1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_host.h> 64 #include <linux/libata.h> 65 #include <asm/byteorder.h> 66 #include <linux/cdrom.h> 67 68 #include "libata.h" 69 70 71 /* debounce timing parameters in msecs { interval, duration, timeout } */ 72 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 73 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 74 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 75 76 const struct ata_port_operations ata_base_port_ops = { 77 .prereset = ata_std_prereset, 78 .postreset = ata_std_postreset, 79 .error_handler = ata_std_error_handler, 80 }; 81 82 const struct ata_port_operations sata_port_ops = { 83 .inherits = &ata_base_port_ops, 84 85 .qc_defer = ata_std_qc_defer, 86 .hardreset = sata_std_hardreset, 87 }; 88 89 static unsigned int ata_dev_init_params(struct ata_device *dev, 90 u16 heads, u16 sectors); 91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 92 static unsigned int ata_dev_set_feature(struct ata_device *dev, 93 u8 enable, u8 feature); 94 static void ata_dev_xfermask(struct ata_device *dev); 95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 96 97 unsigned int ata_print_id = 1; 98 static struct workqueue_struct *ata_wq; 99 100 struct workqueue_struct *ata_aux_wq; 101 102 struct ata_force_param { 103 const char *name; 104 unsigned int cbl; 105 int spd_limit; 106 unsigned long xfer_mask; 107 unsigned int horkage_on; 108 unsigned int horkage_off; 109 unsigned int lflags; 110 }; 111 112 struct ata_force_ent { 113 int port; 114 int device; 115 struct ata_force_param param; 116 }; 117 118 static struct ata_force_ent *ata_force_tbl; 119 static int ata_force_tbl_size; 120 121 static char ata_force_param_buf[PAGE_SIZE] __initdata; 122 /* param_buf is thrown away after initialization, disallow read */ 123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 125 126 static int atapi_enabled = 1; 127 module_param(atapi_enabled, int, 0444); 128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 129 130 static int atapi_dmadir = 0; 131 module_param(atapi_dmadir, int, 0444); 132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 133 134 int atapi_passthru16 = 1; 135 module_param(atapi_passthru16, int, 0444); 136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)"); 137 138 int libata_fua = 0; 139 module_param_named(fua, libata_fua, int, 0444); 140 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 141 142 static int ata_ignore_hpa; 143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 145 146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 147 module_param_named(dma, libata_dma_mask, int, 0444); 148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 149 150 static int ata_probe_timeout; 151 module_param(ata_probe_timeout, int, 0444); 152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 153 154 int libata_noacpi = 0; 155 module_param_named(noacpi, libata_noacpi, int, 0444); 156 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set"); 157 158 int libata_allow_tpm = 0; 159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands"); 161 162 MODULE_AUTHOR("Jeff Garzik"); 163 MODULE_DESCRIPTION("Library module for ATA devices"); 164 MODULE_LICENSE("GPL"); 165 MODULE_VERSION(DRV_VERSION); 166 167 168 static bool ata_sstatus_online(u32 sstatus) 169 { 170 return (sstatus & 0xf) == 0x3; 171 } 172 173 /** 174 * ata_link_next - link iteration helper 175 * @link: the previous link, NULL to start 176 * @ap: ATA port containing links to iterate 177 * @mode: iteration mode, one of ATA_LITER_* 178 * 179 * LOCKING: 180 * Host lock or EH context. 181 * 182 * RETURNS: 183 * Pointer to the next link. 184 */ 185 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 186 enum ata_link_iter_mode mode) 187 { 188 BUG_ON(mode != ATA_LITER_EDGE && 189 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 190 191 /* NULL link indicates start of iteration */ 192 if (!link) 193 switch (mode) { 194 case ATA_LITER_EDGE: 195 case ATA_LITER_PMP_FIRST: 196 if (sata_pmp_attached(ap)) 197 return ap->pmp_link; 198 /* fall through */ 199 case ATA_LITER_HOST_FIRST: 200 return &ap->link; 201 } 202 203 /* we just iterated over the host link, what's next? */ 204 if (link == &ap->link) 205 switch (mode) { 206 case ATA_LITER_HOST_FIRST: 207 if (sata_pmp_attached(ap)) 208 return ap->pmp_link; 209 /* fall through */ 210 case ATA_LITER_PMP_FIRST: 211 if (unlikely(ap->slave_link)) 212 return ap->slave_link; 213 /* fall through */ 214 case ATA_LITER_EDGE: 215 return NULL; 216 } 217 218 /* slave_link excludes PMP */ 219 if (unlikely(link == ap->slave_link)) 220 return NULL; 221 222 /* we were over a PMP link */ 223 if (++link < ap->pmp_link + ap->nr_pmp_links) 224 return link; 225 226 if (mode == ATA_LITER_PMP_FIRST) 227 return &ap->link; 228 229 return NULL; 230 } 231 232 /** 233 * ata_dev_next - device iteration helper 234 * @dev: the previous device, NULL to start 235 * @link: ATA link containing devices to iterate 236 * @mode: iteration mode, one of ATA_DITER_* 237 * 238 * LOCKING: 239 * Host lock or EH context. 240 * 241 * RETURNS: 242 * Pointer to the next device. 243 */ 244 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 245 enum ata_dev_iter_mode mode) 246 { 247 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 248 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 249 250 /* NULL dev indicates start of iteration */ 251 if (!dev) 252 switch (mode) { 253 case ATA_DITER_ENABLED: 254 case ATA_DITER_ALL: 255 dev = link->device; 256 goto check; 257 case ATA_DITER_ENABLED_REVERSE: 258 case ATA_DITER_ALL_REVERSE: 259 dev = link->device + ata_link_max_devices(link) - 1; 260 goto check; 261 } 262 263 next: 264 /* move to the next one */ 265 switch (mode) { 266 case ATA_DITER_ENABLED: 267 case ATA_DITER_ALL: 268 if (++dev < link->device + ata_link_max_devices(link)) 269 goto check; 270 return NULL; 271 case ATA_DITER_ENABLED_REVERSE: 272 case ATA_DITER_ALL_REVERSE: 273 if (--dev >= link->device) 274 goto check; 275 return NULL; 276 } 277 278 check: 279 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 280 !ata_dev_enabled(dev)) 281 goto next; 282 return dev; 283 } 284 285 /** 286 * ata_dev_phys_link - find physical link for a device 287 * @dev: ATA device to look up physical link for 288 * 289 * Look up physical link which @dev is attached to. Note that 290 * this is different from @dev->link only when @dev is on slave 291 * link. For all other cases, it's the same as @dev->link. 292 * 293 * LOCKING: 294 * Don't care. 295 * 296 * RETURNS: 297 * Pointer to the found physical link. 298 */ 299 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 300 { 301 struct ata_port *ap = dev->link->ap; 302 303 if (!ap->slave_link) 304 return dev->link; 305 if (!dev->devno) 306 return &ap->link; 307 return ap->slave_link; 308 } 309 310 /** 311 * ata_force_cbl - force cable type according to libata.force 312 * @ap: ATA port of interest 313 * 314 * Force cable type according to libata.force and whine about it. 315 * The last entry which has matching port number is used, so it 316 * can be specified as part of device force parameters. For 317 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 318 * same effect. 319 * 320 * LOCKING: 321 * EH context. 322 */ 323 void ata_force_cbl(struct ata_port *ap) 324 { 325 int i; 326 327 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 328 const struct ata_force_ent *fe = &ata_force_tbl[i]; 329 330 if (fe->port != -1 && fe->port != ap->print_id) 331 continue; 332 333 if (fe->param.cbl == ATA_CBL_NONE) 334 continue; 335 336 ap->cbl = fe->param.cbl; 337 ata_port_printk(ap, KERN_NOTICE, 338 "FORCE: cable set to %s\n", fe->param.name); 339 return; 340 } 341 } 342 343 /** 344 * ata_force_link_limits - force link limits according to libata.force 345 * @link: ATA link of interest 346 * 347 * Force link flags and SATA spd limit according to libata.force 348 * and whine about it. When only the port part is specified 349 * (e.g. 1:), the limit applies to all links connected to both 350 * the host link and all fan-out ports connected via PMP. If the 351 * device part is specified as 0 (e.g. 1.00:), it specifies the 352 * first fan-out link not the host link. Device number 15 always 353 * points to the host link whether PMP is attached or not. If the 354 * controller has slave link, device number 16 points to it. 355 * 356 * LOCKING: 357 * EH context. 358 */ 359 static void ata_force_link_limits(struct ata_link *link) 360 { 361 bool did_spd = false; 362 int linkno = link->pmp; 363 int i; 364 365 if (ata_is_host_link(link)) 366 linkno += 15; 367 368 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 369 const struct ata_force_ent *fe = &ata_force_tbl[i]; 370 371 if (fe->port != -1 && fe->port != link->ap->print_id) 372 continue; 373 374 if (fe->device != -1 && fe->device != linkno) 375 continue; 376 377 /* only honor the first spd limit */ 378 if (!did_spd && fe->param.spd_limit) { 379 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 380 ata_link_printk(link, KERN_NOTICE, 381 "FORCE: PHY spd limit set to %s\n", 382 fe->param.name); 383 did_spd = true; 384 } 385 386 /* let lflags stack */ 387 if (fe->param.lflags) { 388 link->flags |= fe->param.lflags; 389 ata_link_printk(link, KERN_NOTICE, 390 "FORCE: link flag 0x%x forced -> 0x%x\n", 391 fe->param.lflags, link->flags); 392 } 393 } 394 } 395 396 /** 397 * ata_force_xfermask - force xfermask according to libata.force 398 * @dev: ATA device of interest 399 * 400 * Force xfer_mask according to libata.force and whine about it. 401 * For consistency with link selection, device number 15 selects 402 * the first device connected to the host link. 403 * 404 * LOCKING: 405 * EH context. 406 */ 407 static void ata_force_xfermask(struct ata_device *dev) 408 { 409 int devno = dev->link->pmp + dev->devno; 410 int alt_devno = devno; 411 int i; 412 413 /* allow n.15/16 for devices attached to host port */ 414 if (ata_is_host_link(dev->link)) 415 alt_devno += 15; 416 417 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 418 const struct ata_force_ent *fe = &ata_force_tbl[i]; 419 unsigned long pio_mask, mwdma_mask, udma_mask; 420 421 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 422 continue; 423 424 if (fe->device != -1 && fe->device != devno && 425 fe->device != alt_devno) 426 continue; 427 428 if (!fe->param.xfer_mask) 429 continue; 430 431 ata_unpack_xfermask(fe->param.xfer_mask, 432 &pio_mask, &mwdma_mask, &udma_mask); 433 if (udma_mask) 434 dev->udma_mask = udma_mask; 435 else if (mwdma_mask) { 436 dev->udma_mask = 0; 437 dev->mwdma_mask = mwdma_mask; 438 } else { 439 dev->udma_mask = 0; 440 dev->mwdma_mask = 0; 441 dev->pio_mask = pio_mask; 442 } 443 444 ata_dev_printk(dev, KERN_NOTICE, 445 "FORCE: xfer_mask set to %s\n", fe->param.name); 446 return; 447 } 448 } 449 450 /** 451 * ata_force_horkage - force horkage according to libata.force 452 * @dev: ATA device of interest 453 * 454 * Force horkage according to libata.force and whine about it. 455 * For consistency with link selection, device number 15 selects 456 * the first device connected to the host link. 457 * 458 * LOCKING: 459 * EH context. 460 */ 461 static void ata_force_horkage(struct ata_device *dev) 462 { 463 int devno = dev->link->pmp + dev->devno; 464 int alt_devno = devno; 465 int i; 466 467 /* allow n.15/16 for devices attached to host port */ 468 if (ata_is_host_link(dev->link)) 469 alt_devno += 15; 470 471 for (i = 0; i < ata_force_tbl_size; i++) { 472 const struct ata_force_ent *fe = &ata_force_tbl[i]; 473 474 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 475 continue; 476 477 if (fe->device != -1 && fe->device != devno && 478 fe->device != alt_devno) 479 continue; 480 481 if (!(~dev->horkage & fe->param.horkage_on) && 482 !(dev->horkage & fe->param.horkage_off)) 483 continue; 484 485 dev->horkage |= fe->param.horkage_on; 486 dev->horkage &= ~fe->param.horkage_off; 487 488 ata_dev_printk(dev, KERN_NOTICE, 489 "FORCE: horkage modified (%s)\n", fe->param.name); 490 } 491 } 492 493 /** 494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 495 * @opcode: SCSI opcode 496 * 497 * Determine ATAPI command type from @opcode. 498 * 499 * LOCKING: 500 * None. 501 * 502 * RETURNS: 503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 504 */ 505 int atapi_cmd_type(u8 opcode) 506 { 507 switch (opcode) { 508 case GPCMD_READ_10: 509 case GPCMD_READ_12: 510 return ATAPI_READ; 511 512 case GPCMD_WRITE_10: 513 case GPCMD_WRITE_12: 514 case GPCMD_WRITE_AND_VERIFY_10: 515 return ATAPI_WRITE; 516 517 case GPCMD_READ_CD: 518 case GPCMD_READ_CD_MSF: 519 return ATAPI_READ_CD; 520 521 case ATA_16: 522 case ATA_12: 523 if (atapi_passthru16) 524 return ATAPI_PASS_THRU; 525 /* fall thru */ 526 default: 527 return ATAPI_MISC; 528 } 529 } 530 531 /** 532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 533 * @tf: Taskfile to convert 534 * @pmp: Port multiplier port 535 * @is_cmd: This FIS is for command 536 * @fis: Buffer into which data will output 537 * 538 * Converts a standard ATA taskfile to a Serial ATA 539 * FIS structure (Register - Host to Device). 540 * 541 * LOCKING: 542 * Inherited from caller. 543 */ 544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 545 { 546 fis[0] = 0x27; /* Register - Host to Device FIS */ 547 fis[1] = pmp & 0xf; /* Port multiplier number*/ 548 if (is_cmd) 549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 550 551 fis[2] = tf->command; 552 fis[3] = tf->feature; 553 554 fis[4] = tf->lbal; 555 fis[5] = tf->lbam; 556 fis[6] = tf->lbah; 557 fis[7] = tf->device; 558 559 fis[8] = tf->hob_lbal; 560 fis[9] = tf->hob_lbam; 561 fis[10] = tf->hob_lbah; 562 fis[11] = tf->hob_feature; 563 564 fis[12] = tf->nsect; 565 fis[13] = tf->hob_nsect; 566 fis[14] = 0; 567 fis[15] = tf->ctl; 568 569 fis[16] = 0; 570 fis[17] = 0; 571 fis[18] = 0; 572 fis[19] = 0; 573 } 574 575 /** 576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 577 * @fis: Buffer from which data will be input 578 * @tf: Taskfile to output 579 * 580 * Converts a serial ATA FIS structure to a standard ATA taskfile. 581 * 582 * LOCKING: 583 * Inherited from caller. 584 */ 585 586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 587 { 588 tf->command = fis[2]; /* status */ 589 tf->feature = fis[3]; /* error */ 590 591 tf->lbal = fis[4]; 592 tf->lbam = fis[5]; 593 tf->lbah = fis[6]; 594 tf->device = fis[7]; 595 596 tf->hob_lbal = fis[8]; 597 tf->hob_lbam = fis[9]; 598 tf->hob_lbah = fis[10]; 599 600 tf->nsect = fis[12]; 601 tf->hob_nsect = fis[13]; 602 } 603 604 static const u8 ata_rw_cmds[] = { 605 /* pio multi */ 606 ATA_CMD_READ_MULTI, 607 ATA_CMD_WRITE_MULTI, 608 ATA_CMD_READ_MULTI_EXT, 609 ATA_CMD_WRITE_MULTI_EXT, 610 0, 611 0, 612 0, 613 ATA_CMD_WRITE_MULTI_FUA_EXT, 614 /* pio */ 615 ATA_CMD_PIO_READ, 616 ATA_CMD_PIO_WRITE, 617 ATA_CMD_PIO_READ_EXT, 618 ATA_CMD_PIO_WRITE_EXT, 619 0, 620 0, 621 0, 622 0, 623 /* dma */ 624 ATA_CMD_READ, 625 ATA_CMD_WRITE, 626 ATA_CMD_READ_EXT, 627 ATA_CMD_WRITE_EXT, 628 0, 629 0, 630 0, 631 ATA_CMD_WRITE_FUA_EXT 632 }; 633 634 /** 635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 636 * @tf: command to examine and configure 637 * @dev: device tf belongs to 638 * 639 * Examine the device configuration and tf->flags to calculate 640 * the proper read/write commands and protocol to use. 641 * 642 * LOCKING: 643 * caller. 644 */ 645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 646 { 647 u8 cmd; 648 649 int index, fua, lba48, write; 650 651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 654 655 if (dev->flags & ATA_DFLAG_PIO) { 656 tf->protocol = ATA_PROT_PIO; 657 index = dev->multi_count ? 0 : 8; 658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 659 /* Unable to use DMA due to host limitation */ 660 tf->protocol = ATA_PROT_PIO; 661 index = dev->multi_count ? 0 : 8; 662 } else { 663 tf->protocol = ATA_PROT_DMA; 664 index = 16; 665 } 666 667 cmd = ata_rw_cmds[index + fua + lba48 + write]; 668 if (cmd) { 669 tf->command = cmd; 670 return 0; 671 } 672 return -1; 673 } 674 675 /** 676 * ata_tf_read_block - Read block address from ATA taskfile 677 * @tf: ATA taskfile of interest 678 * @dev: ATA device @tf belongs to 679 * 680 * LOCKING: 681 * None. 682 * 683 * Read block address from @tf. This function can handle all 684 * three address formats - LBA, LBA48 and CHS. tf->protocol and 685 * flags select the address format to use. 686 * 687 * RETURNS: 688 * Block address read from @tf. 689 */ 690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 691 { 692 u64 block = 0; 693 694 if (tf->flags & ATA_TFLAG_LBA) { 695 if (tf->flags & ATA_TFLAG_LBA48) { 696 block |= (u64)tf->hob_lbah << 40; 697 block |= (u64)tf->hob_lbam << 32; 698 block |= (u64)tf->hob_lbal << 24; 699 } else 700 block |= (tf->device & 0xf) << 24; 701 702 block |= tf->lbah << 16; 703 block |= tf->lbam << 8; 704 block |= tf->lbal; 705 } else { 706 u32 cyl, head, sect; 707 708 cyl = tf->lbam | (tf->lbah << 8); 709 head = tf->device & 0xf; 710 sect = tf->lbal; 711 712 block = (cyl * dev->heads + head) * dev->sectors + sect; 713 } 714 715 return block; 716 } 717 718 /** 719 * ata_build_rw_tf - Build ATA taskfile for given read/write request 720 * @tf: Target ATA taskfile 721 * @dev: ATA device @tf belongs to 722 * @block: Block address 723 * @n_block: Number of blocks 724 * @tf_flags: RW/FUA etc... 725 * @tag: tag 726 * 727 * LOCKING: 728 * None. 729 * 730 * Build ATA taskfile @tf for read/write request described by 731 * @block, @n_block, @tf_flags and @tag on @dev. 732 * 733 * RETURNS: 734 * 735 * 0 on success, -ERANGE if the request is too large for @dev, 736 * -EINVAL if the request is invalid. 737 */ 738 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 739 u64 block, u32 n_block, unsigned int tf_flags, 740 unsigned int tag) 741 { 742 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 743 tf->flags |= tf_flags; 744 745 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 746 /* yay, NCQ */ 747 if (!lba_48_ok(block, n_block)) 748 return -ERANGE; 749 750 tf->protocol = ATA_PROT_NCQ; 751 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 752 753 if (tf->flags & ATA_TFLAG_WRITE) 754 tf->command = ATA_CMD_FPDMA_WRITE; 755 else 756 tf->command = ATA_CMD_FPDMA_READ; 757 758 tf->nsect = tag << 3; 759 tf->hob_feature = (n_block >> 8) & 0xff; 760 tf->feature = n_block & 0xff; 761 762 tf->hob_lbah = (block >> 40) & 0xff; 763 tf->hob_lbam = (block >> 32) & 0xff; 764 tf->hob_lbal = (block >> 24) & 0xff; 765 tf->lbah = (block >> 16) & 0xff; 766 tf->lbam = (block >> 8) & 0xff; 767 tf->lbal = block & 0xff; 768 769 tf->device = 1 << 6; 770 if (tf->flags & ATA_TFLAG_FUA) 771 tf->device |= 1 << 7; 772 } else if (dev->flags & ATA_DFLAG_LBA) { 773 tf->flags |= ATA_TFLAG_LBA; 774 775 if (lba_28_ok(block, n_block)) { 776 /* use LBA28 */ 777 tf->device |= (block >> 24) & 0xf; 778 } else if (lba_48_ok(block, n_block)) { 779 if (!(dev->flags & ATA_DFLAG_LBA48)) 780 return -ERANGE; 781 782 /* use LBA48 */ 783 tf->flags |= ATA_TFLAG_LBA48; 784 785 tf->hob_nsect = (n_block >> 8) & 0xff; 786 787 tf->hob_lbah = (block >> 40) & 0xff; 788 tf->hob_lbam = (block >> 32) & 0xff; 789 tf->hob_lbal = (block >> 24) & 0xff; 790 } else 791 /* request too large even for LBA48 */ 792 return -ERANGE; 793 794 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 795 return -EINVAL; 796 797 tf->nsect = n_block & 0xff; 798 799 tf->lbah = (block >> 16) & 0xff; 800 tf->lbam = (block >> 8) & 0xff; 801 tf->lbal = block & 0xff; 802 803 tf->device |= ATA_LBA; 804 } else { 805 /* CHS */ 806 u32 sect, head, cyl, track; 807 808 /* The request -may- be too large for CHS addressing. */ 809 if (!lba_28_ok(block, n_block)) 810 return -ERANGE; 811 812 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 813 return -EINVAL; 814 815 /* Convert LBA to CHS */ 816 track = (u32)block / dev->sectors; 817 cyl = track / dev->heads; 818 head = track % dev->heads; 819 sect = (u32)block % dev->sectors + 1; 820 821 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 822 (u32)block, track, cyl, head, sect); 823 824 /* Check whether the converted CHS can fit. 825 Cylinder: 0-65535 826 Head: 0-15 827 Sector: 1-255*/ 828 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 829 return -ERANGE; 830 831 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 832 tf->lbal = sect; 833 tf->lbam = cyl; 834 tf->lbah = cyl >> 8; 835 tf->device |= head; 836 } 837 838 return 0; 839 } 840 841 /** 842 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 843 * @pio_mask: pio_mask 844 * @mwdma_mask: mwdma_mask 845 * @udma_mask: udma_mask 846 * 847 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 848 * unsigned int xfer_mask. 849 * 850 * LOCKING: 851 * None. 852 * 853 * RETURNS: 854 * Packed xfer_mask. 855 */ 856 unsigned long ata_pack_xfermask(unsigned long pio_mask, 857 unsigned long mwdma_mask, 858 unsigned long udma_mask) 859 { 860 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 861 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 862 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 863 } 864 865 /** 866 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 867 * @xfer_mask: xfer_mask to unpack 868 * @pio_mask: resulting pio_mask 869 * @mwdma_mask: resulting mwdma_mask 870 * @udma_mask: resulting udma_mask 871 * 872 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 873 * Any NULL distination masks will be ignored. 874 */ 875 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 876 unsigned long *mwdma_mask, unsigned long *udma_mask) 877 { 878 if (pio_mask) 879 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 880 if (mwdma_mask) 881 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 882 if (udma_mask) 883 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 884 } 885 886 static const struct ata_xfer_ent { 887 int shift, bits; 888 u8 base; 889 } ata_xfer_tbl[] = { 890 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 891 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 892 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 893 { -1, }, 894 }; 895 896 /** 897 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 898 * @xfer_mask: xfer_mask of interest 899 * 900 * Return matching XFER_* value for @xfer_mask. Only the highest 901 * bit of @xfer_mask is considered. 902 * 903 * LOCKING: 904 * None. 905 * 906 * RETURNS: 907 * Matching XFER_* value, 0xff if no match found. 908 */ 909 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 910 { 911 int highbit = fls(xfer_mask) - 1; 912 const struct ata_xfer_ent *ent; 913 914 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 915 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 916 return ent->base + highbit - ent->shift; 917 return 0xff; 918 } 919 920 /** 921 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 922 * @xfer_mode: XFER_* of interest 923 * 924 * Return matching xfer_mask for @xfer_mode. 925 * 926 * LOCKING: 927 * None. 928 * 929 * RETURNS: 930 * Matching xfer_mask, 0 if no match found. 931 */ 932 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 933 { 934 const struct ata_xfer_ent *ent; 935 936 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 937 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 938 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 939 & ~((1 << ent->shift) - 1); 940 return 0; 941 } 942 943 /** 944 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 945 * @xfer_mode: XFER_* of interest 946 * 947 * Return matching xfer_shift for @xfer_mode. 948 * 949 * LOCKING: 950 * None. 951 * 952 * RETURNS: 953 * Matching xfer_shift, -1 if no match found. 954 */ 955 int ata_xfer_mode2shift(unsigned long xfer_mode) 956 { 957 const struct ata_xfer_ent *ent; 958 959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 961 return ent->shift; 962 return -1; 963 } 964 965 /** 966 * ata_mode_string - convert xfer_mask to string 967 * @xfer_mask: mask of bits supported; only highest bit counts. 968 * 969 * Determine string which represents the highest speed 970 * (highest bit in @modemask). 971 * 972 * LOCKING: 973 * None. 974 * 975 * RETURNS: 976 * Constant C string representing highest speed listed in 977 * @mode_mask, or the constant C string "<n/a>". 