let's unlock HPA */ 1381 rc = ata_set_max_sectors(dev, native_sectors); 1382 if (rc == -EACCES) { 1383 /* if device aborted the command, skip HPA resizing */ 1384 ata_dev_warn(dev, 1385 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1386 (unsigned long long)sectors, 1387 (unsigned long long)native_sectors); 1388 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1389 return 0; 1390 } else if (rc) 1391 return rc; 1392 1393 /* re-read IDENTIFY data */ 1394 rc = ata_dev_reread_id(dev, 0); 1395 if (rc) { 1396 ata_dev_err(dev, 1397 "failed to re-read IDENTIFY data after HPA resizing\n"); 1398 return rc; 1399 } 1400 1401 if (print_info) { 1402 u64 new_sectors = ata_id_n_sectors(dev->id); 1403 ata_dev_info(dev, 1404 "HPA unlocked: %llu -> %llu, native %llu\n", 1405 (unsigned long long)sectors, 1406 (unsigned long long)new_sectors, 1407 (unsigned long long)native_sectors); 1408 } 1409 1410 return 0; 1411 } 1412 1413 /** 1414 * ata_dump_id - IDENTIFY DEVICE info debugging output 1415 * @id: IDENTIFY DEVICE page to dump 1416 * 1417 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1418 * page. 1419 * 1420 * LOCKING: 1421 * caller. 1422 */ 1423 1424 static inline void ata_dump_id(const u16 *id) 1425 { 1426 DPRINTK("49==0x%04x " 1427 "53==0x%04x " 1428 "63==0x%04x " 1429 "64==0x%04x " 1430 "75==0x%04x \n", 1431 id[49], 1432 id[53], 1433 id[63], 1434 id[64], 1435 id[75]); 1436 DPRINTK("80==0x%04x " 1437 "81==0x%04x " 1438 "82==0x%04x " 1439 "83==0x%04x " 1440 "84==0x%04x \n", 1441 id[80], 1442 id[81], 1443 id[82], 1444 id[83], 1445 id[84]); 1446 DPRINTK("88==0x%04x " 1447 "93==0x%04x\n", 1448 id[88], 1449 id[93]); 1450 } 1451 1452 /** 1453 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1454 * @id: IDENTIFY data to compute xfer mask from 1455 * 1456 * Compute the xfermask for this device. This is not as trivial 1457 * as it seems if we must consider early devices correctly. 1458 * 1459 * FIXME: pre IDE drive timing (do we care ?). 1460 * 1461 * LOCKING: 1462 * None. 1463 * 1464 * RETURNS: 1465 * Computed xfermask 1466 */ 1467 unsigned long ata_id_xfermask(const u16 *id) 1468 { 1469 unsigned long pio_mask, mwdma_mask, udma_mask; 1470 1471 /* Usual case. Word 53 indicates word 64 is valid */ 1472 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1473 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1474 pio_mask <<= 3; 1475 pio_mask |= 0x7; 1476 } else { 1477 /* If word 64 isn't valid then Word 51 high byte holds 1478 * the PIO timing number for the maximum. Turn it into 1479 * a mask. 1480 */ 1481 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1482 if (mode < 5) /* Valid PIO range */ 1483 pio_mask = (2 << mode) - 1; 1484 else 1485 pio_mask = 1; 1486 1487 /* But wait.. there's more. Design your standards by 1488 * committee and you too can get a free iordy field to 1489 * process. However its the speeds not the modes that 1490 * are supported... Note drivers using the timing API 1491 * will get this right anyway 1492 */ 1493 } 1494 1495 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1496 1497 if (ata_id_is_cfa(id)) { 1498 /* 1499 * Process compact flash extended modes 1500 */ 1501 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1502 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1503 1504 if (pio) 1505 pio_mask |= (1 << 5); 1506 if (pio > 1) 1507 pio_mask |= (1 << 6); 1508 if (dma) 1509 mwdma_mask |= (1 << 3); 1510 if (dma > 1) 1511 mwdma_mask |= (1 << 4); 1512 } 1513 1514 udma_mask = 0; 1515 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1516 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1517 1518 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1519 } 1520 1521 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1522 { 1523 struct completion *waiting = qc->private_data; 1524 1525 complete(waiting); 1526 } 1527 1528 /** 1529 * ata_exec_internal_sg - execute libata internal command 1530 * @dev: Device to which the command is sent 1531 * @tf: Taskfile registers for the command and the result 1532 * @cdb: CDB for packet command 1533 * @dma_dir: Data transfer direction of the command 1534 * @sgl: sg list for the data buffer of the command 1535 * @n_elem: Number of sg entries 1536 * @timeout: Timeout in msecs (0 for default) 1537 * 1538 * Executes libata internal command with timeout. @tf contains 1539 * command on entry and result on return. Timeout and error 1540 * conditions are reported via return value. No recovery action 1541 * is taken after a command times out. It's caller's duty to 1542 * clean up after timeout. 1543 * 1544 * LOCKING: 1545 * None. Should be called with kernel context, might sleep. 1546 * 1547 * RETURNS: 1548 * Zero on success, AC_ERR_* mask on failure 1549 */ 1550 unsigned ata_exec_internal_sg(struct ata_device *dev, 1551 struct ata_taskfile *tf, const u8 *cdb, 1552 int dma_dir, struct scatterlist *sgl, 1553 unsigned int n_elem, unsigned long timeout) 1554 { 1555 struct ata_link *link = dev->link; 1556 struct ata_port *ap = link->ap; 1557 u8 command = tf->command; 1558 int auto_timeout = 0; 1559 struct ata_queued_cmd *qc; 1560 unsigned int tag, preempted_tag; 1561 u32 preempted_sactive, preempted_qc_active; 1562 int preempted_nr_active_links; 1563 DECLARE_COMPLETION_ONSTACK(wait); 1564 unsigned long flags; 1565 unsigned int err_mask; 1566 int rc; 1567 1568 spin_lock_irqsave(ap->lock, flags); 1569 1570 /* no internal command while frozen */ 1571 if (ap->pflags & ATA_PFLAG_FROZEN) { 1572 spin_unlock_irqrestore(ap->lock, flags); 1573 return AC_ERR_SYSTEM; 1574 } 1575 1576 /* initialize internal qc */ 1577 1578 /* XXX: Tag 0 is used for drivers with legacy EH as some 1579 * drivers choke if any other tag is given. This breaks 1580 * ata_tag_internal() test for those drivers. Don't use new 1581 * EH stuff without converting to it. 1582 */ 1583 if (ap->ops->error_handler) 1584 tag = ATA_TAG_INTERNAL; 1585 else 1586 tag = 0; 1587 1588 qc = __ata_qc_from_tag(ap, tag); 1589 1590 qc->tag = tag; 1591 qc->scsicmd = NULL; 1592 qc->ap = ap; 1593 qc->dev = dev; 1594 ata_qc_reinit(qc); 1595 1596 preempted_tag = link->active_tag; 1597 preempted_sactive = link->sactive; 1598 preempted_qc_active = ap->qc_active; 1599 preempted_nr_active_links = ap->nr_active_links; 1600 link->active_tag = ATA_TAG_POISON; 1601 link->sactive = 0; 1602 ap->qc_active = 0; 1603 ap->nr_active_links = 0; 1604 1605 /* prepare & issue qc */ 1606 qc->tf = *tf; 1607 if (cdb) 1608 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1609 1610 /* some SATA bridges need us to indicate data xfer direction */ 1611 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1612 dma_dir == DMA_FROM_DEVICE) 1613 qc->tf.feature |= ATAPI_DMADIR; 1614 1615 qc->flags |= ATA_QCFLAG_RESULT_TF; 1616 qc->dma_dir = dma_dir; 1617 if (dma_dir != DMA_NONE) { 1618 unsigned int i, buflen = 0; 1619 struct scatterlist *sg; 1620 1621 for_each_sg(sgl, sg, n_elem, i) 1622 buflen += sg->length; 1623 1624 ata_sg_init(qc, sgl, n_elem); 1625 qc->nbytes = buflen; 1626 } 1627 1628 qc->private_data = &wait; 1629 qc->complete_fn = ata_qc_complete_internal; 1630 1631 ata_qc_issue(qc); 1632 1633 spin_unlock_irqrestore(ap->lock, flags); 1634 1635 if (!timeout) { 1636 if (ata_probe_timeout) 1637 timeout = ata_probe_timeout * 1000; 1638 else { 1639 timeout = ata_internal_cmd_timeout(dev, command); 1640 auto_timeout = 1; 1641 } 1642 } 1643 1644 if (ap->ops->error_handler) 1645 ata_eh_release(ap); 1646 1647 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1648 1649 if (ap->ops->error_handler) 1650 ata_eh_acquire(ap); 1651 1652 ata_sff_flush_pio_task(ap); 1653 1654 if (!rc) { 1655 spin_lock_irqsave(ap->lock, flags); 1656 1657 /* We're racing with irq here. If we lose, the 1658 * following test prevents us from completing the qc 1659 * twice. If we win, the port is frozen and will be 1660 * cleaned up by ->post_internal_cmd(). 1661 */ 1662 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1663 qc->err_mask |= AC_ERR_TIMEOUT; 1664 1665 if (ap->ops->error_handler) 1666 ata_port_freeze(ap); 1667 else 1668 ata_qc_complete(qc); 1669 1670 if (ata_msg_warn(ap)) 1671 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1672 command); 1673 } 1674 1675 spin_unlock_irqrestore(ap->lock, flags); 1676 } 1677 1678 /* do post_internal_cmd */ 1679 if (ap->ops->post_internal_cmd) 1680 ap->ops->post_internal_cmd(qc); 1681 1682 /* perform minimal error analysis */ 1683 if (qc->flags & ATA_QCFLAG_FAILED) { 1684 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1685 qc->err_mask |= AC_ERR_DEV; 1686 1687 if (!qc->err_mask) 1688 qc->err_mask |= AC_ERR_OTHER; 1689 1690 if (qc->err_mask & ~AC_ERR_OTHER) 1691 qc->err_mask &= ~AC_ERR_OTHER; 1692 } 1693 1694 /* finish up */ 1695 spin_lock_irqsave(ap->lock, flags); 1696 1697 *tf = qc->result_tf; 1698 err_mask = qc->err_mask; 1699 1700 ata_qc_free(qc); 1701 link->active_tag = preempted_tag; 1702 link->sactive = preempted_sactive; 1703 ap->qc_active = preempted_qc_active; 1704 ap->nr_active_links = preempted_nr_active_links; 1705 1706 spin_unlock_irqrestore(ap->lock, flags); 1707 1708 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1709 ata_internal_cmd_timed_out(dev, command); 1710 1711 return err_mask; 1712 } 1713 1714 /** 1715 * ata_exec_internal - execute libata internal command 1716 * @dev: Device to which the command is sent 1717 * @tf: Taskfile registers for the command and the result 1718 * @cdb: CDB for packet command 1719 * @dma_dir: Data transfer direction of the command 1720 * @buf: Data buffer of the command 1721 * @buflen: Length of data buffer 1722 * @timeout: Timeout in msecs (0 for default) 1723 * 1724 * Wrapper around ata_exec_internal_sg() which takes simple 1725 * buffer instead of sg list. 1726 * 1727 * LOCKING: 1728 * None. Should be called with kernel context, might sleep. 1729 * 1730 * RETURNS: 1731 * Zero on success, AC_ERR_* mask on failure 1732 */ 1733 unsigned ata_exec_internal(struct ata_device *dev, 1734 struct ata_taskfile *tf, const u8 *cdb, 1735 int dma_dir, void *buf, unsigned int buflen, 1736 unsigned long timeout) 1737 { 1738 struct scatterlist *psg = NULL, sg; 1739 unsigned int n_elem = 0; 1740 1741 if (dma_dir != DMA_NONE) { 1742 WARN_ON(!buf); 1743 sg_init_one(&sg, buf, buflen); 1744 psg = &sg; 1745 n_elem++; 1746 } 1747 1748 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1749 timeout); 1750 } 1751 1752 /** 1753 * ata_pio_need_iordy - check if iordy needed 1754 * @adev: ATA device 1755 * 1756 * Check if the current speed of the device requires IORDY. Used 1757 * by various controllers for chip configuration. 1758 */ 1759 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1760 { 1761 /* Don't set IORDY if we're preparing for reset. IORDY may 1762 * lead to controller lock up on certain controllers if the 1763 * port is not occupied. See bko#11703 for details. 1764 */ 1765 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1766 return 0; 1767 /* Controller doesn't support IORDY. Probably a pointless 1768 * check as the caller should know this. 1769 */ 1770 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1771 return 0; 1772 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1773 if (ata_id_is_cfa(adev->id) 1774 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1775 return 0; 1776 /* PIO3 and higher it is mandatory */ 1777 if (adev->pio_mode > XFER_PIO_2) 1778 return 1; 1779 /* We turn it on when possible */ 1780 if (ata_id_has_iordy(adev->id)) 1781 return 1; 1782 return 0; 1783 } 1784 1785 /** 1786 * ata_pio_mask_no_iordy - Return the non IORDY mask 1787 * @adev: ATA device 1788 * 1789 * Compute the highest mode possible if we are not using iordy. Return 1790 * -1 if no iordy mode is available. 1791 */ 1792 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1793 { 1794 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1795 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1796 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1797 /* Is the speed faster than the drive allows non IORDY ? */ 1798 if (pio) { 1799 /* This is cycle times not frequency - watch the logic! */ 1800 if (pio > 240) /* PIO2 is 240nS per cycle */ 1801 return 3 << ATA_SHIFT_PIO; 1802 return 7 << ATA_SHIFT_PIO; 1803 } 1804 } 1805 return 3 << ATA_SHIFT_PIO; 1806 } 1807 1808 /** 1809 * ata_do_dev_read_id - default ID read method 1810 * @dev: device 1811 * @tf: proposed taskfile 1812 * @id: data buffer 1813 * 1814 * Issue the identify taskfile and hand back the buffer containing 1815 * identify data. For some RAID controllers and for pre ATA devices 1816 * this function is wrapped or replaced by the driver 1817 */ 1818 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1819 struct ata_taskfile *tf, u16 *id) 1820 { 1821 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1822 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1823 } 1824 1825 /** 1826 * ata_dev_read_id - Read ID data from the specified device 1827 * @dev: target device 1828 * @p_class: pointer to class of the target device (may be changed) 1829 * @flags: ATA_READID_* flags 1830 * @id: buffer to read IDENTIFY data into 1831 * 1832 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1833 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1834 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1835 * for pre-ATA4 drives. 1836 * 1837 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1838 * now we abort if we hit that case. 1839 * 1840 * LOCKING: 1841 * Kernel thread context (may sleep) 1842 * 1843 * RETURNS: 1844 * 0 on success, -errno otherwise. 1845 */ 1846 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1847 unsigned int flags, u16 *id) 1848 { 1849 struct ata_port *ap = dev->link->ap; 1850 unsigned int class = *p_class; 1851 struct ata_taskfile tf; 1852 unsigned int err_mask = 0; 1853 const char *reason; 1854 bool is_semb = class == ATA_DEV_SEMB; 1855 int may_fallback = 1, tried_spinup = 0; 1856 int rc; 1857 1858 if (ata_msg_ctl(ap)) 1859 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1860 1861 retry: 1862 ata_tf_init(dev, &tf); 1863 1864 switch (class) { 1865 case ATA_DEV_SEMB: 1866 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1867 case ATA_DEV_ATA: 1868 case ATA_DEV_ZAC: 1869 tf.command = ATA_CMD_ID_ATA; 1870 break; 1871 case ATA_DEV_ATAPI: 1872 tf.command = ATA_CMD_ID_ATAPI; 1873 break; 1874 default: 1875 rc = -ENODEV; 1876 reason = "unsupported class"; 1877 goto err_out; 1878 } 1879 1880 tf.protocol = ATA_PROT_PIO; 1881 1882 /* Some devices choke if TF registers contain garbage. Make 1883 * sure those are properly initialized. 1884 */ 1885 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1886 1887 /* Device presence detection is unreliable on some 1888 * controllers. Always poll IDENTIFY if available. 1889 */ 1890 tf.flags |= ATA_TFLAG_POLLING; 1891 1892 if (ap->ops->read_id) 1893 err_mask = ap->ops->read_id(dev, &tf, id); 1894 else 1895 err_mask = ata_do_dev_read_id(dev, &tf, id); 1896 1897 if (err_mask) { 1898 if (err_mask & AC_ERR_NODEV_HINT) { 1899 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1900 return -ENOENT; 1901 } 1902 1903 if (is_semb) { 1904 ata_dev_info(dev, 1905 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1906 /* SEMB is not supported yet */ 1907 *p_class = ATA_DEV_SEMB_UNSUP; 1908 return 0; 1909 } 1910 1911 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1912 /* Device or controller might have reported 1913 * the wrong device class. Give a shot at the 1914 * other IDENTIFY if the current one is 1915 * aborted by the device. 1916 */ 1917 if (may_fallback) { 1918 may_fallback = 0; 1919 1920 if (class == ATA_DEV_ATA) 1921 class = ATA_DEV_ATAPI; 1922 else 1923 class = ATA_DEV_ATA; 1924 goto retry; 1925 } 1926 1927 /* Control reaches here iff the device aborted 1928 * both flavors of IDENTIFYs which happens 1929 * sometimes with phantom devices. 1930 */ 1931 ata_dev_dbg(dev, 1932 "both IDENTIFYs aborted, assuming NODEV\n"); 1933 return -ENOENT; 1934 } 1935 1936 rc = -EIO; 1937 reason = "I/O error"; 1938 goto err_out; 1939 } 1940 1941 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1942 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1943 "class=%d may_fallback=%d tried_spinup=%d\n", 1944 class, may_fallback, tried_spinup); 1945 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1946 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1947 } 1948 1949 /* Falling back doesn't make sense if ID data was read 1950 * successfully at least once. 1951 */ 1952 may_fallback = 0; 1953 1954 swap_buf_le16(id, ATA_ID_WORDS); 1955 1956 /* sanity check */ 1957 rc = -EINVAL; 1958 reason = "device reports invalid type"; 1959 1960 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1961 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1962 goto err_out; 1963 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1964 ata_id_is_ata(id)) { 1965 ata_dev_dbg(dev, 1966 "host indicates ignore ATA devices, ignored\n"); 1967 return -ENOENT; 1968 } 1969 } else { 1970 if (ata_id_is_ata(id)) 1971 goto err_out; 1972 } 1973 1974 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1975 tried_spinup = 1; 1976 /* 1977 * Drive powered-up in standby mode, and requires a specific 1978 * SET_FEATURES spin-up subcommand before it will accept 1979 * anything other than the original IDENTIFY command. 1980 */ 1981 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1982 if (err_mask && id[2] != 0x738c) { 1983 rc = -EIO; 1984 reason = "SPINUP failed"; 1985 goto err_out; 1986 } 1987 /* 1988 * If the drive initially returned incomplete IDENTIFY info, 1989 * we now must reissue the IDENTIFY command. 1990 */ 1991 if (id[2] == 0x37c8) 1992 goto retry; 1993 } 1994 1995 if ((flags & ATA_READID_POSTRESET) && 1996 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1997 /* 1998 * The exact sequence expected by certain pre-ATA4 drives is: 1999 * SRST RESET 2000 * IDENTIFY (optional in early ATA) 2001 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2002 * anything else.. 2003 * Some drives were very specific about that exact sequence. 2004 * 2005 * Note that ATA4 says lba is mandatory so the second check 2006 * should never trigger. 2007 */ 2008 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2009 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2010 if (err_mask) { 2011 rc = -EIO; 2012 reason = "INIT_DEV_PARAMS failed"; 2013 goto err_out; 2014 } 2015 2016 /* current CHS translation info (id[53-58]) might be 2017 * changed. reread the identify device info. 2018 */ 2019 flags &= ~ATA_READID_POSTRESET; 2020 goto retry; 2021 } 2022 } 2023 2024 *p_class = class; 2025 2026 return 0; 2027 2028 err_out: 2029 if (ata_msg_warn(ap)) 2030 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2031 reason, err_mask); 2032 return rc; 2033 } 2034 2035 static int ata_do_link_spd_horkage(struct ata_device *dev) 2036 { 2037 struct ata_link *plink = ata_dev_phys_link(dev); 2038 u32 target, target_limit; 2039 2040 if (!sata_scr_valid(plink)) 2041 return 0; 2042 2043 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2044 target = 1; 2045 else 2046 return 0; 2047 2048 target_limit = (1 << target) - 1; 2049 2050 /* if already on stricter limit, no need to push further */ 2051 if (plink->sata_spd_limit <= target_limit) 2052 return 0; 2053 2054 plink->sata_spd_limit = target_limit; 2055 2056 /* Request another EH round by returning -EAGAIN if link is 2057 * going faster than the target speed. Forward progress is 2058 * guaranteed by setting sata_spd_limit to target_limit above. 