1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 #include <linux/pm_runtime.h> 70 #include <linux/platform_device.h> 71 72 #include "libata.h" 73 #include "libata-transport.h" 74 75 /* debounce timing parameters in msecs { interval, duration, timeout } */ 76 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 77 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 78 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 79 80 const struct ata_port_operations ata_base_port_ops = { 81 .prereset = ata_std_prereset, 82 .postreset = ata_std_postreset, 83 .error_handler = ata_std_error_handler, 84 .sched_eh = ata_std_sched_eh, 85 .end_eh = ata_std_end_eh, 86 }; 87 88 const struct ata_port_operations sata_port_ops = { 89 .inherits = &ata_base_port_ops, 90 91 .qc_defer = ata_std_qc_defer, 92 .hardreset = sata_std_hardreset, 93 }; 94 95 static unsigned int ata_dev_init_params(struct ata_device *dev, 96 u16 heads, u16 sectors); 97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 98 static void ata_dev_xfermask(struct ata_device *dev); 99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 100 101 atomic_t ata_print_id = ATOMIC_INIT(0); 102 103 struct ata_force_param { 104 const char *name; 105 unsigned int cbl; 106 int spd_limit; 107 unsigned long xfer_mask; 108 unsigned int horkage_on; 109 unsigned int horkage_off; 110 unsigned int lflags; 111 }; 112 113 struct ata_force_ent { 114 int port; 115 int device; 116 struct ata_force_param param; 117 }; 118 119 static struct ata_force_ent *ata_force_tbl; 120 static int ata_force_tbl_size; 121 122 static char ata_force_param_buf[PAGE_SIZE] __initdata; 123 /* param_buf is thrown away after initialization, disallow read */ 124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 126 127 static int atapi_enabled = 1; 128 module_param(atapi_enabled, int, 0444); 129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 130 131 static int atapi_dmadir = 0; 132 module_param(atapi_dmadir, int, 0444); 133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 134 135 int atapi_passthru16 = 1; 136 module_param(atapi_passthru16, int, 0444); 137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 138 139 int libata_fua = 0; 140 module_param_named(fua, libata_fua, int, 0444); 141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 142 143 static int ata_ignore_hpa; 144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 146 147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 148 module_param_named(dma, libata_dma_mask, int, 0444); 149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 150 151 static int ata_probe_timeout; 152 module_param(ata_probe_timeout, int, 0444); 153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 154 155 int libata_noacpi = 0; 156 module_param_named(noacpi, libata_noacpi, int, 0444); 157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 158 159 int libata_allow_tpm = 0; 160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 162 163 static int atapi_an; 164 module_param(atapi_an, int, 0444); 165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 166 167 MODULE_AUTHOR("Jeff Garzik"); 168 MODULE_DESCRIPTION("Library module for ATA devices"); 169 MODULE_LICENSE("GPL"); 170 MODULE_VERSION(DRV_VERSION); 171 172 173 static bool ata_sstatus_online(u32 sstatus) 174 { 175 return (sstatus & 0xf) == 0x3; 176 } 177 178 /** 179 * ata_link_next - link iteration helper 180 * @link: the previous link, NULL to start 181 * @ap: ATA port containing links to iterate 182 * @mode: iteration mode, one of ATA_LITER_* 183 * 184 * LOCKING: 185 * Host lock or EH context. 186 * 187 * RETURNS: 188 * Pointer to the next link. 189 */ 190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 191 enum ata_link_iter_mode mode) 192 { 193 BUG_ON(mode != ATA_LITER_EDGE && 194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 195 196 /* NULL link indicates start of iteration */ 197 if (!link) 198 switch (mode) { 199 case ATA_LITER_EDGE: 200 case ATA_LITER_PMP_FIRST: 201 if (sata_pmp_attached(ap)) 202 return ap->pmp_link; 203 /* fall through */ 204 case ATA_LITER_HOST_FIRST: 205 return &ap->link; 206 } 207 208 /* we just iterated over the host link, what's next? */ 209 if (link == &ap->link) 210 switch (mode) { 211 case ATA_LITER_HOST_FIRST: 212 if (sata_pmp_attached(ap)) 213 return ap->pmp_link; 214 /* fall through */ 215 case ATA_LITER_PMP_FIRST: 216 if (unlikely(ap->slave_link)) 217 return ap->slave_link; 218 /* fall through */ 219 case ATA_LITER_EDGE: 220 return NULL; 221 } 222 223 /* slave_link excludes PMP */ 224 if (unlikely(link == ap->slave_link)) 225 return NULL; 226 227 /* we were over a PMP link */ 228 if (++link < ap->pmp_link + ap->nr_pmp_links) 229 return link; 230 231 if (mode == ATA_LITER_PMP_FIRST) 232 return &ap->link; 233 234 return NULL; 235 } 236 237 /** 238 * ata_dev_next - device iteration helper 239 * @dev: the previous device, NULL to start 240 * @link: ATA link containing devices to iterate 241 * @mode: iteration mode, one of ATA_DITER_* 242 * 243 * LOCKING: 244 * Host lock or EH context. 245 * 246 * RETURNS: 247 * Pointer to the next device. 248 */ 249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 250 enum ata_dev_iter_mode mode) 251 { 252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 254 255 /* NULL dev indicates start of iteration */ 256 if (!dev) 257 switch (mode) { 258 case ATA_DITER_ENABLED: 259 case ATA_DITER_ALL: 260 dev = link->device; 261 goto check; 262 case ATA_DITER_ENABLED_REVERSE: 263 case ATA_DITER_ALL_REVERSE: 264 dev = link->device + ata_link_max_devices(link) - 1; 265 goto check; 266 } 267 268 next: 269 /* move to the next one */ 270 switch (mode) { 271 case ATA_DITER_ENABLED: 272 case ATA_DITER_ALL: 273 if (++dev < link->device + ata_link_max_devices(link)) 274 goto check; 275 return NULL; 276 case ATA_DITER_ENABLED_REVERSE: 277 case ATA_DITER_ALL_REVERSE: 278 if (--dev >= link->device) 279 goto check; 280 return NULL; 281 } 282 283 check: 284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 285 !ata_dev_enabled(dev)) 286 goto next; 287 return dev; 288 } 289 290 /** 291 * ata_dev_phys_link - find physical link for a device 292 * @dev: ATA device to look up physical link for 293 * 294 * Look up physical link which @dev is attached to. Note that 295 * this is different from @dev->link only when @dev is on slave 296 * link. For all other cases, it's the same as @dev->link. 297 * 298 * LOCKING: 299 * Don't care. 300 * 301 * RETURNS: 302 * Pointer to the found physical link. 303 */ 304 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 305 { 306 struct ata_port *ap = dev->link->ap; 307 308 if (!ap->slave_link) 309 return dev->link; 310 if (!dev->devno) 311 return &ap->link; 312 return ap->slave_link; 313 } 314 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags) { 391 link->flags |= fe->param.lflags; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags, link->flags); 395 } 396 } 397 } 398 399 /** 400 * ata_force_xfermask - force xfermask according to libata.force 401 * @dev: ATA device of interest 402 * 403 * Force xfer_mask according to libata.force and whine about it. 404 * For consistency with link selection, device number 15 selects 405 * the first device connected to the host link. 406 * 407 * LOCKING: 408 * EH context. 409 */ 410 static void ata_force_xfermask(struct ata_device *dev) 411 { 412 int devno = dev->link->pmp + dev->devno; 413 int alt_devno = devno; 414 int i; 415 416 /* allow n.15/16 for devices attached to host port */ 417 if (ata_is_host_link(dev->link)) 418 alt_devno += 15; 419 420 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 421 const struct ata_force_ent *fe = &ata_force_tbl[i]; 422 unsigned long pio_mask, mwdma_mask, udma_mask; 423 424 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 425 continue; 426 427 if (fe->device != -1 && fe->device != devno && 428 fe->device != alt_devno) 429 continue; 430 431 if (!fe->param.xfer_mask) 432 continue; 433 434 ata_unpack_xfermask(fe->param.xfer_mask, 435 &pio_mask, &mwdma_mask, &udma_mask); 436 if (udma_mask) 437 dev->udma_mask = udma_mask; 438 else if (mwdma_mask) { 439 dev->udma_mask = 0; 440 dev->mwdma_mask = mwdma_mask; 441 } else { 442 dev->udma_mask = 0; 443 dev->mwdma_mask = 0; 444 dev->pio_mask = pio_mask; 445 } 446 447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 448 fe->param.name); 449 return; 450 } 451 } 452 453 /** 454 * ata_force_horkage - force horkage according to libata.force 455 * @dev: ATA device of interest 456 * 457 * Force horkage according to libata.force and whine about it. 458 * For consistency with link selection, device number 15 selects 459 * the first device connected to the host link. 460 * 461 * LOCKING: 462 * EH context. 463 */ 464 static void ata_force_horkage(struct ata_device *dev) 465 { 466 int devno = dev->link->pmp + dev->devno; 467 int alt_devno = devno; 468 int i; 469 470 /* allow n.15/16 for devices attached to host port */ 471 if (ata_is_host_link(dev->link)) 472 alt_devno += 15; 473 474 for (i = 0; i < ata_force_tbl_size; i++) { 475 const struct ata_force_ent *fe = &ata_force_tbl[i]; 476 477 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 478 continue; 479 480 if (fe->device != -1 && fe->device != devno && 481 fe->device != alt_devno) 482 continue; 483 484 if (!(~dev->horkage & fe->param.horkage_on) && 485 !(dev->horkage & fe->param.horkage_off)) 486 continue; 487 488 dev->horkage |= fe->param.horkage_on; 489 dev->horkage &= ~fe->param.horkage_off; 490 491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 492 fe->param.name); 493 } 494 } 495 496 /** 497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 498 * @opcode: SCSI opcode 499 * 500 * Determine ATAPI command type from @opcode. 501 * 502 * LOCKING: 503 * None. 504 * 505 * RETURNS: 506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 507 */ 508 int atapi_cmd_type(u8 opcode) 509 { 510 switch (opcode) { 511 case GPCMD_READ_10: 512 case GPCMD_READ_12: 513 return ATAPI_READ; 514 515 case GPCMD_WRITE_10: 516 case GPCMD_WRITE_12: 517 case GPCMD_WRITE_AND_VERIFY_10: 518 return ATAPI_WRITE; 519 520 case GPCMD_READ_CD: 521 case GPCMD_READ_CD_MSF: 522 return ATAPI_READ_CD; 523 524 case ATA_16: 525 case ATA_12: 526 if (atapi_passthru16) 527 return ATAPI_PASS_THRU; 528 /* fall thru */ 529 default: 530 return ATAPI_MISC; 531 } 532 } 533 534 /** 535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 536 * @tf: Taskfile to convert 537 * @pmp: Port multiplier port 538 * @is_cmd: This FIS is for command 539 * @fis: Buffer into which data will output 540 * 541 * Converts a standard ATA taskfile to a Serial ATA 542 * FIS structure (Register - Host to Device). 543 * 544 * LOCKING: 545 * Inherited from caller. 546 */ 547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 548 { 549 fis[0] = 0x27; /* Register - Host to Device FIS */ 550 fis[1] = pmp & 0xf; /* Port multiplier number*/ 551 if (is_cmd) 552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 553 554 fis[2] = tf->command; 555 fis[3] = tf->feature; 556 557 fis[4] = tf->lbal; 558 fis[5] = tf->lbam; 559 fis[6] = tf->lbah; 560 fis[7] = tf->device; 561 562 fis[8] = tf->hob_lbal; 563 fis[9] = tf->hob_lbam; 564 fis[10] = tf->hob_lbah; 565 fis[11] = tf->hob_feature; 566 567 fis[12] = tf->nsect; 568 fis[13] = tf->hob_nsect; 569 fis[14] = 0; 570 fis[15] = tf->ctl; 571 572 fis[16] = tf->auxiliary & 0xff; 573 fis[17] = (tf->auxiliary >> 8) & 0xff; 574 fis[18] = (tf->auxiliary >> 16) & 0xff; 575 fis[19] = (tf->auxiliary >> 24) & 0xff; 576 } 577 578 /** 579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 580 * @fis: Buffer from which data will be input 581 * @tf: Taskfile to output 582 * 583 * Converts a serial ATA FIS structure to a standard ATA taskfile. 584 * 585 * LOCKING: 586 * Inherited from caller. 587 */ 588 589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 590 { 591 tf->command = fis[2]; /* status */ 592 tf->feature = fis[3]; /* error */ 593 594 tf->lbal = fis[4]; 595 tf->lbam = fis[5]; 596 tf->lbah = fis[6]; 597 tf->device = fis[7]; 598 599 tf->hob_lbal = fis[8]; 600 tf->hob_lbam = fis[9]; 601 tf->hob_lbah = fis[10]; 602 603 tf->nsect = fis[12]; 604 tf->hob_nsect = fis[13]; 605 } 606 607 static const u8 ata_rw_cmds[] = { 608 /* pio multi */ 609 ATA_CMD_READ_MULTI, 610 ATA_CMD_WRITE_MULTI, 611 ATA_CMD_READ_MULTI_EXT, 612 ATA_CMD_WRITE_MULTI_EXT, 613 0, 614 0, 615 0, 616 ATA_CMD_WRITE_MULTI_FUA_EXT, 617 /* pio */ 618 ATA_CMD_PIO_READ, 619 ATA_CMD_PIO_WRITE, 620 ATA_CMD_PIO_READ_EXT, 621 ATA_CMD_PIO_WRITE_EXT, 622 0, 623 0, 624 0, 625 0, 626 /* dma */ 627 ATA_CMD_READ, 628 ATA_CMD_WRITE, 629 ATA_CMD_READ_EXT, 630 ATA_CMD_WRITE_EXT, 631 0, 632 0, 633 0, 634 ATA_CMD_WRITE_FUA_EXT 635 }; 636 637 /** 638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 639 * @tf: command to examine and configure 640 * @dev: device tf belongs to 641 * 642 * Examine the device configuration and tf->flags to calculate 643 * the proper read/write commands and protocol to use. 644 * 645 * LOCKING: 646 * caller. 647 */ 648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 649 { 650 u8 cmd; 651 652 int index, fua, lba48, write; 653 654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 657 658 if (dev->flags & ATA_DFLAG_PIO) { 659 tf->protocol = ATA_PROT_PIO; 660 index = dev->multi_count ? 0 : 8; 661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 662 /* Unable to use DMA due to host limitation */ 663 tf->protocol = ATA_PROT_PIO; 664 index = dev->multi_count ? 0 : 8; 665 } else { 666 tf->protocol = ATA_PROT_DMA; 667 index = 16; 668 } 669 670 cmd = ata_rw_cmds[index + fua + lba48 + write]; 671 if (cmd) { 672 tf->command = cmd; 673 return 0; 674 } 675 return -1; 676 } 677 678 /** 679 * ata_tf_read_block - Read block address from ATA taskfile 680 * @tf: ATA taskfile of interest 681 * @dev: ATA device @tf belongs to 682 * 683 * LOCKING: 684 * None. 685 * 686 * Read block address from @tf. This function can handle all 687 * three address formats - LBA, LBA48 and CHS. tf->protocol and 688 * flags select the address format to use. 689 * 690 * RETURNS: 691 * Block address read from @tf. 692 */ 693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 694 { 695 u64 block = 0; 696 697 if (tf->flags & ATA_TFLAG_LBA) { 698 if (tf->flags & ATA_TFLAG_LBA48) { 699 block |= (u64)tf->hob_lbah << 40; 700 block |= (u64)tf->hob_lbam << 32; 701 block |= (u64)tf->hob_lbal << 24; 702 } else 703 block |= (tf->device & 0xf) << 24; 704 705 block |= tf->lbah << 16; 706 block |= tf->lbam << 8; 707 block |= tf->lbal; 708 } else { 709 u32 cyl, head, sect; 710 711 cyl = tf->lbam | (tf->lbah << 8); 712 head = tf->device & 0xf; 713 sect = tf->lbal; 714 715 if (!sect) { 716 ata_dev_warn(dev, 717 "device reported invalid CHS sector 0\n"); 718 sect = 1; /* oh well */ 719 } 720 721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 722 } 723 724 return block; 725 } 726 727 /** 728 * ata_build_rw_tf - Build ATA taskfile for given read/write request 729 * @tf: Target ATA taskfile 730 * @dev: ATA device @tf belongs to 731 * @block: Block address 732 * @n_block: Number of blocks 733 * @tf_flags: RW/FUA etc... 734 * @tag: tag 735 * 736 * LOCKING: 737 * None. 738 * 739 * Build ATA taskfile @tf for read/write request described by 740 * @block, @n_block, @tf_flags and @tag on @dev. 741 * 742 * RETURNS: 743 * 744 * 0 on success, -ERANGE if the request is too large for @dev, 745 * -EINVAL if the request is invalid. 746 */ 747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 748 u64 block, u32 n_block, unsigned int tf_flags, 749 unsigned int tag) 750 { 751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 752 tf->flags |= tf_flags; 753 754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 755 /* yay, NCQ */ 756 if (!lba_48_ok(block, n_block)) 757 return -ERANGE; 758 759 tf->protocol = ATA_PROT_NCQ; 760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 761 762 if (tf->flags & ATA_TFLAG_WRITE) 763 tf->command = ATA_CMD_FPDMA_WRITE; 764 else 765 tf->command = ATA_CMD_FPDMA_READ; 766 767 tf->nsect = tag << 3; 768 tf->hob_feature = (n_block >> 8) & 0xff; 769 tf->feature = n_block & 0xff; 770 771 tf->hob_lbah = (block >> 40) & 0xff; 772 tf->hob_lbam = (block >> 32) & 0xff; 773 tf->hob_lbal = (block >> 24) & 0xff; 774 tf->lbah = (block >> 16) & 0xff; 775 tf->lbam = (block >> 8) & 0xff; 776 tf->lbal = block & 0xff; 777 778 tf->device = ATA_LBA; 779 if (tf->flags & ATA_TFLAG_FUA) 780 tf->device |= 1 << 7; 781 } else if (dev->flags & ATA_DFLAG_LBA) { 782 tf->flags |= ATA_TFLAG_LBA; 783 784 if (lba_28_ok(block, n_block)) { 785 /* use LBA28 */ 786 tf->device |= (block >> 24) & 0xf; 787 } else if (lba_48_ok(block, n_block)) { 788 if (!(dev->flags & ATA_DFLAG_LBA48)) 789 return -ERANGE; 790 791 /* use LBA48 */ 792 tf->flags |= ATA_TFLAG_LBA48; 793 794 tf->hob_nsect = (n_block >> 8) & 0xff; 795 796 tf->hob_lbah = (block >> 40) & 0xff; 797 tf->hob_lbam = (block >> 32) & 0xff; 798 tf->hob_lbal = (block >> 24) & 0xff; 799 } else 800 /* request too large even for LBA48 */ 801 return -ERANGE; 802 803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 804 return -EINVAL; 805 806 tf->nsect = n_block & 0xff; 807 808 tf->lbah = (block >> 16) & 0xff; 809 tf->lbam = (block >> 8) & 0xff; 810 tf->lbal = block & 0xff; 811 812 tf->device |= ATA_LBA; 813 } else { 814 /* CHS */ 815 u32 sect, head, cyl, track; 816 817 /* The request -may- be too large for CHS addressing. */ 818 if (!lba_28_ok(block, n_block)) 819 return -ERANGE; 820 821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 822 return -EINVAL; 823 824 /* Convert LBA to CHS */ 825 track = (u32)block / dev->sectors; 826 cyl = track / dev->heads; 827 head = track % dev->heads; 828 sect = (u32)block % dev->sectors + 1; 829 830 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 831 (u32)block, track, cyl, head, sect); 832 833 /* Check whether the converted CHS can fit. 834 Cylinder: 0-65535 835 Head: 0-15 836 Sector: 1-255*/ 837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 838 return -ERANGE; 839 840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 841 tf->lbal = sect; 842 tf->lbam = cyl; 843 tf->lbah = cyl >> 8; 844 tf->device |= head; 845 } 846 847 return 0; 848 } 849 850 /** 851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 852 * @pio_mask: pio_mask 853 * @mwdma_mask: mwdma_mask 854 * @udma_mask: udma_mask 855 * 856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 857 * unsigned int xfer_mask. 858 * 859 * LOCKING: 860 * None. 861 * 862 * RETURNS: 863 * Packed xfer_mask. 864 */ 865 unsigned long ata_pack_xfermask(unsigned long pio_mask, 866 unsigned long mwdma_mask, 867 unsigned long udma_mask) 868 { 869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 872 } 873 874 /** 875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 876 * @xfer_mask: xfer_mask to unpack 877 * @pio_mask: resulting pio_mask 878 * @mwdma_mask: resulting mwdma_mask 879 * @udma_mask: resulting udma_mask 880 * 881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 882 * Any NULL distination masks will be ignored. 883 */ 884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 885 unsigned long *mwdma_mask, unsigned long *udma_mask) 886 { 887 if (pio_mask) 888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 889 if (mwdma_mask) 890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 891 if (udma_mask) 892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 893 } 894 895 static const struct ata_xfer_ent { 896 int shift, bits; 897 u8 base; 898 } ata_xfer_tbl[] = { 899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 902 { -1, }, 903 }; 904 905 /** 906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 907 * @xfer_mask: xfer_mask of interest 908 * 909 * Return matching XFER_* value for @xfer_mask. Only the highest 910 * bit of @xfer_mask is considered. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching XFER_* value, 0xff if no match found. 917 */ 918 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 919 { 920 int highbit = fls(xfer_mask) - 1; 921 const struct ata_xfer_ent *ent; 922 923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 925 return ent->base + highbit - ent->shift; 926 return 0xff; 927 } 928 929 /** 930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 931 * @xfer_mode: XFER_* of interest 932 * 933 * Return matching xfer_mask for @xfer_mode. 934 * 935 * LOCKING: 936 * None. 937 * 938 * RETURNS: 939 * Matching xfer_mask, 0 if no match found. 940 */ 941 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 942 { 943 const struct ata_xfer_ent *ent; 944 945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 948 & ~((1 << ent->shift) - 1); 949 return 0; 950 } 951 952 /** 953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 954 * @xfer_mode: XFER_* of interest 955 * 956 * Return matching xfer_shift for @xfer_mode. 957 * 958 * LOCKING: 959 * None. 960 * 961 * RETURNS: 962 * Matching xfer_shift, -1 if no match found. 963 */ 964 int ata_xfer_mode2shift(unsigned long xfer_mode) 965 { 966 const struct ata_xfer_ent *ent; 967 968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 970 return ent->shift; 971 return -1; 972 } 973 974 /** 975 * ata_mode_string - convert xfer_mask to string 976 * @xfer_mask: mask of bits supported; only highest bit counts. 977 * 978 * Determine string which represents the highest speed 979 * (highest bit in @modemask). 980 * 981 * LOCKING: 982 * None. 983 * 984 * RETURNS: 985 * Constant C string representing highest speed listed in 986 * @mode_mask, or the constant C string "<n/a>". 987 */ 988 const char *ata_mode_string(unsigned long xfer_mask) 989 { 990 static const char * const xfer_mode_str[] = { 991 "PIO0", 992 "PIO1", 993 "PIO2", 994 "PIO3", 995 "PIO4", 996 "PIO5", 997 "PIO6", 998 "MWDMA0", 999 "MWDMA1", 1000 "MWDMA2", 1001 "MWDMA3", 1002 "MWDMA4", 1003 "UDMA/16", 1004 "UDMA/25", 1005 "UDMA/33", 1006 "UDMA/44", 1007 "UDMA/66", 1008 "UDMA/100", 1009 "UDMA/133", 1010 "UDMA7", 1011 }; 1012 int highbit; 1013 1014 highbit = fls(xfer_mask) - 1; 1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1016 return xfer_mode_str[highbit]; 1017 return "<n/a>"; 1018 } 1019 1020 const char *sata_spd_string(unsigned int spd) 1021 { 1022 static const char * const spd_str[] = { 1023 "1.5 Gbps", 1024 "3.0 Gbps", 1025 "6.0 Gbps", 1026 }; 1027 1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1029 return "<unknown>"; 1030 return spd_str[spd - 1]; 1031 } 1032 1033 /** 1034 * ata_dev_classify - determine device type based on ATA-spec signature 1035 * @tf: ATA taskfile register set for device to be identified 1036 * 1037 * Determine from taskfile register contents whether a device is 1038 * ATA or ATAPI, as per "Signature and persistence" section 1039 * of ATA/PI spec (volume 1, sect 5.14). 1040 * 1041 * LOCKING: 1042 * None. 1043 * 1044 * RETURNS: 1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1046 * %ATA_DEV_UNKNOWN the event of failure. 1047 */ 1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1049 { 1050 /* Apple's open source Darwin code hints that some devices only 1051 * put a proper signature into the LBA mid/high registers, 1052 * So, we only check those. It's sufficient for uniqueness. 1053 * 1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1055 * signatures for ATA and ATAPI devices attached on SerialATA, 1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1057 * spec has never mentioned about using different signatures 1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1059 * Multiplier specification began to use 0x69/0x96 to identify 1060 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1062 * 0x69/0x96 shortly and described them as reserved for 1063 * SerialATA. 1064 * 1065 * We follow the current spec and consider that 0x69/0x96 1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1068 * SEMB signature. This is worked around in 1069 * ata_dev_read_id(). 1070 */ 1071 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1072 DPRINTK("found ATA device by sig\n"); 1073 return ATA_DEV_ATA; 1074 } 1075 1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1077 DPRINTK("found ATAPI device by sig\n"); 1078 return ATA_DEV_ATAPI; 1079 } 1080 1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1082 DPRINTK("found PMP device by sig\n"); 1083 return ATA_DEV_PMP; 1084 } 1085 1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1087 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1088 return ATA_DEV_SEMB; 1089 } 1090 1091 DPRINTK("unknown device\n"); 1092 return ATA_DEV_UNKNOWN; 1093 } 1094 1095 /** 1096 * ata_id_string - Convert IDENTIFY DEVICE page into string 1097 * @id: IDENTIFY DEVICE results we will examine 1098 * @s: string into which data is output 1099 * @ofs: offset into identify device page 1100 * @len: length of string to return. must be an even number. 