1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Maintained by: Tejun Heo <tj@kernel.org> 6 * Please ALWAYS copy linux-ide@vger.kernel.org 7 * on emails. 8 * 9 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 10 * Copyright 2003-2004 Jeff Garzik 11 * 12 * libata documentation is available via 'make {ps|pdf}docs', 13 * as Documentation/driver-api/libata.rst 14 * 15 * Hardware documentation available from http://www.t13.org/ and 16 * http://www.sata-io.org/ 17 * 18 * Standards documents from: 19 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 20 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 21 * http://www.sata-io.org (SATA) 22 * http://www.compactflash.org (CF) 23 * http://www.qic.org (QIC157 - Tape and DSC) 24 * http://www.ce-ata.org (CE-ATA: not supported) 25 */ 26 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/pci.h> 30 #include <linux/init.h> 31 #include <linux/list.h> 32 #include <linux/mm.h> 33 #include <linux/spinlock.h> 34 #include <linux/blkdev.h> 35 #include <linux/delay.h> 36 #include <linux/timer.h> 37 #include <linux/time.h> 38 #include <linux/interrupt.h> 39 #include <linux/completion.h> 40 #include <linux/suspend.h> 41 #include <linux/workqueue.h> 42 #include <linux/scatterlist.h> 43 #include <linux/io.h> 44 #include <linux/async.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/libata.h> 62 63 #include "libata.h" 64 #include "libata-transport.h" 65 66 /* debounce timing parameters in msecs { interval, duration, timeout } */ 67 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 68 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 69 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 70 71 const struct ata_port_operations ata_base_port_ops = { 72 .prereset = ata_std_prereset, 73 .postreset = ata_std_postreset, 74 .error_handler = ata_std_error_handler, 75 .sched_eh = ata_std_sched_eh, 76 .end_eh = ata_std_end_eh, 77 }; 78 79 const struct ata_port_operations sata_port_ops = { 80 .inherits = &ata_base_port_ops, 81 82 .qc_defer = ata_std_qc_defer, 83 .hardreset = sata_std_hardreset, 84 }; 85 86 static unsigned int ata_dev_init_params(struct ata_device *dev, 87 u16 heads, u16 sectors); 88 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 89 static void ata_dev_xfermask(struct ata_device *dev); 90 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 91 92 atomic_t ata_print_id = ATOMIC_INIT(0); 93 94 struct ata_force_param { 95 const char *name; 96 unsigned int cbl; 97 int spd_limit; 98 unsigned long xfer_mask; 99 unsigned int horkage_on; 100 unsigned int horkage_off; 101 unsigned int lflags; 102 }; 103 104 struct ata_force_ent { 105 int port; 106 int device; 107 struct ata_force_param param; 108 }; 109 110 static struct ata_force_ent *ata_force_tbl; 111 static int ata_force_tbl_size; 112 113 static char ata_force_param_buf[PAGE_SIZE] __initdata; 114 /* param_buf is thrown away after initialization, disallow read */ 115 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 116 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 117 118 static int atapi_enabled = 1; 119 module_param(atapi_enabled, int, 0444); 120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 121 122 static int atapi_dmadir = 0; 123 module_param(atapi_dmadir, int, 0444); 124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 125 126 int atapi_passthru16 = 1; 127 module_param(atapi_passthru16, int, 0444); 128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 129 130 int libata_fua = 0; 131 module_param_named(fua, libata_fua, int, 0444); 132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 133 134 static int ata_ignore_hpa; 135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 137 138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 139 module_param_named(dma, libata_dma_mask, int, 0444); 140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 141 142 static int ata_probe_timeout; 143 module_param(ata_probe_timeout, int, 0444); 144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 145 146 int libata_noacpi = 0; 147 module_param_named(noacpi, libata_noacpi, int, 0444); 148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 149 150 int libata_allow_tpm = 0; 151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 153 154 static int atapi_an; 155 module_param(atapi_an, int, 0444); 156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 157 158 MODULE_AUTHOR("Jeff Garzik"); 159 MODULE_DESCRIPTION("Library module for ATA devices"); 160 MODULE_LICENSE("GPL"); 161 MODULE_VERSION(DRV_VERSION); 162 163 164 static bool ata_sstatus_online(u32 sstatus) 165 { 166 return (sstatus & 0xf) == 0x3; 167 } 168 169 /** 170 * ata_link_next - link iteration helper 171 * @link: the previous link, NULL to start 172 * @ap: ATA port containing links to iterate 173 * @mode: iteration mode, one of ATA_LITER_* 174 * 175 * LOCKING: 176 * Host lock or EH context. 177 * 178 * RETURNS: 179 * Pointer to the next link. 180 */ 181 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 182 enum ata_link_iter_mode mode) 183 { 184 BUG_ON(mode != ATA_LITER_EDGE && 185 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 186 187 /* NULL link indicates start of iteration */ 188 if (!link) 189 switch (mode) { 190 case ATA_LITER_EDGE: 191 case ATA_LITER_PMP_FIRST: 192 if (sata_pmp_attached(ap)) 193 return ap->pmp_link; 194 /* fall through */ 195 case ATA_LITER_HOST_FIRST: 196 return &ap->link; 197 } 198 199 /* we just iterated over the host link, what's next? */ 200 if (link == &ap->link) 201 switch (mode) { 202 case ATA_LITER_HOST_FIRST: 203 if (sata_pmp_attached(ap)) 204 return ap->pmp_link; 205 /* fall through */ 206 case ATA_LITER_PMP_FIRST: 207 if (unlikely(ap->slave_link)) 208 return ap->slave_link; 209 /* fall through */ 210 case ATA_LITER_EDGE: 211 return NULL; 212 } 213 214 /* slave_link excludes PMP */ 215 if (unlikely(link == ap->slave_link)) 216 return NULL; 217 218 /* we were over a PMP link */ 219 if (++link < ap->pmp_link + ap->nr_pmp_links) 220 return link; 221 222 if (mode == ATA_LITER_PMP_FIRST) 223 return &ap->link; 224 225 return NULL; 226 } 227 228 /** 229 * ata_dev_next - device iteration helper 230 * @dev: the previous device, NULL to start 231 * @link: ATA link containing devices to iterate 232 * @mode: iteration mode, one of ATA_DITER_* 233 * 234 * LOCKING: 235 * Host lock or EH context. 236 * 237 * RETURNS: 238 * Pointer to the next device. 239 */ 240 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 241 enum ata_dev_iter_mode mode) 242 { 243 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 244 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 245 246 /* NULL dev indicates start of iteration */ 247 if (!dev) 248 switch (mode) { 249 case ATA_DITER_ENABLED: 250 case ATA_DITER_ALL: 251 dev = link->device; 252 goto check; 253 case ATA_DITER_ENABLED_REVERSE: 254 case ATA_DITER_ALL_REVERSE: 255 dev = link->device + ata_link_max_devices(link) - 1; 256 goto check; 257 } 258 259 next: 260 /* move to the next one */ 261 switch (mode) { 262 case ATA_DITER_ENABLED: 263 case ATA_DITER_ALL: 264 if (++dev < link->device + ata_link_max_devices(link)) 265 goto check; 266 return NULL; 267 case ATA_DITER_ENABLED_REVERSE: 268 case ATA_DITER_ALL_REVERSE: 269 if (--dev >= link->device) 270 goto check; 271 return NULL; 272 } 273 274 check: 275 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 276 !ata_dev_enabled(dev)) 277 goto next; 278 return dev; 279 } 280 281 /** 282 * ata_dev_phys_link - find physical link for a device 283 * @dev: ATA device to look up physical link for 284 * 285 * Look up physical link which @dev is attached to. Note that 286 * this is different from @dev->link only when @dev is on slave 287 * link. For all other cases, it's the same as @dev->link. 288 * 289 * LOCKING: 290 * Don't care. 291 * 292 * RETURNS: 293 * Pointer to the found physical link. 294 */ 295 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 296 { 297 struct ata_port *ap = dev->link->ap; 298 299 if (!ap->slave_link) 300 return dev->link; 301 if (!dev->devno) 302 return &ap->link; 303 return ap->slave_link; 304 } 305 306 /** 307 * ata_force_cbl - force cable type according to libata.force 308 * @ap: ATA port of interest 309 * 310 * Force cable type according to libata.force and whine about it. 311 * The last entry which has matching port number is used, so it 312 * can be specified as part of device force parameters. For 313 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 314 * same effect. 315 * 316 * LOCKING: 317 * EH context. 318 */ 319 void ata_force_cbl(struct ata_port *ap) 320 { 321 int i; 322 323 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 324 const struct ata_force_ent *fe = &ata_force_tbl[i]; 325 326 if (fe->port != -1 && fe->port != ap->print_id) 327 continue; 328 329 if (fe->param.cbl == ATA_CBL_NONE) 330 continue; 331 332 ap->cbl = fe->param.cbl; 333 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 334 return; 335 } 336 } 337 338 /** 339 * ata_force_link_limits - force link limits according to libata.force 340 * @link: ATA link of interest 341 * 342 * Force link flags and SATA spd limit according to libata.force 343 * and whine about it. When only the port part is specified 344 * (e.g. 1:), the limit applies to all links connected to both 345 * the host link and all fan-out ports connected via PMP. If the 346 * device part is specified as 0 (e.g. 1.00:), it specifies the 347 * first fan-out link not the host link. Device number 15 always 348 * points to the host link whether PMP is attached or not. If the 349 * controller has slave link, device number 16 points to it. 350 * 351 * LOCKING: 352 * EH context. 353 */ 354 static void ata_force_link_limits(struct ata_link *link) 355 { 356 bool did_spd = false; 357 int linkno = link->pmp; 358 int i; 359 360 if (ata_is_host_link(link)) 361 linkno += 15; 362 363 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 364 const struct ata_force_ent *fe = &ata_force_tbl[i]; 365 366 if (fe->port != -1 && fe->port != link->ap->print_id) 367 continue; 368 369 if (fe->device != -1 && fe->device != linkno) 370 continue; 371 372 /* only honor the first spd limit */ 373 if (!did_spd && fe->param.spd_limit) { 374 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 375 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 376 fe->param.name); 377 did_spd = true; 378 } 379 380 /* let lflags stack */ 381 if (fe->param.lflags) { 382 link->flags |= fe->param.lflags; 383 ata_link_notice(link, 384 "FORCE: link flag 0x%x forced -> 0x%x\n", 385 fe->param.lflags, link->flags); 386 } 387 } 388 } 389 390 /** 391 * ata_force_xfermask - force xfermask according to libata.force 392 * @dev: ATA device of interest 393 * 394 * Force xfer_mask according to libata.force and whine about it. 395 * For consistency with link selection, device number 15 selects 396 * the first device connected to the host link. 397 * 398 * LOCKING: 399 * EH context. 400 */ 401 static void ata_force_xfermask(struct ata_device *dev) 402 { 403 int devno = dev->link->pmp + dev->devno; 404 int alt_devno = devno; 405 int i; 406 407 /* allow n.15/16 for devices attached to host port */ 408 if (ata_is_host_link(dev->link)) 409 alt_devno += 15; 410 411 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 412 const struct ata_force_ent *fe = &ata_force_tbl[i]; 413 unsigned long pio_mask, mwdma_mask, udma_mask; 414 415 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 416 continue; 417 418 if (fe->device != -1 && fe->device != devno && 419 fe->device != alt_devno) 420 continue; 421 422 if (!fe->param.xfer_mask) 423 continue; 424 425 ata_unpack_xfermask(fe->param.xfer_mask, 426 &pio_mask, &mwdma_mask, &udma_mask); 427 if (udma_mask) 428 dev->udma_mask = udma_mask; 429 else if (mwdma_mask) { 430 dev->udma_mask = 0; 431 dev->mwdma_mask = mwdma_mask; 432 } else { 433 dev->udma_mask = 0; 434 dev->mwdma_mask = 0; 435 dev->pio_mask = pio_mask; 436 } 437 438 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 439 fe->param.name); 440 return; 441 } 442 } 443 444 /** 445 * ata_force_horkage - force horkage according to libata.force 446 * @dev: ATA device of interest 447 * 448 * Force horkage according to libata.force and whine about it. 449 * For consistency with link selection, device number 15 selects 450 * the first device connected to the host link. 451 * 452 * LOCKING: 453 * EH context. 454 */ 455 static void ata_force_horkage(struct ata_device *dev) 456 { 457 int devno = dev->link->pmp + dev->devno; 458 int alt_devno = devno; 459 int i; 460 461 /* allow n.15/16 for devices attached to host port */ 462 if (ata_is_host_link(dev->link)) 463 alt_devno += 15; 464 465 for (i = 0; i < ata_force_tbl_size; i++) { 466 const struct ata_force_ent *fe = &ata_force_tbl[i]; 467 468 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 469 continue; 470 471 if (fe->device != -1 && fe->device != devno && 472 fe->device != alt_devno) 473 continue; 474 475 if (!(~dev->horkage & fe->param.horkage_on) && 476 !(dev->horkage & fe->param.horkage_off)) 477 continue; 478 479 dev->horkage |= fe->param.horkage_on; 480 dev->horkage &= ~fe->param.horkage_off; 481 482 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 483 fe->param.name); 484 } 485 } 486 487 /** 488 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 489 * @opcode: SCSI opcode 490 * 491 * Determine ATAPI command type from @opcode. 