2059 */ 2060 if (plink->sata_spd > target) { 2061 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2062 sata_spd_string(target)); 2063 return -EAGAIN; 2064 } 2065 return 0; 2066 } 2067 2068 static inline u8 ata_dev_knobble(struct ata_device *dev) 2069 { 2070 struct ata_port *ap = dev->link->ap; 2071 2072 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2073 return 0; 2074 2075 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2076 } 2077 2078 static int ata_dev_config_ncq(struct ata_device *dev, 2079 char *desc, size_t desc_sz) 2080 { 2081 struct ata_port *ap = dev->link->ap; 2082 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2083 unsigned int err_mask; 2084 char *aa_desc = ""; 2085 2086 if (!ata_id_has_ncq(dev->id)) { 2087 desc[0] = '\0'; 2088 return 0; 2089 } 2090 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2091 snprintf(desc, desc_sz, "NCQ (not used)"); 2092 return 0; 2093 } 2094 if (ap->flags & ATA_FLAG_NCQ) { 2095 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2096 dev->flags |= ATA_DFLAG_NCQ; 2097 } 2098 2099 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2100 (ap->flags & ATA_FLAG_FPDMA_AA) && 2101 ata_id_has_fpdma_aa(dev->id)) { 2102 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2103 SATA_FPDMA_AA); 2104 if (err_mask) { 2105 ata_dev_err(dev, 2106 "failed to enable AA (error_mask=0x%x)\n", 2107 err_mask); 2108 if (err_mask != AC_ERR_DEV) { 2109 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2110 return -EIO; 2111 } 2112 } else 2113 aa_desc = ", AA"; 2114 } 2115 2116 if (hdepth >= ddepth) 2117 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2118 else 2119 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2120 ddepth, aa_desc); 2121 2122 if ((ap->flags & ATA_FLAG_FPDMA_AUX) && 2123 ata_id_has_ncq_send_and_recv(dev->id)) { 2124 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2125 0, ap->sector_buf, 1); 2126 if (err_mask) { 2127 ata_dev_dbg(dev, 2128 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2129 err_mask); 2130 } else { 2131 u8 *cmds = dev->ncq_send_recv_cmds; 2132 2133 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2134 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2135 2136 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2137 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2138 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2139 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2140 } 2141 } 2142 } 2143 2144 return 0; 2145 } 2146 2147 /** 2148 * ata_dev_configure - Configure the specified ATA/ATAPI device 2149 * @dev: Target device to configure 2150 * 2151 * Configure @dev according to @dev->id. Generic and low-level 2152 * driver specific fixups are also applied. 2153 * 2154 * LOCKING: 2155 * Kernel thread context (may sleep) 2156 * 2157 * RETURNS: 2158 * 0 on success, -errno otherwise 2159 */ 2160 int ata_dev_configure(struct ata_device *dev) 2161 { 2162 struct ata_port *ap = dev->link->ap; 2163 struct ata_eh_context *ehc = &dev->link->eh_context; 2164 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2165 const u16 *id = dev->id; 2166 unsigned long xfer_mask; 2167 unsigned int err_mask; 2168 char revbuf[7]; /* XYZ-99\0 */ 2169 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2170 char modelbuf[ATA_ID_PROD_LEN+1]; 2171 int rc; 2172 2173 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2174 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2175 return 0; 2176 } 2177 2178 if (ata_msg_probe(ap)) 2179 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2180 2181 /* set horkage */ 2182 dev->horkage |= ata_dev_blacklisted(dev); 2183 ata_force_horkage(dev); 2184 2185 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2186 ata_dev_info(dev, "unsupported device, disabling\n"); 2187 ata_dev_disable(dev); 2188 return 0; 2189 } 2190 2191 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2192 dev->class == ATA_DEV_ATAPI) { 2193 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2194 atapi_enabled ? "not supported with this driver" 2195 : "disabled"); 2196 ata_dev_disable(dev); 2197 return 0; 2198 } 2199 2200 rc = ata_do_link_spd_horkage(dev); 2201 if (rc) 2202 return rc; 2203 2204 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2205 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2206 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2207 dev->horkage |= ATA_HORKAGE_NOLPM; 2208 2209 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2210 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2211 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2212 } 2213 2214 /* let ACPI work its magic */ 2215 rc = ata_acpi_on_devcfg(dev); 2216 if (rc) 2217 return rc; 2218 2219 /* massage HPA, do it early as it might change IDENTIFY data */ 2220 rc = ata_hpa_resize(dev); 2221 if (rc) 2222 return rc; 2223 2224 /* print device capabilities */ 2225 if (ata_msg_probe(ap)) 2226 ata_dev_dbg(dev, 2227 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2228 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2229 __func__, 2230 id[49], id[82], id[83], id[84], 2231 id[85], id[86], id[87], id[88]); 2232 2233 /* initialize to-be-configured parameters */ 2234 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2235 dev->max_sectors = 0; 2236 dev->cdb_len = 0; 2237 dev->n_sectors = 0; 2238 dev->cylinders = 0; 2239 dev->heads = 0; 2240 dev->sectors = 0; 2241 dev->multi_count = 0; 2242 2243 /* 2244 * common ATA, ATAPI feature tests 2245 */ 2246 2247 /* find max transfer mode; for printk only */ 2248 xfer_mask = ata_id_xfermask(id); 2249 2250 if (ata_msg_probe(ap)) 2251 ata_dump_id(id); 2252 2253 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2254 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2255 sizeof(fwrevbuf)); 2256 2257 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2258 sizeof(modelbuf)); 2259 2260 /* ATA-specific feature tests */ 2261 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2262 if (ata_id_is_cfa(id)) { 2263 /* CPRM may make this media unusable */ 2264 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2265 ata_dev_warn(dev, 2266 "supports DRM functions and may not be fully accessible\n"); 2267 snprintf(revbuf, 7, "CFA"); 2268 } else { 2269 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2270 /* Warn the user if the device has TPM extensions */ 2271 if (ata_id_has_tpm(id)) 2272 ata_dev_warn(dev, 2273 "supports DRM functions and may not be fully accessible\n"); 2274 } 2275 2276 dev->n_sectors = ata_id_n_sectors(id); 2277 2278 /* get current R/W Multiple count setting */ 2279 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2280 unsigned int max = dev->id[47] & 0xff; 2281 unsigned int cnt = dev->id[59] & 0xff; 2282 /* only recognize/allow powers of two here */ 2283 if (is_power_of_2(max) && is_power_of_2(cnt)) 2284 if (cnt <= max) 2285 dev->multi_count = cnt; 2286 } 2287 2288 if (ata_id_has_lba(id)) { 2289 const char *lba_desc; 2290 char ncq_desc[24]; 2291 2292 lba_desc = "LBA"; 2293 dev->flags |= ATA_DFLAG_LBA; 2294 if (ata_id_has_lba48(id)) { 2295 dev->flags |= ATA_DFLAG_LBA48; 2296 lba_desc = "LBA48"; 2297 2298 if (dev->n_sectors >= (1UL << 28) && 2299 ata_id_has_flush_ext(id)) 2300 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2301 } 2302 2303 /* config NCQ */ 2304 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2305 if (rc) 2306 return rc; 2307 2308 /* print device info to dmesg */ 2309 if (ata_msg_drv(ap) && print_info) { 2310 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2311 revbuf, modelbuf, fwrevbuf, 2312 ata_mode_string(xfer_mask)); 2313 ata_dev_info(dev, 2314 "%llu sectors, multi %u: %s %s\n", 2315 (unsigned long long)dev->n_sectors, 2316 dev->multi_count, lba_desc, ncq_desc); 2317 } 2318 } else { 2319 /* CHS */ 2320 2321 /* Default translation */ 2322 dev->cylinders = id[1]; 2323 dev->heads = id[3]; 2324 dev->sectors = id[6]; 2325 2326 if (ata_id_current_chs_valid(id)) { 2327 /* Current CHS translation is valid. */ 2328 dev->cylinders = id[54]; 2329 dev->heads = id[55]; 2330 dev->sectors = id[56]; 2331 } 2332 2333 /* print device info to dmesg */ 2334 if (ata_msg_drv(ap) && print_info) { 2335 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2336 revbuf, modelbuf, fwrevbuf, 2337 ata_mode_string(xfer_mask)); 2338 ata_dev_info(dev, 2339 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2340 (unsigned long long)dev->n_sectors, 2341 dev->multi_count, dev->cylinders, 2342 dev->heads, dev->sectors); 2343 } 2344 } 2345 2346 /* Check and mark DevSlp capability. Get DevSlp timing variables 2347 * from SATA Settings page of Identify Device Data Log. 2348 */ 2349 if (ata_id_has_devslp(dev->id)) { 2350 u8 *sata_setting = ap->sector_buf; 2351 int i, j; 2352 2353 dev->flags |= ATA_DFLAG_DEVSLP; 2354 err_mask = ata_read_log_page(dev, 2355 ATA_LOG_SATA_ID_DEV_DATA, 2356 ATA_LOG_SATA_SETTINGS, 2357 sata_setting, 2358 1); 2359 if (err_mask) 2360 ata_dev_dbg(dev, 2361 "failed to get Identify Device Data, Emask 0x%x\n", 2362 err_mask); 2363 else 2364 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2365 j = ATA_LOG_DEVSLP_OFFSET + i; 2366 dev->devslp_timing[i] = sata_setting[j]; 2367 } 2368 } 2369 2370 dev->cdb_len = 16; 2371 } 2372 2373 /* ATAPI-specific feature tests */ 2374 else if (dev->class == ATA_DEV_ATAPI) { 2375 const char *cdb_intr_string = ""; 2376 const char *atapi_an_string = ""; 2377 const char *dma_dir_string = ""; 2378 u32 sntf; 2379 2380 rc = atapi_cdb_len(id); 2381 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2382 if (ata_msg_warn(ap)) 2383 ata_dev_warn(dev, "unsupported CDB len\n"); 2384 rc = -EINVAL; 2385 goto err_out_nosup; 2386 } 2387 dev->cdb_len = (unsigned int) rc; 2388 2389 /* Enable ATAPI AN if both the host and device have 2390 * the support. If PMP is attached, SNTF is required 2391 * to enable ATAPI AN to discern between PHY status 2392 * changed notifications and ATAPI ANs. 2393 */ 2394 if (atapi_an && 2395 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2396 (!sata_pmp_attached(ap) || 2397 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2398 /* issue SET feature command to turn this on */ 2399 err_mask = ata_dev_set_feature(dev, 2400 SETFEATURES_SATA_ENABLE, SATA_AN); 2401 if (err_mask) 2402 ata_dev_err(dev, 2403 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2404 err_mask); 2405 else { 2406 dev->flags |= ATA_DFLAG_AN; 2407 atapi_an_string = ", ATAPI AN"; 2408 } 2409 } 2410 2411 if (ata_id_cdb_intr(dev->id)) { 2412 dev->flags |= ATA_DFLAG_CDB_INTR; 2413 cdb_intr_string = ", CDB intr"; 2414 } 2415 2416 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2417 dev->flags |= ATA_DFLAG_DMADIR; 2418 dma_dir_string = ", DMADIR"; 2419 } 2420 2421 if (ata_id_has_da(dev->id)) { 2422 dev->flags |= ATA_DFLAG_DA; 2423 zpodd_init(dev); 2424 } 2425 2426 /* print device info to dmesg */ 2427 if (ata_msg_drv(ap) && print_info) 2428 ata_dev_info(dev, 2429 "ATAPI: %s, %s, max %s%s%s%s\n", 2430 modelbuf, fwrevbuf, 2431 ata_mode_string(xfer_mask), 2432 cdb_intr_string, atapi_an_string, 2433 dma_dir_string); 2434 } 2435 2436 /* determine max_sectors */ 2437 dev->max_sectors = ATA_MAX_SECTORS; 2438 if (dev->flags & ATA_DFLAG_LBA48) 2439 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2440 2441 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2442 200 sectors */ 2443 if (ata_dev_knobble(dev)) { 2444 if (ata_msg_drv(ap) && print_info) 2445 ata_dev_info(dev, "applying bridge limits\n"); 2446 dev->udma_mask &= ATA_UDMA5; 2447 dev->max_sectors = ATA_MAX_SECTORS; 2448 } 2449 2450 if ((dev->class == ATA_DEV_ATAPI) && 2451 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2452 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2453 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2454 } 2455 2456 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2457 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2458 dev->max_sectors); 2459 2460 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2461 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2462 2463 if (ap->ops->dev_config) 2464 ap->ops->dev_config(dev); 2465 2466 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2467 /* Let the user know. We don't want to disallow opens for 2468 rescue purposes, or in case the vendor is just a blithering 2469 idiot. Do this after the dev_config call as some controllers 2470 with buggy firmware may want to avoid reporting false device 2471 bugs */ 2472 2473 if (print_info) { 2474 ata_dev_warn(dev, 2475 "Drive reports diagnostics failure. This may indicate a drive\n"); 2476 ata_dev_warn(dev, 2477 "fault or invalid emulation. Contact drive vendor for information.\n"); 2478 } 2479 } 2480 2481 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2482 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2483 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2484 } 2485 2486 return 0; 2487 2488 err_out_nosup: 2489 if (ata_msg_probe(ap)) 2490 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2491 return rc; 2492 } 2493 2494 /** 2495 * ata_cable_40wire - return 40 wire cable type 2496 * @ap: port 2497 * 2498 * Helper method for drivers which want to hardwire 40 wire cable 2499 * detection. 2500 */ 2501 2502 int ata_cable_40wire(struct ata_port *ap) 2503 { 2504 return ATA_CBL_PATA40; 2505 } 2506 2507 /** 2508 * ata_cable_80wire - return 80 wire cable type 2509 * @ap: port 2510 * 2511 * Helper method for drivers which want to hardwire 80 wire cable 2512 * detection. 2513 */ 2514 2515 int ata_cable_80wire(struct ata_port *ap) 2516 { 2517 return ATA_CBL_PATA80; 2518 } 2519 2520 /** 2521 * ata_cable_unknown - return unknown PATA cable. 2522 * @ap: port 2523 * 2524 * Helper method for drivers which have no PATA cable detection. 2525 */ 2526 2527 int ata_cable_unknown(struct ata_port *ap) 2528 { 2529 return ATA_CBL_PATA_UNK; 2530 } 2531 2532 /** 2533 * ata_cable_ignore - return ignored PATA cable. 2534 * @ap: port 2535 * 2536 * Helper method for drivers which don't use cable type to limit 2537 * transfer mode. 2538 */ 2539 int ata_cable_ignore(struct ata_port *ap) 2540 { 2541 return ATA_CBL_PATA_IGN; 2542 } 2543 2544 /** 2545 * ata_cable_sata - return SATA cable type 2546 * @ap: port 2547 * 2548 * Helper method for drivers which have SATA cables 2549 */ 2550 2551 int ata_cable_sata(struct ata_port *ap) 2552 { 2553 return ATA_CBL_SATA; 2554 } 2555 2556 /** 2557 * ata_bus_probe - Reset and probe ATA bus 2558 * @ap: Bus to probe 2559 * 2560 * Master ATA bus probing function. Initiates a hardware-dependent 2561 * bus reset, then attempts to identify any devices found on 2562 * the bus. 2563 * 2564 * LOCKING: 2565 * PCI/etc. bus probe sem. 2566 * 2567 * RETURNS: 2568 * Zero on success, negative errno otherwise. 2569 */ 2570 2571 int ata_bus_probe(struct ata_port *ap) 2572 { 2573 unsigned int classes[ATA_MAX_DEVICES]; 2574 int tries[ATA_MAX_DEVICES]; 2575 int rc; 2576 struct ata_device *dev; 2577 2578 ata_for_each_dev(dev, &ap->link, ALL) 2579 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2580 2581 retry: 2582 ata_for_each_dev(dev, &ap->link, ALL) { 2583 /* If we issue an SRST then an ATA drive (not ATAPI) 2584 * may change configuration and be in PIO0 timing. If 2585 * we do a hard reset (or are coming from power on) 2586 * this is true for ATA or ATAPI. Until we've set a 2587 * suitable controller mode we should not touch the 2588 * bus as we may be talking too fast. 2589 */ 2590 dev->pio_mode = XFER_PIO_0; 2591 dev->dma_mode = 0xff; 2592 2593 /* If the controller has a pio mode setup function 2594 * then use it to set the chipset to rights. Don't 2595 * touch the DMA setup as that will be dealt with when 2596 * configuring devices. 2597 */ 2598 if (ap->ops->set_piomode) 2599 ap->ops->set_piomode(ap, dev); 2600 } 2601 2602 /* reset and determine device classes */ 2603 ap->ops->phy_reset(ap); 2604 2605 ata_for_each_dev(dev, &ap->link, ALL) { 2606 if (dev->class != ATA_DEV_UNKNOWN) 2607 classes[dev->devno] = dev->class; 2608 else 2609 classes[dev->devno] = ATA_DEV_NONE; 2610 2611 dev->class = ATA_DEV_UNKNOWN; 2612 } 2613 2614 /* read IDENTIFY page and configure devices. We have to do the identify 2615 specific sequence bass-ackwards so that PDIAG- is released by 2616 the slave device */ 2617 2618 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2619 if (tries[dev->devno]) 2620 dev->class = classes[dev->devno]; 2621 2622 if (!ata_dev_enabled(dev)) 2623 continue; 2624 2625 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2626 dev->id); 2627 if (rc) 2628 goto fail; 2629 } 2630 2631 /* Now ask for the cable type as PDIAG- should have been released */ 2632 if (ap->ops->cable_detect) 2633 ap->cbl = ap->ops->cable_detect(ap); 2634 2635 /* We may have SATA bridge glue hiding here irrespective of 2636 * the reported cable types and sensed types. When SATA 2637 * drives indicate we have a bridge, we don't know which end 2638 * of the link the bridge is which is a problem. 2639 */ 2640 ata_for_each_dev(dev, &ap->link, ENABLED) 2641 if (ata_id_is_sata(dev->id)) 2642 ap->cbl = ATA_CBL_SATA; 2643 2644 /* After the identify sequence we can now set up the devices. We do 2645 this in the normal order so that the user doesn't get confused */ 2646 2647 ata_for_each_dev(dev, &ap->link, ENABLED) { 2648 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2649 rc = ata_dev_configure(dev); 2650 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2651 if (rc) 2652 goto fail; 2653 } 2654 2655 /* configure transfer mode */ 2656 rc = ata_set_mode(&ap->link, &dev); 2657 if (rc) 2658 goto fail; 2659 2660 ata_for_each_dev(dev, &ap->link, ENABLED) 2661 return 0; 2662 2663 return -ENODEV; 2664 2665 fail: 2666 tries[dev->devno]--; 2667 2668 switch (rc) { 2669 case -EINVAL: 2670 /* eeek, something went very wrong, give up */ 2671 tries[dev->devno] = 0; 2672 break; 2673 2674 case -ENODEV: 2675 /* give it just one more chance */ 2676 tries[dev->devno] = min(tries[dev->devno], 1); 2677 case -EIO: 2678 if (tries[dev->devno] == 1) { 2679 /* This is the last chance, better to slow 2680 * down than lose it. 2681 */ 2682 sata_down_spd_limit(&ap->link, 0); 2683 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2684 } 2685 } 2686 2687 if (!tries[dev->devno]) 2688 ata_dev_disable(dev); 2689 2690 goto retry; 2691 } 2692 2693 /** 2694 * sata_print_link_status - Print SATA link status 2695 * @link: SATA link to printk link status about 2696 * 2697 * This function prints link speed and status of a SATA link. 2698 * 2699 * LOCKING: 2700 * None. 2701 */ 2702 static void sata_print_link_status(struct ata_link *link) 2703 { 2704 u32 sstatus, scontrol, tmp; 2705 2706 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2707 return; 2708 sata_scr_read(link, SCR_CONTROL, &scontrol); 2709 2710 if (ata_phys_link_online(link)) { 2711 tmp = (sstatus >> 4) & 0xf; 2712 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2713 sata_spd_string(tmp), sstatus, scontrol); 2714 } else { 2715 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2716 sstatus, scontrol); 2717 } 2718 } 2719 2720 /** 2721 * ata_dev_pair - return other device on cable 2722 * @adev: device 2723 * 2724 * Obtain the other device on the same cable, or if none is 2725 * present NULL is returned 2726 */ 2727 2728 struct ata_device *ata_dev_pair(struct ata_device *adev) 2729 { 2730 struct ata_link *link = adev->link; 2731 struct ata_device *pair = &link->device[1 - adev->devno]; 2732 if (!ata_dev_enabled(pair)) 2733 return NULL; 2734 return pair; 2735 } 2736 2737 /** 2738 * sata_down_spd_limit - adjust SATA spd limit downward 2739 * @link: Link to adjust SATA spd limit for 2740 * @spd_limit: Additional limit 2741 * 2742 * Adjust SATA spd limit of @link downward. Note that this 2743 * function only adjusts the limit. The change must be applied 2744 * using sata_set_spd(). 2745 * 2746 * If @spd_limit is non-zero, the speed is limited to equal to or 2747 * lower than @spd_limit if such speed is supported. If 2748 * @spd_limit is slower than any supported speed, only the lowest 2749 * supported speed is allowed. 2750 * 2751 * LOCKING: 2752 * Inherited from caller. 2753 * 2754 * RETURNS: 2755 * 0 on success, negative errno on failure 2756 */ 2757 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2758 { 2759 u32 sstatus, spd, mask; 2760 int rc, bit; 2761 2762 if (!sata_scr_valid(link)) 2763 return -EOPNOTSUPP; 2764 2765 /* If SCR can be read, use it to determine the current SPD. 2766 * If not, use cached value in link->sata_spd. 2767 */ 2768 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2769 if (rc == 0 && ata_sstatus_online(sstatus)) 2770 spd = (sstatus >> 4) & 0xf; 2771 else 2772 spd = link->sata_spd; 2773 2774 mask = link->sata_spd_limit; 2775 if (mask <= 1) 2776 return -EINVAL; 2777 2778 /* unconditionally mask off the highest bit */ 2779 bit = fls(mask) - 1; 2780 mask &= ~(1 << bit); 2781 2782 /* Mask off all speeds higher than or equal to the current 2783 * one. Force 1.5Gbps if current SPD is not available. 2784 */ 2785 if (spd > 1) 2786 mask &= (1 << (spd - 1)) - 1; 2787 else 2788 mask &= 1; 2789 2790 /* were we already at the bottom? */ 2791 if (!mask) 2792 return -EINVAL; 2793 2794 if (spd_limit) { 2795 if (mask & ((1 << spd_limit) - 1)) 2796 mask &= (1 << spd_limit) - 1; 2797 else { 2798 bit = ffs(mask) - 1; 2799 mask = 1 << bit; 2800 } 2801 } 2802 2803 link->sata_spd_limit = mask; 2804 2805 ata_link_warn(link, "limiting SATA link speed to %s\n", 2806 sata_spd_string(fls(mask))); 2807 2808 return 0; 2809 } 2810 2811 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2812 { 2813 struct ata_link *host_link = &link->ap->link; 2814 u32 limit, target, spd; 2815 2816 limit = link->sata_spd_limit; 2817 2818 /* Don't configure downstream link faster than upstream link. 2819 * It doesn't speed up anything and some PMPs choke on such 2820 * configuration. 