xref: /openbmc/linux/drivers/ata/libata-core.c (revision b627b4ed)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
67 
68 #include "libata.h"
69 
70 
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
73 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
74 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
75 
76 const struct ata_port_operations ata_base_port_ops = {
77 	.prereset		= ata_std_prereset,
78 	.postreset		= ata_std_postreset,
79 	.error_handler		= ata_std_error_handler,
80 };
81 
82 const struct ata_port_operations sata_port_ops = {
83 	.inherits		= &ata_base_port_ops,
84 
85 	.qc_defer		= ata_std_qc_defer,
86 	.hardreset		= sata_std_hardreset,
87 };
88 
89 static unsigned int ata_dev_init_params(struct ata_device *dev,
90 					u16 heads, u16 sectors);
91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
92 static unsigned int ata_dev_set_feature(struct ata_device *dev,
93 					u8 enable, u8 feature);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96 
97 unsigned int ata_print_id = 1;
98 static struct workqueue_struct *ata_wq;
99 
100 struct workqueue_struct *ata_aux_wq;
101 
102 struct ata_force_param {
103 	const char	*name;
104 	unsigned int	cbl;
105 	int		spd_limit;
106 	unsigned long	xfer_mask;
107 	unsigned int	horkage_on;
108 	unsigned int	horkage_off;
109 	unsigned int	lflags;
110 };
111 
112 struct ata_force_ent {
113 	int			port;
114 	int			device;
115 	struct ata_force_param	param;
116 };
117 
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
120 
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125 
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
129 
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
133 
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
137 
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
141 
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145 
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149 
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153 
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
157 
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
161 
162 MODULE_AUTHOR("Jeff Garzik");
163 MODULE_DESCRIPTION("Library module for ATA devices");
164 MODULE_LICENSE("GPL");
165 MODULE_VERSION(DRV_VERSION);
166 
167 
168 static bool ata_sstatus_online(u32 sstatus)
169 {
170 	return (sstatus & 0xf) == 0x3;
171 }
172 
173 /**
174  *	ata_link_next - link iteration helper
175  *	@link: the previous link, NULL to start
176  *	@ap: ATA port containing links to iterate
177  *	@mode: iteration mode, one of ATA_LITER_*
178  *
179  *	LOCKING:
180  *	Host lock or EH context.
181  *
182  *	RETURNS:
183  *	Pointer to the next link.
184  */
185 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
186 			       enum ata_link_iter_mode mode)
187 {
188 	BUG_ON(mode != ATA_LITER_EDGE &&
189 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
190 
191 	/* NULL link indicates start of iteration */
192 	if (!link)
193 		switch (mode) {
194 		case ATA_LITER_EDGE:
195 		case ATA_LITER_PMP_FIRST:
196 			if (sata_pmp_attached(ap))
197 				return ap->pmp_link;
198 			/* fall through */
199 		case ATA_LITER_HOST_FIRST:
200 			return &ap->link;
201 		}
202 
203 	/* we just iterated over the host link, what's next? */
204 	if (link == &ap->link)
205 		switch (mode) {
206 		case ATA_LITER_HOST_FIRST:
207 			if (sata_pmp_attached(ap))
208 				return ap->pmp_link;
209 			/* fall through */
210 		case ATA_LITER_PMP_FIRST:
211 			if (unlikely(ap->slave_link))
212 				return ap->slave_link;
213 			/* fall through */
214 		case ATA_LITER_EDGE:
215 			return NULL;
216 		}
217 
218 	/* slave_link excludes PMP */
219 	if (unlikely(link == ap->slave_link))
220 		return NULL;
221 
222 	/* we were over a PMP link */
223 	if (++link < ap->pmp_link + ap->nr_pmp_links)
224 		return link;
225 
226 	if (mode == ATA_LITER_PMP_FIRST)
227 		return &ap->link;
228 
229 	return NULL;
230 }
231 
232 /**
233  *	ata_dev_next - device iteration helper
234  *	@dev: the previous device, NULL to start
235  *	@link: ATA link containing devices to iterate
236  *	@mode: iteration mode, one of ATA_DITER_*
237  *
238  *	LOCKING:
239  *	Host lock or EH context.
240  *
241  *	RETURNS:
242  *	Pointer to the next device.
243  */
244 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
245 				enum ata_dev_iter_mode mode)
246 {
247 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
248 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
249 
250 	/* NULL dev indicates start of iteration */
251 	if (!dev)
252 		switch (mode) {
253 		case ATA_DITER_ENABLED:
254 		case ATA_DITER_ALL:
255 			dev = link->device;
256 			goto check;
257 		case ATA_DITER_ENABLED_REVERSE:
258 		case ATA_DITER_ALL_REVERSE:
259 			dev = link->device + ata_link_max_devices(link) - 1;
260 			goto check;
261 		}
262 
263  next:
264 	/* move to the next one */
265 	switch (mode) {
266 	case ATA_DITER_ENABLED:
267 	case ATA_DITER_ALL:
268 		if (++dev < link->device + ata_link_max_devices(link))
269 			goto check;
270 		return NULL;
271 	case ATA_DITER_ENABLED_REVERSE:
272 	case ATA_DITER_ALL_REVERSE:
273 		if (--dev >= link->device)
274 			goto check;
275 		return NULL;
276 	}
277 
278  check:
279 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
280 	    !ata_dev_enabled(dev))
281 		goto next;
282 	return dev;
283 }
284 
285 /**
286  *	ata_dev_phys_link - find physical link for a device
287  *	@dev: ATA device to look up physical link for
288  *
289  *	Look up physical link which @dev is attached to.  Note that
290  *	this is different from @dev->link only when @dev is on slave
291  *	link.  For all other cases, it's the same as @dev->link.
292  *
293  *	LOCKING:
294  *	Don't care.
295  *
296  *	RETURNS:
297  *	Pointer to the found physical link.
298  */
299 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
300 {
301 	struct ata_port *ap = dev->link->ap;
302 
303 	if (!ap->slave_link)
304 		return dev->link;
305 	if (!dev->devno)
306 		return &ap->link;
307 	return ap->slave_link;
308 }
309 
310 /**
311  *	ata_force_cbl - force cable type according to libata.force
312  *	@ap: ATA port of interest
313  *
314  *	Force cable type according to libata.force and whine about it.
315  *	The last entry which has matching port number is used, so it
316  *	can be specified as part of device force parameters.  For
317  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
318  *	same effect.
319  *
320  *	LOCKING:
321  *	EH context.
322  */
323 void ata_force_cbl(struct ata_port *ap)
324 {
325 	int i;
326 
327 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
328 		const struct ata_force_ent *fe = &ata_force_tbl[i];
329 
330 		if (fe->port != -1 && fe->port != ap->print_id)
331 			continue;
332 
333 		if (fe->param.cbl == ATA_CBL_NONE)
334 			continue;
335 
336 		ap->cbl = fe->param.cbl;
337 		ata_port_printk(ap, KERN_NOTICE,
338 				"FORCE: cable set to %s\n", fe->param.name);
339 		return;
340 	}
341 }
342 
343 /**
344  *	ata_force_link_limits - force link limits according to libata.force
345  *	@link: ATA link of interest
346  *
347  *	Force link flags and SATA spd limit according to libata.force
348  *	and whine about it.  When only the port part is specified
349  *	(e.g. 1:), the limit applies to all links connected to both
350  *	the host link and all fan-out ports connected via PMP.  If the
351  *	device part is specified as 0 (e.g. 1.00:), it specifies the
352  *	first fan-out link not the host link.  Device number 15 always
353  *	points to the host link whether PMP is attached or not.  If the
354  *	controller has slave link, device number 16 points to it.
355  *
356  *	LOCKING:
357  *	EH context.
358  */
359 static void ata_force_link_limits(struct ata_link *link)
360 {
361 	bool did_spd = false;
362 	int linkno = link->pmp;
363 	int i;
364 
365 	if (ata_is_host_link(link))
366 		linkno += 15;
367 
368 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
369 		const struct ata_force_ent *fe = &ata_force_tbl[i];
370 
371 		if (fe->port != -1 && fe->port != link->ap->print_id)
372 			continue;
373 
374 		if (fe->device != -1 && fe->device != linkno)
375 			continue;
376 
377 		/* only honor the first spd limit */
378 		if (!did_spd && fe->param.spd_limit) {
379 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
380 			ata_link_printk(link, KERN_NOTICE,
381 					"FORCE: PHY spd limit set to %s\n",
382 					fe->param.name);
383 			did_spd = true;
384 		}
385 
386 		/* let lflags stack */
387 		if (fe->param.lflags) {
388 			link->flags |= fe->param.lflags;
389 			ata_link_printk(link, KERN_NOTICE,
390 					"FORCE: link flag 0x%x forced -> 0x%x\n",
391 					fe->param.lflags, link->flags);
392 		}
393 	}
394 }
395 
396 /**
397  *	ata_force_xfermask - force xfermask according to libata.force
398  *	@dev: ATA device of interest
399  *
400  *	Force xfer_mask according to libata.force and whine about it.
401  *	For consistency with link selection, device number 15 selects
402  *	the first device connected to the host link.
403  *
404  *	LOCKING:
405  *	EH context.
406  */
407 static void ata_force_xfermask(struct ata_device *dev)
408 {
409 	int devno = dev->link->pmp + dev->devno;
410 	int alt_devno = devno;
411 	int i;
412 
413 	/* allow n.15/16 for devices attached to host port */
414 	if (ata_is_host_link(dev->link))
415 		alt_devno += 15;
416 
417 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 		const struct ata_force_ent *fe = &ata_force_tbl[i];
419 		unsigned long pio_mask, mwdma_mask, udma_mask;
420 
421 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 			continue;
423 
424 		if (fe->device != -1 && fe->device != devno &&
425 		    fe->device != alt_devno)
426 			continue;
427 
428 		if (!fe->param.xfer_mask)
429 			continue;
430 
431 		ata_unpack_xfermask(fe->param.xfer_mask,
432 				    &pio_mask, &mwdma_mask, &udma_mask);
433 		if (udma_mask)
434 			dev->udma_mask = udma_mask;
435 		else if (mwdma_mask) {
436 			dev->udma_mask = 0;
437 			dev->mwdma_mask = mwdma_mask;
438 		} else {
439 			dev->udma_mask = 0;
440 			dev->mwdma_mask = 0;
441 			dev->pio_mask = pio_mask;
442 		}
443 
444 		ata_dev_printk(dev, KERN_NOTICE,
445 			"FORCE: xfer_mask set to %s\n", fe->param.name);
446 		return;
447 	}
448 }
449 
450 /**
451  *	ata_force_horkage - force horkage according to libata.force
452  *	@dev: ATA device of interest
453  *
454  *	Force horkage according to libata.force and whine about it.
455  *	For consistency with link selection, device number 15 selects
456  *	the first device connected to the host link.
457  *
458  *	LOCKING:
459  *	EH context.
460  */
461 static void ata_force_horkage(struct ata_device *dev)
462 {
463 	int devno = dev->link->pmp + dev->devno;
464 	int alt_devno = devno;
465 	int i;
466 
467 	/* allow n.15/16 for devices attached to host port */
468 	if (ata_is_host_link(dev->link))
469 		alt_devno += 15;
470 
471 	for (i = 0; i < ata_force_tbl_size; i++) {
472 		const struct ata_force_ent *fe = &ata_force_tbl[i];
473 
474 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 			continue;
476 
477 		if (fe->device != -1 && fe->device != devno &&
478 		    fe->device != alt_devno)
479 			continue;
480 
481 		if (!(~dev->horkage & fe->param.horkage_on) &&
482 		    !(dev->horkage & fe->param.horkage_off))
483 			continue;
484 
485 		dev->horkage |= fe->param.horkage_on;
486 		dev->horkage &= ~fe->param.horkage_off;
487 
488 		ata_dev_printk(dev, KERN_NOTICE,
489 			"FORCE: horkage modified (%s)\n", fe->param.name);
490 	}
491 }
492 
493 /**
494  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495  *	@opcode: SCSI opcode
496  *
497  *	Determine ATAPI command type from @opcode.
498  *
499  *	LOCKING:
500  *	None.
501  *
502  *	RETURNS:
503  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504  */
505 int atapi_cmd_type(u8 opcode)
506 {
507 	switch (opcode) {
508 	case GPCMD_READ_10:
509 	case GPCMD_READ_12:
510 		return ATAPI_READ;
511 
512 	case GPCMD_WRITE_10:
513 	case GPCMD_WRITE_12:
514 	case GPCMD_WRITE_AND_VERIFY_10:
515 		return ATAPI_WRITE;
516 
517 	case GPCMD_READ_CD:
518 	case GPCMD_READ_CD_MSF:
519 		return ATAPI_READ_CD;
520 
521 	case ATA_16:
522 	case ATA_12:
523 		if (atapi_passthru16)
524 			return ATAPI_PASS_THRU;
525 		/* fall thru */
526 	default:
527 		return ATAPI_MISC;
528 	}
529 }
530 
531 /**
532  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533  *	@tf: Taskfile to convert
534  *	@pmp: Port multiplier port
535  *	@is_cmd: This FIS is for command
536  *	@fis: Buffer into which data will output
537  *
538  *	Converts a standard ATA taskfile to a Serial ATA
539  *	FIS structure (Register - Host to Device).
540  *
541  *	LOCKING:
542  *	Inherited from caller.
543  */
544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545 {
546 	fis[0] = 0x27;			/* Register - Host to Device FIS */
547 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
548 	if (is_cmd)
549 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
550 
551 	fis[2] = tf->command;
552 	fis[3] = tf->feature;
553 
554 	fis[4] = tf->lbal;
555 	fis[5] = tf->lbam;
556 	fis[6] = tf->lbah;
557 	fis[7] = tf->device;
558 
559 	fis[8] = tf->hob_lbal;
560 	fis[9] = tf->hob_lbam;
561 	fis[10] = tf->hob_lbah;
562 	fis[11] = tf->hob_feature;
563 
564 	fis[12] = tf->nsect;
565 	fis[13] = tf->hob_nsect;
566 	fis[14] = 0;
567 	fis[15] = tf->ctl;
568 
569 	fis[16] = 0;
570 	fis[17] = 0;
571 	fis[18] = 0;
572 	fis[19] = 0;
573 }
574 
575 /**
576  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577  *	@fis: Buffer from which data will be input
578  *	@tf: Taskfile to output
579  *
580  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
581  *
582  *	LOCKING:
583  *	Inherited from caller.
584  */
585 
586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587 {
588 	tf->command	= fis[2];	/* status */
589 	tf->feature	= fis[3];	/* error */
590 
591 	tf->lbal	= fis[4];
592 	tf->lbam	= fis[5];
593 	tf->lbah	= fis[6];
594 	tf->device	= fis[7];
595 
596 	tf->hob_lbal	= fis[8];
597 	tf->hob_lbam	= fis[9];
598 	tf->hob_lbah	= fis[10];
599 
600 	tf->nsect	= fis[12];
601 	tf->hob_nsect	= fis[13];
602 }
603 
604 static const u8 ata_rw_cmds[] = {
605 	/* pio multi */
606 	ATA_CMD_READ_MULTI,
607 	ATA_CMD_WRITE_MULTI,
608 	ATA_CMD_READ_MULTI_EXT,
609 	ATA_CMD_WRITE_MULTI_EXT,
610 	0,
611 	0,
612 	0,
613 	ATA_CMD_WRITE_MULTI_FUA_EXT,
614 	/* pio */
615 	ATA_CMD_PIO_READ,
616 	ATA_CMD_PIO_WRITE,
617 	ATA_CMD_PIO_READ_EXT,
618 	ATA_CMD_PIO_WRITE_EXT,
619 	0,
620 	0,
621 	0,
622 	0,
623 	/* dma */
624 	ATA_CMD_READ,
625 	ATA_CMD_WRITE,
626 	ATA_CMD_READ_EXT,
627 	ATA_CMD_WRITE_EXT,
628 	0,
629 	0,
630 	0,
631 	ATA_CMD_WRITE_FUA_EXT
632 };
633 
634 /**
635  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
636  *	@tf: command to examine and configure
637  *	@dev: device tf belongs to
638  *
639  *	Examine the device configuration and tf->flags to calculate
640  *	the proper read/write commands and protocol to use.
641  *
642  *	LOCKING:
643  *	caller.
644  */
645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
646 {
647 	u8 cmd;
648 
649 	int index, fua, lba48, write;
650 
651 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654 
655 	if (dev->flags & ATA_DFLAG_PIO) {
656 		tf->protocol = ATA_PROT_PIO;
657 		index = dev->multi_count ? 0 : 8;
658 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 		/* Unable to use DMA due to host limitation */
660 		tf->protocol = ATA_PROT_PIO;
661 		index = dev->multi_count ? 0 : 8;
662 	} else {
663 		tf->protocol = ATA_PROT_DMA;
664 		index = 16;
665 	}
666 
667 	cmd = ata_rw_cmds[index + fua + lba48 + write];
668 	if (cmd) {
669 		tf->command = cmd;
670 		return 0;
671 	}
672 	return -1;
673 }
674 
675 /**
676  *	ata_tf_read_block - Read block address from ATA taskfile
677  *	@tf: ATA taskfile of interest
678  *	@dev: ATA device @tf belongs to
679  *
680  *	LOCKING:
681  *	None.
682  *
683  *	Read block address from @tf.  This function can handle all
684  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
685  *	flags select the address format to use.
686  *
687  *	RETURNS:
688  *	Block address read from @tf.
689  */
690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691 {
692 	u64 block = 0;
693 
694 	if (tf->flags & ATA_TFLAG_LBA) {
695 		if (tf->flags & ATA_TFLAG_LBA48) {
696 			block |= (u64)tf->hob_lbah << 40;
697 			block |= (u64)tf->hob_lbam << 32;
698 			block |= (u64)tf->hob_lbal << 24;
699 		} else
700 			block |= (tf->device & 0xf) << 24;
701 
702 		block |= tf->lbah << 16;
703 		block |= tf->lbam << 8;
704 		block |= tf->lbal;
705 	} else {
706 		u32 cyl, head, sect;
707 
708 		cyl = tf->lbam | (tf->lbah << 8);
709 		head = tf->device & 0xf;
710 		sect = tf->lbal;
711 
712 		block = (cyl * dev->heads + head) * dev->sectors + sect;
713 	}
714 
715 	return block;
716 }
717 
718 /**
719  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
720  *	@tf: Target ATA taskfile
721  *	@dev: ATA device @tf belongs to
722  *	@block: Block address
723  *	@n_block: Number of blocks
724  *	@tf_flags: RW/FUA etc...
725  *	@tag: tag
726  *
727  *	LOCKING:
728  *	None.
729  *
730  *	Build ATA taskfile @tf for read/write request described by
731  *	@block, @n_block, @tf_flags and @tag on @dev.
732  *
733  *	RETURNS:
734  *
735  *	0 on success, -ERANGE if the request is too large for @dev,
736  *	-EINVAL if the request is invalid.
737  */
738 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
739 		    u64 block, u32 n_block, unsigned int tf_flags,
740 		    unsigned int tag)
741 {
742 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
743 	tf->flags |= tf_flags;
744 
745 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
746 		/* yay, NCQ */
747 		if (!lba_48_ok(block, n_block))
748 			return -ERANGE;
749 
750 		tf->protocol = ATA_PROT_NCQ;
751 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
752 
753 		if (tf->flags & ATA_TFLAG_WRITE)
754 			tf->command = ATA_CMD_FPDMA_WRITE;
755 		else
756 			tf->command = ATA_CMD_FPDMA_READ;
757 
758 		tf->nsect = tag << 3;
759 		tf->hob_feature = (n_block >> 8) & 0xff;
760 		tf->feature = n_block & 0xff;
761 
762 		tf->hob_lbah = (block >> 40) & 0xff;
763 		tf->hob_lbam = (block >> 32) & 0xff;
764 		tf->hob_lbal = (block >> 24) & 0xff;
765 		tf->lbah = (block >> 16) & 0xff;
766 		tf->lbam = (block >> 8) & 0xff;
767 		tf->lbal = block & 0xff;
768 
769 		tf->device = 1 << 6;
770 		if (tf->flags & ATA_TFLAG_FUA)
771 			tf->device |= 1 << 7;
772 	} else if (dev->flags & ATA_DFLAG_LBA) {
773 		tf->flags |= ATA_TFLAG_LBA;
774 
775 		if (lba_28_ok(block, n_block)) {
776 			/* use LBA28 */
777 			tf->device |= (block >> 24) & 0xf;
778 		} else if (lba_48_ok(block, n_block)) {
779 			if (!(dev->flags & ATA_DFLAG_LBA48))
780 				return -ERANGE;
781 
782 			/* use LBA48 */
783 			tf->flags |= ATA_TFLAG_LBA48;
784 
785 			tf->hob_nsect = (n_block >> 8) & 0xff;
786 
787 			tf->hob_lbah = (block >> 40) & 0xff;
788 			tf->hob_lbam = (block >> 32) & 0xff;
789 			tf->hob_lbal = (block >> 24) & 0xff;
790 		} else
791 			/* request too large even for LBA48 */
792 			return -ERANGE;
793 
794 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
795 			return -EINVAL;
796 
797 		tf->nsect = n_block & 0xff;
798 
799 		tf->lbah = (block >> 16) & 0xff;
800 		tf->lbam = (block >> 8) & 0xff;
801 		tf->lbal = block & 0xff;
802 
803 		tf->device |= ATA_LBA;
804 	} else {
805 		/* CHS */
806 		u32 sect, head, cyl, track;
807 
808 		/* The request -may- be too large for CHS addressing. */
809 		if (!lba_28_ok(block, n_block))
810 			return -ERANGE;
811 
812 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
813 			return -EINVAL;
814 
815 		/* Convert LBA to CHS */
816 		track = (u32)block / dev->sectors;
817 		cyl   = track / dev->heads;
818 		head  = track % dev->heads;
819 		sect  = (u32)block % dev->sectors + 1;
820 
821 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
822 			(u32)block, track, cyl, head, sect);
823 
824 		/* Check whether the converted CHS can fit.
825 		   Cylinder: 0-65535
826 		   Head: 0-15
827 		   Sector: 1-255*/
828 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
829 			return -ERANGE;
830 
831 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
832 		tf->lbal = sect;
833 		tf->lbam = cyl;
834 		tf->lbah = cyl >> 8;
835 		tf->device |= head;
836 	}
837 
838 	return 0;
839 }
840 
841 /**
842  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
843  *	@pio_mask: pio_mask
844  *	@mwdma_mask: mwdma_mask
845  *	@udma_mask: udma_mask
846  *
847  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
848  *	unsigned int xfer_mask.
849  *
850  *	LOCKING:
851  *	None.
852  *
853  *	RETURNS:
854  *	Packed xfer_mask.
855  */
856 unsigned long ata_pack_xfermask(unsigned long pio_mask,
857 				unsigned long mwdma_mask,
858 				unsigned long udma_mask)
859 {
860 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
861 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
862 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
863 }
864 
865 /**
866  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
867  *	@xfer_mask: xfer_mask to unpack
868  *	@pio_mask: resulting pio_mask
869  *	@mwdma_mask: resulting mwdma_mask
870  *	@udma_mask: resulting udma_mask
871  *
872  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
873  *	Any NULL distination masks will be ignored.
874  */
875 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
876 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
877 {
878 	if (pio_mask)
879 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
880 	if (mwdma_mask)
881 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
882 	if (udma_mask)
883 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
884 }
885 
886 static const struct ata_xfer_ent {
887 	int shift, bits;
888 	u8 base;
889 } ata_xfer_tbl[] = {
890 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
891 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
892 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
893 	{ -1, },
894 };
895 
896 /**
897  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
898  *	@xfer_mask: xfer_mask of interest
899  *
900  *	Return matching XFER_* value for @xfer_mask.  Only the highest
901  *	bit of @xfer_mask is considered.
902  *
903  *	LOCKING:
904  *	None.
905  *
906  *	RETURNS:
907  *	Matching XFER_* value, 0xff if no match found.
908  */
909 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
910 {
911 	int highbit = fls(xfer_mask) - 1;
912 	const struct ata_xfer_ent *ent;
913 
914 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
915 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
916 			return ent->base + highbit - ent->shift;
917 	return 0xff;
918 }
919 
920 /**
921  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
922  *	@xfer_mode: XFER_* of interest
923  *
924  *	Return matching xfer_mask for @xfer_mode.
925  *
926  *	LOCKING:
927  *	None.
928  *
929  *	RETURNS:
930  *	Matching xfer_mask, 0 if no match found.
931  */
932 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
933 {
934 	const struct ata_xfer_ent *ent;
935 
936 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
937 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
938 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
939 				& ~((1 << ent->shift) - 1);
940 	return 0;
941 }
942 
943 /**
944  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
945  *	@xfer_mode: XFER_* of interest
946  *
947  *	Return matching xfer_shift for @xfer_mode.
948  *
949  *	LOCKING:
950  *	None.
951  *
952  *	RETURNS:
953  *	Matching xfer_shift, -1 if no match found.
954  */
955 int ata_xfer_mode2shift(unsigned long xfer_mode)
956 {
957 	const struct ata_xfer_ent *ent;
958 
959 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 			return ent->shift;
962 	return -1;
963 }
964 
965 /**
966  *	ata_mode_string - convert xfer_mask to string
967  *	@xfer_mask: mask of bits supported; only highest bit counts.
968  *
969  *	Determine string which represents the highest speed
970  *	(highest bit in @modemask).
971  *
972  *	LOCKING:
973  *	None.
974  *
975  *	RETURNS:
976  *	Constant C string representing highest speed listed in
977  *	@mode_mask, or the constant C string "<n/a>".
