1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned long xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags; 100 }; 101 102 struct ata_force_ent { 103 int port; 104 int device; 105 struct ata_force_param param; 106 }; 107 108 static struct ata_force_ent *ata_force_tbl; 109 static int ata_force_tbl_size; 110 111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 112 /* param_buf is thrown away after initialization, disallow read */ 113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 115 #endif 116 117 static int atapi_enabled = 1; 118 module_param(atapi_enabled, int, 0444); 119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 120 121 static int atapi_dmadir = 0; 122 module_param(atapi_dmadir, int, 0444); 123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 124 125 int atapi_passthru16 = 1; 126 module_param(atapi_passthru16, int, 0444); 127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 128 129 int libata_fua = 0; 130 module_param_named(fua, libata_fua, int, 0444); 131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 132 133 static int ata_ignore_hpa; 134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 136 137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 138 module_param_named(dma, libata_dma_mask, int, 0444); 139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 140 141 static int ata_probe_timeout; 142 module_param(ata_probe_timeout, int, 0444); 143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 144 145 int libata_noacpi = 0; 146 module_param_named(noacpi, libata_noacpi, int, 0444); 147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 148 149 int libata_allow_tpm = 0; 150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 152 153 static int atapi_an; 154 module_param(atapi_an, int, 0444); 155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 156 157 MODULE_AUTHOR("Jeff Garzik"); 158 MODULE_DESCRIPTION("Library module for ATA devices"); 159 MODULE_LICENSE("GPL"); 160 MODULE_VERSION(DRV_VERSION); 161 162 static inline bool ata_dev_print_info(struct ata_device *dev) 163 { 164 struct ata_eh_context *ehc = &dev->link->eh_context; 165 166 return ehc->i.flags & ATA_EHI_PRINTINFO; 167 } 168 169 static bool ata_sstatus_online(u32 sstatus) 170 { 171 return (sstatus & 0xf) == 0x3; 172 } 173 174 /** 175 * ata_link_next - link iteration helper 176 * @link: the previous link, NULL to start 177 * @ap: ATA port containing links to iterate 178 * @mode: iteration mode, one of ATA_LITER_* 179 * 180 * LOCKING: 181 * Host lock or EH context. 182 * 183 * RETURNS: 184 * Pointer to the next link. 185 */ 186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 187 enum ata_link_iter_mode mode) 188 { 189 BUG_ON(mode != ATA_LITER_EDGE && 190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 191 192 /* NULL link indicates start of iteration */ 193 if (!link) 194 switch (mode) { 195 case ATA_LITER_EDGE: 196 case ATA_LITER_PMP_FIRST: 197 if (sata_pmp_attached(ap)) 198 return ap->pmp_link; 199 fallthrough; 200 case ATA_LITER_HOST_FIRST: 201 return &ap->link; 202 } 203 204 /* we just iterated over the host link, what's next? */ 205 if (link == &ap->link) 206 switch (mode) { 207 case ATA_LITER_HOST_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 fallthrough; 211 case ATA_LITER_PMP_FIRST: 212 if (unlikely(ap->slave_link)) 213 return ap->slave_link; 214 fallthrough; 215 case ATA_LITER_EDGE: 216 return NULL; 217 } 218 219 /* slave_link excludes PMP */ 220 if (unlikely(link == ap->slave_link)) 221 return NULL; 222 223 /* we were over a PMP link */ 224 if (++link < ap->pmp_link + ap->nr_pmp_links) 225 return link; 226 227 if (mode == ATA_LITER_PMP_FIRST) 228 return &ap->link; 229 230 return NULL; 231 } 232 EXPORT_SYMBOL_GPL(ata_link_next); 233 234 /** 235 * ata_dev_next - device iteration helper 236 * @dev: the previous device, NULL to start 237 * @link: ATA link containing devices to iterate 238 * @mode: iteration mode, one of ATA_DITER_* 239 * 240 * LOCKING: 241 * Host lock or EH context. 242 * 243 * RETURNS: 244 * Pointer to the next device. 245 */ 246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 247 enum ata_dev_iter_mode mode) 248 { 249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 251 252 /* NULL dev indicates start of iteration */ 253 if (!dev) 254 switch (mode) { 255 case ATA_DITER_ENABLED: 256 case ATA_DITER_ALL: 257 dev = link->device; 258 goto check; 259 case ATA_DITER_ENABLED_REVERSE: 260 case ATA_DITER_ALL_REVERSE: 261 dev = link->device + ata_link_max_devices(link) - 1; 262 goto check; 263 } 264 265 next: 266 /* move to the next one */ 267 switch (mode) { 268 case ATA_DITER_ENABLED: 269 case ATA_DITER_ALL: 270 if (++dev < link->device + ata_link_max_devices(link)) 271 goto check; 272 return NULL; 273 case ATA_DITER_ENABLED_REVERSE: 274 case ATA_DITER_ALL_REVERSE: 275 if (--dev >= link->device) 276 goto check; 277 return NULL; 278 } 279 280 check: 281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 282 !ata_dev_enabled(dev)) 283 goto next; 284 return dev; 285 } 286 EXPORT_SYMBOL_GPL(ata_dev_next); 287 288 /** 289 * ata_dev_phys_link - find physical link for a device 290 * @dev: ATA device to look up physical link for 291 * 292 * Look up physical link which @dev is attached to. Note that 293 * this is different from @dev->link only when @dev is on slave 294 * link. For all other cases, it's the same as @dev->link. 295 * 296 * LOCKING: 297 * Don't care. 298 * 299 * RETURNS: 300 * Pointer to the found physical link. 301 */ 302 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 303 { 304 struct ata_port *ap = dev->link->ap; 305 306 if (!ap->slave_link) 307 return dev->link; 308 if (!dev->devno) 309 return &ap->link; 310 return ap->slave_link; 311 } 312 313 #ifdef CONFIG_ATA_FORCE 314 /** 315 * ata_force_cbl - force cable type according to libata.force 316 * @ap: ATA port of interest 317 * 318 * Force cable type according to libata.force and whine about it. 319 * The last entry which has matching port number is used, so it 320 * can be specified as part of device force parameters. For 321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 322 * same effect. 323 * 324 * LOCKING: 325 * EH context. 326 */ 327 void ata_force_cbl(struct ata_port *ap) 328 { 329 int i; 330 331 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 332 const struct ata_force_ent *fe = &ata_force_tbl[i]; 333 334 if (fe->port != -1 && fe->port != ap->print_id) 335 continue; 336 337 if (fe->param.cbl == ATA_CBL_NONE) 338 continue; 339 340 ap->cbl = fe->param.cbl; 341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 342 return; 343 } 344 } 345 346 /** 347 * ata_force_link_limits - force link limits according to libata.force 348 * @link: ATA link of interest 349 * 350 * Force link flags and SATA spd limit according to libata.force 351 * and whine about it. When only the port part is specified 352 * (e.g. 1:), the limit applies to all links connected to both 353 * the host link and all fan-out ports connected via PMP. If the 354 * device part is specified as 0 (e.g. 1.00:), it specifies the 355 * first fan-out link not the host link. Device number 15 always 356 * points to the host link whether PMP is attached or not. If the 357 * controller has slave link, device number 16 points to it. 358 * 359 * LOCKING: 360 * EH context. 361 */ 362 static void ata_force_link_limits(struct ata_link *link) 363 { 364 bool did_spd = false; 365 int linkno = link->pmp; 366 int i; 367 368 if (ata_is_host_link(link)) 369 linkno += 15; 370 371 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 372 const struct ata_force_ent *fe = &ata_force_tbl[i]; 373 374 if (fe->port != -1 && fe->port != link->ap->print_id) 375 continue; 376 377 if (fe->device != -1 && fe->device != linkno) 378 continue; 379 380 /* only honor the first spd limit */ 381 if (!did_spd && fe->param.spd_limit) { 382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 384 fe->param.name); 385 did_spd = true; 386 } 387 388 /* let lflags stack */ 389 if (fe->param.lflags) { 390 link->flags |= fe->param.lflags; 391 ata_link_notice(link, 392 "FORCE: link flag 0x%x forced -> 0x%x\n", 393 fe->param.lflags, link->flags); 394 } 395 } 396 } 397 398 /** 399 * ata_force_xfermask - force xfermask according to libata.force 400 * @dev: ATA device of interest 401 * 402 * Force xfer_mask according to libata.force and whine about it. 403 * For consistency with link selection, device number 15 selects 404 * the first device connected to the host link. 405 * 406 * LOCKING: 407 * EH context. 408 */ 409 static void ata_force_xfermask(struct ata_device *dev) 410 { 411 int devno = dev->link->pmp + dev->devno; 412 int alt_devno = devno; 413 int i; 414 415 /* allow n.15/16 for devices attached to host port */ 416 if (ata_is_host_link(dev->link)) 417 alt_devno += 15; 418 419 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 420 const struct ata_force_ent *fe = &ata_force_tbl[i]; 421 unsigned long pio_mask, mwdma_mask, udma_mask; 422 423 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 424 continue; 425 426 if (fe->device != -1 && fe->device != devno && 427 fe->device != alt_devno) 428 continue; 429 430 if (!fe->param.xfer_mask) 431 continue; 432 433 ata_unpack_xfermask(fe->param.xfer_mask, 434 &pio_mask, &mwdma_mask, &udma_mask); 435 if (udma_mask) 436 dev->udma_mask = udma_mask; 437 else if (mwdma_mask) { 438 dev->udma_mask = 0; 439 dev->mwdma_mask = mwdma_mask; 440 } else { 441 dev->udma_mask = 0; 442 dev->mwdma_mask = 0; 443 dev->pio_mask = pio_mask; 444 } 445 446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 447 fe->param.name); 448 return; 449 } 450 } 451 452 /** 453 * ata_force_horkage - force horkage according to libata.force 454 * @dev: ATA device of interest 455 * 456 * Force horkage according to libata.force and whine about it. 457 * For consistency with link selection, device number 15 selects 458 * the first device connected to the host link. 459 * 460 * LOCKING: 461 * EH context. 462 */ 463 static void ata_force_horkage(struct ata_device *dev) 464 { 465 int devno = dev->link->pmp + dev->devno; 466 int alt_devno = devno; 467 int i; 468 469 /* allow n.15/16 for devices attached to host port */ 470 if (ata_is_host_link(dev->link)) 471 alt_devno += 15; 472 473 for (i = 0; i < ata_force_tbl_size; i++) { 474 const struct ata_force_ent *fe = &ata_force_tbl[i]; 475 476 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 477 continue; 478 479 if (fe->device != -1 && fe->device != devno && 480 fe->device != alt_devno) 481 continue; 482 483 if (!(~dev->horkage & fe->param.horkage_on) && 484 !(dev->horkage & fe->param.horkage_off)) 485 continue; 486 487 dev->horkage |= fe->param.horkage_on; 488 dev->horkage &= ~fe->param.horkage_off; 489 490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 491 fe->param.name); 492 } 493 } 494 #else 495 static inline void ata_force_link_limits(struct ata_link *link) { } 496 static inline void ata_force_xfermask(struct ata_device *dev) { } 497 static inline void ata_force_horkage(struct ata_device *dev) { } 498 #endif 499 500 /** 501 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 502 * @opcode: SCSI opcode 503 * 504 * Determine ATAPI command type from @opcode. 505 * 506 * LOCKING: 507 * None. 508 * 509 * RETURNS: 510 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 511 */ 512 int atapi_cmd_type(u8 opcode) 513 { 514 switch (opcode) { 515 case GPCMD_READ_10: 516 case GPCMD_READ_12: 517 return ATAPI_READ; 518 519 case GPCMD_WRITE_10: 520 case GPCMD_WRITE_12: 521 case GPCMD_WRITE_AND_VERIFY_10: 522 return ATAPI_WRITE; 523 524 case GPCMD_READ_CD: 525 case GPCMD_READ_CD_MSF: 526 return ATAPI_READ_CD; 527 528 case ATA_16: 529 case ATA_12: 530 if (atapi_passthru16) 531 return ATAPI_PASS_THRU; 532 fallthrough; 533 default: 534 return ATAPI_MISC; 535 } 536 } 537 EXPORT_SYMBOL_GPL(atapi_cmd_type); 538 539 static const u8 ata_rw_cmds[] = { 540 /* pio multi */ 541 ATA_CMD_READ_MULTI, 542 ATA_CMD_WRITE_MULTI, 543 ATA_CMD_READ_MULTI_EXT, 544 ATA_CMD_WRITE_MULTI_EXT, 545 0, 546 0, 547 0, 548 ATA_CMD_WRITE_MULTI_FUA_EXT, 549 /* pio */ 550 ATA_CMD_PIO_READ, 551 ATA_CMD_PIO_WRITE, 552 ATA_CMD_PIO_READ_EXT, 553 ATA_CMD_PIO_WRITE_EXT, 554 0, 555 0, 556 0, 557 0, 558 /* dma */ 559 ATA_CMD_READ, 560 ATA_CMD_WRITE, 561 ATA_CMD_READ_EXT, 562 ATA_CMD_WRITE_EXT, 563 0, 564 0, 565 0, 566 ATA_CMD_WRITE_FUA_EXT 567 }; 568 569 /** 570 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 571 * @tf: command to examine and configure 572 * @dev: device tf belongs to 573 * 574 * Examine the device configuration and tf->flags to calculate 575 * the proper read/write commands and protocol to use. 576 * 577 * LOCKING: 578 * caller. 579 */ 580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 581 { 582 u8 cmd; 583 584 int index, fua, lba48, write; 585 586 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 587 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 588 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 589 590 if (dev->flags & ATA_DFLAG_PIO) { 591 tf->protocol = ATA_PROT_PIO; 592 index = dev->multi_count ? 0 : 8; 593 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 594 /* Unable to use DMA due to host limitation */ 595 tf->protocol = ATA_PROT_PIO; 596 index = dev->multi_count ? 0 : 8; 597 } else { 598 tf->protocol = ATA_PROT_DMA; 599 index = 16; 600 } 601 602 cmd = ata_rw_cmds[index + fua + lba48 + write]; 603 if (cmd) { 604 tf->command = cmd; 605 return 0; 606 } 607 return -1; 608 } 609 610 /** 611 * ata_tf_read_block - Read block address from ATA taskfile 612 * @tf: ATA taskfile of interest 613 * @dev: ATA device @tf belongs to 614 * 615 * LOCKING: 616 * None. 617 * 618 * Read block address from @tf. This function can handle all 619 * three address formats - LBA, LBA48 and CHS. tf->protocol and 620 * flags select the address format to use. 621 * 622 * RETURNS: 623 * Block address read from @tf. 624 */ 625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 626 { 627 u64 block = 0; 628 629 if (tf->flags & ATA_TFLAG_LBA) { 630 if (tf->flags & ATA_TFLAG_LBA48) { 631 block |= (u64)tf->hob_lbah << 40; 632 block |= (u64)tf->hob_lbam << 32; 633 block |= (u64)tf->hob_lbal << 24; 634 } else 635 block |= (tf->device & 0xf) << 24; 636 637 block |= tf->lbah << 16; 638 block |= tf->lbam << 8; 639 block |= tf->lbal; 640 } else { 641 u32 cyl, head, sect; 642 643 cyl = tf->lbam | (tf->lbah << 8); 644 head = tf->device & 0xf; 645 sect = tf->lbal; 646 647 if (!sect) { 648 ata_dev_warn(dev, 649 "device reported invalid CHS sector 0\n"); 650 return U64_MAX; 651 } 652 653 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 654 } 655 656 return block; 657 } 658 659 /** 660 * ata_build_rw_tf - Build ATA taskfile for given read/write request 661 * @tf: Target ATA taskfile 662 * @dev: ATA device @tf belongs to 663 * @block: Block address 664 * @n_block: Number of blocks 665 * @tf_flags: RW/FUA etc... 666 * @tag: tag 667 * @class: IO priority class 668 * 669 * LOCKING: 670 * None. 671 * 672 * Build ATA taskfile @tf for read/write request described by 673 * @block, @n_block, @tf_flags and @tag on @dev. 674 * 675 * RETURNS: 676 * 677 * 0 on success, -ERANGE if the request is too large for @dev, 678 * -EINVAL if the request is invalid. 679 */ 680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 681 u64 block, u32 n_block, unsigned int tf_flags, 682 unsigned int tag, int class) 683 { 684 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 685 tf->flags |= tf_flags; 686 687 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { 688 /* yay, NCQ */ 689 if (!lba_48_ok(block, n_block)) 690 return -ERANGE; 691 692 tf->protocol = ATA_PROT_NCQ; 693 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 694 695 if (tf->flags & ATA_TFLAG_WRITE) 696 tf->command = ATA_CMD_FPDMA_WRITE; 697 else 698 tf->command = ATA_CMD_FPDMA_READ; 699 700 tf->nsect = tag << 3; 701 tf->hob_feature = (n_block >> 8) & 0xff; 702 tf->feature = n_block & 0xff; 703 704 tf->hob_lbah = (block >> 40) & 0xff; 705 tf->hob_lbam = (block >> 32) & 0xff; 706 tf->hob_lbal = (block >> 24) & 0xff; 707 tf->lbah = (block >> 16) & 0xff; 708 tf->lbam = (block >> 8) & 0xff; 709 tf->lbal = block & 0xff; 710 711 tf->device = ATA_LBA; 712 if (tf->flags & ATA_TFLAG_FUA) 713 tf->device |= 1 << 7; 714 715 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE && 716 class == IOPRIO_CLASS_RT) 717 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 718 } else if (dev->flags & ATA_DFLAG_LBA) { 719 tf->flags |= ATA_TFLAG_LBA; 720 721 if (lba_28_ok(block, n_block)) { 722 /* use LBA28 */ 723 tf->device |= (block >> 24) & 0xf; 724 } else if (lba_48_ok(block, n_block)) { 725 if (!(dev->flags & ATA_DFLAG_LBA48)) 726 return -ERANGE; 727 728 /* use LBA48 */ 729 tf->flags |= ATA_TFLAG_LBA48; 730 731 tf->hob_nsect = (n_block >> 8) & 0xff; 732 733 tf->hob_lbah = (block >> 40) & 0xff; 734 tf->hob_lbam = (block >> 32) & 0xff; 735 tf->hob_lbal = (block >> 24) & 0xff; 736 } else 737 /* request too large even for LBA48 */ 738 return -ERANGE; 739 740 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 741 return -EINVAL; 742 743 tf->nsect = n_block & 0xff; 744 745 tf->lbah = (block >> 16) & 0xff; 746 tf->lbam = (block >> 8) & 0xff; 747 tf->lbal = block & 0xff; 748 749 tf->device |= ATA_LBA; 750 } else { 751 /* CHS */ 752 u32 sect, head, cyl, track; 753 754 /* The request -may- be too large for CHS addressing. */ 755 if (!lba_28_ok(block, n_block)) 756 return -ERANGE; 757 758 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 759 return -EINVAL; 760 761 /* Convert LBA to CHS */ 762 track = (u32)block / dev->sectors; 763 cyl = track / dev->heads; 764 head = track % dev->heads; 765 sect = (u32)block % dev->sectors + 1; 766 767 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 768 (u32)block, track, cyl, head, sect); 769 770 /* Check whether the converted CHS can fit. 771 Cylinder: 0-65535 772 Head: 0-15 773 Sector: 1-255*/ 774 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 775 return -ERANGE; 776 777 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 778 tf->lbal = sect; 779 tf->lbam = cyl; 780 tf->lbah = cyl >> 8; 781 tf->device |= head; 782 } 783 784 return 0; 785 } 786 787 /** 788 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 789 * @pio_mask: pio_mask 790 * @mwdma_mask: mwdma_mask 791 * @udma_mask: udma_mask 792 * 793 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 794 * unsigned int xfer_mask. 795 * 796 * LOCKING: 797 * None. 798 * 799 * RETURNS: 800 * Packed xfer_mask. 801 */ 802 unsigned long ata_pack_xfermask(unsigned long pio_mask, 803 unsigned long mwdma_mask, 804 unsigned long udma_mask) 805 { 806 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 807 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 808 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 809 } 810 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 811 812 /** 813 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 814 * @xfer_mask: xfer_mask to unpack 815 * @pio_mask: resulting pio_mask 816 * @mwdma_mask: resulting mwdma_mask 817 * @udma_mask: resulting udma_mask 818 * 819 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 820 * Any NULL destination masks will be ignored. 821 */ 822 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 823 unsigned long *mwdma_mask, unsigned long *udma_mask) 824 { 825 if (pio_mask) 826 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 827 if (mwdma_mask) 828 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 829 if (udma_mask) 830 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 831 } 832 833 static const struct ata_xfer_ent { 834 int shift, bits; 835 u8 base; 836 } ata_xfer_tbl[] = { 837 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 838 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 839 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 840 { -1, }, 841 }; 842 843 /** 844 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 845 * @xfer_mask: xfer_mask of interest 846 * 847 * Return matching XFER_* value for @xfer_mask. Only the highest 848 * bit of @xfer_mask is considered. 849 * 850 * LOCKING: 851 * None. 852 * 853 * RETURNS: 854 * Matching XFER_* value, 0xff if no match found. 855 */ 856 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 857 { 858 int highbit = fls(xfer_mask) - 1; 859 const struct ata_xfer_ent *ent; 860 861 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 862 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 863 return ent->base + highbit - ent->shift; 864 return 0xff; 865 } 866 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 867 868 /** 869 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 870 * @xfer_mode: XFER_* of interest 871 * 872 * Return matching xfer_mask for @xfer_mode. 873 * 874 * LOCKING: 875 * None. 876 * 877 * RETURNS: 878 * Matching xfer_mask, 0 if no match found. 879 */ 880 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 881 { 882 const struct ata_xfer_ent *ent; 883 884 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 885 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 886 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 887 & ~((1 << ent->shift) - 1); 888 return 0; 889 } 890 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 891 892 /** 893 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 894 * @xfer_mode: XFER_* of interest 895 * 896 * Return matching xfer_shift for @xfer_mode. 897 * 898 * LOCKING: 899 * None. 900 * 901 * RETURNS: 902 * Matching xfer_shift, -1 if no match found. 903 */ 904 int ata_xfer_mode2shift(unsigned long xfer_mode) 905 { 906 const struct ata_xfer_ent *ent; 907 908 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 909 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 910 return ent->shift; 911 return -1; 912 } 913 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 914 915 /** 916 * ata_mode_string - convert xfer_mask to string 917 * @xfer_mask: mask of bits supported; only highest bit counts. 918 * 919 * Determine string which represents the highest speed 920 * (highest bit in @modemask). 921 * 922 * LOCKING: 923 * None. 924 * 925 * RETURNS: 926 * Constant C string representing highest speed listed in 927 * @mode_mask, or the constant C string "<n/a>". 928 */ 929 const char *ata_mode_string(unsigned long xfer_mask) 930 { 931 static const char * const xfer_mode_str[] = { 932 "PIO0", 933 "PIO1", 934 "PIO2", 935 "PIO3", 936 "PIO4", 937 "PIO5", 938 "PIO6", 939 "MWDMA0", 940 "MWDMA1", 941 "MWDMA2", 942 "MWDMA3", 943 "MWDMA4", 944 "UDMA/16", 945 "UDMA/25", 946 "UDMA/33", 947 "UDMA/44", 948 "UDMA/66", 949 "UDMA/100", 950 "UDMA/133", 951 "UDMA7", 952 }; 953 int highbit; 954 955 highbit = fls(xfer_mask) - 1; 956 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 957 return xfer_mode_str[highbit]; 958 return "<n/a>"; 959 } 960 EXPORT_SYMBOL_GPL(ata_mode_string); 961 962 const char *sata_spd_string(unsigned int spd) 963 { 964 static const char * const spd_str[] = { 965 "1.5 Gbps", 966 "3.0 Gbps", 967 "6.0 Gbps", 968 }; 969 970 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 971 return "<unknown>"; 972 return spd_str[spd - 1]; 973 } 974 975 /** 976 * ata_dev_classify - determine device type based on ATA-spec signature 977 * @tf: ATA taskfile register set for device to be identified 978 * 979 * Determine from taskfile register contents whether a device is 980 * ATA or ATAPI, as per "Signature and persistence" section 981 * of ATA/PI spec (volume 1, sect 5.14). 