2821 */ 2822 if (!ata_is_host_link(link) && host_link->sata_spd) 2823 limit &= (1 << host_link->sata_spd) - 1; 2824 2825 if (limit == UINT_MAX) 2826 target = 0; 2827 else 2828 target = fls(limit); 2829 2830 spd = (*scontrol >> 4) & 0xf; 2831 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2832 2833 return spd != target; 2834 } 2835 2836 /** 2837 * sata_set_spd_needed - is SATA spd configuration needed 2838 * @link: Link in question 2839 * 2840 * Test whether the spd limit in SControl matches 2841 * @link->sata_spd_limit. This function is used to determine 2842 * whether hardreset is necessary to apply SATA spd 2843 * configuration. 2844 * 2845 * LOCKING: 2846 * Inherited from caller. 2847 * 2848 * RETURNS: 2849 * 1 if SATA spd configuration is needed, 0 otherwise. 2850 */ 2851 static int sata_set_spd_needed(struct ata_link *link) 2852 { 2853 u32 scontrol; 2854 2855 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2856 return 1; 2857 2858 return __sata_set_spd_needed(link, &scontrol); 2859 } 2860 2861 /** 2862 * sata_set_spd - set SATA spd according to spd limit 2863 * @link: Link to set SATA spd for 2864 * 2865 * Set SATA spd of @link according to sata_spd_limit. 2866 * 2867 * LOCKING: 2868 * Inherited from caller. 2869 * 2870 * RETURNS: 2871 * 0 if spd doesn't need to be changed, 1 if spd has been 2872 * changed. Negative errno if SCR registers are inaccessible. 2873 */ 2874 int sata_set_spd(struct ata_link *link) 2875 { 2876 u32 scontrol; 2877 int rc; 2878 2879 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2880 return rc; 2881 2882 if (!__sata_set_spd_needed(link, &scontrol)) 2883 return 0; 2884 2885 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2886 return rc; 2887 2888 return 1; 2889 } 2890 2891 /* 2892 * This mode timing computation functionality is ported over from 2893 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2894 */ 2895 /* 2896 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2897 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2898 * for UDMA6, which is currently supported only by Maxtor drives. 2899 * 2900 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2901 */ 2902 2903 static const struct ata_timing ata_timing[] = { 2904 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2905 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2906 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2907 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2908 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2909 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2910 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2911 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2912 2913 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2914 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2915 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2916 2917 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2918 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2919 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2920 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2921 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2922 2923 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2924 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2925 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2926 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2927 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2928 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2929 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2930 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2931 2932 { 0xFF } 2933 }; 2934 2935 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2936 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2937 2938 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2939 { 2940 q->setup = EZ(t->setup * 1000, T); 2941 q->act8b = EZ(t->act8b * 1000, T); 2942 q->rec8b = EZ(t->rec8b * 1000, T); 2943 q->cyc8b = EZ(t->cyc8b * 1000, T); 2944 q->active = EZ(t->active * 1000, T); 2945 q->recover = EZ(t->recover * 1000, T); 2946 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2947 q->cycle = EZ(t->cycle * 1000, T); 2948 q->udma = EZ(t->udma * 1000, UT); 2949 } 2950 2951 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2952 struct ata_timing *m, unsigned int what) 2953 { 2954 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2955 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2956 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2957 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2958 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2959 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2960 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2961 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2962 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2963 } 2964 2965 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2966 { 2967 const struct ata_timing *t = ata_timing; 2968 2969 while (xfer_mode > t->mode) 2970 t++; 2971 2972 if (xfer_mode == t->mode) 2973 return t; 2974 2975 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 2976 __func__, xfer_mode); 2977 2978 return NULL; 2979 } 2980 2981 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2982 struct ata_timing *t, int T, int UT) 2983 { 2984 const u16 *id = adev->id; 2985 const struct ata_timing *s; 2986 struct ata_timing p; 2987 2988 /* 2989 * Find the mode. 2990 */ 2991 2992 if (!(s = ata_timing_find_mode(speed))) 2993 return -EINVAL; 2994 2995 memcpy(t, s, sizeof(*s)); 2996 2997 /* 2998 * If the drive is an EIDE drive, it can tell us it needs extended 2999 * PIO/MW_DMA cycle timing. 3000 */ 3001 3002 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3003 memset(&p, 0, sizeof(p)); 3004 3005 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 3006 if (speed <= XFER_PIO_2) 3007 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3008 else if ((speed <= XFER_PIO_4) || 3009 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3010 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3011 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3012 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3013 3014 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3015 } 3016 3017 /* 3018 * Convert the timing to bus clock counts. 3019 */ 3020 3021 ata_timing_quantize(t, t, T, UT); 3022 3023 /* 3024 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3025 * S.M.A.R.T * and some other commands. We have to ensure that the 3026 * DMA cycle timing is slower/equal than the fastest PIO timing. 3027 */ 3028 3029 if (speed > XFER_PIO_6) { 3030 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3031 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3032 } 3033 3034 /* 3035 * Lengthen active & recovery time so that cycle time is correct. 3036 */ 3037 3038 if (t->act8b + t->rec8b < t->cyc8b) { 3039 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3040 t->rec8b = t->cyc8b - t->act8b; 3041 } 3042 3043 if (t->active + t->recover < t->cycle) { 3044 t->active += (t->cycle - (t->active + t->recover)) / 2; 3045 t->recover = t->cycle - t->active; 3046 } 3047 3048 /* In a few cases quantisation may produce enough errors to 3049 leave t->cycle too low for the sum of active and recovery 3050 if so we must correct this */ 3051 if (t->active + t->recover > t->cycle) 3052 t->cycle = t->active + t->recover; 3053 3054 return 0; 3055 } 3056 3057 /** 3058 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3059 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3060 * @cycle: cycle duration in ns 3061 * 3062 * Return matching xfer mode for @cycle. The returned mode is of 3063 * the transfer type specified by @xfer_shift. If @cycle is too 3064 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3065 * than the fastest known mode, the fasted mode is returned. 3066 * 3067 * LOCKING: 3068 * None. 3069 * 3070 * RETURNS: 3071 * Matching xfer_mode, 0xff if no match found. 3072 */ 3073 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3074 { 3075 u8 base_mode = 0xff, last_mode = 0xff; 3076 const struct ata_xfer_ent *ent; 3077 const struct ata_timing *t; 3078 3079 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3080 if (ent->shift == xfer_shift) 3081 base_mode = ent->base; 3082 3083 for (t = ata_timing_find_mode(base_mode); 3084 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3085 unsigned short this_cycle; 3086 3087 switch (xfer_shift) { 3088 case ATA_SHIFT_PIO: 3089 case ATA_SHIFT_MWDMA: 3090 this_cycle = t->cycle; 3091 break; 3092 case ATA_SHIFT_UDMA: 3093 this_cycle = t->udma; 3094 break; 3095 default: 3096 return 0xff; 3097 } 3098 3099 if (cycle > this_cycle) 3100 break; 3101 3102 last_mode = t->mode; 3103 } 3104 3105 return last_mode; 3106 } 3107 3108 /** 3109 * ata_down_xfermask_limit - adjust dev xfer masks downward 3110 * @dev: Device to adjust xfer masks 3111 * @sel: ATA_DNXFER_* selector 3112 * 3113 * Adjust xfer masks of @dev downward. Note that this function 3114 * does not apply the change. Invoking ata_set_mode() afterwards 3115 * will apply the limit. 3116 * 3117 * LOCKING: 3118 * Inherited from caller. 3119 * 3120 * RETURNS: 3121 * 0 on success, negative errno on failure 3122 */ 3123 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3124 { 3125 char buf[32]; 3126 unsigned long orig_mask, xfer_mask; 3127 unsigned long pio_mask, mwdma_mask, udma_mask; 3128 int quiet, highbit; 3129 3130 quiet = !!(sel & ATA_DNXFER_QUIET); 3131 sel &= ~ATA_DNXFER_QUIET; 3132 3133 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3134 dev->mwdma_mask, 3135 dev->udma_mask); 3136 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3137 3138 switch (sel) { 3139 case ATA_DNXFER_PIO: 3140 highbit = fls(pio_mask) - 1; 3141 pio_mask &= ~(1 << highbit); 3142 break; 3143 3144 case ATA_DNXFER_DMA: 3145 if (udma_mask) { 3146 highbit = fls(udma_mask) - 1; 3147 udma_mask &= ~(1 << highbit); 3148 if (!udma_mask) 3149 return -ENOENT; 3150 } else if (mwdma_mask) { 3151 highbit = fls(mwdma_mask) - 1; 3152 mwdma_mask &= ~(1 << highbit); 3153 if (!mwdma_mask) 3154 return -ENOENT; 3155 } 3156 break; 3157 3158 case ATA_DNXFER_40C: 3159 udma_mask &= ATA_UDMA_MASK_40C; 3160 break; 3161 3162 case ATA_DNXFER_FORCE_PIO0: 3163 pio_mask &= 1; 3164 case ATA_DNXFER_FORCE_PIO: 3165 mwdma_mask = 0; 3166 udma_mask = 0; 3167 break; 3168 3169 default: 3170 BUG(); 3171 } 3172 3173 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3174 3175 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3176 return -ENOENT; 3177 3178 if (!quiet) { 3179 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3180 snprintf(buf, sizeof(buf), "%s:%s", 3181 ata_mode_string(xfer_mask), 3182 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3183 else 3184 snprintf(buf, sizeof(buf), "%s", 3185 ata_mode_string(xfer_mask)); 3186 3187 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3188 } 3189 3190 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3191 &dev->udma_mask); 3192 3193 return 0; 3194 } 3195 3196 static int ata_dev_set_mode(struct ata_device *dev) 3197 { 3198 struct ata_port *ap = dev->link->ap; 3199 struct ata_eh_context *ehc = &dev->link->eh_context; 3200 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3201 const char *dev_err_whine = ""; 3202 int ign_dev_err = 0; 3203 unsigned int err_mask = 0; 3204 int rc; 3205 3206 dev->flags &= ~ATA_DFLAG_PIO; 3207 if (dev->xfer_shift == ATA_SHIFT_PIO) 3208 dev->flags |= ATA_DFLAG_PIO; 3209 3210 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3211 dev_err_whine = " (SET_XFERMODE skipped)"; 3212 else { 3213 if (nosetxfer) 3214 ata_dev_warn(dev, 3215 "NOSETXFER but PATA detected - can't " 3216 "skip SETXFER, might malfunction\n"); 3217 err_mask = ata_dev_set_xfermode(dev); 3218 } 3219 3220 if (err_mask & ~AC_ERR_DEV) 3221 goto fail; 3222 3223 /* revalidate */ 3224 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3225 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3226 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3227 if (rc) 3228 return rc; 3229 3230 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3231 /* Old CFA may refuse this command, which is just fine */ 3232 if (ata_id_is_cfa(dev->id)) 3233 ign_dev_err = 1; 3234 /* Catch several broken garbage emulations plus some pre 3235 ATA devices */ 3236 if (ata_id_major_version(dev->id) == 0 && 3237 dev->pio_mode <= XFER_PIO_2) 3238 ign_dev_err = 1; 3239 /* Some very old devices and some bad newer ones fail 3240 any kind of SET_XFERMODE request but support PIO0-2 3241 timings and no IORDY */ 3242 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3243 ign_dev_err = 1; 3244 } 3245 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3246 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3247 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3248 dev->dma_mode == XFER_MW_DMA_0 && 3249 (dev->id[63] >> 8) & 1) 3250 ign_dev_err = 1; 3251 3252 /* if the device is actually configured correctly, ignore dev err */ 3253 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3254 ign_dev_err = 1; 3255 3256 if (err_mask & AC_ERR_DEV) { 3257 if (!ign_dev_err) 3258 goto fail; 3259 else 3260 dev_err_whine = " (device error ignored)"; 3261 } 3262 3263 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3264 dev->xfer_shift, (int)dev->xfer_mode); 3265 3266 ata_dev_info(dev, "configured for %s%s\n", 3267 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3268 dev_err_whine); 3269 3270 return 0; 3271 3272 fail: 3273 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3274 return -EIO; 3275 } 3276 3277 /** 3278 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3279 * @link: link on which timings will be programmed 3280 * @r_failed_dev: out parameter for failed device 3281 * 3282 * Standard implementation of the function used to tune and set 3283 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3284 * ata_dev_set_mode() fails, pointer to the failing device is 3285 * returned in @r_failed_dev. 3286 * 3287 * LOCKING: 3288 * PCI/etc. bus probe sem. 3289 * 3290 * RETURNS: 3291 * 0 on success, negative errno otherwise 3292 */ 3293 3294 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3295 { 3296 struct ata_port *ap = link->ap; 3297 struct ata_device *dev; 3298 int rc = 0, used_dma = 0, found = 0; 3299 3300 /* step 1: calculate xfer_mask */ 3301 ata_for_each_dev(dev, link, ENABLED) { 3302 unsigned long pio_mask, dma_mask; 3303 unsigned int mode_mask; 3304 3305 mode_mask = ATA_DMA_MASK_ATA; 3306 if (dev->class == ATA_DEV_ATAPI) 3307 mode_mask = ATA_DMA_MASK_ATAPI; 3308 else if (ata_id_is_cfa(dev->id)) 3309 mode_mask = ATA_DMA_MASK_CFA; 3310 3311 ata_dev_xfermask(dev); 3312 ata_force_xfermask(dev); 3313 3314 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3315 3316 if (libata_dma_mask & mode_mask) 3317 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3318 dev->udma_mask); 3319 else 3320 dma_mask = 0; 3321 3322 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3323 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3324 3325 found = 1; 3326 if (ata_dma_enabled(dev)) 3327 used_dma = 1; 3328 } 3329 if (!found) 3330 goto out; 3331 3332 /* step 2: always set host PIO timings */ 3333 ata_for_each_dev(dev, link, ENABLED) { 3334 if (dev->pio_mode == 0xff) { 3335 ata_dev_warn(dev, "no PIO support\n"); 3336 rc = -EINVAL; 3337 goto out; 3338 } 3339 3340 dev->xfer_mode = dev->pio_mode; 3341 dev->xfer_shift = ATA_SHIFT_PIO; 3342 if (ap->ops->set_piomode) 3343 ap->ops->set_piomode(ap, dev); 3344 } 3345 3346 /* step 3: set host DMA timings */ 3347 ata_for_each_dev(dev, link, ENABLED) { 3348 if (!ata_dma_enabled(dev)) 3349 continue; 3350 3351 dev->xfer_mode = dev->dma_mode; 3352 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3353 if (ap->ops->set_dmamode) 3354 ap->ops->set_dmamode(ap, dev); 3355 } 3356 3357 /* step 4: update devices' xfer mode */ 3358 ata_for_each_dev(dev, link, ENABLED) { 3359 rc = ata_dev_set_mode(dev); 3360 if (rc) 3361 goto out; 3362 } 3363 3364 /* Record simplex status. If we selected DMA then the other 3365 * host channels are not permitted to do so. 3366 */ 3367 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3368 ap->host->simplex_claimed = ap; 3369 3370 out: 3371 if (rc) 3372 *r_failed_dev = dev; 3373 return rc; 3374 } 3375 3376 /** 3377 * ata_wait_ready - wait for link to become ready 3378 * @link: link to be waited on 3379 * @deadline: deadline jiffies for the operation 3380 * @check_ready: callback to check link readiness 3381 * 3382 * Wait for @link to become ready. @check_ready should return 3383 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3384 * link doesn't seem to be occupied, other errno for other error 3385 * conditions. 3386 * 3387 * Transient -ENODEV conditions are allowed for 3388 * ATA_TMOUT_FF_WAIT. 3389 * 3390 * LOCKING: 3391 * EH context. 3392 * 3393 * RETURNS: 3394 * 0 if @linke is ready before @deadline; otherwise, -errno. 3395 */ 3396 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3397 int (*check_ready)(struct ata_link *link)) 3398 { 3399 unsigned long start = jiffies; 3400 unsigned long nodev_deadline; 3401 int warned = 0; 3402 3403 /* choose which 0xff timeout to use, read comment in libata.h */ 3404 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3405 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3406 else 3407 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3408 3409 /* Slave readiness can't be tested separately from master. On 3410 * M/S emulation configuration, this function should be called 3411 * only on the master and it will handle both master and slave. 3412 */ 3413 WARN_ON(link == link->ap->slave_link); 3414 3415 if (time_after(nodev_deadline, deadline)) 3416 nodev_deadline = deadline; 3417 3418 while (1) { 3419 unsigned long now = jiffies; 3420 int ready, tmp; 3421 3422 ready = tmp = check_ready(link); 3423 if (ready > 0) 3424 return 0; 3425 3426 /* 3427 * -ENODEV could be transient. Ignore -ENODEV if link 3428 * is online. Also, some SATA devices take a long 3429 * time to clear 0xff after reset. Wait for 3430 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3431 * offline. 3432 * 3433 * Note that some PATA controllers (pata_ali) explode 3434 * if status register is read more than once when 3435 * there's no device attached. 3436 */ 3437 if (ready == -ENODEV) { 3438 if (ata_link_online(link)) 3439 ready = 0; 3440 else if ((link->ap->flags & ATA_FLAG_SATA) && 3441 !ata_link_offline(link) && 3442 time_before(now, nodev_deadline)) 3443 ready = 0; 3444 } 3445 3446 if (ready) 3447 return ready; 3448 if (time_after(now, deadline)) 3449 return -EBUSY; 3450 3451 if (!warned && time_after(now, start + 5 * HZ) && 3452 (deadline - now > 3 * HZ)) { 3453 ata_link_warn(link, 3454 "link is slow to respond, please be patient " 3455 "(ready=%d)\n", tmp); 3456 warned = 1; 3457 } 3458 3459 ata_msleep(link->ap, 50); 3460 } 3461 } 3462 3463 /** 3464 * ata_wait_after_reset - wait for link to become ready after reset 3465 * @link: link to be waited on 3466 * @deadline: deadline jiffies for the operation 3467 * @check_ready: callback to check link readiness 3468 * 3469 * Wait for @link to become ready after reset. 3470 * 3471 * LOCKING: 3472 * EH context. 3473 * 3474 * RETURNS: 3475 * 0 if @linke is ready before @deadline; otherwise, -errno. 3476 */ 3477 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3478 int (*check_ready)(struct ata_link *link)) 3479 { 3480 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3481 3482 return ata_wait_ready(link, deadline, check_ready); 3483 } 3484 3485 /** 3486 * sata_link_debounce - debounce SATA phy status 3487 * @link: ATA link to debounce SATA phy status for 3488 * @params: timing parameters { interval, duratinon, timeout } in msec 3489 * @deadline: deadline jiffies for the operation 3490 * 3491 * Make sure SStatus of @link reaches stable state, determined by 3492 * holding the same value where DET is not 1 for @duration polled 3493 * every @interval, before @timeout. Timeout constraints the 3494 * beginning of the stable state. Because DET gets stuck at 1 on 3495 * some controllers after hot unplugging, this functions waits 3496 * until timeout then returns 0 if DET is stable at 1. 3497 * 3498 * @timeout is further limited by @deadline. The sooner of the 3499 * two is used. 3500 * 3501 * LOCKING: 3502 * Kernel thread context (may sleep) 3503 * 3504 * RETURNS: 3505 * 0 on success, -errno on failure. 