xref: /openbmc/linux/drivers/ata/libata-core.c (revision cc19db8b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned long	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags;
100 };
101 
102 struct ata_force_ent {
103 	int			port;
104 	int			device;
105 	struct ata_force_param	param;
106 };
107 
108 static struct ata_force_ent *ata_force_tbl;
109 static int ata_force_tbl_size;
110 
111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112 /* param_buf is thrown away after initialization, disallow read */
113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115 #endif
116 
117 static int atapi_enabled = 1;
118 module_param(atapi_enabled, int, 0444);
119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120 
121 static int atapi_dmadir = 0;
122 module_param(atapi_dmadir, int, 0444);
123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124 
125 int atapi_passthru16 = 1;
126 module_param(atapi_passthru16, int, 0444);
127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128 
129 int libata_fua = 0;
130 module_param_named(fua, libata_fua, int, 0444);
131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132 
133 static int ata_ignore_hpa;
134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136 
137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138 module_param_named(dma, libata_dma_mask, int, 0444);
139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140 
141 static int ata_probe_timeout;
142 module_param(ata_probe_timeout, int, 0444);
143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144 
145 int libata_noacpi = 0;
146 module_param_named(noacpi, libata_noacpi, int, 0444);
147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148 
149 int libata_allow_tpm = 0;
150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152 
153 static int atapi_an;
154 module_param(atapi_an, int, 0444);
155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156 
157 MODULE_AUTHOR("Jeff Garzik");
158 MODULE_DESCRIPTION("Library module for ATA devices");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION);
161 
162 static inline bool ata_dev_print_info(struct ata_device *dev)
163 {
164 	struct ata_eh_context *ehc = &dev->link->eh_context;
165 
166 	return ehc->i.flags & ATA_EHI_PRINTINFO;
167 }
168 
169 static bool ata_sstatus_online(u32 sstatus)
170 {
171 	return (sstatus & 0xf) == 0x3;
172 }
173 
174 /**
175  *	ata_link_next - link iteration helper
176  *	@link: the previous link, NULL to start
177  *	@ap: ATA port containing links to iterate
178  *	@mode: iteration mode, one of ATA_LITER_*
179  *
180  *	LOCKING:
181  *	Host lock or EH context.
182  *
183  *	RETURNS:
184  *	Pointer to the next link.
185  */
186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 			       enum ata_link_iter_mode mode)
188 {
189 	BUG_ON(mode != ATA_LITER_EDGE &&
190 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191 
192 	/* NULL link indicates start of iteration */
193 	if (!link)
194 		switch (mode) {
195 		case ATA_LITER_EDGE:
196 		case ATA_LITER_PMP_FIRST:
197 			if (sata_pmp_attached(ap))
198 				return ap->pmp_link;
199 			fallthrough;
200 		case ATA_LITER_HOST_FIRST:
201 			return &ap->link;
202 		}
203 
204 	/* we just iterated over the host link, what's next? */
205 	if (link == &ap->link)
206 		switch (mode) {
207 		case ATA_LITER_HOST_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			fallthrough;
211 		case ATA_LITER_PMP_FIRST:
212 			if (unlikely(ap->slave_link))
213 				return ap->slave_link;
214 			fallthrough;
215 		case ATA_LITER_EDGE:
216 			return NULL;
217 		}
218 
219 	/* slave_link excludes PMP */
220 	if (unlikely(link == ap->slave_link))
221 		return NULL;
222 
223 	/* we were over a PMP link */
224 	if (++link < ap->pmp_link + ap->nr_pmp_links)
225 		return link;
226 
227 	if (mode == ATA_LITER_PMP_FIRST)
228 		return &ap->link;
229 
230 	return NULL;
231 }
232 EXPORT_SYMBOL_GPL(ata_link_next);
233 
234 /**
235  *	ata_dev_next - device iteration helper
236  *	@dev: the previous device, NULL to start
237  *	@link: ATA link containing devices to iterate
238  *	@mode: iteration mode, one of ATA_DITER_*
239  *
240  *	LOCKING:
241  *	Host lock or EH context.
242  *
243  *	RETURNS:
244  *	Pointer to the next device.
245  */
246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 				enum ata_dev_iter_mode mode)
248 {
249 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251 
252 	/* NULL dev indicates start of iteration */
253 	if (!dev)
254 		switch (mode) {
255 		case ATA_DITER_ENABLED:
256 		case ATA_DITER_ALL:
257 			dev = link->device;
258 			goto check;
259 		case ATA_DITER_ENABLED_REVERSE:
260 		case ATA_DITER_ALL_REVERSE:
261 			dev = link->device + ata_link_max_devices(link) - 1;
262 			goto check;
263 		}
264 
265  next:
266 	/* move to the next one */
267 	switch (mode) {
268 	case ATA_DITER_ENABLED:
269 	case ATA_DITER_ALL:
270 		if (++dev < link->device + ata_link_max_devices(link))
271 			goto check;
272 		return NULL;
273 	case ATA_DITER_ENABLED_REVERSE:
274 	case ATA_DITER_ALL_REVERSE:
275 		if (--dev >= link->device)
276 			goto check;
277 		return NULL;
278 	}
279 
280  check:
281 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 	    !ata_dev_enabled(dev))
283 		goto next;
284 	return dev;
285 }
286 EXPORT_SYMBOL_GPL(ata_dev_next);
287 
288 /**
289  *	ata_dev_phys_link - find physical link for a device
290  *	@dev: ATA device to look up physical link for
291  *
292  *	Look up physical link which @dev is attached to.  Note that
293  *	this is different from @dev->link only when @dev is on slave
294  *	link.  For all other cases, it's the same as @dev->link.
295  *
296  *	LOCKING:
297  *	Don't care.
298  *
299  *	RETURNS:
300  *	Pointer to the found physical link.
301  */
302 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
303 {
304 	struct ata_port *ap = dev->link->ap;
305 
306 	if (!ap->slave_link)
307 		return dev->link;
308 	if (!dev->devno)
309 		return &ap->link;
310 	return ap->slave_link;
311 }
312 
313 #ifdef CONFIG_ATA_FORCE
314 /**
315  *	ata_force_cbl - force cable type according to libata.force
316  *	@ap: ATA port of interest
317  *
318  *	Force cable type according to libata.force and whine about it.
319  *	The last entry which has matching port number is used, so it
320  *	can be specified as part of device force parameters.  For
321  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322  *	same effect.
323  *
324  *	LOCKING:
325  *	EH context.
326  */
327 void ata_force_cbl(struct ata_port *ap)
328 {
329 	int i;
330 
331 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 		const struct ata_force_ent *fe = &ata_force_tbl[i];
333 
334 		if (fe->port != -1 && fe->port != ap->print_id)
335 			continue;
336 
337 		if (fe->param.cbl == ATA_CBL_NONE)
338 			continue;
339 
340 		ap->cbl = fe->param.cbl;
341 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
342 		return;
343 	}
344 }
345 
346 /**
347  *	ata_force_link_limits - force link limits according to libata.force
348  *	@link: ATA link of interest
349  *
350  *	Force link flags and SATA spd limit according to libata.force
351  *	and whine about it.  When only the port part is specified
352  *	(e.g. 1:), the limit applies to all links connected to both
353  *	the host link and all fan-out ports connected via PMP.  If the
354  *	device part is specified as 0 (e.g. 1.00:), it specifies the
355  *	first fan-out link not the host link.  Device number 15 always
356  *	points to the host link whether PMP is attached or not.  If the
357  *	controller has slave link, device number 16 points to it.
358  *
359  *	LOCKING:
360  *	EH context.
361  */
362 static void ata_force_link_limits(struct ata_link *link)
363 {
364 	bool did_spd = false;
365 	int linkno = link->pmp;
366 	int i;
367 
368 	if (ata_is_host_link(link))
369 		linkno += 15;
370 
371 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 		const struct ata_force_ent *fe = &ata_force_tbl[i];
373 
374 		if (fe->port != -1 && fe->port != link->ap->print_id)
375 			continue;
376 
377 		if (fe->device != -1 && fe->device != linkno)
378 			continue;
379 
380 		/* only honor the first spd limit */
381 		if (!did_spd && fe->param.spd_limit) {
382 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
384 					fe->param.name);
385 			did_spd = true;
386 		}
387 
388 		/* let lflags stack */
389 		if (fe->param.lflags) {
390 			link->flags |= fe->param.lflags;
391 			ata_link_notice(link,
392 					"FORCE: link flag 0x%x forced -> 0x%x\n",
393 					fe->param.lflags, link->flags);
394 		}
395 	}
396 }
397 
398 /**
399  *	ata_force_xfermask - force xfermask according to libata.force
400  *	@dev: ATA device of interest
401  *
402  *	Force xfer_mask according to libata.force and whine about it.
403  *	For consistency with link selection, device number 15 selects
404  *	the first device connected to the host link.
405  *
406  *	LOCKING:
407  *	EH context.
408  */
409 static void ata_force_xfermask(struct ata_device *dev)
410 {
411 	int devno = dev->link->pmp + dev->devno;
412 	int alt_devno = devno;
413 	int i;
414 
415 	/* allow n.15/16 for devices attached to host port */
416 	if (ata_is_host_link(dev->link))
417 		alt_devno += 15;
418 
419 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 		const struct ata_force_ent *fe = &ata_force_tbl[i];
421 		unsigned long pio_mask, mwdma_mask, udma_mask;
422 
423 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 			continue;
425 
426 		if (fe->device != -1 && fe->device != devno &&
427 		    fe->device != alt_devno)
428 			continue;
429 
430 		if (!fe->param.xfer_mask)
431 			continue;
432 
433 		ata_unpack_xfermask(fe->param.xfer_mask,
434 				    &pio_mask, &mwdma_mask, &udma_mask);
435 		if (udma_mask)
436 			dev->udma_mask = udma_mask;
437 		else if (mwdma_mask) {
438 			dev->udma_mask = 0;
439 			dev->mwdma_mask = mwdma_mask;
440 		} else {
441 			dev->udma_mask = 0;
442 			dev->mwdma_mask = 0;
443 			dev->pio_mask = pio_mask;
444 		}
445 
446 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
447 			       fe->param.name);
448 		return;
449 	}
450 }
451 
452 /**
453  *	ata_force_horkage - force horkage according to libata.force
454  *	@dev: ATA device of interest
455  *
456  *	Force horkage according to libata.force and whine about it.
457  *	For consistency with link selection, device number 15 selects
458  *	the first device connected to the host link.
459  *
460  *	LOCKING:
461  *	EH context.
462  */
463 static void ata_force_horkage(struct ata_device *dev)
464 {
465 	int devno = dev->link->pmp + dev->devno;
466 	int alt_devno = devno;
467 	int i;
468 
469 	/* allow n.15/16 for devices attached to host port */
470 	if (ata_is_host_link(dev->link))
471 		alt_devno += 15;
472 
473 	for (i = 0; i < ata_force_tbl_size; i++) {
474 		const struct ata_force_ent *fe = &ata_force_tbl[i];
475 
476 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 			continue;
478 
479 		if (fe->device != -1 && fe->device != devno &&
480 		    fe->device != alt_devno)
481 			continue;
482 
483 		if (!(~dev->horkage & fe->param.horkage_on) &&
484 		    !(dev->horkage & fe->param.horkage_off))
485 			continue;
486 
487 		dev->horkage |= fe->param.horkage_on;
488 		dev->horkage &= ~fe->param.horkage_off;
489 
490 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
491 			       fe->param.name);
492 	}
493 }
494 #else
495 static inline void ata_force_link_limits(struct ata_link *link) { }
496 static inline void ata_force_xfermask(struct ata_device *dev) { }
497 static inline void ata_force_horkage(struct ata_device *dev) { }
498 #endif
499 
500 /**
501  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502  *	@opcode: SCSI opcode
503  *
504  *	Determine ATAPI command type from @opcode.
505  *
506  *	LOCKING:
507  *	None.
508  *
509  *	RETURNS:
510  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
511  */
512 int atapi_cmd_type(u8 opcode)
513 {
514 	switch (opcode) {
515 	case GPCMD_READ_10:
516 	case GPCMD_READ_12:
517 		return ATAPI_READ;
518 
519 	case GPCMD_WRITE_10:
520 	case GPCMD_WRITE_12:
521 	case GPCMD_WRITE_AND_VERIFY_10:
522 		return ATAPI_WRITE;
523 
524 	case GPCMD_READ_CD:
525 	case GPCMD_READ_CD_MSF:
526 		return ATAPI_READ_CD;
527 
528 	case ATA_16:
529 	case ATA_12:
530 		if (atapi_passthru16)
531 			return ATAPI_PASS_THRU;
532 		fallthrough;
533 	default:
534 		return ATAPI_MISC;
535 	}
536 }
537 EXPORT_SYMBOL_GPL(atapi_cmd_type);
538 
539 static const u8 ata_rw_cmds[] = {
540 	/* pio multi */
541 	ATA_CMD_READ_MULTI,
542 	ATA_CMD_WRITE_MULTI,
543 	ATA_CMD_READ_MULTI_EXT,
544 	ATA_CMD_WRITE_MULTI_EXT,
545 	0,
546 	0,
547 	0,
548 	ATA_CMD_WRITE_MULTI_FUA_EXT,
549 	/* pio */
550 	ATA_CMD_PIO_READ,
551 	ATA_CMD_PIO_WRITE,
552 	ATA_CMD_PIO_READ_EXT,
553 	ATA_CMD_PIO_WRITE_EXT,
554 	0,
555 	0,
556 	0,
557 	0,
558 	/* dma */
559 	ATA_CMD_READ,
560 	ATA_CMD_WRITE,
561 	ATA_CMD_READ_EXT,
562 	ATA_CMD_WRITE_EXT,
563 	0,
564 	0,
565 	0,
566 	ATA_CMD_WRITE_FUA_EXT
567 };
568 
569 /**
570  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
571  *	@tf: command to examine and configure
572  *	@dev: device tf belongs to
573  *
574  *	Examine the device configuration and tf->flags to calculate
575  *	the proper read/write commands and protocol to use.
576  *
577  *	LOCKING:
578  *	caller.
579  */
580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
581 {
582 	u8 cmd;
583 
584 	int index, fua, lba48, write;
585 
586 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
587 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
588 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
589 
590 	if (dev->flags & ATA_DFLAG_PIO) {
591 		tf->protocol = ATA_PROT_PIO;
592 		index = dev->multi_count ? 0 : 8;
593 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
594 		/* Unable to use DMA due to host limitation */
595 		tf->protocol = ATA_PROT_PIO;
596 		index = dev->multi_count ? 0 : 8;
597 	} else {
598 		tf->protocol = ATA_PROT_DMA;
599 		index = 16;
600 	}
601 
602 	cmd = ata_rw_cmds[index + fua + lba48 + write];
603 	if (cmd) {
604 		tf->command = cmd;
605 		return 0;
606 	}
607 	return -1;
608 }
609 
610 /**
611  *	ata_tf_read_block - Read block address from ATA taskfile
612  *	@tf: ATA taskfile of interest
613  *	@dev: ATA device @tf belongs to
614  *
615  *	LOCKING:
616  *	None.
617  *
618  *	Read block address from @tf.  This function can handle all
619  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
620  *	flags select the address format to use.
621  *
622  *	RETURNS:
623  *	Block address read from @tf.
624  */
625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
626 {
627 	u64 block = 0;
628 
629 	if (tf->flags & ATA_TFLAG_LBA) {
630 		if (tf->flags & ATA_TFLAG_LBA48) {
631 			block |= (u64)tf->hob_lbah << 40;
632 			block |= (u64)tf->hob_lbam << 32;
633 			block |= (u64)tf->hob_lbal << 24;
634 		} else
635 			block |= (tf->device & 0xf) << 24;
636 
637 		block |= tf->lbah << 16;
638 		block |= tf->lbam << 8;
639 		block |= tf->lbal;
640 	} else {
641 		u32 cyl, head, sect;
642 
643 		cyl = tf->lbam | (tf->lbah << 8);
644 		head = tf->device & 0xf;
645 		sect = tf->lbal;
646 
647 		if (!sect) {
648 			ata_dev_warn(dev,
649 				     "device reported invalid CHS sector 0\n");
650 			return U64_MAX;
651 		}
652 
653 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
654 	}
655 
656 	return block;
657 }
658 
659 /**
660  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
661  *	@tf: Target ATA taskfile
662  *	@dev: ATA device @tf belongs to
663  *	@block: Block address
664  *	@n_block: Number of blocks
665  *	@tf_flags: RW/FUA etc...
666  *	@tag: tag
667  *	@class: IO priority class
668  *
669  *	LOCKING:
670  *	None.
671  *
672  *	Build ATA taskfile @tf for read/write request described by
673  *	@block, @n_block, @tf_flags and @tag on @dev.
674  *
675  *	RETURNS:
676  *
677  *	0 on success, -ERANGE if the request is too large for @dev,
678  *	-EINVAL if the request is invalid.
679  */
680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
681 		    u64 block, u32 n_block, unsigned int tf_flags,
682 		    unsigned int tag, int class)
683 {
684 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
685 	tf->flags |= tf_flags;
686 
687 	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
688 		/* yay, NCQ */
689 		if (!lba_48_ok(block, n_block))
690 			return -ERANGE;
691 
692 		tf->protocol = ATA_PROT_NCQ;
693 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
694 
695 		if (tf->flags & ATA_TFLAG_WRITE)
696 			tf->command = ATA_CMD_FPDMA_WRITE;
697 		else
698 			tf->command = ATA_CMD_FPDMA_READ;
699 
700 		tf->nsect = tag << 3;
701 		tf->hob_feature = (n_block >> 8) & 0xff;
702 		tf->feature = n_block & 0xff;
703 
704 		tf->hob_lbah = (block >> 40) & 0xff;
705 		tf->hob_lbam = (block >> 32) & 0xff;
706 		tf->hob_lbal = (block >> 24) & 0xff;
707 		tf->lbah = (block >> 16) & 0xff;
708 		tf->lbam = (block >> 8) & 0xff;
709 		tf->lbal = block & 0xff;
710 
711 		tf->device = ATA_LBA;
712 		if (tf->flags & ATA_TFLAG_FUA)
713 			tf->device |= 1 << 7;
714 
715 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE &&
716 		    class == IOPRIO_CLASS_RT)
717 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
718 	} else if (dev->flags & ATA_DFLAG_LBA) {
719 		tf->flags |= ATA_TFLAG_LBA;
720 
721 		if (lba_28_ok(block, n_block)) {
722 			/* use LBA28 */
723 			tf->device |= (block >> 24) & 0xf;
724 		} else if (lba_48_ok(block, n_block)) {
725 			if (!(dev->flags & ATA_DFLAG_LBA48))
726 				return -ERANGE;
727 
728 			/* use LBA48 */
729 			tf->flags |= ATA_TFLAG_LBA48;
730 
731 			tf->hob_nsect = (n_block >> 8) & 0xff;
732 
733 			tf->hob_lbah = (block >> 40) & 0xff;
734 			tf->hob_lbam = (block >> 32) & 0xff;
735 			tf->hob_lbal = (block >> 24) & 0xff;
736 		} else
737 			/* request too large even for LBA48 */
738 			return -ERANGE;
739 
740 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
741 			return -EINVAL;
742 
743 		tf->nsect = n_block & 0xff;
744 
745 		tf->lbah = (block >> 16) & 0xff;
746 		tf->lbam = (block >> 8) & 0xff;
747 		tf->lbal = block & 0xff;
748 
749 		tf->device |= ATA_LBA;
750 	} else {
751 		/* CHS */
752 		u32 sect, head, cyl, track;
753 
754 		/* The request -may- be too large for CHS addressing. */
755 		if (!lba_28_ok(block, n_block))
756 			return -ERANGE;
757 
758 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
759 			return -EINVAL;
760 
761 		/* Convert LBA to CHS */
762 		track = (u32)block / dev->sectors;
763 		cyl   = track / dev->heads;
764 		head  = track % dev->heads;
765 		sect  = (u32)block % dev->sectors + 1;
766 
767 		/* Check whether the converted CHS can fit.
768 		   Cylinder: 0-65535
769 		   Head: 0-15
770 		   Sector: 1-255*/
771 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
772 			return -ERANGE;
773 
774 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
775 		tf->lbal = sect;
776 		tf->lbam = cyl;
777 		tf->lbah = cyl >> 8;
778 		tf->device |= head;
779 	}
780 
781 	return 0;
782 }
783 
784 /**
785  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
786  *	@pio_mask: pio_mask
787  *	@mwdma_mask: mwdma_mask
788  *	@udma_mask: udma_mask
789  *
790  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
791  *	unsigned int xfer_mask.
792  *
793  *	LOCKING:
794  *	None.
795  *
796  *	RETURNS:
797  *	Packed xfer_mask.
798  */
799 unsigned long ata_pack_xfermask(unsigned long pio_mask,
800 				unsigned long mwdma_mask,
801 				unsigned long udma_mask)
802 {
803 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
804 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
805 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
806 }
807 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
808 
809 /**
810  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
811  *	@xfer_mask: xfer_mask to unpack
812  *	@pio_mask: resulting pio_mask
813  *	@mwdma_mask: resulting mwdma_mask
814  *	@udma_mask: resulting udma_mask
815  *
816  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
817  *	Any NULL destination masks will be ignored.
818  */
819 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
820 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
821 {
822 	if (pio_mask)
823 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
824 	if (mwdma_mask)
825 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
826 	if (udma_mask)
827 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
828 }
829 
830 static const struct ata_xfer_ent {
831 	int shift, bits;
832 	u8 base;
833 } ata_xfer_tbl[] = {
834 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
835 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
836 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
837 	{ -1, },
838 };
839 
840 /**
841  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
842  *	@xfer_mask: xfer_mask of interest
843  *
844  *	Return matching XFER_* value for @xfer_mask.  Only the highest
845  *	bit of @xfer_mask is considered.
846  *
847  *	LOCKING:
848  *	None.
849  *
850  *	RETURNS:
851  *	Matching XFER_* value, 0xff if no match found.
852  */
853 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
854 {
855 	int highbit = fls(xfer_mask) - 1;
856 	const struct ata_xfer_ent *ent;
857 
858 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
859 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
860 			return ent->base + highbit - ent->shift;
861 	return 0xff;
862 }
863 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
864 
865 /**
866  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
867  *	@xfer_mode: XFER_* of interest
868  *
869  *	Return matching xfer_mask for @xfer_mode.
870  *
871  *	LOCKING:
872  *	None.
873  *
874  *	RETURNS:
875  *	Matching xfer_mask, 0 if no match found.
876  */
877 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
878 {
879 	const struct ata_xfer_ent *ent;
880 
881 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
882 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
883 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
884 				& ~((1 << ent->shift) - 1);
885 	return 0;
886 }
887 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
888 
889 /**
890  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
891  *	@xfer_mode: XFER_* of interest
892  *
893  *	Return matching xfer_shift for @xfer_mode.
894  *
895  *	LOCKING:
896  *	None.
897  *
898  *	RETURNS:
899  *	Matching xfer_shift, -1 if no match found.
900  */
901 int ata_xfer_mode2shift(unsigned long xfer_mode)
902 {
903 	const struct ata_xfer_ent *ent;
904 
905 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
906 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
907 			return ent->shift;
908 	return -1;
909 }
910 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
911 
912 /**
913  *	ata_mode_string - convert xfer_mask to string
914  *	@xfer_mask: mask of bits supported; only highest bit counts.
915  *
916  *	Determine string which represents the highest speed
917  *	(highest bit in @modemask).
918  *
919  *	LOCKING:
920  *	None.
921  *
922  *	RETURNS:
923  *	Constant C string representing highest speed listed in
924  *	@mode_mask, or the constant C string "<n/a>".