978  */
979 const char *ata_mode_string(unsigned long xfer_mask)
980 {
981 	static const char * const xfer_mode_str[] = {
982 		"PIO0",
983 		"PIO1",
984 		"PIO2",
985 		"PIO3",
986 		"PIO4",
987 		"PIO5",
988 		"PIO6",
989 		"MWDMA0",
990 		"MWDMA1",
991 		"MWDMA2",
992 		"MWDMA3",
993 		"MWDMA4",
994 		"UDMA/16",
995 		"UDMA/25",
996 		"UDMA/33",
997 		"UDMA/44",
998 		"UDMA/66",
999 		"UDMA/100",
1000 		"UDMA/133",
1001 		"UDMA7",
1002 	};
1003 	int highbit;
1004 
1005 	highbit = fls(xfer_mask) - 1;
1006 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1007 		return xfer_mode_str[highbit];
1008 	return "<n/a>";
1009 }
1010 
1011 static const char *sata_spd_string(unsigned int spd)
1012 {
1013 	static const char * const spd_str[] = {
1014 		"1.5 Gbps",
1015 		"3.0 Gbps",
1016 		"6.0 Gbps",
1017 	};
1018 
1019 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1020 		return "<unknown>";
1021 	return spd_str[spd - 1];
1022 }
1023 
1024 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1025 {
1026 	struct ata_link *link = dev->link;
1027 	struct ata_port *ap = link->ap;
1028 	u32 scontrol;
1029 	unsigned int err_mask;
1030 	int rc;
1031 
1032 	/*
1033 	 * disallow DIPM for drivers which haven't set
1034 	 * ATA_FLAG_IPM.  This is because when DIPM is enabled,
1035 	 * phy ready will be set in the interrupt status on
1036 	 * state changes, which will cause some drivers to
1037 	 * think there are errors - additionally drivers will
1038 	 * need to disable hot plug.
1039 	 */
1040 	if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1041 		ap->pm_policy = NOT_AVAILABLE;
1042 		return -EINVAL;
1043 	}
1044 
1045 	/*
1046 	 * For DIPM, we will only enable it for the
1047 	 * min_power setting.
1048 	 *
1049 	 * Why?  Because Disks are too stupid to know that
1050 	 * If the host rejects a request to go to SLUMBER
1051 	 * they should retry at PARTIAL, and instead it
1052 	 * just would give up.  So, for medium_power to
1053 	 * work at all, we need to only allow HIPM.
1054 	 */
1055 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1056 	if (rc)
1057 		return rc;
1058 
1059 	switch (policy) {
1060 	case MIN_POWER:
1061 		/* no restrictions on IPM transitions */
1062 		scontrol &= ~(0x3 << 8);
1063 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1064 		if (rc)
1065 			return rc;
1066 
1067 		/* enable DIPM */
1068 		if (dev->flags & ATA_DFLAG_DIPM)
1069 			err_mask = ata_dev_set_feature(dev,
1070 					SETFEATURES_SATA_ENABLE, SATA_DIPM);
1071 		break;
1072 	case MEDIUM_POWER:
1073 		/* allow IPM to PARTIAL */
1074 		scontrol &= ~(0x1 << 8);
1075 		scontrol |= (0x2 << 8);
1076 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1077 		if (rc)
1078 			return rc;
1079 
1080 		/*
1081 		 * we don't have to disable DIPM since IPM flags
1082 		 * disallow transitions to SLUMBER, which effectively
1083 		 * disable DIPM if it does not support PARTIAL
1084 		 */
1085 		break;
1086 	case NOT_AVAILABLE:
1087 	case MAX_PERFORMANCE:
1088 		/* disable all IPM transitions */
1089 		scontrol |= (0x3 << 8);
1090 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1091 		if (rc)
1092 			return rc;
1093 
1094 		/*
1095 		 * we don't have to disable DIPM since IPM flags
1096 		 * disallow all transitions which effectively
1097 		 * disable DIPM anyway.
1098 		 */
1099 		break;
1100 	}
1101 
1102 	/* FIXME: handle SET FEATURES failure */
1103 	(void) err_mask;
1104 
1105 	return 0;
1106 }
1107 
1108 /**
1109  *	ata_dev_enable_pm - enable SATA interface power management
1110  *	@dev:  device to enable power management
1111  *	@policy: the link power management policy
1112  *
1113  *	Enable SATA Interface power management.  This will enable
1114  *	Device Interface Power Management (DIPM) for min_power
1115  * 	policy, and then call driver specific callbacks for
1116  *	enabling Host Initiated Power management.
1117  *
1118  *	Locking: Caller.
1119  *	Returns: -EINVAL if IPM is not supported, 0 otherwise.
1120  */
1121 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1122 {
1123 	int rc = 0;
1124 	struct ata_port *ap = dev->link->ap;
1125 
1126 	/* set HIPM first, then DIPM */
1127 	if (ap->ops->enable_pm)
1128 		rc = ap->ops->enable_pm(ap, policy);
1129 	if (rc)
1130 		goto enable_pm_out;
1131 	rc = ata_dev_set_dipm(dev, policy);
1132 
1133 enable_pm_out:
1134 	if (rc)
1135 		ap->pm_policy = MAX_PERFORMANCE;
1136 	else
1137 		ap->pm_policy = policy;
1138 	return /* rc */;	/* hopefully we can use 'rc' eventually */
1139 }
1140 
1141 #ifdef CONFIG_PM
1142 /**
1143  *	ata_dev_disable_pm - disable SATA interface power management
1144  *	@dev: device to disable power management
1145  *
1146  *	Disable SATA Interface power management.  This will disable
1147  *	Device Interface Power Management (DIPM) without changing
1148  * 	policy,  call driver specific callbacks for disabling Host
1149  * 	Initiated Power management.
1150  *
1151  *	Locking: Caller.
1152  *	Returns: void
1153  */
1154 static void ata_dev_disable_pm(struct ata_device *dev)
1155 {
1156 	struct ata_port *ap = dev->link->ap;
1157 
1158 	ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1159 	if (ap->ops->disable_pm)
1160 		ap->ops->disable_pm(ap);
1161 }
1162 #endif	/* CONFIG_PM */
1163 
1164 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1165 {
1166 	ap->pm_policy = policy;
1167 	ap->link.eh_info.action |= ATA_EH_LPM;
1168 	ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1169 	ata_port_schedule_eh(ap);
1170 }
1171 
1172 #ifdef CONFIG_PM
1173 static void ata_lpm_enable(struct ata_host *host)
1174 {
1175 	struct ata_link *link;
1176 	struct ata_port *ap;
1177 	struct ata_device *dev;
1178 	int i;
1179 
1180 	for (i = 0; i < host->n_ports; i++) {
1181 		ap = host->ports[i];
1182 		ata_for_each_link(link, ap, EDGE) {
1183 			ata_for_each_dev(dev, link, ALL)
1184 				ata_dev_disable_pm(dev);
1185 		}
1186 	}
1187 }
1188 
1189 static void ata_lpm_disable(struct ata_host *host)
1190 {
1191 	int i;
1192 
1193 	for (i = 0; i < host->n_ports; i++) {
1194 		struct ata_port *ap = host->ports[i];
1195 		ata_lpm_schedule(ap, ap->pm_policy);
1196 	}
1197 }
1198 #endif	/* CONFIG_PM */
1199 
1200 /**
1201  *	ata_dev_classify - determine device type based on ATA-spec signature
1202  *	@tf: ATA taskfile register set for device to be identified
1203  *
1204  *	Determine from taskfile register contents whether a device is
1205  *	ATA or ATAPI, as per "Signature and persistence" section
1206  *	of ATA/PI spec (volume 1, sect 5.14).
1207  *
1208  *	LOCKING:
1209  *	None.
1210  *
1211  *	RETURNS:
1212  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1213  *	%ATA_DEV_UNKNOWN the event of failure.
1214  */
1215 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1216 {
1217 	/* Apple's open source Darwin code hints that some devices only
1218 	 * put a proper signature into the LBA mid/high registers,
1219 	 * So, we only check those.  It's sufficient for uniqueness.
1220 	 *
1221 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1222 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1223 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1224 	 * spec has never mentioned about using different signatures
1225 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1226 	 * Multiplier specification began to use 0x69/0x96 to identify
1227 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1228 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1229 	 * 0x69/0x96 shortly and described them as reserved for
1230 	 * SerialATA.
1231 	 *
1232 	 * We follow the current spec and consider that 0x69/0x96
1233 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1234 	 */
1235 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1236 		DPRINTK("found ATA device by sig\n");
1237 		return ATA_DEV_ATA;
1238 	}
1239 
1240 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1241 		DPRINTK("found ATAPI device by sig\n");
1242 		return ATA_DEV_ATAPI;
1243 	}
1244 
1245 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1246 		DPRINTK("found PMP device by sig\n");
1247 		return ATA_DEV_PMP;
1248 	}
1249 
1250 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1251 		printk(KERN_INFO "ata: SEMB device ignored\n");
1252 		return ATA_DEV_SEMB_UNSUP; /* not yet */
1253 	}
1254 
1255 	DPRINTK("unknown device\n");
1256 	return ATA_DEV_UNKNOWN;
1257 }
1258 
1259 /**
1260  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1261  *	@id: IDENTIFY DEVICE results we will examine
1262  *	@s: string into which data is output
1263  *	@ofs: offset into identify device page
1264  *	@len: length of string to return. must be an even number.
1265  *
1266  *	The strings in the IDENTIFY DEVICE page are broken up into
1267  *	16-bit chunks.  Run through the string, and output each
1268  *	8-bit chunk linearly, regardless of platform.
1269  *
1270  *	LOCKING:
1271  *	caller.
1272  */
1273 
1274 void ata_id_string(const u16 *id, unsigned char *s,
1275 		   unsigned int ofs, unsigned int len)
1276 {
1277 	unsigned int c;
1278 
1279 	BUG_ON(len & 1);
1280 
1281 	while (len > 0) {
1282 		c = id[ofs] >> 8;
1283 		*s = c;
1284 		s++;
1285 
1286 		c = id[ofs] & 0xff;
1287 		*s = c;
1288 		s++;
1289 
1290 		ofs++;
1291 		len -= 2;
1292 	}
1293 }
1294 
1295 /**
1296  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1297  *	@id: IDENTIFY DEVICE results we will examine
1298  *	@s: string into which data is output
1299  *	@ofs: offset into identify device page
1300  *	@len: length of string to return. must be an odd number.
1301  *
1302  *	This function is identical to ata_id_string except that it
1303  *	trims trailing spaces and terminates the resulting string with
1304  *	null.  @len must be actual maximum length (even number) + 1.
1305  *
1306  *	LOCKING:
1307  *	caller.
1308  */
1309 void ata_id_c_string(const u16 *id, unsigned char *s,
1310 		     unsigned int ofs, unsigned int len)
1311 {
1312 	unsigned char *p;
1313 
1314 	ata_id_string(id, s, ofs, len - 1);
1315 
1316 	p = s + strnlen(s, len - 1);
1317 	while (p > s && p[-1] == ' ')
1318 		p--;
1319 	*p = '\0';
1320 }
1321 
1322 static u64 ata_id_n_sectors(const u16 *id)
1323 {
1324 	if (ata_id_has_lba(id)) {
1325 		if (ata_id_has_lba48(id))
1326 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1327 		else
1328 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1329 	} else {
1330 		if (ata_id_current_chs_valid(id))
1331 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1332 			       id[ATA_ID_CUR_SECTORS];
1333 		else
1334 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1335 			       id[ATA_ID_SECTORS];
1336 	}
1337 }
1338 
1339 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1340 {
1341 	u64 sectors = 0;
1342 
1343 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1344 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1345 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1346 	sectors |= (tf->lbah & 0xff) << 16;
1347 	sectors |= (tf->lbam & 0xff) << 8;
1348 	sectors |= (tf->lbal & 0xff);
1349 
1350 	return sectors;
1351 }
1352 
1353 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1354 {
1355 	u64 sectors = 0;
1356 
1357 	sectors |= (tf->device & 0x0f) << 24;
1358 	sectors |= (tf->lbah & 0xff) << 16;
1359 	sectors |= (tf->lbam & 0xff) << 8;
1360 	sectors |= (tf->lbal & 0xff);
1361 
1362 	return sectors;
1363 }
1364 
1365 /**
1366  *	ata_read_native_max_address - Read native max address
1367  *	@dev: target device
1368  *	@max_sectors: out parameter for the result native max address
1369  *
1370  *	Perform an LBA48 or LBA28 native size query upon the device in
1371  *	question.
1372  *
1373  *	RETURNS:
1374  *	0 on success, -EACCES if command is aborted by the drive.
1375  *	-EIO on other errors.
1376  */
1377 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1378 {
1379 	unsigned int err_mask;
1380 	struct ata_taskfile tf;
1381 	int lba48 = ata_id_has_lba48(dev->id);
1382 
1383 	ata_tf_init(dev, &tf);
1384 
1385 	/* always clear all address registers */
1386 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1387 
1388 	if (lba48) {
1389 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1390 		tf.flags |= ATA_TFLAG_LBA48;
1391 	} else
1392 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1393 
1394 	tf.protocol |= ATA_PROT_NODATA;
1395 	tf.device |= ATA_LBA;
1396 
1397 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1398 	if (err_mask) {
1399 		ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1400 			       "max address (err_mask=0x%x)\n", err_mask);
1401 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1402 			return -EACCES;
1403 		return -EIO;
1404 	}
1405 
1406 	if (lba48)
1407 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1408 	else
1409 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1410 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1411 		(*max_sectors)--;
1412 	return 0;
1413 }
1414 
1415 /**
1416  *	ata_set_max_sectors - Set max sectors
1417  *	@dev: target device
1418  *	@new_sectors: new max sectors value to set for the device
1419  *
1420  *	Set max sectors of @dev to @new_sectors.
1421  *
1422  *	RETURNS:
1423  *	0 on success, -EACCES if command is aborted or denied (due to
1424  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1425  *	errors.
1426  */
1427 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1428 {
1429 	unsigned int err_mask;
1430 	struct ata_taskfile tf;
1431 	int lba48 = ata_id_has_lba48(dev->id);
1432 
1433 	new_sectors--;
1434 
1435 	ata_tf_init(dev, &tf);
1436 
1437 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1438 
1439 	if (lba48) {
1440 		tf.command = ATA_CMD_SET_MAX_EXT;
1441 		tf.flags |= ATA_TFLAG_LBA48;
1442 
1443 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1444 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1445 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1446 	} else {
1447 		tf.command = ATA_CMD_SET_MAX;
1448 
1449 		tf.device |= (new_sectors >> 24) & 0xf;
1450 	}
1451 
1452 	tf.protocol |= ATA_PROT_NODATA;
1453 	tf.device |= ATA_LBA;
1454 
1455 	tf.lbal = (new_sectors >> 0) & 0xff;
1456 	tf.lbam = (new_sectors >> 8) & 0xff;
1457 	tf.lbah = (new_sectors >> 16) & 0xff;
1458 
1459 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1460 	if (err_mask) {
1461 		ata_dev_printk(dev, KERN_WARNING, "failed to set "
1462 			       "max address (err_mask=0x%x)\n", err_mask);
1463 		if (err_mask == AC_ERR_DEV &&
1464 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1465 			return -EACCES;
1466 		return -EIO;
1467 	}
1468 
1469 	return 0;
1470 }
1471 
1472 /**
1473  *	ata_hpa_resize		-	Resize a device with an HPA set
1474  *	@dev: Device to resize
1475  *
1476  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1477  *	it if required to the full size of the media. The caller must check
1478  *	the drive has the HPA feature set enabled.
1479  *
1480  *	RETURNS:
1481  *	0 on success, -errno on failure.
1482  */
1483 static int ata_hpa_resize(struct ata_device *dev)
1484 {
1485 	struct ata_eh_context *ehc = &dev->link->eh_context;
1486 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1487 	u64 sectors = ata_id_n_sectors(dev->id);
1488 	u64 native_sectors;
1489 	int rc;
1490 
1491 	/* do we need to do it? */
1492 	if (dev->class != ATA_DEV_ATA ||
1493 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1494 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1495 		return 0;
1496 
1497 	/* read native max address */
1498 	rc = ata_read_native_max_address(dev, &native_sectors);
1499 	if (rc) {
1500 		/* If device aborted the command or HPA isn't going to
1501 		 * be unlocked, skip HPA resizing.
1502 		 */
1503 		if (rc == -EACCES || !ata_ignore_hpa) {
1504 			ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1505 				       "broken, skipping HPA handling\n");
1506 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1507 
1508 			/* we can continue if device aborted the command */
1509 			if (rc == -EACCES)
1510 				rc = 0;
1511 		}
1512 
1513 		return rc;
1514 	}
1515 
1516 	/* nothing to do? */
1517 	if (native_sectors <= sectors || !ata_ignore_hpa) {
1518 		if (!print_info || native_sectors == sectors)
1519 			return 0;
1520 
1521 		if (native_sectors > sectors)
1522 			ata_dev_printk(dev, KERN_INFO,
1523 				"HPA detected: current %llu, native %llu\n",
1524 				(unsigned long long)sectors,
1525 				(unsigned long long)native_sectors);
1526 		else if (native_sectors < sectors)
1527 			ata_dev_printk(dev, KERN_WARNING,
1528 				"native sectors (%llu) is smaller than "
1529 				"sectors (%llu)\n",
1530 				(unsigned long long)native_sectors,
1531 				(unsigned long long)sectors);
1532 		return 0;
1533 	}
1534 
1535 	/* let's unlock HPA */
1536 	rc = ata_set_max_sectors(dev, native_sectors);
1537 	if (rc == -EACCES) {
1538 		/* if device aborted the command, skip HPA resizing */
1539 		ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1540 			       "(%llu -> %llu), skipping HPA handling\n",
1541 			       (unsigned long long)sectors,
1542 			       (unsigned long long)native_sectors);
1543 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1544 		return 0;
1545 	} else if (rc)
1546 		return rc;
1547 
1548 	/* re-read IDENTIFY data */
1549 	rc = ata_dev_reread_id(dev, 0);
1550 	if (rc) {
1551 		ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1552 			       "data after HPA resizing\n");
1553 		return rc;
1554 	}
1555 
1556 	if (print_info) {
1557 		u64 new_sectors = ata_id_n_sectors(dev->id);
1558 		ata_dev_printk(dev, KERN_INFO,
1559 			"HPA unlocked: %llu -> %llu, native %llu\n",
1560 			(unsigned long long)sectors,
1561 			(unsigned long long)new_sectors,
1562 			(unsigned long long)native_sectors);
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 /**
1569  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1570  *	@id: IDENTIFY DEVICE page to dump
1571  *
1572  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1573  *	page.
1574  *
1575  *	LOCKING:
1576  *	caller.
1577  */
1578 
1579 static inline void ata_dump_id(const u16 *id)
1580 {
1581 	DPRINTK("49==0x%04x  "
1582 		"53==0x%04x  "
1583 		"63==0x%04x  "
1584 		"64==0x%04x  "
1585 		"75==0x%04x  \n",
1586 		id[49],
1587 		id[53],
1588 		id[63],
1589 		id[64],
1590 		id[75]);
1591 	DPRINTK("80==0x%04x  "
1592 		"81==0x%04x  "
1593 		"82==0x%04x  "
1594 		"83==0x%04x  "
1595 		"84==0x%04x  \n",
1596 		id[80],
1597 		id[81],
1598 		id[82],
1599 		id[83],
1600 		id[84]);
1601 	DPRINTK("88==0x%04x  "
1602 		"93==0x%04x\n",
1603 		id[88],
1604 		id[93]);
1605 }
1606 
1607 /**
1608  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1609  *	@id: IDENTIFY data to compute xfer mask from
1610  *
1611  *	Compute the xfermask for this device. This is not as trivial
1612  *	as it seems if we must consider early devices correctly.
1613  *
1614  *	FIXME: pre IDE drive timing (do we care ?).
1615  *
1616  *	LOCKING:
1617  *	None.
1618  *
1619  *	RETURNS:
1620  *	Computed xfermask
1621  */
1622 unsigned long ata_id_xfermask(const u16 *id)
1623 {
1624 	unsigned long pio_mask, mwdma_mask, udma_mask;
1625 
1626 	/* Usual case. Word 53 indicates word 64 is valid */
1627 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1628 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1629 		pio_mask <<= 3;
1630 		pio_mask |= 0x7;
1631 	} else {
1632 		/* If word 64 isn't valid then Word 51 high byte holds
1633 		 * the PIO timing number for the maximum. Turn it into
1634 		 * a mask.
1635 		 */
1636 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1637 		if (mode < 5)	/* Valid PIO range */
1638 			pio_mask = (2 << mode) - 1;
1639 		else
1640 			pio_mask = 1;
1641 
1642 		/* But wait.. there's more. Design your standards by
1643 		 * committee and you too can get a free iordy field to
1644 		 * process. However its the speeds not the modes that
1645 		 * are supported... Note drivers using the timing API
1646 		 * will get this right anyway
1647 		 */
1648 	}
1649 
1650 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1651 
1652 	if (ata_id_is_cfa(id)) {
1653 		/*
1654 		 *	Process compact flash extended modes
1655 		 */
1656 		int pio = id[163] & 0x7;
1657 		int dma = (id[163] >> 3) & 7;
1658 
1659 		if (pio)
1660 			pio_mask |= (1 << 5);
1661 		if (pio > 1)
1662 			pio_mask |= (1 << 6);
1663 		if (dma)
1664 			mwdma_mask |= (1 << 3);
1665 		if (dma > 1)
1666 			mwdma_mask |= (1 << 4);
1667 	}
1668 
1669 	udma_mask = 0;
1670 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1671 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1672 
1673 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1674 }
1675 
1676 /**
1677  *	ata_pio_queue_task - Queue port_task
1678  *	@ap: The ata_port to queue port_task for
1679  *	@data: data for @fn to use
1680  *	@delay: delay time in msecs for workqueue function
1681  *
1682  *	Schedule @fn(@data) for execution after @delay jiffies using
1683  *	port_task.  There is one port_task per port and it's the
1684  *	user(low level driver)'s responsibility to make sure that only
1685  *	one task is active at any given time.
1686  *
1687  *	libata core layer takes care of synchronization between
1688  *	port_task and EH.  ata_pio_queue_task() may be ignored for EH
1689  *	synchronization.
1690  *
1691  *	LOCKING:
1692  *	Inherited from caller.
1693  */
1694 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1695 {
1696 	ap->port_task_data = data;
1697 
1698 	/* may fail if ata_port_flush_task() in progress */
1699 	queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1700 }
1701 
1702 /**
1703  *	ata_port_flush_task - Flush port_task
1704  *	@ap: The ata_port to flush port_task for
1705  *
1706  *	After this function completes, port_task is guranteed not to
1707  *	be running or scheduled.
1708  *
1709  *	LOCKING:
1710  *	Kernel thread context (may sleep)
1711  */
1712 void ata_port_flush_task(struct ata_port *ap)
1713 {
1714 	DPRINTK("ENTER\n");
1715 
1716 	cancel_rearming_delayed_work(&ap->port_task);
1717 
1718 	if (ata_msg_ctl(ap))
1719 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1720 }
1721 
1722 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1723 {
1724 	struct completion *waiting = qc->private_data;
1725 
1726 	complete(waiting);
1727 }
1728 
1729 /**
1730  *	ata_exec_internal_sg - execute libata internal command
1731  *	@dev: Device to which the command is sent
1732  *	@tf: Taskfile registers for the command and the result
1733  *	@cdb: CDB for packet command
1734  *	@dma_dir: Data tranfer direction of the command
1735  *	@sgl: sg list for the data buffer of the command
1736  *	@n_elem: Number of sg entries
1737  *	@timeout: Timeout in msecs (0 for default)
1738  *
1739  *	Executes libata internal command with timeout.  @tf contains
1740  *	command on entry and result on return.  Timeout and error
1741  *	conditions are reported via return value.  No recovery action
1742  *	is taken after a command times out.  It's caller's duty to
1743  *	clean up after timeout.
1744  *
1745  *	LOCKING:
1746  *	None.  Should be called with kernel context, might sleep.
1747  *
1748  *	RETURNS:
1749  *	Zero on success, AC_ERR_* mask on failure
1750  */
1751 unsigned ata_exec_internal_sg(struct ata_device *dev,
1752 			      struct ata_taskfile *tf, const u8 *cdb,
1753 			      int dma_dir, struct scatterlist *sgl,
1754 			      unsigned int n_elem, unsigned long timeout)
1755 {
1756 	struct ata_link *link = dev->link;
1757 	struct ata_port *ap = link->ap;
1758 	u8 command = tf->command;
1759 	int auto_timeout = 0;
1760 	struct ata_queued_cmd *qc;
1761 	unsigned int tag, preempted_tag;
1762 	u32 preempted_sactive, preempted_qc_active;
1763 	int preempted_nr_active_links;
1764 	DECLARE_COMPLETION_ONSTACK(wait);
1765 	unsigned long flags;
1766 	unsigned int err_mask;
1767 	int rc;
1768 
1769 	spin_lock_irqsave(ap->lock, flags);
1770 
1771 	/* no internal command while frozen */
1772 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1773 		spin_unlock_irqrestore(ap->lock, flags);
1774 		return AC_ERR_SYSTEM;
1775 	}
1776 
1777 	/* initialize internal qc */
1778 
1779 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1780 	 * drivers choke if any other tag is given.  This breaks
1781 	 * ata_tag_internal() test for those drivers.  Don't use new
1782 	 * EH stuff without converting to it.