1101 * 1102 * The strings in the IDENTIFY DEVICE page are broken up into 1103 * 16-bit chunks. Run through the string, and output each 1104 * 8-bit chunk linearly, regardless of platform. 1105 * 1106 * LOCKING: 1107 * caller. 1108 */ 1109 1110 void ata_id_string(const u16 *id, unsigned char *s, 1111 unsigned int ofs, unsigned int len) 1112 { 1113 unsigned int c; 1114 1115 BUG_ON(len & 1); 1116 1117 while (len > 0) { 1118 c = id[ofs] >> 8; 1119 *s = c; 1120 s++; 1121 1122 c = id[ofs] & 0xff; 1123 *s = c; 1124 s++; 1125 1126 ofs++; 1127 len -= 2; 1128 } 1129 } 1130 1131 /** 1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1133 * @id: IDENTIFY DEVICE results we will examine 1134 * @s: string into which data is output 1135 * @ofs: offset into identify device page 1136 * @len: length of string to return. must be an odd number. 1137 * 1138 * This function is identical to ata_id_string except that it 1139 * trims trailing spaces and terminates the resulting string with 1140 * null. @len must be actual maximum length (even number) + 1. 1141 * 1142 * LOCKING: 1143 * caller. 1144 */ 1145 void ata_id_c_string(const u16 *id, unsigned char *s, 1146 unsigned int ofs, unsigned int len) 1147 { 1148 unsigned char *p; 1149 1150 ata_id_string(id, s, ofs, len - 1); 1151 1152 p = s + strnlen(s, len - 1); 1153 while (p > s && p[-1] == ' ') 1154 p--; 1155 *p = '\0'; 1156 } 1157 1158 static u64 ata_id_n_sectors(const u16 *id) 1159 { 1160 if (ata_id_has_lba(id)) { 1161 if (ata_id_has_lba48(id)) 1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1163 else 1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1165 } else { 1166 if (ata_id_current_chs_valid(id)) 1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1168 id[ATA_ID_CUR_SECTORS]; 1169 else 1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1171 id[ATA_ID_SECTORS]; 1172 } 1173 } 1174 1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1176 { 1177 u64 sectors = 0; 1178 1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1182 sectors |= (tf->lbah & 0xff) << 16; 1183 sectors |= (tf->lbam & 0xff) << 8; 1184 sectors |= (tf->lbal & 0xff); 1185 1186 return sectors; 1187 } 1188 1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1190 { 1191 u64 sectors = 0; 1192 1193 sectors |= (tf->device & 0x0f) << 24; 1194 sectors |= (tf->lbah & 0xff) << 16; 1195 sectors |= (tf->lbam & 0xff) << 8; 1196 sectors |= (tf->lbal & 0xff); 1197 1198 return sectors; 1199 } 1200 1201 /** 1202 * ata_read_native_max_address - Read native max address 1203 * @dev: target device 1204 * @max_sectors: out parameter for the result native max address 1205 * 1206 * Perform an LBA48 or LBA28 native size query upon the device in 1207 * question. 1208 * 1209 * RETURNS: 1210 * 0 on success, -EACCES if command is aborted by the drive. 1211 * -EIO on other errors. 1212 */ 1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1214 { 1215 unsigned int err_mask; 1216 struct ata_taskfile tf; 1217 int lba48 = ata_id_has_lba48(dev->id); 1218 1219 ata_tf_init(dev, &tf); 1220 1221 /* always clear all address registers */ 1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1223 1224 if (lba48) { 1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1226 tf.flags |= ATA_TFLAG_LBA48; 1227 } else 1228 tf.command = ATA_CMD_READ_NATIVE_MAX; 1229 1230 tf.protocol |= ATA_PROT_NODATA; 1231 tf.device |= ATA_LBA; 1232 1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1234 if (err_mask) { 1235 ata_dev_warn(dev, 1236 "failed to read native max address (err_mask=0x%x)\n", 1237 err_mask); 1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1239 return -EACCES; 1240 return -EIO; 1241 } 1242 1243 if (lba48) 1244 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1245 else 1246 *max_sectors = ata_tf_to_lba(&tf) + 1; 1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1248 (*max_sectors)--; 1249 return 0; 1250 } 1251 1252 /** 1253 * ata_set_max_sectors - Set max sectors 1254 * @dev: target device 1255 * @new_sectors: new max sectors value to set for the device 1256 * 1257 * Set max sectors of @dev to @new_sectors. 1258 * 1259 * RETURNS: 1260 * 0 on success, -EACCES if command is aborted or denied (due to 1261 * previous non-volatile SET_MAX) by the drive. -EIO on other 1262 * errors. 1263 */ 1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1265 { 1266 unsigned int err_mask; 1267 struct ata_taskfile tf; 1268 int lba48 = ata_id_has_lba48(dev->id); 1269 1270 new_sectors--; 1271 1272 ata_tf_init(dev, &tf); 1273 1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1275 1276 if (lba48) { 1277 tf.command = ATA_CMD_SET_MAX_EXT; 1278 tf.flags |= ATA_TFLAG_LBA48; 1279 1280 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1281 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1282 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1283 } else { 1284 tf.command = ATA_CMD_SET_MAX; 1285 1286 tf.device |= (new_sectors >> 24) & 0xf; 1287 } 1288 1289 tf.protocol |= ATA_PROT_NODATA; 1290 tf.device |= ATA_LBA; 1291 1292 tf.lbal = (new_sectors >> 0) & 0xff; 1293 tf.lbam = (new_sectors >> 8) & 0xff; 1294 tf.lbah = (new_sectors >> 16) & 0xff; 1295 1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1297 if (err_mask) { 1298 ata_dev_warn(dev, 1299 "failed to set max address (err_mask=0x%x)\n", 1300 err_mask); 1301 if (err_mask == AC_ERR_DEV && 1302 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1303 return -EACCES; 1304 return -EIO; 1305 } 1306 1307 return 0; 1308 } 1309 1310 /** 1311 * ata_hpa_resize - Resize a device with an HPA set 1312 * @dev: Device to resize 1313 * 1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1315 * it if required to the full size of the media. The caller must check 1316 * the drive has the HPA feature set enabled. 1317 * 1318 * RETURNS: 1319 * 0 on success, -errno on failure. 1320 */ 1321 static int ata_hpa_resize(struct ata_device *dev) 1322 { 1323 struct ata_eh_context *ehc = &dev->link->eh_context; 1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1326 u64 sectors = ata_id_n_sectors(dev->id); 1327 u64 native_sectors; 1328 int rc; 1329 1330 /* do we need to do it? */ 1331 if (dev->class != ATA_DEV_ATA || 1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1334 return 0; 1335 1336 /* read native max address */ 1337 rc = ata_read_native_max_address(dev, &native_sectors); 1338 if (rc) { 1339 /* If device aborted the command or HPA isn't going to 1340 * be unlocked, skip HPA resizing. 1341 */ 1342 if (rc == -EACCES || !unlock_hpa) { 1343 ata_dev_warn(dev, 1344 "HPA support seems broken, skipping HPA handling\n"); 1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1346 1347 /* we can continue if device aborted the command */ 1348 if (rc == -EACCES) 1349 rc = 0; 1350 } 1351 1352 return rc; 1353 } 1354 dev->n_native_sectors = native_sectors; 1355 1356 /* nothing to do? */ 1357 if (native_sectors <= sectors || !unlock_hpa) { 1358 if (!print_info || native_sectors == sectors) 1359 return 0; 1360 1361 if (native_sectors > sectors) 1362 ata_dev_info(dev, 1363 "HPA detected: current %llu, native %llu\n", 1364 (unsigned long long)sectors, 1365 (unsigned long long)native_sectors); 1366 else if (native_sectors < sectors) 1367 ata_dev_warn(dev, 1368 "native sectors (%llu) is smaller than sectors (%llu)\n", 1369 (unsigned long long)native_sectors, 1370 (unsigned long long)sectors); 1371 return 0; 1372 } 1373 1374 /* let's unlock HPA */ 1375 rc = ata_set_max_sectors(dev, native_sectors); 1376 if (rc == -EACCES) { 1377 /* if device aborted the command, skip HPA resizing */ 1378 ata_dev_warn(dev, 1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1380 (unsigned long long)sectors, 1381 (unsigned long long)native_sectors); 1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1383 return 0; 1384 } else if (rc) 1385 return rc; 1386 1387 /* re-read IDENTIFY data */ 1388 rc = ata_dev_reread_id(dev, 0); 1389 if (rc) { 1390 ata_dev_err(dev, 1391 "failed to re-read IDENTIFY data after HPA resizing\n"); 1392 return rc; 1393 } 1394 1395 if (print_info) { 1396 u64 new_sectors = ata_id_n_sectors(dev->id); 1397 ata_dev_info(dev, 1398 "HPA unlocked: %llu -> %llu, native %llu\n", 1399 (unsigned long long)sectors, 1400 (unsigned long long)new_sectors, 1401 (unsigned long long)native_sectors); 1402 } 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * ata_dump_id - IDENTIFY DEVICE info debugging output 1409 * @id: IDENTIFY DEVICE page to dump 1410 * 1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1412 * page. 1413 * 1414 * LOCKING: 1415 * caller. 1416 */ 1417 1418 static inline void ata_dump_id(const u16 *id) 1419 { 1420 DPRINTK("49==0x%04x " 1421 "53==0x%04x " 1422 "63==0x%04x " 1423 "64==0x%04x " 1424 "75==0x%04x \n", 1425 id[49], 1426 id[53], 1427 id[63], 1428 id[64], 1429 id[75]); 1430 DPRINTK("80==0x%04x " 1431 "81==0x%04x " 1432 "82==0x%04x " 1433 "83==0x%04x " 1434 "84==0x%04x \n", 1435 id[80], 1436 id[81], 1437 id[82], 1438 id[83], 1439 id[84]); 1440 DPRINTK("88==0x%04x " 1441 "93==0x%04x\n", 1442 id[88], 1443 id[93]); 1444 } 1445 1446 /** 1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1448 * @id: IDENTIFY data to compute xfer mask from 1449 * 1450 * Compute the xfermask for this device. This is not as trivial 1451 * as it seems if we must consider early devices correctly. 1452 * 1453 * FIXME: pre IDE drive timing (do we care ?). 1454 * 1455 * LOCKING: 1456 * None. 1457 * 1458 * RETURNS: 1459 * Computed xfermask 1460 */ 1461 unsigned long ata_id_xfermask(const u16 *id) 1462 { 1463 unsigned long pio_mask, mwdma_mask, udma_mask; 1464 1465 /* Usual case. Word 53 indicates word 64 is valid */ 1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1468 pio_mask <<= 3; 1469 pio_mask |= 0x7; 1470 } else { 1471 /* If word 64 isn't valid then Word 51 high byte holds 1472 * the PIO timing number for the maximum. Turn it into 1473 * a mask. 1474 */ 1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1476 if (mode < 5) /* Valid PIO range */ 1477 pio_mask = (2 << mode) - 1; 1478 else 1479 pio_mask = 1; 1480 1481 /* But wait.. there's more. Design your standards by 1482 * committee and you too can get a free iordy field to 1483 * process. However its the speeds not the modes that 1484 * are supported... Note drivers using the timing API 1485 * will get this right anyway 1486 */ 1487 } 1488 1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1490 1491 if (ata_id_is_cfa(id)) { 1492 /* 1493 * Process compact flash extended modes 1494 */ 1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1497 1498 if (pio) 1499 pio_mask |= (1 << 5); 1500 if (pio > 1) 1501 pio_mask |= (1 << 6); 1502 if (dma) 1503 mwdma_mask |= (1 << 3); 1504 if (dma > 1) 1505 mwdma_mask |= (1 << 4); 1506 } 1507 1508 udma_mask = 0; 1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1511 1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1513 } 1514 1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1516 { 1517 struct completion *waiting = qc->private_data; 1518 1519 complete(waiting); 1520 } 1521 1522 /** 1523 * ata_exec_internal_sg - execute libata internal command 1524 * @dev: Device to which the command is sent 1525 * @tf: Taskfile registers for the command and the result 1526 * @cdb: CDB for packet command 1527 * @dma_dir: Data tranfer direction of the command 1528 * @sgl: sg list for the data buffer of the command 1529 * @n_elem: Number of sg entries 1530 * @timeout: Timeout in msecs (0 for default) 1531 * 1532 * Executes libata internal command with timeout. @tf contains 1533 * command on entry and result on return. Timeout and error 1534 * conditions are reported via return value. No recovery action 1535 * is taken after a command times out. It's caller's duty to 1536 * clean up after timeout. 1537 * 1538 * LOCKING: 1539 * None. Should be called with kernel context, might sleep. 1540 * 1541 * RETURNS: 1542 * Zero on success, AC_ERR_* mask on failure 1543 */ 1544 unsigned ata_exec_internal_sg(struct ata_device *dev, 1545 struct ata_taskfile *tf, const u8 *cdb, 1546 int dma_dir, struct scatterlist *sgl, 1547 unsigned int n_elem, unsigned long timeout) 1548 { 1549 struct ata_link *link = dev->link; 1550 struct ata_port *ap = link->ap; 1551 u8 command = tf->command; 1552 int auto_timeout = 0; 1553 struct ata_queued_cmd *qc; 1554 unsigned int tag, preempted_tag; 1555 u32 preempted_sactive, preempted_qc_active; 1556 int preempted_nr_active_links; 1557 DECLARE_COMPLETION_ONSTACK(wait); 1558 unsigned long flags; 1559 unsigned int err_mask; 1560 int rc; 1561 1562 spin_lock_irqsave(ap->lock, flags); 1563 1564 /* no internal command while frozen */ 1565 if (ap->pflags & ATA_PFLAG_FROZEN) { 1566 spin_unlock_irqrestore(ap->lock, flags); 1567 return AC_ERR_SYSTEM; 1568 } 1569 1570 /* initialize internal qc */ 1571 1572 /* XXX: Tag 0 is used for drivers with legacy EH as some 1573 * drivers choke if any other tag is given. This breaks 1574 * ata_tag_internal() test for those drivers. Don't use new 1575 * EH stuff without converting to it. 1576 */ 1577 if (ap->ops->error_handler) 1578 tag = ATA_TAG_INTERNAL; 1579 else 1580 tag = 0; 1581 1582 if (test_and_set_bit(tag, &ap->qc_allocated)) 1583 BUG(); 1584 qc = __ata_qc_from_tag(ap, tag); 1585 1586 qc->tag = tag; 1587 qc->scsicmd = NULL; 1588 qc->ap = ap; 1589 qc->dev = dev; 1590 ata_qc_reinit(qc); 1591 1592 preempted_tag = link->active_tag; 1593 preempted_sactive = link->sactive; 1594 preempted_qc_active = ap->qc_active; 1595 preempted_nr_active_links = ap->nr_active_links; 1596 link->active_tag = ATA_TAG_POISON; 1597 link->sactive = 0; 1598 ap->qc_active = 0; 1599 ap->nr_active_links = 0; 1600 1601 /* prepare & issue qc */ 1602 qc->tf = *tf; 1603 if (cdb) 1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1605 1606 /* some SATA bridges need us to indicate data xfer direction */ 1607 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1608 dma_dir == DMA_FROM_DEVICE) 1609 qc->tf.feature |= ATAPI_DMADIR; 1610 1611 qc->flags |= ATA_QCFLAG_RESULT_TF; 1612 qc->dma_dir = dma_dir; 1613 if (dma_dir != DMA_NONE) { 1614 unsigned int i, buflen = 0; 1615 struct scatterlist *sg; 1616 1617 for_each_sg(sgl, sg, n_elem, i) 1618 buflen += sg->length; 1619 1620 ata_sg_init(qc, sgl, n_elem); 1621 qc->nbytes = buflen; 1622 } 1623 1624 qc->private_data = &wait; 1625 qc->complete_fn = ata_qc_complete_internal; 1626 1627 ata_qc_issue(qc); 1628 1629 spin_unlock_irqrestore(ap->lock, flags); 1630 1631 if (!timeout) { 1632 if (ata_probe_timeout) 1633 timeout = ata_probe_timeout * 1000; 1634 else { 1635 timeout = ata_internal_cmd_timeout(dev, command); 1636 auto_timeout = 1; 1637 } 1638 } 1639 1640 if (ap->ops->error_handler) 1641 ata_eh_release(ap); 1642 1643 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1644 1645 if (ap->ops->error_handler) 1646 ata_eh_acquire(ap); 1647 1648 ata_sff_flush_pio_task(ap); 1649 1650 if (!rc) { 1651 spin_lock_irqsave(ap->lock, flags); 1652 1653 /* We're racing with irq here. If we lose, the 1654 * following test prevents us from completing the qc 1655 * twice. If we win, the port is frozen and will be 1656 * cleaned up by ->post_internal_cmd(). 1657 */ 1658 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1659 qc->err_mask |= AC_ERR_TIMEOUT; 1660 1661 if (ap->ops->error_handler) 1662 ata_port_freeze(ap); 1663 else 1664 ata_qc_complete(qc); 1665 1666 if (ata_msg_warn(ap)) 1667 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1668 command); 1669 } 1670 1671 spin_unlock_irqrestore(ap->lock, flags); 1672 } 1673 1674 /* do post_internal_cmd */ 1675 if (ap->ops->post_internal_cmd) 1676 ap->ops->post_internal_cmd(qc); 1677 1678 /* perform minimal error analysis */ 1679 if (qc->flags & ATA_QCFLAG_FAILED) { 1680 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1681 qc->err_mask |= AC_ERR_DEV; 1682 1683 if (!qc->err_mask) 1684 qc->err_mask |= AC_ERR_OTHER; 1685 1686 if (qc->err_mask & ~AC_ERR_OTHER) 1687 qc->err_mask &= ~AC_ERR_OTHER; 1688 } 1689 1690 /* finish up */ 1691 spin_lock_irqsave(ap->lock, flags); 1692 1693 *tf = qc->result_tf; 1694 err_mask = qc->err_mask; 1695 1696 ata_qc_free(qc); 1697 link->active_tag = preempted_tag; 1698 link->sactive = preempted_sactive; 1699 ap->qc_active = preempted_qc_active; 1700 ap->nr_active_links = preempted_nr_active_links; 1701 1702 spin_unlock_irqrestore(ap->lock, flags); 1703 1704 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1705 ata_internal_cmd_timed_out(dev, command); 1706 1707 return err_mask; 1708 } 1709 1710 /** 1711 * ata_exec_internal - execute libata internal command 1712 * @dev: Device to which the command is sent 1713 * @tf: Taskfile registers for the command and the result 1714 * @cdb: CDB for packet command 1715 * @dma_dir: Data tranfer direction of the command 1716 * @buf: Data buffer of the command 1717 * @buflen: Length of data buffer 1718 * @timeout: Timeout in msecs (0 for default) 1719 * 1720 * Wrapper around ata_exec_internal_sg() which takes simple 1721 * buffer instead of sg list. 1722 * 1723 * LOCKING: 1724 * None. Should be called with kernel context, might sleep. 1725 * 1726 * RETURNS: 1727 * Zero on success, AC_ERR_* mask on failure 1728 */ 1729 unsigned ata_exec_internal(struct ata_device *dev, 1730 struct ata_taskfile *tf, const u8 *cdb, 1731 int dma_dir, void *buf, unsigned int buflen, 1732 unsigned long timeout) 1733 { 1734 struct scatterlist *psg = NULL, sg; 1735 unsigned int n_elem = 0; 1736 1737 if (dma_dir != DMA_NONE) { 1738 WARN_ON(!buf); 1739 sg_init_one(&sg, buf, buflen); 1740 psg = &sg; 1741 n_elem++; 1742 } 1743 1744 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1745 timeout); 1746 } 1747 1748 /** 1749 * ata_do_simple_cmd - execute simple internal command 1750 * @dev: Device to which the command is sent 1751 * @cmd: Opcode to execute 1752 * 1753 * Execute a 'simple' command, that only consists of the opcode 1754 * 'cmd' itself, without filling any other registers 1755 * 1756 * LOCKING: 1757 * Kernel thread context (may sleep). 1758 * 1759 * RETURNS: 1760 * Zero on success, AC_ERR_* mask on failure 1761 */ 1762 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1763 { 1764 struct ata_taskfile tf; 1765 1766 ata_tf_init(dev, &tf); 1767 1768 tf.command = cmd; 1769 tf.flags |= ATA_TFLAG_DEVICE; 1770 tf.protocol = ATA_PROT_NODATA; 1771 1772 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1773 } 1774 1775 /** 1776 * ata_pio_need_iordy - check if iordy needed 1777 * @adev: ATA device 1778 * 1779 * Check if the current speed of the device requires IORDY. Used 1780 * by various controllers for chip configuration. 1781 */ 1782 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1783 { 1784 /* Don't set IORDY if we're preparing for reset. IORDY may 1785 * lead to controller lock up on certain controllers if the 1786 * port is not occupied. See bko#11703 for details. 1787 */ 1788 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1789 return 0; 1790 /* Controller doesn't support IORDY. Probably a pointless 1791 * check as the caller should know this. 1792 */ 1793 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1794 return 0; 1795 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1796 if (ata_id_is_cfa(adev->id) 1797 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1798 return 0; 1799 /* PIO3 and higher it is mandatory */ 1800 if (adev->pio_mode > XFER_PIO_2) 1801 return 1; 1802 /* We turn it on when possible */ 1803 if (ata_id_has_iordy(adev->id)) 1804 return 1; 1805 return 0; 1806 } 1807 1808 /** 1809 * ata_pio_mask_no_iordy - Return the non IORDY mask 1810 * @adev: ATA device 1811 * 1812 * Compute the highest mode possible if we are not using iordy. Return 1813 * -1 if no iordy mode is available. 1814 */ 1815 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1816 { 1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1818 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1819 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1820 /* Is the speed faster than the drive allows non IORDY ? */ 1821 if (pio) { 1822 /* This is cycle times not frequency - watch the logic! */ 1823 if (pio > 240) /* PIO2 is 240nS per cycle */ 1824 return 3 << ATA_SHIFT_PIO; 1825 return 7 << ATA_SHIFT_PIO; 1826 } 1827 } 1828 return 3 << ATA_SHIFT_PIO; 1829 } 1830 1831 /** 1832 * ata_do_dev_read_id - default ID read method 1833 * @dev: device 1834 * @tf: proposed taskfile 1835 * @id: data buffer 1836 * 1837 * Issue the identify taskfile and hand back the buffer containing 1838 * identify data. For some RAID controllers and for pre ATA devices 1839 * this function is wrapped or replaced by the driver 1840 */ 1841 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1842 struct ata_taskfile *tf, u16 *id) 1843 { 1844 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1845 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1846 } 1847 1848 /** 1849 * ata_dev_read_id - Read ID data from the specified device 1850 * @dev: target device 1851 * @p_class: pointer to class of the target device (may be changed) 1852 * @flags: ATA_READID_* flags 1853 * @id: buffer to read IDENTIFY data into 1854 * 1855 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1856 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1857 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1858 * for pre-ATA4 drives. 1859 * 1860 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1861 * now we abort if we hit that case. 1862 * 1863 * LOCKING: 1864 * Kernel thread context (may sleep) 1865 * 1866 * RETURNS: 1867 * 0 on success, -errno otherwise. 1868 */ 1869 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1870 unsigned int flags, u16 *id) 1871 { 1872 struct ata_port *ap = dev->link->ap; 1873 unsigned int class = *p_class; 1874 struct ata_taskfile tf; 1875 unsigned int err_mask = 0; 1876 const char *reason; 1877 bool is_semb = class == ATA_DEV_SEMB; 1878 int may_fallback = 1, tried_spinup = 0; 1879 int rc; 1880 1881 if (ata_msg_ctl(ap)) 1882 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1883 1884 retry: 1885 ata_tf_init(dev, &tf); 1886 1887 switch (class) { 1888 case ATA_DEV_SEMB: 1889 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1890 case ATA_DEV_ATA: 1891 tf.command = ATA_CMD_ID_ATA; 1892 break; 1893 case ATA_DEV_ATAPI: 1894 tf.command = ATA_CMD_ID_ATAPI; 1895 break; 1896 default: 1897 rc = -ENODEV; 1898 reason = "unsupported class"; 1899 goto err_out; 1900 } 1901 1902 tf.protocol = ATA_PROT_PIO; 1903 1904 /* Some devices choke if TF registers contain garbage. Make 1905 * sure those are properly initialized. 1906 */ 1907 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1908 1909 /* Device presence detection is unreliable on some 1910 * controllers. Always poll IDENTIFY if available. 1911 */ 1912 tf.flags |= ATA_TFLAG_POLLING; 1913 1914 if (ap->ops->read_id) 1915 err_mask = ap->ops->read_id(dev, &tf, id); 1916 else 1917 err_mask = ata_do_dev_read_id(dev, &tf, id); 1918 1919 if (err_mask) { 1920 if (err_mask & AC_ERR_NODEV_HINT) { 1921 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1922 return -ENOENT; 1923 } 1924 1925 if (is_semb) { 1926 ata_dev_info(dev, 1927 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1928 /* SEMB is not supported yet */ 1929 *p_class = ATA_DEV_SEMB_UNSUP; 1930 return 0; 1931 } 1932 1933 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1934 /* Device or controller might have reported 1935 * the wrong device class. Give a shot at the 1936 * other IDENTIFY if the current one is 1937 * aborted by the device. 1938 */ 1939 if (may_fallback) { 1940 may_fallback = 0; 1941 1942 if (class == ATA_DEV_ATA) 1943 class = ATA_DEV_ATAPI; 1944 else 1945 class = ATA_DEV_ATA; 1946 goto retry; 1947 } 1948 1949 /* Control reaches here iff the device aborted 1950 * both flavors of IDENTIFYs which happens 1951 * sometimes with phantom devices. 1952 */ 1953 ata_dev_dbg(dev, 1954 "both IDENTIFYs aborted, assuming NODEV\n"); 1955 return -ENOENT; 1956 } 1957 1958 rc = -EIO; 1959 reason = "I/O error"; 1960 goto err_out; 1961 } 1962 1963 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1964 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1965 "class=%d may_fallback=%d tried_spinup=%d\n", 1966 class, may_fallback, tried_spinup); 1967 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1968 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1969 } 1970 1971 /* Falling back doesn't make sense if ID data was read 1972 * successfully at least once. 1973 */ 1974 may_fallback = 0; 1975 1976 swap_buf_le16(id, ATA_ID_WORDS); 1977 1978 /* sanity check */ 1979 rc = -EINVAL; 1980 reason = "device reports invalid type"; 1981 1982 if (class == ATA_DEV_ATA) { 1983 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1984 goto err_out; 1985 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1986 ata_id_is_ata(id)) { 1987 ata_dev_dbg(dev, 1988 "host indicates ignore ATA devices, ignored\n"); 1989 return -ENOENT; 1990 } 1991 } else { 1992 if (ata_id_is_ata(id)) 1993 goto err_out; 1994 } 1995 1996 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1997 tried_spinup = 1; 1998 /* 1999 * Drive powered-up in standby mode, and requires a specific 2000 * SET_FEATURES spin-up subcommand before it will accept 2001 * anything other than the original IDENTIFY command. 