925  */
926 const char *ata_mode_string(unsigned long xfer_mask)
927 {
928 	static const char * const xfer_mode_str[] = {
929 		"PIO0",
930 		"PIO1",
931 		"PIO2",
932 		"PIO3",
933 		"PIO4",
934 		"PIO5",
935 		"PIO6",
936 		"MWDMA0",
937 		"MWDMA1",
938 		"MWDMA2",
939 		"MWDMA3",
940 		"MWDMA4",
941 		"UDMA/16",
942 		"UDMA/25",
943 		"UDMA/33",
944 		"UDMA/44",
945 		"UDMA/66",
946 		"UDMA/100",
947 		"UDMA/133",
948 		"UDMA7",
949 	};
950 	int highbit;
951 
952 	highbit = fls(xfer_mask) - 1;
953 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
954 		return xfer_mode_str[highbit];
955 	return "<n/a>";
956 }
957 EXPORT_SYMBOL_GPL(ata_mode_string);
958 
959 const char *sata_spd_string(unsigned int spd)
960 {
961 	static const char * const spd_str[] = {
962 		"1.5 Gbps",
963 		"3.0 Gbps",
964 		"6.0 Gbps",
965 	};
966 
967 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
968 		return "<unknown>";
969 	return spd_str[spd - 1];
970 }
971 
972 /**
973  *	ata_dev_classify - determine device type based on ATA-spec signature
974  *	@tf: ATA taskfile register set for device to be identified
975  *
976  *	Determine from taskfile register contents whether a device is
977  *	ATA or ATAPI, as per "Signature and persistence" section
978  *	of ATA/PI spec (volume 1, sect 5.14).
979  *
980  *	LOCKING:
981  *	None.
982  *
983  *	RETURNS:
984  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
985  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
986  */
987 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
988 {
989 	/* Apple's open source Darwin code hints that some devices only
990 	 * put a proper signature into the LBA mid/high registers,
991 	 * So, we only check those.  It's sufficient for uniqueness.
992 	 *
993 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
994 	 * signatures for ATA and ATAPI devices attached on SerialATA,
995 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
996 	 * spec has never mentioned about using different signatures
997 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
998 	 * Multiplier specification began to use 0x69/0x96 to identify
999 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1000 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1001 	 * 0x69/0x96 shortly and described them as reserved for
1002 	 * SerialATA.
1003 	 *
1004 	 * We follow the current spec and consider that 0x69/0x96
1005 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1006 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1007 	 * SEMB signature.  This is worked around in
1008 	 * ata_dev_read_id().
1009 	 */
1010 	if (tf->lbam == 0 && tf->lbah == 0)
1011 		return ATA_DEV_ATA;
1012 
1013 	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1014 		return ATA_DEV_ATAPI;
1015 
1016 	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1017 		return ATA_DEV_PMP;
1018 
1019 	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1020 		return ATA_DEV_SEMB;
1021 
1022 	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1023 		return ATA_DEV_ZAC;
1024 
1025 	return ATA_DEV_UNKNOWN;
1026 }
1027 EXPORT_SYMBOL_GPL(ata_dev_classify);
1028 
1029 /**
1030  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1031  *	@id: IDENTIFY DEVICE results we will examine
1032  *	@s: string into which data is output
1033  *	@ofs: offset into identify device page
1034  *	@len: length of string to return. must be an even number.
1035  *
1036  *	The strings in the IDENTIFY DEVICE page are broken up into
1037  *	16-bit chunks.  Run through the string, and output each
1038  *	8-bit chunk linearly, regardless of platform.
1039  *
1040  *	LOCKING:
1041  *	caller.
1042  */
1043 
1044 void ata_id_string(const u16 *id, unsigned char *s,
1045 		   unsigned int ofs, unsigned int len)
1046 {
1047 	unsigned int c;
1048 
1049 	BUG_ON(len & 1);
1050 
1051 	while (len > 0) {
1052 		c = id[ofs] >> 8;
1053 		*s = c;
1054 		s++;
1055 
1056 		c = id[ofs] & 0xff;
1057 		*s = c;
1058 		s++;
1059 
1060 		ofs++;
1061 		len -= 2;
1062 	}
1063 }
1064 EXPORT_SYMBOL_GPL(ata_id_string);
1065 
1066 /**
1067  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1068  *	@id: IDENTIFY DEVICE results we will examine
1069  *	@s: string into which data is output
1070  *	@ofs: offset into identify device page
1071  *	@len: length of string to return. must be an odd number.
1072  *
1073  *	This function is identical to ata_id_string except that it
1074  *	trims trailing spaces and terminates the resulting string with
1075  *	null.  @len must be actual maximum length (even number) + 1.
1076  *
1077  *	LOCKING:
1078  *	caller.
1079  */
1080 void ata_id_c_string(const u16 *id, unsigned char *s,
1081 		     unsigned int ofs, unsigned int len)
1082 {
1083 	unsigned char *p;
1084 
1085 	ata_id_string(id, s, ofs, len - 1);
1086 
1087 	p = s + strnlen(s, len - 1);
1088 	while (p > s && p[-1] == ' ')
1089 		p--;
1090 	*p = '\0';
1091 }
1092 EXPORT_SYMBOL_GPL(ata_id_c_string);
1093 
1094 static u64 ata_id_n_sectors(const u16 *id)
1095 {
1096 	if (ata_id_has_lba(id)) {
1097 		if (ata_id_has_lba48(id))
1098 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1099 		else
1100 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1101 	} else {
1102 		if (ata_id_current_chs_valid(id))
1103 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1104 			       id[ATA_ID_CUR_SECTORS];
1105 		else
1106 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1107 			       id[ATA_ID_SECTORS];
1108 	}
1109 }
1110 
1111 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1112 {
1113 	u64 sectors = 0;
1114 
1115 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1116 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1117 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1118 	sectors |= (tf->lbah & 0xff) << 16;
1119 	sectors |= (tf->lbam & 0xff) << 8;
1120 	sectors |= (tf->lbal & 0xff);
1121 
1122 	return sectors;
1123 }
1124 
1125 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1126 {
1127 	u64 sectors = 0;
1128 
1129 	sectors |= (tf->device & 0x0f) << 24;
1130 	sectors |= (tf->lbah & 0xff) << 16;
1131 	sectors |= (tf->lbam & 0xff) << 8;
1132 	sectors |= (tf->lbal & 0xff);
1133 
1134 	return sectors;
1135 }
1136 
1137 /**
1138  *	ata_read_native_max_address - Read native max address
1139  *	@dev: target device
1140  *	@max_sectors: out parameter for the result native max address
1141  *
1142  *	Perform an LBA48 or LBA28 native size query upon the device in
1143  *	question.
1144  *
1145  *	RETURNS:
1146  *	0 on success, -EACCES if command is aborted by the drive.
1147  *	-EIO on other errors.
1148  */
1149 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1150 {
1151 	unsigned int err_mask;
1152 	struct ata_taskfile tf;
1153 	int lba48 = ata_id_has_lba48(dev->id);
1154 
1155 	ata_tf_init(dev, &tf);
1156 
1157 	/* always clear all address registers */
1158 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1159 
1160 	if (lba48) {
1161 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1162 		tf.flags |= ATA_TFLAG_LBA48;
1163 	} else
1164 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1165 
1166 	tf.protocol = ATA_PROT_NODATA;
1167 	tf.device |= ATA_LBA;
1168 
1169 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1170 	if (err_mask) {
1171 		ata_dev_warn(dev,
1172 			     "failed to read native max address (err_mask=0x%x)\n",
1173 			     err_mask);
1174 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1175 			return -EACCES;
1176 		return -EIO;
1177 	}
1178 
1179 	if (lba48)
1180 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1181 	else
1182 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1183 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1184 		(*max_sectors)--;
1185 	return 0;
1186 }
1187 
1188 /**
1189  *	ata_set_max_sectors - Set max sectors
1190  *	@dev: target device
1191  *	@new_sectors: new max sectors value to set for the device
1192  *
1193  *	Set max sectors of @dev to @new_sectors.
1194  *
1195  *	RETURNS:
1196  *	0 on success, -EACCES if command is aborted or denied (due to
1197  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1198  *	errors.
1199  */
1200 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1201 {
1202 	unsigned int err_mask;
1203 	struct ata_taskfile tf;
1204 	int lba48 = ata_id_has_lba48(dev->id);
1205 
1206 	new_sectors--;
1207 
1208 	ata_tf_init(dev, &tf);
1209 
1210 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1211 
1212 	if (lba48) {
1213 		tf.command = ATA_CMD_SET_MAX_EXT;
1214 		tf.flags |= ATA_TFLAG_LBA48;
1215 
1216 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1217 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1218 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1219 	} else {
1220 		tf.command = ATA_CMD_SET_MAX;
1221 
1222 		tf.device |= (new_sectors >> 24) & 0xf;
1223 	}
1224 
1225 	tf.protocol = ATA_PROT_NODATA;
1226 	tf.device |= ATA_LBA;
1227 
1228 	tf.lbal = (new_sectors >> 0) & 0xff;
1229 	tf.lbam = (new_sectors >> 8) & 0xff;
1230 	tf.lbah = (new_sectors >> 16) & 0xff;
1231 
1232 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1233 	if (err_mask) {
1234 		ata_dev_warn(dev,
1235 			     "failed to set max address (err_mask=0x%x)\n",
1236 			     err_mask);
1237 		if (err_mask == AC_ERR_DEV &&
1238 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1239 			return -EACCES;
1240 		return -EIO;
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 /**
1247  *	ata_hpa_resize		-	Resize a device with an HPA set
1248  *	@dev: Device to resize
1249  *
1250  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1251  *	it if required to the full size of the media. The caller must check
1252  *	the drive has the HPA feature set enabled.
1253  *
1254  *	RETURNS:
1255  *	0 on success, -errno on failure.
1256  */
1257 static int ata_hpa_resize(struct ata_device *dev)
1258 {
1259 	bool print_info = ata_dev_print_info(dev);
1260 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1261 	u64 sectors = ata_id_n_sectors(dev->id);
1262 	u64 native_sectors;
1263 	int rc;
1264 
1265 	/* do we need to do it? */
1266 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1267 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1268 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1269 		return 0;
1270 
1271 	/* read native max address */
1272 	rc = ata_read_native_max_address(dev, &native_sectors);
1273 	if (rc) {
1274 		/* If device aborted the command or HPA isn't going to
1275 		 * be unlocked, skip HPA resizing.
1276 		 */
1277 		if (rc == -EACCES || !unlock_hpa) {
1278 			ata_dev_warn(dev,
1279 				     "HPA support seems broken, skipping HPA handling\n");
1280 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1281 
1282 			/* we can continue if device aborted the command */
1283 			if (rc == -EACCES)
1284 				rc = 0;
1285 		}
1286 
1287 		return rc;
1288 	}
1289 	dev->n_native_sectors = native_sectors;
1290 
1291 	/* nothing to do? */
1292 	if (native_sectors <= sectors || !unlock_hpa) {
1293 		if (!print_info || native_sectors == sectors)
1294 			return 0;
1295 
1296 		if (native_sectors > sectors)
1297 			ata_dev_info(dev,
1298 				"HPA detected: current %llu, native %llu\n",
1299 				(unsigned long long)sectors,
1300 				(unsigned long long)native_sectors);
1301 		else if (native_sectors < sectors)
1302 			ata_dev_warn(dev,
1303 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1304 				(unsigned long long)native_sectors,
1305 				(unsigned long long)sectors);
1306 		return 0;
1307 	}
1308 
1309 	/* let's unlock HPA */
1310 	rc = ata_set_max_sectors(dev, native_sectors);
1311 	if (rc == -EACCES) {
1312 		/* if device aborted the command, skip HPA resizing */
1313 		ata_dev_warn(dev,
1314 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1315 			     (unsigned long long)sectors,
1316 			     (unsigned long long)native_sectors);
1317 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1318 		return 0;
1319 	} else if (rc)
1320 		return rc;
1321 
1322 	/* re-read IDENTIFY data */
1323 	rc = ata_dev_reread_id(dev, 0);
1324 	if (rc) {
1325 		ata_dev_err(dev,
1326 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1327 		return rc;
1328 	}
1329 
1330 	if (print_info) {
1331 		u64 new_sectors = ata_id_n_sectors(dev->id);
1332 		ata_dev_info(dev,
1333 			"HPA unlocked: %llu -> %llu, native %llu\n",
1334 			(unsigned long long)sectors,
1335 			(unsigned long long)new_sectors,
1336 			(unsigned long long)native_sectors);
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 /**
1343  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1344  *	@dev: device from which the information is fetched
1345  *	@id: IDENTIFY DEVICE page to dump
1346  *
1347  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1348  *	page.
1349  *
1350  *	LOCKING:
1351  *	caller.
1352  */
1353 
1354 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1355 {
1356 	ata_dev_dbg(dev,
1357 		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1358 		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1359 		"88==0x%04x  93==0x%04x\n",
1360 		id[49], id[53], id[63], id[64], id[75], id[80],
1361 		id[81], id[82], id[83], id[84], id[88], id[93]);
1362 }
1363 
1364 /**
1365  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1366  *	@id: IDENTIFY data to compute xfer mask from
1367  *
1368  *	Compute the xfermask for this device. This is not as trivial
1369  *	as it seems if we must consider early devices correctly.
1370  *
1371  *	FIXME: pre IDE drive timing (do we care ?).
1372  *
1373  *	LOCKING:
1374  *	None.
1375  *
1376  *	RETURNS:
1377  *	Computed xfermask
1378  */
1379 unsigned long ata_id_xfermask(const u16 *id)
1380 {
1381 	unsigned long pio_mask, mwdma_mask, udma_mask;
1382 
1383 	/* Usual case. Word 53 indicates word 64 is valid */
1384 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1385 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1386 		pio_mask <<= 3;
1387 		pio_mask |= 0x7;
1388 	} else {
1389 		/* If word 64 isn't valid then Word 51 high byte holds
1390 		 * the PIO timing number for the maximum. Turn it into
1391 		 * a mask.
1392 		 */
1393 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1394 		if (mode < 5)	/* Valid PIO range */
1395 			pio_mask = (2 << mode) - 1;
1396 		else
1397 			pio_mask = 1;
1398 
1399 		/* But wait.. there's more. Design your standards by
1400 		 * committee and you too can get a free iordy field to
1401 		 * process. However its the speeds not the modes that
1402 		 * are supported... Note drivers using the timing API
1403 		 * will get this right anyway
1404 		 */
1405 	}
1406 
1407 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1408 
1409 	if (ata_id_is_cfa(id)) {
1410 		/*
1411 		 *	Process compact flash extended modes
1412 		 */
1413 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1414 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1415 
1416 		if (pio)
1417 			pio_mask |= (1 << 5);
1418 		if (pio > 1)
1419 			pio_mask |= (1 << 6);
1420 		if (dma)
1421 			mwdma_mask |= (1 << 3);
1422 		if (dma > 1)
1423 			mwdma_mask |= (1 << 4);
1424 	}
1425 
1426 	udma_mask = 0;
1427 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1428 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1429 
1430 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1431 }
1432 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1433 
1434 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1435 {
1436 	struct completion *waiting = qc->private_data;
1437 
1438 	complete(waiting);
1439 }
1440 
1441 /**
1442  *	ata_exec_internal_sg - execute libata internal command
1443  *	@dev: Device to which the command is sent
1444  *	@tf: Taskfile registers for the command and the result
1445  *	@cdb: CDB for packet command
1446  *	@dma_dir: Data transfer direction of the command
1447  *	@sgl: sg list for the data buffer of the command
1448  *	@n_elem: Number of sg entries
1449  *	@timeout: Timeout in msecs (0 for default)
1450  *
1451  *	Executes libata internal command with timeout.  @tf contains
1452  *	command on entry and result on return.  Timeout and error
1453  *	conditions are reported via return value.  No recovery action
1454  *	is taken after a command times out.  It's caller's duty to
1455  *	clean up after timeout.
1456  *
1457  *	LOCKING:
1458  *	None.  Should be called with kernel context, might sleep.
1459  *
1460  *	RETURNS:
1461  *	Zero on success, AC_ERR_* mask on failure
1462  */
1463 unsigned ata_exec_internal_sg(struct ata_device *dev,
1464 			      struct ata_taskfile *tf, const u8 *cdb,
1465 			      int dma_dir, struct scatterlist *sgl,
1466 			      unsigned int n_elem, unsigned long timeout)
1467 {
1468 	struct ata_link *link = dev->link;
1469 	struct ata_port *ap = link->ap;
1470 	u8 command = tf->command;
1471 	int auto_timeout = 0;
1472 	struct ata_queued_cmd *qc;
1473 	unsigned int preempted_tag;
1474 	u32 preempted_sactive;
1475 	u64 preempted_qc_active;
1476 	int preempted_nr_active_links;
1477 	DECLARE_COMPLETION_ONSTACK(wait);
1478 	unsigned long flags;
1479 	unsigned int err_mask;
1480 	int rc;
1481 
1482 	spin_lock_irqsave(ap->lock, flags);
1483 
1484 	/* no internal command while frozen */
1485 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1486 		spin_unlock_irqrestore(ap->lock, flags);
1487 		return AC_ERR_SYSTEM;
1488 	}
1489 
1490 	/* initialize internal qc */
1491 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1492 
1493 	qc->tag = ATA_TAG_INTERNAL;
1494 	qc->hw_tag = 0;
1495 	qc->scsicmd = NULL;
1496 	qc->ap = ap;
1497 	qc->dev = dev;
1498 	ata_qc_reinit(qc);
1499 
1500 	preempted_tag = link->active_tag;
1501 	preempted_sactive = link->sactive;
1502 	preempted_qc_active = ap->qc_active;
1503 	preempted_nr_active_links = ap->nr_active_links;
1504 	link->active_tag = ATA_TAG_POISON;
1505 	link->sactive = 0;
1506 	ap->qc_active = 0;
1507 	ap->nr_active_links = 0;
1508 
1509 	/* prepare & issue qc */
1510 	qc->tf = *tf;
1511 	if (cdb)
1512 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1513 
1514 	/* some SATA bridges need us to indicate data xfer direction */
1515 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1516 	    dma_dir == DMA_FROM_DEVICE)
1517 		qc->tf.feature |= ATAPI_DMADIR;
1518 
1519 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1520 	qc->dma_dir = dma_dir;
1521 	if (dma_dir != DMA_NONE) {
1522 		unsigned int i, buflen = 0;
1523 		struct scatterlist *sg;
1524 
1525 		for_each_sg(sgl, sg, n_elem, i)
1526 			buflen += sg->length;
1527 
1528 		ata_sg_init(qc, sgl, n_elem);
1529 		qc->nbytes = buflen;
1530 	}
1531 
1532 	qc->private_data = &wait;
1533 	qc->complete_fn = ata_qc_complete_internal;
1534 
1535 	ata_qc_issue(qc);
1536 
1537 	spin_unlock_irqrestore(ap->lock, flags);
1538 
1539 	if (!timeout) {
1540 		if (ata_probe_timeout)
1541 			timeout = ata_probe_timeout * 1000;
1542 		else {
1543 			timeout = ata_internal_cmd_timeout(dev, command);
1544 			auto_timeout = 1;
1545 		}
1546 	}
1547 
1548 	if (ap->ops->error_handler)
1549 		ata_eh_release(ap);
1550 
1551 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1552 
1553 	if (ap->ops->error_handler)
1554 		ata_eh_acquire(ap);
1555 
1556 	ata_sff_flush_pio_task(ap);
1557 
1558 	if (!rc) {
1559 		spin_lock_irqsave(ap->lock, flags);
1560 
1561 		/* We're racing with irq here.  If we lose, the
1562 		 * following test prevents us from completing the qc
1563 		 * twice.  If we win, the port is frozen and will be
1564 		 * cleaned up by ->post_internal_cmd().
1565 		 */
1566 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1567 			qc->err_mask |= AC_ERR_TIMEOUT;
1568 
1569 			if (ap->ops->error_handler)
1570 				ata_port_freeze(ap);
1571 			else
1572 				ata_qc_complete(qc);
1573 
1574 			ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1575 				     command);
1576 		}
1577 
1578 		spin_unlock_irqrestore(ap->lock, flags);
1579 	}
1580 
1581 	/* do post_internal_cmd */
1582 	if (ap->ops->post_internal_cmd)
1583 		ap->ops->post_internal_cmd(qc);
1584 
1585 	/* perform minimal error analysis */
1586 	if (qc->flags & ATA_QCFLAG_FAILED) {
1587 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1588 			qc->err_mask |= AC_ERR_DEV;
1589 
1590 		if (!qc->err_mask)
1591 			qc->err_mask |= AC_ERR_OTHER;
1592 
1593 		if (qc->err_mask & ~AC_ERR_OTHER)
1594 			qc->err_mask &= ~AC_ERR_OTHER;
1595 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1596 		qc->result_tf.command |= ATA_SENSE;
1597 	}
1598 
1599 	/* finish up */
1600 	spin_lock_irqsave(ap->lock, flags);
1601 
1602 	*tf = qc->result_tf;
1603 	err_mask = qc->err_mask;
1604 
1605 	ata_qc_free(qc);
1606 	link->active_tag = preempted_tag;
1607 	link->sactive = preempted_sactive;
1608 	ap->qc_active = preempted_qc_active;
1609 	ap->nr_active_links = preempted_nr_active_links;
1610 
1611 	spin_unlock_irqrestore(ap->lock, flags);
1612 
1613 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1614 		ata_internal_cmd_timed_out(dev, command);
1615 
1616 	return err_mask;
1617 }
1618 
1619 /**
1620  *	ata_exec_internal - execute libata internal command
1621  *	@dev: Device to which the command is sent
1622  *	@tf: Taskfile registers for the command and the result
1623  *	@cdb: CDB for packet command
1624  *	@dma_dir: Data transfer direction of the command
1625  *	@buf: Data buffer of the command
1626  *	@buflen: Length of data buffer
1627  *	@timeout: Timeout in msecs (0 for default)
1628  *
1629  *	Wrapper around ata_exec_internal_sg() which takes simple
1630  *	buffer instead of sg list.
1631  *
1632  *	LOCKING:
1633  *	None.  Should be called with kernel context, might sleep.
1634  *
1635  *	RETURNS:
1636  *	Zero on success, AC_ERR_* mask on failure
1637  */
1638 unsigned ata_exec_internal(struct ata_device *dev,
1639 			   struct ata_taskfile *tf, const u8 *cdb,
1640 			   int dma_dir, void *buf, unsigned int buflen,
1641 			   unsigned long timeout)
1642 {
1643 	struct scatterlist *psg = NULL, sg;
1644 	unsigned int n_elem = 0;
1645 
1646 	if (dma_dir != DMA_NONE) {
1647 		WARN_ON(!buf);
1648 		sg_init_one(&sg, buf, buflen);
1649 		psg = &sg;
1650 		n_elem++;
1651 	}
1652 
1653 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1654 				    timeout);
1655 }
1656 
1657 /**
1658  *	ata_pio_need_iordy	-	check if iordy needed
1659  *	@adev: ATA device
1660  *
1661  *	Check if the current speed of the device requires IORDY. Used
1662  *	by various controllers for chip configuration.
1663  */
1664 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1665 {
1666 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1667 	 * lead to controller lock up on certain controllers if the
1668 	 * port is not occupied.  See bko#11703 for details.
1669 	 */
1670 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1671 		return 0;
1672 	/* Controller doesn't support IORDY.  Probably a pointless
1673 	 * check as the caller should know this.
1674 	 */
1675 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1676 		return 0;
1677 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1678 	if (ata_id_is_cfa(adev->id)
1679 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1680 		return 0;
1681 	/* PIO3 and higher it is mandatory */
1682 	if (adev->pio_mode > XFER_PIO_2)
1683 		return 1;
1684 	/* We turn it on when possible */
1685 	if (ata_id_has_iordy(adev->id))
1686 		return 1;
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1690 
1691 /**
1692  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1693  *	@adev: ATA device
1694  *
1695  *	Compute the highest mode possible if we are not using iordy. Return
1696  *	-1 if no iordy mode is available.
