1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 #include <linux/pm_runtime.h> 70 #include <linux/platform_device.h> 71 72 #include "libata.h" 73 #include "libata-transport.h" 74 75 /* debounce timing parameters in msecs { interval, duration, timeout } */ 76 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 77 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 78 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 79 80 const struct ata_port_operations ata_base_port_ops = { 81 .prereset = ata_std_prereset, 82 .postreset = ata_std_postreset, 83 .error_handler = ata_std_error_handler, 84 .sched_eh = ata_std_sched_eh, 85 .end_eh = ata_std_end_eh, 86 }; 87 88 const struct ata_port_operations sata_port_ops = { 89 .inherits = &ata_base_port_ops, 90 91 .qc_defer = ata_std_qc_defer, 92 .hardreset = sata_std_hardreset, 93 }; 94 95 static unsigned int ata_dev_init_params(struct ata_device *dev, 96 u16 heads, u16 sectors); 97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 98 static void ata_dev_xfermask(struct ata_device *dev); 99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 100 101 atomic_t ata_print_id = ATOMIC_INIT(0); 102 103 struct ata_force_param { 104 const char *name; 105 unsigned int cbl; 106 int spd_limit; 107 unsigned long xfer_mask; 108 unsigned int horkage_on; 109 unsigned int horkage_off; 110 unsigned int lflags; 111 }; 112 113 struct ata_force_ent { 114 int port; 115 int device; 116 struct ata_force_param param; 117 }; 118 119 static struct ata_force_ent *ata_force_tbl; 120 static int ata_force_tbl_size; 121 122 static char ata_force_param_buf[PAGE_SIZE] __initdata; 123 /* param_buf is thrown away after initialization, disallow read */ 124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 126 127 static int atapi_enabled = 1; 128 module_param(atapi_enabled, int, 0444); 129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 130 131 static int atapi_dmadir = 0; 132 module_param(atapi_dmadir, int, 0444); 133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 134 135 int atapi_passthru16 = 1; 136 module_param(atapi_passthru16, int, 0444); 137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 138 139 int libata_fua = 0; 140 module_param_named(fua, libata_fua, int, 0444); 141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 142 143 static int ata_ignore_hpa; 144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 146 147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 148 module_param_named(dma, libata_dma_mask, int, 0444); 149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 150 151 static int ata_probe_timeout; 152 module_param(ata_probe_timeout, int, 0444); 153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 154 155 int libata_noacpi = 0; 156 module_param_named(noacpi, libata_noacpi, int, 0444); 157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 158 159 int libata_allow_tpm = 0; 160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 162 163 static int atapi_an; 164 module_param(atapi_an, int, 0444); 165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 166 167 MODULE_AUTHOR("Jeff Garzik"); 168 MODULE_DESCRIPTION("Library module for ATA devices"); 169 MODULE_LICENSE("GPL"); 170 MODULE_VERSION(DRV_VERSION); 171 172 173 static bool ata_sstatus_online(u32 sstatus) 174 { 175 return (sstatus & 0xf) == 0x3; 176 } 177 178 /** 179 * ata_link_next - link iteration helper 180 * @link: the previous link, NULL to start 181 * @ap: ATA port containing links to iterate 182 * @mode: iteration mode, one of ATA_LITER_* 183 * 184 * LOCKING: 185 * Host lock or EH context. 186 * 187 * RETURNS: 188 * Pointer to the next link. 189 */ 190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 191 enum ata_link_iter_mode mode) 192 { 193 BUG_ON(mode != ATA_LITER_EDGE && 194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 195 196 /* NULL link indicates start of iteration */ 197 if (!link) 198 switch (mode) { 199 case ATA_LITER_EDGE: 200 case ATA_LITER_PMP_FIRST: 201 if (sata_pmp_attached(ap)) 202 return ap->pmp_link; 203 /* fall through */ 204 case ATA_LITER_HOST_FIRST: 205 return &ap->link; 206 } 207 208 /* we just iterated over the host link, what's next? */ 209 if (link == &ap->link) 210 switch (mode) { 211 case ATA_LITER_HOST_FIRST: 212 if (sata_pmp_attached(ap)) 213 return ap->pmp_link; 214 /* fall through */ 215 case ATA_LITER_PMP_FIRST: 216 if (unlikely(ap->slave_link)) 217 return ap->slave_link; 218 /* fall through */ 219 case ATA_LITER_EDGE: 220 return NULL; 221 } 222 223 /* slave_link excludes PMP */ 224 if (unlikely(link == ap->slave_link)) 225 return NULL; 226 227 /* we were over a PMP link */ 228 if (++link < ap->pmp_link + ap->nr_pmp_links) 229 return link; 230 231 if (mode == ATA_LITER_PMP_FIRST) 232 return &ap->link; 233 234 return NULL; 235 } 236 237 /** 238 * ata_dev_next - device iteration helper 239 * @dev: the previous device, NULL to start 240 * @link: ATA link containing devices to iterate 241 * @mode: iteration mode, one of ATA_DITER_* 242 * 243 * LOCKING: 244 * Host lock or EH context. 245 * 246 * RETURNS: 247 * Pointer to the next device. 248 */ 249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 250 enum ata_dev_iter_mode mode) 251 { 252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 254 255 /* NULL dev indicates start of iteration */ 256 if (!dev) 257 switch (mode) { 258 case ATA_DITER_ENABLED: 259 case ATA_DITER_ALL: 260 dev = link->device; 261 goto check; 262 case ATA_DITER_ENABLED_REVERSE: 263 case ATA_DITER_ALL_REVERSE: 264 dev = link->device + ata_link_max_devices(link) - 1; 265 goto check; 266 } 267 268 next: 269 /* move to the next one */ 270 switch (mode) { 271 case ATA_DITER_ENABLED: 272 case ATA_DITER_ALL: 273 if (++dev < link->device + ata_link_max_devices(link)) 274 goto check; 275 return NULL; 276 case ATA_DITER_ENABLED_REVERSE: 277 case ATA_DITER_ALL_REVERSE: 278 if (--dev >= link->device) 279 goto check; 280 return NULL; 281 } 282 283 check: 284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 285 !ata_dev_enabled(dev)) 286 goto next; 287 return dev; 288 } 289 290 /** 291 * ata_dev_phys_link - find physical link for a device 292 * @dev: ATA device to look up physical link for 293 * 294 * Look up physical link which @dev is attached to. Note that 295 * this is different from @dev->link only when @dev is on slave 296 * link. For all other cases, it's the same as @dev->link. 297 * 298 * LOCKING: 299 * Don't care. 300 * 301 * RETURNS: 302 * Pointer to the found physical link. 303 */ 304 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 305 { 306 struct ata_port *ap = dev->link->ap; 307 308 if (!ap->slave_link) 309 return dev->link; 310 if (!dev->devno) 311 return &ap->link; 312 return ap->slave_link; 313 } 314 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags) { 391 link->flags |= fe->param.lflags; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags, link->flags); 395 } 396 } 397 } 398 399 /** 400 * ata_force_xfermask - force xfermask according to libata.force 401 * @dev: ATA device of interest 402 * 403 * Force xfer_mask according to libata.force and whine about it. 404 * For consistency with link selection, device number 15 selects 405 * the first device connected to the host link. 406 * 407 * LOCKING: 408 * EH context. 409 */ 410 static void ata_force_xfermask(struct ata_device *dev) 411 { 412 int devno = dev->link->pmp + dev->devno; 413 int alt_devno = devno; 414 int i; 415 416 /* allow n.15/16 for devices attached to host port */ 417 if (ata_is_host_link(dev->link)) 418 alt_devno += 15; 419 420 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 421 const struct ata_force_ent *fe = &ata_force_tbl[i]; 422 unsigned long pio_mask, mwdma_mask, udma_mask; 423 424 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 425 continue; 426 427 if (fe->device != -1 && fe->device != devno && 428 fe->device != alt_devno) 429 continue; 430 431 if (!fe->param.xfer_mask) 432 continue; 433 434 ata_unpack_xfermask(fe->param.xfer_mask, 435 &pio_mask, &mwdma_mask, &udma_mask); 436 if (udma_mask) 437 dev->udma_mask = udma_mask; 438 else if (mwdma_mask) { 439 dev->udma_mask = 0; 440 dev->mwdma_mask = mwdma_mask; 441 } else { 442 dev->udma_mask = 0; 443 dev->mwdma_mask = 0; 444 dev->pio_mask = pio_mask; 445 } 446 447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 448 fe->param.name); 449 return; 450 } 451 } 452 453 /** 454 * ata_force_horkage - force horkage according to libata.force 455 * @dev: ATA device of interest 456 * 457 * Force horkage according to libata.force and whine about it. 458 * For consistency with link selection, device number 15 selects 459 * the first device connected to the host link. 460 * 461 * LOCKING: 462 * EH context. 463 */ 464 static void ata_force_horkage(struct ata_device *dev) 465 { 466 int devno = dev->link->pmp + dev->devno; 467 int alt_devno = devno; 468 int i; 469 470 /* allow n.15/16 for devices attached to host port */ 471 if (ata_is_host_link(dev->link)) 472 alt_devno += 15; 473 474 for (i = 0; i < ata_force_tbl_size; i++) { 475 const struct ata_force_ent *fe = &ata_force_tbl[i]; 476 477 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 478 continue; 479 480 if (fe->device != -1 && fe->device != devno && 481 fe->device != alt_devno) 482 continue; 483 484 if (!(~dev->horkage & fe->param.horkage_on) && 485 !(dev->horkage & fe->param.horkage_off)) 486 continue; 487 488 dev->horkage |= fe->param.horkage_on; 489 dev->horkage &= ~fe->param.horkage_off; 490 491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 492 fe->param.name); 493 } 494 } 495 496 /** 497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 498 * @opcode: SCSI opcode 499 * 500 * Determine ATAPI command type from @opcode. 501 * 502 * LOCKING: 503 * None. 504 * 505 * RETURNS: 506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 507 */ 508 int atapi_cmd_type(u8 opcode) 509 { 510 switch (opcode) { 511 case GPCMD_READ_10: 512 case GPCMD_READ_12: 513 return ATAPI_READ; 514 515 case GPCMD_WRITE_10: 516 case GPCMD_WRITE_12: 517 case GPCMD_WRITE_AND_VERIFY_10: 518 return ATAPI_WRITE; 519 520 case GPCMD_READ_CD: 521 case GPCMD_READ_CD_MSF: 522 return ATAPI_READ_CD; 523 524 case ATA_16: 525 case ATA_12: 526 if (atapi_passthru16) 527 return ATAPI_PASS_THRU; 528 /* fall thru */ 529 default: 530 return ATAPI_MISC; 531 } 532 } 533 534 /** 535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 536 * @tf: Taskfile to convert 537 * @pmp: Port multiplier port 538 * @is_cmd: This FIS is for command 539 * @fis: Buffer into which data will output 540 * 541 * Converts a standard ATA taskfile to a Serial ATA 542 * FIS structure (Register - Host to Device). 543 * 544 * LOCKING: 545 * Inherited from caller. 546 */ 547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 548 { 549 fis[0] = 0x27; /* Register - Host to Device FIS */ 550 fis[1] = pmp & 0xf; /* Port multiplier number*/ 551 if (is_cmd) 552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 553 554 fis[2] = tf->command; 555 fis[3] = tf->feature; 556 557 fis[4] = tf->lbal; 558 fis[5] = tf->lbam; 559 fis[6] = tf->lbah; 560 fis[7] = tf->device; 561 562 fis[8] = tf->hob_lbal; 563 fis[9] = tf->hob_lbam; 564 fis[10] = tf->hob_lbah; 565 fis[11] = tf->hob_feature; 566 567 fis[12] = tf->nsect; 568 fis[13] = tf->hob_nsect; 569 fis[14] = 0; 570 fis[15] = tf->ctl; 571 572 fis[16] = 0; 573 fis[17] = 0; 574 fis[18] = 0; 575 fis[19] = 0; 576 } 577 578 /** 579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 580 * @fis: Buffer from which data will be input 581 * @tf: Taskfile to output 582 * 583 * Converts a serial ATA FIS structure to a standard ATA taskfile. 584 * 585 * LOCKING: 586 * Inherited from caller. 587 */ 588 589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 590 { 591 tf->command = fis[2]; /* status */ 592 tf->feature = fis[3]; /* error */ 593 594 tf->lbal = fis[4]; 595 tf->lbam = fis[5]; 596 tf->lbah = fis[6]; 597 tf->device = fis[7]; 598 599 tf->hob_lbal = fis[8]; 600 tf->hob_lbam = fis[9]; 601 tf->hob_lbah = fis[10]; 602 603 tf->nsect = fis[12]; 604 tf->hob_nsect = fis[13]; 605 } 606 607 static const u8 ata_rw_cmds[] = { 608 /* pio multi */ 609 ATA_CMD_READ_MULTI, 610 ATA_CMD_WRITE_MULTI, 611 ATA_CMD_READ_MULTI_EXT, 612 ATA_CMD_WRITE_MULTI_EXT, 613 0, 614 0, 615 0, 616 ATA_CMD_WRITE_MULTI_FUA_EXT, 617 /* pio */ 618 ATA_CMD_PIO_READ, 619 ATA_CMD_PIO_WRITE, 620 ATA_CMD_PIO_READ_EXT, 621 ATA_CMD_PIO_WRITE_EXT, 622 0, 623 0, 624 0, 625 0, 626 /* dma */ 627 ATA_CMD_READ, 628 ATA_CMD_WRITE, 629 ATA_CMD_READ_EXT, 630 ATA_CMD_WRITE_EXT, 631 0, 632 0, 633 0, 634 ATA_CMD_WRITE_FUA_EXT 635 }; 636 637 /** 638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 639 * @tf: command to examine and configure 640 * @dev: device tf belongs to 641 * 642 * Examine the device configuration and tf->flags to calculate 643 * the proper read/write commands and protocol to use. 644 * 645 * LOCKING: 646 * caller. 647 */ 648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 649 { 650 u8 cmd; 651 652 int index, fua, lba48, write; 653 654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 657 658 if (dev->flags & ATA_DFLAG_PIO) { 659 tf->protocol = ATA_PROT_PIO; 660 index = dev->multi_count ? 0 : 8; 661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 662 /* Unable to use DMA due to host limitation */ 663 tf->protocol = ATA_PROT_PIO; 664 index = dev->multi_count ? 0 : 8; 665 } else { 666 tf->protocol = ATA_PROT_DMA; 667 index = 16; 668 } 669 670 cmd = ata_rw_cmds[index + fua + lba48 + write]; 671 if (cmd) { 672 tf->command = cmd; 673 return 0; 674 } 675 return -1; 676 } 677 678 /** 679 * ata_tf_read_block - Read block address from ATA taskfile 680 * @tf: ATA taskfile of interest 681 * @dev: ATA device @tf belongs to 682 * 683 * LOCKING: 684 * None. 685 * 686 * Read block address from @tf. This function can handle all 687 * three address formats - LBA, LBA48 and CHS. tf->protocol and 688 * flags select the address format to use. 689 * 690 * RETURNS: 691 * Block address read from @tf. 692 */ 693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 694 { 695 u64 block = 0; 696 697 if (tf->flags & ATA_TFLAG_LBA) { 698 if (tf->flags & ATA_TFLAG_LBA48) { 699 block |= (u64)tf->hob_lbah << 40; 700 block |= (u64)tf->hob_lbam << 32; 701 block |= (u64)tf->hob_lbal << 24; 702 } else 703 block |= (tf->device & 0xf) << 24; 704 705 block |= tf->lbah << 16; 706 block |= tf->lbam << 8; 707 block |= tf->lbal; 708 } else { 709 u32 cyl, head, sect; 710 711 cyl = tf->lbam | (tf->lbah << 8); 712 head = tf->device & 0xf; 713 sect = tf->lbal; 714 715 if (!sect) { 716 ata_dev_warn(dev, 717 "device reported invalid CHS sector 0\n"); 718 sect = 1; /* oh well */ 719 } 720 721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 722 } 723 724 return block; 725 } 726 727 /** 728 * ata_build_rw_tf - Build ATA taskfile for given read/write request 729 * @tf: Target ATA taskfile 730 * @dev: ATA device @tf belongs to 731 * @block: Block address 732 * @n_block: Number of blocks 733 * @tf_flags: RW/FUA etc... 734 * @tag: tag 735 * 736 * LOCKING: 737 * None. 738 * 739 * Build ATA taskfile @tf for read/write request described by 740 * @block, @n_block, @tf_flags and @tag on @dev. 741 * 742 * RETURNS: 743 * 744 * 0 on success, -ERANGE if the request is too large for @dev, 745 * -EINVAL if the request is invalid. 746 */ 747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 748 u64 block, u32 n_block, unsigned int tf_flags, 749 unsigned int tag) 750 { 751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 752 tf->flags |= tf_flags; 753 754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 755 /* yay, NCQ */ 756 if (!lba_48_ok(block, n_block)) 757 return -ERANGE; 758 759 tf->protocol = ATA_PROT_NCQ; 760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 761 762 if (tf->flags & ATA_TFLAG_WRITE) 763 tf->command = ATA_CMD_FPDMA_WRITE; 764 else 765 tf->command = ATA_CMD_FPDMA_READ; 766 767 tf->nsect = tag << 3; 768 tf->hob_feature = (n_block >> 8) & 0xff; 769 tf->feature = n_block & 0xff; 770 771 tf->hob_lbah = (block >> 40) & 0xff; 772 tf->hob_lbam = (block >> 32) & 0xff; 773 tf->hob_lbal = (block >> 24) & 0xff; 774 tf->lbah = (block >> 16) & 0xff; 775 tf->lbam = (block >> 8) & 0xff; 776 tf->lbal = block & 0xff; 777 778 tf->device = ATA_LBA; 779 if (tf->flags & ATA_TFLAG_FUA) 780 tf->device |= 1 << 7; 781 } else if (dev->flags & ATA_DFLAG_LBA) { 782 tf->flags |= ATA_TFLAG_LBA; 783 784 if (lba_28_ok(block, n_block)) { 785 /* use LBA28 */ 786 tf->device |= (block >> 24) & 0xf; 787 } else if (lba_48_ok(block, n_block)) { 788 if (!(dev->flags & ATA_DFLAG_LBA48)) 789 return -ERANGE; 790 791 /* use LBA48 */ 792 tf->flags |= ATA_TFLAG_LBA48; 793 794 tf->hob_nsect = (n_block >> 8) & 0xff; 795 796 tf->hob_lbah = (block >> 40) & 0xff; 797 tf->hob_lbam = (block >> 32) & 0xff; 798 tf->hob_lbal = (block >> 24) & 0xff; 799 } else 800 /* request too large even for LBA48 */ 801 return -ERANGE; 802 803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 804 return -EINVAL; 805 806 tf->nsect = n_block & 0xff; 807 808 tf->lbah = (block >> 16) & 0xff; 809 tf->lbam = (block >> 8) & 0xff; 810 tf->lbal = block & 0xff; 811 812 tf->device |= ATA_LBA; 813 } else { 814 /* CHS */ 815 u32 sect, head, cyl, track; 816 817 /* The request -may- be too large for CHS addressing. */ 818 if (!lba_28_ok(block, n_block)) 819 return -ERANGE; 820 821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 822 return -EINVAL; 823 824 /* Convert LBA to CHS */ 825 track = (u32)block / dev->sectors; 826 cyl = track / dev->heads; 827 head = track % dev->heads; 828 sect = (u32)block % dev->sectors + 1; 829 830 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 831 (u32)block, track, cyl, head, sect); 832 833 /* Check whether the converted CHS can fit. 834 Cylinder: 0-65535 835 Head: 0-15 836 Sector: 1-255*/ 837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 838 return -ERANGE; 839 840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 841 tf->lbal = sect; 842 tf->lbam = cyl; 843 tf->lbah = cyl >> 8; 844 tf->device |= head; 845 } 846 847 return 0; 848 } 849 850 /** 851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 852 * @pio_mask: pio_mask 853 * @mwdma_mask: mwdma_mask 854 * @udma_mask: udma_mask 855 * 856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 857 * unsigned int xfer_mask. 858 * 859 * LOCKING: 860 * None. 861 * 862 * RETURNS: 863 * Packed xfer_mask. 864 */ 865 unsigned long ata_pack_xfermask(unsigned long pio_mask, 866 unsigned long mwdma_mask, 867 unsigned long udma_mask) 868 { 869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 872 } 873 874 /** 875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 876 * @xfer_mask: xfer_mask to unpack 877 * @pio_mask: resulting pio_mask 878 * @mwdma_mask: resulting mwdma_mask 879 * @udma_mask: resulting udma_mask 880 * 881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 882 * Any NULL distination masks will be ignored. 883 */ 884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 885 unsigned long *mwdma_mask, unsigned long *udma_mask) 886 { 887 if (pio_mask) 888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 889 if (mwdma_mask) 890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 891 if (udma_mask) 892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 893 } 894 895 static const struct ata_xfer_ent { 896 int shift, bits; 897 u8 base; 898 } ata_xfer_tbl[] = { 899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 902 { -1, }, 903 }; 904 905 /** 906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 907 * @xfer_mask: xfer_mask of interest 908 * 909 * Return matching XFER_* value for @xfer_mask. Only the highest 910 * bit of @xfer_mask is considered. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching XFER_* value, 0xff if no match found. 917 */ 918 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 919 { 920 int highbit = fls(xfer_mask) - 1; 921 const struct ata_xfer_ent *ent; 922 923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 925 return ent->base + highbit - ent->shift; 926 return 0xff; 927 } 928 929 /** 930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 931 * @xfer_mode: XFER_* of interest 932 * 933 * Return matching xfer_mask for @xfer_mode. 934 * 935 * LOCKING: 936 * None. 937 * 938 * RETURNS: 939 * Matching xfer_mask, 0 if no match found. 940 */ 941 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 942 { 943 const struct ata_xfer_ent *ent; 944 945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 948 & ~((1 << ent->shift) - 1); 949 return 0; 950 } 951 952 /** 953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 954 * @xfer_mode: XFER_* of interest 955 * 956 * Return matching xfer_shift for @xfer_mode. 957 * 958 * LOCKING: 959 * None. 960 * 961 * RETURNS: 962 * Matching xfer_shift, -1 if no match found. 963 */ 964 int ata_xfer_mode2shift(unsigned long xfer_mode) 965 { 966 const struct ata_xfer_ent *ent; 967 968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 970 return ent->shift; 971 return -1; 972 } 973 974 /** 975 * ata_mode_string - convert xfer_mask to string 976 * @xfer_mask: mask of bits supported; only highest bit counts. 977 * 978 * Determine string which represents the highest speed 979 * (highest bit in @modemask). 980 * 981 * LOCKING: 982 * None. 983 * 984 * RETURNS: 985 * Constant C string representing highest speed listed in 986 * @mode_mask, or the constant C string "<n/a>". 987 */ 988 const char *ata_mode_string(unsigned long xfer_mask) 989 { 990 static const char * const xfer_mode_str[] = { 991 "PIO0", 992 "PIO1", 993 "PIO2", 994 "PIO3", 995 "PIO4", 996 "PIO5", 997 "PIO6", 998 "MWDMA0", 999 "MWDMA1", 1000 "MWDMA2", 1001 "MWDMA3", 1002 "MWDMA4", 1003 "UDMA/16", 1004 "UDMA/25", 1005 "UDMA/33", 1006 "UDMA/44", 1007 "UDMA/66", 1008 "UDMA/100", 1009 "UDMA/133", 1010 "UDMA7", 1011 }; 1012 int highbit; 1013 1014 highbit = fls(xfer_mask) - 1; 1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1016 return xfer_mode_str[highbit]; 1017 return "<n/a>"; 1018 } 1019 1020 const char *sata_spd_string(unsigned int spd) 1021 { 1022 static const char * const spd_str[] = { 1023 "1.5 Gbps", 1024 "3.0 Gbps", 1025 "6.0 Gbps", 1026 }; 1027 1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1029 return "<unknown>"; 1030 return spd_str[spd - 1]; 1031 } 1032 1033 /** 1034 * ata_dev_classify - determine device type based on ATA-spec signature 1035 * @tf: ATA taskfile register set for device to be identified 1036 * 1037 * Determine from taskfile register contents whether a device is 1038 * ATA or ATAPI, as per "Signature and persistence" section 1039 * of ATA/PI spec (volume 1, sect 5.14). 1040 * 1041 * LOCKING: 1042 * None. 1043 * 1044 * RETURNS: 1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1046 * %ATA_DEV_UNKNOWN the event of failure. 1047 */ 1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1049 { 1050 /* Apple's open source Darwin code hints that some devices only 1051 * put a proper signature into the LBA mid/high registers, 1052 * So, we only check those. It's sufficient for uniqueness. 1053 * 1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1055 * signatures for ATA and ATAPI devices attached on SerialATA, 1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1057 * spec has never mentioned about using different signatures 1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1059 * Multiplier specification began to use 0x69/0x96 to identify 1060 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1062 * 0x69/0x96 shortly and described them as reserved for 1063 * SerialATA. 1064 * 1065 * We follow the current spec and consider that 0x69/0x96 1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1068 * SEMB signature. This is worked around in 1069 * ata_dev_read_id(). 1070 */ 1071 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1072 DPRINTK("found ATA device by sig\n"); 1073 return ATA_DEV_ATA; 1074 } 1075 1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1077 DPRINTK("found ATAPI device by sig\n"); 1078 return ATA_DEV_ATAPI; 1079 } 1080 1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1082 DPRINTK("found PMP device by sig\n"); 1083 return ATA_DEV_PMP; 1084 } 1085 1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1087 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1088 return ATA_DEV_SEMB; 1089 } 1090 1091 DPRINTK("unknown device\n"); 1092 return ATA_DEV_UNKNOWN; 1093 } 1094 1095 /** 1096 * ata_id_string - Convert IDENTIFY DEVICE page into string 1097 * @id: IDENTIFY DEVICE results we will examine 1098 * @s: string into which data is output 1099 * @ofs: offset into identify device page 1100 * @len: length of string to return. must be an even number. 