3506 */ 3507 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3508 unsigned long deadline) 3509 { 3510 unsigned long interval = params[0]; 3511 unsigned long duration = params[1]; 3512 unsigned long last_jiffies, t; 3513 u32 last, cur; 3514 int rc; 3515 3516 t = ata_deadline(jiffies, params[2]); 3517 if (time_before(t, deadline)) 3518 deadline = t; 3519 3520 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3521 return rc; 3522 cur &= 0xf; 3523 3524 last = cur; 3525 last_jiffies = jiffies; 3526 3527 while (1) { 3528 ata_msleep(link->ap, interval); 3529 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3530 return rc; 3531 cur &= 0xf; 3532 3533 /* DET stable? */ 3534 if (cur == last) { 3535 if (cur == 1 && time_before(jiffies, deadline)) 3536 continue; 3537 if (time_after(jiffies, 3538 ata_deadline(last_jiffies, duration))) 3539 return 0; 3540 continue; 3541 } 3542 3543 /* unstable, start over */ 3544 last = cur; 3545 last_jiffies = jiffies; 3546 3547 /* Check deadline. If debouncing failed, return 3548 * -EPIPE to tell upper layer to lower link speed. 3549 */ 3550 if (time_after(jiffies, deadline)) 3551 return -EPIPE; 3552 } 3553 } 3554 3555 /** 3556 * sata_link_resume - resume SATA link 3557 * @link: ATA link to resume SATA 3558 * @params: timing parameters { interval, duratinon, timeout } in msec 3559 * @deadline: deadline jiffies for the operation 3560 * 3561 * Resume SATA phy @link and debounce it. 3562 * 3563 * LOCKING: 3564 * Kernel thread context (may sleep) 3565 * 3566 * RETURNS: 3567 * 0 on success, -errno on failure. 3568 */ 3569 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3570 unsigned long deadline) 3571 { 3572 int tries = ATA_LINK_RESUME_TRIES; 3573 u32 scontrol, serror; 3574 int rc; 3575 3576 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3577 return rc; 3578 3579 /* 3580 * Writes to SControl sometimes get ignored under certain 3581 * controllers (ata_piix SIDPR). Make sure DET actually is 3582 * cleared. 3583 */ 3584 do { 3585 scontrol = (scontrol & 0x0f0) | 0x300; 3586 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3587 return rc; 3588 /* 3589 * Some PHYs react badly if SStatus is pounded 3590 * immediately after resuming. Delay 200ms before 3591 * debouncing. 3592 */ 3593 ata_msleep(link->ap, 200); 3594 3595 /* is SControl restored correctly? */ 3596 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3597 return rc; 3598 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3599 3600 if ((scontrol & 0xf0f) != 0x300) { 3601 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3602 scontrol); 3603 return 0; 3604 } 3605 3606 if (tries < ATA_LINK_RESUME_TRIES) 3607 ata_link_warn(link, "link resume succeeded after %d retries\n", 3608 ATA_LINK_RESUME_TRIES - tries); 3609 3610 if ((rc = sata_link_debounce(link, params, deadline))) 3611 return rc; 3612 3613 /* clear SError, some PHYs require this even for SRST to work */ 3614 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3615 rc = sata_scr_write(link, SCR_ERROR, serror); 3616 3617 return rc != -EINVAL ? rc : 0; 3618 } 3619 3620 /** 3621 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3622 * @link: ATA link to manipulate SControl for 3623 * @policy: LPM policy to configure 3624 * @spm_wakeup: initiate LPM transition to active state 3625 * 3626 * Manipulate the IPM field of the SControl register of @link 3627 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3628 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3629 * the link. This function also clears PHYRDY_CHG before 3630 * returning. 3631 * 3632 * LOCKING: 3633 * EH context. 3634 * 3635 * RETURNS: 3636 * 0 on succes, -errno otherwise. 3637 */ 3638 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3639 bool spm_wakeup) 3640 { 3641 struct ata_eh_context *ehc = &link->eh_context; 3642 bool woken_up = false; 3643 u32 scontrol; 3644 int rc; 3645 3646 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3647 if (rc) 3648 return rc; 3649 3650 switch (policy) { 3651 case ATA_LPM_MAX_POWER: 3652 /* disable all LPM transitions */ 3653 scontrol |= (0x7 << 8); 3654 /* initiate transition to active state */ 3655 if (spm_wakeup) { 3656 scontrol |= (0x4 << 12); 3657 woken_up = true; 3658 } 3659 break; 3660 case ATA_LPM_MED_POWER: 3661 /* allow LPM to PARTIAL */ 3662 scontrol &= ~(0x1 << 8); 3663 scontrol |= (0x6 << 8); 3664 break; 3665 case ATA_LPM_MIN_POWER: 3666 if (ata_link_nr_enabled(link) > 0) 3667 /* no restrictions on LPM transitions */ 3668 scontrol &= ~(0x7 << 8); 3669 else { 3670 /* empty port, power off */ 3671 scontrol &= ~0xf; 3672 scontrol |= (0x1 << 2); 3673 } 3674 break; 3675 default: 3676 WARN_ON(1); 3677 } 3678 3679 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3680 if (rc) 3681 return rc; 3682 3683 /* give the link time to transit out of LPM state */ 3684 if (woken_up) 3685 msleep(10); 3686 3687 /* clear PHYRDY_CHG from SError */ 3688 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3689 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3690 } 3691 3692 /** 3693 * ata_std_prereset - prepare for reset 3694 * @link: ATA link to be reset 3695 * @deadline: deadline jiffies for the operation 3696 * 3697 * @link is about to be reset. Initialize it. Failure from 3698 * prereset makes libata abort whole reset sequence and give up 3699 * that port, so prereset should be best-effort. It does its 3700 * best to prepare for reset sequence but if things go wrong, it 3701 * should just whine, not fail. 3702 * 3703 * LOCKING: 3704 * Kernel thread context (may sleep) 3705 * 3706 * RETURNS: 3707 * 0 on success, -errno otherwise. 3708 */ 3709 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3710 { 3711 struct ata_port *ap = link->ap; 3712 struct ata_eh_context *ehc = &link->eh_context; 3713 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3714 int rc; 3715 3716 /* if we're about to do hardreset, nothing more to do */ 3717 if (ehc->i.action & ATA_EH_HARDRESET) 3718 return 0; 3719 3720 /* if SATA, resume link */ 3721 if (ap->flags & ATA_FLAG_SATA) { 3722 rc = sata_link_resume(link, timing, deadline); 3723 /* whine about phy resume failure but proceed */ 3724 if (rc && rc != -EOPNOTSUPP) 3725 ata_link_warn(link, 3726 "failed to resume link for reset (errno=%d)\n", 3727 rc); 3728 } 3729 3730 /* no point in trying softreset on offline link */ 3731 if (ata_phys_link_offline(link)) 3732 ehc->i.action &= ~ATA_EH_SOFTRESET; 3733 3734 return 0; 3735 } 3736 3737 /** 3738 * sata_link_hardreset - reset link via SATA phy reset 3739 * @link: link to reset 3740 * @timing: timing parameters { interval, duratinon, timeout } in msec 3741 * @deadline: deadline jiffies for the operation 3742 * @online: optional out parameter indicating link onlineness 3743 * @check_ready: optional callback to check link readiness 3744 * 3745 * SATA phy-reset @link using DET bits of SControl register. 3746 * After hardreset, link readiness is waited upon using 3747 * ata_wait_ready() if @check_ready is specified. LLDs are 3748 * allowed to not specify @check_ready and wait itself after this 3749 * function returns. Device classification is LLD's 3750 * responsibility. 3751 * 3752 * *@online is set to one iff reset succeeded and @link is online 3753 * after reset. 3754 * 3755 * LOCKING: 3756 * Kernel thread context (may sleep) 3757 * 3758 * RETURNS: 3759 * 0 on success, -errno otherwise. 3760 */ 3761 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3762 unsigned long deadline, 3763 bool *online, int (*check_ready)(struct ata_link *)) 3764 { 3765 u32 scontrol; 3766 int rc; 3767 3768 DPRINTK("ENTER\n"); 3769 3770 if (online) 3771 *online = false; 3772 3773 if (sata_set_spd_needed(link)) { 3774 /* SATA spec says nothing about how to reconfigure 3775 * spd. To be on the safe side, turn off phy during 3776 * reconfiguration. This works for at least ICH7 AHCI 3777 * and Sil3124. 3778 */ 3779 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3780 goto out; 3781 3782 scontrol = (scontrol & 0x0f0) | 0x304; 3783 3784 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3785 goto out; 3786 3787 sata_set_spd(link); 3788 } 3789 3790 /* issue phy wake/reset */ 3791 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3792 goto out; 3793 3794 scontrol = (scontrol & 0x0f0) | 0x301; 3795 3796 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3797 goto out; 3798 3799 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3800 * 10.4.2 says at least 1 ms. 3801 */ 3802 ata_msleep(link->ap, 1); 3803 3804 /* bring link back */ 3805 rc = sata_link_resume(link, timing, deadline); 3806 if (rc) 3807 goto out; 3808 /* if link is offline nothing more to do */ 3809 if (ata_phys_link_offline(link)) 3810 goto out; 3811 3812 /* Link is online. From this point, -ENODEV too is an error. */ 3813 if (online) 3814 *online = true; 3815 3816 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3817 /* If PMP is supported, we have to do follow-up SRST. 3818 * Some PMPs don't send D2H Reg FIS after hardreset if 3819 * the first port is empty. Wait only for 3820 * ATA_TMOUT_PMP_SRST_WAIT. 3821 */ 3822 if (check_ready) { 3823 unsigned long pmp_deadline; 3824 3825 pmp_deadline = ata_deadline(jiffies, 3826 ATA_TMOUT_PMP_SRST_WAIT); 3827 if (time_after(pmp_deadline, deadline)) 3828 pmp_deadline = deadline; 3829 ata_wait_ready(link, pmp_deadline, check_ready); 3830 } 3831 rc = -EAGAIN; 3832 goto out; 3833 } 3834 3835 rc = 0; 3836 if (check_ready) 3837 rc = ata_wait_ready(link, deadline, check_ready); 3838 out: 3839 if (rc && rc != -EAGAIN) { 3840 /* online is set iff link is online && reset succeeded */ 3841 if (online) 3842 *online = false; 3843 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3844 } 3845 DPRINTK("EXIT, rc=%d\n", rc); 3846 return rc; 3847 } 3848 3849 /** 3850 * sata_std_hardreset - COMRESET w/o waiting or classification 3851 * @link: link to reset 3852 * @class: resulting class of attached device 3853 * @deadline: deadline jiffies for the operation 3854 * 3855 * Standard SATA COMRESET w/o waiting or classification. 3856 * 3857 * LOCKING: 3858 * Kernel thread context (may sleep) 3859 * 3860 * RETURNS: 3861 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3862 */ 3863 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3864 unsigned long deadline) 3865 { 3866 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3867 bool online; 3868 int rc; 3869 3870 /* do hardreset */ 3871 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3872 return online ? -EAGAIN : rc; 3873 } 3874 3875 /** 3876 * ata_std_postreset - standard postreset callback 3877 * @link: the target ata_link 3878 * @classes: classes of attached devices 3879 * 3880 * This function is invoked after a successful reset. Note that 3881 * the device might have been reset more than once using 3882 * different reset methods before postreset is invoked. 3883 * 3884 * LOCKING: 3885 * Kernel thread context (may sleep) 3886 */ 3887 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3888 { 3889 u32 serror; 3890 3891 DPRINTK("ENTER\n"); 3892 3893 /* reset complete, clear SError */ 3894 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3895 sata_scr_write(link, SCR_ERROR, serror); 3896 3897 /* print link status */ 3898 sata_print_link_status(link); 3899 3900 DPRINTK("EXIT\n"); 3901 } 3902 3903 /** 3904 * ata_dev_same_device - Determine whether new ID matches configured device 3905 * @dev: device to compare against 3906 * @new_class: class of the new device 3907 * @new_id: IDENTIFY page of the new device 3908 * 3909 * Compare @new_class and @new_id against @dev and determine 3910 * whether @dev is the device indicated by @new_class and 3911 * @new_id. 3912 * 3913 * LOCKING: 3914 * None. 3915 * 3916 * RETURNS: 3917 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3918 */ 3919 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3920 const u16 *new_id) 3921 { 3922 const u16 *old_id = dev->id; 3923 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3924 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3925 3926 if (dev->class != new_class) { 3927 ata_dev_info(dev, "class mismatch %d != %d\n", 3928 dev->class, new_class); 3929 return 0; 3930 } 3931 3932 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3933 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3934 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3935 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3936 3937 if (strcmp(model[0], model[1])) { 3938 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3939 model[0], model[1]); 3940 return 0; 3941 } 3942 3943 if (strcmp(serial[0], serial[1])) { 3944 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3945 serial[0], serial[1]); 3946 return 0; 3947 } 3948 3949 return 1; 3950 } 3951 3952 /** 3953 * ata_dev_reread_id - Re-read IDENTIFY data 3954 * @dev: target ATA device 3955 * @readid_flags: read ID flags 3956 * 3957 * Re-read IDENTIFY page and make sure @dev is still attached to 3958 * the port. 3959 * 3960 * LOCKING: 3961 * Kernel thread context (may sleep) 3962 * 3963 * RETURNS: 3964 * 0 on success, negative errno otherwise 3965 */ 3966 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3967 { 3968 unsigned int class = dev->class; 3969 u16 *id = (void *)dev->link->ap->sector_buf; 3970 int rc; 3971 3972 /* read ID data */ 3973 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3974 if (rc) 3975 return rc; 3976 3977 /* is the device still there? */ 3978 if (!ata_dev_same_device(dev, class, id)) 3979 return -ENODEV; 3980 3981 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3982 return 0; 3983 } 3984 3985 /** 3986 * ata_dev_revalidate - Revalidate ATA device 3987 * @dev: device to revalidate 3988 * @new_class: new class code 3989 * @readid_flags: read ID flags 3990 * 3991 * Re-read IDENTIFY page, make sure @dev is still attached to the 3992 * port and reconfigure it according to the new IDENTIFY page. 3993 * 3994 * LOCKING: 3995 * Kernel thread context (may sleep) 3996 * 3997 * RETURNS: 3998 * 0 on success, negative errno otherwise 3999 */ 4000 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4001 unsigned int readid_flags) 4002 { 4003 u64 n_sectors = dev->n_sectors; 4004 u64 n_native_sectors = dev->n_native_sectors; 4005 int rc; 4006 4007 if (!ata_dev_enabled(dev)) 4008 return -ENODEV; 4009 4010 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4011 if (ata_class_enabled(new_class) && 4012 new_class != ATA_DEV_ATA && 4013 new_class != ATA_DEV_ATAPI && 4014 new_class != ATA_DEV_ZAC && 4015 new_class != ATA_DEV_SEMB) { 4016 ata_dev_info(dev, "class mismatch %u != %u\n", 4017 dev->class, new_class); 4018 rc = -ENODEV; 4019 goto fail; 4020 } 4021 4022 /* re-read ID */ 4023 rc = ata_dev_reread_id(dev, readid_flags); 4024 if (rc) 4025 goto fail; 4026 4027 /* configure device according to the new ID */ 4028 rc = ata_dev_configure(dev); 4029 if (rc) 4030 goto fail; 4031 4032 /* verify n_sectors hasn't changed */ 4033 if (dev->class != ATA_DEV_ATA || !n_sectors || 4034 dev->n_sectors == n_sectors) 4035 return 0; 4036 4037 /* n_sectors has changed */ 4038 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4039 (unsigned long long)n_sectors, 4040 (unsigned long long)dev->n_sectors); 4041 4042 /* 4043 * Something could have caused HPA to be unlocked 4044 * involuntarily. If n_native_sectors hasn't changed and the 4045 * new size matches it, keep the device. 4046 */ 4047 if (dev->n_native_sectors == n_native_sectors && 4048 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4049 ata_dev_warn(dev, 4050 "new n_sectors matches native, probably " 4051 "late HPA unlock, n_sectors updated\n"); 4052 /* use the larger n_sectors */ 4053 return 0; 4054 } 4055 4056 /* 4057 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4058 * unlocking HPA in those cases. 4059 * 4060 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4061 */ 4062 if (dev->n_native_sectors == n_native_sectors && 4063 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4064 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4065 ata_dev_warn(dev, 4066 "old n_sectors matches native, probably " 4067 "late HPA lock, will try to unlock HPA\n"); 4068 /* try unlocking HPA */ 4069 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4070 rc = -EIO; 4071 } else 4072 rc = -ENODEV; 4073 4074 /* restore original n_[native_]sectors and fail */ 4075 dev->n_native_sectors = n_native_sectors; 4076 dev->n_sectors = n_sectors; 4077 fail: 4078 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4079 return rc; 4080 } 4081 4082 struct ata_blacklist_entry { 4083 const char *model_num; 4084 const char *model_rev; 4085 unsigned long horkage; 4086 }; 4087 4088 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4089 /* Devices with DMA related problems under Linux */ 4090 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4091 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4092 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4093 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4094 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4095 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4096 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4097 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4098 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4099 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4100 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4101 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4102 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4103 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4104 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4105 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4106 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4107 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4108 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4109 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4110 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4111 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4112 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4113 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4114 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4115 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4116 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4117 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4118 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4119 /* Odd clown on sil3726/4726 PMPs */ 4120 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4121 4122 /* Weird ATAPI devices */ 4123 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4124 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4125 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4126 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4127 4128 /* Devices we expect to fail diagnostics */ 4129 4130 /* Devices where NCQ should be avoided */ 4131 /* NCQ is slow */ 4132 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4133 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4134 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4135 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4136 /* NCQ is broken */ 4137 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4138 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4139 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4140 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4141 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4142 4143 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4144 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4145 ATA_HORKAGE_FIRMWARE_WARN }, 4146 4147 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4148 ATA_HORKAGE_FIRMWARE_WARN }, 4149 4150 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4151 ATA_HORKAGE_FIRMWARE_WARN }, 4152 4153 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4154 ATA_HORKAGE_FIRMWARE_WARN }, 4155 4156 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */ 4157 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4158 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4159 4160 /* Blacklist entries taken from Silicon Image 3124/3132 4161 Windows driver .inf file - also several Linux problem reports */ 4162 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4163 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4164 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4165 4166 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4167 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4168 4169 /* devices which puke on READ_NATIVE_MAX */ 4170 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4171 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4172 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4173 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4174 4175 /* this one allows HPA unlocking but fails IOs on the area */ 4176 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4177 4178 /* Devices which report 1 sector over size HPA */ 4179 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4180 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4181 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4182 4183 /* Devices which get the IVB wrong */ 4184 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4185 /* Maybe we should just blacklist TSSTcorp... */ 4186 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4187 4188 /* Devices that do not need bridging limits applied */ 4189 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4190 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4191 4192 /* Devices which aren't very happy with higher link speeds */ 4193 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4194 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4195 4196 /* 4197 * Devices which choke on SETXFER. Applies only if both the 4198 * device and controller are SATA. 4199 */ 4200 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4201 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4202 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4203 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4204 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4205 4206 /* devices that don't properly handle queued TRIM commands */ 4207 { "Micron_M[56]*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4208 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4209 { "Crucial_CT*SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, }, 4210 4211 /* 4212 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4213 * (Return Zero After Trim) flags in the ATA Command Set are 4214 * unreliable in the sense that they only define what happens if 4215 * the device successfully executed the DSM TRIM command. TRIM 4216 * is only advisory, however, and the device is free to silently 4217 * ignore all or parts of the request. 