2002 */ 2003 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2004 if (err_mask && id[2] != 0x738c) { 2005 rc = -EIO; 2006 reason = "SPINUP failed"; 2007 goto err_out; 2008 } 2009 /* 2010 * If the drive initially returned incomplete IDENTIFY info, 2011 * we now must reissue the IDENTIFY command. 2012 */ 2013 if (id[2] == 0x37c8) 2014 goto retry; 2015 } 2016 2017 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2018 /* 2019 * The exact sequence expected by certain pre-ATA4 drives is: 2020 * SRST RESET 2021 * IDENTIFY (optional in early ATA) 2022 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2023 * anything else.. 2024 * Some drives were very specific about that exact sequence. 2025 * 2026 * Note that ATA4 says lba is mandatory so the second check 2027 * should never trigger. 2028 */ 2029 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2030 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2031 if (err_mask) { 2032 rc = -EIO; 2033 reason = "INIT_DEV_PARAMS failed"; 2034 goto err_out; 2035 } 2036 2037 /* current CHS translation info (id[53-58]) might be 2038 * changed. reread the identify device info. 2039 */ 2040 flags &= ~ATA_READID_POSTRESET; 2041 goto retry; 2042 } 2043 } 2044 2045 *p_class = class; 2046 2047 return 0; 2048 2049 err_out: 2050 if (ata_msg_warn(ap)) 2051 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2052 reason, err_mask); 2053 return rc; 2054 } 2055 2056 static int ata_do_link_spd_horkage(struct ata_device *dev) 2057 { 2058 struct ata_link *plink = ata_dev_phys_link(dev); 2059 u32 target, target_limit; 2060 2061 if (!sata_scr_valid(plink)) 2062 return 0; 2063 2064 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2065 target = 1; 2066 else 2067 return 0; 2068 2069 target_limit = (1 << target) - 1; 2070 2071 /* if already on stricter limit, no need to push further */ 2072 if (plink->sata_spd_limit <= target_limit) 2073 return 0; 2074 2075 plink->sata_spd_limit = target_limit; 2076 2077 /* Request another EH round by returning -EAGAIN if link is 2078 * going faster than the target speed. Forward progress is 2079 * guaranteed by setting sata_spd_limit to target_limit above. 2080 */ 2081 if (plink->sata_spd > target) { 2082 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2083 sata_spd_string(target)); 2084 return -EAGAIN; 2085 } 2086 return 0; 2087 } 2088 2089 static inline u8 ata_dev_knobble(struct ata_device *dev) 2090 { 2091 struct ata_port *ap = dev->link->ap; 2092 2093 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2094 return 0; 2095 2096 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2097 } 2098 2099 static int ata_dev_config_ncq(struct ata_device *dev, 2100 char *desc, size_t desc_sz) 2101 { 2102 struct ata_port *ap = dev->link->ap; 2103 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2104 unsigned int err_mask; 2105 char *aa_desc = ""; 2106 2107 if (!ata_id_has_ncq(dev->id)) { 2108 desc[0] = '\0'; 2109 return 0; 2110 } 2111 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2112 snprintf(desc, desc_sz, "NCQ (not used)"); 2113 return 0; 2114 } 2115 if (ap->flags & ATA_FLAG_NCQ) { 2116 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2117 dev->flags |= ATA_DFLAG_NCQ; 2118 } 2119 2120 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2121 (ap->flags & ATA_FLAG_FPDMA_AA) && 2122 ata_id_has_fpdma_aa(dev->id)) { 2123 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2124 SATA_FPDMA_AA); 2125 if (err_mask) { 2126 ata_dev_err(dev, 2127 "failed to enable AA (error_mask=0x%x)\n", 2128 err_mask); 2129 if (err_mask != AC_ERR_DEV) { 2130 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2131 return -EIO; 2132 } 2133 } else 2134 aa_desc = ", AA"; 2135 } 2136 2137 if (hdepth >= ddepth) 2138 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2139 else 2140 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2141 ddepth, aa_desc); 2142 2143 if ((ap->flags & ATA_FLAG_FPDMA_AUX) && 2144 ata_id_has_ncq_send_and_recv(dev->id)) { 2145 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2146 0, ap->sector_buf, 1); 2147 if (err_mask) { 2148 ata_dev_dbg(dev, 2149 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2150 err_mask); 2151 } else { 2152 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2153 memcpy(dev->ncq_send_recv_cmds, ap->sector_buf, 2154 ATA_LOG_NCQ_SEND_RECV_SIZE); 2155 } 2156 } 2157 2158 return 0; 2159 } 2160 2161 /** 2162 * ata_dev_configure - Configure the specified ATA/ATAPI device 2163 * @dev: Target device to configure 2164 * 2165 * Configure @dev according to @dev->id. Generic and low-level 2166 * driver specific fixups are also applied. 2167 * 2168 * LOCKING: 2169 * Kernel thread context (may sleep) 2170 * 2171 * RETURNS: 2172 * 0 on success, -errno otherwise 2173 */ 2174 int ata_dev_configure(struct ata_device *dev) 2175 { 2176 struct ata_port *ap = dev->link->ap; 2177 struct ata_eh_context *ehc = &dev->link->eh_context; 2178 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2179 const u16 *id = dev->id; 2180 unsigned long xfer_mask; 2181 unsigned int err_mask; 2182 char revbuf[7]; /* XYZ-99\0 */ 2183 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2184 char modelbuf[ATA_ID_PROD_LEN+1]; 2185 int rc; 2186 2187 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2188 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2189 return 0; 2190 } 2191 2192 if (ata_msg_probe(ap)) 2193 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2194 2195 /* set horkage */ 2196 dev->horkage |= ata_dev_blacklisted(dev); 2197 ata_force_horkage(dev); 2198 2199 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2200 ata_dev_info(dev, "unsupported device, disabling\n"); 2201 ata_dev_disable(dev); 2202 return 0; 2203 } 2204 2205 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2206 dev->class == ATA_DEV_ATAPI) { 2207 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2208 atapi_enabled ? "not supported with this driver" 2209 : "disabled"); 2210 ata_dev_disable(dev); 2211 return 0; 2212 } 2213 2214 rc = ata_do_link_spd_horkage(dev); 2215 if (rc) 2216 return rc; 2217 2218 /* let ACPI work its magic */ 2219 rc = ata_acpi_on_devcfg(dev); 2220 if (rc) 2221 return rc; 2222 2223 /* massage HPA, do it early as it might change IDENTIFY data */ 2224 rc = ata_hpa_resize(dev); 2225 if (rc) 2226 return rc; 2227 2228 /* print device capabilities */ 2229 if (ata_msg_probe(ap)) 2230 ata_dev_dbg(dev, 2231 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2232 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2233 __func__, 2234 id[49], id[82], id[83], id[84], 2235 id[85], id[86], id[87], id[88]); 2236 2237 /* initialize to-be-configured parameters */ 2238 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2239 dev->max_sectors = 0; 2240 dev->cdb_len = 0; 2241 dev->n_sectors = 0; 2242 dev->cylinders = 0; 2243 dev->heads = 0; 2244 dev->sectors = 0; 2245 dev->multi_count = 0; 2246 2247 /* 2248 * common ATA, ATAPI feature tests 2249 */ 2250 2251 /* find max transfer mode; for printk only */ 2252 xfer_mask = ata_id_xfermask(id); 2253 2254 if (ata_msg_probe(ap)) 2255 ata_dump_id(id); 2256 2257 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2258 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2259 sizeof(fwrevbuf)); 2260 2261 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2262 sizeof(modelbuf)); 2263 2264 /* ATA-specific feature tests */ 2265 if (dev->class == ATA_DEV_ATA) { 2266 if (ata_id_is_cfa(id)) { 2267 /* CPRM may make this media unusable */ 2268 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2269 ata_dev_warn(dev, 2270 "supports DRM functions and may not be fully accessible\n"); 2271 snprintf(revbuf, 7, "CFA"); 2272 } else { 2273 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2274 /* Warn the user if the device has TPM extensions */ 2275 if (ata_id_has_tpm(id)) 2276 ata_dev_warn(dev, 2277 "supports DRM functions and may not be fully accessible\n"); 2278 } 2279 2280 dev->n_sectors = ata_id_n_sectors(id); 2281 2282 /* get current R/W Multiple count setting */ 2283 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2284 unsigned int max = dev->id[47] & 0xff; 2285 unsigned int cnt = dev->id[59] & 0xff; 2286 /* only recognize/allow powers of two here */ 2287 if (is_power_of_2(max) && is_power_of_2(cnt)) 2288 if (cnt <= max) 2289 dev->multi_count = cnt; 2290 } 2291 2292 if (ata_id_has_lba(id)) { 2293 const char *lba_desc; 2294 char ncq_desc[24]; 2295 2296 lba_desc = "LBA"; 2297 dev->flags |= ATA_DFLAG_LBA; 2298 if (ata_id_has_lba48(id)) { 2299 dev->flags |= ATA_DFLAG_LBA48; 2300 lba_desc = "LBA48"; 2301 2302 if (dev->n_sectors >= (1UL << 28) && 2303 ata_id_has_flush_ext(id)) 2304 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2305 } 2306 2307 /* config NCQ */ 2308 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2309 if (rc) 2310 return rc; 2311 2312 /* print device info to dmesg */ 2313 if (ata_msg_drv(ap) && print_info) { 2314 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2315 revbuf, modelbuf, fwrevbuf, 2316 ata_mode_string(xfer_mask)); 2317 ata_dev_info(dev, 2318 "%llu sectors, multi %u: %s %s\n", 2319 (unsigned long long)dev->n_sectors, 2320 dev->multi_count, lba_desc, ncq_desc); 2321 } 2322 } else { 2323 /* CHS */ 2324 2325 /* Default translation */ 2326 dev->cylinders = id[1]; 2327 dev->heads = id[3]; 2328 dev->sectors = id[6]; 2329 2330 if (ata_id_current_chs_valid(id)) { 2331 /* Current CHS translation is valid. */ 2332 dev->cylinders = id[54]; 2333 dev->heads = id[55]; 2334 dev->sectors = id[56]; 2335 } 2336 2337 /* print device info to dmesg */ 2338 if (ata_msg_drv(ap) && print_info) { 2339 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2340 revbuf, modelbuf, fwrevbuf, 2341 ata_mode_string(xfer_mask)); 2342 ata_dev_info(dev, 2343 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2344 (unsigned long long)dev->n_sectors, 2345 dev->multi_count, dev->cylinders, 2346 dev->heads, dev->sectors); 2347 } 2348 } 2349 2350 /* Check and mark DevSlp capability. Get DevSlp timing variables 2351 * from SATA Settings page of Identify Device Data Log. 2352 */ 2353 if (ata_id_has_devslp(dev->id)) { 2354 u8 *sata_setting = ap->sector_buf; 2355 int i, j; 2356 2357 dev->flags |= ATA_DFLAG_DEVSLP; 2358 err_mask = ata_read_log_page(dev, 2359 ATA_LOG_SATA_ID_DEV_DATA, 2360 ATA_LOG_SATA_SETTINGS, 2361 sata_setting, 2362 1); 2363 if (err_mask) 2364 ata_dev_dbg(dev, 2365 "failed to get Identify Device Data, Emask 0x%x\n", 2366 err_mask); 2367 else 2368 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2369 j = ATA_LOG_DEVSLP_OFFSET + i; 2370 dev->devslp_timing[i] = sata_setting[j]; 2371 } 2372 } 2373 2374 dev->cdb_len = 16; 2375 } 2376 2377 /* ATAPI-specific feature tests */ 2378 else if (dev->class == ATA_DEV_ATAPI) { 2379 const char *cdb_intr_string = ""; 2380 const char *atapi_an_string = ""; 2381 const char *dma_dir_string = ""; 2382 u32 sntf; 2383 2384 rc = atapi_cdb_len(id); 2385 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2386 if (ata_msg_warn(ap)) 2387 ata_dev_warn(dev, "unsupported CDB len\n"); 2388 rc = -EINVAL; 2389 goto err_out_nosup; 2390 } 2391 dev->cdb_len = (unsigned int) rc; 2392 2393 /* Enable ATAPI AN if both the host and device have 2394 * the support. If PMP is attached, SNTF is required 2395 * to enable ATAPI AN to discern between PHY status 2396 * changed notifications and ATAPI ANs. 2397 */ 2398 if (atapi_an && 2399 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2400 (!sata_pmp_attached(ap) || 2401 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2402 /* issue SET feature command to turn this on */ 2403 err_mask = ata_dev_set_feature(dev, 2404 SETFEATURES_SATA_ENABLE, SATA_AN); 2405 if (err_mask) 2406 ata_dev_err(dev, 2407 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2408 err_mask); 2409 else { 2410 dev->flags |= ATA_DFLAG_AN; 2411 atapi_an_string = ", ATAPI AN"; 2412 } 2413 } 2414 2415 if (ata_id_cdb_intr(dev->id)) { 2416 dev->flags |= ATA_DFLAG_CDB_INTR; 2417 cdb_intr_string = ", CDB intr"; 2418 } 2419 2420 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2421 dev->flags |= ATA_DFLAG_DMADIR; 2422 dma_dir_string = ", DMADIR"; 2423 } 2424 2425 if (ata_id_has_da(dev->id)) { 2426 dev->flags |= ATA_DFLAG_DA; 2427 zpodd_init(dev); 2428 } 2429 2430 /* print device info to dmesg */ 2431 if (ata_msg_drv(ap) && print_info) 2432 ata_dev_info(dev, 2433 "ATAPI: %s, %s, max %s%s%s%s\n", 2434 modelbuf, fwrevbuf, 2435 ata_mode_string(xfer_mask), 2436 cdb_intr_string, atapi_an_string, 2437 dma_dir_string); 2438 } 2439 2440 /* determine max_sectors */ 2441 dev->max_sectors = ATA_MAX_SECTORS; 2442 if (dev->flags & ATA_DFLAG_LBA48) 2443 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2444 2445 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2446 200 sectors */ 2447 if (ata_dev_knobble(dev)) { 2448 if (ata_msg_drv(ap) && print_info) 2449 ata_dev_info(dev, "applying bridge limits\n"); 2450 dev->udma_mask &= ATA_UDMA5; 2451 dev->max_sectors = ATA_MAX_SECTORS; 2452 } 2453 2454 if ((dev->class == ATA_DEV_ATAPI) && 2455 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2456 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2457 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2458 } 2459 2460 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2461 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2462 dev->max_sectors); 2463 2464 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2465 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2466 2467 if (ap->ops->dev_config) 2468 ap->ops->dev_config(dev); 2469 2470 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2471 /* Let the user know. We don't want to disallow opens for 2472 rescue purposes, or in case the vendor is just a blithering 2473 idiot. Do this after the dev_config call as some controllers 2474 with buggy firmware may want to avoid reporting false device 2475 bugs */ 2476 2477 if (print_info) { 2478 ata_dev_warn(dev, 2479 "Drive reports diagnostics failure. This may indicate a drive\n"); 2480 ata_dev_warn(dev, 2481 "fault or invalid emulation. Contact drive vendor for information.\n"); 2482 } 2483 } 2484 2485 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2486 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2487 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2488 } 2489 2490 return 0; 2491 2492 err_out_nosup: 2493 if (ata_msg_probe(ap)) 2494 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2495 return rc; 2496 } 2497 2498 /** 2499 * ata_cable_40wire - return 40 wire cable type 2500 * @ap: port 2501 * 2502 * Helper method for drivers which want to hardwire 40 wire cable 2503 * detection. 2504 */ 2505 2506 int ata_cable_40wire(struct ata_port *ap) 2507 { 2508 return ATA_CBL_PATA40; 2509 } 2510 2511 /** 2512 * ata_cable_80wire - return 80 wire cable type 2513 * @ap: port 2514 * 2515 * Helper method for drivers which want to hardwire 80 wire cable 2516 * detection. 2517 */ 2518 2519 int ata_cable_80wire(struct ata_port *ap) 2520 { 2521 return ATA_CBL_PATA80; 2522 } 2523 2524 /** 2525 * ata_cable_unknown - return unknown PATA cable. 2526 * @ap: port 2527 * 2528 * Helper method for drivers which have no PATA cable detection. 2529 */ 2530 2531 int ata_cable_unknown(struct ata_port *ap) 2532 { 2533 return ATA_CBL_PATA_UNK; 2534 } 2535 2536 /** 2537 * ata_cable_ignore - return ignored PATA cable. 2538 * @ap: port 2539 * 2540 * Helper method for drivers which don't use cable type to limit 2541 * transfer mode. 2542 */ 2543 int ata_cable_ignore(struct ata_port *ap) 2544 { 2545 return ATA_CBL_PATA_IGN; 2546 } 2547 2548 /** 2549 * ata_cable_sata - return SATA cable type 2550 * @ap: port 2551 * 2552 * Helper method for drivers which have SATA cables 2553 */ 2554 2555 int ata_cable_sata(struct ata_port *ap) 2556 { 2557 return ATA_CBL_SATA; 2558 } 2559 2560 /** 2561 * ata_bus_probe - Reset and probe ATA bus 2562 * @ap: Bus to probe 2563 * 2564 * Master ATA bus probing function. Initiates a hardware-dependent 2565 * bus reset, then attempts to identify any devices found on 2566 * the bus. 2567 * 2568 * LOCKING: 2569 * PCI/etc. bus probe sem. 2570 * 2571 * RETURNS: 2572 * Zero on success, negative errno otherwise. 2573 */ 2574 2575 int ata_bus_probe(struct ata_port *ap) 2576 { 2577 unsigned int classes[ATA_MAX_DEVICES]; 2578 int tries[ATA_MAX_DEVICES]; 2579 int rc; 2580 struct ata_device *dev; 2581 2582 ata_for_each_dev(dev, &ap->link, ALL) 2583 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2584 2585 retry: 2586 ata_for_each_dev(dev, &ap->link, ALL) { 2587 /* If we issue an SRST then an ATA drive (not ATAPI) 2588 * may change configuration and be in PIO0 timing. If 2589 * we do a hard reset (or are coming from power on) 2590 * this is true for ATA or ATAPI. Until we've set a 2591 * suitable controller mode we should not touch the 2592 * bus as we may be talking too fast. 2593 */ 2594 dev->pio_mode = XFER_PIO_0; 2595 dev->dma_mode = 0xff; 2596 2597 /* If the controller has a pio mode setup function 2598 * then use it to set the chipset to rights. Don't 2599 * touch the DMA setup as that will be dealt with when 2600 * configuring devices. 2601 */ 2602 if (ap->ops->set_piomode) 2603 ap->ops->set_piomode(ap, dev); 2604 } 2605 2606 /* reset and determine device classes */ 2607 ap->ops->phy_reset(ap); 2608 2609 ata_for_each_dev(dev, &ap->link, ALL) { 2610 if (dev->class != ATA_DEV_UNKNOWN) 2611 classes[dev->devno] = dev->class; 2612 else 2613 classes[dev->devno] = ATA_DEV_NONE; 2614 2615 dev->class = ATA_DEV_UNKNOWN; 2616 } 2617 2618 /* read IDENTIFY page and configure devices. We have to do the identify 2619 specific sequence bass-ackwards so that PDIAG- is released by 2620 the slave device */ 2621 2622 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2623 if (tries[dev->devno]) 2624 dev->class = classes[dev->devno]; 2625 2626 if (!ata_dev_enabled(dev)) 2627 continue; 2628 2629 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2630 dev->id); 2631 if (rc) 2632 goto fail; 2633 } 2634 2635 /* Now ask for the cable type as PDIAG- should have been released */ 2636 if (ap->ops->cable_detect) 2637 ap->cbl = ap->ops->cable_detect(ap); 2638 2639 /* We may have SATA bridge glue hiding here irrespective of 2640 * the reported cable types and sensed types. When SATA 2641 * drives indicate we have a bridge, we don't know which end 2642 * of the link the bridge is which is a problem. 2643 */ 2644 ata_for_each_dev(dev, &ap->link, ENABLED) 2645 if (ata_id_is_sata(dev->id)) 2646 ap->cbl = ATA_CBL_SATA; 2647 2648 /* After the identify sequence we can now set up the devices. We do 2649 this in the normal order so that the user doesn't get confused */ 2650 2651 ata_for_each_dev(dev, &ap->link, ENABLED) { 2652 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2653 rc = ata_dev_configure(dev); 2654 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2655 if (rc) 2656 goto fail; 2657 } 2658 2659 /* configure transfer mode */ 2660 rc = ata_set_mode(&ap->link, &dev); 2661 if (rc) 2662 goto fail; 2663 2664 ata_for_each_dev(dev, &ap->link, ENABLED) 2665 return 0; 2666 2667 return -ENODEV; 2668 2669 fail: 2670 tries[dev->devno]--; 2671 2672 switch (rc) { 2673 case -EINVAL: 2674 /* eeek, something went very wrong, give up */ 2675 tries[dev->devno] = 0; 2676 break; 2677 2678 case -ENODEV: 2679 /* give it just one more chance */ 2680 tries[dev->devno] = min(tries[dev->devno], 1); 2681 case -EIO: 2682 if (tries[dev->devno] == 1) { 2683 /* This is the last chance, better to slow 2684 * down than lose it. 2685 */ 2686 sata_down_spd_limit(&ap->link, 0); 2687 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2688 } 2689 } 2690 2691 if (!tries[dev->devno]) 2692 ata_dev_disable(dev); 2693 2694 goto retry; 2695 } 2696 2697 /** 2698 * sata_print_link_status - Print SATA link status 2699 * @link: SATA link to printk link status about 2700 * 2701 * This function prints link speed and status of a SATA link. 2702 * 2703 * LOCKING: 2704 * None. 2705 */ 2706 static void sata_print_link_status(struct ata_link *link) 2707 { 2708 u32 sstatus, scontrol, tmp; 2709 2710 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2711 return; 2712 sata_scr_read(link, SCR_CONTROL, &scontrol); 2713 2714 if (ata_phys_link_online(link)) { 2715 tmp = (sstatus >> 4) & 0xf; 2716 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2717 sata_spd_string(tmp), sstatus, scontrol); 2718 } else { 2719 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2720 sstatus, scontrol); 2721 } 2722 } 2723 2724 /** 2725 * ata_dev_pair - return other device on cable 2726 * @adev: device 2727 * 2728 * Obtain the other device on the same cable, or if none is 2729 * present NULL is returned 2730 */ 2731 2732 struct ata_device *ata_dev_pair(struct ata_device *adev) 2733 { 2734 struct ata_link *link = adev->link; 2735 struct ata_device *pair = &link->device[1 - adev->devno]; 2736 if (!ata_dev_enabled(pair)) 2737 return NULL; 2738 return pair; 2739 } 2740 2741 /** 2742 * sata_down_spd_limit - adjust SATA spd limit downward 2743 * @link: Link to adjust SATA spd limit for 2744 * @spd_limit: Additional limit 2745 * 2746 * Adjust SATA spd limit of @link downward. Note that this 2747 * function only adjusts the limit. The change must be applied 2748 * using sata_set_spd(). 2749 * 2750 * If @spd_limit is non-zero, the speed is limited to equal to or 2751 * lower than @spd_limit if such speed is supported. If 2752 * @spd_limit is slower than any supported speed, only the lowest 2753 * supported speed is allowed. 2754 * 2755 * LOCKING: 2756 * Inherited from caller. 2757 * 2758 * RETURNS: 2759 * 0 on success, negative errno on failure 2760 */ 2761 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2762 { 2763 u32 sstatus, spd, mask; 2764 int rc, bit; 2765 2766 if (!sata_scr_valid(link)) 2767 return -EOPNOTSUPP; 2768 2769 /* If SCR can be read, use it to determine the current SPD. 2770 * If not, use cached value in link->sata_spd. 2771 */ 2772 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2773 if (rc == 0 && ata_sstatus_online(sstatus)) 2774 spd = (sstatus >> 4) & 0xf; 2775 else 2776 spd = link->sata_spd; 2777 2778 mask = link->sata_spd_limit; 2779 if (mask <= 1) 2780 return -EINVAL; 2781 2782 /* unconditionally mask off the highest bit */ 2783 bit = fls(mask) - 1; 2784 mask &= ~(1 << bit); 2785 2786 /* Mask off all speeds higher than or equal to the current 2787 * one. Force 1.5Gbps if current SPD is not available. 2788 */ 2789 if (spd > 1) 2790 mask &= (1 << (spd - 1)) - 1; 2791 else 2792 mask &= 1; 2793 2794 /* were we already at the bottom? */ 2795 if (!mask) 2796 return -EINVAL; 2797 2798 if (spd_limit) { 2799 if (mask & ((1 << spd_limit) - 1)) 2800 mask &= (1 << spd_limit) - 1; 2801 else { 2802 bit = ffs(mask) - 1; 2803 mask = 1 << bit; 2804 } 2805 } 2806 2807 link->sata_spd_limit = mask; 2808 2809 ata_link_warn(link, "limiting SATA link speed to %s\n", 2810 sata_spd_string(fls(mask))); 2811 2812 return 0; 2813 } 2814 2815 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2816 { 2817 struct ata_link *host_link = &link->ap->link; 2818 u32 limit, target, spd; 2819 2820 limit = link->sata_spd_limit; 2821 2822 /* Don't configure downstream link faster than upstream link. 2823 * It doesn't speed up anything and some PMPs choke on such 2824 * configuration. 2825 */ 2826 if (!ata_is_host_link(link) && host_link->sata_spd) 2827 limit &= (1 << host_link->sata_spd) - 1; 2828 2829 if (limit == UINT_MAX) 2830 target = 0; 2831 else 2832 target = fls(limit); 2833 2834 spd = (*scontrol >> 4) & 0xf; 2835 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2836 2837 return spd != target; 2838 } 2839 2840 /** 2841 * sata_set_spd_needed - is SATA spd configuration needed 2842 * @link: Link in question 2843 * 2844 * Test whether the spd limit in SControl matches 2845 * @link->sata_spd_limit. This function is used to determine 2846 * whether hardreset is necessary to apply SATA spd 2847 * configuration. 2848 * 2849 * LOCKING: 2850 * Inherited from caller. 2851 * 2852 * RETURNS: 2853 * 1 if SATA spd configuration is needed, 0 otherwise. 