1101 * 1102 * The strings in the IDENTIFY DEVICE page are broken up into 1103 * 16-bit chunks. Run through the string, and output each 1104 * 8-bit chunk linearly, regardless of platform. 1105 * 1106 * LOCKING: 1107 * caller. 1108 */ 1109 1110 void ata_id_string(const u16 *id, unsigned char *s, 1111 unsigned int ofs, unsigned int len) 1112 { 1113 unsigned int c; 1114 1115 BUG_ON(len & 1); 1116 1117 while (len > 0) { 1118 c = id[ofs] >> 8; 1119 *s = c; 1120 s++; 1121 1122 c = id[ofs] & 0xff; 1123 *s = c; 1124 s++; 1125 1126 ofs++; 1127 len -= 2; 1128 } 1129 } 1130 1131 /** 1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1133 * @id: IDENTIFY DEVICE results we will examine 1134 * @s: string into which data is output 1135 * @ofs: offset into identify device page 1136 * @len: length of string to return. must be an odd number. 1137 * 1138 * This function is identical to ata_id_string except that it 1139 * trims trailing spaces and terminates the resulting string with 1140 * null. @len must be actual maximum length (even number) + 1. 1141 * 1142 * LOCKING: 1143 * caller. 1144 */ 1145 void ata_id_c_string(const u16 *id, unsigned char *s, 1146 unsigned int ofs, unsigned int len) 1147 { 1148 unsigned char *p; 1149 1150 ata_id_string(id, s, ofs, len - 1); 1151 1152 p = s + strnlen(s, len - 1); 1153 while (p > s && p[-1] == ' ') 1154 p--; 1155 *p = '\0'; 1156 } 1157 1158 static u64 ata_id_n_sectors(const u16 *id) 1159 { 1160 if (ata_id_has_lba(id)) { 1161 if (ata_id_has_lba48(id)) 1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1163 else 1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1165 } else { 1166 if (ata_id_current_chs_valid(id)) 1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1168 id[ATA_ID_CUR_SECTORS]; 1169 else 1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1171 id[ATA_ID_SECTORS]; 1172 } 1173 } 1174 1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1176 { 1177 u64 sectors = 0; 1178 1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1182 sectors |= (tf->lbah & 0xff) << 16; 1183 sectors |= (tf->lbam & 0xff) << 8; 1184 sectors |= (tf->lbal & 0xff); 1185 1186 return sectors; 1187 } 1188 1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1190 { 1191 u64 sectors = 0; 1192 1193 sectors |= (tf->device & 0x0f) << 24; 1194 sectors |= (tf->lbah & 0xff) << 16; 1195 sectors |= (tf->lbam & 0xff) << 8; 1196 sectors |= (tf->lbal & 0xff); 1197 1198 return sectors; 1199 } 1200 1201 /** 1202 * ata_read_native_max_address - Read native max address 1203 * @dev: target device 1204 * @max_sectors: out parameter for the result native max address 1205 * 1206 * Perform an LBA48 or LBA28 native size query upon the device in 1207 * question. 1208 * 1209 * RETURNS: 1210 * 0 on success, -EACCES if command is aborted by the drive. 1211 * -EIO on other errors. 1212 */ 1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1214 { 1215 unsigned int err_mask; 1216 struct ata_taskfile tf; 1217 int lba48 = ata_id_has_lba48(dev->id); 1218 1219 ata_tf_init(dev, &tf); 1220 1221 /* always clear all address registers */ 1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1223 1224 if (lba48) { 1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1226 tf.flags |= ATA_TFLAG_LBA48; 1227 } else 1228 tf.command = ATA_CMD_READ_NATIVE_MAX; 1229 1230 tf.protocol |= ATA_PROT_NODATA; 1231 tf.device |= ATA_LBA; 1232 1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1234 if (err_mask) { 1235 ata_dev_warn(dev, 1236 "failed to read native max address (err_mask=0x%x)\n", 1237 err_mask); 1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1239 return -EACCES; 1240 return -EIO; 1241 } 1242 1243 if (lba48) 1244 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1245 else 1246 *max_sectors = ata_tf_to_lba(&tf) + 1; 1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1248 (*max_sectors)--; 1249 return 0; 1250 } 1251 1252 /** 1253 * ata_set_max_sectors - Set max sectors 1254 * @dev: target device 1255 * @new_sectors: new max sectors value to set for the device 1256 * 1257 * Set max sectors of @dev to @new_sectors. 1258 * 1259 * RETURNS: 1260 * 0 on success, -EACCES if command is aborted or denied (due to 1261 * previous non-volatile SET_MAX) by the drive. -EIO on other 1262 * errors. 1263 */ 1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1265 { 1266 unsigned int err_mask; 1267 struct ata_taskfile tf; 1268 int lba48 = ata_id_has_lba48(dev->id); 1269 1270 new_sectors--; 1271 1272 ata_tf_init(dev, &tf); 1273 1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1275 1276 if (lba48) { 1277 tf.command = ATA_CMD_SET_MAX_EXT; 1278 tf.flags |= ATA_TFLAG_LBA48; 1279 1280 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1281 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1282 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1283 } else { 1284 tf.command = ATA_CMD_SET_MAX; 1285 1286 tf.device |= (new_sectors >> 24) & 0xf; 1287 } 1288 1289 tf.protocol |= ATA_PROT_NODATA; 1290 tf.device |= ATA_LBA; 1291 1292 tf.lbal = (new_sectors >> 0) & 0xff; 1293 tf.lbam = (new_sectors >> 8) & 0xff; 1294 tf.lbah = (new_sectors >> 16) & 0xff; 1295 1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1297 if (err_mask) { 1298 ata_dev_warn(dev, 1299 "failed to set max address (err_mask=0x%x)\n", 1300 err_mask); 1301 if (err_mask == AC_ERR_DEV && 1302 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1303 return -EACCES; 1304 return -EIO; 1305 } 1306 1307 return 0; 1308 } 1309 1310 /** 1311 * ata_hpa_resize - Resize a device with an HPA set 1312 * @dev: Device to resize 1313 * 1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1315 * it if required to the full size of the media. The caller must check 1316 * the drive has the HPA feature set enabled. 1317 * 1318 * RETURNS: 1319 * 0 on success, -errno on failure. 1320 */ 1321 static int ata_hpa_resize(struct ata_device *dev) 1322 { 1323 struct ata_eh_context *ehc = &dev->link->eh_context; 1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1326 u64 sectors = ata_id_n_sectors(dev->id); 1327 u64 native_sectors; 1328 int rc; 1329 1330 /* do we need to do it? */ 1331 if (dev->class != ATA_DEV_ATA || 1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1334 return 0; 1335 1336 /* read native max address */ 1337 rc = ata_read_native_max_address(dev, &native_sectors); 1338 if (rc) { 1339 /* If device aborted the command or HPA isn't going to 1340 * be unlocked, skip HPA resizing. 1341 */ 1342 if (rc == -EACCES || !unlock_hpa) { 1343 ata_dev_warn(dev, 1344 "HPA support seems broken, skipping HPA handling\n"); 1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1346 1347 /* we can continue if device aborted the command */ 1348 if (rc == -EACCES) 1349 rc = 0; 1350 } 1351 1352 return rc; 1353 } 1354 dev->n_native_sectors = native_sectors; 1355 1356 /* nothing to do? */ 1357 if (native_sectors <= sectors || !unlock_hpa) { 1358 if (!print_info || native_sectors == sectors) 1359 return 0; 1360 1361 if (native_sectors > sectors) 1362 ata_dev_info(dev, 1363 "HPA detected: current %llu, native %llu\n", 1364 (unsigned long long)sectors, 1365 (unsigned long long)native_sectors); 1366 else if (native_sectors < sectors) 1367 ata_dev_warn(dev, 1368 "native sectors (%llu) is smaller than sectors (%llu)\n", 1369 (unsigned long long)native_sectors, 1370 (unsigned long long)sectors); 1371 return 0; 1372 } 1373 1374 /* let's unlock HPA */ 1375 rc = ata_set_max_sectors(dev, native_sectors); 1376 if (rc == -EACCES) { 1377 /* if device aborted the command, skip HPA resizing */ 1378 ata_dev_warn(dev, 1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1380 (unsigned long long)sectors, 1381 (unsigned long long)native_sectors); 1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1383 return 0; 1384 } else if (rc) 1385 return rc; 1386 1387 /* re-read IDENTIFY data */ 1388 rc = ata_dev_reread_id(dev, 0); 1389 if (rc) { 1390 ata_dev_err(dev, 1391 "failed to re-read IDENTIFY data after HPA resizing\n"); 1392 return rc; 1393 } 1394 1395 if (print_info) { 1396 u64 new_sectors = ata_id_n_sectors(dev->id); 1397 ata_dev_info(dev, 1398 "HPA unlocked: %llu -> %llu, native %llu\n", 1399 (unsigned long long)sectors, 1400 (unsigned long long)new_sectors, 1401 (unsigned long long)native_sectors); 1402 } 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * ata_dump_id - IDENTIFY DEVICE info debugging output 1409 * @id: IDENTIFY DEVICE page to dump 1410 * 1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1412 * page. 1413 * 1414 * LOCKING: 1415 * caller. 1416 */ 1417 1418 static inline void ata_dump_id(const u16 *id) 1419 { 1420 DPRINTK("49==0x%04x " 1421 "53==0x%04x " 1422 "63==0x%04x " 1423 "64==0x%04x " 1424 "75==0x%04x \n", 1425 id[49], 1426 id[53], 1427 id[63], 1428 id[64], 1429 id[75]); 1430 DPRINTK("80==0x%04x " 1431 "81==0x%04x " 1432 "82==0x%04x " 1433 "83==0x%04x " 1434 "84==0x%04x \n", 1435 id[80], 1436 id[81], 1437 id[82], 1438 id[83], 1439 id[84]); 1440 DPRINTK("88==0x%04x " 1441 "93==0x%04x\n", 1442 id[88], 1443 id[93]); 1444 } 1445 1446 /** 1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1448 * @id: IDENTIFY data to compute xfer mask from 1449 * 1450 * Compute the xfermask for this device. This is not as trivial 1451 * as it seems if we must consider early devices correctly. 1452 * 1453 * FIXME: pre IDE drive timing (do we care ?). 1454 * 1455 * LOCKING: 1456 * None. 1457 * 1458 * RETURNS: 1459 * Computed xfermask 1460 */ 1461 unsigned long ata_id_xfermask(const u16 *id) 1462 { 1463 unsigned long pio_mask, mwdma_mask, udma_mask; 1464 1465 /* Usual case. Word 53 indicates word 64 is valid */ 1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1468 pio_mask <<= 3; 1469 pio_mask |= 0x7; 1470 } else { 1471 /* If word 64 isn't valid then Word 51 high byte holds 1472 * the PIO timing number for the maximum. Turn it into 1473 * a mask. 1474 */ 1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1476 if (mode < 5) /* Valid PIO range */ 1477 pio_mask = (2 << mode) - 1; 1478 else 1479 pio_mask = 1; 1480 1481 /* But wait.. there's more. Design your standards by 1482 * committee and you too can get a free iordy field to 1483 * process. However its the speeds not the modes that 1484 * are supported... Note drivers using the timing API 1485 * will get this right anyway 1486 */ 1487 } 1488 1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1490 1491 if (ata_id_is_cfa(id)) { 1492 /* 1493 * Process compact flash extended modes 1494 */ 1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1497 1498 if (pio) 1499 pio_mask |= (1 << 5); 1500 if (pio > 1) 1501 pio_mask |= (1 << 6); 1502 if (dma) 1503 mwdma_mask |= (1 << 3); 1504 if (dma > 1) 1505 mwdma_mask |= (1 << 4); 1506 } 1507 1508 udma_mask = 0; 1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1511 1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1513 } 1514 1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1516 { 1517 struct completion *waiting = qc->private_data; 1518 1519 complete(waiting); 1520 } 1521 1522 /** 1523 * ata_exec_internal_sg - execute libata internal command 1524 * @dev: Device to which the command is sent 1525 * @tf: Taskfile registers for the command and the result 1526 * @cdb: CDB for packet command 1527 * @dma_dir: Data tranfer direction of the command 1528 * @sgl: sg list for the data buffer of the command 1529 * @n_elem: Number of sg entries 1530 * @timeout: Timeout in msecs (0 for default) 1531 * 1532 * Executes libata internal command with timeout. @tf contains 1533 * command on entry and result on return. Timeout and error 1534 * conditions are reported via return value. No recovery action 1535 * is taken after a command times out. It's caller's duty to 1536 * clean up after timeout. 1537 * 1538 * LOCKING: 1539 * None. Should be called with kernel context, might sleep. 1540 * 1541 * RETURNS: 1542 * Zero on success, AC_ERR_* mask on failure 1543 */ 1544 unsigned ata_exec_internal_sg(struct ata_device *dev, 1545 struct ata_taskfile *tf, const u8 *cdb, 1546 int dma_dir, struct scatterlist *sgl, 1547 unsigned int n_elem, unsigned long timeout) 1548 { 1549 struct ata_link *link = dev->link; 1550 struct ata_port *ap = link->ap; 1551 u8 command = tf->command; 1552 int auto_timeout = 0; 1553 struct ata_queued_cmd *qc; 1554 unsigned int tag, preempted_tag; 1555 u32 preempted_sactive, preempted_qc_active; 1556 int preempted_nr_active_links; 1557 DECLARE_COMPLETION_ONSTACK(wait); 1558 unsigned long flags; 1559 unsigned int err_mask; 1560 int rc; 1561 1562 spin_lock_irqsave(ap->lock, flags); 1563 1564 /* no internal command while frozen */ 1565 if (ap->pflags & ATA_PFLAG_FROZEN) { 1566 spin_unlock_irqrestore(ap->lock, flags); 1567 return AC_ERR_SYSTEM; 1568 } 1569 1570 /* initialize internal qc */ 1571 1572 /* XXX: Tag 0 is used for drivers with legacy EH as some 1573 * drivers choke if any other tag is given. This breaks 1574 * ata_tag_internal() test for those drivers. Don't use new 1575 * EH stuff without converting to it. 1576 */ 1577 if (ap->ops->error_handler) 1578 tag = ATA_TAG_INTERNAL; 1579 else 1580 tag = 0; 1581 1582 if (test_and_set_bit(tag, &ap->qc_allocated)) 1583 BUG(); 1584 qc = __ata_qc_from_tag(ap, tag); 1585 1586 qc->tag = tag; 1587 qc->scsicmd = NULL; 1588 qc->ap = ap; 1589 qc->dev = dev; 1590 ata_qc_reinit(qc); 1591 1592 preempted_tag = link->active_tag; 1593 preempted_sactive = link->sactive; 1594 preempted_qc_active = ap->qc_active; 1595 preempted_nr_active_links = ap->nr_active_links; 1596 link->active_tag = ATA_TAG_POISON; 1597 link->sactive = 0; 1598 ap->qc_active = 0; 1599 ap->nr_active_links = 0; 1600 1601 /* prepare & issue qc */ 1602 qc->tf = *tf; 1603 if (cdb) 1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1605 qc->flags |= ATA_QCFLAG_RESULT_TF; 1606 qc->dma_dir = dma_dir; 1607 if (dma_dir != DMA_NONE) { 1608 unsigned int i, buflen = 0; 1609 struct scatterlist *sg; 1610 1611 for_each_sg(sgl, sg, n_elem, i) 1612 buflen += sg->length; 1613 1614 ata_sg_init(qc, sgl, n_elem); 1615 qc->nbytes = buflen; 1616 } 1617 1618 qc->private_data = &wait; 1619 qc->complete_fn = ata_qc_complete_internal; 1620 1621 ata_qc_issue(qc); 1622 1623 spin_unlock_irqrestore(ap->lock, flags); 1624 1625 if (!timeout) { 1626 if (ata_probe_timeout) 1627 timeout = ata_probe_timeout * 1000; 1628 else { 1629 timeout = ata_internal_cmd_timeout(dev, command); 1630 auto_timeout = 1; 1631 } 1632 } 1633 1634 if (ap->ops->error_handler) 1635 ata_eh_release(ap); 1636 1637 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1638 1639 if (ap->ops->error_handler) 1640 ata_eh_acquire(ap); 1641 1642 ata_sff_flush_pio_task(ap); 1643 1644 if (!rc) { 1645 spin_lock_irqsave(ap->lock, flags); 1646 1647 /* We're racing with irq here. If we lose, the 1648 * following test prevents us from completing the qc 1649 * twice. If we win, the port is frozen and will be 1650 * cleaned up by ->post_internal_cmd(). 1651 */ 1652 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1653 qc->err_mask |= AC_ERR_TIMEOUT; 1654 1655 if (ap->ops->error_handler) 1656 ata_port_freeze(ap); 1657 else 1658 ata_qc_complete(qc); 1659 1660 if (ata_msg_warn(ap)) 1661 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1662 command); 1663 } 1664 1665 spin_unlock_irqrestore(ap->lock, flags); 1666 } 1667 1668 /* do post_internal_cmd */ 1669 if (ap->ops->post_internal_cmd) 1670 ap->ops->post_internal_cmd(qc); 1671 1672 /* perform minimal error analysis */ 1673 if (qc->flags & ATA_QCFLAG_FAILED) { 1674 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1675 qc->err_mask |= AC_ERR_DEV; 1676 1677 if (!qc->err_mask) 1678 qc->err_mask |= AC_ERR_OTHER; 1679 1680 if (qc->err_mask & ~AC_ERR_OTHER) 1681 qc->err_mask &= ~AC_ERR_OTHER; 1682 } 1683 1684 /* finish up */ 1685 spin_lock_irqsave(ap->lock, flags); 1686 1687 *tf = qc->result_tf; 1688 err_mask = qc->err_mask; 1689 1690 ata_qc_free(qc); 1691 link->active_tag = preempted_tag; 1692 link->sactive = preempted_sactive; 1693 ap->qc_active = preempted_qc_active; 1694 ap->nr_active_links = preempted_nr_active_links; 1695 1696 spin_unlock_irqrestore(ap->lock, flags); 1697 1698 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1699 ata_internal_cmd_timed_out(dev, command); 1700 1701 return err_mask; 1702 } 1703 1704 /** 1705 * ata_exec_internal - execute libata internal command 1706 * @dev: Device to which the command is sent 1707 * @tf: Taskfile registers for the command and the result 1708 * @cdb: CDB for packet command 1709 * @dma_dir: Data tranfer direction of the command 1710 * @buf: Data buffer of the command 1711 * @buflen: Length of data buffer 1712 * @timeout: Timeout in msecs (0 for default) 1713 * 1714 * Wrapper around ata_exec_internal_sg() which takes simple 1715 * buffer instead of sg list. 1716 * 1717 * LOCKING: 1718 * None. Should be called with kernel context, might sleep. 1719 * 1720 * RETURNS: 1721 * Zero on success, AC_ERR_* mask on failure 1722 */ 1723 unsigned ata_exec_internal(struct ata_device *dev, 1724 struct ata_taskfile *tf, const u8 *cdb, 1725 int dma_dir, void *buf, unsigned int buflen, 1726 unsigned long timeout) 1727 { 1728 struct scatterlist *psg = NULL, sg; 1729 unsigned int n_elem = 0; 1730 1731 if (dma_dir != DMA_NONE) { 1732 WARN_ON(!buf); 1733 sg_init_one(&sg, buf, buflen); 1734 psg = &sg; 1735 n_elem++; 1736 } 1737 1738 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1739 timeout); 1740 } 1741 1742 /** 1743 * ata_do_simple_cmd - execute simple internal command 1744 * @dev: Device to which the command is sent 1745 * @cmd: Opcode to execute 1746 * 1747 * Execute a 'simple' command, that only consists of the opcode 1748 * 'cmd' itself, without filling any other registers 1749 * 1750 * LOCKING: 1751 * Kernel thread context (may sleep). 1752 * 1753 * RETURNS: 1754 * Zero on success, AC_ERR_* mask on failure 1755 */ 1756 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1757 { 1758 struct ata_taskfile tf; 1759 1760 ata_tf_init(dev, &tf); 1761 1762 tf.command = cmd; 1763 tf.flags |= ATA_TFLAG_DEVICE; 1764 tf.protocol = ATA_PROT_NODATA; 1765 1766 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1767 } 1768 1769 /** 1770 * ata_pio_need_iordy - check if iordy needed 1771 * @adev: ATA device 1772 * 1773 * Check if the current speed of the device requires IORDY. Used 1774 * by various controllers for chip configuration. 1775 */ 1776 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1777 { 1778 /* Don't set IORDY if we're preparing for reset. IORDY may 1779 * lead to controller lock up on certain controllers if the 1780 * port is not occupied. See bko#11703 for details. 1781 */ 1782 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1783 return 0; 1784 /* Controller doesn't support IORDY. Probably a pointless 1785 * check as the caller should know this. 1786 */ 1787 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1788 return 0; 1789 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1790 if (ata_id_is_cfa(adev->id) 1791 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1792 return 0; 1793 /* PIO3 and higher it is mandatory */ 1794 if (adev->pio_mode > XFER_PIO_2) 1795 return 1; 1796 /* We turn it on when possible */ 1797 if (ata_id_has_iordy(adev->id)) 1798 return 1; 1799 return 0; 1800 } 1801 1802 /** 1803 * ata_pio_mask_no_iordy - Return the non IORDY mask 1804 * @adev: ATA device 1805 * 1806 * Compute the highest mode possible if we are not using iordy. Return 1807 * -1 if no iordy mode is available. 1808 */ 1809 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1810 { 1811 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1812 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1813 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1814 /* Is the speed faster than the drive allows non IORDY ? */ 1815 if (pio) { 1816 /* This is cycle times not frequency - watch the logic! */ 1817 if (pio > 240) /* PIO2 is 240nS per cycle */ 1818 return 3 << ATA_SHIFT_PIO; 1819 return 7 << ATA_SHIFT_PIO; 1820 } 1821 } 1822 return 3 << ATA_SHIFT_PIO; 1823 } 1824 1825 /** 1826 * ata_do_dev_read_id - default ID read method 1827 * @dev: device 1828 * @tf: proposed taskfile 1829 * @id: data buffer 1830 * 1831 * Issue the identify taskfile and hand back the buffer containing 1832 * identify data. For some RAID controllers and for pre ATA devices 1833 * this function is wrapped or replaced by the driver 1834 */ 1835 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1836 struct ata_taskfile *tf, u16 *id) 1837 { 1838 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1839 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1840 } 1841 1842 /** 1843 * ata_dev_read_id - Read ID data from the specified device 1844 * @dev: target device 1845 * @p_class: pointer to class of the target device (may be changed) 1846 * @flags: ATA_READID_* flags 1847 * @id: buffer to read IDENTIFY data into 1848 * 1849 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1850 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1851 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1852 * for pre-ATA4 drives. 1853 * 1854 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1855 * now we abort if we hit that case. 1856 * 1857 * LOCKING: 1858 * Kernel thread context (may sleep) 1859 * 1860 * RETURNS: 1861 * 0 on success, -errno otherwise. 1862 */ 1863 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1864 unsigned int flags, u16 *id) 1865 { 1866 struct ata_port *ap = dev->link->ap; 1867 unsigned int class = *p_class; 1868 struct ata_taskfile tf; 1869 unsigned int err_mask = 0; 1870 const char *reason; 1871 bool is_semb = class == ATA_DEV_SEMB; 1872 int may_fallback = 1, tried_spinup = 0; 1873 int rc; 1874 1875 if (ata_msg_ctl(ap)) 1876 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1877 1878 retry: 1879 ata_tf_init(dev, &tf); 1880 1881 switch (class) { 1882 case ATA_DEV_SEMB: 1883 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1884 case ATA_DEV_ATA: 1885 tf.command = ATA_CMD_ID_ATA; 1886 break; 1887 case ATA_DEV_ATAPI: 1888 tf.command = ATA_CMD_ID_ATAPI; 1889 break; 1890 default: 1891 rc = -ENODEV; 1892 reason = "unsupported class"; 1893 goto err_out; 1894 } 1895 1896 tf.protocol = ATA_PROT_PIO; 1897 1898 /* Some devices choke if TF registers contain garbage. Make 1899 * sure those are properly initialized. 1900 */ 1901 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1902 1903 /* Device presence detection is unreliable on some 1904 * controllers. Always poll IDENTIFY if available. 1905 */ 1906 tf.flags |= ATA_TFLAG_POLLING; 1907 1908 if (ap->ops->read_id) 1909 err_mask = ap->ops->read_id(dev, &tf, id); 1910 else 1911 err_mask = ata_do_dev_read_id(dev, &tf, id); 1912 1913 if (err_mask) { 1914 if (err_mask & AC_ERR_NODEV_HINT) { 1915 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1916 return -ENOENT; 1917 } 1918 1919 if (is_semb) { 1920 ata_dev_info(dev, 1921 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1922 /* SEMB is not supported yet */ 1923 *p_class = ATA_DEV_SEMB_UNSUP; 1924 return 0; 1925 } 1926 1927 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1928 /* Device or controller might have reported 1929 * the wrong device class. Give a shot at the 1930 * other IDENTIFY if the current one is 1931 * aborted by the device. 1932 */ 1933 if (may_fallback) { 1934 may_fallback = 0; 1935 1936 if (class == ATA_DEV_ATA) 1937 class = ATA_DEV_ATAPI; 1938 else 1939 class = ATA_DEV_ATA; 1940 goto retry; 1941 } 1942 1943 /* Control reaches here iff the device aborted 1944 * both flavors of IDENTIFYs which happens 1945 * sometimes with phantom devices. 