1783 	 */
1784 	if (ap->ops->error_handler)
1785 		tag = ATA_TAG_INTERNAL;
1786 	else
1787 		tag = 0;
1788 
1789 	if (test_and_set_bit(tag, &ap->qc_allocated))
1790 		BUG();
1791 	qc = __ata_qc_from_tag(ap, tag);
1792 
1793 	qc->tag = tag;
1794 	qc->scsicmd = NULL;
1795 	qc->ap = ap;
1796 	qc->dev = dev;
1797 	ata_qc_reinit(qc);
1798 
1799 	preempted_tag = link->active_tag;
1800 	preempted_sactive = link->sactive;
1801 	preempted_qc_active = ap->qc_active;
1802 	preempted_nr_active_links = ap->nr_active_links;
1803 	link->active_tag = ATA_TAG_POISON;
1804 	link->sactive = 0;
1805 	ap->qc_active = 0;
1806 	ap->nr_active_links = 0;
1807 
1808 	/* prepare & issue qc */
1809 	qc->tf = *tf;
1810 	if (cdb)
1811 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1812 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1813 	qc->dma_dir = dma_dir;
1814 	if (dma_dir != DMA_NONE) {
1815 		unsigned int i, buflen = 0;
1816 		struct scatterlist *sg;
1817 
1818 		for_each_sg(sgl, sg, n_elem, i)
1819 			buflen += sg->length;
1820 
1821 		ata_sg_init(qc, sgl, n_elem);
1822 		qc->nbytes = buflen;
1823 	}
1824 
1825 	qc->private_data = &wait;
1826 	qc->complete_fn = ata_qc_complete_internal;
1827 
1828 	ata_qc_issue(qc);
1829 
1830 	spin_unlock_irqrestore(ap->lock, flags);
1831 
1832 	if (!timeout) {
1833 		if (ata_probe_timeout)
1834 			timeout = ata_probe_timeout * 1000;
1835 		else {
1836 			timeout = ata_internal_cmd_timeout(dev, command);
1837 			auto_timeout = 1;
1838 		}
1839 	}
1840 
1841 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1842 
1843 	ata_port_flush_task(ap);
1844 
1845 	if (!rc) {
1846 		spin_lock_irqsave(ap->lock, flags);
1847 
1848 		/* We're racing with irq here.  If we lose, the
1849 		 * following test prevents us from completing the qc
1850 		 * twice.  If we win, the port is frozen and will be
1851 		 * cleaned up by ->post_internal_cmd().
1852 		 */
1853 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1854 			qc->err_mask |= AC_ERR_TIMEOUT;
1855 
1856 			if (ap->ops->error_handler)
1857 				ata_port_freeze(ap);
1858 			else
1859 				ata_qc_complete(qc);
1860 
1861 			if (ata_msg_warn(ap))
1862 				ata_dev_printk(dev, KERN_WARNING,
1863 					"qc timeout (cmd 0x%x)\n", command);
1864 		}
1865 
1866 		spin_unlock_irqrestore(ap->lock, flags);
1867 	}
1868 
1869 	/* do post_internal_cmd */
1870 	if (ap->ops->post_internal_cmd)
1871 		ap->ops->post_internal_cmd(qc);
1872 
1873 	/* perform minimal error analysis */
1874 	if (qc->flags & ATA_QCFLAG_FAILED) {
1875 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1876 			qc->err_mask |= AC_ERR_DEV;
1877 
1878 		if (!qc->err_mask)
1879 			qc->err_mask |= AC_ERR_OTHER;
1880 
1881 		if (qc->err_mask & ~AC_ERR_OTHER)
1882 			qc->err_mask &= ~AC_ERR_OTHER;
1883 	}
1884 
1885 	/* finish up */
1886 	spin_lock_irqsave(ap->lock, flags);
1887 
1888 	*tf = qc->result_tf;
1889 	err_mask = qc->err_mask;
1890 
1891 	ata_qc_free(qc);
1892 	link->active_tag = preempted_tag;
1893 	link->sactive = preempted_sactive;
1894 	ap->qc_active = preempted_qc_active;
1895 	ap->nr_active_links = preempted_nr_active_links;
1896 
1897 	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
1898 	 * Until those drivers are fixed, we detect the condition
1899 	 * here, fail the command with AC_ERR_SYSTEM and reenable the
1900 	 * port.
1901 	 *
1902 	 * Note that this doesn't change any behavior as internal
1903 	 * command failure results in disabling the device in the
1904 	 * higher layer for LLDDs without new reset/EH callbacks.
1905 	 *
1906 	 * Kill the following code as soon as those drivers are fixed.
1907 	 */
1908 	if (ap->flags & ATA_FLAG_DISABLED) {
1909 		err_mask |= AC_ERR_SYSTEM;
1910 		ata_port_probe(ap);
1911 	}
1912 
1913 	spin_unlock_irqrestore(ap->lock, flags);
1914 
1915 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1916 		ata_internal_cmd_timed_out(dev, command);
1917 
1918 	return err_mask;
1919 }
1920 
1921 /**
1922  *	ata_exec_internal - execute libata internal command
1923  *	@dev: Device to which the command is sent
1924  *	@tf: Taskfile registers for the command and the result
1925  *	@cdb: CDB for packet command
1926  *	@dma_dir: Data tranfer direction of the command
1927  *	@buf: Data buffer of the command
1928  *	@buflen: Length of data buffer
1929  *	@timeout: Timeout in msecs (0 for default)
1930  *
1931  *	Wrapper around ata_exec_internal_sg() which takes simple
1932  *	buffer instead of sg list.
1933  *
1934  *	LOCKING:
1935  *	None.  Should be called with kernel context, might sleep.
1936  *
1937  *	RETURNS:
1938  *	Zero on success, AC_ERR_* mask on failure
1939  */
1940 unsigned ata_exec_internal(struct ata_device *dev,
1941 			   struct ata_taskfile *tf, const u8 *cdb,
1942 			   int dma_dir, void *buf, unsigned int buflen,
1943 			   unsigned long timeout)
1944 {
1945 	struct scatterlist *psg = NULL, sg;
1946 	unsigned int n_elem = 0;
1947 
1948 	if (dma_dir != DMA_NONE) {
1949 		WARN_ON(!buf);
1950 		sg_init_one(&sg, buf, buflen);
1951 		psg = &sg;
1952 		n_elem++;
1953 	}
1954 
1955 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1956 				    timeout);
1957 }
1958 
1959 /**
1960  *	ata_do_simple_cmd - execute simple internal command
1961  *	@dev: Device to which the command is sent
1962  *	@cmd: Opcode to execute
1963  *
1964  *	Execute a 'simple' command, that only consists of the opcode
1965  *	'cmd' itself, without filling any other registers
1966  *
1967  *	LOCKING:
1968  *	Kernel thread context (may sleep).
1969  *
1970  *	RETURNS:
1971  *	Zero on success, AC_ERR_* mask on failure
1972  */
1973 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1974 {
1975 	struct ata_taskfile tf;
1976 
1977 	ata_tf_init(dev, &tf);
1978 
1979 	tf.command = cmd;
1980 	tf.flags |= ATA_TFLAG_DEVICE;
1981 	tf.protocol = ATA_PROT_NODATA;
1982 
1983 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1984 }
1985 
1986 /**
1987  *	ata_pio_need_iordy	-	check if iordy needed
1988  *	@adev: ATA device
1989  *
1990  *	Check if the current speed of the device requires IORDY. Used
1991  *	by various controllers for chip configuration.
1992  */
1993 
1994 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1995 {
1996 	/* Controller doesn't support  IORDY. Probably a pointless check
1997 	   as the caller should know this */
1998 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1999 		return 0;
2000 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
2001 	if (ata_id_is_cfa(adev->id)
2002 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2003 		return 0;
2004 	/* PIO3 and higher it is mandatory */
2005 	if (adev->pio_mode > XFER_PIO_2)
2006 		return 1;
2007 	/* We turn it on when possible */
2008 	if (ata_id_has_iordy(adev->id))
2009 		return 1;
2010 	return 0;
2011 }
2012 
2013 /**
2014  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
2015  *	@adev: ATA device
2016  *
2017  *	Compute the highest mode possible if we are not using iordy. Return
2018  *	-1 if no iordy mode is available.
2019  */
2020 
2021 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2022 {
2023 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
2024 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
2025 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
2026 		/* Is the speed faster than the drive allows non IORDY ? */
2027 		if (pio) {
2028 			/* This is cycle times not frequency - watch the logic! */
2029 			if (pio > 240)	/* PIO2 is 240nS per cycle */
2030 				return 3 << ATA_SHIFT_PIO;
2031 			return 7 << ATA_SHIFT_PIO;
2032 		}
2033 	}
2034 	return 3 << ATA_SHIFT_PIO;
2035 }
2036 
2037 /**
2038  *	ata_do_dev_read_id		-	default ID read method
2039  *	@dev: device
2040  *	@tf: proposed taskfile
2041  *	@id: data buffer
2042  *
2043  *	Issue the identify taskfile and hand back the buffer containing
2044  *	identify data. For some RAID controllers and for pre ATA devices
2045  *	this function is wrapped or replaced by the driver
2046  */
2047 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2048 					struct ata_taskfile *tf, u16 *id)
2049 {
2050 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2051 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2052 }
2053 
2054 /**
2055  *	ata_dev_read_id - Read ID data from the specified device
2056  *	@dev: target device
2057  *	@p_class: pointer to class of the target device (may be changed)
2058  *	@flags: ATA_READID_* flags
2059  *	@id: buffer to read IDENTIFY data into
2060  *
2061  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
2062  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2063  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
2064  *	for pre-ATA4 drives.
2065  *
2066  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2067  *	now we abort if we hit that case.
2068  *
2069  *	LOCKING:
2070  *	Kernel thread context (may sleep)
2071  *
2072  *	RETURNS:
2073  *	0 on success, -errno otherwise.
2074  */
2075 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2076 		    unsigned int flags, u16 *id)
2077 {
2078 	struct ata_port *ap = dev->link->ap;
2079 	unsigned int class = *p_class;
2080 	struct ata_taskfile tf;
2081 	unsigned int err_mask = 0;
2082 	const char *reason;
2083 	int may_fallback = 1, tried_spinup = 0;
2084 	int rc;
2085 
2086 	if (ata_msg_ctl(ap))
2087 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2088 
2089 retry:
2090 	ata_tf_init(dev, &tf);
2091 
2092 	switch (class) {
2093 	case ATA_DEV_ATA:
2094 		tf.command = ATA_CMD_ID_ATA;
2095 		break;
2096 	case ATA_DEV_ATAPI:
2097 		tf.command = ATA_CMD_ID_ATAPI;
2098 		break;
2099 	default:
2100 		rc = -ENODEV;
2101 		reason = "unsupported class";
2102 		goto err_out;
2103 	}
2104 
2105 	tf.protocol = ATA_PROT_PIO;
2106 
2107 	/* Some devices choke if TF registers contain garbage.  Make
2108 	 * sure those are properly initialized.
2109 	 */
2110 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2111 
2112 	/* Device presence detection is unreliable on some
2113 	 * controllers.  Always poll IDENTIFY if available.
2114 	 */
2115 	tf.flags |= ATA_TFLAG_POLLING;
2116 
2117 	if (ap->ops->read_id)
2118 		err_mask = ap->ops->read_id(dev, &tf, id);
2119 	else
2120 		err_mask = ata_do_dev_read_id(dev, &tf, id);
2121 
2122 	if (err_mask) {
2123 		if (err_mask & AC_ERR_NODEV_HINT) {
2124 			ata_dev_printk(dev, KERN_DEBUG,
2125 				       "NODEV after polling detection\n");
2126 			return -ENOENT;
2127 		}
2128 
2129 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2130 			/* Device or controller might have reported
2131 			 * the wrong device class.  Give a shot at the
2132 			 * other IDENTIFY if the current one is
2133 			 * aborted by the device.
2134 			 */
2135 			if (may_fallback) {
2136 				may_fallback = 0;
2137 
2138 				if (class == ATA_DEV_ATA)
2139 					class = ATA_DEV_ATAPI;
2140 				else
2141 					class = ATA_DEV_ATA;
2142 				goto retry;
2143 			}
2144 
2145 			/* Control reaches here iff the device aborted
2146 			 * both flavors of IDENTIFYs which happens
2147 			 * sometimes with phantom devices.
2148 			 */
2149 			ata_dev_printk(dev, KERN_DEBUG,
2150 				       "both IDENTIFYs aborted, assuming NODEV\n");
2151 			return -ENOENT;
2152 		}
2153 
2154 		rc = -EIO;
2155 		reason = "I/O error";
2156 		goto err_out;
2157 	}
2158 
2159 	/* Falling back doesn't make sense if ID data was read
2160 	 * successfully at least once.
2161 	 */
2162 	may_fallback = 0;
2163 
2164 	swap_buf_le16(id, ATA_ID_WORDS);
2165 
2166 	/* sanity check */
2167 	rc = -EINVAL;
2168 	reason = "device reports invalid type";
2169 
2170 	if (class == ATA_DEV_ATA) {
2171 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2172 			goto err_out;
2173 	} else {
2174 		if (ata_id_is_ata(id))
2175 			goto err_out;
2176 	}
2177 
2178 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2179 		tried_spinup = 1;
2180 		/*
2181 		 * Drive powered-up in standby mode, and requires a specific
2182 		 * SET_FEATURES spin-up subcommand before it will accept
2183 		 * anything other than the original IDENTIFY command.
2184 		 */
2185 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2186 		if (err_mask && id[2] != 0x738c) {
2187 			rc = -EIO;
2188 			reason = "SPINUP failed";
2189 			goto err_out;
2190 		}
2191 		/*
2192 		 * If the drive initially returned incomplete IDENTIFY info,
2193 		 * we now must reissue the IDENTIFY command.
2194 		 */
2195 		if (id[2] == 0x37c8)
2196 			goto retry;
2197 	}
2198 
2199 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2200 		/*
2201 		 * The exact sequence expected by certain pre-ATA4 drives is:
2202 		 * SRST RESET
2203 		 * IDENTIFY (optional in early ATA)
2204 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2205 		 * anything else..
2206 		 * Some drives were very specific about that exact sequence.
2207 		 *
2208 		 * Note that ATA4 says lba is mandatory so the second check
2209 		 * shoud never trigger.
2210 		 */
2211 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2212 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2213 			if (err_mask) {
2214 				rc = -EIO;
2215 				reason = "INIT_DEV_PARAMS failed";
2216 				goto err_out;
2217 			}
2218 
2219 			/* current CHS translation info (id[53-58]) might be
2220 			 * changed. reread the identify device info.
2221 			 */
2222 			flags &= ~ATA_READID_POSTRESET;
2223 			goto retry;
2224 		}
2225 	}
2226 
2227 	*p_class = class;
2228 
2229 	return 0;
2230 
2231  err_out:
2232 	if (ata_msg_warn(ap))
2233 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2234 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
2235 	return rc;
2236 }
2237 
2238 static int ata_do_link_spd_horkage(struct ata_device *dev)
2239 {
2240 	struct ata_link *plink = ata_dev_phys_link(dev);
2241 	u32 target, target_limit;
2242 
2243 	if (!sata_scr_valid(plink))
2244 		return 0;
2245 
2246 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2247 		target = 1;
2248 	else
2249 		return 0;
2250 
2251 	target_limit = (1 << target) - 1;
2252 
2253 	/* if already on stricter limit, no need to push further */
2254 	if (plink->sata_spd_limit <= target_limit)
2255 		return 0;
2256 
2257 	plink->sata_spd_limit = target_limit;
2258 
2259 	/* Request another EH round by returning -EAGAIN if link is
2260 	 * going faster than the target speed.  Forward progress is
2261 	 * guaranteed by setting sata_spd_limit to target_limit above.
2262 	 */
2263 	if (plink->sata_spd > target) {
2264 		ata_dev_printk(dev, KERN_INFO,
2265 			       "applying link speed limit horkage to %s\n",
2266 			       sata_spd_string(target));
2267 		return -EAGAIN;
2268 	}
2269 	return 0;
2270 }
2271 
2272 static inline u8 ata_dev_knobble(struct ata_device *dev)
2273 {
2274 	struct ata_port *ap = dev->link->ap;
2275 
2276 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2277 		return 0;
2278 
2279 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2280 }
2281 
2282 static void ata_dev_config_ncq(struct ata_device *dev,
2283 			       char *desc, size_t desc_sz)
2284 {
2285 	struct ata_port *ap = dev->link->ap;
2286 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2287 
2288 	if (!ata_id_has_ncq(dev->id)) {
2289 		desc[0] = '\0';
2290 		return;
2291 	}
2292 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2293 		snprintf(desc, desc_sz, "NCQ (not used)");
2294 		return;
2295 	}
2296 	if (ap->flags & ATA_FLAG_NCQ) {
2297 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2298 		dev->flags |= ATA_DFLAG_NCQ;
2299 	}
2300 
2301 	if (hdepth >= ddepth)
2302 		snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2303 	else
2304 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2305 }
2306 
2307 /**
2308  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2309  *	@dev: Target device to configure
2310  *
2311  *	Configure @dev according to @dev->id.  Generic and low-level
2312  *	driver specific fixups are also applied.
2313  *
2314  *	LOCKING:
2315  *	Kernel thread context (may sleep)
2316  *
2317  *	RETURNS:
2318  *	0 on success, -errno otherwise
2319  */
2320 int ata_dev_configure(struct ata_device *dev)
2321 {
2322 	struct ata_port *ap = dev->link->ap;
2323 	struct ata_eh_context *ehc = &dev->link->eh_context;
2324 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2325 	const u16 *id = dev->id;
2326 	unsigned long xfer_mask;
2327 	char revbuf[7];		/* XYZ-99\0 */
2328 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2329 	char modelbuf[ATA_ID_PROD_LEN+1];
2330 	int rc;
2331 
2332 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2333 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2334 			       __func__);
2335 		return 0;
2336 	}
2337 
2338 	if (ata_msg_probe(ap))
2339 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2340 
2341 	/* set horkage */
2342 	dev->horkage |= ata_dev_blacklisted(dev);
2343 	ata_force_horkage(dev);
2344 
2345 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2346 		ata_dev_printk(dev, KERN_INFO,
2347 			       "unsupported device, disabling\n");
2348 		ata_dev_disable(dev);
2349 		return 0;
2350 	}
2351 
2352 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2353 	    dev->class == ATA_DEV_ATAPI) {
2354 		ata_dev_printk(dev, KERN_WARNING,
2355 			"WARNING: ATAPI is %s, device ignored.\n",
2356 			atapi_enabled ? "not supported with this driver"
2357 				      : "disabled");
2358 		ata_dev_disable(dev);
2359 		return 0;
2360 	}
2361 
2362 	rc = ata_do_link_spd_horkage(dev);
2363 	if (rc)
2364 		return rc;
2365 
2366 	/* let ACPI work its magic */
2367 	rc = ata_acpi_on_devcfg(dev);
2368 	if (rc)
2369 		return rc;
2370 
2371 	/* massage HPA, do it early as it might change IDENTIFY data */
2372 	rc = ata_hpa_resize(dev);
2373 	if (rc)
2374 		return rc;
2375 
2376 	/* print device capabilities */
2377 	if (ata_msg_probe(ap))
2378 		ata_dev_printk(dev, KERN_DEBUG,
2379 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2380 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
2381 			       __func__,
2382 			       id[49], id[82], id[83], id[84],
2383 			       id[85], id[86], id[87], id[88]);
2384 
2385 	/* initialize to-be-configured parameters */
2386 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2387 	dev->max_sectors = 0;
2388 	dev->cdb_len = 0;
2389 	dev->n_sectors = 0;
2390 	dev->cylinders = 0;
2391 	dev->heads = 0;
2392 	dev->sectors = 0;
2393 	dev->multi_count = 0;
2394 
2395 	/*
2396 	 * common ATA, ATAPI feature tests
2397 	 */
2398 
2399 	/* find max transfer mode; for printk only */
2400 	xfer_mask = ata_id_xfermask(id);
2401 
2402 	if (ata_msg_probe(ap))
2403 		ata_dump_id(id);
2404 
2405 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2406 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2407 			sizeof(fwrevbuf));
2408 
2409 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2410 			sizeof(modelbuf));
2411 
2412 	/* ATA-specific feature tests */
2413 	if (dev->class == ATA_DEV_ATA) {
2414 		if (ata_id_is_cfa(id)) {
2415 			if (id[162] & 1) /* CPRM may make this media unusable */
2416 				ata_dev_printk(dev, KERN_WARNING,
2417 					       "supports DRM functions and may "
2418 					       "not be fully accessable.\n");
2419 			snprintf(revbuf, 7, "CFA");
2420 		} else {
2421 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2422 			/* Warn the user if the device has TPM extensions */
2423 			if (ata_id_has_tpm(id))
2424 				ata_dev_printk(dev, KERN_WARNING,
2425 					       "supports DRM functions and may "
2426 					       "not be fully accessable.\n");
2427 		}
2428 
2429 		dev->n_sectors = ata_id_n_sectors(id);
2430 
2431 		/* get current R/W Multiple count setting */
2432 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2433 			unsigned int max = dev->id[47] & 0xff;
2434 			unsigned int cnt = dev->id[59] & 0xff;
2435 			/* only recognize/allow powers of two here */
2436 			if (is_power_of_2(max) && is_power_of_2(cnt))
2437 				if (cnt <= max)
2438 					dev->multi_count = cnt;
2439 		}
2440 
2441 		if (ata_id_has_lba(id)) {
2442 			const char *lba_desc;
2443 			char ncq_desc[20];
2444 
2445 			lba_desc = "LBA";
2446 			dev->flags |= ATA_DFLAG_LBA;
2447 			if (ata_id_has_lba48(id)) {
2448 				dev->flags |= ATA_DFLAG_LBA48;
2449 				lba_desc = "LBA48";
2450 
2451 				if (dev->n_sectors >= (1UL << 28) &&
2452 				    ata_id_has_flush_ext(id))
2453 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2454 			}
2455 
2456 			/* config NCQ */
2457 			ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2458 
2459 			/* print device info to dmesg */
2460 			if (ata_msg_drv(ap) && print_info) {
2461 				ata_dev_printk(dev, KERN_INFO,
2462 					"%s: %s, %s, max %s\n",
2463 					revbuf, modelbuf, fwrevbuf,
2464 					ata_mode_string(xfer_mask));
2465 				ata_dev_printk(dev, KERN_INFO,
2466 					"%Lu sectors, multi %u: %s %s\n",
2467 					(unsigned long long)dev->n_sectors,
2468 					dev->multi_count, lba_desc, ncq_desc);
2469 			}
2470 		} else {
2471 			/* CHS */
2472 
2473 			/* Default translation */
2474 			dev->cylinders	= id[1];
2475 			dev->heads	= id[3];
2476 			dev->sectors	= id[6];
2477 
2478 			if (ata_id_current_chs_valid(id)) {
2479 				/* Current CHS translation is valid. */
2480 				dev->cylinders = id[54];
2481 				dev->heads     = id[55];
2482 				dev->sectors   = id[56];
2483 			}
2484 
2485 			/* print device info to dmesg */
2486 			if (ata_msg_drv(ap) && print_info) {
2487 				ata_dev_printk(dev, KERN_INFO,
2488 					"%s: %s, %s, max %s\n",
2489 					revbuf,	modelbuf, fwrevbuf,
2490 					ata_mode_string(xfer_mask));
2491 				ata_dev_printk(dev, KERN_INFO,
2492 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
2493 					(unsigned long long)dev->n_sectors,
2494 					dev->multi_count, dev->cylinders,
2495 					dev->heads, dev->sectors);
2496 			}
2497 		}
2498 
2499 		dev->cdb_len = 16;
2500 	}
2501 
2502 	/* ATAPI-specific feature tests */
2503 	else if (dev->class == ATA_DEV_ATAPI) {
2504 		const char *cdb_intr_string = "";
2505 		const char *atapi_an_string = "";
2506 		const char *dma_dir_string = "";
2507 		u32 sntf;
2508 
2509 		rc = atapi_cdb_len(id);
2510 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2511 			if (ata_msg_warn(ap))
2512 				ata_dev_printk(dev, KERN_WARNING,
2513 					       "unsupported CDB len\n");
2514 			rc = -EINVAL;
2515 			goto err_out_nosup;
2516 		}
2517 		dev->cdb_len = (unsigned int) rc;
2518 
2519 		/* Enable ATAPI AN if both the host and device have
2520 		 * the support.  If PMP is attached, SNTF is required
2521 		 * to enable ATAPI AN to discern between PHY status
2522 		 * changed notifications and ATAPI ANs.
2523 		 */
2524 		if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2525 		    (!sata_pmp_attached(ap) ||
2526 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2527 			unsigned int err_mask;
2528 
2529 			/* issue SET feature command to turn this on */
2530 			err_mask = ata_dev_set_feature(dev,
2531 					SETFEATURES_SATA_ENABLE, SATA_AN);
2532 			if (err_mask)
2533 				ata_dev_printk(dev, KERN_ERR,
2534 					"failed to enable ATAPI AN "
2535 					"(err_mask=0x%x)\n", err_mask);
2536 			else {
2537 				dev->flags |= ATA_DFLAG_AN;
2538 				atapi_an_string = ", ATAPI AN";
2539 			}
2540 		}
2541 
2542 		if (ata_id_cdb_intr(dev->id)) {
2543 			dev->flags |= ATA_DFLAG_CDB_INTR;
2544 			cdb_intr_string = ", CDB intr";
2545 		}
2546 
2547 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2548 			dev->flags |= ATA_DFLAG_DMADIR;
2549 			dma_dir_string = ", DMADIR";
2550 		}
2551 
2552 		/* print device info to dmesg */
2553 		if (ata_msg_drv(ap) && print_info)
2554 			ata_dev_printk(dev, KERN_INFO,
2555 				       "ATAPI: %s, %s, max %s%s%s%s\n",
2556 				       modelbuf, fwrevbuf,
2557 				       ata_mode_string(xfer_mask),
2558 				       cdb_intr_string, atapi_an_string,
2559 				       dma_dir_string);
2560 	}
2561 
2562 	/* determine max_sectors */
2563 	dev->max_sectors = ATA_MAX_SECTORS;
2564 	if (dev->flags & ATA_DFLAG_LBA48)
2565 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2566 
2567 	if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2568 		if (ata_id_has_hipm(dev->id))
2569 			dev->flags |= ATA_DFLAG_HIPM;
2570 		if (ata_id_has_dipm(dev->id))
2571 			dev->flags |= ATA_DFLAG_DIPM;
2572 	}
2573 
2574 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2575 	   200 sectors */
2576 	if (ata_dev_knobble(dev)) {
2577 		if (ata_msg_drv(ap) && print_info)
2578 			ata_dev_printk(dev, KERN_INFO,
2579 				       "applying bridge limits\n");
2580 		dev->udma_mask &= ATA_UDMA5;
2581 		dev->max_sectors = ATA_MAX_SECTORS;
2582 	}
2583 
2584 	if ((dev->class == ATA_DEV_ATAPI) &&
2585 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2586 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2587 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2588 	}
2589 
2590 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2591 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2592 					 dev->max_sectors);
2593 
2594 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2595 		dev->horkage |= ATA_HORKAGE_IPM;
2596 
2597 		/* reset link pm_policy for this port to no pm */
2598 		ap->pm_policy = MAX_PERFORMANCE;
2599 	}
2600 
2601 	if (ap->ops->dev_config)
2602 		ap->ops->dev_config(dev);
2603 
2604 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2605 		/* Let the user know. We don't want to disallow opens for
2606 		   rescue purposes, or in case the vendor is just a blithering
2607 		   idiot. Do this after the dev_config call as some controllers
2608 		   with buggy firmware may want to avoid reporting false device
2609 		   bugs */
2610 
2611 		if (print_info) {
2612 			ata_dev_printk(dev, KERN_WARNING,
2613 "Drive reports diagnostics failure. This may indicate a drive\n");
2614 			ata_dev_printk(dev, KERN_WARNING,
2615 "fault or invalid emulation. Contact drive vendor for information.\n");
2616 		}
2617 	}
2618 
2619 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2620 		ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2621 			       "firmware update to be fully functional.\n");
2622 		ata_dev_printk(dev, KERN_WARNING, "         contact the vendor "
2623 			       "or visit http://ata.wiki.kernel.org.\n");
2624 	}
2625 
2626 	return 0;
2627 
2628 err_out_nosup:
2629 	if (ata_msg_probe(ap))
2630 		ata_dev_printk(dev, KERN_DEBUG,
2631 			       "%s: EXIT, err\n", __func__);
2632 	return rc;
2633 }
2634 
2635 /**
2636  *	ata_cable_40wire	-	return 40 wire cable type
2637  *	@ap: port
2638  *
2639  *	Helper method for drivers which want to hardwire 40 wire cable
2640  *	detection.