982 * 983 * LOCKING: 984 * None. 985 * 986 * RETURNS: 987 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 988 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 989 */ 990 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 991 { 992 /* Apple's open source Darwin code hints that some devices only 993 * put a proper signature into the LBA mid/high registers, 994 * So, we only check those. It's sufficient for uniqueness. 995 * 996 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 997 * signatures for ATA and ATAPI devices attached on SerialATA, 998 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 999 * spec has never mentioned about using different signatures 1000 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1001 * Multiplier specification began to use 0x69/0x96 to identify 1002 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1003 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1004 * 0x69/0x96 shortly and described them as reserved for 1005 * SerialATA. 1006 * 1007 * We follow the current spec and consider that 0x69/0x96 1008 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1009 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1010 * SEMB signature. This is worked around in 1011 * ata_dev_read_id(). 1012 */ 1013 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1014 DPRINTK("found ATA device by sig\n"); 1015 return ATA_DEV_ATA; 1016 } 1017 1018 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1019 DPRINTK("found ATAPI device by sig\n"); 1020 return ATA_DEV_ATAPI; 1021 } 1022 1023 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1024 DPRINTK("found PMP device by sig\n"); 1025 return ATA_DEV_PMP; 1026 } 1027 1028 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1029 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1030 return ATA_DEV_SEMB; 1031 } 1032 1033 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1034 DPRINTK("found ZAC device by sig\n"); 1035 return ATA_DEV_ZAC; 1036 } 1037 1038 DPRINTK("unknown device\n"); 1039 return ATA_DEV_UNKNOWN; 1040 } 1041 EXPORT_SYMBOL_GPL(ata_dev_classify); 1042 1043 /** 1044 * ata_id_string - Convert IDENTIFY DEVICE page into string 1045 * @id: IDENTIFY DEVICE results we will examine 1046 * @s: string into which data is output 1047 * @ofs: offset into identify device page 1048 * @len: length of string to return. must be an even number. 1049 * 1050 * The strings in the IDENTIFY DEVICE page are broken up into 1051 * 16-bit chunks. Run through the string, and output each 1052 * 8-bit chunk linearly, regardless of platform. 1053 * 1054 * LOCKING: 1055 * caller. 1056 */ 1057 1058 void ata_id_string(const u16 *id, unsigned char *s, 1059 unsigned int ofs, unsigned int len) 1060 { 1061 unsigned int c; 1062 1063 BUG_ON(len & 1); 1064 1065 while (len > 0) { 1066 c = id[ofs] >> 8; 1067 *s = c; 1068 s++; 1069 1070 c = id[ofs] & 0xff; 1071 *s = c; 1072 s++; 1073 1074 ofs++; 1075 len -= 2; 1076 } 1077 } 1078 EXPORT_SYMBOL_GPL(ata_id_string); 1079 1080 /** 1081 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1082 * @id: IDENTIFY DEVICE results we will examine 1083 * @s: string into which data is output 1084 * @ofs: offset into identify device page 1085 * @len: length of string to return. must be an odd number. 1086 * 1087 * This function is identical to ata_id_string except that it 1088 * trims trailing spaces and terminates the resulting string with 1089 * null. @len must be actual maximum length (even number) + 1. 1090 * 1091 * LOCKING: 1092 * caller. 1093 */ 1094 void ata_id_c_string(const u16 *id, unsigned char *s, 1095 unsigned int ofs, unsigned int len) 1096 { 1097 unsigned char *p; 1098 1099 ata_id_string(id, s, ofs, len - 1); 1100 1101 p = s + strnlen(s, len - 1); 1102 while (p > s && p[-1] == ' ') 1103 p--; 1104 *p = '\0'; 1105 } 1106 EXPORT_SYMBOL_GPL(ata_id_c_string); 1107 1108 static u64 ata_id_n_sectors(const u16 *id) 1109 { 1110 if (ata_id_has_lba(id)) { 1111 if (ata_id_has_lba48(id)) 1112 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1113 else 1114 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1115 } else { 1116 if (ata_id_current_chs_valid(id)) 1117 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1118 id[ATA_ID_CUR_SECTORS]; 1119 else 1120 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1121 id[ATA_ID_SECTORS]; 1122 } 1123 } 1124 1125 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1126 { 1127 u64 sectors = 0; 1128 1129 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1130 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1131 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1132 sectors |= (tf->lbah & 0xff) << 16; 1133 sectors |= (tf->lbam & 0xff) << 8; 1134 sectors |= (tf->lbal & 0xff); 1135 1136 return sectors; 1137 } 1138 1139 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1140 { 1141 u64 sectors = 0; 1142 1143 sectors |= (tf->device & 0x0f) << 24; 1144 sectors |= (tf->lbah & 0xff) << 16; 1145 sectors |= (tf->lbam & 0xff) << 8; 1146 sectors |= (tf->lbal & 0xff); 1147 1148 return sectors; 1149 } 1150 1151 /** 1152 * ata_read_native_max_address - Read native max address 1153 * @dev: target device 1154 * @max_sectors: out parameter for the result native max address 1155 * 1156 * Perform an LBA48 or LBA28 native size query upon the device in 1157 * question. 1158 * 1159 * RETURNS: 1160 * 0 on success, -EACCES if command is aborted by the drive. 1161 * -EIO on other errors. 1162 */ 1163 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1164 { 1165 unsigned int err_mask; 1166 struct ata_taskfile tf; 1167 int lba48 = ata_id_has_lba48(dev->id); 1168 1169 ata_tf_init(dev, &tf); 1170 1171 /* always clear all address registers */ 1172 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1173 1174 if (lba48) { 1175 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1176 tf.flags |= ATA_TFLAG_LBA48; 1177 } else 1178 tf.command = ATA_CMD_READ_NATIVE_MAX; 1179 1180 tf.protocol = ATA_PROT_NODATA; 1181 tf.device |= ATA_LBA; 1182 1183 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1184 if (err_mask) { 1185 ata_dev_warn(dev, 1186 "failed to read native max address (err_mask=0x%x)\n", 1187 err_mask); 1188 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1189 return -EACCES; 1190 return -EIO; 1191 } 1192 1193 if (lba48) 1194 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1195 else 1196 *max_sectors = ata_tf_to_lba(&tf) + 1; 1197 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1198 (*max_sectors)--; 1199 return 0; 1200 } 1201 1202 /** 1203 * ata_set_max_sectors - Set max sectors 1204 * @dev: target device 1205 * @new_sectors: new max sectors value to set for the device 1206 * 1207 * Set max sectors of @dev to @new_sectors. 1208 * 1209 * RETURNS: 1210 * 0 on success, -EACCES if command is aborted or denied (due to 1211 * previous non-volatile SET_MAX) by the drive. -EIO on other 1212 * errors. 1213 */ 1214 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1215 { 1216 unsigned int err_mask; 1217 struct ata_taskfile tf; 1218 int lba48 = ata_id_has_lba48(dev->id); 1219 1220 new_sectors--; 1221 1222 ata_tf_init(dev, &tf); 1223 1224 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1225 1226 if (lba48) { 1227 tf.command = ATA_CMD_SET_MAX_EXT; 1228 tf.flags |= ATA_TFLAG_LBA48; 1229 1230 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1231 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1232 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1233 } else { 1234 tf.command = ATA_CMD_SET_MAX; 1235 1236 tf.device |= (new_sectors >> 24) & 0xf; 1237 } 1238 1239 tf.protocol = ATA_PROT_NODATA; 1240 tf.device |= ATA_LBA; 1241 1242 tf.lbal = (new_sectors >> 0) & 0xff; 1243 tf.lbam = (new_sectors >> 8) & 0xff; 1244 tf.lbah = (new_sectors >> 16) & 0xff; 1245 1246 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1247 if (err_mask) { 1248 ata_dev_warn(dev, 1249 "failed to set max address (err_mask=0x%x)\n", 1250 err_mask); 1251 if (err_mask == AC_ERR_DEV && 1252 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1253 return -EACCES; 1254 return -EIO; 1255 } 1256 1257 return 0; 1258 } 1259 1260 /** 1261 * ata_hpa_resize - Resize a device with an HPA set 1262 * @dev: Device to resize 1263 * 1264 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1265 * it if required to the full size of the media. The caller must check 1266 * the drive has the HPA feature set enabled. 1267 * 1268 * RETURNS: 1269 * 0 on success, -errno on failure. 1270 */ 1271 static int ata_hpa_resize(struct ata_device *dev) 1272 { 1273 bool print_info = ata_dev_print_info(dev); 1274 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1275 u64 sectors = ata_id_n_sectors(dev->id); 1276 u64 native_sectors; 1277 int rc; 1278 1279 /* do we need to do it? */ 1280 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1281 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1282 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1283 return 0; 1284 1285 /* read native max address */ 1286 rc = ata_read_native_max_address(dev, &native_sectors); 1287 if (rc) { 1288 /* If device aborted the command or HPA isn't going to 1289 * be unlocked, skip HPA resizing. 1290 */ 1291 if (rc == -EACCES || !unlock_hpa) { 1292 ata_dev_warn(dev, 1293 "HPA support seems broken, skipping HPA handling\n"); 1294 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1295 1296 /* we can continue if device aborted the command */ 1297 if (rc == -EACCES) 1298 rc = 0; 1299 } 1300 1301 return rc; 1302 } 1303 dev->n_native_sectors = native_sectors; 1304 1305 /* nothing to do? */ 1306 if (native_sectors <= sectors || !unlock_hpa) { 1307 if (!print_info || native_sectors == sectors) 1308 return 0; 1309 1310 if (native_sectors > sectors) 1311 ata_dev_info(dev, 1312 "HPA detected: current %llu, native %llu\n", 1313 (unsigned long long)sectors, 1314 (unsigned long long)native_sectors); 1315 else if (native_sectors < sectors) 1316 ata_dev_warn(dev, 1317 "native sectors (%llu) is smaller than sectors (%llu)\n", 1318 (unsigned long long)native_sectors, 1319 (unsigned long long)sectors); 1320 return 0; 1321 } 1322 1323 /* let's unlock HPA */ 1324 rc = ata_set_max_sectors(dev, native_sectors); 1325 if (rc == -EACCES) { 1326 /* if device aborted the command, skip HPA resizing */ 1327 ata_dev_warn(dev, 1328 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1329 (unsigned long long)sectors, 1330 (unsigned long long)native_sectors); 1331 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1332 return 0; 1333 } else if (rc) 1334 return rc; 1335 1336 /* re-read IDENTIFY data */ 1337 rc = ata_dev_reread_id(dev, 0); 1338 if (rc) { 1339 ata_dev_err(dev, 1340 "failed to re-read IDENTIFY data after HPA resizing\n"); 1341 return rc; 1342 } 1343 1344 if (print_info) { 1345 u64 new_sectors = ata_id_n_sectors(dev->id); 1346 ata_dev_info(dev, 1347 "HPA unlocked: %llu -> %llu, native %llu\n", 1348 (unsigned long long)sectors, 1349 (unsigned long long)new_sectors, 1350 (unsigned long long)native_sectors); 1351 } 1352 1353 return 0; 1354 } 1355 1356 /** 1357 * ata_dump_id - IDENTIFY DEVICE info debugging output 1358 * @id: IDENTIFY DEVICE page to dump 1359 * 1360 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1361 * page. 1362 * 1363 * LOCKING: 1364 * caller. 1365 */ 1366 1367 static inline void ata_dump_id(const u16 *id) 1368 { 1369 DPRINTK("49==0x%04x " 1370 "53==0x%04x " 1371 "63==0x%04x " 1372 "64==0x%04x " 1373 "75==0x%04x \n", 1374 id[49], 1375 id[53], 1376 id[63], 1377 id[64], 1378 id[75]); 1379 DPRINTK("80==0x%04x " 1380 "81==0x%04x " 1381 "82==0x%04x " 1382 "83==0x%04x " 1383 "84==0x%04x \n", 1384 id[80], 1385 id[81], 1386 id[82], 1387 id[83], 1388 id[84]); 1389 DPRINTK("88==0x%04x " 1390 "93==0x%04x\n", 1391 id[88], 1392 id[93]); 1393 } 1394 1395 /** 1396 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1397 * @id: IDENTIFY data to compute xfer mask from 1398 * 1399 * Compute the xfermask for this device. This is not as trivial 1400 * as it seems if we must consider early devices correctly. 1401 * 1402 * FIXME: pre IDE drive timing (do we care ?). 1403 * 1404 * LOCKING: 1405 * None. 1406 * 1407 * RETURNS: 1408 * Computed xfermask 1409 */ 1410 unsigned long ata_id_xfermask(const u16 *id) 1411 { 1412 unsigned long pio_mask, mwdma_mask, udma_mask; 1413 1414 /* Usual case. Word 53 indicates word 64 is valid */ 1415 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1416 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1417 pio_mask <<= 3; 1418 pio_mask |= 0x7; 1419 } else { 1420 /* If word 64 isn't valid then Word 51 high byte holds 1421 * the PIO timing number for the maximum. Turn it into 1422 * a mask. 1423 */ 1424 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1425 if (mode < 5) /* Valid PIO range */ 1426 pio_mask = (2 << mode) - 1; 1427 else 1428 pio_mask = 1; 1429 1430 /* But wait.. there's more. Design your standards by 1431 * committee and you too can get a free iordy field to 1432 * process. However its the speeds not the modes that 1433 * are supported... Note drivers using the timing API 1434 * will get this right anyway 1435 */ 1436 } 1437 1438 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1439 1440 if (ata_id_is_cfa(id)) { 1441 /* 1442 * Process compact flash extended modes 1443 */ 1444 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1445 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1446 1447 if (pio) 1448 pio_mask |= (1 << 5); 1449 if (pio > 1) 1450 pio_mask |= (1 << 6); 1451 if (dma) 1452 mwdma_mask |= (1 << 3); 1453 if (dma > 1) 1454 mwdma_mask |= (1 << 4); 1455 } 1456 1457 udma_mask = 0; 1458 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1459 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1460 1461 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1462 } 1463 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1464 1465 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1466 { 1467 struct completion *waiting = qc->private_data; 1468 1469 complete(waiting); 1470 } 1471 1472 /** 1473 * ata_exec_internal_sg - execute libata internal command 1474 * @dev: Device to which the command is sent 1475 * @tf: Taskfile registers for the command and the result 1476 * @cdb: CDB for packet command 1477 * @dma_dir: Data transfer direction of the command 1478 * @sgl: sg list for the data buffer of the command 1479 * @n_elem: Number of sg entries 1480 * @timeout: Timeout in msecs (0 for default) 1481 * 1482 * Executes libata internal command with timeout. @tf contains 1483 * command on entry and result on return. Timeout and error 1484 * conditions are reported via return value. No recovery action 1485 * is taken after a command times out. It's caller's duty to 1486 * clean up after timeout. 1487 * 1488 * LOCKING: 1489 * None. Should be called with kernel context, might sleep. 1490 * 1491 * RETURNS: 1492 * Zero on success, AC_ERR_* mask on failure 1493 */ 1494 unsigned ata_exec_internal_sg(struct ata_device *dev, 1495 struct ata_taskfile *tf, const u8 *cdb, 1496 int dma_dir, struct scatterlist *sgl, 1497 unsigned int n_elem, unsigned long timeout) 1498 { 1499 struct ata_link *link = dev->link; 1500 struct ata_port *ap = link->ap; 1501 u8 command = tf->command; 1502 int auto_timeout = 0; 1503 struct ata_queued_cmd *qc; 1504 unsigned int preempted_tag; 1505 u32 preempted_sactive; 1506 u64 preempted_qc_active; 1507 int preempted_nr_active_links; 1508 DECLARE_COMPLETION_ONSTACK(wait); 1509 unsigned long flags; 1510 unsigned int err_mask; 1511 int rc; 1512 1513 spin_lock_irqsave(ap->lock, flags); 1514 1515 /* no internal command while frozen */ 1516 if (ap->pflags & ATA_PFLAG_FROZEN) { 1517 spin_unlock_irqrestore(ap->lock, flags); 1518 return AC_ERR_SYSTEM; 1519 } 1520 1521 /* initialize internal qc */ 1522 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1523 1524 qc->tag = ATA_TAG_INTERNAL; 1525 qc->hw_tag = 0; 1526 qc->scsicmd = NULL; 1527 qc->ap = ap; 1528 qc->dev = dev; 1529 ata_qc_reinit(qc); 1530 1531 preempted_tag = link->active_tag; 1532 preempted_sactive = link->sactive; 1533 preempted_qc_active = ap->qc_active; 1534 preempted_nr_active_links = ap->nr_active_links; 1535 link->active_tag = ATA_TAG_POISON; 1536 link->sactive = 0; 1537 ap->qc_active = 0; 1538 ap->nr_active_links = 0; 1539 1540 /* prepare & issue qc */ 1541 qc->tf = *tf; 1542 if (cdb) 1543 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1544 1545 /* some SATA bridges need us to indicate data xfer direction */ 1546 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1547 dma_dir == DMA_FROM_DEVICE) 1548 qc->tf.feature |= ATAPI_DMADIR; 1549 1550 qc->flags |= ATA_QCFLAG_RESULT_TF; 1551 qc->dma_dir = dma_dir; 1552 if (dma_dir != DMA_NONE) { 1553 unsigned int i, buflen = 0; 1554 struct scatterlist *sg; 1555 1556 for_each_sg(sgl, sg, n_elem, i) 1557 buflen += sg->length; 1558 1559 ata_sg_init(qc, sgl, n_elem); 1560 qc->nbytes = buflen; 1561 } 1562 1563 qc->private_data = &wait; 1564 qc->complete_fn = ata_qc_complete_internal; 1565 1566 ata_qc_issue(qc); 1567 1568 spin_unlock_irqrestore(ap->lock, flags); 1569 1570 if (!timeout) { 1571 if (ata_probe_timeout) 1572 timeout = ata_probe_timeout * 1000; 1573 else { 1574 timeout = ata_internal_cmd_timeout(dev, command); 1575 auto_timeout = 1; 1576 } 1577 } 1578 1579 if (ap->ops->error_handler) 1580 ata_eh_release(ap); 1581 1582 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1583 1584 if (ap->ops->error_handler) 1585 ata_eh_acquire(ap); 1586 1587 ata_sff_flush_pio_task(ap); 1588 1589 if (!rc) { 1590 spin_lock_irqsave(ap->lock, flags); 1591 1592 /* We're racing with irq here. If we lose, the 1593 * following test prevents us from completing the qc 1594 * twice. If we win, the port is frozen and will be 1595 * cleaned up by ->post_internal_cmd(). 1596 */ 1597 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1598 qc->err_mask |= AC_ERR_TIMEOUT; 1599 1600 if (ap->ops->error_handler) 1601 ata_port_freeze(ap); 1602 else 1603 ata_qc_complete(qc); 1604 1605 if (ata_msg_warn(ap)) 1606 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1607 command); 1608 } 1609 1610 spin_unlock_irqrestore(ap->lock, flags); 1611 } 1612 1613 /* do post_internal_cmd */ 1614 if (ap->ops->post_internal_cmd) 1615 ap->ops->post_internal_cmd(qc); 1616 1617 /* perform minimal error analysis */ 1618 if (qc->flags & ATA_QCFLAG_FAILED) { 1619 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1620 qc->err_mask |= AC_ERR_DEV; 1621 1622 if (!qc->err_mask) 1623 qc->err_mask |= AC_ERR_OTHER; 1624 1625 if (qc->err_mask & ~AC_ERR_OTHER) 1626 qc->err_mask &= ~AC_ERR_OTHER; 1627 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1628 qc->result_tf.command |= ATA_SENSE; 1629 } 1630 1631 /* finish up */ 1632 spin_lock_irqsave(ap->lock, flags); 1633 1634 *tf = qc->result_tf; 1635 err_mask = qc->err_mask; 1636 1637 ata_qc_free(qc); 1638 link->active_tag = preempted_tag; 1639 link->sactive = preempted_sactive; 1640 ap->qc_active = preempted_qc_active; 1641 ap->nr_active_links = preempted_nr_active_links; 1642 1643 spin_unlock_irqrestore(ap->lock, flags); 1644 1645 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1646 ata_internal_cmd_timed_out(dev, command); 1647 1648 return err_mask; 1649 } 1650 1651 /** 1652 * ata_exec_internal - execute libata internal command 1653 * @dev: Device to which the command is sent 1654 * @tf: Taskfile registers for the command and the result 1655 * @cdb: CDB for packet command 1656 * @dma_dir: Data transfer direction of the command 1657 * @buf: Data buffer of the command 1658 * @buflen: Length of data buffer 1659 * @timeout: Timeout in msecs (0 for default) 1660 * 1661 * Wrapper around ata_exec_internal_sg() which takes simple 1662 * buffer instead of sg list. 1663 * 1664 * LOCKING: 1665 * None. Should be called with kernel context, might sleep. 1666 * 1667 * RETURNS: 1668 * Zero on success, AC_ERR_* mask on failure 1669 */ 1670 unsigned ata_exec_internal(struct ata_device *dev, 1671 struct ata_taskfile *tf, const u8 *cdb, 1672 int dma_dir, void *buf, unsigned int buflen, 1673 unsigned long timeout) 1674 { 1675 struct scatterlist *psg = NULL, sg; 1676 unsigned int n_elem = 0; 1677 1678 if (dma_dir != DMA_NONE) { 1679 WARN_ON(!buf); 1680 sg_init_one(&sg, buf, buflen); 1681 psg = &sg; 1682 n_elem++; 1683 } 1684 1685 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1686 timeout); 1687 } 1688 1689 /** 1690 * ata_pio_need_iordy - check if iordy needed 1691 * @adev: ATA device 1692 * 1693 * Check if the current speed of the device requires IORDY. Used 1694 * by various controllers for chip configuration. 1695 */ 1696 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1697 { 1698 /* Don't set IORDY if we're preparing for reset. IORDY may 1699 * lead to controller lock up on certain controllers if the 1700 * port is not occupied. See bko#11703 for details. 1701 */ 1702 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1703 return 0; 1704 /* Controller doesn't support IORDY. Probably a pointless 1705 * check as the caller should know this. 1706 */ 1707 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1708 return 0; 1709 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1710 if (ata_id_is_cfa(adev->id) 1711 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1712 return 0; 1713 /* PIO3 and higher it is mandatory */ 1714 if (adev->pio_mode > XFER_PIO_2) 1715 return 1; 1716 /* We turn it on when possible */ 1717 if (ata_id_has_iordy(adev->id)) 1718 return 1; 1719 return 0; 1720 } 1721 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1722 1723 /** 1724 * ata_pio_mask_no_iordy - Return the non IORDY mask 1725 * @adev: ATA device 1726 * 1727 * Compute the highest mode possible if we are not using iordy. Return 1728 * -1 if no iordy mode is available. 1729 */ 1730 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1731 { 1732 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1733 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1734 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1735 /* Is the speed faster than the drive allows non IORDY ? */ 1736 if (pio) { 1737 /* This is cycle times not frequency - watch the logic! */ 1738 if (pio > 240) /* PIO2 is 240nS per cycle */ 1739 return 3 << ATA_SHIFT_PIO; 1740 return 7 << ATA_SHIFT_PIO; 1741 } 1742 } 1743 return 3 << ATA_SHIFT_PIO; 1744 } 1745 1746 /** 1747 * ata_do_dev_read_id - default ID read method 1748 * @dev: device 1749 * @tf: proposed taskfile 1750 * @id: data buffer 1751 * 1752 * Issue the identify taskfile and hand back the buffer containing 1753 * identify data. For some RAID controllers and for pre ATA devices 1754 * this function is wrapped or replaced by the driver 1755 */ 1756 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1757 struct ata_taskfile *tf, u16 *id) 1758 { 1759 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1760 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1761 } 1762 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1763 1764 /** 1765 * ata_dev_read_id - Read ID data from the specified device 1766 * @dev: target device 1767 * @p_class: pointer to class of the target device (may be changed) 1768 * @flags: ATA_READID_* flags 1769 * @id: buffer to read IDENTIFY data into 1770 * 1771 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1772 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1773 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1774 * for pre-ATA4 drives. 