492 * 493 * LOCKING: 494 * None. 495 * 496 * RETURNS: 497 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 498 */ 499 int atapi_cmd_type(u8 opcode) 500 { 501 switch (opcode) { 502 case GPCMD_READ_10: 503 case GPCMD_READ_12: 504 return ATAPI_READ; 505 506 case GPCMD_WRITE_10: 507 case GPCMD_WRITE_12: 508 case GPCMD_WRITE_AND_VERIFY_10: 509 return ATAPI_WRITE; 510 511 case GPCMD_READ_CD: 512 case GPCMD_READ_CD_MSF: 513 return ATAPI_READ_CD; 514 515 case ATA_16: 516 case ATA_12: 517 if (atapi_passthru16) 518 return ATAPI_PASS_THRU; 519 /* fall thru */ 520 default: 521 return ATAPI_MISC; 522 } 523 } 524 525 /** 526 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 527 * @tf: Taskfile to convert 528 * @pmp: Port multiplier port 529 * @is_cmd: This FIS is for command 530 * @fis: Buffer into which data will output 531 * 532 * Converts a standard ATA taskfile to a Serial ATA 533 * FIS structure (Register - Host to Device). 534 * 535 * LOCKING: 536 * Inherited from caller. 537 */ 538 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 539 { 540 fis[0] = 0x27; /* Register - Host to Device FIS */ 541 fis[1] = pmp & 0xf; /* Port multiplier number*/ 542 if (is_cmd) 543 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 544 545 fis[2] = tf->command; 546 fis[3] = tf->feature; 547 548 fis[4] = tf->lbal; 549 fis[5] = tf->lbam; 550 fis[6] = tf->lbah; 551 fis[7] = tf->device; 552 553 fis[8] = tf->hob_lbal; 554 fis[9] = tf->hob_lbam; 555 fis[10] = tf->hob_lbah; 556 fis[11] = tf->hob_feature; 557 558 fis[12] = tf->nsect; 559 fis[13] = tf->hob_nsect; 560 fis[14] = 0; 561 fis[15] = tf->ctl; 562 563 fis[16] = tf->auxiliary & 0xff; 564 fis[17] = (tf->auxiliary >> 8) & 0xff; 565 fis[18] = (tf->auxiliary >> 16) & 0xff; 566 fis[19] = (tf->auxiliary >> 24) & 0xff; 567 } 568 569 /** 570 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 571 * @fis: Buffer from which data will be input 572 * @tf: Taskfile to output 573 * 574 * Converts a serial ATA FIS structure to a standard ATA taskfile. 575 * 576 * LOCKING: 577 * Inherited from caller. 578 */ 579 580 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 581 { 582 tf->command = fis[2]; /* status */ 583 tf->feature = fis[3]; /* error */ 584 585 tf->lbal = fis[4]; 586 tf->lbam = fis[5]; 587 tf->lbah = fis[6]; 588 tf->device = fis[7]; 589 590 tf->hob_lbal = fis[8]; 591 tf->hob_lbam = fis[9]; 592 tf->hob_lbah = fis[10]; 593 594 tf->nsect = fis[12]; 595 tf->hob_nsect = fis[13]; 596 } 597 598 static const u8 ata_rw_cmds[] = { 599 /* pio multi */ 600 ATA_CMD_READ_MULTI, 601 ATA_CMD_WRITE_MULTI, 602 ATA_CMD_READ_MULTI_EXT, 603 ATA_CMD_WRITE_MULTI_EXT, 604 0, 605 0, 606 0, 607 ATA_CMD_WRITE_MULTI_FUA_EXT, 608 /* pio */ 609 ATA_CMD_PIO_READ, 610 ATA_CMD_PIO_WRITE, 611 ATA_CMD_PIO_READ_EXT, 612 ATA_CMD_PIO_WRITE_EXT, 613 0, 614 0, 615 0, 616 0, 617 /* dma */ 618 ATA_CMD_READ, 619 ATA_CMD_WRITE, 620 ATA_CMD_READ_EXT, 621 ATA_CMD_WRITE_EXT, 622 0, 623 0, 624 0, 625 ATA_CMD_WRITE_FUA_EXT 626 }; 627 628 /** 629 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 630 * @tf: command to examine and configure 631 * @dev: device tf belongs to 632 * 633 * Examine the device configuration and tf->flags to calculate 634 * the proper read/write commands and protocol to use. 635 * 636 * LOCKING: 637 * caller. 638 */ 639 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 640 { 641 u8 cmd; 642 643 int index, fua, lba48, write; 644 645 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 646 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 647 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 648 649 if (dev->flags & ATA_DFLAG_PIO) { 650 tf->protocol = ATA_PROT_PIO; 651 index = dev->multi_count ? 0 : 8; 652 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 653 /* Unable to use DMA due to host limitation */ 654 tf->protocol = ATA_PROT_PIO; 655 index = dev->multi_count ? 0 : 8; 656 } else { 657 tf->protocol = ATA_PROT_DMA; 658 index = 16; 659 } 660 661 cmd = ata_rw_cmds[index + fua + lba48 + write]; 662 if (cmd) { 663 tf->command = cmd; 664 return 0; 665 } 666 return -1; 667 } 668 669 /** 670 * ata_tf_read_block - Read block address from ATA taskfile 671 * @tf: ATA taskfile of interest 672 * @dev: ATA device @tf belongs to 673 * 674 * LOCKING: 675 * None. 676 * 677 * Read block address from @tf. This function can handle all 678 * three address formats - LBA, LBA48 and CHS. tf->protocol and 679 * flags select the address format to use. 680 * 681 * RETURNS: 682 * Block address read from @tf. 683 */ 684 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 685 { 686 u64 block = 0; 687 688 if (tf->flags & ATA_TFLAG_LBA) { 689 if (tf->flags & ATA_TFLAG_LBA48) { 690 block |= (u64)tf->hob_lbah << 40; 691 block |= (u64)tf->hob_lbam << 32; 692 block |= (u64)tf->hob_lbal << 24; 693 } else 694 block |= (tf->device & 0xf) << 24; 695 696 block |= tf->lbah << 16; 697 block |= tf->lbam << 8; 698 block |= tf->lbal; 699 } else { 700 u32 cyl, head, sect; 701 702 cyl = tf->lbam | (tf->lbah << 8); 703 head = tf->device & 0xf; 704 sect = tf->lbal; 705 706 if (!sect) { 707 ata_dev_warn(dev, 708 "device reported invalid CHS sector 0\n"); 709 return U64_MAX; 710 } 711 712 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 713 } 714 715 return block; 716 } 717 718 /** 719 * ata_build_rw_tf - Build ATA taskfile for given read/write request 720 * @tf: Target ATA taskfile 721 * @dev: ATA device @tf belongs to 722 * @block: Block address 723 * @n_block: Number of blocks 724 * @tf_flags: RW/FUA etc... 725 * @tag: tag 726 * @class: IO priority class 727 * 728 * LOCKING: 729 * None. 730 * 731 * Build ATA taskfile @tf for read/write request described by 732 * @block, @n_block, @tf_flags and @tag on @dev. 733 * 734 * RETURNS: 735 * 736 * 0 on success, -ERANGE if the request is too large for @dev, 737 * -EINVAL if the request is invalid. 738 */ 739 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 740 u64 block, u32 n_block, unsigned int tf_flags, 741 unsigned int tag, int class) 742 { 743 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 744 tf->flags |= tf_flags; 745 746 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { 747 /* yay, NCQ */ 748 if (!lba_48_ok(block, n_block)) 749 return -ERANGE; 750 751 tf->protocol = ATA_PROT_NCQ; 752 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 753 754 if (tf->flags & ATA_TFLAG_WRITE) 755 tf->command = ATA_CMD_FPDMA_WRITE; 756 else 757 tf->command = ATA_CMD_FPDMA_READ; 758 759 tf->nsect = tag << 3; 760 tf->hob_feature = (n_block >> 8) & 0xff; 761 tf->feature = n_block & 0xff; 762 763 tf->hob_lbah = (block >> 40) & 0xff; 764 tf->hob_lbam = (block >> 32) & 0xff; 765 tf->hob_lbal = (block >> 24) & 0xff; 766 tf->lbah = (block >> 16) & 0xff; 767 tf->lbam = (block >> 8) & 0xff; 768 tf->lbal = block & 0xff; 769 770 tf->device = ATA_LBA; 771 if (tf->flags & ATA_TFLAG_FUA) 772 tf->device |= 1 << 7; 773 774 if (dev->flags & ATA_DFLAG_NCQ_PRIO) { 775 if (class == IOPRIO_CLASS_RT) 776 tf->hob_nsect |= ATA_PRIO_HIGH << 777 ATA_SHIFT_PRIO; 778 } 779 } else if (dev->flags & ATA_DFLAG_LBA) { 780 tf->flags |= ATA_TFLAG_LBA; 781 782 if (lba_28_ok(block, n_block)) { 783 /* use LBA28 */ 784 tf->device |= (block >> 24) & 0xf; 785 } else if (lba_48_ok(block, n_block)) { 786 if (!(dev->flags & ATA_DFLAG_LBA48)) 787 return -ERANGE; 788 789 /* use LBA48 */ 790 tf->flags |= ATA_TFLAG_LBA48; 791 792 tf->hob_nsect = (n_block >> 8) & 0xff; 793 794 tf->hob_lbah = (block >> 40) & 0xff; 795 tf->hob_lbam = (block >> 32) & 0xff; 796 tf->hob_lbal = (block >> 24) & 0xff; 797 } else 798 /* request too large even for LBA48 */ 799 return -ERANGE; 800 801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 802 return -EINVAL; 803 804 tf->nsect = n_block & 0xff; 805 806 tf->lbah = (block >> 16) & 0xff; 807 tf->lbam = (block >> 8) & 0xff; 808 tf->lbal = block & 0xff; 809 810 tf->device |= ATA_LBA; 811 } else { 812 /* CHS */ 813 u32 sect, head, cyl, track; 814 815 /* The request -may- be too large for CHS addressing. */ 816 if (!lba_28_ok(block, n_block)) 817 return -ERANGE; 818 819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 820 return -EINVAL; 821 822 /* Convert LBA to CHS */ 823 track = (u32)block / dev->sectors; 824 cyl = track / dev->heads; 825 head = track % dev->heads; 826 sect = (u32)block % dev->sectors + 1; 827 828 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 829 (u32)block, track, cyl, head, sect); 830 831 /* Check whether the converted CHS can fit. 832 Cylinder: 0-65535 833 Head: 0-15 834 Sector: 1-255*/ 835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 836 return -ERANGE; 837 838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 839 tf->lbal = sect; 840 tf->lbam = cyl; 841 tf->lbah = cyl >> 8; 842 tf->device |= head; 843 } 844 845 return 0; 846 } 847 848 /** 849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 850 * @pio_mask: pio_mask 851 * @mwdma_mask: mwdma_mask 852 * @udma_mask: udma_mask 853 * 854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 855 * unsigned int xfer_mask. 856 * 857 * LOCKING: 858 * None. 859 * 860 * RETURNS: 861 * Packed xfer_mask. 862 */ 863 unsigned long ata_pack_xfermask(unsigned long pio_mask, 864 unsigned long mwdma_mask, 865 unsigned long udma_mask) 866 { 867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 870 } 871 872 /** 873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 874 * @xfer_mask: xfer_mask to unpack 875 * @pio_mask: resulting pio_mask 876 * @mwdma_mask: resulting mwdma_mask 877 * @udma_mask: resulting udma_mask 878 * 879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 880 * Any NULL destination masks will be ignored. 881 */ 882 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 883 unsigned long *mwdma_mask, unsigned long *udma_mask) 884 { 885 if (pio_mask) 886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 887 if (mwdma_mask) 888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 889 if (udma_mask) 890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 891 } 892 893 static const struct ata_xfer_ent { 894 int shift, bits; 895 u8 base; 896 } ata_xfer_tbl[] = { 897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 900 { -1, }, 901 }; 902 903 /** 904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 905 * @xfer_mask: xfer_mask of interest 906 * 907 * Return matching XFER_* value for @xfer_mask. Only the highest 908 * bit of @xfer_mask is considered. 909 * 910 * LOCKING: 911 * None. 912 * 913 * RETURNS: 914 * Matching XFER_* value, 0xff if no match found. 915 */ 916 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 917 { 918 int highbit = fls(xfer_mask) - 1; 919 const struct ata_xfer_ent *ent; 920 921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 923 return ent->base + highbit - ent->shift; 924 return 0xff; 925 } 926 927 /** 928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 929 * @xfer_mode: XFER_* of interest 930 * 931 * Return matching xfer_mask for @xfer_mode. 932 * 933 * LOCKING: 934 * None. 935 * 936 * RETURNS: 937 * Matching xfer_mask, 0 if no match found. 938 */ 939 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 940 { 941 const struct ata_xfer_ent *ent; 942 943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 946 & ~((1 << ent->shift) - 1); 947 return 0; 948 } 949 950 /** 951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 952 * @xfer_mode: XFER_* of interest 953 * 954 * Return matching xfer_shift for @xfer_mode. 955 * 956 * LOCKING: 957 * None. 958 * 959 * RETURNS: 960 * Matching xfer_shift, -1 if no match found. 961 */ 962 int ata_xfer_mode2shift(unsigned long xfer_mode) 963 { 964 const struct ata_xfer_ent *ent; 965 966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 968 return ent->shift; 969 return -1; 970 } 971 972 /** 973 * ata_mode_string - convert xfer_mask to string 974 * @xfer_mask: mask of bits supported; only highest bit counts. 975 * 976 * Determine string which represents the highest speed 977 * (highest bit in @modemask). 978 * 979 * LOCKING: 980 * None. 981 * 982 * RETURNS: 983 * Constant C string representing highest speed listed in 984 * @mode_mask, or the constant C string "<n/a>". 985 */ 986 const char *ata_mode_string(unsigned long xfer_mask) 987 { 988 static const char * const xfer_mode_str[] = { 989 "PIO0", 990 "PIO1", 991 "PIO2", 992 "PIO3", 993 "PIO4", 994 "PIO5", 995 "PIO6", 996 "MWDMA0", 997 "MWDMA1", 998 "MWDMA2", 999 "MWDMA3", 1000 "MWDMA4", 1001 "UDMA/16", 1002 "UDMA/25", 1003 "UDMA/33", 1004 "UDMA/44", 1005 "UDMA/66", 1006 "UDMA/100", 1007 "UDMA/133", 1008 "UDMA7", 1009 }; 1010 int highbit; 1011 1012 highbit = fls(xfer_mask) - 1; 1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1014 return xfer_mode_str[highbit]; 1015 return "<n/a>"; 1016 } 1017 1018 const char *sata_spd_string(unsigned int spd) 1019 { 1020 static const char * const spd_str[] = { 1021 "1.5 Gbps", 1022 "3.0 Gbps", 1023 "6.0 Gbps", 1024 }; 1025 1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1027 return "<unknown>"; 1028 return spd_str[spd - 1]; 1029 } 1030 1031 /** 1032 * ata_dev_classify - determine device type based on ATA-spec signature 1033 * @tf: ATA taskfile register set for device to be identified 1034 * 1035 * Determine from taskfile register contents whether a device is 1036 * ATA or ATAPI, as per "Signature and persistence" section 1037 * of ATA/PI spec (volume 1, sect 5.14). 1038 * 1039 * LOCKING: 1040 * None. 1041 * 1042 * RETURNS: 1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1044 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1045 */ 1046 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1047 { 1048 /* Apple's open source Darwin code hints that some devices only 1049 * put a proper signature into the LBA mid/high registers, 1050 * So, we only check those. It's sufficient for uniqueness. 