2854 */ 2855 static int sata_set_spd_needed(struct ata_link *link) 2856 { 2857 u32 scontrol; 2858 2859 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2860 return 1; 2861 2862 return __sata_set_spd_needed(link, &scontrol); 2863 } 2864 2865 /** 2866 * sata_set_spd - set SATA spd according to spd limit 2867 * @link: Link to set SATA spd for 2868 * 2869 * Set SATA spd of @link according to sata_spd_limit. 2870 * 2871 * LOCKING: 2872 * Inherited from caller. 2873 * 2874 * RETURNS: 2875 * 0 if spd doesn't need to be changed, 1 if spd has been 2876 * changed. Negative errno if SCR registers are inaccessible. 2877 */ 2878 int sata_set_spd(struct ata_link *link) 2879 { 2880 u32 scontrol; 2881 int rc; 2882 2883 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2884 return rc; 2885 2886 if (!__sata_set_spd_needed(link, &scontrol)) 2887 return 0; 2888 2889 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2890 return rc; 2891 2892 return 1; 2893 } 2894 2895 /* 2896 * This mode timing computation functionality is ported over from 2897 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2898 */ 2899 /* 2900 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2901 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2902 * for UDMA6, which is currently supported only by Maxtor drives. 2903 * 2904 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2905 */ 2906 2907 static const struct ata_timing ata_timing[] = { 2908 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2909 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2910 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2911 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2912 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2913 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2914 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2915 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2916 2917 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2918 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2919 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2920 2921 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2922 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2923 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2924 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2925 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2926 2927 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2928 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2929 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2930 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2931 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2932 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2933 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2934 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2935 2936 { 0xFF } 2937 }; 2938 2939 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2940 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2941 2942 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2943 { 2944 q->setup = EZ(t->setup * 1000, T); 2945 q->act8b = EZ(t->act8b * 1000, T); 2946 q->rec8b = EZ(t->rec8b * 1000, T); 2947 q->cyc8b = EZ(t->cyc8b * 1000, T); 2948 q->active = EZ(t->active * 1000, T); 2949 q->recover = EZ(t->recover * 1000, T); 2950 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2951 q->cycle = EZ(t->cycle * 1000, T); 2952 q->udma = EZ(t->udma * 1000, UT); 2953 } 2954 2955 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2956 struct ata_timing *m, unsigned int what) 2957 { 2958 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2959 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2960 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2961 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2962 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2963 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2964 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2965 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2966 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2967 } 2968 2969 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2970 { 2971 const struct ata_timing *t = ata_timing; 2972 2973 while (xfer_mode > t->mode) 2974 t++; 2975 2976 if (xfer_mode == t->mode) 2977 return t; 2978 2979 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 2980 __func__, xfer_mode); 2981 2982 return NULL; 2983 } 2984 2985 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2986 struct ata_timing *t, int T, int UT) 2987 { 2988 const u16 *id = adev->id; 2989 const struct ata_timing *s; 2990 struct ata_timing p; 2991 2992 /* 2993 * Find the mode. 2994 */ 2995 2996 if (!(s = ata_timing_find_mode(speed))) 2997 return -EINVAL; 2998 2999 memcpy(t, s, sizeof(*s)); 3000 3001 /* 3002 * If the drive is an EIDE drive, it can tell us it needs extended 3003 * PIO/MW_DMA cycle timing. 3004 */ 3005 3006 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3007 memset(&p, 0, sizeof(p)); 3008 3009 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 3010 if (speed <= XFER_PIO_2) 3011 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3012 else if ((speed <= XFER_PIO_4) || 3013 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3014 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3015 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3016 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3017 3018 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3019 } 3020 3021 /* 3022 * Convert the timing to bus clock counts. 3023 */ 3024 3025 ata_timing_quantize(t, t, T, UT); 3026 3027 /* 3028 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3029 * S.M.A.R.T * and some other commands. We have to ensure that the 3030 * DMA cycle timing is slower/equal than the fastest PIO timing. 3031 */ 3032 3033 if (speed > XFER_PIO_6) { 3034 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3035 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3036 } 3037 3038 /* 3039 * Lengthen active & recovery time so that cycle time is correct. 3040 */ 3041 3042 if (t->act8b + t->rec8b < t->cyc8b) { 3043 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3044 t->rec8b = t->cyc8b - t->act8b; 3045 } 3046 3047 if (t->active + t->recover < t->cycle) { 3048 t->active += (t->cycle - (t->active + t->recover)) / 2; 3049 t->recover = t->cycle - t->active; 3050 } 3051 3052 /* In a few cases quantisation may produce enough errors to 3053 leave t->cycle too low for the sum of active and recovery 3054 if so we must correct this */ 3055 if (t->active + t->recover > t->cycle) 3056 t->cycle = t->active + t->recover; 3057 3058 return 0; 3059 } 3060 3061 /** 3062 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3063 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3064 * @cycle: cycle duration in ns 3065 * 3066 * Return matching xfer mode for @cycle. The returned mode is of 3067 * the transfer type specified by @xfer_shift. If @cycle is too 3068 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3069 * than the fastest known mode, the fasted mode is returned. 3070 * 3071 * LOCKING: 3072 * None. 3073 * 3074 * RETURNS: 3075 * Matching xfer_mode, 0xff if no match found. 3076 */ 3077 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3078 { 3079 u8 base_mode = 0xff, last_mode = 0xff; 3080 const struct ata_xfer_ent *ent; 3081 const struct ata_timing *t; 3082 3083 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3084 if (ent->shift == xfer_shift) 3085 base_mode = ent->base; 3086 3087 for (t = ata_timing_find_mode(base_mode); 3088 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3089 unsigned short this_cycle; 3090 3091 switch (xfer_shift) { 3092 case ATA_SHIFT_PIO: 3093 case ATA_SHIFT_MWDMA: 3094 this_cycle = t->cycle; 3095 break; 3096 case ATA_SHIFT_UDMA: 3097 this_cycle = t->udma; 3098 break; 3099 default: 3100 return 0xff; 3101 } 3102 3103 if (cycle > this_cycle) 3104 break; 3105 3106 last_mode = t->mode; 3107 } 3108 3109 return last_mode; 3110 } 3111 3112 /** 3113 * ata_down_xfermask_limit - adjust dev xfer masks downward 3114 * @dev: Device to adjust xfer masks 3115 * @sel: ATA_DNXFER_* selector 3116 * 3117 * Adjust xfer masks of @dev downward. Note that this function 3118 * does not apply the change. Invoking ata_set_mode() afterwards 3119 * will apply the limit. 3120 * 3121 * LOCKING: 3122 * Inherited from caller. 3123 * 3124 * RETURNS: 3125 * 0 on success, negative errno on failure 3126 */ 3127 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3128 { 3129 char buf[32]; 3130 unsigned long orig_mask, xfer_mask; 3131 unsigned long pio_mask, mwdma_mask, udma_mask; 3132 int quiet, highbit; 3133 3134 quiet = !!(sel & ATA_DNXFER_QUIET); 3135 sel &= ~ATA_DNXFER_QUIET; 3136 3137 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3138 dev->mwdma_mask, 3139 dev->udma_mask); 3140 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3141 3142 switch (sel) { 3143 case ATA_DNXFER_PIO: 3144 highbit = fls(pio_mask) - 1; 3145 pio_mask &= ~(1 << highbit); 3146 break; 3147 3148 case ATA_DNXFER_DMA: 3149 if (udma_mask) { 3150 highbit = fls(udma_mask) - 1; 3151 udma_mask &= ~(1 << highbit); 3152 if (!udma_mask) 3153 return -ENOENT; 3154 } else if (mwdma_mask) { 3155 highbit = fls(mwdma_mask) - 1; 3156 mwdma_mask &= ~(1 << highbit); 3157 if (!mwdma_mask) 3158 return -ENOENT; 3159 } 3160 break; 3161 3162 case ATA_DNXFER_40C: 3163 udma_mask &= ATA_UDMA_MASK_40C; 3164 break; 3165 3166 case ATA_DNXFER_FORCE_PIO0: 3167 pio_mask &= 1; 3168 case ATA_DNXFER_FORCE_PIO: 3169 mwdma_mask = 0; 3170 udma_mask = 0; 3171 break; 3172 3173 default: 3174 BUG(); 3175 } 3176 3177 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3178 3179 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3180 return -ENOENT; 3181 3182 if (!quiet) { 3183 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3184 snprintf(buf, sizeof(buf), "%s:%s", 3185 ata_mode_string(xfer_mask), 3186 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3187 else 3188 snprintf(buf, sizeof(buf), "%s", 3189 ata_mode_string(xfer_mask)); 3190 3191 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3192 } 3193 3194 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3195 &dev->udma_mask); 3196 3197 return 0; 3198 } 3199 3200 static int ata_dev_set_mode(struct ata_device *dev) 3201 { 3202 struct ata_port *ap = dev->link->ap; 3203 struct ata_eh_context *ehc = &dev->link->eh_context; 3204 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3205 const char *dev_err_whine = ""; 3206 int ign_dev_err = 0; 3207 unsigned int err_mask = 0; 3208 int rc; 3209 3210 dev->flags &= ~ATA_DFLAG_PIO; 3211 if (dev->xfer_shift == ATA_SHIFT_PIO) 3212 dev->flags |= ATA_DFLAG_PIO; 3213 3214 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3215 dev_err_whine = " (SET_XFERMODE skipped)"; 3216 else { 3217 if (nosetxfer) 3218 ata_dev_warn(dev, 3219 "NOSETXFER but PATA detected - can't " 3220 "skip SETXFER, might malfunction\n"); 3221 err_mask = ata_dev_set_xfermode(dev); 3222 } 3223 3224 if (err_mask & ~AC_ERR_DEV) 3225 goto fail; 3226 3227 /* revalidate */ 3228 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3229 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3230 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3231 if (rc) 3232 return rc; 3233 3234 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3235 /* Old CFA may refuse this command, which is just fine */ 3236 if (ata_id_is_cfa(dev->id)) 3237 ign_dev_err = 1; 3238 /* Catch several broken garbage emulations plus some pre 3239 ATA devices */ 3240 if (ata_id_major_version(dev->id) == 0 && 3241 dev->pio_mode <= XFER_PIO_2) 3242 ign_dev_err = 1; 3243 /* Some very old devices and some bad newer ones fail 3244 any kind of SET_XFERMODE request but support PIO0-2 3245 timings and no IORDY */ 3246 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3247 ign_dev_err = 1; 3248 } 3249 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3250 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3251 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3252 dev->dma_mode == XFER_MW_DMA_0 && 3253 (dev->id[63] >> 8) & 1) 3254 ign_dev_err = 1; 3255 3256 /* if the device is actually configured correctly, ignore dev err */ 3257 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3258 ign_dev_err = 1; 3259 3260 if (err_mask & AC_ERR_DEV) { 3261 if (!ign_dev_err) 3262 goto fail; 3263 else 3264 dev_err_whine = " (device error ignored)"; 3265 } 3266 3267 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3268 dev->xfer_shift, (int)dev->xfer_mode); 3269 3270 ata_dev_info(dev, "configured for %s%s\n", 3271 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3272 dev_err_whine); 3273 3274 return 0; 3275 3276 fail: 3277 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3278 return -EIO; 3279 } 3280 3281 /** 3282 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3283 * @link: link on which timings will be programmed 3284 * @r_failed_dev: out parameter for failed device 3285 * 3286 * Standard implementation of the function used to tune and set 3287 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3288 * ata_dev_set_mode() fails, pointer to the failing device is 3289 * returned in @r_failed_dev. 3290 * 3291 * LOCKING: 3292 * PCI/etc. bus probe sem. 3293 * 3294 * RETURNS: 3295 * 0 on success, negative errno otherwise 3296 */ 3297 3298 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3299 { 3300 struct ata_port *ap = link->ap; 3301 struct ata_device *dev; 3302 int rc = 0, used_dma = 0, found = 0; 3303 3304 /* step 1: calculate xfer_mask */ 3305 ata_for_each_dev(dev, link, ENABLED) { 3306 unsigned long pio_mask, dma_mask; 3307 unsigned int mode_mask; 3308 3309 mode_mask = ATA_DMA_MASK_ATA; 3310 if (dev->class == ATA_DEV_ATAPI) 3311 mode_mask = ATA_DMA_MASK_ATAPI; 3312 else if (ata_id_is_cfa(dev->id)) 3313 mode_mask = ATA_DMA_MASK_CFA; 3314 3315 ata_dev_xfermask(dev); 3316 ata_force_xfermask(dev); 3317 3318 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3319 3320 if (libata_dma_mask & mode_mask) 3321 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3322 dev->udma_mask); 3323 else 3324 dma_mask = 0; 3325 3326 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3327 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3328 3329 found = 1; 3330 if (ata_dma_enabled(dev)) 3331 used_dma = 1; 3332 } 3333 if (!found) 3334 goto out; 3335 3336 /* step 2: always set host PIO timings */ 3337 ata_for_each_dev(dev, link, ENABLED) { 3338 if (dev->pio_mode == 0xff) { 3339 ata_dev_warn(dev, "no PIO support\n"); 3340 rc = -EINVAL; 3341 goto out; 3342 } 3343 3344 dev->xfer_mode = dev->pio_mode; 3345 dev->xfer_shift = ATA_SHIFT_PIO; 3346 if (ap->ops->set_piomode) 3347 ap->ops->set_piomode(ap, dev); 3348 } 3349 3350 /* step 3: set host DMA timings */ 3351 ata_for_each_dev(dev, link, ENABLED) { 3352 if (!ata_dma_enabled(dev)) 3353 continue; 3354 3355 dev->xfer_mode = dev->dma_mode; 3356 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3357 if (ap->ops->set_dmamode) 3358 ap->ops->set_dmamode(ap, dev); 3359 } 3360 3361 /* step 4: update devices' xfer mode */ 3362 ata_for_each_dev(dev, link, ENABLED) { 3363 rc = ata_dev_set_mode(dev); 3364 if (rc) 3365 goto out; 3366 } 3367 3368 /* Record simplex status. If we selected DMA then the other 3369 * host channels are not permitted to do so. 3370 */ 3371 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3372 ap->host->simplex_claimed = ap; 3373 3374 out: 3375 if (rc) 3376 *r_failed_dev = dev; 3377 return rc; 3378 } 3379 3380 /** 3381 * ata_wait_ready - wait for link to become ready 3382 * @link: link to be waited on 3383 * @deadline: deadline jiffies for the operation 3384 * @check_ready: callback to check link readiness 3385 * 3386 * Wait for @link to become ready. @check_ready should return 3387 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3388 * link doesn't seem to be occupied, other errno for other error 3389 * conditions. 3390 * 3391 * Transient -ENODEV conditions are allowed for 3392 * ATA_TMOUT_FF_WAIT. 3393 * 3394 * LOCKING: 3395 * EH context. 3396 * 3397 * RETURNS: 3398 * 0 if @linke is ready before @deadline; otherwise, -errno. 3399 */ 3400 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3401 int (*check_ready)(struct ata_link *link)) 3402 { 3403 unsigned long start = jiffies; 3404 unsigned long nodev_deadline; 3405 int warned = 0; 3406 3407 /* choose which 0xff timeout to use, read comment in libata.h */ 3408 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3409 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3410 else 3411 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3412 3413 /* Slave readiness can't be tested separately from master. On 3414 * M/S emulation configuration, this function should be called 3415 * only on the master and it will handle both master and slave. 3416 */ 3417 WARN_ON(link == link->ap->slave_link); 3418 3419 if (time_after(nodev_deadline, deadline)) 3420 nodev_deadline = deadline; 3421 3422 while (1) { 3423 unsigned long now = jiffies; 3424 int ready, tmp; 3425 3426 ready = tmp = check_ready(link); 3427 if (ready > 0) 3428 return 0; 3429 3430 /* 3431 * -ENODEV could be transient. Ignore -ENODEV if link 3432 * is online. Also, some SATA devices take a long 3433 * time to clear 0xff after reset. Wait for 3434 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3435 * offline. 3436 * 3437 * Note that some PATA controllers (pata_ali) explode 3438 * if status register is read more than once when 3439 * there's no device attached. 3440 */ 3441 if (ready == -ENODEV) { 3442 if (ata_link_online(link)) 3443 ready = 0; 3444 else if ((link->ap->flags & ATA_FLAG_SATA) && 3445 !ata_link_offline(link) && 3446 time_before(now, nodev_deadline)) 3447 ready = 0; 3448 } 3449 3450 if (ready) 3451 return ready; 3452 if (time_after(now, deadline)) 3453 return -EBUSY; 3454 3455 if (!warned && time_after(now, start + 5 * HZ) && 3456 (deadline - now > 3 * HZ)) { 3457 ata_link_warn(link, 3458 "link is slow to respond, please be patient " 3459 "(ready=%d)\n", tmp); 3460 warned = 1; 3461 } 3462 3463 ata_msleep(link->ap, 50); 3464 } 3465 } 3466 3467 /** 3468 * ata_wait_after_reset - wait for link to become ready after reset 3469 * @link: link to be waited on 3470 * @deadline: deadline jiffies for the operation 3471 * @check_ready: callback to check link readiness 3472 * 3473 * Wait for @link to become ready after reset. 3474 * 3475 * LOCKING: 3476 * EH context. 3477 * 3478 * RETURNS: 3479 * 0 if @linke is ready before @deadline; otherwise, -errno. 3480 */ 3481 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3482 int (*check_ready)(struct ata_link *link)) 3483 { 3484 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3485 3486 return ata_wait_ready(link, deadline, check_ready); 3487 } 3488 3489 /** 3490 * sata_link_debounce - debounce SATA phy status 3491 * @link: ATA link to debounce SATA phy status for 3492 * @params: timing parameters { interval, duratinon, timeout } in msec 3493 * @deadline: deadline jiffies for the operation 3494 * 3495 * Make sure SStatus of @link reaches stable state, determined by 3496 * holding the same value where DET is not 1 for @duration polled 3497 * every @interval, before @timeout. Timeout constraints the 3498 * beginning of the stable state. Because DET gets stuck at 1 on 3499 * some controllers after hot unplugging, this functions waits 3500 * until timeout then returns 0 if DET is stable at 1. 3501 * 3502 * @timeout is further limited by @deadline. The sooner of the 3503 * two is used. 3504 * 3505 * LOCKING: 3506 * Kernel thread context (may sleep) 3507 * 3508 * RETURNS: 3509 * 0 on success, -errno on failure. 3510 */ 3511 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3512 unsigned long deadline) 3513 { 3514 unsigned long interval = params[0]; 3515 unsigned long duration = params[1]; 3516 unsigned long last_jiffies, t; 3517 u32 last, cur; 3518 int rc; 3519 3520 t = ata_deadline(jiffies, params[2]); 3521 if (time_before(t, deadline)) 3522 deadline = t; 3523 3524 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3525 return rc; 3526 cur &= 0xf; 3527 3528 last = cur; 3529 last_jiffies = jiffies; 3530 3531 while (1) { 3532 ata_msleep(link->ap, interval); 3533 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3534 return rc; 3535 cur &= 0xf; 3536 3537 /* DET stable? */ 3538 if (cur == last) { 3539 if (cur == 1 && time_before(jiffies, deadline)) 3540 continue; 3541 if (time_after(jiffies, 3542 ata_deadline(last_jiffies, duration))) 3543 return 0; 3544 continue; 3545 } 3546 3547 /* unstable, start over */ 3548 last = cur; 3549 last_jiffies = jiffies; 3550 3551 /* Check deadline. If debouncing failed, return 3552 * -EPIPE to tell upper layer to lower link speed. 3553 */ 3554 if (time_after(jiffies, deadline)) 3555 return -EPIPE; 3556 } 3557 } 3558 3559 /** 3560 * sata_link_resume - resume SATA link 3561 * @link: ATA link to resume SATA 3562 * @params: timing parameters { interval, duratinon, timeout } in msec 3563 * @deadline: deadline jiffies for the operation 3564 * 3565 * Resume SATA phy @link and debounce it. 3566 * 3567 * LOCKING: 3568 * Kernel thread context (may sleep) 3569 * 3570 * RETURNS: 3571 * 0 on success, -errno on failure. 3572 */ 3573 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3574 unsigned long deadline) 3575 { 3576 int tries = ATA_LINK_RESUME_TRIES; 3577 u32 scontrol, serror; 3578 int rc; 3579 3580 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3581 return rc; 3582 3583 /* 3584 * Writes to SControl sometimes get ignored under certain 3585 * controllers (ata_piix SIDPR). Make sure DET actually is 3586 * cleared. 3587 */ 3588 do { 3589 scontrol = (scontrol & 0x0f0) | 0x300; 3590 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3591 return rc; 3592 /* 3593 * Some PHYs react badly if SStatus is pounded 3594 * immediately after resuming. Delay 200ms before 3595 * debouncing. 3596 */ 3597 ata_msleep(link->ap, 200); 3598 3599 /* is SControl restored correctly? */ 3600 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3601 return rc; 3602 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3603 3604 if ((scontrol & 0xf0f) != 0x300) { 3605 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3606 scontrol); 3607 return 0; 3608 } 3609 3610 if (tries < ATA_LINK_RESUME_TRIES) 3611 ata_link_warn(link, "link resume succeeded after %d retries\n", 3612 ATA_LINK_RESUME_TRIES - tries); 3613 3614 if ((rc = sata_link_debounce(link, params, deadline))) 3615 return rc; 3616 3617 /* clear SError, some PHYs require this even for SRST to work */ 3618 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3619 rc = sata_scr_write(link, SCR_ERROR, serror); 3620 3621 return rc != -EINVAL ? rc : 0; 3622 } 3623 3624 /** 3625 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3626 * @link: ATA link to manipulate SControl for 3627 * @policy: LPM policy to configure 3628 * @spm_wakeup: initiate LPM transition to active state 3629 * 3630 * Manipulate the IPM field of the SControl register of @link 3631 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3632 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3633 * the link. This function also clears PHYRDY_CHG before 3634 * returning. 3635 * 3636 * LOCKING: 3637 * EH context. 3638 * 3639 * RETURNS: 3640 * 0 on succes, -errno otherwise. 3641 */ 3642 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3643 bool spm_wakeup) 3644 { 3645 struct ata_eh_context *ehc = &link->eh_context; 3646 bool woken_up = false; 3647 u32 scontrol; 3648 int rc; 3649 3650 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3651 if (rc) 3652 return rc; 3653 3654 switch (policy) { 3655 case ATA_LPM_MAX_POWER: 3656 /* disable all LPM transitions */ 3657 scontrol |= (0x7 << 8); 3658 /* initiate transition to active state */ 3659 if (spm_wakeup) { 3660 scontrol |= (0x4 << 12); 3661 woken_up = true; 3662 } 3663 break; 3664 case ATA_LPM_MED_POWER: 3665 /* allow LPM to PARTIAL */ 3666 scontrol &= ~(0x1 << 8); 3667 scontrol |= (0x6 << 8); 3668 break; 3669 case ATA_LPM_MIN_POWER: 3670 if (ata_link_nr_enabled(link) > 0) 3671 /* no restrictions on LPM transitions */ 3672 scontrol &= ~(0x7 << 8); 3673 else { 3674 /* empty port, power off */ 3675 scontrol &= ~0xf; 3676 scontrol |= (0x1 << 2); 3677 } 3678 break; 3679 default: 3680 WARN_ON(1); 3681 } 3682 3683 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3684 if (rc) 3685 return rc; 3686 3687 /* give the link time to transit out of LPM state */ 3688 if (woken_up) 3689 msleep(10); 3690 3691 /* clear PHYRDY_CHG from SError */ 3692 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3693 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3694 } 3695 3696 /** 3697 * ata_std_prereset - prepare for reset 3698 * @link: ATA link to be reset 3699 * @deadline: deadline jiffies for the operation 3700 * 3701 * @link is about to be reset. Initialize it. Failure from 3702 * prereset makes libata abort whole reset sequence and give up 3703 * that port, so prereset should be best-effort. It does its 3704 * best to prepare for reset sequence but if things go wrong, it 3705 * should just whine, not fail. 3706 * 3707 * LOCKING: 3708 * Kernel thread context (may sleep) 3709 * 3710 * RETURNS: 3711 * 0 on success, -errno otherwise. 