1775 * 1776 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1777 * now we abort if we hit that case. 1778 * 1779 * LOCKING: 1780 * Kernel thread context (may sleep) 1781 * 1782 * RETURNS: 1783 * 0 on success, -errno otherwise. 1784 */ 1785 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1786 unsigned int flags, u16 *id) 1787 { 1788 struct ata_port *ap = dev->link->ap; 1789 unsigned int class = *p_class; 1790 struct ata_taskfile tf; 1791 unsigned int err_mask = 0; 1792 const char *reason; 1793 bool is_semb = class == ATA_DEV_SEMB; 1794 int may_fallback = 1, tried_spinup = 0; 1795 int rc; 1796 1797 if (ata_msg_ctl(ap)) 1798 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1799 1800 retry: 1801 ata_tf_init(dev, &tf); 1802 1803 switch (class) { 1804 case ATA_DEV_SEMB: 1805 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1806 fallthrough; 1807 case ATA_DEV_ATA: 1808 case ATA_DEV_ZAC: 1809 tf.command = ATA_CMD_ID_ATA; 1810 break; 1811 case ATA_DEV_ATAPI: 1812 tf.command = ATA_CMD_ID_ATAPI; 1813 break; 1814 default: 1815 rc = -ENODEV; 1816 reason = "unsupported class"; 1817 goto err_out; 1818 } 1819 1820 tf.protocol = ATA_PROT_PIO; 1821 1822 /* Some devices choke if TF registers contain garbage. Make 1823 * sure those are properly initialized. 1824 */ 1825 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1826 1827 /* Device presence detection is unreliable on some 1828 * controllers. Always poll IDENTIFY if available. 1829 */ 1830 tf.flags |= ATA_TFLAG_POLLING; 1831 1832 if (ap->ops->read_id) 1833 err_mask = ap->ops->read_id(dev, &tf, id); 1834 else 1835 err_mask = ata_do_dev_read_id(dev, &tf, id); 1836 1837 if (err_mask) { 1838 if (err_mask & AC_ERR_NODEV_HINT) { 1839 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1840 return -ENOENT; 1841 } 1842 1843 if (is_semb) { 1844 ata_dev_info(dev, 1845 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1846 /* SEMB is not supported yet */ 1847 *p_class = ATA_DEV_SEMB_UNSUP; 1848 return 0; 1849 } 1850 1851 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1852 /* Device or controller might have reported 1853 * the wrong device class. Give a shot at the 1854 * other IDENTIFY if the current one is 1855 * aborted by the device. 1856 */ 1857 if (may_fallback) { 1858 may_fallback = 0; 1859 1860 if (class == ATA_DEV_ATA) 1861 class = ATA_DEV_ATAPI; 1862 else 1863 class = ATA_DEV_ATA; 1864 goto retry; 1865 } 1866 1867 /* Control reaches here iff the device aborted 1868 * both flavors of IDENTIFYs which happens 1869 * sometimes with phantom devices. 1870 */ 1871 ata_dev_dbg(dev, 1872 "both IDENTIFYs aborted, assuming NODEV\n"); 1873 return -ENOENT; 1874 } 1875 1876 rc = -EIO; 1877 reason = "I/O error"; 1878 goto err_out; 1879 } 1880 1881 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1882 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1883 "class=%d may_fallback=%d tried_spinup=%d\n", 1884 class, may_fallback, tried_spinup); 1885 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1886 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1887 } 1888 1889 /* Falling back doesn't make sense if ID data was read 1890 * successfully at least once. 1891 */ 1892 may_fallback = 0; 1893 1894 swap_buf_le16(id, ATA_ID_WORDS); 1895 1896 /* sanity check */ 1897 rc = -EINVAL; 1898 reason = "device reports invalid type"; 1899 1900 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1901 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1902 goto err_out; 1903 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1904 ata_id_is_ata(id)) { 1905 ata_dev_dbg(dev, 1906 "host indicates ignore ATA devices, ignored\n"); 1907 return -ENOENT; 1908 } 1909 } else { 1910 if (ata_id_is_ata(id)) 1911 goto err_out; 1912 } 1913 1914 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1915 tried_spinup = 1; 1916 /* 1917 * Drive powered-up in standby mode, and requires a specific 1918 * SET_FEATURES spin-up subcommand before it will accept 1919 * anything other than the original IDENTIFY command. 1920 */ 1921 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1922 if (err_mask && id[2] != 0x738c) { 1923 rc = -EIO; 1924 reason = "SPINUP failed"; 1925 goto err_out; 1926 } 1927 /* 1928 * If the drive initially returned incomplete IDENTIFY info, 1929 * we now must reissue the IDENTIFY command. 1930 */ 1931 if (id[2] == 0x37c8) 1932 goto retry; 1933 } 1934 1935 if ((flags & ATA_READID_POSTRESET) && 1936 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1937 /* 1938 * The exact sequence expected by certain pre-ATA4 drives is: 1939 * SRST RESET 1940 * IDENTIFY (optional in early ATA) 1941 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1942 * anything else.. 1943 * Some drives were very specific about that exact sequence. 1944 * 1945 * Note that ATA4 says lba is mandatory so the second check 1946 * should never trigger. 1947 */ 1948 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1949 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1950 if (err_mask) { 1951 rc = -EIO; 1952 reason = "INIT_DEV_PARAMS failed"; 1953 goto err_out; 1954 } 1955 1956 /* current CHS translation info (id[53-58]) might be 1957 * changed. reread the identify device info. 1958 */ 1959 flags &= ~ATA_READID_POSTRESET; 1960 goto retry; 1961 } 1962 } 1963 1964 *p_class = class; 1965 1966 return 0; 1967 1968 err_out: 1969 if (ata_msg_warn(ap)) 1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1971 reason, err_mask); 1972 return rc; 1973 } 1974 1975 /** 1976 * ata_read_log_page - read a specific log page 1977 * @dev: target device 1978 * @log: log to read 1979 * @page: page to read 1980 * @buf: buffer to store read page 1981 * @sectors: number of sectors to read 1982 * 1983 * Read log page using READ_LOG_EXT command. 1984 * 1985 * LOCKING: 1986 * Kernel thread context (may sleep). 1987 * 1988 * RETURNS: 1989 * 0 on success, AC_ERR_* mask otherwise. 1990 */ 1991 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1992 u8 page, void *buf, unsigned int sectors) 1993 { 1994 unsigned long ap_flags = dev->link->ap->flags; 1995 struct ata_taskfile tf; 1996 unsigned int err_mask; 1997 bool dma = false; 1998 1999 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page); 2000 2001 /* 2002 * Return error without actually issuing the command on controllers 2003 * which e.g. lockup on a read log page. 2004 */ 2005 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2006 return AC_ERR_DEV; 2007 2008 retry: 2009 ata_tf_init(dev, &tf); 2010 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) && 2011 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2012 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2013 tf.protocol = ATA_PROT_DMA; 2014 dma = true; 2015 } else { 2016 tf.command = ATA_CMD_READ_LOG_EXT; 2017 tf.protocol = ATA_PROT_PIO; 2018 dma = false; 2019 } 2020 tf.lbal = log; 2021 tf.lbam = page; 2022 tf.nsect = sectors; 2023 tf.hob_nsect = sectors >> 8; 2024 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2025 2026 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2027 buf, sectors * ATA_SECT_SIZE, 0); 2028 2029 if (err_mask) { 2030 if (dma) { 2031 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2032 goto retry; 2033 } 2034 ata_dev_err(dev, "Read log page 0x%02x failed, Emask 0x%x\n", 2035 (unsigned int)page, err_mask); 2036 } 2037 2038 return err_mask; 2039 } 2040 2041 static bool ata_log_supported(struct ata_device *dev, u8 log) 2042 { 2043 struct ata_port *ap = dev->link->ap; 2044 2045 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2046 return false; 2047 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; 2048 } 2049 2050 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2051 { 2052 struct ata_port *ap = dev->link->ap; 2053 unsigned int err, i; 2054 2055 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2056 ata_dev_warn(dev, "ATA Identify Device Log not supported\n"); 2057 return false; 2058 } 2059 2060 /* 2061 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2062 * supported. 2063 */ 2064 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2065 1); 2066 if (err) 2067 return false; 2068 2069 for (i = 0; i < ap->sector_buf[8]; i++) { 2070 if (ap->sector_buf[9 + i] == page) 2071 return true; 2072 } 2073 2074 return false; 2075 } 2076 2077 static int ata_do_link_spd_horkage(struct ata_device *dev) 2078 { 2079 struct ata_link *plink = ata_dev_phys_link(dev); 2080 u32 target, target_limit; 2081 2082 if (!sata_scr_valid(plink)) 2083 return 0; 2084 2085 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2086 target = 1; 2087 else 2088 return 0; 2089 2090 target_limit = (1 << target) - 1; 2091 2092 /* if already on stricter limit, no need to push further */ 2093 if (plink->sata_spd_limit <= target_limit) 2094 return 0; 2095 2096 plink->sata_spd_limit = target_limit; 2097 2098 /* Request another EH round by returning -EAGAIN if link is 2099 * going faster than the target speed. Forward progress is 2100 * guaranteed by setting sata_spd_limit to target_limit above. 2101 */ 2102 if (plink->sata_spd > target) { 2103 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2104 sata_spd_string(target)); 2105 return -EAGAIN; 2106 } 2107 return 0; 2108 } 2109 2110 static inline u8 ata_dev_knobble(struct ata_device *dev) 2111 { 2112 struct ata_port *ap = dev->link->ap; 2113 2114 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2115 return 0; 2116 2117 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2118 } 2119 2120 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2121 { 2122 struct ata_port *ap = dev->link->ap; 2123 unsigned int err_mask; 2124 2125 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2126 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2127 return; 2128 } 2129 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2130 0, ap->sector_buf, 1); 2131 if (!err_mask) { 2132 u8 *cmds = dev->ncq_send_recv_cmds; 2133 2134 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2135 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2136 2137 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2138 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2139 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2140 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2141 } 2142 } 2143 } 2144 2145 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2146 { 2147 struct ata_port *ap = dev->link->ap; 2148 unsigned int err_mask; 2149 2150 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2151 ata_dev_warn(dev, 2152 "NCQ Send/Recv Log not supported\n"); 2153 return; 2154 } 2155 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2156 0, ap->sector_buf, 1); 2157 if (!err_mask) { 2158 u8 *cmds = dev->ncq_non_data_cmds; 2159 2160 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2161 } 2162 } 2163 2164 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2165 { 2166 struct ata_port *ap = dev->link->ap; 2167 unsigned int err_mask; 2168 2169 err_mask = ata_read_log_page(dev, 2170 ATA_LOG_IDENTIFY_DEVICE, 2171 ATA_LOG_SATA_SETTINGS, 2172 ap->sector_buf, 2173 1); 2174 if (err_mask) 2175 goto not_supported; 2176 2177 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2178 goto not_supported; 2179 2180 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2181 2182 return; 2183 2184 not_supported: 2185 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE; 2186 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2187 } 2188 2189 static bool ata_dev_check_adapter(struct ata_device *dev, 2190 unsigned short vendor_id) 2191 { 2192 struct pci_dev *pcidev = NULL; 2193 struct device *parent_dev = NULL; 2194 2195 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2196 parent_dev = parent_dev->parent) { 2197 if (dev_is_pci(parent_dev)) { 2198 pcidev = to_pci_dev(parent_dev); 2199 if (pcidev->vendor == vendor_id) 2200 return true; 2201 break; 2202 } 2203 } 2204 2205 return false; 2206 } 2207 2208 static int ata_dev_config_ncq(struct ata_device *dev, 2209 char *desc, size_t desc_sz) 2210 { 2211 struct ata_port *ap = dev->link->ap; 2212 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2213 unsigned int err_mask; 2214 char *aa_desc = ""; 2215 2216 if (!ata_id_has_ncq(dev->id)) { 2217 desc[0] = '\0'; 2218 return 0; 2219 } 2220 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2221 return 0; 2222 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2223 snprintf(desc, desc_sz, "NCQ (not used)"); 2224 return 0; 2225 } 2226 2227 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2228 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2229 snprintf(desc, desc_sz, "NCQ (not used)"); 2230 return 0; 2231 } 2232 2233 if (ap->flags & ATA_FLAG_NCQ) { 2234 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2235 dev->flags |= ATA_DFLAG_NCQ; 2236 } 2237 2238 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2239 (ap->flags & ATA_FLAG_FPDMA_AA) && 2240 ata_id_has_fpdma_aa(dev->id)) { 2241 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2242 SATA_FPDMA_AA); 2243 if (err_mask) { 2244 ata_dev_err(dev, 2245 "failed to enable AA (error_mask=0x%x)\n", 2246 err_mask); 2247 if (err_mask != AC_ERR_DEV) { 2248 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2249 return -EIO; 2250 } 2251 } else 2252 aa_desc = ", AA"; 2253 } 2254 2255 if (hdepth >= ddepth) 2256 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2257 else 2258 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2259 ddepth, aa_desc); 2260 2261 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2262 if (ata_id_has_ncq_send_and_recv(dev->id)) 2263 ata_dev_config_ncq_send_recv(dev); 2264 if (ata_id_has_ncq_non_data(dev->id)) 2265 ata_dev_config_ncq_non_data(dev); 2266 if (ata_id_has_ncq_prio(dev->id)) 2267 ata_dev_config_ncq_prio(dev); 2268 } 2269 2270 return 0; 2271 } 2272 2273 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2274 { 2275 unsigned int err_mask; 2276 2277 if (!ata_id_has_sense_reporting(dev->id)) 2278 return; 2279 2280 if (ata_id_sense_reporting_enabled(dev->id)) 2281 return; 2282 2283 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2284 if (err_mask) { 2285 ata_dev_dbg(dev, 2286 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2287 err_mask); 2288 } 2289 } 2290 2291 static void ata_dev_config_zac(struct ata_device *dev) 2292 { 2293 struct ata_port *ap = dev->link->ap; 2294 unsigned int err_mask; 2295 u8 *identify_buf = ap->sector_buf; 2296 2297 dev->zac_zones_optimal_open = U32_MAX; 2298 dev->zac_zones_optimal_nonseq = U32_MAX; 2299 dev->zac_zones_max_open = U32_MAX; 2300 2301 /* 2302 * Always set the 'ZAC' flag for Host-managed devices. 2303 */ 2304 if (dev->class == ATA_DEV_ZAC) 2305 dev->flags |= ATA_DFLAG_ZAC; 2306 else if (ata_id_zoned_cap(dev->id) == 0x01) 2307 /* 2308 * Check for host-aware devices. 2309 */ 2310 dev->flags |= ATA_DFLAG_ZAC; 2311 2312 if (!(dev->flags & ATA_DFLAG_ZAC)) 2313 return; 2314 2315 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2316 ata_dev_warn(dev, 2317 "ATA Zoned Information Log not supported\n"); 2318 return; 2319 } 2320 2321 /* 2322 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2323 */ 2324 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2325 ATA_LOG_ZONED_INFORMATION, 2326 identify_buf, 1); 2327 if (!err_mask) { 2328 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2329 2330 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2331 if ((zoned_cap >> 63)) 2332 dev->zac_zoned_cap = (zoned_cap & 1); 2333 opt_open = get_unaligned_le64(&identify_buf[24]); 2334 if ((opt_open >> 63)) 2335 dev->zac_zones_optimal_open = (u32)opt_open; 2336 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2337 if ((opt_nonseq >> 63)) 2338 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2339 max_open = get_unaligned_le64(&identify_buf[40]); 2340 if ((max_open >> 63)) 2341 dev->zac_zones_max_open = (u32)max_open; 2342 } 2343 } 2344 2345 static void ata_dev_config_trusted(struct ata_device *dev) 2346 { 2347 struct ata_port *ap = dev->link->ap; 2348 u64 trusted_cap; 2349 unsigned int err; 2350 2351 if (!ata_id_has_trusted(dev->id)) 2352 return; 2353 2354 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2355 ata_dev_warn(dev, 2356 "Security Log not supported\n"); 2357 return; 2358 } 2359 2360 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2361 ap->sector_buf, 1); 2362 if (err) 2363 return; 2364 2365 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2366 if (!(trusted_cap & (1ULL << 63))) { 2367 ata_dev_dbg(dev, 2368 "Trusted Computing capability qword not valid!\n"); 2369 return; 2370 } 2371 2372 if (trusted_cap & (1 << 0)) 2373 dev->flags |= ATA_DFLAG_TRUSTED; 2374 } 2375 2376 static int ata_dev_config_lba(struct ata_device *dev) 2377 { 2378 struct ata_port *ap = dev->link->ap; 2379 const u16 *id = dev->id; 2380 const char *lba_desc; 2381 char ncq_desc[24]; 2382 int ret; 2383 2384 dev->flags |= ATA_DFLAG_LBA; 2385 2386 if (ata_id_has_lba48(id)) { 2387 lba_desc = "LBA48"; 2388 dev->flags |= ATA_DFLAG_LBA48; 2389 if (dev->n_sectors >= (1UL << 28) && 2390 ata_id_has_flush_ext(id)) 2391 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2392 } else { 2393 lba_desc = "LBA"; 2394 } 2395 2396 /* config NCQ */ 2397 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2398 2399 /* print device info to dmesg */ 2400 if (ata_msg_drv(ap) && ata_dev_print_info(dev)) 2401 ata_dev_info(dev, 2402 "%llu sectors, multi %u: %s %s\n", 2403 (unsigned long long)dev->n_sectors, 2404 dev->multi_count, lba_desc, ncq_desc); 2405 2406 return ret; 2407 } 2408 2409 static void ata_dev_config_chs(struct ata_device *dev) 2410 { 2411 struct ata_port *ap = dev->link->ap; 2412 const u16 *id = dev->id; 2413 2414 if (ata_id_current_chs_valid(id)) { 2415 /* Current CHS translation is valid. */ 2416 dev->cylinders = id[54]; 2417 dev->heads = id[55]; 2418 dev->sectors = id[56]; 2419 } else { 2420 /* Default translation */ 2421 dev->cylinders = id[1]; 2422 dev->heads = id[3]; 2423 dev->sectors = id[6]; 2424 } 2425 2426 /* print device info to dmesg */ 2427 if (ata_msg_drv(ap) && ata_dev_print_info(dev)) 2428 ata_dev_info(dev, 2429 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2430 (unsigned long long)dev->n_sectors, 2431 dev->multi_count, dev->cylinders, 2432 dev->heads, dev->sectors); 2433 } 2434 2435 static void ata_dev_config_devslp(struct ata_device *dev) 2436 { 2437 u8 *sata_setting = dev->link->ap->sector_buf; 2438 unsigned int err_mask; 2439 int i, j; 2440 2441 /* 2442 * Check device sleep capability. Get DevSlp timing variables 2443 * from SATA Settings page of Identify Device Data Log. 2444 */ 2445 if (!ata_id_has_devslp(dev->id)) 2446 return; 2447 2448 err_mask = ata_read_log_page(dev, 2449 ATA_LOG_IDENTIFY_DEVICE, 2450 ATA_LOG_SATA_SETTINGS, 2451 sata_setting, 1); 2452 if (err_mask) 2453 return; 2454 2455 dev->flags |= ATA_DFLAG_DEVSLP; 2456 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2457 j = ATA_LOG_DEVSLP_OFFSET + i; 2458 dev->devslp_timing[i] = sata_setting[j]; 2459 } 2460 } 2461 2462 static void ata_dev_print_features(struct ata_device *dev) 2463 { 2464 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2465 return; 2466 2467 ata_dev_info(dev, 2468 "Features:%s%s%s%s%s\n", 2469 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2470 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2471 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2472 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2473 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : ""); 2474 } 2475 2476 /** 2477 * ata_dev_configure - Configure the specified ATA/ATAPI device 2478 * @dev: Target device to configure 2479 * 2480 * Configure @dev according to @dev->id. Generic and low-level 2481 * driver specific fixups are also applied. 2482 * 2483 * LOCKING: 2484 * Kernel thread context (may sleep) 2485 * 2486 * RETURNS: 2487 * 0 on success, -errno otherwise 2488 */ 2489 int ata_dev_configure(struct ata_device *dev) 2490 { 2491 struct ata_port *ap = dev->link->ap; 2492 bool print_info = ata_dev_print_info(dev); 2493 const u16 *id = dev->id; 2494 unsigned long xfer_mask; 2495 unsigned int err_mask; 2496 char revbuf[7]; /* XYZ-99\0 */ 2497 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2498 char modelbuf[ATA_ID_PROD_LEN+1]; 2499 int rc; 2500 2501 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2502 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2503 return 0; 2504 } 2505 2506 if (ata_msg_probe(ap)) 2507 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2508 2509 /* set horkage */ 2510 dev->horkage |= ata_dev_blacklisted(dev); 2511 ata_force_horkage(dev); 2512 2513 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2514 ata_dev_info(dev, "unsupported device, disabling\n"); 2515 ata_dev_disable(dev); 2516 return 0; 2517 } 2518 2519 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2520 dev->class == ATA_DEV_ATAPI) { 2521 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2522 atapi_enabled ? "not supported with this driver" 2523 : "disabled"); 2524 ata_dev_disable(dev); 2525 return 0; 2526 } 2527 2528 rc = ata_do_link_spd_horkage(dev); 2529 if (rc) 2530 return rc; 2531 2532 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2533 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2534 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2535 dev->horkage |= ATA_HORKAGE_NOLPM; 2536 2537 if (ap->flags & ATA_FLAG_NO_LPM) 2538 dev->horkage |= ATA_HORKAGE_NOLPM; 2539 2540 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2541 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2542 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2543 } 2544 2545 /* let ACPI work its magic */ 2546 rc = ata_acpi_on_devcfg(dev); 2547 if (rc) 2548 return rc; 2549 2550 /* massage HPA, do it early as it might change IDENTIFY data */ 2551 rc = ata_hpa_resize(dev); 2552 if (rc) 2553 return rc; 2554 2555 /* print device capabilities */ 2556 if (ata_msg_probe(ap)) 2557 ata_dev_dbg(dev, 2558 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2559 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2560 __func__, 2561 id[49], id[82], id[83], id[84], 2562 id[85], id[86], id[87], id[88]); 2563 2564 /* initialize to-be-configured parameters */ 2565 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2566 dev->max_sectors = 0; 2567 dev->cdb_len = 0; 2568 dev->n_sectors = 0; 2569 dev->cylinders = 0; 2570 dev->heads = 0; 2571 dev->sectors = 0; 2572 dev->multi_count = 0; 2573 2574 /* 2575 * common ATA, ATAPI feature tests 2576 */ 2577 2578 /* find max transfer mode; for printk only */ 2579 xfer_mask = ata_id_xfermask(id); 2580 2581 if (ata_msg_probe(ap)) 2582 ata_dump_id(id); 2583 2584 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2585 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2586 sizeof(fwrevbuf)); 2587 2588 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2589 sizeof(modelbuf)); 2590 2591 /* ATA-specific feature tests */ 2592 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2593 if (ata_id_is_cfa(id)) { 2594 /* CPRM may make this media unusable */ 2595 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2596 ata_dev_warn(dev, 2597 "supports DRM functions and may not be fully accessible\n"); 2598 snprintf(revbuf, 7, "CFA"); 2599 } else { 2600 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2601 /* Warn the user