978 */ 979 const char *ata_mode_string(unsigned long xfer_mask) 980 { 981 static const char * const xfer_mode_str[] = { 982 "PIO0", 983 "PIO1", 984 "PIO2", 985 "PIO3", 986 "PIO4", 987 "PIO5", 988 "PIO6", 989 "MWDMA0", 990 "MWDMA1", 991 "MWDMA2", 992 "MWDMA3", 993 "MWDMA4", 994 "UDMA/16", 995 "UDMA/25", 996 "UDMA/33", 997 "UDMA/44", 998 "UDMA/66", 999 "UDMA/100", 1000 "UDMA/133", 1001 "UDMA7", 1002 }; 1003 int highbit; 1004 1005 highbit = fls(xfer_mask) - 1; 1006 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1007 return xfer_mode_str[highbit]; 1008 return "<n/a>"; 1009 } 1010 1011 static const char *sata_spd_string(unsigned int spd) 1012 { 1013 static const char * const spd_str[] = { 1014 "1.5 Gbps", 1015 "3.0 Gbps", 1016 "6.0 Gbps", 1017 }; 1018 1019 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1020 return "<unknown>"; 1021 return spd_str[spd - 1]; 1022 } 1023 1024 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 1025 { 1026 struct ata_link *link = dev->link; 1027 struct ata_port *ap = link->ap; 1028 u32 scontrol; 1029 unsigned int err_mask; 1030 int rc; 1031 1032 /* 1033 * disallow DIPM for drivers which haven't set 1034 * ATA_FLAG_IPM. This is because when DIPM is enabled, 1035 * phy ready will be set in the interrupt status on 1036 * state changes, which will cause some drivers to 1037 * think there are errors - additionally drivers will 1038 * need to disable hot plug. 1039 */ 1040 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 1041 ap->pm_policy = NOT_AVAILABLE; 1042 return -EINVAL; 1043 } 1044 1045 /* 1046 * For DIPM, we will only enable it for the 1047 * min_power setting. 1048 * 1049 * Why? Because Disks are too stupid to know that 1050 * If the host rejects a request to go to SLUMBER 1051 * they should retry at PARTIAL, and instead it 1052 * just would give up. So, for medium_power to 1053 * work at all, we need to only allow HIPM. 1054 */ 1055 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 1056 if (rc) 1057 return rc; 1058 1059 switch (policy) { 1060 case MIN_POWER: 1061 /* no restrictions on IPM transitions */ 1062 scontrol &= ~(0x3 << 8); 1063 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1064 if (rc) 1065 return rc; 1066 1067 /* enable DIPM */ 1068 if (dev->flags & ATA_DFLAG_DIPM) 1069 err_mask = ata_dev_set_feature(dev, 1070 SETFEATURES_SATA_ENABLE, SATA_DIPM); 1071 break; 1072 case MEDIUM_POWER: 1073 /* allow IPM to PARTIAL */ 1074 scontrol &= ~(0x1 << 8); 1075 scontrol |= (0x2 << 8); 1076 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1077 if (rc) 1078 return rc; 1079 1080 /* 1081 * we don't have to disable DIPM since IPM flags 1082 * disallow transitions to SLUMBER, which effectively 1083 * disable DIPM if it does not support PARTIAL 1084 */ 1085 break; 1086 case NOT_AVAILABLE: 1087 case MAX_PERFORMANCE: 1088 /* disable all IPM transitions */ 1089 scontrol |= (0x3 << 8); 1090 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1091 if (rc) 1092 return rc; 1093 1094 /* 1095 * we don't have to disable DIPM since IPM flags 1096 * disallow all transitions which effectively 1097 * disable DIPM anyway. 1098 */ 1099 break; 1100 } 1101 1102 /* FIXME: handle SET FEATURES failure */ 1103 (void) err_mask; 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * ata_dev_enable_pm - enable SATA interface power management 1110 * @dev: device to enable power management 1111 * @policy: the link power management policy 1112 * 1113 * Enable SATA Interface power management. This will enable 1114 * Device Interface Power Management (DIPM) for min_power 1115 * policy, and then call driver specific callbacks for 1116 * enabling Host Initiated Power management. 1117 * 1118 * Locking: Caller. 1119 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 1120 */ 1121 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 1122 { 1123 int rc = 0; 1124 struct ata_port *ap = dev->link->ap; 1125 1126 /* set HIPM first, then DIPM */ 1127 if (ap->ops->enable_pm) 1128 rc = ap->ops->enable_pm(ap, policy); 1129 if (rc) 1130 goto enable_pm_out; 1131 rc = ata_dev_set_dipm(dev, policy); 1132 1133 enable_pm_out: 1134 if (rc) 1135 ap->pm_policy = MAX_PERFORMANCE; 1136 else 1137 ap->pm_policy = policy; 1138 return /* rc */; /* hopefully we can use 'rc' eventually */ 1139 } 1140 1141 #ifdef CONFIG_PM 1142 /** 1143 * ata_dev_disable_pm - disable SATA interface power management 1144 * @dev: device to disable power management 1145 * 1146 * Disable SATA Interface power management. This will disable 1147 * Device Interface Power Management (DIPM) without changing 1148 * policy, call driver specific callbacks for disabling Host 1149 * Initiated Power management. 1150 * 1151 * Locking: Caller. 1152 * Returns: void 1153 */ 1154 static void ata_dev_disable_pm(struct ata_device *dev) 1155 { 1156 struct ata_port *ap = dev->link->ap; 1157 1158 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1159 if (ap->ops->disable_pm) 1160 ap->ops->disable_pm(ap); 1161 } 1162 #endif /* CONFIG_PM */ 1163 1164 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1165 { 1166 ap->pm_policy = policy; 1167 ap->link.eh_info.action |= ATA_EH_LPM; 1168 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1169 ata_port_schedule_eh(ap); 1170 } 1171 1172 #ifdef CONFIG_PM 1173 static void ata_lpm_enable(struct ata_host *host) 1174 { 1175 struct ata_link *link; 1176 struct ata_port *ap; 1177 struct ata_device *dev; 1178 int i; 1179 1180 for (i = 0; i < host->n_ports; i++) { 1181 ap = host->ports[i]; 1182 ata_for_each_link(link, ap, EDGE) { 1183 ata_for_each_dev(dev, link, ALL) 1184 ata_dev_disable_pm(dev); 1185 } 1186 } 1187 } 1188 1189 static void ata_lpm_disable(struct ata_host *host) 1190 { 1191 int i; 1192 1193 for (i = 0; i < host->n_ports; i++) { 1194 struct ata_port *ap = host->ports[i]; 1195 ata_lpm_schedule(ap, ap->pm_policy); 1196 } 1197 } 1198 #endif /* CONFIG_PM */ 1199 1200 /** 1201 * ata_dev_classify - determine device type based on ATA-spec signature 1202 * @tf: ATA taskfile register set for device to be identified 1203 * 1204 * Determine from taskfile register contents whether a device is 1205 * ATA or ATAPI, as per "Signature and persistence" section 1206 * of ATA/PI spec (volume 1, sect 5.14). 1207 * 1208 * LOCKING: 1209 * None. 1210 * 1211 * RETURNS: 1212 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1213 * %ATA_DEV_UNKNOWN the event of failure. 1214 */ 1215 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1216 { 1217 /* Apple's open source Darwin code hints that some devices only 1218 * put a proper signature into the LBA mid/high registers, 1219 * So, we only check those. It's sufficient for uniqueness. 1220 * 1221 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1222 * signatures for ATA and ATAPI devices attached on SerialATA, 1223 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1224 * spec has never mentioned about using different signatures 1225 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1226 * Multiplier specification began to use 0x69/0x96 to identify 1227 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1228 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1229 * 0x69/0x96 shortly and described them as reserved for 1230 * SerialATA. 1231 * 1232 * We follow the current spec and consider that 0x69/0x96 1233 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1234 */ 1235 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1236 DPRINTK("found ATA device by sig\n"); 1237 return ATA_DEV_ATA; 1238 } 1239 1240 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1241 DPRINTK("found ATAPI device by sig\n"); 1242 return ATA_DEV_ATAPI; 1243 } 1244 1245 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1246 DPRINTK("found PMP device by sig\n"); 1247 return ATA_DEV_PMP; 1248 } 1249 1250 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1251 printk(KERN_INFO "ata: SEMB device ignored\n"); 1252 return ATA_DEV_SEMB_UNSUP; /* not yet */ 1253 } 1254 1255 DPRINTK("unknown device\n"); 1256 return ATA_DEV_UNKNOWN; 1257 } 1258 1259 /** 1260 * ata_id_string - Convert IDENTIFY DEVICE page into string 1261 * @id: IDENTIFY DEVICE results we will examine 1262 * @s: string into which data is output 1263 * @ofs: offset into identify device page 1264 * @len: length of string to return. must be an even number. 1265 * 1266 * The strings in the IDENTIFY DEVICE page are broken up into 1267 * 16-bit chunks. Run through the string, and output each 1268 * 8-bit chunk linearly, regardless of platform. 1269 * 1270 * LOCKING: 1271 * caller. 1272 */ 1273 1274 void ata_id_string(const u16 *id, unsigned char *s, 1275 unsigned int ofs, unsigned int len) 1276 { 1277 unsigned int c; 1278 1279 BUG_ON(len & 1); 1280 1281 while (len > 0) { 1282 c = id[ofs] >> 8; 1283 *s = c; 1284 s++; 1285 1286 c = id[ofs] & 0xff; 1287 *s = c; 1288 s++; 1289 1290 ofs++; 1291 len -= 2; 1292 } 1293 } 1294 1295 /** 1296 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1297 * @id: IDENTIFY DEVICE results we will examine 1298 * @s: string into which data is output 1299 * @ofs: offset into identify device page 1300 * @len: length of string to return. must be an odd number. 1301 * 1302 * This function is identical to ata_id_string except that it 1303 * trims trailing spaces and terminates the resulting string with 1304 * null. @len must be actual maximum length (even number) + 1. 1305 * 1306 * LOCKING: 1307 * caller. 1308 */ 1309 void ata_id_c_string(const u16 *id, unsigned char *s, 1310 unsigned int ofs, unsigned int len) 1311 { 1312 unsigned char *p; 1313 1314 ata_id_string(id, s, ofs, len - 1); 1315 1316 p = s + strnlen(s, len - 1); 1317 while (p > s && p[-1] == ' ') 1318 p--; 1319 *p = '\0'; 1320 } 1321 1322 static u64 ata_id_n_sectors(const u16 *id) 1323 { 1324 if (ata_id_has_lba(id)) { 1325 if (ata_id_has_lba48(id)) 1326 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1327 else 1328 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1329 } else { 1330 if (ata_id_current_chs_valid(id)) 1331 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1332 id[ATA_ID_CUR_SECTORS]; 1333 else 1334 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1335 id[ATA_ID_SECTORS]; 1336 } 1337 } 1338 1339 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1340 { 1341 u64 sectors = 0; 1342 1343 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1344 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1345 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1346 sectors |= (tf->lbah & 0xff) << 16; 1347 sectors |= (tf->lbam & 0xff) << 8; 1348 sectors |= (tf->lbal & 0xff); 1349 1350 return sectors; 1351 } 1352 1353 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1354 { 1355 u64 sectors = 0; 1356 1357 sectors |= (tf->device & 0x0f) << 24; 1358 sectors |= (tf->lbah & 0xff) << 16; 1359 sectors |= (tf->lbam & 0xff) << 8; 1360 sectors |= (tf->lbal & 0xff); 1361 1362 return sectors; 1363 } 1364 1365 /** 1366 * ata_read_native_max_address - Read native max address 1367 * @dev: target device 1368 * @max_sectors: out parameter for the result native max address 1369 * 1370 * Perform an LBA48 or LBA28 native size query upon the device in 1371 * question. 1372 * 1373 * RETURNS: 1374 * 0 on success, -EACCES if command is aborted by the drive. 1375 * -EIO on other errors. 1376 */ 1377 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1378 { 1379 unsigned int err_mask; 1380 struct ata_taskfile tf; 1381 int lba48 = ata_id_has_lba48(dev->id); 1382 1383 ata_tf_init(dev, &tf); 1384 1385 /* always clear all address registers */ 1386 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1387 1388 if (lba48) { 1389 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1390 tf.flags |= ATA_TFLAG_LBA48; 1391 } else 1392 tf.command = ATA_CMD_READ_NATIVE_MAX; 1393 1394 tf.protocol |= ATA_PROT_NODATA; 1395 tf.device |= ATA_LBA; 1396 1397 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1398 if (err_mask) { 1399 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1400 "max address (err_mask=0x%x)\n", err_mask); 1401 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1402 return -EACCES; 1403 return -EIO; 1404 } 1405 1406 if (lba48) 1407 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1408 else 1409 *max_sectors = ata_tf_to_lba(&tf) + 1; 1410 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1411 (*max_sectors)--; 1412 return 0; 1413 } 1414 1415 /** 1416 * ata_set_max_sectors - Set max sectors 1417 * @dev: target device 1418 * @new_sectors: new max sectors value to set for the device 1419 * 1420 * Set max sectors of @dev to @new_sectors. 1421 * 1422 * RETURNS: 1423 * 0 on success, -EACCES if command is aborted or denied (due to 1424 * previous non-volatile SET_MAX) by the drive. -EIO on other 1425 * errors. 1426 */ 1427 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1428 { 1429 unsigned int err_mask; 1430 struct ata_taskfile tf; 1431 int lba48 = ata_id_has_lba48(dev->id); 1432 1433 new_sectors--; 1434 1435 ata_tf_init(dev, &tf); 1436 1437 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1438 1439 if (lba48) { 1440 tf.command = ATA_CMD_SET_MAX_EXT; 1441 tf.flags |= ATA_TFLAG_LBA48; 1442 1443 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1444 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1445 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1446 } else { 1447 tf.command = ATA_CMD_SET_MAX; 1448 1449 tf.device |= (new_sectors >> 24) & 0xf; 1450 } 1451 1452 tf.protocol |= ATA_PROT_NODATA; 1453 tf.device |= ATA_LBA; 1454 1455 tf.lbal = (new_sectors >> 0) & 0xff; 1456 tf.lbam = (new_sectors >> 8) & 0xff; 1457 tf.lbah = (new_sectors >> 16) & 0xff; 1458 1459 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1460 if (err_mask) { 1461 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1462 "max address (err_mask=0x%x)\n", err_mask); 1463 if (err_mask == AC_ERR_DEV && 1464 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1465 return -EACCES; 1466 return -EIO; 1467 } 1468 1469 return 0; 1470 } 1471 1472 /** 1473 * ata_hpa_resize - Resize a device with an HPA set 1474 * @dev: Device to resize 1475 * 1476 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1477 * it if required to the full size of the media. The caller must check 1478 * the drive has the HPA feature set enabled. 1479 * 1480 * RETURNS: 1481 * 0 on success, -errno on failure. 1482 */ 1483 static int ata_hpa_resize(struct ata_device *dev) 1484 { 1485 struct ata_eh_context *ehc = &dev->link->eh_context; 1486 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1487 u64 sectors = ata_id_n_sectors(dev->id); 1488 u64 native_sectors; 1489 int rc; 1490 1491 /* do we need to do it? */ 1492 if (dev->class != ATA_DEV_ATA || 1493 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1494 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1495 return 0; 1496 1497 /* read native max address */ 1498 rc = ata_read_native_max_address(dev, &native_sectors); 1499 if (rc) { 1500 /* If device aborted the command or HPA isn't going to 1501 * be unlocked, skip HPA resizing. 1502 */ 1503 if (rc == -EACCES || !ata_ignore_hpa) { 1504 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1505 "broken, skipping HPA handling\n"); 1506 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1507 1508 /* we can continue if device aborted the command */ 1509 if (rc == -EACCES) 1510 rc = 0; 1511 } 1512 1513 return rc; 1514 } 1515 1516 /* nothing to do? */ 1517 if (native_sectors <= sectors || !ata_ignore_hpa) { 1518 if (!print_info || native_sectors == sectors) 1519 return 0; 1520 1521 if (native_sectors > sectors) 1522 ata_dev_printk(dev, KERN_INFO, 1523 "HPA detected: current %llu, native %llu\n", 1524 (unsigned long long)sectors, 1525 (unsigned long long)native_sectors); 1526 else if (native_sectors < sectors) 1527 ata_dev_printk(dev, KERN_WARNING, 1528 "native sectors (%llu) is smaller than " 1529 "sectors (%llu)\n", 1530 (unsigned long long)native_sectors, 1531 (unsigned long long)sectors); 1532 return 0; 1533 } 1534 1535 /* let's unlock HPA */ 1536 rc = ata_set_max_sectors(dev, native_sectors); 1537 if (rc == -EACCES) { 1538 /* if device aborted the command, skip HPA resizing */ 1539 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1540 "(%llu -> %llu), skipping HPA handling\n", 1541 (unsigned long long)sectors, 1542 (unsigned long long)native_sectors); 1543 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1544 return 0; 1545 } else if (rc) 1546 return rc; 1547 1548 /* re-read IDENTIFY data */ 1549 rc = ata_dev_reread_id(dev, 0); 1550 if (rc) { 1551 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1552 "data after HPA resizing\n"); 1553 return rc; 1554 } 1555 1556 if (print_info) { 1557 u64 new_sectors = ata_id_n_sectors(dev->id); 1558 ata_dev_printk(dev, KERN_INFO, 1559 "HPA unlocked: %llu -> %llu, native %llu\n", 1560 (unsigned long long)sectors, 1561 (unsigned long long)new_sectors, 1562 (unsigned long long)native_sectors); 1563 } 1564 1565 return 0; 1566 } 1567 1568 /** 1569 * ata_dump_id - IDENTIFY DEVICE info debugging output 1570 * @id: IDENTIFY DEVICE page to dump 1571 * 1572 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1573 * page. 1574 * 1575 * LOCKING: 1576 * caller. 1577 */ 1578 1579 static inline void ata_dump_id(const u16 *id) 1580 { 1581 DPRINTK("49==0x%04x " 1582 "53==0x%04x " 1583 "63==0x%04x " 1584 "64==0x%04x " 1585 "75==0x%04x \n", 1586 id[49], 1587 id[53], 1588 id[63], 1589 id[64], 1590 id[75]); 1591 DPRINTK("80==0x%04x " 1592 "81==0x%04x " 1593 "82==0x%04x " 1594 "83==0x%04x " 1595 "84==0x%04x \n", 1596 id[80], 1597 id[81], 1598 id[82], 1599 id[83], 1600 id[84]); 1601 DPRINTK("88==0x%04x " 1602 "93==0x%04x\n", 1603 id[88], 1604 id[93]); 1605 } 1606 1607 /** 1608 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1609 * @id: IDENTIFY data to compute xfer mask from 1610 * 1611 * Compute the xfermask for this device. This is not as trivial 1612 * as it seems if we must consider early devices correctly. 1613 * 1614 * FIXME: pre IDE drive timing (do we care ?). 1615 * 1616 * LOCKING: 1617 * None. 1618 * 1619 * RETURNS: 1620 * Computed xfermask 1621 */ 1622 unsigned long ata_id_xfermask(const u16 *id) 1623 { 1624 unsigned long pio_mask, mwdma_mask, udma_mask; 1625 1626 /* Usual case. Word 53 indicates word 64 is valid */ 1627 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1628 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1629 pio_mask <<= 3; 1630 pio_mask |= 0x7; 1631 } else { 1632 /* If word 64 isn't valid then Word 51 high byte holds 1633 * the PIO timing number for the maximum. Turn it into 1634 * a mask. 1635 */ 1636 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1637 if (mode < 5) /* Valid PIO range */ 1638 pio_mask = (2 << mode) - 1; 1639 else 1640 pio_mask = 1; 1641 1642 /* But wait.. there's more. Design your standards by 1643 * committee and you too can get a free iordy field to 1644 * process. However its the speeds not the modes that 1645 * are supported... Note drivers using the timing API 1646 * will get this right anyway 1647 */ 1648 } 1649 1650 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1651 1652 if (ata_id_is_cfa(id)) { 1653 /* 1654 * Process compact flash extended modes 1655 */ 1656 int pio = id[163] & 0x7; 1657 int dma = (id[163] >> 3) & 7; 1658 1659 if (pio) 1660 pio_mask |= (1 << 5); 1661 if (pio > 1) 1662 pio_mask |= (1 << 6); 1663 if (dma) 1664 mwdma_mask |= (1 << 3); 1665 if (dma > 1) 1666 mwdma_mask |= (1 << 4); 1667 } 1668 1669 udma_mask = 0; 1670 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1671 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1672 1673 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1674 } 1675 1676 /** 1677 * ata_pio_queue_task - Queue port_task 1678 * @ap: The ata_port to queue port_task for 1679 * @data: data for @fn to use 1680 * @delay: delay time in msecs for workqueue function 1681 * 1682 * Schedule @fn(@data) for execution after @delay jiffies using 1683 * port_task. There is one port_task per port and it's the 1684 * user(low level driver)'s responsibility to make sure that only 1685 * one task is active at any given time. 1686 * 1687 * libata core layer takes care of synchronization between 1688 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1689 * synchronization. 1690 * 1691 * LOCKING: 1692 * Inherited from caller. 1693 */ 1694 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1695 { 1696 ap->port_task_data = data; 1697 1698 /* may fail if ata_port_flush_task() in progress */ 1699 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1700 } 1701 1702 /** 1703 * ata_port_flush_task - Flush port_task 1704 * @ap: The ata_port to flush port_task for 1705 * 1706 * After this function completes, port_task is guranteed not to 1707 * be running or scheduled. 1708 * 1709 * LOCKING: 1710 * Kernel thread context (may sleep) 1711 */ 1712 void ata_port_flush_task(struct ata_port *ap) 1713 { 1714 DPRINTK("ENTER\n"); 1715 1716 cancel_rearming_delayed_work(&ap->port_task); 1717 1718 if (ata_msg_ctl(ap)) 1719 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1720 } 1721 1722 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1723 { 1724 struct completion *waiting = qc->private_data; 1725 1726 complete(waiting); 1727 } 1728 1729 /** 1730 * ata_exec_internal_sg - execute libata internal command 1731 * @dev: Device to which the command is sent 1732 * @tf: Taskfile registers for the command and the result 1733 * @cdb: CDB for packet command 1734 * @dma_dir: Data tranfer direction of the command 1735 * @sgl: sg list for the data buffer of the command 1736 * @n_elem: Number of sg entries 1737 * @timeout: Timeout in msecs (0 for default) 1738 * 1739 * Executes libata internal command with timeout. @tf contains 1740 * command on entry and result on return. Timeout and error 1741 * conditions are reported via return value. No recovery action 1742 * is taken after a command times out. It's caller's duty to 1743 * clean up after timeout. 1744 * 1745 * LOCKING: 1746 * None. Should be called with kernel context, might sleep. 1747 * 1748 * RETURNS: 1749 * Zero on success, AC_ERR_* mask on failure 1750 */ 1751 unsigned ata_exec_internal_sg(struct ata_device *dev, 1752 struct ata_taskfile *tf, const u8 *cdb, 1753 int dma_dir, struct scatterlist *sgl, 1754 unsigned int n_elem, unsigned long timeout) 1755 { 1756 struct ata_link *link = dev->link; 1757 struct ata_port *ap = link->ap; 1758 u8 command = tf->command; 1759 int auto_timeout = 0; 1760 struct ata_queued_cmd *qc; 1761 unsigned int tag, preempted_tag; 1762 u32 preempted_sactive, preempted_qc_active; 1763 int preempted_nr_active_links; 1764 DECLARE_COMPLETION_ONSTACK(wait); 1765 unsigned long flags; 1766 unsigned int err_mask; 1767 int rc; 1768 1769 spin_lock_irqsave(ap->lock, flags); 1770 1771 /* no internal command while frozen */ 1772 if (ap->pflags & ATA_PFLAG_FROZEN) { 1773 spin_unlock_irqrestore(ap->lock, flags); 1774 return AC_ERR_SYSTEM; 1775 } 1776 1777 /* initialize internal qc */ 1778 1779 /* XXX: Tag 0 is used for drivers with legacy EH as some 1780 * drivers choke if any other tag is given. This breaks 1781 * ata_tag_internal() test for those drivers. Don't use new 1782 * EH stuff without converting to it. 1783 */ 1784 if (ap->ops->error_handler) 1785 tag = ATA_TAG_INTERNAL; 1786 else 1787 tag = 0; 1788 1789 if (test_and_set_bit(tag, &ap->qc_allocated)) 1790 BUG(); 1791 qc = __ata_qc_from_tag(ap, tag); 1792 1793 qc->tag = tag; 1794 qc->scsicmd = NULL; 1795 qc->ap = ap; 1796 qc->dev = dev; 1797 ata_qc_reinit(qc); 1798 1799 preempted_tag = link->active_tag; 1800 preempted_sactive = link->sactive; 1801 preempted_qc_active = ap->qc_active; 1802 preempted_nr_active_links = ap->nr_active_links; 1803 link->active_tag = ATA_TAG_POISON; 1804 link->sactive = 0; 1805 ap->qc_active = 0; 1806 ap->nr_active_links = 0; 1807 1808 /* prepare & issue qc */ 1809 qc->tf = *tf; 1810 if (cdb) 1811 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1812 qc->flags |= ATA_QCFLAG_RESULT_TF; 1813 qc->dma_dir = dma_dir; 1814 if (dma_dir != DMA_NONE) { 1815 unsigned int i, buflen = 0; 1816 struct scatterlist *sg; 1817 1818 for_each_sg(sgl, sg, n_elem, i) 1819 buflen += sg->length; 1820 1821 ata_sg_init(qc, sgl, n_elem); 1822 qc->nbytes = buflen; 1823 } 1824 1825 qc->private_data = &wait; 1826 qc->complete_fn = ata_qc_complete_internal; 1827 1828 ata_qc_issue(qc); 1829 1830 spin_unlock_irqrestore(ap->lock, flags); 1831 1832 if (!timeout) { 1833 if (ata_probe_timeout) 1834 timeout = ata_probe_timeout * 1000; 1835 else { 1836 timeout = ata_internal_cmd_timeout(dev, command); 1837 auto_timeout = 1; 1838 } 1839 } 1840 1841 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1842 1843 ata_port_flush_task(ap); 1844 1845 if (!rc) { 1846 spin_lock_irqsave(ap->lock, flags); 1847 1848 /* We're racing with irq here. If we lose, the 1849 * following test prevents us from completing the qc 1850 * twice. If we win, the port is frozen and will be 1851 * cleaned up by ->post_internal_cmd(). 