3712 */ 3713 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3714 { 3715 struct ata_port *ap = link->ap; 3716 struct ata_eh_context *ehc = &link->eh_context; 3717 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3718 int rc; 3719 3720 /* if we're about to do hardreset, nothing more to do */ 3721 if (ehc->i.action & ATA_EH_HARDRESET) 3722 return 0; 3723 3724 /* if SATA, resume link */ 3725 if (ap->flags & ATA_FLAG_SATA) { 3726 rc = sata_link_resume(link, timing, deadline); 3727 /* whine about phy resume failure but proceed */ 3728 if (rc && rc != -EOPNOTSUPP) 3729 ata_link_warn(link, 3730 "failed to resume link for reset (errno=%d)\n", 3731 rc); 3732 } 3733 3734 /* no point in trying softreset on offline link */ 3735 if (ata_phys_link_offline(link)) 3736 ehc->i.action &= ~ATA_EH_SOFTRESET; 3737 3738 return 0; 3739 } 3740 3741 /** 3742 * sata_link_hardreset - reset link via SATA phy reset 3743 * @link: link to reset 3744 * @timing: timing parameters { interval, duratinon, timeout } in msec 3745 * @deadline: deadline jiffies for the operation 3746 * @online: optional out parameter indicating link onlineness 3747 * @check_ready: optional callback to check link readiness 3748 * 3749 * SATA phy-reset @link using DET bits of SControl register. 3750 * After hardreset, link readiness is waited upon using 3751 * ata_wait_ready() if @check_ready is specified. LLDs are 3752 * allowed to not specify @check_ready and wait itself after this 3753 * function returns. Device classification is LLD's 3754 * responsibility. 3755 * 3756 * *@online is set to one iff reset succeeded and @link is online 3757 * after reset. 3758 * 3759 * LOCKING: 3760 * Kernel thread context (may sleep) 3761 * 3762 * RETURNS: 3763 * 0 on success, -errno otherwise. 3764 */ 3765 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3766 unsigned long deadline, 3767 bool *online, int (*check_ready)(struct ata_link *)) 3768 { 3769 u32 scontrol; 3770 int rc; 3771 3772 DPRINTK("ENTER\n"); 3773 3774 if (online) 3775 *online = false; 3776 3777 if (sata_set_spd_needed(link)) { 3778 /* SATA spec says nothing about how to reconfigure 3779 * spd. To be on the safe side, turn off phy during 3780 * reconfiguration. This works for at least ICH7 AHCI 3781 * and Sil3124. 3782 */ 3783 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3784 goto out; 3785 3786 scontrol = (scontrol & 0x0f0) | 0x304; 3787 3788 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3789 goto out; 3790 3791 sata_set_spd(link); 3792 } 3793 3794 /* issue phy wake/reset */ 3795 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3796 goto out; 3797 3798 scontrol = (scontrol & 0x0f0) | 0x301; 3799 3800 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3801 goto out; 3802 3803 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3804 * 10.4.2 says at least 1 ms. 3805 */ 3806 ata_msleep(link->ap, 1); 3807 3808 /* bring link back */ 3809 rc = sata_link_resume(link, timing, deadline); 3810 if (rc) 3811 goto out; 3812 /* if link is offline nothing more to do */ 3813 if (ata_phys_link_offline(link)) 3814 goto out; 3815 3816 /* Link is online. From this point, -ENODEV too is an error. */ 3817 if (online) 3818 *online = true; 3819 3820 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3821 /* If PMP is supported, we have to do follow-up SRST. 3822 * Some PMPs don't send D2H Reg FIS after hardreset if 3823 * the first port is empty. Wait only for 3824 * ATA_TMOUT_PMP_SRST_WAIT. 3825 */ 3826 if (check_ready) { 3827 unsigned long pmp_deadline; 3828 3829 pmp_deadline = ata_deadline(jiffies, 3830 ATA_TMOUT_PMP_SRST_WAIT); 3831 if (time_after(pmp_deadline, deadline)) 3832 pmp_deadline = deadline; 3833 ata_wait_ready(link, pmp_deadline, check_ready); 3834 } 3835 rc = -EAGAIN; 3836 goto out; 3837 } 3838 3839 rc = 0; 3840 if (check_ready) 3841 rc = ata_wait_ready(link, deadline, check_ready); 3842 out: 3843 if (rc && rc != -EAGAIN) { 3844 /* online is set iff link is online && reset succeeded */ 3845 if (online) 3846 *online = false; 3847 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3848 } 3849 DPRINTK("EXIT, rc=%d\n", rc); 3850 return rc; 3851 } 3852 3853 /** 3854 * sata_std_hardreset - COMRESET w/o waiting or classification 3855 * @link: link to reset 3856 * @class: resulting class of attached device 3857 * @deadline: deadline jiffies for the operation 3858 * 3859 * Standard SATA COMRESET w/o waiting or classification. 3860 * 3861 * LOCKING: 3862 * Kernel thread context (may sleep) 3863 * 3864 * RETURNS: 3865 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3866 */ 3867 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3868 unsigned long deadline) 3869 { 3870 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3871 bool online; 3872 int rc; 3873 3874 /* do hardreset */ 3875 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3876 return online ? -EAGAIN : rc; 3877 } 3878 3879 /** 3880 * ata_std_postreset - standard postreset callback 3881 * @link: the target ata_link 3882 * @classes: classes of attached devices 3883 * 3884 * This function is invoked after a successful reset. Note that 3885 * the device might have been reset more than once using 3886 * different reset methods before postreset is invoked. 3887 * 3888 * LOCKING: 3889 * Kernel thread context (may sleep) 3890 */ 3891 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3892 { 3893 u32 serror; 3894 3895 DPRINTK("ENTER\n"); 3896 3897 /* reset complete, clear SError */ 3898 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3899 sata_scr_write(link, SCR_ERROR, serror); 3900 3901 /* print link status */ 3902 sata_print_link_status(link); 3903 3904 DPRINTK("EXIT\n"); 3905 } 3906 3907 /** 3908 * ata_dev_same_device - Determine whether new ID matches configured device 3909 * @dev: device to compare against 3910 * @new_class: class of the new device 3911 * @new_id: IDENTIFY page of the new device 3912 * 3913 * Compare @new_class and @new_id against @dev and determine 3914 * whether @dev is the device indicated by @new_class and 3915 * @new_id. 3916 * 3917 * LOCKING: 3918 * None. 3919 * 3920 * RETURNS: 3921 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3922 */ 3923 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3924 const u16 *new_id) 3925 { 3926 const u16 *old_id = dev->id; 3927 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3928 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3929 3930 if (dev->class != new_class) { 3931 ata_dev_info(dev, "class mismatch %d != %d\n", 3932 dev->class, new_class); 3933 return 0; 3934 } 3935 3936 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3937 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3938 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3939 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3940 3941 if (strcmp(model[0], model[1])) { 3942 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3943 model[0], model[1]); 3944 return 0; 3945 } 3946 3947 if (strcmp(serial[0], serial[1])) { 3948 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3949 serial[0], serial[1]); 3950 return 0; 3951 } 3952 3953 return 1; 3954 } 3955 3956 /** 3957 * ata_dev_reread_id - Re-read IDENTIFY data 3958 * @dev: target ATA device 3959 * @readid_flags: read ID flags 3960 * 3961 * Re-read IDENTIFY page and make sure @dev is still attached to 3962 * the port. 3963 * 3964 * LOCKING: 3965 * Kernel thread context (may sleep) 3966 * 3967 * RETURNS: 3968 * 0 on success, negative errno otherwise 3969 */ 3970 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3971 { 3972 unsigned int class = dev->class; 3973 u16 *id = (void *)dev->link->ap->sector_buf; 3974 int rc; 3975 3976 /* read ID data */ 3977 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3978 if (rc) 3979 return rc; 3980 3981 /* is the device still there? */ 3982 if (!ata_dev_same_device(dev, class, id)) 3983 return -ENODEV; 3984 3985 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3986 return 0; 3987 } 3988 3989 /** 3990 * ata_dev_revalidate - Revalidate ATA device 3991 * @dev: device to revalidate 3992 * @new_class: new class code 3993 * @readid_flags: read ID flags 3994 * 3995 * Re-read IDENTIFY page, make sure @dev is still attached to the 3996 * port and reconfigure it according to the new IDENTIFY page. 3997 * 3998 * LOCKING: 3999 * Kernel thread context (may sleep) 4000 * 4001 * RETURNS: 4002 * 0 on success, negative errno otherwise 4003 */ 4004 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4005 unsigned int readid_flags) 4006 { 4007 u64 n_sectors = dev->n_sectors; 4008 u64 n_native_sectors = dev->n_native_sectors; 4009 int rc; 4010 4011 if (!ata_dev_enabled(dev)) 4012 return -ENODEV; 4013 4014 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4015 if (ata_class_enabled(new_class) && 4016 new_class != ATA_DEV_ATA && 4017 new_class != ATA_DEV_ATAPI && 4018 new_class != ATA_DEV_SEMB) { 4019 ata_dev_info(dev, "class mismatch %u != %u\n", 4020 dev->class, new_class); 4021 rc = -ENODEV; 4022 goto fail; 4023 } 4024 4025 /* re-read ID */ 4026 rc = ata_dev_reread_id(dev, readid_flags); 4027 if (rc) 4028 goto fail; 4029 4030 /* configure device according to the new ID */ 4031 rc = ata_dev_configure(dev); 4032 if (rc) 4033 goto fail; 4034 4035 /* verify n_sectors hasn't changed */ 4036 if (dev->class != ATA_DEV_ATA || !n_sectors || 4037 dev->n_sectors == n_sectors) 4038 return 0; 4039 4040 /* n_sectors has changed */ 4041 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4042 (unsigned long long)n_sectors, 4043 (unsigned long long)dev->n_sectors); 4044 4045 /* 4046 * Something could have caused HPA to be unlocked 4047 * involuntarily. If n_native_sectors hasn't changed and the 4048 * new size matches it, keep the device. 4049 */ 4050 if (dev->n_native_sectors == n_native_sectors && 4051 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4052 ata_dev_warn(dev, 4053 "new n_sectors matches native, probably " 4054 "late HPA unlock, n_sectors updated\n"); 4055 /* use the larger n_sectors */ 4056 return 0; 4057 } 4058 4059 /* 4060 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4061 * unlocking HPA in those cases. 4062 * 4063 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4064 */ 4065 if (dev->n_native_sectors == n_native_sectors && 4066 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4067 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4068 ata_dev_warn(dev, 4069 "old n_sectors matches native, probably " 4070 "late HPA lock, will try to unlock HPA\n"); 4071 /* try unlocking HPA */ 4072 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4073 rc = -EIO; 4074 } else 4075 rc = -ENODEV; 4076 4077 /* restore original n_[native_]sectors and fail */ 4078 dev->n_native_sectors = n_native_sectors; 4079 dev->n_sectors = n_sectors; 4080 fail: 4081 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4082 return rc; 4083 } 4084 4085 struct ata_blacklist_entry { 4086 const char *model_num; 4087 const char *model_rev; 4088 unsigned long horkage; 4089 }; 4090 4091 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4092 /* Devices with DMA related problems under Linux */ 4093 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4094 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4095 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4096 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4097 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4098 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4099 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4100 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4101 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4102 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4103 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4104 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4105 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4106 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4107 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4108 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4109 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4110 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4111 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4112 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4113 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4114 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4115 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4116 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4117 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4118 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4119 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4120 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4121 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4122 /* Odd clown on sil3726/4726 PMPs */ 4123 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4124 4125 /* Weird ATAPI devices */ 4126 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4127 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4128 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4129 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4130 4131 /* Devices we expect to fail diagnostics */ 4132 4133 /* Devices where NCQ should be avoided */ 4134 /* NCQ is slow */ 4135 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4136 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4137 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4138 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4139 /* NCQ is broken */ 4140 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4141 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4142 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4143 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4144 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4145 4146 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4147 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4148 ATA_HORKAGE_FIRMWARE_WARN }, 4149 4150 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4151 ATA_HORKAGE_FIRMWARE_WARN }, 4152 4153 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4154 ATA_HORKAGE_FIRMWARE_WARN }, 4155 4156 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4157 ATA_HORKAGE_FIRMWARE_WARN }, 4158 4159 /* Blacklist entries taken from Silicon Image 3124/3132 4160 Windows driver .inf file - also several Linux problem reports */ 4161 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4162 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4163 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4164 4165 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4166 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4167 4168 /* devices which puke on READ_NATIVE_MAX */ 4169 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4170 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4171 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4172 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4173 4174 /* this one allows HPA unlocking but fails IOs on the area */ 4175 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4176 4177 /* Devices which report 1 sector over size HPA */ 4178 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4179 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4180 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4181 4182 /* Devices which get the IVB wrong */ 4183 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4184 /* Maybe we should just blacklist TSSTcorp... */ 4185 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4186 4187 /* Devices that do not need bridging limits applied */ 4188 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4189 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4190 4191 /* Devices which aren't very happy with higher link speeds */ 4192 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4193 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4194 4195 /* 4196 * Devices which choke on SETXFER. Applies only if both the 4197 * device and controller are SATA. 4198 */ 4199 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4200 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4201 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4202 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4203 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4204 4205 /* End Marker */ 4206 { } 4207 }; 4208 4209 /** 4210 * glob_match - match a text string against a glob-style pattern 4211 * @text: the string to be examined 4212 * @pattern: the glob-style pattern to be matched against 4213 * 4214 * Either/both of text and pattern can be empty strings. 4215 * 4216 * Match text against a glob-style pattern, with wildcards and simple sets: 4217 * 4218 * ? matches any single character. 4219 * * matches any run of characters. 4220 * [xyz] matches a single character from the set: x, y, or z. 4221 * [a-d] matches a single character from the range: a, b, c, or d. 4222 * [a-d0-9] matches a single character from either range. 4223 * 4224 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4225 * Behaviour with malformed patterns is undefined, though generally reasonable. 4226 * 4227 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4228 * 4229 * This function uses one level of recursion per '*' in pattern. 4230 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4231 * this will not cause stack problems for any reasonable use here. 4232 * 4233 * RETURNS: 4234 * 0 on match, 1 otherwise. 4235 */ 4236 static int glob_match (const char *text, const char *pattern) 4237 { 4238 do { 4239 /* Match single character or a '?' wildcard */ 4240 if (*text == *pattern || *pattern == '?') { 4241 if (!*pattern++) 4242 return 0; /* End of both strings: match */ 4243 } else { 4244 /* Match single char against a '[' bracketed ']' pattern set */ 4245 if (!*text || *pattern != '[') 4246 break; /* Not a pattern set */ 4247 while (*++pattern && *pattern != ']' && *text != *pattern) { 4248 if (*pattern == '-' && *(pattern - 1) != '[') 4249 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4250 ++pattern; 4251 break; 4252 } 4253 } 4254 if (!*pattern || *pattern == ']') 4255 return 1; /* No match */ 4256 while (*pattern && *pattern++ != ']'); 4257 } 4258 } while (*++text && *pattern); 4259 4260 /* Match any run of chars against a '*' wildcard */ 4261 if (*pattern == '*') { 4262 if (!*++pattern) 4263 return 0; /* Match: avoid recursion at end of pattern */ 4264 /* Loop to handle additional pattern chars after the wildcard */ 4265 while (*text) { 4266 if (glob_match(text, pattern) == 0) 4267 return 0; /* Remainder matched */ 4268 ++text; /* Absorb (match) this char and try again */ 4269 } 4270 } 4271 if (!*text && !*pattern) 4272 return 0; /* End of both strings: match */ 4273 return 1; /* No match */ 4274 } 4275 4276 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4277 { 4278 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4279 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4280 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4281 4282 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4283 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4284 4285 while (ad->model_num) { 4286 if (!glob_match(model_num, ad->model_num)) { 4287 if (ad->model_rev == NULL) 4288 return ad->horkage; 4289 if (!glob_match(model_rev, ad->model_rev)) 4290 return ad->horkage; 4291 } 4292 ad++; 4293 } 4294 return 0; 4295 } 4296 4297 static int ata_dma_blacklisted(const struct ata_device *dev) 4298 { 4299 /* We don't support polling DMA. 4300 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4301 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4302 */ 4303 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4304 (dev->flags & ATA_DFLAG_CDB_INTR)) 4305 return 1; 4306 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4307 } 4308 4309 /** 4310 * ata_is_40wire - check drive side detection 4311 * @dev: device 4312 * 4313 * Perform drive side detection decoding, allowing for device vendors 4314 * who can't follow the documentation. 4315 */ 4316 4317 static int ata_is_40wire(struct ata_device *dev) 4318 { 4319 if (dev->horkage & ATA_HORKAGE_IVB) 4320 return ata_drive_40wire_relaxed(dev->id); 4321 return ata_drive_40wire(dev->id); 4322 } 4323 4324 /** 4325 * cable_is_40wire - 40/80/SATA decider 4326 * @ap: port to consider 4327 * 4328 * This function encapsulates the policy for speed management 4329 * in one place. At the moment we don't cache the result but 4330 * there is a good case for setting ap->cbl to the result when 4331 * we are called with unknown cables (and figuring out if it 4332 * impacts hotplug at all). 4333 * 4334 * Return 1 if the cable appears to be 40 wire. 4335 */ 4336 4337 static int cable_is_40wire(struct ata_port *ap) 4338 { 4339 struct ata_link *link; 4340 struct ata_device *dev; 4341 4342 /* If the controller thinks we are 40 wire, we are. */ 4343 if (ap->cbl == ATA_CBL_PATA40) 4344 return 1; 4345 4346 /* If the controller thinks we are 80 wire, we are. */ 4347 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4348 return 0; 4349 4350 /* If the system is known to be 40 wire short cable (eg 4351 * laptop), then we allow 80 wire modes even if the drive 4352 * isn't sure. 4353 */ 4354 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4355 return 0; 4356 4357 /* If the controller doesn't know, we scan. 4358 * 4359 * Note: We look for all 40 wire detects at this point. Any 4360 * 80 wire detect is taken to be 80 wire cable because 4361 * - in many setups only the one drive (slave if present) will 4362 * give a valid detect 4363 * - if you have a non detect capable drive you don't want it 4364 * to colour the choice 4365 */ 4366 ata_for_each_link(link, ap, EDGE) { 4367 ata_for_each_dev(dev, link, ENABLED) { 4368 if (!ata_is_40wire(dev)) 4369 return 0; 4370 } 4371 } 4372 return 1; 4373 } 4374 4375 /** 4376 * ata_dev_xfermask - Compute supported xfermask of the given device 4377 * @dev: Device to compute xfermask for 4378 * 4379 * Compute supported xfermask of @dev and store it in 4380 * dev->*_mask. This function is responsible for applying all 4381 * known limits including host controller limits, device 4382 * blacklist, etc... 4383 * 4384 * LOCKING: 4385 * None. 4386 */ 4387 static void ata_dev_xfermask(struct ata_device *dev) 4388 { 4389 struct ata_link *link = dev->link; 4390 struct ata_port *ap = link->ap; 4391 struct ata_host *host = ap->host; 4392 unsigned long xfer_mask; 4393 4394 /* controller modes available */ 4395 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4396 ap->mwdma_mask, ap->udma_mask); 4397 4398 /* drive modes available */ 4399 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4400 dev->mwdma_mask, dev->udma_mask); 4401 xfer_mask &= ata_id_xfermask(dev->id); 4402 4403 /* 4404 * CFA Advanced TrueIDE timings are not allowed on a shared 4405 * cable 4406 */ 4407 if (ata_dev_pair(dev)) { 4408 /* No PIO5 or PIO6 */ 4409 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4410 /* No MWDMA3 or MWDMA 4 */ 4411 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4412 } 4413 4414 if (ata_dma_blacklisted(dev)) { 4415 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4416 ata_dev_warn(dev, 4417 "device is on DMA blacklist, disabling DMA\n"); 4418 } 4419 4420 if ((host->flags & ATA_HOST_SIMPLEX) && 4421 host->simplex_claimed && host->simplex_claimed != ap) { 4422 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4423 ata_dev_warn(dev, 4424 "simplex DMA is claimed by other device, disabling DMA\n"); 4425 } 4426 4427 if (ap->flags & ATA_FLAG_NO_IORDY) 4428 xfer_mask &= ata_pio_mask_no_iordy(dev); 4429 4430 if (ap->ops->mode_filter) 4431 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4432 4433 /* Apply cable rule here. Don't apply it early because when 4434 * we handle hot plug the cable type can itself change. 4435 * Check this last so that we know if the transfer rate was 4436 * solely limited by the cable. 