if the device has TPM extensions */ 2602 if (ata_id_has_tpm(id)) 2603 ata_dev_warn(dev, 2604 "supports DRM functions and may not be fully accessible\n"); 2605 } 2606 2607 dev->n_sectors = ata_id_n_sectors(id); 2608 2609 /* get current R/W Multiple count setting */ 2610 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2611 unsigned int max = dev->id[47] & 0xff; 2612 unsigned int cnt = dev->id[59] & 0xff; 2613 /* only recognize/allow powers of two here */ 2614 if (is_power_of_2(max) && is_power_of_2(cnt)) 2615 if (cnt <= max) 2616 dev->multi_count = cnt; 2617 } 2618 2619 /* print device info to dmesg */ 2620 if (ata_msg_drv(ap) && print_info) 2621 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2622 revbuf, modelbuf, fwrevbuf, 2623 ata_mode_string(xfer_mask)); 2624 2625 if (ata_id_has_lba(id)) { 2626 rc = ata_dev_config_lba(dev); 2627 if (rc) 2628 return rc; 2629 } else { 2630 ata_dev_config_chs(dev); 2631 } 2632 2633 ata_dev_config_devslp(dev); 2634 ata_dev_config_sense_reporting(dev); 2635 ata_dev_config_zac(dev); 2636 ata_dev_config_trusted(dev); 2637 dev->cdb_len = 32; 2638 2639 if (ata_msg_drv(ap) && print_info) 2640 ata_dev_print_features(dev); 2641 } 2642 2643 /* ATAPI-specific feature tests */ 2644 else if (dev->class == ATA_DEV_ATAPI) { 2645 const char *cdb_intr_string = ""; 2646 const char *atapi_an_string = ""; 2647 const char *dma_dir_string = ""; 2648 u32 sntf; 2649 2650 rc = atapi_cdb_len(id); 2651 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2652 if (ata_msg_warn(ap)) 2653 ata_dev_warn(dev, "unsupported CDB len\n"); 2654 rc = -EINVAL; 2655 goto err_out_nosup; 2656 } 2657 dev->cdb_len = (unsigned int) rc; 2658 2659 /* Enable ATAPI AN if both the host and device have 2660 * the support. If PMP is attached, SNTF is required 2661 * to enable ATAPI AN to discern between PHY status 2662 * changed notifications and ATAPI ANs. 2663 */ 2664 if (atapi_an && 2665 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2666 (!sata_pmp_attached(ap) || 2667 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2668 /* issue SET feature command to turn this on */ 2669 err_mask = ata_dev_set_feature(dev, 2670 SETFEATURES_SATA_ENABLE, SATA_AN); 2671 if (err_mask) 2672 ata_dev_err(dev, 2673 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2674 err_mask); 2675 else { 2676 dev->flags |= ATA_DFLAG_AN; 2677 atapi_an_string = ", ATAPI AN"; 2678 } 2679 } 2680 2681 if (ata_id_cdb_intr(dev->id)) { 2682 dev->flags |= ATA_DFLAG_CDB_INTR; 2683 cdb_intr_string = ", CDB intr"; 2684 } 2685 2686 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2687 dev->flags |= ATA_DFLAG_DMADIR; 2688 dma_dir_string = ", DMADIR"; 2689 } 2690 2691 if (ata_id_has_da(dev->id)) { 2692 dev->flags |= ATA_DFLAG_DA; 2693 zpodd_init(dev); 2694 } 2695 2696 /* print device info to dmesg */ 2697 if (ata_msg_drv(ap) && print_info) 2698 ata_dev_info(dev, 2699 "ATAPI: %s, %s, max %s%s%s%s\n", 2700 modelbuf, fwrevbuf, 2701 ata_mode_string(xfer_mask), 2702 cdb_intr_string, atapi_an_string, 2703 dma_dir_string); 2704 } 2705 2706 /* determine max_sectors */ 2707 dev->max_sectors = ATA_MAX_SECTORS; 2708 if (dev->flags & ATA_DFLAG_LBA48) 2709 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2710 2711 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2712 200 sectors */ 2713 if (ata_dev_knobble(dev)) { 2714 if (ata_msg_drv(ap) && print_info) 2715 ata_dev_info(dev, "applying bridge limits\n"); 2716 dev->udma_mask &= ATA_UDMA5; 2717 dev->max_sectors = ATA_MAX_SECTORS; 2718 } 2719 2720 if ((dev->class == ATA_DEV_ATAPI) && 2721 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2722 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2723 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2724 } 2725 2726 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2727 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2728 dev->max_sectors); 2729 2730 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2731 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2732 dev->max_sectors); 2733 2734 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2735 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2736 2737 if (ap->ops->dev_config) 2738 ap->ops->dev_config(dev); 2739 2740 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2741 /* Let the user know. We don't want to disallow opens for 2742 rescue purposes, or in case the vendor is just a blithering 2743 idiot. Do this after the dev_config call as some controllers 2744 with buggy firmware may want to avoid reporting false device 2745 bugs */ 2746 2747 if (print_info) { 2748 ata_dev_warn(dev, 2749 "Drive reports diagnostics failure. This may indicate a drive\n"); 2750 ata_dev_warn(dev, 2751 "fault or invalid emulation. Contact drive vendor for information.\n"); 2752 } 2753 } 2754 2755 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2756 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2757 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2758 } 2759 2760 return 0; 2761 2762 err_out_nosup: 2763 if (ata_msg_probe(ap)) 2764 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2765 return rc; 2766 } 2767 2768 /** 2769 * ata_cable_40wire - return 40 wire cable type 2770 * @ap: port 2771 * 2772 * Helper method for drivers which want to hardwire 40 wire cable 2773 * detection. 2774 */ 2775 2776 int ata_cable_40wire(struct ata_port *ap) 2777 { 2778 return ATA_CBL_PATA40; 2779 } 2780 EXPORT_SYMBOL_GPL(ata_cable_40wire); 2781 2782 /** 2783 * ata_cable_80wire - return 80 wire cable type 2784 * @ap: port 2785 * 2786 * Helper method for drivers which want to hardwire 80 wire cable 2787 * detection. 2788 */ 2789 2790 int ata_cable_80wire(struct ata_port *ap) 2791 { 2792 return ATA_CBL_PATA80; 2793 } 2794 EXPORT_SYMBOL_GPL(ata_cable_80wire); 2795 2796 /** 2797 * ata_cable_unknown - return unknown PATA cable. 2798 * @ap: port 2799 * 2800 * Helper method for drivers which have no PATA cable detection. 2801 */ 2802 2803 int ata_cable_unknown(struct ata_port *ap) 2804 { 2805 return ATA_CBL_PATA_UNK; 2806 } 2807 EXPORT_SYMBOL_GPL(ata_cable_unknown); 2808 2809 /** 2810 * ata_cable_ignore - return ignored PATA cable. 2811 * @ap: port 2812 * 2813 * Helper method for drivers which don't use cable type to limit 2814 * transfer mode. 2815 */ 2816 int ata_cable_ignore(struct ata_port *ap) 2817 { 2818 return ATA_CBL_PATA_IGN; 2819 } 2820 EXPORT_SYMBOL_GPL(ata_cable_ignore); 2821 2822 /** 2823 * ata_cable_sata - return SATA cable type 2824 * @ap: port 2825 * 2826 * Helper method for drivers which have SATA cables 2827 */ 2828 2829 int ata_cable_sata(struct ata_port *ap) 2830 { 2831 return ATA_CBL_SATA; 2832 } 2833 EXPORT_SYMBOL_GPL(ata_cable_sata); 2834 2835 /** 2836 * ata_bus_probe - Reset and probe ATA bus 2837 * @ap: Bus to probe 2838 * 2839 * Master ATA bus probing function. Initiates a hardware-dependent 2840 * bus reset, then attempts to identify any devices found on 2841 * the bus. 2842 * 2843 * LOCKING: 2844 * PCI/etc. bus probe sem. 2845 * 2846 * RETURNS: 2847 * Zero on success, negative errno otherwise. 2848 */ 2849 2850 int ata_bus_probe(struct ata_port *ap) 2851 { 2852 unsigned int classes[ATA_MAX_DEVICES]; 2853 int tries[ATA_MAX_DEVICES]; 2854 int rc; 2855 struct ata_device *dev; 2856 2857 ata_for_each_dev(dev, &ap->link, ALL) 2858 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2859 2860 retry: 2861 ata_for_each_dev(dev, &ap->link, ALL) { 2862 /* If we issue an SRST then an ATA drive (not ATAPI) 2863 * may change configuration and be in PIO0 timing. If 2864 * we do a hard reset (or are coming from power on) 2865 * this is true for ATA or ATAPI. Until we've set a 2866 * suitable controller mode we should not touch the 2867 * bus as we may be talking too fast. 2868 */ 2869 dev->pio_mode = XFER_PIO_0; 2870 dev->dma_mode = 0xff; 2871 2872 /* If the controller has a pio mode setup function 2873 * then use it to set the chipset to rights. Don't 2874 * touch the DMA setup as that will be dealt with when 2875 * configuring devices. 2876 */ 2877 if (ap->ops->set_piomode) 2878 ap->ops->set_piomode(ap, dev); 2879 } 2880 2881 /* reset and determine device classes */ 2882 ap->ops->phy_reset(ap); 2883 2884 ata_for_each_dev(dev, &ap->link, ALL) { 2885 if (dev->class != ATA_DEV_UNKNOWN) 2886 classes[dev->devno] = dev->class; 2887 else 2888 classes[dev->devno] = ATA_DEV_NONE; 2889 2890 dev->class = ATA_DEV_UNKNOWN; 2891 } 2892 2893 /* read IDENTIFY page and configure devices. We have to do the identify 2894 specific sequence bass-ackwards so that PDIAG- is released by 2895 the slave device */ 2896 2897 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2898 if (tries[dev->devno]) 2899 dev->class = classes[dev->devno]; 2900 2901 if (!ata_dev_enabled(dev)) 2902 continue; 2903 2904 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2905 dev->id); 2906 if (rc) 2907 goto fail; 2908 } 2909 2910 /* Now ask for the cable type as PDIAG- should have been released */ 2911 if (ap->ops->cable_detect) 2912 ap->cbl = ap->ops->cable_detect(ap); 2913 2914 /* We may have SATA bridge glue hiding here irrespective of 2915 * the reported cable types and sensed types. When SATA 2916 * drives indicate we have a bridge, we don't know which end 2917 * of the link the bridge is which is a problem. 2918 */ 2919 ata_for_each_dev(dev, &ap->link, ENABLED) 2920 if (ata_id_is_sata(dev->id)) 2921 ap->cbl = ATA_CBL_SATA; 2922 2923 /* After the identify sequence we can now set up the devices. We do 2924 this in the normal order so that the user doesn't get confused */ 2925 2926 ata_for_each_dev(dev, &ap->link, ENABLED) { 2927 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2928 rc = ata_dev_configure(dev); 2929 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2930 if (rc) 2931 goto fail; 2932 } 2933 2934 /* configure transfer mode */ 2935 rc = ata_set_mode(&ap->link, &dev); 2936 if (rc) 2937 goto fail; 2938 2939 ata_for_each_dev(dev, &ap->link, ENABLED) 2940 return 0; 2941 2942 return -ENODEV; 2943 2944 fail: 2945 tries[dev->devno]--; 2946 2947 switch (rc) { 2948 case -EINVAL: 2949 /* eeek, something went very wrong, give up */ 2950 tries[dev->devno] = 0; 2951 break; 2952 2953 case -ENODEV: 2954 /* give it just one more chance */ 2955 tries[dev->devno] = min(tries[dev->devno], 1); 2956 fallthrough; 2957 case -EIO: 2958 if (tries[dev->devno] == 1) { 2959 /* This is the last chance, better to slow 2960 * down than lose it. 2961 */ 2962 sata_down_spd_limit(&ap->link, 0); 2963 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2964 } 2965 } 2966 2967 if (!tries[dev->devno]) 2968 ata_dev_disable(dev); 2969 2970 goto retry; 2971 } 2972 2973 /** 2974 * sata_print_link_status - Print SATA link status 2975 * @link: SATA link to printk link status about 2976 * 2977 * This function prints link speed and status of a SATA link. 2978 * 2979 * LOCKING: 2980 * None. 2981 */ 2982 static void sata_print_link_status(struct ata_link *link) 2983 { 2984 u32 sstatus, scontrol, tmp; 2985 2986 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2987 return; 2988 sata_scr_read(link, SCR_CONTROL, &scontrol); 2989 2990 if (ata_phys_link_online(link)) { 2991 tmp = (sstatus >> 4) & 0xf; 2992 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2993 sata_spd_string(tmp), sstatus, scontrol); 2994 } else { 2995 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2996 sstatus, scontrol); 2997 } 2998 } 2999 3000 /** 3001 * ata_dev_pair - return other device on cable 3002 * @adev: device 3003 * 3004 * Obtain the other device on the same cable, or if none is 3005 * present NULL is returned 3006 */ 3007 3008 struct ata_device *ata_dev_pair(struct ata_device *adev) 3009 { 3010 struct ata_link *link = adev->link; 3011 struct ata_device *pair = &link->device[1 - adev->devno]; 3012 if (!ata_dev_enabled(pair)) 3013 return NULL; 3014 return pair; 3015 } 3016 EXPORT_SYMBOL_GPL(ata_dev_pair); 3017 3018 /** 3019 * sata_down_spd_limit - adjust SATA spd limit downward 3020 * @link: Link to adjust SATA spd limit for 3021 * @spd_limit: Additional limit 3022 * 3023 * Adjust SATA spd limit of @link downward. Note that this 3024 * function only adjusts the limit. The change must be applied 3025 * using sata_set_spd(). 3026 * 3027 * If @spd_limit is non-zero, the speed is limited to equal to or 3028 * lower than @spd_limit if such speed is supported. If 3029 * @spd_limit is slower than any supported speed, only the lowest 3030 * supported speed is allowed. 3031 * 3032 * LOCKING: 3033 * Inherited from caller. 3034 * 3035 * RETURNS: 3036 * 0 on success, negative errno on failure 3037 */ 3038 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3039 { 3040 u32 sstatus, spd, mask; 3041 int rc, bit; 3042 3043 if (!sata_scr_valid(link)) 3044 return -EOPNOTSUPP; 3045 3046 /* If SCR can be read, use it to determine the current SPD. 3047 * If not, use cached value in link->sata_spd. 3048 */ 3049 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3050 if (rc == 0 && ata_sstatus_online(sstatus)) 3051 spd = (sstatus >> 4) & 0xf; 3052 else 3053 spd = link->sata_spd; 3054 3055 mask = link->sata_spd_limit; 3056 if (mask <= 1) 3057 return -EINVAL; 3058 3059 /* unconditionally mask off the highest bit */ 3060 bit = fls(mask) - 1; 3061 mask &= ~(1 << bit); 3062 3063 /* 3064 * Mask off all speeds higher than or equal to the current one. At 3065 * this point, if current SPD is not available and we previously 3066 * recorded the link speed from SStatus, the driver has already 3067 * masked off the highest bit so mask should already be 1 or 0. 3068 * Otherwise, we should not force 1.5Gbps on a link where we have 3069 * not previously recorded speed from SStatus. Just return in this 3070 * case. 3071 */ 3072 if (spd > 1) 3073 mask &= (1 << (spd - 1)) - 1; 3074 else 3075 return -EINVAL; 3076 3077 /* were we already at the bottom? */ 3078 if (!mask) 3079 return -EINVAL; 3080 3081 if (spd_limit) { 3082 if (mask & ((1 << spd_limit) - 1)) 3083 mask &= (1 << spd_limit) - 1; 3084 else { 3085 bit = ffs(mask) - 1; 3086 mask = 1 << bit; 3087 } 3088 } 3089 3090 link->sata_spd_limit = mask; 3091 3092 ata_link_warn(link, "limiting SATA link speed to %s\n", 3093 sata_spd_string(fls(mask))); 3094 3095 return 0; 3096 } 3097 3098 #ifdef CONFIG_ATA_ACPI 3099 /** 3100 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3101 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3102 * @cycle: cycle duration in ns 3103 * 3104 * Return matching xfer mode for @cycle. The returned mode is of 3105 * the transfer type specified by @xfer_shift. If @cycle is too 3106 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3107 * than the fastest known mode, the fasted mode is returned. 3108 * 3109 * LOCKING: 3110 * None. 3111 * 3112 * RETURNS: 3113 * Matching xfer_mode, 0xff if no match found. 3114 */ 3115 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3116 { 3117 u8 base_mode = 0xff, last_mode = 0xff; 3118 const struct ata_xfer_ent *ent; 3119 const struct ata_timing *t; 3120 3121 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3122 if (ent->shift == xfer_shift) 3123 base_mode = ent->base; 3124 3125 for (t = ata_timing_find_mode(base_mode); 3126 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3127 unsigned short this_cycle; 3128 3129 switch (xfer_shift) { 3130 case ATA_SHIFT_PIO: 3131 case ATA_SHIFT_MWDMA: 3132 this_cycle = t->cycle; 3133 break; 3134 case ATA_SHIFT_UDMA: 3135 this_cycle = t->udma; 3136 break; 3137 default: 3138 return 0xff; 3139 } 3140 3141 if (cycle > this_cycle) 3142 break; 3143 3144 last_mode = t->mode; 3145 } 3146 3147 return last_mode; 3148 } 3149 #endif 3150 3151 /** 3152 * ata_down_xfermask_limit - adjust dev xfer masks downward 3153 * @dev: Device to adjust xfer masks 3154 * @sel: ATA_DNXFER_* selector 3155 * 3156 * Adjust xfer masks of @dev downward. Note that this function 3157 * does not apply the change. Invoking ata_set_mode() afterwards 3158 * will apply the limit. 3159 * 3160 * LOCKING: 3161 * Inherited from caller. 3162 * 3163 * RETURNS: 3164 * 0 on success, negative errno on failure 3165 */ 3166 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3167 { 3168 char buf[32]; 3169 unsigned long orig_mask, xfer_mask; 3170 unsigned long pio_mask, mwdma_mask, udma_mask; 3171 int quiet, highbit; 3172 3173 quiet = !!(sel & ATA_DNXFER_QUIET); 3174 sel &= ~ATA_DNXFER_QUIET; 3175 3176 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3177 dev->mwdma_mask, 3178 dev->udma_mask); 3179 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3180 3181 switch (sel) { 3182 case ATA_DNXFER_PIO: 3183 highbit = fls(pio_mask) - 1; 3184 pio_mask &= ~(1 << highbit); 3185 break; 3186 3187 case ATA_DNXFER_DMA: 3188 if (udma_mask) { 3189 highbit = fls(udma_mask) - 1; 3190 udma_mask &= ~(1 << highbit); 3191 if (!udma_mask) 3192 return -ENOENT; 3193 } else if (mwdma_mask) { 3194 highbit = fls(mwdma_mask) - 1; 3195 mwdma_mask &= ~(1 << highbit); 3196 if (!mwdma_mask) 3197 return -ENOENT; 3198 } 3199 break; 3200 3201 case ATA_DNXFER_40C: 3202 udma_mask &= ATA_UDMA_MASK_40C; 3203 break; 3204 3205 case ATA_DNXFER_FORCE_PIO0: 3206 pio_mask &= 1; 3207 fallthrough; 3208 case ATA_DNXFER_FORCE_PIO: 3209 mwdma_mask = 0; 3210 udma_mask = 0; 3211 break; 3212 3213 default: 3214 BUG(); 3215 } 3216 3217 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3218 3219 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3220 return -ENOENT; 3221 3222 if (!quiet) { 3223 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3224 snprintf(buf, sizeof(buf), "%s:%s", 3225 ata_mode_string(xfer_mask), 3226 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3227 else 3228 snprintf(buf, sizeof(buf), "%s", 3229 ata_mode_string(xfer_mask)); 3230 3231 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3232 } 3233 3234 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3235 &dev->udma_mask); 3236 3237 return 0; 3238 } 3239 3240 static int ata_dev_set_mode(struct ata_device *dev) 3241 { 3242 struct ata_port *ap = dev->link->ap; 3243 struct ata_eh_context *ehc = &dev->link->eh_context; 3244 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3245 const char *dev_err_whine = ""; 3246 int ign_dev_err = 0; 3247 unsigned int err_mask = 0; 3248 int rc; 3249 3250 dev->flags &= ~ATA_DFLAG_PIO; 3251 if (dev->xfer_shift == ATA_SHIFT_PIO) 3252 dev->flags |= ATA_DFLAG_PIO; 3253 3254 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3255 dev_err_whine = " (SET_XFERMODE skipped)"; 3256 else { 3257 if (nosetxfer) 3258 ata_dev_warn(dev, 3259 "NOSETXFER but PATA detected - can't " 3260 "skip SETXFER, might malfunction\n"); 3261 err_mask = ata_dev_set_xfermode(dev); 3262 } 3263 3264 if (err_mask & ~AC_ERR_DEV) 3265 goto fail; 3266 3267 /* revalidate */ 3268 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3269 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3270 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3271 if (rc) 3272 return rc; 3273 3274 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3275 /* Old CFA may refuse this command, which is just fine */ 3276 if (ata_id_is_cfa(dev->id)) 3277 ign_dev_err = 1; 3278 /* Catch several broken garbage emulations plus some pre 3279 ATA devices */ 3280 if (ata_id_major_version(dev->id) == 0 && 3281 dev->pio_mode <= XFER_PIO_2) 3282 ign_dev_err = 1; 3283 /* Some very old devices and some bad newer ones fail 3284 any kind of SET_XFERMODE request but support PIO0-2 3285 timings and no IORDY */ 3286 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3287 ign_dev_err = 1; 3288 } 3289 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3290 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3291 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3292 dev->dma_mode == XFER_MW_DMA_0 && 3293 (dev->id[63] >> 8) & 1) 3294 ign_dev_err = 1; 3295 3296 /* if the device is actually configured correctly, ignore dev err */ 3297 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3298 ign_dev_err = 1; 3299 3300 if (err_mask & AC_ERR_DEV) { 3301 if (!ign_dev_err) 3302 goto fail; 3303 else 3304 dev_err_whine = " (device error ignored)"; 3305 } 3306 3307 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3308 dev->xfer_shift, (int)dev->xfer_mode); 3309 3310 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3311 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3312 ata_dev_info(dev, "configured for %s%s\n", 3313 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3314 dev_err_whine); 3315 3316 return 0; 3317 3318 fail: 3319 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3320 return -EIO; 3321 } 3322 3323 /** 3324 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3325 * @link: link on which timings will be programmed 3326 * @r_failed_dev: out parameter for failed device 3327 * 3328 * Standard implementation of the function used to tune and set 3329 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3330 * ata_dev_set_mode() fails, pointer to the failing device is 3331 * returned in @r_failed_dev. 3332 * 3333 * LOCKING: 3334 * PCI/etc. bus probe sem. 3335 * 3336 * RETURNS: 3337 * 0 on success, negative errno otherwise 3338 */ 3339 3340 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3341 { 3342 struct ata_port *ap = link->ap; 3343 struct ata_device *dev; 3344 int rc = 0, used_dma = 0, found = 0; 3345 3346 /* step 1: calculate xfer_mask */ 3347 ata_for_each_dev(dev, link, ENABLED) { 3348 unsigned long pio_mask, dma_mask; 3349 unsigned int mode_mask; 3350 3351 mode_mask = ATA_DMA_MASK_ATA; 3352 if (dev->class == ATA_DEV_ATAPI) 3353 mode_mask = ATA_DMA_MASK_ATAPI; 3354 else if (ata_id_is_cfa(dev->id)) 3355 mode_mask = ATA_DMA_MASK_CFA; 3356 3357 ata_dev_xfermask(dev); 3358 ata_force_xfermask(dev); 3359 3360 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3361 3362 if (libata_dma_mask & mode_mask) 3363 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3364 dev->udma_mask); 3365 else 3366 dma_mask = 0; 3367 3368 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3369 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3370 3371 found = 1; 3372 if (ata_dma_enabled(dev)) 3373 used_dma = 1; 3374 } 3375 if (!found) 3376 goto out; 3377 3378 /* step 2: always set host PIO timings */ 3379 ata_for_each_dev(dev, link, ENABLED) { 3380 if (dev->pio_mode == 0xff) { 3381 ata_dev_warn(dev, "no PIO support\n"); 3382 rc = -EINVAL; 3383 goto out; 3384 } 3385 3386 dev->xfer_mode = dev->pio_mode; 3387 dev->xfer_shift = ATA_SHIFT_PIO; 3388 if (ap->ops->set_piomode) 3389 ap->ops->set_piomode(ap, dev); 3390 } 3391 3392 /* step 3: set host DMA timings */ 3393 ata_for_each_dev(dev, link, ENABLED) { 3394 if (!ata_dma_enabled(dev)) 3395 continue; 3396 3397 dev->xfer_mode = dev->dma_mode; 3398 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3399 if (ap->ops->set_dmamode) 3400 ap->ops->set_dmamode(ap, dev); 3401 } 3402 3403 /* step 4: update devices' xfer mode */ 3404 ata_for_each_dev(dev, link, ENABLED) { 3405 rc = ata_dev_set_mode(dev); 3406 if (rc) 3407 goto out; 3408 } 3409 3410 /* Record simplex status. If we selected DMA then the other 3411 * host channels are not permitted to do so. 3412 */ 3413 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3414 ap->host->simplex_claimed = ap; 3415 3416 out: 3417 if (rc) 3418 *r_failed_dev = dev; 3419 return rc; 3420 } 3421 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3422 3423 /** 3424 * ata_wait_ready - wait for link to become ready 3425 * @link: link to be waited on 3426 * @deadline: deadline jiffies for the operation 3427 * @check_ready: callback to check link readiness 3428 * 3429 * Wait for @link to become ready. @check_ready should return 3430 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3431 * link doesn't seem to be occupied, other errno for other error 3432 * conditions. 