2641  */
2642 
2643 int ata_cable_40wire(struct ata_port *ap)
2644 {
2645 	return ATA_CBL_PATA40;
2646 }
2647 
2648 /**
2649  *	ata_cable_80wire	-	return 80 wire cable type
2650  *	@ap: port
2651  *
2652  *	Helper method for drivers which want to hardwire 80 wire cable
2653  *	detection.
2654  */
2655 
2656 int ata_cable_80wire(struct ata_port *ap)
2657 {
2658 	return ATA_CBL_PATA80;
2659 }
2660 
2661 /**
2662  *	ata_cable_unknown	-	return unknown PATA cable.
2663  *	@ap: port
2664  *
2665  *	Helper method for drivers which have no PATA cable detection.
2666  */
2667 
2668 int ata_cable_unknown(struct ata_port *ap)
2669 {
2670 	return ATA_CBL_PATA_UNK;
2671 }
2672 
2673 /**
2674  *	ata_cable_ignore	-	return ignored PATA cable.
2675  *	@ap: port
2676  *
2677  *	Helper method for drivers which don't use cable type to limit
2678  *	transfer mode.
2679  */
2680 int ata_cable_ignore(struct ata_port *ap)
2681 {
2682 	return ATA_CBL_PATA_IGN;
2683 }
2684 
2685 /**
2686  *	ata_cable_sata	-	return SATA cable type
2687  *	@ap: port
2688  *
2689  *	Helper method for drivers which have SATA cables
2690  */
2691 
2692 int ata_cable_sata(struct ata_port *ap)
2693 {
2694 	return ATA_CBL_SATA;
2695 }
2696 
2697 /**
2698  *	ata_bus_probe - Reset and probe ATA bus
2699  *	@ap: Bus to probe
2700  *
2701  *	Master ATA bus probing function.  Initiates a hardware-dependent
2702  *	bus reset, then attempts to identify any devices found on
2703  *	the bus.
2704  *
2705  *	LOCKING:
2706  *	PCI/etc. bus probe sem.
2707  *
2708  *	RETURNS:
2709  *	Zero on success, negative errno otherwise.
2710  */
2711 
2712 int ata_bus_probe(struct ata_port *ap)
2713 {
2714 	unsigned int classes[ATA_MAX_DEVICES];
2715 	int tries[ATA_MAX_DEVICES];
2716 	int rc;
2717 	struct ata_device *dev;
2718 
2719 	ata_port_probe(ap);
2720 
2721 	ata_for_each_dev(dev, &ap->link, ALL)
2722 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2723 
2724  retry:
2725 	ata_for_each_dev(dev, &ap->link, ALL) {
2726 		/* If we issue an SRST then an ATA drive (not ATAPI)
2727 		 * may change configuration and be in PIO0 timing. If
2728 		 * we do a hard reset (or are coming from power on)
2729 		 * this is true for ATA or ATAPI. Until we've set a
2730 		 * suitable controller mode we should not touch the
2731 		 * bus as we may be talking too fast.
2732 		 */
2733 		dev->pio_mode = XFER_PIO_0;
2734 
2735 		/* If the controller has a pio mode setup function
2736 		 * then use it to set the chipset to rights. Don't
2737 		 * touch the DMA setup as that will be dealt with when
2738 		 * configuring devices.
2739 		 */
2740 		if (ap->ops->set_piomode)
2741 			ap->ops->set_piomode(ap, dev);
2742 	}
2743 
2744 	/* reset and determine device classes */
2745 	ap->ops->phy_reset(ap);
2746 
2747 	ata_for_each_dev(dev, &ap->link, ALL) {
2748 		if (!(ap->flags & ATA_FLAG_DISABLED) &&
2749 		    dev->class != ATA_DEV_UNKNOWN)
2750 			classes[dev->devno] = dev->class;
2751 		else
2752 			classes[dev->devno] = ATA_DEV_NONE;
2753 
2754 		dev->class = ATA_DEV_UNKNOWN;
2755 	}
2756 
2757 	ata_port_probe(ap);
2758 
2759 	/* read IDENTIFY page and configure devices. We have to do the identify
2760 	   specific sequence bass-ackwards so that PDIAG- is released by
2761 	   the slave device */
2762 
2763 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2764 		if (tries[dev->devno])
2765 			dev->class = classes[dev->devno];
2766 
2767 		if (!ata_dev_enabled(dev))
2768 			continue;
2769 
2770 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2771 				     dev->id);
2772 		if (rc)
2773 			goto fail;
2774 	}
2775 
2776 	/* Now ask for the cable type as PDIAG- should have been released */
2777 	if (ap->ops->cable_detect)
2778 		ap->cbl = ap->ops->cable_detect(ap);
2779 
2780 	/* We may have SATA bridge glue hiding here irrespective of
2781 	 * the reported cable types and sensed types.  When SATA
2782 	 * drives indicate we have a bridge, we don't know which end
2783 	 * of the link the bridge is which is a problem.
2784 	 */
2785 	ata_for_each_dev(dev, &ap->link, ENABLED)
2786 		if (ata_id_is_sata(dev->id))
2787 			ap->cbl = ATA_CBL_SATA;
2788 
2789 	/* After the identify sequence we can now set up the devices. We do
2790 	   this in the normal order so that the user doesn't get confused */
2791 
2792 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2793 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2794 		rc = ata_dev_configure(dev);
2795 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2796 		if (rc)
2797 			goto fail;
2798 	}
2799 
2800 	/* configure transfer mode */
2801 	rc = ata_set_mode(&ap->link, &dev);
2802 	if (rc)
2803 		goto fail;
2804 
2805 	ata_for_each_dev(dev, &ap->link, ENABLED)
2806 		return 0;
2807 
2808 	/* no device present, disable port */
2809 	ata_port_disable(ap);
2810 	return -ENODEV;
2811 
2812  fail:
2813 	tries[dev->devno]--;
2814 
2815 	switch (rc) {
2816 	case -EINVAL:
2817 		/* eeek, something went very wrong, give up */
2818 		tries[dev->devno] = 0;
2819 		break;
2820 
2821 	case -ENODEV:
2822 		/* give it just one more chance */
2823 		tries[dev->devno] = min(tries[dev->devno], 1);
2824 	case -EIO:
2825 		if (tries[dev->devno] == 1) {
2826 			/* This is the last chance, better to slow
2827 			 * down than lose it.
2828 			 */
2829 			sata_down_spd_limit(&ap->link, 0);
2830 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2831 		}
2832 	}
2833 
2834 	if (!tries[dev->devno])
2835 		ata_dev_disable(dev);
2836 
2837 	goto retry;
2838 }
2839 
2840 /**
2841  *	ata_port_probe - Mark port as enabled
2842  *	@ap: Port for which we indicate enablement
2843  *
2844  *	Modify @ap data structure such that the system
2845  *	thinks that the entire port is enabled.
2846  *
2847  *	LOCKING: host lock, or some other form of
2848  *	serialization.
2849  */
2850 
2851 void ata_port_probe(struct ata_port *ap)
2852 {
2853 	ap->flags &= ~ATA_FLAG_DISABLED;
2854 }
2855 
2856 /**
2857  *	sata_print_link_status - Print SATA link status
2858  *	@link: SATA link to printk link status about
2859  *
2860  *	This function prints link speed and status of a SATA link.
2861  *
2862  *	LOCKING:
2863  *	None.
2864  */
2865 static void sata_print_link_status(struct ata_link *link)
2866 {
2867 	u32 sstatus, scontrol, tmp;
2868 
2869 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2870 		return;
2871 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2872 
2873 	if (ata_phys_link_online(link)) {
2874 		tmp = (sstatus >> 4) & 0xf;
2875 		ata_link_printk(link, KERN_INFO,
2876 				"SATA link up %s (SStatus %X SControl %X)\n",
2877 				sata_spd_string(tmp), sstatus, scontrol);
2878 	} else {
2879 		ata_link_printk(link, KERN_INFO,
2880 				"SATA link down (SStatus %X SControl %X)\n",
2881 				sstatus, scontrol);
2882 	}
2883 }
2884 
2885 /**
2886  *	ata_dev_pair		-	return other device on cable
2887  *	@adev: device
2888  *
2889  *	Obtain the other device on the same cable, or if none is
2890  *	present NULL is returned
2891  */
2892 
2893 struct ata_device *ata_dev_pair(struct ata_device *adev)
2894 {
2895 	struct ata_link *link = adev->link;
2896 	struct ata_device *pair = &link->device[1 - adev->devno];
2897 	if (!ata_dev_enabled(pair))
2898 		return NULL;
2899 	return pair;
2900 }
2901 
2902 /**
2903  *	ata_port_disable - Disable port.
2904  *	@ap: Port to be disabled.
2905  *
2906  *	Modify @ap data structure such that the system
2907  *	thinks that the entire port is disabled, and should
2908  *	never attempt to probe or communicate with devices
2909  *	on this port.
2910  *
2911  *	LOCKING: host lock, or some other form of
2912  *	serialization.
2913  */
2914 
2915 void ata_port_disable(struct ata_port *ap)
2916 {
2917 	ap->link.device[0].class = ATA_DEV_NONE;
2918 	ap->link.device[1].class = ATA_DEV_NONE;
2919 	ap->flags |= ATA_FLAG_DISABLED;
2920 }
2921 
2922 /**
2923  *	sata_down_spd_limit - adjust SATA spd limit downward
2924  *	@link: Link to adjust SATA spd limit for
2925  *	@spd_limit: Additional limit
2926  *
2927  *	Adjust SATA spd limit of @link downward.  Note that this
2928  *	function only adjusts the limit.  The change must be applied
2929  *	using sata_set_spd().
2930  *
2931  *	If @spd_limit is non-zero, the speed is limited to equal to or
2932  *	lower than @spd_limit if such speed is supported.  If
2933  *	@spd_limit is slower than any supported speed, only the lowest
2934  *	supported speed is allowed.
2935  *
2936  *	LOCKING:
2937  *	Inherited from caller.
2938  *
2939  *	RETURNS:
2940  *	0 on success, negative errno on failure
2941  */
2942 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2943 {
2944 	u32 sstatus, spd, mask;
2945 	int rc, bit;
2946 
2947 	if (!sata_scr_valid(link))
2948 		return -EOPNOTSUPP;
2949 
2950 	/* If SCR can be read, use it to determine the current SPD.
2951 	 * If not, use cached value in link->sata_spd.
2952 	 */
2953 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2954 	if (rc == 0 && ata_sstatus_online(sstatus))
2955 		spd = (sstatus >> 4) & 0xf;
2956 	else
2957 		spd = link->sata_spd;
2958 
2959 	mask = link->sata_spd_limit;
2960 	if (mask <= 1)
2961 		return -EINVAL;
2962 
2963 	/* unconditionally mask off the highest bit */
2964 	bit = fls(mask) - 1;
2965 	mask &= ~(1 << bit);
2966 
2967 	/* Mask off all speeds higher than or equal to the current
2968 	 * one.  Force 1.5Gbps if current SPD is not available.
2969 	 */
2970 	if (spd > 1)
2971 		mask &= (1 << (spd - 1)) - 1;
2972 	else
2973 		mask &= 1;
2974 
2975 	/* were we already at the bottom? */
2976 	if (!mask)
2977 		return -EINVAL;
2978 
2979 	if (spd_limit) {
2980 		if (mask & ((1 << spd_limit) - 1))
2981 			mask &= (1 << spd_limit) - 1;
2982 		else {
2983 			bit = ffs(mask) - 1;
2984 			mask = 1 << bit;
2985 		}
2986 	}
2987 
2988 	link->sata_spd_limit = mask;
2989 
2990 	ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2991 			sata_spd_string(fls(mask)));
2992 
2993 	return 0;
2994 }
2995 
2996 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2997 {
2998 	struct ata_link *host_link = &link->ap->link;
2999 	u32 limit, target, spd;
3000 
3001 	limit = link->sata_spd_limit;
3002 
3003 	/* Don't configure downstream link faster than upstream link.
3004 	 * It doesn't speed up anything and some PMPs choke on such
3005 	 * configuration.
3006 	 */
3007 	if (!ata_is_host_link(link) && host_link->sata_spd)
3008 		limit &= (1 << host_link->sata_spd) - 1;
3009 
3010 	if (limit == UINT_MAX)
3011 		target = 0;
3012 	else
3013 		target = fls(limit);
3014 
3015 	spd = (*scontrol >> 4) & 0xf;
3016 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3017 
3018 	return spd != target;
3019 }
3020 
3021 /**
3022  *	sata_set_spd_needed - is SATA spd configuration needed
3023  *	@link: Link in question
3024  *
3025  *	Test whether the spd limit in SControl matches
3026  *	@link->sata_spd_limit.  This function is used to determine
3027  *	whether hardreset is necessary to apply SATA spd
3028  *	configuration.
3029  *
3030  *	LOCKING:
3031  *	Inherited from caller.
3032  *
3033  *	RETURNS:
3034  *	1 if SATA spd configuration is needed, 0 otherwise.
3035  */
3036 static int sata_set_spd_needed(struct ata_link *link)
3037 {
3038 	u32 scontrol;
3039 
3040 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3041 		return 1;
3042 
3043 	return __sata_set_spd_needed(link, &scontrol);
3044 }
3045 
3046 /**
3047  *	sata_set_spd - set SATA spd according to spd limit
3048  *	@link: Link to set SATA spd for
3049  *
3050  *	Set SATA spd of @link according to sata_spd_limit.
3051  *
3052  *	LOCKING:
3053  *	Inherited from caller.
3054  *
3055  *	RETURNS:
3056  *	0 if spd doesn't need to be changed, 1 if spd has been
3057  *	changed.  Negative errno if SCR registers are inaccessible.
3058  */
3059 int sata_set_spd(struct ata_link *link)
3060 {
3061 	u32 scontrol;
3062 	int rc;
3063 
3064 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3065 		return rc;
3066 
3067 	if (!__sata_set_spd_needed(link, &scontrol))
3068 		return 0;
3069 
3070 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3071 		return rc;
3072 
3073 	return 1;
3074 }
3075 
3076 /*
3077  * This mode timing computation functionality is ported over from
3078  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3079  */
3080 /*
3081  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3082  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3083  * for UDMA6, which is currently supported only by Maxtor drives.
3084  *
3085  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3086  */
3087 
3088 static const struct ata_timing ata_timing[] = {
3089 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3090 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3091 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3092 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3093 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3094 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3095 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3096 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3097 
3098 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3099 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3100 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3101 
3102 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3103 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3104 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3105 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3106 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3107 
3108 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3109 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3110 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3111 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3112 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3113 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3114 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3115 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3116 
3117 	{ 0xFF }
3118 };
3119 
3120 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3121 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
3122 
3123 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3124 {
3125 	q->setup	= EZ(t->setup      * 1000,  T);
3126 	q->act8b	= EZ(t->act8b      * 1000,  T);
3127 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
3128 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
3129 	q->active	= EZ(t->active     * 1000,  T);
3130 	q->recover	= EZ(t->recover    * 1000,  T);
3131 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
3132 	q->cycle	= EZ(t->cycle      * 1000,  T);
3133 	q->udma		= EZ(t->udma       * 1000, UT);
3134 }
3135 
3136 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3137 		      struct ata_timing *m, unsigned int what)
3138 {
3139 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3140 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3141 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3142 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3143 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3144 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3145 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3146 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3147 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3148 }
3149 
3150 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3151 {
3152 	const struct ata_timing *t = ata_timing;
3153 
3154 	while (xfer_mode > t->mode)
3155 		t++;
3156 
3157 	if (xfer_mode == t->mode)
3158 		return t;
3159 	return NULL;
3160 }
3161 
3162 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3163 		       struct ata_timing *t, int T, int UT)
3164 {
3165 	const struct ata_timing *s;
3166 	struct ata_timing p;
3167 
3168 	/*
3169 	 * Find the mode.
3170 	 */
3171 
3172 	if (!(s = ata_timing_find_mode(speed)))
3173 		return -EINVAL;
3174 
3175 	memcpy(t, s, sizeof(*s));
3176 
3177 	/*
3178 	 * If the drive is an EIDE drive, it can tell us it needs extended
3179 	 * PIO/MW_DMA cycle timing.
3180 	 */
3181 
3182 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3183 		memset(&p, 0, sizeof(p));
3184 		if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3185 			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3186 					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3187 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3188 			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3189 		}
3190 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3191 	}
3192 
3193 	/*
3194 	 * Convert the timing to bus clock counts.
3195 	 */
3196 
3197 	ata_timing_quantize(t, t, T, UT);
3198 
3199 	/*
3200 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3201 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3202 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3203 	 */
3204 
3205 	if (speed > XFER_PIO_6) {
3206 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3207 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3208 	}
3209 
3210 	/*
3211 	 * Lengthen active & recovery time so that cycle time is correct.
3212 	 */
3213 
3214 	if (t->act8b + t->rec8b < t->cyc8b) {
3215 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3216 		t->rec8b = t->cyc8b - t->act8b;
3217 	}
3218 
3219 	if (t->active + t->recover < t->cycle) {
3220 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3221 		t->recover = t->cycle - t->active;
3222 	}
3223 
3224 	/* In a few cases quantisation may produce enough errors to
3225 	   leave t->cycle too low for the sum of active and recovery
3226 	   if so we must correct this */
3227 	if (t->active + t->recover > t->cycle)
3228 		t->cycle = t->active + t->recover;
3229 
3230 	return 0;
3231 }
3232 
3233 /**
3234  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3235  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3236  *	@cycle: cycle duration in ns
3237  *
3238  *	Return matching xfer mode for @cycle.  The returned mode is of
3239  *	the transfer type specified by @xfer_shift.  If @cycle is too
3240  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3241  *	than the fastest known mode, the fasted mode is returned.
3242  *
3243  *	LOCKING:
3244  *	None.
3245  *
3246  *	RETURNS:
3247  *	Matching xfer_mode, 0xff if no match found.
3248  */
3249 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3250 {
3251 	u8 base_mode = 0xff, last_mode = 0xff;
3252 	const struct ata_xfer_ent *ent;
3253 	const struct ata_timing *t;
3254 
3255 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3256 		if (ent->shift == xfer_shift)
3257 			base_mode = ent->base;
3258 
3259 	for (t = ata_timing_find_mode(base_mode);
3260 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3261 		unsigned short this_cycle;
3262 
3263 		switch (xfer_shift) {
3264 		case ATA_SHIFT_PIO:
3265 		case ATA_SHIFT_MWDMA:
3266 			this_cycle = t->cycle;
3267 			break;
3268 		case ATA_SHIFT_UDMA:
3269 			this_cycle = t->udma;
3270 			break;
3271 		default:
3272 			return 0xff;
3273 		}
3274 
3275 		if (cycle > this_cycle)
3276 			break;
3277 
3278 		last_mode = t->mode;
3279 	}
3280 
3281 	return last_mode;
3282 }
3283 
3284 /**
3285  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3286  *	@dev: Device to adjust xfer masks
3287  *	@sel: ATA_DNXFER_* selector
3288  *
3289  *	Adjust xfer masks of @dev downward.  Note that this function
3290  *	does not apply the change.  Invoking ata_set_mode() afterwards
3291  *	will apply the limit.
3292  *
3293  *	LOCKING:
3294  *	Inherited from caller.
3295  *
3296  *	RETURNS:
3297  *	0 on success, negative errno on failure
3298  */
3299 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3300 {
3301 	char buf[32];
3302 	unsigned long orig_mask, xfer_mask;
3303 	unsigned long pio_mask, mwdma_mask, udma_mask;
3304 	int quiet, highbit;
3305 
3306 	quiet = !!(sel & ATA_DNXFER_QUIET);
3307 	sel &= ~ATA_DNXFER_QUIET;
3308 
3309 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3310 						  dev->mwdma_mask,
3311 						  dev->udma_mask);
3312 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3313 
3314 	switch (sel) {
3315 	case ATA_DNXFER_PIO:
3316 		highbit = fls(pio_mask) - 1;
3317 		pio_mask &= ~(1 << highbit);
3318 		break;
3319 
3320 	case ATA_DNXFER_DMA:
3321 		if (udma_mask) {
3322 			highbit = fls(udma_mask) - 1;
3323 			udma_mask &= ~(1 << highbit);
3324 			if (!udma_mask)
3325 				return -ENOENT;
3326 		} else if (mwdma_mask) {
3327 			highbit = fls(mwdma_mask) - 1;
3328 			mwdma_mask &= ~(1 << highbit);
3329 			if (!mwdma_mask)
3330 				return -ENOENT;
3331 		}
3332 		break;
3333 
3334 	case ATA_DNXFER_40C:
3335 		udma_mask &= ATA_UDMA_MASK_40C;
3336 		break;
3337 
3338 	case ATA_DNXFER_FORCE_PIO0:
3339 		pio_mask &= 1;
3340 	case ATA_DNXFER_FORCE_PIO:
3341 		mwdma_mask = 0;
3342 		udma_mask = 0;
3343 		break;
3344 
3345 	default:
3346 		BUG();
3347 	}
3348 
3349 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3350 
3351 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3352 		return -ENOENT;
3353 
3354 	if (!quiet) {
3355 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3356 			snprintf(buf, sizeof(buf), "%s:%s",
3357 				 ata_mode_string(xfer_mask),
3358 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3359 		else
3360 			snprintf(buf, sizeof(buf), "%s",
3361 				 ata_mode_string(xfer_mask));
3362 
3363 		ata_dev_printk(dev, KERN_WARNING,
3364 			       "limiting speed to %s\n", buf);
3365 	}
3366 
3367 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3368 			    &dev->udma_mask);
3369 
3370 	return 0;
3371 }
3372 
3373 static int ata_dev_set_mode(struct ata_device *dev)
3374 {
3375 	struct ata_eh_context *ehc = &dev->link->eh_context;
3376 	const char *dev_err_whine = "";
3377 	int ign_dev_err = 0;
3378 	unsigned int err_mask;
3379 	int rc;
3380 
3381 	dev->flags &= ~ATA_DFLAG_PIO;
3382 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3383 		dev->flags |= ATA_DFLAG_PIO;
3384 
3385 	err_mask = ata_dev_set_xfermode(dev);
3386 
3387 	if (err_mask & ~AC_ERR_DEV)
3388 		goto fail;
3389 
3390 	/* revalidate */
3391 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3392 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3393 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3394 	if (rc)
3395 		return rc;
3396 
3397 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3398 		/* Old CFA may refuse this command, which is just fine */
3399 		if (ata_id_is_cfa(dev->id))
3400 			ign_dev_err = 1;
3401 		/* Catch several broken garbage emulations plus some pre
3402 		   ATA devices */
3403 		if (ata_id_major_version(dev->id) == 0 &&
3404 					dev->pio_mode <= XFER_PIO_2)
3405 			ign_dev_err = 1;
3406 		/* Some very old devices and some bad newer ones fail
3407 		   any kind of SET_XFERMODE request but support PIO0-2
3408 		   timings and no IORDY */
3409 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3410 			ign_dev_err = 1;
3411 	}
3412 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3413 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3414 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3415 	    dev->dma_mode == XFER_MW_DMA_0 &&
3416 	    (dev->id[63] >> 8) & 1)
3417 		ign_dev_err = 1;
3418 
3419 	/* if the device is actually configured correctly, ignore dev err */
3420 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3421 		ign_dev_err = 1;
3422 
3423 	if (err_mask & AC_ERR_DEV) {
3424 		if (!ign_dev_err)
3425 			goto fail;
3426 		else
3427 			dev_err_whine = " (device error ignored)";
3428 	}
3429 
3430 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3431 		dev->xfer_shift, (int)dev->xfer_mode);
3432 
3433 	ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3434 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3435 		       dev_err_whine);
3436 
3437 	return 0;
3438 
3439  fail:
3440 	ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3441 		       "(err_mask=0x%x)\n", err_mask);
3442 	return -EIO;
3443 }
3444 
3445 /**
3446  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3447  *	@link: link on which timings will be programmed
3448  *	@r_failed_dev: out parameter for failed device
3449  *
3450  *	Standard implementation of the function used to tune and set
3451  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3452  *	ata_dev_set_mode() fails, pointer to the failing device is
3453  *	returned in @r_failed_dev.