1697  */
1698 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1699 {
1700 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1701 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1702 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1703 		/* Is the speed faster than the drive allows non IORDY ? */
1704 		if (pio) {
1705 			/* This is cycle times not frequency - watch the logic! */
1706 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1707 				return 3 << ATA_SHIFT_PIO;
1708 			return 7 << ATA_SHIFT_PIO;
1709 		}
1710 	}
1711 	return 3 << ATA_SHIFT_PIO;
1712 }
1713 
1714 /**
1715  *	ata_do_dev_read_id		-	default ID read method
1716  *	@dev: device
1717  *	@tf: proposed taskfile
1718  *	@id: data buffer
1719  *
1720  *	Issue the identify taskfile and hand back the buffer containing
1721  *	identify data. For some RAID controllers and for pre ATA devices
1722  *	this function is wrapped or replaced by the driver
1723  */
1724 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1725 				struct ata_taskfile *tf, __le16 *id)
1726 {
1727 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1728 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1729 }
1730 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1731 
1732 /**
1733  *	ata_dev_read_id - Read ID data from the specified device
1734  *	@dev: target device
1735  *	@p_class: pointer to class of the target device (may be changed)
1736  *	@flags: ATA_READID_* flags
1737  *	@id: buffer to read IDENTIFY data into
1738  *
1739  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1740  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1741  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1742  *	for pre-ATA4 drives.
1743  *
1744  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1745  *	now we abort if we hit that case.
1746  *
1747  *	LOCKING:
1748  *	Kernel thread context (may sleep)
1749  *
1750  *	RETURNS:
1751  *	0 on success, -errno otherwise.
1752  */
1753 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1754 		    unsigned int flags, u16 *id)
1755 {
1756 	struct ata_port *ap = dev->link->ap;
1757 	unsigned int class = *p_class;
1758 	struct ata_taskfile tf;
1759 	unsigned int err_mask = 0;
1760 	const char *reason;
1761 	bool is_semb = class == ATA_DEV_SEMB;
1762 	int may_fallback = 1, tried_spinup = 0;
1763 	int rc;
1764 
1765 retry:
1766 	ata_tf_init(dev, &tf);
1767 
1768 	switch (class) {
1769 	case ATA_DEV_SEMB:
1770 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1771 		fallthrough;
1772 	case ATA_DEV_ATA:
1773 	case ATA_DEV_ZAC:
1774 		tf.command = ATA_CMD_ID_ATA;
1775 		break;
1776 	case ATA_DEV_ATAPI:
1777 		tf.command = ATA_CMD_ID_ATAPI;
1778 		break;
1779 	default:
1780 		rc = -ENODEV;
1781 		reason = "unsupported class";
1782 		goto err_out;
1783 	}
1784 
1785 	tf.protocol = ATA_PROT_PIO;
1786 
1787 	/* Some devices choke if TF registers contain garbage.  Make
1788 	 * sure those are properly initialized.
1789 	 */
1790 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1791 
1792 	/* Device presence detection is unreliable on some
1793 	 * controllers.  Always poll IDENTIFY if available.
1794 	 */
1795 	tf.flags |= ATA_TFLAG_POLLING;
1796 
1797 	if (ap->ops->read_id)
1798 		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1799 	else
1800 		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1801 
1802 	if (err_mask) {
1803 		if (err_mask & AC_ERR_NODEV_HINT) {
1804 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1805 			return -ENOENT;
1806 		}
1807 
1808 		if (is_semb) {
1809 			ata_dev_info(dev,
1810 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1811 			/* SEMB is not supported yet */
1812 			*p_class = ATA_DEV_SEMB_UNSUP;
1813 			return 0;
1814 		}
1815 
1816 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1817 			/* Device or controller might have reported
1818 			 * the wrong device class.  Give a shot at the
1819 			 * other IDENTIFY if the current one is
1820 			 * aborted by the device.
1821 			 */
1822 			if (may_fallback) {
1823 				may_fallback = 0;
1824 
1825 				if (class == ATA_DEV_ATA)
1826 					class = ATA_DEV_ATAPI;
1827 				else
1828 					class = ATA_DEV_ATA;
1829 				goto retry;
1830 			}
1831 
1832 			/* Control reaches here iff the device aborted
1833 			 * both flavors of IDENTIFYs which happens
1834 			 * sometimes with phantom devices.
1835 			 */
1836 			ata_dev_dbg(dev,
1837 				    "both IDENTIFYs aborted, assuming NODEV\n");
1838 			return -ENOENT;
1839 		}
1840 
1841 		rc = -EIO;
1842 		reason = "I/O error";
1843 		goto err_out;
1844 	}
1845 
1846 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1847 		ata_dev_info(dev, "dumping IDENTIFY data, "
1848 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1849 			    class, may_fallback, tried_spinup);
1850 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1851 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1852 	}
1853 
1854 	/* Falling back doesn't make sense if ID data was read
1855 	 * successfully at least once.
1856 	 */
1857 	may_fallback = 0;
1858 
1859 	swap_buf_le16(id, ATA_ID_WORDS);
1860 
1861 	/* sanity check */
1862 	rc = -EINVAL;
1863 	reason = "device reports invalid type";
1864 
1865 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1866 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1867 			goto err_out;
1868 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1869 							ata_id_is_ata(id)) {
1870 			ata_dev_dbg(dev,
1871 				"host indicates ignore ATA devices, ignored\n");
1872 			return -ENOENT;
1873 		}
1874 	} else {
1875 		if (ata_id_is_ata(id))
1876 			goto err_out;
1877 	}
1878 
1879 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1880 		tried_spinup = 1;
1881 		/*
1882 		 * Drive powered-up in standby mode, and requires a specific
1883 		 * SET_FEATURES spin-up subcommand before it will accept
1884 		 * anything other than the original IDENTIFY command.
1885 		 */
1886 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1887 		if (err_mask && id[2] != 0x738c) {
1888 			rc = -EIO;
1889 			reason = "SPINUP failed";
1890 			goto err_out;
1891 		}
1892 		/*
1893 		 * If the drive initially returned incomplete IDENTIFY info,
1894 		 * we now must reissue the IDENTIFY command.
1895 		 */
1896 		if (id[2] == 0x37c8)
1897 			goto retry;
1898 	}
1899 
1900 	if ((flags & ATA_READID_POSTRESET) &&
1901 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1902 		/*
1903 		 * The exact sequence expected by certain pre-ATA4 drives is:
1904 		 * SRST RESET
1905 		 * IDENTIFY (optional in early ATA)
1906 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1907 		 * anything else..
1908 		 * Some drives were very specific about that exact sequence.
1909 		 *
1910 		 * Note that ATA4 says lba is mandatory so the second check
1911 		 * should never trigger.
1912 		 */
1913 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1914 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1915 			if (err_mask) {
1916 				rc = -EIO;
1917 				reason = "INIT_DEV_PARAMS failed";
1918 				goto err_out;
1919 			}
1920 
1921 			/* current CHS translation info (id[53-58]) might be
1922 			 * changed. reread the identify device info.
1923 			 */
1924 			flags &= ~ATA_READID_POSTRESET;
1925 			goto retry;
1926 		}
1927 	}
1928 
1929 	*p_class = class;
1930 
1931 	return 0;
1932 
1933  err_out:
1934 	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1935 		     reason, err_mask);
1936 	return rc;
1937 }
1938 
1939 /**
1940  *	ata_read_log_page - read a specific log page
1941  *	@dev: target device
1942  *	@log: log to read
1943  *	@page: page to read
1944  *	@buf: buffer to store read page
1945  *	@sectors: number of sectors to read
1946  *
1947  *	Read log page using READ_LOG_EXT command.
1948  *
1949  *	LOCKING:
1950  *	Kernel thread context (may sleep).
1951  *
1952  *	RETURNS:
1953  *	0 on success, AC_ERR_* mask otherwise.
1954  */
1955 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1956 			       u8 page, void *buf, unsigned int sectors)
1957 {
1958 	unsigned long ap_flags = dev->link->ap->flags;
1959 	struct ata_taskfile tf;
1960 	unsigned int err_mask;
1961 	bool dma = false;
1962 
1963 	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
1964 
1965 	/*
1966 	 * Return error without actually issuing the command on controllers
1967 	 * which e.g. lockup on a read log page.
1968 	 */
1969 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
1970 		return AC_ERR_DEV;
1971 
1972 retry:
1973 	ata_tf_init(dev, &tf);
1974 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
1975 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
1976 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
1977 		tf.protocol = ATA_PROT_DMA;
1978 		dma = true;
1979 	} else {
1980 		tf.command = ATA_CMD_READ_LOG_EXT;
1981 		tf.protocol = ATA_PROT_PIO;
1982 		dma = false;
1983 	}
1984 	tf.lbal = log;
1985 	tf.lbam = page;
1986 	tf.nsect = sectors;
1987 	tf.hob_nsect = sectors >> 8;
1988 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
1989 
1990 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1991 				     buf, sectors * ATA_SECT_SIZE, 0);
1992 
1993 	if (err_mask) {
1994 		if (dma) {
1995 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
1996 			goto retry;
1997 		}
1998 		ata_dev_err(dev,
1999 			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2000 			    (unsigned int)log, (unsigned int)page, err_mask);
2001 	}
2002 
2003 	return err_mask;
2004 }
2005 
2006 static bool ata_log_supported(struct ata_device *dev, u8 log)
2007 {
2008 	struct ata_port *ap = dev->link->ap;
2009 
2010 	if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2011 		return false;
2012 
2013 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2014 		return false;
2015 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2016 }
2017 
2018 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2019 {
2020 	struct ata_port *ap = dev->link->ap;
2021 	unsigned int err, i;
2022 
2023 	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2024 		return false;
2025 
2026 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2027 		/*
2028 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2029 		 * with ACS-3 (ATA version 10). Warn about the missing log
2030 		 * for drives which implement this ATA level or above.
2031 		 */
2032 		if (ata_id_major_version(dev->id) >= 10)
2033 			ata_dev_warn(dev,
2034 				"ATA Identify Device Log not supported\n");
2035 		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2036 		return false;
2037 	}
2038 
2039 	/*
2040 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2041 	 * supported.
2042 	 */
2043 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2044 				1);
2045 	if (err)
2046 		return false;
2047 
2048 	for (i = 0; i < ap->sector_buf[8]; i++) {
2049 		if (ap->sector_buf[9 + i] == page)
2050 			return true;
2051 	}
2052 
2053 	return false;
2054 }
2055 
2056 static int ata_do_link_spd_horkage(struct ata_device *dev)
2057 {
2058 	struct ata_link *plink = ata_dev_phys_link(dev);
2059 	u32 target, target_limit;
2060 
2061 	if (!sata_scr_valid(plink))
2062 		return 0;
2063 
2064 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065 		target = 1;
2066 	else
2067 		return 0;
2068 
2069 	target_limit = (1 << target) - 1;
2070 
2071 	/* if already on stricter limit, no need to push further */
2072 	if (plink->sata_spd_limit <= target_limit)
2073 		return 0;
2074 
2075 	plink->sata_spd_limit = target_limit;
2076 
2077 	/* Request another EH round by returning -EAGAIN if link is
2078 	 * going faster than the target speed.  Forward progress is
2079 	 * guaranteed by setting sata_spd_limit to target_limit above.
2080 	 */
2081 	if (plink->sata_spd > target) {
2082 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083 			     sata_spd_string(target));
2084 		return -EAGAIN;
2085 	}
2086 	return 0;
2087 }
2088 
2089 static inline u8 ata_dev_knobble(struct ata_device *dev)
2090 {
2091 	struct ata_port *ap = dev->link->ap;
2092 
2093 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094 		return 0;
2095 
2096 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2097 }
2098 
2099 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2100 {
2101 	struct ata_port *ap = dev->link->ap;
2102 	unsigned int err_mask;
2103 
2104 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2105 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2106 		return;
2107 	}
2108 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2109 				     0, ap->sector_buf, 1);
2110 	if (!err_mask) {
2111 		u8 *cmds = dev->ncq_send_recv_cmds;
2112 
2113 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2114 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2115 
2116 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2117 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2118 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2119 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2120 		}
2121 	}
2122 }
2123 
2124 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2125 {
2126 	struct ata_port *ap = dev->link->ap;
2127 	unsigned int err_mask;
2128 
2129 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2130 		ata_dev_warn(dev,
2131 			     "NCQ Send/Recv Log not supported\n");
2132 		return;
2133 	}
2134 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2135 				     0, ap->sector_buf, 1);
2136 	if (!err_mask) {
2137 		u8 *cmds = dev->ncq_non_data_cmds;
2138 
2139 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2140 	}
2141 }
2142 
2143 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2144 {
2145 	struct ata_port *ap = dev->link->ap;
2146 	unsigned int err_mask;
2147 
2148 	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2149 		return;
2150 
2151 	err_mask = ata_read_log_page(dev,
2152 				     ATA_LOG_IDENTIFY_DEVICE,
2153 				     ATA_LOG_SATA_SETTINGS,
2154 				     ap->sector_buf,
2155 				     1);
2156 	if (err_mask)
2157 		goto not_supported;
2158 
2159 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2160 		goto not_supported;
2161 
2162 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2163 
2164 	return;
2165 
2166 not_supported:
2167 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
2168 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2169 }
2170 
2171 static bool ata_dev_check_adapter(struct ata_device *dev,
2172 				  unsigned short vendor_id)
2173 {
2174 	struct pci_dev *pcidev = NULL;
2175 	struct device *parent_dev = NULL;
2176 
2177 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2178 	     parent_dev = parent_dev->parent) {
2179 		if (dev_is_pci(parent_dev)) {
2180 			pcidev = to_pci_dev(parent_dev);
2181 			if (pcidev->vendor == vendor_id)
2182 				return true;
2183 			break;
2184 		}
2185 	}
2186 
2187 	return false;
2188 }
2189 
2190 static int ata_dev_config_ncq(struct ata_device *dev,
2191 			       char *desc, size_t desc_sz)
2192 {
2193 	struct ata_port *ap = dev->link->ap;
2194 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2195 	unsigned int err_mask;
2196 	char *aa_desc = "";
2197 
2198 	if (!ata_id_has_ncq(dev->id)) {
2199 		desc[0] = '\0';
2200 		return 0;
2201 	}
2202 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2203 		return 0;
2204 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2205 		snprintf(desc, desc_sz, "NCQ (not used)");
2206 		return 0;
2207 	}
2208 
2209 	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2210 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2211 		snprintf(desc, desc_sz, "NCQ (not used)");
2212 		return 0;
2213 	}
2214 
2215 	if (ap->flags & ATA_FLAG_NCQ) {
2216 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2217 		dev->flags |= ATA_DFLAG_NCQ;
2218 	}
2219 
2220 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2221 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2222 		ata_id_has_fpdma_aa(dev->id)) {
2223 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2224 			SATA_FPDMA_AA);
2225 		if (err_mask) {
2226 			ata_dev_err(dev,
2227 				    "failed to enable AA (error_mask=0x%x)\n",
2228 				    err_mask);
2229 			if (err_mask != AC_ERR_DEV) {
2230 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2231 				return -EIO;
2232 			}
2233 		} else
2234 			aa_desc = ", AA";
2235 	}
2236 
2237 	if (hdepth >= ddepth)
2238 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2239 	else
2240 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2241 			ddepth, aa_desc);
2242 
2243 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2244 		if (ata_id_has_ncq_send_and_recv(dev->id))
2245 			ata_dev_config_ncq_send_recv(dev);
2246 		if (ata_id_has_ncq_non_data(dev->id))
2247 			ata_dev_config_ncq_non_data(dev);
2248 		if (ata_id_has_ncq_prio(dev->id))
2249 			ata_dev_config_ncq_prio(dev);
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2256 {
2257 	unsigned int err_mask;
2258 
2259 	if (!ata_id_has_sense_reporting(dev->id))
2260 		return;
2261 
2262 	if (ata_id_sense_reporting_enabled(dev->id))
2263 		return;
2264 
2265 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2266 	if (err_mask) {
2267 		ata_dev_dbg(dev,
2268 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2269 			    err_mask);
2270 	}
2271 }
2272 
2273 static void ata_dev_config_zac(struct ata_device *dev)
2274 {
2275 	struct ata_port *ap = dev->link->ap;
2276 	unsigned int err_mask;
2277 	u8 *identify_buf = ap->sector_buf;
2278 
2279 	dev->zac_zones_optimal_open = U32_MAX;
2280 	dev->zac_zones_optimal_nonseq = U32_MAX;
2281 	dev->zac_zones_max_open = U32_MAX;
2282 
2283 	/*
2284 	 * Always set the 'ZAC' flag for Host-managed devices.
2285 	 */
2286 	if (dev->class == ATA_DEV_ZAC)
2287 		dev->flags |= ATA_DFLAG_ZAC;
2288 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2289 		/*
2290 		 * Check for host-aware devices.
2291 		 */
2292 		dev->flags |= ATA_DFLAG_ZAC;
2293 
2294 	if (!(dev->flags & ATA_DFLAG_ZAC))
2295 		return;
2296 
2297 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2298 		ata_dev_warn(dev,
2299 			     "ATA Zoned Information Log not supported\n");
2300 		return;
2301 	}
2302 
2303 	/*
2304 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2305 	 */
2306 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2307 				     ATA_LOG_ZONED_INFORMATION,
2308 				     identify_buf, 1);
2309 	if (!err_mask) {
2310 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2311 
2312 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2313 		if ((zoned_cap >> 63))
2314 			dev->zac_zoned_cap = (zoned_cap & 1);
2315 		opt_open = get_unaligned_le64(&identify_buf[24]);
2316 		if ((opt_open >> 63))
2317 			dev->zac_zones_optimal_open = (u32)opt_open;
2318 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2319 		if ((opt_nonseq >> 63))
2320 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2321 		max_open = get_unaligned_le64(&identify_buf[40]);
2322 		if ((max_open >> 63))
2323 			dev->zac_zones_max_open = (u32)max_open;
2324 	}
2325 }
2326 
2327 static void ata_dev_config_trusted(struct ata_device *dev)
2328 {
2329 	struct ata_port *ap = dev->link->ap;
2330 	u64 trusted_cap;
2331 	unsigned int err;
2332 
2333 	if (!ata_id_has_trusted(dev->id))
2334 		return;
2335 
2336 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2337 		ata_dev_warn(dev,
2338 			     "Security Log not supported\n");
2339 		return;
2340 	}
2341 
2342 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2343 			ap->sector_buf, 1);
2344 	if (err)
2345 		return;
2346 
2347 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2348 	if (!(trusted_cap & (1ULL << 63))) {
2349 		ata_dev_dbg(dev,
2350 			    "Trusted Computing capability qword not valid!\n");
2351 		return;
2352 	}
2353 
2354 	if (trusted_cap & (1 << 0))
2355 		dev->flags |= ATA_DFLAG_TRUSTED;
2356 }
2357 
2358 static int ata_dev_config_lba(struct ata_device *dev)
2359 {
2360 	const u16 *id = dev->id;
2361 	const char *lba_desc;
2362 	char ncq_desc[24];
2363 	int ret;
2364 
2365 	dev->flags |= ATA_DFLAG_LBA;
2366 
2367 	if (ata_id_has_lba48(id)) {
2368 		lba_desc = "LBA48";
2369 		dev->flags |= ATA_DFLAG_LBA48;
2370 		if (dev->n_sectors >= (1UL << 28) &&
2371 		    ata_id_has_flush_ext(id))
2372 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2373 	} else {
2374 		lba_desc = "LBA";
2375 	}
2376 
2377 	/* config NCQ */
2378 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2379 
2380 	/* print device info to dmesg */
2381 	if (ata_dev_print_info(dev))
2382 		ata_dev_info(dev,
2383 			     "%llu sectors, multi %u: %s %s\n",
2384 			     (unsigned long long)dev->n_sectors,
2385 			     dev->multi_count, lba_desc, ncq_desc);
2386 
2387 	return ret;
2388 }
2389 
2390 static void ata_dev_config_chs(struct ata_device *dev)
2391 {
2392 	const u16 *id = dev->id;
2393 
2394 	if (ata_id_current_chs_valid(id)) {
2395 		/* Current CHS translation is valid. */
2396 		dev->cylinders = id[54];
2397 		dev->heads     = id[55];
2398 		dev->sectors   = id[56];
2399 	} else {
2400 		/* Default translation */
2401 		dev->cylinders	= id[1];
2402 		dev->heads	= id[3];
2403 		dev->sectors	= id[6];
2404 	}
2405 
2406 	/* print device info to dmesg */
2407 	if (ata_dev_print_info(dev))
2408 		ata_dev_info(dev,
2409 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2410 			     (unsigned long long)dev->n_sectors,
2411 			     dev->multi_count, dev->cylinders,
2412 			     dev->heads, dev->sectors);
2413 }
2414 
2415 static void ata_dev_config_devslp(struct ata_device *dev)
2416 {
2417 	u8 *sata_setting = dev->link->ap->sector_buf;
2418 	unsigned int err_mask;
2419 	int i, j;
2420 
2421 	/*
2422 	 * Check device sleep capability. Get DevSlp timing variables
2423 	 * from SATA Settings page of Identify Device Data Log.
2424 	 */
2425 	if (!ata_id_has_devslp(dev->id) ||
2426 	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2427 		return;
2428 
2429 	err_mask = ata_read_log_page(dev,
2430 				     ATA_LOG_IDENTIFY_DEVICE,
2431 				     ATA_LOG_SATA_SETTINGS,
2432 				     sata_setting, 1);
2433 	if (err_mask)
2434 		return;
2435 
2436 	dev->flags |= ATA_DFLAG_DEVSLP;
2437 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2438 		j = ATA_LOG_DEVSLP_OFFSET + i;
2439 		dev->devslp_timing[i] = sata_setting[j];
2440 	}
2441 }
2442 
2443 static void ata_dev_config_cpr(struct ata_device *dev)
2444 {
2445 	unsigned int err_mask;
2446 	size_t buf_len;
2447 	int i, nr_cpr = 0;
2448 	struct ata_cpr_log *cpr_log = NULL;
2449 	u8 *desc, *buf = NULL;
2450 
2451 	if (!ata_identify_page_supported(dev,
2452 				 ATA_LOG_CONCURRENT_POSITIONING_RANGES))
2453 		goto out;
2454 
2455 	/*
2456 	 * Read IDENTIFY DEVICE data log, page 0x47
2457 	 * (concurrent positioning ranges). We can have at most 255 32B range
2458 	 * descriptors plus a 64B header.
2459 	 */
2460 	buf_len = (64 + 255 * 32 + 511) & ~511;
2461 	buf = kzalloc(buf_len, GFP_KERNEL);
2462 	if (!buf)
2463 		goto out;
2464 
2465 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2466 				     ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2467 				     buf, buf_len >> 9);
2468 	if (err_mask)
2469 		goto out;
2470 
2471 	nr_cpr = buf[0];
2472 	if (!nr_cpr)
2473 		goto out;
2474 
2475 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2476 	if (!cpr_log)
2477 		goto out;
2478 
2479 	cpr_log->nr_cpr = nr_cpr;
2480 	desc = &buf[64];
2481 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2482 		cpr_log->cpr[i].num = desc[0];
2483 		cpr_log->cpr[i].num_storage_elements = desc[1];
2484 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2485 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2486 	}
2487 
2488 out:
2489 	swap(dev->cpr_log, cpr_log);
2490 	kfree(cpr_log);
2491 	kfree(buf);
2492 }
2493 
2494 static void ata_dev_print_features(struct ata_device *dev)
2495 {
2496 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2497 		return;
2498 
2499 	ata_dev_info(dev,
2500 		     "Features:%s%s%s%s%s%s\n",
2501 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2502 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2503 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2504 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2505 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2506 		     dev->cpr_log ? " CPR" : "");
2507 }
2508 
2509 /**
2510  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2511  *	@dev: Target device to configure
2512  *
2513  *	Configure @dev according to @dev->id.  Generic and low-level
2514  *	driver specific fixups are also applied.