1852 */ 1853 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1854 qc->err_mask |= AC_ERR_TIMEOUT; 1855 1856 if (ap->ops->error_handler) 1857 ata_port_freeze(ap); 1858 else 1859 ata_qc_complete(qc); 1860 1861 if (ata_msg_warn(ap)) 1862 ata_dev_printk(dev, KERN_WARNING, 1863 "qc timeout (cmd 0x%x)\n", command); 1864 } 1865 1866 spin_unlock_irqrestore(ap->lock, flags); 1867 } 1868 1869 /* do post_internal_cmd */ 1870 if (ap->ops->post_internal_cmd) 1871 ap->ops->post_internal_cmd(qc); 1872 1873 /* perform minimal error analysis */ 1874 if (qc->flags & ATA_QCFLAG_FAILED) { 1875 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1876 qc->err_mask |= AC_ERR_DEV; 1877 1878 if (!qc->err_mask) 1879 qc->err_mask |= AC_ERR_OTHER; 1880 1881 if (qc->err_mask & ~AC_ERR_OTHER) 1882 qc->err_mask &= ~AC_ERR_OTHER; 1883 } 1884 1885 /* finish up */ 1886 spin_lock_irqsave(ap->lock, flags); 1887 1888 *tf = qc->result_tf; 1889 err_mask = qc->err_mask; 1890 1891 ata_qc_free(qc); 1892 link->active_tag = preempted_tag; 1893 link->sactive = preempted_sactive; 1894 ap->qc_active = preempted_qc_active; 1895 ap->nr_active_links = preempted_nr_active_links; 1896 1897 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1898 * Until those drivers are fixed, we detect the condition 1899 * here, fail the command with AC_ERR_SYSTEM and reenable the 1900 * port. 1901 * 1902 * Note that this doesn't change any behavior as internal 1903 * command failure results in disabling the device in the 1904 * higher layer for LLDDs without new reset/EH callbacks. 1905 * 1906 * Kill the following code as soon as those drivers are fixed. 1907 */ 1908 if (ap->flags & ATA_FLAG_DISABLED) { 1909 err_mask |= AC_ERR_SYSTEM; 1910 ata_port_probe(ap); 1911 } 1912 1913 spin_unlock_irqrestore(ap->lock, flags); 1914 1915 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1916 ata_internal_cmd_timed_out(dev, command); 1917 1918 return err_mask; 1919 } 1920 1921 /** 1922 * ata_exec_internal - execute libata internal command 1923 * @dev: Device to which the command is sent 1924 * @tf: Taskfile registers for the command and the result 1925 * @cdb: CDB for packet command 1926 * @dma_dir: Data tranfer direction of the command 1927 * @buf: Data buffer of the command 1928 * @buflen: Length of data buffer 1929 * @timeout: Timeout in msecs (0 for default) 1930 * 1931 * Wrapper around ata_exec_internal_sg() which takes simple 1932 * buffer instead of sg list. 1933 * 1934 * LOCKING: 1935 * None. Should be called with kernel context, might sleep. 1936 * 1937 * RETURNS: 1938 * Zero on success, AC_ERR_* mask on failure 1939 */ 1940 unsigned ata_exec_internal(struct ata_device *dev, 1941 struct ata_taskfile *tf, const u8 *cdb, 1942 int dma_dir, void *buf, unsigned int buflen, 1943 unsigned long timeout) 1944 { 1945 struct scatterlist *psg = NULL, sg; 1946 unsigned int n_elem = 0; 1947 1948 if (dma_dir != DMA_NONE) { 1949 WARN_ON(!buf); 1950 sg_init_one(&sg, buf, buflen); 1951 psg = &sg; 1952 n_elem++; 1953 } 1954 1955 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1956 timeout); 1957 } 1958 1959 /** 1960 * ata_do_simple_cmd - execute simple internal command 1961 * @dev: Device to which the command is sent 1962 * @cmd: Opcode to execute 1963 * 1964 * Execute a 'simple' command, that only consists of the opcode 1965 * 'cmd' itself, without filling any other registers 1966 * 1967 * LOCKING: 1968 * Kernel thread context (may sleep). 1969 * 1970 * RETURNS: 1971 * Zero on success, AC_ERR_* mask on failure 1972 */ 1973 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1974 { 1975 struct ata_taskfile tf; 1976 1977 ata_tf_init(dev, &tf); 1978 1979 tf.command = cmd; 1980 tf.flags |= ATA_TFLAG_DEVICE; 1981 tf.protocol = ATA_PROT_NODATA; 1982 1983 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1984 } 1985 1986 /** 1987 * ata_pio_need_iordy - check if iordy needed 1988 * @adev: ATA device 1989 * 1990 * Check if the current speed of the device requires IORDY. Used 1991 * by various controllers for chip configuration. 1992 */ 1993 1994 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1995 { 1996 /* Controller doesn't support IORDY. Probably a pointless check 1997 as the caller should know this */ 1998 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1999 return 0; 2000 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 2001 if (ata_id_is_cfa(adev->id) 2002 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 2003 return 0; 2004 /* PIO3 and higher it is mandatory */ 2005 if (adev->pio_mode > XFER_PIO_2) 2006 return 1; 2007 /* We turn it on when possible */ 2008 if (ata_id_has_iordy(adev->id)) 2009 return 1; 2010 return 0; 2011 } 2012 2013 /** 2014 * ata_pio_mask_no_iordy - Return the non IORDY mask 2015 * @adev: ATA device 2016 * 2017 * Compute the highest mode possible if we are not using iordy. Return 2018 * -1 if no iordy mode is available. 2019 */ 2020 2021 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 2022 { 2023 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 2024 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 2025 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 2026 /* Is the speed faster than the drive allows non IORDY ? */ 2027 if (pio) { 2028 /* This is cycle times not frequency - watch the logic! */ 2029 if (pio > 240) /* PIO2 is 240nS per cycle */ 2030 return 3 << ATA_SHIFT_PIO; 2031 return 7 << ATA_SHIFT_PIO; 2032 } 2033 } 2034 return 3 << ATA_SHIFT_PIO; 2035 } 2036 2037 /** 2038 * ata_do_dev_read_id - default ID read method 2039 * @dev: device 2040 * @tf: proposed taskfile 2041 * @id: data buffer 2042 * 2043 * Issue the identify taskfile and hand back the buffer containing 2044 * identify data. For some RAID controllers and for pre ATA devices 2045 * this function is wrapped or replaced by the driver 2046 */ 2047 unsigned int ata_do_dev_read_id(struct ata_device *dev, 2048 struct ata_taskfile *tf, u16 *id) 2049 { 2050 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 2051 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 2052 } 2053 2054 /** 2055 * ata_dev_read_id - Read ID data from the specified device 2056 * @dev: target device 2057 * @p_class: pointer to class of the target device (may be changed) 2058 * @flags: ATA_READID_* flags 2059 * @id: buffer to read IDENTIFY data into 2060 * 2061 * Read ID data from the specified device. ATA_CMD_ID_ATA is 2062 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 2063 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 2064 * for pre-ATA4 drives. 2065 * 2066 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 2067 * now we abort if we hit that case. 2068 * 2069 * LOCKING: 2070 * Kernel thread context (may sleep) 2071 * 2072 * RETURNS: 2073 * 0 on success, -errno otherwise. 2074 */ 2075 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 2076 unsigned int flags, u16 *id) 2077 { 2078 struct ata_port *ap = dev->link->ap; 2079 unsigned int class = *p_class; 2080 struct ata_taskfile tf; 2081 unsigned int err_mask = 0; 2082 const char *reason; 2083 int may_fallback = 1, tried_spinup = 0; 2084 int rc; 2085 2086 if (ata_msg_ctl(ap)) 2087 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2088 2089 retry: 2090 ata_tf_init(dev, &tf); 2091 2092 switch (class) { 2093 case ATA_DEV_ATA: 2094 tf.command = ATA_CMD_ID_ATA; 2095 break; 2096 case ATA_DEV_ATAPI: 2097 tf.command = ATA_CMD_ID_ATAPI; 2098 break; 2099 default: 2100 rc = -ENODEV; 2101 reason = "unsupported class"; 2102 goto err_out; 2103 } 2104 2105 tf.protocol = ATA_PROT_PIO; 2106 2107 /* Some devices choke if TF registers contain garbage. Make 2108 * sure those are properly initialized. 2109 */ 2110 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 2111 2112 /* Device presence detection is unreliable on some 2113 * controllers. Always poll IDENTIFY if available. 2114 */ 2115 tf.flags |= ATA_TFLAG_POLLING; 2116 2117 if (ap->ops->read_id) 2118 err_mask = ap->ops->read_id(dev, &tf, id); 2119 else 2120 err_mask = ata_do_dev_read_id(dev, &tf, id); 2121 2122 if (err_mask) { 2123 if (err_mask & AC_ERR_NODEV_HINT) { 2124 ata_dev_printk(dev, KERN_DEBUG, 2125 "NODEV after polling detection\n"); 2126 return -ENOENT; 2127 } 2128 2129 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 2130 /* Device or controller might have reported 2131 * the wrong device class. Give a shot at the 2132 * other IDENTIFY if the current one is 2133 * aborted by the device. 2134 */ 2135 if (may_fallback) { 2136 may_fallback = 0; 2137 2138 if (class == ATA_DEV_ATA) 2139 class = ATA_DEV_ATAPI; 2140 else 2141 class = ATA_DEV_ATA; 2142 goto retry; 2143 } 2144 2145 /* Control reaches here iff the device aborted 2146 * both flavors of IDENTIFYs which happens 2147 * sometimes with phantom devices. 2148 */ 2149 ata_dev_printk(dev, KERN_DEBUG, 2150 "both IDENTIFYs aborted, assuming NODEV\n"); 2151 return -ENOENT; 2152 } 2153 2154 rc = -EIO; 2155 reason = "I/O error"; 2156 goto err_out; 2157 } 2158 2159 /* Falling back doesn't make sense if ID data was read 2160 * successfully at least once. 2161 */ 2162 may_fallback = 0; 2163 2164 swap_buf_le16(id, ATA_ID_WORDS); 2165 2166 /* sanity check */ 2167 rc = -EINVAL; 2168 reason = "device reports invalid type"; 2169 2170 if (class == ATA_DEV_ATA) { 2171 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2172 goto err_out; 2173 } else { 2174 if (ata_id_is_ata(id)) 2175 goto err_out; 2176 } 2177 2178 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2179 tried_spinup = 1; 2180 /* 2181 * Drive powered-up in standby mode, and requires a specific 2182 * SET_FEATURES spin-up subcommand before it will accept 2183 * anything other than the original IDENTIFY command. 2184 */ 2185 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2186 if (err_mask && id[2] != 0x738c) { 2187 rc = -EIO; 2188 reason = "SPINUP failed"; 2189 goto err_out; 2190 } 2191 /* 2192 * If the drive initially returned incomplete IDENTIFY info, 2193 * we now must reissue the IDENTIFY command. 2194 */ 2195 if (id[2] == 0x37c8) 2196 goto retry; 2197 } 2198 2199 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2200 /* 2201 * The exact sequence expected by certain pre-ATA4 drives is: 2202 * SRST RESET 2203 * IDENTIFY (optional in early ATA) 2204 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2205 * anything else.. 2206 * Some drives were very specific about that exact sequence. 2207 * 2208 * Note that ATA4 says lba is mandatory so the second check 2209 * shoud never trigger. 2210 */ 2211 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2212 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2213 if (err_mask) { 2214 rc = -EIO; 2215 reason = "INIT_DEV_PARAMS failed"; 2216 goto err_out; 2217 } 2218 2219 /* current CHS translation info (id[53-58]) might be 2220 * changed. reread the identify device info. 2221 */ 2222 flags &= ~ATA_READID_POSTRESET; 2223 goto retry; 2224 } 2225 } 2226 2227 *p_class = class; 2228 2229 return 0; 2230 2231 err_out: 2232 if (ata_msg_warn(ap)) 2233 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2234 "(%s, err_mask=0x%x)\n", reason, err_mask); 2235 return rc; 2236 } 2237 2238 static int ata_do_link_spd_horkage(struct ata_device *dev) 2239 { 2240 struct ata_link *plink = ata_dev_phys_link(dev); 2241 u32 target, target_limit; 2242 2243 if (!sata_scr_valid(plink)) 2244 return 0; 2245 2246 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2247 target = 1; 2248 else 2249 return 0; 2250 2251 target_limit = (1 << target) - 1; 2252 2253 /* if already on stricter limit, no need to push further */ 2254 if (plink->sata_spd_limit <= target_limit) 2255 return 0; 2256 2257 plink->sata_spd_limit = target_limit; 2258 2259 /* Request another EH round by returning -EAGAIN if link is 2260 * going faster than the target speed. Forward progress is 2261 * guaranteed by setting sata_spd_limit to target_limit above. 2262 */ 2263 if (plink->sata_spd > target) { 2264 ata_dev_printk(dev, KERN_INFO, 2265 "applying link speed limit horkage to %s\n", 2266 sata_spd_string(target)); 2267 return -EAGAIN; 2268 } 2269 return 0; 2270 } 2271 2272 static inline u8 ata_dev_knobble(struct ata_device *dev) 2273 { 2274 struct ata_port *ap = dev->link->ap; 2275 2276 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2277 return 0; 2278 2279 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2280 } 2281 2282 static void ata_dev_config_ncq(struct ata_device *dev, 2283 char *desc, size_t desc_sz) 2284 { 2285 struct ata_port *ap = dev->link->ap; 2286 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2287 2288 if (!ata_id_has_ncq(dev->id)) { 2289 desc[0] = '\0'; 2290 return; 2291 } 2292 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2293 snprintf(desc, desc_sz, "NCQ (not used)"); 2294 return; 2295 } 2296 if (ap->flags & ATA_FLAG_NCQ) { 2297 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2298 dev->flags |= ATA_DFLAG_NCQ; 2299 } 2300 2301 if (hdepth >= ddepth) 2302 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 2303 else 2304 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 2305 } 2306 2307 /** 2308 * ata_dev_configure - Configure the specified ATA/ATAPI device 2309 * @dev: Target device to configure 2310 * 2311 * Configure @dev according to @dev->id. Generic and low-level 2312 * driver specific fixups are also applied. 2313 * 2314 * LOCKING: 2315 * Kernel thread context (may sleep) 2316 * 2317 * RETURNS: 2318 * 0 on success, -errno otherwise 2319 */ 2320 int ata_dev_configure(struct ata_device *dev) 2321 { 2322 struct ata_port *ap = dev->link->ap; 2323 struct ata_eh_context *ehc = &dev->link->eh_context; 2324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2325 const u16 *id = dev->id; 2326 unsigned long xfer_mask; 2327 char revbuf[7]; /* XYZ-99\0 */ 2328 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2329 char modelbuf[ATA_ID_PROD_LEN+1]; 2330 int rc; 2331 2332 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2333 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2334 __func__); 2335 return 0; 2336 } 2337 2338 if (ata_msg_probe(ap)) 2339 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2340 2341 /* set horkage */ 2342 dev->horkage |= ata_dev_blacklisted(dev); 2343 ata_force_horkage(dev); 2344 2345 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2346 ata_dev_printk(dev, KERN_INFO, 2347 "unsupported device, disabling\n"); 2348 ata_dev_disable(dev); 2349 return 0; 2350 } 2351 2352 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2353 dev->class == ATA_DEV_ATAPI) { 2354 ata_dev_printk(dev, KERN_WARNING, 2355 "WARNING: ATAPI is %s, device ignored.\n", 2356 atapi_enabled ? "not supported with this driver" 2357 : "disabled"); 2358 ata_dev_disable(dev); 2359 return 0; 2360 } 2361 2362 rc = ata_do_link_spd_horkage(dev); 2363 if (rc) 2364 return rc; 2365 2366 /* let ACPI work its magic */ 2367 rc = ata_acpi_on_devcfg(dev); 2368 if (rc) 2369 return rc; 2370 2371 /* massage HPA, do it early as it might change IDENTIFY data */ 2372 rc = ata_hpa_resize(dev); 2373 if (rc) 2374 return rc; 2375 2376 /* print device capabilities */ 2377 if (ata_msg_probe(ap)) 2378 ata_dev_printk(dev, KERN_DEBUG, 2379 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2380 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2381 __func__, 2382 id[49], id[82], id[83], id[84], 2383 id[85], id[86], id[87], id[88]); 2384 2385 /* initialize to-be-configured parameters */ 2386 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2387 dev->max_sectors = 0; 2388 dev->cdb_len = 0; 2389 dev->n_sectors = 0; 2390 dev->cylinders = 0; 2391 dev->heads = 0; 2392 dev->sectors = 0; 2393 dev->multi_count = 0; 2394 2395 /* 2396 * common ATA, ATAPI feature tests 2397 */ 2398 2399 /* find max transfer mode; for printk only */ 2400 xfer_mask = ata_id_xfermask(id); 2401 2402 if (ata_msg_probe(ap)) 2403 ata_dump_id(id); 2404 2405 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2406 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2407 sizeof(fwrevbuf)); 2408 2409 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2410 sizeof(modelbuf)); 2411 2412 /* ATA-specific feature tests */ 2413 if (dev->class == ATA_DEV_ATA) { 2414 if (ata_id_is_cfa(id)) { 2415 if (id[162] & 1) /* CPRM may make this media unusable */ 2416 ata_dev_printk(dev, KERN_WARNING, 2417 "supports DRM functions and may " 2418 "not be fully accessable.\n"); 2419 snprintf(revbuf, 7, "CFA"); 2420 } else { 2421 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2422 /* Warn the user if the device has TPM extensions */ 2423 if (ata_id_has_tpm(id)) 2424 ata_dev_printk(dev, KERN_WARNING, 2425 "supports DRM functions and may " 2426 "not be fully accessable.\n"); 2427 } 2428 2429 dev->n_sectors = ata_id_n_sectors(id); 2430 2431 /* get current R/W Multiple count setting */ 2432 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2433 unsigned int max = dev->id[47] & 0xff; 2434 unsigned int cnt = dev->id[59] & 0xff; 2435 /* only recognize/allow powers of two here */ 2436 if (is_power_of_2(max) && is_power_of_2(cnt)) 2437 if (cnt <= max) 2438 dev->multi_count = cnt; 2439 } 2440 2441 if (ata_id_has_lba(id)) { 2442 const char *lba_desc; 2443 char ncq_desc[20]; 2444 2445 lba_desc = "LBA"; 2446 dev->flags |= ATA_DFLAG_LBA; 2447 if (ata_id_has_lba48(id)) { 2448 dev->flags |= ATA_DFLAG_LBA48; 2449 lba_desc = "LBA48"; 2450 2451 if (dev->n_sectors >= (1UL << 28) && 2452 ata_id_has_flush_ext(id)) 2453 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2454 } 2455 2456 /* config NCQ */ 2457 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2458 2459 /* print device info to dmesg */ 2460 if (ata_msg_drv(ap) && print_info) { 2461 ata_dev_printk(dev, KERN_INFO, 2462 "%s: %s, %s, max %s\n", 2463 revbuf, modelbuf, fwrevbuf, 2464 ata_mode_string(xfer_mask)); 2465 ata_dev_printk(dev, KERN_INFO, 2466 "%Lu sectors, multi %u: %s %s\n", 2467 (unsigned long long)dev->n_sectors, 2468 dev->multi_count, lba_desc, ncq_desc); 2469 } 2470 } else { 2471 /* CHS */ 2472 2473 /* Default translation */ 2474 dev->cylinders = id[1]; 2475 dev->heads = id[3]; 2476 dev->sectors = id[6]; 2477 2478 if (ata_id_current_chs_valid(id)) { 2479 /* Current CHS translation is valid. */ 2480 dev->cylinders = id[54]; 2481 dev->heads = id[55]; 2482 dev->sectors = id[56]; 2483 } 2484 2485 /* print device info to dmesg */ 2486 if (ata_msg_drv(ap) && print_info) { 2487 ata_dev_printk(dev, KERN_INFO, 2488 "%s: %s, %s, max %s\n", 2489 revbuf, modelbuf, fwrevbuf, 2490 ata_mode_string(xfer_mask)); 2491 ata_dev_printk(dev, KERN_INFO, 2492 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2493 (unsigned long long)dev->n_sectors, 2494 dev->multi_count, dev->cylinders, 2495 dev->heads, dev->sectors); 2496 } 2497 } 2498 2499 dev->cdb_len = 16; 2500 } 2501 2502 /* ATAPI-specific feature tests */ 2503 else if (dev->class == ATA_DEV_ATAPI) { 2504 const char *cdb_intr_string = ""; 2505 const char *atapi_an_string = ""; 2506 const char *dma_dir_string = ""; 2507 u32 sntf; 2508 2509 rc = atapi_cdb_len(id); 2510 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2511 if (ata_msg_warn(ap)) 2512 ata_dev_printk(dev, KERN_WARNING, 2513 "unsupported CDB len\n"); 2514 rc = -EINVAL; 2515 goto err_out_nosup; 2516 } 2517 dev->cdb_len = (unsigned int) rc; 2518 2519 /* Enable ATAPI AN if both the host and device have 2520 * the support. If PMP is attached, SNTF is required 2521 * to enable ATAPI AN to discern between PHY status 2522 * changed notifications and ATAPI ANs. 2523 */ 2524 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2525 (!sata_pmp_attached(ap) || 2526 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2527 unsigned int err_mask; 2528 2529 /* issue SET feature command to turn this on */ 2530 err_mask = ata_dev_set_feature(dev, 2531 SETFEATURES_SATA_ENABLE, SATA_AN); 2532 if (err_mask) 2533 ata_dev_printk(dev, KERN_ERR, 2534 "failed to enable ATAPI AN " 2535 "(err_mask=0x%x)\n", err_mask); 2536 else { 2537 dev->flags |= ATA_DFLAG_AN; 2538 atapi_an_string = ", ATAPI AN"; 2539 } 2540 } 2541 2542 if (ata_id_cdb_intr(dev->id)) { 2543 dev->flags |= ATA_DFLAG_CDB_INTR; 2544 cdb_intr_string = ", CDB intr"; 2545 } 2546 2547 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2548 dev->flags |= ATA_DFLAG_DMADIR; 2549 dma_dir_string = ", DMADIR"; 2550 } 2551 2552 /* print device info to dmesg */ 2553 if (ata_msg_drv(ap) && print_info) 2554 ata_dev_printk(dev, KERN_INFO, 2555 "ATAPI: %s, %s, max %s%s%s%s\n", 2556 modelbuf, fwrevbuf, 2557 ata_mode_string(xfer_mask), 2558 cdb_intr_string, atapi_an_string, 2559 dma_dir_string); 2560 } 2561 2562 /* determine max_sectors */ 2563 dev->max_sectors = ATA_MAX_SECTORS; 2564 if (dev->flags & ATA_DFLAG_LBA48) 2565 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2566 2567 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2568 if (ata_id_has_hipm(dev->id)) 2569 dev->flags |= ATA_DFLAG_HIPM; 2570 if (ata_id_has_dipm(dev->id)) 2571 dev->flags |= ATA_DFLAG_DIPM; 2572 } 2573 2574 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2575 200 sectors */ 2576 if (ata_dev_knobble(dev)) { 2577 if (ata_msg_drv(ap) && print_info) 2578 ata_dev_printk(dev, KERN_INFO, 2579 "applying bridge limits\n"); 2580 dev->udma_mask &= ATA_UDMA5; 2581 dev->max_sectors = ATA_MAX_SECTORS; 2582 } 2583 2584 if ((dev->class == ATA_DEV_ATAPI) && 2585 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2586 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2587 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2588 } 2589 2590 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2591 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2592 dev->max_sectors); 2593 2594 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2595 dev->horkage |= ATA_HORKAGE_IPM; 2596 2597 /* reset link pm_policy for this port to no pm */ 2598 ap->pm_policy = MAX_PERFORMANCE; 2599 } 2600 2601 if (ap->ops->dev_config) 2602 ap->ops->dev_config(dev); 2603 2604 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2605 /* Let the user know. We don't want to disallow opens for 2606 rescue purposes, or in case the vendor is just a blithering 2607 idiot. Do this after the dev_config call as some controllers 2608 with buggy firmware may want to avoid reporting false device 2609 bugs */ 2610 2611 if (print_info) { 2612 ata_dev_printk(dev, KERN_WARNING, 2613 "Drive reports diagnostics failure. This may indicate a drive\n"); 2614 ata_dev_printk(dev, KERN_WARNING, 2615 "fault or invalid emulation. Contact drive vendor for information.\n"); 2616 } 2617 } 2618 2619 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2620 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires " 2621 "firmware update to be fully functional.\n"); 2622 ata_dev_printk(dev, KERN_WARNING, " contact the vendor " 2623 "or visit http://ata.wiki.kernel.org.\n"); 2624 } 2625 2626 return 0; 2627 2628 err_out_nosup: 2629 if (ata_msg_probe(ap)) 2630 ata_dev_printk(dev, KERN_DEBUG, 2631 "%s: EXIT, err\n", __func__); 2632 return rc; 2633 } 2634 2635 /** 2636 * ata_cable_40wire - return 40 wire cable type 2637 * @ap: port 2638 * 2639 * Helper method for drivers which want to hardwire 40 wire cable 2640 * detection. 2641 */ 2642 2643 int ata_cable_40wire(struct ata_port *ap) 2644 { 2645 return ATA_CBL_PATA40; 2646 } 2647 2648 /** 2649 * ata_cable_80wire - return 80 wire cable type 2650 * @ap: port 2651 * 2652 * Helper method for drivers which want to hardwire 80 wire cable 2653 * detection. 2654 */ 2655 2656 int ata_cable_80wire(struct ata_port *ap) 2657 { 2658 return ATA_CBL_PATA80; 2659 } 2660 2661 /** 2662 * ata_cable_unknown - return unknown PATA cable. 2663 * @ap: port 2664 * 2665 * Helper method for drivers which have no PATA cable detection. 2666 */ 2667 2668 int ata_cable_unknown(struct ata_port *ap) 2669 { 2670 return ATA_CBL_PATA_UNK; 2671 } 2672 2673 /** 2674 * ata_cable_ignore - return ignored PATA cable. 