3433 * 3434 * Transient -ENODEV conditions are allowed for 3435 * ATA_TMOUT_FF_WAIT. 3436 * 3437 * LOCKING: 3438 * EH context. 3439 * 3440 * RETURNS: 3441 * 0 if @link is ready before @deadline; otherwise, -errno. 3442 */ 3443 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3444 int (*check_ready)(struct ata_link *link)) 3445 { 3446 unsigned long start = jiffies; 3447 unsigned long nodev_deadline; 3448 int warned = 0; 3449 3450 /* choose which 0xff timeout to use, read comment in libata.h */ 3451 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3452 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3453 else 3454 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3455 3456 /* Slave readiness can't be tested separately from master. On 3457 * M/S emulation configuration, this function should be called 3458 * only on the master and it will handle both master and slave. 3459 */ 3460 WARN_ON(link == link->ap->slave_link); 3461 3462 if (time_after(nodev_deadline, deadline)) 3463 nodev_deadline = deadline; 3464 3465 while (1) { 3466 unsigned long now = jiffies; 3467 int ready, tmp; 3468 3469 ready = tmp = check_ready(link); 3470 if (ready > 0) 3471 return 0; 3472 3473 /* 3474 * -ENODEV could be transient. Ignore -ENODEV if link 3475 * is online. Also, some SATA devices take a long 3476 * time to clear 0xff after reset. Wait for 3477 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3478 * offline. 3479 * 3480 * Note that some PATA controllers (pata_ali) explode 3481 * if status register is read more than once when 3482 * there's no device attached. 3483 */ 3484 if (ready == -ENODEV) { 3485 if (ata_link_online(link)) 3486 ready = 0; 3487 else if ((link->ap->flags & ATA_FLAG_SATA) && 3488 !ata_link_offline(link) && 3489 time_before(now, nodev_deadline)) 3490 ready = 0; 3491 } 3492 3493 if (ready) 3494 return ready; 3495 if (time_after(now, deadline)) 3496 return -EBUSY; 3497 3498 if (!warned && time_after(now, start + 5 * HZ) && 3499 (deadline - now > 3 * HZ)) { 3500 ata_link_warn(link, 3501 "link is slow to respond, please be patient " 3502 "(ready=%d)\n", tmp); 3503 warned = 1; 3504 } 3505 3506 ata_msleep(link->ap, 50); 3507 } 3508 } 3509 3510 /** 3511 * ata_wait_after_reset - wait for link to become ready after reset 3512 * @link: link to be waited on 3513 * @deadline: deadline jiffies for the operation 3514 * @check_ready: callback to check link readiness 3515 * 3516 * Wait for @link to become ready after reset. 3517 * 3518 * LOCKING: 3519 * EH context. 3520 * 3521 * RETURNS: 3522 * 0 if @link is ready before @deadline; otherwise, -errno. 3523 */ 3524 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3525 int (*check_ready)(struct ata_link *link)) 3526 { 3527 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3528 3529 return ata_wait_ready(link, deadline, check_ready); 3530 } 3531 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3532 3533 /** 3534 * ata_std_prereset - prepare for reset 3535 * @link: ATA link to be reset 3536 * @deadline: deadline jiffies for the operation 3537 * 3538 * @link is about to be reset. Initialize it. Failure from 3539 * prereset makes libata abort whole reset sequence and give up 3540 * that port, so prereset should be best-effort. It does its 3541 * best to prepare for reset sequence but if things go wrong, it 3542 * should just whine, not fail. 3543 * 3544 * LOCKING: 3545 * Kernel thread context (may sleep) 3546 * 3547 * RETURNS: 3548 * 0 on success, -errno otherwise. 3549 */ 3550 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3551 { 3552 struct ata_port *ap = link->ap; 3553 struct ata_eh_context *ehc = &link->eh_context; 3554 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3555 int rc; 3556 3557 /* if we're about to do hardreset, nothing more to do */ 3558 if (ehc->i.action & ATA_EH_HARDRESET) 3559 return 0; 3560 3561 /* if SATA, resume link */ 3562 if (ap->flags & ATA_FLAG_SATA) { 3563 rc = sata_link_resume(link, timing, deadline); 3564 /* whine about phy resume failure but proceed */ 3565 if (rc && rc != -EOPNOTSUPP) 3566 ata_link_warn(link, 3567 "failed to resume link for reset (errno=%d)\n", 3568 rc); 3569 } 3570 3571 /* no point in trying softreset on offline link */ 3572 if (ata_phys_link_offline(link)) 3573 ehc->i.action &= ~ATA_EH_SOFTRESET; 3574 3575 return 0; 3576 } 3577 EXPORT_SYMBOL_GPL(ata_std_prereset); 3578 3579 /** 3580 * sata_std_hardreset - COMRESET w/o waiting or classification 3581 * @link: link to reset 3582 * @class: resulting class of attached device 3583 * @deadline: deadline jiffies for the operation 3584 * 3585 * Standard SATA COMRESET w/o waiting or classification. 3586 * 3587 * LOCKING: 3588 * Kernel thread context (may sleep) 3589 * 3590 * RETURNS: 3591 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3592 */ 3593 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3594 unsigned long deadline) 3595 { 3596 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3597 bool online; 3598 int rc; 3599 3600 /* do hardreset */ 3601 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3602 return online ? -EAGAIN : rc; 3603 } 3604 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3605 3606 /** 3607 * ata_std_postreset - standard postreset callback 3608 * @link: the target ata_link 3609 * @classes: classes of attached devices 3610 * 3611 * This function is invoked after a successful reset. Note that 3612 * the device might have been reset more than once using 3613 * different reset methods before postreset is invoked. 3614 * 3615 * LOCKING: 3616 * Kernel thread context (may sleep) 3617 */ 3618 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3619 { 3620 u32 serror; 3621 3622 DPRINTK("ENTER\n"); 3623 3624 /* reset complete, clear SError */ 3625 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3626 sata_scr_write(link, SCR_ERROR, serror); 3627 3628 /* print link status */ 3629 sata_print_link_status(link); 3630 3631 DPRINTK("EXIT\n"); 3632 } 3633 EXPORT_SYMBOL_GPL(ata_std_postreset); 3634 3635 /** 3636 * ata_dev_same_device - Determine whether new ID matches configured device 3637 * @dev: device to compare against 3638 * @new_class: class of the new device 3639 * @new_id: IDENTIFY page of the new device 3640 * 3641 * Compare @new_class and @new_id against @dev and determine 3642 * whether @dev is the device indicated by @new_class and 3643 * @new_id. 3644 * 3645 * LOCKING: 3646 * None. 3647 * 3648 * RETURNS: 3649 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3650 */ 3651 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3652 const u16 *new_id) 3653 { 3654 const u16 *old_id = dev->id; 3655 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3656 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3657 3658 if (dev->class != new_class) { 3659 ata_dev_info(dev, "class mismatch %d != %d\n", 3660 dev->class, new_class); 3661 return 0; 3662 } 3663 3664 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3665 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3666 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3667 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3668 3669 if (strcmp(model[0], model[1])) { 3670 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3671 model[0], model[1]); 3672 return 0; 3673 } 3674 3675 if (strcmp(serial[0], serial[1])) { 3676 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3677 serial[0], serial[1]); 3678 return 0; 3679 } 3680 3681 return 1; 3682 } 3683 3684 /** 3685 * ata_dev_reread_id - Re-read IDENTIFY data 3686 * @dev: target ATA device 3687 * @readid_flags: read ID flags 3688 * 3689 * Re-read IDENTIFY page and make sure @dev is still attached to 3690 * the port. 3691 * 3692 * LOCKING: 3693 * Kernel thread context (may sleep) 3694 * 3695 * RETURNS: 3696 * 0 on success, negative errno otherwise 3697 */ 3698 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3699 { 3700 unsigned int class = dev->class; 3701 u16 *id = (void *)dev->link->ap->sector_buf; 3702 int rc; 3703 3704 /* read ID data */ 3705 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3706 if (rc) 3707 return rc; 3708 3709 /* is the device still there? */ 3710 if (!ata_dev_same_device(dev, class, id)) 3711 return -ENODEV; 3712 3713 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3714 return 0; 3715 } 3716 3717 /** 3718 * ata_dev_revalidate - Revalidate ATA device 3719 * @dev: device to revalidate 3720 * @new_class: new class code 3721 * @readid_flags: read ID flags 3722 * 3723 * Re-read IDENTIFY page, make sure @dev is still attached to the 3724 * port and reconfigure it according to the new IDENTIFY page. 3725 * 3726 * LOCKING: 3727 * Kernel thread context (may sleep) 3728 * 3729 * RETURNS: 3730 * 0 on success, negative errno otherwise 3731 */ 3732 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3733 unsigned int readid_flags) 3734 { 3735 u64 n_sectors = dev->n_sectors; 3736 u64 n_native_sectors = dev->n_native_sectors; 3737 int rc; 3738 3739 if (!ata_dev_enabled(dev)) 3740 return -ENODEV; 3741 3742 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3743 if (ata_class_enabled(new_class) && 3744 new_class != ATA_DEV_ATA && 3745 new_class != ATA_DEV_ATAPI && 3746 new_class != ATA_DEV_ZAC && 3747 new_class != ATA_DEV_SEMB) { 3748 ata_dev_info(dev, "class mismatch %u != %u\n", 3749 dev->class, new_class); 3750 rc = -ENODEV; 3751 goto fail; 3752 } 3753 3754 /* re-read ID */ 3755 rc = ata_dev_reread_id(dev, readid_flags); 3756 if (rc) 3757 goto fail; 3758 3759 /* configure device according to the new ID */ 3760 rc = ata_dev_configure(dev); 3761 if (rc) 3762 goto fail; 3763 3764 /* verify n_sectors hasn't changed */ 3765 if (dev->class != ATA_DEV_ATA || !n_sectors || 3766 dev->n_sectors == n_sectors) 3767 return 0; 3768 3769 /* n_sectors has changed */ 3770 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3771 (unsigned long long)n_sectors, 3772 (unsigned long long)dev->n_sectors); 3773 3774 /* 3775 * Something could have caused HPA to be unlocked 3776 * involuntarily. If n_native_sectors hasn't changed and the 3777 * new size matches it, keep the device. 3778 */ 3779 if (dev->n_native_sectors == n_native_sectors && 3780 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3781 ata_dev_warn(dev, 3782 "new n_sectors matches native, probably " 3783 "late HPA unlock, n_sectors updated\n"); 3784 /* use the larger n_sectors */ 3785 return 0; 3786 } 3787 3788 /* 3789 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3790 * unlocking HPA in those cases. 3791 * 3792 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3793 */ 3794 if (dev->n_native_sectors == n_native_sectors && 3795 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3796 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3797 ata_dev_warn(dev, 3798 "old n_sectors matches native, probably " 3799 "late HPA lock, will try to unlock HPA\n"); 3800 /* try unlocking HPA */ 3801 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3802 rc = -EIO; 3803 } else 3804 rc = -ENODEV; 3805 3806 /* restore original n_[native_]sectors and fail */ 3807 dev->n_native_sectors = n_native_sectors; 3808 dev->n_sectors = n_sectors; 3809 fail: 3810 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3811 return rc; 3812 } 3813 3814 struct ata_blacklist_entry { 3815 const char *model_num; 3816 const char *model_rev; 3817 unsigned long horkage; 3818 }; 3819 3820 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3821 /* Devices with DMA related problems under Linux */ 3822 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3823 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3824 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3825 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3826 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3827 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3828 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3829 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3830 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3831 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 3832 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3833 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3834 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3835 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3836 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3837 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 3838 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3839 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3840 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3841 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3842 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3843 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3844 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3845 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3846 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3847 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3848 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3849 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3850 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 3851 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 3852 /* Odd clown on sil3726/4726 PMPs */ 3853 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3854 3855 /* Weird ATAPI devices */ 3856 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3857 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 3858 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3859 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3860 3861 /* 3862 * Causes silent data corruption with higher max sects. 3863 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3864 */ 3865 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 3866 3867 /* 3868 * These devices time out with higher max sects. 3869 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3870 */ 3871 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3872 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3873 3874 /* Devices we expect to fail diagnostics */ 3875 3876 /* Devices where NCQ should be avoided */ 3877 /* NCQ is slow */ 3878 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3879 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3880 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3881 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3882 /* NCQ is broken */ 3883 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3884 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3885 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3886 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3887 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 3888 3889 /* Seagate NCQ + FLUSH CACHE firmware bug */ 3890 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3891 ATA_HORKAGE_FIRMWARE_WARN }, 3892 3893 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3894 ATA_HORKAGE_FIRMWARE_WARN }, 3895 3896 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3897 ATA_HORKAGE_FIRMWARE_WARN }, 3898 3899 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3900 ATA_HORKAGE_FIRMWARE_WARN }, 3901 3902 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 3903 the ST disks also have LPM issues */ 3904 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 3905 ATA_HORKAGE_NOLPM, }, 3906 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 3907 3908 /* Blacklist entries taken from Silicon Image 3124/3132 3909 Windows driver .inf file - also several Linux problem reports */ 3910 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3911 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3912 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3913 3914 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 3915 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 3916 3917 /* Sandisk SD7/8/9s lock up hard on large trims */ 3918 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M, }, 3919 3920 /* devices which puke on READ_NATIVE_MAX */ 3921 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3922 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3923 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3924 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3925 3926 /* this one allows HPA unlocking but fails IOs on the area */ 3927 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 3928 3929 /* Devices which report 1 sector over size HPA */ 3930 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3931 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3932 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3933 3934 /* Devices which get the IVB wrong */ 3935 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 3936 /* Maybe we should just blacklist TSSTcorp... */ 3937 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 3938 3939 /* Devices that do not need bridging limits applied */ 3940 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 3941 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 3942 3943 /* Devices which aren't very happy with higher link speeds */ 3944 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 3945 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 3946 3947 /* 3948 * Devices which choke on SETXFER. Applies only if both the 3949 * device and controller are SATA. 3950 */ 3951 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 3952 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 3953 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 3954 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 3955 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 3956 3957 /* Crucial BX100 SSD 500GB has broken LPM support */ 3958 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 3959 3960 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 3961 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3962 ATA_HORKAGE_ZERO_AFTER_TRIM | 3963 ATA_HORKAGE_NOLPM, }, 3964 /* 512GB MX100 with newer firmware has only LPM issues */ 3965 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 3966 ATA_HORKAGE_NOLPM, }, 3967 3968 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 3969 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3970 ATA_HORKAGE_ZERO_AFTER_TRIM | 3971 ATA_HORKAGE_NOLPM, }, 3972 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3973 ATA_HORKAGE_ZERO_AFTER_TRIM | 3974 ATA_HORKAGE_NOLPM, }, 3975 3976 /* These specific Samsung models/firmware-revs do not handle LPM well */ 3977 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, }, 3978 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, }, 3979 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, }, 3980 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, }, 3981 3982 /* devices that don't properly handle queued TRIM commands */ 3983 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3984 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3985 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3986 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3987 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3988 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3989 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3990 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3991 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3992 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3993 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3994 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3995 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3996 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3997 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3998 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 3999 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4000 ATA_HORKAGE_ZERO_AFTER_TRIM | 4001 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4002 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4003 ATA_HORKAGE_ZERO_AFTER_TRIM | 4004 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4005 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4006 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4007 4008 /* devices that don't properly handle TRIM commands */ 4009 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 4010 4011 /* 4012 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4013 * (Return Zero After Trim) flags in the ATA Command Set are 4014 * unreliable in the sense that they only define what happens if 4015 * the device successfully executed the DSM TRIM command. TRIM 4016 * is only advisory, however, and the device is free to silently 4017 * ignore all or parts of the request. 4018 * 4019 * Whitelist drives that are known to reliably return zeroes 4020 * after TRIM. 4021 */ 4022 4023 /* 4024 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4025 * that model before whitelisting all other intel SSDs. 4026 */ 4027 { "INTEL*SSDSC2MH*", NULL, 0, }, 4028 4029 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4030 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4031 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4032 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4033 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4034 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4035 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4036 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4037 4038 /* 4039 * Some WD SATA-I drives spin up and down erratically when the link 4040 * is put into the slumber mode. We don't have full list of the 4041 * affected devices. Disable LPM if the device matches one of the 4042 * known prefixes and is SATA-1. As a side effect LPM partial is 4043 * lost too. 4044 * 4045 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4046 */ 4047 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4048 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4049 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4050 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4051 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4052 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4053 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4054 4055 /* End Marker */ 4056 { } 4057 }; 4058 4059 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4060 { 4061 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4062 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4063 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4064 4065 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4066 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4067 4068 while (ad->model_num) { 4069 if (glob_match(ad->model_num, model_num)) { 4070 if (ad->model_rev == NULL) 4071 return ad->horkage; 4072 if (glob_match(ad->model_rev, model_rev)) 4073 return ad->horkage; 4074 } 4075 ad++; 4076 } 4077 return 0; 4078 } 4079 4080 static int ata_dma_blacklisted(const struct ata_device *dev) 4081 { 4082 /* We don't support polling DMA. 4083 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4084 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4085 */ 4086 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4087 (dev->flags & ATA_DFLAG_CDB_INTR)) 4088 return 1; 4089 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4090 } 4091 4092 /** 4093 * ata_is_40wire - check drive side detection 4094 * @dev: device 4095 * 4096 * Perform drive side detection decoding, allowing for device vendors 4097 * who can't follow the documentation. 