3454  *
3455  *	LOCKING:
3456  *	PCI/etc. bus probe sem.
3457  *
3458  *	RETURNS:
3459  *	0 on success, negative errno otherwise
3460  */
3461 
3462 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3463 {
3464 	struct ata_port *ap = link->ap;
3465 	struct ata_device *dev;
3466 	int rc = 0, used_dma = 0, found = 0;
3467 
3468 	/* step 1: calculate xfer_mask */
3469 	ata_for_each_dev(dev, link, ENABLED) {
3470 		unsigned long pio_mask, dma_mask;
3471 		unsigned int mode_mask;
3472 
3473 		mode_mask = ATA_DMA_MASK_ATA;
3474 		if (dev->class == ATA_DEV_ATAPI)
3475 			mode_mask = ATA_DMA_MASK_ATAPI;
3476 		else if (ata_id_is_cfa(dev->id))
3477 			mode_mask = ATA_DMA_MASK_CFA;
3478 
3479 		ata_dev_xfermask(dev);
3480 		ata_force_xfermask(dev);
3481 
3482 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3483 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3484 
3485 		if (libata_dma_mask & mode_mask)
3486 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3487 		else
3488 			dma_mask = 0;
3489 
3490 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3491 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3492 
3493 		found = 1;
3494 		if (ata_dma_enabled(dev))
3495 			used_dma = 1;
3496 	}
3497 	if (!found)
3498 		goto out;
3499 
3500 	/* step 2: always set host PIO timings */
3501 	ata_for_each_dev(dev, link, ENABLED) {
3502 		if (dev->pio_mode == 0xff) {
3503 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3504 			rc = -EINVAL;
3505 			goto out;
3506 		}
3507 
3508 		dev->xfer_mode = dev->pio_mode;
3509 		dev->xfer_shift = ATA_SHIFT_PIO;
3510 		if (ap->ops->set_piomode)
3511 			ap->ops->set_piomode(ap, dev);
3512 	}
3513 
3514 	/* step 3: set host DMA timings */
3515 	ata_for_each_dev(dev, link, ENABLED) {
3516 		if (!ata_dma_enabled(dev))
3517 			continue;
3518 
3519 		dev->xfer_mode = dev->dma_mode;
3520 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3521 		if (ap->ops->set_dmamode)
3522 			ap->ops->set_dmamode(ap, dev);
3523 	}
3524 
3525 	/* step 4: update devices' xfer mode */
3526 	ata_for_each_dev(dev, link, ENABLED) {
3527 		rc = ata_dev_set_mode(dev);
3528 		if (rc)
3529 			goto out;
3530 	}
3531 
3532 	/* Record simplex status. If we selected DMA then the other
3533 	 * host channels are not permitted to do so.
3534 	 */
3535 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3536 		ap->host->simplex_claimed = ap;
3537 
3538  out:
3539 	if (rc)
3540 		*r_failed_dev = dev;
3541 	return rc;
3542 }
3543 
3544 /**
3545  *	ata_wait_ready - wait for link to become ready
3546  *	@link: link to be waited on
3547  *	@deadline: deadline jiffies for the operation
3548  *	@check_ready: callback to check link readiness
3549  *
3550  *	Wait for @link to become ready.  @check_ready should return
3551  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3552  *	link doesn't seem to be occupied, other errno for other error
3553  *	conditions.
3554  *
3555  *	Transient -ENODEV conditions are allowed for
3556  *	ATA_TMOUT_FF_WAIT.
3557  *
3558  *	LOCKING:
3559  *	EH context.
3560  *
3561  *	RETURNS:
3562  *	0 if @linke is ready before @deadline; otherwise, -errno.
3563  */
3564 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3565 		   int (*check_ready)(struct ata_link *link))
3566 {
3567 	unsigned long start = jiffies;
3568 	unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3569 	int warned = 0;
3570 
3571 	/* Slave readiness can't be tested separately from master.  On
3572 	 * M/S emulation configuration, this function should be called
3573 	 * only on the master and it will handle both master and slave.
3574 	 */
3575 	WARN_ON(link == link->ap->slave_link);
3576 
3577 	if (time_after(nodev_deadline, deadline))
3578 		nodev_deadline = deadline;
3579 
3580 	while (1) {
3581 		unsigned long now = jiffies;
3582 		int ready, tmp;
3583 
3584 		ready = tmp = check_ready(link);
3585 		if (ready > 0)
3586 			return 0;
3587 
3588 		/* -ENODEV could be transient.  Ignore -ENODEV if link
3589 		 * is online.  Also, some SATA devices take a long
3590 		 * time to clear 0xff after reset.  For example,
3591 		 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3592 		 * GoVault needs even more than that.  Wait for
3593 		 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3594 		 *
3595 		 * Note that some PATA controllers (pata_ali) explode
3596 		 * if status register is read more than once when
3597 		 * there's no device attached.
3598 		 */
3599 		if (ready == -ENODEV) {
3600 			if (ata_link_online(link))
3601 				ready = 0;
3602 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3603 				 !ata_link_offline(link) &&
3604 				 time_before(now, nodev_deadline))
3605 				ready = 0;
3606 		}
3607 
3608 		if (ready)
3609 			return ready;
3610 		if (time_after(now, deadline))
3611 			return -EBUSY;
3612 
3613 		if (!warned && time_after(now, start + 5 * HZ) &&
3614 		    (deadline - now > 3 * HZ)) {
3615 			ata_link_printk(link, KERN_WARNING,
3616 				"link is slow to respond, please be patient "
3617 				"(ready=%d)\n", tmp);
3618 			warned = 1;
3619 		}
3620 
3621 		msleep(50);
3622 	}
3623 }
3624 
3625 /**
3626  *	ata_wait_after_reset - wait for link to become ready after reset
3627  *	@link: link to be waited on
3628  *	@deadline: deadline jiffies for the operation
3629  *	@check_ready: callback to check link readiness
3630  *
3631  *	Wait for @link to become ready after reset.
3632  *
3633  *	LOCKING:
3634  *	EH context.
3635  *
3636  *	RETURNS:
3637  *	0 if @linke is ready before @deadline; otherwise, -errno.
3638  */
3639 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3640 				int (*check_ready)(struct ata_link *link))
3641 {
3642 	msleep(ATA_WAIT_AFTER_RESET);
3643 
3644 	return ata_wait_ready(link, deadline, check_ready);
3645 }
3646 
3647 /**
3648  *	sata_link_debounce - debounce SATA phy status
3649  *	@link: ATA link to debounce SATA phy status for
3650  *	@params: timing parameters { interval, duratinon, timeout } in msec
3651  *	@deadline: deadline jiffies for the operation
3652  *
3653 *	Make sure SStatus of @link reaches stable state, determined by
3654  *	holding the same value where DET is not 1 for @duration polled
3655  *	every @interval, before @timeout.  Timeout constraints the
3656  *	beginning of the stable state.  Because DET gets stuck at 1 on
3657  *	some controllers after hot unplugging, this functions waits
3658  *	until timeout then returns 0 if DET is stable at 1.
3659  *
3660  *	@timeout is further limited by @deadline.  The sooner of the
3661  *	two is used.
3662  *
3663  *	LOCKING:
3664  *	Kernel thread context (may sleep)
3665  *
3666  *	RETURNS:
3667  *	0 on success, -errno on failure.
3668  */
3669 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3670 		       unsigned long deadline)
3671 {
3672 	unsigned long interval = params[0];
3673 	unsigned long duration = params[1];
3674 	unsigned long last_jiffies, t;
3675 	u32 last, cur;
3676 	int rc;
3677 
3678 	t = ata_deadline(jiffies, params[2]);
3679 	if (time_before(t, deadline))
3680 		deadline = t;
3681 
3682 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3683 		return rc;
3684 	cur &= 0xf;
3685 
3686 	last = cur;
3687 	last_jiffies = jiffies;
3688 
3689 	while (1) {
3690 		msleep(interval);
3691 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3692 			return rc;
3693 		cur &= 0xf;
3694 
3695 		/* DET stable? */
3696 		if (cur == last) {
3697 			if (cur == 1 && time_before(jiffies, deadline))
3698 				continue;
3699 			if (time_after(jiffies,
3700 				       ata_deadline(last_jiffies, duration)))
3701 				return 0;
3702 			continue;
3703 		}
3704 
3705 		/* unstable, start over */
3706 		last = cur;
3707 		last_jiffies = jiffies;
3708 
3709 		/* Check deadline.  If debouncing failed, return
3710 		 * -EPIPE to tell upper layer to lower link speed.
3711 		 */
3712 		if (time_after(jiffies, deadline))
3713 			return -EPIPE;
3714 	}
3715 }
3716 
3717 /**
3718  *	sata_link_resume - resume SATA link
3719  *	@link: ATA link to resume SATA
3720  *	@params: timing parameters { interval, duratinon, timeout } in msec
3721  *	@deadline: deadline jiffies for the operation
3722  *
3723  *	Resume SATA phy @link and debounce it.
3724  *
3725  *	LOCKING:
3726  *	Kernel thread context (may sleep)
3727  *
3728  *	RETURNS:
3729  *	0 on success, -errno on failure.
3730  */
3731 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3732 		     unsigned long deadline)
3733 {
3734 	u32 scontrol, serror;
3735 	int rc;
3736 
3737 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3738 		return rc;
3739 
3740 	scontrol = (scontrol & 0x0f0) | 0x300;
3741 
3742 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3743 		return rc;
3744 
3745 	/* Some PHYs react badly if SStatus is pounded immediately
3746 	 * after resuming.  Delay 200ms before debouncing.
3747 	 */
3748 	msleep(200);
3749 
3750 	if ((rc = sata_link_debounce(link, params, deadline)))
3751 		return rc;
3752 
3753 	/* clear SError, some PHYs require this even for SRST to work */
3754 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3755 		rc = sata_scr_write(link, SCR_ERROR, serror);
3756 
3757 	return rc != -EINVAL ? rc : 0;
3758 }
3759 
3760 /**
3761  *	ata_std_prereset - prepare for reset
3762  *	@link: ATA link to be reset
3763  *	@deadline: deadline jiffies for the operation
3764  *
3765  *	@link is about to be reset.  Initialize it.  Failure from
3766  *	prereset makes libata abort whole reset sequence and give up
3767  *	that port, so prereset should be best-effort.  It does its
3768  *	best to prepare for reset sequence but if things go wrong, it
3769  *	should just whine, not fail.
3770  *
3771  *	LOCKING:
3772  *	Kernel thread context (may sleep)
3773  *
3774  *	RETURNS:
3775  *	0 on success, -errno otherwise.
3776  */
3777 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3778 {
3779 	struct ata_port *ap = link->ap;
3780 	struct ata_eh_context *ehc = &link->eh_context;
3781 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3782 	int rc;
3783 
3784 	/* if we're about to do hardreset, nothing more to do */
3785 	if (ehc->i.action & ATA_EH_HARDRESET)
3786 		return 0;
3787 
3788 	/* if SATA, resume link */
3789 	if (ap->flags & ATA_FLAG_SATA) {
3790 		rc = sata_link_resume(link, timing, deadline);
3791 		/* whine about phy resume failure but proceed */
3792 		if (rc && rc != -EOPNOTSUPP)
3793 			ata_link_printk(link, KERN_WARNING, "failed to resume "
3794 					"link for reset (errno=%d)\n", rc);
3795 	}
3796 
3797 	/* no point in trying softreset on offline link */
3798 	if (ata_phys_link_offline(link))
3799 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3800 
3801 	return 0;
3802 }
3803 
3804 /**
3805  *	sata_link_hardreset - reset link via SATA phy reset
3806  *	@link: link to reset
3807  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3808  *	@deadline: deadline jiffies for the operation
3809  *	@online: optional out parameter indicating link onlineness
3810  *	@check_ready: optional callback to check link readiness
3811  *
3812  *	SATA phy-reset @link using DET bits of SControl register.
3813  *	After hardreset, link readiness is waited upon using
3814  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3815  *	allowed to not specify @check_ready and wait itself after this
3816  *	function returns.  Device classification is LLD's
3817  *	responsibility.
3818  *
3819  *	*@online is set to one iff reset succeeded and @link is online
3820  *	after reset.
3821  *
3822  *	LOCKING:
3823  *	Kernel thread context (may sleep)
3824  *
3825  *	RETURNS:
3826  *	0 on success, -errno otherwise.
3827  */
3828 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3829 			unsigned long deadline,
3830 			bool *online, int (*check_ready)(struct ata_link *))
3831 {
3832 	u32 scontrol;
3833 	int rc;
3834 
3835 	DPRINTK("ENTER\n");
3836 
3837 	if (online)
3838 		*online = false;
3839 
3840 	if (sata_set_spd_needed(link)) {
3841 		/* SATA spec says nothing about how to reconfigure
3842 		 * spd.  To be on the safe side, turn off phy during
3843 		 * reconfiguration.  This works for at least ICH7 AHCI
3844 		 * and Sil3124.
3845 		 */
3846 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3847 			goto out;
3848 
3849 		scontrol = (scontrol & 0x0f0) | 0x304;
3850 
3851 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3852 			goto out;
3853 
3854 		sata_set_spd(link);
3855 	}
3856 
3857 	/* issue phy wake/reset */
3858 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3859 		goto out;
3860 
3861 	scontrol = (scontrol & 0x0f0) | 0x301;
3862 
3863 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3864 		goto out;
3865 
3866 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3867 	 * 10.4.2 says at least 1 ms.
3868 	 */
3869 	msleep(1);
3870 
3871 	/* bring link back */
3872 	rc = sata_link_resume(link, timing, deadline);
3873 	if (rc)
3874 		goto out;
3875 	/* if link is offline nothing more to do */
3876 	if (ata_phys_link_offline(link))
3877 		goto out;
3878 
3879 	/* Link is online.  From this point, -ENODEV too is an error. */
3880 	if (online)
3881 		*online = true;
3882 
3883 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3884 		/* If PMP is supported, we have to do follow-up SRST.
3885 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3886 		 * the first port is empty.  Wait only for
3887 		 * ATA_TMOUT_PMP_SRST_WAIT.
3888 		 */
3889 		if (check_ready) {
3890 			unsigned long pmp_deadline;
3891 
3892 			pmp_deadline = ata_deadline(jiffies,
3893 						    ATA_TMOUT_PMP_SRST_WAIT);
3894 			if (time_after(pmp_deadline, deadline))
3895 				pmp_deadline = deadline;
3896 			ata_wait_ready(link, pmp_deadline, check_ready);
3897 		}
3898 		rc = -EAGAIN;
3899 		goto out;
3900 	}
3901 
3902 	rc = 0;
3903 	if (check_ready)
3904 		rc = ata_wait_ready(link, deadline, check_ready);
3905  out:
3906 	if (rc && rc != -EAGAIN) {
3907 		/* online is set iff link is online && reset succeeded */
3908 		if (online)
3909 			*online = false;
3910 		ata_link_printk(link, KERN_ERR,
3911 				"COMRESET failed (errno=%d)\n", rc);
3912 	}
3913 	DPRINTK("EXIT, rc=%d\n", rc);
3914 	return rc;
3915 }
3916 
3917 /**
3918  *	sata_std_hardreset - COMRESET w/o waiting or classification
3919  *	@link: link to reset
3920  *	@class: resulting class of attached device
3921  *	@deadline: deadline jiffies for the operation
3922  *
3923  *	Standard SATA COMRESET w/o waiting or classification.
3924  *
3925  *	LOCKING:
3926  *	Kernel thread context (may sleep)
3927  *
3928  *	RETURNS:
3929  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3930  */
3931 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3932 		       unsigned long deadline)
3933 {
3934 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3935 	bool online;
3936 	int rc;
3937 
3938 	/* do hardreset */
3939 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3940 	return online ? -EAGAIN : rc;
3941 }
3942 
3943 /**
3944  *	ata_std_postreset - standard postreset callback
3945  *	@link: the target ata_link
3946  *	@classes: classes of attached devices
3947  *
3948  *	This function is invoked after a successful reset.  Note that
3949  *	the device might have been reset more than once using
3950  *	different reset methods before postreset is invoked.
3951  *
3952  *	LOCKING:
3953  *	Kernel thread context (may sleep)
3954  */
3955 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3956 {
3957 	u32 serror;
3958 
3959 	DPRINTK("ENTER\n");
3960 
3961 	/* reset complete, clear SError */
3962 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3963 		sata_scr_write(link, SCR_ERROR, serror);
3964 
3965 	/* print link status */
3966 	sata_print_link_status(link);
3967 
3968 	DPRINTK("EXIT\n");
3969 }
3970 
3971 /**
3972  *	ata_dev_same_device - Determine whether new ID matches configured device
3973  *	@dev: device to compare against
3974  *	@new_class: class of the new device
3975  *	@new_id: IDENTIFY page of the new device
3976  *
3977  *	Compare @new_class and @new_id against @dev and determine
3978  *	whether @dev is the device indicated by @new_class and
3979  *	@new_id.
3980  *
3981  *	LOCKING:
3982  *	None.
3983  *
3984  *	RETURNS:
3985  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3986  */
3987 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3988 			       const u16 *new_id)
3989 {
3990 	const u16 *old_id = dev->id;
3991 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3992 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3993 
3994 	if (dev->class != new_class) {
3995 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3996 			       dev->class, new_class);
3997 		return 0;
3998 	}
3999 
4000 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4001 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4002 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4003 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4004 
4005 	if (strcmp(model[0], model[1])) {
4006 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4007 			       "'%s' != '%s'\n", model[0], model[1]);
4008 		return 0;
4009 	}
4010 
4011 	if (strcmp(serial[0], serial[1])) {
4012 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4013 			       "'%s' != '%s'\n", serial[0], serial[1]);
4014 		return 0;
4015 	}
4016 
4017 	return 1;
4018 }
4019 
4020 /**
4021  *	ata_dev_reread_id - Re-read IDENTIFY data
4022  *	@dev: target ATA device
4023  *	@readid_flags: read ID flags
4024  *
4025  *	Re-read IDENTIFY page and make sure @dev is still attached to
4026  *	the port.
4027  *
4028  *	LOCKING:
4029  *	Kernel thread context (may sleep)
4030  *
4031  *	RETURNS:
4032  *	0 on success, negative errno otherwise
4033  */
4034 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4035 {
4036 	unsigned int class = dev->class;
4037 	u16 *id = (void *)dev->link->ap->sector_buf;
4038 	int rc;
4039 
4040 	/* read ID data */
4041 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4042 	if (rc)
4043 		return rc;
4044 
4045 	/* is the device still there? */
4046 	if (!ata_dev_same_device(dev, class, id))
4047 		return -ENODEV;
4048 
4049 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4050 	return 0;
4051 }
4052 
4053 /**
4054  *	ata_dev_revalidate - Revalidate ATA device
4055  *	@dev: device to revalidate
4056  *	@new_class: new class code
4057  *	@readid_flags: read ID flags
4058  *
4059  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4060  *	port and reconfigure it according to the new IDENTIFY page.
4061  *
4062  *	LOCKING:
4063  *	Kernel thread context (may sleep)
4064  *
4065  *	RETURNS:
4066  *	0 on success, negative errno otherwise
4067  */
4068 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4069 		       unsigned int readid_flags)
4070 {
4071 	u64 n_sectors = dev->n_sectors;
4072 	int rc;
4073 
4074 	if (!ata_dev_enabled(dev))
4075 		return -ENODEV;
4076 
4077 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4078 	if (ata_class_enabled(new_class) &&
4079 	    new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4080 		ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4081 			       dev->class, new_class);
4082 		rc = -ENODEV;
4083 		goto fail;
4084 	}
4085 
4086 	/* re-read ID */
4087 	rc = ata_dev_reread_id(dev, readid_flags);
4088 	if (rc)
4089 		goto fail;
4090 
4091 	/* configure device according to the new ID */
4092 	rc = ata_dev_configure(dev);
4093 	if (rc)
4094 		goto fail;
4095 
4096 	/* verify n_sectors hasn't changed */
4097 	if (dev->class == ATA_DEV_ATA && n_sectors &&
4098 	    dev->n_sectors != n_sectors) {
4099 		ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4100 			       "%llu != %llu\n",
4101 			       (unsigned long long)n_sectors,
4102 			       (unsigned long long)dev->n_sectors);
4103 
4104 		/* restore original n_sectors */
4105 		dev->n_sectors = n_sectors;
4106 
4107 		rc = -ENODEV;
4108 		goto fail;
4109 	}
4110 
4111 	return 0;
4112 
4113  fail:
4114 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4115 	return rc;
4116 }
4117 
4118 struct ata_blacklist_entry {
4119 	const char *model_num;
4120 	const char *model_rev;
4121 	unsigned long horkage;
4122 };
4123 
4124 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4125 	/* Devices with DMA related problems under Linux */
4126 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4127 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4128 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4129 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4130 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4131 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4132 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4133 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4134 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4135 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
4136 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
4137 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4138 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4139 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4140 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4141 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4142 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
4143 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
4144 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4145 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4146 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4147 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4148 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4149 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4150 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4151 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4152 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4153 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4154 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4155 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4156 	/* Odd clown on sil3726/4726 PMPs */
4157 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4158 
4159 	/* Weird ATAPI devices */
4160 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4161 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4162 
4163 	/* Devices we expect to fail diagnostics */
4164 
4165 	/* Devices where NCQ should be avoided */
4166 	/* NCQ is slow */
4167 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4168 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4169 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4170 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4171 	/* NCQ is broken */
4172 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4173 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4174 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4175 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4176 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4177 
4178 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4179 	{ "ST31500341AS",	"SD15",		ATA_HORKAGE_NONCQ |
4180 						ATA_HORKAGE_FIRMWARE_WARN },
4181 	{ "ST31500341AS",	"SD16",		ATA_HORKAGE_NONCQ |
4182 						ATA_HORKAGE_FIRMWARE_WARN },
4183 	{ "ST31500341AS",	"SD17",		ATA_HORKAGE_NONCQ |
4184 						ATA_HORKAGE_FIRMWARE_WARN },
4185 	{ "ST31500341AS",	"SD18",		ATA_HORKAGE_NONCQ |
4186 						ATA_HORKAGE_FIRMWARE_WARN },
4187 	{ "ST31500341AS",	"SD19",		ATA_HORKAGE_NONCQ |
4188 						ATA_HORKAGE_FIRMWARE_WARN },
4189 
4190 	{ "ST31000333AS",	"SD15",		ATA_HORKAGE_NONCQ |
4191 						ATA_HORKAGE_FIRMWARE_WARN },
4192 	{ "ST31000333AS",	"SD16",		ATA_HORKAGE_NONCQ |
4193 						ATA_HORKAGE_FIRMWARE_WARN },
4194 	{ "ST31000333AS",	"SD17",		ATA_HORKAGE_NONCQ |
4195 						ATA_HORKAGE_FIRMWARE_WARN },
4196 	{ "ST31000333AS",	"SD18",		ATA_HORKAGE_NONCQ |
4197 						ATA_HORKAGE_FIRMWARE_WARN },
4198 	{ "ST31000333AS",	"SD19",		ATA_HORKAGE_NONCQ |
4199 						ATA_HORKAGE_FIRMWARE_WARN },
4200 
4201 	{ "ST3640623AS",	"SD15",		ATA_HORKAGE_NONCQ |
4202 						ATA_HORKAGE_FIRMWARE_WARN },
4203 	{ "ST3640623AS",	"SD16",		ATA_HORKAGE_NONCQ |
4204 						ATA_HORKAGE_FIRMWARE_WARN },
4205 	{ "ST3640623AS",	"SD17",		ATA_HORKAGE_NONCQ |
4206 						ATA_HORKAGE_FIRMWARE_WARN },
4207 	{ "ST3640623AS",	"SD18",		ATA_HORKAGE_NONCQ |
4208 						ATA_HORKAGE_FIRMWARE_WARN },
4209 	{ "ST3640623AS",	"SD19",		ATA_HORKAGE_NONCQ |
4210 						ATA_HORKAGE_FIRMWARE_WARN },
4211 
4212 	{ "ST3640323AS",	"SD15",		ATA_HORKAGE_NONCQ |
4213 						ATA_HORKAGE_FIRMWARE_WARN },
4214 	{ "ST3640323AS",	"SD16",		ATA_HORKAGE_NONCQ |
4215 						ATA_HORKAGE_FIRMWARE_WARN },
4216 	{ "ST3640323AS",	"SD17",		ATA_HORKAGE_NONCQ |
4217 						ATA_HORKAGE_FIRMWARE_WARN },
4218 	{ "ST3640323AS",	"SD18",		ATA_HORKAGE_NONCQ |
4219 						ATA_HORKAGE_FIRMWARE_WARN },
4220 	{ "ST3640323AS",	"SD19",		ATA_HORKAGE_NONCQ |
4221 						ATA_HORKAGE_FIRMWARE_WARN },
4222 
4223 	{ "ST3320813AS",	"SD15",		ATA_HORKAGE_NONCQ |
4224 						ATA_HORKAGE_FIRMWARE_WARN },
4225 	{ "ST3320813AS",	"SD16",		ATA_HORKAGE_NONCQ |
4226 						ATA_HORKAGE_FIRMWARE_WARN },
4227 	{ "ST3320813AS",	"SD17",		ATA_HORKAGE_NONCQ |
4228 						ATA_HORKAGE_FIRMWARE_WARN },
4229 	{ "ST3320813AS",	"SD18",		ATA_HORKAGE_NONCQ |
4230 						ATA_HORKAGE_FIRMWARE_WARN },
4231 	{ "ST3320813AS",	"SD19",		ATA_HORKAGE_NONCQ |
4232 						ATA_HORKAGE_FIRMWARE_WARN },
4233 
4234 	{ "ST3320613AS",	"SD15",		ATA_HORKAGE_NONCQ |
4235 						ATA_HORKAGE_FIRMWARE_WARN },
4236 	{ "ST3320613AS",	"SD16",		ATA_HORKAGE_NONCQ |
4237 						ATA_HORKAGE_FIRMWARE_WARN },
4238 	{ "ST3320613AS",	"SD17",		ATA_HORKAGE_NONCQ |
4239 						ATA_HORKAGE_FIRMWARE_WARN },
4240 	{ "ST3320613AS",	"SD18",		ATA_HORKAGE_NONCQ |
4241 						ATA_HORKAGE_FIRMWARE_WARN },
4242 	{ "ST3320613AS",	"SD19",		ATA_HORKAGE_NONCQ |
4243 						ATA_HORKAGE_FIRMWARE_WARN },
4244 
4245 	/* Blacklist entries taken from Silicon Image 3124/3132
4246 	   Windows driver .inf file - also several Linux problem reports */
4247 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4248 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4249 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4250 
4251 	/* devices which puke on READ_NATIVE_MAX */
4252 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4253 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4254 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4255 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4256 
4257 	/* Devices which report 1 sector over size HPA */
4258 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4259 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4260 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4261 
4262 	/* Devices which get the IVB wrong */
4263 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4264 	/* Maybe we should just blacklist TSSTcorp... */
4265 	{ "TSSTcorp CDDVDW SH-S202H", "SB00",	  ATA_HORKAGE_IVB, },
4266 	{ "TSSTcorp CDDVDW SH-S202H", "SB01",	  ATA_HORKAGE_IVB, },
4267 	{ "TSSTcorp CDDVDW SH-S202J", "SB00",	  ATA_HORKAGE_IVB, },
4268 	{ "TSSTcorp CDDVDW SH-S202J", "SB01",	  ATA_HORKAGE_IVB, },
4269 	{ "TSSTcorp CDDVDW SH-S202N", "SB00",	  ATA_HORKAGE_IVB, },
4270 	{ "TSSTcorp CDDVDW SH-S202N", "SB01",	  ATA_HORKAGE_IVB, },
4271 
4272 	/* Devices that do not need bridging limits applied */
4273 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4274 
4275 	/* Devices which aren't very happy with higher link speeds */
4276 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4277 
4278 	/* End Marker */
4279 	{ }
4280 };
4281 
4282 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4283 {
4284 	const char *p;
4285 	int len;
4286 
4287 	/*
4288 	 * check for trailing wildcard: *\0
4289 	 */
4290 	p = strchr(patt, wildchar);
4291 	if (p && ((*(p + 1)) == 0))
4292 		len = p - patt;
4293 	else {
4294 		len = strlen(name);
4295 		if (!len) {
4296 			if (!*patt)
4297 				return 0;
4298 			return -1;
4299 		}
4300 	}
4301 
4302 	return strncmp(patt, name, len);
4303 }
4304 
4305 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4306 {
4307 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4308 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4309 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4310 
4311 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4312 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4313 
4314 	while (ad->model_num) {
4315 		if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4316 			if (ad->model_rev == NULL)
4317 				return ad->horkage;
4318 			if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4319 				return ad->horkage;
4320 		}
4321 		ad++;
4322 	}
4323 	return 0;
4324 }
4325 
4326 static int ata_dma_blacklisted(const struct ata_device *dev)
4327 {
4328 	/* We don't support polling DMA.