2675 * @ap: port 2676 * 2677 * Helper method for drivers which don't use cable type to limit 2678 * transfer mode. 2679 */ 2680 int ata_cable_ignore(struct ata_port *ap) 2681 { 2682 return ATA_CBL_PATA_IGN; 2683 } 2684 2685 /** 2686 * ata_cable_sata - return SATA cable type 2687 * @ap: port 2688 * 2689 * Helper method for drivers which have SATA cables 2690 */ 2691 2692 int ata_cable_sata(struct ata_port *ap) 2693 { 2694 return ATA_CBL_SATA; 2695 } 2696 2697 /** 2698 * ata_bus_probe - Reset and probe ATA bus 2699 * @ap: Bus to probe 2700 * 2701 * Master ATA bus probing function. Initiates a hardware-dependent 2702 * bus reset, then attempts to identify any devices found on 2703 * the bus. 2704 * 2705 * LOCKING: 2706 * PCI/etc. bus probe sem. 2707 * 2708 * RETURNS: 2709 * Zero on success, negative errno otherwise. 2710 */ 2711 2712 int ata_bus_probe(struct ata_port *ap) 2713 { 2714 unsigned int classes[ATA_MAX_DEVICES]; 2715 int tries[ATA_MAX_DEVICES]; 2716 int rc; 2717 struct ata_device *dev; 2718 2719 ata_port_probe(ap); 2720 2721 ata_for_each_dev(dev, &ap->link, ALL) 2722 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2723 2724 retry: 2725 ata_for_each_dev(dev, &ap->link, ALL) { 2726 /* If we issue an SRST then an ATA drive (not ATAPI) 2727 * may change configuration and be in PIO0 timing. If 2728 * we do a hard reset (or are coming from power on) 2729 * this is true for ATA or ATAPI. Until we've set a 2730 * suitable controller mode we should not touch the 2731 * bus as we may be talking too fast. 2732 */ 2733 dev->pio_mode = XFER_PIO_0; 2734 2735 /* If the controller has a pio mode setup function 2736 * then use it to set the chipset to rights. Don't 2737 * touch the DMA setup as that will be dealt with when 2738 * configuring devices. 2739 */ 2740 if (ap->ops->set_piomode) 2741 ap->ops->set_piomode(ap, dev); 2742 } 2743 2744 /* reset and determine device classes */ 2745 ap->ops->phy_reset(ap); 2746 2747 ata_for_each_dev(dev, &ap->link, ALL) { 2748 if (!(ap->flags & ATA_FLAG_DISABLED) && 2749 dev->class != ATA_DEV_UNKNOWN) 2750 classes[dev->devno] = dev->class; 2751 else 2752 classes[dev->devno] = ATA_DEV_NONE; 2753 2754 dev->class = ATA_DEV_UNKNOWN; 2755 } 2756 2757 ata_port_probe(ap); 2758 2759 /* read IDENTIFY page and configure devices. We have to do the identify 2760 specific sequence bass-ackwards so that PDIAG- is released by 2761 the slave device */ 2762 2763 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2764 if (tries[dev->devno]) 2765 dev->class = classes[dev->devno]; 2766 2767 if (!ata_dev_enabled(dev)) 2768 continue; 2769 2770 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2771 dev->id); 2772 if (rc) 2773 goto fail; 2774 } 2775 2776 /* Now ask for the cable type as PDIAG- should have been released */ 2777 if (ap->ops->cable_detect) 2778 ap->cbl = ap->ops->cable_detect(ap); 2779 2780 /* We may have SATA bridge glue hiding here irrespective of 2781 * the reported cable types and sensed types. When SATA 2782 * drives indicate we have a bridge, we don't know which end 2783 * of the link the bridge is which is a problem. 2784 */ 2785 ata_for_each_dev(dev, &ap->link, ENABLED) 2786 if (ata_id_is_sata(dev->id)) 2787 ap->cbl = ATA_CBL_SATA; 2788 2789 /* After the identify sequence we can now set up the devices. We do 2790 this in the normal order so that the user doesn't get confused */ 2791 2792 ata_for_each_dev(dev, &ap->link, ENABLED) { 2793 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2794 rc = ata_dev_configure(dev); 2795 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2796 if (rc) 2797 goto fail; 2798 } 2799 2800 /* configure transfer mode */ 2801 rc = ata_set_mode(&ap->link, &dev); 2802 if (rc) 2803 goto fail; 2804 2805 ata_for_each_dev(dev, &ap->link, ENABLED) 2806 return 0; 2807 2808 /* no device present, disable port */ 2809 ata_port_disable(ap); 2810 return -ENODEV; 2811 2812 fail: 2813 tries[dev->devno]--; 2814 2815 switch (rc) { 2816 case -EINVAL: 2817 /* eeek, something went very wrong, give up */ 2818 tries[dev->devno] = 0; 2819 break; 2820 2821 case -ENODEV: 2822 /* give it just one more chance */ 2823 tries[dev->devno] = min(tries[dev->devno], 1); 2824 case -EIO: 2825 if (tries[dev->devno] == 1) { 2826 /* This is the last chance, better to slow 2827 * down than lose it. 2828 */ 2829 sata_down_spd_limit(&ap->link, 0); 2830 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2831 } 2832 } 2833 2834 if (!tries[dev->devno]) 2835 ata_dev_disable(dev); 2836 2837 goto retry; 2838 } 2839 2840 /** 2841 * ata_port_probe - Mark port as enabled 2842 * @ap: Port for which we indicate enablement 2843 * 2844 * Modify @ap data structure such that the system 2845 * thinks that the entire port is enabled. 2846 * 2847 * LOCKING: host lock, or some other form of 2848 * serialization. 2849 */ 2850 2851 void ata_port_probe(struct ata_port *ap) 2852 { 2853 ap->flags &= ~ATA_FLAG_DISABLED; 2854 } 2855 2856 /** 2857 * sata_print_link_status - Print SATA link status 2858 * @link: SATA link to printk link status about 2859 * 2860 * This function prints link speed and status of a SATA link. 2861 * 2862 * LOCKING: 2863 * None. 2864 */ 2865 static void sata_print_link_status(struct ata_link *link) 2866 { 2867 u32 sstatus, scontrol, tmp; 2868 2869 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2870 return; 2871 sata_scr_read(link, SCR_CONTROL, &scontrol); 2872 2873 if (ata_phys_link_online(link)) { 2874 tmp = (sstatus >> 4) & 0xf; 2875 ata_link_printk(link, KERN_INFO, 2876 "SATA link up %s (SStatus %X SControl %X)\n", 2877 sata_spd_string(tmp), sstatus, scontrol); 2878 } else { 2879 ata_link_printk(link, KERN_INFO, 2880 "SATA link down (SStatus %X SControl %X)\n", 2881 sstatus, scontrol); 2882 } 2883 } 2884 2885 /** 2886 * ata_dev_pair - return other device on cable 2887 * @adev: device 2888 * 2889 * Obtain the other device on the same cable, or if none is 2890 * present NULL is returned 2891 */ 2892 2893 struct ata_device *ata_dev_pair(struct ata_device *adev) 2894 { 2895 struct ata_link *link = adev->link; 2896 struct ata_device *pair = &link->device[1 - adev->devno]; 2897 if (!ata_dev_enabled(pair)) 2898 return NULL; 2899 return pair; 2900 } 2901 2902 /** 2903 * ata_port_disable - Disable port. 2904 * @ap: Port to be disabled. 2905 * 2906 * Modify @ap data structure such that the system 2907 * thinks that the entire port is disabled, and should 2908 * never attempt to probe or communicate with devices 2909 * on this port. 2910 * 2911 * LOCKING: host lock, or some other form of 2912 * serialization. 2913 */ 2914 2915 void ata_port_disable(struct ata_port *ap) 2916 { 2917 ap->link.device[0].class = ATA_DEV_NONE; 2918 ap->link.device[1].class = ATA_DEV_NONE; 2919 ap->flags |= ATA_FLAG_DISABLED; 2920 } 2921 2922 /** 2923 * sata_down_spd_limit - adjust SATA spd limit downward 2924 * @link: Link to adjust SATA spd limit for 2925 * @spd_limit: Additional limit 2926 * 2927 * Adjust SATA spd limit of @link downward. Note that this 2928 * function only adjusts the limit. The change must be applied 2929 * using sata_set_spd(). 2930 * 2931 * If @spd_limit is non-zero, the speed is limited to equal to or 2932 * lower than @spd_limit if such speed is supported. If 2933 * @spd_limit is slower than any supported speed, only the lowest 2934 * supported speed is allowed. 2935 * 2936 * LOCKING: 2937 * Inherited from caller. 2938 * 2939 * RETURNS: 2940 * 0 on success, negative errno on failure 2941 */ 2942 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2943 { 2944 u32 sstatus, spd, mask; 2945 int rc, bit; 2946 2947 if (!sata_scr_valid(link)) 2948 return -EOPNOTSUPP; 2949 2950 /* If SCR can be read, use it to determine the current SPD. 2951 * If not, use cached value in link->sata_spd. 2952 */ 2953 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2954 if (rc == 0 && ata_sstatus_online(sstatus)) 2955 spd = (sstatus >> 4) & 0xf; 2956 else 2957 spd = link->sata_spd; 2958 2959 mask = link->sata_spd_limit; 2960 if (mask <= 1) 2961 return -EINVAL; 2962 2963 /* unconditionally mask off the highest bit */ 2964 bit = fls(mask) - 1; 2965 mask &= ~(1 << bit); 2966 2967 /* Mask off all speeds higher than or equal to the current 2968 * one. Force 1.5Gbps if current SPD is not available. 2969 */ 2970 if (spd > 1) 2971 mask &= (1 << (spd - 1)) - 1; 2972 else 2973 mask &= 1; 2974 2975 /* were we already at the bottom? */ 2976 if (!mask) 2977 return -EINVAL; 2978 2979 if (spd_limit) { 2980 if (mask & ((1 << spd_limit) - 1)) 2981 mask &= (1 << spd_limit) - 1; 2982 else { 2983 bit = ffs(mask) - 1; 2984 mask = 1 << bit; 2985 } 2986 } 2987 2988 link->sata_spd_limit = mask; 2989 2990 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2991 sata_spd_string(fls(mask))); 2992 2993 return 0; 2994 } 2995 2996 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2997 { 2998 struct ata_link *host_link = &link->ap->link; 2999 u32 limit, target, spd; 3000 3001 limit = link->sata_spd_limit; 3002 3003 /* Don't configure downstream link faster than upstream link. 3004 * It doesn't speed up anything and some PMPs choke on such 3005 * configuration. 3006 */ 3007 if (!ata_is_host_link(link) && host_link->sata_spd) 3008 limit &= (1 << host_link->sata_spd) - 1; 3009 3010 if (limit == UINT_MAX) 3011 target = 0; 3012 else 3013 target = fls(limit); 3014 3015 spd = (*scontrol >> 4) & 0xf; 3016 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 3017 3018 return spd != target; 3019 } 3020 3021 /** 3022 * sata_set_spd_needed - is SATA spd configuration needed 3023 * @link: Link in question 3024 * 3025 * Test whether the spd limit in SControl matches 3026 * @link->sata_spd_limit. This function is used to determine 3027 * whether hardreset is necessary to apply SATA spd 3028 * configuration. 3029 * 3030 * LOCKING: 3031 * Inherited from caller. 3032 * 3033 * RETURNS: 3034 * 1 if SATA spd configuration is needed, 0 otherwise. 3035 */ 3036 static int sata_set_spd_needed(struct ata_link *link) 3037 { 3038 u32 scontrol; 3039 3040 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3041 return 1; 3042 3043 return __sata_set_spd_needed(link, &scontrol); 3044 } 3045 3046 /** 3047 * sata_set_spd - set SATA spd according to spd limit 3048 * @link: Link to set SATA spd for 3049 * 3050 * Set SATA spd of @link according to sata_spd_limit. 3051 * 3052 * LOCKING: 3053 * Inherited from caller. 3054 * 3055 * RETURNS: 3056 * 0 if spd doesn't need to be changed, 1 if spd has been 3057 * changed. Negative errno if SCR registers are inaccessible. 3058 */ 3059 int sata_set_spd(struct ata_link *link) 3060 { 3061 u32 scontrol; 3062 int rc; 3063 3064 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3065 return rc; 3066 3067 if (!__sata_set_spd_needed(link, &scontrol)) 3068 return 0; 3069 3070 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3071 return rc; 3072 3073 return 1; 3074 } 3075 3076 /* 3077 * This mode timing computation functionality is ported over from 3078 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3079 */ 3080 /* 3081 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3082 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3083 * for UDMA6, which is currently supported only by Maxtor drives. 3084 * 3085 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3086 */ 3087 3088 static const struct ata_timing ata_timing[] = { 3089 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3090 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3091 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3092 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3093 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3094 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3095 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3096 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3097 3098 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3099 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3100 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3101 3102 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3103 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3104 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3105 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3106 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3107 3108 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3109 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3110 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3111 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3112 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3113 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3114 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3115 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3116 3117 { 0xFF } 3118 }; 3119 3120 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3121 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 3122 3123 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3124 { 3125 q->setup = EZ(t->setup * 1000, T); 3126 q->act8b = EZ(t->act8b * 1000, T); 3127 q->rec8b = EZ(t->rec8b * 1000, T); 3128 q->cyc8b = EZ(t->cyc8b * 1000, T); 3129 q->active = EZ(t->active * 1000, T); 3130 q->recover = EZ(t->recover * 1000, T); 3131 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 3132 q->cycle = EZ(t->cycle * 1000, T); 3133 q->udma = EZ(t->udma * 1000, UT); 3134 } 3135 3136 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3137 struct ata_timing *m, unsigned int what) 3138 { 3139 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3140 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3141 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3142 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3143 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3144 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3145 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3146 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3147 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3148 } 3149 3150 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3151 { 3152 const struct ata_timing *t = ata_timing; 3153 3154 while (xfer_mode > t->mode) 3155 t++; 3156 3157 if (xfer_mode == t->mode) 3158 return t; 3159 return NULL; 3160 } 3161 3162 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3163 struct ata_timing *t, int T, int UT) 3164 { 3165 const struct ata_timing *s; 3166 struct ata_timing p; 3167 3168 /* 3169 * Find the mode. 3170 */ 3171 3172 if (!(s = ata_timing_find_mode(speed))) 3173 return -EINVAL; 3174 3175 memcpy(t, s, sizeof(*s)); 3176 3177 /* 3178 * If the drive is an EIDE drive, it can tell us it needs extended 3179 * PIO/MW_DMA cycle timing. 3180 */ 3181 3182 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3183 memset(&p, 0, sizeof(p)); 3184 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 3185 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 3186 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 3187 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 3188 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 3189 } 3190 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3191 } 3192 3193 /* 3194 * Convert the timing to bus clock counts. 3195 */ 3196 3197 ata_timing_quantize(t, t, T, UT); 3198 3199 /* 3200 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3201 * S.M.A.R.T * and some other commands. We have to ensure that the 3202 * DMA cycle timing is slower/equal than the fastest PIO timing. 3203 */ 3204 3205 if (speed > XFER_PIO_6) { 3206 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3207 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3208 } 3209 3210 /* 3211 * Lengthen active & recovery time so that cycle time is correct. 3212 */ 3213 3214 if (t->act8b + t->rec8b < t->cyc8b) { 3215 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3216 t->rec8b = t->cyc8b - t->act8b; 3217 } 3218 3219 if (t->active + t->recover < t->cycle) { 3220 t->active += (t->cycle - (t->active + t->recover)) / 2; 3221 t->recover = t->cycle - t->active; 3222 } 3223 3224 /* In a few cases quantisation may produce enough errors to 3225 leave t->cycle too low for the sum of active and recovery 3226 if so we must correct this */ 3227 if (t->active + t->recover > t->cycle) 3228 t->cycle = t->active + t->recover; 3229 3230 return 0; 3231 } 3232 3233 /** 3234 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3235 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3236 * @cycle: cycle duration in ns 3237 * 3238 * Return matching xfer mode for @cycle. The returned mode is of 3239 * the transfer type specified by @xfer_shift. If @cycle is too 3240 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3241 * than the fastest known mode, the fasted mode is returned. 3242 * 3243 * LOCKING: 3244 * None. 3245 * 3246 * RETURNS: 3247 * Matching xfer_mode, 0xff if no match found. 3248 */ 3249 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3250 { 3251 u8 base_mode = 0xff, last_mode = 0xff; 3252 const struct ata_xfer_ent *ent; 3253 const struct ata_timing *t; 3254 3255 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3256 if (ent->shift == xfer_shift) 3257 base_mode = ent->base; 3258 3259 for (t = ata_timing_find_mode(base_mode); 3260 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3261 unsigned short this_cycle; 3262 3263 switch (xfer_shift) { 3264 case ATA_SHIFT_PIO: 3265 case ATA_SHIFT_MWDMA: 3266 this_cycle = t->cycle; 3267 break; 3268 case ATA_SHIFT_UDMA: 3269 this_cycle = t->udma; 3270 break; 3271 default: 3272 return 0xff; 3273 } 3274 3275 if (cycle > this_cycle) 3276 break; 3277 3278 last_mode = t->mode; 3279 } 3280 3281 return last_mode; 3282 } 3283 3284 /** 3285 * ata_down_xfermask_limit - adjust dev xfer masks downward 3286 * @dev: Device to adjust xfer masks 3287 * @sel: ATA_DNXFER_* selector 3288 * 3289 * Adjust xfer masks of @dev downward. Note that this function 3290 * does not apply the change. Invoking ata_set_mode() afterwards 3291 * will apply the limit. 3292 * 3293 * LOCKING: 3294 * Inherited from caller. 3295 * 3296 * RETURNS: 3297 * 0 on success, negative errno on failure 3298 */ 3299 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3300 { 3301 char buf[32]; 3302 unsigned long orig_mask, xfer_mask; 3303 unsigned long pio_mask, mwdma_mask, udma_mask; 3304 int quiet, highbit; 3305 3306 quiet = !!(sel & ATA_DNXFER_QUIET); 3307 sel &= ~ATA_DNXFER_QUIET; 3308 3309 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3310 dev->mwdma_mask, 3311 dev->udma_mask); 3312 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3313 3314 switch (sel) { 3315 case ATA_DNXFER_PIO: 3316 highbit = fls(pio_mask) - 1; 3317 pio_mask &= ~(1 << highbit); 3318 break; 3319 3320 case ATA_DNXFER_DMA: 3321 if (udma_mask) { 3322 highbit = fls(udma_mask) - 1; 3323 udma_mask &= ~(1 << highbit); 3324 if (!udma_mask) 3325 return -ENOENT; 3326 } else if (mwdma_mask) { 3327 highbit = fls(mwdma_mask) - 1; 3328 mwdma_mask &= ~(1 << highbit); 3329 if (!mwdma_mask) 3330 return -ENOENT; 3331 } 3332 break; 3333 3334 case ATA_DNXFER_40C: 3335 udma_mask &= ATA_UDMA_MASK_40C; 3336 break; 3337 3338 case ATA_DNXFER_FORCE_PIO0: 3339 pio_mask &= 1; 3340 case ATA_DNXFER_FORCE_PIO: 3341 mwdma_mask = 0; 3342 udma_mask = 0; 3343 break; 3344 3345 default: 3346 BUG(); 3347 } 3348 3349 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3350 3351 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3352 return -ENOENT; 3353 3354 if (!quiet) { 3355 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3356 snprintf(buf, sizeof(buf), "%s:%s", 3357 ata_mode_string(xfer_mask), 3358 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3359 else 3360 snprintf(buf, sizeof(buf), "%s", 3361 ata_mode_string(xfer_mask)); 3362 3363 ata_dev_printk(dev, KERN_WARNING, 3364 "limiting speed to %s\n", buf); 3365 } 3366 3367 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3368 &dev->udma_mask); 3369 3370 return 0; 3371 } 3372 3373 static int ata_dev_set_mode(struct ata_device *dev) 3374 { 3375 struct ata_eh_context *ehc = &dev->link->eh_context; 3376 const char *dev_err_whine = ""; 3377 int ign_dev_err = 0; 3378 unsigned int err_mask; 3379 int rc; 3380 3381 dev->flags &= ~ATA_DFLAG_PIO; 3382 if (dev->xfer_shift == ATA_SHIFT_PIO) 3383 dev->flags |= ATA_DFLAG_PIO; 3384 3385 err_mask = ata_dev_set_xfermode(dev); 3386 3387 if (err_mask & ~AC_ERR_DEV) 3388 goto fail; 3389 3390 /* revalidate */ 3391 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3392 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3393 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3394 if (rc) 3395 return rc; 3396 3397 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3398 /* Old CFA may refuse this command, which is just fine */ 3399 if (ata_id_is_cfa(dev->id)) 3400 ign_dev_err = 1; 3401 /* Catch several broken garbage emulations plus some pre 3402 ATA devices */ 3403 if (ata_id_major_version(dev->id) == 0 && 3404 dev->pio_mode <= XFER_PIO_2) 3405 ign_dev_err = 1; 3406 /* Some very old devices and some bad newer ones fail 3407 any kind of SET_XFERMODE request but support PIO0-2 3408 timings and no IORDY */ 3409 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3410 ign_dev_err = 1; 3411 } 3412 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3413 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3414 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3415 dev->dma_mode == XFER_MW_DMA_0 && 3416 (dev->id[63] >> 8) & 1) 3417 ign_dev_err = 1; 3418 3419 /* if the device is actually configured correctly, ignore dev err */ 3420 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3421 ign_dev_err = 1; 3422 3423 if (err_mask & AC_ERR_DEV) { 3424 if (!ign_dev_err) 3425 goto fail; 3426 else 3427 dev_err_whine = " (device error ignored)"; 3428 } 3429 3430 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3431 dev->xfer_shift, (int)dev->xfer_mode); 3432 3433 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3434 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3435 dev_err_whine); 3436 3437 return 0; 3438 3439 fail: 3440 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3441 "(err_mask=0x%x)\n", err_mask); 3442 return -EIO; 3443 } 3444 3445 /** 3446 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3447 * @link: link on which timings will be programmed 3448 * @r_failed_dev: out parameter for failed device 3449 * 3450 * Standard implementation of the function used to tune and set 3451 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3452 * ata_dev_set_mode() fails, pointer to the failing device is 3453 * returned in @r_failed_dev. 3454 * 3455 * LOCKING: 3456 * PCI/etc. bus probe sem. 3457 * 3458 * RETURNS: 3459 * 0 on success, negative errno otherwise 3460 */ 3461 3462 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3463 { 3464 struct ata_port *ap = link->ap; 3465 struct ata_device *dev; 3466 int rc = 0, used_dma = 0, found = 0; 3467 3468 /* step 1: calculate xfer_mask */ 3469 ata_for_each_dev(dev, link, ENABLED) { 3470 unsigned long pio_mask, dma_mask; 3471 unsigned int mode_mask; 3472 3473 mode_mask = ATA_DMA_MASK_ATA; 3474 if (dev->class == ATA_DEV_ATAPI) 3475 mode_mask = ATA_DMA_MASK_ATAPI; 3476 else if (ata_id_is_cfa(dev->id)) 3477 mode_mask = ATA_DMA_MASK_CFA; 3478 3479 ata_dev_xfermask(dev); 3480 ata_force_xfermask(dev); 3481 3482 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3483 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3484 3485 if (libata_dma_mask & mode_mask) 3486 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3487 else 3488 dma_mask = 0; 3489 3490 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3491 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3492 3493 found = 1; 3494 if (ata_dma_enabled(dev)) 3495 used_dma = 1; 3496 } 3497 if (!found) 3498 goto out; 3499 3500 /* step 2: always set host PIO timings */ 3501 ata_for_each_dev(dev, link, ENABLED) { 3502 if (dev->pio_mode == 0xff) { 3503 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3504 rc = -EINVAL; 3505 goto out; 3506 } 3507 3508 dev->xfer_mode = dev->pio_mode; 3509 dev->xfer_shift = ATA_SHIFT_PIO; 3510 if (ap->ops->set_piomode) 3511 ap->ops->set_piomode(ap, dev); 3512 } 3513 3514 /* step 3: set host DMA timings */ 3515 ata_for_each_dev(dev, link, ENABLED) { 3516 if (!ata_dma_enabled(dev)) 3517 continue; 3518 3519 dev->xfer_mode = dev->dma_mode; 3520 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3521 if (ap->ops->set_dmamode) 3522 ap->ops->set_dmamode(ap, dev); 3523 } 3524 3525 /* step 4: update devices' xfer mode */ 3526 ata_for_each_dev(dev, link, ENABLED) { 3527 rc = ata_dev_set_mode(dev); 3528 if (rc) 3529 goto out; 3530 } 3531 3532 /* Record simplex status. If we selected DMA then the other 3533 * host channels are not permitted to do so. 3534 */ 3535 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3536 ap->host->simplex_claimed = ap; 3537 3538 out: 3539 if (rc) 3540 *r_failed_dev = dev; 3541 return rc; 3542 } 3543 3544 /** 3545 * ata_wait_ready - wait for link to become ready 3546 * @link: link to be waited on 3547 * @deadline: deadline jiffies for the operation 3548 * @check_ready: callback to check link readiness 3549 * 3550 * Wait for @link to become ready. @check_ready should return 3551 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3552 * link doesn't seem to be occupied, other errno for other error 3553 * conditions. 