1051 * 1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1053 * signatures for ATA and ATAPI devices attached on SerialATA, 1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1055 * spec has never mentioned about using different signatures 1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1057 * Multiplier specification began to use 0x69/0x96 to identify 1058 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1060 * 0x69/0x96 shortly and described them as reserved for 1061 * SerialATA. 1062 * 1063 * We follow the current spec and consider that 0x69/0x96 1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1066 * SEMB signature. This is worked around in 1067 * ata_dev_read_id(). 1068 */ 1069 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1070 DPRINTK("found ATA device by sig\n"); 1071 return ATA_DEV_ATA; 1072 } 1073 1074 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1075 DPRINTK("found ATAPI device by sig\n"); 1076 return ATA_DEV_ATAPI; 1077 } 1078 1079 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1080 DPRINTK("found PMP device by sig\n"); 1081 return ATA_DEV_PMP; 1082 } 1083 1084 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1085 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1086 return ATA_DEV_SEMB; 1087 } 1088 1089 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1090 DPRINTK("found ZAC device by sig\n"); 1091 return ATA_DEV_ZAC; 1092 } 1093 1094 DPRINTK("unknown device\n"); 1095 return ATA_DEV_UNKNOWN; 1096 } 1097 1098 /** 1099 * ata_id_string - Convert IDENTIFY DEVICE page into string 1100 * @id: IDENTIFY DEVICE results we will examine 1101 * @s: string into which data is output 1102 * @ofs: offset into identify device page 1103 * @len: length of string to return. must be an even number. 1104 * 1105 * The strings in the IDENTIFY DEVICE page are broken up into 1106 * 16-bit chunks. Run through the string, and output each 1107 * 8-bit chunk linearly, regardless of platform. 1108 * 1109 * LOCKING: 1110 * caller. 1111 */ 1112 1113 void ata_id_string(const u16 *id, unsigned char *s, 1114 unsigned int ofs, unsigned int len) 1115 { 1116 unsigned int c; 1117 1118 BUG_ON(len & 1); 1119 1120 while (len > 0) { 1121 c = id[ofs] >> 8; 1122 *s = c; 1123 s++; 1124 1125 c = id[ofs] & 0xff; 1126 *s = c; 1127 s++; 1128 1129 ofs++; 1130 len -= 2; 1131 } 1132 } 1133 1134 /** 1135 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1136 * @id: IDENTIFY DEVICE results we will examine 1137 * @s: string into which data is output 1138 * @ofs: offset into identify device page 1139 * @len: length of string to return. must be an odd number. 1140 * 1141 * This function is identical to ata_id_string except that it 1142 * trims trailing spaces and terminates the resulting string with 1143 * null. @len must be actual maximum length (even number) + 1. 1144 * 1145 * LOCKING: 1146 * caller. 1147 */ 1148 void ata_id_c_string(const u16 *id, unsigned char *s, 1149 unsigned int ofs, unsigned int len) 1150 { 1151 unsigned char *p; 1152 1153 ata_id_string(id, s, ofs, len - 1); 1154 1155 p = s + strnlen(s, len - 1); 1156 while (p > s && p[-1] == ' ') 1157 p--; 1158 *p = '\0'; 1159 } 1160 1161 static u64 ata_id_n_sectors(const u16 *id) 1162 { 1163 if (ata_id_has_lba(id)) { 1164 if (ata_id_has_lba48(id)) 1165 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1166 else 1167 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1168 } else { 1169 if (ata_id_current_chs_valid(id)) 1170 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1171 id[ATA_ID_CUR_SECTORS]; 1172 else 1173 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1174 id[ATA_ID_SECTORS]; 1175 } 1176 } 1177 1178 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1179 { 1180 u64 sectors = 0; 1181 1182 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1183 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1184 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1185 sectors |= (tf->lbah & 0xff) << 16; 1186 sectors |= (tf->lbam & 0xff) << 8; 1187 sectors |= (tf->lbal & 0xff); 1188 1189 return sectors; 1190 } 1191 1192 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1193 { 1194 u64 sectors = 0; 1195 1196 sectors |= (tf->device & 0x0f) << 24; 1197 sectors |= (tf->lbah & 0xff) << 16; 1198 sectors |= (tf->lbam & 0xff) << 8; 1199 sectors |= (tf->lbal & 0xff); 1200 1201 return sectors; 1202 } 1203 1204 /** 1205 * ata_read_native_max_address - Read native max address 1206 * @dev: target device 1207 * @max_sectors: out parameter for the result native max address 1208 * 1209 * Perform an LBA48 or LBA28 native size query upon the device in 1210 * question. 1211 * 1212 * RETURNS: 1213 * 0 on success, -EACCES if command is aborted by the drive. 1214 * -EIO on other errors. 1215 */ 1216 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1217 { 1218 unsigned int err_mask; 1219 struct ata_taskfile tf; 1220 int lba48 = ata_id_has_lba48(dev->id); 1221 1222 ata_tf_init(dev, &tf); 1223 1224 /* always clear all address registers */ 1225 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1226 1227 if (lba48) { 1228 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1229 tf.flags |= ATA_TFLAG_LBA48; 1230 } else 1231 tf.command = ATA_CMD_READ_NATIVE_MAX; 1232 1233 tf.protocol = ATA_PROT_NODATA; 1234 tf.device |= ATA_LBA; 1235 1236 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1237 if (err_mask) { 1238 ata_dev_warn(dev, 1239 "failed to read native max address (err_mask=0x%x)\n", 1240 err_mask); 1241 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1242 return -EACCES; 1243 return -EIO; 1244 } 1245 1246 if (lba48) 1247 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1248 else 1249 *max_sectors = ata_tf_to_lba(&tf) + 1; 1250 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1251 (*max_sectors)--; 1252 return 0; 1253 } 1254 1255 /** 1256 * ata_set_max_sectors - Set max sectors 1257 * @dev: target device 1258 * @new_sectors: new max sectors value to set for the device 1259 * 1260 * Set max sectors of @dev to @new_sectors. 1261 * 1262 * RETURNS: 1263 * 0 on success, -EACCES if command is aborted or denied (due to 1264 * previous non-volatile SET_MAX) by the drive. -EIO on other 1265 * errors. 1266 */ 1267 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1268 { 1269 unsigned int err_mask; 1270 struct ata_taskfile tf; 1271 int lba48 = ata_id_has_lba48(dev->id); 1272 1273 new_sectors--; 1274 1275 ata_tf_init(dev, &tf); 1276 1277 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1278 1279 if (lba48) { 1280 tf.command = ATA_CMD_SET_MAX_EXT; 1281 tf.flags |= ATA_TFLAG_LBA48; 1282 1283 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1284 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1285 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1286 } else { 1287 tf.command = ATA_CMD_SET_MAX; 1288 1289 tf.device |= (new_sectors >> 24) & 0xf; 1290 } 1291 1292 tf.protocol = ATA_PROT_NODATA; 1293 tf.device |= ATA_LBA; 1294 1295 tf.lbal = (new_sectors >> 0) & 0xff; 1296 tf.lbam = (new_sectors >> 8) & 0xff; 1297 tf.lbah = (new_sectors >> 16) & 0xff; 1298 1299 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1300 if (err_mask) { 1301 ata_dev_warn(dev, 1302 "failed to set max address (err_mask=0x%x)\n", 1303 err_mask); 1304 if (err_mask == AC_ERR_DEV && 1305 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1306 return -EACCES; 1307 return -EIO; 1308 } 1309 1310 return 0; 1311 } 1312 1313 /** 1314 * ata_hpa_resize - Resize a device with an HPA set 1315 * @dev: Device to resize 1316 * 1317 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1318 * it if required to the full size of the media. The caller must check 1319 * the drive has the HPA feature set enabled. 1320 * 1321 * RETURNS: 1322 * 0 on success, -errno on failure. 1323 */ 1324 static int ata_hpa_resize(struct ata_device *dev) 1325 { 1326 struct ata_eh_context *ehc = &dev->link->eh_context; 1327 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1328 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1329 u64 sectors = ata_id_n_sectors(dev->id); 1330 u64 native_sectors; 1331 int rc; 1332 1333 /* do we need to do it? */ 1334 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1335 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1336 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1337 return 0; 1338 1339 /* read native max address */ 1340 rc = ata_read_native_max_address(dev, &native_sectors); 1341 if (rc) { 1342 /* If device aborted the command or HPA isn't going to 1343 * be unlocked, skip HPA resizing. 1344 */ 1345 if (rc == -EACCES || !unlock_hpa) { 1346 ata_dev_warn(dev, 1347 "HPA support seems broken, skipping HPA handling\n"); 1348 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1349 1350 /* we can continue if device aborted the command */ 1351 if (rc == -EACCES) 1352 rc = 0; 1353 } 1354 1355 return rc; 1356 } 1357 dev->n_native_sectors = native_sectors; 1358 1359 /* nothing to do? */ 1360 if (native_sectors <= sectors || !unlock_hpa) { 1361 if (!print_info || native_sectors == sectors) 1362 return 0; 1363 1364 if (native_sectors > sectors) 1365 ata_dev_info(dev, 1366 "HPA detected: current %llu, native %llu\n", 1367 (unsigned long long)sectors, 1368 (unsigned long long)native_sectors); 1369 else if (native_sectors < sectors) 1370 ata_dev_warn(dev, 1371 "native sectors (%llu) is smaller than sectors (%llu)\n", 1372 (unsigned long long)native_sectors, 1373 (unsigned long long)sectors); 1374 return 0; 1375 } 1376 1377 /* let's unlock HPA */ 1378 rc = ata_set_max_sectors(dev, native_sectors); 1379 if (rc == -EACCES) { 1380 /* if device aborted the command, skip HPA resizing */ 1381 ata_dev_warn(dev, 1382 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1383 (unsigned long long)sectors, 1384 (unsigned long long)native_sectors); 1385 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1386 return 0; 1387 } else if (rc) 1388 return rc; 1389 1390 /* re-read IDENTIFY data */ 1391 rc = ata_dev_reread_id(dev, 0); 1392 if (rc) { 1393 ata_dev_err(dev, 1394 "failed to re-read IDENTIFY data after HPA resizing\n"); 1395 return rc; 1396 } 1397 1398 if (print_info) { 1399 u64 new_sectors = ata_id_n_sectors(dev->id); 1400 ata_dev_info(dev, 1401 "HPA unlocked: %llu -> %llu, native %llu\n", 1402 (unsigned long long)sectors, 1403 (unsigned long long)new_sectors, 1404 (unsigned long long)native_sectors); 1405 } 1406 1407 return 0; 1408 } 1409 1410 /** 1411 * ata_dump_id - IDENTIFY DEVICE info debugging output 1412 * @id: IDENTIFY DEVICE page to dump 1413 * 1414 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1415 * page. 1416 * 1417 * LOCKING: 1418 * caller. 1419 */ 1420 1421 static inline void ata_dump_id(const u16 *id) 1422 { 1423 DPRINTK("49==0x%04x " 1424 "53==0x%04x " 1425 "63==0x%04x " 1426 "64==0x%04x " 1427 "75==0x%04x \n", 1428 id[49], 1429 id[53], 1430 id[63], 1431 id[64], 1432 id[75]); 1433 DPRINTK("80==0x%04x " 1434 "81==0x%04x " 1435 "82==0x%04x " 1436 "83==0x%04x " 1437 "84==0x%04x \n", 1438 id[80], 1439 id[81], 1440 id[82], 1441 id[83], 1442 id[84]); 1443 DPRINTK("88==0x%04x " 1444 "93==0x%04x\n", 1445 id[88], 1446 id[93]); 1447 } 1448 1449 /** 1450 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1451 * @id: IDENTIFY data to compute xfer mask from 1452 * 1453 * Compute the xfermask for this device. This is not as trivial 1454 * as it seems if we must consider early devices correctly. 1455 * 1456 * FIXME: pre IDE drive timing (do we care ?). 1457 * 1458 * LOCKING: 1459 * None. 1460 * 1461 * RETURNS: 1462 * Computed xfermask 1463 */ 1464 unsigned long ata_id_xfermask(const u16 *id) 1465 { 1466 unsigned long pio_mask, mwdma_mask, udma_mask; 1467 1468 /* Usual case. Word 53 indicates word 64 is valid */ 1469 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1470 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1471 pio_mask <<= 3; 1472 pio_mask |= 0x7; 1473 } else { 1474 /* If word 64 isn't valid then Word 51 high byte holds 1475 * the PIO timing number for the maximum. Turn it into 1476 * a mask. 1477 */ 1478 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1479 if (mode < 5) /* Valid PIO range */ 1480 pio_mask = (2 << mode) - 1; 1481 else 1482 pio_mask = 1; 1483 1484 /* But wait.. there's more. Design your standards by 1485 * committee and you too can get a free iordy field to 1486 * process. However its the speeds not the modes that 1487 * are supported... Note drivers using the timing API 1488 * will get this right anyway 1489 */ 1490 } 1491 1492 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1493 1494 if (ata_id_is_cfa(id)) { 1495 /* 1496 * Process compact flash extended modes 1497 */ 1498 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1499 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1500 1501 if (pio) 1502 pio_mask |= (1 << 5); 1503 if (pio > 1) 1504 pio_mask |= (1 << 6); 1505 if (dma) 1506 mwdma_mask |= (1 << 3); 1507 if (dma > 1) 1508 mwdma_mask |= (1 << 4); 1509 } 1510 1511 udma_mask = 0; 1512 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1513 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1514 1515 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1516 } 1517 1518 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1519 { 1520 struct completion *waiting = qc->private_data; 1521 1522 complete(waiting); 1523 } 1524 1525 /** 1526 * ata_exec_internal_sg - execute libata internal command 1527 * @dev: Device to which the command is sent 1528 * @tf: Taskfile registers for the command and the result 1529 * @cdb: CDB for packet command 1530 * @dma_dir: Data transfer direction of the command 1531 * @sgl: sg list for the data buffer of the command 1532 * @n_elem: Number of sg entries 1533 * @timeout: Timeout in msecs (0 for default) 1534 * 1535 * Executes libata internal command with timeout. @tf contains 1536 * command on entry and result on return. Timeout and error 1537 * conditions are reported via return value. No recovery action 1538 * is taken after a command times out. It's caller's duty to 1539 * clean up after timeout. 