1946 */ 1947 ata_dev_dbg(dev, 1948 "both IDENTIFYs aborted, assuming NODEV\n"); 1949 return -ENOENT; 1950 } 1951 1952 rc = -EIO; 1953 reason = "I/O error"; 1954 goto err_out; 1955 } 1956 1957 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1958 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1959 "class=%d may_fallback=%d tried_spinup=%d\n", 1960 class, may_fallback, tried_spinup); 1961 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1962 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1963 } 1964 1965 /* Falling back doesn't make sense if ID data was read 1966 * successfully at least once. 1967 */ 1968 may_fallback = 0; 1969 1970 swap_buf_le16(id, ATA_ID_WORDS); 1971 1972 /* sanity check */ 1973 rc = -EINVAL; 1974 reason = "device reports invalid type"; 1975 1976 if (class == ATA_DEV_ATA) { 1977 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1978 goto err_out; 1979 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1980 ata_id_is_ata(id)) { 1981 ata_dev_dbg(dev, 1982 "host indicates ignore ATA devices, ignored\n"); 1983 return -ENOENT; 1984 } 1985 } else { 1986 if (ata_id_is_ata(id)) 1987 goto err_out; 1988 } 1989 1990 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1991 tried_spinup = 1; 1992 /* 1993 * Drive powered-up in standby mode, and requires a specific 1994 * SET_FEATURES spin-up subcommand before it will accept 1995 * anything other than the original IDENTIFY command. 1996 */ 1997 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1998 if (err_mask && id[2] != 0x738c) { 1999 rc = -EIO; 2000 reason = "SPINUP failed"; 2001 goto err_out; 2002 } 2003 /* 2004 * If the drive initially returned incomplete IDENTIFY info, 2005 * we now must reissue the IDENTIFY command. 2006 */ 2007 if (id[2] == 0x37c8) 2008 goto retry; 2009 } 2010 2011 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2012 /* 2013 * The exact sequence expected by certain pre-ATA4 drives is: 2014 * SRST RESET 2015 * IDENTIFY (optional in early ATA) 2016 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2017 * anything else.. 2018 * Some drives were very specific about that exact sequence. 2019 * 2020 * Note that ATA4 says lba is mandatory so the second check 2021 * should never trigger. 2022 */ 2023 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2024 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2025 if (err_mask) { 2026 rc = -EIO; 2027 reason = "INIT_DEV_PARAMS failed"; 2028 goto err_out; 2029 } 2030 2031 /* current CHS translation info (id[53-58]) might be 2032 * changed. reread the identify device info. 2033 */ 2034 flags &= ~ATA_READID_POSTRESET; 2035 goto retry; 2036 } 2037 } 2038 2039 *p_class = class; 2040 2041 return 0; 2042 2043 err_out: 2044 if (ata_msg_warn(ap)) 2045 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2046 reason, err_mask); 2047 return rc; 2048 } 2049 2050 static int ata_do_link_spd_horkage(struct ata_device *dev) 2051 { 2052 struct ata_link *plink = ata_dev_phys_link(dev); 2053 u32 target, target_limit; 2054 2055 if (!sata_scr_valid(plink)) 2056 return 0; 2057 2058 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2059 target = 1; 2060 else 2061 return 0; 2062 2063 target_limit = (1 << target) - 1; 2064 2065 /* if already on stricter limit, no need to push further */ 2066 if (plink->sata_spd_limit <= target_limit) 2067 return 0; 2068 2069 plink->sata_spd_limit = target_limit; 2070 2071 /* Request another EH round by returning -EAGAIN if link is 2072 * going faster than the target speed. Forward progress is 2073 * guaranteed by setting sata_spd_limit to target_limit above. 2074 */ 2075 if (plink->sata_spd > target) { 2076 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2077 sata_spd_string(target)); 2078 return -EAGAIN; 2079 } 2080 return 0; 2081 } 2082 2083 static inline u8 ata_dev_knobble(struct ata_device *dev) 2084 { 2085 struct ata_port *ap = dev->link->ap; 2086 2087 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2088 return 0; 2089 2090 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2091 } 2092 2093 static int ata_dev_config_ncq(struct ata_device *dev, 2094 char *desc, size_t desc_sz) 2095 { 2096 struct ata_port *ap = dev->link->ap; 2097 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2098 unsigned int err_mask; 2099 char *aa_desc = ""; 2100 2101 if (!ata_id_has_ncq(dev->id)) { 2102 desc[0] = '\0'; 2103 return 0; 2104 } 2105 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2106 snprintf(desc, desc_sz, "NCQ (not used)"); 2107 return 0; 2108 } 2109 if (ap->flags & ATA_FLAG_NCQ) { 2110 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2111 dev->flags |= ATA_DFLAG_NCQ; 2112 } 2113 2114 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2115 (ap->flags & ATA_FLAG_FPDMA_AA) && 2116 ata_id_has_fpdma_aa(dev->id)) { 2117 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2118 SATA_FPDMA_AA); 2119 if (err_mask) { 2120 ata_dev_err(dev, 2121 "failed to enable AA (error_mask=0x%x)\n", 2122 err_mask); 2123 if (err_mask != AC_ERR_DEV) { 2124 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2125 return -EIO; 2126 } 2127 } else 2128 aa_desc = ", AA"; 2129 } 2130 2131 if (hdepth >= ddepth) 2132 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2133 else 2134 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2135 ddepth, aa_desc); 2136 return 0; 2137 } 2138 2139 /** 2140 * ata_dev_configure - Configure the specified ATA/ATAPI device 2141 * @dev: Target device to configure 2142 * 2143 * Configure @dev according to @dev->id. Generic and low-level 2144 * driver specific fixups are also applied. 2145 * 2146 * LOCKING: 2147 * Kernel thread context (may sleep) 2148 * 2149 * RETURNS: 2150 * 0 on success, -errno otherwise 2151 */ 2152 int ata_dev_configure(struct ata_device *dev) 2153 { 2154 struct ata_port *ap = dev->link->ap; 2155 struct ata_eh_context *ehc = &dev->link->eh_context; 2156 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2157 const u16 *id = dev->id; 2158 unsigned long xfer_mask; 2159 unsigned int err_mask; 2160 char revbuf[7]; /* XYZ-99\0 */ 2161 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2162 char modelbuf[ATA_ID_PROD_LEN+1]; 2163 int rc; 2164 2165 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2166 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2167 return 0; 2168 } 2169 2170 if (ata_msg_probe(ap)) 2171 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2172 2173 /* set horkage */ 2174 dev->horkage |= ata_dev_blacklisted(dev); 2175 ata_force_horkage(dev); 2176 2177 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2178 ata_dev_info(dev, "unsupported device, disabling\n"); 2179 ata_dev_disable(dev); 2180 return 0; 2181 } 2182 2183 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2184 dev->class == ATA_DEV_ATAPI) { 2185 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2186 atapi_enabled ? "not supported with this driver" 2187 : "disabled"); 2188 ata_dev_disable(dev); 2189 return 0; 2190 } 2191 2192 rc = ata_do_link_spd_horkage(dev); 2193 if (rc) 2194 return rc; 2195 2196 /* let ACPI work its magic */ 2197 rc = ata_acpi_on_devcfg(dev); 2198 if (rc) 2199 return rc; 2200 2201 /* massage HPA, do it early as it might change IDENTIFY data */ 2202 rc = ata_hpa_resize(dev); 2203 if (rc) 2204 return rc; 2205 2206 /* print device capabilities */ 2207 if (ata_msg_probe(ap)) 2208 ata_dev_dbg(dev, 2209 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2210 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2211 __func__, 2212 id[49], id[82], id[83], id[84], 2213 id[85], id[86], id[87], id[88]); 2214 2215 /* initialize to-be-configured parameters */ 2216 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2217 dev->max_sectors = 0; 2218 dev->cdb_len = 0; 2219 dev->n_sectors = 0; 2220 dev->cylinders = 0; 2221 dev->heads = 0; 2222 dev->sectors = 0; 2223 dev->multi_count = 0; 2224 2225 /* 2226 * common ATA, ATAPI feature tests 2227 */ 2228 2229 /* find max transfer mode; for printk only */ 2230 xfer_mask = ata_id_xfermask(id); 2231 2232 if (ata_msg_probe(ap)) 2233 ata_dump_id(id); 2234 2235 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2236 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2237 sizeof(fwrevbuf)); 2238 2239 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2240 sizeof(modelbuf)); 2241 2242 /* ATA-specific feature tests */ 2243 if (dev->class == ATA_DEV_ATA) { 2244 if (ata_id_is_cfa(id)) { 2245 /* CPRM may make this media unusable */ 2246 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2247 ata_dev_warn(dev, 2248 "supports DRM functions and may not be fully accessible\n"); 2249 snprintf(revbuf, 7, "CFA"); 2250 } else { 2251 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2252 /* Warn the user if the device has TPM extensions */ 2253 if (ata_id_has_tpm(id)) 2254 ata_dev_warn(dev, 2255 "supports DRM functions and may not be fully accessible\n"); 2256 } 2257 2258 dev->n_sectors = ata_id_n_sectors(id); 2259 2260 /* get current R/W Multiple count setting */ 2261 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2262 unsigned int max = dev->id[47] & 0xff; 2263 unsigned int cnt = dev->id[59] & 0xff; 2264 /* only recognize/allow powers of two here */ 2265 if (is_power_of_2(max) && is_power_of_2(cnt)) 2266 if (cnt <= max) 2267 dev->multi_count = cnt; 2268 } 2269 2270 if (ata_id_has_lba(id)) { 2271 const char *lba_desc; 2272 char ncq_desc[24]; 2273 2274 lba_desc = "LBA"; 2275 dev->flags |= ATA_DFLAG_LBA; 2276 if (ata_id_has_lba48(id)) { 2277 dev->flags |= ATA_DFLAG_LBA48; 2278 lba_desc = "LBA48"; 2279 2280 if (dev->n_sectors >= (1UL << 28) && 2281 ata_id_has_flush_ext(id)) 2282 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2283 } 2284 2285 /* config NCQ */ 2286 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2287 if (rc) 2288 return rc; 2289 2290 /* print device info to dmesg */ 2291 if (ata_msg_drv(ap) && print_info) { 2292 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2293 revbuf, modelbuf, fwrevbuf, 2294 ata_mode_string(xfer_mask)); 2295 ata_dev_info(dev, 2296 "%llu sectors, multi %u: %s %s\n", 2297 (unsigned long long)dev->n_sectors, 2298 dev->multi_count, lba_desc, ncq_desc); 2299 } 2300 } else { 2301 /* CHS */ 2302 2303 /* Default translation */ 2304 dev->cylinders = id[1]; 2305 dev->heads = id[3]; 2306 dev->sectors = id[6]; 2307 2308 if (ata_id_current_chs_valid(id)) { 2309 /* Current CHS translation is valid. */ 2310 dev->cylinders = id[54]; 2311 dev->heads = id[55]; 2312 dev->sectors = id[56]; 2313 } 2314 2315 /* print device info to dmesg */ 2316 if (ata_msg_drv(ap) && print_info) { 2317 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2318 revbuf, modelbuf, fwrevbuf, 2319 ata_mode_string(xfer_mask)); 2320 ata_dev_info(dev, 2321 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2322 (unsigned long long)dev->n_sectors, 2323 dev->multi_count, dev->cylinders, 2324 dev->heads, dev->sectors); 2325 } 2326 } 2327 2328 /* Check and mark DevSlp capability. Get DevSlp timing variables 2329 * from SATA Settings page of Identify Device Data Log. 2330 */ 2331 if (ata_id_has_devslp(dev->id)) { 2332 u8 sata_setting[ATA_SECT_SIZE]; 2333 int i, j; 2334 2335 dev->flags |= ATA_DFLAG_DEVSLP; 2336 err_mask = ata_read_log_page(dev, 2337 ATA_LOG_SATA_ID_DEV_DATA, 2338 ATA_LOG_SATA_SETTINGS, 2339 sata_setting, 2340 1); 2341 if (err_mask) 2342 ata_dev_dbg(dev, 2343 "failed to get Identify Device Data, Emask 0x%x\n", 2344 err_mask); 2345 else 2346 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2347 j = ATA_LOG_DEVSLP_OFFSET + i; 2348 dev->devslp_timing[i] = sata_setting[j]; 2349 } 2350 } 2351 2352 dev->cdb_len = 16; 2353 } 2354 2355 /* ATAPI-specific feature tests */ 2356 else if (dev->class == ATA_DEV_ATAPI) { 2357 const char *cdb_intr_string = ""; 2358 const char *atapi_an_string = ""; 2359 const char *dma_dir_string = ""; 2360 u32 sntf; 2361 2362 rc = atapi_cdb_len(id); 2363 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2364 if (ata_msg_warn(ap)) 2365 ata_dev_warn(dev, "unsupported CDB len\n"); 2366 rc = -EINVAL; 2367 goto err_out_nosup; 2368 } 2369 dev->cdb_len = (unsigned int) rc; 2370 2371 /* Enable ATAPI AN if both the host and device have 2372 * the support. If PMP is attached, SNTF is required 2373 * to enable ATAPI AN to discern between PHY status 2374 * changed notifications and ATAPI ANs. 2375 */ 2376 if (atapi_an && 2377 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2378 (!sata_pmp_attached(ap) || 2379 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2380 /* issue SET feature command to turn this on */ 2381 err_mask = ata_dev_set_feature(dev, 2382 SETFEATURES_SATA_ENABLE, SATA_AN); 2383 if (err_mask) 2384 ata_dev_err(dev, 2385 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2386 err_mask); 2387 else { 2388 dev->flags |= ATA_DFLAG_AN; 2389 atapi_an_string = ", ATAPI AN"; 2390 } 2391 } 2392 2393 if (ata_id_cdb_intr(dev->id)) { 2394 dev->flags |= ATA_DFLAG_CDB_INTR; 2395 cdb_intr_string = ", CDB intr"; 2396 } 2397 2398 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2399 dev->flags |= ATA_DFLAG_DMADIR; 2400 dma_dir_string = ", DMADIR"; 2401 } 2402 2403 if (ata_id_has_da(dev->id)) 2404 dev->flags |= ATA_DFLAG_DA; 2405 2406 /* print device info to dmesg */ 2407 if (ata_msg_drv(ap) && print_info) 2408 ata_dev_info(dev, 2409 "ATAPI: %s, %s, max %s%s%s%s\n", 2410 modelbuf, fwrevbuf, 2411 ata_mode_string(xfer_mask), 2412 cdb_intr_string, atapi_an_string, 2413 dma_dir_string); 2414 } 2415 2416 /* determine max_sectors */ 2417 dev->max_sectors = ATA_MAX_SECTORS; 2418 if (dev->flags & ATA_DFLAG_LBA48) 2419 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2420 2421 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2422 200 sectors */ 2423 if (ata_dev_knobble(dev)) { 2424 if (ata_msg_drv(ap) && print_info) 2425 ata_dev_info(dev, "applying bridge limits\n"); 2426 dev->udma_mask &= ATA_UDMA5; 2427 dev->max_sectors = ATA_MAX_SECTORS; 2428 } 2429 2430 if ((dev->class == ATA_DEV_ATAPI) && 2431 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2432 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2433 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2434 } 2435 2436 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2437 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2438 dev->max_sectors); 2439 2440 if (ap->ops->dev_config) 2441 ap->ops->dev_config(dev); 2442 2443 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2444 /* Let the user know. We don't want to disallow opens for 2445 rescue purposes, or in case the vendor is just a blithering 2446 idiot. Do this after the dev_config call as some controllers 2447 with buggy firmware may want to avoid reporting false device 2448 bugs */ 2449 2450 if (print_info) { 2451 ata_dev_warn(dev, 2452 "Drive reports diagnostics failure. This may indicate a drive\n"); 2453 ata_dev_warn(dev, 2454 "fault or invalid emulation. Contact drive vendor for information.\n"); 2455 } 2456 } 2457 2458 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2459 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2460 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2461 } 2462 2463 return 0; 2464 2465 err_out_nosup: 2466 if (ata_msg_probe(ap)) 2467 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2468 return rc; 2469 } 2470 2471 /** 2472 * ata_cable_40wire - return 40 wire cable type 2473 * @ap: port 2474 * 2475 * Helper method for drivers which want to hardwire 40 wire cable 2476 * detection. 2477 */ 2478 2479 int ata_cable_40wire(struct ata_port *ap) 2480 { 2481 return ATA_CBL_PATA40; 2482 } 2483 2484 /** 2485 * ata_cable_80wire - return 80 wire cable type 2486 * @ap: port 2487 * 2488 * Helper method for drivers which want to hardwire 80 wire cable 2489 * detection. 2490 */ 2491 2492 int ata_cable_80wire(struct ata_port *ap) 2493 { 2494 return ATA_CBL_PATA80; 2495 } 2496 2497 /** 2498 * ata_cable_unknown - return unknown PATA cable. 2499 * @ap: port 2500 * 2501 * Helper method for drivers which have no PATA cable detection. 2502 */ 2503 2504 int ata_cable_unknown(struct ata_port *ap) 2505 { 2506 return ATA_CBL_PATA_UNK; 2507 } 2508 2509 /** 2510 * ata_cable_ignore - return ignored PATA cable. 2511 * @ap: port 2512 * 2513 * Helper method for drivers which don't use cable type to limit 2514 * transfer mode. 2515 */ 2516 int ata_cable_ignore(struct ata_port *ap) 2517 { 2518 return ATA_CBL_PATA_IGN; 2519 } 2520 2521 /** 2522 * ata_cable_sata - return SATA cable type 2523 * @ap: port 2524 * 2525 * Helper method for drivers which have SATA cables 2526 */ 2527 2528 int ata_cable_sata(struct ata_port *ap) 2529 { 2530 return ATA_CBL_SATA; 2531 } 2532 2533 /** 2534 * ata_bus_probe - Reset and probe ATA bus 2535 * @ap: Bus to probe 2536 * 2537 * Master ATA bus probing function. Initiates a hardware-dependent 2538 * bus reset, then attempts to identify any devices found on 2539 * the bus. 2540 * 2541 * LOCKING: 2542 * PCI/etc. bus probe sem. 2543 * 2544 * RETURNS: 2545 * Zero on success, negative errno otherwise. 2546 */ 2547 2548 int ata_bus_probe(struct ata_port *ap) 2549 { 2550 unsigned int classes[ATA_MAX_DEVICES]; 2551 int tries[ATA_MAX_DEVICES]; 2552 int rc; 2553 struct ata_device *dev; 2554 2555 ata_for_each_dev(dev, &ap->link, ALL) 2556 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2557 2558 retry: 2559 ata_for_each_dev(dev, &ap->link, ALL) { 2560 /* If we issue an SRST then an ATA drive (not ATAPI) 2561 * may change configuration and be in PIO0 timing. If 2562 * we do a hard reset (or are coming from power on) 2563 * this is true for ATA or ATAPI. Until we've set a 2564 * suitable controller mode we should not touch the 2565 * bus as we may be talking too fast. 2566 */ 2567 dev->pio_mode = XFER_PIO_0; 2568 dev->dma_mode = 0xff; 2569 2570 /* If the controller has a pio mode setup function 2571 * then use it to set the chipset to rights. Don't 2572 * touch the DMA setup as that will be dealt with when 2573 * configuring devices. 2574 */ 2575 if (ap->ops->set_piomode) 2576 ap->ops->set_piomode(ap, dev); 2577 } 2578 2579 /* reset and determine device classes */ 2580 ap->ops->phy_reset(ap); 2581 2582 ata_for_each_dev(dev, &ap->link, ALL) { 2583 if (dev->class != ATA_DEV_UNKNOWN) 2584 classes[dev->devno] = dev->class; 2585 else 2586 classes[dev->devno] = ATA_DEV_NONE; 2587 2588 dev->class = ATA_DEV_UNKNOWN; 2589 } 2590 2591 /* read IDENTIFY page and configure devices. We have to do the identify 2592 specific sequence bass-ackwards so that PDIAG- is released by 2593 the slave device */ 2594 2595 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2596 if (tries[dev->devno]) 2597 dev->class = classes[dev->devno]; 2598 2599 if (!ata_dev_enabled(dev)) 2600 continue; 2601 2602 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2603 dev->id); 2604 if (rc) 2605 goto fail; 2606 } 2607 2608 /* Now ask for the cable type as PDIAG- should have been released */ 2609 if (ap->ops->cable_detect) 2610 ap->cbl = ap->ops->cable_detect(ap); 2611 2612 /* We may have SATA bridge glue hiding here irrespective of 2613 * the reported cable types and sensed types. When SATA 2614 * drives indicate we have a bridge, we don't know which end 2615 * of the link the bridge is which is a problem. 2616 */ 2617 ata_for_each_dev(dev, &ap->link, ENABLED) 2618 if (ata_id_is_sata(dev->id)) 2619 ap->cbl = ATA_CBL_SATA; 2620 2621 /* After the identify sequence we can now set up the devices. We do 2622 this in the normal order so that the user doesn't get confused */ 2623 2624 ata_for_each_dev(dev, &ap->link, ENABLED) { 2625 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2626 rc = ata_dev_configure(dev); 2627 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2628 if (rc) 2629 goto fail; 2630 } 2631 2632 /* configure transfer mode */ 2633 rc = ata_set_mode(&ap->link, &dev); 2634 if (rc) 2635 goto fail; 2636 2637 ata_for_each_dev(dev, &ap->link, ENABLED) 2638 return 0; 2639 2640 return -ENODEV; 2641 2642 fail: 2643 tries[dev->devno]--; 2644 2645 switch (rc) { 2646 case -EINVAL: 2647 /* eeek, something went very wrong, give up */ 2648 tries[dev->devno] = 0; 2649 break; 2650 2651 case -ENODEV: 2652 /* give it just one more chance */ 2653 tries[dev->devno] = min(tries[dev->devno], 1); 2654 case -EIO: 2655 if (tries[dev->devno] == 1) { 2656 /* This is the last chance, better to slow 2657 * down than lose it. 2658 */ 2659 sata_down_spd_limit(&ap->link, 0); 2660 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2661 } 2662 } 2663 2664 if (!tries[dev->devno]) 2665 ata_dev_disable(dev); 2666 2667 goto retry; 2668 } 2669 2670 /** 2671 * sata_print_link_status - Print SATA link status 2672 * @link: SATA link to printk link status about 2673 * 2674 * This function prints link speed and status of a SATA link. 2675 * 2676 * LOCKING: 2677 * None. 2678 */ 2679 static void sata_print_link_status(struct ata_link *link) 2680 { 2681 u32 sstatus, scontrol, tmp; 2682 2683 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2684 return; 2685 sata_scr_read(link, SCR_CONTROL, &scontrol); 2686 2687 if (ata_phys_link_online(link)) { 2688 tmp = (sstatus >> 4) & 0xf; 2689 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2690 sata_spd_string(tmp), sstatus, scontrol); 2691 } else { 2692 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2693 sstatus, scontrol); 2694 } 2695 } 2696 2697 /** 2698 * ata_dev_pair - return other device on cable 2699 * @adev: device 2700 * 2701 * Obtain the other device on the same cable, or if none is 2702 * present NULL is returned 2703 */ 2704 2705 struct ata_device *ata_dev_pair(struct ata_device *adev) 2706 { 2707 struct ata_link *link = adev->link; 2708 struct ata_device *pair = &link->device[1 - adev->devno]; 2709 if (!ata_dev_enabled(pair)) 2710 return NULL; 2711 return pair; 2712 } 2713 2714 /** 2715 * sata_down_spd_limit - adjust SATA spd limit downward 2716 * @link: Link to adjust SATA spd limit for 2717 * @spd_limit: Additional limit 2718 * 2719 * Adjust SATA spd limit of @link downward. Note that this 2720 * function only adjusts the limit. The change must be applied 2721 * using sata_set_spd(). 2722 * 2723 * If @spd_limit is non-zero, the speed is limited to equal to or 2724 * lower than @spd_limit if such speed is supported. If 2725 * @spd_limit is slower than any supported speed, only the lowest 2726 * supported speed is allowed. 2727 * 2728 * LOCKING: 2729 * Inherited from caller. 2730 * 2731 * RETURNS: 2732 * 0 on success, negative errno on failure 2733 */ 2734 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2735 { 2736 u32 sstatus, spd, mask; 2737 int rc, bit; 2738 2739 if (!sata_scr_valid(link)) 2740 return -EOPNOTSUPP; 2741 2742 /* If SCR can be read, use it to determine the current SPD. 2743 * If not, use cached value in link->sata_spd. 2744 */ 2745 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2746 if (rc == 0 && ata_sstatus_online(sstatus)) 2747 spd = (sstatus >> 4) & 0xf; 2748 else 2749 spd = link->sata_spd; 2750 2751 mask = link->sata_spd_limit; 2752 if (mask <= 1) 2753 return -EINVAL; 2754 2755 /* unconditionally mask off the highest bit */ 2756 bit = fls(mask) - 1; 2757 mask &= ~(1 << bit); 2758 2759 /* Mask off all speeds higher than or equal to the current 2760 * one. Force 1.5Gbps if current SPD is not available. 2761 */ 2762 if (spd > 1) 2763 mask &= (1 << (spd - 1)) - 1; 2764 else 2765 mask &= 1; 2766 2767 /* were we already at the bottom? */ 2768 if (!mask) 2769 return -EINVAL; 2770 2771 if (spd_limit) { 2772 if (mask & ((1 << spd_limit) - 1)) 2773 mask &= (1 << spd_limit) - 1; 2774 else { 2775 bit = ffs(mask) - 1; 2776 mask = 1 << bit; 2777 } 2778 } 2779 2780 link->sata_spd_limit = mask; 2781 2782 ata_link_warn(link, "limiting SATA link speed to %s\n", 2783 sata_spd_string(fls(mask))); 2784 2785 return 0; 2786 } 2787 2788 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2789 { 2790 struct ata_link *host_link = &link->ap->link; 2791 u32 limit, target, spd; 2792 2793 limit = link->sata_spd_limit; 2794 2795 /* Don't configure downstream link faster than upstream link. 2796 * It doesn't speed up anything and some PMPs choke on such 2797 * configuration. 2798 */ 2799 if (!ata_is_host_link(link) && host_link->sata_spd) 2800 limit &= (1 << host_link->sata_spd) - 1; 2801 2802 if (limit == UINT_MAX) 2803 target = 0; 2804 else 2805 target = fls(limit); 2806 2807 spd = (*scontrol >> 4) & 0xf; 2808 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2809 2810 return spd != target; 2811 } 2812 2813 /** 2814 * sata_set_spd_needed - is SATA spd configuration needed 2815 * @link: Link in question 2816 * 2817 * Test whether the spd limit in SControl matches 2818 * @link->sata_spd_limit. This function is used to determine 2819 * whether hardreset is necessary to apply SATA spd 2820 * configuration. 2821 * 2822 * LOCKING: 2823 * Inherited from caller. 2824 * 2825 * RETURNS: 2826 * 1 if SATA spd configuration is needed, 0 otherwise. 