4329 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4330 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4331 	 */
4332 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4333 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4334 		return 1;
4335 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4336 }
4337 
4338 /**
4339  *	ata_is_40wire		-	check drive side detection
4340  *	@dev: device
4341  *
4342  *	Perform drive side detection decoding, allowing for device vendors
4343  *	who can't follow the documentation.
4344  */
4345 
4346 static int ata_is_40wire(struct ata_device *dev)
4347 {
4348 	if (dev->horkage & ATA_HORKAGE_IVB)
4349 		return ata_drive_40wire_relaxed(dev->id);
4350 	return ata_drive_40wire(dev->id);
4351 }
4352 
4353 /**
4354  *	cable_is_40wire		-	40/80/SATA decider
4355  *	@ap: port to consider
4356  *
4357  *	This function encapsulates the policy for speed management
4358  *	in one place. At the moment we don't cache the result but
4359  *	there is a good case for setting ap->cbl to the result when
4360  *	we are called with unknown cables (and figuring out if it
4361  *	impacts hotplug at all).
4362  *
4363  *	Return 1 if the cable appears to be 40 wire.
4364  */
4365 
4366 static int cable_is_40wire(struct ata_port *ap)
4367 {
4368 	struct ata_link *link;
4369 	struct ata_device *dev;
4370 
4371 	/* If the controller thinks we are 40 wire, we are. */
4372 	if (ap->cbl == ATA_CBL_PATA40)
4373 		return 1;
4374 
4375 	/* If the controller thinks we are 80 wire, we are. */
4376 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4377 		return 0;
4378 
4379 	/* If the system is known to be 40 wire short cable (eg
4380 	 * laptop), then we allow 80 wire modes even if the drive
4381 	 * isn't sure.
4382 	 */
4383 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4384 		return 0;
4385 
4386 	/* If the controller doesn't know, we scan.
4387 	 *
4388 	 * Note: We look for all 40 wire detects at this point.  Any
4389 	 *       80 wire detect is taken to be 80 wire cable because
4390 	 * - in many setups only the one drive (slave if present) will
4391 	 *   give a valid detect
4392 	 * - if you have a non detect capable drive you don't want it
4393 	 *   to colour the choice
4394 	 */
4395 	ata_for_each_link(link, ap, EDGE) {
4396 		ata_for_each_dev(dev, link, ENABLED) {
4397 			if (!ata_is_40wire(dev))
4398 				return 0;
4399 		}
4400 	}
4401 	return 1;
4402 }
4403 
4404 /**
4405  *	ata_dev_xfermask - Compute supported xfermask of the given device
4406  *	@dev: Device to compute xfermask for
4407  *
4408  *	Compute supported xfermask of @dev and store it in
4409  *	dev->*_mask.  This function is responsible for applying all
4410  *	known limits including host controller limits, device
4411  *	blacklist, etc...
4412  *
4413  *	LOCKING:
4414  *	None.
4415  */
4416 static void ata_dev_xfermask(struct ata_device *dev)
4417 {
4418 	struct ata_link *link = dev->link;
4419 	struct ata_port *ap = link->ap;
4420 	struct ata_host *host = ap->host;
4421 	unsigned long xfer_mask;
4422 
4423 	/* controller modes available */
4424 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4425 				      ap->mwdma_mask, ap->udma_mask);
4426 
4427 	/* drive modes available */
4428 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4429 				       dev->mwdma_mask, dev->udma_mask);
4430 	xfer_mask &= ata_id_xfermask(dev->id);
4431 
4432 	/*
4433 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4434 	 *	cable
4435 	 */
4436 	if (ata_dev_pair(dev)) {
4437 		/* No PIO5 or PIO6 */
4438 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4439 		/* No MWDMA3 or MWDMA 4 */
4440 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4441 	}
4442 
4443 	if (ata_dma_blacklisted(dev)) {
4444 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4445 		ata_dev_printk(dev, KERN_WARNING,
4446 			       "device is on DMA blacklist, disabling DMA\n");
4447 	}
4448 
4449 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4450 	    host->simplex_claimed && host->simplex_claimed != ap) {
4451 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4452 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4453 			       "other device, disabling DMA\n");
4454 	}
4455 
4456 	if (ap->flags & ATA_FLAG_NO_IORDY)
4457 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4458 
4459 	if (ap->ops->mode_filter)
4460 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4461 
4462 	/* Apply cable rule here.  Don't apply it early because when
4463 	 * we handle hot plug the cable type can itself change.
4464 	 * Check this last so that we know if the transfer rate was
4465 	 * solely limited by the cable.
4466 	 * Unknown or 80 wire cables reported host side are checked
4467 	 * drive side as well. Cases where we know a 40wire cable
4468 	 * is used safely for 80 are not checked here.
4469 	 */
4470 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4471 		/* UDMA/44 or higher would be available */
4472 		if (cable_is_40wire(ap)) {
4473 			ata_dev_printk(dev, KERN_WARNING,
4474 				 "limited to UDMA/33 due to 40-wire cable\n");
4475 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4476 		}
4477 
4478 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4479 			    &dev->mwdma_mask, &dev->udma_mask);
4480 }
4481 
4482 /**
4483  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4484  *	@dev: Device to which command will be sent
4485  *
4486  *	Issue SET FEATURES - XFER MODE command to device @dev
4487  *	on port @ap.
4488  *
4489  *	LOCKING:
4490  *	PCI/etc. bus probe sem.
4491  *
4492  *	RETURNS:
4493  *	0 on success, AC_ERR_* mask otherwise.
4494  */
4495 
4496 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4497 {
4498 	struct ata_taskfile tf;
4499 	unsigned int err_mask;
4500 
4501 	/* set up set-features taskfile */
4502 	DPRINTK("set features - xfer mode\n");
4503 
4504 	/* Some controllers and ATAPI devices show flaky interrupt
4505 	 * behavior after setting xfer mode.  Use polling instead.
4506 	 */
4507 	ata_tf_init(dev, &tf);
4508 	tf.command = ATA_CMD_SET_FEATURES;
4509 	tf.feature = SETFEATURES_XFER;
4510 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4511 	tf.protocol = ATA_PROT_NODATA;
4512 	/* If we are using IORDY we must send the mode setting command */
4513 	if (ata_pio_need_iordy(dev))
4514 		tf.nsect = dev->xfer_mode;
4515 	/* If the device has IORDY and the controller does not - turn it off */
4516  	else if (ata_id_has_iordy(dev->id))
4517 		tf.nsect = 0x01;
4518 	else /* In the ancient relic department - skip all of this */
4519 		return 0;
4520 
4521 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4522 
4523 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4524 	return err_mask;
4525 }
4526 /**
4527  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4528  *	@dev: Device to which command will be sent
4529  *	@enable: Whether to enable or disable the feature
4530  *	@feature: The sector count represents the feature to set
4531  *
4532  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4533  *	on port @ap with sector count
4534  *
4535  *	LOCKING:
4536  *	PCI/etc. bus probe sem.
4537  *
4538  *	RETURNS:
4539  *	0 on success, AC_ERR_* mask otherwise.
4540  */
4541 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4542 					u8 feature)
4543 {
4544 	struct ata_taskfile tf;
4545 	unsigned int err_mask;
4546 
4547 	/* set up set-features taskfile */
4548 	DPRINTK("set features - SATA features\n");
4549 
4550 	ata_tf_init(dev, &tf);
4551 	tf.command = ATA_CMD_SET_FEATURES;
4552 	tf.feature = enable;
4553 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4554 	tf.protocol = ATA_PROT_NODATA;
4555 	tf.nsect = feature;
4556 
4557 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4558 
4559 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4560 	return err_mask;
4561 }
4562 
4563 /**
4564  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4565  *	@dev: Device to which command will be sent
4566  *	@heads: Number of heads (taskfile parameter)
4567  *	@sectors: Number of sectors (taskfile parameter)
4568  *
4569  *	LOCKING:
4570  *	Kernel thread context (may sleep)
4571  *
4572  *	RETURNS:
4573  *	0 on success, AC_ERR_* mask otherwise.
4574  */
4575 static unsigned int ata_dev_init_params(struct ata_device *dev,
4576 					u16 heads, u16 sectors)
4577 {
4578 	struct ata_taskfile tf;
4579 	unsigned int err_mask;
4580 
4581 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4582 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4583 		return AC_ERR_INVALID;
4584 
4585 	/* set up init dev params taskfile */
4586 	DPRINTK("init dev params \n");
4587 
4588 	ata_tf_init(dev, &tf);
4589 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4590 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4591 	tf.protocol = ATA_PROT_NODATA;
4592 	tf.nsect = sectors;
4593 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4594 
4595 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4596 	/* A clean abort indicates an original or just out of spec drive
4597 	   and we should continue as we issue the setup based on the
4598 	   drive reported working geometry */
4599 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4600 		err_mask = 0;
4601 
4602 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4603 	return err_mask;
4604 }
4605 
4606 /**
4607  *	ata_sg_clean - Unmap DMA memory associated with command
4608  *	@qc: Command containing DMA memory to be released
4609  *
4610  *	Unmap all mapped DMA memory associated with this command.
4611  *
4612  *	LOCKING:
4613  *	spin_lock_irqsave(host lock)
4614  */
4615 void ata_sg_clean(struct ata_queued_cmd *qc)
4616 {
4617 	struct ata_port *ap = qc->ap;
4618 	struct scatterlist *sg = qc->sg;
4619 	int dir = qc->dma_dir;
4620 
4621 	WARN_ON_ONCE(sg == NULL);
4622 
4623 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4624 
4625 	if (qc->n_elem)
4626 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4627 
4628 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4629 	qc->sg = NULL;
4630 }
4631 
4632 /**
4633  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4634  *	@qc: Metadata associated with taskfile to check
4635  *
4636  *	Allow low-level driver to filter ATA PACKET commands, returning
4637  *	a status indicating whether or not it is OK to use DMA for the
4638  *	supplied PACKET command.
4639  *
4640  *	LOCKING:
4641  *	spin_lock_irqsave(host lock)
4642  *
4643  *	RETURNS: 0 when ATAPI DMA can be used
4644  *               nonzero otherwise
4645  */
4646 int atapi_check_dma(struct ata_queued_cmd *qc)
4647 {
4648 	struct ata_port *ap = qc->ap;
4649 
4650 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4651 	 * few ATAPI devices choke on such DMA requests.
4652 	 */
4653 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4654 	    unlikely(qc->nbytes & 15))
4655 		return 1;
4656 
4657 	if (ap->ops->check_atapi_dma)
4658 		return ap->ops->check_atapi_dma(qc);
4659 
4660 	return 0;
4661 }
4662 
4663 /**
4664  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4665  *	@qc: ATA command in question
4666  *
4667  *	Non-NCQ commands cannot run with any other command, NCQ or
4668  *	not.  As upper layer only knows the queue depth, we are
4669  *	responsible for maintaining exclusion.  This function checks
4670  *	whether a new command @qc can be issued.
4671  *
4672  *	LOCKING:
4673  *	spin_lock_irqsave(host lock)
4674  *
4675  *	RETURNS:
4676  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4677  */
4678 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4679 {
4680 	struct ata_link *link = qc->dev->link;
4681 
4682 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4683 		if (!ata_tag_valid(link->active_tag))
4684 			return 0;
4685 	} else {
4686 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4687 			return 0;
4688 	}
4689 
4690 	return ATA_DEFER_LINK;
4691 }
4692 
4693 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4694 
4695 /**
4696  *	ata_sg_init - Associate command with scatter-gather table.
4697  *	@qc: Command to be associated
4698  *	@sg: Scatter-gather table.
4699  *	@n_elem: Number of elements in s/g table.
4700  *
4701  *	Initialize the data-related elements of queued_cmd @qc
4702  *	to point to a scatter-gather table @sg, containing @n_elem
4703  *	elements.
4704  *
4705  *	LOCKING:
4706  *	spin_lock_irqsave(host lock)
4707  */
4708 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4709 		 unsigned int n_elem)
4710 {
4711 	qc->sg = sg;
4712 	qc->n_elem = n_elem;
4713 	qc->cursg = qc->sg;
4714 }
4715 
4716 /**
4717  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4718  *	@qc: Command with scatter-gather table to be mapped.
4719  *
4720  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4721  *
4722  *	LOCKING:
4723  *	spin_lock_irqsave(host lock)
4724  *
4725  *	RETURNS:
4726  *	Zero on success, negative on error.
4727  *
4728  */
4729 static int ata_sg_setup(struct ata_queued_cmd *qc)
4730 {
4731 	struct ata_port *ap = qc->ap;
4732 	unsigned int n_elem;
4733 
4734 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4735 
4736 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4737 	if (n_elem < 1)
4738 		return -1;
4739 
4740 	DPRINTK("%d sg elements mapped\n", n_elem);
4741 	qc->orig_n_elem = qc->n_elem;
4742 	qc->n_elem = n_elem;
4743 	qc->flags |= ATA_QCFLAG_DMAMAP;
4744 
4745 	return 0;
4746 }
4747 
4748 /**
4749  *	swap_buf_le16 - swap halves of 16-bit words in place
4750  *	@buf:  Buffer to swap
4751  *	@buf_words:  Number of 16-bit words in buffer.
4752  *
4753  *	Swap halves of 16-bit words if needed to convert from
4754  *	little-endian byte order to native cpu byte order, or
4755  *	vice-versa.
4756  *
4757  *	LOCKING:
4758  *	Inherited from caller.
4759  */
4760 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4761 {
4762 #ifdef __BIG_ENDIAN
4763 	unsigned int i;
4764 
4765 	for (i = 0; i < buf_words; i++)
4766 		buf[i] = le16_to_cpu(buf[i]);
4767 #endif /* __BIG_ENDIAN */
4768 }
4769 
4770 /**
4771  *	ata_qc_new - Request an available ATA command, for queueing
4772  *	@ap: target port
4773  *
4774  *	LOCKING:
4775  *	None.
4776  */
4777 
4778 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4779 {
4780 	struct ata_queued_cmd *qc = NULL;
4781 	unsigned int i;
4782 
4783 	/* no command while frozen */
4784 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4785 		return NULL;
4786 
4787 	/* the last tag is reserved for internal command. */
4788 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4789 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4790 			qc = __ata_qc_from_tag(ap, i);
4791 			break;
4792 		}
4793 
4794 	if (qc)
4795 		qc->tag = i;
4796 
4797 	return qc;
4798 }
4799 
4800 /**
4801  *	ata_qc_new_init - Request an available ATA command, and initialize it
4802  *	@dev: Device from whom we request an available command structure
4803  *
4804  *	LOCKING:
4805  *	None.
4806  */
4807 
4808 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4809 {
4810 	struct ata_port *ap = dev->link->ap;
4811 	struct ata_queued_cmd *qc;
4812 
4813 	qc = ata_qc_new(ap);
4814 	if (qc) {
4815 		qc->scsicmd = NULL;
4816 		qc->ap = ap;
4817 		qc->dev = dev;
4818 
4819 		ata_qc_reinit(qc);
4820 	}
4821 
4822 	return qc;
4823 }
4824 
4825 /**
4826  *	ata_qc_free - free unused ata_queued_cmd
4827  *	@qc: Command to complete
4828  *
4829  *	Designed to free unused ata_queued_cmd object
4830  *	in case something prevents using it.
4831  *
4832  *	LOCKING:
4833  *	spin_lock_irqsave(host lock)
4834  */
4835 void ata_qc_free(struct ata_queued_cmd *qc)
4836 {
4837 	struct ata_port *ap = qc->ap;
4838 	unsigned int tag;
4839 
4840 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4841 
4842 	qc->flags = 0;
4843 	tag = qc->tag;
4844 	if (likely(ata_tag_valid(tag))) {
4845 		qc->tag = ATA_TAG_POISON;
4846 		clear_bit(tag, &ap->qc_allocated);
4847 	}
4848 }
4849 
4850 void __ata_qc_complete(struct ata_queued_cmd *qc)
4851 {
4852 	struct ata_port *ap = qc->ap;
4853 	struct ata_link *link = qc->dev->link;
4854 
4855 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4856 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4857 
4858 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4859 		ata_sg_clean(qc);
4860 
4861 	/* command should be marked inactive atomically with qc completion */
4862 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4863 		link->sactive &= ~(1 << qc->tag);
4864 		if (!link->sactive)
4865 			ap->nr_active_links--;
4866 	} else {
4867 		link->active_tag = ATA_TAG_POISON;
4868 		ap->nr_active_links--;
4869 	}
4870 
4871 	/* clear exclusive status */
4872 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4873 		     ap->excl_link == link))
4874 		ap->excl_link = NULL;
4875 
4876 	/* atapi: mark qc as inactive to prevent the interrupt handler
4877 	 * from completing the command twice later, before the error handler
4878 	 * is called. (when rc != 0 and atapi request sense is needed)
4879 	 */
4880 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4881 	ap->qc_active &= ~(1 << qc->tag);
4882 
4883 	/* call completion callback */
4884 	qc->complete_fn(qc);
4885 }
4886 
4887 static void fill_result_tf(struct ata_queued_cmd *qc)
4888 {
4889 	struct ata_port *ap = qc->ap;
4890 
4891 	qc->result_tf.flags = qc->tf.flags;
4892 	ap->ops->qc_fill_rtf(qc);
4893 }
4894 
4895 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4896 {
4897 	struct ata_device *dev = qc->dev;
4898 
4899 	if (ata_tag_internal(qc->tag))
4900 		return;
4901 
4902 	if (ata_is_nodata(qc->tf.protocol))
4903 		return;
4904 
4905 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4906 		return;
4907 
4908 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4909 }
4910 
4911 /**
4912  *	ata_qc_complete - Complete an active ATA command
4913  *	@qc: Command to complete
4914  *
4915  *	Indicate to the mid and upper layers that an ATA
4916  *	command has completed, with either an ok or not-ok status.
4917  *
4918  *	LOCKING:
4919  *	spin_lock_irqsave(host lock)
4920  */
4921 void ata_qc_complete(struct ata_queued_cmd *qc)
4922 {
4923 	struct ata_port *ap = qc->ap;
4924 
4925 	/* XXX: New EH and old EH use different mechanisms to
4926 	 * synchronize EH with regular execution path.
4927 	 *
4928 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4929 	 * Normal execution path is responsible for not accessing a
4930 	 * failed qc.  libata core enforces the rule by returning NULL
4931 	 * from ata_qc_from_tag() for failed qcs.
4932 	 *
4933 	 * Old EH depends on ata_qc_complete() nullifying completion
4934 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4935 	 * not synchronize with interrupt handler.  Only PIO task is
4936 	 * taken care of.
4937 	 */
4938 	if (ap->ops->error_handler) {
4939 		struct ata_device *dev = qc->dev;
4940 		struct ata_eh_info *ehi = &dev->link->eh_info;
4941 
4942 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4943 
4944 		if (unlikely(qc->err_mask))
4945 			qc->flags |= ATA_QCFLAG_FAILED;
4946 
4947 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4948 			if (!ata_tag_internal(qc->tag)) {
4949 				/* always fill result TF for failed qc */
4950 				fill_result_tf(qc);
4951 				ata_qc_schedule_eh(qc);
4952 				return;
4953 			}
4954 		}
4955 
4956 		/* read result TF if requested */
4957 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4958 			fill_result_tf(qc);
4959 
4960 		/* Some commands need post-processing after successful
4961 		 * completion.
4962 		 */
4963 		switch (qc->tf.command) {
4964 		case ATA_CMD_SET_FEATURES:
4965 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4966 			    qc->tf.feature != SETFEATURES_WC_OFF)
4967 				break;
4968 			/* fall through */
4969 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4970 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4971 			/* revalidate device */
4972 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4973 			ata_port_schedule_eh(ap);
4974 			break;
4975 
4976 		case ATA_CMD_SLEEP:
4977 			dev->flags |= ATA_DFLAG_SLEEPING;
4978 			break;
4979 		}
4980 
4981 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4982 			ata_verify_xfer(qc);
4983 
4984 		__ata_qc_complete(qc);
4985 	} else {
4986 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4987 			return;
4988 
4989 		/* read result TF if failed or requested */
4990 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4991 			fill_result_tf(qc);
4992 
4993 		__ata_qc_complete(qc);
4994 	}
4995 }
4996 
4997 /**
4998  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4999  *	@ap: port in question
5000  *	@qc_active: new qc_active mask
5001  *
5002  *	Complete in-flight commands.  This functions is meant to be
5003  *	called from low-level driver's interrupt routine to complete
5004  *	requests normally.  ap->qc_active and @qc_active is compared
5005  *	and commands are completed accordingly.
5006  *
5007  *	LOCKING:
5008  *	spin_lock_irqsave(host lock)
5009  *
5010  *	RETURNS:
5011  *	Number of completed commands on success, -errno otherwise.
5012  */
5013 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5014 {
5015 	int nr_done = 0;
5016 	u32 done_mask;
5017 	int i;
5018 
5019 	done_mask = ap->qc_active ^ qc_active;
5020 
5021 	if (unlikely(done_mask & qc_active)) {
5022 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5023 				"(%08x->%08x)\n", ap->qc_active, qc_active);
5024 		return -EINVAL;
5025 	}
5026 
5027 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
5028 		struct ata_queued_cmd *qc;
5029 
5030 		if (!(done_mask & (1 << i)))
5031 			continue;
5032 
5033 		if ((qc = ata_qc_from_tag(ap, i))) {
5034 			ata_qc_complete(qc);
5035 			nr_done++;
5036 		}
5037 	}
5038 
5039 	return nr_done;
5040 }
5041 
5042 /**
5043  *	ata_qc_issue - issue taskfile to device
5044  *	@qc: command to issue to device
5045  *
5046  *	Prepare an ATA command to submission to device.
5047  *	This includes mapping the data into a DMA-able
5048  *	area, filling in the S/G table, and finally
5049  *	writing the taskfile to hardware, starting the command.
5050  *
5051  *	LOCKING:
5052  *	spin_lock_irqsave(host lock)
5053  */
5054 void ata_qc_issue(struct ata_queued_cmd *qc)
5055 {
5056 	struct ata_port *ap = qc->ap;
5057 	struct ata_link *link = qc->dev->link;
5058 	u8 prot = qc->tf.protocol;
5059 
5060 	/* Make sure only one non-NCQ command is outstanding.  The
5061 	 * check is skipped for old EH because it reuses active qc to
5062 	 * request ATAPI sense.
5063 	 */
5064 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5065 
5066 	if (ata_is_ncq(prot)) {
5067 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5068 
5069 		if (!link->sactive)
5070 			ap->nr_active_links++;
5071 		link->sactive |= 1 << qc->tag;
5072 	} else {
5073 		WARN_ON_ONCE(link->sactive);
5074 
5075 		ap->nr_active_links++;
5076 		link->active_tag = qc->tag;
5077 	}
5078 
5079 	qc->flags |= ATA_QCFLAG_ACTIVE;
5080 	ap->qc_active |= 1 << qc->tag;
5081 
5082 	/* We guarantee to LLDs that they will have at least one
5083 	 * non-zero sg if the command is a data command.