2515  *
2516  *	LOCKING:
2517  *	Kernel thread context (may sleep)
2518  *
2519  *	RETURNS:
2520  *	0 on success, -errno otherwise
2521  */
2522 int ata_dev_configure(struct ata_device *dev)
2523 {
2524 	struct ata_port *ap = dev->link->ap;
2525 	bool print_info = ata_dev_print_info(dev);
2526 	const u16 *id = dev->id;
2527 	unsigned long xfer_mask;
2528 	unsigned int err_mask;
2529 	char revbuf[7];		/* XYZ-99\0 */
2530 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2531 	char modelbuf[ATA_ID_PROD_LEN+1];
2532 	int rc;
2533 
2534 	if (!ata_dev_enabled(dev)) {
2535 		ata_dev_dbg(dev, "no device\n");
2536 		return 0;
2537 	}
2538 
2539 	/* set horkage */
2540 	dev->horkage |= ata_dev_blacklisted(dev);
2541 	ata_force_horkage(dev);
2542 
2543 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2544 		ata_dev_info(dev, "unsupported device, disabling\n");
2545 		ata_dev_disable(dev);
2546 		return 0;
2547 	}
2548 
2549 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2550 	    dev->class == ATA_DEV_ATAPI) {
2551 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2552 			     atapi_enabled ? "not supported with this driver"
2553 			     : "disabled");
2554 		ata_dev_disable(dev);
2555 		return 0;
2556 	}
2557 
2558 	rc = ata_do_link_spd_horkage(dev);
2559 	if (rc)
2560 		return rc;
2561 
2562 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2563 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2564 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2565 		dev->horkage |= ATA_HORKAGE_NOLPM;
2566 
2567 	if (ap->flags & ATA_FLAG_NO_LPM)
2568 		dev->horkage |= ATA_HORKAGE_NOLPM;
2569 
2570 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2571 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2572 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2573 	}
2574 
2575 	/* let ACPI work its magic */
2576 	rc = ata_acpi_on_devcfg(dev);
2577 	if (rc)
2578 		return rc;
2579 
2580 	/* massage HPA, do it early as it might change IDENTIFY data */
2581 	rc = ata_hpa_resize(dev);
2582 	if (rc)
2583 		return rc;
2584 
2585 	/* print device capabilities */
2586 	ata_dev_dbg(dev,
2587 		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2588 		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2589 		    __func__,
2590 		    id[49], id[82], id[83], id[84],
2591 		    id[85], id[86], id[87], id[88]);
2592 
2593 	/* initialize to-be-configured parameters */
2594 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2595 	dev->max_sectors = 0;
2596 	dev->cdb_len = 0;
2597 	dev->n_sectors = 0;
2598 	dev->cylinders = 0;
2599 	dev->heads = 0;
2600 	dev->sectors = 0;
2601 	dev->multi_count = 0;
2602 
2603 	/*
2604 	 * common ATA, ATAPI feature tests
2605 	 */
2606 
2607 	/* find max transfer mode; for printk only */
2608 	xfer_mask = ata_id_xfermask(id);
2609 
2610 	ata_dump_id(dev, id);
2611 
2612 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2613 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2614 			sizeof(fwrevbuf));
2615 
2616 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2617 			sizeof(modelbuf));
2618 
2619 	/* ATA-specific feature tests */
2620 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2621 		if (ata_id_is_cfa(id)) {
2622 			/* CPRM may make this media unusable */
2623 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2624 				ata_dev_warn(dev,
2625 	"supports DRM functions and may not be fully accessible\n");
2626 			snprintf(revbuf, 7, "CFA");
2627 		} else {
2628 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2629 			/* Warn the user if the device has TPM extensions */
2630 			if (ata_id_has_tpm(id))
2631 				ata_dev_warn(dev,
2632 	"supports DRM functions and may not be fully accessible\n");
2633 		}
2634 
2635 		dev->n_sectors = ata_id_n_sectors(id);
2636 
2637 		/* get current R/W Multiple count setting */
2638 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2639 			unsigned int max = dev->id[47] & 0xff;
2640 			unsigned int cnt = dev->id[59] & 0xff;
2641 			/* only recognize/allow powers of two here */
2642 			if (is_power_of_2(max) && is_power_of_2(cnt))
2643 				if (cnt <= max)
2644 					dev->multi_count = cnt;
2645 		}
2646 
2647 		/* print device info to dmesg */
2648 		if (print_info)
2649 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2650 				     revbuf, modelbuf, fwrevbuf,
2651 				     ata_mode_string(xfer_mask));
2652 
2653 		if (ata_id_has_lba(id)) {
2654 			rc = ata_dev_config_lba(dev);
2655 			if (rc)
2656 				return rc;
2657 		} else {
2658 			ata_dev_config_chs(dev);
2659 		}
2660 
2661 		ata_dev_config_devslp(dev);
2662 		ata_dev_config_sense_reporting(dev);
2663 		ata_dev_config_zac(dev);
2664 		ata_dev_config_trusted(dev);
2665 		ata_dev_config_cpr(dev);
2666 		dev->cdb_len = 32;
2667 
2668 		if (print_info)
2669 			ata_dev_print_features(dev);
2670 	}
2671 
2672 	/* ATAPI-specific feature tests */
2673 	else if (dev->class == ATA_DEV_ATAPI) {
2674 		const char *cdb_intr_string = "";
2675 		const char *atapi_an_string = "";
2676 		const char *dma_dir_string = "";
2677 		u32 sntf;
2678 
2679 		rc = atapi_cdb_len(id);
2680 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2681 			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2682 			rc = -EINVAL;
2683 			goto err_out_nosup;
2684 		}
2685 		dev->cdb_len = (unsigned int) rc;
2686 
2687 		/* Enable ATAPI AN if both the host and device have
2688 		 * the support.  If PMP is attached, SNTF is required
2689 		 * to enable ATAPI AN to discern between PHY status
2690 		 * changed notifications and ATAPI ANs.
2691 		 */
2692 		if (atapi_an &&
2693 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2694 		    (!sata_pmp_attached(ap) ||
2695 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2696 			/* issue SET feature command to turn this on */
2697 			err_mask = ata_dev_set_feature(dev,
2698 					SETFEATURES_SATA_ENABLE, SATA_AN);
2699 			if (err_mask)
2700 				ata_dev_err(dev,
2701 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2702 					    err_mask);
2703 			else {
2704 				dev->flags |= ATA_DFLAG_AN;
2705 				atapi_an_string = ", ATAPI AN";
2706 			}
2707 		}
2708 
2709 		if (ata_id_cdb_intr(dev->id)) {
2710 			dev->flags |= ATA_DFLAG_CDB_INTR;
2711 			cdb_intr_string = ", CDB intr";
2712 		}
2713 
2714 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2715 			dev->flags |= ATA_DFLAG_DMADIR;
2716 			dma_dir_string = ", DMADIR";
2717 		}
2718 
2719 		if (ata_id_has_da(dev->id)) {
2720 			dev->flags |= ATA_DFLAG_DA;
2721 			zpodd_init(dev);
2722 		}
2723 
2724 		/* print device info to dmesg */
2725 		if (print_info)
2726 			ata_dev_info(dev,
2727 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2728 				     modelbuf, fwrevbuf,
2729 				     ata_mode_string(xfer_mask),
2730 				     cdb_intr_string, atapi_an_string,
2731 				     dma_dir_string);
2732 	}
2733 
2734 	/* determine max_sectors */
2735 	dev->max_sectors = ATA_MAX_SECTORS;
2736 	if (dev->flags & ATA_DFLAG_LBA48)
2737 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2738 
2739 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2740 	   200 sectors */
2741 	if (ata_dev_knobble(dev)) {
2742 		if (print_info)
2743 			ata_dev_info(dev, "applying bridge limits\n");
2744 		dev->udma_mask &= ATA_UDMA5;
2745 		dev->max_sectors = ATA_MAX_SECTORS;
2746 	}
2747 
2748 	if ((dev->class == ATA_DEV_ATAPI) &&
2749 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2750 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2751 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2752 	}
2753 
2754 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2755 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2756 					 dev->max_sectors);
2757 
2758 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2759 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2760 					 dev->max_sectors);
2761 
2762 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2763 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2764 
2765 	if (ap->ops->dev_config)
2766 		ap->ops->dev_config(dev);
2767 
2768 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2769 		/* Let the user know. We don't want to disallow opens for
2770 		   rescue purposes, or in case the vendor is just a blithering
2771 		   idiot. Do this after the dev_config call as some controllers
2772 		   with buggy firmware may want to avoid reporting false device
2773 		   bugs */
2774 
2775 		if (print_info) {
2776 			ata_dev_warn(dev,
2777 "Drive reports diagnostics failure. This may indicate a drive\n");
2778 			ata_dev_warn(dev,
2779 "fault or invalid emulation. Contact drive vendor for information.\n");
2780 		}
2781 	}
2782 
2783 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2784 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2785 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2786 	}
2787 
2788 	return 0;
2789 
2790 err_out_nosup:
2791 	return rc;
2792 }
2793 
2794 /**
2795  *	ata_cable_40wire	-	return 40 wire cable type
2796  *	@ap: port
2797  *
2798  *	Helper method for drivers which want to hardwire 40 wire cable
2799  *	detection.
2800  */
2801 
2802 int ata_cable_40wire(struct ata_port *ap)
2803 {
2804 	return ATA_CBL_PATA40;
2805 }
2806 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2807 
2808 /**
2809  *	ata_cable_80wire	-	return 80 wire cable type
2810  *	@ap: port
2811  *
2812  *	Helper method for drivers which want to hardwire 80 wire cable
2813  *	detection.
2814  */
2815 
2816 int ata_cable_80wire(struct ata_port *ap)
2817 {
2818 	return ATA_CBL_PATA80;
2819 }
2820 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2821 
2822 /**
2823  *	ata_cable_unknown	-	return unknown PATA cable.
2824  *	@ap: port
2825  *
2826  *	Helper method for drivers which have no PATA cable detection.
2827  */
2828 
2829 int ata_cable_unknown(struct ata_port *ap)
2830 {
2831 	return ATA_CBL_PATA_UNK;
2832 }
2833 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2834 
2835 /**
2836  *	ata_cable_ignore	-	return ignored PATA cable.
2837  *	@ap: port
2838  *
2839  *	Helper method for drivers which don't use cable type to limit
2840  *	transfer mode.
2841  */
2842 int ata_cable_ignore(struct ata_port *ap)
2843 {
2844 	return ATA_CBL_PATA_IGN;
2845 }
2846 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2847 
2848 /**
2849  *	ata_cable_sata	-	return SATA cable type
2850  *	@ap: port
2851  *
2852  *	Helper method for drivers which have SATA cables
2853  */
2854 
2855 int ata_cable_sata(struct ata_port *ap)
2856 {
2857 	return ATA_CBL_SATA;
2858 }
2859 EXPORT_SYMBOL_GPL(ata_cable_sata);
2860 
2861 /**
2862  *	ata_bus_probe - Reset and probe ATA bus
2863  *	@ap: Bus to probe
2864  *
2865  *	Master ATA bus probing function.  Initiates a hardware-dependent
2866  *	bus reset, then attempts to identify any devices found on
2867  *	the bus.
2868  *
2869  *	LOCKING:
2870  *	PCI/etc. bus probe sem.
2871  *
2872  *	RETURNS:
2873  *	Zero on success, negative errno otherwise.
2874  */
2875 
2876 int ata_bus_probe(struct ata_port *ap)
2877 {
2878 	unsigned int classes[ATA_MAX_DEVICES];
2879 	int tries[ATA_MAX_DEVICES];
2880 	int rc;
2881 	struct ata_device *dev;
2882 
2883 	ata_for_each_dev(dev, &ap->link, ALL)
2884 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2885 
2886  retry:
2887 	ata_for_each_dev(dev, &ap->link, ALL) {
2888 		/* If we issue an SRST then an ATA drive (not ATAPI)
2889 		 * may change configuration and be in PIO0 timing. If
2890 		 * we do a hard reset (or are coming from power on)
2891 		 * this is true for ATA or ATAPI. Until we've set a
2892 		 * suitable controller mode we should not touch the
2893 		 * bus as we may be talking too fast.
2894 		 */
2895 		dev->pio_mode = XFER_PIO_0;
2896 		dev->dma_mode = 0xff;
2897 
2898 		/* If the controller has a pio mode setup function
2899 		 * then use it to set the chipset to rights. Don't
2900 		 * touch the DMA setup as that will be dealt with when
2901 		 * configuring devices.
2902 		 */
2903 		if (ap->ops->set_piomode)
2904 			ap->ops->set_piomode(ap, dev);
2905 	}
2906 
2907 	/* reset and determine device classes */
2908 	ap->ops->phy_reset(ap);
2909 
2910 	ata_for_each_dev(dev, &ap->link, ALL) {
2911 		if (dev->class != ATA_DEV_UNKNOWN)
2912 			classes[dev->devno] = dev->class;
2913 		else
2914 			classes[dev->devno] = ATA_DEV_NONE;
2915 
2916 		dev->class = ATA_DEV_UNKNOWN;
2917 	}
2918 
2919 	/* read IDENTIFY page and configure devices. We have to do the identify
2920 	   specific sequence bass-ackwards so that PDIAG- is released by
2921 	   the slave device */
2922 
2923 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2924 		if (tries[dev->devno])
2925 			dev->class = classes[dev->devno];
2926 
2927 		if (!ata_dev_enabled(dev))
2928 			continue;
2929 
2930 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2931 				     dev->id);
2932 		if (rc)
2933 			goto fail;
2934 	}
2935 
2936 	/* Now ask for the cable type as PDIAG- should have been released */
2937 	if (ap->ops->cable_detect)
2938 		ap->cbl = ap->ops->cable_detect(ap);
2939 
2940 	/* We may have SATA bridge glue hiding here irrespective of
2941 	 * the reported cable types and sensed types.  When SATA
2942 	 * drives indicate we have a bridge, we don't know which end
2943 	 * of the link the bridge is which is a problem.
2944 	 */
2945 	ata_for_each_dev(dev, &ap->link, ENABLED)
2946 		if (ata_id_is_sata(dev->id))
2947 			ap->cbl = ATA_CBL_SATA;
2948 
2949 	/* After the identify sequence we can now set up the devices. We do
2950 	   this in the normal order so that the user doesn't get confused */
2951 
2952 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2953 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2954 		rc = ata_dev_configure(dev);
2955 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2956 		if (rc)
2957 			goto fail;
2958 	}
2959 
2960 	/* configure transfer mode */
2961 	rc = ata_set_mode(&ap->link, &dev);
2962 	if (rc)
2963 		goto fail;
2964 
2965 	ata_for_each_dev(dev, &ap->link, ENABLED)
2966 		return 0;
2967 
2968 	return -ENODEV;
2969 
2970  fail:
2971 	tries[dev->devno]--;
2972 
2973 	switch (rc) {
2974 	case -EINVAL:
2975 		/* eeek, something went very wrong, give up */
2976 		tries[dev->devno] = 0;
2977 		break;
2978 
2979 	case -ENODEV:
2980 		/* give it just one more chance */
2981 		tries[dev->devno] = min(tries[dev->devno], 1);
2982 		fallthrough;
2983 	case -EIO:
2984 		if (tries[dev->devno] == 1) {
2985 			/* This is the last chance, better to slow
2986 			 * down than lose it.
2987 			 */
2988 			sata_down_spd_limit(&ap->link, 0);
2989 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2990 		}
2991 	}
2992 
2993 	if (!tries[dev->devno])
2994 		ata_dev_disable(dev);
2995 
2996 	goto retry;
2997 }
2998 
2999 /**
3000  *	sata_print_link_status - Print SATA link status
3001  *	@link: SATA link to printk link status about
3002  *
3003  *	This function prints link speed and status of a SATA link.
3004  *
3005  *	LOCKING:
3006  *	None.
3007  */
3008 static void sata_print_link_status(struct ata_link *link)
3009 {
3010 	u32 sstatus, scontrol, tmp;
3011 
3012 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3013 		return;
3014 	sata_scr_read(link, SCR_CONTROL, &scontrol);
3015 
3016 	if (ata_phys_link_online(link)) {
3017 		tmp = (sstatus >> 4) & 0xf;
3018 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3019 			      sata_spd_string(tmp), sstatus, scontrol);
3020 	} else {
3021 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3022 			      sstatus, scontrol);
3023 	}
3024 }
3025 
3026 /**
3027  *	ata_dev_pair		-	return other device on cable
3028  *	@adev: device
3029  *
3030  *	Obtain the other device on the same cable, or if none is
3031  *	present NULL is returned
3032  */
3033 
3034 struct ata_device *ata_dev_pair(struct ata_device *adev)
3035 {
3036 	struct ata_link *link = adev->link;
3037 	struct ata_device *pair = &link->device[1 - adev->devno];
3038 	if (!ata_dev_enabled(pair))
3039 		return NULL;
3040 	return pair;
3041 }
3042 EXPORT_SYMBOL_GPL(ata_dev_pair);
3043 
3044 /**
3045  *	sata_down_spd_limit - adjust SATA spd limit downward
3046  *	@link: Link to adjust SATA spd limit for
3047  *	@spd_limit: Additional limit
3048  *
3049  *	Adjust SATA spd limit of @link downward.  Note that this
3050  *	function only adjusts the limit.  The change must be applied
3051  *	using sata_set_spd().
3052  *
3053  *	If @spd_limit is non-zero, the speed is limited to equal to or
3054  *	lower than @spd_limit if such speed is supported.  If
3055  *	@spd_limit is slower than any supported speed, only the lowest
3056  *	supported speed is allowed.
3057  *
3058  *	LOCKING:
3059  *	Inherited from caller.
3060  *
3061  *	RETURNS:
3062  *	0 on success, negative errno on failure
3063  */
3064 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3065 {
3066 	u32 sstatus, spd, mask;
3067 	int rc, bit;
3068 
3069 	if (!sata_scr_valid(link))
3070 		return -EOPNOTSUPP;
3071 
3072 	/* If SCR can be read, use it to determine the current SPD.
3073 	 * If not, use cached value in link->sata_spd.
3074 	 */
3075 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3076 	if (rc == 0 && ata_sstatus_online(sstatus))
3077 		spd = (sstatus >> 4) & 0xf;
3078 	else
3079 		spd = link->sata_spd;
3080 
3081 	mask = link->sata_spd_limit;
3082 	if (mask <= 1)
3083 		return -EINVAL;
3084 
3085 	/* unconditionally mask off the highest bit */
3086 	bit = fls(mask) - 1;
3087 	mask &= ~(1 << bit);
3088 
3089 	/*
3090 	 * Mask off all speeds higher than or equal to the current one.  At
3091 	 * this point, if current SPD is not available and we previously
3092 	 * recorded the link speed from SStatus, the driver has already
3093 	 * masked off the highest bit so mask should already be 1 or 0.
3094 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3095 	 * not previously recorded speed from SStatus.  Just return in this
3096 	 * case.
3097 	 */
3098 	if (spd > 1)
3099 		mask &= (1 << (spd - 1)) - 1;
3100 	else
3101 		return -EINVAL;
3102 
3103 	/* were we already at the bottom? */
3104 	if (!mask)
3105 		return -EINVAL;
3106 
3107 	if (spd_limit) {
3108 		if (mask & ((1 << spd_limit) - 1))
3109 			mask &= (1 << spd_limit) - 1;
3110 		else {
3111 			bit = ffs(mask) - 1;
3112 			mask = 1 << bit;
3113 		}
3114 	}
3115 
3116 	link->sata_spd_limit = mask;
3117 
3118 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3119 		      sata_spd_string(fls(mask)));
3120 
3121 	return 0;
3122 }
3123 
3124 #ifdef CONFIG_ATA_ACPI
3125 /**
3126  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3127  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3128  *	@cycle: cycle duration in ns
3129  *
3130  *	Return matching xfer mode for @cycle.  The returned mode is of
3131  *	the transfer type specified by @xfer_shift.  If @cycle is too
3132  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3133  *	than the fastest known mode, the fasted mode is returned.
3134  *
3135  *	LOCKING:
3136  *	None.
3137  *
3138  *	RETURNS:
3139  *	Matching xfer_mode, 0xff if no match found.
3140  */
3141 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3142 {
3143 	u8 base_mode = 0xff, last_mode = 0xff;
3144 	const struct ata_xfer_ent *ent;
3145 	const struct ata_timing *t;
3146 
3147 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3148 		if (ent->shift == xfer_shift)
3149 			base_mode = ent->base;
3150 
3151 	for (t = ata_timing_find_mode(base_mode);
3152 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3153 		unsigned short this_cycle;
3154 
3155 		switch (xfer_shift) {
3156 		case ATA_SHIFT_PIO:
3157 		case ATA_SHIFT_MWDMA:
3158 			this_cycle = t->cycle;
3159 			break;
3160 		case ATA_SHIFT_UDMA:
3161 			this_cycle = t->udma;
3162 			break;
3163 		default:
3164 			return 0xff;
3165 		}
3166 
3167 		if (cycle > this_cycle)
3168 			break;
3169 
3170 		last_mode = t->mode;
3171 	}
3172 
3173 	return last_mode;
3174 }
3175 #endif
3176 
3177 /**
3178  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3179  *	@dev: Device to adjust xfer masks
3180  *	@sel: ATA_DNXFER_* selector
3181  *
3182  *	Adjust xfer masks of @dev downward.  Note that this function
3183  *	does not apply the change.  Invoking ata_set_mode() afterwards
3184  *	will apply the limit.
3185  *
3186  *	LOCKING:
3187  *	Inherited from caller.
3188  *
3189  *	RETURNS:
3190  *	0 on success, negative errno on failure
3191  */
3192 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3193 {
3194 	char buf[32];
3195 	unsigned long orig_mask, xfer_mask;
3196 	unsigned long pio_mask, mwdma_mask, udma_mask;
3197 	int quiet, highbit;
3198 
3199 	quiet = !!(sel & ATA_DNXFER_QUIET);
3200 	sel &= ~ATA_DNXFER_QUIET;
3201 
3202 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3203 						  dev->mwdma_mask,
3204 						  dev->udma_mask);
3205 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3206 
3207 	switch (sel) {
3208 	case ATA_DNXFER_PIO:
3209 		highbit = fls(pio_mask) - 1;
3210 		pio_mask &= ~(1 << highbit);
3211 		break;
3212 
3213 	case ATA_DNXFER_DMA:
3214 		if (udma_mask) {
3215 			highbit = fls(udma_mask) - 1;
3216 			udma_mask &= ~(1 << highbit);
3217 			if (!udma_mask)
3218 				return -ENOENT;
3219 		} else if (mwdma_mask) {
3220 			highbit = fls(mwdma_mask) - 1;
3221 			mwdma_mask &= ~(1 << highbit);
3222 			if (!mwdma_mask)
3223 				return -ENOENT;
3224 		}
3225 		break;
3226 
3227 	case ATA_DNXFER_40C:
3228 		udma_mask &= ATA_UDMA_MASK_40C;
3229 		break;
3230 
3231 	case ATA_DNXFER_FORCE_PIO0:
3232 		pio_mask &= 1;
3233 		fallthrough;
3234 	case ATA_DNXFER_FORCE_PIO:
3235 		mwdma_mask = 0;
3236 		udma_mask = 0;
3237 		break;
3238 
3239 	default:
3240 		BUG();
3241 	}
3242 
3243 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3244 
3245 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3246 		return -ENOENT;
3247 
3248 	if (!quiet) {
3249 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3250 			snprintf(buf, sizeof(buf), "%s:%s",
3251 				 ata_mode_string(xfer_mask),
3252 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3253 		else
3254 			snprintf(buf, sizeof(buf), "%s",
3255 				 ata_mode_string(xfer_mask));
3256 
3257 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3258 	}
3259 
3260 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3261 			    &dev->udma_mask);
3262 
3263 	return 0;
3264 }
3265 
3266 static int ata_dev_set_mode(struct ata_device *dev)
3267 {
3268 	struct ata_port *ap = dev->link->ap;
3269 	struct ata_eh_context *ehc = &dev->link->eh_context;
3270 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3271 	const char *dev_err_whine = "";
3272 	int ign_dev_err = 0;
3273 	unsigned int err_mask = 0;
3274 	int rc;
3275 
3276 	dev->flags &= ~ATA_DFLAG_PIO;
3277 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3278 		dev->flags |= ATA_DFLAG_PIO;
3279 
3280 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3281 		dev_err_whine = " (SET_XFERMODE skipped)";
3282 	else {
3283 		if (nosetxfer)
3284 			ata_dev_warn(dev,
3285 				     "NOSETXFER but PATA detected - can't "
3286 				     "skip SETXFER, might malfunction\n");
3287 		err_mask = ata_dev_set_xfermode(dev);
3288 	}
3289 
3290 	if (err_mask & ~AC_ERR_DEV)
3291 		goto fail;
3292 
3293 	/* revalidate */
3294 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3295 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3296 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3297 	if (rc)
3298 		return rc;
3299 
3300 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3301 		/* Old CFA may refuse this command, which is just fine */
3302 		if (ata_id_is_cfa(dev->id))
3303 			ign_dev_err = 1;
3304 		/* Catch several broken garbage emulations plus some pre
3305 		   ATA devices */
3306 		if (ata_id_major_version(dev->id) == 0 &&
3307 					dev->pio_mode <= XFER_PIO_2)
3308 			ign_dev_err = 1;
3309 		/* Some very old devices and some bad newer ones fail
3310 		   any kind of SET_XFERMODE request but support PIO0-2
3311 		   timings and no IORDY */
3312 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3313 			ign_dev_err = 1;
3314 	}
3315 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3316 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3317 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3318 	    dev->dma_mode == XFER_MW_DMA_0 &&
3319 	    (dev->id[63] >> 8) & 1)
3320 		ign_dev_err = 1;
3321 
3322 	/* if the device is actually configured correctly, ignore dev err */
3323 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3324 		ign_dev_err = 1;
3325 
3326 	if (err_mask & AC_ERR_DEV) {
3327 		if (!ign_dev_err)
3328 			goto fail;
3329 		else
3330 			dev_err_whine = " (device error ignored)";
3331 	}
3332 
3333 	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3334 		    dev->xfer_shift, (int)dev->xfer_mode);
3335 
3336 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3337 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3338 		ata_dev_info(dev, "configured for %s%s\n",
3339 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3340 			     dev_err_whine);
3341 
3342 	return 0;
3343 
3344  fail:
3345 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3346 	return -EIO;
3347 }
3348 
3349 /**
3350  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3351  *	@link: link on which timings will be programmed
3352  *	@r_failed_dev: out parameter for failed device
3353  *
3354  *	Standard implementation of the function used to tune and set
3355  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3356  *	ata_dev_set_mode() fails, pointer to the failing device is
3357  *	returned in @r_failed_dev.