2827 */ 2828 static int sata_set_spd_needed(struct ata_link *link) 2829 { 2830 u32 scontrol; 2831 2832 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2833 return 1; 2834 2835 return __sata_set_spd_needed(link, &scontrol); 2836 } 2837 2838 /** 2839 * sata_set_spd - set SATA spd according to spd limit 2840 * @link: Link to set SATA spd for 2841 * 2842 * Set SATA spd of @link according to sata_spd_limit. 2843 * 2844 * LOCKING: 2845 * Inherited from caller. 2846 * 2847 * RETURNS: 2848 * 0 if spd doesn't need to be changed, 1 if spd has been 2849 * changed. Negative errno if SCR registers are inaccessible. 2850 */ 2851 int sata_set_spd(struct ata_link *link) 2852 { 2853 u32 scontrol; 2854 int rc; 2855 2856 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2857 return rc; 2858 2859 if (!__sata_set_spd_needed(link, &scontrol)) 2860 return 0; 2861 2862 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2863 return rc; 2864 2865 return 1; 2866 } 2867 2868 /* 2869 * This mode timing computation functionality is ported over from 2870 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2871 */ 2872 /* 2873 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2874 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2875 * for UDMA6, which is currently supported only by Maxtor drives. 2876 * 2877 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2878 */ 2879 2880 static const struct ata_timing ata_timing[] = { 2881 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2882 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2883 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2884 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2885 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2886 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2887 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2888 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2889 2890 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2891 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2892 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2893 2894 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2895 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2896 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2897 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2898 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2899 2900 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2901 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2902 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2903 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2904 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2905 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2906 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2907 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2908 2909 { 0xFF } 2910 }; 2911 2912 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2913 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2914 2915 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2916 { 2917 q->setup = EZ(t->setup * 1000, T); 2918 q->act8b = EZ(t->act8b * 1000, T); 2919 q->rec8b = EZ(t->rec8b * 1000, T); 2920 q->cyc8b = EZ(t->cyc8b * 1000, T); 2921 q->active = EZ(t->active * 1000, T); 2922 q->recover = EZ(t->recover * 1000, T); 2923 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2924 q->cycle = EZ(t->cycle * 1000, T); 2925 q->udma = EZ(t->udma * 1000, UT); 2926 } 2927 2928 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2929 struct ata_timing *m, unsigned int what) 2930 { 2931 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2932 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2933 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2934 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2935 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2936 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2937 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2938 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2939 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2940 } 2941 2942 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2943 { 2944 const struct ata_timing *t = ata_timing; 2945 2946 while (xfer_mode > t->mode) 2947 t++; 2948 2949 if (xfer_mode == t->mode) 2950 return t; 2951 2952 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 2953 __func__, xfer_mode); 2954 2955 return NULL; 2956 } 2957 2958 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2959 struct ata_timing *t, int T, int UT) 2960 { 2961 const u16 *id = adev->id; 2962 const struct ata_timing *s; 2963 struct ata_timing p; 2964 2965 /* 2966 * Find the mode. 2967 */ 2968 2969 if (!(s = ata_timing_find_mode(speed))) 2970 return -EINVAL; 2971 2972 memcpy(t, s, sizeof(*s)); 2973 2974 /* 2975 * If the drive is an EIDE drive, it can tell us it needs extended 2976 * PIO/MW_DMA cycle timing. 2977 */ 2978 2979 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2980 memset(&p, 0, sizeof(p)); 2981 2982 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 2983 if (speed <= XFER_PIO_2) 2984 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 2985 else if ((speed <= XFER_PIO_4) || 2986 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 2987 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 2988 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 2989 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 2990 2991 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2992 } 2993 2994 /* 2995 * Convert the timing to bus clock counts. 2996 */ 2997 2998 ata_timing_quantize(t, t, T, UT); 2999 3000 /* 3001 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3002 * S.M.A.R.T * and some other commands. We have to ensure that the 3003 * DMA cycle timing is slower/equal than the fastest PIO timing. 3004 */ 3005 3006 if (speed > XFER_PIO_6) { 3007 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3008 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3009 } 3010 3011 /* 3012 * Lengthen active & recovery time so that cycle time is correct. 3013 */ 3014 3015 if (t->act8b + t->rec8b < t->cyc8b) { 3016 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3017 t->rec8b = t->cyc8b - t->act8b; 3018 } 3019 3020 if (t->active + t->recover < t->cycle) { 3021 t->active += (t->cycle - (t->active + t->recover)) / 2; 3022 t->recover = t->cycle - t->active; 3023 } 3024 3025 /* In a few cases quantisation may produce enough errors to 3026 leave t->cycle too low for the sum of active and recovery 3027 if so we must correct this */ 3028 if (t->active + t->recover > t->cycle) 3029 t->cycle = t->active + t->recover; 3030 3031 return 0; 3032 } 3033 3034 /** 3035 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3036 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3037 * @cycle: cycle duration in ns 3038 * 3039 * Return matching xfer mode for @cycle. The returned mode is of 3040 * the transfer type specified by @xfer_shift. If @cycle is too 3041 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3042 * than the fastest known mode, the fasted mode is returned. 3043 * 3044 * LOCKING: 3045 * None. 3046 * 3047 * RETURNS: 3048 * Matching xfer_mode, 0xff if no match found. 3049 */ 3050 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3051 { 3052 u8 base_mode = 0xff, last_mode = 0xff; 3053 const struct ata_xfer_ent *ent; 3054 const struct ata_timing *t; 3055 3056 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3057 if (ent->shift == xfer_shift) 3058 base_mode = ent->base; 3059 3060 for (t = ata_timing_find_mode(base_mode); 3061 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3062 unsigned short this_cycle; 3063 3064 switch (xfer_shift) { 3065 case ATA_SHIFT_PIO: 3066 case ATA_SHIFT_MWDMA: 3067 this_cycle = t->cycle; 3068 break; 3069 case ATA_SHIFT_UDMA: 3070 this_cycle = t->udma; 3071 break; 3072 default: 3073 return 0xff; 3074 } 3075 3076 if (cycle > this_cycle) 3077 break; 3078 3079 last_mode = t->mode; 3080 } 3081 3082 return last_mode; 3083 } 3084 3085 /** 3086 * ata_down_xfermask_limit - adjust dev xfer masks downward 3087 * @dev: Device to adjust xfer masks 3088 * @sel: ATA_DNXFER_* selector 3089 * 3090 * Adjust xfer masks of @dev downward. Note that this function 3091 * does not apply the change. Invoking ata_set_mode() afterwards 3092 * will apply the limit. 3093 * 3094 * LOCKING: 3095 * Inherited from caller. 3096 * 3097 * RETURNS: 3098 * 0 on success, negative errno on failure 3099 */ 3100 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3101 { 3102 char buf[32]; 3103 unsigned long orig_mask, xfer_mask; 3104 unsigned long pio_mask, mwdma_mask, udma_mask; 3105 int quiet, highbit; 3106 3107 quiet = !!(sel & ATA_DNXFER_QUIET); 3108 sel &= ~ATA_DNXFER_QUIET; 3109 3110 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3111 dev->mwdma_mask, 3112 dev->udma_mask); 3113 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3114 3115 switch (sel) { 3116 case ATA_DNXFER_PIO: 3117 highbit = fls(pio_mask) - 1; 3118 pio_mask &= ~(1 << highbit); 3119 break; 3120 3121 case ATA_DNXFER_DMA: 3122 if (udma_mask) { 3123 highbit = fls(udma_mask) - 1; 3124 udma_mask &= ~(1 << highbit); 3125 if (!udma_mask) 3126 return -ENOENT; 3127 } else if (mwdma_mask) { 3128 highbit = fls(mwdma_mask) - 1; 3129 mwdma_mask &= ~(1 << highbit); 3130 if (!mwdma_mask) 3131 return -ENOENT; 3132 } 3133 break; 3134 3135 case ATA_DNXFER_40C: 3136 udma_mask &= ATA_UDMA_MASK_40C; 3137 break; 3138 3139 case ATA_DNXFER_FORCE_PIO0: 3140 pio_mask &= 1; 3141 case ATA_DNXFER_FORCE_PIO: 3142 mwdma_mask = 0; 3143 udma_mask = 0; 3144 break; 3145 3146 default: 3147 BUG(); 3148 } 3149 3150 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3151 3152 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3153 return -ENOENT; 3154 3155 if (!quiet) { 3156 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3157 snprintf(buf, sizeof(buf), "%s:%s", 3158 ata_mode_string(xfer_mask), 3159 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3160 else 3161 snprintf(buf, sizeof(buf), "%s", 3162 ata_mode_string(xfer_mask)); 3163 3164 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3165 } 3166 3167 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3168 &dev->udma_mask); 3169 3170 return 0; 3171 } 3172 3173 static int ata_dev_set_mode(struct ata_device *dev) 3174 { 3175 struct ata_port *ap = dev->link->ap; 3176 struct ata_eh_context *ehc = &dev->link->eh_context; 3177 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3178 const char *dev_err_whine = ""; 3179 int ign_dev_err = 0; 3180 unsigned int err_mask = 0; 3181 int rc; 3182 3183 dev->flags &= ~ATA_DFLAG_PIO; 3184 if (dev->xfer_shift == ATA_SHIFT_PIO) 3185 dev->flags |= ATA_DFLAG_PIO; 3186 3187 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3188 dev_err_whine = " (SET_XFERMODE skipped)"; 3189 else { 3190 if (nosetxfer) 3191 ata_dev_warn(dev, 3192 "NOSETXFER but PATA detected - can't " 3193 "skip SETXFER, might malfunction\n"); 3194 err_mask = ata_dev_set_xfermode(dev); 3195 } 3196 3197 if (err_mask & ~AC_ERR_DEV) 3198 goto fail; 3199 3200 /* revalidate */ 3201 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3202 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3203 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3204 if (rc) 3205 return rc; 3206 3207 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3208 /* Old CFA may refuse this command, which is just fine */ 3209 if (ata_id_is_cfa(dev->id)) 3210 ign_dev_err = 1; 3211 /* Catch several broken garbage emulations plus some pre 3212 ATA devices */ 3213 if (ata_id_major_version(dev->id) == 0 && 3214 dev->pio_mode <= XFER_PIO_2) 3215 ign_dev_err = 1; 3216 /* Some very old devices and some bad newer ones fail 3217 any kind of SET_XFERMODE request but support PIO0-2 3218 timings and no IORDY */ 3219 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3220 ign_dev_err = 1; 3221 } 3222 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3223 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3224 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3225 dev->dma_mode == XFER_MW_DMA_0 && 3226 (dev->id[63] >> 8) & 1) 3227 ign_dev_err = 1; 3228 3229 /* if the device is actually configured correctly, ignore dev err */ 3230 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3231 ign_dev_err = 1; 3232 3233 if (err_mask & AC_ERR_DEV) { 3234 if (!ign_dev_err) 3235 goto fail; 3236 else 3237 dev_err_whine = " (device error ignored)"; 3238 } 3239 3240 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3241 dev->xfer_shift, (int)dev->xfer_mode); 3242 3243 ata_dev_info(dev, "configured for %s%s\n", 3244 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3245 dev_err_whine); 3246 3247 return 0; 3248 3249 fail: 3250 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3251 return -EIO; 3252 } 3253 3254 /** 3255 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3256 * @link: link on which timings will be programmed 3257 * @r_failed_dev: out parameter for failed device 3258 * 3259 * Standard implementation of the function used to tune and set 3260 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3261 * ata_dev_set_mode() fails, pointer to the failing device is 3262 * returned in @r_failed_dev. 3263 * 3264 * LOCKING: 3265 * PCI/etc. bus probe sem. 3266 * 3267 * RETURNS: 3268 * 0 on success, negative errno otherwise 3269 */ 3270 3271 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3272 { 3273 struct ata_port *ap = link->ap; 3274 struct ata_device *dev; 3275 int rc = 0, used_dma = 0, found = 0; 3276 3277 /* step 1: calculate xfer_mask */ 3278 ata_for_each_dev(dev, link, ENABLED) { 3279 unsigned long pio_mask, dma_mask; 3280 unsigned int mode_mask; 3281 3282 mode_mask = ATA_DMA_MASK_ATA; 3283 if (dev->class == ATA_DEV_ATAPI) 3284 mode_mask = ATA_DMA_MASK_ATAPI; 3285 else if (ata_id_is_cfa(dev->id)) 3286 mode_mask = ATA_DMA_MASK_CFA; 3287 3288 ata_dev_xfermask(dev); 3289 ata_force_xfermask(dev); 3290 3291 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3292 3293 if (libata_dma_mask & mode_mask) 3294 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3295 dev->udma_mask); 3296 else 3297 dma_mask = 0; 3298 3299 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3300 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3301 3302 found = 1; 3303 if (ata_dma_enabled(dev)) 3304 used_dma = 1; 3305 } 3306 if (!found) 3307 goto out; 3308 3309 /* step 2: always set host PIO timings */ 3310 ata_for_each_dev(dev, link, ENABLED) { 3311 if (dev->pio_mode == 0xff) { 3312 ata_dev_warn(dev, "no PIO support\n"); 3313 rc = -EINVAL; 3314 goto out; 3315 } 3316 3317 dev->xfer_mode = dev->pio_mode; 3318 dev->xfer_shift = ATA_SHIFT_PIO; 3319 if (ap->ops->set_piomode) 3320 ap->ops->set_piomode(ap, dev); 3321 } 3322 3323 /* step 3: set host DMA timings */ 3324 ata_for_each_dev(dev, link, ENABLED) { 3325 if (!ata_dma_enabled(dev)) 3326 continue; 3327 3328 dev->xfer_mode = dev->dma_mode; 3329 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3330 if (ap->ops->set_dmamode) 3331 ap->ops->set_dmamode(ap, dev); 3332 } 3333 3334 /* step 4: update devices' xfer mode */ 3335 ata_for_each_dev(dev, link, ENABLED) { 3336 rc = ata_dev_set_mode(dev); 3337 if (rc) 3338 goto out; 3339 } 3340 3341 /* Record simplex status. If we selected DMA then the other 3342 * host channels are not permitted to do so. 3343 */ 3344 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3345 ap->host->simplex_claimed = ap; 3346 3347 out: 3348 if (rc) 3349 *r_failed_dev = dev; 3350 return rc; 3351 } 3352 3353 /** 3354 * ata_wait_ready - wait for link to become ready 3355 * @link: link to be waited on 3356 * @deadline: deadline jiffies for the operation 3357 * @check_ready: callback to check link readiness 3358 * 3359 * Wait for @link to become ready. @check_ready should return 3360 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3361 * link doesn't seem to be occupied, other errno for other error 3362 * conditions. 3363 * 3364 * Transient -ENODEV conditions are allowed for 3365 * ATA_TMOUT_FF_WAIT. 3366 * 3367 * LOCKING: 3368 * EH context. 3369 * 3370 * RETURNS: 3371 * 0 if @linke is ready before @deadline; otherwise, -errno. 3372 */ 3373 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3374 int (*check_ready)(struct ata_link *link)) 3375 { 3376 unsigned long start = jiffies; 3377 unsigned long nodev_deadline; 3378 int warned = 0; 3379 3380 /* choose which 0xff timeout to use, read comment in libata.h */ 3381 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3382 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3383 else 3384 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3385 3386 /* Slave readiness can't be tested separately from master. On 3387 * M/S emulation configuration, this function should be called 3388 * only on the master and it will handle both master and slave. 3389 */ 3390 WARN_ON(link == link->ap->slave_link); 3391 3392 if (time_after(nodev_deadline, deadline)) 3393 nodev_deadline = deadline; 3394 3395 while (1) { 3396 unsigned long now = jiffies; 3397 int ready, tmp; 3398 3399 ready = tmp = check_ready(link); 3400 if (ready > 0) 3401 return 0; 3402 3403 /* 3404 * -ENODEV could be transient. Ignore -ENODEV if link 3405 * is online. Also, some SATA devices take a long 3406 * time to clear 0xff after reset. Wait for 3407 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3408 * offline. 3409 * 3410 * Note that some PATA controllers (pata_ali) explode 3411 * if status register is read more than once when 3412 * there's no device attached. 3413 */ 3414 if (ready == -ENODEV) { 3415 if (ata_link_online(link)) 3416 ready = 0; 3417 else if ((link->ap->flags & ATA_FLAG_SATA) && 3418 !ata_link_offline(link) && 3419 time_before(now, nodev_deadline)) 3420 ready = 0; 3421 } 3422 3423 if (ready) 3424 return ready; 3425 if (time_after(now, deadline)) 3426 return -EBUSY; 3427 3428 if (!warned && time_after(now, start + 5 * HZ) && 3429 (deadline - now > 3 * HZ)) { 3430 ata_link_warn(link, 3431 "link is slow to respond, please be patient " 3432 "(ready=%d)\n", tmp); 3433 warned = 1; 3434 } 3435 3436 ata_msleep(link->ap, 50); 3437 } 3438 } 3439 3440 /** 3441 * ata_wait_after_reset - wait for link to become ready after reset 3442 * @link: link to be waited on 3443 * @deadline: deadline jiffies for the operation 3444 * @check_ready: callback to check link readiness 3445 * 3446 * Wait for @link to become ready after reset. 3447 * 3448 * LOCKING: 3449 * EH context. 3450 * 3451 * RETURNS: 3452 * 0 if @linke is ready before @deadline; otherwise, -errno. 3453 */ 3454 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3455 int (*check_ready)(struct ata_link *link)) 3456 { 3457 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3458 3459 return ata_wait_ready(link, deadline, check_ready); 3460 } 3461 3462 /** 3463 * sata_link_debounce - debounce SATA phy status 3464 * @link: ATA link to debounce SATA phy status for 3465 * @params: timing parameters { interval, duratinon, timeout } in msec 3466 * @deadline: deadline jiffies for the operation 3467 * 3468 * Make sure SStatus of @link reaches stable state, determined by 3469 * holding the same value where DET is not 1 for @duration polled 3470 * every @interval, before @timeout. Timeout constraints the 3471 * beginning of the stable state. Because DET gets stuck at 1 on 3472 * some controllers after hot unplugging, this functions waits 3473 * until timeout then returns 0 if DET is stable at 1. 3474 * 3475 * @timeout is further limited by @deadline. The sooner of the 3476 * two is used. 3477 * 3478 * LOCKING: 3479 * Kernel thread context (may sleep) 3480 * 3481 * RETURNS: 3482 * 0 on success, -errno on failure. 3483 */ 3484 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3485 unsigned long deadline) 3486 { 3487 unsigned long interval = params[0]; 3488 unsigned long duration = params[1]; 3489 unsigned long last_jiffies, t; 3490 u32 last, cur; 3491 int rc; 3492 3493 t = ata_deadline(jiffies, params[2]); 3494 if (time_before(t, deadline)) 3495 deadline = t; 3496 3497 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3498 return rc; 3499 cur &= 0xf; 3500 3501 last = cur; 3502 last_jiffies = jiffies; 3503 3504 while (1) { 3505 ata_msleep(link->ap, interval); 3506 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3507 return rc; 3508 cur &= 0xf; 3509 3510 /* DET stable? */ 3511 if (cur == last) { 3512 if (cur == 1 && time_before(jiffies, deadline)) 3513 continue; 3514 if (time_after(jiffies, 3515 ata_deadline(last_jiffies, duration))) 3516 return 0; 3517 continue; 3518 } 3519 3520 /* unstable, start over */ 3521 last = cur; 3522 last_jiffies = jiffies; 3523 3524 /* Check deadline. If debouncing failed, return 3525 * -EPIPE to tell upper layer to lower link speed. 3526 */ 3527 if (time_after(jiffies, deadline)) 3528 return -EPIPE; 3529 } 3530 } 3531 3532 /** 3533 * sata_link_resume - resume SATA link 3534 * @link: ATA link to resume SATA 3535 * @params: timing parameters { interval, duratinon, timeout } in msec 3536 * @deadline: deadline jiffies for the operation 3537 * 3538 * Resume SATA phy @link and debounce it. 3539 * 3540 * LOCKING: 3541 * Kernel thread context (may sleep) 3542 * 3543 * RETURNS: 3544 * 0 on success, -errno on failure. 3545 */ 3546 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3547 unsigned long deadline) 3548 { 3549 int tries = ATA_LINK_RESUME_TRIES; 3550 u32 scontrol, serror; 3551 int rc; 3552 3553 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3554 return rc; 3555 3556 /* 3557 * Writes to SControl sometimes get ignored under certain 3558 * controllers (ata_piix SIDPR). Make sure DET actually is 3559 * cleared. 3560 */ 3561 do { 3562 scontrol = (scontrol & 0x0f0) | 0x300; 3563 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3564 return rc; 3565 /* 3566 * Some PHYs react badly if SStatus is pounded 3567 * immediately after resuming. Delay 200ms before 3568 * debouncing. 3569 */ 3570 ata_msleep(link->ap, 200); 3571 3572 /* is SControl restored correctly? */ 3573 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3574 return rc; 3575 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3576 3577 if ((scontrol & 0xf0f) != 0x300) { 3578 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3579 scontrol); 3580 return 0; 3581 } 3582 3583 if (tries < ATA_LINK_RESUME_TRIES) 3584 ata_link_warn(link, "link resume succeeded after %d retries\n", 3585 ATA_LINK_RESUME_TRIES - tries); 3586 3587 if ((rc = sata_link_debounce(link, params, deadline))) 3588 return rc; 3589 3590 /* clear SError, some PHYs require this even for SRST to work */ 3591 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3592 rc = sata_scr_write(link, SCR_ERROR, serror); 3593 3594 return rc != -EINVAL ? rc : 0; 3595 } 3596 3597 /** 3598 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3599 * @link: ATA link to manipulate SControl for 3600 * @policy: LPM policy to configure 3601 * @spm_wakeup: initiate LPM transition to active state 3602 * 3603 * Manipulate the IPM field of the SControl register of @link 3604 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3605 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3606 * the link. This function also clears PHYRDY_CHG before 3607 * returning. 3608 * 3609 * LOCKING: 3610 * EH context. 3611 * 3612 * RETURNS: 3613 * 0 on succes, -errno otherwise. 3614 */ 3615 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3616 bool spm_wakeup) 3617 { 3618 struct ata_eh_context *ehc = &link->eh_context; 3619 bool woken_up = false; 3620 u32 scontrol; 3621 int rc; 3622 3623 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3624 if (rc) 3625 return rc; 3626 3627 switch (policy) { 3628 case ATA_LPM_MAX_POWER: 3629 /* disable all LPM transitions */ 3630 scontrol |= (0x7 << 8); 3631 /* initiate transition to active state */ 3632 if (spm_wakeup) { 3633 scontrol |= (0x4 << 12); 3634 woken_up = true; 3635 } 3636 break; 3637 case ATA_LPM_MED_POWER: 3638 /* allow LPM to PARTIAL */ 3639 scontrol &= ~(0x1 << 8); 3640 scontrol |= (0x6 << 8); 3641 break; 3642 case ATA_LPM_MIN_POWER: 3643 if (ata_link_nr_enabled(link) > 0) 3644 /* no restrictions on LPM transitions */ 3645 scontrol &= ~(0x7 << 8); 3646 else { 3647 /* empty port, power off */ 3648 scontrol &= ~0xf; 3649 scontrol |= (0x1 << 2); 3650 } 3651 break; 3652 default: 3653 WARN_ON(1); 3654 } 3655 3656 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3657 if (rc) 3658 return rc; 3659 3660 /* give the link time to transit out of LPM state */ 3661 if (woken_up) 3662 msleep(10); 3663 3664 /* clear PHYRDY_CHG from SError */ 3665 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3666 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3667 } 3668 3669 /** 3670 * ata_std_prereset - prepare for reset 3671 * @link: ATA link to be reset 3672 * @deadline: deadline jiffies for the operation 3673 * 3674 * @link is about to be reset. Initialize it. Failure from 3675 * prereset makes libata abort whole reset sequence and give up 3676 * that port, so prereset should be best-effort. It does its 3677 * best to prepare for reset sequence but if things go wrong, it 3678 * should just whine, not fail. 3679 * 3680 * LOCKING: 3681 * Kernel thread context (may sleep) 3682 * 3683 * RETURNS: 3684 * 0 on success, -errno otherwise. 