5084 	 */
5085 	BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5086 
5087 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5088 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5089 		if (ata_sg_setup(qc))
5090 			goto sg_err;
5091 
5092 	/* if device is sleeping, schedule reset and abort the link */
5093 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5094 		link->eh_info.action |= ATA_EH_RESET;
5095 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5096 		ata_link_abort(link);
5097 		return;
5098 	}
5099 
5100 	ap->ops->qc_prep(qc);
5101 
5102 	qc->err_mask |= ap->ops->qc_issue(qc);
5103 	if (unlikely(qc->err_mask))
5104 		goto err;
5105 	return;
5106 
5107 sg_err:
5108 	qc->err_mask |= AC_ERR_SYSTEM;
5109 err:
5110 	ata_qc_complete(qc);
5111 }
5112 
5113 /**
5114  *	sata_scr_valid - test whether SCRs are accessible
5115  *	@link: ATA link to test SCR accessibility for
5116  *
5117  *	Test whether SCRs are accessible for @link.
5118  *
5119  *	LOCKING:
5120  *	None.
5121  *
5122  *	RETURNS:
5123  *	1 if SCRs are accessible, 0 otherwise.
5124  */
5125 int sata_scr_valid(struct ata_link *link)
5126 {
5127 	struct ata_port *ap = link->ap;
5128 
5129 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5130 }
5131 
5132 /**
5133  *	sata_scr_read - read SCR register of the specified port
5134  *	@link: ATA link to read SCR for
5135  *	@reg: SCR to read
5136  *	@val: Place to store read value
5137  *
5138  *	Read SCR register @reg of @link into *@val.  This function is
5139  *	guaranteed to succeed if @link is ap->link, the cable type of
5140  *	the port is SATA and the port implements ->scr_read.
5141  *
5142  *	LOCKING:
5143  *	None if @link is ap->link.  Kernel thread context otherwise.
5144  *
5145  *	RETURNS:
5146  *	0 on success, negative errno on failure.
5147  */
5148 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5149 {
5150 	if (ata_is_host_link(link)) {
5151 		if (sata_scr_valid(link))
5152 			return link->ap->ops->scr_read(link, reg, val);
5153 		return -EOPNOTSUPP;
5154 	}
5155 
5156 	return sata_pmp_scr_read(link, reg, val);
5157 }
5158 
5159 /**
5160  *	sata_scr_write - write SCR register of the specified port
5161  *	@link: ATA link to write SCR for
5162  *	@reg: SCR to write
5163  *	@val: value to write
5164  *
5165  *	Write @val to SCR register @reg of @link.  This function is
5166  *	guaranteed to succeed if @link is ap->link, the cable type of
5167  *	the port is SATA and the port implements ->scr_read.
5168  *
5169  *	LOCKING:
5170  *	None if @link is ap->link.  Kernel thread context otherwise.
5171  *
5172  *	RETURNS:
5173  *	0 on success, negative errno on failure.
5174  */
5175 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5176 {
5177 	if (ata_is_host_link(link)) {
5178 		if (sata_scr_valid(link))
5179 			return link->ap->ops->scr_write(link, reg, val);
5180 		return -EOPNOTSUPP;
5181 	}
5182 
5183 	return sata_pmp_scr_write(link, reg, val);
5184 }
5185 
5186 /**
5187  *	sata_scr_write_flush - write SCR register of the specified port and flush
5188  *	@link: ATA link to write SCR for
5189  *	@reg: SCR to write
5190  *	@val: value to write
5191  *
5192  *	This function is identical to sata_scr_write() except that this
5193  *	function performs flush after writing to the register.
5194  *
5195  *	LOCKING:
5196  *	None if @link is ap->link.  Kernel thread context otherwise.
5197  *
5198  *	RETURNS:
5199  *	0 on success, negative errno on failure.
5200  */
5201 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5202 {
5203 	if (ata_is_host_link(link)) {
5204 		int rc;
5205 
5206 		if (sata_scr_valid(link)) {
5207 			rc = link->ap->ops->scr_write(link, reg, val);
5208 			if (rc == 0)
5209 				rc = link->ap->ops->scr_read(link, reg, &val);
5210 			return rc;
5211 		}
5212 		return -EOPNOTSUPP;
5213 	}
5214 
5215 	return sata_pmp_scr_write(link, reg, val);
5216 }
5217 
5218 /**
5219  *	ata_phys_link_online - test whether the given link is online
5220  *	@link: ATA link to test
5221  *
5222  *	Test whether @link is online.  Note that this function returns
5223  *	0 if online status of @link cannot be obtained, so
5224  *	ata_link_online(link) != !ata_link_offline(link).
5225  *
5226  *	LOCKING:
5227  *	None.
5228  *
5229  *	RETURNS:
5230  *	True if the port online status is available and online.
5231  */
5232 bool ata_phys_link_online(struct ata_link *link)
5233 {
5234 	u32 sstatus;
5235 
5236 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5237 	    ata_sstatus_online(sstatus))
5238 		return true;
5239 	return false;
5240 }
5241 
5242 /**
5243  *	ata_phys_link_offline - test whether the given link is offline
5244  *	@link: ATA link to test
5245  *
5246  *	Test whether @link is offline.  Note that this function
5247  *	returns 0 if offline status of @link cannot be obtained, so
5248  *	ata_link_online(link) != !ata_link_offline(link).
5249  *
5250  *	LOCKING:
5251  *	None.
5252  *
5253  *	RETURNS:
5254  *	True if the port offline status is available and offline.
5255  */
5256 bool ata_phys_link_offline(struct ata_link *link)
5257 {
5258 	u32 sstatus;
5259 
5260 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5261 	    !ata_sstatus_online(sstatus))
5262 		return true;
5263 	return false;
5264 }
5265 
5266 /**
5267  *	ata_link_online - test whether the given link is online
5268  *	@link: ATA link to test
5269  *
5270  *	Test whether @link is online.  This is identical to
5271  *	ata_phys_link_online() when there's no slave link.  When
5272  *	there's a slave link, this function should only be called on
5273  *	the master link and will return true if any of M/S links is
5274  *	online.
5275  *
5276  *	LOCKING:
5277  *	None.
5278  *
5279  *	RETURNS:
5280  *	True if the port online status is available and online.
5281  */
5282 bool ata_link_online(struct ata_link *link)
5283 {
5284 	struct ata_link *slave = link->ap->slave_link;
5285 
5286 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5287 
5288 	return ata_phys_link_online(link) ||
5289 		(slave && ata_phys_link_online(slave));
5290 }
5291 
5292 /**
5293  *	ata_link_offline - test whether the given link is offline
5294  *	@link: ATA link to test
5295  *
5296  *	Test whether @link is offline.  This is identical to
5297  *	ata_phys_link_offline() when there's no slave link.  When
5298  *	there's a slave link, this function should only be called on
5299  *	the master link and will return true if both M/S links are
5300  *	offline.
5301  *
5302  *	LOCKING:
5303  *	None.
5304  *
5305  *	RETURNS:
5306  *	True if the port offline status is available and offline.
5307  */
5308 bool ata_link_offline(struct ata_link *link)
5309 {
5310 	struct ata_link *slave = link->ap->slave_link;
5311 
5312 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5313 
5314 	return ata_phys_link_offline(link) &&
5315 		(!slave || ata_phys_link_offline(slave));
5316 }
5317 
5318 #ifdef CONFIG_PM
5319 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5320 			       unsigned int action, unsigned int ehi_flags,
5321 			       int wait)
5322 {
5323 	unsigned long flags;
5324 	int i, rc;
5325 
5326 	for (i = 0; i < host->n_ports; i++) {
5327 		struct ata_port *ap = host->ports[i];
5328 		struct ata_link *link;
5329 
5330 		/* Previous resume operation might still be in
5331 		 * progress.  Wait for PM_PENDING to clear.
5332 		 */
5333 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5334 			ata_port_wait_eh(ap);
5335 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5336 		}
5337 
5338 		/* request PM ops to EH */
5339 		spin_lock_irqsave(ap->lock, flags);
5340 
5341 		ap->pm_mesg = mesg;
5342 		if (wait) {
5343 			rc = 0;
5344 			ap->pm_result = &rc;
5345 		}
5346 
5347 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5348 		ata_for_each_link(link, ap, HOST_FIRST) {
5349 			link->eh_info.action |= action;
5350 			link->eh_info.flags |= ehi_flags;
5351 		}
5352 
5353 		ata_port_schedule_eh(ap);
5354 
5355 		spin_unlock_irqrestore(ap->lock, flags);
5356 
5357 		/* wait and check result */
5358 		if (wait) {
5359 			ata_port_wait_eh(ap);
5360 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5361 			if (rc)
5362 				return rc;
5363 		}
5364 	}
5365 
5366 	return 0;
5367 }
5368 
5369 /**
5370  *	ata_host_suspend - suspend host
5371  *	@host: host to suspend
5372  *	@mesg: PM message
5373  *
5374  *	Suspend @host.  Actual operation is performed by EH.  This
5375  *	function requests EH to perform PM operations and waits for EH
5376  *	to finish.
5377  *
5378  *	LOCKING:
5379  *	Kernel thread context (may sleep).
5380  *
5381  *	RETURNS:
5382  *	0 on success, -errno on failure.
5383  */
5384 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5385 {
5386 	int rc;
5387 
5388 	/*
5389 	 * disable link pm on all ports before requesting
5390 	 * any pm activity
5391 	 */
5392 	ata_lpm_enable(host);
5393 
5394 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5395 	if (rc == 0)
5396 		host->dev->power.power_state = mesg;
5397 	return rc;
5398 }
5399 
5400 /**
5401  *	ata_host_resume - resume host
5402  *	@host: host to resume
5403  *
5404  *	Resume @host.  Actual operation is performed by EH.  This
5405  *	function requests EH to perform PM operations and returns.
5406  *	Note that all resume operations are performed parallely.
5407  *
5408  *	LOCKING:
5409  *	Kernel thread context (may sleep).
5410  */
5411 void ata_host_resume(struct ata_host *host)
5412 {
5413 	ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5414 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5415 	host->dev->power.power_state = PMSG_ON;
5416 
5417 	/* reenable link pm */
5418 	ata_lpm_disable(host);
5419 }
5420 #endif
5421 
5422 /**
5423  *	ata_port_start - Set port up for dma.
5424  *	@ap: Port to initialize
5425  *
5426  *	Called just after data structures for each port are
5427  *	initialized.  Allocates space for PRD table.
5428  *
5429  *	May be used as the port_start() entry in ata_port_operations.
5430  *
5431  *	LOCKING:
5432  *	Inherited from caller.
5433  */
5434 int ata_port_start(struct ata_port *ap)
5435 {
5436 	struct device *dev = ap->dev;
5437 
5438 	ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5439 				      GFP_KERNEL);
5440 	if (!ap->prd)
5441 		return -ENOMEM;
5442 
5443 	return 0;
5444 }
5445 
5446 /**
5447  *	ata_dev_init - Initialize an ata_device structure
5448  *	@dev: Device structure to initialize
5449  *
5450  *	Initialize @dev in preparation for probing.
5451  *
5452  *	LOCKING:
5453  *	Inherited from caller.
5454  */
5455 void ata_dev_init(struct ata_device *dev)
5456 {
5457 	struct ata_link *link = ata_dev_phys_link(dev);
5458 	struct ata_port *ap = link->ap;
5459 	unsigned long flags;
5460 
5461 	/* SATA spd limit is bound to the attached device, reset together */
5462 	link->sata_spd_limit = link->hw_sata_spd_limit;
5463 	link->sata_spd = 0;
5464 
5465 	/* High bits of dev->flags are used to record warm plug
5466 	 * requests which occur asynchronously.  Synchronize using
5467 	 * host lock.
5468 	 */
5469 	spin_lock_irqsave(ap->lock, flags);
5470 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5471 	dev->horkage = 0;
5472 	spin_unlock_irqrestore(ap->lock, flags);
5473 
5474 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5475 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5476 	dev->pio_mask = UINT_MAX;
5477 	dev->mwdma_mask = UINT_MAX;
5478 	dev->udma_mask = UINT_MAX;
5479 }
5480 
5481 /**
5482  *	ata_link_init - Initialize an ata_link structure
5483  *	@ap: ATA port link is attached to
5484  *	@link: Link structure to initialize
5485  *	@pmp: Port multiplier port number
5486  *
5487  *	Initialize @link.
5488  *
5489  *	LOCKING:
5490  *	Kernel thread context (may sleep)
5491  */
5492 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5493 {
5494 	int i;
5495 
5496 	/* clear everything except for devices */
5497 	memset(link, 0, offsetof(struct ata_link, device[0]));
5498 
5499 	link->ap = ap;
5500 	link->pmp = pmp;
5501 	link->active_tag = ATA_TAG_POISON;
5502 	link->hw_sata_spd_limit = UINT_MAX;
5503 
5504 	/* can't use iterator, ap isn't initialized yet */
5505 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5506 		struct ata_device *dev = &link->device[i];
5507 
5508 		dev->link = link;
5509 		dev->devno = dev - link->device;
5510 		ata_dev_init(dev);
5511 	}
5512 }
5513 
5514 /**
5515  *	sata_link_init_spd - Initialize link->sata_spd_limit
5516  *	@link: Link to configure sata_spd_limit for
5517  *
5518  *	Initialize @link->[hw_]sata_spd_limit to the currently
5519  *	configured value.
5520  *
5521  *	LOCKING:
5522  *	Kernel thread context (may sleep).
5523  *
5524  *	RETURNS:
5525  *	0 on success, -errno on failure.
5526  */
5527 int sata_link_init_spd(struct ata_link *link)
5528 {
5529 	u8 spd;
5530 	int rc;
5531 
5532 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5533 	if (rc)
5534 		return rc;
5535 
5536 	spd = (link->saved_scontrol >> 4) & 0xf;
5537 	if (spd)
5538 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5539 
5540 	ata_force_link_limits(link);
5541 
5542 	link->sata_spd_limit = link->hw_sata_spd_limit;
5543 
5544 	return 0;
5545 }
5546 
5547 /**
5548  *	ata_port_alloc - allocate and initialize basic ATA port resources
5549  *	@host: ATA host this allocated port belongs to
5550  *
5551  *	Allocate and initialize basic ATA port resources.
5552  *
5553  *	RETURNS:
5554  *	Allocate ATA port on success, NULL on failure.
5555  *
5556  *	LOCKING:
5557  *	Inherited from calling layer (may sleep).
5558  */
5559 struct ata_port *ata_port_alloc(struct ata_host *host)
5560 {
5561 	struct ata_port *ap;
5562 
5563 	DPRINTK("ENTER\n");
5564 
5565 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5566 	if (!ap)
5567 		return NULL;
5568 
5569 	ap->pflags |= ATA_PFLAG_INITIALIZING;
5570 	ap->lock = &host->lock;
5571 	ap->flags = ATA_FLAG_DISABLED;
5572 	ap->print_id = -1;
5573 	ap->ctl = ATA_DEVCTL_OBS;
5574 	ap->host = host;
5575 	ap->dev = host->dev;
5576 	ap->last_ctl = 0xFF;
5577 
5578 #if defined(ATA_VERBOSE_DEBUG)
5579 	/* turn on all debugging levels */
5580 	ap->msg_enable = 0x00FF;
5581 #elif defined(ATA_DEBUG)
5582 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5583 #else
5584 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5585 #endif
5586 
5587 #ifdef CONFIG_ATA_SFF
5588 	INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5589 #else
5590 	INIT_DELAYED_WORK(&ap->port_task, NULL);
5591 #endif
5592 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5593 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5594 	INIT_LIST_HEAD(&ap->eh_done_q);
5595 	init_waitqueue_head(&ap->eh_wait_q);
5596 	init_completion(&ap->park_req_pending);
5597 	init_timer_deferrable(&ap->fastdrain_timer);
5598 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5599 	ap->fastdrain_timer.data = (unsigned long)ap;
5600 
5601 	ap->cbl = ATA_CBL_NONE;
5602 
5603 	ata_link_init(ap, &ap->link, 0);
5604 
5605 #ifdef ATA_IRQ_TRAP
5606 	ap->stats.unhandled_irq = 1;
5607 	ap->stats.idle_irq = 1;
5608 #endif
5609 	return ap;
5610 }
5611 
5612 static void ata_host_release(struct device *gendev, void *res)
5613 {
5614 	struct ata_host *host = dev_get_drvdata(gendev);
5615 	int i;
5616 
5617 	for (i = 0; i < host->n_ports; i++) {
5618 		struct ata_port *ap = host->ports[i];
5619 
5620 		if (!ap)
5621 			continue;
5622 
5623 		if (ap->scsi_host)
5624 			scsi_host_put(ap->scsi_host);
5625 
5626 		kfree(ap->pmp_link);
5627 		kfree(ap->slave_link);
5628 		kfree(ap);
5629 		host->ports[i] = NULL;
5630 	}
5631 
5632 	dev_set_drvdata(gendev, NULL);
5633 }
5634 
5635 /**
5636  *	ata_host_alloc - allocate and init basic ATA host resources
5637  *	@dev: generic device this host is associated with
5638  *	@max_ports: maximum number of ATA ports associated with this host
5639  *
5640  *	Allocate and initialize basic ATA host resources.  LLD calls
5641  *	this function to allocate a host, initializes it fully and
5642  *	attaches it using ata_host_register().
5643  *
5644  *	@max_ports ports are allocated and host->n_ports is
5645  *	initialized to @max_ports.  The caller is allowed to decrease
5646  *	host->n_ports before calling ata_host_register().  The unused
5647  *	ports will be automatically freed on registration.
5648  *
5649  *	RETURNS:
5650  *	Allocate ATA host on success, NULL on failure.
5651  *
5652  *	LOCKING:
5653  *	Inherited from calling layer (may sleep).
5654  */
5655 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5656 {
5657 	struct ata_host *host;
5658 	size_t sz;
5659 	int i;
5660 
5661 	DPRINTK("ENTER\n");
5662 
5663 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5664 		return NULL;
5665 
5666 	/* alloc a container for our list of ATA ports (buses) */
5667 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5668 	/* alloc a container for our list of ATA ports (buses) */
5669 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5670 	if (!host)
5671 		goto err_out;
5672 
5673 	devres_add(dev, host);
5674 	dev_set_drvdata(dev, host);
5675 
5676 	spin_lock_init(&host->lock);
5677 	host->dev = dev;
5678 	host->n_ports = max_ports;
5679 
5680 	/* allocate ports bound to this host */
5681 	for (i = 0; i < max_ports; i++) {
5682 		struct ata_port *ap;
5683 
5684 		ap = ata_port_alloc(host);
5685 		if (!ap)
5686 			goto err_out;
5687 
5688 		ap->port_no = i;
5689 		host->ports[i] = ap;
5690 	}
5691 
5692 	devres_remove_group(dev, NULL);
5693 	return host;
5694 
5695  err_out:
5696 	devres_release_group(dev, NULL);
5697 	return NULL;
5698 }
5699 
5700 /**
5701  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5702  *	@dev: generic device this host is associated with
5703  *	@ppi: array of ATA port_info to initialize host with
5704  *	@n_ports: number of ATA ports attached to this host
5705  *
5706  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5707  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5708  *	last entry will be used for the remaining ports.
5709  *
5710  *	RETURNS:
5711  *	Allocate ATA host on success, NULL on failure.
5712  *
5713  *	LOCKING:
5714  *	Inherited from calling layer (may sleep).
5715  */
5716 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5717 				      const struct ata_port_info * const * ppi,
5718 				      int n_ports)
5719 {
5720 	const struct ata_port_info *pi;
5721 	struct ata_host *host;
5722 	int i, j;
5723 
5724 	host = ata_host_alloc(dev, n_ports);
5725 	if (!host)
5726 		return NULL;
5727 
5728 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5729 		struct ata_port *ap = host->ports[i];
5730 
5731 		if (ppi[j])
5732 			pi = ppi[j++];
5733 
5734 		ap->pio_mask = pi->pio_mask;
5735 		ap->mwdma_mask = pi->mwdma_mask;
5736 		ap->udma_mask = pi->udma_mask;
5737 		ap->flags |= pi->flags;
5738 		ap->link.flags |= pi->link_flags;
5739 		ap->ops = pi->port_ops;
5740 
5741 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5742 			host->ops = pi->port_ops;
5743 	}
5744 
5745 	return host;
5746 }
5747 
5748 /**
5749  *	ata_slave_link_init - initialize slave link
5750  *	@ap: port to initialize slave link for
5751  *
5752  *	Create and initialize slave link for @ap.  This enables slave
5753  *	link handling on the port.
5754  *
5755  *	In libata, a port contains links and a link contains devices.
5756  *	There is single host link but if a PMP is attached to it,
5757  *	there can be multiple fan-out links.  On SATA, there's usually
5758  *	a single device connected to a link but PATA and SATA
5759  *	controllers emulating TF based interface can have two - master
5760  *	and slave.
5761  *
5762  *	However, there are a few controllers which don't fit into this
5763  *	abstraction too well - SATA controllers which emulate TF
5764  *	interface with both master and slave devices but also have
5765  *	separate SCR register sets for each device.  These controllers
5766  *	need separate links for physical link handling
5767  *	(e.g. onlineness, link speed) but should be treated like a
5768  *	traditional M/S controller for everything else (e.g. command
5769  *	issue, softreset).
5770  *
5771  *	slave_link is libata's way of handling this class of
5772  *	controllers without impacting core layer too much.  For
5773  *	anything other than physical link handling, the default host
5774  *	link is used for both master and slave.  For physical link
5775  *	handling, separate @ap->slave_link is used.  All dirty details
5776  *	are implemented inside libata core layer.  From LLD's POV, the
5777  *	only difference is that prereset, hardreset and postreset are
5778  *	called once more for the slave link, so the reset sequence
5779  *	looks like the following.
5780  *
5781  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5782  *	softreset(M) -> postreset(M) -> postreset(S)
5783  *
5784  *	Note that softreset is called only for the master.  Softreset
5785  *	resets both M/S by definition, so SRST on master should handle
5786  *	both (the standard method will work just fine).
5787  *
5788  *	LOCKING:
5789  *	Should be called before host is registered.
5790  *
5791  *	RETURNS:
5792  *	0 on success, -errno on failure.
5793  */
5794 int ata_slave_link_init(struct ata_port *ap)
5795 {
5796 	struct ata_link *link;
5797 
5798 	WARN_ON(ap->slave_link);
5799 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5800 
5801 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5802 	if (!link)
5803 		return -ENOMEM;
5804 
5805 	ata_link_init(ap, link, 1);
5806 	ap->slave_link = link;
5807 	return 0;
5808 }
5809 
5810 static void ata_host_stop(struct device *gendev, void *res)
5811 {
5812 	struct ata_host *host = dev_get_drvdata(gendev);
5813 	int i;
5814 
5815 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5816 
5817 	for (i = 0; i < host->n_ports; i++) {
5818 		struct ata_port *ap = host->ports[i];
5819 
5820 		if (ap->ops->port_stop)
5821 			ap->ops->port_stop(ap);
5822 	}
5823 
5824 	if (host->ops->host_stop)
5825 		host->ops->host_stop(host);
5826 }
5827 
5828 /**
5829  *	ata_finalize_port_ops - finalize ata_port_operations
5830  *	@ops: ata_port_operations to finalize
5831  *
5832  *	An ata_port_operations can inherit from another ops and that
5833  *	ops can again inherit from another.  This can go on as many
5834  *	times as necessary as long as there is no loop in the
5835  *	inheritance chain.
5836  *
5837  *	Ops tables are finalized when the host is started.  NULL or
5838  *	unspecified entries are inherited from the closet ancestor
5839  *	which has the method and the entry is populated with it.
5840  *	After finalization, the ops table directly points to all the
5841  *	methods and ->inherits is no longer necessary and cleared.
5842  *
5843  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5844  *
5845  *	LOCKING:
5846  *	None.
5847  */
5848 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5849 {
5850 	static DEFINE_SPINLOCK(lock);
5851 	const struct ata_port_operations *cur;
5852 	void **begin = (void **)ops;
5853 	void **end = (void **)&ops->inherits;
5854 	void **pp;
5855 
5856 	if (!ops || !ops->inherits)
5857 		return;
5858 
5859 	spin_lock(&lock);
5860 
5861 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5862 		void **inherit = (void **)cur;
5863 
5864 		for (pp = begin; pp < end; pp++, inherit++)
5865 			if (!*pp)
5866 				*pp = *inherit;
5867 	}
5868 
5869 	for (pp = begin; pp < end; pp++)
5870 		if (IS_ERR(*pp))
5871 			*pp = NULL;
5872 
5873 	ops->inherits = NULL;
5874 
5875 	spin_unlock(&lock);
5876 }
5877 
5878 /**
5879  *	ata_host_start - start and freeze ports of an ATA host
5880  *	@host: ATA host to start ports for
5881  *
5882  *	Start and then freeze ports of @host.  Started status is
5883  *	recorded in host->flags, so this function can be called
5884  *	multiple times.  Ports are guaranteed to get started only
5885  *	once.  If host->ops isn't initialized yet, its set to the
5886  *	first non-dummy port ops.
5887  *
5888  *	LOCKING:
5889  *	Inherited from calling layer (may sleep).
5890  *
5891  *	RETURNS:
5892  *	0 if all ports are started successfully, -errno otherwise.