4098 */ 4099 4100 static int ata_is_40wire(struct ata_device *dev) 4101 { 4102 if (dev->horkage & ATA_HORKAGE_IVB) 4103 return ata_drive_40wire_relaxed(dev->id); 4104 return ata_drive_40wire(dev->id); 4105 } 4106 4107 /** 4108 * cable_is_40wire - 40/80/SATA decider 4109 * @ap: port to consider 4110 * 4111 * This function encapsulates the policy for speed management 4112 * in one place. At the moment we don't cache the result but 4113 * there is a good case for setting ap->cbl to the result when 4114 * we are called with unknown cables (and figuring out if it 4115 * impacts hotplug at all). 4116 * 4117 * Return 1 if the cable appears to be 40 wire. 4118 */ 4119 4120 static int cable_is_40wire(struct ata_port *ap) 4121 { 4122 struct ata_link *link; 4123 struct ata_device *dev; 4124 4125 /* If the controller thinks we are 40 wire, we are. */ 4126 if (ap->cbl == ATA_CBL_PATA40) 4127 return 1; 4128 4129 /* If the controller thinks we are 80 wire, we are. */ 4130 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4131 return 0; 4132 4133 /* If the system is known to be 40 wire short cable (eg 4134 * laptop), then we allow 80 wire modes even if the drive 4135 * isn't sure. 4136 */ 4137 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4138 return 0; 4139 4140 /* If the controller doesn't know, we scan. 4141 * 4142 * Note: We look for all 40 wire detects at this point. Any 4143 * 80 wire detect is taken to be 80 wire cable because 4144 * - in many setups only the one drive (slave if present) will 4145 * give a valid detect 4146 * - if you have a non detect capable drive you don't want it 4147 * to colour the choice 4148 */ 4149 ata_for_each_link(link, ap, EDGE) { 4150 ata_for_each_dev(dev, link, ENABLED) { 4151 if (!ata_is_40wire(dev)) 4152 return 0; 4153 } 4154 } 4155 return 1; 4156 } 4157 4158 /** 4159 * ata_dev_xfermask - Compute supported xfermask of the given device 4160 * @dev: Device to compute xfermask for 4161 * 4162 * Compute supported xfermask of @dev and store it in 4163 * dev->*_mask. This function is responsible for applying all 4164 * known limits including host controller limits, device 4165 * blacklist, etc... 4166 * 4167 * LOCKING: 4168 * None. 4169 */ 4170 static void ata_dev_xfermask(struct ata_device *dev) 4171 { 4172 struct ata_link *link = dev->link; 4173 struct ata_port *ap = link->ap; 4174 struct ata_host *host = ap->host; 4175 unsigned long xfer_mask; 4176 4177 /* controller modes available */ 4178 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4179 ap->mwdma_mask, ap->udma_mask); 4180 4181 /* drive modes available */ 4182 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4183 dev->mwdma_mask, dev->udma_mask); 4184 xfer_mask &= ata_id_xfermask(dev->id); 4185 4186 /* 4187 * CFA Advanced TrueIDE timings are not allowed on a shared 4188 * cable 4189 */ 4190 if (ata_dev_pair(dev)) { 4191 /* No PIO5 or PIO6 */ 4192 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4193 /* No MWDMA3 or MWDMA 4 */ 4194 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4195 } 4196 4197 if (ata_dma_blacklisted(dev)) { 4198 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4199 ata_dev_warn(dev, 4200 "device is on DMA blacklist, disabling DMA\n"); 4201 } 4202 4203 if ((host->flags & ATA_HOST_SIMPLEX) && 4204 host->simplex_claimed && host->simplex_claimed != ap) { 4205 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4206 ata_dev_warn(dev, 4207 "simplex DMA is claimed by other device, disabling DMA\n"); 4208 } 4209 4210 if (ap->flags & ATA_FLAG_NO_IORDY) 4211 xfer_mask &= ata_pio_mask_no_iordy(dev); 4212 4213 if (ap->ops->mode_filter) 4214 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4215 4216 /* Apply cable rule here. Don't apply it early because when 4217 * we handle hot plug the cable type can itself change. 4218 * Check this last so that we know if the transfer rate was 4219 * solely limited by the cable. 4220 * Unknown or 80 wire cables reported host side are checked 4221 * drive side as well. Cases where we know a 40wire cable 4222 * is used safely for 80 are not checked here. 4223 */ 4224 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4225 /* UDMA/44 or higher would be available */ 4226 if (cable_is_40wire(ap)) { 4227 ata_dev_warn(dev, 4228 "limited to UDMA/33 due to 40-wire cable\n"); 4229 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4230 } 4231 4232 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4233 &dev->mwdma_mask, &dev->udma_mask); 4234 } 4235 4236 /** 4237 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4238 * @dev: Device to which command will be sent 4239 * 4240 * Issue SET FEATURES - XFER MODE command to device @dev 4241 * on port @ap. 4242 * 4243 * LOCKING: 4244 * PCI/etc. bus probe sem. 4245 * 4246 * RETURNS: 4247 * 0 on success, AC_ERR_* mask otherwise. 4248 */ 4249 4250 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4251 { 4252 struct ata_taskfile tf; 4253 unsigned int err_mask; 4254 4255 /* set up set-features taskfile */ 4256 DPRINTK("set features - xfer mode\n"); 4257 4258 /* Some controllers and ATAPI devices show flaky interrupt 4259 * behavior after setting xfer mode. Use polling instead. 4260 */ 4261 ata_tf_init(dev, &tf); 4262 tf.command = ATA_CMD_SET_FEATURES; 4263 tf.feature = SETFEATURES_XFER; 4264 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4265 tf.protocol = ATA_PROT_NODATA; 4266 /* If we are using IORDY we must send the mode setting command */ 4267 if (ata_pio_need_iordy(dev)) 4268 tf.nsect = dev->xfer_mode; 4269 /* If the device has IORDY and the controller does not - turn it off */ 4270 else if (ata_id_has_iordy(dev->id)) 4271 tf.nsect = 0x01; 4272 else /* In the ancient relic department - skip all of this */ 4273 return 0; 4274 4275 /* On some disks, this command causes spin-up, so we need longer timeout */ 4276 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4277 4278 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4279 return err_mask; 4280 } 4281 4282 /** 4283 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4284 * @dev: Device to which command will be sent 4285 * @enable: Whether to enable or disable the feature 4286 * @feature: The sector count represents the feature to set 4287 * 4288 * Issue SET FEATURES - SATA FEATURES command to device @dev 4289 * on port @ap with sector count 4290 * 4291 * LOCKING: 4292 * PCI/etc. bus probe sem. 4293 * 4294 * RETURNS: 4295 * 0 on success, AC_ERR_* mask otherwise. 4296 */ 4297 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4298 { 4299 struct ata_taskfile tf; 4300 unsigned int err_mask; 4301 unsigned long timeout = 0; 4302 4303 /* set up set-features taskfile */ 4304 DPRINTK("set features - SATA features\n"); 4305 4306 ata_tf_init(dev, &tf); 4307 tf.command = ATA_CMD_SET_FEATURES; 4308 tf.feature = enable; 4309 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4310 tf.protocol = ATA_PROT_NODATA; 4311 tf.nsect = feature; 4312 4313 if (enable == SETFEATURES_SPINUP) 4314 timeout = ata_probe_timeout ? 4315 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4316 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4317 4318 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4319 return err_mask; 4320 } 4321 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4322 4323 /** 4324 * ata_dev_init_params - Issue INIT DEV PARAMS command 4325 * @dev: Device to which command will be sent 4326 * @heads: Number of heads (taskfile parameter) 4327 * @sectors: Number of sectors (taskfile parameter) 4328 * 4329 * LOCKING: 4330 * Kernel thread context (may sleep) 4331 * 4332 * RETURNS: 4333 * 0 on success, AC_ERR_* mask otherwise. 4334 */ 4335 static unsigned int ata_dev_init_params(struct ata_device *dev, 4336 u16 heads, u16 sectors) 4337 { 4338 struct ata_taskfile tf; 4339 unsigned int err_mask; 4340 4341 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4342 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4343 return AC_ERR_INVALID; 4344 4345 /* set up init dev params taskfile */ 4346 DPRINTK("init dev params \n"); 4347 4348 ata_tf_init(dev, &tf); 4349 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4350 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4351 tf.protocol = ATA_PROT_NODATA; 4352 tf.nsect = sectors; 4353 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4354 4355 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4356 /* A clean abort indicates an original or just out of spec drive 4357 and we should continue as we issue the setup based on the 4358 drive reported working geometry */ 4359 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4360 err_mask = 0; 4361 4362 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4363 return err_mask; 4364 } 4365 4366 /** 4367 * atapi_check_dma - Check whether ATAPI DMA can be supported 4368 * @qc: Metadata associated with taskfile to check 4369 * 4370 * Allow low-level driver to filter ATA PACKET commands, returning 4371 * a status indicating whether or not it is OK to use DMA for the 4372 * supplied PACKET command. 4373 * 4374 * LOCKING: 4375 * spin_lock_irqsave(host lock) 4376 * 4377 * RETURNS: 0 when ATAPI DMA can be used 4378 * nonzero otherwise 4379 */ 4380 int atapi_check_dma(struct ata_queued_cmd *qc) 4381 { 4382 struct ata_port *ap = qc->ap; 4383 4384 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4385 * few ATAPI devices choke on such DMA requests. 4386 */ 4387 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4388 unlikely(qc->nbytes & 15)) 4389 return 1; 4390 4391 if (ap->ops->check_atapi_dma) 4392 return ap->ops->check_atapi_dma(qc); 4393 4394 return 0; 4395 } 4396 4397 /** 4398 * ata_std_qc_defer - Check whether a qc needs to be deferred 4399 * @qc: ATA command in question 4400 * 4401 * Non-NCQ commands cannot run with any other command, NCQ or 4402 * not. As upper layer only knows the queue depth, we are 4403 * responsible for maintaining exclusion. This function checks 4404 * whether a new command @qc can be issued. 4405 * 4406 * LOCKING: 4407 * spin_lock_irqsave(host lock) 4408 * 4409 * RETURNS: 4410 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4411 */ 4412 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4413 { 4414 struct ata_link *link = qc->dev->link; 4415 4416 if (ata_is_ncq(qc->tf.protocol)) { 4417 if (!ata_tag_valid(link->active_tag)) 4418 return 0; 4419 } else { 4420 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4421 return 0; 4422 } 4423 4424 return ATA_DEFER_LINK; 4425 } 4426 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4427 4428 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4429 { 4430 return AC_ERR_OK; 4431 } 4432 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4433 4434 /** 4435 * ata_sg_init - Associate command with scatter-gather table. 4436 * @qc: Command to be associated 4437 * @sg: Scatter-gather table. 4438 * @n_elem: Number of elements in s/g table. 4439 * 4440 * Initialize the data-related elements of queued_cmd @qc 4441 * to point to a scatter-gather table @sg, containing @n_elem 4442 * elements. 4443 * 4444 * LOCKING: 4445 * spin_lock_irqsave(host lock) 4446 */ 4447 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4448 unsigned int n_elem) 4449 { 4450 qc->sg = sg; 4451 qc->n_elem = n_elem; 4452 qc->cursg = qc->sg; 4453 } 4454 4455 #ifdef CONFIG_HAS_DMA 4456 4457 /** 4458 * ata_sg_clean - Unmap DMA memory associated with command 4459 * @qc: Command containing DMA memory to be released 4460 * 4461 * Unmap all mapped DMA memory associated with this command. 4462 * 4463 * LOCKING: 4464 * spin_lock_irqsave(host lock) 4465 */ 4466 static void ata_sg_clean(struct ata_queued_cmd *qc) 4467 { 4468 struct ata_port *ap = qc->ap; 4469 struct scatterlist *sg = qc->sg; 4470 int dir = qc->dma_dir; 4471 4472 WARN_ON_ONCE(sg == NULL); 4473 4474 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4475 4476 if (qc->n_elem) 4477 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4478 4479 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4480 qc->sg = NULL; 4481 } 4482 4483 /** 4484 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4485 * @qc: Command with scatter-gather table to be mapped. 4486 * 4487 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4488 * 4489 * LOCKING: 4490 * spin_lock_irqsave(host lock) 4491 * 4492 * RETURNS: 4493 * Zero on success, negative on error. 4494 * 4495 */ 4496 static int ata_sg_setup(struct ata_queued_cmd *qc) 4497 { 4498 struct ata_port *ap = qc->ap; 4499 unsigned int n_elem; 4500 4501 VPRINTK("ENTER, ata%u\n", ap->print_id); 4502 4503 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4504 if (n_elem < 1) 4505 return -1; 4506 4507 VPRINTK("%d sg elements mapped\n", n_elem); 4508 qc->orig_n_elem = qc->n_elem; 4509 qc->n_elem = n_elem; 4510 qc->flags |= ATA_QCFLAG_DMAMAP; 4511 4512 return 0; 4513 } 4514 4515 #else /* !CONFIG_HAS_DMA */ 4516 4517 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4518 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4519 4520 #endif /* !CONFIG_HAS_DMA */ 4521 4522 /** 4523 * swap_buf_le16 - swap halves of 16-bit words in place 4524 * @buf: Buffer to swap 4525 * @buf_words: Number of 16-bit words in buffer. 4526 * 4527 * Swap halves of 16-bit words if needed to convert from 4528 * little-endian byte order to native cpu byte order, or 4529 * vice-versa. 4530 * 4531 * LOCKING: 4532 * Inherited from caller. 4533 */ 4534 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4535 { 4536 #ifdef __BIG_ENDIAN 4537 unsigned int i; 4538 4539 for (i = 0; i < buf_words; i++) 4540 buf[i] = le16_to_cpu(buf[i]); 4541 #endif /* __BIG_ENDIAN */ 4542 } 4543 4544 /** 4545 * ata_qc_new_init - Request an available ATA command, and initialize it 4546 * @dev: Device from whom we request an available command structure 4547 * @tag: tag 4548 * 4549 * LOCKING: 4550 * None. 4551 */ 4552 4553 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 4554 { 4555 struct ata_port *ap = dev->link->ap; 4556 struct ata_queued_cmd *qc; 4557 4558 /* no command while frozen */ 4559 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4560 return NULL; 4561 4562 /* libsas case */ 4563 if (ap->flags & ATA_FLAG_SAS_HOST) { 4564 tag = ata_sas_allocate_tag(ap); 4565 if (tag < 0) 4566 return NULL; 4567 } 4568 4569 qc = __ata_qc_from_tag(ap, tag); 4570 qc->tag = qc->hw_tag = tag; 4571 qc->scsicmd = NULL; 4572 qc->ap = ap; 4573 qc->dev = dev; 4574 4575 ata_qc_reinit(qc); 4576 4577 return qc; 4578 } 4579 4580 /** 4581 * ata_qc_free - free unused ata_queued_cmd 4582 * @qc: Command to complete 4583 * 4584 * Designed to free unused ata_queued_cmd object 4585 * in case something prevents using it. 4586 * 4587 * LOCKING: 4588 * spin_lock_irqsave(host lock) 4589 */ 4590 void ata_qc_free(struct ata_queued_cmd *qc) 4591 { 4592 struct ata_port *ap; 4593 unsigned int tag; 4594 4595 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4596 ap = qc->ap; 4597 4598 qc->flags = 0; 4599 tag = qc->tag; 4600 if (ata_tag_valid(tag)) { 4601 qc->tag = ATA_TAG_POISON; 4602 if (ap->flags & ATA_FLAG_SAS_HOST) 4603 ata_sas_free_tag(tag, ap); 4604 } 4605 } 4606 4607 void __ata_qc_complete(struct ata_queued_cmd *qc) 4608 { 4609 struct ata_port *ap; 4610 struct ata_link *link; 4611 4612 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4613 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4614 ap = qc->ap; 4615 link = qc->dev->link; 4616 4617 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4618 ata_sg_clean(qc); 4619 4620 /* command should be marked inactive atomically with qc completion */ 4621 if (ata_is_ncq(qc->tf.protocol)) { 4622 link->sactive &= ~(1 << qc->hw_tag); 4623 if (!link->sactive) 4624 ap->nr_active_links--; 4625 } else { 4626 link->active_tag = ATA_TAG_POISON; 4627 ap->nr_active_links--; 4628 } 4629 4630 /* clear exclusive status */ 4631 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4632 ap->excl_link == link)) 4633 ap->excl_link = NULL; 4634 4635 /* atapi: mark qc as inactive to prevent the interrupt handler 4636 * from completing the command twice later, before the error handler 4637 * is called. (when rc != 0 and atapi request sense is needed) 4638 */ 4639 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4640 ap->qc_active &= ~(1ULL << qc->tag); 4641 4642 /* call completion callback */ 4643 qc->complete_fn(qc); 4644 } 4645 4646 static void fill_result_tf(struct ata_queued_cmd *qc) 4647 { 4648 struct ata_port *ap = qc->ap; 4649 4650 qc->result_tf.flags = qc->tf.flags; 4651 ap->ops->qc_fill_rtf(qc); 4652 } 4653 4654 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4655 { 4656 struct ata_device *dev = qc->dev; 4657 4658 if (!ata_is_data(qc->tf.protocol)) 4659 return; 4660 4661 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4662 return; 4663 4664 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4665 } 4666 4667 /** 4668 * ata_qc_complete - Complete an active ATA command 4669 * @qc: Command to complete 4670 * 4671 * Indicate to the mid and upper layers that an ATA command has 4672 * completed, with either an ok or not-ok status. 4673 * 4674 * Refrain from calling this function multiple times when 4675 * successfully completing multiple NCQ commands. 4676 * ata_qc_complete_multiple() should be used instead, which will 4677 * properly update IRQ expect state. 4678 * 4679 * LOCKING: 4680 * spin_lock_irqsave(host lock) 4681 */ 4682 void ata_qc_complete(struct ata_queued_cmd *qc) 4683 { 4684 struct ata_port *ap = qc->ap; 4685 4686 /* Trigger the LED (if available) */ 4687 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4688 4689 /* XXX: New EH and old EH use different mechanisms to 4690 * synchronize EH with regular execution path. 4691 * 4692 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4693 * Normal execution path is responsible for not accessing a 4694 * failed qc. libata core enforces the rule by returning NULL 4695 * from ata_qc_from_tag() for failed qcs. 4696 * 4697 * Old EH depends on ata_qc_complete() nullifying completion 4698 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4699 * not synchronize with interrupt handler. Only PIO task is 4700 * taken care of. 4701 */ 4702 if (ap->ops->error_handler) { 4703 struct ata_device *dev = qc->dev; 4704 struct ata_eh_info *ehi = &dev->link->eh_info; 4705 4706 if (unlikely(qc->err_mask)) 4707 qc->flags |= ATA_QCFLAG_FAILED; 4708 4709 /* 4710 * Finish internal commands without any further processing 4711 * and always with the result TF filled. 4712 */ 4713 if (unlikely(ata_tag_internal(qc->tag))) { 4714 fill_result_tf(qc); 4715 trace_ata_qc_complete_internal(qc); 4716 __ata_qc_complete(qc); 4717 return; 4718 } 4719 4720 /* 4721 * Non-internal qc has failed. Fill the result TF and 4722 * summon EH. 4723 */ 4724 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4725 fill_result_tf(qc); 4726 trace_ata_qc_complete_failed(qc); 4727 ata_qc_schedule_eh(qc); 4728 return; 4729 } 4730 4731 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4732 4733 /* read result TF if requested */ 4734 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4735 fill_result_tf(qc); 4736 4737 trace_ata_qc_complete_done(qc); 4738 /* Some commands need post-processing after successful 4739 * completion. 4740 */ 4741 switch (qc->tf.command) { 4742 case ATA_CMD_SET_FEATURES: 4743 if (qc->tf.feature != SETFEATURES_WC_ON && 4744 qc->tf.feature != SETFEATURES_WC_OFF && 4745 qc->tf.feature != SETFEATURES_RA_ON && 4746 qc->tf.feature != SETFEATURES_RA_OFF) 4747 break; 4748 fallthrough; 4749 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4750 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4751 /* revalidate device */ 4752 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4753 ata_port_schedule_eh(ap); 4754 break; 4755 4756 case ATA_CMD_SLEEP: 4757 dev->flags |= ATA_DFLAG_SLEEPING; 4758 break; 4759 } 4760 4761 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4762 ata_verify_xfer(qc); 4763 4764 __ata_qc_complete(qc); 4765 } else { 4766 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4767 return; 4768 4769 /* read result TF if failed or requested */ 4770 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4771 fill_result_tf(qc); 4772 4773 __ata_qc_complete(qc); 4774 } 4775 } 4776 EXPORT_SYMBOL_GPL(ata_qc_complete); 4777 4778 /** 4779 * ata_qc_get_active - get bitmask of active qcs 4780 * @ap: port in question 4781 * 4782 * LOCKING: 4783 * spin_lock_irqsave(host lock) 4784 * 4785 * RETURNS: 4786 * Bitmask of active qcs 4787 */ 4788 u64 ata_qc_get_active(struct ata_port *ap) 4789 { 4790 u64 qc_active = ap->qc_active; 4791 4792 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4793 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4794 qc_active |= (1 << 0); 4795 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4796 } 4797 4798 return qc_active; 4799 } 4800 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4801 4802 /** 4803 * ata_qc_issue - issue taskfile to device 4804 * @qc: command to issue to device 4805 * 4806 * Prepare an ATA command to submission to device. 4807 * This includes mapping the data into a DMA-able 4808 * area, filling in the S/G table, and finally 4809 * writing the taskfile to hardware, starting the command. 4810 * 4811 * LOCKING: 4812 * spin_lock_irqsave(host lock) 4813 */ 4814 void ata_qc_issue(struct ata_queued_cmd *qc) 4815 { 4816 struct ata_port *ap = qc->ap; 4817 struct ata_link *link = qc->dev->link; 4818 u8 prot = qc->tf.protocol; 4819 4820 /* Make sure only one non-NCQ command is outstanding. The 4821 * check is skipped for old EH because it reuses active qc to 4822 * request ATAPI sense. 4823 */ 4824 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4825 4826 if (ata_is_ncq(prot)) { 4827 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4828 4829 if (!link->sactive) 4830 ap->nr_active_links++; 4831 link->sactive |= 1 << qc->hw_tag; 4832 } else { 4833 WARN_ON_ONCE(link->sactive); 4834 4835 ap->nr_active_links++; 4836 link->active_tag = qc->tag; 4837 } 4838 4839 qc->flags |= ATA_QCFLAG_ACTIVE; 4840 ap->qc_active |= 1ULL << qc->tag; 4841 4842 /* 4843 * We guarantee to LLDs that they will have at least one 4844 * non-zero sg if the command is a data command. 4845 */ 4846 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4847 goto sys_err; 4848 4849 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4850 (ap->flags & ATA_FLAG_PIO_DMA))) 4851 if (ata_sg_setup(qc)) 4852 goto sys_err; 4853 4854 /* if device is sleeping, schedule reset and abort the link */ 4855 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4856 link->eh_info.action |= ATA_EH_RESET; 4857 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4858 ata_link_abort(link); 4859 return; 4860 } 4861 4862 qc->err_mask |= ap->ops->qc_prep(qc); 4863 if (unlikely(qc->err_mask)) 4864 goto err; 4865 trace_ata_qc_issue(qc); 4866 qc->err_mask |= ap->ops->qc_issue(qc); 4867 if (unlikely(qc->err_mask)) 4868 goto err; 4869 return; 4870 4871 sys_err: 4872 qc->err_mask |= AC_ERR_SYSTEM; 4873 err: 4874 ata_qc_complete(qc); 4875 } 4876 4877 /** 4878 * ata_phys_link_online - test whether the given link is online 4879 * @link: ATA link to test 4880 * 4881 * Test whether @link is online. Note that this function returns 4882 * 0 if online status of @link cannot be obtained, so 4883 * ata_link_online(link) != !ata_link_offline(link). 