4218 * 4219 * Whitelist drives that are known to reliably return zeroes 4220 * after TRIM. 4221 */ 4222 4223 /* 4224 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4225 * that model before whitelisting all other intel SSDs. 4226 */ 4227 { "INTEL*SSDSC2MH*", NULL, 0, }, 4228 4229 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4230 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4231 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4232 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4233 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4234 4235 /* 4236 * Some WD SATA-I drives spin up and down erratically when the link 4237 * is put into the slumber mode. We don't have full list of the 4238 * affected devices. Disable LPM if the device matches one of the 4239 * known prefixes and is SATA-1. As a side effect LPM partial is 4240 * lost too. 4241 * 4242 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4243 */ 4244 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4245 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4246 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4247 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4248 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4249 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4250 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4251 4252 /* End Marker */ 4253 { } 4254 }; 4255 4256 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4257 { 4258 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4259 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4260 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4261 4262 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4263 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4264 4265 while (ad->model_num) { 4266 if (glob_match(ad->model_num, model_num)) { 4267 if (ad->model_rev == NULL) 4268 return ad->horkage; 4269 if (glob_match(ad->model_rev, model_rev)) 4270 return ad->horkage; 4271 } 4272 ad++; 4273 } 4274 return 0; 4275 } 4276 4277 static int ata_dma_blacklisted(const struct ata_device *dev) 4278 { 4279 /* We don't support polling DMA. 4280 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4281 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4282 */ 4283 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4284 (dev->flags & ATA_DFLAG_CDB_INTR)) 4285 return 1; 4286 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4287 } 4288 4289 /** 4290 * ata_is_40wire - check drive side detection 4291 * @dev: device 4292 * 4293 * Perform drive side detection decoding, allowing for device vendors 4294 * who can't follow the documentation. 4295 */ 4296 4297 static int ata_is_40wire(struct ata_device *dev) 4298 { 4299 if (dev->horkage & ATA_HORKAGE_IVB) 4300 return ata_drive_40wire_relaxed(dev->id); 4301 return ata_drive_40wire(dev->id); 4302 } 4303 4304 /** 4305 * cable_is_40wire - 40/80/SATA decider 4306 * @ap: port to consider 4307 * 4308 * This function encapsulates the policy for speed management 4309 * in one place. At the moment we don't cache the result but 4310 * there is a good case for setting ap->cbl to the result when 4311 * we are called with unknown cables (and figuring out if it 4312 * impacts hotplug at all). 4313 * 4314 * Return 1 if the cable appears to be 40 wire. 4315 */ 4316 4317 static int cable_is_40wire(struct ata_port *ap) 4318 { 4319 struct ata_link *link; 4320 struct ata_device *dev; 4321 4322 /* If the controller thinks we are 40 wire, we are. */ 4323 if (ap->cbl == ATA_CBL_PATA40) 4324 return 1; 4325 4326 /* If the controller thinks we are 80 wire, we are. */ 4327 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4328 return 0; 4329 4330 /* If the system is known to be 40 wire short cable (eg 4331 * laptop), then we allow 80 wire modes even if the drive 4332 * isn't sure. 4333 */ 4334 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4335 return 0; 4336 4337 /* If the controller doesn't know, we scan. 4338 * 4339 * Note: We look for all 40 wire detects at this point. Any 4340 * 80 wire detect is taken to be 80 wire cable because 4341 * - in many setups only the one drive (slave if present) will 4342 * give a valid detect 4343 * - if you have a non detect capable drive you don't want it 4344 * to colour the choice 4345 */ 4346 ata_for_each_link(link, ap, EDGE) { 4347 ata_for_each_dev(dev, link, ENABLED) { 4348 if (!ata_is_40wire(dev)) 4349 return 0; 4350 } 4351 } 4352 return 1; 4353 } 4354 4355 /** 4356 * ata_dev_xfermask - Compute supported xfermask of the given device 4357 * @dev: Device to compute xfermask for 4358 * 4359 * Compute supported xfermask of @dev and store it in 4360 * dev->*_mask. This function is responsible for applying all 4361 * known limits including host controller limits, device 4362 * blacklist, etc... 4363 * 4364 * LOCKING: 4365 * None. 4366 */ 4367 static void ata_dev_xfermask(struct ata_device *dev) 4368 { 4369 struct ata_link *link = dev->link; 4370 struct ata_port *ap = link->ap; 4371 struct ata_host *host = ap->host; 4372 unsigned long xfer_mask; 4373 4374 /* controller modes available */ 4375 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4376 ap->mwdma_mask, ap->udma_mask); 4377 4378 /* drive modes available */ 4379 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4380 dev->mwdma_mask, dev->udma_mask); 4381 xfer_mask &= ata_id_xfermask(dev->id); 4382 4383 /* 4384 * CFA Advanced TrueIDE timings are not allowed on a shared 4385 * cable 4386 */ 4387 if (ata_dev_pair(dev)) { 4388 /* No PIO5 or PIO6 */ 4389 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4390 /* No MWDMA3 or MWDMA 4 */ 4391 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4392 } 4393 4394 if (ata_dma_blacklisted(dev)) { 4395 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4396 ata_dev_warn(dev, 4397 "device is on DMA blacklist, disabling DMA\n"); 4398 } 4399 4400 if ((host->flags & ATA_HOST_SIMPLEX) && 4401 host->simplex_claimed && host->simplex_claimed != ap) { 4402 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4403 ata_dev_warn(dev, 4404 "simplex DMA is claimed by other device, disabling DMA\n"); 4405 } 4406 4407 if (ap->flags & ATA_FLAG_NO_IORDY) 4408 xfer_mask &= ata_pio_mask_no_iordy(dev); 4409 4410 if (ap->ops->mode_filter) 4411 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4412 4413 /* Apply cable rule here. Don't apply it early because when 4414 * we handle hot plug the cable type can itself change. 4415 * Check this last so that we know if the transfer rate was 4416 * solely limited by the cable. 4417 * Unknown or 80 wire cables reported host side are checked 4418 * drive side as well. Cases where we know a 40wire cable 4419 * is used safely for 80 are not checked here. 4420 */ 4421 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4422 /* UDMA/44 or higher would be available */ 4423 if (cable_is_40wire(ap)) { 4424 ata_dev_warn(dev, 4425 "limited to UDMA/33 due to 40-wire cable\n"); 4426 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4427 } 4428 4429 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4430 &dev->mwdma_mask, &dev->udma_mask); 4431 } 4432 4433 /** 4434 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4435 * @dev: Device to which command will be sent 4436 * 4437 * Issue SET FEATURES - XFER MODE command to device @dev 4438 * on port @ap. 4439 * 4440 * LOCKING: 4441 * PCI/etc. bus probe sem. 4442 * 4443 * RETURNS: 4444 * 0 on success, AC_ERR_* mask otherwise. 4445 */ 4446 4447 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4448 { 4449 struct ata_taskfile tf; 4450 unsigned int err_mask; 4451 4452 /* set up set-features taskfile */ 4453 DPRINTK("set features - xfer mode\n"); 4454 4455 /* Some controllers and ATAPI devices show flaky interrupt 4456 * behavior after setting xfer mode. Use polling instead. 4457 */ 4458 ata_tf_init(dev, &tf); 4459 tf.command = ATA_CMD_SET_FEATURES; 4460 tf.feature = SETFEATURES_XFER; 4461 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4462 tf.protocol = ATA_PROT_NODATA; 4463 /* If we are using IORDY we must send the mode setting command */ 4464 if (ata_pio_need_iordy(dev)) 4465 tf.nsect = dev->xfer_mode; 4466 /* If the device has IORDY and the controller does not - turn it off */ 4467 else if (ata_id_has_iordy(dev->id)) 4468 tf.nsect = 0x01; 4469 else /* In the ancient relic department - skip all of this */ 4470 return 0; 4471 4472 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4473 4474 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4475 return err_mask; 4476 } 4477 4478 /** 4479 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4480 * @dev: Device to which command will be sent 4481 * @enable: Whether to enable or disable the feature 4482 * @feature: The sector count represents the feature to set 4483 * 4484 * Issue SET FEATURES - SATA FEATURES command to device @dev 4485 * on port @ap with sector count 4486 * 4487 * LOCKING: 4488 * PCI/etc. bus probe sem. 4489 * 4490 * RETURNS: 4491 * 0 on success, AC_ERR_* mask otherwise. 4492 */ 4493 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4494 { 4495 struct ata_taskfile tf; 4496 unsigned int err_mask; 4497 4498 /* set up set-features taskfile */ 4499 DPRINTK("set features - SATA features\n"); 4500 4501 ata_tf_init(dev, &tf); 4502 tf.command = ATA_CMD_SET_FEATURES; 4503 tf.feature = enable; 4504 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4505 tf.protocol = ATA_PROT_NODATA; 4506 tf.nsect = feature; 4507 4508 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4509 4510 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4511 return err_mask; 4512 } 4513 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4514 4515 /** 4516 * ata_dev_init_params - Issue INIT DEV PARAMS command 4517 * @dev: Device to which command will be sent 4518 * @heads: Number of heads (taskfile parameter) 4519 * @sectors: Number of sectors (taskfile parameter) 4520 * 4521 * LOCKING: 4522 * Kernel thread context (may sleep) 4523 * 4524 * RETURNS: 4525 * 0 on success, AC_ERR_* mask otherwise. 4526 */ 4527 static unsigned int ata_dev_init_params(struct ata_device *dev, 4528 u16 heads, u16 sectors) 4529 { 4530 struct ata_taskfile tf; 4531 unsigned int err_mask; 4532 4533 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4534 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4535 return AC_ERR_INVALID; 4536 4537 /* set up init dev params taskfile */ 4538 DPRINTK("init dev params \n"); 4539 4540 ata_tf_init(dev, &tf); 4541 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4542 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4543 tf.protocol = ATA_PROT_NODATA; 4544 tf.nsect = sectors; 4545 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4546 4547 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4548 /* A clean abort indicates an original or just out of spec drive 4549 and we should continue as we issue the setup based on the 4550 drive reported working geometry */ 4551 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4552 err_mask = 0; 4553 4554 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4555 return err_mask; 4556 } 4557 4558 /** 4559 * ata_sg_clean - Unmap DMA memory associated with command 4560 * @qc: Command containing DMA memory to be released 4561 * 4562 * Unmap all mapped DMA memory associated with this command. 4563 * 4564 * LOCKING: 4565 * spin_lock_irqsave(host lock) 4566 */ 4567 void ata_sg_clean(struct ata_queued_cmd *qc) 4568 { 4569 struct ata_port *ap = qc->ap; 4570 struct scatterlist *sg = qc->sg; 4571 int dir = qc->dma_dir; 4572 4573 WARN_ON_ONCE(sg == NULL); 4574 4575 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4576 4577 if (qc->n_elem) 4578 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4579 4580 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4581 qc->sg = NULL; 4582 } 4583 4584 /** 4585 * atapi_check_dma - Check whether ATAPI DMA can be supported 4586 * @qc: Metadata associated with taskfile to check 4587 * 4588 * Allow low-level driver to filter ATA PACKET commands, returning 4589 * a status indicating whether or not it is OK to use DMA for the 4590 * supplied PACKET command. 4591 * 4592 * LOCKING: 4593 * spin_lock_irqsave(host lock) 4594 * 4595 * RETURNS: 0 when ATAPI DMA can be used 4596 * nonzero otherwise 4597 */ 4598 int atapi_check_dma(struct ata_queued_cmd *qc) 4599 { 4600 struct ata_port *ap = qc->ap; 4601 4602 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4603 * few ATAPI devices choke on such DMA requests. 4604 */ 4605 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4606 unlikely(qc->nbytes & 15)) 4607 return 1; 4608 4609 if (ap->ops->check_atapi_dma) 4610 return ap->ops->check_atapi_dma(qc); 4611 4612 return 0; 4613 } 4614 4615 /** 4616 * ata_std_qc_defer - Check whether a qc needs to be deferred 4617 * @qc: ATA command in question 4618 * 4619 * Non-NCQ commands cannot run with any other command, NCQ or 4620 * not. As upper layer only knows the queue depth, we are 4621 * responsible for maintaining exclusion. This function checks 4622 * whether a new command @qc can be issued. 4623 * 4624 * LOCKING: 4625 * spin_lock_irqsave(host lock) 4626 * 4627 * RETURNS: 4628 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4629 */ 4630 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4631 { 4632 struct ata_link *link = qc->dev->link; 4633 4634 if (qc->tf.protocol == ATA_PROT_NCQ) { 4635 if (!ata_tag_valid(link->active_tag)) 4636 return 0; 4637 } else { 4638 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4639 return 0; 4640 } 4641 4642 return ATA_DEFER_LINK; 4643 } 4644 4645 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4646 4647 /** 4648 * ata_sg_init - Associate command with scatter-gather table. 4649 * @qc: Command to be associated 4650 * @sg: Scatter-gather table. 4651 * @n_elem: Number of elements in s/g table. 4652 * 4653 * Initialize the data-related elements of queued_cmd @qc 4654 * to point to a scatter-gather table @sg, containing @n_elem 4655 * elements. 4656 * 4657 * LOCKING: 4658 * spin_lock_irqsave(host lock) 4659 */ 4660 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4661 unsigned int n_elem) 4662 { 4663 qc->sg = sg; 4664 qc->n_elem = n_elem; 4665 qc->cursg = qc->sg; 4666 } 4667 4668 /** 4669 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4670 * @qc: Command with scatter-gather table to be mapped. 4671 * 4672 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4673 * 4674 * LOCKING: 4675 * spin_lock_irqsave(host lock) 4676 * 4677 * RETURNS: 4678 * Zero on success, negative on error. 4679 * 4680 */ 4681 static int ata_sg_setup(struct ata_queued_cmd *qc) 4682 { 4683 struct ata_port *ap = qc->ap; 4684 unsigned int n_elem; 4685 4686 VPRINTK("ENTER, ata%u\n", ap->print_id); 4687 4688 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4689 if (n_elem < 1) 4690 return -1; 4691 4692 DPRINTK("%d sg elements mapped\n", n_elem); 4693 qc->orig_n_elem = qc->n_elem; 4694 qc->n_elem = n_elem; 4695 qc->flags |= ATA_QCFLAG_DMAMAP; 4696 4697 return 0; 4698 } 4699 4700 /** 4701 * swap_buf_le16 - swap halves of 16-bit words in place 4702 * @buf: Buffer to swap 4703 * @buf_words: Number of 16-bit words in buffer. 4704 * 4705 * Swap halves of 16-bit words if needed to convert from 4706 * little-endian byte order to native cpu byte order, or 4707 * vice-versa. 4708 * 4709 * LOCKING: 4710 * Inherited from caller. 4711 */ 4712 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4713 { 4714 #ifdef __BIG_ENDIAN 4715 unsigned int i; 4716 4717 for (i = 0; i < buf_words; i++) 4718 buf[i] = le16_to_cpu(buf[i]); 4719 #endif /* __BIG_ENDIAN */ 4720 } 4721 4722 /** 4723 * ata_qc_new_init - Request an available ATA command, and initialize it 4724 * @dev: Device from whom we request an available command structure 4725 * 4726 * LOCKING: 4727 * None. 4728 */ 4729 4730 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 4731 { 4732 struct ata_port *ap = dev->link->ap; 4733 struct ata_queued_cmd *qc; 4734 4735 /* no command while frozen */ 4736 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4737 return NULL; 4738 4739 /* libsas case */ 4740 if (!ap->scsi_host) { 4741 tag = ata_sas_allocate_tag(ap); 4742 if (tag < 0) 4743 return NULL; 4744 } 4745 4746 qc = __ata_qc_from_tag(ap, tag); 4747 qc->tag = tag; 4748 qc->scsicmd = NULL; 4749 qc->ap = ap; 4750 qc->dev = dev; 4751 4752 ata_qc_reinit(qc); 4753 4754 return qc; 4755 } 4756 4757 /** 4758 * ata_qc_free - free unused ata_queued_cmd 4759 * @qc: Command to complete 4760 * 4761 * Designed to free unused ata_queued_cmd object 4762 * in case something prevents using it. 4763 * 4764 * LOCKING: 4765 * spin_lock_irqsave(host lock) 4766 */ 4767 void ata_qc_free(struct ata_queued_cmd *qc) 4768 { 4769 struct ata_port *ap; 4770 unsigned int tag; 4771 4772 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4773 ap = qc->ap; 4774 4775 qc->flags = 0; 4776 tag = qc->tag; 4777 if (likely(ata_tag_valid(tag))) { 4778 qc->tag = ATA_TAG_POISON; 4779 if (!ap->scsi_host) 4780 ata_sas_free_tag(tag, ap); 4781 } 4782 } 4783 4784 void __ata_qc_complete(struct ata_queued_cmd *qc) 4785 { 4786 struct ata_port *ap; 4787 struct ata_link *link; 4788 4789 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4790 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4791 ap = qc->ap; 4792 link = qc->dev->link; 4793 4794 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4795 ata_sg_clean(qc); 4796 4797 /* command should be marked inactive atomically with qc completion */ 4798 if (qc->tf.protocol == ATA_PROT_NCQ) { 4799 link->sactive &= ~(1 << qc->tag); 4800 if (!link->sactive) 4801 ap->nr_active_links--; 4802 } else { 4803 link->active_tag = ATA_TAG_POISON; 4804 ap->nr_active_links--; 4805 } 4806 4807 /* clear exclusive status */ 4808 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4809 ap->excl_link == link)) 4810 ap->excl_link = NULL; 4811 4812 /* atapi: mark qc as inactive to prevent the interrupt handler 4813 * from completing the command twice later, before the error handler 4814 * is called. (when rc != 0 and atapi request sense is needed) 4815 */ 4816 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4817 ap->qc_active &= ~(1 << qc->tag); 4818 4819 /* call completion callback */ 4820 qc->complete_fn(qc); 4821 } 4822 4823 static void fill_result_tf(struct ata_queued_cmd *qc) 4824 { 4825 struct ata_port *ap = qc->ap; 4826 4827 qc->result_tf.flags = qc->tf.flags; 4828 ap->ops->qc_fill_rtf(qc); 4829 } 4830 4831 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4832 { 4833 struct ata_device *dev = qc->dev; 4834 4835 if (ata_is_nodata(qc->tf.protocol)) 4836 return; 4837 4838 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4839 return; 4840 4841 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4842 } 4843 4844 /** 4845 * ata_qc_complete - Complete an active ATA command 4846 * @qc: Command to complete 4847 * 4848 * Indicate to the mid and upper layers that an ATA command has 4849 * completed, with either an ok or not-ok status. 