3358  *
3359  *	LOCKING:
3360  *	PCI/etc. bus probe sem.
3361  *
3362  *	RETURNS:
3363  *	0 on success, negative errno otherwise
3364  */
3365 
3366 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3367 {
3368 	struct ata_port *ap = link->ap;
3369 	struct ata_device *dev;
3370 	int rc = 0, used_dma = 0, found = 0;
3371 
3372 	/* step 1: calculate xfer_mask */
3373 	ata_for_each_dev(dev, link, ENABLED) {
3374 		unsigned long pio_mask, dma_mask;
3375 		unsigned int mode_mask;
3376 
3377 		mode_mask = ATA_DMA_MASK_ATA;
3378 		if (dev->class == ATA_DEV_ATAPI)
3379 			mode_mask = ATA_DMA_MASK_ATAPI;
3380 		else if (ata_id_is_cfa(dev->id))
3381 			mode_mask = ATA_DMA_MASK_CFA;
3382 
3383 		ata_dev_xfermask(dev);
3384 		ata_force_xfermask(dev);
3385 
3386 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3387 
3388 		if (libata_dma_mask & mode_mask)
3389 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3390 						     dev->udma_mask);
3391 		else
3392 			dma_mask = 0;
3393 
3394 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3395 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3396 
3397 		found = 1;
3398 		if (ata_dma_enabled(dev))
3399 			used_dma = 1;
3400 	}
3401 	if (!found)
3402 		goto out;
3403 
3404 	/* step 2: always set host PIO timings */
3405 	ata_for_each_dev(dev, link, ENABLED) {
3406 		if (dev->pio_mode == 0xff) {
3407 			ata_dev_warn(dev, "no PIO support\n");
3408 			rc = -EINVAL;
3409 			goto out;
3410 		}
3411 
3412 		dev->xfer_mode = dev->pio_mode;
3413 		dev->xfer_shift = ATA_SHIFT_PIO;
3414 		if (ap->ops->set_piomode)
3415 			ap->ops->set_piomode(ap, dev);
3416 	}
3417 
3418 	/* step 3: set host DMA timings */
3419 	ata_for_each_dev(dev, link, ENABLED) {
3420 		if (!ata_dma_enabled(dev))
3421 			continue;
3422 
3423 		dev->xfer_mode = dev->dma_mode;
3424 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3425 		if (ap->ops->set_dmamode)
3426 			ap->ops->set_dmamode(ap, dev);
3427 	}
3428 
3429 	/* step 4: update devices' xfer mode */
3430 	ata_for_each_dev(dev, link, ENABLED) {
3431 		rc = ata_dev_set_mode(dev);
3432 		if (rc)
3433 			goto out;
3434 	}
3435 
3436 	/* Record simplex status. If we selected DMA then the other
3437 	 * host channels are not permitted to do so.
3438 	 */
3439 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3440 		ap->host->simplex_claimed = ap;
3441 
3442  out:
3443 	if (rc)
3444 		*r_failed_dev = dev;
3445 	return rc;
3446 }
3447 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3448 
3449 /**
3450  *	ata_wait_ready - wait for link to become ready
3451  *	@link: link to be waited on
3452  *	@deadline: deadline jiffies for the operation
3453  *	@check_ready: callback to check link readiness
3454  *
3455  *	Wait for @link to become ready.  @check_ready should return
3456  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3457  *	link doesn't seem to be occupied, other errno for other error
3458  *	conditions.
3459  *
3460  *	Transient -ENODEV conditions are allowed for
3461  *	ATA_TMOUT_FF_WAIT.
3462  *
3463  *	LOCKING:
3464  *	EH context.
3465  *
3466  *	RETURNS:
3467  *	0 if @link is ready before @deadline; otherwise, -errno.
3468  */
3469 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3470 		   int (*check_ready)(struct ata_link *link))
3471 {
3472 	unsigned long start = jiffies;
3473 	unsigned long nodev_deadline;
3474 	int warned = 0;
3475 
3476 	/* choose which 0xff timeout to use, read comment in libata.h */
3477 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3478 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3479 	else
3480 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3481 
3482 	/* Slave readiness can't be tested separately from master.  On
3483 	 * M/S emulation configuration, this function should be called
3484 	 * only on the master and it will handle both master and slave.
3485 	 */
3486 	WARN_ON(link == link->ap->slave_link);
3487 
3488 	if (time_after(nodev_deadline, deadline))
3489 		nodev_deadline = deadline;
3490 
3491 	while (1) {
3492 		unsigned long now = jiffies;
3493 		int ready, tmp;
3494 
3495 		ready = tmp = check_ready(link);
3496 		if (ready > 0)
3497 			return 0;
3498 
3499 		/*
3500 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3501 		 * is online.  Also, some SATA devices take a long
3502 		 * time to clear 0xff after reset.  Wait for
3503 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3504 		 * offline.
3505 		 *
3506 		 * Note that some PATA controllers (pata_ali) explode
3507 		 * if status register is read more than once when
3508 		 * there's no device attached.
3509 		 */
3510 		if (ready == -ENODEV) {
3511 			if (ata_link_online(link))
3512 				ready = 0;
3513 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3514 				 !ata_link_offline(link) &&
3515 				 time_before(now, nodev_deadline))
3516 				ready = 0;
3517 		}
3518 
3519 		if (ready)
3520 			return ready;
3521 		if (time_after(now, deadline))
3522 			return -EBUSY;
3523 
3524 		if (!warned && time_after(now, start + 5 * HZ) &&
3525 		    (deadline - now > 3 * HZ)) {
3526 			ata_link_warn(link,
3527 				"link is slow to respond, please be patient "
3528 				"(ready=%d)\n", tmp);
3529 			warned = 1;
3530 		}
3531 
3532 		ata_msleep(link->ap, 50);
3533 	}
3534 }
3535 
3536 /**
3537  *	ata_wait_after_reset - wait for link to become ready after reset
3538  *	@link: link to be waited on
3539  *	@deadline: deadline jiffies for the operation
3540  *	@check_ready: callback to check link readiness
3541  *
3542  *	Wait for @link to become ready after reset.
3543  *
3544  *	LOCKING:
3545  *	EH context.
3546  *
3547  *	RETURNS:
3548  *	0 if @link is ready before @deadline; otherwise, -errno.
3549  */
3550 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3551 				int (*check_ready)(struct ata_link *link))
3552 {
3553 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3554 
3555 	return ata_wait_ready(link, deadline, check_ready);
3556 }
3557 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3558 
3559 /**
3560  *	ata_std_prereset - prepare for reset
3561  *	@link: ATA link to be reset
3562  *	@deadline: deadline jiffies for the operation
3563  *
3564  *	@link is about to be reset.  Initialize it.  Failure from
3565  *	prereset makes libata abort whole reset sequence and give up
3566  *	that port, so prereset should be best-effort.  It does its
3567  *	best to prepare for reset sequence but if things go wrong, it
3568  *	should just whine, not fail.
3569  *
3570  *	LOCKING:
3571  *	Kernel thread context (may sleep)
3572  *
3573  *	RETURNS:
3574  *	0 on success, -errno otherwise.
3575  */
3576 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3577 {
3578 	struct ata_port *ap = link->ap;
3579 	struct ata_eh_context *ehc = &link->eh_context;
3580 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3581 	int rc;
3582 
3583 	/* if we're about to do hardreset, nothing more to do */
3584 	if (ehc->i.action & ATA_EH_HARDRESET)
3585 		return 0;
3586 
3587 	/* if SATA, resume link */
3588 	if (ap->flags & ATA_FLAG_SATA) {
3589 		rc = sata_link_resume(link, timing, deadline);
3590 		/* whine about phy resume failure but proceed */
3591 		if (rc && rc != -EOPNOTSUPP)
3592 			ata_link_warn(link,
3593 				      "failed to resume link for reset (errno=%d)\n",
3594 				      rc);
3595 	}
3596 
3597 	/* no point in trying softreset on offline link */
3598 	if (ata_phys_link_offline(link))
3599 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3600 
3601 	return 0;
3602 }
3603 EXPORT_SYMBOL_GPL(ata_std_prereset);
3604 
3605 /**
3606  *	sata_std_hardreset - COMRESET w/o waiting or classification
3607  *	@link: link to reset
3608  *	@class: resulting class of attached device
3609  *	@deadline: deadline jiffies for the operation
3610  *
3611  *	Standard SATA COMRESET w/o waiting or classification.
3612  *
3613  *	LOCKING:
3614  *	Kernel thread context (may sleep)
3615  *
3616  *	RETURNS:
3617  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3618  */
3619 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3620 		       unsigned long deadline)
3621 {
3622 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3623 	bool online;
3624 	int rc;
3625 
3626 	/* do hardreset */
3627 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3628 	return online ? -EAGAIN : rc;
3629 }
3630 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3631 
3632 /**
3633  *	ata_std_postreset - standard postreset callback
3634  *	@link: the target ata_link
3635  *	@classes: classes of attached devices
3636  *
3637  *	This function is invoked after a successful reset.  Note that
3638  *	the device might have been reset more than once using
3639  *	different reset methods before postreset is invoked.
3640  *
3641  *	LOCKING:
3642  *	Kernel thread context (may sleep)
3643  */
3644 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3645 {
3646 	u32 serror;
3647 
3648 	/* reset complete, clear SError */
3649 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3650 		sata_scr_write(link, SCR_ERROR, serror);
3651 
3652 	/* print link status */
3653 	sata_print_link_status(link);
3654 }
3655 EXPORT_SYMBOL_GPL(ata_std_postreset);
3656 
3657 /**
3658  *	ata_dev_same_device - Determine whether new ID matches configured device
3659  *	@dev: device to compare against
3660  *	@new_class: class of the new device
3661  *	@new_id: IDENTIFY page of the new device
3662  *
3663  *	Compare @new_class and @new_id against @dev and determine
3664  *	whether @dev is the device indicated by @new_class and
3665  *	@new_id.
3666  *
3667  *	LOCKING:
3668  *	None.
3669  *
3670  *	RETURNS:
3671  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3672  */
3673 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3674 			       const u16 *new_id)
3675 {
3676 	const u16 *old_id = dev->id;
3677 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3678 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3679 
3680 	if (dev->class != new_class) {
3681 		ata_dev_info(dev, "class mismatch %d != %d\n",
3682 			     dev->class, new_class);
3683 		return 0;
3684 	}
3685 
3686 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3687 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3688 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3689 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3690 
3691 	if (strcmp(model[0], model[1])) {
3692 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3693 			     model[0], model[1]);
3694 		return 0;
3695 	}
3696 
3697 	if (strcmp(serial[0], serial[1])) {
3698 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3699 			     serial[0], serial[1]);
3700 		return 0;
3701 	}
3702 
3703 	return 1;
3704 }
3705 
3706 /**
3707  *	ata_dev_reread_id - Re-read IDENTIFY data
3708  *	@dev: target ATA device
3709  *	@readid_flags: read ID flags
3710  *
3711  *	Re-read IDENTIFY page and make sure @dev is still attached to
3712  *	the port.
3713  *
3714  *	LOCKING:
3715  *	Kernel thread context (may sleep)
3716  *
3717  *	RETURNS:
3718  *	0 on success, negative errno otherwise
3719  */
3720 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3721 {
3722 	unsigned int class = dev->class;
3723 	u16 *id = (void *)dev->link->ap->sector_buf;
3724 	int rc;
3725 
3726 	/* read ID data */
3727 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3728 	if (rc)
3729 		return rc;
3730 
3731 	/* is the device still there? */
3732 	if (!ata_dev_same_device(dev, class, id))
3733 		return -ENODEV;
3734 
3735 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3736 	return 0;
3737 }
3738 
3739 /**
3740  *	ata_dev_revalidate - Revalidate ATA device
3741  *	@dev: device to revalidate
3742  *	@new_class: new class code
3743  *	@readid_flags: read ID flags
3744  *
3745  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3746  *	port and reconfigure it according to the new IDENTIFY page.
3747  *
3748  *	LOCKING:
3749  *	Kernel thread context (may sleep)
3750  *
3751  *	RETURNS:
3752  *	0 on success, negative errno otherwise
3753  */
3754 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3755 		       unsigned int readid_flags)
3756 {
3757 	u64 n_sectors = dev->n_sectors;
3758 	u64 n_native_sectors = dev->n_native_sectors;
3759 	int rc;
3760 
3761 	if (!ata_dev_enabled(dev))
3762 		return -ENODEV;
3763 
3764 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3765 	if (ata_class_enabled(new_class) &&
3766 	    new_class != ATA_DEV_ATA &&
3767 	    new_class != ATA_DEV_ATAPI &&
3768 	    new_class != ATA_DEV_ZAC &&
3769 	    new_class != ATA_DEV_SEMB) {
3770 		ata_dev_info(dev, "class mismatch %u != %u\n",
3771 			     dev->class, new_class);
3772 		rc = -ENODEV;
3773 		goto fail;
3774 	}
3775 
3776 	/* re-read ID */
3777 	rc = ata_dev_reread_id(dev, readid_flags);
3778 	if (rc)
3779 		goto fail;
3780 
3781 	/* configure device according to the new ID */
3782 	rc = ata_dev_configure(dev);
3783 	if (rc)
3784 		goto fail;
3785 
3786 	/* verify n_sectors hasn't changed */
3787 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3788 	    dev->n_sectors == n_sectors)
3789 		return 0;
3790 
3791 	/* n_sectors has changed */
3792 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3793 		     (unsigned long long)n_sectors,
3794 		     (unsigned long long)dev->n_sectors);
3795 
3796 	/*
3797 	 * Something could have caused HPA to be unlocked
3798 	 * involuntarily.  If n_native_sectors hasn't changed and the
3799 	 * new size matches it, keep the device.
3800 	 */
3801 	if (dev->n_native_sectors == n_native_sectors &&
3802 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3803 		ata_dev_warn(dev,
3804 			     "new n_sectors matches native, probably "
3805 			     "late HPA unlock, n_sectors updated\n");
3806 		/* use the larger n_sectors */
3807 		return 0;
3808 	}
3809 
3810 	/*
3811 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3812 	 * unlocking HPA in those cases.
3813 	 *
3814 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3815 	 */
3816 	if (dev->n_native_sectors == n_native_sectors &&
3817 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3818 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3819 		ata_dev_warn(dev,
3820 			     "old n_sectors matches native, probably "
3821 			     "late HPA lock, will try to unlock HPA\n");
3822 		/* try unlocking HPA */
3823 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3824 		rc = -EIO;
3825 	} else
3826 		rc = -ENODEV;
3827 
3828 	/* restore original n_[native_]sectors and fail */
3829 	dev->n_native_sectors = n_native_sectors;
3830 	dev->n_sectors = n_sectors;
3831  fail:
3832 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3833 	return rc;
3834 }
3835 
3836 struct ata_blacklist_entry {
3837 	const char *model_num;
3838 	const char *model_rev;
3839 	unsigned long horkage;
3840 };
3841 
3842 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3843 	/* Devices with DMA related problems under Linux */
3844 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3845 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3846 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3847 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3848 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3849 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3850 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3851 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3852 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3853 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3854 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3855 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3856 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3857 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3858 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3859 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3860 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3861 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3862 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3863 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3864 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3865 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3866 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3867 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3868 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3869 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3870 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3871 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3872 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3873 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3874 	/* Odd clown on sil3726/4726 PMPs */
3875 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3876 	/* Similar story with ASMedia 1092 */
3877 	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
3878 
3879 	/* Weird ATAPI devices */
3880 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3881 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3882 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3883 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3884 
3885 	/*
3886 	 * Causes silent data corruption with higher max sects.
3887 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3888 	 */
3889 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3890 
3891 	/*
3892 	 * These devices time out with higher max sects.
3893 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3894 	 */
3895 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3896 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3897 
3898 	/* Devices we expect to fail diagnostics */
3899 
3900 	/* Devices where NCQ should be avoided */
3901 	/* NCQ is slow */
3902 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3903 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3904 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3905 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3906 	/* NCQ is broken */
3907 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3908 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3909 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3910 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3911 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3912 
3913 	/* Seagate NCQ + FLUSH CACHE firmware bug */
3914 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3915 						ATA_HORKAGE_FIRMWARE_WARN },
3916 
3917 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3918 						ATA_HORKAGE_FIRMWARE_WARN },
3919 
3920 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3921 						ATA_HORKAGE_FIRMWARE_WARN },
3922 
3923 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3924 						ATA_HORKAGE_FIRMWARE_WARN },
3925 
3926 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3927 	   the ST disks also have LPM issues */
3928 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3929 						ATA_HORKAGE_NOLPM, },
3930 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3931 
3932 	/* Blacklist entries taken from Silicon Image 3124/3132
3933 	   Windows driver .inf file - also several Linux problem reports */
3934 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3935 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3936 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3937 
3938 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3939 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
3940 
3941 	/* Sandisk SD7/8/9s lock up hard on large trims */
3942 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M, },
3943 
3944 	/* devices which puke on READ_NATIVE_MAX */
3945 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
3946 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3947 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3948 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3949 
3950 	/* this one allows HPA unlocking but fails IOs on the area */
3951 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3952 
3953 	/* Devices which report 1 sector over size HPA */
3954 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3955 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3956 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3957 
3958 	/* Devices which get the IVB wrong */
3959 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3960 	/* Maybe we should just blacklist TSSTcorp... */
3961 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
3962 
3963 	/* Devices that do not need bridging limits applied */
3964 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3965 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3966 
3967 	/* Devices which aren't very happy with higher link speeds */
3968 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
3969 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
3970 
3971 	/*
3972 	 * Devices which choke on SETXFER.  Applies only if both the
3973 	 * device and controller are SATA.
3974 	 */
3975 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
3976 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
3977 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
3978 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
3979 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
3980 
3981 	/* Crucial BX100 SSD 500GB has broken LPM support */
3982 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
3983 
3984 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3985 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3986 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3987 						ATA_HORKAGE_NOLPM, },
3988 	/* 512GB MX100 with newer firmware has only LPM issues */
3989 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
3990 						ATA_HORKAGE_NOLPM, },
3991 
3992 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3993 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3994 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3995 						ATA_HORKAGE_NOLPM, },
3996 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3997 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3998 						ATA_HORKAGE_NOLPM, },
3999 
4000 	/* These specific Samsung models/firmware-revs do not handle LPM well */
4001 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4002 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4003 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
4004 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
4005 
4006 	/* devices that don't properly handle queued TRIM commands */
4007 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4008 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4009 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4010 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4011 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4012 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4013 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4014 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4015 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4016 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4017 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4018 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4019 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4020 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4021 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4022 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4023 	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4024 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4025 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4026 	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4027 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4028 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4029 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4030 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4031 
4032 	/* devices that don't properly handle TRIM commands */
4033 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4034 
4035 	/*
4036 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4037 	 * (Return Zero After Trim) flags in the ATA Command Set are
4038 	 * unreliable in the sense that they only define what happens if
4039 	 * the device successfully executed the DSM TRIM command. TRIM
4040 	 * is only advisory, however, and the device is free to silently
4041 	 * ignore all or parts of the request.
4042 	 *
4043 	 * Whitelist drives that are known to reliably return zeroes
4044 	 * after TRIM.
4045 	 */
4046 
4047 	/*
4048 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4049 	 * that model before whitelisting all other intel SSDs.
4050 	 */
4051 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4052 
4053 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4054 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4055 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4056 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4057 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4058 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4059 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4060 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4061 
4062 	/*
4063 	 * Some WD SATA-I drives spin up and down erratically when the link
4064 	 * is put into the slumber mode.  We don't have full list of the
4065 	 * affected devices.  Disable LPM if the device matches one of the
4066 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4067 	 * lost too.
4068 	 *
4069 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4070 	 */
4071 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4072 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4073 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4074 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4075 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4076 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4077 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4078 
4079 	/*
4080 	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4081 	 * log page is accessed. Ensure we never ask for this log page with
4082 	 * these devices.
4083 	 */
4084 	{ "SATADOM-ML 3ME",		NULL,	ATA_HORKAGE_NO_LOG_DIR },
4085 
4086 	/* End Marker */
4087 	{ }
4088 };
4089 
4090 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4091 {
4092 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4093 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4094 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4095 
4096 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4097 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4098 
4099 	while (ad->model_num) {
4100 		if (glob_match(ad->model_num, model_num)) {
4101 			if (ad->model_rev == NULL)
4102 				return ad->horkage;
4103 			if (glob_match(ad->model_rev, model_rev))
4104 				return ad->horkage;
4105 		}
4106 		ad++;
4107 	}
4108 	return 0;
4109 }
4110 
4111 static int ata_dma_blacklisted(const struct ata_device *dev)
4112 {
4113 	/* We don't support polling DMA.
4114 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4115 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4116 	 */
4117 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4118 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4119 		return 1;
4120 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4121 }
4122 
4123 /**
4124  *	ata_is_40wire		-	check drive side detection
4125  *	@dev: device
4126  *
4127  *	Perform drive side detection decoding, allowing for device vendors
4128  *	who can't follow the documentation.
4129  */
4130 
4131 static int ata_is_40wire(struct ata_device *dev)
4132 {
4133 	if (dev->horkage & ATA_HORKAGE_IVB)
4134 		return ata_drive_40wire_relaxed(dev->id);
4135 	return ata_drive_40wire(dev->id);
4136 }
4137 
4138 /**
4139  *	cable_is_40wire		-	40/80/SATA decider
4140  *	@ap: port to consider
4141  *
4142  *	This function encapsulates the policy for speed management
4143  *	in one place. At the moment we don't cache the result but
4144  *	there is a good case for setting ap->cbl to the result when
4145  *	we are called with unknown cables (and figuring out if it
4146  *	impacts hotplug at all).
4147  *
4148  *	Return 1 if the cable appears to be 40 wire.