4437 * Unknown or 80 wire cables reported host side are checked 4438 * drive side as well. Cases where we know a 40wire cable 4439 * is used safely for 80 are not checked here. 4440 */ 4441 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4442 /* UDMA/44 or higher would be available */ 4443 if (cable_is_40wire(ap)) { 4444 ata_dev_warn(dev, 4445 "limited to UDMA/33 due to 40-wire cable\n"); 4446 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4447 } 4448 4449 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4450 &dev->mwdma_mask, &dev->udma_mask); 4451 } 4452 4453 /** 4454 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4455 * @dev: Device to which command will be sent 4456 * 4457 * Issue SET FEATURES - XFER MODE command to device @dev 4458 * on port @ap. 4459 * 4460 * LOCKING: 4461 * PCI/etc. bus probe sem. 4462 * 4463 * RETURNS: 4464 * 0 on success, AC_ERR_* mask otherwise. 4465 */ 4466 4467 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4468 { 4469 struct ata_taskfile tf; 4470 unsigned int err_mask; 4471 4472 /* set up set-features taskfile */ 4473 DPRINTK("set features - xfer mode\n"); 4474 4475 /* Some controllers and ATAPI devices show flaky interrupt 4476 * behavior after setting xfer mode. Use polling instead. 4477 */ 4478 ata_tf_init(dev, &tf); 4479 tf.command = ATA_CMD_SET_FEATURES; 4480 tf.feature = SETFEATURES_XFER; 4481 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4482 tf.protocol = ATA_PROT_NODATA; 4483 /* If we are using IORDY we must send the mode setting command */ 4484 if (ata_pio_need_iordy(dev)) 4485 tf.nsect = dev->xfer_mode; 4486 /* If the device has IORDY and the controller does not - turn it off */ 4487 else if (ata_id_has_iordy(dev->id)) 4488 tf.nsect = 0x01; 4489 else /* In the ancient relic department - skip all of this */ 4490 return 0; 4491 4492 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4493 4494 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4495 return err_mask; 4496 } 4497 4498 /** 4499 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4500 * @dev: Device to which command will be sent 4501 * @enable: Whether to enable or disable the feature 4502 * @feature: The sector count represents the feature to set 4503 * 4504 * Issue SET FEATURES - SATA FEATURES command to device @dev 4505 * on port @ap with sector count 4506 * 4507 * LOCKING: 4508 * PCI/etc. bus probe sem. 4509 * 4510 * RETURNS: 4511 * 0 on success, AC_ERR_* mask otherwise. 4512 */ 4513 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4514 { 4515 struct ata_taskfile tf; 4516 unsigned int err_mask; 4517 4518 /* set up set-features taskfile */ 4519 DPRINTK("set features - SATA features\n"); 4520 4521 ata_tf_init(dev, &tf); 4522 tf.command = ATA_CMD_SET_FEATURES; 4523 tf.feature = enable; 4524 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4525 tf.protocol = ATA_PROT_NODATA; 4526 tf.nsect = feature; 4527 4528 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4529 4530 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4531 return err_mask; 4532 } 4533 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4534 4535 /** 4536 * ata_dev_init_params - Issue INIT DEV PARAMS command 4537 * @dev: Device to which command will be sent 4538 * @heads: Number of heads (taskfile parameter) 4539 * @sectors: Number of sectors (taskfile parameter) 4540 * 4541 * LOCKING: 4542 * Kernel thread context (may sleep) 4543 * 4544 * RETURNS: 4545 * 0 on success, AC_ERR_* mask otherwise. 4546 */ 4547 static unsigned int ata_dev_init_params(struct ata_device *dev, 4548 u16 heads, u16 sectors) 4549 { 4550 struct ata_taskfile tf; 4551 unsigned int err_mask; 4552 4553 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4554 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4555 return AC_ERR_INVALID; 4556 4557 /* set up init dev params taskfile */ 4558 DPRINTK("init dev params \n"); 4559 4560 ata_tf_init(dev, &tf); 4561 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4562 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4563 tf.protocol = ATA_PROT_NODATA; 4564 tf.nsect = sectors; 4565 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4566 4567 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4568 /* A clean abort indicates an original or just out of spec drive 4569 and we should continue as we issue the setup based on the 4570 drive reported working geometry */ 4571 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4572 err_mask = 0; 4573 4574 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4575 return err_mask; 4576 } 4577 4578 /** 4579 * ata_sg_clean - Unmap DMA memory associated with command 4580 * @qc: Command containing DMA memory to be released 4581 * 4582 * Unmap all mapped DMA memory associated with this command. 4583 * 4584 * LOCKING: 4585 * spin_lock_irqsave(host lock) 4586 */ 4587 void ata_sg_clean(struct ata_queued_cmd *qc) 4588 { 4589 struct ata_port *ap = qc->ap; 4590 struct scatterlist *sg = qc->sg; 4591 int dir = qc->dma_dir; 4592 4593 WARN_ON_ONCE(sg == NULL); 4594 4595 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4596 4597 if (qc->n_elem) 4598 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4599 4600 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4601 qc->sg = NULL; 4602 } 4603 4604 /** 4605 * atapi_check_dma - Check whether ATAPI DMA can be supported 4606 * @qc: Metadata associated with taskfile to check 4607 * 4608 * Allow low-level driver to filter ATA PACKET commands, returning 4609 * a status indicating whether or not it is OK to use DMA for the 4610 * supplied PACKET command. 4611 * 4612 * LOCKING: 4613 * spin_lock_irqsave(host lock) 4614 * 4615 * RETURNS: 0 when ATAPI DMA can be used 4616 * nonzero otherwise 4617 */ 4618 int atapi_check_dma(struct ata_queued_cmd *qc) 4619 { 4620 struct ata_port *ap = qc->ap; 4621 4622 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4623 * few ATAPI devices choke on such DMA requests. 4624 */ 4625 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4626 unlikely(qc->nbytes & 15)) 4627 return 1; 4628 4629 if (ap->ops->check_atapi_dma) 4630 return ap->ops->check_atapi_dma(qc); 4631 4632 return 0; 4633 } 4634 4635 /** 4636 * ata_std_qc_defer - Check whether a qc needs to be deferred 4637 * @qc: ATA command in question 4638 * 4639 * Non-NCQ commands cannot run with any other command, NCQ or 4640 * not. As upper layer only knows the queue depth, we are 4641 * responsible for maintaining exclusion. This function checks 4642 * whether a new command @qc can be issued. 4643 * 4644 * LOCKING: 4645 * spin_lock_irqsave(host lock) 4646 * 4647 * RETURNS: 4648 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4649 */ 4650 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4651 { 4652 struct ata_link *link = qc->dev->link; 4653 4654 if (qc->tf.protocol == ATA_PROT_NCQ) { 4655 if (!ata_tag_valid(link->active_tag)) 4656 return 0; 4657 } else { 4658 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4659 return 0; 4660 } 4661 4662 return ATA_DEFER_LINK; 4663 } 4664 4665 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4666 4667 /** 4668 * ata_sg_init - Associate command with scatter-gather table. 4669 * @qc: Command to be associated 4670 * @sg: Scatter-gather table. 4671 * @n_elem: Number of elements in s/g table. 4672 * 4673 * Initialize the data-related elements of queued_cmd @qc 4674 * to point to a scatter-gather table @sg, containing @n_elem 4675 * elements. 4676 * 4677 * LOCKING: 4678 * spin_lock_irqsave(host lock) 4679 */ 4680 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4681 unsigned int n_elem) 4682 { 4683 qc->sg = sg; 4684 qc->n_elem = n_elem; 4685 qc->cursg = qc->sg; 4686 } 4687 4688 /** 4689 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4690 * @qc: Command with scatter-gather table to be mapped. 4691 * 4692 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4693 * 4694 * LOCKING: 4695 * spin_lock_irqsave(host lock) 4696 * 4697 * RETURNS: 4698 * Zero on success, negative on error. 4699 * 4700 */ 4701 static int ata_sg_setup(struct ata_queued_cmd *qc) 4702 { 4703 struct ata_port *ap = qc->ap; 4704 unsigned int n_elem; 4705 4706 VPRINTK("ENTER, ata%u\n", ap->print_id); 4707 4708 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4709 if (n_elem < 1) 4710 return -1; 4711 4712 DPRINTK("%d sg elements mapped\n", n_elem); 4713 qc->orig_n_elem = qc->n_elem; 4714 qc->n_elem = n_elem; 4715 qc->flags |= ATA_QCFLAG_DMAMAP; 4716 4717 return 0; 4718 } 4719 4720 /** 4721 * swap_buf_le16 - swap halves of 16-bit words in place 4722 * @buf: Buffer to swap 4723 * @buf_words: Number of 16-bit words in buffer. 4724 * 4725 * Swap halves of 16-bit words if needed to convert from 4726 * little-endian byte order to native cpu byte order, or 4727 * vice-versa. 4728 * 4729 * LOCKING: 4730 * Inherited from caller. 4731 */ 4732 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4733 { 4734 #ifdef __BIG_ENDIAN 4735 unsigned int i; 4736 4737 for (i = 0; i < buf_words; i++) 4738 buf[i] = le16_to_cpu(buf[i]); 4739 #endif /* __BIG_ENDIAN */ 4740 } 4741 4742 /** 4743 * ata_qc_new - Request an available ATA command, for queueing 4744 * @ap: target port 4745 * 4746 * LOCKING: 4747 * None. 4748 */ 4749 4750 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4751 { 4752 struct ata_queued_cmd *qc = NULL; 4753 unsigned int i; 4754 4755 /* no command while frozen */ 4756 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4757 return NULL; 4758 4759 /* the last tag is reserved for internal command. */ 4760 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4761 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4762 qc = __ata_qc_from_tag(ap, i); 4763 break; 4764 } 4765 4766 if (qc) 4767 qc->tag = i; 4768 4769 return qc; 4770 } 4771 4772 /** 4773 * ata_qc_new_init - Request an available ATA command, and initialize it 4774 * @dev: Device from whom we request an available command structure 4775 * 4776 * LOCKING: 4777 * None. 4778 */ 4779 4780 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4781 { 4782 struct ata_port *ap = dev->link->ap; 4783 struct ata_queued_cmd *qc; 4784 4785 qc = ata_qc_new(ap); 4786 if (qc) { 4787 qc->scsicmd = NULL; 4788 qc->ap = ap; 4789 qc->dev = dev; 4790 4791 ata_qc_reinit(qc); 4792 } 4793 4794 return qc; 4795 } 4796 4797 /** 4798 * ata_qc_free - free unused ata_queued_cmd 4799 * @qc: Command to complete 4800 * 4801 * Designed to free unused ata_queued_cmd object 4802 * in case something prevents using it. 4803 * 4804 * LOCKING: 4805 * spin_lock_irqsave(host lock) 4806 */ 4807 void ata_qc_free(struct ata_queued_cmd *qc) 4808 { 4809 struct ata_port *ap; 4810 unsigned int tag; 4811 4812 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4813 ap = qc->ap; 4814 4815 qc->flags = 0; 4816 tag = qc->tag; 4817 if (likely(ata_tag_valid(tag))) { 4818 qc->tag = ATA_TAG_POISON; 4819 clear_bit(tag, &ap->qc_allocated); 4820 } 4821 } 4822 4823 void __ata_qc_complete(struct ata_queued_cmd *qc) 4824 { 4825 struct ata_port *ap; 4826 struct ata_link *link; 4827 4828 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4829 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4830 ap = qc->ap; 4831 link = qc->dev->link; 4832 4833 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4834 ata_sg_clean(qc); 4835 4836 /* command should be marked inactive atomically with qc completion */ 4837 if (qc->tf.protocol == ATA_PROT_NCQ) { 4838 link->sactive &= ~(1 << qc->tag); 4839 if (!link->sactive) 4840 ap->nr_active_links--; 4841 } else { 4842 link->active_tag = ATA_TAG_POISON; 4843 ap->nr_active_links--; 4844 } 4845 4846 /* clear exclusive status */ 4847 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4848 ap->excl_link == link)) 4849 ap->excl_link = NULL; 4850 4851 /* atapi: mark qc as inactive to prevent the interrupt handler 4852 * from completing the command twice later, before the error handler 4853 * is called. (when rc != 0 and atapi request sense is needed) 4854 */ 4855 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4856 ap->qc_active &= ~(1 << qc->tag); 4857 4858 /* call completion callback */ 4859 qc->complete_fn(qc); 4860 } 4861 4862 static void fill_result_tf(struct ata_queued_cmd *qc) 4863 { 4864 struct ata_port *ap = qc->ap; 4865 4866 qc->result_tf.flags = qc->tf.flags; 4867 ap->ops->qc_fill_rtf(qc); 4868 } 4869 4870 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4871 { 4872 struct ata_device *dev = qc->dev; 4873 4874 if (ata_is_nodata(qc->tf.protocol)) 4875 return; 4876 4877 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4878 return; 4879 4880 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4881 } 4882 4883 /** 4884 * ata_qc_complete - Complete an active ATA command 4885 * @qc: Command to complete 4886 * 4887 * Indicate to the mid and upper layers that an ATA command has 4888 * completed, with either an ok or not-ok status. 4889 * 4890 * Refrain from calling this function multiple times when 4891 * successfully completing multiple NCQ commands. 4892 * ata_qc_complete_multiple() should be used instead, which will 4893 * properly update IRQ expect state. 4894 * 4895 * LOCKING: 4896 * spin_lock_irqsave(host lock) 4897 */ 4898 void ata_qc_complete(struct ata_queued_cmd *qc) 4899 { 4900 struct ata_port *ap = qc->ap; 4901 4902 /* XXX: New EH and old EH use different mechanisms to 4903 * synchronize EH with regular execution path. 4904 * 4905 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4906 * Normal execution path is responsible for not accessing a 4907 * failed qc. libata core enforces the rule by returning NULL 4908 * from ata_qc_from_tag() for failed qcs. 4909 * 4910 * Old EH depends on ata_qc_complete() nullifying completion 4911 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4912 * not synchronize with interrupt handler. Only PIO task is 4913 * taken care of. 4914 */ 4915 if (ap->ops->error_handler) { 4916 struct ata_device *dev = qc->dev; 4917 struct ata_eh_info *ehi = &dev->link->eh_info; 4918 4919 if (unlikely(qc->err_mask)) 4920 qc->flags |= ATA_QCFLAG_FAILED; 4921 4922 /* 4923 * Finish internal commands without any further processing 4924 * and always with the result TF filled. 4925 */ 4926 if (unlikely(ata_tag_internal(qc->tag))) { 4927 fill_result_tf(qc); 4928 __ata_qc_complete(qc); 4929 return; 4930 } 4931 4932 /* 4933 * Non-internal qc has failed. Fill the result TF and 4934 * summon EH. 4935 */ 4936 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4937 fill_result_tf(qc); 4938 ata_qc_schedule_eh(qc); 4939 return; 4940 } 4941 4942 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4943 4944 /* read result TF if requested */ 4945 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4946 fill_result_tf(qc); 4947 4948 /* Some commands need post-processing after successful 4949 * completion. 4950 */ 4951 switch (qc->tf.command) { 4952 case ATA_CMD_SET_FEATURES: 4953 if (qc->tf.feature != SETFEATURES_WC_ON && 4954 qc->tf.feature != SETFEATURES_WC_OFF) 4955 break; 4956 /* fall through */ 4957 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4958 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4959 /* revalidate device */ 4960 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4961 ata_port_schedule_eh(ap); 4962 break; 4963 4964 case ATA_CMD_SLEEP: 4965 dev->flags |= ATA_DFLAG_SLEEPING; 4966 break; 4967 } 4968 4969 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4970 ata_verify_xfer(qc); 4971 4972 __ata_qc_complete(qc); 4973 } else { 4974 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4975 return; 4976 4977 /* read result TF if failed or requested */ 4978 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4979 fill_result_tf(qc); 4980 4981 __ata_qc_complete(qc); 4982 } 4983 } 4984 4985 /** 4986 * ata_qc_complete_multiple - Complete multiple qcs successfully 4987 * @ap: port in question 4988 * @qc_active: new qc_active mask 4989 * 4990 * Complete in-flight commands. This functions is meant to be 4991 * called from low-level driver's interrupt routine to complete 4992 * requests normally. ap->qc_active and @qc_active is compared 4993 * and commands are completed accordingly. 4994 * 4995 * Always use this function when completing multiple NCQ commands 4996 * from IRQ handlers instead of calling ata_qc_complete() 4997 * multiple times to keep IRQ expect status properly in sync. 4998 * 4999 * LOCKING: 5000 * spin_lock_irqsave(host lock) 5001 * 5002 * RETURNS: 5003 * Number of completed commands on success, -errno otherwise. 5004 */ 5005 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5006 { 5007 int nr_done = 0; 5008 u32 done_mask; 5009 5010 done_mask = ap->qc_active ^ qc_active; 5011 5012 if (unlikely(done_mask & qc_active)) { 5013 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 5014 ap->qc_active, qc_active); 5015 return -EINVAL; 5016 } 5017 5018 while (done_mask) { 5019 struct ata_queued_cmd *qc; 5020 unsigned int tag = __ffs(done_mask); 5021 5022 qc = ata_qc_from_tag(ap, tag); 5023 if (qc) { 5024 ata_qc_complete(qc); 5025 nr_done++; 5026 } 5027 done_mask &= ~(1 << tag); 5028 } 5029 5030 return nr_done; 5031 } 5032 5033 /** 5034 * ata_qc_issue - issue taskfile to device 5035 * @qc: command to issue to device 5036 * 5037 * Prepare an ATA command to submission to device. 5038 * This includes mapping the data into a DMA-able 5039 * area, filling in the S/G table, and finally 5040 * writing the taskfile to hardware, starting the command. 5041 * 5042 * LOCKING: 5043 * spin_lock_irqsave(host lock) 5044 */ 5045 void ata_qc_issue(struct ata_queued_cmd *qc) 5046 { 5047 struct ata_port *ap = qc->ap; 5048 struct ata_link *link = qc->dev->link; 5049 u8 prot = qc->tf.protocol; 5050 5051 /* Make sure only one non-NCQ command is outstanding. The 5052 * check is skipped for old EH because it reuses active qc to 5053 * request ATAPI sense. 5054 */ 5055 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5056 5057 if (ata_is_ncq(prot)) { 5058 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5059 5060 if (!link->sactive) 5061 ap->nr_active_links++; 5062 link->sactive |= 1 << qc->tag; 5063 } else { 5064 WARN_ON_ONCE(link->sactive); 5065 5066 ap->nr_active_links++; 5067 link->active_tag = qc->tag; 5068 } 5069 5070 qc->flags |= ATA_QCFLAG_ACTIVE; 5071 ap->qc_active |= 1 << qc->tag; 5072 5073 /* 5074 * We guarantee to LLDs that they will have at least one 5075 * non-zero sg if the command is a data command. 5076 */ 5077 if (WARN_ON_ONCE(ata_is_data(prot) && 5078 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5079 goto sys_err; 5080 5081 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5082 (ap->flags & ATA_FLAG_PIO_DMA))) 5083 if (ata_sg_setup(qc)) 5084 goto sys_err; 5085 5086 /* if device is sleeping, schedule reset and abort the link */ 5087 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5088 link->eh_info.action |= ATA_EH_RESET; 5089 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5090 ata_link_abort(link); 5091 return; 5092 } 5093 5094 ap->ops->qc_prep(qc); 5095 5096 qc->err_mask |= ap->ops->qc_issue(qc); 5097 if (unlikely(qc->err_mask)) 5098 goto err; 5099 return; 5100 5101 sys_err: 5102 qc->err_mask |= AC_ERR_SYSTEM; 5103 err: 5104 ata_qc_complete(qc); 5105 } 5106 5107 /** 5108 * sata_scr_valid - test whether SCRs are accessible 5109 * @link: ATA link to test SCR accessibility for 5110 * 5111 * Test whether SCRs are accessible for @link. 5112 * 5113 * LOCKING: 5114 * None. 5115 * 5116 * RETURNS: 5117 * 1 if SCRs are accessible, 0 otherwise. 5118 */ 5119 int sata_scr_valid(struct ata_link *link) 5120 { 5121 struct ata_port *ap = link->ap; 5122 5123 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5124 } 5125 5126 /** 5127 * sata_scr_read - read SCR register of the specified port 5128 * @link: ATA link to read SCR for 5129 * @reg: SCR to read 5130 * @val: Place to store read value 5131 * 5132 * Read SCR register @reg of @link into *@val. This function is 5133 * guaranteed to succeed if @link is ap->link, the cable type of 5134 * the port is SATA and the port implements ->scr_read. 5135 * 5136 * LOCKING: 5137 * None if @link is ap->link. Kernel thread context otherwise. 5138 * 5139 * RETURNS: 5140 * 0 on success, negative errno on failure. 5141 */ 5142 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5143 { 5144 if (ata_is_host_link(link)) { 5145 if (sata_scr_valid(link)) 5146 return link->ap->ops->scr_read(link, reg, val); 5147 return -EOPNOTSUPP; 5148 } 5149 5150 return sata_pmp_scr_read(link, reg, val); 5151 } 5152 5153 /** 5154 * sata_scr_write - write SCR register of the specified port 5155 * @link: ATA link to write SCR for 5156 * @reg: SCR to write 5157 * @val: value to write 5158 * 5159 * Write @val to SCR register @reg of @link. This function is 5160 * guaranteed to succeed if @link is ap->link, the cable type of 5161 * the port is SATA and the port implements ->scr_read. 5162 * 5163 * LOCKING: 5164 * None if @link is ap->link. Kernel thread context otherwise. 5165 * 5166 * RETURNS: 5167 * 0 on success, negative errno on failure. 5168 */ 5169 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5170 { 5171 if (ata_is_host_link(link)) { 5172 if (sata_scr_valid(link)) 5173 return link->ap->ops->scr_write(link, reg, val); 5174 return -EOPNOTSUPP; 5175 } 5176 5177 return sata_pmp_scr_write(link, reg, val); 5178 } 5179 5180 /** 5181 * sata_scr_write_flush - write SCR register of the specified port and flush 5182 * @link: ATA link to write SCR for 5183 * @reg: SCR to write 5184 * @val: value to write 5185 * 5186 * This function is identical to sata_scr_write() except that this 5187 * function performs flush after writing to the register. 5188 * 5189 * LOCKING: 5190 * None if @link is ap->link. Kernel thread context otherwise. 5191 * 5192 * RETURNS: 5193 * 0 on success, negative errno on failure. 5194 */ 5195 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5196 { 5197 if (ata_is_host_link(link)) { 5198 int rc; 5199 5200 if (sata_scr_valid(link)) { 5201 rc = link->ap->ops->scr_write(link, reg, val); 5202 if (rc == 0) 5203 rc = link->ap->ops->scr_read(link, reg, &val); 5204 return rc; 5205 } 5206 return -EOPNOTSUPP; 5207 } 5208 5209 return sata_pmp_scr_write(link, reg, val); 5210 } 5211 5212 /** 5213 * ata_phys_link_online - test whether the given link is online 5214 * @link: ATA link to test 5215 * 5216 * Test whether @link is online. Note that this function returns 5217 * 0 if online status of @link cannot be obtained, so 5218 * ata_link_online(link) != !ata_link_offline(link). 5219 * 5220 * LOCKING: 5221 * None. 5222 * 5223 * RETURNS: 5224 * True if the port online status is available and online. 5225 */ 5226 bool ata_phys_link_online(struct ata_link *link) 5227 { 5228 u32 sstatus; 5229 5230 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5231 ata_sstatus_online(sstatus)) 5232 return true; 5233 return false; 5234 } 5235 5236 /** 5237 * ata_phys_link_offline - test whether the given link is offline 5238 * @link: ATA link to test 5239 * 5240 * Test whether @link is offline. Note that this function 5241 * returns 0 if offline status of @link cannot be obtained, so 5242 * ata_link_online(link) != !ata_link_offline(link). 5243 * 5244 * LOCKING: 5245 * None. 5246 * 5247 * RETURNS: 5248 * True if the port offline status is available and offline. 5249 */ 5250 bool ata_phys_link_offline(struct ata_link *link) 5251 { 5252 u32 sstatus; 5253 5254 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5255 !ata_sstatus_online(sstatus)) 5256 return true; 5257 return false; 5258 } 5259 5260 /** 5261 * ata_link_online - test whether the given link is online 5262 * @link: ATA link to test 5263 * 5264 * Test whether @link is online. This is identical to 5265 * ata_phys_link_online() when there's no slave link. When 5266 * there's a slave link, this function should only be called on 5267 * the master link and will return true if any of M/S links is 5268 * online. 5269 * 5270 * LOCKING: 5271 * None. 5272 * 5273 * RETURNS: 5274 * True if the port online status is available and online. 5275 */ 5276 bool ata_link_online(struct ata_link *link) 5277 { 5278 struct ata_link *slave = link->ap->slave_link; 5279 5280 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5281 5282 return ata_phys_link_online(link) || 5283 (slave && ata_phys_link_online(slave)); 5284 } 5285 5286 /** 5287 * ata_link_offline - test whether the given link is offline 5288 * @link: ATA link to test 5289 * 5290 * Test whether @link is offline. This is identical to 5291 * ata_phys_link_offline() when there's no slave link. When 5292 * there's a slave link, this function should only be called on 5293 * the master link and will return true if both M/S links are 5294 * offline. 5295 * 5296 * LOCKING: 5297 * None. 5298 * 5299 * RETURNS: 5300 * True if the port offline status is available and offline. 