4850 * 4851 * Refrain from calling this function multiple times when 4852 * successfully completing multiple NCQ commands. 4853 * ata_qc_complete_multiple() should be used instead, which will 4854 * properly update IRQ expect state. 4855 * 4856 * LOCKING: 4857 * spin_lock_irqsave(host lock) 4858 */ 4859 void ata_qc_complete(struct ata_queued_cmd *qc) 4860 { 4861 struct ata_port *ap = qc->ap; 4862 4863 /* XXX: New EH and old EH use different mechanisms to 4864 * synchronize EH with regular execution path. 4865 * 4866 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4867 * Normal execution path is responsible for not accessing a 4868 * failed qc. libata core enforces the rule by returning NULL 4869 * from ata_qc_from_tag() for failed qcs. 4870 * 4871 * Old EH depends on ata_qc_complete() nullifying completion 4872 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4873 * not synchronize with interrupt handler. Only PIO task is 4874 * taken care of. 4875 */ 4876 if (ap->ops->error_handler) { 4877 struct ata_device *dev = qc->dev; 4878 struct ata_eh_info *ehi = &dev->link->eh_info; 4879 4880 if (unlikely(qc->err_mask)) 4881 qc->flags |= ATA_QCFLAG_FAILED; 4882 4883 /* 4884 * Finish internal commands without any further processing 4885 * and always with the result TF filled. 4886 */ 4887 if (unlikely(ata_tag_internal(qc->tag))) { 4888 fill_result_tf(qc); 4889 __ata_qc_complete(qc); 4890 return; 4891 } 4892 4893 /* 4894 * Non-internal qc has failed. Fill the result TF and 4895 * summon EH. 4896 */ 4897 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4898 fill_result_tf(qc); 4899 ata_qc_schedule_eh(qc); 4900 return; 4901 } 4902 4903 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4904 4905 /* read result TF if requested */ 4906 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4907 fill_result_tf(qc); 4908 4909 /* Some commands need post-processing after successful 4910 * completion. 4911 */ 4912 switch (qc->tf.command) { 4913 case ATA_CMD_SET_FEATURES: 4914 if (qc->tf.feature != SETFEATURES_WC_ON && 4915 qc->tf.feature != SETFEATURES_WC_OFF) 4916 break; 4917 /* fall through */ 4918 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4919 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4920 /* revalidate device */ 4921 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4922 ata_port_schedule_eh(ap); 4923 break; 4924 4925 case ATA_CMD_SLEEP: 4926 dev->flags |= ATA_DFLAG_SLEEPING; 4927 break; 4928 } 4929 4930 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4931 ata_verify_xfer(qc); 4932 4933 __ata_qc_complete(qc); 4934 } else { 4935 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4936 return; 4937 4938 /* read result TF if failed or requested */ 4939 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4940 fill_result_tf(qc); 4941 4942 __ata_qc_complete(qc); 4943 } 4944 } 4945 4946 /** 4947 * ata_qc_complete_multiple - Complete multiple qcs successfully 4948 * @ap: port in question 4949 * @qc_active: new qc_active mask 4950 * 4951 * Complete in-flight commands. This functions is meant to be 4952 * called from low-level driver's interrupt routine to complete 4953 * requests normally. ap->qc_active and @qc_active is compared 4954 * and commands are completed accordingly. 4955 * 4956 * Always use this function when completing multiple NCQ commands 4957 * from IRQ handlers instead of calling ata_qc_complete() 4958 * multiple times to keep IRQ expect status properly in sync. 4959 * 4960 * LOCKING: 4961 * spin_lock_irqsave(host lock) 4962 * 4963 * RETURNS: 4964 * Number of completed commands on success, -errno otherwise. 4965 */ 4966 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4967 { 4968 int nr_done = 0; 4969 u32 done_mask; 4970 4971 done_mask = ap->qc_active ^ qc_active; 4972 4973 if (unlikely(done_mask & qc_active)) { 4974 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 4975 ap->qc_active, qc_active); 4976 return -EINVAL; 4977 } 4978 4979 while (done_mask) { 4980 struct ata_queued_cmd *qc; 4981 unsigned int tag = __ffs(done_mask); 4982 4983 qc = ata_qc_from_tag(ap, tag); 4984 if (qc) { 4985 ata_qc_complete(qc); 4986 nr_done++; 4987 } 4988 done_mask &= ~(1 << tag); 4989 } 4990 4991 return nr_done; 4992 } 4993 4994 /** 4995 * ata_qc_issue - issue taskfile to device 4996 * @qc: command to issue to device 4997 * 4998 * Prepare an ATA command to submission to device. 4999 * This includes mapping the data into a DMA-able 5000 * area, filling in the S/G table, and finally 5001 * writing the taskfile to hardware, starting the command. 5002 * 5003 * LOCKING: 5004 * spin_lock_irqsave(host lock) 5005 */ 5006 void ata_qc_issue(struct ata_queued_cmd *qc) 5007 { 5008 struct ata_port *ap = qc->ap; 5009 struct ata_link *link = qc->dev->link; 5010 u8 prot = qc->tf.protocol; 5011 5012 /* Make sure only one non-NCQ command is outstanding. The 5013 * check is skipped for old EH because it reuses active qc to 5014 * request ATAPI sense. 5015 */ 5016 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5017 5018 if (ata_is_ncq(prot)) { 5019 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5020 5021 if (!link->sactive) 5022 ap->nr_active_links++; 5023 link->sactive |= 1 << qc->tag; 5024 } else { 5025 WARN_ON_ONCE(link->sactive); 5026 5027 ap->nr_active_links++; 5028 link->active_tag = qc->tag; 5029 } 5030 5031 qc->flags |= ATA_QCFLAG_ACTIVE; 5032 ap->qc_active |= 1 << qc->tag; 5033 5034 /* 5035 * We guarantee to LLDs that they will have at least one 5036 * non-zero sg if the command is a data command. 5037 */ 5038 if (WARN_ON_ONCE(ata_is_data(prot) && 5039 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5040 goto sys_err; 5041 5042 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5043 (ap->flags & ATA_FLAG_PIO_DMA))) 5044 if (ata_sg_setup(qc)) 5045 goto sys_err; 5046 5047 /* if device is sleeping, schedule reset and abort the link */ 5048 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5049 link->eh_info.action |= ATA_EH_RESET; 5050 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5051 ata_link_abort(link); 5052 return; 5053 } 5054 5055 ap->ops->qc_prep(qc); 5056 5057 qc->err_mask |= ap->ops->qc_issue(qc); 5058 if (unlikely(qc->err_mask)) 5059 goto err; 5060 return; 5061 5062 sys_err: 5063 qc->err_mask |= AC_ERR_SYSTEM; 5064 err: 5065 ata_qc_complete(qc); 5066 } 5067 5068 /** 5069 * sata_scr_valid - test whether SCRs are accessible 5070 * @link: ATA link to test SCR accessibility for 5071 * 5072 * Test whether SCRs are accessible for @link. 5073 * 5074 * LOCKING: 5075 * None. 5076 * 5077 * RETURNS: 5078 * 1 if SCRs are accessible, 0 otherwise. 5079 */ 5080 int sata_scr_valid(struct ata_link *link) 5081 { 5082 struct ata_port *ap = link->ap; 5083 5084 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5085 } 5086 5087 /** 5088 * sata_scr_read - read SCR register of the specified port 5089 * @link: ATA link to read SCR for 5090 * @reg: SCR to read 5091 * @val: Place to store read value 5092 * 5093 * Read SCR register @reg of @link into *@val. This function is 5094 * guaranteed to succeed if @link is ap->link, the cable type of 5095 * the port is SATA and the port implements ->scr_read. 5096 * 5097 * LOCKING: 5098 * None if @link is ap->link. Kernel thread context otherwise. 5099 * 5100 * RETURNS: 5101 * 0 on success, negative errno on failure. 5102 */ 5103 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5104 { 5105 if (ata_is_host_link(link)) { 5106 if (sata_scr_valid(link)) 5107 return link->ap->ops->scr_read(link, reg, val); 5108 return -EOPNOTSUPP; 5109 } 5110 5111 return sata_pmp_scr_read(link, reg, val); 5112 } 5113 5114 /** 5115 * sata_scr_write - write SCR register of the specified port 5116 * @link: ATA link to write SCR for 5117 * @reg: SCR to write 5118 * @val: value to write 5119 * 5120 * Write @val to SCR register @reg of @link. This function is 5121 * guaranteed to succeed if @link is ap->link, the cable type of 5122 * the port is SATA and the port implements ->scr_read. 5123 * 5124 * LOCKING: 5125 * None if @link is ap->link. Kernel thread context otherwise. 5126 * 5127 * RETURNS: 5128 * 0 on success, negative errno on failure. 5129 */ 5130 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5131 { 5132 if (ata_is_host_link(link)) { 5133 if (sata_scr_valid(link)) 5134 return link->ap->ops->scr_write(link, reg, val); 5135 return -EOPNOTSUPP; 5136 } 5137 5138 return sata_pmp_scr_write(link, reg, val); 5139 } 5140 5141 /** 5142 * sata_scr_write_flush - write SCR register of the specified port and flush 5143 * @link: ATA link to write SCR for 5144 * @reg: SCR to write 5145 * @val: value to write 5146 * 5147 * This function is identical to sata_scr_write() except that this 5148 * function performs flush after writing to the register. 5149 * 5150 * LOCKING: 5151 * None if @link is ap->link. Kernel thread context otherwise. 5152 * 5153 * RETURNS: 5154 * 0 on success, negative errno on failure. 5155 */ 5156 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5157 { 5158 if (ata_is_host_link(link)) { 5159 int rc; 5160 5161 if (sata_scr_valid(link)) { 5162 rc = link->ap->ops->scr_write(link, reg, val); 5163 if (rc == 0) 5164 rc = link->ap->ops->scr_read(link, reg, &val); 5165 return rc; 5166 } 5167 return -EOPNOTSUPP; 5168 } 5169 5170 return sata_pmp_scr_write(link, reg, val); 5171 } 5172 5173 /** 5174 * ata_phys_link_online - test whether the given link is online 5175 * @link: ATA link to test 5176 * 5177 * Test whether @link is online. Note that this function returns 5178 * 0 if online status of @link cannot be obtained, so 5179 * ata_link_online(link) != !ata_link_offline(link). 5180 * 5181 * LOCKING: 5182 * None. 5183 * 5184 * RETURNS: 5185 * True if the port online status is available and online. 5186 */ 5187 bool ata_phys_link_online(struct ata_link *link) 5188 { 5189 u32 sstatus; 5190 5191 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5192 ata_sstatus_online(sstatus)) 5193 return true; 5194 return false; 5195 } 5196 5197 /** 5198 * ata_phys_link_offline - test whether the given link is offline 5199 * @link: ATA link to test 5200 * 5201 * Test whether @link is offline. Note that this function 5202 * returns 0 if offline status of @link cannot be obtained, so 5203 * ata_link_online(link) != !ata_link_offline(link). 5204 * 5205 * LOCKING: 5206 * None. 5207 * 5208 * RETURNS: 5209 * True if the port offline status is available and offline. 5210 */ 5211 bool ata_phys_link_offline(struct ata_link *link) 5212 { 5213 u32 sstatus; 5214 5215 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5216 !ata_sstatus_online(sstatus)) 5217 return true; 5218 return false; 5219 } 5220 5221 /** 5222 * ata_link_online - test whether the given link is online 5223 * @link: ATA link to test 5224 * 5225 * Test whether @link is online. This is identical to 5226 * ata_phys_link_online() when there's no slave link. When 5227 * there's a slave link, this function should only be called on 5228 * the master link and will return true if any of M/S links is 5229 * online. 5230 * 5231 * LOCKING: 5232 * None. 5233 * 5234 * RETURNS: 5235 * True if the port online status is available and online. 5236 */ 5237 bool ata_link_online(struct ata_link *link) 5238 { 5239 struct ata_link *slave = link->ap->slave_link; 5240 5241 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5242 5243 return ata_phys_link_online(link) || 5244 (slave && ata_phys_link_online(slave)); 5245 } 5246 5247 /** 5248 * ata_link_offline - test whether the given link is offline 5249 * @link: ATA link to test 5250 * 5251 * Test whether @link is offline. This is identical to 5252 * ata_phys_link_offline() when there's no slave link. When 5253 * there's a slave link, this function should only be called on 5254 * the master link and will return true if both M/S links are 5255 * offline. 5256 * 5257 * LOCKING: 5258 * None. 5259 * 5260 * RETURNS: 5261 * True if the port offline status is available and offline. 5262 */ 5263 bool ata_link_offline(struct ata_link *link) 5264 { 5265 struct ata_link *slave = link->ap->slave_link; 5266 5267 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5268 5269 return ata_phys_link_offline(link) && 5270 (!slave || ata_phys_link_offline(slave)); 5271 } 5272 5273 #ifdef CONFIG_PM 5274 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5275 unsigned int action, unsigned int ehi_flags, 5276 bool async) 5277 { 5278 struct ata_link *link; 5279 unsigned long flags; 5280 5281 /* Previous resume operation might still be in 5282 * progress. Wait for PM_PENDING to clear. 5283 */ 5284 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5285 ata_port_wait_eh(ap); 5286 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5287 } 5288 5289 /* request PM ops to EH */ 5290 spin_lock_irqsave(ap->lock, flags); 5291 5292 ap->pm_mesg = mesg; 5293 ap->pflags |= ATA_PFLAG_PM_PENDING; 5294 ata_for_each_link(link, ap, HOST_FIRST) { 5295 link->eh_info.action |= action; 5296 link->eh_info.flags |= ehi_flags; 5297 } 5298 5299 ata_port_schedule_eh(ap); 5300 5301 spin_unlock_irqrestore(ap->lock, flags); 5302 5303 if (!async) { 5304 ata_port_wait_eh(ap); 5305 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5306 } 5307 } 5308 5309 /* 5310 * On some hardware, device fails to respond after spun down for suspend. As 5311 * the device won't be used before being resumed, we don't need to touch the 5312 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5313 * 5314 * http://thread.gmane.org/gmane.linux.ide/46764 5315 */ 5316 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5317 | ATA_EHI_NO_AUTOPSY 5318 | ATA_EHI_NO_RECOVERY; 5319 5320 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5321 { 5322 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5323 } 5324 5325 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5326 { 5327 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5328 } 5329 5330 static int ata_port_pm_suspend(struct device *dev) 5331 { 5332 struct ata_port *ap = to_ata_port(dev); 5333 5334 if (pm_runtime_suspended(dev)) 5335 return 0; 5336 5337 ata_port_suspend(ap, PMSG_SUSPEND); 5338 return 0; 5339 } 5340 5341 static int ata_port_pm_freeze(struct device *dev) 5342 { 5343 struct ata_port *ap = to_ata_port(dev); 5344 5345 if (pm_runtime_suspended(dev)) 5346 return 0; 5347 5348 ata_port_suspend(ap, PMSG_FREEZE); 5349 return 0; 5350 } 5351 5352 static int ata_port_pm_poweroff(struct device *dev) 5353 { 5354 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5355 return 0; 5356 } 5357 5358 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5359 | ATA_EHI_QUIET; 5360 5361 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5362 { 5363 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5364 } 5365 5366 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5367 { 5368 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5369 } 5370 5371 static int ata_port_pm_resume(struct device *dev) 5372 { 5373 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5374 pm_runtime_disable(dev); 5375 pm_runtime_set_active(dev); 5376 pm_runtime_enable(dev); 5377 return 0; 5378 } 5379 5380 /* 5381 * For ODDs, the upper layer will poll for media change every few seconds, 5382 * which will make it enter and leave suspend state every few seconds. And 5383 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5384 * is very little and the ODD may malfunction after constantly being reset. 5385 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5386 * ODD is attached to the port. 5387 */ 5388 static int ata_port_runtime_idle(struct device *dev) 5389 { 5390 struct ata_port *ap = to_ata_port(dev); 5391 struct ata_link *link; 5392 struct ata_device *adev; 5393 5394 ata_for_each_link(link, ap, HOST_FIRST) { 5395 ata_for_each_dev(adev, link, ENABLED) 5396 if (adev->class == ATA_DEV_ATAPI && 5397 !zpodd_dev_enabled(adev)) 5398 return -EBUSY; 5399 } 5400 5401 return 0; 5402 } 5403 5404 static int ata_port_runtime_suspend(struct device *dev) 5405 { 5406 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5407 return 0; 5408 } 5409 5410 static int ata_port_runtime_resume(struct device *dev) 5411 { 5412 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5413 return 0; 5414 } 5415 5416 static const struct dev_pm_ops ata_port_pm_ops = { 5417 .suspend = ata_port_pm_suspend, 5418 .resume = ata_port_pm_resume, 5419 .freeze = ata_port_pm_freeze, 5420 .thaw = ata_port_pm_resume, 5421 .poweroff = ata_port_pm_poweroff, 5422 .restore = ata_port_pm_resume, 5423 5424 .runtime_suspend = ata_port_runtime_suspend, 5425 .runtime_resume = ata_port_runtime_resume, 5426 .runtime_idle = ata_port_runtime_idle, 5427 }; 5428 5429 /* sas ports don't participate in pm runtime management of ata_ports, 5430 * and need to resume ata devices at the domain level, not the per-port 5431 * level. sas suspend/resume is async to allow parallel port recovery 5432 * since sas has multiple ata_port instances per Scsi_Host. 5433 */ 5434 void ata_sas_port_suspend(struct ata_port *ap) 5435 { 5436 ata_port_suspend_async(ap, PMSG_SUSPEND); 5437 } 5438 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5439 5440 void ata_sas_port_resume(struct ata_port *ap) 5441 { 5442 ata_port_resume_async(ap, PMSG_RESUME); 5443 } 5444 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5445 5446 /** 5447 * ata_host_suspend - suspend host 5448 * @host: host to suspend 5449 * @mesg: PM message 5450 * 5451 * Suspend @host. Actual operation is performed by port suspend. 5452 */ 5453 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5454 { 5455 host->dev->power.power_state = mesg; 5456 return 0; 5457 } 5458 5459 /** 5460 * ata_host_resume - resume host 5461 * @host: host to resume 5462 * 5463 * Resume @host. Actual operation is performed by port resume. 5464 */ 5465 void ata_host_resume(struct ata_host *host) 5466 { 5467 host->dev->power.power_state = PMSG_ON; 5468 } 5469 #endif 5470 5471 struct device_type ata_port_type = { 5472 .name = "ata_port", 5473 #ifdef CONFIG_PM 5474 .pm = &ata_port_pm_ops, 5475 #endif 5476 }; 5477 5478 /** 5479 * ata_dev_init - Initialize an ata_device structure 5480 * @dev: Device structure to initialize 5481 * 5482 * Initialize @dev in preparation for probing. 5483 * 5484 * LOCKING: 5485 * Inherited from caller. 5486 */ 5487 void ata_dev_init(struct ata_device *dev) 5488 { 5489 struct ata_link *link = ata_dev_phys_link(dev); 5490 struct ata_port *ap = link->ap; 5491 unsigned long flags; 5492 5493 /* SATA spd limit is bound to the attached device, reset together */ 5494 link->sata_spd_limit = link->hw_sata_spd_limit; 5495 link->sata_spd = 0; 5496 5497 /* High bits of dev->flags are used to record warm plug 5498 * requests which occur asynchronously. Synchronize using 5499 * host lock. 5500 */ 5501 spin_lock_irqsave(ap->lock, flags); 5502 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5503 dev->horkage = 0; 5504 spin_unlock_irqrestore(ap->lock, flags); 5505 5506 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5507 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5508 dev->pio_mask = UINT_MAX; 5509 dev->mwdma_mask = UINT_MAX; 5510 dev->udma_mask = UINT_MAX; 5511 } 5512 5513 /** 5514 * ata_link_init - Initialize an ata_link structure 5515 * @ap: ATA port link is attached to 5516 * @link: Link structure to initialize 5517 * @pmp: Port multiplier port number 5518 * 5519 * Initialize @link. 5520 * 5521 * LOCKING: 5522 * Kernel thread context (may sleep) 5523 */ 5524 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5525 { 5526 int i; 5527 5528 /* clear everything except for devices */ 5529 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5530 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5531 5532 link->ap = ap; 5533 link->pmp = pmp; 5534 link->active_tag = ATA_TAG_POISON; 5535 link->hw_sata_spd_limit = UINT_MAX; 5536 5537 /* can't use iterator, ap isn't initialized yet */ 5538 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5539 struct ata_device *dev = &link->device[i]; 5540 5541 dev->link = link; 5542 dev->devno = dev - link->device; 5543 #ifdef CONFIG_ATA_ACPI 5544 dev->gtf_filter = ata_acpi_gtf_filter; 5545 #endif 5546 ata_dev_init(dev); 5547 } 5548 } 5549 5550 /** 5551 * sata_link_init_spd - Initialize link->sata_spd_limit 5552 * @link: Link to configure sata_spd_limit for 5553 * 5554 * Initialize @link->[hw_]sata_spd_limit to the currently 5555 * configured value. 