1540 * 1541 * LOCKING: 1542 * None. Should be called with kernel context, might sleep. 1543 * 1544 * RETURNS: 1545 * Zero on success, AC_ERR_* mask on failure 1546 */ 1547 unsigned ata_exec_internal_sg(struct ata_device *dev, 1548 struct ata_taskfile *tf, const u8 *cdb, 1549 int dma_dir, struct scatterlist *sgl, 1550 unsigned int n_elem, unsigned long timeout) 1551 { 1552 struct ata_link *link = dev->link; 1553 struct ata_port *ap = link->ap; 1554 u8 command = tf->command; 1555 int auto_timeout = 0; 1556 struct ata_queued_cmd *qc; 1557 unsigned int preempted_tag; 1558 u32 preempted_sactive; 1559 u64 preempted_qc_active; 1560 int preempted_nr_active_links; 1561 DECLARE_COMPLETION_ONSTACK(wait); 1562 unsigned long flags; 1563 unsigned int err_mask; 1564 int rc; 1565 1566 spin_lock_irqsave(ap->lock, flags); 1567 1568 /* no internal command while frozen */ 1569 if (ap->pflags & ATA_PFLAG_FROZEN) { 1570 spin_unlock_irqrestore(ap->lock, flags); 1571 return AC_ERR_SYSTEM; 1572 } 1573 1574 /* initialize internal qc */ 1575 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1576 1577 qc->tag = ATA_TAG_INTERNAL; 1578 qc->hw_tag = 0; 1579 qc->scsicmd = NULL; 1580 qc->ap = ap; 1581 qc->dev = dev; 1582 ata_qc_reinit(qc); 1583 1584 preempted_tag = link->active_tag; 1585 preempted_sactive = link->sactive; 1586 preempted_qc_active = ap->qc_active; 1587 preempted_nr_active_links = ap->nr_active_links; 1588 link->active_tag = ATA_TAG_POISON; 1589 link->sactive = 0; 1590 ap->qc_active = 0; 1591 ap->nr_active_links = 0; 1592 1593 /* prepare & issue qc */ 1594 qc->tf = *tf; 1595 if (cdb) 1596 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1597 1598 /* some SATA bridges need us to indicate data xfer direction */ 1599 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1600 dma_dir == DMA_FROM_DEVICE) 1601 qc->tf.feature |= ATAPI_DMADIR; 1602 1603 qc->flags |= ATA_QCFLAG_RESULT_TF; 1604 qc->dma_dir = dma_dir; 1605 if (dma_dir != DMA_NONE) { 1606 unsigned int i, buflen = 0; 1607 struct scatterlist *sg; 1608 1609 for_each_sg(sgl, sg, n_elem, i) 1610 buflen += sg->length; 1611 1612 ata_sg_init(qc, sgl, n_elem); 1613 qc->nbytes = buflen; 1614 } 1615 1616 qc->private_data = &wait; 1617 qc->complete_fn = ata_qc_complete_internal; 1618 1619 ata_qc_issue(qc); 1620 1621 spin_unlock_irqrestore(ap->lock, flags); 1622 1623 if (!timeout) { 1624 if (ata_probe_timeout) 1625 timeout = ata_probe_timeout * 1000; 1626 else { 1627 timeout = ata_internal_cmd_timeout(dev, command); 1628 auto_timeout = 1; 1629 } 1630 } 1631 1632 if (ap->ops->error_handler) 1633 ata_eh_release(ap); 1634 1635 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1636 1637 if (ap->ops->error_handler) 1638 ata_eh_acquire(ap); 1639 1640 ata_sff_flush_pio_task(ap); 1641 1642 if (!rc) { 1643 spin_lock_irqsave(ap->lock, flags); 1644 1645 /* We're racing with irq here. If we lose, the 1646 * following test prevents us from completing the qc 1647 * twice. If we win, the port is frozen and will be 1648 * cleaned up by ->post_internal_cmd(). 1649 */ 1650 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1651 qc->err_mask |= AC_ERR_TIMEOUT; 1652 1653 if (ap->ops->error_handler) 1654 ata_port_freeze(ap); 1655 else 1656 ata_qc_complete(qc); 1657 1658 if (ata_msg_warn(ap)) 1659 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1660 command); 1661 } 1662 1663 spin_unlock_irqrestore(ap->lock, flags); 1664 } 1665 1666 /* do post_internal_cmd */ 1667 if (ap->ops->post_internal_cmd) 1668 ap->ops->post_internal_cmd(qc); 1669 1670 /* perform minimal error analysis */ 1671 if (qc->flags & ATA_QCFLAG_FAILED) { 1672 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1673 qc->err_mask |= AC_ERR_DEV; 1674 1675 if (!qc->err_mask) 1676 qc->err_mask |= AC_ERR_OTHER; 1677 1678 if (qc->err_mask & ~AC_ERR_OTHER) 1679 qc->err_mask &= ~AC_ERR_OTHER; 1680 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1681 qc->result_tf.command |= ATA_SENSE; 1682 } 1683 1684 /* finish up */ 1685 spin_lock_irqsave(ap->lock, flags); 1686 1687 *tf = qc->result_tf; 1688 err_mask = qc->err_mask; 1689 1690 ata_qc_free(qc); 1691 link->active_tag = preempted_tag; 1692 link->sactive = preempted_sactive; 1693 ap->qc_active = preempted_qc_active; 1694 ap->nr_active_links = preempted_nr_active_links; 1695 1696 spin_unlock_irqrestore(ap->lock, flags); 1697 1698 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1699 ata_internal_cmd_timed_out(dev, command); 1700 1701 return err_mask; 1702 } 1703 1704 /** 1705 * ata_exec_internal - execute libata internal command 1706 * @dev: Device to which the command is sent 1707 * @tf: Taskfile registers for the command and the result 1708 * @cdb: CDB for packet command 1709 * @dma_dir: Data transfer direction of the command 1710 * @buf: Data buffer of the command 1711 * @buflen: Length of data buffer 1712 * @timeout: Timeout in msecs (0 for default) 1713 * 1714 * Wrapper around ata_exec_internal_sg() which takes simple 1715 * buffer instead of sg list. 1716 * 1717 * LOCKING: 1718 * None. Should be called with kernel context, might sleep. 1719 * 1720 * RETURNS: 1721 * Zero on success, AC_ERR_* mask on failure 1722 */ 1723 unsigned ata_exec_internal(struct ata_device *dev, 1724 struct ata_taskfile *tf, const u8 *cdb, 1725 int dma_dir, void *buf, unsigned int buflen, 1726 unsigned long timeout) 1727 { 1728 struct scatterlist *psg = NULL, sg; 1729 unsigned int n_elem = 0; 1730 1731 if (dma_dir != DMA_NONE) { 1732 WARN_ON(!buf); 1733 sg_init_one(&sg, buf, buflen); 1734 psg = &sg; 1735 n_elem++; 1736 } 1737 1738 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1739 timeout); 1740 } 1741 1742 /** 1743 * ata_pio_need_iordy - check if iordy needed 1744 * @adev: ATA device 1745 * 1746 * Check if the current speed of the device requires IORDY. Used 1747 * by various controllers for chip configuration. 1748 */ 1749 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1750 { 1751 /* Don't set IORDY if we're preparing for reset. IORDY may 1752 * lead to controller lock up on certain controllers if the 1753 * port is not occupied. See bko#11703 for details. 1754 */ 1755 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1756 return 0; 1757 /* Controller doesn't support IORDY. Probably a pointless 1758 * check as the caller should know this. 1759 */ 1760 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1761 return 0; 1762 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1763 if (ata_id_is_cfa(adev->id) 1764 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1765 return 0; 1766 /* PIO3 and higher it is mandatory */ 1767 if (adev->pio_mode > XFER_PIO_2) 1768 return 1; 1769 /* We turn it on when possible */ 1770 if (ata_id_has_iordy(adev->id)) 1771 return 1; 1772 return 0; 1773 } 1774 1775 /** 1776 * ata_pio_mask_no_iordy - Return the non IORDY mask 1777 * @adev: ATA device 1778 * 1779 * Compute the highest mode possible if we are not using iordy. Return 1780 * -1 if no iordy mode is available. 1781 */ 1782 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1783 { 1784 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1785 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1786 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1787 /* Is the speed faster than the drive allows non IORDY ? */ 1788 if (pio) { 1789 /* This is cycle times not frequency - watch the logic! */ 1790 if (pio > 240) /* PIO2 is 240nS per cycle */ 1791 return 3 << ATA_SHIFT_PIO; 1792 return 7 << ATA_SHIFT_PIO; 1793 } 1794 } 1795 return 3 << ATA_SHIFT_PIO; 1796 } 1797 1798 /** 1799 * ata_do_dev_read_id - default ID read method 1800 * @dev: device 1801 * @tf: proposed taskfile 1802 * @id: data buffer 1803 * 1804 * Issue the identify taskfile and hand back the buffer containing 1805 * identify data. For some RAID controllers and for pre ATA devices 1806 * this function is wrapped or replaced by the driver 1807 */ 1808 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1809 struct ata_taskfile *tf, u16 *id) 1810 { 1811 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1812 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1813 } 1814 1815 /** 1816 * ata_dev_read_id - Read ID data from the specified device 1817 * @dev: target device 1818 * @p_class: pointer to class of the target device (may be changed) 1819 * @flags: ATA_READID_* flags 1820 * @id: buffer to read IDENTIFY data into 1821 * 1822 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1823 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1824 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1825 * for pre-ATA4 drives. 1826 * 1827 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1828 * now we abort if we hit that case. 1829 * 1830 * LOCKING: 1831 * Kernel thread context (may sleep) 1832 * 1833 * RETURNS: 1834 * 0 on success, -errno otherwise. 1835 */ 1836 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1837 unsigned int flags, u16 *id) 1838 { 1839 struct ata_port *ap = dev->link->ap; 1840 unsigned int class = *p_class; 1841 struct ata_taskfile tf; 1842 unsigned int err_mask = 0; 1843 const char *reason; 1844 bool is_semb = class == ATA_DEV_SEMB; 1845 int may_fallback = 1, tried_spinup = 0; 1846 int rc; 1847 1848 if (ata_msg_ctl(ap)) 1849 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1850 1851 retry: 1852 ata_tf_init(dev, &tf); 1853 1854 switch (class) { 1855 case ATA_DEV_SEMB: 1856 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1857 /* fall through */ 1858 case ATA_DEV_ATA: 1859 case ATA_DEV_ZAC: 1860 tf.command = ATA_CMD_ID_ATA; 1861 break; 1862 case ATA_DEV_ATAPI: 1863 tf.command = ATA_CMD_ID_ATAPI; 1864 break; 1865 default: 1866 rc = -ENODEV; 1867 reason = "unsupported class"; 1868 goto err_out; 1869 } 1870 1871 tf.protocol = ATA_PROT_PIO; 1872 1873 /* Some devices choke if TF registers contain garbage. Make 1874 * sure those are properly initialized. 1875 */ 1876 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1877 1878 /* Device presence detection is unreliable on some 1879 * controllers. Always poll IDENTIFY if available. 1880 */ 1881 tf.flags |= ATA_TFLAG_POLLING; 1882 1883 if (ap->ops->read_id) 1884 err_mask = ap->ops->read_id(dev, &tf, id); 1885 else 1886 err_mask = ata_do_dev_read_id(dev, &tf, id); 1887 1888 if (err_mask) { 1889 if (err_mask & AC_ERR_NODEV_HINT) { 1890 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1891 return -ENOENT; 1892 } 1893 1894 if (is_semb) { 1895 ata_dev_info(dev, 1896 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1897 /* SEMB is not supported yet */ 1898 *p_class = ATA_DEV_SEMB_UNSUP; 1899 return 0; 1900 } 1901 1902 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1903 /* Device or controller might have reported 1904 * the wrong device class. Give a shot at the 1905 * other IDENTIFY if the current one is 1906 * aborted by the device. 1907 */ 1908 if (may_fallback) { 1909 may_fallback = 0; 1910 1911 if (class == ATA_DEV_ATA) 1912 class = ATA_DEV_ATAPI; 1913 else 1914 class = ATA_DEV_ATA; 1915 goto retry; 1916 } 1917 1918 /* Control reaches here iff the device aborted 1919 * both flavors of IDENTIFYs which happens 1920 * sometimes with phantom devices. 1921 */ 1922 ata_dev_dbg(dev, 1923 "both IDENTIFYs aborted, assuming NODEV\n"); 1924 return -ENOENT; 1925 } 1926 1927 rc = -EIO; 1928 reason = "I/O error"; 1929 goto err_out; 1930 } 1931 1932 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1933 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1934 "class=%d may_fallback=%d tried_spinup=%d\n", 1935 class, may_fallback, tried_spinup); 1936 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1937 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1938 } 1939 1940 /* Falling back doesn't make sense if ID data was read 1941 * successfully at least once. 1942 */ 1943 may_fallback = 0; 1944 1945 swap_buf_le16(id, ATA_ID_WORDS); 1946 1947 /* sanity check */ 1948 rc = -EINVAL; 1949 reason = "device reports invalid type"; 1950 1951 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1952 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1953 goto err_out; 1954 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1955 ata_id_is_ata(id)) { 1956 ata_dev_dbg(dev, 1957 "host indicates ignore ATA devices, ignored\n"); 1958 return -ENOENT; 1959 } 1960 } else { 1961 if (ata_id_is_ata(id)) 1962 goto err_out; 1963 } 1964 1965 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1966 tried_spinup = 1; 1967 /* 1968 * Drive powered-up in standby mode, and requires a specific 1969 * SET_FEATURES spin-up subcommand before it will accept 1970 * anything other than the original IDENTIFY command. 1971 */ 1972 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1973 if (err_mask && id[2] != 0x738c) { 1974 rc = -EIO; 1975 reason = "SPINUP failed"; 1976 goto err_out; 1977 } 1978 /* 1979 * If the drive initially returned incomplete IDENTIFY info, 1980 * we now must reissue the IDENTIFY command. 1981 */ 1982 if (id[2] == 0x37c8) 1983 goto retry; 1984 } 1985 1986 if ((flags & ATA_READID_POSTRESET) && 1987 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1988 /* 1989 * The exact sequence expected by certain pre-ATA4 drives is: 1990 * SRST RESET 1991 * IDENTIFY (optional in early ATA) 1992 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1993 * anything else.. 1994 * Some drives were very specific about that exact sequence. 