3554 * 3555 * Transient -ENODEV conditions are allowed for 3556 * ATA_TMOUT_FF_WAIT. 3557 * 3558 * LOCKING: 3559 * EH context. 3560 * 3561 * RETURNS: 3562 * 0 if @linke is ready before @deadline; otherwise, -errno. 3563 */ 3564 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3565 int (*check_ready)(struct ata_link *link)) 3566 { 3567 unsigned long start = jiffies; 3568 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3569 int warned = 0; 3570 3571 /* Slave readiness can't be tested separately from master. On 3572 * M/S emulation configuration, this function should be called 3573 * only on the master and it will handle both master and slave. 3574 */ 3575 WARN_ON(link == link->ap->slave_link); 3576 3577 if (time_after(nodev_deadline, deadline)) 3578 nodev_deadline = deadline; 3579 3580 while (1) { 3581 unsigned long now = jiffies; 3582 int ready, tmp; 3583 3584 ready = tmp = check_ready(link); 3585 if (ready > 0) 3586 return 0; 3587 3588 /* -ENODEV could be transient. Ignore -ENODEV if link 3589 * is online. Also, some SATA devices take a long 3590 * time to clear 0xff after reset. For example, 3591 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3592 * GoVault needs even more than that. Wait for 3593 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3594 * 3595 * Note that some PATA controllers (pata_ali) explode 3596 * if status register is read more than once when 3597 * there's no device attached. 3598 */ 3599 if (ready == -ENODEV) { 3600 if (ata_link_online(link)) 3601 ready = 0; 3602 else if ((link->ap->flags & ATA_FLAG_SATA) && 3603 !ata_link_offline(link) && 3604 time_before(now, nodev_deadline)) 3605 ready = 0; 3606 } 3607 3608 if (ready) 3609 return ready; 3610 if (time_after(now, deadline)) 3611 return -EBUSY; 3612 3613 if (!warned && time_after(now, start + 5 * HZ) && 3614 (deadline - now > 3 * HZ)) { 3615 ata_link_printk(link, KERN_WARNING, 3616 "link is slow to respond, please be patient " 3617 "(ready=%d)\n", tmp); 3618 warned = 1; 3619 } 3620 3621 msleep(50); 3622 } 3623 } 3624 3625 /** 3626 * ata_wait_after_reset - wait for link to become ready after reset 3627 * @link: link to be waited on 3628 * @deadline: deadline jiffies for the operation 3629 * @check_ready: callback to check link readiness 3630 * 3631 * Wait for @link to become ready after reset. 3632 * 3633 * LOCKING: 3634 * EH context. 3635 * 3636 * RETURNS: 3637 * 0 if @linke is ready before @deadline; otherwise, -errno. 3638 */ 3639 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3640 int (*check_ready)(struct ata_link *link)) 3641 { 3642 msleep(ATA_WAIT_AFTER_RESET); 3643 3644 return ata_wait_ready(link, deadline, check_ready); 3645 } 3646 3647 /** 3648 * sata_link_debounce - debounce SATA phy status 3649 * @link: ATA link to debounce SATA phy status for 3650 * @params: timing parameters { interval, duratinon, timeout } in msec 3651 * @deadline: deadline jiffies for the operation 3652 * 3653 * Make sure SStatus of @link reaches stable state, determined by 3654 * holding the same value where DET is not 1 for @duration polled 3655 * every @interval, before @timeout. Timeout constraints the 3656 * beginning of the stable state. Because DET gets stuck at 1 on 3657 * some controllers after hot unplugging, this functions waits 3658 * until timeout then returns 0 if DET is stable at 1. 3659 * 3660 * @timeout is further limited by @deadline. The sooner of the 3661 * two is used. 3662 * 3663 * LOCKING: 3664 * Kernel thread context (may sleep) 3665 * 3666 * RETURNS: 3667 * 0 on success, -errno on failure. 3668 */ 3669 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3670 unsigned long deadline) 3671 { 3672 unsigned long interval = params[0]; 3673 unsigned long duration = params[1]; 3674 unsigned long last_jiffies, t; 3675 u32 last, cur; 3676 int rc; 3677 3678 t = ata_deadline(jiffies, params[2]); 3679 if (time_before(t, deadline)) 3680 deadline = t; 3681 3682 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3683 return rc; 3684 cur &= 0xf; 3685 3686 last = cur; 3687 last_jiffies = jiffies; 3688 3689 while (1) { 3690 msleep(interval); 3691 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3692 return rc; 3693 cur &= 0xf; 3694 3695 /* DET stable? */ 3696 if (cur == last) { 3697 if (cur == 1 && time_before(jiffies, deadline)) 3698 continue; 3699 if (time_after(jiffies, 3700 ata_deadline(last_jiffies, duration))) 3701 return 0; 3702 continue; 3703 } 3704 3705 /* unstable, start over */ 3706 last = cur; 3707 last_jiffies = jiffies; 3708 3709 /* Check deadline. If debouncing failed, return 3710 * -EPIPE to tell upper layer to lower link speed. 3711 */ 3712 if (time_after(jiffies, deadline)) 3713 return -EPIPE; 3714 } 3715 } 3716 3717 /** 3718 * sata_link_resume - resume SATA link 3719 * @link: ATA link to resume SATA 3720 * @params: timing parameters { interval, duratinon, timeout } in msec 3721 * @deadline: deadline jiffies for the operation 3722 * 3723 * Resume SATA phy @link and debounce it. 3724 * 3725 * LOCKING: 3726 * Kernel thread context (may sleep) 3727 * 3728 * RETURNS: 3729 * 0 on success, -errno on failure. 3730 */ 3731 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3732 unsigned long deadline) 3733 { 3734 u32 scontrol, serror; 3735 int rc; 3736 3737 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3738 return rc; 3739 3740 scontrol = (scontrol & 0x0f0) | 0x300; 3741 3742 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3743 return rc; 3744 3745 /* Some PHYs react badly if SStatus is pounded immediately 3746 * after resuming. Delay 200ms before debouncing. 3747 */ 3748 msleep(200); 3749 3750 if ((rc = sata_link_debounce(link, params, deadline))) 3751 return rc; 3752 3753 /* clear SError, some PHYs require this even for SRST to work */ 3754 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3755 rc = sata_scr_write(link, SCR_ERROR, serror); 3756 3757 return rc != -EINVAL ? rc : 0; 3758 } 3759 3760 /** 3761 * ata_std_prereset - prepare for reset 3762 * @link: ATA link to be reset 3763 * @deadline: deadline jiffies for the operation 3764 * 3765 * @link is about to be reset. Initialize it. Failure from 3766 * prereset makes libata abort whole reset sequence and give up 3767 * that port, so prereset should be best-effort. It does its 3768 * best to prepare for reset sequence but if things go wrong, it 3769 * should just whine, not fail. 3770 * 3771 * LOCKING: 3772 * Kernel thread context (may sleep) 3773 * 3774 * RETURNS: 3775 * 0 on success, -errno otherwise. 3776 */ 3777 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3778 { 3779 struct ata_port *ap = link->ap; 3780 struct ata_eh_context *ehc = &link->eh_context; 3781 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3782 int rc; 3783 3784 /* if we're about to do hardreset, nothing more to do */ 3785 if (ehc->i.action & ATA_EH_HARDRESET) 3786 return 0; 3787 3788 /* if SATA, resume link */ 3789 if (ap->flags & ATA_FLAG_SATA) { 3790 rc = sata_link_resume(link, timing, deadline); 3791 /* whine about phy resume failure but proceed */ 3792 if (rc && rc != -EOPNOTSUPP) 3793 ata_link_printk(link, KERN_WARNING, "failed to resume " 3794 "link for reset (errno=%d)\n", rc); 3795 } 3796 3797 /* no point in trying softreset on offline link */ 3798 if (ata_phys_link_offline(link)) 3799 ehc->i.action &= ~ATA_EH_SOFTRESET; 3800 3801 return 0; 3802 } 3803 3804 /** 3805 * sata_link_hardreset - reset link via SATA phy reset 3806 * @link: link to reset 3807 * @timing: timing parameters { interval, duratinon, timeout } in msec 3808 * @deadline: deadline jiffies for the operation 3809 * @online: optional out parameter indicating link onlineness 3810 * @check_ready: optional callback to check link readiness 3811 * 3812 * SATA phy-reset @link using DET bits of SControl register. 3813 * After hardreset, link readiness is waited upon using 3814 * ata_wait_ready() if @check_ready is specified. LLDs are 3815 * allowed to not specify @check_ready and wait itself after this 3816 * function returns. Device classification is LLD's 3817 * responsibility. 3818 * 3819 * *@online is set to one iff reset succeeded and @link is online 3820 * after reset. 3821 * 3822 * LOCKING: 3823 * Kernel thread context (may sleep) 3824 * 3825 * RETURNS: 3826 * 0 on success, -errno otherwise. 3827 */ 3828 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3829 unsigned long deadline, 3830 bool *online, int (*check_ready)(struct ata_link *)) 3831 { 3832 u32 scontrol; 3833 int rc; 3834 3835 DPRINTK("ENTER\n"); 3836 3837 if (online) 3838 *online = false; 3839 3840 if (sata_set_spd_needed(link)) { 3841 /* SATA spec says nothing about how to reconfigure 3842 * spd. To be on the safe side, turn off phy during 3843 * reconfiguration. This works for at least ICH7 AHCI 3844 * and Sil3124. 3845 */ 3846 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3847 goto out; 3848 3849 scontrol = (scontrol & 0x0f0) | 0x304; 3850 3851 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3852 goto out; 3853 3854 sata_set_spd(link); 3855 } 3856 3857 /* issue phy wake/reset */ 3858 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3859 goto out; 3860 3861 scontrol = (scontrol & 0x0f0) | 0x301; 3862 3863 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3864 goto out; 3865 3866 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3867 * 10.4.2 says at least 1 ms. 3868 */ 3869 msleep(1); 3870 3871 /* bring link back */ 3872 rc = sata_link_resume(link, timing, deadline); 3873 if (rc) 3874 goto out; 3875 /* if link is offline nothing more to do */ 3876 if (ata_phys_link_offline(link)) 3877 goto out; 3878 3879 /* Link is online. From this point, -ENODEV too is an error. */ 3880 if (online) 3881 *online = true; 3882 3883 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3884 /* If PMP is supported, we have to do follow-up SRST. 3885 * Some PMPs don't send D2H Reg FIS after hardreset if 3886 * the first port is empty. Wait only for 3887 * ATA_TMOUT_PMP_SRST_WAIT. 3888 */ 3889 if (check_ready) { 3890 unsigned long pmp_deadline; 3891 3892 pmp_deadline = ata_deadline(jiffies, 3893 ATA_TMOUT_PMP_SRST_WAIT); 3894 if (time_after(pmp_deadline, deadline)) 3895 pmp_deadline = deadline; 3896 ata_wait_ready(link, pmp_deadline, check_ready); 3897 } 3898 rc = -EAGAIN; 3899 goto out; 3900 } 3901 3902 rc = 0; 3903 if (check_ready) 3904 rc = ata_wait_ready(link, deadline, check_ready); 3905 out: 3906 if (rc && rc != -EAGAIN) { 3907 /* online is set iff link is online && reset succeeded */ 3908 if (online) 3909 *online = false; 3910 ata_link_printk(link, KERN_ERR, 3911 "COMRESET failed (errno=%d)\n", rc); 3912 } 3913 DPRINTK("EXIT, rc=%d\n", rc); 3914 return rc; 3915 } 3916 3917 /** 3918 * sata_std_hardreset - COMRESET w/o waiting or classification 3919 * @link: link to reset 3920 * @class: resulting class of attached device 3921 * @deadline: deadline jiffies for the operation 3922 * 3923 * Standard SATA COMRESET w/o waiting or classification. 3924 * 3925 * LOCKING: 3926 * Kernel thread context (may sleep) 3927 * 3928 * RETURNS: 3929 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3930 */ 3931 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3932 unsigned long deadline) 3933 { 3934 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3935 bool online; 3936 int rc; 3937 3938 /* do hardreset */ 3939 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3940 return online ? -EAGAIN : rc; 3941 } 3942 3943 /** 3944 * ata_std_postreset - standard postreset callback 3945 * @link: the target ata_link 3946 * @classes: classes of attached devices 3947 * 3948 * This function is invoked after a successful reset. Note that 3949 * the device might have been reset more than once using 3950 * different reset methods before postreset is invoked. 3951 * 3952 * LOCKING: 3953 * Kernel thread context (may sleep) 3954 */ 3955 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3956 { 3957 u32 serror; 3958 3959 DPRINTK("ENTER\n"); 3960 3961 /* reset complete, clear SError */ 3962 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3963 sata_scr_write(link, SCR_ERROR, serror); 3964 3965 /* print link status */ 3966 sata_print_link_status(link); 3967 3968 DPRINTK("EXIT\n"); 3969 } 3970 3971 /** 3972 * ata_dev_same_device - Determine whether new ID matches configured device 3973 * @dev: device to compare against 3974 * @new_class: class of the new device 3975 * @new_id: IDENTIFY page of the new device 3976 * 3977 * Compare @new_class and @new_id against @dev and determine 3978 * whether @dev is the device indicated by @new_class and 3979 * @new_id. 3980 * 3981 * LOCKING: 3982 * None. 3983 * 3984 * RETURNS: 3985 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3986 */ 3987 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3988 const u16 *new_id) 3989 { 3990 const u16 *old_id = dev->id; 3991 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3992 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3993 3994 if (dev->class != new_class) { 3995 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3996 dev->class, new_class); 3997 return 0; 3998 } 3999 4000 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 4001 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 4002 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 4003 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 4004 4005 if (strcmp(model[0], model[1])) { 4006 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 4007 "'%s' != '%s'\n", model[0], model[1]); 4008 return 0; 4009 } 4010 4011 if (strcmp(serial[0], serial[1])) { 4012 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 4013 "'%s' != '%s'\n", serial[0], serial[1]); 4014 return 0; 4015 } 4016 4017 return 1; 4018 } 4019 4020 /** 4021 * ata_dev_reread_id - Re-read IDENTIFY data 4022 * @dev: target ATA device 4023 * @readid_flags: read ID flags 4024 * 4025 * Re-read IDENTIFY page and make sure @dev is still attached to 4026 * the port. 4027 * 4028 * LOCKING: 4029 * Kernel thread context (may sleep) 4030 * 4031 * RETURNS: 4032 * 0 on success, negative errno otherwise 4033 */ 4034 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4035 { 4036 unsigned int class = dev->class; 4037 u16 *id = (void *)dev->link->ap->sector_buf; 4038 int rc; 4039 4040 /* read ID data */ 4041 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4042 if (rc) 4043 return rc; 4044 4045 /* is the device still there? */ 4046 if (!ata_dev_same_device(dev, class, id)) 4047 return -ENODEV; 4048 4049 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4050 return 0; 4051 } 4052 4053 /** 4054 * ata_dev_revalidate - Revalidate ATA device 4055 * @dev: device to revalidate 4056 * @new_class: new class code 4057 * @readid_flags: read ID flags 4058 * 4059 * Re-read IDENTIFY page, make sure @dev is still attached to the 4060 * port and reconfigure it according to the new IDENTIFY page. 4061 * 4062 * LOCKING: 4063 * Kernel thread context (may sleep) 4064 * 4065 * RETURNS: 4066 * 0 on success, negative errno otherwise 4067 */ 4068 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4069 unsigned int readid_flags) 4070 { 4071 u64 n_sectors = dev->n_sectors; 4072 int rc; 4073 4074 if (!ata_dev_enabled(dev)) 4075 return -ENODEV; 4076 4077 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4078 if (ata_class_enabled(new_class) && 4079 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) { 4080 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 4081 dev->class, new_class); 4082 rc = -ENODEV; 4083 goto fail; 4084 } 4085 4086 /* re-read ID */ 4087 rc = ata_dev_reread_id(dev, readid_flags); 4088 if (rc) 4089 goto fail; 4090 4091 /* configure device according to the new ID */ 4092 rc = ata_dev_configure(dev); 4093 if (rc) 4094 goto fail; 4095 4096 /* verify n_sectors hasn't changed */ 4097 if (dev->class == ATA_DEV_ATA && n_sectors && 4098 dev->n_sectors != n_sectors) { 4099 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 4100 "%llu != %llu\n", 4101 (unsigned long long)n_sectors, 4102 (unsigned long long)dev->n_sectors); 4103 4104 /* restore original n_sectors */ 4105 dev->n_sectors = n_sectors; 4106 4107 rc = -ENODEV; 4108 goto fail; 4109 } 4110 4111 return 0; 4112 4113 fail: 4114 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 4115 return rc; 4116 } 4117 4118 struct ata_blacklist_entry { 4119 const char *model_num; 4120 const char *model_rev; 4121 unsigned long horkage; 4122 }; 4123 4124 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4125 /* Devices with DMA related problems under Linux */ 4126 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4127 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4128 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4129 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4130 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4131 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4132 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4133 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4134 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4135 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 4136 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 4137 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4138 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4139 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4140 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4141 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4142 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 4143 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 4144 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4145 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4146 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4147 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4148 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4149 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4150 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4151 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4152 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4153 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4154 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4155 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4156 /* Odd clown on sil3726/4726 PMPs */ 4157 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4158 4159 /* Weird ATAPI devices */ 4160 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4161 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4162 4163 /* Devices we expect to fail diagnostics */ 4164 4165 /* Devices where NCQ should be avoided */ 4166 /* NCQ is slow */ 4167 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4168 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4169 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4170 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4171 /* NCQ is broken */ 4172 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4173 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4174 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4175 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4176 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4177 4178 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4179 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ | 4180 ATA_HORKAGE_FIRMWARE_WARN }, 4181 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ | 4182 ATA_HORKAGE_FIRMWARE_WARN }, 4183 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ | 4184 ATA_HORKAGE_FIRMWARE_WARN }, 4185 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ | 4186 ATA_HORKAGE_FIRMWARE_WARN }, 4187 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ | 4188 ATA_HORKAGE_FIRMWARE_WARN }, 4189 4190 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ | 4191 ATA_HORKAGE_FIRMWARE_WARN }, 4192 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ | 4193 ATA_HORKAGE_FIRMWARE_WARN }, 4194 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ | 4195 ATA_HORKAGE_FIRMWARE_WARN }, 4196 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ | 4197 ATA_HORKAGE_FIRMWARE_WARN }, 4198 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ | 4199 ATA_HORKAGE_FIRMWARE_WARN }, 4200 4201 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ | 4202 ATA_HORKAGE_FIRMWARE_WARN }, 4203 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ | 4204 ATA_HORKAGE_FIRMWARE_WARN }, 4205 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ | 4206 ATA_HORKAGE_FIRMWARE_WARN }, 4207 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ | 4208 ATA_HORKAGE_FIRMWARE_WARN }, 4209 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ | 4210 ATA_HORKAGE_FIRMWARE_WARN }, 4211 4212 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ | 4213 ATA_HORKAGE_FIRMWARE_WARN }, 4214 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ | 4215 ATA_HORKAGE_FIRMWARE_WARN }, 4216 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ | 4217 ATA_HORKAGE_FIRMWARE_WARN }, 4218 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ | 4219 ATA_HORKAGE_FIRMWARE_WARN }, 4220 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ | 4221 ATA_HORKAGE_FIRMWARE_WARN }, 4222 4223 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ | 4224 ATA_HORKAGE_FIRMWARE_WARN }, 4225 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ | 4226 ATA_HORKAGE_FIRMWARE_WARN }, 4227 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ | 4228 ATA_HORKAGE_FIRMWARE_WARN }, 4229 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ | 4230 ATA_HORKAGE_FIRMWARE_WARN }, 4231 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ | 4232 ATA_HORKAGE_FIRMWARE_WARN }, 4233 4234 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ | 4235 ATA_HORKAGE_FIRMWARE_WARN }, 4236 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ | 4237 ATA_HORKAGE_FIRMWARE_WARN }, 4238 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ | 4239 ATA_HORKAGE_FIRMWARE_WARN }, 4240 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ | 4241 ATA_HORKAGE_FIRMWARE_WARN }, 4242 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ | 4243 ATA_HORKAGE_FIRMWARE_WARN }, 4244 4245 /* Blacklist entries taken from Silicon Image 3124/3132 4246 Windows driver .inf file - also several Linux problem reports */ 4247 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4248 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4249 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4250 4251 /* devices which puke on READ_NATIVE_MAX */ 4252 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4253 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4254 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4255 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4256 4257 /* Devices which report 1 sector over size HPA */ 4258 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4259 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4260 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4261 4262 /* Devices which get the IVB wrong */ 4263 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4264 /* Maybe we should just blacklist TSSTcorp... */ 4265 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 4266 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 4267 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 4268 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 4269 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 4270 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 4271 4272 /* Devices that do not need bridging limits applied */ 4273 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4274 4275 /* Devices which aren't very happy with higher link speeds */ 4276 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4277 4278 /* End Marker */ 4279 { } 4280 }; 4281 4282 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4283 { 4284 const char *p; 4285 int len; 4286 4287 /* 4288 * check for trailing wildcard: *\0 4289 */ 4290 p = strchr(patt, wildchar); 4291 if (p && ((*(p + 1)) == 0)) 4292 len = p - patt; 4293 else { 4294 len = strlen(name); 4295 if (!len) { 4296 if (!