3685 */ 3686 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3687 { 3688 struct ata_port *ap = link->ap; 3689 struct ata_eh_context *ehc = &link->eh_context; 3690 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3691 int rc; 3692 3693 /* if we're about to do hardreset, nothing more to do */ 3694 if (ehc->i.action & ATA_EH_HARDRESET) 3695 return 0; 3696 3697 /* if SATA, resume link */ 3698 if (ap->flags & ATA_FLAG_SATA) { 3699 rc = sata_link_resume(link, timing, deadline); 3700 /* whine about phy resume failure but proceed */ 3701 if (rc && rc != -EOPNOTSUPP) 3702 ata_link_warn(link, 3703 "failed to resume link for reset (errno=%d)\n", 3704 rc); 3705 } 3706 3707 /* no point in trying softreset on offline link */ 3708 if (ata_phys_link_offline(link)) 3709 ehc->i.action &= ~ATA_EH_SOFTRESET; 3710 3711 return 0; 3712 } 3713 3714 /** 3715 * sata_link_hardreset - reset link via SATA phy reset 3716 * @link: link to reset 3717 * @timing: timing parameters { interval, duratinon, timeout } in msec 3718 * @deadline: deadline jiffies for the operation 3719 * @online: optional out parameter indicating link onlineness 3720 * @check_ready: optional callback to check link readiness 3721 * 3722 * SATA phy-reset @link using DET bits of SControl register. 3723 * After hardreset, link readiness is waited upon using 3724 * ata_wait_ready() if @check_ready is specified. LLDs are 3725 * allowed to not specify @check_ready and wait itself after this 3726 * function returns. Device classification is LLD's 3727 * responsibility. 3728 * 3729 * *@online is set to one iff reset succeeded and @link is online 3730 * after reset. 3731 * 3732 * LOCKING: 3733 * Kernel thread context (may sleep) 3734 * 3735 * RETURNS: 3736 * 0 on success, -errno otherwise. 3737 */ 3738 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3739 unsigned long deadline, 3740 bool *online, int (*check_ready)(struct ata_link *)) 3741 { 3742 u32 scontrol; 3743 int rc; 3744 3745 DPRINTK("ENTER\n"); 3746 3747 if (online) 3748 *online = false; 3749 3750 if (sata_set_spd_needed(link)) { 3751 /* SATA spec says nothing about how to reconfigure 3752 * spd. To be on the safe side, turn off phy during 3753 * reconfiguration. This works for at least ICH7 AHCI 3754 * and Sil3124. 3755 */ 3756 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3757 goto out; 3758 3759 scontrol = (scontrol & 0x0f0) | 0x304; 3760 3761 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3762 goto out; 3763 3764 sata_set_spd(link); 3765 } 3766 3767 /* issue phy wake/reset */ 3768 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3769 goto out; 3770 3771 scontrol = (scontrol & 0x0f0) | 0x301; 3772 3773 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3774 goto out; 3775 3776 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3777 * 10.4.2 says at least 1 ms. 3778 */ 3779 ata_msleep(link->ap, 1); 3780 3781 /* bring link back */ 3782 rc = sata_link_resume(link, timing, deadline); 3783 if (rc) 3784 goto out; 3785 /* if link is offline nothing more to do */ 3786 if (ata_phys_link_offline(link)) 3787 goto out; 3788 3789 /* Link is online. From this point, -ENODEV too is an error. */ 3790 if (online) 3791 *online = true; 3792 3793 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3794 /* If PMP is supported, we have to do follow-up SRST. 3795 * Some PMPs don't send D2H Reg FIS after hardreset if 3796 * the first port is empty. Wait only for 3797 * ATA_TMOUT_PMP_SRST_WAIT. 3798 */ 3799 if (check_ready) { 3800 unsigned long pmp_deadline; 3801 3802 pmp_deadline = ata_deadline(jiffies, 3803 ATA_TMOUT_PMP_SRST_WAIT); 3804 if (time_after(pmp_deadline, deadline)) 3805 pmp_deadline = deadline; 3806 ata_wait_ready(link, pmp_deadline, check_ready); 3807 } 3808 rc = -EAGAIN; 3809 goto out; 3810 } 3811 3812 rc = 0; 3813 if (check_ready) 3814 rc = ata_wait_ready(link, deadline, check_ready); 3815 out: 3816 if (rc && rc != -EAGAIN) { 3817 /* online is set iff link is online && reset succeeded */ 3818 if (online) 3819 *online = false; 3820 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3821 } 3822 DPRINTK("EXIT, rc=%d\n", rc); 3823 return rc; 3824 } 3825 3826 /** 3827 * sata_std_hardreset - COMRESET w/o waiting or classification 3828 * @link: link to reset 3829 * @class: resulting class of attached device 3830 * @deadline: deadline jiffies for the operation 3831 * 3832 * Standard SATA COMRESET w/o waiting or classification. 3833 * 3834 * LOCKING: 3835 * Kernel thread context (may sleep) 3836 * 3837 * RETURNS: 3838 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3839 */ 3840 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3841 unsigned long deadline) 3842 { 3843 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3844 bool online; 3845 int rc; 3846 3847 /* do hardreset */ 3848 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3849 return online ? -EAGAIN : rc; 3850 } 3851 3852 /** 3853 * ata_std_postreset - standard postreset callback 3854 * @link: the target ata_link 3855 * @classes: classes of attached devices 3856 * 3857 * This function is invoked after a successful reset. Note that 3858 * the device might have been reset more than once using 3859 * different reset methods before postreset is invoked. 3860 * 3861 * LOCKING: 3862 * Kernel thread context (may sleep) 3863 */ 3864 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3865 { 3866 u32 serror; 3867 3868 DPRINTK("ENTER\n"); 3869 3870 /* reset complete, clear SError */ 3871 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3872 sata_scr_write(link, SCR_ERROR, serror); 3873 3874 /* print link status */ 3875 sata_print_link_status(link); 3876 3877 DPRINTK("EXIT\n"); 3878 } 3879 3880 /** 3881 * ata_dev_same_device - Determine whether new ID matches configured device 3882 * @dev: device to compare against 3883 * @new_class: class of the new device 3884 * @new_id: IDENTIFY page of the new device 3885 * 3886 * Compare @new_class and @new_id against @dev and determine 3887 * whether @dev is the device indicated by @new_class and 3888 * @new_id. 3889 * 3890 * LOCKING: 3891 * None. 3892 * 3893 * RETURNS: 3894 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3895 */ 3896 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3897 const u16 *new_id) 3898 { 3899 const u16 *old_id = dev->id; 3900 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3901 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3902 3903 if (dev->class != new_class) { 3904 ata_dev_info(dev, "class mismatch %d != %d\n", 3905 dev->class, new_class); 3906 return 0; 3907 } 3908 3909 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3910 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3911 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3912 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3913 3914 if (strcmp(model[0], model[1])) { 3915 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3916 model[0], model[1]); 3917 return 0; 3918 } 3919 3920 if (strcmp(serial[0], serial[1])) { 3921 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3922 serial[0], serial[1]); 3923 return 0; 3924 } 3925 3926 return 1; 3927 } 3928 3929 /** 3930 * ata_dev_reread_id - Re-read IDENTIFY data 3931 * @dev: target ATA device 3932 * @readid_flags: read ID flags 3933 * 3934 * Re-read IDENTIFY page and make sure @dev is still attached to 3935 * the port. 3936 * 3937 * LOCKING: 3938 * Kernel thread context (may sleep) 3939 * 3940 * RETURNS: 3941 * 0 on success, negative errno otherwise 3942 */ 3943 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3944 { 3945 unsigned int class = dev->class; 3946 u16 *id = (void *)dev->link->ap->sector_buf; 3947 int rc; 3948 3949 /* read ID data */ 3950 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3951 if (rc) 3952 return rc; 3953 3954 /* is the device still there? */ 3955 if (!ata_dev_same_device(dev, class, id)) 3956 return -ENODEV; 3957 3958 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3959 return 0; 3960 } 3961 3962 /** 3963 * ata_dev_revalidate - Revalidate ATA device 3964 * @dev: device to revalidate 3965 * @new_class: new class code 3966 * @readid_flags: read ID flags 3967 * 3968 * Re-read IDENTIFY page, make sure @dev is still attached to the 3969 * port and reconfigure it according to the new IDENTIFY page. 3970 * 3971 * LOCKING: 3972 * Kernel thread context (may sleep) 3973 * 3974 * RETURNS: 3975 * 0 on success, negative errno otherwise 3976 */ 3977 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3978 unsigned int readid_flags) 3979 { 3980 u64 n_sectors = dev->n_sectors; 3981 u64 n_native_sectors = dev->n_native_sectors; 3982 int rc; 3983 3984 if (!ata_dev_enabled(dev)) 3985 return -ENODEV; 3986 3987 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3988 if (ata_class_enabled(new_class) && 3989 new_class != ATA_DEV_ATA && 3990 new_class != ATA_DEV_ATAPI && 3991 new_class != ATA_DEV_SEMB) { 3992 ata_dev_info(dev, "class mismatch %u != %u\n", 3993 dev->class, new_class); 3994 rc = -ENODEV; 3995 goto fail; 3996 } 3997 3998 /* re-read ID */ 3999 rc = ata_dev_reread_id(dev, readid_flags); 4000 if (rc) 4001 goto fail; 4002 4003 /* configure device according to the new ID */ 4004 rc = ata_dev_configure(dev); 4005 if (rc) 4006 goto fail; 4007 4008 /* verify n_sectors hasn't changed */ 4009 if (dev->class != ATA_DEV_ATA || !n_sectors || 4010 dev->n_sectors == n_sectors) 4011 return 0; 4012 4013 /* n_sectors has changed */ 4014 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4015 (unsigned long long)n_sectors, 4016 (unsigned long long)dev->n_sectors); 4017 4018 /* 4019 * Something could have caused HPA to be unlocked 4020 * involuntarily. If n_native_sectors hasn't changed and the 4021 * new size matches it, keep the device. 4022 */ 4023 if (dev->n_native_sectors == n_native_sectors && 4024 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4025 ata_dev_warn(dev, 4026 "new n_sectors matches native, probably " 4027 "late HPA unlock, n_sectors updated\n"); 4028 /* use the larger n_sectors */ 4029 return 0; 4030 } 4031 4032 /* 4033 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4034 * unlocking HPA in those cases. 4035 * 4036 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4037 */ 4038 if (dev->n_native_sectors == n_native_sectors && 4039 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4040 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4041 ata_dev_warn(dev, 4042 "old n_sectors matches native, probably " 4043 "late HPA lock, will try to unlock HPA\n"); 4044 /* try unlocking HPA */ 4045 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4046 rc = -EIO; 4047 } else 4048 rc = -ENODEV; 4049 4050 /* restore original n_[native_]sectors and fail */ 4051 dev->n_native_sectors = n_native_sectors; 4052 dev->n_sectors = n_sectors; 4053 fail: 4054 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4055 return rc; 4056 } 4057 4058 struct ata_blacklist_entry { 4059 const char *model_num; 4060 const char *model_rev; 4061 unsigned long horkage; 4062 }; 4063 4064 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4065 /* Devices with DMA related problems under Linux */ 4066 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4067 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4068 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4069 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4070 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4071 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4072 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4073 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4074 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4075 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4076 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4077 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4078 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4079 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4080 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4081 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4082 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4083 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4084 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4085 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4086 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4087 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4088 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4089 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4090 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4091 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4092 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4093 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4094 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4095 /* Odd clown on sil3726/4726 PMPs */ 4096 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4097 4098 /* Weird ATAPI devices */ 4099 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4100 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4101 4102 /* Devices we expect to fail diagnostics */ 4103 4104 /* Devices where NCQ should be avoided */ 4105 /* NCQ is slow */ 4106 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4107 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4108 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4109 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4110 /* NCQ is broken */ 4111 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4112 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4113 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4114 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4115 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4116 4117 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4118 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4119 ATA_HORKAGE_FIRMWARE_WARN }, 4120 4121 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4122 ATA_HORKAGE_FIRMWARE_WARN }, 4123 4124 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4125 ATA_HORKAGE_FIRMWARE_WARN }, 4126 4127 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4128 ATA_HORKAGE_FIRMWARE_WARN }, 4129 4130 /* Blacklist entries taken from Silicon Image 3124/3132 4131 Windows driver .inf file - also several Linux problem reports */ 4132 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4133 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4134 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4135 4136 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4137 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4138 4139 /* devices which puke on READ_NATIVE_MAX */ 4140 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4141 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4142 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4143 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4144 4145 /* this one allows HPA unlocking but fails IOs on the area */ 4146 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4147 4148 /* Devices which report 1 sector over size HPA */ 4149 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4150 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4151 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4152 4153 /* Devices which get the IVB wrong */ 4154 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4155 /* Maybe we should just blacklist TSSTcorp... */ 4156 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4157 4158 /* Devices that do not need bridging limits applied */ 4159 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4160 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4161 4162 /* Devices which aren't very happy with higher link speeds */ 4163 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4164 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4165 4166 /* 4167 * Devices which choke on SETXFER. Applies only if both the 4168 * device and controller are SATA. 4169 */ 4170 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4171 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4172 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4173 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4174 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4175 4176 /* End Marker */ 4177 { } 4178 }; 4179 4180 /** 4181 * glob_match - match a text string against a glob-style pattern 4182 * @text: the string to be examined 4183 * @pattern: the glob-style pattern to be matched against 4184 * 4185 * Either/both of text and pattern can be empty strings. 4186 * 4187 * Match text against a glob-style pattern, with wildcards and simple sets: 4188 * 4189 * ? matches any single character. 4190 * * matches any run of characters. 4191 * [xyz] matches a single character from the set: x, y, or z. 4192 * [a-d] matches a single character from the range: a, b, c, or d. 4193 * [a-d0-9] matches a single character from either range. 4194 * 4195 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4196 * Behaviour with malformed patterns is undefined, though generally reasonable. 4197 * 4198 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4199 * 4200 * This function uses one level of recursion per '*' in pattern. 4201 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4202 * this will not cause stack problems for any reasonable use here. 4203 * 4204 * RETURNS: 4205 * 0 on match, 1 otherwise. 4206 */ 4207 static int glob_match (const char *text, const char *pattern) 4208 { 4209 do { 4210 /* Match single character or a '?' wildcard */ 4211 if (*text == *pattern || *pattern == '?') { 4212 if (!*pattern++) 4213 return 0; /* End of both strings: match */ 4214 } else { 4215 /* Match single char against a '[' bracketed ']' pattern set */ 4216 if (!*text || *pattern != '[') 4217 break; /* Not a pattern set */ 4218 while (*++pattern && *pattern != ']' && *text != *pattern) { 4219 if (*pattern == '-' && *(pattern - 1) != '[') 4220 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4221 ++pattern; 4222 break; 4223 } 4224 } 4225 if (!*pattern || *pattern == ']') 4226 return 1; /* No match */ 4227 while (*pattern && *pattern++ != ']'); 4228 } 4229 } while (*++text && *pattern); 4230 4231 /* Match any run of chars against a '*' wildcard */ 4232 if (*pattern == '*') { 4233 if (!*++pattern) 4234 return 0; /* Match: avoid recursion at end of pattern */ 4235 /* Loop to handle additional pattern chars after the wildcard */ 4236 while (*text) { 4237 if (glob_match(text, pattern) == 0) 4238 return 0; /* Remainder matched */ 4239 ++text; /* Absorb (match) this char and try again */ 4240 } 4241 } 4242 if (!*text && !*pattern) 4243 return 0; /* End of both strings: match */ 4244 return 1; /* No match */ 4245 } 4246 4247 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4248 { 4249 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4250 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4251 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4252 4253 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4254 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4255 4256 while (ad->model_num) { 4257 if (!glob_match(model_num, ad->model_num)) { 4258 if (ad->model_rev == NULL) 4259 return ad->horkage; 4260 if (!glob_match(model_rev, ad->model_rev)) 4261 return ad->horkage; 4262 } 4263 ad++; 4264 } 4265 return 0; 4266 } 4267 4268 static int ata_dma_blacklisted(const struct ata_device *dev) 4269 { 4270 /* We don't support polling DMA. 4271 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4272 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4273 */ 4274 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4275 (dev->flags & ATA_DFLAG_CDB_INTR)) 4276 return 1; 4277 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4278 } 4279 4280 /** 4281 * ata_is_40wire - check drive side detection 4282 * @dev: device 4283 * 4284 * Perform drive side detection decoding, allowing for device vendors 4285 * who can't follow the documentation. 4286 */ 4287 4288 static int ata_is_40wire(struct ata_device *dev) 4289 { 4290 if (dev->horkage & ATA_HORKAGE_IVB) 4291 return ata_drive_40wire_relaxed(dev->id); 4292 return ata_drive_40wire(dev->id); 4293 } 4294 4295 /** 4296 * cable_is_40wire - 40/80/SATA decider 4297 * @ap: port to consider 4298 * 4299 * This function encapsulates the policy for speed management 4300 * in one place. At the moment we don't cache the result but 4301 * there is a good case for setting ap->cbl to the result when 4302 * we are called with unknown cables (and figuring out if it 4303 * impacts hotplug at all). 4304 * 4305 * Return 1 if the cable appears to be 40 wire. 4306 */ 4307 4308 static int cable_is_40wire(struct ata_port *ap) 4309 { 4310 struct ata_link *link; 4311 struct ata_device *dev; 4312 4313 /* If the controller thinks we are 40 wire, we are. */ 4314 if (ap->cbl == ATA_CBL_PATA40) 4315 return 1; 4316 4317 /* If the controller thinks we are 80 wire, we are. */ 4318 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4319 return 0; 4320 4321 /* If the system is known to be 40 wire short cable (eg 4322 * laptop), then we allow 80 wire modes even if the drive 4323 * isn't sure. 4324 */ 4325 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4326 return 0; 4327 4328 /* If the controller doesn't know, we scan. 4329 * 4330 * Note: We look for all 40 wire detects at this point. Any 4331 * 80 wire detect is taken to be 80 wire cable because 4332 * - in many setups only the one drive (slave if present) will 4333 * give a valid detect 4334 * - if you have a non detect capable drive you don't want it 4335 * to colour the choice 4336 */ 4337 ata_for_each_link(link, ap, EDGE) { 4338 ata_for_each_dev(dev, link, ENABLED) { 4339 if (!ata_is_40wire(dev)) 4340 return 0; 4341 } 4342 } 4343 return 1; 4344 } 4345 4346 /** 4347 * ata_dev_xfermask - Compute supported xfermask of the given device 4348 * @dev: Device to compute xfermask for 4349 * 4350 * Compute supported xfermask of @dev and store it in 4351 * dev->*_mask. This function is responsible for applying all 4352 * known limits including host controller limits, device 4353 * blacklist, etc... 4354 * 4355 * LOCKING: 4356 * None. 4357 */ 4358 static void ata_dev_xfermask(struct ata_device *dev) 4359 { 4360 struct ata_link *link = dev->link; 4361 struct ata_port *ap = link->ap; 4362 struct ata_host *host = ap->host; 4363 unsigned long xfer_mask; 4364 4365 /* controller modes available */ 4366 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4367 ap->mwdma_mask, ap->udma_mask); 4368 4369 /* drive modes available */ 4370 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4371 dev->mwdma_mask, dev->udma_mask); 4372 xfer_mask &= ata_id_xfermask(dev->id); 4373 4374 /* 4375 * CFA Advanced TrueIDE timings are not allowed on a shared 4376 * cable 4377 */ 4378 if (ata_dev_pair(dev)) { 4379 /* No PIO5 or PIO6 */ 4380 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4381 /* No MWDMA3 or MWDMA 4 */ 4382 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4383 } 4384 4385 if (ata_dma_blacklisted(dev)) { 4386 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4387 ata_dev_warn(dev, 4388 "device is on DMA blacklist, disabling DMA\n"); 4389 } 4390 4391 if ((host->flags & ATA_HOST_SIMPLEX) && 4392 host->simplex_claimed && host->simplex_claimed != ap) { 4393 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4394 ata_dev_warn(dev, 4395 "simplex DMA is claimed by other device, disabling DMA\n"); 4396 } 4397 4398 if (ap->flags & ATA_FLAG_NO_IORDY) 4399 xfer_mask &= ata_pio_mask_no_iordy(dev); 4400 4401 if (ap->ops->mode_filter) 4402 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4403 4404 /* Apply cable rule here. Don't apply it early because when 4405 * we handle hot plug the cable type can itself change. 