5556 * 5557 * LOCKING: 5558 * Kernel thread context (may sleep). 5559 * 5560 * RETURNS: 5561 * 0 on success, -errno on failure. 5562 */ 5563 int sata_link_init_spd(struct ata_link *link) 5564 { 5565 u8 spd; 5566 int rc; 5567 5568 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5569 if (rc) 5570 return rc; 5571 5572 spd = (link->saved_scontrol >> 4) & 0xf; 5573 if (spd) 5574 link->hw_sata_spd_limit &= (1 << spd) - 1; 5575 5576 ata_force_link_limits(link); 5577 5578 link->sata_spd_limit = link->hw_sata_spd_limit; 5579 5580 return 0; 5581 } 5582 5583 /** 5584 * ata_port_alloc - allocate and initialize basic ATA port resources 5585 * @host: ATA host this allocated port belongs to 5586 * 5587 * Allocate and initialize basic ATA port resources. 5588 * 5589 * RETURNS: 5590 * Allocate ATA port on success, NULL on failure. 5591 * 5592 * LOCKING: 5593 * Inherited from calling layer (may sleep). 5594 */ 5595 struct ata_port *ata_port_alloc(struct ata_host *host) 5596 { 5597 struct ata_port *ap; 5598 5599 DPRINTK("ENTER\n"); 5600 5601 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5602 if (!ap) 5603 return NULL; 5604 5605 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5606 ap->lock = &host->lock; 5607 ap->print_id = -1; 5608 ap->local_port_no = -1; 5609 ap->host = host; 5610 ap->dev = host->dev; 5611 5612 #if defined(ATA_VERBOSE_DEBUG) 5613 /* turn on all debugging levels */ 5614 ap->msg_enable = 0x00FF; 5615 #elif defined(ATA_DEBUG) 5616 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5617 #else 5618 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5619 #endif 5620 5621 mutex_init(&ap->scsi_scan_mutex); 5622 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5623 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5624 INIT_LIST_HEAD(&ap->eh_done_q); 5625 init_waitqueue_head(&ap->eh_wait_q); 5626 init_completion(&ap->park_req_pending); 5627 init_timer_deferrable(&ap->fastdrain_timer); 5628 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5629 ap->fastdrain_timer.data = (unsigned long)ap; 5630 5631 ap->cbl = ATA_CBL_NONE; 5632 5633 ata_link_init(ap, &ap->link, 0); 5634 5635 #ifdef ATA_IRQ_TRAP 5636 ap->stats.unhandled_irq = 1; 5637 ap->stats.idle_irq = 1; 5638 #endif 5639 ata_sff_port_init(ap); 5640 5641 return ap; 5642 } 5643 5644 static void ata_host_release(struct device *gendev, void *res) 5645 { 5646 struct ata_host *host = dev_get_drvdata(gendev); 5647 int i; 5648 5649 for (i = 0; i < host->n_ports; i++) { 5650 struct ata_port *ap = host->ports[i]; 5651 5652 if (!ap) 5653 continue; 5654 5655 if (ap->scsi_host) 5656 scsi_host_put(ap->scsi_host); 5657 5658 kfree(ap->pmp_link); 5659 kfree(ap->slave_link); 5660 kfree(ap); 5661 host->ports[i] = NULL; 5662 } 5663 5664 dev_set_drvdata(gendev, NULL); 5665 } 5666 5667 /** 5668 * ata_host_alloc - allocate and init basic ATA host resources 5669 * @dev: generic device this host is associated with 5670 * @max_ports: maximum number of ATA ports associated with this host 5671 * 5672 * Allocate and initialize basic ATA host resources. LLD calls 5673 * this function to allocate a host, initializes it fully and 5674 * attaches it using ata_host_register(). 5675 * 5676 * @max_ports ports are allocated and host->n_ports is 5677 * initialized to @max_ports. The caller is allowed to decrease 5678 * host->n_ports before calling ata_host_register(). The unused 5679 * ports will be automatically freed on registration. 5680 * 5681 * RETURNS: 5682 * Allocate ATA host on success, NULL on failure. 5683 * 5684 * LOCKING: 5685 * Inherited from calling layer (may sleep). 5686 */ 5687 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5688 { 5689 struct ata_host *host; 5690 size_t sz; 5691 int i; 5692 5693 DPRINTK("ENTER\n"); 5694 5695 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5696 return NULL; 5697 5698 /* alloc a container for our list of ATA ports (buses) */ 5699 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5700 /* alloc a container for our list of ATA ports (buses) */ 5701 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5702 if (!host) 5703 goto err_out; 5704 5705 devres_add(dev, host); 5706 dev_set_drvdata(dev, host); 5707 5708 spin_lock_init(&host->lock); 5709 mutex_init(&host->eh_mutex); 5710 host->dev = dev; 5711 host->n_ports = max_ports; 5712 5713 /* allocate ports bound to this host */ 5714 for (i = 0; i < max_ports; i++) { 5715 struct ata_port *ap; 5716 5717 ap = ata_port_alloc(host); 5718 if (!ap) 5719 goto err_out; 5720 5721 ap->port_no = i; 5722 host->ports[i] = ap; 5723 } 5724 5725 devres_remove_group(dev, NULL); 5726 return host; 5727 5728 err_out: 5729 devres_release_group(dev, NULL); 5730 return NULL; 5731 } 5732 5733 /** 5734 * ata_host_alloc_pinfo - alloc host and init with port_info array 5735 * @dev: generic device this host is associated with 5736 * @ppi: array of ATA port_info to initialize host with 5737 * @n_ports: number of ATA ports attached to this host 5738 * 5739 * Allocate ATA host and initialize with info from @ppi. If NULL 5740 * terminated, @ppi may contain fewer entries than @n_ports. The 5741 * last entry will be used for the remaining ports. 5742 * 5743 * RETURNS: 5744 * Allocate ATA host on success, NULL on failure. 5745 * 5746 * LOCKING: 5747 * Inherited from calling layer (may sleep). 5748 */ 5749 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5750 const struct ata_port_info * const * ppi, 5751 int n_ports) 5752 { 5753 const struct ata_port_info *pi; 5754 struct ata_host *host; 5755 int i, j; 5756 5757 host = ata_host_alloc(dev, n_ports); 5758 if (!host) 5759 return NULL; 5760 5761 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5762 struct ata_port *ap = host->ports[i]; 5763 5764 if (ppi[j]) 5765 pi = ppi[j++]; 5766 5767 ap->pio_mask = pi->pio_mask; 5768 ap->mwdma_mask = pi->mwdma_mask; 5769 ap->udma_mask = pi->udma_mask; 5770 ap->flags |= pi->flags; 5771 ap->link.flags |= pi->link_flags; 5772 ap->ops = pi->port_ops; 5773 5774 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5775 host->ops = pi->port_ops; 5776 } 5777 5778 return host; 5779 } 5780 5781 /** 5782 * ata_slave_link_init - initialize slave link 5783 * @ap: port to initialize slave link for 5784 * 5785 * Create and initialize slave link for @ap. This enables slave 5786 * link handling on the port. 5787 * 5788 * In libata, a port contains links and a link contains devices. 5789 * There is single host link but if a PMP is attached to it, 5790 * there can be multiple fan-out links. On SATA, there's usually 5791 * a single device connected to a link but PATA and SATA 5792 * controllers emulating TF based interface can have two - master 5793 * and slave. 5794 * 5795 * However, there are a few controllers which don't fit into this 5796 * abstraction too well - SATA controllers which emulate TF 5797 * interface with both master and slave devices but also have 5798 * separate SCR register sets for each device. These controllers 5799 * need separate links for physical link handling 5800 * (e.g. onlineness, link speed) but should be treated like a 5801 * traditional M/S controller for everything else (e.g. command 5802 * issue, softreset). 5803 * 5804 * slave_link is libata's way of handling this class of 5805 * controllers without impacting core layer too much. For 5806 * anything other than physical link handling, the default host 5807 * link is used for both master and slave. For physical link 5808 * handling, separate @ap->slave_link is used. All dirty details 5809 * are implemented inside libata core layer. From LLD's POV, the 5810 * only difference is that prereset, hardreset and postreset are 5811 * called once more for the slave link, so the reset sequence 5812 * looks like the following. 5813 * 5814 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5815 * softreset(M) -> postreset(M) -> postreset(S) 5816 * 5817 * Note that softreset is called only for the master. Softreset 5818 * resets both M/S by definition, so SRST on master should handle 5819 * both (the standard method will work just fine). 5820 * 5821 * LOCKING: 5822 * Should be called before host is registered. 5823 * 5824 * RETURNS: 5825 * 0 on success, -errno on failure. 5826 */ 5827 int ata_slave_link_init(struct ata_port *ap) 5828 { 5829 struct ata_link *link; 5830 5831 WARN_ON(ap->slave_link); 5832 WARN_ON(ap->flags & ATA_FLAG_PMP); 5833 5834 link = kzalloc(sizeof(*link), GFP_KERNEL); 5835 if (!link) 5836 return -ENOMEM; 5837 5838 ata_link_init(ap, link, 1); 5839 ap->slave_link = link; 5840 return 0; 5841 } 5842 5843 static void ata_host_stop(struct device *gendev, void *res) 5844 { 5845 struct ata_host *host = dev_get_drvdata(gendev); 5846 int i; 5847 5848 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5849 5850 for (i = 0; i < host->n_ports; i++) { 5851 struct ata_port *ap = host->ports[i]; 5852 5853 if (ap->ops->port_stop) 5854 ap->ops->port_stop(ap); 5855 } 5856 5857 if (host->ops->host_stop) 5858 host->ops->host_stop(host); 5859 } 5860 5861 /** 5862 * ata_finalize_port_ops - finalize ata_port_operations 5863 * @ops: ata_port_operations to finalize 5864 * 5865 * An ata_port_operations can inherit from another ops and that 5866 * ops can again inherit from another. This can go on as many 5867 * times as necessary as long as there is no loop in the 5868 * inheritance chain. 5869 * 5870 * Ops tables are finalized when the host is started. NULL or 5871 * unspecified entries are inherited from the closet ancestor 5872 * which has the method and the entry is populated with it. 5873 * After finalization, the ops table directly points to all the 5874 * methods and ->inherits is no longer necessary and cleared. 5875 * 5876 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5877 * 5878 * LOCKING: 5879 * None. 5880 */ 5881 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5882 { 5883 static DEFINE_SPINLOCK(lock); 5884 const struct ata_port_operations *cur; 5885 void **begin = (void **)ops; 5886 void **end = (void **)&ops->inherits; 5887 void **pp; 5888 5889 if (!ops || !ops->inherits) 5890 return; 5891 5892 spin_lock(&lock); 5893 5894 for (cur = ops->inherits; cur; cur = cur->inherits) { 5895 void **inherit = (void **)cur; 5896 5897 for (pp = begin; pp < end; pp++, inherit++) 5898 if (!*pp) 5899 *pp = *inherit; 5900 } 5901 5902 for (pp = begin; pp < end; pp++) 5903 if (IS_ERR(*pp)) 5904 *pp = NULL; 5905 5906 ops->inherits = NULL; 5907 5908 spin_unlock(&lock); 5909 } 5910 5911 /** 5912 * ata_host_start - start and freeze ports of an ATA host 5913 * @host: ATA host to start ports for 5914 * 5915 * Start and then freeze ports of @host. Started status is 5916 * recorded in host->flags, so this function can be called 5917 * multiple times. Ports are guaranteed to get started only 5918 * once. If host->ops isn't initialized yet, its set to the 5919 * first non-dummy port ops. 5920 * 5921 * LOCKING: 5922 * Inherited from calling layer (may sleep). 5923 * 5924 * RETURNS: 5925 * 0 if all ports are started successfully, -errno otherwise. 5926 */ 5927 int ata_host_start(struct ata_host *host) 5928 { 5929 int have_stop = 0; 5930 void *start_dr = NULL; 5931 int i, rc; 5932 5933 if (host->flags & ATA_HOST_STARTED) 5934 return 0; 5935 5936 ata_finalize_port_ops(host->ops); 5937 5938 for (i = 0; i < host->n_ports; i++) { 5939 struct ata_port *ap = host->ports[i]; 5940 5941 ata_finalize_port_ops(ap->ops); 5942 5943 if (!host->ops && !ata_port_is_dummy(ap)) 5944 host->ops = ap->ops; 5945 5946 if (ap->ops->port_stop) 5947 have_stop = 1; 5948 } 5949 5950 if (host->ops->host_stop) 5951 have_stop = 1; 5952 5953 if (have_stop) { 5954 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5955 if (!start_dr) 5956 return -ENOMEM; 5957 } 5958 5959 for (i = 0; i < host->n_ports; i++) { 5960 struct ata_port *ap = host->ports[i]; 5961 5962 if (ap->ops->port_start) { 5963 rc = ap->ops->port_start(ap); 5964 if (rc) { 5965 if (rc != -ENODEV) 5966 dev_err(host->dev, 5967 "failed to start port %d (errno=%d)\n", 5968 i, rc); 5969 goto err_out; 5970 } 5971 } 5972 ata_eh_freeze_port(ap); 5973 } 5974 5975 if (start_dr) 5976 devres_add(host->dev, start_dr); 5977 host->flags |= ATA_HOST_STARTED; 5978 return 0; 5979 5980 err_out: 5981 while (--i >= 0) { 5982 struct ata_port *ap = host->ports[i]; 5983 5984 if (ap->ops->port_stop) 5985 ap->ops->port_stop(ap); 5986 } 5987 devres_free(start_dr); 5988 return rc; 5989 } 5990 5991 /** 5992 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 5993 * @host: host to initialize 5994 * @dev: device host is attached to 5995 * @ops: port_ops 5996 * 5997 */ 5998 void ata_host_init(struct ata_host *host, struct device *dev, 5999 struct ata_port_operations *ops) 6000 { 6001 spin_lock_init(&host->lock); 6002 mutex_init(&host->eh_mutex); 6003 host->n_tags = ATA_MAX_QUEUE - 1; 6004 host->dev = dev; 6005 host->ops = ops; 6006 } 6007 6008 void __ata_port_probe(struct ata_port *ap) 6009 { 6010 struct ata_eh_info *ehi = &ap->link.eh_info; 6011 unsigned long flags; 6012 6013 /* kick EH for boot probing */ 6014 spin_lock_irqsave(ap->lock, flags); 6015 6016 ehi->probe_mask |= ATA_ALL_DEVICES; 6017 ehi->action |= ATA_EH_RESET; 6018 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6019 6020 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6021 ap->pflags |= ATA_PFLAG_LOADING; 6022 ata_port_schedule_eh(ap); 6023 6024 spin_unlock_irqrestore(ap->lock, flags); 6025 } 6026 6027 int ata_port_probe(struct ata_port *ap) 6028 { 6029 int rc = 0; 6030 6031 if (ap->ops->error_handler) { 6032 __ata_port_probe(ap); 6033 ata_port_wait_eh(ap); 6034 } else { 6035 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6036 rc = ata_bus_probe(ap); 6037 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6038 } 6039 return rc; 6040 } 6041 6042 6043 static void async_port_probe(void *data, async_cookie_t cookie) 6044 { 6045 struct ata_port *ap = data; 6046 6047 /* 6048 * If we're not allowed to scan this host in parallel, 6049 * we need to wait until all previous scans have completed 6050 * before going further. 6051 * Jeff Garzik says this is only within a controller, so we 6052 * don't need to wait for port 0, only for later ports. 6053 */ 6054 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6055 async_synchronize_cookie(cookie); 6056 6057 (void)ata_port_probe(ap); 6058 6059 /* in order to keep device order, we need to synchronize at this point */ 6060 async_synchronize_cookie(cookie); 6061 6062 ata_scsi_scan_host(ap, 1); 6063 } 6064 6065 /** 6066 * ata_host_register - register initialized ATA host 6067 * @host: ATA host to register 6068 * @sht: template for SCSI host 6069 * 6070 * Register initialized ATA host. @host is allocated using 6071 * ata_host_alloc() and fully initialized by LLD. This function 6072 * starts ports, registers @host with ATA and SCSI layers and 6073 * probe registered devices. 6074 * 6075 * LOCKING: 6076 * Inherited from calling layer (may sleep). 6077 * 6078 * RETURNS: 6079 * 0 on success, -errno otherwise. 6080 */ 6081 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6082 { 6083 int i, rc; 6084 6085 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1); 6086 6087 /* host must have been started */ 6088 if (!(host->flags & ATA_HOST_STARTED)) { 6089 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6090 WARN_ON(1); 6091 return -EINVAL; 6092 } 6093 6094 /* Blow away unused ports. This happens when LLD can't 6095 * determine the exact number of ports to allocate at 6096 * allocation time. 6097 */ 6098 for (i = host->n_ports; host->ports[i]; i++) 6099 kfree(host->ports[i]); 6100 6101 /* give ports names and add SCSI hosts */ 6102 for (i = 0; i < host->n_ports; i++) { 6103 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6104 host->ports[i]->local_port_no = i + 1; 6105 } 6106 6107 /* Create associated sysfs transport objects */ 6108 for (i = 0; i < host->n_ports; i++) { 6109 rc = ata_tport_add(host->dev,host->ports[i]); 6110 if (rc) { 6111 goto err_tadd; 6112 } 6113 } 6114 6115 rc = ata_scsi_add_hosts(host, sht); 6116 if (rc) 6117 goto err_tadd; 6118 6119 /* set cable, sata_spd_limit and report */ 6120 for (i = 0; i < host->n_ports; i++) { 6121 struct ata_port *ap = host->ports[i]; 6122 unsigned long xfer_mask; 6123 6124 /* set SATA cable type if still unset */ 6125 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6126 ap->cbl = ATA_CBL_SATA; 6127 6128 /* init sata_spd_limit to the current value */ 6129 sata_link_init_spd(&ap->link); 6130 if (ap->slave_link) 6131 sata_link_init_spd(ap->slave_link); 6132 6133 /* print per-port info to dmesg */ 6134 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6135 ap->udma_mask); 6136 6137 if (!ata_port_is_dummy(ap)) { 6138 ata_port_info(ap, "%cATA max %s %s\n", 6139 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6140 ata_mode_string(xfer_mask), 6141 ap->link.eh_info.desc); 6142 ata_ehi_clear_desc(&ap->link.eh_info); 6143 } else 6144 ata_port_info(ap, "DUMMY\n"); 6145 } 6146 6147 /* perform each probe asynchronously */ 6148 for (i = 0; i < host->n_ports; i++) { 6149 struct ata_port *ap = host->ports[i]; 6150 async_schedule(async_port_probe, ap); 6151 } 6152 6153 return 0; 6154 6155 err_tadd: 6156 while (--i >= 0) { 6157 ata_tport_delete(host->ports[i]); 6158 } 6159 return rc; 6160 6161 } 6162 6163 /** 6164 * ata_host_activate - start host, request IRQ and register it 6165 * @host: target ATA host 6166 * @irq: IRQ to request 6167 * @irq_handler: irq_handler used when requesting IRQ 6168 * @irq_flags: irq_flags used when requesting IRQ 6169 * @sht: scsi_host_template to use when registering the host 6170 * 6171 * After allocating an ATA host and initializing it, most libata 6172 * LLDs perform three steps to activate the host - start host, 6173 * request IRQ and register it. This helper takes necessasry 6174 * arguments and performs the three steps in one go. 6175 * 6176 * An invalid IRQ skips the IRQ registration and expects the host to 6177 * have set polling mode on the port. In this case, @irq_handler 6178 * should be NULL. 6179 * 6180 * LOCKING: 6181 * Inherited from calling layer (may sleep). 6182 * 6183 * RETURNS: 6184 * 0 on success, -errno otherwise. 6185 */ 6186 int ata_host_activate(struct ata_host *host, int irq, 6187 irq_handler_t irq_handler, unsigned long irq_flags, 6188 struct scsi_host_template *sht) 6189 { 6190 int i, rc; 6191 6192 rc = ata_host_start(host); 6193 if (rc) 6194 return rc; 6195 6196 /* Special case for polling mode */ 6197 if (!irq) { 6198 WARN_ON(irq_handler); 6199 return ata_host_register(host, sht); 6200 } 6201 6202 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6203 dev_name(host->dev), host); 6204 if (rc) 6205 return rc; 6206 6207 for (i = 0; i < host->n_ports; i++) 6208 ata_port_desc(host->ports[i], "irq %d", irq); 6209 6210 rc = ata_host_register(host, sht); 6211 /* if failed, just free the IRQ and leave ports alone */ 6212 if (rc) 6213 devm_free_irq(host->dev, irq, host); 6214 6215 return rc; 6216 } 6217 6218 /** 6219 * ata_port_detach - Detach ATA port in prepration of device removal 6220 * @ap: ATA port to be detached 6221 * 6222 * Detach all ATA devices and the associated SCSI devices of @ap; 6223 * then, remove the associated SCSI host. @ap is guaranteed to 6224 * be quiescent on return from this function. 6225 * 6226 * LOCKING: 6227 * Kernel thread context (may sleep). 6228 */ 6229 static void ata_port_detach(struct ata_port *ap) 6230 { 6231 unsigned long flags; 6232 struct ata_link *link; 6233 struct ata_device *dev; 6234 6235 if (!ap->ops->error_handler) 6236 goto skip_eh; 6237 6238 /* tell EH we're leaving & flush EH */ 6239 spin_lock_irqsave(ap->lock, flags); 6240 ap->pflags |= ATA_PFLAG_UNLOADING; 6241 ata_port_schedule_eh(ap); 6242 spin_unlock_irqrestore(ap->lock, flags); 6243 6244 /* wait till EH commits suicide */ 6245 ata_port_wait_eh(ap); 6246 6247 /* it better be dead now */ 6248 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6249 6250 cancel_delayed_work_sync(&ap->hotplug_task); 6251 6252 skip_eh: 6253 /* clean up zpodd on port removal */ 6254 ata_for_each_link(link, ap, HOST_FIRST) { 6255 ata_for_each_dev(dev, link, ALL) { 6256 if (zpodd_dev_enabled(dev)) 6257 zpodd_exit(dev); 6258 } 6259 } 6260 if (ap->pmp_link) { 6261 int i; 6262 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6263 ata_tlink_delete(&ap->pmp_link[i]); 6264 } 6265 /* remove the associated SCSI host */ 6266 scsi_remove_host(ap->scsi_host); 6267 ata_tport_delete(ap); 6268 } 6269 6270 /** 6271 * ata_host_detach - Detach all ports of an ATA host 6272 * @host: Host to detach 6273 * 6274 * Detach all ports of @host. 6275 * 6276 * LOCKING: 6277 * Kernel thread context (may sleep). 