*patt) 4297 return 0; 4298 return -1; 4299 } 4300 } 4301 4302 return strncmp(patt, name, len); 4303 } 4304 4305 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4306 { 4307 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4308 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4309 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4310 4311 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4312 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4313 4314 while (ad->model_num) { 4315 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4316 if (ad->model_rev == NULL) 4317 return ad->horkage; 4318 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4319 return ad->horkage; 4320 } 4321 ad++; 4322 } 4323 return 0; 4324 } 4325 4326 static int ata_dma_blacklisted(const struct ata_device *dev) 4327 { 4328 /* We don't support polling DMA. 4329 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4330 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4331 */ 4332 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4333 (dev->flags & ATA_DFLAG_CDB_INTR)) 4334 return 1; 4335 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4336 } 4337 4338 /** 4339 * ata_is_40wire - check drive side detection 4340 * @dev: device 4341 * 4342 * Perform drive side detection decoding, allowing for device vendors 4343 * who can't follow the documentation. 4344 */ 4345 4346 static int ata_is_40wire(struct ata_device *dev) 4347 { 4348 if (dev->horkage & ATA_HORKAGE_IVB) 4349 return ata_drive_40wire_relaxed(dev->id); 4350 return ata_drive_40wire(dev->id); 4351 } 4352 4353 /** 4354 * cable_is_40wire - 40/80/SATA decider 4355 * @ap: port to consider 4356 * 4357 * This function encapsulates the policy for speed management 4358 * in one place. At the moment we don't cache the result but 4359 * there is a good case for setting ap->cbl to the result when 4360 * we are called with unknown cables (and figuring out if it 4361 * impacts hotplug at all). 4362 * 4363 * Return 1 if the cable appears to be 40 wire. 4364 */ 4365 4366 static int cable_is_40wire(struct ata_port *ap) 4367 { 4368 struct ata_link *link; 4369 struct ata_device *dev; 4370 4371 /* If the controller thinks we are 40 wire, we are. */ 4372 if (ap->cbl == ATA_CBL_PATA40) 4373 return 1; 4374 4375 /* If the controller thinks we are 80 wire, we are. */ 4376 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4377 return 0; 4378 4379 /* If the system is known to be 40 wire short cable (eg 4380 * laptop), then we allow 80 wire modes even if the drive 4381 * isn't sure. 4382 */ 4383 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4384 return 0; 4385 4386 /* If the controller doesn't know, we scan. 4387 * 4388 * Note: We look for all 40 wire detects at this point. Any 4389 * 80 wire detect is taken to be 80 wire cable because 4390 * - in many setups only the one drive (slave if present) will 4391 * give a valid detect 4392 * - if you have a non detect capable drive you don't want it 4393 * to colour the choice 4394 */ 4395 ata_for_each_link(link, ap, EDGE) { 4396 ata_for_each_dev(dev, link, ENABLED) { 4397 if (!ata_is_40wire(dev)) 4398 return 0; 4399 } 4400 } 4401 return 1; 4402 } 4403 4404 /** 4405 * ata_dev_xfermask - Compute supported xfermask of the given device 4406 * @dev: Device to compute xfermask for 4407 * 4408 * Compute supported xfermask of @dev and store it in 4409 * dev->*_mask. This function is responsible for applying all 4410 * known limits including host controller limits, device 4411 * blacklist, etc... 4412 * 4413 * LOCKING: 4414 * None. 4415 */ 4416 static void ata_dev_xfermask(struct ata_device *dev) 4417 { 4418 struct ata_link *link = dev->link; 4419 struct ata_port *ap = link->ap; 4420 struct ata_host *host = ap->host; 4421 unsigned long xfer_mask; 4422 4423 /* controller modes available */ 4424 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4425 ap->mwdma_mask, ap->udma_mask); 4426 4427 /* drive modes available */ 4428 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4429 dev->mwdma_mask, dev->udma_mask); 4430 xfer_mask &= ata_id_xfermask(dev->id); 4431 4432 /* 4433 * CFA Advanced TrueIDE timings are not allowed on a shared 4434 * cable 4435 */ 4436 if (ata_dev_pair(dev)) { 4437 /* No PIO5 or PIO6 */ 4438 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4439 /* No MWDMA3 or MWDMA 4 */ 4440 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4441 } 4442 4443 if (ata_dma_blacklisted(dev)) { 4444 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4445 ata_dev_printk(dev, KERN_WARNING, 4446 "device is on DMA blacklist, disabling DMA\n"); 4447 } 4448 4449 if ((host->flags & ATA_HOST_SIMPLEX) && 4450 host->simplex_claimed && host->simplex_claimed != ap) { 4451 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4452 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4453 "other device, disabling DMA\n"); 4454 } 4455 4456 if (ap->flags & ATA_FLAG_NO_IORDY) 4457 xfer_mask &= ata_pio_mask_no_iordy(dev); 4458 4459 if (ap->ops->mode_filter) 4460 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4461 4462 /* Apply cable rule here. Don't apply it early because when 4463 * we handle hot plug the cable type can itself change. 4464 * Check this last so that we know if the transfer rate was 4465 * solely limited by the cable. 4466 * Unknown or 80 wire cables reported host side are checked 4467 * drive side as well. Cases where we know a 40wire cable 4468 * is used safely for 80 are not checked here. 4469 */ 4470 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4471 /* UDMA/44 or higher would be available */ 4472 if (cable_is_40wire(ap)) { 4473 ata_dev_printk(dev, KERN_WARNING, 4474 "limited to UDMA/33 due to 40-wire cable\n"); 4475 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4476 } 4477 4478 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4479 &dev->mwdma_mask, &dev->udma_mask); 4480 } 4481 4482 /** 4483 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4484 * @dev: Device to which command will be sent 4485 * 4486 * Issue SET FEATURES - XFER MODE command to device @dev 4487 * on port @ap. 4488 * 4489 * LOCKING: 4490 * PCI/etc. bus probe sem. 4491 * 4492 * RETURNS: 4493 * 0 on success, AC_ERR_* mask otherwise. 4494 */ 4495 4496 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4497 { 4498 struct ata_taskfile tf; 4499 unsigned int err_mask; 4500 4501 /* set up set-features taskfile */ 4502 DPRINTK("set features - xfer mode\n"); 4503 4504 /* Some controllers and ATAPI devices show flaky interrupt 4505 * behavior after setting xfer mode. Use polling instead. 4506 */ 4507 ata_tf_init(dev, &tf); 4508 tf.command = ATA_CMD_SET_FEATURES; 4509 tf.feature = SETFEATURES_XFER; 4510 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4511 tf.protocol = ATA_PROT_NODATA; 4512 /* If we are using IORDY we must send the mode setting command */ 4513 if (ata_pio_need_iordy(dev)) 4514 tf.nsect = dev->xfer_mode; 4515 /* If the device has IORDY and the controller does not - turn it off */ 4516 else if (ata_id_has_iordy(dev->id)) 4517 tf.nsect = 0x01; 4518 else /* In the ancient relic department - skip all of this */ 4519 return 0; 4520 4521 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4522 4523 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4524 return err_mask; 4525 } 4526 /** 4527 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4528 * @dev: Device to which command will be sent 4529 * @enable: Whether to enable or disable the feature 4530 * @feature: The sector count represents the feature to set 4531 * 4532 * Issue SET FEATURES - SATA FEATURES command to device @dev 4533 * on port @ap with sector count 4534 * 4535 * LOCKING: 4536 * PCI/etc. bus probe sem. 4537 * 4538 * RETURNS: 4539 * 0 on success, AC_ERR_* mask otherwise. 4540 */ 4541 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4542 u8 feature) 4543 { 4544 struct ata_taskfile tf; 4545 unsigned int err_mask; 4546 4547 /* set up set-features taskfile */ 4548 DPRINTK("set features - SATA features\n"); 4549 4550 ata_tf_init(dev, &tf); 4551 tf.command = ATA_CMD_SET_FEATURES; 4552 tf.feature = enable; 4553 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4554 tf.protocol = ATA_PROT_NODATA; 4555 tf.nsect = feature; 4556 4557 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4558 4559 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4560 return err_mask; 4561 } 4562 4563 /** 4564 * ata_dev_init_params - Issue INIT DEV PARAMS command 4565 * @dev: Device to which command will be sent 4566 * @heads: Number of heads (taskfile parameter) 4567 * @sectors: Number of sectors (taskfile parameter) 4568 * 4569 * LOCKING: 4570 * Kernel thread context (may sleep) 4571 * 4572 * RETURNS: 4573 * 0 on success, AC_ERR_* mask otherwise. 4574 */ 4575 static unsigned int ata_dev_init_params(struct ata_device *dev, 4576 u16 heads, u16 sectors) 4577 { 4578 struct ata_taskfile tf; 4579 unsigned int err_mask; 4580 4581 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4582 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4583 return AC_ERR_INVALID; 4584 4585 /* set up init dev params taskfile */ 4586 DPRINTK("init dev params \n"); 4587 4588 ata_tf_init(dev, &tf); 4589 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4590 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4591 tf.protocol = ATA_PROT_NODATA; 4592 tf.nsect = sectors; 4593 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4594 4595 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4596 /* A clean abort indicates an original or just out of spec drive 4597 and we should continue as we issue the setup based on the 4598 drive reported working geometry */ 4599 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4600 err_mask = 0; 4601 4602 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4603 return err_mask; 4604 } 4605 4606 /** 4607 * ata_sg_clean - Unmap DMA memory associated with command 4608 * @qc: Command containing DMA memory to be released 4609 * 4610 * Unmap all mapped DMA memory associated with this command. 4611 * 4612 * LOCKING: 4613 * spin_lock_irqsave(host lock) 4614 */ 4615 void ata_sg_clean(struct ata_queued_cmd *qc) 4616 { 4617 struct ata_port *ap = qc->ap; 4618 struct scatterlist *sg = qc->sg; 4619 int dir = qc->dma_dir; 4620 4621 WARN_ON_ONCE(sg == NULL); 4622 4623 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4624 4625 if (qc->n_elem) 4626 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4627 4628 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4629 qc->sg = NULL; 4630 } 4631 4632 /** 4633 * atapi_check_dma - Check whether ATAPI DMA can be supported 4634 * @qc: Metadata associated with taskfile to check 4635 * 4636 * Allow low-level driver to filter ATA PACKET commands, returning 4637 * a status indicating whether or not it is OK to use DMA for the 4638 * supplied PACKET command. 4639 * 4640 * LOCKING: 4641 * spin_lock_irqsave(host lock) 4642 * 4643 * RETURNS: 0 when ATAPI DMA can be used 4644 * nonzero otherwise 4645 */ 4646 int atapi_check_dma(struct ata_queued_cmd *qc) 4647 { 4648 struct ata_port *ap = qc->ap; 4649 4650 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4651 * few ATAPI devices choke on such DMA requests. 4652 */ 4653 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4654 unlikely(qc->nbytes & 15)) 4655 return 1; 4656 4657 if (ap->ops->check_atapi_dma) 4658 return ap->ops->check_atapi_dma(qc); 4659 4660 return 0; 4661 } 4662 4663 /** 4664 * ata_std_qc_defer - Check whether a qc needs to be deferred 4665 * @qc: ATA command in question 4666 * 4667 * Non-NCQ commands cannot run with any other command, NCQ or 4668 * not. As upper layer only knows the queue depth, we are 4669 * responsible for maintaining exclusion. This function checks 4670 * whether a new command @qc can be issued. 4671 * 4672 * LOCKING: 4673 * spin_lock_irqsave(host lock) 4674 * 4675 * RETURNS: 4676 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4677 */ 4678 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4679 { 4680 struct ata_link *link = qc->dev->link; 4681 4682 if (qc->tf.protocol == ATA_PROT_NCQ) { 4683 if (!ata_tag_valid(link->active_tag)) 4684 return 0; 4685 } else { 4686 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4687 return 0; 4688 } 4689 4690 return ATA_DEFER_LINK; 4691 } 4692 4693 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4694 4695 /** 4696 * ata_sg_init - Associate command with scatter-gather table. 4697 * @qc: Command to be associated 4698 * @sg: Scatter-gather table. 4699 * @n_elem: Number of elements in s/g table. 4700 * 4701 * Initialize the data-related elements of queued_cmd @qc 4702 * to point to a scatter-gather table @sg, containing @n_elem 4703 * elements. 4704 * 4705 * LOCKING: 4706 * spin_lock_irqsave(host lock) 4707 */ 4708 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4709 unsigned int n_elem) 4710 { 4711 qc->sg = sg; 4712 qc->n_elem = n_elem; 4713 qc->cursg = qc->sg; 4714 } 4715 4716 /** 4717 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4718 * @qc: Command with scatter-gather table to be mapped. 4719 * 4720 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4721 * 4722 * LOCKING: 4723 * spin_lock_irqsave(host lock) 4724 * 4725 * RETURNS: 4726 * Zero on success, negative on error. 4727 * 4728 */ 4729 static int ata_sg_setup(struct ata_queued_cmd *qc) 4730 { 4731 struct ata_port *ap = qc->ap; 4732 unsigned int n_elem; 4733 4734 VPRINTK("ENTER, ata%u\n", ap->print_id); 4735 4736 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4737 if (n_elem < 1) 4738 return -1; 4739 4740 DPRINTK("%d sg elements mapped\n", n_elem); 4741 qc->orig_n_elem = qc->n_elem; 4742 qc->n_elem = n_elem; 4743 qc->flags |= ATA_QCFLAG_DMAMAP; 4744 4745 return 0; 4746 } 4747 4748 /** 4749 * swap_buf_le16 - swap halves of 16-bit words in place 4750 * @buf: Buffer to swap 4751 * @buf_words: Number of 16-bit words in buffer. 4752 * 4753 * Swap halves of 16-bit words if needed to convert from 4754 * little-endian byte order to native cpu byte order, or 4755 * vice-versa. 4756 * 4757 * LOCKING: 4758 * Inherited from caller. 4759 */ 4760 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4761 { 4762 #ifdef __BIG_ENDIAN 4763 unsigned int i; 4764 4765 for (i = 0; i < buf_words; i++) 4766 buf[i] = le16_to_cpu(buf[i]); 4767 #endif /* __BIG_ENDIAN */ 4768 } 4769 4770 /** 4771 * ata_qc_new - Request an available ATA command, for queueing 4772 * @ap: target port 4773 * 4774 * LOCKING: 4775 * None. 4776 */ 4777 4778 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4779 { 4780 struct ata_queued_cmd *qc = NULL; 4781 unsigned int i; 4782 4783 /* no command while frozen */ 4784 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4785 return NULL; 4786 4787 /* the last tag is reserved for internal command. */ 4788 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4789 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4790 qc = __ata_qc_from_tag(ap, i); 4791 break; 4792 } 4793 4794 if (qc) 4795 qc->tag = i; 4796 4797 return qc; 4798 } 4799 4800 /** 4801 * ata_qc_new_init - Request an available ATA command, and initialize it 4802 * @dev: Device from whom we request an available command structure 4803 * 4804 * LOCKING: 4805 * None. 4806 */ 4807 4808 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4809 { 4810 struct ata_port *ap = dev->link->ap; 4811 struct ata_queued_cmd *qc; 4812 4813 qc = ata_qc_new(ap); 4814 if (qc) { 4815 qc->scsicmd = NULL; 4816 qc->ap = ap; 4817 qc->dev = dev; 4818 4819 ata_qc_reinit(qc); 4820 } 4821 4822 return qc; 4823 } 4824 4825 /** 4826 * ata_qc_free - free unused ata_queued_cmd 4827 * @qc: Command to complete 4828 * 4829 * Designed to free unused ata_queued_cmd object 4830 * in case something prevents using it. 4831 * 4832 * LOCKING: 4833 * spin_lock_irqsave(host lock) 4834 */ 4835 void ata_qc_free(struct ata_queued_cmd *qc) 4836 { 4837 struct ata_port *ap = qc->ap; 4838 unsigned int tag; 4839 4840 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4841 4842 qc->flags = 0; 4843 tag = qc->tag; 4844 if (likely(ata_tag_valid(tag))) { 4845 qc->tag = ATA_TAG_POISON; 4846 clear_bit(tag, &ap->qc_allocated); 4847 } 4848 } 4849 4850 void __ata_qc_complete(struct ata_queued_cmd *qc) 4851 { 4852 struct ata_port *ap = qc->ap; 4853 struct ata_link *link = qc->dev->link; 4854 4855 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4856 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4857 4858 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4859 ata_sg_clean(qc); 4860 4861 /* command should be marked inactive atomically with qc completion */ 4862 if (qc->tf.protocol == ATA_PROT_NCQ) { 4863 link->sactive &= ~(1 << qc->tag); 4864 if (!link->sactive) 4865 ap->nr_active_links--; 4866 } else { 4867 link->active_tag = ATA_TAG_POISON; 4868 ap->nr_active_links--; 4869 } 4870 4871 /* clear exclusive status */ 4872 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4873 ap->excl_link == link)) 4874 ap->excl_link = NULL; 4875 4876 /* atapi: mark qc as inactive to prevent the interrupt handler 4877 * from completing the command twice later, before the error handler 4878 * is called. (when rc != 0 and atapi request sense is needed) 4879 */ 4880 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4881 ap->qc_active &= ~(1 << qc->tag); 4882 4883 /* call completion callback */ 4884 qc->complete_fn(qc); 4885 } 4886 4887 static void fill_result_tf(struct ata_queued_cmd *qc) 4888 { 4889 struct ata_port *ap = qc->ap; 4890 4891 qc->result_tf.flags = qc->tf.flags; 4892 ap->ops->qc_fill_rtf(qc); 4893 } 4894 4895 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4896 { 4897 struct ata_device *dev = qc->dev; 4898 4899 if (ata_tag_internal(qc->tag)) 4900 return; 4901 4902 if (ata_is_nodata(qc->tf.protocol)) 4903 return; 4904 4905 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4906 return; 4907 4908 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4909 } 4910 4911 /** 4912 * ata_qc_complete - Complete an active ATA command 4913 * @qc: Command to complete 4914 * 4915 * Indicate to the mid and upper layers that an ATA 4916 * command has completed, with either an ok or not-ok status. 4917 * 4918 * LOCKING: 4919 * spin_lock_irqsave(host lock) 4920 */ 4921 void ata_qc_complete(struct ata_queued_cmd *qc) 4922 { 4923 struct ata_port *ap = qc->ap; 4924 4925 /* XXX: New EH and old EH use different mechanisms to 4926 * synchronize EH with regular execution path. 4927 * 4928 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4929 * Normal execution path is responsible for not accessing a 4930 * failed qc. libata core enforces the rule by returning NULL 4931 * from ata_qc_from_tag() for failed qcs. 4932 * 4933 * Old EH depends on ata_qc_complete() nullifying completion 4934 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4935 * not synchronize with interrupt handler. Only PIO task is 4936 * taken care of. 4937 */ 4938 if (ap->ops->error_handler) { 4939 struct ata_device *dev = qc->dev; 4940 struct ata_eh_info *ehi = &dev->link->eh_info; 4941 4942 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4943 4944 if (unlikely(qc->err_mask)) 4945 qc->flags |= ATA_QCFLAG_FAILED; 4946 4947 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4948 if (!ata_tag_internal(qc->tag)) { 4949 /* always fill result TF for failed qc */ 4950 fill_result_tf(qc); 4951 ata_qc_schedule_eh(qc); 4952 return; 4953 } 4954 } 4955 4956 /* read result TF if requested */ 4957 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4958 fill_result_tf(qc); 4959 4960 /* Some commands need post-processing after successful 4961 * completion. 4962 */ 4963 switch (qc->tf.command) { 4964 case ATA_CMD_SET_FEATURES: 4965 if (qc->tf.feature != SETFEATURES_WC_ON && 4966 qc->tf.feature != SETFEATURES_WC_OFF) 4967 break; 4968 /* fall through */ 4969 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4970 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4971 /* revalidate device */ 4972 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4973 ata_port_schedule_eh(ap); 4974 break; 4975 4976 case ATA_CMD_SLEEP: 4977 dev->flags |= ATA_DFLAG_SLEEPING; 4978 break; 4979 } 4980 4981 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4982 ata_verify_xfer(qc); 4983 4984 __ata_qc_complete(qc); 4985 } else { 4986 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4987 return; 4988 4989 /* read result TF if failed or requested */ 4990 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4991 fill_result_tf(qc); 4992 4993 __ata_qc_complete(qc); 4994 } 4995 } 4996 4997 /** 4998 * ata_qc_complete_multiple - Complete multiple qcs successfully 4999 * @ap: port in question 5000 * @qc_active: new qc_active mask 5001 * 5002 * Complete in-flight commands. This functions is meant to be 5003 * called from low-level driver's interrupt routine to complete 5004 * requests normally. ap->qc_active and @qc_active is compared 5005 * and commands are completed accordingly. 5006 * 5007 * LOCKING: 5008 * spin_lock_irqsave(host lock) 5009 * 5010 * RETURNS: 5011 * Number of completed commands on success, -errno otherwise. 5012 */ 5013 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5014 { 5015 int nr_done = 0; 5016 u32 done_mask; 5017 int i; 5018 5019 done_mask = ap->qc_active ^ qc_active; 5020 5021 if (unlikely(done_mask & qc_active)) { 5022 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 5023 "(%08x->%08x)\n", ap->qc_active, qc_active); 5024 return -EINVAL; 5025 } 5026 5027 for (i = 0; i < ATA_MAX_QUEUE; i++) { 5028 struct ata_queued_cmd *qc; 5029 5030 if (!(done_mask & (1 << i))) 5031 continue; 5032 5033 if ((qc = ata_qc_from_tag(ap, i))) { 5034 ata_qc_complete(qc); 5035 nr_done++; 5036 } 5037 } 5038 5039 return nr_done; 5040 } 5041 5042 /** 5043 * ata_qc_issue - issue taskfile to device 5044 * @qc: command to issue to device 5045 * 5046 * Prepare an ATA command to submission to device. 5047 * This includes mapping the data into a DMA-able 5048 * area, filling in the S/G table, and finally 5049 * writing the taskfile to hardware, starting the command. 5050 * 5051 * LOCKING: 5052 * spin_lock_irqsave(host lock) 5053 */ 5054 void ata_qc_issue(struct ata_queued_cmd *qc) 5055 { 5056 struct ata_port *ap = qc->ap; 5057 struct ata_link *link = qc->dev->link; 5058 u8 prot = qc->tf.protocol; 5059 5060 /* Make sure only one non-NCQ command is outstanding. The 5061 * check is skipped for old EH because it reuses active qc to 5062 * request ATAPI sense. 5063 */ 5064 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5065 5066 if (ata_is_ncq(prot)) { 5067 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5068 5069 if (!link->sactive) 5070 ap->nr_active_links++; 5071 link->sactive |= 1 << qc->tag; 5072 } else { 5073 WARN_ON_ONCE(link->sactive); 5074 5075 ap->nr_active_links++; 5076 link->active_tag = qc->tag; 5077 } 5078 5079 qc->flags |= ATA_QCFLAG_ACTIVE; 5080 ap->qc_active |= 1 << qc->tag; 5081 5082 /* We guarantee to LLDs that they will have at least one 5083 * non-zero sg if the command is a data command. 5084 */ 5085 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 5086 5087 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5088 (ap->flags & ATA_FLAG_PIO_DMA))) 5089 if (ata_sg_setup(qc)) 5090 goto sg_err; 5091 5092 /* if device is sleeping, schedule reset and abort the link */ 5093 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5094 link->eh_info.action |= ATA_EH_RESET; 5095 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5096 ata_link_abort(link); 5097 return; 5098 } 5099 5100 ap->ops->qc_prep(qc); 5101 5102 qc->err_mask |= ap->ops->qc_issue(qc); 5103 if (unlikely(qc->err_mask)) 5104 goto err; 5105 return; 5106 5107 sg_err: 5108 qc->err_mask |= AC_ERR_SYSTEM; 5109 err: 5110 ata_qc_complete(qc); 5111 } 5112 5113 /** 5114 * sata_scr_valid - test whether SCRs are accessible 5115 * @link: ATA link to test SCR accessibility for 5116 * 5117 * Test whether SCRs are accessible for @link. 5118 * 5119 * LOCKING: 5120 * None. 5121 * 5122 * RETURNS: 5123 * 1 if SCRs are accessible, 0 otherwise. 