1995 * 1996 * Note that ATA4 says lba is mandatory so the second check 1997 * should never trigger. 1998 */ 1999 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2000 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2001 if (err_mask) { 2002 rc = -EIO; 2003 reason = "INIT_DEV_PARAMS failed"; 2004 goto err_out; 2005 } 2006 2007 /* current CHS translation info (id[53-58]) might be 2008 * changed. reread the identify device info. 2009 */ 2010 flags &= ~ATA_READID_POSTRESET; 2011 goto retry; 2012 } 2013 } 2014 2015 *p_class = class; 2016 2017 return 0; 2018 2019 err_out: 2020 if (ata_msg_warn(ap)) 2021 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2022 reason, err_mask); 2023 return rc; 2024 } 2025 2026 /** 2027 * ata_read_log_page - read a specific log page 2028 * @dev: target device 2029 * @log: log to read 2030 * @page: page to read 2031 * @buf: buffer to store read page 2032 * @sectors: number of sectors to read 2033 * 2034 * Read log page using READ_LOG_EXT command. 2035 * 2036 * LOCKING: 2037 * Kernel thread context (may sleep). 2038 * 2039 * RETURNS: 2040 * 0 on success, AC_ERR_* mask otherwise. 2041 */ 2042 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 2043 u8 page, void *buf, unsigned int sectors) 2044 { 2045 unsigned long ap_flags = dev->link->ap->flags; 2046 struct ata_taskfile tf; 2047 unsigned int err_mask; 2048 bool dma = false; 2049 2050 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page); 2051 2052 /* 2053 * Return error without actually issuing the command on controllers 2054 * which e.g. lockup on a read log page. 2055 */ 2056 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2057 return AC_ERR_DEV; 2058 2059 retry: 2060 ata_tf_init(dev, &tf); 2061 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) && 2062 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2063 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2064 tf.protocol = ATA_PROT_DMA; 2065 dma = true; 2066 } else { 2067 tf.command = ATA_CMD_READ_LOG_EXT; 2068 tf.protocol = ATA_PROT_PIO; 2069 dma = false; 2070 } 2071 tf.lbal = log; 2072 tf.lbam = page; 2073 tf.nsect = sectors; 2074 tf.hob_nsect = sectors >> 8; 2075 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2076 2077 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2078 buf, sectors * ATA_SECT_SIZE, 0); 2079 2080 if (err_mask && dma) { 2081 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2082 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n"); 2083 goto retry; 2084 } 2085 2086 DPRINTK("EXIT, err_mask=%x\n", err_mask); 2087 return err_mask; 2088 } 2089 2090 static bool ata_log_supported(struct ata_device *dev, u8 log) 2091 { 2092 struct ata_port *ap = dev->link->ap; 2093 2094 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2095 return false; 2096 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; 2097 } 2098 2099 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2100 { 2101 struct ata_port *ap = dev->link->ap; 2102 unsigned int err, i; 2103 2104 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2105 ata_dev_warn(dev, "ATA Identify Device Log not supported\n"); 2106 return false; 2107 } 2108 2109 /* 2110 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2111 * supported. 2112 */ 2113 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2114 1); 2115 if (err) { 2116 ata_dev_info(dev, 2117 "failed to get Device Identify Log Emask 0x%x\n", 2118 err); 2119 return false; 2120 } 2121 2122 for (i = 0; i < ap->sector_buf[8]; i++) { 2123 if (ap->sector_buf[9 + i] == page) 2124 return true; 2125 } 2126 2127 return false; 2128 } 2129 2130 static int ata_do_link_spd_horkage(struct ata_device *dev) 2131 { 2132 struct ata_link *plink = ata_dev_phys_link(dev); 2133 u32 target, target_limit; 2134 2135 if (!sata_scr_valid(plink)) 2136 return 0; 2137 2138 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2139 target = 1; 2140 else 2141 return 0; 2142 2143 target_limit = (1 << target) - 1; 2144 2145 /* if already on stricter limit, no need to push further */ 2146 if (plink->sata_spd_limit <= target_limit) 2147 return 0; 2148 2149 plink->sata_spd_limit = target_limit; 2150 2151 /* Request another EH round by returning -EAGAIN if link is 2152 * going faster than the target speed. Forward progress is 2153 * guaranteed by setting sata_spd_limit to target_limit above. 2154 */ 2155 if (plink->sata_spd > target) { 2156 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2157 sata_spd_string(target)); 2158 return -EAGAIN; 2159 } 2160 return 0; 2161 } 2162 2163 static inline u8 ata_dev_knobble(struct ata_device *dev) 2164 { 2165 struct ata_port *ap = dev->link->ap; 2166 2167 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2168 return 0; 2169 2170 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2171 } 2172 2173 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2174 { 2175 struct ata_port *ap = dev->link->ap; 2176 unsigned int err_mask; 2177 2178 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2179 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2180 return; 2181 } 2182 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2183 0, ap->sector_buf, 1); 2184 if (err_mask) { 2185 ata_dev_dbg(dev, 2186 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2187 err_mask); 2188 } else { 2189 u8 *cmds = dev->ncq_send_recv_cmds; 2190 2191 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2192 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2193 2194 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2195 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2196 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2197 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2198 } 2199 } 2200 } 2201 2202 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2203 { 2204 struct ata_port *ap = dev->link->ap; 2205 unsigned int err_mask; 2206 2207 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2208 ata_dev_warn(dev, 2209 "NCQ Send/Recv Log not supported\n"); 2210 return; 2211 } 2212 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2213 0, ap->sector_buf, 1); 2214 if (err_mask) { 2215 ata_dev_dbg(dev, 2216 "failed to get NCQ Non-Data Log Emask 0x%x\n", 2217 err_mask); 2218 } else { 2219 u8 *cmds = dev->ncq_non_data_cmds; 2220 2221 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2222 } 2223 } 2224 2225 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2226 { 2227 struct ata_port *ap = dev->link->ap; 2228 unsigned int err_mask; 2229 2230 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) { 2231 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2232 return; 2233 } 2234 2235 err_mask = ata_read_log_page(dev, 2236 ATA_LOG_IDENTIFY_DEVICE, 2237 ATA_LOG_SATA_SETTINGS, 2238 ap->sector_buf, 2239 1); 2240 if (err_mask) { 2241 ata_dev_dbg(dev, 2242 "failed to get Identify Device data, Emask 0x%x\n", 2243 err_mask); 2244 return; 2245 } 2246 2247 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) { 2248 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2249 } else { 2250 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2251 ata_dev_dbg(dev, "SATA page does not support priority\n"); 2252 } 2253 2254 } 2255 2256 static int ata_dev_config_ncq(struct ata_device *dev, 2257 char *desc, size_t desc_sz) 2258 { 2259 struct ata_port *ap = dev->link->ap; 2260 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2261 unsigned int err_mask; 2262 char *aa_desc = ""; 2263 2264 if (!ata_id_has_ncq(dev->id)) { 2265 desc[0] = '\0'; 2266 return 0; 2267 } 2268 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2269 snprintf(desc, desc_sz, "NCQ (not used)"); 2270 return 0; 2271 } 2272 if (ap->flags & ATA_FLAG_NCQ) { 2273 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2274 dev->flags |= ATA_DFLAG_NCQ; 2275 } 2276 2277 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2278 (ap->flags & ATA_FLAG_FPDMA_AA) && 2279 ata_id_has_fpdma_aa(dev->id)) { 2280 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2281 SATA_FPDMA_AA); 2282 if (err_mask) { 2283 ata_dev_err(dev, 2284 "failed to enable AA (error_mask=0x%x)\n", 2285 err_mask); 2286 if (err_mask != AC_ERR_DEV) { 2287 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2288 return -EIO; 2289 } 2290 } else 2291 aa_desc = ", AA"; 2292 } 2293 2294 if (hdepth >= ddepth) 2295 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2296 else 2297 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2298 ddepth, aa_desc); 2299 2300 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2301 if (ata_id_has_ncq_send_and_recv(dev->id)) 2302 ata_dev_config_ncq_send_recv(dev); 2303 if (ata_id_has_ncq_non_data(dev->id)) 2304 ata_dev_config_ncq_non_data(dev); 2305 if (ata_id_has_ncq_prio(dev->id)) 2306 ata_dev_config_ncq_prio(dev); 2307 } 2308 2309 return 0; 2310 } 2311 2312 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2313 { 2314 unsigned int err_mask; 2315 2316 if (!ata_id_has_sense_reporting(dev->id)) 2317 return; 2318 2319 if (ata_id_sense_reporting_enabled(dev->id)) 2320 return; 2321 2322 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2323 if (err_mask) { 2324 ata_dev_dbg(dev, 2325 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2326 err_mask); 2327 } 2328 } 2329 2330 static void ata_dev_config_zac(struct ata_device *dev) 2331 { 2332 struct ata_port *ap = dev->link->ap; 2333 unsigned int err_mask; 2334 u8 *identify_buf = ap->sector_buf; 2335 2336 dev->zac_zones_optimal_open = U32_MAX; 2337 dev->zac_zones_optimal_nonseq = U32_MAX; 2338 dev->zac_zones_max_open = U32_MAX; 2339 2340 /* 2341 * Always set the 'ZAC' flag for Host-managed devices. 2342 */ 2343 if (dev->class == ATA_DEV_ZAC) 2344 dev->flags |= ATA_DFLAG_ZAC; 2345 else if (ata_id_zoned_cap(dev->id) == 0x01) 2346 /* 2347 * Check for host-aware devices. 2348 */ 2349 dev->flags |= ATA_DFLAG_ZAC; 2350 2351 if (!(dev->flags & ATA_DFLAG_ZAC)) 2352 return; 2353 2354 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2355 ata_dev_warn(dev, 2356 "ATA Zoned Information Log not supported\n"); 2357 return; 2358 } 2359 2360 /* 2361 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2362 */ 2363 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2364 ATA_LOG_ZONED_INFORMATION, 2365 identify_buf, 1); 2366 if (!err_mask) { 2367 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2368 2369 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2370 if ((zoned_cap >> 63)) 2371 dev->zac_zoned_cap = (zoned_cap & 1); 2372 opt_open = get_unaligned_le64(&identify_buf[24]); 2373 if ((opt_open >> 63)) 2374 dev->zac_zones_optimal_open = (u32)opt_open; 2375 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2376 if ((opt_nonseq >> 63)) 2377 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2378 max_open = get_unaligned_le64(&identify_buf[40]); 2379 if ((max_open >> 63)) 2380 dev->zac_zones_max_open = (u32)max_open; 2381 } 2382 } 2383 2384 static void ata_dev_config_trusted(struct ata_device *dev) 2385 { 2386 struct ata_port *ap = dev->link->ap; 2387 u64 trusted_cap; 2388 unsigned int err; 2389 2390 if (!ata_id_has_trusted(dev->id)) 2391 return; 2392 2393 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2394 ata_dev_warn(dev, 2395 "Security Log not supported\n"); 2396 return; 2397 } 2398 2399 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2400 ap->sector_buf, 1); 2401 if (err) { 2402 ata_dev_dbg(dev, 2403 "failed to read Security Log, Emask 0x%x\n", err); 2404 return; 2405 } 2406 2407 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2408 if (!(trusted_cap & (1ULL << 63))) { 2409 ata_dev_dbg(dev, 2410 "Trusted Computing capability qword not valid!\n"); 2411 return; 2412 } 2413 2414 if (trusted_cap & (1 << 0)) 2415 dev->flags |= ATA_DFLAG_TRUSTED; 2416 } 2417 2418 /** 2419 * ata_dev_configure - Configure the specified ATA/ATAPI device 2420 * @dev: Target device to configure 2421 * 2422 * Configure @dev according to @dev->id. Generic and low-level 2423 * driver specific fixups are also applied. 