4149  */
4150 
4151 static int cable_is_40wire(struct ata_port *ap)
4152 {
4153 	struct ata_link *link;
4154 	struct ata_device *dev;
4155 
4156 	/* If the controller thinks we are 40 wire, we are. */
4157 	if (ap->cbl == ATA_CBL_PATA40)
4158 		return 1;
4159 
4160 	/* If the controller thinks we are 80 wire, we are. */
4161 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4162 		return 0;
4163 
4164 	/* If the system is known to be 40 wire short cable (eg
4165 	 * laptop), then we allow 80 wire modes even if the drive
4166 	 * isn't sure.
4167 	 */
4168 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4169 		return 0;
4170 
4171 	/* If the controller doesn't know, we scan.
4172 	 *
4173 	 * Note: We look for all 40 wire detects at this point.  Any
4174 	 *       80 wire detect is taken to be 80 wire cable because
4175 	 * - in many setups only the one drive (slave if present) will
4176 	 *   give a valid detect
4177 	 * - if you have a non detect capable drive you don't want it
4178 	 *   to colour the choice
4179 	 */
4180 	ata_for_each_link(link, ap, EDGE) {
4181 		ata_for_each_dev(dev, link, ENABLED) {
4182 			if (!ata_is_40wire(dev))
4183 				return 0;
4184 		}
4185 	}
4186 	return 1;
4187 }
4188 
4189 /**
4190  *	ata_dev_xfermask - Compute supported xfermask of the given device
4191  *	@dev: Device to compute xfermask for
4192  *
4193  *	Compute supported xfermask of @dev and store it in
4194  *	dev->*_mask.  This function is responsible for applying all
4195  *	known limits including host controller limits, device
4196  *	blacklist, etc...
4197  *
4198  *	LOCKING:
4199  *	None.
4200  */
4201 static void ata_dev_xfermask(struct ata_device *dev)
4202 {
4203 	struct ata_link *link = dev->link;
4204 	struct ata_port *ap = link->ap;
4205 	struct ata_host *host = ap->host;
4206 	unsigned long xfer_mask;
4207 
4208 	/* controller modes available */
4209 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4210 				      ap->mwdma_mask, ap->udma_mask);
4211 
4212 	/* drive modes available */
4213 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4214 				       dev->mwdma_mask, dev->udma_mask);
4215 	xfer_mask &= ata_id_xfermask(dev->id);
4216 
4217 	/*
4218 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4219 	 *	cable
4220 	 */
4221 	if (ata_dev_pair(dev)) {
4222 		/* No PIO5 or PIO6 */
4223 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4224 		/* No MWDMA3 or MWDMA 4 */
4225 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4226 	}
4227 
4228 	if (ata_dma_blacklisted(dev)) {
4229 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4230 		ata_dev_warn(dev,
4231 			     "device is on DMA blacklist, disabling DMA\n");
4232 	}
4233 
4234 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4235 	    host->simplex_claimed && host->simplex_claimed != ap) {
4236 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4237 		ata_dev_warn(dev,
4238 			     "simplex DMA is claimed by other device, disabling DMA\n");
4239 	}
4240 
4241 	if (ap->flags & ATA_FLAG_NO_IORDY)
4242 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4243 
4244 	if (ap->ops->mode_filter)
4245 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4246 
4247 	/* Apply cable rule here.  Don't apply it early because when
4248 	 * we handle hot plug the cable type can itself change.
4249 	 * Check this last so that we know if the transfer rate was
4250 	 * solely limited by the cable.
4251 	 * Unknown or 80 wire cables reported host side are checked
4252 	 * drive side as well. Cases where we know a 40wire cable
4253 	 * is used safely for 80 are not checked here.
4254 	 */
4255 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4256 		/* UDMA/44 or higher would be available */
4257 		if (cable_is_40wire(ap)) {
4258 			ata_dev_warn(dev,
4259 				     "limited to UDMA/33 due to 40-wire cable\n");
4260 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4261 		}
4262 
4263 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4264 			    &dev->mwdma_mask, &dev->udma_mask);
4265 }
4266 
4267 /**
4268  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4269  *	@dev: Device to which command will be sent
4270  *
4271  *	Issue SET FEATURES - XFER MODE command to device @dev
4272  *	on port @ap.
4273  *
4274  *	LOCKING:
4275  *	PCI/etc. bus probe sem.
4276  *
4277  *	RETURNS:
4278  *	0 on success, AC_ERR_* mask otherwise.
4279  */
4280 
4281 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4282 {
4283 	struct ata_taskfile tf;
4284 	unsigned int err_mask;
4285 
4286 	/* set up set-features taskfile */
4287 	ata_dev_dbg(dev, "set features - xfer mode\n");
4288 
4289 	/* Some controllers and ATAPI devices show flaky interrupt
4290 	 * behavior after setting xfer mode.  Use polling instead.
4291 	 */
4292 	ata_tf_init(dev, &tf);
4293 	tf.command = ATA_CMD_SET_FEATURES;
4294 	tf.feature = SETFEATURES_XFER;
4295 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4296 	tf.protocol = ATA_PROT_NODATA;
4297 	/* If we are using IORDY we must send the mode setting command */
4298 	if (ata_pio_need_iordy(dev))
4299 		tf.nsect = dev->xfer_mode;
4300 	/* If the device has IORDY and the controller does not - turn it off */
4301  	else if (ata_id_has_iordy(dev->id))
4302 		tf.nsect = 0x01;
4303 	else /* In the ancient relic department - skip all of this */
4304 		return 0;
4305 
4306 	/* On some disks, this command causes spin-up, so we need longer timeout */
4307 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4308 
4309 	return err_mask;
4310 }
4311 
4312 /**
4313  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4314  *	@dev: Device to which command will be sent
4315  *	@enable: Whether to enable or disable the feature
4316  *	@feature: The sector count represents the feature to set
4317  *
4318  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4319  *	on port @ap with sector count
4320  *
4321  *	LOCKING:
4322  *	PCI/etc. bus probe sem.
4323  *
4324  *	RETURNS:
4325  *	0 on success, AC_ERR_* mask otherwise.
4326  */
4327 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4328 {
4329 	struct ata_taskfile tf;
4330 	unsigned int err_mask;
4331 	unsigned long timeout = 0;
4332 
4333 	/* set up set-features taskfile */
4334 	ata_dev_dbg(dev, "set features - SATA features\n");
4335 
4336 	ata_tf_init(dev, &tf);
4337 	tf.command = ATA_CMD_SET_FEATURES;
4338 	tf.feature = enable;
4339 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4340 	tf.protocol = ATA_PROT_NODATA;
4341 	tf.nsect = feature;
4342 
4343 	if (enable == SETFEATURES_SPINUP)
4344 		timeout = ata_probe_timeout ?
4345 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4346 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4347 
4348 	return err_mask;
4349 }
4350 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4351 
4352 /**
4353  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4354  *	@dev: Device to which command will be sent
4355  *	@heads: Number of heads (taskfile parameter)
4356  *	@sectors: Number of sectors (taskfile parameter)
4357  *
4358  *	LOCKING:
4359  *	Kernel thread context (may sleep)
4360  *
4361  *	RETURNS:
4362  *	0 on success, AC_ERR_* mask otherwise.
4363  */
4364 static unsigned int ata_dev_init_params(struct ata_device *dev,
4365 					u16 heads, u16 sectors)
4366 {
4367 	struct ata_taskfile tf;
4368 	unsigned int err_mask;
4369 
4370 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4371 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4372 		return AC_ERR_INVALID;
4373 
4374 	/* set up init dev params taskfile */
4375 	ata_dev_dbg(dev, "init dev params \n");
4376 
4377 	ata_tf_init(dev, &tf);
4378 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4379 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4380 	tf.protocol = ATA_PROT_NODATA;
4381 	tf.nsect = sectors;
4382 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4383 
4384 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4385 	/* A clean abort indicates an original or just out of spec drive
4386 	   and we should continue as we issue the setup based on the
4387 	   drive reported working geometry */
4388 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4389 		err_mask = 0;
4390 
4391 	return err_mask;
4392 }
4393 
4394 /**
4395  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4396  *	@qc: Metadata associated with taskfile to check
4397  *
4398  *	Allow low-level driver to filter ATA PACKET commands, returning
4399  *	a status indicating whether or not it is OK to use DMA for the
4400  *	supplied PACKET command.
4401  *
4402  *	LOCKING:
4403  *	spin_lock_irqsave(host lock)
4404  *
4405  *	RETURNS: 0 when ATAPI DMA can be used
4406  *               nonzero otherwise
4407  */
4408 int atapi_check_dma(struct ata_queued_cmd *qc)
4409 {
4410 	struct ata_port *ap = qc->ap;
4411 
4412 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4413 	 * few ATAPI devices choke on such DMA requests.
4414 	 */
4415 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4416 	    unlikely(qc->nbytes & 15))
4417 		return 1;
4418 
4419 	if (ap->ops->check_atapi_dma)
4420 		return ap->ops->check_atapi_dma(qc);
4421 
4422 	return 0;
4423 }
4424 
4425 /**
4426  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4427  *	@qc: ATA command in question
4428  *
4429  *	Non-NCQ commands cannot run with any other command, NCQ or
4430  *	not.  As upper layer only knows the queue depth, we are
4431  *	responsible for maintaining exclusion.  This function checks
4432  *	whether a new command @qc can be issued.
4433  *
4434  *	LOCKING:
4435  *	spin_lock_irqsave(host lock)
4436  *
4437  *	RETURNS:
4438  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4439  */
4440 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4441 {
4442 	struct ata_link *link = qc->dev->link;
4443 
4444 	if (ata_is_ncq(qc->tf.protocol)) {
4445 		if (!ata_tag_valid(link->active_tag))
4446 			return 0;
4447 	} else {
4448 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4449 			return 0;
4450 	}
4451 
4452 	return ATA_DEFER_LINK;
4453 }
4454 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4455 
4456 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4457 {
4458 	return AC_ERR_OK;
4459 }
4460 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4461 
4462 /**
4463  *	ata_sg_init - Associate command with scatter-gather table.
4464  *	@qc: Command to be associated
4465  *	@sg: Scatter-gather table.
4466  *	@n_elem: Number of elements in s/g table.
4467  *
4468  *	Initialize the data-related elements of queued_cmd @qc
4469  *	to point to a scatter-gather table @sg, containing @n_elem
4470  *	elements.
4471  *
4472  *	LOCKING:
4473  *	spin_lock_irqsave(host lock)
4474  */
4475 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4476 		 unsigned int n_elem)
4477 {
4478 	qc->sg = sg;
4479 	qc->n_elem = n_elem;
4480 	qc->cursg = qc->sg;
4481 }
4482 
4483 #ifdef CONFIG_HAS_DMA
4484 
4485 /**
4486  *	ata_sg_clean - Unmap DMA memory associated with command
4487  *	@qc: Command containing DMA memory to be released
4488  *
4489  *	Unmap all mapped DMA memory associated with this command.
4490  *
4491  *	LOCKING:
4492  *	spin_lock_irqsave(host lock)
4493  */
4494 static void ata_sg_clean(struct ata_queued_cmd *qc)
4495 {
4496 	struct ata_port *ap = qc->ap;
4497 	struct scatterlist *sg = qc->sg;
4498 	int dir = qc->dma_dir;
4499 
4500 	WARN_ON_ONCE(sg == NULL);
4501 
4502 	if (qc->n_elem)
4503 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4504 
4505 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4506 	qc->sg = NULL;
4507 }
4508 
4509 /**
4510  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4511  *	@qc: Command with scatter-gather table to be mapped.
4512  *
4513  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4514  *
4515  *	LOCKING:
4516  *	spin_lock_irqsave(host lock)
4517  *
4518  *	RETURNS:
4519  *	Zero on success, negative on error.
4520  *
4521  */
4522 static int ata_sg_setup(struct ata_queued_cmd *qc)
4523 {
4524 	struct ata_port *ap = qc->ap;
4525 	unsigned int n_elem;
4526 
4527 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4528 	if (n_elem < 1)
4529 		return -1;
4530 
4531 	qc->orig_n_elem = qc->n_elem;
4532 	qc->n_elem = n_elem;
4533 	qc->flags |= ATA_QCFLAG_DMAMAP;
4534 
4535 	return 0;
4536 }
4537 
4538 #else /* !CONFIG_HAS_DMA */
4539 
4540 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4541 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4542 
4543 #endif /* !CONFIG_HAS_DMA */
4544 
4545 /**
4546  *	swap_buf_le16 - swap halves of 16-bit words in place
4547  *	@buf:  Buffer to swap
4548  *	@buf_words:  Number of 16-bit words in buffer.
4549  *
4550  *	Swap halves of 16-bit words if needed to convert from
4551  *	little-endian byte order to native cpu byte order, or
4552  *	vice-versa.
4553  *
4554  *	LOCKING:
4555  *	Inherited from caller.
4556  */
4557 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4558 {
4559 #ifdef __BIG_ENDIAN
4560 	unsigned int i;
4561 
4562 	for (i = 0; i < buf_words; i++)
4563 		buf[i] = le16_to_cpu(buf[i]);
4564 #endif /* __BIG_ENDIAN */
4565 }
4566 
4567 /**
4568  *	ata_qc_new_init - Request an available ATA command, and initialize it
4569  *	@dev: Device from whom we request an available command structure
4570  *	@tag: tag
4571  *
4572  *	LOCKING:
4573  *	None.
4574  */
4575 
4576 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4577 {
4578 	struct ata_port *ap = dev->link->ap;
4579 	struct ata_queued_cmd *qc;
4580 
4581 	/* no command while frozen */
4582 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4583 		return NULL;
4584 
4585 	/* libsas case */
4586 	if (ap->flags & ATA_FLAG_SAS_HOST) {
4587 		tag = ata_sas_allocate_tag(ap);
4588 		if (tag < 0)
4589 			return NULL;
4590 	}
4591 
4592 	qc = __ata_qc_from_tag(ap, tag);
4593 	qc->tag = qc->hw_tag = tag;
4594 	qc->scsicmd = NULL;
4595 	qc->ap = ap;
4596 	qc->dev = dev;
4597 
4598 	ata_qc_reinit(qc);
4599 
4600 	return qc;
4601 }
4602 
4603 /**
4604  *	ata_qc_free - free unused ata_queued_cmd
4605  *	@qc: Command to complete
4606  *
4607  *	Designed to free unused ata_queued_cmd object
4608  *	in case something prevents using it.
4609  *
4610  *	LOCKING:
4611  *	spin_lock_irqsave(host lock)
4612  */
4613 void ata_qc_free(struct ata_queued_cmd *qc)
4614 {
4615 	struct ata_port *ap;
4616 	unsigned int tag;
4617 
4618 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4619 	ap = qc->ap;
4620 
4621 	qc->flags = 0;
4622 	tag = qc->tag;
4623 	if (ata_tag_valid(tag)) {
4624 		qc->tag = ATA_TAG_POISON;
4625 		if (ap->flags & ATA_FLAG_SAS_HOST)
4626 			ata_sas_free_tag(tag, ap);
4627 	}
4628 }
4629 
4630 void __ata_qc_complete(struct ata_queued_cmd *qc)
4631 {
4632 	struct ata_port *ap;
4633 	struct ata_link *link;
4634 
4635 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4636 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4637 	ap = qc->ap;
4638 	link = qc->dev->link;
4639 
4640 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4641 		ata_sg_clean(qc);
4642 
4643 	/* command should be marked inactive atomically with qc completion */
4644 	if (ata_is_ncq(qc->tf.protocol)) {
4645 		link->sactive &= ~(1 << qc->hw_tag);
4646 		if (!link->sactive)
4647 			ap->nr_active_links--;
4648 	} else {
4649 		link->active_tag = ATA_TAG_POISON;
4650 		ap->nr_active_links--;
4651 	}
4652 
4653 	/* clear exclusive status */
4654 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4655 		     ap->excl_link == link))
4656 		ap->excl_link = NULL;
4657 
4658 	/* atapi: mark qc as inactive to prevent the interrupt handler
4659 	 * from completing the command twice later, before the error handler
4660 	 * is called. (when rc != 0 and atapi request sense is needed)
4661 	 */
4662 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4663 	ap->qc_active &= ~(1ULL << qc->tag);
4664 
4665 	/* call completion callback */
4666 	qc->complete_fn(qc);
4667 }
4668 
4669 static void fill_result_tf(struct ata_queued_cmd *qc)
4670 {
4671 	struct ata_port *ap = qc->ap;
4672 
4673 	qc->result_tf.flags = qc->tf.flags;
4674 	ap->ops->qc_fill_rtf(qc);
4675 }
4676 
4677 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4678 {
4679 	struct ata_device *dev = qc->dev;
4680 
4681 	if (!ata_is_data(qc->tf.protocol))
4682 		return;
4683 
4684 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4685 		return;
4686 
4687 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4688 }
4689 
4690 /**
4691  *	ata_qc_complete - Complete an active ATA command
4692  *	@qc: Command to complete
4693  *
4694  *	Indicate to the mid and upper layers that an ATA command has
4695  *	completed, with either an ok or not-ok status.
4696  *
4697  *	Refrain from calling this function multiple times when
4698  *	successfully completing multiple NCQ commands.
4699  *	ata_qc_complete_multiple() should be used instead, which will
4700  *	properly update IRQ expect state.
4701  *
4702  *	LOCKING:
4703  *	spin_lock_irqsave(host lock)
4704  */
4705 void ata_qc_complete(struct ata_queued_cmd *qc)
4706 {
4707 	struct ata_port *ap = qc->ap;
4708 
4709 	/* Trigger the LED (if available) */
4710 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4711 
4712 	/* XXX: New EH and old EH use different mechanisms to
4713 	 * synchronize EH with regular execution path.
4714 	 *
4715 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4716 	 * Normal execution path is responsible for not accessing a
4717 	 * failed qc.  libata core enforces the rule by returning NULL
4718 	 * from ata_qc_from_tag() for failed qcs.
4719 	 *
4720 	 * Old EH depends on ata_qc_complete() nullifying completion
4721 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4722 	 * not synchronize with interrupt handler.  Only PIO task is
4723 	 * taken care of.
4724 	 */
4725 	if (ap->ops->error_handler) {
4726 		struct ata_device *dev = qc->dev;
4727 		struct ata_eh_info *ehi = &dev->link->eh_info;
4728 
4729 		if (unlikely(qc->err_mask))
4730 			qc->flags |= ATA_QCFLAG_FAILED;
4731 
4732 		/*
4733 		 * Finish internal commands without any further processing
4734 		 * and always with the result TF filled.
4735 		 */
4736 		if (unlikely(ata_tag_internal(qc->tag))) {
4737 			fill_result_tf(qc);
4738 			trace_ata_qc_complete_internal(qc);
4739 			__ata_qc_complete(qc);
4740 			return;
4741 		}
4742 
4743 		/*
4744 		 * Non-internal qc has failed.  Fill the result TF and
4745 		 * summon EH.
4746 		 */
4747 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4748 			fill_result_tf(qc);
4749 			trace_ata_qc_complete_failed(qc);
4750 			ata_qc_schedule_eh(qc);
4751 			return;
4752 		}
4753 
4754 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4755 
4756 		/* read result TF if requested */
4757 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4758 			fill_result_tf(qc);
4759 
4760 		trace_ata_qc_complete_done(qc);
4761 		/* Some commands need post-processing after successful
4762 		 * completion.
4763 		 */
4764 		switch (qc->tf.command) {
4765 		case ATA_CMD_SET_FEATURES:
4766 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4767 			    qc->tf.feature != SETFEATURES_WC_OFF &&
4768 			    qc->tf.feature != SETFEATURES_RA_ON &&
4769 			    qc->tf.feature != SETFEATURES_RA_OFF)
4770 				break;
4771 			fallthrough;
4772 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4773 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4774 			/* revalidate device */
4775 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4776 			ata_port_schedule_eh(ap);
4777 			break;
4778 
4779 		case ATA_CMD_SLEEP:
4780 			dev->flags |= ATA_DFLAG_SLEEPING;
4781 			break;
4782 		}
4783 
4784 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4785 			ata_verify_xfer(qc);
4786 
4787 		__ata_qc_complete(qc);
4788 	} else {
4789 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4790 			return;
4791 
4792 		/* read result TF if failed or requested */
4793 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4794 			fill_result_tf(qc);
4795 
4796 		__ata_qc_complete(qc);
4797 	}
4798 }
4799 EXPORT_SYMBOL_GPL(ata_qc_complete);
4800 
4801 /**
4802  *	ata_qc_get_active - get bitmask of active qcs
4803  *	@ap: port in question
4804  *
4805  *	LOCKING:
4806  *	spin_lock_irqsave(host lock)
4807  *
4808  *	RETURNS:
4809  *	Bitmask of active qcs
4810  */
4811 u64 ata_qc_get_active(struct ata_port *ap)
4812 {
4813 	u64 qc_active = ap->qc_active;
4814 
4815 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4816 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4817 		qc_active |= (1 << 0);
4818 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4819 	}
4820 
4821 	return qc_active;
4822 }
4823 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4824 
4825 /**
4826  *	ata_qc_issue - issue taskfile to device
4827  *	@qc: command to issue to device
4828  *
4829  *	Prepare an ATA command to submission to device.
4830  *	This includes mapping the data into a DMA-able
4831  *	area, filling in the S/G table, and finally
4832  *	writing the taskfile to hardware, starting the command.
4833  *
4834  *	LOCKING:
4835  *	spin_lock_irqsave(host lock)
4836  */
4837 void ata_qc_issue(struct ata_queued_cmd *qc)
4838 {
4839 	struct ata_port *ap = qc->ap;
4840 	struct ata_link *link = qc->dev->link;
4841 	u8 prot = qc->tf.protocol;
4842 
4843 	/* Make sure only one non-NCQ command is outstanding.  The
4844 	 * check is skipped for old EH because it reuses active qc to
4845 	 * request ATAPI sense.
4846 	 */
4847 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4848 
4849 	if (ata_is_ncq(prot)) {
4850 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4851 
4852 		if (!link->sactive)
4853 			ap->nr_active_links++;
4854 		link->sactive |= 1 << qc->hw_tag;
4855 	} else {
4856 		WARN_ON_ONCE(link->sactive);
4857 
4858 		ap->nr_active_links++;
4859 		link->active_tag = qc->tag;
4860 	}
4861 
4862 	qc->flags |= ATA_QCFLAG_ACTIVE;
4863 	ap->qc_active |= 1ULL << qc->tag;
4864 
4865 	/*
4866 	 * We guarantee to LLDs that they will have at least one
4867 	 * non-zero sg if the command is a data command.
4868 	 */
4869 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4870 		goto sys_err;
4871 
4872 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4873 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4874 		if (ata_sg_setup(qc))
4875 			goto sys_err;
4876 
4877 	/* if device is sleeping, schedule reset and abort the link */
4878 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4879 		link->eh_info.action |= ATA_EH_RESET;
4880 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4881 		ata_link_abort(link);
4882 		return;
4883 	}
4884 
4885 	trace_ata_qc_prep(qc);
4886 	qc->err_mask |= ap->ops->qc_prep(qc);
4887 	if (unlikely(qc->err_mask))
4888 		goto err;
4889 	trace_ata_qc_issue(qc);
4890 	qc->err_mask |= ap->ops->qc_issue(qc);
4891 	if (unlikely(qc->err_mask))
4892 		goto err;
4893 	return;
4894 
4895 sys_err:
4896 	qc->err_mask |= AC_ERR_SYSTEM;
4897 err:
4898 	ata_qc_complete(qc);
4899 }
4900 
4901 /**
4902  *	ata_phys_link_online - test whether the given link is online
4903  *	@link: ATA link to test
4904  *
4905  *	Test whether @link is online.  Note that this function returns
4906  *	0 if online status of @link cannot be obtained, so
4907  *	ata_link_online(link) != !ata_link_offline(link).
4908  *
4909  *	LOCKING:
4910  *	None.
4911  *
4912  *	RETURNS:
4913  *	True if the port online status is available and online.