5124 */ 5125 int sata_scr_valid(struct ata_link *link) 5126 { 5127 struct ata_port *ap = link->ap; 5128 5129 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5130 } 5131 5132 /** 5133 * sata_scr_read - read SCR register of the specified port 5134 * @link: ATA link to read SCR for 5135 * @reg: SCR to read 5136 * @val: Place to store read value 5137 * 5138 * Read SCR register @reg of @link into *@val. This function is 5139 * guaranteed to succeed if @link is ap->link, the cable type of 5140 * the port is SATA and the port implements ->scr_read. 5141 * 5142 * LOCKING: 5143 * None if @link is ap->link. Kernel thread context otherwise. 5144 * 5145 * RETURNS: 5146 * 0 on success, negative errno on failure. 5147 */ 5148 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5149 { 5150 if (ata_is_host_link(link)) { 5151 if (sata_scr_valid(link)) 5152 return link->ap->ops->scr_read(link, reg, val); 5153 return -EOPNOTSUPP; 5154 } 5155 5156 return sata_pmp_scr_read(link, reg, val); 5157 } 5158 5159 /** 5160 * sata_scr_write - write SCR register of the specified port 5161 * @link: ATA link to write SCR for 5162 * @reg: SCR to write 5163 * @val: value to write 5164 * 5165 * Write @val to SCR register @reg of @link. This function is 5166 * guaranteed to succeed if @link is ap->link, the cable type of 5167 * the port is SATA and the port implements ->scr_read. 5168 * 5169 * LOCKING: 5170 * None if @link is ap->link. Kernel thread context otherwise. 5171 * 5172 * RETURNS: 5173 * 0 on success, negative errno on failure. 5174 */ 5175 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5176 { 5177 if (ata_is_host_link(link)) { 5178 if (sata_scr_valid(link)) 5179 return link->ap->ops->scr_write(link, reg, val); 5180 return -EOPNOTSUPP; 5181 } 5182 5183 return sata_pmp_scr_write(link, reg, val); 5184 } 5185 5186 /** 5187 * sata_scr_write_flush - write SCR register of the specified port and flush 5188 * @link: ATA link to write SCR for 5189 * @reg: SCR to write 5190 * @val: value to write 5191 * 5192 * This function is identical to sata_scr_write() except that this 5193 * function performs flush after writing to the register. 5194 * 5195 * LOCKING: 5196 * None if @link is ap->link. Kernel thread context otherwise. 5197 * 5198 * RETURNS: 5199 * 0 on success, negative errno on failure. 5200 */ 5201 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5202 { 5203 if (ata_is_host_link(link)) { 5204 int rc; 5205 5206 if (sata_scr_valid(link)) { 5207 rc = link->ap->ops->scr_write(link, reg, val); 5208 if (rc == 0) 5209 rc = link->ap->ops->scr_read(link, reg, &val); 5210 return rc; 5211 } 5212 return -EOPNOTSUPP; 5213 } 5214 5215 return sata_pmp_scr_write(link, reg, val); 5216 } 5217 5218 /** 5219 * ata_phys_link_online - test whether the given link is online 5220 * @link: ATA link to test 5221 * 5222 * Test whether @link is online. Note that this function returns 5223 * 0 if online status of @link cannot be obtained, so 5224 * ata_link_online(link) != !ata_link_offline(link). 5225 * 5226 * LOCKING: 5227 * None. 5228 * 5229 * RETURNS: 5230 * True if the port online status is available and online. 5231 */ 5232 bool ata_phys_link_online(struct ata_link *link) 5233 { 5234 u32 sstatus; 5235 5236 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5237 ata_sstatus_online(sstatus)) 5238 return true; 5239 return false; 5240 } 5241 5242 /** 5243 * ata_phys_link_offline - test whether the given link is offline 5244 * @link: ATA link to test 5245 * 5246 * Test whether @link is offline. Note that this function 5247 * returns 0 if offline status of @link cannot be obtained, so 5248 * ata_link_online(link) != !ata_link_offline(link). 5249 * 5250 * LOCKING: 5251 * None. 5252 * 5253 * RETURNS: 5254 * True if the port offline status is available and offline. 5255 */ 5256 bool ata_phys_link_offline(struct ata_link *link) 5257 { 5258 u32 sstatus; 5259 5260 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5261 !ata_sstatus_online(sstatus)) 5262 return true; 5263 return false; 5264 } 5265 5266 /** 5267 * ata_link_online - test whether the given link is online 5268 * @link: ATA link to test 5269 * 5270 * Test whether @link is online. This is identical to 5271 * ata_phys_link_online() when there's no slave link. When 5272 * there's a slave link, this function should only be called on 5273 * the master link and will return true if any of M/S links is 5274 * online. 5275 * 5276 * LOCKING: 5277 * None. 5278 * 5279 * RETURNS: 5280 * True if the port online status is available and online. 5281 */ 5282 bool ata_link_online(struct ata_link *link) 5283 { 5284 struct ata_link *slave = link->ap->slave_link; 5285 5286 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5287 5288 return ata_phys_link_online(link) || 5289 (slave && ata_phys_link_online(slave)); 5290 } 5291 5292 /** 5293 * ata_link_offline - test whether the given link is offline 5294 * @link: ATA link to test 5295 * 5296 * Test whether @link is offline. This is identical to 5297 * ata_phys_link_offline() when there's no slave link. When 5298 * there's a slave link, this function should only be called on 5299 * the master link and will return true if both M/S links are 5300 * offline. 5301 * 5302 * LOCKING: 5303 * None. 5304 * 5305 * RETURNS: 5306 * True if the port offline status is available and offline. 5307 */ 5308 bool ata_link_offline(struct ata_link *link) 5309 { 5310 struct ata_link *slave = link->ap->slave_link; 5311 5312 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5313 5314 return ata_phys_link_offline(link) && 5315 (!slave || ata_phys_link_offline(slave)); 5316 } 5317 5318 #ifdef CONFIG_PM 5319 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5320 unsigned int action, unsigned int ehi_flags, 5321 int wait) 5322 { 5323 unsigned long flags; 5324 int i, rc; 5325 5326 for (i = 0; i < host->n_ports; i++) { 5327 struct ata_port *ap = host->ports[i]; 5328 struct ata_link *link; 5329 5330 /* Previous resume operation might still be in 5331 * progress. Wait for PM_PENDING to clear. 5332 */ 5333 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5334 ata_port_wait_eh(ap); 5335 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5336 } 5337 5338 /* request PM ops to EH */ 5339 spin_lock_irqsave(ap->lock, flags); 5340 5341 ap->pm_mesg = mesg; 5342 if (wait) { 5343 rc = 0; 5344 ap->pm_result = &rc; 5345 } 5346 5347 ap->pflags |= ATA_PFLAG_PM_PENDING; 5348 ata_for_each_link(link, ap, HOST_FIRST) { 5349 link->eh_info.action |= action; 5350 link->eh_info.flags |= ehi_flags; 5351 } 5352 5353 ata_port_schedule_eh(ap); 5354 5355 spin_unlock_irqrestore(ap->lock, flags); 5356 5357 /* wait and check result */ 5358 if (wait) { 5359 ata_port_wait_eh(ap); 5360 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5361 if (rc) 5362 return rc; 5363 } 5364 } 5365 5366 return 0; 5367 } 5368 5369 /** 5370 * ata_host_suspend - suspend host 5371 * @host: host to suspend 5372 * @mesg: PM message 5373 * 5374 * Suspend @host. Actual operation is performed by EH. This 5375 * function requests EH to perform PM operations and waits for EH 5376 * to finish. 5377 * 5378 * LOCKING: 5379 * Kernel thread context (may sleep). 5380 * 5381 * RETURNS: 5382 * 0 on success, -errno on failure. 5383 */ 5384 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5385 { 5386 int rc; 5387 5388 /* 5389 * disable link pm on all ports before requesting 5390 * any pm activity 5391 */ 5392 ata_lpm_enable(host); 5393 5394 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5395 if (rc == 0) 5396 host->dev->power.power_state = mesg; 5397 return rc; 5398 } 5399 5400 /** 5401 * ata_host_resume - resume host 5402 * @host: host to resume 5403 * 5404 * Resume @host. Actual operation is performed by EH. This 5405 * function requests EH to perform PM operations and returns. 5406 * Note that all resume operations are performed parallely. 5407 * 5408 * LOCKING: 5409 * Kernel thread context (may sleep). 5410 */ 5411 void ata_host_resume(struct ata_host *host) 5412 { 5413 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5414 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5415 host->dev->power.power_state = PMSG_ON; 5416 5417 /* reenable link pm */ 5418 ata_lpm_disable(host); 5419 } 5420 #endif 5421 5422 /** 5423 * ata_port_start - Set port up for dma. 5424 * @ap: Port to initialize 5425 * 5426 * Called just after data structures for each port are 5427 * initialized. Allocates space for PRD table. 5428 * 5429 * May be used as the port_start() entry in ata_port_operations. 5430 * 5431 * LOCKING: 5432 * Inherited from caller. 5433 */ 5434 int ata_port_start(struct ata_port *ap) 5435 { 5436 struct device *dev = ap->dev; 5437 5438 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5439 GFP_KERNEL); 5440 if (!ap->prd) 5441 return -ENOMEM; 5442 5443 return 0; 5444 } 5445 5446 /** 5447 * ata_dev_init - Initialize an ata_device structure 5448 * @dev: Device structure to initialize 5449 * 5450 * Initialize @dev in preparation for probing. 5451 * 5452 * LOCKING: 5453 * Inherited from caller. 5454 */ 5455 void ata_dev_init(struct ata_device *dev) 5456 { 5457 struct ata_link *link = ata_dev_phys_link(dev); 5458 struct ata_port *ap = link->ap; 5459 unsigned long flags; 5460 5461 /* SATA spd limit is bound to the attached device, reset together */ 5462 link->sata_spd_limit = link->hw_sata_spd_limit; 5463 link->sata_spd = 0; 5464 5465 /* High bits of dev->flags are used to record warm plug 5466 * requests which occur asynchronously. Synchronize using 5467 * host lock. 5468 */ 5469 spin_lock_irqsave(ap->lock, flags); 5470 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5471 dev->horkage = 0; 5472 spin_unlock_irqrestore(ap->lock, flags); 5473 5474 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5475 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5476 dev->pio_mask = UINT_MAX; 5477 dev->mwdma_mask = UINT_MAX; 5478 dev->udma_mask = UINT_MAX; 5479 } 5480 5481 /** 5482 * ata_link_init - Initialize an ata_link structure 5483 * @ap: ATA port link is attached to 5484 * @link: Link structure to initialize 5485 * @pmp: Port multiplier port number 5486 * 5487 * Initialize @link. 5488 * 5489 * LOCKING: 5490 * Kernel thread context (may sleep) 5491 */ 5492 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5493 { 5494 int i; 5495 5496 /* clear everything except for devices */ 5497 memset(link, 0, offsetof(struct ata_link, device[0])); 5498 5499 link->ap = ap; 5500 link->pmp = pmp; 5501 link->active_tag = ATA_TAG_POISON; 5502 link->hw_sata_spd_limit = UINT_MAX; 5503 5504 /* can't use iterator, ap isn't initialized yet */ 5505 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5506 struct ata_device *dev = &link->device[i]; 5507 5508 dev->link = link; 5509 dev->devno = dev - link->device; 5510 ata_dev_init(dev); 5511 } 5512 } 5513 5514 /** 5515 * sata_link_init_spd - Initialize link->sata_spd_limit 5516 * @link: Link to configure sata_spd_limit for 5517 * 5518 * Initialize @link->[hw_]sata_spd_limit to the currently 5519 * configured value. 5520 * 5521 * LOCKING: 5522 * Kernel thread context (may sleep). 5523 * 5524 * RETURNS: 5525 * 0 on success, -errno on failure. 5526 */ 5527 int sata_link_init_spd(struct ata_link *link) 5528 { 5529 u8 spd; 5530 int rc; 5531 5532 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5533 if (rc) 5534 return rc; 5535 5536 spd = (link->saved_scontrol >> 4) & 0xf; 5537 if (spd) 5538 link->hw_sata_spd_limit &= (1 << spd) - 1; 5539 5540 ata_force_link_limits(link); 5541 5542 link->sata_spd_limit = link->hw_sata_spd_limit; 5543 5544 return 0; 5545 } 5546 5547 /** 5548 * ata_port_alloc - allocate and initialize basic ATA port resources 5549 * @host: ATA host this allocated port belongs to 5550 * 5551 * Allocate and initialize basic ATA port resources. 5552 * 5553 * RETURNS: 5554 * Allocate ATA port on success, NULL on failure. 5555 * 5556 * LOCKING: 5557 * Inherited from calling layer (may sleep). 5558 */ 5559 struct ata_port *ata_port_alloc(struct ata_host *host) 5560 { 5561 struct ata_port *ap; 5562 5563 DPRINTK("ENTER\n"); 5564 5565 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5566 if (!ap) 5567 return NULL; 5568 5569 ap->pflags |= ATA_PFLAG_INITIALIZING; 5570 ap->lock = &host->lock; 5571 ap->flags = ATA_FLAG_DISABLED; 5572 ap->print_id = -1; 5573 ap->ctl = ATA_DEVCTL_OBS; 5574 ap->host = host; 5575 ap->dev = host->dev; 5576 ap->last_ctl = 0xFF; 5577 5578 #if defined(ATA_VERBOSE_DEBUG) 5579 /* turn on all debugging levels */ 5580 ap->msg_enable = 0x00FF; 5581 #elif defined(ATA_DEBUG) 5582 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5583 #else 5584 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5585 #endif 5586 5587 #ifdef CONFIG_ATA_SFF 5588 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5589 #else 5590 INIT_DELAYED_WORK(&ap->port_task, NULL); 5591 #endif 5592 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5593 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5594 INIT_LIST_HEAD(&ap->eh_done_q); 5595 init_waitqueue_head(&ap->eh_wait_q); 5596 init_completion(&ap->park_req_pending); 5597 init_timer_deferrable(&ap->fastdrain_timer); 5598 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5599 ap->fastdrain_timer.data = (unsigned long)ap; 5600 5601 ap->cbl = ATA_CBL_NONE; 5602 5603 ata_link_init(ap, &ap->link, 0); 5604 5605 #ifdef ATA_IRQ_TRAP 5606 ap->stats.unhandled_irq = 1; 5607 ap->stats.idle_irq = 1; 5608 #endif 5609 return ap; 5610 } 5611 5612 static void ata_host_release(struct device *gendev, void *res) 5613 { 5614 struct ata_host *host = dev_get_drvdata(gendev); 5615 int i; 5616 5617 for (i = 0; i < host->n_ports; i++) { 5618 struct ata_port *ap = host->ports[i]; 5619 5620 if (!ap) 5621 continue; 5622 5623 if (ap->scsi_host) 5624 scsi_host_put(ap->scsi_host); 5625 5626 kfree(ap->pmp_link); 5627 kfree(ap->slave_link); 5628 kfree(ap); 5629 host->ports[i] = NULL; 5630 } 5631 5632 dev_set_drvdata(gendev, NULL); 5633 } 5634 5635 /** 5636 * ata_host_alloc - allocate and init basic ATA host resources 5637 * @dev: generic device this host is associated with 5638 * @max_ports: maximum number of ATA ports associated with this host 5639 * 5640 * Allocate and initialize basic ATA host resources. LLD calls 5641 * this function to allocate a host, initializes it fully and 5642 * attaches it using ata_host_register(). 5643 * 5644 * @max_ports ports are allocated and host->n_ports is 5645 * initialized to @max_ports. The caller is allowed to decrease 5646 * host->n_ports before calling ata_host_register(). The unused 5647 * ports will be automatically freed on registration. 5648 * 5649 * RETURNS: 5650 * Allocate ATA host on success, NULL on failure. 5651 * 5652 * LOCKING: 5653 * Inherited from calling layer (may sleep). 5654 */ 5655 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5656 { 5657 struct ata_host *host; 5658 size_t sz; 5659 int i; 5660 5661 DPRINTK("ENTER\n"); 5662 5663 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5664 return NULL; 5665 5666 /* alloc a container for our list of ATA ports (buses) */ 5667 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5668 /* alloc a container for our list of ATA ports (buses) */ 5669 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5670 if (!host) 5671 goto err_out; 5672 5673 devres_add(dev, host); 5674 dev_set_drvdata(dev, host); 5675 5676 spin_lock_init(&host->lock); 5677 host->dev = dev; 5678 host->n_ports = max_ports; 5679 5680 /* allocate ports bound to this host */ 5681 for (i = 0; i < max_ports; i++) { 5682 struct ata_port *ap; 5683 5684 ap = ata_port_alloc(host); 5685 if (!ap) 5686 goto err_out; 5687 5688 ap->port_no = i; 5689 host->ports[i] = ap; 5690 } 5691 5692 devres_remove_group(dev, NULL); 5693 return host; 5694 5695 err_out: 5696 devres_release_group(dev, NULL); 5697 return NULL; 5698 } 5699 5700 /** 5701 * ata_host_alloc_pinfo - alloc host and init with port_info array 5702 * @dev: generic device this host is associated with 5703 * @ppi: array of ATA port_info to initialize host with 5704 * @n_ports: number of ATA ports attached to this host 5705 * 5706 * Allocate ATA host and initialize with info from @ppi. If NULL 5707 * terminated, @ppi may contain fewer entries than @n_ports. The 5708 * last entry will be used for the remaining ports. 5709 * 5710 * RETURNS: 5711 * Allocate ATA host on success, NULL on failure. 5712 * 5713 * LOCKING: 5714 * Inherited from calling layer (may sleep). 5715 */ 5716 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5717 const struct ata_port_info * const * ppi, 5718 int n_ports) 5719 { 5720 const struct ata_port_info *pi; 5721 struct ata_host *host; 5722 int i, j; 5723 5724 host = ata_host_alloc(dev, n_ports); 5725 if (!host) 5726 return NULL; 5727 5728 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5729 struct ata_port *ap = host->ports[i]; 5730 5731 if (ppi[j]) 5732 pi = ppi[j++]; 5733 5734 ap->pio_mask = pi->pio_mask; 5735 ap->mwdma_mask = pi->mwdma_mask; 5736 ap->udma_mask = pi->udma_mask; 5737 ap->flags |= pi->flags; 5738 ap->link.flags |= pi->link_flags; 5739 ap->ops = pi->port_ops; 5740 5741 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5742 host->ops = pi->port_ops; 5743 } 5744 5745 return host; 5746 } 5747 5748 /** 5749 * ata_slave_link_init - initialize slave link 5750 * @ap: port to initialize slave link for 5751 * 5752 * Create and initialize slave link for @ap. This enables slave 5753 * link handling on the port. 5754 * 5755 * In libata, a port contains links and a link contains devices. 5756 * There is single host link but if a PMP is attached to it, 5757 * there can be multiple fan-out links. On SATA, there's usually 5758 * a single device connected to a link but PATA and SATA 5759 * controllers emulating TF based interface can have two - master 5760 * and slave. 5761 * 5762 * However, there are a few controllers which don't fit into this 5763 * abstraction too well - SATA controllers which emulate TF 5764 * interface with both master and slave devices but also have 5765 * separate SCR register sets for each device. These controllers 5766 * need separate links for physical link handling 5767 * (e.g. onlineness, link speed) but should be treated like a 5768 * traditional M/S controller for everything else (e.g. command 5769 * issue, softreset). 5770 * 5771 * slave_link is libata's way of handling this class of 5772 * controllers without impacting core layer too much. For 5773 * anything other than physical link handling, the default host 5774 * link is used for both master and slave. For physical link 5775 * handling, separate @ap->slave_link is used. All dirty details 5776 * are implemented inside libata core layer. From LLD's POV, the 5777 * only difference is that prereset, hardreset and postreset are 5778 * called once more for the slave link, so the reset sequence 5779 * looks like the following. 5780 * 5781 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5782 * softreset(M) -> postreset(M) -> postreset(S) 5783 * 5784 * Note that softreset is called only for the master. Softreset 5785 * resets both M/S by definition, so SRST on master should handle 5786 * both (the standard method will work just fine). 5787 * 5788 * LOCKING: 5789 * Should be called before host is registered. 5790 * 5791 * RETURNS: 5792 * 0 on success, -errno on failure. 5793 */ 5794 int ata_slave_link_init(struct ata_port *ap) 5795 { 5796 struct ata_link *link; 5797 5798 WARN_ON(ap->slave_link); 5799 WARN_ON(ap->flags & ATA_FLAG_PMP); 5800 5801 link = kzalloc(sizeof(*link), GFP_KERNEL); 5802 if (!link) 5803 return -ENOMEM; 5804 5805 ata_link_init(ap, link, 1); 5806 ap->slave_link = link; 5807 return 0; 5808 } 5809 5810 static void ata_host_stop(struct device *gendev, void *res) 5811 { 5812 struct ata_host *host = dev_get_drvdata(gendev); 5813 int i; 5814 5815 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5816 5817 for (i = 0; i < host->n_ports; i++) { 5818 struct ata_port *ap = host->ports[i]; 5819 5820 if (ap->ops->port_stop) 5821 ap->ops->port_stop(ap); 5822 } 5823 5824 if (host->ops->host_stop) 5825 host->ops->host_stop(host); 5826 } 5827 5828 /** 5829 * ata_finalize_port_ops - finalize ata_port_operations 5830 * @ops: ata_port_operations to finalize 5831 * 5832 * An ata_port_operations can inherit from another ops and that 5833 * ops can again inherit from another. This can go on as many 5834 * times as necessary as long as there is no loop in the 5835 * inheritance chain. 5836 * 5837 * Ops tables are finalized when the host is started. NULL or 5838 * unspecified entries are inherited from the closet ancestor 5839 * which has the method and the entry is populated with it. 5840 * After finalization, the ops table directly points to all the 5841 * methods and ->inherits is no longer necessary and cleared. 5842 * 5843 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5844 * 5845 * LOCKING: 5846 * None. 5847 */ 5848 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5849 { 5850 static DEFINE_SPINLOCK(lock); 5851 const struct ata_port_operations *cur; 5852 void **begin = (void **)ops; 5853 void **end = (void **)&ops->inherits; 5854 void **pp; 5855 5856 if (!ops || !ops->inherits) 5857 return; 5858 5859 spin_lock(&lock); 5860 5861 for (cur = ops->inherits; cur; cur = cur->inherits) { 5862 void **inherit = (void **)cur; 5863 5864 for (pp = begin; pp < end; pp++, inherit++) 5865 if (!*pp) 5866 *pp = *inherit; 5867 } 5868 5869 for (pp = begin; pp < end; pp++) 5870 if (IS_ERR(*pp)) 5871 *pp = NULL; 5872 5873 ops->inherits = NULL; 5874 5875 spin_unlock(&lock); 5876 } 5877 5878 /** 5879 * ata_host_start - start and freeze ports of an ATA host 5880 * @host: ATA host to start ports for 5881 * 5882 * Start and then freeze ports of @host. Started status is 5883 * recorded in host->flags, so this function can be called 5884 * multiple times. Ports are guaranteed to get started only 5885 * once. If host->ops isn't initialized yet, its set to the 5886 * first non-dummy port ops. 5887 * 5888 * LOCKING: 5889 * Inherited from calling layer (may sleep). 5890 * 5891 * RETURNS: 5892 * 0 if all ports are started successfully, -errno otherwise. 5893 */ 5894 int ata_host_start(struct ata_host *host) 5895 { 5896 int have_stop = 0; 5897 void *start_dr = NULL; 5898 int i, rc; 5899 5900 if (host->flags & ATA_HOST_STARTED) 5901 return 0; 5902 5903 ata_finalize_port_ops(host->ops); 5904 5905 for (i = 0; i < host->n_ports; i++) { 5906 struct ata_port *ap = host->ports[i]; 5907 5908 ata_finalize_port_ops(ap->ops); 5909 5910 if (!host->ops && !ata_port_is_dummy(ap)) 5911 host->ops = ap->ops; 5912 5913 if (ap->ops->port_stop) 5914 have_stop = 1; 5915 } 5916 5917 if (host->ops->host_stop) 5918 have_stop = 1; 5919 5920 if (have_stop) { 5921 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5922 if (!start_dr) 5923 return -ENOMEM; 5924 } 5925 5926 for (i = 0; i < host->n_ports; i++) { 5927 struct ata_port *ap = host->ports[i]; 5928 5929 if (ap->ops->port_start) { 5930 rc = ap->ops->port_start(ap); 5931 if (rc) { 5932 if (rc != -ENODEV) 5933 dev_printk(KERN_ERR, host->dev, 5934 "failed to start port %d " 5935 "(errno=%d)\n", i, rc); 5936 goto err_out; 5937 } 5938 } 5939 ata_eh_freeze_port(ap); 5940 } 5941 5942 if (start_dr) 5943 devres_add(host->dev, start_dr); 5944 host->flags |= ATA_HOST_STARTED; 5945 return 0; 5946 5947 err_out: 5948 while (--i >= 0) { 5949 struct ata_port *ap = host->ports[i]; 5950 5951 if (ap->ops->port_stop) 5952 ap->ops->port_stop(ap); 5953 } 5954 devres_free(start_dr); 5955 return rc; 5956 } 5957 5958 /** 5959 * ata_sas_host_init - Initialize a host struct 5960 * @host: host to initialize 5961 * @dev: device host is attached to 5962 * @flags: host flags 5963 * @ops: port_ops 5964 * 5965 * LOCKING: 5966 * PCI/etc. bus probe sem. 5967 * 5968 */ 5969 /* KILLME - the only user left is ipr */ 5970 void ata_host_init(struct ata_host *host, struct device *dev, 5971 unsigned long flags, struct ata_port_operations *ops) 5972 { 5973 spin_lock_init(&host->lock); 5974 host->dev = dev; 5975 host->flags = flags; 5976 host->ops = ops; 5977 } 5978 5979 5980 static void async_port_probe(void *data, async_cookie_t cookie) 5981 { 5982 int rc; 5983 struct ata_port *ap = data; 5984 5985 /* 5986 * If we're not allowed to scan this host in parallel, 5987 * we need to wait until all previous scans have completed 5988 * before going further. 