2424 * 2425 * LOCKING: 2426 * Kernel thread context (may sleep) 2427 * 2428 * RETURNS: 2429 * 0 on success, -errno otherwise 2430 */ 2431 int ata_dev_configure(struct ata_device *dev) 2432 { 2433 struct ata_port *ap = dev->link->ap; 2434 struct ata_eh_context *ehc = &dev->link->eh_context; 2435 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2436 const u16 *id = dev->id; 2437 unsigned long xfer_mask; 2438 unsigned int err_mask; 2439 char revbuf[7]; /* XYZ-99\0 */ 2440 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2441 char modelbuf[ATA_ID_PROD_LEN+1]; 2442 int rc; 2443 2444 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2445 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2446 return 0; 2447 } 2448 2449 if (ata_msg_probe(ap)) 2450 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2451 2452 /* set horkage */ 2453 dev->horkage |= ata_dev_blacklisted(dev); 2454 ata_force_horkage(dev); 2455 2456 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2457 ata_dev_info(dev, "unsupported device, disabling\n"); 2458 ata_dev_disable(dev); 2459 return 0; 2460 } 2461 2462 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2463 dev->class == ATA_DEV_ATAPI) { 2464 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2465 atapi_enabled ? "not supported with this driver" 2466 : "disabled"); 2467 ata_dev_disable(dev); 2468 return 0; 2469 } 2470 2471 rc = ata_do_link_spd_horkage(dev); 2472 if (rc) 2473 return rc; 2474 2475 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2476 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2477 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2478 dev->horkage |= ATA_HORKAGE_NOLPM; 2479 2480 if (ap->flags & ATA_FLAG_NO_LPM) 2481 dev->horkage |= ATA_HORKAGE_NOLPM; 2482 2483 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2484 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2485 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2486 } 2487 2488 /* let ACPI work its magic */ 2489 rc = ata_acpi_on_devcfg(dev); 2490 if (rc) 2491 return rc; 2492 2493 /* massage HPA, do it early as it might change IDENTIFY data */ 2494 rc = ata_hpa_resize(dev); 2495 if (rc) 2496 return rc; 2497 2498 /* print device capabilities */ 2499 if (ata_msg_probe(ap)) 2500 ata_dev_dbg(dev, 2501 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2502 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2503 __func__, 2504 id[49], id[82], id[83], id[84], 2505 id[85], id[86], id[87], id[88]); 2506 2507 /* initialize to-be-configured parameters */ 2508 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2509 dev->max_sectors = 0; 2510 dev->cdb_len = 0; 2511 dev->n_sectors = 0; 2512 dev->cylinders = 0; 2513 dev->heads = 0; 2514 dev->sectors = 0; 2515 dev->multi_count = 0; 2516 2517 /* 2518 * common ATA, ATAPI feature tests 2519 */ 2520 2521 /* find max transfer mode; for printk only */ 2522 xfer_mask = ata_id_xfermask(id); 2523 2524 if (ata_msg_probe(ap)) 2525 ata_dump_id(id); 2526 2527 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2528 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2529 sizeof(fwrevbuf)); 2530 2531 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2532 sizeof(modelbuf)); 2533 2534 /* ATA-specific feature tests */ 2535 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2536 if (ata_id_is_cfa(id)) { 2537 /* CPRM may make this media unusable */ 2538 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2539 ata_dev_warn(dev, 2540 "supports DRM functions and may not be fully accessible\n"); 2541 snprintf(revbuf, 7, "CFA"); 2542 } else { 2543 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2544 /* Warn the user if the device has TPM extensions */ 2545 if (ata_id_has_tpm(id)) 2546 ata_dev_warn(dev, 2547 "supports DRM functions and may not be fully accessible\n"); 2548 } 2549 2550 dev->n_sectors = ata_id_n_sectors(id); 2551 2552 /* get current R/W Multiple count setting */ 2553 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2554 unsigned int max = dev->id[47] & 0xff; 2555 unsigned int cnt = dev->id[59] & 0xff; 2556 /* only recognize/allow powers of two here */ 2557 if (is_power_of_2(max) && is_power_of_2(cnt)) 2558 if (cnt <= max) 2559 dev->multi_count = cnt; 2560 } 2561 2562 if (ata_id_has_lba(id)) { 2563 const char *lba_desc; 2564 char ncq_desc[24]; 2565 2566 lba_desc = "LBA"; 2567 dev->flags |= ATA_DFLAG_LBA; 2568 if (ata_id_has_lba48(id)) { 2569 dev->flags |= ATA_DFLAG_LBA48; 2570 lba_desc = "LBA48"; 2571 2572 if (dev->n_sectors >= (1UL << 28) && 2573 ata_id_has_flush_ext(id)) 2574 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2575 } 2576 2577 /* config NCQ */ 2578 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2579 if (rc) 2580 return rc; 2581 2582 /* print device info to dmesg */ 2583 if (ata_msg_drv(ap) && print_info) { 2584 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2585 revbuf, modelbuf, fwrevbuf, 2586 ata_mode_string(xfer_mask)); 2587 ata_dev_info(dev, 2588 "%llu sectors, multi %u: %s %s\n", 2589 (unsigned long long)dev->n_sectors, 2590 dev->multi_count, lba_desc, ncq_desc); 2591 } 2592 } else { 2593 /* CHS */ 2594 2595 /* Default translation */ 2596 dev->cylinders = id[1]; 2597 dev->heads = id[3]; 2598 dev->sectors = id[6]; 2599 2600 if (ata_id_current_chs_valid(id)) { 2601 /* Current CHS translation is valid. */ 2602 dev->cylinders = id[54]; 2603 dev->heads = id[55]; 2604 dev->sectors = id[56]; 2605 } 2606 2607 /* print device info to dmesg */ 2608 if (ata_msg_drv(ap) && print_info) { 2609 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2610 revbuf, modelbuf, fwrevbuf, 2611 ata_mode_string(xfer_mask)); 2612 ata_dev_info(dev, 2613 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2614 (unsigned long long)dev->n_sectors, 2615 dev->multi_count, dev->cylinders, 2616 dev->heads, dev->sectors); 2617 } 2618 } 2619 2620 /* Check and mark DevSlp capability. Get DevSlp timing variables 2621 * from SATA Settings page of Identify Device Data Log. 2622 */ 2623 if (ata_id_has_devslp(dev->id)) { 2624 u8 *sata_setting = ap->sector_buf; 2625 int i, j; 2626 2627 dev->flags |= ATA_DFLAG_DEVSLP; 2628 err_mask = ata_read_log_page(dev, 2629 ATA_LOG_IDENTIFY_DEVICE, 2630 ATA_LOG_SATA_SETTINGS, 2631 sata_setting, 2632 1); 2633 if (err_mask) 2634 ata_dev_dbg(dev, 2635 "failed to get Identify Device Data, Emask 0x%x\n", 2636 err_mask); 2637 else 2638 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2639 j = ATA_LOG_DEVSLP_OFFSET + i; 2640 dev->devslp_timing[i] = sata_setting[j]; 2641 } 2642 } 2643 ata_dev_config_sense_reporting(dev); 2644 ata_dev_config_zac(dev); 2645 ata_dev_config_trusted(dev); 2646 dev->cdb_len = 32; 2647 } 2648 2649 /* ATAPI-specific feature tests */ 2650 else if (dev->class == ATA_DEV_ATAPI) { 2651 const char *cdb_intr_string = ""; 2652 const char *atapi_an_string = ""; 2653 const char *dma_dir_string = ""; 2654 u32 sntf; 2655 2656 rc = atapi_cdb_len(id); 2657 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2658 if (ata_msg_warn(ap)) 2659 ata_dev_warn(dev, "unsupported CDB len\n"); 2660 rc = -EINVAL; 2661 goto err_out_nosup; 2662 } 2663 dev->cdb_len = (unsigned int) rc; 2664 2665 /* Enable ATAPI AN if both the host and device have 2666 * the support. If PMP is attached, SNTF is required 2667 * to enable ATAPI AN to discern between PHY status 2668 * changed notifications and ATAPI ANs. 2669 */ 2670 if (atapi_an && 2671 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2672 (!sata_pmp_attached(ap) || 2673 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2674 /* issue SET feature command to turn this on */ 2675 err_mask = ata_dev_set_feature(dev, 2676 SETFEATURES_SATA_ENABLE, SATA_AN); 2677 if (err_mask) 2678 ata_dev_err(dev, 2679 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2680 err_mask); 2681 else { 2682 dev->flags |= ATA_DFLAG_AN; 2683 atapi_an_string = ", ATAPI AN"; 2684 } 2685 } 2686 2687 if (ata_id_cdb_intr(dev->id)) { 2688 dev->flags |= ATA_DFLAG_CDB_INTR; 2689 cdb_intr_string = ", CDB intr"; 2690 } 2691 2692 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2693 dev->flags |= ATA_DFLAG_DMADIR; 2694 dma_dir_string = ", DMADIR"; 2695 } 2696 2697 if (ata_id_has_da(dev->id)) { 2698 dev->flags |= ATA_DFLAG_DA; 2699 zpodd_init(dev); 2700 } 2701 2702 /* print device info to dmesg */ 2703 if (ata_msg_drv(ap) && print_info) 2704 ata_dev_info(dev, 2705 "ATAPI: %s, %s, max %s%s%s%s\n", 2706 modelbuf, fwrevbuf, 2707 ata_mode_string(xfer_mask), 2708 cdb_intr_string, atapi_an_string, 2709 dma_dir_string); 2710 } 2711 2712 /* determine max_sectors */ 2713 dev->max_sectors = ATA_MAX_SECTORS; 2714 if (dev->flags & ATA_DFLAG_LBA48) 2715 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2716 2717 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2718 200 sectors */ 2719 if (ata_dev_knobble(dev)) { 2720 if (ata_msg_drv(ap) && print_info) 2721 ata_dev_info(dev, "applying bridge limits\n"); 2722 dev->udma_mask &= ATA_UDMA5; 2723 dev->max_sectors = ATA_MAX_SECTORS; 2724 } 2725 2726 if ((dev->class == ATA_DEV_ATAPI) && 2727 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2728 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2729 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2730 } 2731 2732 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2733 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2734 dev->max_sectors); 2735 2736 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2737 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2738 dev->max_sectors); 2739 2740 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2741 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2742 2743 if (ap->ops->dev_config) 2744 ap->ops->dev_config(dev); 2745 2746 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2747 /* Let the user know. We don't want to disallow opens for 2748 rescue purposes, or in case the vendor is just a blithering 2749 idiot. Do this after the dev_config call as some controllers 2750 with buggy firmware may want to avoid reporting false device 2751 bugs */ 2752 2753 if (print_info) { 2754 ata_dev_warn(dev, 2755 "Drive reports diagnostics failure. This may indicate a drive\n"); 2756 ata_dev_warn(dev, 2757 "fault or invalid emulation. Contact drive vendor for information.\n"); 2758 } 2759 } 2760 2761 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2762 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2763 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2764 } 2765 2766 return 0; 2767 2768 err_out_nosup: 2769 if (ata_msg_probe(ap)) 2770 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2771 return rc; 2772 } 2773 2774 /** 2775 * ata_cable_40wire - return 40 wire cable type 2776 * @ap: port 2777 * 2778 * Helper method for drivers which want to hardwire 40 wire cable 2779 * detection. 2780 */ 2781 2782 int ata_cable_40wire(struct ata_port *ap) 2783 { 2784 return ATA_CBL_PATA40; 2785 } 2786 2787 /** 2788 * ata_cable_80wire - return 80 wire cable type 2789 * @ap: port 2790 * 2791 * Helper method for drivers which want to hardwire 80 wire cable 2792 * detection. 2793 */ 2794 2795 int ata_cable_80wire(struct ata_port *ap) 2796 { 2797 return ATA_CBL_PATA80; 2798 } 2799 2800 /** 2801 * ata_cable_unknown - return unknown PATA cable. 2802 * @ap: port 2803 * 2804 * Helper method for drivers which have no PATA cable detection. 2805 */ 2806 2807 int ata_cable_unknown(struct ata_port *ap) 2808 { 2809 return ATA_CBL_PATA_UNK; 2810 } 2811 2812 /** 2813 * ata_cable_ignore - return ignored PATA cable. 2814 * @ap: port 2815 * 2816 * Helper method for drivers which don't use cable type to limit 2817 * transfer mode. 2818 */ 2819 int ata_cable_ignore(struct ata_port *ap) 2820 { 2821 return ATA_CBL_PATA_IGN; 2822 } 2823 2824 /** 2825 * ata_cable_sata - return SATA cable type 2826 * @ap: port 2827 * 2828 * Helper method for drivers which have SATA cables 2829 */ 2830 2831 int ata_cable_sata(struct ata_port *ap) 2832 { 2833 return ATA_CBL_SATA; 2834 } 2835 2836 /** 2837 * ata_bus_probe - Reset and probe ATA bus 2838 * @ap: Bus to probe 2839 * 2840 * Master ATA bus probing function. Initiates a hardware-dependent 2841 * bus reset, then attempts to identify any devices found on 2842 * the bus. 2843 * 2844 * LOCKING: 2845 * PCI/etc. bus probe sem. 2846 * 2847 * RETURNS: 2848 * Zero on success, negative errno otherwise. 2849 */ 2850 2851 int ata_bus_probe(struct ata_port *ap) 2852 { 2853 unsigned int classes[ATA_MAX_DEVICES]; 2854 int tries[ATA_MAX_DEVICES]; 2855 int rc; 2856 struct ata_device *dev; 2857 2858 ata_for_each_dev(dev, &ap->link, ALL) 2859 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2860 2861 retry: 2862 ata_for_each_dev(dev, &ap->link, ALL) { 2863 /* If we issue an SRST then an ATA drive (not ATAPI) 2864 * may change configuration and be in PIO0 timing. If 2865 * we do a hard reset (or are coming from power on) 2866 * this is true for ATA or ATAPI. Until we've set a 2867 * suitable controller mode we should not touch the 2868 * bus as we may be talking too fast. 2869 */ 2870 dev->pio_mode = XFER_PIO_0; 2871 dev->dma_mode = 0xff; 2872 2873 /* If the controller has a pio mode setup function 2874 * then use it to set the chipset to rights. Don't 2875 * touch the DMA setup as that will be dealt with when 2876 * configuring devices. 2877 */ 2878 if (ap->ops->set_piomode) 2879 ap->ops->set_piomode(ap, dev); 2880 } 2881 2882 /* reset and determine device classes */ 2883 ap->ops->phy_reset(ap); 2884 2885 ata_for_each_dev(dev, &ap->link, ALL) { 2886 if (dev->class != ATA_DEV_UNKNOWN) 2887 classes[dev->devno] = dev->class; 2888 else 2889 classes[dev->devno] = ATA_DEV_NONE; 2890 2891 dev->class = ATA_DEV_UNKNOWN; 2892 } 2893 2894 /* read IDENTIFY page and configure devices. We have to do the identify 2895 specific sequence bass-ackwards so that PDIAG- is released by 2896 the slave device */ 2897 2898 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2899 if (tries[dev->devno]) 2900 dev->class = classes[dev->devno]; 2901 2902 if (!ata_dev_enabled(dev)) 2903 continue; 2904 2905 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2906 dev->id); 2907 if (rc) 2908 goto fail; 2909 } 2910 2911 /* Now ask for the cable type as PDIAG- should have been released */ 2912 if (ap->ops->cable_detect) 2913 ap->cbl = ap->ops->cable_detect(ap); 2914 2915 /* We may have SATA bridge glue hiding here irrespective of 2916 * the reported cable types and sensed types. When SATA 2917 * drives indicate we have a bridge, we don't know which end 2918 * of the link the bridge is which is a problem. 