4914  */
4915 bool ata_phys_link_online(struct ata_link *link)
4916 {
4917 	u32 sstatus;
4918 
4919 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4920 	    ata_sstatus_online(sstatus))
4921 		return true;
4922 	return false;
4923 }
4924 
4925 /**
4926  *	ata_phys_link_offline - test whether the given link is offline
4927  *	@link: ATA link to test
4928  *
4929  *	Test whether @link is offline.  Note that this function
4930  *	returns 0 if offline status of @link cannot be obtained, so
4931  *	ata_link_online(link) != !ata_link_offline(link).
4932  *
4933  *	LOCKING:
4934  *	None.
4935  *
4936  *	RETURNS:
4937  *	True if the port offline status is available and offline.
4938  */
4939 bool ata_phys_link_offline(struct ata_link *link)
4940 {
4941 	u32 sstatus;
4942 
4943 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4944 	    !ata_sstatus_online(sstatus))
4945 		return true;
4946 	return false;
4947 }
4948 
4949 /**
4950  *	ata_link_online - test whether the given link is online
4951  *	@link: ATA link to test
4952  *
4953  *	Test whether @link is online.  This is identical to
4954  *	ata_phys_link_online() when there's no slave link.  When
4955  *	there's a slave link, this function should only be called on
4956  *	the master link and will return true if any of M/S links is
4957  *	online.
4958  *
4959  *	LOCKING:
4960  *	None.
4961  *
4962  *	RETURNS:
4963  *	True if the port online status is available and online.
4964  */
4965 bool ata_link_online(struct ata_link *link)
4966 {
4967 	struct ata_link *slave = link->ap->slave_link;
4968 
4969 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4970 
4971 	return ata_phys_link_online(link) ||
4972 		(slave && ata_phys_link_online(slave));
4973 }
4974 EXPORT_SYMBOL_GPL(ata_link_online);
4975 
4976 /**
4977  *	ata_link_offline - test whether the given link is offline
4978  *	@link: ATA link to test
4979  *
4980  *	Test whether @link is offline.  This is identical to
4981  *	ata_phys_link_offline() when there's no slave link.  When
4982  *	there's a slave link, this function should only be called on
4983  *	the master link and will return true if both M/S links are
4984  *	offline.
4985  *
4986  *	LOCKING:
4987  *	None.
4988  *
4989  *	RETURNS:
4990  *	True if the port offline status is available and offline.
4991  */
4992 bool ata_link_offline(struct ata_link *link)
4993 {
4994 	struct ata_link *slave = link->ap->slave_link;
4995 
4996 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4997 
4998 	return ata_phys_link_offline(link) &&
4999 		(!slave || ata_phys_link_offline(slave));
5000 }
5001 EXPORT_SYMBOL_GPL(ata_link_offline);
5002 
5003 #ifdef CONFIG_PM
5004 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5005 				unsigned int action, unsigned int ehi_flags,
5006 				bool async)
5007 {
5008 	struct ata_link *link;
5009 	unsigned long flags;
5010 
5011 	/* Previous resume operation might still be in
5012 	 * progress.  Wait for PM_PENDING to clear.
5013 	 */
5014 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5015 		ata_port_wait_eh(ap);
5016 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5017 	}
5018 
5019 	/* request PM ops to EH */
5020 	spin_lock_irqsave(ap->lock, flags);
5021 
5022 	ap->pm_mesg = mesg;
5023 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5024 	ata_for_each_link(link, ap, HOST_FIRST) {
5025 		link->eh_info.action |= action;
5026 		link->eh_info.flags |= ehi_flags;
5027 	}
5028 
5029 	ata_port_schedule_eh(ap);
5030 
5031 	spin_unlock_irqrestore(ap->lock, flags);
5032 
5033 	if (!async) {
5034 		ata_port_wait_eh(ap);
5035 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5036 	}
5037 }
5038 
5039 /*
5040  * On some hardware, device fails to respond after spun down for suspend.  As
5041  * the device won't be used before being resumed, we don't need to touch the
5042  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5043  *
5044  * http://thread.gmane.org/gmane.linux.ide/46764
5045  */
5046 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5047 						 | ATA_EHI_NO_AUTOPSY
5048 						 | ATA_EHI_NO_RECOVERY;
5049 
5050 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5051 {
5052 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5053 }
5054 
5055 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5056 {
5057 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5058 }
5059 
5060 static int ata_port_pm_suspend(struct device *dev)
5061 {
5062 	struct ata_port *ap = to_ata_port(dev);
5063 
5064 	if (pm_runtime_suspended(dev))
5065 		return 0;
5066 
5067 	ata_port_suspend(ap, PMSG_SUSPEND);
5068 	return 0;
5069 }
5070 
5071 static int ata_port_pm_freeze(struct device *dev)
5072 {
5073 	struct ata_port *ap = to_ata_port(dev);
5074 
5075 	if (pm_runtime_suspended(dev))
5076 		return 0;
5077 
5078 	ata_port_suspend(ap, PMSG_FREEZE);
5079 	return 0;
5080 }
5081 
5082 static int ata_port_pm_poweroff(struct device *dev)
5083 {
5084 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5085 	return 0;
5086 }
5087 
5088 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5089 						| ATA_EHI_QUIET;
5090 
5091 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5092 {
5093 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5094 }
5095 
5096 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5097 {
5098 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5099 }
5100 
5101 static int ata_port_pm_resume(struct device *dev)
5102 {
5103 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5104 	pm_runtime_disable(dev);
5105 	pm_runtime_set_active(dev);
5106 	pm_runtime_enable(dev);
5107 	return 0;
5108 }
5109 
5110 /*
5111  * For ODDs, the upper layer will poll for media change every few seconds,
5112  * which will make it enter and leave suspend state every few seconds. And
5113  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5114  * is very little and the ODD may malfunction after constantly being reset.
5115  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5116  * ODD is attached to the port.
5117  */
5118 static int ata_port_runtime_idle(struct device *dev)
5119 {
5120 	struct ata_port *ap = to_ata_port(dev);
5121 	struct ata_link *link;
5122 	struct ata_device *adev;
5123 
5124 	ata_for_each_link(link, ap, HOST_FIRST) {
5125 		ata_for_each_dev(adev, link, ENABLED)
5126 			if (adev->class == ATA_DEV_ATAPI &&
5127 			    !zpodd_dev_enabled(adev))
5128 				return -EBUSY;
5129 	}
5130 
5131 	return 0;
5132 }
5133 
5134 static int ata_port_runtime_suspend(struct device *dev)
5135 {
5136 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5137 	return 0;
5138 }
5139 
5140 static int ata_port_runtime_resume(struct device *dev)
5141 {
5142 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5143 	return 0;
5144 }
5145 
5146 static const struct dev_pm_ops ata_port_pm_ops = {
5147 	.suspend = ata_port_pm_suspend,
5148 	.resume = ata_port_pm_resume,
5149 	.freeze = ata_port_pm_freeze,
5150 	.thaw = ata_port_pm_resume,
5151 	.poweroff = ata_port_pm_poweroff,
5152 	.restore = ata_port_pm_resume,
5153 
5154 	.runtime_suspend = ata_port_runtime_suspend,
5155 	.runtime_resume = ata_port_runtime_resume,
5156 	.runtime_idle = ata_port_runtime_idle,
5157 };
5158 
5159 /* sas ports don't participate in pm runtime management of ata_ports,
5160  * and need to resume ata devices at the domain level, not the per-port
5161  * level. sas suspend/resume is async to allow parallel port recovery
5162  * since sas has multiple ata_port instances per Scsi_Host.
5163  */
5164 void ata_sas_port_suspend(struct ata_port *ap)
5165 {
5166 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5167 }
5168 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5169 
5170 void ata_sas_port_resume(struct ata_port *ap)
5171 {
5172 	ata_port_resume_async(ap, PMSG_RESUME);
5173 }
5174 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5175 
5176 /**
5177  *	ata_host_suspend - suspend host
5178  *	@host: host to suspend
5179  *	@mesg: PM message
5180  *
5181  *	Suspend @host.  Actual operation is performed by port suspend.
5182  */
5183 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5184 {
5185 	host->dev->power.power_state = mesg;
5186 	return 0;
5187 }
5188 EXPORT_SYMBOL_GPL(ata_host_suspend);
5189 
5190 /**
5191  *	ata_host_resume - resume host
5192  *	@host: host to resume
5193  *
5194  *	Resume @host.  Actual operation is performed by port resume.
5195  */
5196 void ata_host_resume(struct ata_host *host)
5197 {
5198 	host->dev->power.power_state = PMSG_ON;
5199 }
5200 EXPORT_SYMBOL_GPL(ata_host_resume);
5201 #endif
5202 
5203 const struct device_type ata_port_type = {
5204 	.name = "ata_port",
5205 #ifdef CONFIG_PM
5206 	.pm = &ata_port_pm_ops,
5207 #endif
5208 };
5209 
5210 /**
5211  *	ata_dev_init - Initialize an ata_device structure
5212  *	@dev: Device structure to initialize
5213  *
5214  *	Initialize @dev in preparation for probing.
5215  *
5216  *	LOCKING:
5217  *	Inherited from caller.
5218  */
5219 void ata_dev_init(struct ata_device *dev)
5220 {
5221 	struct ata_link *link = ata_dev_phys_link(dev);
5222 	struct ata_port *ap = link->ap;
5223 	unsigned long flags;
5224 
5225 	/* SATA spd limit is bound to the attached device, reset together */
5226 	link->sata_spd_limit = link->hw_sata_spd_limit;
5227 	link->sata_spd = 0;
5228 
5229 	/* High bits of dev->flags are used to record warm plug
5230 	 * requests which occur asynchronously.  Synchronize using
5231 	 * host lock.
5232 	 */
5233 	spin_lock_irqsave(ap->lock, flags);
5234 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5235 	dev->horkage = 0;
5236 	spin_unlock_irqrestore(ap->lock, flags);
5237 
5238 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5239 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5240 	dev->pio_mask = UINT_MAX;
5241 	dev->mwdma_mask = UINT_MAX;
5242 	dev->udma_mask = UINT_MAX;
5243 }
5244 
5245 /**
5246  *	ata_link_init - Initialize an ata_link structure
5247  *	@ap: ATA port link is attached to
5248  *	@link: Link structure to initialize
5249  *	@pmp: Port multiplier port number
5250  *
5251  *	Initialize @link.
5252  *
5253  *	LOCKING:
5254  *	Kernel thread context (may sleep)
5255  */
5256 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5257 {
5258 	int i;
5259 
5260 	/* clear everything except for devices */
5261 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5262 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5263 
5264 	link->ap = ap;
5265 	link->pmp = pmp;
5266 	link->active_tag = ATA_TAG_POISON;
5267 	link->hw_sata_spd_limit = UINT_MAX;
5268 
5269 	/* can't use iterator, ap isn't initialized yet */
5270 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5271 		struct ata_device *dev = &link->device[i];
5272 
5273 		dev->link = link;
5274 		dev->devno = dev - link->device;
5275 #ifdef CONFIG_ATA_ACPI
5276 		dev->gtf_filter = ata_acpi_gtf_filter;
5277 #endif
5278 		ata_dev_init(dev);
5279 	}
5280 }
5281 
5282 /**
5283  *	sata_link_init_spd - Initialize link->sata_spd_limit
5284  *	@link: Link to configure sata_spd_limit for
5285  *
5286  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5287  *	configured value.
5288  *
5289  *	LOCKING:
5290  *	Kernel thread context (may sleep).
5291  *
5292  *	RETURNS:
5293  *	0 on success, -errno on failure.
5294  */
5295 int sata_link_init_spd(struct ata_link *link)
5296 {
5297 	u8 spd;
5298 	int rc;
5299 
5300 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5301 	if (rc)
5302 		return rc;
5303 
5304 	spd = (link->saved_scontrol >> 4) & 0xf;
5305 	if (spd)
5306 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5307 
5308 	ata_force_link_limits(link);
5309 
5310 	link->sata_spd_limit = link->hw_sata_spd_limit;
5311 
5312 	return 0;
5313 }
5314 
5315 /**
5316  *	ata_port_alloc - allocate and initialize basic ATA port resources
5317  *	@host: ATA host this allocated port belongs to
5318  *
5319  *	Allocate and initialize basic ATA port resources.
5320  *
5321  *	RETURNS:
5322  *	Allocate ATA port on success, NULL on failure.
5323  *
5324  *	LOCKING:
5325  *	Inherited from calling layer (may sleep).
5326  */
5327 struct ata_port *ata_port_alloc(struct ata_host *host)
5328 {
5329 	struct ata_port *ap;
5330 
5331 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5332 	if (!ap)
5333 		return NULL;
5334 
5335 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5336 	ap->lock = &host->lock;
5337 	ap->print_id = -1;
5338 	ap->local_port_no = -1;
5339 	ap->host = host;
5340 	ap->dev = host->dev;
5341 
5342 	mutex_init(&ap->scsi_scan_mutex);
5343 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5344 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5345 	INIT_LIST_HEAD(&ap->eh_done_q);
5346 	init_waitqueue_head(&ap->eh_wait_q);
5347 	init_completion(&ap->park_req_pending);
5348 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5349 		    TIMER_DEFERRABLE);
5350 
5351 	ap->cbl = ATA_CBL_NONE;
5352 
5353 	ata_link_init(ap, &ap->link, 0);
5354 
5355 #ifdef ATA_IRQ_TRAP
5356 	ap->stats.unhandled_irq = 1;
5357 	ap->stats.idle_irq = 1;
5358 #endif
5359 	ata_sff_port_init(ap);
5360 
5361 	return ap;
5362 }
5363 
5364 static void ata_devres_release(struct device *gendev, void *res)
5365 {
5366 	struct ata_host *host = dev_get_drvdata(gendev);
5367 	int i;
5368 
5369 	for (i = 0; i < host->n_ports; i++) {
5370 		struct ata_port *ap = host->ports[i];
5371 
5372 		if (!ap)
5373 			continue;
5374 
5375 		if (ap->scsi_host)
5376 			scsi_host_put(ap->scsi_host);
5377 
5378 	}
5379 
5380 	dev_set_drvdata(gendev, NULL);
5381 	ata_host_put(host);
5382 }
5383 
5384 static void ata_host_release(struct kref *kref)
5385 {
5386 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5387 	int i;
5388 
5389 	for (i = 0; i < host->n_ports; i++) {
5390 		struct ata_port *ap = host->ports[i];
5391 
5392 		kfree(ap->pmp_link);
5393 		kfree(ap->slave_link);
5394 		kfree(ap);
5395 		host->ports[i] = NULL;
5396 	}
5397 	kfree(host);
5398 }
5399 
5400 void ata_host_get(struct ata_host *host)
5401 {
5402 	kref_get(&host->kref);
5403 }
5404 
5405 void ata_host_put(struct ata_host *host)
5406 {
5407 	kref_put(&host->kref, ata_host_release);
5408 }
5409 EXPORT_SYMBOL_GPL(ata_host_put);
5410 
5411 /**
5412  *	ata_host_alloc - allocate and init basic ATA host resources
5413  *	@dev: generic device this host is associated with
5414  *	@max_ports: maximum number of ATA ports associated with this host
5415  *
5416  *	Allocate and initialize basic ATA host resources.  LLD calls
5417  *	this function to allocate a host, initializes it fully and
5418  *	attaches it using ata_host_register().
5419  *
5420  *	@max_ports ports are allocated and host->n_ports is
5421  *	initialized to @max_ports.  The caller is allowed to decrease
5422  *	host->n_ports before calling ata_host_register().  The unused
5423  *	ports will be automatically freed on registration.
5424  *
5425  *	RETURNS:
5426  *	Allocate ATA host on success, NULL on failure.
5427  *
5428  *	LOCKING:
5429  *	Inherited from calling layer (may sleep).
5430  */
5431 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5432 {
5433 	struct ata_host *host;
5434 	size_t sz;
5435 	int i;
5436 	void *dr;
5437 
5438 	/* alloc a container for our list of ATA ports (buses) */
5439 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5440 	host = kzalloc(sz, GFP_KERNEL);
5441 	if (!host)
5442 		return NULL;
5443 
5444 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5445 		goto err_free;
5446 
5447 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5448 	if (!dr)
5449 		goto err_out;
5450 
5451 	devres_add(dev, dr);
5452 	dev_set_drvdata(dev, host);
5453 
5454 	spin_lock_init(&host->lock);
5455 	mutex_init(&host->eh_mutex);
5456 	host->dev = dev;
5457 	host->n_ports = max_ports;
5458 	kref_init(&host->kref);
5459 
5460 	/* allocate ports bound to this host */
5461 	for (i = 0; i < max_ports; i++) {
5462 		struct ata_port *ap;
5463 
5464 		ap = ata_port_alloc(host);
5465 		if (!ap)
5466 			goto err_out;
5467 
5468 		ap->port_no = i;
5469 		host->ports[i] = ap;
5470 	}
5471 
5472 	devres_remove_group(dev, NULL);
5473 	return host;
5474 
5475  err_out:
5476 	devres_release_group(dev, NULL);
5477  err_free:
5478 	kfree(host);
5479 	return NULL;
5480 }
5481 EXPORT_SYMBOL_GPL(ata_host_alloc);
5482 
5483 /**
5484  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5485  *	@dev: generic device this host is associated with
5486  *	@ppi: array of ATA port_info to initialize host with
5487  *	@n_ports: number of ATA ports attached to this host
5488  *
5489  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5490  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5491  *	last entry will be used for the remaining ports.
5492  *
5493  *	RETURNS:
5494  *	Allocate ATA host on success, NULL on failure.
5495  *
5496  *	LOCKING:
5497  *	Inherited from calling layer (may sleep).
5498  */
5499 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5500 				      const struct ata_port_info * const * ppi,
5501 				      int n_ports)
5502 {
5503 	const struct ata_port_info *pi;
5504 	struct ata_host *host;
5505 	int i, j;
5506 
5507 	host = ata_host_alloc(dev, n_ports);
5508 	if (!host)
5509 		return NULL;
5510 
5511 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5512 		struct ata_port *ap = host->ports[i];
5513 
5514 		if (ppi[j])
5515 			pi = ppi[j++];
5516 
5517 		ap->pio_mask = pi->pio_mask;
5518 		ap->mwdma_mask = pi->mwdma_mask;
5519 		ap->udma_mask = pi->udma_mask;
5520 		ap->flags |= pi->flags;
5521 		ap->link.flags |= pi->link_flags;
5522 		ap->ops = pi->port_ops;
5523 
5524 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5525 			host->ops = pi->port_ops;
5526 	}
5527 
5528 	return host;
5529 }
5530 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5531 
5532 static void ata_host_stop(struct device *gendev, void *res)
5533 {
5534 	struct ata_host *host = dev_get_drvdata(gendev);
5535 	int i;
5536 
5537 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5538 
5539 	for (i = 0; i < host->n_ports; i++) {
5540 		struct ata_port *ap = host->ports[i];
5541 
5542 		if (ap->ops->port_stop)
5543 			ap->ops->port_stop(ap);
5544 	}
5545 
5546 	if (host->ops->host_stop)
5547 		host->ops->host_stop(host);
5548 }
5549 
5550 /**
5551  *	ata_finalize_port_ops - finalize ata_port_operations
5552  *	@ops: ata_port_operations to finalize
5553  *
5554  *	An ata_port_operations can inherit from another ops and that
5555  *	ops can again inherit from another.  This can go on as many
5556  *	times as necessary as long as there is no loop in the
5557  *	inheritance chain.
5558  *
5559  *	Ops tables are finalized when the host is started.  NULL or
5560  *	unspecified entries are inherited from the closet ancestor
5561  *	which has the method and the entry is populated with it.
5562  *	After finalization, the ops table directly points to all the
5563  *	methods and ->inherits is no longer necessary and cleared.
5564  *
5565  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5566  *
5567  *	LOCKING:
5568  *	None.
5569  */
5570 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5571 {
5572 	static DEFINE_SPINLOCK(lock);
5573 	const struct ata_port_operations *cur;
5574 	void **begin = (void **)ops;
5575 	void **end = (void **)&ops->inherits;
5576 	void **pp;
5577 
5578 	if (!ops || !ops->inherits)
5579 		return;
5580 
5581 	spin_lock(&lock);
5582 
5583 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5584 		void **inherit = (void **)cur;
5585 
5586 		for (pp = begin; pp < end; pp++, inherit++)
5587 			if (!*pp)
5588 				*pp = *inherit;
5589 	}
5590 
5591 	for (pp = begin; pp < end; pp++)
5592 		if (IS_ERR(*pp))
5593 			*pp = NULL;
5594 
5595 	ops->inherits = NULL;
5596 
5597 	spin_unlock(&lock);
5598 }
5599 
5600 /**
5601  *	ata_host_start - start and freeze ports of an ATA host
5602  *	@host: ATA host to start ports for
5603  *
5604  *	Start and then freeze ports of @host.  Started status is
5605  *	recorded in host->flags, so this function can be called
5606  *	multiple times.  Ports are guaranteed to get started only
5607  *	once.  If host->ops isn't initialized yet, its set to the
5608  *	first non-dummy port ops.
5609  *
5610  *	LOCKING:
5611  *	Inherited from calling layer (may sleep).
5612  *
5613  *	RETURNS:
5614  *	0 if all ports are started successfully, -errno otherwise.
5615  */
5616 int ata_host_start(struct ata_host *host)
5617 {
5618 	int have_stop = 0;
5619 	void *start_dr = NULL;
5620 	int i, rc;
5621 
5622 	if (host->flags & ATA_HOST_STARTED)
5623 		return 0;
5624 
5625 	ata_finalize_port_ops(host->ops);
5626 
5627 	for (i = 0; i < host->n_ports; i++) {
5628 		struct ata_port *ap = host->ports[i];
5629 
5630 		ata_finalize_port_ops(ap->ops);
5631 
5632 		if (!host->ops && !ata_port_is_dummy(ap))
5633 			host->ops = ap->ops;
5634 
5635 		if (ap->ops->port_stop)
5636 			have_stop = 1;
5637 	}
5638 
5639 	if (host->ops && host->ops->host_stop)
5640 		have_stop = 1;
5641 
5642 	if (have_stop) {
5643 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5644 		if (!start_dr)
5645 			return -ENOMEM;
5646 	}
5647 
5648 	for (i = 0; i < host->n_ports; i++) {
5649 		struct ata_port *ap = host->ports[i];
5650 
5651 		if (ap->ops->port_start) {
5652 			rc = ap->ops->port_start(ap);
5653 			if (rc) {
5654 				if (rc != -ENODEV)
5655 					dev_err(host->dev,
5656 						"failed to start port %d (errno=%d)\n",
5657 						i, rc);
5658 				goto err_out;
5659 			}
5660 		}
5661 		ata_eh_freeze_port(ap);
5662 	}
5663 
5664 	if (start_dr)
5665 		devres_add(host->dev, start_dr);
5666 	host->flags |= ATA_HOST_STARTED;
5667 	return 0;
5668 
5669  err_out:
5670 	while (--i >= 0) {
5671 		struct ata_port *ap = host->ports[i];
5672 
5673 		if (ap->ops->port_stop)
5674 			ap->ops->port_stop(ap);
5675 	}
5676 	devres_free(start_dr);
5677 	return rc;
5678 }
5679 EXPORT_SYMBOL_GPL(ata_host_start);
5680 
5681 /**
5682  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5683  *	@host:	host to initialize
5684  *	@dev:	device host is attached to
5685  *	@ops:	port_ops
5686  *
5687  */
5688 void ata_host_init(struct ata_host *host, struct device *dev,
5689 		   struct ata_port_operations *ops)
5690 {
5691 	spin_lock_init(&host->lock);
5692 	mutex_init(&host->eh_mutex);
5693 	host->n_tags = ATA_MAX_QUEUE;
5694 	host->dev = dev;
5695 	host->ops = ops;
5696 	kref_init(&host->kref);
5697 }
5698 EXPORT_SYMBOL_GPL(ata_host_init);
5699 
5700 void __ata_port_probe(struct ata_port *ap)
5701 {
5702 	struct ata_eh_info *ehi = &ap->link.eh_info;
5703 	unsigned long flags;
5704 
5705 	/* kick EH for boot probing */
5706 	spin_lock_irqsave(ap->lock, flags);
5707 
5708 	ehi->probe_mask |= ATA_ALL_DEVICES;
5709 	ehi->action |= ATA_EH_RESET;
5710 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5711 
5712 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5713 	ap->pflags |= ATA_PFLAG_LOADING;
5714 	ata_port_schedule_eh(ap);
5715 
5716 	spin_unlock_irqrestore(ap->lock, flags);
5717 }
5718 
5719 int ata_port_probe(struct ata_port *ap)
5720 {
5721 	int rc = 0;
5722 
5723 	if (ap->ops->error_handler) {
5724 		__ata_port_probe(ap);
5725 		ata_port_wait_eh(ap);
5726 	} else {
5727 		rc = ata_bus_probe(ap);
5728 	}
5729 	return rc;
5730 }
5731 
5732 
5733 static void async_port_probe(void *data, async_cookie_t cookie)
5734 {
5735 	struct ata_port *ap = data;
5736 
5737 	/*
5738 	 * If we're not allowed to scan this host in parallel,
5739 	 * we need to wait until all previous scans have completed
5740 	 * before going further.