5989 * Jeff Garzik says this is only within a controller, so we 5990 * don't need to wait for port 0, only for later ports. 5991 */ 5992 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5993 async_synchronize_cookie(cookie); 5994 5995 /* probe */ 5996 if (ap->ops->error_handler) { 5997 struct ata_eh_info *ehi = &ap->link.eh_info; 5998 unsigned long flags; 5999 6000 ata_port_probe(ap); 6001 6002 /* kick EH for boot probing */ 6003 spin_lock_irqsave(ap->lock, flags); 6004 6005 ehi->probe_mask |= ATA_ALL_DEVICES; 6006 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 6007 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6008 6009 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6010 ap->pflags |= ATA_PFLAG_LOADING; 6011 ata_port_schedule_eh(ap); 6012 6013 spin_unlock_irqrestore(ap->lock, flags); 6014 6015 /* wait for EH to finish */ 6016 ata_port_wait_eh(ap); 6017 } else { 6018 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6019 rc = ata_bus_probe(ap); 6020 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6021 6022 if (rc) { 6023 /* FIXME: do something useful here? 6024 * Current libata behavior will 6025 * tear down everything when 6026 * the module is removed 6027 * or the h/w is unplugged. 6028 */ 6029 } 6030 } 6031 6032 /* in order to keep device order, we need to synchronize at this point */ 6033 async_synchronize_cookie(cookie); 6034 6035 ata_scsi_scan_host(ap, 1); 6036 6037 } 6038 /** 6039 * ata_host_register - register initialized ATA host 6040 * @host: ATA host to register 6041 * @sht: template for SCSI host 6042 * 6043 * Register initialized ATA host. @host is allocated using 6044 * ata_host_alloc() and fully initialized by LLD. This function 6045 * starts ports, registers @host with ATA and SCSI layers and 6046 * probe registered devices. 6047 * 6048 * LOCKING: 6049 * Inherited from calling layer (may sleep). 6050 * 6051 * RETURNS: 6052 * 0 on success, -errno otherwise. 6053 */ 6054 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6055 { 6056 int i, rc; 6057 6058 /* host must have been started */ 6059 if (!(host->flags & ATA_HOST_STARTED)) { 6060 dev_printk(KERN_ERR, host->dev, 6061 "BUG: trying to register unstarted host\n"); 6062 WARN_ON(1); 6063 return -EINVAL; 6064 } 6065 6066 /* Blow away unused ports. This happens when LLD can't 6067 * determine the exact number of ports to allocate at 6068 * allocation time. 6069 */ 6070 for (i = host->n_ports; host->ports[i]; i++) 6071 kfree(host->ports[i]); 6072 6073 /* give ports names and add SCSI hosts */ 6074 for (i = 0; i < host->n_ports; i++) 6075 host->ports[i]->print_id = ata_print_id++; 6076 6077 rc = ata_scsi_add_hosts(host, sht); 6078 if (rc) 6079 return rc; 6080 6081 /* associate with ACPI nodes */ 6082 ata_acpi_associate(host); 6083 6084 /* set cable, sata_spd_limit and report */ 6085 for (i = 0; i < host->n_ports; i++) { 6086 struct ata_port *ap = host->ports[i]; 6087 unsigned long xfer_mask; 6088 6089 /* set SATA cable type if still unset */ 6090 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6091 ap->cbl = ATA_CBL_SATA; 6092 6093 /* init sata_spd_limit to the current value */ 6094 sata_link_init_spd(&ap->link); 6095 if (ap->slave_link) 6096 sata_link_init_spd(ap->slave_link); 6097 6098 /* print per-port info to dmesg */ 6099 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6100 ap->udma_mask); 6101 6102 if (!ata_port_is_dummy(ap)) { 6103 ata_port_printk(ap, KERN_INFO, 6104 "%cATA max %s %s\n", 6105 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6106 ata_mode_string(xfer_mask), 6107 ap->link.eh_info.desc); 6108 ata_ehi_clear_desc(&ap->link.eh_info); 6109 } else 6110 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 6111 } 6112 6113 /* perform each probe asynchronously */ 6114 for (i = 0; i < host->n_ports; i++) { 6115 struct ata_port *ap = host->ports[i]; 6116 async_schedule(async_port_probe, ap); 6117 } 6118 6119 return 0; 6120 } 6121 6122 /** 6123 * ata_host_activate - start host, request IRQ and register it 6124 * @host: target ATA host 6125 * @irq: IRQ to request 6126 * @irq_handler: irq_handler used when requesting IRQ 6127 * @irq_flags: irq_flags used when requesting IRQ 6128 * @sht: scsi_host_template to use when registering the host 6129 * 6130 * After allocating an ATA host and initializing it, most libata 6131 * LLDs perform three steps to activate the host - start host, 6132 * request IRQ and register it. This helper takes necessasry 6133 * arguments and performs the three steps in one go. 6134 * 6135 * An invalid IRQ skips the IRQ registration and expects the host to 6136 * have set polling mode on the port. In this case, @irq_handler 6137 * should be NULL. 6138 * 6139 * LOCKING: 6140 * Inherited from calling layer (may sleep). 6141 * 6142 * RETURNS: 6143 * 0 on success, -errno otherwise. 6144 */ 6145 int ata_host_activate(struct ata_host *host, int irq, 6146 irq_handler_t irq_handler, unsigned long irq_flags, 6147 struct scsi_host_template *sht) 6148 { 6149 int i, rc; 6150 6151 rc = ata_host_start(host); 6152 if (rc) 6153 return rc; 6154 6155 /* Special case for polling mode */ 6156 if (!irq) { 6157 WARN_ON(irq_handler); 6158 return ata_host_register(host, sht); 6159 } 6160 6161 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6162 dev_driver_string(host->dev), host); 6163 if (rc) 6164 return rc; 6165 6166 for (i = 0; i < host->n_ports; i++) 6167 ata_port_desc(host->ports[i], "irq %d", irq); 6168 6169 rc = ata_host_register(host, sht); 6170 /* if failed, just free the IRQ and leave ports alone */ 6171 if (rc) 6172 devm_free_irq(host->dev, irq, host); 6173 6174 return rc; 6175 } 6176 6177 /** 6178 * ata_port_detach - Detach ATA port in prepration of device removal 6179 * @ap: ATA port to be detached 6180 * 6181 * Detach all ATA devices and the associated SCSI devices of @ap; 6182 * then, remove the associated SCSI host. @ap is guaranteed to 6183 * be quiescent on return from this function. 6184 * 6185 * LOCKING: 6186 * Kernel thread context (may sleep). 6187 */ 6188 static void ata_port_detach(struct ata_port *ap) 6189 { 6190 unsigned long flags; 6191 6192 if (!ap->ops->error_handler) 6193 goto skip_eh; 6194 6195 /* tell EH we're leaving & flush EH */ 6196 spin_lock_irqsave(ap->lock, flags); 6197 ap->pflags |= ATA_PFLAG_UNLOADING; 6198 ata_port_schedule_eh(ap); 6199 spin_unlock_irqrestore(ap->lock, flags); 6200 6201 /* wait till EH commits suicide */ 6202 ata_port_wait_eh(ap); 6203 6204 /* it better be dead now */ 6205 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6206 6207 cancel_rearming_delayed_work(&ap->hotplug_task); 6208 6209 skip_eh: 6210 /* remove the associated SCSI host */ 6211 scsi_remove_host(ap->scsi_host); 6212 } 6213 6214 /** 6215 * ata_host_detach - Detach all ports of an ATA host 6216 * @host: Host to detach 6217 * 6218 * Detach all ports of @host. 6219 * 6220 * LOCKING: 6221 * Kernel thread context (may sleep). 6222 */ 6223 void ata_host_detach(struct ata_host *host) 6224 { 6225 int i; 6226 6227 for (i = 0; i < host->n_ports; i++) 6228 ata_port_detach(host->ports[i]); 6229 6230 /* the host is dead now, dissociate ACPI */ 6231 ata_acpi_dissociate(host); 6232 } 6233 6234 #ifdef CONFIG_PCI 6235 6236 /** 6237 * ata_pci_remove_one - PCI layer callback for device removal 6238 * @pdev: PCI device that was removed 6239 * 6240 * PCI layer indicates to libata via this hook that hot-unplug or 6241 * module unload event has occurred. Detach all ports. Resource 6242 * release is handled via devres. 6243 * 6244 * LOCKING: 6245 * Inherited from PCI layer (may sleep). 6246 */ 6247 void ata_pci_remove_one(struct pci_dev *pdev) 6248 { 6249 struct device *dev = &pdev->dev; 6250 struct ata_host *host = dev_get_drvdata(dev); 6251 6252 ata_host_detach(host); 6253 } 6254 6255 /* move to PCI subsystem */ 6256 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6257 { 6258 unsigned long tmp = 0; 6259 6260 switch (bits->width) { 6261 case 1: { 6262 u8 tmp8 = 0; 6263 pci_read_config_byte(pdev, bits->reg, &tmp8); 6264 tmp = tmp8; 6265 break; 6266 } 6267 case 2: { 6268 u16 tmp16 = 0; 6269 pci_read_config_word(pdev, bits->reg, &tmp16); 6270 tmp = tmp16; 6271 break; 6272 } 6273 case 4: { 6274 u32 tmp32 = 0; 6275 pci_read_config_dword(pdev, bits->reg, &tmp32); 6276 tmp = tmp32; 6277 break; 6278 } 6279 6280 default: 6281 return -EINVAL; 6282 } 6283 6284 tmp &= bits->mask; 6285 6286 return (tmp == bits->val) ? 1 : 0; 6287 } 6288 6289 #ifdef CONFIG_PM 6290 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6291 { 6292 pci_save_state(pdev); 6293 pci_disable_device(pdev); 6294 6295 if (mesg.event & PM_EVENT_SLEEP) 6296 pci_set_power_state(pdev, PCI_D3hot); 6297 } 6298 6299 int ata_pci_device_do_resume(struct pci_dev *pdev) 6300 { 6301 int rc; 6302 6303 pci_set_power_state(pdev, PCI_D0); 6304 pci_restore_state(pdev); 6305 6306 rc = pcim_enable_device(pdev); 6307 if (rc) { 6308 dev_printk(KERN_ERR, &pdev->dev, 6309 "failed to enable device after resume (%d)\n", rc); 6310 return rc; 6311 } 6312 6313 pci_set_master(pdev); 6314 return 0; 6315 } 6316 6317 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6318 { 6319 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6320 int rc = 0; 6321 6322 rc = ata_host_suspend(host, mesg); 6323 if (rc) 6324 return rc; 6325 6326 ata_pci_device_do_suspend(pdev, mesg); 6327 6328 return 0; 6329 } 6330 6331 int ata_pci_device_resume(struct pci_dev *pdev) 6332 { 6333 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6334 int rc; 6335 6336 rc = ata_pci_device_do_resume(pdev); 6337 if (rc == 0) 6338 ata_host_resume(host); 6339 return rc; 6340 } 6341 #endif /* CONFIG_PM */ 6342 6343 #endif /* CONFIG_PCI */ 6344 6345 static int __init ata_parse_force_one(char **cur, 6346 struct ata_force_ent *force_ent, 6347 const char **reason) 6348 { 6349 /* FIXME: Currently, there's no way to tag init const data and 6350 * using __initdata causes build failure on some versions of 6351 * gcc. Once __initdataconst is implemented, add const to the 6352 * following structure. 6353 */ 6354 static struct ata_force_param force_tbl[] __initdata = { 6355 { "40c", .cbl = ATA_CBL_PATA40 }, 6356 { "80c", .cbl = ATA_CBL_PATA80 }, 6357 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6358 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6359 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6360 { "sata", .cbl = ATA_CBL_SATA }, 6361 { "1.5Gbps", .spd_limit = 1 }, 6362 { "3.0Gbps", .spd_limit = 2 }, 6363 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6364 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6365 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6366 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6367 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6368 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6369 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6370 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6371 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6372 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6373 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6374 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6375 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6376 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6377 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6378 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6379 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6380 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6381 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6382 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6383 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6384 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6385 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6386 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6387 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6388 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6389 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6390 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6391 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6392 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6393 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6394 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6395 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6396 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6397 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6398 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6399 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6400 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6401 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6402 }; 6403 char *start = *cur, *p = *cur; 6404 char *id, *val, *endp; 6405 const struct ata_force_param *match_fp = NULL; 6406 int nr_matches = 0, i; 6407 6408 /* find where this param ends and update *cur */ 6409 while (*p != '\0' && *p != ',') 6410 p++; 6411 6412 if (*p == '\0') 6413 *cur = p; 6414 else 6415 *cur = p + 1; 6416 6417 *p = '\0'; 6418 6419 /* parse */ 6420 p = strchr(start, ':'); 6421 if (!p) { 6422 val = strstrip(start); 6423 goto parse_val; 6424 } 6425 *p = '\0'; 6426 6427 id = strstrip(start); 6428 val = strstrip(p + 1); 6429 6430 /* parse id */ 6431 p = strchr(id, '.'); 6432 if (p) { 6433 *p++ = '\0'; 6434 force_ent->device = simple_strtoul(p, &endp, 10); 6435 if (p == endp || *endp != '\0') { 6436 *reason = "invalid device"; 6437 return -EINVAL; 6438 } 6439 } 6440 6441 force_ent->port = simple_strtoul(id, &endp, 10); 6442 if (p == endp || *endp != '\0') { 6443 *reason = "invalid port/link"; 6444 return -EINVAL; 6445 } 6446 6447 parse_val: 6448 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6449 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6450 const struct ata_force_param *fp = &force_tbl[i]; 6451 6452 if (strncasecmp(val, fp->name, strlen(val))) 6453 continue; 6454 6455 nr_matches++; 6456 match_fp = fp; 6457 6458 if (strcasecmp(val, fp->name) == 0) { 6459 nr_matches = 1; 6460 break; 6461 } 6462 } 6463 6464 if (!nr_matches) { 6465 *reason = "unknown value"; 6466 return -EINVAL; 6467 } 6468 if (nr_matches > 1) { 6469 *reason = "ambigious value"; 6470 return -EINVAL; 6471 } 6472 6473 force_ent->param = *match_fp; 6474 6475 return 0; 6476 } 6477 6478 static void __init ata_parse_force_param(void) 6479 { 6480 int idx = 0, size = 1; 6481 int last_port = -1, last_device = -1; 6482 char *p, *cur, *next; 6483 6484 /* calculate maximum number of params and allocate force_tbl */ 6485 for (p = ata_force_param_buf; *p; p++) 6486 if (*p == ',') 6487 size++; 6488 6489 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6490 if (!ata_force_tbl) { 6491 printk(KERN_WARNING "ata: failed to extend force table, " 6492 "libata.force ignored\n"); 6493 return; 6494 } 6495 6496 /* parse and populate the table */ 6497 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6498 const char *reason = ""; 6499 struct ata_force_ent te = { .port = -1, .device = -1 }; 6500 6501 next = cur; 6502 if (ata_parse_force_one(&next, &te, &reason)) { 6503 printk(KERN_WARNING "ata: failed to parse force " 6504 "parameter \"%s\" (%s)\n", 6505 cur, reason); 6506 continue; 6507 } 6508 6509 if (te.port == -1) { 6510 te.port = last_port; 6511 te.device = last_device; 6512 } 6513 6514 ata_force_tbl[idx++] = te; 6515 6516 last_port = te.port; 6517 last_device = te.device; 6518 } 6519 6520 ata_force_tbl_size = idx; 6521 } 6522 6523 static int __init ata_init(void) 6524 { 6525 ata_parse_force_param(); 6526 6527 ata_wq = create_workqueue("ata"); 6528 if (!ata_wq) 6529 goto free_force_tbl; 6530 6531 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6532 if (!ata_aux_wq) 6533 goto free_wq; 6534 6535 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6536 return 0; 6537 6538 free_wq: 6539 destroy_workqueue(ata_wq); 6540 free_force_tbl: 6541 kfree(ata_force_tbl); 6542 return -ENOMEM; 6543 } 6544 6545 static void __exit ata_exit(void) 6546 { 6547 kfree(ata_force_tbl); 6548 destroy_workqueue(ata_wq); 6549 destroy_workqueue(ata_aux_wq); 6550 } 6551 6552 subsys_initcall(ata_init); 6553 module_exit(ata_exit); 6554 6555 static unsigned long ratelimit_time; 6556 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6557 6558 int ata_ratelimit(void) 6559 { 6560 int rc; 6561 unsigned long flags; 6562 6563 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6564 6565 if (time_after(jiffies, ratelimit_time)) { 6566 rc = 1; 6567 ratelimit_time = jiffies + (HZ/5); 6568 } else 6569 rc = 0; 6570 6571 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6572 6573 return rc; 6574 } 6575 6576 /** 6577 * ata_wait_register - wait until register value changes 6578 * @reg: IO-mapped register 6579 * @mask: Mask to apply to read register value 6580 * @val: Wait condition 6581 * @interval: polling interval in milliseconds 6582 * @timeout: timeout in milliseconds 6583 * 6584 * Waiting for some bits of register to change is a common 6585 * operation for ATA controllers. This function reads 32bit LE 6586 * IO-mapped register @reg and tests for the following condition. 6587 * 6588 * (*@reg & mask) != val 6589 * 6590 * If the condition is met, it returns; otherwise, the process is 6591 * repeated after @interval_msec until timeout. 6592 * 6593 * LOCKING: 6594 * Kernel thread context (may sleep) 6595 * 6596 * RETURNS: 6597 * The final register value. 6598 */ 6599 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6600 unsigned long interval, unsigned long timeout) 6601 { 6602 unsigned long deadline; 6603 u32 tmp; 6604 6605 tmp = ioread32(reg); 6606 6607 /* Calculate timeout _after_ the first read to make sure 6608 * preceding writes reach the controller before starting to 6609 * eat away the timeout. 6610 */ 6611 deadline = ata_deadline(jiffies, timeout); 6612 6613 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6614 msleep(interval); 6615 tmp = ioread32(reg); 6616 } 6617 6618 return tmp; 6619 } 6620 6621 /* 6622 * Dummy port_ops 6623 */ 6624 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6625 { 6626 return AC_ERR_SYSTEM; 6627 } 6628 6629 static void ata_dummy_error_handler(struct ata_port *ap) 6630 { 6631 /* truly dummy */ 6632 } 6633 6634 struct ata_port_operations ata_dummy_port_ops = { 6635 .qc_prep = ata_noop_qc_prep, 6636 .qc_issue = ata_dummy_qc_issue, 6637 .error_handler = ata_dummy_error_handler, 6638 }; 6639 6640 const struct ata_port_info ata_dummy_port_info = { 6641 .port_ops = &ata_dummy_port_ops, 6642 }; 6643 6644 /* 6645 * libata is essentially a library of internal helper functions for 6646 * low-level ATA host controller drivers. As such, the API/ABI is 6647 * likely to change as new drivers are added and updated. 6648 * Do not depend on ABI/API stability. 6649 */ 6650 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6651 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6652 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6653 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6654 EXPORT_SYMBOL_GPL(sata_port_ops); 6655 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6656 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6657 EXPORT_SYMBOL_GPL(ata_link_next); 6658 EXPORT_SYMBOL_GPL(ata_dev_next); 6659 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6660 EXPORT_SYMBOL_GPL(ata_host_init); 6661 EXPORT_SYMBOL_GPL(ata_host_alloc); 6662 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6663 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6664 EXPORT_SYMBOL_GPL(ata_host_start); 6665 EXPORT_SYMBOL_GPL(ata_host_register); 6666 EXPORT_SYMBOL_GPL(ata_host_activate); 6667 EXPORT_SYMBOL_GPL(ata_host_detach); 6668 EXPORT_SYMBOL_GPL(ata_sg_init); 6669 EXPORT_SYMBOL_GPL(ata_qc_complete); 6670 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6671 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6672 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6673 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6674 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6675 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6676 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6677 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6678 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6679 EXPORT_SYMBOL_GPL(ata_mode_string); 6680 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6681 EXPORT_SYMBOL_GPL(ata_port_start); 6682 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6683 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6684 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6685 EXPORT_SYMBOL_GPL(ata_port_probe); 6686 EXPORT_SYMBOL_GPL(ata_dev_disable); 6687 EXPORT_SYMBOL_GPL(sata_set_spd); 6688 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6689 EXPORT_SYMBOL_GPL(sata_link_debounce); 6690 EXPORT_SYMBOL_GPL(sata_link_resume); 6691 EXPORT_SYMBOL_GPL(ata_std_prereset); 6692 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6693 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6694 EXPORT_SYMBOL_GPL(ata_std_postreset); 6695 EXPORT_SYMBOL_GPL(ata_dev_classify); 6696 EXPORT_SYMBOL_GPL(ata_dev_pair); 6697 EXPORT_SYMBOL_GPL(ata_port_disable); 6698 EXPORT_SYMBOL_GPL(ata_ratelimit); 6699 EXPORT_SYMBOL_GPL(ata_wait_register); 6700 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6701 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6702 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6703 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6704 EXPORT_SYMBOL_GPL(sata_scr_valid); 6705 EXPORT_SYMBOL_GPL(sata_scr_read); 6706 EXPORT_SYMBOL_GPL(sata_scr_write); 6707 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6708 EXPORT_SYMBOL_GPL(ata_link_online); 6709 EXPORT_SYMBOL_GPL(ata_link_offline); 6710 #ifdef CONFIG_PM 6711 EXPORT_SYMBOL_GPL(ata_host_suspend); 6712 EXPORT_SYMBOL_GPL(ata_host_resume); 6713 #endif /* CONFIG_PM */ 6714 EXPORT_SYMBOL_GPL(ata_id_string); 6715 EXPORT_SYMBOL_GPL(ata_id_c_string); 6716 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6717 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6718 6719 EXPORT_SYMBOL_GPL(ata_pio_queue_task); 6720 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6721 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6722 EXPORT_SYMBOL_GPL(ata_timing_compute); 6723 EXPORT_SYMBOL_GPL(ata_timing_merge); 6724 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6725 6726 #ifdef CONFIG_PCI 6727 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6728 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6729 #ifdef CONFIG_PM 6730 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6731 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6732 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6733 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6734 #endif /* CONFIG_PM */ 6735 #endif /* CONFIG_PCI */ 6736 6737 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6738 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6739 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6740 EXPORT_SYMBOL_GPL(ata_port_desc); 6741 #ifdef CONFIG_PCI 6742 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6743 #endif /* CONFIG_PCI */ 6744 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6745 EXPORT_SYMBOL_GPL(ata_link_abort); 6746 EXPORT_SYMBOL_GPL(ata_port_abort); 6747 EXPORT_SYMBOL_GPL(ata_port_freeze); 6748 EXPORT_SYMBOL_GPL(sata_async_notification); 6749 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6750 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6751 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6752 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6753 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6754 EXPORT_SYMBOL_GPL(ata_do_eh); 6755 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6756 6757 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6758 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6759 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6760 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6761 EXPORT_SYMBOL_GPL(ata_cable_sata); 6762