2919 */ 2920 ata_for_each_dev(dev, &ap->link, ENABLED) 2921 if (ata_id_is_sata(dev->id)) 2922 ap->cbl = ATA_CBL_SATA; 2923 2924 /* After the identify sequence we can now set up the devices. We do 2925 this in the normal order so that the user doesn't get confused */ 2926 2927 ata_for_each_dev(dev, &ap->link, ENABLED) { 2928 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2929 rc = ata_dev_configure(dev); 2930 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2931 if (rc) 2932 goto fail; 2933 } 2934 2935 /* configure transfer mode */ 2936 rc = ata_set_mode(&ap->link, &dev); 2937 if (rc) 2938 goto fail; 2939 2940 ata_for_each_dev(dev, &ap->link, ENABLED) 2941 return 0; 2942 2943 return -ENODEV; 2944 2945 fail: 2946 tries[dev->devno]--; 2947 2948 switch (rc) { 2949 case -EINVAL: 2950 /* eeek, something went very wrong, give up */ 2951 tries[dev->devno] = 0; 2952 break; 2953 2954 case -ENODEV: 2955 /* give it just one more chance */ 2956 tries[dev->devno] = min(tries[dev->devno], 1); 2957 /* fall through */ 2958 case -EIO: 2959 if (tries[dev->devno] == 1) { 2960 /* This is the last chance, better to slow 2961 * down than lose it. 2962 */ 2963 sata_down_spd_limit(&ap->link, 0); 2964 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2965 } 2966 } 2967 2968 if (!tries[dev->devno]) 2969 ata_dev_disable(dev); 2970 2971 goto retry; 2972 } 2973 2974 /** 2975 * sata_print_link_status - Print SATA link status 2976 * @link: SATA link to printk link status about 2977 * 2978 * This function prints link speed and status of a SATA link. 2979 * 2980 * LOCKING: 2981 * None. 2982 */ 2983 static void sata_print_link_status(struct ata_link *link) 2984 { 2985 u32 sstatus, scontrol, tmp; 2986 2987 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2988 return; 2989 sata_scr_read(link, SCR_CONTROL, &scontrol); 2990 2991 if (ata_phys_link_online(link)) { 2992 tmp = (sstatus >> 4) & 0xf; 2993 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2994 sata_spd_string(tmp), sstatus, scontrol); 2995 } else { 2996 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2997 sstatus, scontrol); 2998 } 2999 } 3000 3001 /** 3002 * ata_dev_pair - return other device on cable 3003 * @adev: device 3004 * 3005 * Obtain the other device on the same cable, or if none is 3006 * present NULL is returned 3007 */ 3008 3009 struct ata_device *ata_dev_pair(struct ata_device *adev) 3010 { 3011 struct ata_link *link = adev->link; 3012 struct ata_device *pair = &link->device[1 - adev->devno]; 3013 if (!ata_dev_enabled(pair)) 3014 return NULL; 3015 return pair; 3016 } 3017 3018 /** 3019 * sata_down_spd_limit - adjust SATA spd limit downward 3020 * @link: Link to adjust SATA spd limit for 3021 * @spd_limit: Additional limit 3022 * 3023 * Adjust SATA spd limit of @link downward. Note that this 3024 * function only adjusts the limit. The change must be applied 3025 * using sata_set_spd(). 3026 * 3027 * If @spd_limit is non-zero, the speed is limited to equal to or 3028 * lower than @spd_limit if such speed is supported. If 3029 * @spd_limit is slower than any supported speed, only the lowest 3030 * supported speed is allowed. 3031 * 3032 * LOCKING: 3033 * Inherited from caller. 3034 * 3035 * RETURNS: 3036 * 0 on success, negative errno on failure 3037 */ 3038 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3039 { 3040 u32 sstatus, spd, mask; 3041 int rc, bit; 3042 3043 if (!sata_scr_valid(link)) 3044 return -EOPNOTSUPP; 3045 3046 /* If SCR can be read, use it to determine the current SPD. 3047 * If not, use cached value in link->sata_spd. 3048 */ 3049 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3050 if (rc == 0 && ata_sstatus_online(sstatus)) 3051 spd = (sstatus >> 4) & 0xf; 3052 else 3053 spd = link->sata_spd; 3054 3055 mask = link->sata_spd_limit; 3056 if (mask <= 1) 3057 return -EINVAL; 3058 3059 /* unconditionally mask off the highest bit */ 3060 bit = fls(mask) - 1; 3061 mask &= ~(1 << bit); 3062 3063 /* 3064 * Mask off all speeds higher than or equal to the current one. At 3065 * this point, if current SPD is not available and we previously 3066 * recorded the link speed from SStatus, the driver has already 3067 * masked off the highest bit so mask should already be 1 or 0. 3068 * Otherwise, we should not force 1.5Gbps on a link where we have 3069 * not previously recorded speed from SStatus. Just return in this 3070 * case. 3071 */ 3072 if (spd > 1) 3073 mask &= (1 << (spd - 1)) - 1; 3074 else 3075 return -EINVAL; 3076 3077 /* were we already at the bottom? */ 3078 if (!mask) 3079 return -EINVAL; 3080 3081 if (spd_limit) { 3082 if (mask & ((1 << spd_limit) - 1)) 3083 mask &= (1 << spd_limit) - 1; 3084 else { 3085 bit = ffs(mask) - 1; 3086 mask = 1 << bit; 3087 } 3088 } 3089 3090 link->sata_spd_limit = mask; 3091 3092 ata_link_warn(link, "limiting SATA link speed to %s\n", 3093 sata_spd_string(fls(mask))); 3094 3095 return 0; 3096 } 3097 3098 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 3099 { 3100 struct ata_link *host_link = &link->ap->link; 3101 u32 limit, target, spd; 3102 3103 limit = link->sata_spd_limit; 3104 3105 /* Don't configure downstream link faster than upstream link. 3106 * It doesn't speed up anything and some PMPs choke on such 3107 * configuration. 3108 */ 3109 if (!ata_is_host_link(link) && host_link->sata_spd) 3110 limit &= (1 << host_link->sata_spd) - 1; 3111 3112 if (limit == UINT_MAX) 3113 target = 0; 3114 else 3115 target = fls(limit); 3116 3117 spd = (*scontrol >> 4) & 0xf; 3118 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 3119 3120 return spd != target; 3121 } 3122 3123 /** 3124 * sata_set_spd_needed - is SATA spd configuration needed 3125 * @link: Link in question 3126 * 3127 * Test whether the spd limit in SControl matches 3128 * @link->sata_spd_limit. This function is used to determine 3129 * whether hardreset is necessary to apply SATA spd 3130 * configuration. 3131 * 3132 * LOCKING: 3133 * Inherited from caller. 3134 * 3135 * RETURNS: 3136 * 1 if SATA spd configuration is needed, 0 otherwise. 3137 */ 3138 static int sata_set_spd_needed(struct ata_link *link) 3139 { 3140 u32 scontrol; 3141 3142 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3143 return 1; 3144 3145 return __sata_set_spd_needed(link, &scontrol); 3146 } 3147 3148 /** 3149 * sata_set_spd - set SATA spd according to spd limit 3150 * @link: Link to set SATA spd for 3151 * 3152 * Set SATA spd of @link according to sata_spd_limit. 3153 * 3154 * LOCKING: 3155 * Inherited from caller. 3156 * 3157 * RETURNS: 3158 * 0 if spd doesn't need to be changed, 1 if spd has been 3159 * changed. Negative errno if SCR registers are inaccessible. 3160 */ 3161 int sata_set_spd(struct ata_link *link) 3162 { 3163 u32 scontrol; 3164 int rc; 3165 3166 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3167 return rc; 3168 3169 if (!__sata_set_spd_needed(link, &scontrol)) 3170 return 0; 3171 3172 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3173 return rc; 3174 3175 return 1; 3176 } 3177 3178 /* 3179 * This mode timing computation functionality is ported over from 3180 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3181 */ 3182 /* 3183 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3184 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3185 * for UDMA6, which is currently supported only by Maxtor drives. 3186 * 3187 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3188 */ 3189 3190 static const struct ata_timing ata_timing[] = { 3191 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3192 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3193 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3194 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3195 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3196 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3197 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3198 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3199 3200 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3201 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3202 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3203 3204 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3205 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3206 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3207 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3208 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3209 3210 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3211 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3212 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3213 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3214 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3215 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3216 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3217 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3218 3219 { 0xFF } 3220 }; 3221 3222 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3223 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0) 3224 3225 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3226 { 3227 q->setup = EZ(t->setup, T); 3228 q->act8b = EZ(t->act8b, T); 3229 q->rec8b = EZ(t->rec8b, T); 3230 q->cyc8b = EZ(t->cyc8b, T); 3231 q->active = EZ(t->active, T); 3232 q->recover = EZ(t->recover, T); 3233 q->dmack_hold = EZ(t->dmack_hold, T); 3234 q->cycle = EZ(t->cycle, T); 3235 q->udma = EZ(t->udma, UT); 3236 } 3237 3238 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3239 struct ata_timing *m, unsigned int what) 3240 { 3241 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3242 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3243 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3244 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3245 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3246 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3247 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3248 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3249 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3250 } 3251 3252 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3253 { 3254 const struct ata_timing *t = ata_timing; 3255 3256 while (xfer_mode > t->mode) 3257 t++; 3258 3259 if (xfer_mode == t->mode) 3260 return t; 3261 3262 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 3263 __func__, xfer_mode); 3264 3265 return NULL; 3266 } 3267 3268 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3269 struct ata_timing *t, int T, int UT) 3270 { 3271 const u16 *id = adev->id; 3272 const struct ata_timing *s; 3273 struct ata_timing p; 3274 3275 /* 3276 * Find the mode. 3277 */ 3278 3279 if (!(s = ata_timing_find_mode(speed))) 3280 return -EINVAL; 3281 3282 memcpy(t, s, sizeof(*s)); 3283 3284 /* 3285 * If the drive is an EIDE drive, it can tell us it needs extended 3286 * PIO/MW_DMA cycle timing. 3287 */ 3288 3289 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3290 memset(&p, 0, sizeof(p)); 3291 3292 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 3293 if (speed <= XFER_PIO_2) 3294 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3295 else if ((speed <= XFER_PIO_4) || 3296 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3297 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3298 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3299 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3300 3301 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3302 } 3303 3304 /* 3305 * Convert the timing to bus clock counts. 3306 */ 3307 3308 ata_timing_quantize(t, t, T, UT); 3309 3310 /* 3311 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3312 * S.M.A.R.T * and some other commands. We have to ensure that the 3313 * DMA cycle timing is slower/equal than the fastest PIO timing. 3314 */ 3315 3316 if (speed > XFER_PIO_6) { 3317 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3318 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3319 } 3320 3321 /* 3322 * Lengthen active & recovery time so that cycle time is correct. 3323 */ 3324 3325 if (t->act8b + t->rec8b < t->cyc8b) { 3326 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3327 t->rec8b = t->cyc8b - t->act8b; 3328 } 3329 3330 if (t->active + t->recover < t->cycle) { 3331 t->active += (t->cycle - (t->active + t->recover)) / 2; 3332 t->recover = t->cycle - t->active; 3333 } 3334 3335 /* In a few cases quantisation may produce enough errors to 3336 leave t->cycle too low for the sum of active and recovery 3337 if so we must correct this */ 3338 if (t->active + t->recover > t->cycle) 3339 t->cycle = t->active + t->recover; 3340 3341 return 0; 3342 } 3343 3344 /** 3345 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3346 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3347 * @cycle: cycle duration in ns 3348 * 3349 * Return matching xfer mode for @cycle. The returned mode is of 3350 * the transfer type specified by @xfer_shift. If @cycle is too 3351 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3352 * than the fastest known mode, the fasted mode is returned. 3353 * 3354 * LOCKING: 3355 * None. 3356 * 3357 * RETURNS: 3358 * Matching xfer_mode, 0xff if no match found. 3359 */ 3360 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3361 { 3362 u8 base_mode = 0xff, last_mode = 0xff; 3363 const struct ata_xfer_ent *ent; 3364 const struct ata_timing *t; 3365 3366 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3367 if (ent->shift == xfer_shift) 3368 base_mode = ent->base; 3369 3370 for (t = ata_timing_find_mode(base_mode); 3371 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3372 unsigned short this_cycle; 3373 3374 switch (xfer_shift) { 3375 case ATA_SHIFT_PIO: 3376 case ATA_SHIFT_MWDMA: 3377 this_cycle = t->cycle; 3378 break; 3379 case ATA_SHIFT_UDMA: 3380 this_cycle = t->udma; 3381 break; 3382 default: 3383 return 0xff; 3384 } 3385 3386 if (cycle > this_cycle) 3387 break; 3388 3389 last_mode = t->mode; 3390 } 3391 3392 return last_mode; 3393 } 3394 3395 /** 3396 * ata_down_xfermask_limit - adjust dev xfer masks downward 3397 * @dev: Device to adjust xfer masks 3398 * @sel: ATA_DNXFER_* selector 3399 * 3400 * Adjust xfer masks of @dev downward. Note that this function 3401 * does not apply the change. Invoking ata_set_mode() afterwards 3402 * will apply the limit. 3403 * 3404 * LOCKING: 3405 * Inherited from caller. 