4406 * Check this last so that we know if the transfer rate was 4407 * solely limited by the cable. 4408 * Unknown or 80 wire cables reported host side are checked 4409 * drive side as well. Cases where we know a 40wire cable 4410 * is used safely for 80 are not checked here. 4411 */ 4412 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4413 /* UDMA/44 or higher would be available */ 4414 if (cable_is_40wire(ap)) { 4415 ata_dev_warn(dev, 4416 "limited to UDMA/33 due to 40-wire cable\n"); 4417 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4418 } 4419 4420 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4421 &dev->mwdma_mask, &dev->udma_mask); 4422 } 4423 4424 /** 4425 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4426 * @dev: Device to which command will be sent 4427 * 4428 * Issue SET FEATURES - XFER MODE command to device @dev 4429 * on port @ap. 4430 * 4431 * LOCKING: 4432 * PCI/etc. bus probe sem. 4433 * 4434 * RETURNS: 4435 * 0 on success, AC_ERR_* mask otherwise. 4436 */ 4437 4438 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4439 { 4440 struct ata_taskfile tf; 4441 unsigned int err_mask; 4442 4443 /* set up set-features taskfile */ 4444 DPRINTK("set features - xfer mode\n"); 4445 4446 /* Some controllers and ATAPI devices show flaky interrupt 4447 * behavior after setting xfer mode. Use polling instead. 4448 */ 4449 ata_tf_init(dev, &tf); 4450 tf.command = ATA_CMD_SET_FEATURES; 4451 tf.feature = SETFEATURES_XFER; 4452 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4453 tf.protocol = ATA_PROT_NODATA; 4454 /* If we are using IORDY we must send the mode setting command */ 4455 if (ata_pio_need_iordy(dev)) 4456 tf.nsect = dev->xfer_mode; 4457 /* If the device has IORDY and the controller does not - turn it off */ 4458 else if (ata_id_has_iordy(dev->id)) 4459 tf.nsect = 0x01; 4460 else /* In the ancient relic department - skip all of this */ 4461 return 0; 4462 4463 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4464 4465 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4466 return err_mask; 4467 } 4468 4469 /** 4470 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4471 * @dev: Device to which command will be sent 4472 * @enable: Whether to enable or disable the feature 4473 * @feature: The sector count represents the feature to set 4474 * 4475 * Issue SET FEATURES - SATA FEATURES command to device @dev 4476 * on port @ap with sector count 4477 * 4478 * LOCKING: 4479 * PCI/etc. bus probe sem. 4480 * 4481 * RETURNS: 4482 * 0 on success, AC_ERR_* mask otherwise. 4483 */ 4484 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4485 { 4486 struct ata_taskfile tf; 4487 unsigned int err_mask; 4488 4489 /* set up set-features taskfile */ 4490 DPRINTK("set features - SATA features\n"); 4491 4492 ata_tf_init(dev, &tf); 4493 tf.command = ATA_CMD_SET_FEATURES; 4494 tf.feature = enable; 4495 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4496 tf.protocol = ATA_PROT_NODATA; 4497 tf.nsect = feature; 4498 4499 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4500 4501 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4502 return err_mask; 4503 } 4504 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4505 4506 /** 4507 * ata_dev_init_params - Issue INIT DEV PARAMS command 4508 * @dev: Device to which command will be sent 4509 * @heads: Number of heads (taskfile parameter) 4510 * @sectors: Number of sectors (taskfile parameter) 4511 * 4512 * LOCKING: 4513 * Kernel thread context (may sleep) 4514 * 4515 * RETURNS: 4516 * 0 on success, AC_ERR_* mask otherwise. 4517 */ 4518 static unsigned int ata_dev_init_params(struct ata_device *dev, 4519 u16 heads, u16 sectors) 4520 { 4521 struct ata_taskfile tf; 4522 unsigned int err_mask; 4523 4524 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4525 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4526 return AC_ERR_INVALID; 4527 4528 /* set up init dev params taskfile */ 4529 DPRINTK("init dev params \n"); 4530 4531 ata_tf_init(dev, &tf); 4532 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4533 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4534 tf.protocol = ATA_PROT_NODATA; 4535 tf.nsect = sectors; 4536 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4537 4538 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4539 /* A clean abort indicates an original or just out of spec drive 4540 and we should continue as we issue the setup based on the 4541 drive reported working geometry */ 4542 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4543 err_mask = 0; 4544 4545 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4546 return err_mask; 4547 } 4548 4549 /** 4550 * ata_sg_clean - Unmap DMA memory associated with command 4551 * @qc: Command containing DMA memory to be released 4552 * 4553 * Unmap all mapped DMA memory associated with this command. 4554 * 4555 * LOCKING: 4556 * spin_lock_irqsave(host lock) 4557 */ 4558 void ata_sg_clean(struct ata_queued_cmd *qc) 4559 { 4560 struct ata_port *ap = qc->ap; 4561 struct scatterlist *sg = qc->sg; 4562 int dir = qc->dma_dir; 4563 4564 WARN_ON_ONCE(sg == NULL); 4565 4566 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4567 4568 if (qc->n_elem) 4569 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4570 4571 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4572 qc->sg = NULL; 4573 } 4574 4575 /** 4576 * atapi_check_dma - Check whether ATAPI DMA can be supported 4577 * @qc: Metadata associated with taskfile to check 4578 * 4579 * Allow low-level driver to filter ATA PACKET commands, returning 4580 * a status indicating whether or not it is OK to use DMA for the 4581 * supplied PACKET command. 4582 * 4583 * LOCKING: 4584 * spin_lock_irqsave(host lock) 4585 * 4586 * RETURNS: 0 when ATAPI DMA can be used 4587 * nonzero otherwise 4588 */ 4589 int atapi_check_dma(struct ata_queued_cmd *qc) 4590 { 4591 struct ata_port *ap = qc->ap; 4592 4593 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4594 * few ATAPI devices choke on such DMA requests. 4595 */ 4596 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4597 unlikely(qc->nbytes & 15)) 4598 return 1; 4599 4600 if (ap->ops->check_atapi_dma) 4601 return ap->ops->check_atapi_dma(qc); 4602 4603 return 0; 4604 } 4605 4606 /** 4607 * ata_std_qc_defer - Check whether a qc needs to be deferred 4608 * @qc: ATA command in question 4609 * 4610 * Non-NCQ commands cannot run with any other command, NCQ or 4611 * not. As upper layer only knows the queue depth, we are 4612 * responsible for maintaining exclusion. This function checks 4613 * whether a new command @qc can be issued. 4614 * 4615 * LOCKING: 4616 * spin_lock_irqsave(host lock) 4617 * 4618 * RETURNS: 4619 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4620 */ 4621 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4622 { 4623 struct ata_link *link = qc->dev->link; 4624 4625 if (qc->tf.protocol == ATA_PROT_NCQ) { 4626 if (!ata_tag_valid(link->active_tag)) 4627 return 0; 4628 } else { 4629 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4630 return 0; 4631 } 4632 4633 return ATA_DEFER_LINK; 4634 } 4635 4636 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4637 4638 /** 4639 * ata_sg_init - Associate command with scatter-gather table. 4640 * @qc: Command to be associated 4641 * @sg: Scatter-gather table. 4642 * @n_elem: Number of elements in s/g table. 4643 * 4644 * Initialize the data-related elements of queued_cmd @qc 4645 * to point to a scatter-gather table @sg, containing @n_elem 4646 * elements. 4647 * 4648 * LOCKING: 4649 * spin_lock_irqsave(host lock) 4650 */ 4651 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4652 unsigned int n_elem) 4653 { 4654 qc->sg = sg; 4655 qc->n_elem = n_elem; 4656 qc->cursg = qc->sg; 4657 } 4658 4659 /** 4660 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4661 * @qc: Command with scatter-gather table to be mapped. 4662 * 4663 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4664 * 4665 * LOCKING: 4666 * spin_lock_irqsave(host lock) 4667 * 4668 * RETURNS: 4669 * Zero on success, negative on error. 4670 * 4671 */ 4672 static int ata_sg_setup(struct ata_queued_cmd *qc) 4673 { 4674 struct ata_port *ap = qc->ap; 4675 unsigned int n_elem; 4676 4677 VPRINTK("ENTER, ata%u\n", ap->print_id); 4678 4679 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4680 if (n_elem < 1) 4681 return -1; 4682 4683 DPRINTK("%d sg elements mapped\n", n_elem); 4684 qc->orig_n_elem = qc->n_elem; 4685 qc->n_elem = n_elem; 4686 qc->flags |= ATA_QCFLAG_DMAMAP; 4687 4688 return 0; 4689 } 4690 4691 /** 4692 * swap_buf_le16 - swap halves of 16-bit words in place 4693 * @buf: Buffer to swap 4694 * @buf_words: Number of 16-bit words in buffer. 4695 * 4696 * Swap halves of 16-bit words if needed to convert from 4697 * little-endian byte order to native cpu byte order, or 4698 * vice-versa. 4699 * 4700 * LOCKING: 4701 * Inherited from caller. 4702 */ 4703 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4704 { 4705 #ifdef __BIG_ENDIAN 4706 unsigned int i; 4707 4708 for (i = 0; i < buf_words; i++) 4709 buf[i] = le16_to_cpu(buf[i]); 4710 #endif /* __BIG_ENDIAN */ 4711 } 4712 4713 /** 4714 * ata_qc_new - Request an available ATA command, for queueing 4715 * @ap: target port 4716 * 4717 * LOCKING: 4718 * None. 4719 */ 4720 4721 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4722 { 4723 struct ata_queued_cmd *qc = NULL; 4724 unsigned int i; 4725 4726 /* no command while frozen */ 4727 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4728 return NULL; 4729 4730 /* the last tag is reserved for internal command. */ 4731 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4732 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4733 qc = __ata_qc_from_tag(ap, i); 4734 break; 4735 } 4736 4737 if (qc) 4738 qc->tag = i; 4739 4740 return qc; 4741 } 4742 4743 /** 4744 * ata_qc_new_init - Request an available ATA command, and initialize it 4745 * @dev: Device from whom we request an available command structure 4746 * 4747 * LOCKING: 4748 * None. 4749 */ 4750 4751 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4752 { 4753 struct ata_port *ap = dev->link->ap; 4754 struct ata_queued_cmd *qc; 4755 4756 qc = ata_qc_new(ap); 4757 if (qc) { 4758 qc->scsicmd = NULL; 4759 qc->ap = ap; 4760 qc->dev = dev; 4761 4762 ata_qc_reinit(qc); 4763 } 4764 4765 return qc; 4766 } 4767 4768 /** 4769 * ata_qc_free - free unused ata_queued_cmd 4770 * @qc: Command to complete 4771 * 4772 * Designed to free unused ata_queued_cmd object 4773 * in case something prevents using it. 4774 * 4775 * LOCKING: 4776 * spin_lock_irqsave(host lock) 4777 */ 4778 void ata_qc_free(struct ata_queued_cmd *qc) 4779 { 4780 struct ata_port *ap; 4781 unsigned int tag; 4782 4783 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4784 ap = qc->ap; 4785 4786 qc->flags = 0; 4787 tag = qc->tag; 4788 if (likely(ata_tag_valid(tag))) { 4789 qc->tag = ATA_TAG_POISON; 4790 clear_bit(tag, &ap->qc_allocated); 4791 } 4792 } 4793 4794 void __ata_qc_complete(struct ata_queued_cmd *qc) 4795 { 4796 struct ata_port *ap; 4797 struct ata_link *link; 4798 4799 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4800 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4801 ap = qc->ap; 4802 link = qc->dev->link; 4803 4804 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4805 ata_sg_clean(qc); 4806 4807 /* command should be marked inactive atomically with qc completion */ 4808 if (qc->tf.protocol == ATA_PROT_NCQ) { 4809 link->sactive &= ~(1 << qc->tag); 4810 if (!link->sactive) 4811 ap->nr_active_links--; 4812 } else { 4813 link->active_tag = ATA_TAG_POISON; 4814 ap->nr_active_links--; 4815 } 4816 4817 /* clear exclusive status */ 4818 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4819 ap->excl_link == link)) 4820 ap->excl_link = NULL; 4821 4822 /* atapi: mark qc as inactive to prevent the interrupt handler 4823 * from completing the command twice later, before the error handler 4824 * is called. (when rc != 0 and atapi request sense is needed) 4825 */ 4826 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4827 ap->qc_active &= ~(1 << qc->tag); 4828 4829 /* call completion callback */ 4830 qc->complete_fn(qc); 4831 } 4832 4833 static void fill_result_tf(struct ata_queued_cmd *qc) 4834 { 4835 struct ata_port *ap = qc->ap; 4836 4837 qc->result_tf.flags = qc->tf.flags; 4838 ap->ops->qc_fill_rtf(qc); 4839 } 4840 4841 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4842 { 4843 struct ata_device *dev = qc->dev; 4844 4845 if (ata_is_nodata(qc->tf.protocol)) 4846 return; 4847 4848 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4849 return; 4850 4851 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4852 } 4853 4854 /** 4855 * ata_qc_complete - Complete an active ATA command 4856 * @qc: Command to complete 4857 * 4858 * Indicate to the mid and upper layers that an ATA command has 4859 * completed, with either an ok or not-ok status. 4860 * 4861 * Refrain from calling this function multiple times when 4862 * successfully completing multiple NCQ commands. 4863 * ata_qc_complete_multiple() should be used instead, which will 4864 * properly update IRQ expect state. 4865 * 4866 * LOCKING: 4867 * spin_lock_irqsave(host lock) 4868 */ 4869 void ata_qc_complete(struct ata_queued_cmd *qc) 4870 { 4871 struct ata_port *ap = qc->ap; 4872 4873 /* XXX: New EH and old EH use different mechanisms to 4874 * synchronize EH with regular execution path. 4875 * 4876 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4877 * Normal execution path is responsible for not accessing a 4878 * failed qc. libata core enforces the rule by returning NULL 4879 * from ata_qc_from_tag() for failed qcs. 4880 * 4881 * Old EH depends on ata_qc_complete() nullifying completion 4882 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4883 * not synchronize with interrupt handler. Only PIO task is 4884 * taken care of. 4885 */ 4886 if (ap->ops->error_handler) { 4887 struct ata_device *dev = qc->dev; 4888 struct ata_eh_info *ehi = &dev->link->eh_info; 4889 4890 if (unlikely(qc->err_mask)) 4891 qc->flags |= ATA_QCFLAG_FAILED; 4892 4893 /* 4894 * Finish internal commands without any further processing 4895 * and always with the result TF filled. 4896 */ 4897 if (unlikely(ata_tag_internal(qc->tag))) { 4898 fill_result_tf(qc); 4899 __ata_qc_complete(qc); 4900 return; 4901 } 4902 4903 /* 4904 * Non-internal qc has failed. Fill the result TF and 4905 * summon EH. 4906 */ 4907 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4908 fill_result_tf(qc); 4909 ata_qc_schedule_eh(qc); 4910 return; 4911 } 4912 4913 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4914 4915 /* read result TF if requested */ 4916 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4917 fill_result_tf(qc); 4918 4919 /* Some commands need post-processing after successful 4920 * completion. 4921 */ 4922 switch (qc->tf.command) { 4923 case ATA_CMD_SET_FEATURES: 4924 if (qc->tf.feature != SETFEATURES_WC_ON && 4925 qc->tf.feature != SETFEATURES_WC_OFF) 4926 break; 4927 /* fall through */ 4928 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4929 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4930 /* revalidate device */ 4931 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4932 ata_port_schedule_eh(ap); 4933 break; 4934 4935 case ATA_CMD_SLEEP: 4936 dev->flags |= ATA_DFLAG_SLEEPING; 4937 break; 4938 } 4939 4940 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4941 ata_verify_xfer(qc); 4942 4943 __ata_qc_complete(qc); 4944 } else { 4945 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4946 return; 4947 4948 /* read result TF if failed or requested */ 4949 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4950 fill_result_tf(qc); 4951 4952 __ata_qc_complete(qc); 4953 } 4954 } 4955 4956 /** 4957 * ata_qc_complete_multiple - Complete multiple qcs successfully 4958 * @ap: port in question 4959 * @qc_active: new qc_active mask 4960 * 4961 * Complete in-flight commands. This functions is meant to be 4962 * called from low-level driver's interrupt routine to complete 4963 * requests normally. ap->qc_active and @qc_active is compared 4964 * and commands are completed accordingly. 4965 * 4966 * Always use this function when completing multiple NCQ commands 4967 * from IRQ handlers instead of calling ata_qc_complete() 4968 * multiple times to keep IRQ expect status properly in sync. 4969 * 4970 * LOCKING: 4971 * spin_lock_irqsave(host lock) 4972 * 4973 * RETURNS: 4974 * Number of completed commands on success, -errno otherwise. 4975 */ 4976 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4977 { 4978 int nr_done = 0; 4979 u32 done_mask; 4980 4981 done_mask = ap->qc_active ^ qc_active; 4982 4983 if (unlikely(done_mask & qc_active)) { 4984 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 4985 ap->qc_active, qc_active); 4986 return -EINVAL; 4987 } 4988 4989 while (done_mask) { 4990 struct ata_queued_cmd *qc; 4991 unsigned int tag = __ffs(done_mask); 4992 4993 qc = ata_qc_from_tag(ap, tag); 4994 if (qc) { 4995 ata_qc_complete(qc); 4996 nr_done++; 4997 } 4998 done_mask &= ~(1 << tag); 4999 } 5000 5001 return nr_done; 5002 } 5003 5004 /** 5005 * ata_qc_issue - issue taskfile to device 5006 * @qc: command to issue to device 5007 * 5008 * Prepare an ATA command to submission to device. 5009 * This includes mapping the data into a DMA-able 5010 * area, filling in the S/G table, and finally 5011 * writing the taskfile to hardware, starting the command. 5012 * 5013 * LOCKING: 5014 * spin_lock_irqsave(host lock) 5015 */ 5016 void ata_qc_issue(struct ata_queued_cmd *qc) 5017 { 5018 struct ata_port *ap = qc->ap; 5019 struct ata_link *link = qc->dev->link; 5020 u8 prot = qc->tf.protocol; 5021 5022 /* Make sure only one non-NCQ command is outstanding. The 5023 * check is skipped for old EH because it reuses active qc to 5024 * request ATAPI sense. 5025 */ 5026 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5027 5028 if (ata_is_ncq(prot)) { 5029 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5030 5031 if (!link->sactive) 5032 ap->nr_active_links++; 5033 link->sactive |= 1 << qc->tag; 5034 } else { 5035 WARN_ON_ONCE(link->sactive); 5036 5037 ap->nr_active_links++; 5038 link->active_tag = qc->tag; 5039 } 5040 5041 qc->flags |= ATA_QCFLAG_ACTIVE; 5042 ap->qc_active |= 1 << qc->tag; 5043 5044 /* 5045 * We guarantee to LLDs that they will have at least one 5046 * non-zero sg if the command is a data command. 5047 */ 5048 if (WARN_ON_ONCE(ata_is_data(prot) && 5049 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5050 goto sys_err; 5051 5052 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5053 (ap->flags & ATA_FLAG_PIO_DMA))) 5054 if (ata_sg_setup(qc)) 5055 goto sys_err; 5056 5057 /* if device is sleeping, schedule reset and abort the link */ 5058 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5059 link->eh_info.action |= ATA_EH_RESET; 5060 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5061 ata_link_abort(link); 5062 return; 5063 } 5064 5065 ap->ops->qc_prep(qc); 5066 5067 qc->err_mask |= ap->ops->qc_issue(qc); 5068 if (unlikely(qc->err_mask)) 5069 goto err; 5070 return; 5071 5072 sys_err: 5073 qc->err_mask |= AC_ERR_SYSTEM; 5074 err: 5075 ata_qc_complete(qc); 5076 } 5077 5078 /** 5079 * sata_scr_valid - test whether SCRs are accessible 5080 * @link: ATA link to test SCR accessibility for 5081 * 5082 * Test whether SCRs are accessible for @link. 5083 * 5084 * LOCKING: 5085 * None. 5086 * 5087 * RETURNS: 5088 * 1 if SCRs are accessible, 0 otherwise. 5089 */ 5090 int sata_scr_valid(struct ata_link *link) 5091 { 5092 struct ata_port *ap = link->ap; 5093 5094 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5095 } 5096 5097 /** 5098 * sata_scr_read - read SCR register of the specified port 5099 * @link: ATA link to read SCR for 5100 * @reg: SCR to read 5101 * @val: Place to store read value 5102 * 5103 * Read SCR register @reg of @link into *@val. This function is 5104 * guaranteed to succeed if @link is ap->link, the cable type of 5105 * the port is SATA and the port implements ->scr_read. 5106 * 5107 * LOCKING: 5108 * None if @link is ap->link. Kernel thread context otherwise. 5109 * 5110 * RETURNS: 5111 * 0 on success, negative errno on failure. 5112 */ 5113 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5114 { 5115 if (ata_is_host_link(link)) { 5116 if (sata_scr_valid(link)) 5117 return link->ap->ops->scr_read(link, reg, val); 5118 return -EOPNOTSUPP; 5119 } 5120 5121 return sata_pmp_scr_read(link, reg, val); 5122 } 5123 5124 /** 5125 * sata_scr_write - write SCR register of the specified port 5126 * @link: ATA link to write SCR for 5127 * @reg: SCR to write 5128 * @val: value to write 5129 * 5130 * Write @val to SCR register @reg of @link. This function is 5131 * guaranteed to succeed if @link is ap->link, the cable type of 5132 * the port is SATA and the port implements ->scr_read. 5133 * 5134 * LOCKING: 5135 * None if @link is ap->link. Kernel thread context otherwise. 5136 * 5137 * RETURNS: 5138 * 0 on success, negative errno on failure. 5139 */ 5140 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5141 { 5142 if (ata_is_host_link(link)) { 5143 if (sata_scr_valid(link)) 5144 return link->ap->ops->scr_write(link, reg, val); 5145 return -EOPNOTSUPP; 5146 } 5147 5148 return sata_pmp_scr_write(link, reg, val); 5149 } 5150 5151 /** 5152 * sata_scr_write_flush - write SCR register of the specified port and flush 5153 * @link: ATA link to write SCR for 5154 * @reg: SCR to write 5155 * @val: value to write 5156 * 5157 * This function is identical to sata_scr_write() except that this 5158 * function performs flush after writing to the register. 5159 * 5160 * LOCKING: 5161 * None if @link is ap->link. Kernel thread context otherwise. 5162 * 5163 * RETURNS: 5164 * 0 on success, negative errno on failure. 5165 */ 5166 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5167 { 5168 if (ata_is_host_link(link)) { 5169 int rc; 5170 5171 if (sata_scr_valid(link)) { 5172 rc = link->ap->ops->scr_write(link, reg, val); 5173 if (rc == 0) 5174 rc = link->ap->ops->scr_read(link, reg, &val); 5175 return rc; 5176 } 5177 return -EOPNOTSUPP; 5178 } 5179 5180 return sata_pmp_scr_write(link, reg, val); 5181 } 5182 5183 /** 5184 * ata_phys_link_online - test whether the given link is online 5185 * @link: ATA link to test 5186 * 5187 * Test whether @link is online. Note that this function returns 5188 * 0 if online status of @link cannot be obtained, so 5189 * ata_link_online(link) != !ata_link_offline(link). 5190 * 5191 * LOCKING: 5192 * None. 5193 * 5194 * RETURNS: 5195 * True if the port online status is available and online. 5196 */ 5197 bool ata_phys_link_online(struct ata_link *link) 5198 { 5199 u32 sstatus; 5200 5201 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5202 ata_sstatus_online(sstatus)) 5203 return true; 5204 return false; 5205 } 5206 5207 /** 5208 * ata_phys_link_offline - test whether the given link is offline 5209 * @link: ATA link to test 5210 * 5211 * Test whether @link is offline. Note that this function 5212 * returns 0 if offline status of @link cannot be obtained, so 5213 * ata_link_online(link) != !ata_link_offline(link). 5214 * 5215 * LOCKING: 5216 * None. 5217 * 5218 * RETURNS: 5219 * True if the port offline status is available and offline. 5220 */ 5221 bool ata_phys_link_offline(struct ata_link *link) 5222 { 5223 u32 sstatus; 5224 5225 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5226 !ata_sstatus_online(sstatus)) 5227 return true; 5228 return false; 5229 } 5230 5231 /** 5232 * ata_link_online - test whether the given link is online 5233 * @link: ATA link to test 5234 * 5235 * Test whether @link is online. This is identical to 5236 * ata_phys_link_online() when there's no slave link. When 5237 * there's a slave link, this function should only be called on 5238 * the master link and will return true if any of M/S links is 5239 * online. 5240 * 5241 * LOCKING: 5242 * None. 5243 * 5244 * RETURNS: 5245 * True if the port online status is available and online. 