5893  */
5894 int ata_host_start(struct ata_host *host)
5895 {
5896 	int have_stop = 0;
5897 	void *start_dr = NULL;
5898 	int i, rc;
5899 
5900 	if (host->flags & ATA_HOST_STARTED)
5901 		return 0;
5902 
5903 	ata_finalize_port_ops(host->ops);
5904 
5905 	for (i = 0; i < host->n_ports; i++) {
5906 		struct ata_port *ap = host->ports[i];
5907 
5908 		ata_finalize_port_ops(ap->ops);
5909 
5910 		if (!host->ops && !ata_port_is_dummy(ap))
5911 			host->ops = ap->ops;
5912 
5913 		if (ap->ops->port_stop)
5914 			have_stop = 1;
5915 	}
5916 
5917 	if (host->ops->host_stop)
5918 		have_stop = 1;
5919 
5920 	if (have_stop) {
5921 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5922 		if (!start_dr)
5923 			return -ENOMEM;
5924 	}
5925 
5926 	for (i = 0; i < host->n_ports; i++) {
5927 		struct ata_port *ap = host->ports[i];
5928 
5929 		if (ap->ops->port_start) {
5930 			rc = ap->ops->port_start(ap);
5931 			if (rc) {
5932 				if (rc != -ENODEV)
5933 					dev_printk(KERN_ERR, host->dev,
5934 						"failed to start port %d "
5935 						"(errno=%d)\n", i, rc);
5936 				goto err_out;
5937 			}
5938 		}
5939 		ata_eh_freeze_port(ap);
5940 	}
5941 
5942 	if (start_dr)
5943 		devres_add(host->dev, start_dr);
5944 	host->flags |= ATA_HOST_STARTED;
5945 	return 0;
5946 
5947  err_out:
5948 	while (--i >= 0) {
5949 		struct ata_port *ap = host->ports[i];
5950 
5951 		if (ap->ops->port_stop)
5952 			ap->ops->port_stop(ap);
5953 	}
5954 	devres_free(start_dr);
5955 	return rc;
5956 }
5957 
5958 /**
5959  *	ata_sas_host_init - Initialize a host struct
5960  *	@host:	host to initialize
5961  *	@dev:	device host is attached to
5962  *	@flags:	host flags
5963  *	@ops:	port_ops
5964  *
5965  *	LOCKING:
5966  *	PCI/etc. bus probe sem.
5967  *
5968  */
5969 /* KILLME - the only user left is ipr */
5970 void ata_host_init(struct ata_host *host, struct device *dev,
5971 		   unsigned long flags, struct ata_port_operations *ops)
5972 {
5973 	spin_lock_init(&host->lock);
5974 	host->dev = dev;
5975 	host->flags = flags;
5976 	host->ops = ops;
5977 }
5978 
5979 
5980 static void async_port_probe(void *data, async_cookie_t cookie)
5981 {
5982 	int rc;
5983 	struct ata_port *ap = data;
5984 
5985 	/*
5986 	 * If we're not allowed to scan this host in parallel,
5987 	 * we need to wait until all previous scans have completed
5988 	 * before going further.
5989 	 * Jeff Garzik says this is only within a controller, so we
5990 	 * don't need to wait for port 0, only for later ports.
5991 	 */
5992 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5993 		async_synchronize_cookie(cookie);
5994 
5995 	/* probe */
5996 	if (ap->ops->error_handler) {
5997 		struct ata_eh_info *ehi = &ap->link.eh_info;
5998 		unsigned long flags;
5999 
6000 		ata_port_probe(ap);
6001 
6002 		/* kick EH for boot probing */
6003 		spin_lock_irqsave(ap->lock, flags);
6004 
6005 		ehi->probe_mask |= ATA_ALL_DEVICES;
6006 		ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6007 		ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6008 
6009 		ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6010 		ap->pflags |= ATA_PFLAG_LOADING;
6011 		ata_port_schedule_eh(ap);
6012 
6013 		spin_unlock_irqrestore(ap->lock, flags);
6014 
6015 		/* wait for EH to finish */
6016 		ata_port_wait_eh(ap);
6017 	} else {
6018 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6019 		rc = ata_bus_probe(ap);
6020 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6021 
6022 		if (rc) {
6023 			/* FIXME: do something useful here?
6024 			 * Current libata behavior will
6025 			 * tear down everything when
6026 			 * the module is removed
6027 			 * or the h/w is unplugged.
6028 			 */
6029 		}
6030 	}
6031 
6032 	/* in order to keep device order, we need to synchronize at this point */
6033 	async_synchronize_cookie(cookie);
6034 
6035 	ata_scsi_scan_host(ap, 1);
6036 
6037 }
6038 /**
6039  *	ata_host_register - register initialized ATA host
6040  *	@host: ATA host to register
6041  *	@sht: template for SCSI host
6042  *
6043  *	Register initialized ATA host.  @host is allocated using
6044  *	ata_host_alloc() and fully initialized by LLD.  This function
6045  *	starts ports, registers @host with ATA and SCSI layers and
6046  *	probe registered devices.
6047  *
6048  *	LOCKING:
6049  *	Inherited from calling layer (may sleep).
6050  *
6051  *	RETURNS:
6052  *	0 on success, -errno otherwise.
6053  */
6054 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6055 {
6056 	int i, rc;
6057 
6058 	/* host must have been started */
6059 	if (!(host->flags & ATA_HOST_STARTED)) {
6060 		dev_printk(KERN_ERR, host->dev,
6061 			   "BUG: trying to register unstarted host\n");
6062 		WARN_ON(1);
6063 		return -EINVAL;
6064 	}
6065 
6066 	/* Blow away unused ports.  This happens when LLD can't
6067 	 * determine the exact number of ports to allocate at
6068 	 * allocation time.
6069 	 */
6070 	for (i = host->n_ports; host->ports[i]; i++)
6071 		kfree(host->ports[i]);
6072 
6073 	/* give ports names and add SCSI hosts */
6074 	for (i = 0; i < host->n_ports; i++)
6075 		host->ports[i]->print_id = ata_print_id++;
6076 
6077 	rc = ata_scsi_add_hosts(host, sht);
6078 	if (rc)
6079 		return rc;
6080 
6081 	/* associate with ACPI nodes */
6082 	ata_acpi_associate(host);
6083 
6084 	/* set cable, sata_spd_limit and report */
6085 	for (i = 0; i < host->n_ports; i++) {
6086 		struct ata_port *ap = host->ports[i];
6087 		unsigned long xfer_mask;
6088 
6089 		/* set SATA cable type if still unset */
6090 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6091 			ap->cbl = ATA_CBL_SATA;
6092 
6093 		/* init sata_spd_limit to the current value */
6094 		sata_link_init_spd(&ap->link);
6095 		if (ap->slave_link)
6096 			sata_link_init_spd(ap->slave_link);
6097 
6098 		/* print per-port info to dmesg */
6099 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6100 					      ap->udma_mask);
6101 
6102 		if (!ata_port_is_dummy(ap)) {
6103 			ata_port_printk(ap, KERN_INFO,
6104 					"%cATA max %s %s\n",
6105 					(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6106 					ata_mode_string(xfer_mask),
6107 					ap->link.eh_info.desc);
6108 			ata_ehi_clear_desc(&ap->link.eh_info);
6109 		} else
6110 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6111 	}
6112 
6113 	/* perform each probe asynchronously */
6114 	for (i = 0; i < host->n_ports; i++) {
6115 		struct ata_port *ap = host->ports[i];
6116 		async_schedule(async_port_probe, ap);
6117 	}
6118 
6119 	return 0;
6120 }
6121 
6122 /**
6123  *	ata_host_activate - start host, request IRQ and register it
6124  *	@host: target ATA host
6125  *	@irq: IRQ to request
6126  *	@irq_handler: irq_handler used when requesting IRQ
6127  *	@irq_flags: irq_flags used when requesting IRQ
6128  *	@sht: scsi_host_template to use when registering the host
6129  *
6130  *	After allocating an ATA host and initializing it, most libata
6131  *	LLDs perform three steps to activate the host - start host,
6132  *	request IRQ and register it.  This helper takes necessasry
6133  *	arguments and performs the three steps in one go.
6134  *
6135  *	An invalid IRQ skips the IRQ registration and expects the host to
6136  *	have set polling mode on the port. In this case, @irq_handler
6137  *	should be NULL.
6138  *
6139  *	LOCKING:
6140  *	Inherited from calling layer (may sleep).
6141  *
6142  *	RETURNS:
6143  *	0 on success, -errno otherwise.
6144  */
6145 int ata_host_activate(struct ata_host *host, int irq,
6146 		      irq_handler_t irq_handler, unsigned long irq_flags,
6147 		      struct scsi_host_template *sht)
6148 {
6149 	int i, rc;
6150 
6151 	rc = ata_host_start(host);
6152 	if (rc)
6153 		return rc;
6154 
6155 	/* Special case for polling mode */
6156 	if (!irq) {
6157 		WARN_ON(irq_handler);
6158 		return ata_host_register(host, sht);
6159 	}
6160 
6161 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6162 			      dev_driver_string(host->dev), host);
6163 	if (rc)
6164 		return rc;
6165 
6166 	for (i = 0; i < host->n_ports; i++)
6167 		ata_port_desc(host->ports[i], "irq %d", irq);
6168 
6169 	rc = ata_host_register(host, sht);
6170 	/* if failed, just free the IRQ and leave ports alone */
6171 	if (rc)
6172 		devm_free_irq(host->dev, irq, host);
6173 
6174 	return rc;
6175 }
6176 
6177 /**
6178  *	ata_port_detach - Detach ATA port in prepration of device removal
6179  *	@ap: ATA port to be detached
6180  *
6181  *	Detach all ATA devices and the associated SCSI devices of @ap;
6182  *	then, remove the associated SCSI host.  @ap is guaranteed to
6183  *	be quiescent on return from this function.
6184  *
6185  *	LOCKING:
6186  *	Kernel thread context (may sleep).
6187  */
6188 static void ata_port_detach(struct ata_port *ap)
6189 {
6190 	unsigned long flags;
6191 
6192 	if (!ap->ops->error_handler)
6193 		goto skip_eh;
6194 
6195 	/* tell EH we're leaving & flush EH */
6196 	spin_lock_irqsave(ap->lock, flags);
6197 	ap->pflags |= ATA_PFLAG_UNLOADING;
6198 	ata_port_schedule_eh(ap);
6199 	spin_unlock_irqrestore(ap->lock, flags);
6200 
6201 	/* wait till EH commits suicide */
6202 	ata_port_wait_eh(ap);
6203 
6204 	/* it better be dead now */
6205 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6206 
6207 	cancel_rearming_delayed_work(&ap->hotplug_task);
6208 
6209  skip_eh:
6210 	/* remove the associated SCSI host */
6211 	scsi_remove_host(ap->scsi_host);
6212 }
6213 
6214 /**
6215  *	ata_host_detach - Detach all ports of an ATA host
6216  *	@host: Host to detach
6217  *
6218  *	Detach all ports of @host.
6219  *
6220  *	LOCKING:
6221  *	Kernel thread context (may sleep).
6222  */
6223 void ata_host_detach(struct ata_host *host)
6224 {
6225 	int i;
6226 
6227 	for (i = 0; i < host->n_ports; i++)
6228 		ata_port_detach(host->ports[i]);
6229 
6230 	/* the host is dead now, dissociate ACPI */
6231 	ata_acpi_dissociate(host);
6232 }
6233 
6234 #ifdef CONFIG_PCI
6235 
6236 /**
6237  *	ata_pci_remove_one - PCI layer callback for device removal
6238  *	@pdev: PCI device that was removed
6239  *
6240  *	PCI layer indicates to libata via this hook that hot-unplug or
6241  *	module unload event has occurred.  Detach all ports.  Resource
6242  *	release is handled via devres.
6243  *
6244  *	LOCKING:
6245  *	Inherited from PCI layer (may sleep).
6246  */
6247 void ata_pci_remove_one(struct pci_dev *pdev)
6248 {
6249 	struct device *dev = &pdev->dev;
6250 	struct ata_host *host = dev_get_drvdata(dev);
6251 
6252 	ata_host_detach(host);
6253 }
6254 
6255 /* move to PCI subsystem */
6256 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6257 {
6258 	unsigned long tmp = 0;
6259 
6260 	switch (bits->width) {
6261 	case 1: {
6262 		u8 tmp8 = 0;
6263 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6264 		tmp = tmp8;
6265 		break;
6266 	}
6267 	case 2: {
6268 		u16 tmp16 = 0;
6269 		pci_read_config_word(pdev, bits->reg, &tmp16);
6270 		tmp = tmp16;
6271 		break;
6272 	}
6273 	case 4: {
6274 		u32 tmp32 = 0;
6275 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6276 		tmp = tmp32;
6277 		break;
6278 	}
6279 
6280 	default:
6281 		return -EINVAL;
6282 	}
6283 
6284 	tmp &= bits->mask;
6285 
6286 	return (tmp == bits->val) ? 1 : 0;
6287 }
6288 
6289 #ifdef CONFIG_PM
6290 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6291 {
6292 	pci_save_state(pdev);
6293 	pci_disable_device(pdev);
6294 
6295 	if (mesg.event & PM_EVENT_SLEEP)
6296 		pci_set_power_state(pdev, PCI_D3hot);
6297 }
6298 
6299 int ata_pci_device_do_resume(struct pci_dev *pdev)
6300 {
6301 	int rc;
6302 
6303 	pci_set_power_state(pdev, PCI_D0);
6304 	pci_restore_state(pdev);
6305 
6306 	rc = pcim_enable_device(pdev);
6307 	if (rc) {
6308 		dev_printk(KERN_ERR, &pdev->dev,
6309 			   "failed to enable device after resume (%d)\n", rc);
6310 		return rc;
6311 	}
6312 
6313 	pci_set_master(pdev);
6314 	return 0;
6315 }
6316 
6317 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6318 {
6319 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6320 	int rc = 0;
6321 
6322 	rc = ata_host_suspend(host, mesg);
6323 	if (rc)
6324 		return rc;
6325 
6326 	ata_pci_device_do_suspend(pdev, mesg);
6327 
6328 	return 0;
6329 }
6330 
6331 int ata_pci_device_resume(struct pci_dev *pdev)
6332 {
6333 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6334 	int rc;
6335 
6336 	rc = ata_pci_device_do_resume(pdev);
6337 	if (rc == 0)
6338 		ata_host_resume(host);
6339 	return rc;
6340 }
6341 #endif /* CONFIG_PM */
6342 
6343 #endif /* CONFIG_PCI */
6344 
6345 static int __init ata_parse_force_one(char **cur,
6346 				      struct ata_force_ent *force_ent,
6347 				      const char **reason)
6348 {
6349 	/* FIXME: Currently, there's no way to tag init const data and
6350 	 * using __initdata causes build failure on some versions of
6351 	 * gcc.  Once __initdataconst is implemented, add const to the
6352 	 * following structure.
6353 	 */
6354 	static struct ata_force_param force_tbl[] __initdata = {
6355 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6356 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6357 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6358 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6359 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6360 		{ "sata",	.cbl		= ATA_CBL_SATA },
6361 		{ "1.5Gbps",	.spd_limit	= 1 },
6362 		{ "3.0Gbps",	.spd_limit	= 2 },
6363 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6364 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6365 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6366 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6367 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6368 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6369 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6370 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6371 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6372 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6373 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6374 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6375 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6376 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6377 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6378 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6379 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6380 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6381 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6382 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6383 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6384 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6385 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6386 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6387 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6388 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6389 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6390 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6391 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6392 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6393 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6394 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6395 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6396 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6397 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6398 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6399 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6400 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6401 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6402 	};
6403 	char *start = *cur, *p = *cur;
6404 	char *id, *val, *endp;
6405 	const struct ata_force_param *match_fp = NULL;
6406 	int nr_matches = 0, i;
6407 
6408 	/* find where this param ends and update *cur */
6409 	while (*p != '\0' && *p != ',')
6410 		p++;
6411 
6412 	if (*p == '\0')
6413 		*cur = p;
6414 	else
6415 		*cur = p + 1;
6416 
6417 	*p = '\0';
6418 
6419 	/* parse */
6420 	p = strchr(start, ':');
6421 	if (!p) {
6422 		val = strstrip(start);
6423 		goto parse_val;
6424 	}
6425 	*p = '\0';
6426 
6427 	id = strstrip(start);
6428 	val = strstrip(p + 1);
6429 
6430 	/* parse id */
6431 	p = strchr(id, '.');
6432 	if (p) {
6433 		*p++ = '\0';
6434 		force_ent->device = simple_strtoul(p, &endp, 10);
6435 		if (p == endp || *endp != '\0') {
6436 			*reason = "invalid device";
6437 			return -EINVAL;
6438 		}
6439 	}
6440 
6441 	force_ent->port = simple_strtoul(id, &endp, 10);
6442 	if (p == endp || *endp != '\0') {
6443 		*reason = "invalid port/link";
6444 		return -EINVAL;
6445 	}
6446 
6447  parse_val:
6448 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6449 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6450 		const struct ata_force_param *fp = &force_tbl[i];
6451 
6452 		if (strncasecmp(val, fp->name, strlen(val)))
6453 			continue;
6454 
6455 		nr_matches++;
6456 		match_fp = fp;
6457 
6458 		if (strcasecmp(val, fp->name) == 0) {
6459 			nr_matches = 1;
6460 			break;
6461 		}
6462 	}
6463 
6464 	if (!nr_matches) {
6465 		*reason = "unknown value";
6466 		return -EINVAL;
6467 	}
6468 	if (nr_matches > 1) {
6469 		*reason = "ambigious value";
6470 		return -EINVAL;
6471 	}
6472 
6473 	force_ent->param = *match_fp;
6474 
6475 	return 0;
6476 }
6477 
6478 static void __init ata_parse_force_param(void)
6479 {
6480 	int idx = 0, size = 1;
6481 	int last_port = -1, last_device = -1;
6482 	char *p, *cur, *next;
6483 
6484 	/* calculate maximum number of params and allocate force_tbl */
6485 	for (p = ata_force_param_buf; *p; p++)
6486 		if (*p == ',')
6487 			size++;
6488 
6489 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6490 	if (!ata_force_tbl) {
6491 		printk(KERN_WARNING "ata: failed to extend force table, "
6492 		       "libata.force ignored\n");
6493 		return;
6494 	}
6495 
6496 	/* parse and populate the table */
6497 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6498 		const char *reason = "";
6499 		struct ata_force_ent te = { .port = -1, .device = -1 };
6500 
6501 		next = cur;
6502 		if (ata_parse_force_one(&next, &te, &reason)) {
6503 			printk(KERN_WARNING "ata: failed to parse force "
6504 			       "parameter \"%s\" (%s)\n",
6505 			       cur, reason);
6506 			continue;
6507 		}
6508 
6509 		if (te.port == -1) {
6510 			te.port = last_port;
6511 			te.device = last_device;
6512 		}
6513 
6514 		ata_force_tbl[idx++] = te;
6515 
6516 		last_port = te.port;
6517 		last_device = te.device;
6518 	}
6519 
6520 	ata_force_tbl_size = idx;
6521 }
6522 
6523 static int __init ata_init(void)
6524 {
6525 	ata_parse_force_param();
6526 
6527 	ata_wq = create_workqueue("ata");
6528 	if (!ata_wq)
6529 		goto free_force_tbl;
6530 
6531 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6532 	if (!ata_aux_wq)
6533 		goto free_wq;
6534 
6535 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6536 	return 0;
6537 
6538 free_wq:
6539 	destroy_workqueue(ata_wq);
6540 free_force_tbl:
6541 	kfree(ata_force_tbl);
6542 	return -ENOMEM;
6543 }
6544 
6545 static void __exit ata_exit(void)
6546 {
6547 	kfree(ata_force_tbl);
6548 	destroy_workqueue(ata_wq);
6549 	destroy_workqueue(ata_aux_wq);
6550 }
6551 
6552 subsys_initcall(ata_init);
6553 module_exit(ata_exit);
6554 
6555 static unsigned long ratelimit_time;
6556 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6557 
6558 int ata_ratelimit(void)
6559 {
6560 	int rc;
6561 	unsigned long flags;
6562 
6563 	spin_lock_irqsave(&ata_ratelimit_lock, flags);
6564 
6565 	if (time_after(jiffies, ratelimit_time)) {
6566 		rc = 1;
6567 		ratelimit_time = jiffies + (HZ/5);
6568 	} else
6569 		rc = 0;
6570 
6571 	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6572 
6573 	return rc;
6574 }
6575 
6576 /**
6577  *	ata_wait_register - wait until register value changes
6578  *	@reg: IO-mapped register
6579  *	@mask: Mask to apply to read register value
6580  *	@val: Wait condition
6581  *	@interval: polling interval in milliseconds
6582  *	@timeout: timeout in milliseconds
6583  *
6584  *	Waiting for some bits of register to change is a common
6585  *	operation for ATA controllers.  This function reads 32bit LE
6586  *	IO-mapped register @reg and tests for the following condition.
6587  *
6588  *	(*@reg & mask) != val
6589  *
6590  *	If the condition is met, it returns; otherwise, the process is
6591  *	repeated after @interval_msec until timeout.
6592  *
6593  *	LOCKING:
6594  *	Kernel thread context (may sleep)
6595  *
6596  *	RETURNS:
6597  *	The final register value.
6598  */
6599 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6600 		      unsigned long interval, unsigned long timeout)
6601 {
6602 	unsigned long deadline;
6603 	u32 tmp;
6604 
6605 	tmp = ioread32(reg);
6606 
6607 	/* Calculate timeout _after_ the first read to make sure
6608 	 * preceding writes reach the controller before starting to
6609 	 * eat away the timeout.
6610 	 */
6611 	deadline = ata_deadline(jiffies, timeout);
6612 
6613 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6614 		msleep(interval);
6615 		tmp = ioread32(reg);
6616 	}
6617 
6618 	return tmp;
6619 }
6620 
6621 /*
6622  * Dummy port_ops
6623  */
6624 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6625 {
6626 	return AC_ERR_SYSTEM;
6627 }
6628 
6629 static void ata_dummy_error_handler(struct ata_port *ap)
6630 {
6631 	/* truly dummy */
6632 }
6633 
6634 struct ata_port_operations ata_dummy_port_ops = {
6635 	.qc_prep		= ata_noop_qc_prep,
6636 	.qc_issue		= ata_dummy_qc_issue,
6637 	.error_handler		= ata_dummy_error_handler,
6638 };
6639 
6640 const struct ata_port_info ata_dummy_port_info = {
6641 	.port_ops		= &ata_dummy_port_ops,
6642 };
6643 
6644 /*
6645  * libata is essentially a library of internal helper functions for
6646  * low-level ATA host controller drivers.  As such, the API/ABI is
6647  * likely to change as new drivers are added and updated.
6648  * Do not depend on ABI/API stability.
6649  */
6650 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6651 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6652 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6653 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6654 EXPORT_SYMBOL_GPL(sata_port_ops);
6655 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6656 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6657 EXPORT_SYMBOL_GPL(ata_link_next);
6658 EXPORT_SYMBOL_GPL(ata_dev_next);
6659 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6660 EXPORT_SYMBOL_GPL(ata_host_init);
6661 EXPORT_SYMBOL_GPL(ata_host_alloc);
6662 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6663 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6664 EXPORT_SYMBOL_GPL(ata_host_start);
6665 EXPORT_SYMBOL_GPL(ata_host_register);
6666 EXPORT_SYMBOL_GPL(ata_host_activate);
6667 EXPORT_SYMBOL_GPL(ata_host_detach);
6668 EXPORT_SYMBOL_GPL(ata_sg_init);
6669 EXPORT_SYMBOL_GPL(ata_qc_complete);
6670 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6671 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6672 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6673 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6674 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6675 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6676 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6677 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6678 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6679 EXPORT_SYMBOL_GPL(ata_mode_string);
6680 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6681 EXPORT_SYMBOL_GPL(ata_port_start);
6682 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6683 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6684 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6685 EXPORT_SYMBOL_GPL(ata_port_probe);
6686 EXPORT_SYMBOL_GPL(ata_dev_disable);
6687 EXPORT_SYMBOL_GPL(sata_set_spd);
6688 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6689 EXPORT_SYMBOL_GPL(sata_link_debounce);
6690 EXPORT_SYMBOL_GPL(sata_link_resume);
6691 EXPORT_SYMBOL_GPL(ata_std_prereset);
6692 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6693 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6694 EXPORT_SYMBOL_GPL(ata_std_postreset);
6695 EXPORT_SYMBOL_GPL(ata_dev_classify);
6696 EXPORT_SYMBOL_GPL(ata_dev_pair);
6697 EXPORT_SYMBOL_GPL(ata_port_disable);
6698 EXPORT_SYMBOL_GPL(ata_ratelimit);
6699 EXPORT_SYMBOL_GPL(ata_wait_register);
6700 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6701 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6702 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6703 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6704 EXPORT_SYMBOL_GPL(sata_scr_valid);
6705 EXPORT_SYMBOL_GPL(sata_scr_read);
6706 EXPORT_SYMBOL_GPL(sata_scr_write);
6707 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6708 EXPORT_SYMBOL_GPL(ata_link_online);
6709 EXPORT_SYMBOL_GPL(ata_link_offline);
6710 #ifdef CONFIG_PM
6711 EXPORT_SYMBOL_GPL(ata_host_suspend);
6712 EXPORT_SYMBOL_GPL(ata_host_resume);
6713 #endif /* CONFIG_PM */
6714 EXPORT_SYMBOL_GPL(ata_id_string);
6715 EXPORT_SYMBOL_GPL(ata_id_c_string);
6716 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6717 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6718 
6719 EXPORT_SYMBOL_GPL(ata_pio_queue_task);
6720 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6721 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6722 EXPORT_SYMBOL_GPL(ata_timing_compute);
6723 EXPORT_SYMBOL_GPL(ata_timing_merge);
6724 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6725 
6726 #ifdef CONFIG_PCI
6727 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6728 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6729 #ifdef CONFIG_PM
6730 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6731 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6732 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6733 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6734 #endif /* CONFIG_PM */
6735 #endif /* CONFIG_PCI */
6736 
6737 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6738 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6739 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6740 EXPORT_SYMBOL_GPL(ata_port_desc);
6741 #ifdef CONFIG_PCI
6742 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6743 #endif /* CONFIG_PCI */
6744 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6745 EXPORT_SYMBOL_GPL(ata_link_abort);
6746 EXPORT_SYMBOL_GPL(ata_port_abort);
6747 EXPORT_SYMBOL_GPL(ata_port_freeze);
6748 EXPORT_SYMBOL_GPL(sata_async_notification);
6749 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6750 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6751 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6752 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6753 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6754 EXPORT_SYMBOL_GPL(ata_do_eh);
6755 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6756 
6757 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6758 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6759 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6760 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6761 EXPORT_SYMBOL_GPL(ata_cable_sata);
6762