5301 */ 5302 bool ata_link_offline(struct ata_link *link) 5303 { 5304 struct ata_link *slave = link->ap->slave_link; 5305 5306 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5307 5308 return ata_phys_link_offline(link) && 5309 (!slave || ata_phys_link_offline(slave)); 5310 } 5311 5312 #ifdef CONFIG_PM 5313 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5314 unsigned int action, unsigned int ehi_flags, 5315 int *async) 5316 { 5317 struct ata_link *link; 5318 unsigned long flags; 5319 int rc = 0; 5320 5321 /* Previous resume operation might still be in 5322 * progress. Wait for PM_PENDING to clear. 5323 */ 5324 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5325 if (async) { 5326 *async = -EAGAIN; 5327 return 0; 5328 } 5329 ata_port_wait_eh(ap); 5330 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5331 } 5332 5333 /* request PM ops to EH */ 5334 spin_lock_irqsave(ap->lock, flags); 5335 5336 ap->pm_mesg = mesg; 5337 if (async) 5338 ap->pm_result = async; 5339 else 5340 ap->pm_result = &rc; 5341 5342 ap->pflags |= ATA_PFLAG_PM_PENDING; 5343 ata_for_each_link(link, ap, HOST_FIRST) { 5344 link->eh_info.action |= action; 5345 link->eh_info.flags |= ehi_flags; 5346 } 5347 5348 ata_port_schedule_eh(ap); 5349 5350 spin_unlock_irqrestore(ap->lock, flags); 5351 5352 /* wait and check result */ 5353 if (!async) { 5354 ata_port_wait_eh(ap); 5355 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5356 } 5357 5358 return rc; 5359 } 5360 5361 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async) 5362 { 5363 /* 5364 * On some hardware, device fails to respond after spun down 5365 * for suspend. As the device won't be used before being 5366 * resumed, we don't need to touch the device. Ask EH to skip 5367 * the usual stuff and proceed directly to suspend. 5368 * 5369 * http://thread.gmane.org/gmane.linux.ide/46764 5370 */ 5371 unsigned int ehi_flags = ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY | 5372 ATA_EHI_NO_RECOVERY; 5373 return ata_port_request_pm(ap, mesg, 0, ehi_flags, async); 5374 } 5375 5376 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg) 5377 { 5378 struct ata_port *ap = to_ata_port(dev); 5379 5380 return __ata_port_suspend_common(ap, mesg, NULL); 5381 } 5382 5383 static int ata_port_suspend(struct device *dev) 5384 { 5385 if (pm_runtime_suspended(dev)) 5386 return 0; 5387 5388 return ata_port_suspend_common(dev, PMSG_SUSPEND); 5389 } 5390 5391 static int ata_port_do_freeze(struct device *dev) 5392 { 5393 if (pm_runtime_suspended(dev)) 5394 return 0; 5395 5396 return ata_port_suspend_common(dev, PMSG_FREEZE); 5397 } 5398 5399 static int ata_port_poweroff(struct device *dev) 5400 { 5401 return ata_port_suspend_common(dev, PMSG_HIBERNATE); 5402 } 5403 5404 static int __ata_port_resume_common(struct ata_port *ap, pm_message_t mesg, 5405 int *async) 5406 { 5407 int rc; 5408 5409 rc = ata_port_request_pm(ap, mesg, ATA_EH_RESET, 5410 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async); 5411 return rc; 5412 } 5413 5414 static int ata_port_resume_common(struct device *dev, pm_message_t mesg) 5415 { 5416 struct ata_port *ap = to_ata_port(dev); 5417 5418 return __ata_port_resume_common(ap, mesg, NULL); 5419 } 5420 5421 static int ata_port_resume(struct device *dev) 5422 { 5423 int rc; 5424 5425 rc = ata_port_resume_common(dev, PMSG_RESUME); 5426 if (!rc) { 5427 pm_runtime_disable(dev); 5428 pm_runtime_set_active(dev); 5429 pm_runtime_enable(dev); 5430 } 5431 5432 return rc; 5433 } 5434 5435 /* 5436 * For ODDs, the upper layer will poll for media change every few seconds, 5437 * which will make it enter and leave suspend state every few seconds. And 5438 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5439 * is very little and the ODD may malfunction after constantly being reset. 5440 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5441 * ODD is attached to the port. 5442 */ 5443 static int ata_port_runtime_idle(struct device *dev) 5444 { 5445 struct ata_port *ap = to_ata_port(dev); 5446 struct ata_link *link; 5447 struct ata_device *adev; 5448 5449 ata_for_each_link(link, ap, HOST_FIRST) { 5450 ata_for_each_dev(adev, link, ENABLED) 5451 if (adev->class == ATA_DEV_ATAPI && 5452 !zpodd_dev_enabled(adev)) 5453 return -EBUSY; 5454 } 5455 5456 return 0; 5457 } 5458 5459 static int ata_port_runtime_suspend(struct device *dev) 5460 { 5461 return ata_port_suspend_common(dev, PMSG_AUTO_SUSPEND); 5462 } 5463 5464 static int ata_port_runtime_resume(struct device *dev) 5465 { 5466 return ata_port_resume_common(dev, PMSG_AUTO_RESUME); 5467 } 5468 5469 static const struct dev_pm_ops ata_port_pm_ops = { 5470 .suspend = ata_port_suspend, 5471 .resume = ata_port_resume, 5472 .freeze = ata_port_do_freeze, 5473 .thaw = ata_port_resume, 5474 .poweroff = ata_port_poweroff, 5475 .restore = ata_port_resume, 5476 5477 .runtime_suspend = ata_port_runtime_suspend, 5478 .runtime_resume = ata_port_runtime_resume, 5479 .runtime_idle = ata_port_runtime_idle, 5480 }; 5481 5482 /* sas ports don't participate in pm runtime management of ata_ports, 5483 * and need to resume ata devices at the domain level, not the per-port 5484 * level. sas suspend/resume is async to allow parallel port recovery 5485 * since sas has multiple ata_port instances per Scsi_Host. 5486 */ 5487 int ata_sas_port_async_suspend(struct ata_port *ap, int *async) 5488 { 5489 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async); 5490 } 5491 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend); 5492 5493 int ata_sas_port_async_resume(struct ata_port *ap, int *async) 5494 { 5495 return __ata_port_resume_common(ap, PMSG_RESUME, async); 5496 } 5497 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume); 5498 5499 5500 /** 5501 * ata_host_suspend - suspend host 5502 * @host: host to suspend 5503 * @mesg: PM message 5504 * 5505 * Suspend @host. Actual operation is performed by port suspend. 5506 */ 5507 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5508 { 5509 host->dev->power.power_state = mesg; 5510 return 0; 5511 } 5512 5513 /** 5514 * ata_host_resume - resume host 5515 * @host: host to resume 5516 * 5517 * Resume @host. Actual operation is performed by port resume. 5518 */ 5519 void ata_host_resume(struct ata_host *host) 5520 { 5521 host->dev->power.power_state = PMSG_ON; 5522 } 5523 #endif 5524 5525 struct device_type ata_port_type = { 5526 .name = "ata_port", 5527 #ifdef CONFIG_PM 5528 .pm = &ata_port_pm_ops, 5529 #endif 5530 }; 5531 5532 /** 5533 * ata_dev_init - Initialize an ata_device structure 5534 * @dev: Device structure to initialize 5535 * 5536 * Initialize @dev in preparation for probing. 5537 * 5538 * LOCKING: 5539 * Inherited from caller. 5540 */ 5541 void ata_dev_init(struct ata_device *dev) 5542 { 5543 struct ata_link *link = ata_dev_phys_link(dev); 5544 struct ata_port *ap = link->ap; 5545 unsigned long flags; 5546 5547 /* SATA spd limit is bound to the attached device, reset together */ 5548 link->sata_spd_limit = link->hw_sata_spd_limit; 5549 link->sata_spd = 0; 5550 5551 /* High bits of dev->flags are used to record warm plug 5552 * requests which occur asynchronously. Synchronize using 5553 * host lock. 5554 */ 5555 spin_lock_irqsave(ap->lock, flags); 5556 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5557 dev->horkage = 0; 5558 spin_unlock_irqrestore(ap->lock, flags); 5559 5560 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5561 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5562 dev->pio_mask = UINT_MAX; 5563 dev->mwdma_mask = UINT_MAX; 5564 dev->udma_mask = UINT_MAX; 5565 } 5566 5567 /** 5568 * ata_link_init - Initialize an ata_link structure 5569 * @ap: ATA port link is attached to 5570 * @link: Link structure to initialize 5571 * @pmp: Port multiplier port number 5572 * 5573 * Initialize @link. 5574 * 5575 * LOCKING: 5576 * Kernel thread context (may sleep) 5577 */ 5578 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5579 { 5580 int i; 5581 5582 /* clear everything except for devices */ 5583 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5584 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5585 5586 link->ap = ap; 5587 link->pmp = pmp; 5588 link->active_tag = ATA_TAG_POISON; 5589 link->hw_sata_spd_limit = UINT_MAX; 5590 5591 /* can't use iterator, ap isn't initialized yet */ 5592 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5593 struct ata_device *dev = &link->device[i]; 5594 5595 dev->link = link; 5596 dev->devno = dev - link->device; 5597 #ifdef CONFIG_ATA_ACPI 5598 dev->gtf_filter = ata_acpi_gtf_filter; 5599 #endif 5600 ata_dev_init(dev); 5601 } 5602 } 5603 5604 /** 5605 * sata_link_init_spd - Initialize link->sata_spd_limit 5606 * @link: Link to configure sata_spd_limit for 5607 * 5608 * Initialize @link->[hw_]sata_spd_limit to the currently 5609 * configured value. 5610 * 5611 * LOCKING: 5612 * Kernel thread context (may sleep). 5613 * 5614 * RETURNS: 5615 * 0 on success, -errno on failure. 5616 */ 5617 int sata_link_init_spd(struct ata_link *link) 5618 { 5619 u8 spd; 5620 int rc; 5621 5622 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5623 if (rc) 5624 return rc; 5625 5626 spd = (link->saved_scontrol >> 4) & 0xf; 5627 if (spd) 5628 link->hw_sata_spd_limit &= (1 << spd) - 1; 5629 5630 ata_force_link_limits(link); 5631 5632 link->sata_spd_limit = link->hw_sata_spd_limit; 5633 5634 return 0; 5635 } 5636 5637 /** 5638 * ata_port_alloc - allocate and initialize basic ATA port resources 5639 * @host: ATA host this allocated port belongs to 5640 * 5641 * Allocate and initialize basic ATA port resources. 5642 * 5643 * RETURNS: 5644 * Allocate ATA port on success, NULL on failure. 5645 * 5646 * LOCKING: 5647 * Inherited from calling layer (may sleep). 5648 */ 5649 struct ata_port *ata_port_alloc(struct ata_host *host) 5650 { 5651 struct ata_port *ap; 5652 5653 DPRINTK("ENTER\n"); 5654 5655 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5656 if (!ap) 5657 return NULL; 5658 5659 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5660 ap->lock = &host->lock; 5661 ap->print_id = -1; 5662 ap->local_port_no = -1; 5663 ap->host = host; 5664 ap->dev = host->dev; 5665 5666 #if defined(ATA_VERBOSE_DEBUG) 5667 /* turn on all debugging levels */ 5668 ap->msg_enable = 0x00FF; 5669 #elif defined(ATA_DEBUG) 5670 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5671 #else 5672 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5673 #endif 5674 5675 mutex_init(&ap->scsi_scan_mutex); 5676 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5677 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5678 INIT_LIST_HEAD(&ap->eh_done_q); 5679 init_waitqueue_head(&ap->eh_wait_q); 5680 init_completion(&ap->park_req_pending); 5681 init_timer_deferrable(&ap->fastdrain_timer); 5682 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5683 ap->fastdrain_timer.data = (unsigned long)ap; 5684 5685 ap->cbl = ATA_CBL_NONE; 5686 5687 ata_link_init(ap, &ap->link, 0); 5688 5689 #ifdef ATA_IRQ_TRAP 5690 ap->stats.unhandled_irq = 1; 5691 ap->stats.idle_irq = 1; 5692 #endif 5693 ata_sff_port_init(ap); 5694 5695 return ap; 5696 } 5697 5698 static void ata_host_release(struct device *gendev, void *res) 5699 { 5700 struct ata_host *host = dev_get_drvdata(gendev); 5701 int i; 5702 5703 for (i = 0; i < host->n_ports; i++) { 5704 struct ata_port *ap = host->ports[i]; 5705 5706 if (!ap) 5707 continue; 5708 5709 if (ap->scsi_host) 5710 scsi_host_put(ap->scsi_host); 5711 5712 kfree(ap->pmp_link); 5713 kfree(ap->slave_link); 5714 kfree(ap); 5715 host->ports[i] = NULL; 5716 } 5717 5718 dev_set_drvdata(gendev, NULL); 5719 } 5720 5721 /** 5722 * ata_host_alloc - allocate and init basic ATA host resources 5723 * @dev: generic device this host is associated with 5724 * @max_ports: maximum number of ATA ports associated with this host 5725 * 5726 * Allocate and initialize basic ATA host resources. LLD calls 5727 * this function to allocate a host, initializes it fully and 5728 * attaches it using ata_host_register(). 5729 * 5730 * @max_ports ports are allocated and host->n_ports is 5731 * initialized to @max_ports. The caller is allowed to decrease 5732 * host->n_ports before calling ata_host_register(). The unused 5733 * ports will be automatically freed on registration. 5734 * 5735 * RETURNS: 5736 * Allocate ATA host on success, NULL on failure. 5737 * 5738 * LOCKING: 5739 * Inherited from calling layer (may sleep). 5740 */ 5741 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5742 { 5743 struct ata_host *host; 5744 size_t sz; 5745 int i; 5746 5747 DPRINTK("ENTER\n"); 5748 5749 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5750 return NULL; 5751 5752 /* alloc a container for our list of ATA ports (buses) */ 5753 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5754 /* alloc a container for our list of ATA ports (buses) */ 5755 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5756 if (!host) 5757 goto err_out; 5758 5759 devres_add(dev, host); 5760 dev_set_drvdata(dev, host); 5761 5762 spin_lock_init(&host->lock); 5763 mutex_init(&host->eh_mutex); 5764 host->dev = dev; 5765 host->n_ports = max_ports; 5766 5767 /* allocate ports bound to this host */ 5768 for (i = 0; i < max_ports; i++) { 5769 struct ata_port *ap; 5770 5771 ap = ata_port_alloc(host); 5772 if (!ap) 5773 goto err_out; 5774 5775 ap->port_no = i; 5776 host->ports[i] = ap; 5777 } 5778 5779 devres_remove_group(dev, NULL); 5780 return host; 5781 5782 err_out: 5783 devres_release_group(dev, NULL); 5784 return NULL; 5785 } 5786 5787 /** 5788 * ata_host_alloc_pinfo - alloc host and init with port_info array 5789 * @dev: generic device this host is associated with 5790 * @ppi: array of ATA port_info to initialize host with 5791 * @n_ports: number of ATA ports attached to this host 5792 * 5793 * Allocate ATA host and initialize with info from @ppi. If NULL 5794 * terminated, @ppi may contain fewer entries than @n_ports. The 5795 * last entry will be used for the remaining ports. 5796 * 5797 * RETURNS: 5798 * Allocate ATA host on success, NULL on failure. 5799 * 5800 * LOCKING: 5801 * Inherited from calling layer (may sleep). 5802 */ 5803 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5804 const struct ata_port_info * const * ppi, 5805 int n_ports) 5806 { 5807 const struct ata_port_info *pi; 5808 struct ata_host *host; 5809 int i, j; 5810 5811 host = ata_host_alloc(dev, n_ports); 5812 if (!host) 5813 return NULL; 5814 5815 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5816 struct ata_port *ap = host->ports[i]; 5817 5818 if (ppi[j]) 5819 pi = ppi[j++]; 5820 5821 ap->pio_mask = pi->pio_mask; 5822 ap->mwdma_mask = pi->mwdma_mask; 5823 ap->udma_mask = pi->udma_mask; 5824 ap->flags |= pi->flags; 5825 ap->link.flags |= pi->link_flags; 5826 ap->ops = pi->port_ops; 5827 5828 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5829 host->ops = pi->port_ops; 5830 } 5831 5832 return host; 5833 } 5834 5835 /** 5836 * ata_slave_link_init - initialize slave link 5837 * @ap: port to initialize slave link for 5838 * 5839 * Create and initialize slave link for @ap. This enables slave 5840 * link handling on the port. 5841 * 5842 * In libata, a port contains links and a link contains devices. 5843 * There is single host link but if a PMP is attached to it, 5844 * there can be multiple fan-out links. On SATA, there's usually 5845 * a single device connected to a link but PATA and SATA 5846 * controllers emulating TF based interface can have two - master 5847 * and slave. 5848 * 5849 * However, there are a few controllers which don't fit into this 5850 * abstraction too well - SATA controllers which emulate TF 5851 * interface with both master and slave devices but also have 5852 * separate SCR register sets for each device. These controllers 5853 * need separate links for physical link handling 5854 * (e.g. onlineness, link speed) but should be treated like a 5855 * traditional M/S controller for everything else (e.g. command 5856 * issue, softreset). 5857 * 5858 * slave_link is libata's way of handling this class of 5859 * controllers without impacting core layer too much. For 5860 * anything other than physical link handling, the default host 5861 * link is used for both master and slave. For physical link 5862 * handling, separate @ap->slave_link is used. All dirty details 5863 * are implemented inside libata core layer. From LLD's POV, the 5864 * only difference is that prereset, hardreset and postreset are 5865 * called once more for the slave link, so the reset sequence 5866 * looks like the following. 5867 * 5868 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5869 * softreset(M) -> postreset(M) -> postreset(S) 5870 * 5871 * Note that softreset is called only for the master. Softreset 5872 * resets both M/S by definition, so SRST on master should handle 5873 * both (the standard method will work just fine). 5874 * 5875 * LOCKING: 5876 * Should be called before host is registered. 5877 * 5878 * RETURNS: 5879 * 0 on success, -errno on failure. 5880 */ 5881 int ata_slave_link_init(struct ata_port *ap) 5882 { 5883 struct ata_link *link; 5884 5885 WARN_ON(ap->slave_link); 5886 WARN_ON(ap->flags & ATA_FLAG_PMP); 5887 5888 link = kzalloc(sizeof(*link), GFP_KERNEL); 5889 if (!link) 5890 return -ENOMEM; 5891 5892 ata_link_init(ap, link, 1); 5893 ap->slave_link = link; 5894 return 0; 5895 } 5896 5897 static void ata_host_stop(struct device *gendev, void *res) 5898 { 5899 struct ata_host *host = dev_get_drvdata(gendev); 5900 int i; 5901 5902 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5903 5904 for (i = 0; i < host->n_ports; i++) { 5905 struct ata_port *ap = host->ports[i]; 5906 5907 if (ap->ops->port_stop) 5908 ap->ops->port_stop(ap); 5909 } 5910 5911 if (host->ops->host_stop) 5912 host->ops->host_stop(host); 5913 } 5914 5915 /** 5916 * ata_finalize_port_ops - finalize ata_port_operations 5917 * @ops: ata_port_operations to finalize 5918 * 5919 * An ata_port_operations can inherit from another ops and that 5920 * ops can again inherit from another. This can go on as many 5921 * times as necessary as long as there is no loop in the 5922 * inheritance chain. 5923 * 5924 * Ops tables are finalized when the host is started. NULL or 5925 * unspecified entries are inherited from the closet ancestor 5926 * which has the method and the entry is populated with it. 5927 * After finalization, the ops table directly points to all the 5928 * methods and ->inherits is no longer necessary and cleared. 5929 * 5930 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5931 * 5932 * LOCKING: 5933 * None. 5934 */ 5935 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5936 { 5937 static DEFINE_SPINLOCK(lock); 5938 const struct ata_port_operations *cur; 5939 void **begin = (void **)ops; 5940 void **end = (void **)&ops->inherits; 5941 void **pp; 5942 5943 if (!ops || !ops->inherits) 5944 return; 5945 5946 spin_lock(&lock); 5947 5948 for (cur = ops->inherits; cur; cur = cur->inherits) { 5949 void **inherit = (void **)cur; 5950 5951 for (pp = begin; pp < end; pp++, inherit++) 5952 if (!*pp) 5953 *pp = *inherit; 5954 } 5955 5956 for (pp = begin; pp < end; pp++) 5957 if (IS_ERR(*pp)) 5958 *pp = NULL; 5959 5960 ops->inherits = NULL; 5961 5962 spin_unlock(&lock); 5963 } 5964 5965 /** 5966 * ata_host_start - start and freeze ports of an ATA host 5967 * @host: ATA host to start ports for 5968 * 5969 * Start and then freeze ports of @host. Started status is 5970 * recorded in host->flags, so this function can be called 5971 * multiple times. Ports are guaranteed to get started only 5972 * once. If host->ops isn't initialized yet, its set to the 5973 * first non-dummy port ops. 5974 * 5975 * LOCKING: 5976 * Inherited from calling layer (may sleep). 5977 * 5978 * RETURNS: 5979 * 0 if all ports are started successfully, -errno otherwise. 5980 */ 5981 int ata_host_start(struct ata_host *host) 5982 { 5983 int have_stop = 0; 5984 void *start_dr = NULL; 5985 int i, rc; 5986 5987 if (host->flags & ATA_HOST_STARTED) 5988 return 0; 5989 5990 ata_finalize_port_ops(host->ops); 5991 5992 for (i = 0; i < host->n_ports; i++) { 5993 struct ata_port *ap = host->ports[i]; 5994 5995 ata_finalize_port_ops(ap->ops); 5996 5997 if (!host->ops && !ata_port_is_dummy(ap)) 5998 host->ops = ap->ops; 5999 6000 if (ap->ops->port_stop) 6001 have_stop = 1; 6002 } 6003 6004 if (host->ops->host_stop) 6005 have_stop = 1; 6006 6007 if (have_stop) { 6008 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 6009 if (!start_dr) 6010 return -ENOMEM; 6011 } 6012 6013 for (i = 0; i < host->n_ports; i++) { 6014 struct ata_port *ap = host->ports[i]; 6015 6016 if (ap->ops->port_start) { 6017 rc = ap->ops->port_start(ap); 6018 if (rc) { 6019 if (rc != -ENODEV) 6020 dev_err(host->dev, 6021 "failed to start port %d (errno=%d)\n", 6022 i, rc); 6023 goto err_out; 6024 } 6025 } 6026 ata_eh_freeze_port(ap); 6027 } 6028 6029 if (start_dr) 6030 devres_add(host->dev, start_dr); 6031 host->flags |= ATA_HOST_STARTED; 6032 return 0; 6033 6034 err_out: 6035 while (--i >= 0) { 6036 struct ata_port *ap = host->ports[i]; 6037 6038 if (ap->ops->port_stop) 6039 ap->ops->port_stop(ap); 6040 } 6041 devres_free(start_dr); 6042 return rc; 6043 } 6044 6045 /** 6046 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6047 * @host: host to initialize 6048 * @dev: device host is attached to 6049 * @ops: port_ops 6050 * 6051 */ 6052 void ata_host_init(struct ata_host *host, struct device *dev, 6053 struct ata_port_operations *ops) 6054 { 6055 spin_lock_init(&host->lock); 6056 mutex_init(&host->eh_mutex); 6057 host->dev = dev; 6058 host->ops = ops; 6059 } 6060 6061 void __ata_port_probe(struct ata_port *ap) 6062 { 6063 struct ata_eh_info *ehi = &ap->link.eh_info; 6064 unsigned long flags; 6065 6066 /* kick EH for boot probing */ 6067 spin_lock_irqsave(ap->lock, flags); 6068 6069 ehi->probe_mask |= ATA_ALL_DEVICES; 6070 ehi->action |= ATA_EH_RESET; 6071 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6072 6073 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6074 ap->pflags |= ATA_PFLAG_LOADING; 6075 ata_port_schedule_eh(ap); 6076 6077 spin_unlock_irqrestore(ap->lock, flags); 6078 } 6079 6080 int ata_port_probe(struct ata_port *ap) 6081 { 6082 int rc = 0; 6083 6084 if (ap->ops->error_handler) { 6085 __ata_port_probe(ap); 6086 ata_port_wait_eh(ap); 6087 } else { 6088 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6089 rc = ata_bus_probe(ap); 6090 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6091 } 6092 return rc; 6093 } 6094 6095 6096 static void async_port_probe(void *data, async_cookie_t cookie) 6097 { 6098 struct ata_port *ap = data; 6099 6100 /* 6101 * If we're not allowed to scan this host in parallel, 6102 * we need to wait until all previous scans have completed 6103 * before going further. 6104 * Jeff Garzik says this is only within a controller, so we 6105 * don't need to wait for port 0, only for later ports. 6106 */ 6107 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6108 async_synchronize_cookie(cookie); 6109 6110 (void)ata_port_probe(ap); 6111 6112 /* in order to keep device order, we need to synchronize at this point */ 6113 async_synchronize_cookie(cookie); 6114 6115 ata_scsi_scan_host(ap, 1); 6116 } 6117 6118 /** 6119 * ata_host_register - register initialized ATA host 6120 * @host: ATA host to register 6121 * @sht: template for SCSI host 6122 * 6123 * Register initialized ATA host. @host is allocated using 6124 * ata_host_alloc() and fully initialized by LLD. This function 6125 * starts ports, registers @host with ATA and SCSI layers and 6126 * probe registered devices. 6127 * 6128 * LOCKING: 6129 * Inherited from calling layer (may sleep). 6130 * 6131 * RETURNS: 6132 * 0 on success, -errno otherwise. 6133 */ 6134 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6135 { 6136 int i, rc; 6137 6138 /* host must have been started */ 6139 if (!