5246 */ 5247 bool ata_link_online(struct ata_link *link) 5248 { 5249 struct ata_link *slave = link->ap->slave_link; 5250 5251 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5252 5253 return ata_phys_link_online(link) || 5254 (slave && ata_phys_link_online(slave)); 5255 } 5256 5257 /** 5258 * ata_link_offline - test whether the given link is offline 5259 * @link: ATA link to test 5260 * 5261 * Test whether @link is offline. This is identical to 5262 * ata_phys_link_offline() when there's no slave link. When 5263 * there's a slave link, this function should only be called on 5264 * the master link and will return true if both M/S links are 5265 * offline. 5266 * 5267 * LOCKING: 5268 * None. 5269 * 5270 * RETURNS: 5271 * True if the port offline status is available and offline. 5272 */ 5273 bool ata_link_offline(struct ata_link *link) 5274 { 5275 struct ata_link *slave = link->ap->slave_link; 5276 5277 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5278 5279 return ata_phys_link_offline(link) && 5280 (!slave || ata_phys_link_offline(slave)); 5281 } 5282 5283 #ifdef CONFIG_PM 5284 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5285 unsigned int action, unsigned int ehi_flags, 5286 int *async) 5287 { 5288 struct ata_link *link; 5289 unsigned long flags; 5290 int rc = 0; 5291 5292 /* Previous resume operation might still be in 5293 * progress. Wait for PM_PENDING to clear. 5294 */ 5295 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5296 if (async) { 5297 *async = -EAGAIN; 5298 return 0; 5299 } 5300 ata_port_wait_eh(ap); 5301 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5302 } 5303 5304 /* request PM ops to EH */ 5305 spin_lock_irqsave(ap->lock, flags); 5306 5307 ap->pm_mesg = mesg; 5308 if (async) 5309 ap->pm_result = async; 5310 else 5311 ap->pm_result = &rc; 5312 5313 ap->pflags |= ATA_PFLAG_PM_PENDING; 5314 ata_for_each_link(link, ap, HOST_FIRST) { 5315 link->eh_info.action |= action; 5316 link->eh_info.flags |= ehi_flags; 5317 } 5318 5319 ata_port_schedule_eh(ap); 5320 5321 spin_unlock_irqrestore(ap->lock, flags); 5322 5323 /* wait and check result */ 5324 if (!async) { 5325 ata_port_wait_eh(ap); 5326 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5327 } 5328 5329 return rc; 5330 } 5331 5332 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async) 5333 { 5334 unsigned int ehi_flags = ATA_EHI_QUIET; 5335 int rc; 5336 5337 /* 5338 * On some hardware, device fails to respond after spun down 5339 * for suspend. As the device won't be used before being 5340 * resumed, we don't need to touch the device. Ask EH to skip 5341 * the usual stuff and proceed directly to suspend. 5342 * 5343 * http://thread.gmane.org/gmane.linux.ide/46764 5344 */ 5345 if (mesg.event == PM_EVENT_SUSPEND) 5346 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY; 5347 5348 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async); 5349 return rc; 5350 } 5351 5352 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg) 5353 { 5354 struct ata_port *ap = to_ata_port(dev); 5355 5356 return __ata_port_suspend_common(ap, mesg, NULL); 5357 } 5358 5359 static int ata_port_suspend(struct device *dev) 5360 { 5361 if (pm_runtime_suspended(dev)) 5362 return 0; 5363 5364 return ata_port_suspend_common(dev, PMSG_SUSPEND); 5365 } 5366 5367 static int ata_port_do_freeze(struct device *dev) 5368 { 5369 if (pm_runtime_suspended(dev)) 5370 pm_runtime_resume(dev); 5371 5372 return ata_port_suspend_common(dev, PMSG_FREEZE); 5373 } 5374 5375 static int ata_port_poweroff(struct device *dev) 5376 { 5377 if (pm_runtime_suspended(dev)) 5378 return 0; 5379 5380 return ata_port_suspend_common(dev, PMSG_HIBERNATE); 5381 } 5382 5383 static int __ata_port_resume_common(struct ata_port *ap, int *async) 5384 { 5385 int rc; 5386 5387 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET, 5388 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async); 5389 return rc; 5390 } 5391 5392 static int ata_port_resume_common(struct device *dev) 5393 { 5394 struct ata_port *ap = to_ata_port(dev); 5395 5396 return __ata_port_resume_common(ap, NULL); 5397 } 5398 5399 static int ata_port_resume(struct device *dev) 5400 { 5401 int rc; 5402 5403 rc = ata_port_resume_common(dev); 5404 if (!rc) { 5405 pm_runtime_disable(dev); 5406 pm_runtime_set_active(dev); 5407 pm_runtime_enable(dev); 5408 } 5409 5410 return rc; 5411 } 5412 5413 static int ata_port_runtime_idle(struct device *dev) 5414 { 5415 return pm_runtime_suspend(dev); 5416 } 5417 5418 static const struct dev_pm_ops ata_port_pm_ops = { 5419 .suspend = ata_port_suspend, 5420 .resume = ata_port_resume, 5421 .freeze = ata_port_do_freeze, 5422 .thaw = ata_port_resume, 5423 .poweroff = ata_port_poweroff, 5424 .restore = ata_port_resume, 5425 5426 .runtime_suspend = ata_port_suspend, 5427 .runtime_resume = ata_port_resume_common, 5428 .runtime_idle = ata_port_runtime_idle, 5429 }; 5430 5431 /* sas ports don't participate in pm runtime management of ata_ports, 5432 * and need to resume ata devices at the domain level, not the per-port 5433 * level. sas suspend/resume is async to allow parallel port recovery 5434 * since sas has multiple ata_port instances per Scsi_Host. 5435 */ 5436 int ata_sas_port_async_suspend(struct ata_port *ap, int *async) 5437 { 5438 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async); 5439 } 5440 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend); 5441 5442 int ata_sas_port_async_resume(struct ata_port *ap, int *async) 5443 { 5444 return __ata_port_resume_common(ap, async); 5445 } 5446 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume); 5447 5448 5449 /** 5450 * ata_host_suspend - suspend host 5451 * @host: host to suspend 5452 * @mesg: PM message 5453 * 5454 * Suspend @host. Actual operation is performed by port suspend. 5455 */ 5456 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5457 { 5458 host->dev->power.power_state = mesg; 5459 return 0; 5460 } 5461 5462 /** 5463 * ata_host_resume - resume host 5464 * @host: host to resume 5465 * 5466 * Resume @host. Actual operation is performed by port resume. 5467 */ 5468 void ata_host_resume(struct ata_host *host) 5469 { 5470 host->dev->power.power_state = PMSG_ON; 5471 } 5472 #endif 5473 5474 struct device_type ata_port_type = { 5475 .name = "ata_port", 5476 #ifdef CONFIG_PM 5477 .pm = &ata_port_pm_ops, 5478 #endif 5479 }; 5480 5481 /** 5482 * ata_dev_init - Initialize an ata_device structure 5483 * @dev: Device structure to initialize 5484 * 5485 * Initialize @dev in preparation for probing. 5486 * 5487 * LOCKING: 5488 * Inherited from caller. 5489 */ 5490 void ata_dev_init(struct ata_device *dev) 5491 { 5492 struct ata_link *link = ata_dev_phys_link(dev); 5493 struct ata_port *ap = link->ap; 5494 unsigned long flags; 5495 5496 /* SATA spd limit is bound to the attached device, reset together */ 5497 link->sata_spd_limit = link->hw_sata_spd_limit; 5498 link->sata_spd = 0; 5499 5500 /* High bits of dev->flags are used to record warm plug 5501 * requests which occur asynchronously. Synchronize using 5502 * host lock. 5503 */ 5504 spin_lock_irqsave(ap->lock, flags); 5505 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5506 dev->horkage = 0; 5507 spin_unlock_irqrestore(ap->lock, flags); 5508 5509 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5510 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5511 dev->pio_mask = UINT_MAX; 5512 dev->mwdma_mask = UINT_MAX; 5513 dev->udma_mask = UINT_MAX; 5514 } 5515 5516 /** 5517 * ata_link_init - Initialize an ata_link structure 5518 * @ap: ATA port link is attached to 5519 * @link: Link structure to initialize 5520 * @pmp: Port multiplier port number 5521 * 5522 * Initialize @link. 5523 * 5524 * LOCKING: 5525 * Kernel thread context (may sleep) 5526 */ 5527 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5528 { 5529 int i; 5530 5531 /* clear everything except for devices */ 5532 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5533 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5534 5535 link->ap = ap; 5536 link->pmp = pmp; 5537 link->active_tag = ATA_TAG_POISON; 5538 link->hw_sata_spd_limit = UINT_MAX; 5539 5540 /* can't use iterator, ap isn't initialized yet */ 5541 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5542 struct ata_device *dev = &link->device[i]; 5543 5544 dev->link = link; 5545 dev->devno = dev - link->device; 5546 #ifdef CONFIG_ATA_ACPI 5547 dev->gtf_filter = ata_acpi_gtf_filter; 5548 #endif 5549 ata_dev_init(dev); 5550 } 5551 } 5552 5553 /** 5554 * sata_link_init_spd - Initialize link->sata_spd_limit 5555 * @link: Link to configure sata_spd_limit for 5556 * 5557 * Initialize @link->[hw_]sata_spd_limit to the currently 5558 * configured value. 5559 * 5560 * LOCKING: 5561 * Kernel thread context (may sleep). 5562 * 5563 * RETURNS: 5564 * 0 on success, -errno on failure. 5565 */ 5566 int sata_link_init_spd(struct ata_link *link) 5567 { 5568 u8 spd; 5569 int rc; 5570 5571 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5572 if (rc) 5573 return rc; 5574 5575 spd = (link->saved_scontrol >> 4) & 0xf; 5576 if (spd) 5577 link->hw_sata_spd_limit &= (1 << spd) - 1; 5578 5579 ata_force_link_limits(link); 5580 5581 link->sata_spd_limit = link->hw_sata_spd_limit; 5582 5583 return 0; 5584 } 5585 5586 /** 5587 * ata_port_alloc - allocate and initialize basic ATA port resources 5588 * @host: ATA host this allocated port belongs to 5589 * 5590 * Allocate and initialize basic ATA port resources. 5591 * 5592 * RETURNS: 5593 * Allocate ATA port on success, NULL on failure. 5594 * 5595 * LOCKING: 5596 * Inherited from calling layer (may sleep). 5597 */ 5598 struct ata_port *ata_port_alloc(struct ata_host *host) 5599 { 5600 struct ata_port *ap; 5601 5602 DPRINTK("ENTER\n"); 5603 5604 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5605 if (!ap) 5606 return NULL; 5607 5608 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5609 ap->lock = &host->lock; 5610 ap->print_id = -1; 5611 ap->host = host; 5612 ap->dev = host->dev; 5613 5614 #if defined(ATA_VERBOSE_DEBUG) 5615 /* turn on all debugging levels */ 5616 ap->msg_enable = 0x00FF; 5617 #elif defined(ATA_DEBUG) 5618 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5619 #else 5620 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5621 #endif 5622 5623 mutex_init(&ap->scsi_scan_mutex); 5624 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5625 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5626 INIT_LIST_HEAD(&ap->eh_done_q); 5627 init_waitqueue_head(&ap->eh_wait_q); 5628 init_completion(&ap->park_req_pending); 5629 init_timer_deferrable(&ap->fastdrain_timer); 5630 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5631 ap->fastdrain_timer.data = (unsigned long)ap; 5632 5633 ap->cbl = ATA_CBL_NONE; 5634 5635 ata_link_init(ap, &ap->link, 0); 5636 5637 #ifdef ATA_IRQ_TRAP 5638 ap->stats.unhandled_irq = 1; 5639 ap->stats.idle_irq = 1; 5640 #endif 5641 ata_sff_port_init(ap); 5642 5643 return ap; 5644 } 5645 5646 static void ata_host_release(struct device *gendev, void *res) 5647 { 5648 struct ata_host *host = dev_get_drvdata(gendev); 5649 int i; 5650 5651 for (i = 0; i < host->n_ports; i++) { 5652 struct ata_port *ap = host->ports[i]; 5653 5654 if (!ap) 5655 continue; 5656 5657 if (ap->scsi_host) 5658 scsi_host_put(ap->scsi_host); 5659 5660 kfree(ap->pmp_link); 5661 kfree(ap->slave_link); 5662 kfree(ap); 5663 host->ports[i] = NULL; 5664 } 5665 5666 dev_set_drvdata(gendev, NULL); 5667 } 5668 5669 /** 5670 * ata_host_alloc - allocate and init basic ATA host resources 5671 * @dev: generic device this host is associated with 5672 * @max_ports: maximum number of ATA ports associated with this host 5673 * 5674 * Allocate and initialize basic ATA host resources. LLD calls 5675 * this function to allocate a host, initializes it fully and 5676 * attaches it using ata_host_register(). 5677 * 5678 * @max_ports ports are allocated and host->n_ports is 5679 * initialized to @max_ports. The caller is allowed to decrease 5680 * host->n_ports before calling ata_host_register(). The unused 5681 * ports will be automatically freed on registration. 5682 * 5683 * RETURNS: 5684 * Allocate ATA host on success, NULL on failure. 5685 * 5686 * LOCKING: 5687 * Inherited from calling layer (may sleep). 5688 */ 5689 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5690 { 5691 struct ata_host *host; 5692 size_t sz; 5693 int i; 5694 5695 DPRINTK("ENTER\n"); 5696 5697 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5698 return NULL; 5699 5700 /* alloc a container for our list of ATA ports (buses) */ 5701 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5702 /* alloc a container for our list of ATA ports (buses) */ 5703 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5704 if (!host) 5705 goto err_out; 5706 5707 devres_add(dev, host); 5708 dev_set_drvdata(dev, host); 5709 5710 spin_lock_init(&host->lock); 5711 mutex_init(&host->eh_mutex); 5712 host->dev = dev; 5713 host->n_ports = max_ports; 5714 5715 /* allocate ports bound to this host */ 5716 for (i = 0; i < max_ports; i++) { 5717 struct ata_port *ap; 5718 5719 ap = ata_port_alloc(host); 5720 if (!ap) 5721 goto err_out; 5722 5723 ap->port_no = i; 5724 host->ports[i] = ap; 5725 } 5726 5727 devres_remove_group(dev, NULL); 5728 return host; 5729 5730 err_out: 5731 devres_release_group(dev, NULL); 5732 return NULL; 5733 } 5734 5735 /** 5736 * ata_host_alloc_pinfo - alloc host and init with port_info array 5737 * @dev: generic device this host is associated with 5738 * @ppi: array of ATA port_info to initialize host with 5739 * @n_ports: number of ATA ports attached to this host 5740 * 5741 * Allocate ATA host and initialize with info from @ppi. If NULL 5742 * terminated, @ppi may contain fewer entries than @n_ports. The 5743 * last entry will be used for the remaining ports. 5744 * 5745 * RETURNS: 5746 * Allocate ATA host on success, NULL on failure. 5747 * 5748 * LOCKING: 5749 * Inherited from calling layer (may sleep). 5750 */ 5751 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5752 const struct ata_port_info * const * ppi, 5753 int n_ports) 5754 { 5755 const struct ata_port_info *pi; 5756 struct ata_host *host; 5757 int i, j; 5758 5759 host = ata_host_alloc(dev, n_ports); 5760 if (!host) 5761 return NULL; 5762 5763 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5764 struct ata_port *ap = host->ports[i]; 5765 5766 if (ppi[j]) 5767 pi = ppi[j++]; 5768 5769 ap->pio_mask = pi->pio_mask; 5770 ap->mwdma_mask = pi->mwdma_mask; 5771 ap->udma_mask = pi->udma_mask; 5772 ap->flags |= pi->flags; 5773 ap->link.flags |= pi->link_flags; 5774 ap->ops = pi->port_ops; 5775 5776 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5777 host->ops = pi->port_ops; 5778 } 5779 5780 return host; 5781 } 5782 5783 /** 5784 * ata_slave_link_init - initialize slave link 5785 * @ap: port to initialize slave link for 5786 * 5787 * Create and initialize slave link for @ap. This enables slave 5788 * link handling on the port. 5789 * 5790 * In libata, a port contains links and a link contains devices. 5791 * There is single host link but if a PMP is attached to it, 5792 * there can be multiple fan-out links. On SATA, there's usually 5793 * a single device connected to a link but PATA and SATA 5794 * controllers emulating TF based interface can have two - master 5795 * and slave. 5796 * 5797 * However, there are a few controllers which don't fit into this 5798 * abstraction too well - SATA controllers which emulate TF 5799 * interface with both master and slave devices but also have 5800 * separate SCR register sets for each device. These controllers 5801 * need separate links for physical link handling 5802 * (e.g. onlineness, link speed) but should be treated like a 5803 * traditional M/S controller for everything else (e.g. command 5804 * issue, softreset). 5805 * 5806 * slave_link is libata's way of handling this class of 5807 * controllers without impacting core layer too much. For 5808 * anything other than physical link handling, the default host 5809 * link is used for both master and slave. For physical link 5810 * handling, separate @ap->slave_link is used. All dirty details 5811 * are implemented inside libata core layer. From LLD's POV, the 5812 * only difference is that prereset, hardreset and postreset are 5813 * called once more for the slave link, so the reset sequence 5814 * looks like the following. 5815 * 5816 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5817 * softreset(M) -> postreset(M) -> postreset(S) 5818 * 5819 * Note that softreset is called only for the master. Softreset 5820 * resets both M/S by definition, so SRST on master should handle 5821 * both (the standard method will work just fine). 5822 * 5823 * LOCKING: 5824 * Should be called before host is registered. 5825 * 5826 * RETURNS: 5827 * 0 on success, -errno on failure. 5828 */ 5829 int ata_slave_link_init(struct ata_port *ap) 5830 { 5831 struct ata_link *link; 5832 5833 WARN_ON(ap->slave_link); 5834 WARN_ON(ap->flags & ATA_FLAG_PMP); 5835 5836 link = kzalloc(sizeof(*link), GFP_KERNEL); 5837 if (!link) 5838 return -ENOMEM; 5839 5840 ata_link_init(ap, link, 1); 5841 ap->slave_link = link; 5842 return 0; 5843 } 5844 5845 static void ata_host_stop(struct device *gendev, void *res) 5846 { 5847 struct ata_host *host = dev_get_drvdata(gendev); 5848 int i; 5849 5850 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5851 5852 for (i = 0; i < host->n_ports; i++) { 5853 struct ata_port *ap = host->ports[i]; 5854 5855 if (ap->ops->port_stop) 5856 ap->ops->port_stop(ap); 5857 } 5858 5859 if (host->ops->host_stop) 5860 host->ops->host_stop(host); 5861 } 5862 5863 /** 5864 * ata_finalize_port_ops - finalize ata_port_operations 5865 * @ops: ata_port_operations to finalize 5866 * 5867 * An ata_port_operations can inherit from another ops and that 5868 * ops can again inherit from another. This can go on as many 5869 * times as necessary as long as there is no loop in the 5870 * inheritance chain. 5871 * 5872 * Ops tables are finalized when the host is started. NULL or 5873 * unspecified entries are inherited from the closet ancestor 5874 * which has the method and the entry is populated with it. 5875 * After finalization, the ops table directly points to all the 5876 * methods and ->inherits is no longer necessary and cleared. 5877 * 5878 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5879 * 5880 * LOCKING: 5881 * None. 5882 */ 5883 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5884 { 5885 static DEFINE_SPINLOCK(lock); 5886 const struct ata_port_operations *cur; 5887 void **begin = (void **)ops; 5888 void **end = (void **)&ops->inherits; 5889 void **pp; 5890 5891 if (!ops || !ops->inherits) 5892 return; 5893 5894 spin_lock(&lock); 5895 5896 for (cur = ops->inherits; cur; cur = cur->inherits) { 5897 void **inherit = (void **)cur; 5898 5899 for (pp = begin; pp < end; pp++, inherit++) 5900 if (!*pp) 5901 *pp = *inherit; 5902 } 5903 5904 for (pp = begin; pp < end; pp++) 5905 if (IS_ERR(*pp)) 5906 *pp = NULL; 5907 5908 ops->inherits = NULL; 5909 5910 spin_unlock(&lock); 5911 } 5912 5913 /** 5914 * ata_host_start - start and freeze ports of an ATA host 5915 * @host: ATA host to start ports for 5916 * 5917 * Start and then freeze ports of @host. Started status is 5918 * recorded in host->flags, so this function can be called 5919 * multiple times. Ports are guaranteed to get started only 5920 * once. If host->ops isn't initialized yet, its set to the 5921 * first non-dummy port ops. 5922 * 5923 * LOCKING: 5924 * Inherited from calling layer (may sleep). 5925 * 5926 * RETURNS: 5927 * 0 if all ports are started successfully, -errno otherwise. 5928 */ 5929 int ata_host_start(struct ata_host *host) 5930 { 5931 int have_stop = 0; 5932 void *start_dr = NULL; 5933 int i, rc; 5934 5935 if (host->flags & ATA_HOST_STARTED) 5936 return 0; 5937 5938 ata_finalize_port_ops(host->ops); 5939 5940 for (i = 0; i < host->n_ports; i++) { 5941 struct ata_port *ap = host->ports[i]; 5942 5943 ata_finalize_port_ops(ap->ops); 5944 5945 if (!host->ops && !ata_port_is_dummy(ap)) 5946 host->ops = ap->ops; 5947 5948 if (ap->ops->port_stop) 5949 have_stop = 1; 5950 } 5951 5952 if (host->ops->host_stop) 5953 have_stop = 1; 5954 5955 if (have_stop) { 5956 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5957 if (!start_dr) 5958 return -ENOMEM; 5959 } 5960 5961 for (i = 0; i < host->n_ports; i++) { 5962 struct ata_port *ap = host->ports[i]; 5963 5964 if (ap->ops->port_start) { 5965 rc = ap->ops->port_start(ap); 5966 if (rc) { 5967 if (rc != -ENODEV) 5968 dev_err(host->dev, 5969 "failed to start port %d (errno=%d)\n", 5970 i, rc); 5971 goto err_out; 5972 } 5973 } 5974 ata_eh_freeze_port(ap); 5975 } 5976 5977 if (start_dr) 5978 devres_add(host->dev, start_dr); 5979 host->flags |= ATA_HOST_STARTED; 5980 return 0; 5981 5982 err_out: 5983 while (--i >= 0) { 5984 struct ata_port *ap = host->ports[i]; 5985 5986 if (ap->ops->port_stop) 5987 ap->ops->port_stop(ap); 5988 } 5989 devres_free(start_dr); 5990 return rc; 5991 } 5992 5993 /** 5994 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 5995 * @host: host to initialize 5996 * @dev: device host is attached to 5997 * @ops: port_ops 5998 * 5999 */ 6000 void ata_host_init(struct ata_host *host, struct device *dev, 6001 struct ata_port_operations *ops) 6002 { 6003 spin_lock_init(&host->lock); 6004 mutex_init(&host->eh_mutex); 6005 host->dev = dev; 6006 host->ops = ops; 6007 } 6008 6009 void __ata_port_probe(struct ata_port *ap) 6010 { 6011 struct ata_eh_info *ehi = &ap->link.eh_info; 6012 unsigned long flags; 6013 6014 /* kick EH for boot probing */ 6015 spin_lock_irqsave(ap->lock, flags); 6016 6017 ehi->probe_mask |= ATA_ALL_DEVICES; 6018 ehi->action |= ATA_EH_RESET; 6019 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6020 6021 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6022 ap->pflags |= ATA_PFLAG_LOADING; 6023 ata_port_schedule_eh(ap); 6024 6025 spin_unlock_irqrestore(ap->lock, flags); 6026 } 6027 6028 int ata_port_probe(struct ata_port *ap) 6029 { 6030 int rc = 0; 6031 6032 if (ap->ops->error_handler) { 6033 __ata_port_probe(ap); 6034 ata_port_wait_eh(ap); 6035 } else { 6036 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6037 rc = ata_bus_probe(ap); 6038 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6039 } 6040 return rc; 6041 } 6042 6043 6044 static void async_port_probe(void *data, async_cookie_t cookie) 6045 { 6046 struct ata_port *ap = data; 6047 6048 /* 6049 * If we're not allowed to scan this host in parallel, 6050 * we need to wait until all previous scans have completed 6051 * before going further. 6052 * Jeff Garzik says this is only within a controller, so we 6053 * don't need to wait for port 0, only for later ports. 6054 */ 6055 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6056 async_synchronize_cookie(cookie); 6057 6058 (void)ata_port_probe(ap); 6059 6060 /* in order to keep device order, we need to synchronize at this point */ 6061 async_synchronize_cookie(cookie); 6062 6063 ata_scsi_scan_host(ap, 1); 6064 } 6065 6066 /** 6067 * ata_host_register - register initialized ATA host 6068 * @host: ATA host to register 6069 * @sht: template for SCSI host 6070 * 6071 * Register initialized ATA host. @host is allocated using 6072 * ata_host_alloc() and fully initialized by LLD. This function 6073 * starts ports, registers @host with ATA and SCSI layers and 6074 * probe registered devices. 6075 * 6076 * LOCKING: 6077 * Inherited from calling layer (may sleep). 6078 * 6079 * RETURNS: 6080 * 0 on success, -errno otherwise. 6081 */ 6082 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6083 { 6084 int i, rc; 6085 6086 /* host must have been started */ 6087 if (!