6278 */ 6279 void ata_host_detach(struct ata_host *host) 6280 { 6281 int i; 6282 6283 for (i = 0; i < host->n_ports; i++) 6284 ata_port_detach(host->ports[i]); 6285 6286 /* the host is dead now, dissociate ACPI */ 6287 ata_acpi_dissociate(host); 6288 } 6289 6290 #ifdef CONFIG_PCI 6291 6292 /** 6293 * ata_pci_remove_one - PCI layer callback for device removal 6294 * @pdev: PCI device that was removed 6295 * 6296 * PCI layer indicates to libata via this hook that hot-unplug or 6297 * module unload event has occurred. Detach all ports. Resource 6298 * release is handled via devres. 6299 * 6300 * LOCKING: 6301 * Inherited from PCI layer (may sleep). 6302 */ 6303 void ata_pci_remove_one(struct pci_dev *pdev) 6304 { 6305 struct ata_host *host = pci_get_drvdata(pdev); 6306 6307 ata_host_detach(host); 6308 } 6309 6310 /* move to PCI subsystem */ 6311 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6312 { 6313 unsigned long tmp = 0; 6314 6315 switch (bits->width) { 6316 case 1: { 6317 u8 tmp8 = 0; 6318 pci_read_config_byte(pdev, bits->reg, &tmp8); 6319 tmp = tmp8; 6320 break; 6321 } 6322 case 2: { 6323 u16 tmp16 = 0; 6324 pci_read_config_word(pdev, bits->reg, &tmp16); 6325 tmp = tmp16; 6326 break; 6327 } 6328 case 4: { 6329 u32 tmp32 = 0; 6330 pci_read_config_dword(pdev, bits->reg, &tmp32); 6331 tmp = tmp32; 6332 break; 6333 } 6334 6335 default: 6336 return -EINVAL; 6337 } 6338 6339 tmp &= bits->mask; 6340 6341 return (tmp == bits->val) ? 1 : 0; 6342 } 6343 6344 #ifdef CONFIG_PM 6345 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6346 { 6347 pci_save_state(pdev); 6348 pci_disable_device(pdev); 6349 6350 if (mesg.event & PM_EVENT_SLEEP) 6351 pci_set_power_state(pdev, PCI_D3hot); 6352 } 6353 6354 int ata_pci_device_do_resume(struct pci_dev *pdev) 6355 { 6356 int rc; 6357 6358 pci_set_power_state(pdev, PCI_D0); 6359 pci_restore_state(pdev); 6360 6361 rc = pcim_enable_device(pdev); 6362 if (rc) { 6363 dev_err(&pdev->dev, 6364 "failed to enable device after resume (%d)\n", rc); 6365 return rc; 6366 } 6367 6368 pci_set_master(pdev); 6369 return 0; 6370 } 6371 6372 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6373 { 6374 struct ata_host *host = pci_get_drvdata(pdev); 6375 int rc = 0; 6376 6377 rc = ata_host_suspend(host, mesg); 6378 if (rc) 6379 return rc; 6380 6381 ata_pci_device_do_suspend(pdev, mesg); 6382 6383 return 0; 6384 } 6385 6386 int ata_pci_device_resume(struct pci_dev *pdev) 6387 { 6388 struct ata_host *host = pci_get_drvdata(pdev); 6389 int rc; 6390 6391 rc = ata_pci_device_do_resume(pdev); 6392 if (rc == 0) 6393 ata_host_resume(host); 6394 return rc; 6395 } 6396 #endif /* CONFIG_PM */ 6397 6398 #endif /* CONFIG_PCI */ 6399 6400 /** 6401 * ata_platform_remove_one - Platform layer callback for device removal 6402 * @pdev: Platform device that was removed 6403 * 6404 * Platform layer indicates to libata via this hook that hot-unplug or 6405 * module unload event has occurred. Detach all ports. Resource 6406 * release is handled via devres. 6407 * 6408 * LOCKING: 6409 * Inherited from platform layer (may sleep). 6410 */ 6411 int ata_platform_remove_one(struct platform_device *pdev) 6412 { 6413 struct ata_host *host = platform_get_drvdata(pdev); 6414 6415 ata_host_detach(host); 6416 6417 return 0; 6418 } 6419 6420 static int __init ata_parse_force_one(char **cur, 6421 struct ata_force_ent *force_ent, 6422 const char **reason) 6423 { 6424 /* FIXME: Currently, there's no way to tag init const data and 6425 * using __initdata causes build failure on some versions of 6426 * gcc. Once __initdataconst is implemented, add const to the 6427 * following structure. 6428 */ 6429 static struct ata_force_param force_tbl[] __initdata = { 6430 { "40c", .cbl = ATA_CBL_PATA40 }, 6431 { "80c", .cbl = ATA_CBL_PATA80 }, 6432 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6433 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6434 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6435 { "sata", .cbl = ATA_CBL_SATA }, 6436 { "1.5Gbps", .spd_limit = 1 }, 6437 { "3.0Gbps", .spd_limit = 2 }, 6438 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6439 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6440 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6441 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6442 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6443 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6444 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6445 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6446 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6447 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6448 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6449 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6450 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6451 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6452 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6453 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6454 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6455 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6456 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6457 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6458 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6459 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6460 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6461 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6462 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6463 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6464 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6465 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6466 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6467 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6468 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6469 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6470 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6471 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6472 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6473 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6474 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6475 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6476 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6477 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6478 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6479 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6480 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6481 }; 6482 char *start = *cur, *p = *cur; 6483 char *id, *val, *endp; 6484 const struct ata_force_param *match_fp = NULL; 6485 int nr_matches = 0, i; 6486 6487 /* find where this param ends and update *cur */ 6488 while (*p != '\0' && *p != ',') 6489 p++; 6490 6491 if (*p == '\0') 6492 *cur = p; 6493 else 6494 *cur = p + 1; 6495 6496 *p = '\0'; 6497 6498 /* parse */ 6499 p = strchr(start, ':'); 6500 if (!p) { 6501 val = strstrip(start); 6502 goto parse_val; 6503 } 6504 *p = '\0'; 6505 6506 id = strstrip(start); 6507 val = strstrip(p + 1); 6508 6509 /* parse id */ 6510 p = strchr(id, '.'); 6511 if (p) { 6512 *p++ = '\0'; 6513 force_ent->device = simple_strtoul(p, &endp, 10); 6514 if (p == endp || *endp != '\0') { 6515 *reason = "invalid device"; 6516 return -EINVAL; 6517 } 6518 } 6519 6520 force_ent->port = simple_strtoul(id, &endp, 10); 6521 if (p == endp || *endp != '\0') { 6522 *reason = "invalid port/link"; 6523 return -EINVAL; 6524 } 6525 6526 parse_val: 6527 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6528 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6529 const struct ata_force_param *fp = &force_tbl[i]; 6530 6531 if (strncasecmp(val, fp->name, strlen(val))) 6532 continue; 6533 6534 nr_matches++; 6535 match_fp = fp; 6536 6537 if (strcasecmp(val, fp->name) == 0) { 6538 nr_matches = 1; 6539 break; 6540 } 6541 } 6542 6543 if (!nr_matches) { 6544 *reason = "unknown value"; 6545 return -EINVAL; 6546 } 6547 if (nr_matches > 1) { 6548 *reason = "ambigious value"; 6549 return -EINVAL; 6550 } 6551 6552 force_ent->param = *match_fp; 6553 6554 return 0; 6555 } 6556 6557 static void __init ata_parse_force_param(void) 6558 { 6559 int idx = 0, size = 1; 6560 int last_port = -1, last_device = -1; 6561 char *p, *cur, *next; 6562 6563 /* calculate maximum number of params and allocate force_tbl */ 6564 for (p = ata_force_param_buf; *p; p++) 6565 if (*p == ',') 6566 size++; 6567 6568 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6569 if (!ata_force_tbl) { 6570 printk(KERN_WARNING "ata: failed to extend force table, " 6571 "libata.force ignored\n"); 6572 return; 6573 } 6574 6575 /* parse and populate the table */ 6576 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6577 const char *reason = ""; 6578 struct ata_force_ent te = { .port = -1, .device = -1 }; 6579 6580 next = cur; 6581 if (ata_parse_force_one(&next, &te, &reason)) { 6582 printk(KERN_WARNING "ata: failed to parse force " 6583 "parameter \"%s\" (%s)\n", 6584 cur, reason); 6585 continue; 6586 } 6587 6588 if (te.port == -1) { 6589 te.port = last_port; 6590 te.device = last_device; 6591 } 6592 6593 ata_force_tbl[idx++] = te; 6594 6595 last_port = te.port; 6596 last_device = te.device; 6597 } 6598 6599 ata_force_tbl_size = idx; 6600 } 6601 6602 static int __init ata_init(void) 6603 { 6604 int rc; 6605 6606 ata_parse_force_param(); 6607 6608 rc = ata_sff_init(); 6609 if (rc) { 6610 kfree(ata_force_tbl); 6611 return rc; 6612 } 6613 6614 libata_transport_init(); 6615 ata_scsi_transport_template = ata_attach_transport(); 6616 if (!ata_scsi_transport_template) { 6617 ata_sff_exit(); 6618 rc = -ENOMEM; 6619 goto err_out; 6620 } 6621 6622 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6623 return 0; 6624 6625 err_out: 6626 return rc; 6627 } 6628 6629 static void __exit ata_exit(void) 6630 { 6631 ata_release_transport(ata_scsi_transport_template); 6632 libata_transport_exit(); 6633 ata_sff_exit(); 6634 kfree(ata_force_tbl); 6635 } 6636 6637 subsys_initcall(ata_init); 6638 module_exit(ata_exit); 6639 6640 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6641 6642 int ata_ratelimit(void) 6643 { 6644 return __ratelimit(&ratelimit); 6645 } 6646 6647 /** 6648 * ata_msleep - ATA EH owner aware msleep 6649 * @ap: ATA port to attribute the sleep to 6650 * @msecs: duration to sleep in milliseconds 6651 * 6652 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6653 * ownership is released before going to sleep and reacquired 6654 * after the sleep is complete. IOW, other ports sharing the 6655 * @ap->host will be allowed to own the EH while this task is 6656 * sleeping. 6657 * 6658 * LOCKING: 6659 * Might sleep. 6660 */ 6661 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6662 { 6663 bool owns_eh = ap && ap->host->eh_owner == current; 6664 6665 if (owns_eh) 6666 ata_eh_release(ap); 6667 6668 msleep(msecs); 6669 6670 if (owns_eh) 6671 ata_eh_acquire(ap); 6672 } 6673 6674 /** 6675 * ata_wait_register - wait until register value changes 6676 * @ap: ATA port to wait register for, can be NULL 6677 * @reg: IO-mapped register 6678 * @mask: Mask to apply to read register value 6679 * @val: Wait condition 6680 * @interval: polling interval in milliseconds 6681 * @timeout: timeout in milliseconds 6682 * 6683 * Waiting for some bits of register to change is a common 6684 * operation for ATA controllers. This function reads 32bit LE 6685 * IO-mapped register @reg and tests for the following condition. 6686 * 6687 * (*@reg & mask) != val 6688 * 6689 * If the condition is met, it returns; otherwise, the process is 6690 * repeated after @interval_msec until timeout. 6691 * 6692 * LOCKING: 6693 * Kernel thread context (may sleep) 6694 * 6695 * RETURNS: 6696 * The final register value. 6697 */ 6698 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6699 unsigned long interval, unsigned long timeout) 6700 { 6701 unsigned long deadline; 6702 u32 tmp; 6703 6704 tmp = ioread32(reg); 6705 6706 /* Calculate timeout _after_ the first read to make sure 6707 * preceding writes reach the controller before starting to 6708 * eat away the timeout. 6709 */ 6710 deadline = ata_deadline(jiffies, timeout); 6711 6712 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6713 ata_msleep(ap, interval); 6714 tmp = ioread32(reg); 6715 } 6716 6717 return tmp; 6718 } 6719 6720 /* 6721 * Dummy port_ops 6722 */ 6723 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6724 { 6725 return AC_ERR_SYSTEM; 6726 } 6727 6728 static void ata_dummy_error_handler(struct ata_port *ap) 6729 { 6730 /* truly dummy */ 6731 } 6732 6733 struct ata_port_operations ata_dummy_port_ops = { 6734 .qc_prep = ata_noop_qc_prep, 6735 .qc_issue = ata_dummy_qc_issue, 6736 .error_handler = ata_dummy_error_handler, 6737 .sched_eh = ata_std_sched_eh, 6738 .end_eh = ata_std_end_eh, 6739 }; 6740 6741 const struct ata_port_info ata_dummy_port_info = { 6742 .port_ops = &ata_dummy_port_ops, 6743 }; 6744 6745 /* 6746 * Utility print functions 6747 */ 6748 void ata_port_printk(const struct ata_port *ap, const char *level, 6749 const char *fmt, ...) 6750 { 6751 struct va_format vaf; 6752 va_list args; 6753 6754 va_start(args, fmt); 6755 6756 vaf.fmt = fmt; 6757 vaf.va = &args; 6758 6759 printk("%sata%u: %pV", level, ap->print_id, &vaf); 6760 6761 va_end(args); 6762 } 6763 EXPORT_SYMBOL(ata_port_printk); 6764 6765 void ata_link_printk(const struct ata_link *link, const char *level, 6766 const char *fmt, ...) 6767 { 6768 struct va_format vaf; 6769 va_list args; 6770 6771 va_start(args, fmt); 6772 6773 vaf.fmt = fmt; 6774 vaf.va = &args; 6775 6776 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6777 printk("%sata%u.%02u: %pV", 6778 level, link->ap->print_id, link->pmp, &vaf); 6779 else 6780 printk("%sata%u: %pV", 6781 level, link->ap->print_id, &vaf); 6782 6783 va_end(args); 6784 } 6785 EXPORT_SYMBOL(ata_link_printk); 6786 6787 void ata_dev_printk(const struct ata_device *dev, const char *level, 6788 const char *fmt, ...) 6789 { 6790 struct va_format vaf; 6791 va_list args; 6792 6793 va_start(args, fmt); 6794 6795 vaf.fmt = fmt; 6796 vaf.va = &args; 6797 6798 printk("%sata%u.%02u: %pV", 6799 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6800 &vaf); 6801 6802 va_end(args); 6803 } 6804 EXPORT_SYMBOL(ata_dev_printk); 6805 6806 void ata_print_version(const struct device *dev, const char *version) 6807 { 6808 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6809 } 6810 EXPORT_SYMBOL(ata_print_version); 6811 6812 /* 6813 * libata is essentially a library of internal helper functions for 6814 * low-level ATA host controller drivers. As such, the API/ABI is 6815 * likely to change as new drivers are added and updated. 6816 * Do not depend on ABI/API stability. 6817 */ 6818 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6819 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6820 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6821 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6822 EXPORT_SYMBOL_GPL(sata_port_ops); 6823 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6824 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6825 EXPORT_SYMBOL_GPL(ata_link_next); 6826 EXPORT_SYMBOL_GPL(ata_dev_next); 6827 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6828 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6829 EXPORT_SYMBOL_GPL(ata_host_init); 6830 EXPORT_SYMBOL_GPL(ata_host_alloc); 6831 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6832 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6833 EXPORT_SYMBOL_GPL(ata_host_start); 6834 EXPORT_SYMBOL_GPL(ata_host_register); 6835 EXPORT_SYMBOL_GPL(ata_host_activate); 6836 EXPORT_SYMBOL_GPL(ata_host_detach); 6837 EXPORT_SYMBOL_GPL(ata_sg_init); 6838 EXPORT_SYMBOL_GPL(ata_qc_complete); 6839 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6840 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6841 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6842 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6843 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6844 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6845 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6846 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6847 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6848 EXPORT_SYMBOL_GPL(ata_mode_string); 6849 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6850 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6851 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6852 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6853 EXPORT_SYMBOL_GPL(ata_dev_disable); 6854 EXPORT_SYMBOL_GPL(sata_set_spd); 6855 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6856 EXPORT_SYMBOL_GPL(sata_link_debounce); 6857 EXPORT_SYMBOL_GPL(sata_link_resume); 6858 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6859 EXPORT_SYMBOL_GPL(ata_std_prereset); 6860 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6861 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6862 EXPORT_SYMBOL_GPL(ata_std_postreset); 6863 EXPORT_SYMBOL_GPL(ata_dev_classify); 6864 EXPORT_SYMBOL_GPL(ata_dev_pair); 6865 EXPORT_SYMBOL_GPL(ata_ratelimit); 6866 EXPORT_SYMBOL_GPL(ata_msleep); 6867 EXPORT_SYMBOL_GPL(ata_wait_register); 6868 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6869 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6870 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6871 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6872 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6873 EXPORT_SYMBOL_GPL(sata_scr_valid); 6874 EXPORT_SYMBOL_GPL(sata_scr_read); 6875 EXPORT_SYMBOL_GPL(sata_scr_write); 6876 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6877 EXPORT_SYMBOL_GPL(ata_link_online); 6878 EXPORT_SYMBOL_GPL(ata_link_offline); 6879 #ifdef CONFIG_PM 6880 EXPORT_SYMBOL_GPL(ata_host_suspend); 6881 EXPORT_SYMBOL_GPL(ata_host_resume); 6882 #endif /* CONFIG_PM */ 6883 EXPORT_SYMBOL_GPL(ata_id_string); 6884 EXPORT_SYMBOL_GPL(ata_id_c_string); 6885 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6886 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6887 6888 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6889 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6890 EXPORT_SYMBOL_GPL(ata_timing_compute); 6891 EXPORT_SYMBOL_GPL(ata_timing_merge); 6892 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6893 6894 #ifdef CONFIG_PCI 6895 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6896 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6897 #ifdef CONFIG_PM 6898 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6899 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6900 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6901 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6902 #endif /* CONFIG_PM */ 6903 #endif /* CONFIG_PCI */ 6904 6905 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6906 6907 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6908 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6909 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6910 EXPORT_SYMBOL_GPL(ata_port_desc); 6911 #ifdef CONFIG_PCI 6912 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6913 #endif /* CONFIG_PCI */ 6914 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6915 EXPORT_SYMBOL_GPL(ata_link_abort); 6916 EXPORT_SYMBOL_GPL(ata_port_abort); 6917 EXPORT_SYMBOL_GPL(ata_port_freeze); 6918 EXPORT_SYMBOL_GPL(sata_async_notification); 6919 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6920 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6921 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6922 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6923 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6924 EXPORT_SYMBOL_GPL(ata_do_eh); 6925 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6926 6927 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6928 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6929 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6930 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6931 EXPORT_SYMBOL_GPL(ata_cable_sata); 6932