5741 	 * Jeff Garzik says this is only within a controller, so we
5742 	 * don't need to wait for port 0, only for later ports.
5743 	 */
5744 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5745 		async_synchronize_cookie(cookie);
5746 
5747 	(void)ata_port_probe(ap);
5748 
5749 	/* in order to keep device order, we need to synchronize at this point */
5750 	async_synchronize_cookie(cookie);
5751 
5752 	ata_scsi_scan_host(ap, 1);
5753 }
5754 
5755 /**
5756  *	ata_host_register - register initialized ATA host
5757  *	@host: ATA host to register
5758  *	@sht: template for SCSI host
5759  *
5760  *	Register initialized ATA host.  @host is allocated using
5761  *	ata_host_alloc() and fully initialized by LLD.  This function
5762  *	starts ports, registers @host with ATA and SCSI layers and
5763  *	probe registered devices.
5764  *
5765  *	LOCKING:
5766  *	Inherited from calling layer (may sleep).
5767  *
5768  *	RETURNS:
5769  *	0 on success, -errno otherwise.
5770  */
5771 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5772 {
5773 	int i, rc;
5774 
5775 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5776 
5777 	/* host must have been started */
5778 	if (!(host->flags & ATA_HOST_STARTED)) {
5779 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5780 		WARN_ON(1);
5781 		return -EINVAL;
5782 	}
5783 
5784 	/* Blow away unused ports.  This happens when LLD can't
5785 	 * determine the exact number of ports to allocate at
5786 	 * allocation time.
5787 	 */
5788 	for (i = host->n_ports; host->ports[i]; i++)
5789 		kfree(host->ports[i]);
5790 
5791 	/* give ports names and add SCSI hosts */
5792 	for (i = 0; i < host->n_ports; i++) {
5793 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5794 		host->ports[i]->local_port_no = i + 1;
5795 	}
5796 
5797 	/* Create associated sysfs transport objects  */
5798 	for (i = 0; i < host->n_ports; i++) {
5799 		rc = ata_tport_add(host->dev,host->ports[i]);
5800 		if (rc) {
5801 			goto err_tadd;
5802 		}
5803 	}
5804 
5805 	rc = ata_scsi_add_hosts(host, sht);
5806 	if (rc)
5807 		goto err_tadd;
5808 
5809 	/* set cable, sata_spd_limit and report */
5810 	for (i = 0; i < host->n_ports; i++) {
5811 		struct ata_port *ap = host->ports[i];
5812 		unsigned long xfer_mask;
5813 
5814 		/* set SATA cable type if still unset */
5815 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5816 			ap->cbl = ATA_CBL_SATA;
5817 
5818 		/* init sata_spd_limit to the current value */
5819 		sata_link_init_spd(&ap->link);
5820 		if (ap->slave_link)
5821 			sata_link_init_spd(ap->slave_link);
5822 
5823 		/* print per-port info to dmesg */
5824 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5825 					      ap->udma_mask);
5826 
5827 		if (!ata_port_is_dummy(ap)) {
5828 			ata_port_info(ap, "%cATA max %s %s\n",
5829 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5830 				      ata_mode_string(xfer_mask),
5831 				      ap->link.eh_info.desc);
5832 			ata_ehi_clear_desc(&ap->link.eh_info);
5833 		} else
5834 			ata_port_info(ap, "DUMMY\n");
5835 	}
5836 
5837 	/* perform each probe asynchronously */
5838 	for (i = 0; i < host->n_ports; i++) {
5839 		struct ata_port *ap = host->ports[i];
5840 		ap->cookie = async_schedule(async_port_probe, ap);
5841 	}
5842 
5843 	return 0;
5844 
5845  err_tadd:
5846 	while (--i >= 0) {
5847 		ata_tport_delete(host->ports[i]);
5848 	}
5849 	return rc;
5850 
5851 }
5852 EXPORT_SYMBOL_GPL(ata_host_register);
5853 
5854 /**
5855  *	ata_host_activate - start host, request IRQ and register it
5856  *	@host: target ATA host
5857  *	@irq: IRQ to request
5858  *	@irq_handler: irq_handler used when requesting IRQ
5859  *	@irq_flags: irq_flags used when requesting IRQ
5860  *	@sht: scsi_host_template to use when registering the host
5861  *
5862  *	After allocating an ATA host and initializing it, most libata
5863  *	LLDs perform three steps to activate the host - start host,
5864  *	request IRQ and register it.  This helper takes necessary
5865  *	arguments and performs the three steps in one go.
5866  *
5867  *	An invalid IRQ skips the IRQ registration and expects the host to
5868  *	have set polling mode on the port. In this case, @irq_handler
5869  *	should be NULL.
5870  *
5871  *	LOCKING:
5872  *	Inherited from calling layer (may sleep).
5873  *
5874  *	RETURNS:
5875  *	0 on success, -errno otherwise.
5876  */
5877 int ata_host_activate(struct ata_host *host, int irq,
5878 		      irq_handler_t irq_handler, unsigned long irq_flags,
5879 		      struct scsi_host_template *sht)
5880 {
5881 	int i, rc;
5882 	char *irq_desc;
5883 
5884 	rc = ata_host_start(host);
5885 	if (rc)
5886 		return rc;
5887 
5888 	/* Special case for polling mode */
5889 	if (!irq) {
5890 		WARN_ON(irq_handler);
5891 		return ata_host_register(host, sht);
5892 	}
5893 
5894 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5895 				  dev_driver_string(host->dev),
5896 				  dev_name(host->dev));
5897 	if (!irq_desc)
5898 		return -ENOMEM;
5899 
5900 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5901 			      irq_desc, host);
5902 	if (rc)
5903 		return rc;
5904 
5905 	for (i = 0; i < host->n_ports; i++)
5906 		ata_port_desc(host->ports[i], "irq %d", irq);
5907 
5908 	rc = ata_host_register(host, sht);
5909 	/* if failed, just free the IRQ and leave ports alone */
5910 	if (rc)
5911 		devm_free_irq(host->dev, irq, host);
5912 
5913 	return rc;
5914 }
5915 EXPORT_SYMBOL_GPL(ata_host_activate);
5916 
5917 /**
5918  *	ata_port_detach - Detach ATA port in preparation of device removal
5919  *	@ap: ATA port to be detached
5920  *
5921  *	Detach all ATA devices and the associated SCSI devices of @ap;
5922  *	then, remove the associated SCSI host.  @ap is guaranteed to
5923  *	be quiescent on return from this function.
5924  *
5925  *	LOCKING:
5926  *	Kernel thread context (may sleep).
5927  */
5928 static void ata_port_detach(struct ata_port *ap)
5929 {
5930 	unsigned long flags;
5931 	struct ata_link *link;
5932 	struct ata_device *dev;
5933 
5934 	if (!ap->ops->error_handler)
5935 		goto skip_eh;
5936 
5937 	/* tell EH we're leaving & flush EH */
5938 	spin_lock_irqsave(ap->lock, flags);
5939 	ap->pflags |= ATA_PFLAG_UNLOADING;
5940 	ata_port_schedule_eh(ap);
5941 	spin_unlock_irqrestore(ap->lock, flags);
5942 
5943 	/* wait till EH commits suicide */
5944 	ata_port_wait_eh(ap);
5945 
5946 	/* it better be dead now */
5947 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5948 
5949 	cancel_delayed_work_sync(&ap->hotplug_task);
5950 
5951  skip_eh:
5952 	/* clean up zpodd on port removal */
5953 	ata_for_each_link(link, ap, HOST_FIRST) {
5954 		ata_for_each_dev(dev, link, ALL) {
5955 			if (zpodd_dev_enabled(dev))
5956 				zpodd_exit(dev);
5957 		}
5958 	}
5959 	if (ap->pmp_link) {
5960 		int i;
5961 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5962 			ata_tlink_delete(&ap->pmp_link[i]);
5963 	}
5964 	/* remove the associated SCSI host */
5965 	scsi_remove_host(ap->scsi_host);
5966 	ata_tport_delete(ap);
5967 }
5968 
5969 /**
5970  *	ata_host_detach - Detach all ports of an ATA host
5971  *	@host: Host to detach
5972  *
5973  *	Detach all ports of @host.
5974  *
5975  *	LOCKING:
5976  *	Kernel thread context (may sleep).
5977  */
5978 void ata_host_detach(struct ata_host *host)
5979 {
5980 	int i;
5981 
5982 	for (i = 0; i < host->n_ports; i++) {
5983 		/* Ensure ata_port probe has completed */
5984 		async_synchronize_cookie(host->ports[i]->cookie + 1);
5985 		ata_port_detach(host->ports[i]);
5986 	}
5987 
5988 	/* the host is dead now, dissociate ACPI */
5989 	ata_acpi_dissociate(host);
5990 }
5991 EXPORT_SYMBOL_GPL(ata_host_detach);
5992 
5993 #ifdef CONFIG_PCI
5994 
5995 /**
5996  *	ata_pci_remove_one - PCI layer callback for device removal
5997  *	@pdev: PCI device that was removed
5998  *
5999  *	PCI layer indicates to libata via this hook that hot-unplug or
6000  *	module unload event has occurred.  Detach all ports.  Resource
6001  *	release is handled via devres.
6002  *
6003  *	LOCKING:
6004  *	Inherited from PCI layer (may sleep).
6005  */
6006 void ata_pci_remove_one(struct pci_dev *pdev)
6007 {
6008 	struct ata_host *host = pci_get_drvdata(pdev);
6009 
6010 	ata_host_detach(host);
6011 }
6012 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6013 
6014 void ata_pci_shutdown_one(struct pci_dev *pdev)
6015 {
6016 	struct ata_host *host = pci_get_drvdata(pdev);
6017 	int i;
6018 
6019 	for (i = 0; i < host->n_ports; i++) {
6020 		struct ata_port *ap = host->ports[i];
6021 
6022 		ap->pflags |= ATA_PFLAG_FROZEN;
6023 
6024 		/* Disable port interrupts */
6025 		if (ap->ops->freeze)
6026 			ap->ops->freeze(ap);
6027 
6028 		/* Stop the port DMA engines */
6029 		if (ap->ops->port_stop)
6030 			ap->ops->port_stop(ap);
6031 	}
6032 }
6033 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6034 
6035 /* move to PCI subsystem */
6036 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6037 {
6038 	unsigned long tmp = 0;
6039 
6040 	switch (bits->width) {
6041 	case 1: {
6042 		u8 tmp8 = 0;
6043 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6044 		tmp = tmp8;
6045 		break;
6046 	}
6047 	case 2: {
6048 		u16 tmp16 = 0;
6049 		pci_read_config_word(pdev, bits->reg, &tmp16);
6050 		tmp = tmp16;
6051 		break;
6052 	}
6053 	case 4: {
6054 		u32 tmp32 = 0;
6055 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6056 		tmp = tmp32;
6057 		break;
6058 	}
6059 
6060 	default:
6061 		return -EINVAL;
6062 	}
6063 
6064 	tmp &= bits->mask;
6065 
6066 	return (tmp == bits->val) ? 1 : 0;
6067 }
6068 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6069 
6070 #ifdef CONFIG_PM
6071 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6072 {
6073 	pci_save_state(pdev);
6074 	pci_disable_device(pdev);
6075 
6076 	if (mesg.event & PM_EVENT_SLEEP)
6077 		pci_set_power_state(pdev, PCI_D3hot);
6078 }
6079 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6080 
6081 int ata_pci_device_do_resume(struct pci_dev *pdev)
6082 {
6083 	int rc;
6084 
6085 	pci_set_power_state(pdev, PCI_D0);
6086 	pci_restore_state(pdev);
6087 
6088 	rc = pcim_enable_device(pdev);
6089 	if (rc) {
6090 		dev_err(&pdev->dev,
6091 			"failed to enable device after resume (%d)\n", rc);
6092 		return rc;
6093 	}
6094 
6095 	pci_set_master(pdev);
6096 	return 0;
6097 }
6098 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6099 
6100 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6101 {
6102 	struct ata_host *host = pci_get_drvdata(pdev);
6103 	int rc = 0;
6104 
6105 	rc = ata_host_suspend(host, mesg);
6106 	if (rc)
6107 		return rc;
6108 
6109 	ata_pci_device_do_suspend(pdev, mesg);
6110 
6111 	return 0;
6112 }
6113 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6114 
6115 int ata_pci_device_resume(struct pci_dev *pdev)
6116 {
6117 	struct ata_host *host = pci_get_drvdata(pdev);
6118 	int rc;
6119 
6120 	rc = ata_pci_device_do_resume(pdev);
6121 	if (rc == 0)
6122 		ata_host_resume(host);
6123 	return rc;
6124 }
6125 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6126 #endif /* CONFIG_PM */
6127 #endif /* CONFIG_PCI */
6128 
6129 /**
6130  *	ata_platform_remove_one - Platform layer callback for device removal
6131  *	@pdev: Platform device that was removed
6132  *
6133  *	Platform layer indicates to libata via this hook that hot-unplug or
6134  *	module unload event has occurred.  Detach all ports.  Resource
6135  *	release is handled via devres.
6136  *
6137  *	LOCKING:
6138  *	Inherited from platform layer (may sleep).
6139  */
6140 int ata_platform_remove_one(struct platform_device *pdev)
6141 {
6142 	struct ata_host *host = platform_get_drvdata(pdev);
6143 
6144 	ata_host_detach(host);
6145 
6146 	return 0;
6147 }
6148 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6149 
6150 #ifdef CONFIG_ATA_FORCE
6151 static int __init ata_parse_force_one(char **cur,
6152 				      struct ata_force_ent *force_ent,
6153 				      const char **reason)
6154 {
6155 	static const struct ata_force_param force_tbl[] __initconst = {
6156 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6157 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6158 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6159 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6160 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6161 		{ "sata",	.cbl		= ATA_CBL_SATA },
6162 		{ "1.5Gbps",	.spd_limit	= 1 },
6163 		{ "3.0Gbps",	.spd_limit	= 2 },
6164 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6165 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6166 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6167 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6168 		{ "noncqati",	.horkage_on	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6169 		{ "ncqati",	.horkage_off	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6170 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6171 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6172 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6173 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6174 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6175 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6176 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6177 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6178 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6179 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6180 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6181 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6182 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6183 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6184 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6185 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6186 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6187 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6188 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6189 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6190 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6191 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6192 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6193 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6194 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6195 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6196 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6197 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6198 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6199 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6200 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6201 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6202 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6203 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6204 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6205 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6206 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6207 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6208 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6209 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6210 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6211 	};
6212 	char *start = *cur, *p = *cur;
6213 	char *id, *val, *endp;
6214 	const struct ata_force_param *match_fp = NULL;
6215 	int nr_matches = 0, i;
6216 
6217 	/* find where this param ends and update *cur */
6218 	while (*p != '\0' && *p != ',')
6219 		p++;
6220 
6221 	if (*p == '\0')
6222 		*cur = p;
6223 	else
6224 		*cur = p + 1;
6225 
6226 	*p = '\0';
6227 
6228 	/* parse */
6229 	p = strchr(start, ':');
6230 	if (!p) {
6231 		val = strstrip(start);
6232 		goto parse_val;
6233 	}
6234 	*p = '\0';
6235 
6236 	id = strstrip(start);
6237 	val = strstrip(p + 1);
6238 
6239 	/* parse id */
6240 	p = strchr(id, '.');
6241 	if (p) {
6242 		*p++ = '\0';
6243 		force_ent->device = simple_strtoul(p, &endp, 10);
6244 		if (p == endp || *endp != '\0') {
6245 			*reason = "invalid device";
6246 			return -EINVAL;
6247 		}
6248 	}
6249 
6250 	force_ent->port = simple_strtoul(id, &endp, 10);
6251 	if (id == endp || *endp != '\0') {
6252 		*reason = "invalid port/link";
6253 		return -EINVAL;
6254 	}
6255 
6256  parse_val:
6257 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6258 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6259 		const struct ata_force_param *fp = &force_tbl[i];
6260 
6261 		if (strncasecmp(val, fp->name, strlen(val)))
6262 			continue;
6263 
6264 		nr_matches++;
6265 		match_fp = fp;
6266 
6267 		if (strcasecmp(val, fp->name) == 0) {
6268 			nr_matches = 1;
6269 			break;
6270 		}
6271 	}
6272 
6273 	if (!nr_matches) {
6274 		*reason = "unknown value";
6275 		return -EINVAL;
6276 	}
6277 	if (nr_matches > 1) {
6278 		*reason = "ambiguous value";
6279 		return -EINVAL;
6280 	}
6281 
6282 	force_ent->param = *match_fp;
6283 
6284 	return 0;
6285 }
6286 
6287 static void __init ata_parse_force_param(void)
6288 {
6289 	int idx = 0, size = 1;
6290 	int last_port = -1, last_device = -1;
6291 	char *p, *cur, *next;
6292 
6293 	/* calculate maximum number of params and allocate force_tbl */
6294 	for (p = ata_force_param_buf; *p; p++)
6295 		if (*p == ',')
6296 			size++;
6297 
6298 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6299 	if (!ata_force_tbl) {
6300 		printk(KERN_WARNING "ata: failed to extend force table, "
6301 		       "libata.force ignored\n");
6302 		return;
6303 	}
6304 
6305 	/* parse and populate the table */
6306 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6307 		const char *reason = "";
6308 		struct ata_force_ent te = { .port = -1, .device = -1 };
6309 
6310 		next = cur;
6311 		if (ata_parse_force_one(&next, &te, &reason)) {
6312 			printk(KERN_WARNING "ata: failed to parse force "
6313 			       "parameter \"%s\" (%s)\n",
6314 			       cur, reason);
6315 			continue;
6316 		}
6317 
6318 		if (te.port == -1) {
6319 			te.port = last_port;
6320 			te.device = last_device;
6321 		}
6322 
6323 		ata_force_tbl[idx++] = te;
6324 
6325 		last_port = te.port;
6326 		last_device = te.device;
6327 	}
6328 
6329 	ata_force_tbl_size = idx;
6330 }
6331 
6332 static void ata_free_force_param(void)
6333 {
6334 	kfree(ata_force_tbl);
6335 }
6336 #else
6337 static inline void ata_parse_force_param(void) { }
6338 static inline void ata_free_force_param(void) { }
6339 #endif
6340 
6341 static int __init ata_init(void)
6342 {
6343 	int rc;
6344 
6345 	ata_parse_force_param();
6346 
6347 	rc = ata_sff_init();
6348 	if (rc) {
6349 		ata_free_force_param();
6350 		return rc;
6351 	}
6352 
6353 	libata_transport_init();
6354 	ata_scsi_transport_template = ata_attach_transport();
6355 	if (!ata_scsi_transport_template) {
6356 		ata_sff_exit();
6357 		rc = -ENOMEM;
6358 		goto err_out;
6359 	}
6360 
6361 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6362 	return 0;
6363 
6364 err_out:
6365 	return rc;
6366 }
6367 
6368 static void __exit ata_exit(void)
6369 {
6370 	ata_release_transport(ata_scsi_transport_template);
6371 	libata_transport_exit();
6372 	ata_sff_exit();
6373 	ata_free_force_param();
6374 }
6375 
6376 subsys_initcall(ata_init);
6377 module_exit(ata_exit);
6378 
6379 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6380 
6381 int ata_ratelimit(void)
6382 {
6383 	return __ratelimit(&ratelimit);
6384 }
6385 EXPORT_SYMBOL_GPL(ata_ratelimit);
6386 
6387 /**
6388  *	ata_msleep - ATA EH owner aware msleep
6389  *	@ap: ATA port to attribute the sleep to
6390  *	@msecs: duration to sleep in milliseconds
6391  *
6392  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6393  *	ownership is released before going to sleep and reacquired
6394  *	after the sleep is complete.  IOW, other ports sharing the
6395  *	@ap->host will be allowed to own the EH while this task is
6396  *	sleeping.
6397  *
6398  *	LOCKING:
6399  *	Might sleep.
6400  */
6401 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6402 {
6403 	bool owns_eh = ap && ap->host->eh_owner == current;
6404 
6405 	if (owns_eh)
6406 		ata_eh_release(ap);
6407 
6408 	if (msecs < 20) {
6409 		unsigned long usecs = msecs * USEC_PER_MSEC;
6410 		usleep_range(usecs, usecs + 50);
6411 	} else {
6412 		msleep(msecs);
6413 	}
6414 
6415 	if (owns_eh)
6416 		ata_eh_acquire(ap);
6417 }
6418 EXPORT_SYMBOL_GPL(ata_msleep);
6419 
6420 /**
6421  *	ata_wait_register - wait until register value changes
6422  *	@ap: ATA port to wait register for, can be NULL
6423  *	@reg: IO-mapped register
6424  *	@mask: Mask to apply to read register value
6425  *	@val: Wait condition
6426  *	@interval: polling interval in milliseconds
6427  *	@timeout: timeout in milliseconds
6428  *
6429  *	Waiting for some bits of register to change is a common
6430  *	operation for ATA controllers.  This function reads 32bit LE
6431  *	IO-mapped register @reg and tests for the following condition.
6432  *
6433  *	(*@reg & mask) != val
6434  *
6435  *	If the condition is met, it returns; otherwise, the process is
6436  *	repeated after @interval_msec until timeout.
6437  *
6438  *	LOCKING:
6439  *	Kernel thread context (may sleep)
6440  *
6441  *	RETURNS:
6442  *	The final register value.
6443  */
6444 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6445 		      unsigned long interval, unsigned long timeout)
6446 {
6447 	unsigned long deadline;
6448 	u32 tmp;
6449 
6450 	tmp = ioread32(reg);
6451 
6452 	/* Calculate timeout _after_ the first read to make sure
6453 	 * preceding writes reach the controller before starting to
6454 	 * eat away the timeout.
6455 	 */
6456 	deadline = ata_deadline(jiffies, timeout);
6457 
6458 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6459 		ata_msleep(ap, interval);
6460 		tmp = ioread32(reg);
6461 	}
6462 
6463 	return tmp;
6464 }
6465 EXPORT_SYMBOL_GPL(ata_wait_register);
6466 
6467 /*
6468  * Dummy port_ops
6469  */
6470 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6471 {
6472 	return AC_ERR_SYSTEM;
6473 }
6474 
6475 static void ata_dummy_error_handler(struct ata_port *ap)
6476 {
6477 	/* truly dummy */
6478 }
6479 
6480 struct ata_port_operations ata_dummy_port_ops = {
6481 	.qc_prep		= ata_noop_qc_prep,
6482 	.qc_issue		= ata_dummy_qc_issue,
6483 	.error_handler		= ata_dummy_error_handler,
6484 	.sched_eh		= ata_std_sched_eh,
6485 	.end_eh			= ata_std_end_eh,
6486 };
6487 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6488 
6489 const struct ata_port_info ata_dummy_port_info = {
6490 	.port_ops		= &ata_dummy_port_ops,
6491 };
6492 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6493 
6494 void ata_print_version(const struct device *dev, const char *version)
6495 {
6496 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6497 }
6498 EXPORT_SYMBOL(ata_print_version);
6499 
6500 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6501 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6502 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6503 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6504 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6505