(host->flags & ATA_HOST_STARTED)) { 6088 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6089 WARN_ON(1); 6090 return -EINVAL; 6091 } 6092 6093 /* Blow away unused ports. This happens when LLD can't 6094 * determine the exact number of ports to allocate at 6095 * allocation time. 6096 */ 6097 for (i = host->n_ports; host->ports[i]; i++) 6098 kfree(host->ports[i]); 6099 6100 /* give ports names and add SCSI hosts */ 6101 for (i = 0; i < host->n_ports; i++) 6102 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6103 6104 6105 /* Create associated sysfs transport objects */ 6106 for (i = 0; i < host->n_ports; i++) { 6107 rc = ata_tport_add(host->dev,host->ports[i]); 6108 if (rc) { 6109 goto err_tadd; 6110 } 6111 } 6112 6113 rc = ata_scsi_add_hosts(host, sht); 6114 if (rc) 6115 goto err_tadd; 6116 6117 /* set cable, sata_spd_limit and report */ 6118 for (i = 0; i < host->n_ports; i++) { 6119 struct ata_port *ap = host->ports[i]; 6120 unsigned long xfer_mask; 6121 6122 /* set SATA cable type if still unset */ 6123 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6124 ap->cbl = ATA_CBL_SATA; 6125 6126 /* init sata_spd_limit to the current value */ 6127 sata_link_init_spd(&ap->link); 6128 if (ap->slave_link) 6129 sata_link_init_spd(ap->slave_link); 6130 6131 /* print per-port info to dmesg */ 6132 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6133 ap->udma_mask); 6134 6135 if (!ata_port_is_dummy(ap)) { 6136 ata_port_info(ap, "%cATA max %s %s\n", 6137 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6138 ata_mode_string(xfer_mask), 6139 ap->link.eh_info.desc); 6140 ata_ehi_clear_desc(&ap->link.eh_info); 6141 } else 6142 ata_port_info(ap, "DUMMY\n"); 6143 } 6144 6145 /* perform each probe asynchronously */ 6146 for (i = 0; i < host->n_ports; i++) { 6147 struct ata_port *ap = host->ports[i]; 6148 async_schedule(async_port_probe, ap); 6149 } 6150 6151 return 0; 6152 6153 err_tadd: 6154 while (--i >= 0) { 6155 ata_tport_delete(host->ports[i]); 6156 } 6157 return rc; 6158 6159 } 6160 6161 /** 6162 * ata_host_activate - start host, request IRQ and register it 6163 * @host: target ATA host 6164 * @irq: IRQ to request 6165 * @irq_handler: irq_handler used when requesting IRQ 6166 * @irq_flags: irq_flags used when requesting IRQ 6167 * @sht: scsi_host_template to use when registering the host 6168 * 6169 * After allocating an ATA host and initializing it, most libata 6170 * LLDs perform three steps to activate the host - start host, 6171 * request IRQ and register it. This helper takes necessasry 6172 * arguments and performs the three steps in one go. 6173 * 6174 * An invalid IRQ skips the IRQ registration and expects the host to 6175 * have set polling mode on the port. In this case, @irq_handler 6176 * should be NULL. 6177 * 6178 * LOCKING: 6179 * Inherited from calling layer (may sleep). 6180 * 6181 * RETURNS: 6182 * 0 on success, -errno otherwise. 6183 */ 6184 int ata_host_activate(struct ata_host *host, int irq, 6185 irq_handler_t irq_handler, unsigned long irq_flags, 6186 struct scsi_host_template *sht) 6187 { 6188 int i, rc; 6189 6190 rc = ata_host_start(host); 6191 if (rc) 6192 return rc; 6193 6194 /* Special case for polling mode */ 6195 if (!irq) { 6196 WARN_ON(irq_handler); 6197 return ata_host_register(host, sht); 6198 } 6199 6200 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6201 dev_driver_string(host->dev), host); 6202 if (rc) 6203 return rc; 6204 6205 for (i = 0; i < host->n_ports; i++) 6206 ata_port_desc(host->ports[i], "irq %d", irq); 6207 6208 rc = ata_host_register(host, sht); 6209 /* if failed, just free the IRQ and leave ports alone */ 6210 if (rc) 6211 devm_free_irq(host->dev, irq, host); 6212 6213 return rc; 6214 } 6215 6216 /** 6217 * ata_port_detach - Detach ATA port in prepration of device removal 6218 * @ap: ATA port to be detached 6219 * 6220 * Detach all ATA devices and the associated SCSI devices of @ap; 6221 * then, remove the associated SCSI host. @ap is guaranteed to 6222 * be quiescent on return from this function. 6223 * 6224 * LOCKING: 6225 * Kernel thread context (may sleep). 6226 */ 6227 static void ata_port_detach(struct ata_port *ap) 6228 { 6229 unsigned long flags; 6230 6231 if (!ap->ops->error_handler) 6232 goto skip_eh; 6233 6234 /* tell EH we're leaving & flush EH */ 6235 spin_lock_irqsave(ap->lock, flags); 6236 ap->pflags |= ATA_PFLAG_UNLOADING; 6237 ata_port_schedule_eh(ap); 6238 spin_unlock_irqrestore(ap->lock, flags); 6239 6240 /* wait till EH commits suicide */ 6241 ata_port_wait_eh(ap); 6242 6243 /* it better be dead now */ 6244 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6245 6246 cancel_delayed_work_sync(&ap->hotplug_task); 6247 6248 skip_eh: 6249 if (ap->pmp_link) { 6250 int i; 6251 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6252 ata_tlink_delete(&ap->pmp_link[i]); 6253 } 6254 ata_tport_delete(ap); 6255 6256 /* remove the associated SCSI host */ 6257 scsi_remove_host(ap->scsi_host); 6258 } 6259 6260 /** 6261 * ata_host_detach - Detach all ports of an ATA host 6262 * @host: Host to detach 6263 * 6264 * Detach all ports of @host. 6265 * 6266 * LOCKING: 6267 * Kernel thread context (may sleep). 6268 */ 6269 void ata_host_detach(struct ata_host *host) 6270 { 6271 int i; 6272 6273 for (i = 0; i < host->n_ports; i++) 6274 ata_port_detach(host->ports[i]); 6275 6276 /* the host is dead now, dissociate ACPI */ 6277 ata_acpi_dissociate(host); 6278 } 6279 6280 #ifdef CONFIG_PCI 6281 6282 /** 6283 * ata_pci_remove_one - PCI layer callback for device removal 6284 * @pdev: PCI device that was removed 6285 * 6286 * PCI layer indicates to libata via this hook that hot-unplug or 6287 * module unload event has occurred. Detach all ports. Resource 6288 * release is handled via devres. 6289 * 6290 * LOCKING: 6291 * Inherited from PCI layer (may sleep). 6292 */ 6293 void ata_pci_remove_one(struct pci_dev *pdev) 6294 { 6295 struct ata_host *host = pci_get_drvdata(pdev); 6296 6297 ata_host_detach(host); 6298 } 6299 6300 /* move to PCI subsystem */ 6301 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6302 { 6303 unsigned long tmp = 0; 6304 6305 switch (bits->width) { 6306 case 1: { 6307 u8 tmp8 = 0; 6308 pci_read_config_byte(pdev, bits->reg, &tmp8); 6309 tmp = tmp8; 6310 break; 6311 } 6312 case 2: { 6313 u16 tmp16 = 0; 6314 pci_read_config_word(pdev, bits->reg, &tmp16); 6315 tmp = tmp16; 6316 break; 6317 } 6318 case 4: { 6319 u32 tmp32 = 0; 6320 pci_read_config_dword(pdev, bits->reg, &tmp32); 6321 tmp = tmp32; 6322 break; 6323 } 6324 6325 default: 6326 return -EINVAL; 6327 } 6328 6329 tmp &= bits->mask; 6330 6331 return (tmp == bits->val) ? 1 : 0; 6332 } 6333 6334 #ifdef CONFIG_PM 6335 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6336 { 6337 pci_save_state(pdev); 6338 pci_disable_device(pdev); 6339 6340 if (mesg.event & PM_EVENT_SLEEP) 6341 pci_set_power_state(pdev, PCI_D3hot); 6342 } 6343 6344 int ata_pci_device_do_resume(struct pci_dev *pdev) 6345 { 6346 int rc; 6347 6348 pci_set_power_state(pdev, PCI_D0); 6349 pci_restore_state(pdev); 6350 6351 rc = pcim_enable_device(pdev); 6352 if (rc) { 6353 dev_err(&pdev->dev, 6354 "failed to enable device after resume (%d)\n", rc); 6355 return rc; 6356 } 6357 6358 pci_set_master(pdev); 6359 return 0; 6360 } 6361 6362 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6363 { 6364 struct ata_host *host = pci_get_drvdata(pdev); 6365 int rc = 0; 6366 6367 rc = ata_host_suspend(host, mesg); 6368 if (rc) 6369 return rc; 6370 6371 ata_pci_device_do_suspend(pdev, mesg); 6372 6373 return 0; 6374 } 6375 6376 int ata_pci_device_resume(struct pci_dev *pdev) 6377 { 6378 struct ata_host *host = pci_get_drvdata(pdev); 6379 int rc; 6380 6381 rc = ata_pci_device_do_resume(pdev); 6382 if (rc == 0) 6383 ata_host_resume(host); 6384 return rc; 6385 } 6386 #endif /* CONFIG_PM */ 6387 6388 #endif /* CONFIG_PCI */ 6389 6390 /** 6391 * ata_platform_remove_one - Platform layer callback for device removal 6392 * @pdev: Platform device that was removed 6393 * 6394 * Platform layer indicates to libata via this hook that hot-unplug or 6395 * module unload event has occurred. Detach all ports. Resource 6396 * release is handled via devres. 6397 * 6398 * LOCKING: 6399 * Inherited from platform layer (may sleep). 6400 */ 6401 int ata_platform_remove_one(struct platform_device *pdev) 6402 { 6403 struct ata_host *host = platform_get_drvdata(pdev); 6404 6405 ata_host_detach(host); 6406 6407 return 0; 6408 } 6409 6410 static int __init ata_parse_force_one(char **cur, 6411 struct ata_force_ent *force_ent, 6412 const char **reason) 6413 { 6414 /* FIXME: Currently, there's no way to tag init const data and 6415 * using __initdata causes build failure on some versions of 6416 * gcc. Once __initdataconst is implemented, add const to the 6417 * following structure. 6418 */ 6419 static struct ata_force_param force_tbl[] __initdata = { 6420 { "40c", .cbl = ATA_CBL_PATA40 }, 6421 { "80c", .cbl = ATA_CBL_PATA80 }, 6422 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6423 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6424 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6425 { "sata", .cbl = ATA_CBL_SATA }, 6426 { "1.5Gbps", .spd_limit = 1 }, 6427 { "3.0Gbps", .spd_limit = 2 }, 6428 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6429 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6430 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6431 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6432 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6433 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6434 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6435 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6436 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6437 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6438 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6439 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6440 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6441 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6442 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6443 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6444 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6445 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6446 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6447 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6448 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6449 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6450 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6451 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6452 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6453 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6454 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6455 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6456 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6457 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6458 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6459 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6460 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6461 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6462 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6463 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6464 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6465 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6466 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6467 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6468 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6469 }; 6470 char *start = *cur, *p = *cur; 6471 char *id, *val, *endp; 6472 const struct ata_force_param *match_fp = NULL; 6473 int nr_matches = 0, i; 6474 6475 /* find where this param ends and update *cur */ 6476 while (*p != '\0' && *p != ',') 6477 p++; 6478 6479 if (*p == '\0') 6480 *cur = p; 6481 else 6482 *cur = p + 1; 6483 6484 *p = '\0'; 6485 6486 /* parse */ 6487 p = strchr(start, ':'); 6488 if (!p) { 6489 val = strstrip(start); 6490 goto parse_val; 6491 } 6492 *p = '\0'; 6493 6494 id = strstrip(start); 6495 val = strstrip(p + 1); 6496 6497 /* parse id */ 6498 p = strchr(id, '.'); 6499 if (p) { 6500 *p++ = '\0'; 6501 force_ent->device = simple_strtoul(p, &endp, 10); 6502 if (p == endp || *endp != '\0') { 6503 *reason = "invalid device"; 6504 return -EINVAL; 6505 } 6506 } 6507 6508 force_ent->port = simple_strtoul(id, &endp, 10); 6509 if (p == endp || *endp != '\0') { 6510 *reason = "invalid port/link"; 6511 return -EINVAL; 6512 } 6513 6514 parse_val: 6515 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6516 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6517 const struct ata_force_param *fp = &force_tbl[i]; 6518 6519 if (strncasecmp(val, fp->name, strlen(val))) 6520 continue; 6521 6522 nr_matches++; 6523 match_fp = fp; 6524 6525 if (strcasecmp(val, fp->name) == 0) { 6526 nr_matches = 1; 6527 break; 6528 } 6529 } 6530 6531 if (!nr_matches) { 6532 *reason = "unknown value"; 6533 return -EINVAL; 6534 } 6535 if (nr_matches > 1) { 6536 *reason = "ambigious value"; 6537 return -EINVAL; 6538 } 6539 6540 force_ent->param = *match_fp; 6541 6542 return 0; 6543 } 6544 6545 static void __init ata_parse_force_param(void) 6546 { 6547 int idx = 0, size = 1; 6548 int last_port = -1, last_device = -1; 6549 char *p, *cur, *next; 6550 6551 /* calculate maximum number of params and allocate force_tbl */ 6552 for (p = ata_force_param_buf; *p; p++) 6553 if (*p == ',') 6554 size++; 6555 6556 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6557 if (!ata_force_tbl) { 6558 printk(KERN_WARNING "ata: failed to extend force table, " 6559 "libata.force ignored\n"); 6560 return; 6561 } 6562 6563 /* parse and populate the table */ 6564 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6565 const char *reason = ""; 6566 struct ata_force_ent te = { .port = -1, .device = -1 }; 6567 6568 next = cur; 6569 if (ata_parse_force_one(&next, &te, &reason)) { 6570 printk(KERN_WARNING "ata: failed to parse force " 6571 "parameter \"%s\" (%s)\n", 6572 cur, reason); 6573 continue; 6574 } 6575 6576 if (te.port == -1) { 6577 te.port = last_port; 6578 te.device = last_device; 6579 } 6580 6581 ata_force_tbl[idx++] = te; 6582 6583 last_port = te.port; 6584 last_device = te.device; 6585 } 6586 6587 ata_force_tbl_size = idx; 6588 } 6589 6590 static int __init ata_init(void) 6591 { 6592 int rc; 6593 6594 ata_parse_force_param(); 6595 6596 ata_acpi_register(); 6597 6598 rc = ata_sff_init(); 6599 if (rc) { 6600 kfree(ata_force_tbl); 6601 return rc; 6602 } 6603 6604 libata_transport_init(); 6605 ata_scsi_transport_template = ata_attach_transport(); 6606 if (!ata_scsi_transport_template) { 6607 ata_sff_exit(); 6608 rc = -ENOMEM; 6609 goto err_out; 6610 } 6611 6612 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6613 return 0; 6614 6615 err_out: 6616 return rc; 6617 } 6618 6619 static void __exit ata_exit(void) 6620 { 6621 ata_release_transport(ata_scsi_transport_template); 6622 libata_transport_exit(); 6623 ata_sff_exit(); 6624 ata_acpi_unregister(); 6625 kfree(ata_force_tbl); 6626 } 6627 6628 subsys_initcall(ata_init); 6629 module_exit(ata_exit); 6630 6631 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6632 6633 int ata_ratelimit(void) 6634 { 6635 return __ratelimit(&ratelimit); 6636 } 6637 6638 /** 6639 * ata_msleep - ATA EH owner aware msleep 6640 * @ap: ATA port to attribute the sleep to 6641 * @msecs: duration to sleep in milliseconds 6642 * 6643 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6644 * ownership is released before going to sleep and reacquired 6645 * after the sleep is complete. IOW, other ports sharing the 6646 * @ap->host will be allowed to own the EH while this task is 6647 * sleeping. 6648 * 6649 * LOCKING: 6650 * Might sleep. 6651 */ 6652 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6653 { 6654 bool owns_eh = ap && ap->host->eh_owner == current; 6655 6656 if (owns_eh) 6657 ata_eh_release(ap); 6658 6659 msleep(msecs); 6660 6661 if (owns_eh) 6662 ata_eh_acquire(ap); 6663 } 6664 6665 /** 6666 * ata_wait_register - wait until register value changes 6667 * @ap: ATA port to wait register for, can be NULL 6668 * @reg: IO-mapped register 6669 * @mask: Mask to apply to read register value 6670 * @val: Wait condition 6671 * @interval: polling interval in milliseconds 6672 * @timeout: timeout in milliseconds 6673 * 6674 * Waiting for some bits of register to change is a common 6675 * operation for ATA controllers. This function reads 32bit LE 6676 * IO-mapped register @reg and tests for the following condition. 6677 * 6678 * (*@reg & mask) != val 6679 * 6680 * If the condition is met, it returns; otherwise, the process is 6681 * repeated after @interval_msec until timeout. 6682 * 6683 * LOCKING: 6684 * Kernel thread context (may sleep) 6685 * 6686 * RETURNS: 6687 * The final register value. 6688 */ 6689 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6690 unsigned long interval, unsigned long timeout) 6691 { 6692 unsigned long deadline; 6693 u32 tmp; 6694 6695 tmp = ioread32(reg); 6696 6697 /* Calculate timeout _after_ the first read to make sure 6698 * preceding writes reach the controller before starting to 6699 * eat away the timeout. 6700 */ 6701 deadline = ata_deadline(jiffies, timeout); 6702 6703 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6704 ata_msleep(ap, interval); 6705 tmp = ioread32(reg); 6706 } 6707 6708 return tmp; 6709 } 6710 6711 /* 6712 * Dummy port_ops 6713 */ 6714 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6715 { 6716 return AC_ERR_SYSTEM; 6717 } 6718 6719 static void ata_dummy_error_handler(struct ata_port *ap) 6720 { 6721 /* truly dummy */ 6722 } 6723 6724 struct ata_port_operations ata_dummy_port_ops = { 6725 .qc_prep = ata_noop_qc_prep, 6726 .qc_issue = ata_dummy_qc_issue, 6727 .error_handler = ata_dummy_error_handler, 6728 .sched_eh = ata_std_sched_eh, 6729 .end_eh = ata_std_end_eh, 6730 }; 6731 6732 const struct ata_port_info ata_dummy_port_info = { 6733 .port_ops = &ata_dummy_port_ops, 6734 }; 6735 6736 /* 6737 * Utility print functions 6738 */ 6739 int ata_port_printk(const struct ata_port *ap, const char *level, 6740 const char *fmt, ...) 6741 { 6742 struct va_format vaf; 6743 va_list args; 6744 int r; 6745 6746 va_start(args, fmt); 6747 6748 vaf.fmt = fmt; 6749 vaf.va = &args; 6750 6751 r = printk("%sata%u: %pV", level, ap->print_id, &vaf); 6752 6753 va_end(args); 6754 6755 return r; 6756 } 6757 EXPORT_SYMBOL(ata_port_printk); 6758 6759 int ata_link_printk(const struct ata_link *link, const char *level, 6760 const char *fmt, ...) 6761 { 6762 struct va_format vaf; 6763 va_list args; 6764 int r; 6765 6766 va_start(args, fmt); 6767 6768 vaf.fmt = fmt; 6769 vaf.va = &args; 6770 6771 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6772 r = printk("%sata%u.%02u: %pV", 6773 level, link->ap->print_id, link->pmp, &vaf); 6774 else 6775 r = printk("%sata%u: %pV", 6776 level, link->ap->print_id, &vaf); 6777 6778 va_end(args); 6779 6780 return r; 6781 } 6782 EXPORT_SYMBOL(ata_link_printk); 6783 6784 int ata_dev_printk(const struct ata_device *dev, const char *level, 6785 const char *fmt, ...) 6786 { 6787 struct va_format vaf; 6788 va_list args; 6789 int r; 6790 6791 va_start(args, fmt); 6792 6793 vaf.fmt = fmt; 6794 vaf.va = &args; 6795 6796 r = printk("%sata%u.%02u: %pV", 6797 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6798 &vaf); 6799 6800 va_end(args); 6801 6802 return r; 6803 } 6804 EXPORT_SYMBOL(ata_dev_printk); 6805 6806 void ata_print_version(const struct device *dev, const char *version) 6807 { 6808 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6809 } 6810 EXPORT_SYMBOL(ata_print_version); 6811 6812 /* 6813 * libata is essentially a library of internal helper functions for 6814 * low-level ATA host controller drivers. As such, the API/ABI is 6815 * likely to change as new drivers are added and updated. 6816 * Do not depend on ABI/API stability. 6817 */ 6818 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6819 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6820 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6821 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6822 EXPORT_SYMBOL_GPL(sata_port_ops); 6823 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6824 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6825 EXPORT_SYMBOL_GPL(ata_link_next); 6826 EXPORT_SYMBOL_GPL(ata_dev_next); 6827 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6828 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6829 EXPORT_SYMBOL_GPL(ata_host_init); 6830 EXPORT_SYMBOL_GPL(ata_host_alloc); 6831 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6832 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6833 EXPORT_SYMBOL_GPL(ata_host_start); 6834 EXPORT_SYMBOL_GPL(ata_host_register); 6835 EXPORT_SYMBOL_GPL(ata_host_activate); 6836 EXPORT_SYMBOL_GPL(ata_host_detach); 6837 EXPORT_SYMBOL_GPL(ata_sg_init); 6838 EXPORT_SYMBOL_GPL(ata_qc_complete); 6839 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6840 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6841 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6842 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6843 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6844 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6845 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6846 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6847 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6848 EXPORT_SYMBOL_GPL(ata_mode_string); 6849 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6850 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6851 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6852 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6853 EXPORT_SYMBOL_GPL(ata_dev_disable); 6854 EXPORT_SYMBOL_GPL(sata_set_spd); 6855 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6856 EXPORT_SYMBOL_GPL(sata_link_debounce); 6857 EXPORT_SYMBOL_GPL(sata_link_resume); 6858 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6859 EXPORT_SYMBOL_GPL(ata_std_prereset); 6860 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6861 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6862 EXPORT_SYMBOL_GPL(ata_std_postreset); 6863 EXPORT_SYMBOL_GPL(ata_dev_classify); 6864 EXPORT_SYMBOL_GPL(ata_dev_pair); 6865 EXPORT_SYMBOL_GPL(ata_ratelimit); 6866 EXPORT_SYMBOL_GPL(ata_msleep); 6867 EXPORT_SYMBOL_GPL(ata_wait_register); 6868 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6869 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6870 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6871 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6872 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6873 EXPORT_SYMBOL_GPL(sata_scr_valid); 6874 EXPORT_SYMBOL_GPL(sata_scr_read); 6875 EXPORT_SYMBOL_GPL(sata_scr_write); 6876 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6877 EXPORT_SYMBOL_GPL(ata_link_online); 6878 EXPORT_SYMBOL_GPL(ata_link_offline); 6879 #ifdef CONFIG_PM 6880 EXPORT_SYMBOL_GPL(ata_host_suspend); 6881 EXPORT_SYMBOL_GPL(ata_host_resume); 6882 #endif /* CONFIG_PM */ 6883 EXPORT_SYMBOL_GPL(ata_id_string); 6884 EXPORT_SYMBOL_GPL(ata_id_c_string); 6885 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6886 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6887 6888 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6889 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6890 EXPORT_SYMBOL_GPL(ata_timing_compute); 6891 EXPORT_SYMBOL_GPL(ata_timing_merge); 6892 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6893 6894 #ifdef CONFIG_PCI 6895 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6896 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6897 #ifdef CONFIG_PM 6898 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6899 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6900 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6901 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6902 #endif /* CONFIG_PM */ 6903 #endif /* CONFIG_PCI */ 6904 6905 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6906 6907 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6908 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6909 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6910 EXPORT_SYMBOL_GPL(ata_port_desc); 6911 #ifdef CONFIG_PCI 6912 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6913 #endif /* CONFIG_PCI */ 6914 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6915 EXPORT_SYMBOL_GPL(ata_link_abort); 6916 EXPORT_SYMBOL_GPL(ata_port_abort); 6917 EXPORT_SYMBOL_GPL(ata_port_freeze); 6918 EXPORT_SYMBOL_GPL(sata_async_notification); 6919 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6920 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6921 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6922 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6923 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6924 EXPORT_SYMBOL_GPL(ata_do_eh); 6925 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6926 6927 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6928 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6929 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6930 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6931 EXPORT_SYMBOL_GPL(ata_cable_sata); 6932