4884 * 4885 * LOCKING: 4886 * None. 4887 * 4888 * RETURNS: 4889 * True if the port online status is available and online. 4890 */ 4891 bool ata_phys_link_online(struct ata_link *link) 4892 { 4893 u32 sstatus; 4894 4895 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4896 ata_sstatus_online(sstatus)) 4897 return true; 4898 return false; 4899 } 4900 4901 /** 4902 * ata_phys_link_offline - test whether the given link is offline 4903 * @link: ATA link to test 4904 * 4905 * Test whether @link is offline. Note that this function 4906 * returns 0 if offline status of @link cannot be obtained, so 4907 * ata_link_online(link) != !ata_link_offline(link). 4908 * 4909 * LOCKING: 4910 * None. 4911 * 4912 * RETURNS: 4913 * True if the port offline status is available and offline. 4914 */ 4915 bool ata_phys_link_offline(struct ata_link *link) 4916 { 4917 u32 sstatus; 4918 4919 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4920 !ata_sstatus_online(sstatus)) 4921 return true; 4922 return false; 4923 } 4924 4925 /** 4926 * ata_link_online - test whether the given link is online 4927 * @link: ATA link to test 4928 * 4929 * Test whether @link is online. This is identical to 4930 * ata_phys_link_online() when there's no slave link. When 4931 * there's a slave link, this function should only be called on 4932 * the master link and will return true if any of M/S links is 4933 * online. 4934 * 4935 * LOCKING: 4936 * None. 4937 * 4938 * RETURNS: 4939 * True if the port online status is available and online. 4940 */ 4941 bool ata_link_online(struct ata_link *link) 4942 { 4943 struct ata_link *slave = link->ap->slave_link; 4944 4945 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4946 4947 return ata_phys_link_online(link) || 4948 (slave && ata_phys_link_online(slave)); 4949 } 4950 EXPORT_SYMBOL_GPL(ata_link_online); 4951 4952 /** 4953 * ata_link_offline - test whether the given link is offline 4954 * @link: ATA link to test 4955 * 4956 * Test whether @link is offline. This is identical to 4957 * ata_phys_link_offline() when there's no slave link. When 4958 * there's a slave link, this function should only be called on 4959 * the master link and will return true if both M/S links are 4960 * offline. 4961 * 4962 * LOCKING: 4963 * None. 4964 * 4965 * RETURNS: 4966 * True if the port offline status is available and offline. 4967 */ 4968 bool ata_link_offline(struct ata_link *link) 4969 { 4970 struct ata_link *slave = link->ap->slave_link; 4971 4972 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4973 4974 return ata_phys_link_offline(link) && 4975 (!slave || ata_phys_link_offline(slave)); 4976 } 4977 EXPORT_SYMBOL_GPL(ata_link_offline); 4978 4979 #ifdef CONFIG_PM 4980 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 4981 unsigned int action, unsigned int ehi_flags, 4982 bool async) 4983 { 4984 struct ata_link *link; 4985 unsigned long flags; 4986 4987 /* Previous resume operation might still be in 4988 * progress. Wait for PM_PENDING to clear. 4989 */ 4990 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 4991 ata_port_wait_eh(ap); 4992 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4993 } 4994 4995 /* request PM ops to EH */ 4996 spin_lock_irqsave(ap->lock, flags); 4997 4998 ap->pm_mesg = mesg; 4999 ap->pflags |= ATA_PFLAG_PM_PENDING; 5000 ata_for_each_link(link, ap, HOST_FIRST) { 5001 link->eh_info.action |= action; 5002 link->eh_info.flags |= ehi_flags; 5003 } 5004 5005 ata_port_schedule_eh(ap); 5006 5007 spin_unlock_irqrestore(ap->lock, flags); 5008 5009 if (!async) { 5010 ata_port_wait_eh(ap); 5011 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5012 } 5013 } 5014 5015 /* 5016 * On some hardware, device fails to respond after spun down for suspend. As 5017 * the device won't be used before being resumed, we don't need to touch the 5018 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5019 * 5020 * http://thread.gmane.org/gmane.linux.ide/46764 5021 */ 5022 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5023 | ATA_EHI_NO_AUTOPSY 5024 | ATA_EHI_NO_RECOVERY; 5025 5026 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5027 { 5028 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5029 } 5030 5031 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5032 { 5033 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5034 } 5035 5036 static int ata_port_pm_suspend(struct device *dev) 5037 { 5038 struct ata_port *ap = to_ata_port(dev); 5039 5040 if (pm_runtime_suspended(dev)) 5041 return 0; 5042 5043 ata_port_suspend(ap, PMSG_SUSPEND); 5044 return 0; 5045 } 5046 5047 static int ata_port_pm_freeze(struct device *dev) 5048 { 5049 struct ata_port *ap = to_ata_port(dev); 5050 5051 if (pm_runtime_suspended(dev)) 5052 return 0; 5053 5054 ata_port_suspend(ap, PMSG_FREEZE); 5055 return 0; 5056 } 5057 5058 static int ata_port_pm_poweroff(struct device *dev) 5059 { 5060 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5061 return 0; 5062 } 5063 5064 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5065 | ATA_EHI_QUIET; 5066 5067 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5068 { 5069 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5070 } 5071 5072 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5073 { 5074 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5075 } 5076 5077 static int ata_port_pm_resume(struct device *dev) 5078 { 5079 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5080 pm_runtime_disable(dev); 5081 pm_runtime_set_active(dev); 5082 pm_runtime_enable(dev); 5083 return 0; 5084 } 5085 5086 /* 5087 * For ODDs, the upper layer will poll for media change every few seconds, 5088 * which will make it enter and leave suspend state every few seconds. And 5089 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5090 * is very little and the ODD may malfunction after constantly being reset. 5091 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5092 * ODD is attached to the port. 5093 */ 5094 static int ata_port_runtime_idle(struct device *dev) 5095 { 5096 struct ata_port *ap = to_ata_port(dev); 5097 struct ata_link *link; 5098 struct ata_device *adev; 5099 5100 ata_for_each_link(link, ap, HOST_FIRST) { 5101 ata_for_each_dev(adev, link, ENABLED) 5102 if (adev->class == ATA_DEV_ATAPI && 5103 !zpodd_dev_enabled(adev)) 5104 return -EBUSY; 5105 } 5106 5107 return 0; 5108 } 5109 5110 static int ata_port_runtime_suspend(struct device *dev) 5111 { 5112 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5113 return 0; 5114 } 5115 5116 static int ata_port_runtime_resume(struct device *dev) 5117 { 5118 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5119 return 0; 5120 } 5121 5122 static const struct dev_pm_ops ata_port_pm_ops = { 5123 .suspend = ata_port_pm_suspend, 5124 .resume = ata_port_pm_resume, 5125 .freeze = ata_port_pm_freeze, 5126 .thaw = ata_port_pm_resume, 5127 .poweroff = ata_port_pm_poweroff, 5128 .restore = ata_port_pm_resume, 5129 5130 .runtime_suspend = ata_port_runtime_suspend, 5131 .runtime_resume = ata_port_runtime_resume, 5132 .runtime_idle = ata_port_runtime_idle, 5133 }; 5134 5135 /* sas ports don't participate in pm runtime management of ata_ports, 5136 * and need to resume ata devices at the domain level, not the per-port 5137 * level. sas suspend/resume is async to allow parallel port recovery 5138 * since sas has multiple ata_port instances per Scsi_Host. 5139 */ 5140 void ata_sas_port_suspend(struct ata_port *ap) 5141 { 5142 ata_port_suspend_async(ap, PMSG_SUSPEND); 5143 } 5144 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5145 5146 void ata_sas_port_resume(struct ata_port *ap) 5147 { 5148 ata_port_resume_async(ap, PMSG_RESUME); 5149 } 5150 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5151 5152 /** 5153 * ata_host_suspend - suspend host 5154 * @host: host to suspend 5155 * @mesg: PM message 5156 * 5157 * Suspend @host. Actual operation is performed by port suspend. 5158 */ 5159 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5160 { 5161 host->dev->power.power_state = mesg; 5162 return 0; 5163 } 5164 EXPORT_SYMBOL_GPL(ata_host_suspend); 5165 5166 /** 5167 * ata_host_resume - resume host 5168 * @host: host to resume 5169 * 5170 * Resume @host. Actual operation is performed by port resume. 5171 */ 5172 void ata_host_resume(struct ata_host *host) 5173 { 5174 host->dev->power.power_state = PMSG_ON; 5175 } 5176 EXPORT_SYMBOL_GPL(ata_host_resume); 5177 #endif 5178 5179 const struct device_type ata_port_type = { 5180 .name = "ata_port", 5181 #ifdef CONFIG_PM 5182 .pm = &ata_port_pm_ops, 5183 #endif 5184 }; 5185 5186 /** 5187 * ata_dev_init - Initialize an ata_device structure 5188 * @dev: Device structure to initialize 5189 * 5190 * Initialize @dev in preparation for probing. 5191 * 5192 * LOCKING: 5193 * Inherited from caller. 5194 */ 5195 void ata_dev_init(struct ata_device *dev) 5196 { 5197 struct ata_link *link = ata_dev_phys_link(dev); 5198 struct ata_port *ap = link->ap; 5199 unsigned long flags; 5200 5201 /* SATA spd limit is bound to the attached device, reset together */ 5202 link->sata_spd_limit = link->hw_sata_spd_limit; 5203 link->sata_spd = 0; 5204 5205 /* High bits of dev->flags are used to record warm plug 5206 * requests which occur asynchronously. Synchronize using 5207 * host lock. 5208 */ 5209 spin_lock_irqsave(ap->lock, flags); 5210 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5211 dev->horkage = 0; 5212 spin_unlock_irqrestore(ap->lock, flags); 5213 5214 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5215 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5216 dev->pio_mask = UINT_MAX; 5217 dev->mwdma_mask = UINT_MAX; 5218 dev->udma_mask = UINT_MAX; 5219 } 5220 5221 /** 5222 * ata_link_init - Initialize an ata_link structure 5223 * @ap: ATA port link is attached to 5224 * @link: Link structure to initialize 5225 * @pmp: Port multiplier port number 5226 * 5227 * Initialize @link. 5228 * 5229 * LOCKING: 5230 * Kernel thread context (may sleep) 5231 */ 5232 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5233 { 5234 int i; 5235 5236 /* clear everything except for devices */ 5237 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5238 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5239 5240 link->ap = ap; 5241 link->pmp = pmp; 5242 link->active_tag = ATA_TAG_POISON; 5243 link->hw_sata_spd_limit = UINT_MAX; 5244 5245 /* can't use iterator, ap isn't initialized yet */ 5246 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5247 struct ata_device *dev = &link->device[i]; 5248 5249 dev->link = link; 5250 dev->devno = dev - link->device; 5251 #ifdef CONFIG_ATA_ACPI 5252 dev->gtf_filter = ata_acpi_gtf_filter; 5253 #endif 5254 ata_dev_init(dev); 5255 } 5256 } 5257 5258 /** 5259 * sata_link_init_spd - Initialize link->sata_spd_limit 5260 * @link: Link to configure sata_spd_limit for 5261 * 5262 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5263 * configured value. 5264 * 5265 * LOCKING: 5266 * Kernel thread context (may sleep). 5267 * 5268 * RETURNS: 5269 * 0 on success, -errno on failure. 5270 */ 5271 int sata_link_init_spd(struct ata_link *link) 5272 { 5273 u8 spd; 5274 int rc; 5275 5276 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5277 if (rc) 5278 return rc; 5279 5280 spd = (link->saved_scontrol >> 4) & 0xf; 5281 if (spd) 5282 link->hw_sata_spd_limit &= (1 << spd) - 1; 5283 5284 ata_force_link_limits(link); 5285 5286 link->sata_spd_limit = link->hw_sata_spd_limit; 5287 5288 return 0; 5289 } 5290 5291 /** 5292 * ata_port_alloc - allocate and initialize basic ATA port resources 5293 * @host: ATA host this allocated port belongs to 5294 * 5295 * Allocate and initialize basic ATA port resources. 5296 * 5297 * RETURNS: 5298 * Allocate ATA port on success, NULL on failure. 5299 * 5300 * LOCKING: 5301 * Inherited from calling layer (may sleep). 5302 */ 5303 struct ata_port *ata_port_alloc(struct ata_host *host) 5304 { 5305 struct ata_port *ap; 5306 5307 DPRINTK("ENTER\n"); 5308 5309 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5310 if (!ap) 5311 return NULL; 5312 5313 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5314 ap->lock = &host->lock; 5315 ap->print_id = -1; 5316 ap->local_port_no = -1; 5317 ap->host = host; 5318 ap->dev = host->dev; 5319 5320 #if defined(ATA_VERBOSE_DEBUG) 5321 /* turn on all debugging levels */ 5322 ap->msg_enable = 0x00FF; 5323 #elif defined(ATA_DEBUG) 5324 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5325 #else 5326 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5327 #endif 5328 5329 mutex_init(&ap->scsi_scan_mutex); 5330 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5331 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5332 INIT_LIST_HEAD(&ap->eh_done_q); 5333 init_waitqueue_head(&ap->eh_wait_q); 5334 init_completion(&ap->park_req_pending); 5335 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5336 TIMER_DEFERRABLE); 5337 5338 ap->cbl = ATA_CBL_NONE; 5339 5340 ata_link_init(ap, &ap->link, 0); 5341 5342 #ifdef ATA_IRQ_TRAP 5343 ap->stats.unhandled_irq = 1; 5344 ap->stats.idle_irq = 1; 5345 #endif 5346 ata_sff_port_init(ap); 5347 5348 return ap; 5349 } 5350 5351 static void ata_devres_release(struct device *gendev, void *res) 5352 { 5353 struct ata_host *host = dev_get_drvdata(gendev); 5354 int i; 5355 5356 for (i = 0; i < host->n_ports; i++) { 5357 struct ata_port *ap = host->ports[i]; 5358 5359 if (!ap) 5360 continue; 5361 5362 if (ap->scsi_host) 5363 scsi_host_put(ap->scsi_host); 5364 5365 } 5366 5367 dev_set_drvdata(gendev, NULL); 5368 ata_host_put(host); 5369 } 5370 5371 static void ata_host_release(struct kref *kref) 5372 { 5373 struct ata_host *host = container_of(kref, struct ata_host, kref); 5374 int i; 5375 5376 for (i = 0; i < host->n_ports; i++) { 5377 struct ata_port *ap = host->ports[i]; 5378 5379 kfree(ap->pmp_link); 5380 kfree(ap->slave_link); 5381 kfree(ap); 5382 host->ports[i] = NULL; 5383 } 5384 kfree(host); 5385 } 5386 5387 void ata_host_get(struct ata_host *host) 5388 { 5389 kref_get(&host->kref); 5390 } 5391 5392 void ata_host_put(struct ata_host *host) 5393 { 5394 kref_put(&host->kref, ata_host_release); 5395 } 5396 EXPORT_SYMBOL_GPL(ata_host_put); 5397 5398 /** 5399 * ata_host_alloc - allocate and init basic ATA host resources 5400 * @dev: generic device this host is associated with 5401 * @max_ports: maximum number of ATA ports associated with this host 5402 * 5403 * Allocate and initialize basic ATA host resources. LLD calls 5404 * this function to allocate a host, initializes it fully and 5405 * attaches it using ata_host_register(). 5406 * 5407 * @max_ports ports are allocated and host->n_ports is 5408 * initialized to @max_ports. The caller is allowed to decrease 5409 * host->n_ports before calling ata_host_register(). The unused 5410 * ports will be automatically freed on registration. 5411 * 5412 * RETURNS: 5413 * Allocate ATA host on success, NULL on failure. 5414 * 5415 * LOCKING: 5416 * Inherited from calling layer (may sleep). 5417 */ 5418 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5419 { 5420 struct ata_host *host; 5421 size_t sz; 5422 int i; 5423 void *dr; 5424 5425 DPRINTK("ENTER\n"); 5426 5427 /* alloc a container for our list of ATA ports (buses) */ 5428 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5429 host = kzalloc(sz, GFP_KERNEL); 5430 if (!host) 5431 return NULL; 5432 5433 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5434 goto err_free; 5435 5436 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5437 if (!dr) 5438 goto err_out; 5439 5440 devres_add(dev, dr); 5441 dev_set_drvdata(dev, host); 5442 5443 spin_lock_init(&host->lock); 5444 mutex_init(&host->eh_mutex); 5445 host->dev = dev; 5446 host->n_ports = max_ports; 5447 kref_init(&host->kref); 5448 5449 /* allocate ports bound to this host */ 5450 for (i = 0; i < max_ports; i++) { 5451 struct ata_port *ap; 5452 5453 ap = ata_port_alloc(host); 5454 if (!ap) 5455 goto err_out; 5456 5457 ap->port_no = i; 5458 host->ports[i] = ap; 5459 } 5460 5461 devres_remove_group(dev, NULL); 5462 return host; 5463 5464 err_out: 5465 devres_release_group(dev, NULL); 5466 err_free: 5467 kfree(host); 5468 return NULL; 5469 } 5470 EXPORT_SYMBOL_GPL(ata_host_alloc); 5471 5472 /** 5473 * ata_host_alloc_pinfo - alloc host and init with port_info array 5474 * @dev: generic device this host is associated with 5475 * @ppi: array of ATA port_info to initialize host with 5476 * @n_ports: number of ATA ports attached to this host 5477 * 5478 * Allocate ATA host and initialize with info from @ppi. If NULL 5479 * terminated, @ppi may contain fewer entries than @n_ports. The 5480 * last entry will be used for the remaining ports. 5481 * 5482 * RETURNS: 5483 * Allocate ATA host on success, NULL on failure. 5484 * 5485 * LOCKING: 5486 * Inherited from calling layer (may sleep). 5487 */ 5488 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5489 const struct ata_port_info * const * ppi, 5490 int n_ports) 5491 { 5492 const struct ata_port_info *pi; 5493 struct ata_host *host; 5494 int i, j; 5495 5496 host = ata_host_alloc(dev, n_ports); 5497 if (!host) 5498 return NULL; 5499 5500 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5501 struct ata_port *ap = host->ports[i]; 5502 5503 if (ppi[j]) 5504 pi = ppi[j++]; 5505 5506 ap->pio_mask = pi->pio_mask; 5507 ap->mwdma_mask = pi->mwdma_mask; 5508 ap->udma_mask = pi->udma_mask; 5509 ap->flags |= pi->flags; 5510 ap->link.flags |= pi->link_flags; 5511 ap->ops = pi->port_ops; 5512 5513 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5514 host->ops = pi->port_ops; 5515 } 5516 5517 return host; 5518 } 5519 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5520 5521 static void ata_host_stop(struct device *gendev, void *res) 5522 { 5523 struct ata_host *host = dev_get_drvdata(gendev); 5524 int i; 5525 5526 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5527 5528 for (i = 0; i < host->n_ports; i++) { 5529 struct ata_port *ap = host->ports[i]; 5530 5531 if (ap->ops->port_stop) 5532 ap->ops->port_stop(ap); 5533 } 5534 5535 if (host->ops->host_stop) 5536 host->ops->host_stop(host); 5537 } 5538 5539 /** 5540 * ata_finalize_port_ops - finalize ata_port_operations 5541 * @ops: ata_port_operations to finalize 5542 * 5543 * An ata_port_operations can inherit from another ops and that 5544 * ops can again inherit from another. This can go on as many 5545 * times as necessary as long as there is no loop in the 5546 * inheritance chain. 5547 * 5548 * Ops tables are finalized when the host is started. NULL or 5549 * unspecified entries are inherited from the closet ancestor 5550 * which has the method and the entry is populated with it. 5551 * After finalization, the ops table directly points to all the 5552 * methods and ->inherits is no longer necessary and cleared. 5553 * 5554 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5555 * 5556 * LOCKING: 5557 * None. 5558 */ 5559 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5560 { 5561 static DEFINE_SPINLOCK(lock); 5562 const struct ata_port_operations *cur; 5563 void **begin = (void **)ops; 5564 void **end = (void **)&ops->inherits; 5565 void **pp; 5566 5567 if (!ops || !ops->inherits) 5568 return; 5569 5570 spin_lock(&lock); 5571 5572 for (cur = ops->inherits; cur; cur = cur->inherits) { 5573 void **inherit = (void **)cur; 5574 5575 for (pp = begin; pp < end; pp++, inherit++) 5576 if (!*pp) 5577 *pp = *inherit; 5578 } 5579 5580 for (pp = begin; pp < end; pp++) 5581 if (IS_ERR(*pp)) 5582 *pp = NULL; 5583 5584 ops->inherits = NULL; 5585 5586 spin_unlock(&lock); 5587 } 5588 5589 /** 5590 * ata_host_start - start and freeze ports of an ATA host 5591 * @host: ATA host to start ports for 5592 * 5593 * Start and then freeze ports of @host. Started status is 5594 * recorded in host->flags, so this function can be called 5595 * multiple times. Ports are guaranteed to get started only 5596 * once. If host->ops isn't initialized yet, its set to the 5597 * first non-dummy port ops. 5598 * 5599 * LOCKING: 5600 * Inherited from calling layer (may sleep). 5601 * 5602 * RETURNS: 5603 * 0 if all ports are started successfully, -errno otherwise. 5604 */ 5605 int ata_host_start(struct ata_host *host) 5606 { 5607 int have_stop = 0; 5608 void *start_dr = NULL; 5609 int i, rc; 5610 5611 if (host->flags & ATA_HOST_STARTED) 5612 return 0; 5613 5614 ata_finalize_port_ops(host->ops); 5615 5616 for (i = 0; i < host->n_ports; i++) { 5617 struct ata_port *ap = host->ports[i]; 5618 5619 ata_finalize_port_ops(ap->ops); 5620 5621 if (!host->ops && !ata_port_is_dummy(ap)) 5622 host->ops = ap->ops; 5623 5624 if (ap->ops->port_stop) 5625 have_stop = 1; 5626 } 5627 5628 if (host->ops && host->ops->host_stop) 5629 have_stop = 1; 5630 5631 if (have_stop) { 5632 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5633 if (!start_dr) 5634 return -ENOMEM; 5635 } 5636 5637 for (i = 0; i < host->n_ports; i++) { 5638 struct ata_port *ap = host->ports[i]; 5639 5640 if (ap->ops->port_start) { 5641 rc = ap->ops->port_start(ap); 5642 if (rc) { 5643 if (rc != -ENODEV) 5644 dev_err(host->dev, 5645 "failed to start port %d (errno=%d)\n", 5646 i, rc); 5647 goto err_out; 5648 } 5649 } 5650 ata_eh_freeze_port(ap); 5651 } 5652 5653 if (start_dr) 5654 devres_add(host->dev, start_dr); 5655 host->flags |= ATA_HOST_STARTED; 5656 return 0; 5657 5658 err_out: 5659 while (--i >= 0) { 5660 struct ata_port *ap = host->ports[i]; 5661 5662 if (ap->ops->port_stop) 5663 ap->ops->port_stop(ap); 5664 } 5665 devres_free(start_dr); 5666 return rc; 5667 } 5668 EXPORT_SYMBOL_GPL(ata_host_start); 5669 5670 /** 5671 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5672 * @host: host to initialize 5673 * @dev: device host is attached to 5674 * @ops: port_ops 5675 * 5676 */ 5677 void ata_host_init(struct ata_host *host, struct device *dev, 5678 struct ata_port_operations *ops) 5679 { 5680 spin_lock_init(&host->lock); 5681 mutex_init(&host->eh_mutex); 5682 host->n_tags = ATA_MAX_QUEUE; 5683 host->dev = dev; 5684 host->ops = ops; 5685 kref_init(&host->kref); 5686 } 5687 EXPORT_SYMBOL_GPL(ata_host_init); 5688 5689 void __ata_port_probe(struct ata_port *ap) 5690 { 5691 struct ata_eh_info *ehi = &ap->link.eh_info; 5692 unsigned long flags; 5693 5694 /* kick EH for boot probing */ 5695 spin_lock_irqsave(ap->lock, flags); 5696 5697 ehi->probe_mask |= ATA_ALL_DEVICES; 5698 ehi->action |= ATA_EH_RESET; 5699 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5700 5701 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5702 ap->pflags |= ATA_PFLAG_LOADING; 5703 ata_port_schedule_eh(ap); 5704 5705 spin_unlock_irqrestore(ap->lock, flags); 5706 } 5707 5708 int ata_port_probe(struct ata_port *ap) 5709 { 5710 int rc = 0; 5711 5712 if (ap->ops->error_handler) { 5713 __ata_port_probe(ap); 5714 ata_port_wait_eh(ap); 5715 } else { 5716 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5717 rc = ata_bus_probe(ap); 5718 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5719 } 5720 return rc; 5721 } 5722 5723 5724 static void async_port_probe(void *data, async_cookie_t cookie) 5725 { 5726 struct ata_port *ap = data; 5727 5728 /* 5729 * If we're not allowed to scan this host in parallel, 5730 * we need to wait until all previous scans have completed 5731 * before going further. 