(host->flags & ATA_HOST_STARTED)) { 6140 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6141 WARN_ON(1); 6142 return -EINVAL; 6143 } 6144 6145 /* Blow away unused ports. This happens when LLD can't 6146 * determine the exact number of ports to allocate at 6147 * allocation time. 6148 */ 6149 for (i = host->n_ports; host->ports[i]; i++) 6150 kfree(host->ports[i]); 6151 6152 /* give ports names and add SCSI hosts */ 6153 for (i = 0; i < host->n_ports; i++) { 6154 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6155 host->ports[i]->local_port_no = i + 1; 6156 } 6157 6158 /* Create associated sysfs transport objects */ 6159 for (i = 0; i < host->n_ports; i++) { 6160 rc = ata_tport_add(host->dev,host->ports[i]); 6161 if (rc) { 6162 goto err_tadd; 6163 } 6164 } 6165 6166 rc = ata_scsi_add_hosts(host, sht); 6167 if (rc) 6168 goto err_tadd; 6169 6170 /* set cable, sata_spd_limit and report */ 6171 for (i = 0; i < host->n_ports; i++) { 6172 struct ata_port *ap = host->ports[i]; 6173 unsigned long xfer_mask; 6174 6175 /* set SATA cable type if still unset */ 6176 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6177 ap->cbl = ATA_CBL_SATA; 6178 6179 /* init sata_spd_limit to the current value */ 6180 sata_link_init_spd(&ap->link); 6181 if (ap->slave_link) 6182 sata_link_init_spd(ap->slave_link); 6183 6184 /* print per-port info to dmesg */ 6185 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6186 ap->udma_mask); 6187 6188 if (!ata_port_is_dummy(ap)) { 6189 ata_port_info(ap, "%cATA max %s %s\n", 6190 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6191 ata_mode_string(xfer_mask), 6192 ap->link.eh_info.desc); 6193 ata_ehi_clear_desc(&ap->link.eh_info); 6194 } else 6195 ata_port_info(ap, "DUMMY\n"); 6196 } 6197 6198 /* perform each probe asynchronously */ 6199 for (i = 0; i < host->n_ports; i++) { 6200 struct ata_port *ap = host->ports[i]; 6201 async_schedule(async_port_probe, ap); 6202 } 6203 6204 return 0; 6205 6206 err_tadd: 6207 while (--i >= 0) { 6208 ata_tport_delete(host->ports[i]); 6209 } 6210 return rc; 6211 6212 } 6213 6214 /** 6215 * ata_host_activate - start host, request IRQ and register it 6216 * @host: target ATA host 6217 * @irq: IRQ to request 6218 * @irq_handler: irq_handler used when requesting IRQ 6219 * @irq_flags: irq_flags used when requesting IRQ 6220 * @sht: scsi_host_template to use when registering the host 6221 * 6222 * After allocating an ATA host and initializing it, most libata 6223 * LLDs perform three steps to activate the host - start host, 6224 * request IRQ and register it. This helper takes necessasry 6225 * arguments and performs the three steps in one go. 6226 * 6227 * An invalid IRQ skips the IRQ registration and expects the host to 6228 * have set polling mode on the port. In this case, @irq_handler 6229 * should be NULL. 6230 * 6231 * LOCKING: 6232 * Inherited from calling layer (may sleep). 6233 * 6234 * RETURNS: 6235 * 0 on success, -errno otherwise. 6236 */ 6237 int ata_host_activate(struct ata_host *host, int irq, 6238 irq_handler_t irq_handler, unsigned long irq_flags, 6239 struct scsi_host_template *sht) 6240 { 6241 int i, rc; 6242 6243 rc = ata_host_start(host); 6244 if (rc) 6245 return rc; 6246 6247 /* Special case for polling mode */ 6248 if (!irq) { 6249 WARN_ON(irq_handler); 6250 return ata_host_register(host, sht); 6251 } 6252 6253 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6254 dev_driver_string(host->dev), host); 6255 if (rc) 6256 return rc; 6257 6258 for (i = 0; i < host->n_ports; i++) 6259 ata_port_desc(host->ports[i], "irq %d", irq); 6260 6261 rc = ata_host_register(host, sht); 6262 /* if failed, just free the IRQ and leave ports alone */ 6263 if (rc) 6264 devm_free_irq(host->dev, irq, host); 6265 6266 return rc; 6267 } 6268 6269 /** 6270 * ata_port_detach - Detach ATA port in prepration of device removal 6271 * @ap: ATA port to be detached 6272 * 6273 * Detach all ATA devices and the associated SCSI devices of @ap; 6274 * then, remove the associated SCSI host. @ap is guaranteed to 6275 * be quiescent on return from this function. 6276 * 6277 * LOCKING: 6278 * Kernel thread context (may sleep). 6279 */ 6280 static void ata_port_detach(struct ata_port *ap) 6281 { 6282 unsigned long flags; 6283 6284 if (!ap->ops->error_handler) 6285 goto skip_eh; 6286 6287 /* tell EH we're leaving & flush EH */ 6288 spin_lock_irqsave(ap->lock, flags); 6289 ap->pflags |= ATA_PFLAG_UNLOADING; 6290 ata_port_schedule_eh(ap); 6291 spin_unlock_irqrestore(ap->lock, flags); 6292 6293 /* wait till EH commits suicide */ 6294 ata_port_wait_eh(ap); 6295 6296 /* it better be dead now */ 6297 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6298 6299 cancel_delayed_work_sync(&ap->hotplug_task); 6300 6301 skip_eh: 6302 if (ap->pmp_link) { 6303 int i; 6304 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6305 ata_tlink_delete(&ap->pmp_link[i]); 6306 } 6307 /* remove the associated SCSI host */ 6308 scsi_remove_host(ap->scsi_host); 6309 ata_tport_delete(ap); 6310 } 6311 6312 /** 6313 * ata_host_detach - Detach all ports of an ATA host 6314 * @host: Host to detach 6315 * 6316 * Detach all ports of @host. 6317 * 6318 * LOCKING: 6319 * Kernel thread context (may sleep). 6320 */ 6321 void ata_host_detach(struct ata_host *host) 6322 { 6323 int i; 6324 6325 for (i = 0; i < host->n_ports; i++) 6326 ata_port_detach(host->ports[i]); 6327 6328 /* the host is dead now, dissociate ACPI */ 6329 ata_acpi_dissociate(host); 6330 } 6331 6332 #ifdef CONFIG_PCI 6333 6334 /** 6335 * ata_pci_remove_one - PCI layer callback for device removal 6336 * @pdev: PCI device that was removed 6337 * 6338 * PCI layer indicates to libata via this hook that hot-unplug or 6339 * module unload event has occurred. Detach all ports. Resource 6340 * release is handled via devres. 6341 * 6342 * LOCKING: 6343 * Inherited from PCI layer (may sleep). 6344 */ 6345 void ata_pci_remove_one(struct pci_dev *pdev) 6346 { 6347 struct ata_host *host = pci_get_drvdata(pdev); 6348 6349 ata_host_detach(host); 6350 } 6351 6352 /* move to PCI subsystem */ 6353 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6354 { 6355 unsigned long tmp = 0; 6356 6357 switch (bits->width) { 6358 case 1: { 6359 u8 tmp8 = 0; 6360 pci_read_config_byte(pdev, bits->reg, &tmp8); 6361 tmp = tmp8; 6362 break; 6363 } 6364 case 2: { 6365 u16 tmp16 = 0; 6366 pci_read_config_word(pdev, bits->reg, &tmp16); 6367 tmp = tmp16; 6368 break; 6369 } 6370 case 4: { 6371 u32 tmp32 = 0; 6372 pci_read_config_dword(pdev, bits->reg, &tmp32); 6373 tmp = tmp32; 6374 break; 6375 } 6376 6377 default: 6378 return -EINVAL; 6379 } 6380 6381 tmp &= bits->mask; 6382 6383 return (tmp == bits->val) ? 1 : 0; 6384 } 6385 6386 #ifdef CONFIG_PM 6387 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6388 { 6389 pci_save_state(pdev); 6390 pci_disable_device(pdev); 6391 6392 if (mesg.event & PM_EVENT_SLEEP) 6393 pci_set_power_state(pdev, PCI_D3hot); 6394 } 6395 6396 int ata_pci_device_do_resume(struct pci_dev *pdev) 6397 { 6398 int rc; 6399 6400 pci_set_power_state(pdev, PCI_D0); 6401 pci_restore_state(pdev); 6402 6403 rc = pcim_enable_device(pdev); 6404 if (rc) { 6405 dev_err(&pdev->dev, 6406 "failed to enable device after resume (%d)\n", rc); 6407 return rc; 6408 } 6409 6410 pci_set_master(pdev); 6411 return 0; 6412 } 6413 6414 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6415 { 6416 struct ata_host *host = pci_get_drvdata(pdev); 6417 int rc = 0; 6418 6419 rc = ata_host_suspend(host, mesg); 6420 if (rc) 6421 return rc; 6422 6423 ata_pci_device_do_suspend(pdev, mesg); 6424 6425 return 0; 6426 } 6427 6428 int ata_pci_device_resume(struct pci_dev *pdev) 6429 { 6430 struct ata_host *host = pci_get_drvdata(pdev); 6431 int rc; 6432 6433 rc = ata_pci_device_do_resume(pdev); 6434 if (rc == 0) 6435 ata_host_resume(host); 6436 return rc; 6437 } 6438 #endif /* CONFIG_PM */ 6439 6440 #endif /* CONFIG_PCI */ 6441 6442 /** 6443 * ata_platform_remove_one - Platform layer callback for device removal 6444 * @pdev: Platform device that was removed 6445 * 6446 * Platform layer indicates to libata via this hook that hot-unplug or 6447 * module unload event has occurred. Detach all ports. Resource 6448 * release is handled via devres. 6449 * 6450 * LOCKING: 6451 * Inherited from platform layer (may sleep). 6452 */ 6453 int ata_platform_remove_one(struct platform_device *pdev) 6454 { 6455 struct ata_host *host = platform_get_drvdata(pdev); 6456 6457 ata_host_detach(host); 6458 6459 return 0; 6460 } 6461 6462 static int __init ata_parse_force_one(char **cur, 6463 struct ata_force_ent *force_ent, 6464 const char **reason) 6465 { 6466 /* FIXME: Currently, there's no way to tag init const data and 6467 * using __initdata causes build failure on some versions of 6468 * gcc. Once __initdataconst is implemented, add const to the 6469 * following structure. 6470 */ 6471 static struct ata_force_param force_tbl[] __initdata = { 6472 { "40c", .cbl = ATA_CBL_PATA40 }, 6473 { "80c", .cbl = ATA_CBL_PATA80 }, 6474 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6475 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6476 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6477 { "sata", .cbl = ATA_CBL_SATA }, 6478 { "1.5Gbps", .spd_limit = 1 }, 6479 { "3.0Gbps", .spd_limit = 2 }, 6480 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6481 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6482 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6483 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6484 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6485 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6486 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6487 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6488 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6489 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6490 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6491 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6492 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6493 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6494 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6495 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6496 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6497 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6498 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6499 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6500 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6501 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6502 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6503 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6504 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6505 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6506 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6507 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6508 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6509 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6510 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6511 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6512 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6513 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6514 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6515 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6516 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6517 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6518 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6519 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6520 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6521 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6522 }; 6523 char *start = *cur, *p = *cur; 6524 char *id, *val, *endp; 6525 const struct ata_force_param *match_fp = NULL; 6526 int nr_matches = 0, i; 6527 6528 /* find where this param ends and update *cur */ 6529 while (*p != '\0' && *p != ',') 6530 p++; 6531 6532 if (*p == '\0') 6533 *cur = p; 6534 else 6535 *cur = p + 1; 6536 6537 *p = '\0'; 6538 6539 /* parse */ 6540 p = strchr(start, ':'); 6541 if (!p) { 6542 val = strstrip(start); 6543 goto parse_val; 6544 } 6545 *p = '\0'; 6546 6547 id = strstrip(start); 6548 val = strstrip(p + 1); 6549 6550 /* parse id */ 6551 p = strchr(id, '.'); 6552 if (p) { 6553 *p++ = '\0'; 6554 force_ent->device = simple_strtoul(p, &endp, 10); 6555 if (p == endp || *endp != '\0') { 6556 *reason = "invalid device"; 6557 return -EINVAL; 6558 } 6559 } 6560 6561 force_ent->port = simple_strtoul(id, &endp, 10); 6562 if (p == endp || *endp != '\0') { 6563 *reason = "invalid port/link"; 6564 return -EINVAL; 6565 } 6566 6567 parse_val: 6568 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6569 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6570 const struct ata_force_param *fp = &force_tbl[i]; 6571 6572 if (strncasecmp(val, fp->name, strlen(val))) 6573 continue; 6574 6575 nr_matches++; 6576 match_fp = fp; 6577 6578 if (strcasecmp(val, fp->name) == 0) { 6579 nr_matches = 1; 6580 break; 6581 } 6582 } 6583 6584 if (!nr_matches) { 6585 *reason = "unknown value"; 6586 return -EINVAL; 6587 } 6588 if (nr_matches > 1) { 6589 *reason = "ambigious value"; 6590 return -EINVAL; 6591 } 6592 6593 force_ent->param = *match_fp; 6594 6595 return 0; 6596 } 6597 6598 static void __init ata_parse_force_param(void) 6599 { 6600 int idx = 0, size = 1; 6601 int last_port = -1, last_device = -1; 6602 char *p, *cur, *next; 6603 6604 /* calculate maximum number of params and allocate force_tbl */ 6605 for (p = ata_force_param_buf; *p; p++) 6606 if (*p == ',') 6607 size++; 6608 6609 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6610 if (!ata_force_tbl) { 6611 printk(KERN_WARNING "ata: failed to extend force table, " 6612 "libata.force ignored\n"); 6613 return; 6614 } 6615 6616 /* parse and populate the table */ 6617 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6618 const char *reason = ""; 6619 struct ata_force_ent te = { .port = -1, .device = -1 }; 6620 6621 next = cur; 6622 if (ata_parse_force_one(&next, &te, &reason)) { 6623 printk(KERN_WARNING "ata: failed to parse force " 6624 "parameter \"%s\" (%s)\n", 6625 cur, reason); 6626 continue; 6627 } 6628 6629 if (te.port == -1) { 6630 te.port = last_port; 6631 te.device = last_device; 6632 } 6633 6634 ata_force_tbl[idx++] = te; 6635 6636 last_port = te.port; 6637 last_device = te.device; 6638 } 6639 6640 ata_force_tbl_size = idx; 6641 } 6642 6643 static int __init ata_init(void) 6644 { 6645 int rc; 6646 6647 ata_parse_force_param(); 6648 6649 rc = ata_sff_init(); 6650 if (rc) { 6651 kfree(ata_force_tbl); 6652 return rc; 6653 } 6654 6655 libata_transport_init(); 6656 ata_scsi_transport_template = ata_attach_transport(); 6657 if (!ata_scsi_transport_template) { 6658 ata_sff_exit(); 6659 rc = -ENOMEM; 6660 goto err_out; 6661 } 6662 6663 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6664 return 0; 6665 6666 err_out: 6667 return rc; 6668 } 6669 6670 static void __exit ata_exit(void) 6671 { 6672 ata_release_transport(ata_scsi_transport_template); 6673 libata_transport_exit(); 6674 ata_sff_exit(); 6675 kfree(ata_force_tbl); 6676 } 6677 6678 subsys_initcall(ata_init); 6679 module_exit(ata_exit); 6680 6681 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6682 6683 int ata_ratelimit(void) 6684 { 6685 return __ratelimit(&ratelimit); 6686 } 6687 6688 /** 6689 * ata_msleep - ATA EH owner aware msleep 6690 * @ap: ATA port to attribute the sleep to 6691 * @msecs: duration to sleep in milliseconds 6692 * 6693 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6694 * ownership is released before going to sleep and reacquired 6695 * after the sleep is complete. IOW, other ports sharing the 6696 * @ap->host will be allowed to own the EH while this task is 6697 * sleeping. 6698 * 6699 * LOCKING: 6700 * Might sleep. 6701 */ 6702 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6703 { 6704 bool owns_eh = ap && ap->host->eh_owner == current; 6705 6706 if (owns_eh) 6707 ata_eh_release(ap); 6708 6709 msleep(msecs); 6710 6711 if (owns_eh) 6712 ata_eh_acquire(ap); 6713 } 6714 6715 /** 6716 * ata_wait_register - wait until register value changes 6717 * @ap: ATA port to wait register for, can be NULL 6718 * @reg: IO-mapped register 6719 * @mask: Mask to apply to read register value 6720 * @val: Wait condition 6721 * @interval: polling interval in milliseconds 6722 * @timeout: timeout in milliseconds 6723 * 6724 * Waiting for some bits of register to change is a common 6725 * operation for ATA controllers. This function reads 32bit LE 6726 * IO-mapped register @reg and tests for the following condition. 6727 * 6728 * (*@reg & mask) != val 6729 * 6730 * If the condition is met, it returns; otherwise, the process is 6731 * repeated after @interval_msec until timeout. 6732 * 6733 * LOCKING: 6734 * Kernel thread context (may sleep) 6735 * 6736 * RETURNS: 6737 * The final register value. 6738 */ 6739 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6740 unsigned long interval, unsigned long timeout) 6741 { 6742 unsigned long deadline; 6743 u32 tmp; 6744 6745 tmp = ioread32(reg); 6746 6747 /* Calculate timeout _after_ the first read to make sure 6748 * preceding writes reach the controller before starting to 6749 * eat away the timeout. 6750 */ 6751 deadline = ata_deadline(jiffies, timeout); 6752 6753 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6754 ata_msleep(ap, interval); 6755 tmp = ioread32(reg); 6756 } 6757 6758 return tmp; 6759 } 6760 6761 /* 6762 * Dummy port_ops 6763 */ 6764 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6765 { 6766 return AC_ERR_SYSTEM; 6767 } 6768 6769 static void ata_dummy_error_handler(struct ata_port *ap) 6770 { 6771 /* truly dummy */ 6772 } 6773 6774 struct ata_port_operations ata_dummy_port_ops = { 6775 .qc_prep = ata_noop_qc_prep, 6776 .qc_issue = ata_dummy_qc_issue, 6777 .error_handler = ata_dummy_error_handler, 6778 .sched_eh = ata_std_sched_eh, 6779 .end_eh = ata_std_end_eh, 6780 }; 6781 6782 const struct ata_port_info ata_dummy_port_info = { 6783 .port_ops = &ata_dummy_port_ops, 6784 }; 6785 6786 /* 6787 * Utility print functions 6788 */ 6789 int ata_port_printk(const struct ata_port *ap, const char *level, 6790 const char *fmt, ...) 6791 { 6792 struct va_format vaf; 6793 va_list args; 6794 int r; 6795 6796 va_start(args, fmt); 6797 6798 vaf.fmt = fmt; 6799 vaf.va = &args; 6800 6801 r = printk("%sata%u: %pV", level, ap->print_id, &vaf); 6802 6803 va_end(args); 6804 6805 return r; 6806 } 6807 EXPORT_SYMBOL(ata_port_printk); 6808 6809 int ata_link_printk(const struct ata_link *link, const char *level, 6810 const char *fmt, ...) 6811 { 6812 struct va_format vaf; 6813 va_list args; 6814 int r; 6815 6816 va_start(args, fmt); 6817 6818 vaf.fmt = fmt; 6819 vaf.va = &args; 6820 6821 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6822 r = printk("%sata%u.%02u: %pV", 6823 level, link->ap->print_id, link->pmp, &vaf); 6824 else 6825 r = printk("%sata%u: %pV", 6826 level, link->ap->print_id, &vaf); 6827 6828 va_end(args); 6829 6830 return r; 6831 } 6832 EXPORT_SYMBOL(ata_link_printk); 6833 6834 int ata_dev_printk(const struct ata_device *dev, const char *level, 6835 const char *fmt, ...) 6836 { 6837 struct va_format vaf; 6838 va_list args; 6839 int r; 6840 6841 va_start(args, fmt); 6842 6843 vaf.fmt = fmt; 6844 vaf.va = &args; 6845 6846 r = printk("%sata%u.%02u: %pV", 6847 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6848 &vaf); 6849 6850 va_end(args); 6851 6852 return r; 6853 } 6854 EXPORT_SYMBOL(ata_dev_printk); 6855 6856 void ata_print_version(const struct device *dev, const char *version) 6857 { 6858 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6859 } 6860 EXPORT_SYMBOL(ata_print_version); 6861 6862 /* 6863 * libata is essentially a library of internal helper functions for 6864 * low-level ATA host controller drivers. As such, the API/ABI is 6865 * likely to change as new drivers are added and updated. 6866 * Do not depend on ABI/API stability. 6867 */ 6868 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6869 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6870 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6871 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6872 EXPORT_SYMBOL_GPL(sata_port_ops); 6873 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6874 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6875 EXPORT_SYMBOL_GPL(ata_link_next); 6876 EXPORT_SYMBOL_GPL(ata_dev_next); 6877 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6878 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6879 EXPORT_SYMBOL_GPL(ata_host_init); 6880 EXPORT_SYMBOL_GPL(ata_host_alloc); 6881 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6882 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6883 EXPORT_SYMBOL_GPL(ata_host_start); 6884 EXPORT_SYMBOL_GPL(ata_host_register); 6885 EXPORT_SYMBOL_GPL(ata_host_activate); 6886 EXPORT_SYMBOL_GPL(ata_host_detach); 6887 EXPORT_SYMBOL_GPL(ata_sg_init); 6888 EXPORT_SYMBOL_GPL(ata_qc_complete); 6889 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6890 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6891 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6892 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6893 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6894 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6895 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6896 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6897 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6898 EXPORT_SYMBOL_GPL(ata_mode_string); 6899 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6900 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6901 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6902 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6903 EXPORT_SYMBOL_GPL(ata_dev_disable); 6904 EXPORT_SYMBOL_GPL(sata_set_spd); 6905 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6906 EXPORT_SYMBOL_GPL(sata_link_debounce); 6907 EXPORT_SYMBOL_GPL(sata_link_resume); 6908 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6909 EXPORT_SYMBOL_GPL(ata_std_prereset); 6910 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6911 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6912 EXPORT_SYMBOL_GPL(ata_std_postreset); 6913 EXPORT_SYMBOL_GPL(ata_dev_classify); 6914 EXPORT_SYMBOL_GPL(ata_dev_pair); 6915 EXPORT_SYMBOL_GPL(ata_ratelimit); 6916 EXPORT_SYMBOL_GPL(ata_msleep); 6917 EXPORT_SYMBOL_GPL(ata_wait_register); 6918 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6919 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6920 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6921 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6922 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6923 EXPORT_SYMBOL_GPL(sata_scr_valid); 6924 EXPORT_SYMBOL_GPL(sata_scr_read); 6925 EXPORT_SYMBOL_GPL(sata_scr_write); 6926 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6927 EXPORT_SYMBOL_GPL(ata_link_online); 6928 EXPORT_SYMBOL_GPL(ata_link_offline); 6929 #ifdef CONFIG_PM 6930 EXPORT_SYMBOL_GPL(ata_host_suspend); 6931 EXPORT_SYMBOL_GPL(ata_host_resume); 6932 #endif /* CONFIG_PM */ 6933 EXPORT_SYMBOL_GPL(ata_id_string); 6934 EXPORT_SYMBOL_GPL(ata_id_c_string); 6935 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6936 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6937 6938 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6939 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6940 EXPORT_SYMBOL_GPL(ata_timing_compute); 6941 EXPORT_SYMBOL_GPL(ata_timing_merge); 6942 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6943 6944 #ifdef CONFIG_PCI 6945 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6946 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6947 #ifdef CONFIG_PM 6948 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6949 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6950 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6951 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6952 #endif /* CONFIG_PM */ 6953 #endif /* CONFIG_PCI */ 6954 6955 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6956 6957 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6958 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6959 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6960 EXPORT_SYMBOL_GPL(ata_port_desc); 6961 #ifdef CONFIG_PCI 6962 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6963 #endif /* CONFIG_PCI */ 6964 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6965 EXPORT_SYMBOL_GPL(ata_link_abort); 6966 EXPORT_SYMBOL_GPL(ata_port_abort); 6967 EXPORT_SYMBOL_GPL(ata_port_freeze); 6968 EXPORT_SYMBOL_GPL(sata_async_notification); 6969 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6970 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6971 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6972 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6973 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6974 EXPORT_SYMBOL_GPL(ata_do_eh); 6975 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6976 6977 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6978 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6979 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6980 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6981 EXPORT_SYMBOL_GPL(ata_cable_sata); 6982