5732 * Jeff Garzik says this is only within a controller, so we 5733 * don't need to wait for port 0, only for later ports. 5734 */ 5735 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5736 async_synchronize_cookie(cookie); 5737 5738 (void)ata_port_probe(ap); 5739 5740 /* in order to keep device order, we need to synchronize at this point */ 5741 async_synchronize_cookie(cookie); 5742 5743 ata_scsi_scan_host(ap, 1); 5744 } 5745 5746 /** 5747 * ata_host_register - register initialized ATA host 5748 * @host: ATA host to register 5749 * @sht: template for SCSI host 5750 * 5751 * Register initialized ATA host. @host is allocated using 5752 * ata_host_alloc() and fully initialized by LLD. This function 5753 * starts ports, registers @host with ATA and SCSI layers and 5754 * probe registered devices. 5755 * 5756 * LOCKING: 5757 * Inherited from calling layer (may sleep). 5758 * 5759 * RETURNS: 5760 * 0 on success, -errno otherwise. 5761 */ 5762 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5763 { 5764 int i, rc; 5765 5766 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5767 5768 /* host must have been started */ 5769 if (!(host->flags & ATA_HOST_STARTED)) { 5770 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5771 WARN_ON(1); 5772 return -EINVAL; 5773 } 5774 5775 /* Blow away unused ports. This happens when LLD can't 5776 * determine the exact number of ports to allocate at 5777 * allocation time. 5778 */ 5779 for (i = host->n_ports; host->ports[i]; i++) 5780 kfree(host->ports[i]); 5781 5782 /* give ports names and add SCSI hosts */ 5783 for (i = 0; i < host->n_ports; i++) { 5784 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5785 host->ports[i]->local_port_no = i + 1; 5786 } 5787 5788 /* Create associated sysfs transport objects */ 5789 for (i = 0; i < host->n_ports; i++) { 5790 rc = ata_tport_add(host->dev,host->ports[i]); 5791 if (rc) { 5792 goto err_tadd; 5793 } 5794 } 5795 5796 rc = ata_scsi_add_hosts(host, sht); 5797 if (rc) 5798 goto err_tadd; 5799 5800 /* set cable, sata_spd_limit and report */ 5801 for (i = 0; i < host->n_ports; i++) { 5802 struct ata_port *ap = host->ports[i]; 5803 unsigned long xfer_mask; 5804 5805 /* set SATA cable type if still unset */ 5806 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5807 ap->cbl = ATA_CBL_SATA; 5808 5809 /* init sata_spd_limit to the current value */ 5810 sata_link_init_spd(&ap->link); 5811 if (ap->slave_link) 5812 sata_link_init_spd(ap->slave_link); 5813 5814 /* print per-port info to dmesg */ 5815 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5816 ap->udma_mask); 5817 5818 if (!ata_port_is_dummy(ap)) { 5819 ata_port_info(ap, "%cATA max %s %s\n", 5820 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5821 ata_mode_string(xfer_mask), 5822 ap->link.eh_info.desc); 5823 ata_ehi_clear_desc(&ap->link.eh_info); 5824 } else 5825 ata_port_info(ap, "DUMMY\n"); 5826 } 5827 5828 /* perform each probe asynchronously */ 5829 for (i = 0; i < host->n_ports; i++) { 5830 struct ata_port *ap = host->ports[i]; 5831 ap->cookie = async_schedule(async_port_probe, ap); 5832 } 5833 5834 return 0; 5835 5836 err_tadd: 5837 while (--i >= 0) { 5838 ata_tport_delete(host->ports[i]); 5839 } 5840 return rc; 5841 5842 } 5843 EXPORT_SYMBOL_GPL(ata_host_register); 5844 5845 /** 5846 * ata_host_activate - start host, request IRQ and register it 5847 * @host: target ATA host 5848 * @irq: IRQ to request 5849 * @irq_handler: irq_handler used when requesting IRQ 5850 * @irq_flags: irq_flags used when requesting IRQ 5851 * @sht: scsi_host_template to use when registering the host 5852 * 5853 * After allocating an ATA host and initializing it, most libata 5854 * LLDs perform three steps to activate the host - start host, 5855 * request IRQ and register it. This helper takes necessary 5856 * arguments and performs the three steps in one go. 5857 * 5858 * An invalid IRQ skips the IRQ registration and expects the host to 5859 * have set polling mode on the port. In this case, @irq_handler 5860 * should be NULL. 5861 * 5862 * LOCKING: 5863 * Inherited from calling layer (may sleep). 5864 * 5865 * RETURNS: 5866 * 0 on success, -errno otherwise. 5867 */ 5868 int ata_host_activate(struct ata_host *host, int irq, 5869 irq_handler_t irq_handler, unsigned long irq_flags, 5870 struct scsi_host_template *sht) 5871 { 5872 int i, rc; 5873 char *irq_desc; 5874 5875 rc = ata_host_start(host); 5876 if (rc) 5877 return rc; 5878 5879 /* Special case for polling mode */ 5880 if (!irq) { 5881 WARN_ON(irq_handler); 5882 return ata_host_register(host, sht); 5883 } 5884 5885 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5886 dev_driver_string(host->dev), 5887 dev_name(host->dev)); 5888 if (!irq_desc) 5889 return -ENOMEM; 5890 5891 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5892 irq_desc, host); 5893 if (rc) 5894 return rc; 5895 5896 for (i = 0; i < host->n_ports; i++) 5897 ata_port_desc(host->ports[i], "irq %d", irq); 5898 5899 rc = ata_host_register(host, sht); 5900 /* if failed, just free the IRQ and leave ports alone */ 5901 if (rc) 5902 devm_free_irq(host->dev, irq, host); 5903 5904 return rc; 5905 } 5906 EXPORT_SYMBOL_GPL(ata_host_activate); 5907 5908 /** 5909 * ata_port_detach - Detach ATA port in preparation of device removal 5910 * @ap: ATA port to be detached 5911 * 5912 * Detach all ATA devices and the associated SCSI devices of @ap; 5913 * then, remove the associated SCSI host. @ap is guaranteed to 5914 * be quiescent on return from this function. 5915 * 5916 * LOCKING: 5917 * Kernel thread context (may sleep). 5918 */ 5919 static void ata_port_detach(struct ata_port *ap) 5920 { 5921 unsigned long flags; 5922 struct ata_link *link; 5923 struct ata_device *dev; 5924 5925 if (!ap->ops->error_handler) 5926 goto skip_eh; 5927 5928 /* tell EH we're leaving & flush EH */ 5929 spin_lock_irqsave(ap->lock, flags); 5930 ap->pflags |= ATA_PFLAG_UNLOADING; 5931 ata_port_schedule_eh(ap); 5932 spin_unlock_irqrestore(ap->lock, flags); 5933 5934 /* wait till EH commits suicide */ 5935 ata_port_wait_eh(ap); 5936 5937 /* it better be dead now */ 5938 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 5939 5940 cancel_delayed_work_sync(&ap->hotplug_task); 5941 5942 skip_eh: 5943 /* clean up zpodd on port removal */ 5944 ata_for_each_link(link, ap, HOST_FIRST) { 5945 ata_for_each_dev(dev, link, ALL) { 5946 if (zpodd_dev_enabled(dev)) 5947 zpodd_exit(dev); 5948 } 5949 } 5950 if (ap->pmp_link) { 5951 int i; 5952 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 5953 ata_tlink_delete(&ap->pmp_link[i]); 5954 } 5955 /* remove the associated SCSI host */ 5956 scsi_remove_host(ap->scsi_host); 5957 ata_tport_delete(ap); 5958 } 5959 5960 /** 5961 * ata_host_detach - Detach all ports of an ATA host 5962 * @host: Host to detach 5963 * 5964 * Detach all ports of @host. 5965 * 5966 * LOCKING: 5967 * Kernel thread context (may sleep). 5968 */ 5969 void ata_host_detach(struct ata_host *host) 5970 { 5971 int i; 5972 5973 for (i = 0; i < host->n_ports; i++) { 5974 /* Ensure ata_port probe has completed */ 5975 async_synchronize_cookie(host->ports[i]->cookie + 1); 5976 ata_port_detach(host->ports[i]); 5977 } 5978 5979 /* the host is dead now, dissociate ACPI */ 5980 ata_acpi_dissociate(host); 5981 } 5982 EXPORT_SYMBOL_GPL(ata_host_detach); 5983 5984 #ifdef CONFIG_PCI 5985 5986 /** 5987 * ata_pci_remove_one - PCI layer callback for device removal 5988 * @pdev: PCI device that was removed 5989 * 5990 * PCI layer indicates to libata via this hook that hot-unplug or 5991 * module unload event has occurred. Detach all ports. Resource 5992 * release is handled via devres. 5993 * 5994 * LOCKING: 5995 * Inherited from PCI layer (may sleep). 5996 */ 5997 void ata_pci_remove_one(struct pci_dev *pdev) 5998 { 5999 struct ata_host *host = pci_get_drvdata(pdev); 6000 6001 ata_host_detach(host); 6002 } 6003 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6004 6005 void ata_pci_shutdown_one(struct pci_dev *pdev) 6006 { 6007 struct ata_host *host = pci_get_drvdata(pdev); 6008 int i; 6009 6010 for (i = 0; i < host->n_ports; i++) { 6011 struct ata_port *ap = host->ports[i]; 6012 6013 ap->pflags |= ATA_PFLAG_FROZEN; 6014 6015 /* Disable port interrupts */ 6016 if (ap->ops->freeze) 6017 ap->ops->freeze(ap); 6018 6019 /* Stop the port DMA engines */ 6020 if (ap->ops->port_stop) 6021 ap->ops->port_stop(ap); 6022 } 6023 } 6024 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6025 6026 /* move to PCI subsystem */ 6027 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6028 { 6029 unsigned long tmp = 0; 6030 6031 switch (bits->width) { 6032 case 1: { 6033 u8 tmp8 = 0; 6034 pci_read_config_byte(pdev, bits->reg, &tmp8); 6035 tmp = tmp8; 6036 break; 6037 } 6038 case 2: { 6039 u16 tmp16 = 0; 6040 pci_read_config_word(pdev, bits->reg, &tmp16); 6041 tmp = tmp16; 6042 break; 6043 } 6044 case 4: { 6045 u32 tmp32 = 0; 6046 pci_read_config_dword(pdev, bits->reg, &tmp32); 6047 tmp = tmp32; 6048 break; 6049 } 6050 6051 default: 6052 return -EINVAL; 6053 } 6054 6055 tmp &= bits->mask; 6056 6057 return (tmp == bits->val) ? 1 : 0; 6058 } 6059 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6060 6061 #ifdef CONFIG_PM 6062 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6063 { 6064 pci_save_state(pdev); 6065 pci_disable_device(pdev); 6066 6067 if (mesg.event & PM_EVENT_SLEEP) 6068 pci_set_power_state(pdev, PCI_D3hot); 6069 } 6070 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6071 6072 int ata_pci_device_do_resume(struct pci_dev *pdev) 6073 { 6074 int rc; 6075 6076 pci_set_power_state(pdev, PCI_D0); 6077 pci_restore_state(pdev); 6078 6079 rc = pcim_enable_device(pdev); 6080 if (rc) { 6081 dev_err(&pdev->dev, 6082 "failed to enable device after resume (%d)\n", rc); 6083 return rc; 6084 } 6085 6086 pci_set_master(pdev); 6087 return 0; 6088 } 6089 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6090 6091 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6092 { 6093 struct ata_host *host = pci_get_drvdata(pdev); 6094 int rc = 0; 6095 6096 rc = ata_host_suspend(host, mesg); 6097 if (rc) 6098 return rc; 6099 6100 ata_pci_device_do_suspend(pdev, mesg); 6101 6102 return 0; 6103 } 6104 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6105 6106 int ata_pci_device_resume(struct pci_dev *pdev) 6107 { 6108 struct ata_host *host = pci_get_drvdata(pdev); 6109 int rc; 6110 6111 rc = ata_pci_device_do_resume(pdev); 6112 if (rc == 0) 6113 ata_host_resume(host); 6114 return rc; 6115 } 6116 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6117 #endif /* CONFIG_PM */ 6118 #endif /* CONFIG_PCI */ 6119 6120 /** 6121 * ata_platform_remove_one - Platform layer callback for device removal 6122 * @pdev: Platform device that was removed 6123 * 6124 * Platform layer indicates to libata via this hook that hot-unplug or 6125 * module unload event has occurred. Detach all ports. Resource 6126 * release is handled via devres. 6127 * 6128 * LOCKING: 6129 * Inherited from platform layer (may sleep). 6130 */ 6131 int ata_platform_remove_one(struct platform_device *pdev) 6132 { 6133 struct ata_host *host = platform_get_drvdata(pdev); 6134 6135 ata_host_detach(host); 6136 6137 return 0; 6138 } 6139 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6140 6141 #ifdef CONFIG_ATA_FORCE 6142 static int __init ata_parse_force_one(char **cur, 6143 struct ata_force_ent *force_ent, 6144 const char **reason) 6145 { 6146 static const struct ata_force_param force_tbl[] __initconst = { 6147 { "40c", .cbl = ATA_CBL_PATA40 }, 6148 { "80c", .cbl = ATA_CBL_PATA80 }, 6149 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6150 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6151 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6152 { "sata", .cbl = ATA_CBL_SATA }, 6153 { "1.5Gbps", .spd_limit = 1 }, 6154 { "3.0Gbps", .spd_limit = 2 }, 6155 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6156 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6157 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6158 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6159 { "noncqati", .horkage_on = ATA_HORKAGE_NO_NCQ_ON_ATI }, 6160 { "ncqati", .horkage_off = ATA_HORKAGE_NO_NCQ_ON_ATI }, 6161 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6162 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6163 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6164 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6165 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6166 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6167 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6168 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6169 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6170 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6171 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6172 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6173 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6174 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6175 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6176 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6177 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6178 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6179 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6180 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6181 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6182 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6183 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6184 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6185 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6186 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6187 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6188 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6189 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6190 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6191 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6192 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6193 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6194 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6195 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6196 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6197 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6198 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6199 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6200 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6201 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6202 }; 6203 char *start = *cur, *p = *cur; 6204 char *id, *val, *endp; 6205 const struct ata_force_param *match_fp = NULL; 6206 int nr_matches = 0, i; 6207 6208 /* find where this param ends and update *cur */ 6209 while (*p != '\0' && *p != ',') 6210 p++; 6211 6212 if (*p == '\0') 6213 *cur = p; 6214 else 6215 *cur = p + 1; 6216 6217 *p = '\0'; 6218 6219 /* parse */ 6220 p = strchr(start, ':'); 6221 if (!p) { 6222 val = strstrip(start); 6223 goto parse_val; 6224 } 6225 *p = '\0'; 6226 6227 id = strstrip(start); 6228 val = strstrip(p + 1); 6229 6230 /* parse id */ 6231 p = strchr(id, '.'); 6232 if (p) { 6233 *p++ = '\0'; 6234 force_ent->device = simple_strtoul(p, &endp, 10); 6235 if (p == endp || *endp != '\0') { 6236 *reason = "invalid device"; 6237 return -EINVAL; 6238 } 6239 } 6240 6241 force_ent->port = simple_strtoul(id, &endp, 10); 6242 if (id == endp || *endp != '\0') { 6243 *reason = "invalid port/link"; 6244 return -EINVAL; 6245 } 6246 6247 parse_val: 6248 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6249 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6250 const struct ata_force_param *fp = &force_tbl[i]; 6251 6252 if (strncasecmp(val, fp->name, strlen(val))) 6253 continue; 6254 6255 nr_matches++; 6256 match_fp = fp; 6257 6258 if (strcasecmp(val, fp->name) == 0) { 6259 nr_matches = 1; 6260 break; 6261 } 6262 } 6263 6264 if (!nr_matches) { 6265 *reason = "unknown value"; 6266 return -EINVAL; 6267 } 6268 if (nr_matches > 1) { 6269 *reason = "ambiguous value"; 6270 return -EINVAL; 6271 } 6272 6273 force_ent->param = *match_fp; 6274 6275 return 0; 6276 } 6277 6278 static void __init ata_parse_force_param(void) 6279 { 6280 int idx = 0, size = 1; 6281 int last_port = -1, last_device = -1; 6282 char *p, *cur, *next; 6283 6284 /* calculate maximum number of params and allocate force_tbl */ 6285 for (p = ata_force_param_buf; *p; p++) 6286 if (*p == ',') 6287 size++; 6288 6289 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6290 if (!ata_force_tbl) { 6291 printk(KERN_WARNING "ata: failed to extend force table, " 6292 "libata.force ignored\n"); 6293 return; 6294 } 6295 6296 /* parse and populate the table */ 6297 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6298 const char *reason = ""; 6299 struct ata_force_ent te = { .port = -1, .device = -1 }; 6300 6301 next = cur; 6302 if (ata_parse_force_one(&next, &te, &reason)) { 6303 printk(KERN_WARNING "ata: failed to parse force " 6304 "parameter \"%s\" (%s)\n", 6305 cur, reason); 6306 continue; 6307 } 6308 6309 if (te.port == -1) { 6310 te.port = last_port; 6311 te.device = last_device; 6312 } 6313 6314 ata_force_tbl[idx++] = te; 6315 6316 last_port = te.port; 6317 last_device = te.device; 6318 } 6319 6320 ata_force_tbl_size = idx; 6321 } 6322 6323 static void ata_free_force_param(void) 6324 { 6325 kfree(ata_force_tbl); 6326 } 6327 #else 6328 static inline void ata_parse_force_param(void) { } 6329 static inline void ata_free_force_param(void) { } 6330 #endif 6331 6332 static int __init ata_init(void) 6333 { 6334 int rc; 6335 6336 ata_parse_force_param(); 6337 6338 rc = ata_sff_init(); 6339 if (rc) { 6340 ata_free_force_param(); 6341 return rc; 6342 } 6343 6344 libata_transport_init(); 6345 ata_scsi_transport_template = ata_attach_transport(); 6346 if (!ata_scsi_transport_template) { 6347 ata_sff_exit(); 6348 rc = -ENOMEM; 6349 goto err_out; 6350 } 6351 6352 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6353 return 0; 6354 6355 err_out: 6356 return rc; 6357 } 6358 6359 static void __exit ata_exit(void) 6360 { 6361 ata_release_transport(ata_scsi_transport_template); 6362 libata_transport_exit(); 6363 ata_sff_exit(); 6364 ata_free_force_param(); 6365 } 6366 6367 subsys_initcall(ata_init); 6368 module_exit(ata_exit); 6369 6370 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6371 6372 int ata_ratelimit(void) 6373 { 6374 return __ratelimit(&ratelimit); 6375 } 6376 EXPORT_SYMBOL_GPL(ata_ratelimit); 6377 6378 /** 6379 * ata_msleep - ATA EH owner aware msleep 6380 * @ap: ATA port to attribute the sleep to 6381 * @msecs: duration to sleep in milliseconds 6382 * 6383 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6384 * ownership is released before going to sleep and reacquired 6385 * after the sleep is complete. IOW, other ports sharing the 6386 * @ap->host will be allowed to own the EH while this task is 6387 * sleeping. 6388 * 6389 * LOCKING: 6390 * Might sleep. 6391 */ 6392 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6393 { 6394 bool owns_eh = ap && ap->host->eh_owner == current; 6395 6396 if (owns_eh) 6397 ata_eh_release(ap); 6398 6399 if (msecs < 20) { 6400 unsigned long usecs = msecs * USEC_PER_MSEC; 6401 usleep_range(usecs, usecs + 50); 6402 } else { 6403 msleep(msecs); 6404 } 6405 6406 if (owns_eh) 6407 ata_eh_acquire(ap); 6408 } 6409 EXPORT_SYMBOL_GPL(ata_msleep); 6410 6411 /** 6412 * ata_wait_register - wait until register value changes 6413 * @ap: ATA port to wait register for, can be NULL 6414 * @reg: IO-mapped register 6415 * @mask: Mask to apply to read register value 6416 * @val: Wait condition 6417 * @interval: polling interval in milliseconds 6418 * @timeout: timeout in milliseconds 6419 * 6420 * Waiting for some bits of register to change is a common 6421 * operation for ATA controllers. This function reads 32bit LE 6422 * IO-mapped register @reg and tests for the following condition. 6423 * 6424 * (*@reg & mask) != val 6425 * 6426 * If the condition is met, it returns; otherwise, the process is 6427 * repeated after @interval_msec until timeout. 6428 * 6429 * LOCKING: 6430 * Kernel thread context (may sleep) 6431 * 6432 * RETURNS: 6433 * The final register value. 6434 */ 6435 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6436 unsigned long interval, unsigned long timeout) 6437 { 6438 unsigned long deadline; 6439 u32 tmp; 6440 6441 tmp = ioread32(reg); 6442 6443 /* Calculate timeout _after_ the first read to make sure 6444 * preceding writes reach the controller before starting to 6445 * eat away the timeout. 6446 */ 6447 deadline = ata_deadline(jiffies, timeout); 6448 6449 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6450 ata_msleep(ap, interval); 6451 tmp = ioread32(reg); 6452 } 6453 6454 return tmp; 6455 } 6456 EXPORT_SYMBOL_GPL(ata_wait_register); 6457 6458 /* 6459 * Dummy port_ops 6460 */ 6461 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6462 { 6463 return AC_ERR_SYSTEM; 6464 } 6465 6466 static void ata_dummy_error_handler(struct ata_port *ap) 6467 { 6468 /* truly dummy */ 6469 } 6470 6471 struct ata_port_operations ata_dummy_port_ops = { 6472 .qc_prep = ata_noop_qc_prep, 6473 .qc_issue = ata_dummy_qc_issue, 6474 .error_handler = ata_dummy_error_handler, 6475 .sched_eh = ata_std_sched_eh, 6476 .end_eh = ata_std_end_eh, 6477 }; 6478 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6479 6480 const struct ata_port_info ata_dummy_port_info = { 6481 .port_ops = &ata_dummy_port_ops, 6482 }; 6483 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6484 6485 /* 6486 * Utility print functions 6487 */ 6488 void ata_port_printk(const struct ata_port *ap, const char *level, 6489 const char *fmt, ...) 6490 { 6491 struct va_format vaf; 6492 va_list args; 6493 6494 va_start(args, fmt); 6495 6496 vaf.fmt = fmt; 6497 vaf.va = &args; 6498 6499 printk("%sata%u: %pV", level, ap->print_id, &vaf); 6500 6501 va_end(args); 6502 } 6503 EXPORT_SYMBOL(ata_port_printk); 6504 6505 void ata_link_printk(const struct ata_link *link, const char *level, 6506 const char *fmt, ...) 6507 { 6508 struct va_format vaf; 6509 va_list args; 6510 6511 va_start(args, fmt); 6512 6513 vaf.fmt = fmt; 6514 vaf.va = &args; 6515 6516 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6517 printk("%sata%u.%02u: %pV", 6518 level, link->ap->print_id, link->pmp, &vaf); 6519 else 6520 printk("%sata%u: %pV", 6521 level, link->ap->print_id, &vaf); 6522 6523 va_end(args); 6524 } 6525 EXPORT_SYMBOL(ata_link_printk); 6526 6527 void ata_dev_printk(const struct ata_device *dev, const char *level, 6528 const char *fmt, ...) 6529 { 6530 struct va_format vaf; 6531 va_list args; 6532 6533 va_start(args, fmt); 6534 6535 vaf.fmt = fmt; 6536 vaf.va = &args; 6537 6538 printk("%sata%u.%02u: %pV", 6539 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6540 &vaf); 6541 6542 va_end(args); 6543 } 6544 EXPORT_SYMBOL(ata_dev_printk); 6545 6546 void ata_print_version(const struct device *dev, const char *version) 6547 { 6548 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6549 } 6550 EXPORT_SYMBOL(ata_print_version); 6551