3406 * 3407 * RETURNS: 3408 * 0 on success, negative errno on failure 3409 */ 3410 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3411 { 3412 char buf[32]; 3413 unsigned long orig_mask, xfer_mask; 3414 unsigned long pio_mask, mwdma_mask, udma_mask; 3415 int quiet, highbit; 3416 3417 quiet = !!(sel & ATA_DNXFER_QUIET); 3418 sel &= ~ATA_DNXFER_QUIET; 3419 3420 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3421 dev->mwdma_mask, 3422 dev->udma_mask); 3423 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3424 3425 switch (sel) { 3426 case ATA_DNXFER_PIO: 3427 highbit = fls(pio_mask) - 1; 3428 pio_mask &= ~(1 << highbit); 3429 break; 3430 3431 case ATA_DNXFER_DMA: 3432 if (udma_mask) { 3433 highbit = fls(udma_mask) - 1; 3434 udma_mask &= ~(1 << highbit); 3435 if (!udma_mask) 3436 return -ENOENT; 3437 } else if (mwdma_mask) { 3438 highbit = fls(mwdma_mask) - 1; 3439 mwdma_mask &= ~(1 << highbit); 3440 if (!mwdma_mask) 3441 return -ENOENT; 3442 } 3443 break; 3444 3445 case ATA_DNXFER_40C: 3446 udma_mask &= ATA_UDMA_MASK_40C; 3447 break; 3448 3449 case ATA_DNXFER_FORCE_PIO0: 3450 pio_mask &= 1; 3451 /* fall through */ 3452 case ATA_DNXFER_FORCE_PIO: 3453 mwdma_mask = 0; 3454 udma_mask = 0; 3455 break; 3456 3457 default: 3458 BUG(); 3459 } 3460 3461 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3462 3463 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3464 return -ENOENT; 3465 3466 if (!quiet) { 3467 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3468 snprintf(buf, sizeof(buf), "%s:%s", 3469 ata_mode_string(xfer_mask), 3470 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3471 else 3472 snprintf(buf, sizeof(buf), "%s", 3473 ata_mode_string(xfer_mask)); 3474 3475 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3476 } 3477 3478 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3479 &dev->udma_mask); 3480 3481 return 0; 3482 } 3483 3484 static int ata_dev_set_mode(struct ata_device *dev) 3485 { 3486 struct ata_port *ap = dev->link->ap; 3487 struct ata_eh_context *ehc = &dev->link->eh_context; 3488 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3489 const char *dev_err_whine = ""; 3490 int ign_dev_err = 0; 3491 unsigned int err_mask = 0; 3492 int rc; 3493 3494 dev->flags &= ~ATA_DFLAG_PIO; 3495 if (dev->xfer_shift == ATA_SHIFT_PIO) 3496 dev->flags |= ATA_DFLAG_PIO; 3497 3498 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3499 dev_err_whine = " (SET_XFERMODE skipped)"; 3500 else { 3501 if (nosetxfer) 3502 ata_dev_warn(dev, 3503 "NOSETXFER but PATA detected - can't " 3504 "skip SETXFER, might malfunction\n"); 3505 err_mask = ata_dev_set_xfermode(dev); 3506 } 3507 3508 if (err_mask & ~AC_ERR_DEV) 3509 goto fail; 3510 3511 /* revalidate */ 3512 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3513 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3514 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3515 if (rc) 3516 return rc; 3517 3518 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3519 /* Old CFA may refuse this command, which is just fine */ 3520 if (ata_id_is_cfa(dev->id)) 3521 ign_dev_err = 1; 3522 /* Catch several broken garbage emulations plus some pre 3523 ATA devices */ 3524 if (ata_id_major_version(dev->id) == 0 && 3525 dev->pio_mode <= XFER_PIO_2) 3526 ign_dev_err = 1; 3527 /* Some very old devices and some bad newer ones fail 3528 any kind of SET_XFERMODE request but support PIO0-2 3529 timings and no IORDY */ 3530 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3531 ign_dev_err = 1; 3532 } 3533 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3534 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3535 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3536 dev->dma_mode == XFER_MW_DMA_0 && 3537 (dev->id[63] >> 8) & 1) 3538 ign_dev_err = 1; 3539 3540 /* if the device is actually configured correctly, ignore dev err */ 3541 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3542 ign_dev_err = 1; 3543 3544 if (err_mask & AC_ERR_DEV) { 3545 if (!ign_dev_err) 3546 goto fail; 3547 else 3548 dev_err_whine = " (device error ignored)"; 3549 } 3550 3551 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3552 dev->xfer_shift, (int)dev->xfer_mode); 3553 3554 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3555 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3556 ata_dev_info(dev, "configured for %s%s\n", 3557 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3558 dev_err_whine); 3559 3560 return 0; 3561 3562 fail: 3563 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3564 return -EIO; 3565 } 3566 3567 /** 3568 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3569 * @link: link on which timings will be programmed 3570 * @r_failed_dev: out parameter for failed device 3571 * 3572 * Standard implementation of the function used to tune and set 3573 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3574 * ata_dev_set_mode() fails, pointer to the failing device is 3575 * returned in @r_failed_dev. 3576 * 3577 * LOCKING: 3578 * PCI/etc. bus probe sem. 3579 * 3580 * RETURNS: 3581 * 0 on success, negative errno otherwise 3582 */ 3583 3584 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3585 { 3586 struct ata_port *ap = link->ap; 3587 struct ata_device *dev; 3588 int rc = 0, used_dma = 0, found = 0; 3589 3590 /* step 1: calculate xfer_mask */ 3591 ata_for_each_dev(dev, link, ENABLED) { 3592 unsigned long pio_mask, dma_mask; 3593 unsigned int mode_mask; 3594 3595 mode_mask = ATA_DMA_MASK_ATA; 3596 if (dev->class == ATA_DEV_ATAPI) 3597 mode_mask = ATA_DMA_MASK_ATAPI; 3598 else if (ata_id_is_cfa(dev->id)) 3599 mode_mask = ATA_DMA_MASK_CFA; 3600 3601 ata_dev_xfermask(dev); 3602 ata_force_xfermask(dev); 3603 3604 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3605 3606 if (libata_dma_mask & mode_mask) 3607 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3608 dev->udma_mask); 3609 else 3610 dma_mask = 0; 3611 3612 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3613 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3614 3615 found = 1; 3616 if (ata_dma_enabled(dev)) 3617 used_dma = 1; 3618 } 3619 if (!found) 3620 goto out; 3621 3622 /* step 2: always set host PIO timings */ 3623 ata_for_each_dev(dev, link, ENABLED) { 3624 if (dev->pio_mode == 0xff) { 3625 ata_dev_warn(dev, "no PIO support\n"); 3626 rc = -EINVAL; 3627 goto out; 3628 } 3629 3630 dev->xfer_mode = dev->pio_mode; 3631 dev->xfer_shift = ATA_SHIFT_PIO; 3632 if (ap->ops->set_piomode) 3633 ap->ops->set_piomode(ap, dev); 3634 } 3635 3636 /* step 3: set host DMA timings */ 3637 ata_for_each_dev(dev, link, ENABLED) { 3638 if (!ata_dma_enabled(dev)) 3639 continue; 3640 3641 dev->xfer_mode = dev->dma_mode; 3642 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3643 if (ap->ops->set_dmamode) 3644 ap->ops->set_dmamode(ap, dev); 3645 } 3646 3647 /* step 4: update devices' xfer mode */ 3648 ata_for_each_dev(dev, link, ENABLED) { 3649 rc = ata_dev_set_mode(dev); 3650 if (rc) 3651 goto out; 3652 } 3653 3654 /* Record simplex status. If we selected DMA then the other 3655 * host channels are not permitted to do so. 3656 */ 3657 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3658 ap->host->simplex_claimed = ap; 3659 3660 out: 3661 if (rc) 3662 *r_failed_dev = dev; 3663 return rc; 3664 } 3665 3666 /** 3667 * ata_wait_ready - wait for link to become ready 3668 * @link: link to be waited on 3669 * @deadline: deadline jiffies for the operation 3670 * @check_ready: callback to check link readiness 3671 * 3672 * Wait for @link to become ready. @check_ready should return 3673 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3674 * link doesn't seem to be occupied, other errno for other error 3675 * conditions. 3676 * 3677 * Transient -ENODEV conditions are allowed for 3678 * ATA_TMOUT_FF_WAIT. 3679 * 3680 * LOCKING: 3681 * EH context. 3682 * 3683 * RETURNS: 3684 * 0 if @link is ready before @deadline; otherwise, -errno. 3685 */ 3686 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3687 int (*check_ready)(struct ata_link *link)) 3688 { 3689 unsigned long start = jiffies; 3690 unsigned long nodev_deadline; 3691 int warned = 0; 3692 3693 /* choose which 0xff timeout to use, read comment in libata.h */ 3694 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3695 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3696 else 3697 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3698 3699 /* Slave readiness can't be tested separately from master. On 3700 * M/S emulation configuration, this function should be called 3701 * only on the master and it will handle both master and slave. 3702 */ 3703 WARN_ON(link == link->ap->slave_link); 3704 3705 if (time_after(nodev_deadline, deadline)) 3706 nodev_deadline = deadline; 3707 3708 while (1) { 3709 unsigned long now = jiffies; 3710 int ready, tmp; 3711 3712 ready = tmp = check_ready(link); 3713 if (ready > 0) 3714 return 0; 3715 3716 /* 3717 * -ENODEV could be transient. Ignore -ENODEV if link 3718 * is online. Also, some SATA devices take a long 3719 * time to clear 0xff after reset. Wait for 3720 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3721 * offline. 3722 * 3723 * Note that some PATA controllers (pata_ali) explode 3724 * if status register is read more than once when 3725 * there's no device attached. 3726 */ 3727 if (ready == -ENODEV) { 3728 if (ata_link_online(link)) 3729 ready = 0; 3730 else if ((link->ap->flags & ATA_FLAG_SATA) && 3731 !ata_link_offline(link) && 3732 time_before(now, nodev_deadline)) 3733 ready = 0; 3734 } 3735 3736 if (ready) 3737 return ready; 3738 if (time_after(now, deadline)) 3739 return -EBUSY; 3740 3741 if (!warned && time_after(now, start + 5 * HZ) && 3742 (deadline - now > 3 * HZ)) { 3743 ata_link_warn(link, 3744 "link is slow to respond, please be patient " 3745 "(ready=%d)\n", tmp); 3746 warned = 1; 3747 } 3748 3749 ata_msleep(link->ap, 50); 3750 } 3751 } 3752 3753 /** 3754 * ata_wait_after_reset - wait for link to become ready after reset 3755 * @link: link to be waited on 3756 * @deadline: deadline jiffies for the operation 3757 * @check_ready: callback to check link readiness 3758 * 3759 * Wait for @link to become ready after reset. 3760 * 3761 * LOCKING: 3762 * EH context. 3763 * 3764 * RETURNS: 3765 * 0 if @link is ready before @deadline; otherwise, -errno. 3766 */ 3767 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3768 int (*check_ready)(struct ata_link *link)) 3769 { 3770 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3771 3772 return ata_wait_ready(link, deadline, check_ready); 3773 } 3774 3775 /** 3776 * sata_link_debounce - debounce SATA phy status 3777 * @link: ATA link to debounce SATA phy status for 3778 * @params: timing parameters { interval, duration, timeout } in msec 3779 * @deadline: deadline jiffies for the operation 3780 * 3781 * Make sure SStatus of @link reaches stable state, determined by 3782 * holding the same value where DET is not 1 for @duration polled 3783 * every @interval, before @timeout. Timeout constraints the 3784 * beginning of the stable state. Because DET gets stuck at 1 on 3785 * some controllers after hot unplugging, this functions waits 3786 * until timeout then returns 0 if DET is stable at 1. 3787 * 3788 * @timeout is further limited by @deadline. The sooner of the 3789 * two is used. 3790 * 3791 * LOCKING: 3792 * Kernel thread context (may sleep) 3793 * 3794 * RETURNS: 3795 * 0 on success, -errno on failure. 3796 */ 3797 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3798 unsigned long deadline) 3799 { 3800 unsigned long interval = params[0]; 3801 unsigned long duration = params[1]; 3802 unsigned long last_jiffies, t; 3803 u32 last, cur; 3804 int rc; 3805 3806 t = ata_deadline(jiffies, params[2]); 3807 if (time_before(t, deadline)) 3808 deadline = t; 3809 3810 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3811 return rc; 3812 cur &= 0xf; 3813 3814 last = cur; 3815 last_jiffies = jiffies; 3816 3817 while (1) { 3818 ata_msleep(link->ap, interval); 3819 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3820 return rc; 3821 cur &= 0xf; 3822 3823 /* DET stable? */ 3824 if (cur == last) { 3825 if (cur == 1 && time_before(jiffies, deadline)) 3826 continue; 3827 if (time_after(jiffies, 3828 ata_deadline(last_jiffies, duration))) 3829 return 0; 3830 continue; 3831 } 3832 3833 /* unstable, start over */ 3834 last = cur; 3835 last_jiffies = jiffies; 3836 3837 /* Check deadline. If debouncing failed, return 3838 * -EPIPE to tell upper layer to lower link speed. 3839 */ 3840 if (time_after(jiffies, deadline)) 3841 return -EPIPE; 3842 } 3843 } 3844 3845 /** 3846 * sata_link_resume - resume SATA link 3847 * @link: ATA link to resume SATA 3848 * @params: timing parameters { interval, duration, timeout } in msec 3849 * @deadline: deadline jiffies for the operation 3850 * 3851 * Resume SATA phy @link and debounce it. 3852 * 3853 * LOCKING: 3854 * Kernel thread context (may sleep) 3855 * 3856 * RETURNS: 3857 * 0 on success, -errno on failure. 3858 */ 3859 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3860 unsigned long deadline) 3861 { 3862 int tries = ATA_LINK_RESUME_TRIES; 3863 u32 scontrol, serror; 3864 int rc; 3865 3866 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3867 return rc; 3868 3869 /* 3870 * Writes to SControl sometimes get ignored under certain 3871 * controllers (ata_piix SIDPR). Make sure DET actually is 3872 * cleared. 3873 */ 3874 do { 3875 scontrol = (scontrol & 0x0f0) | 0x300; 3876 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3877 return rc; 3878 /* 3879 * Some PHYs react badly if SStatus is pounded 3880 * immediately after resuming. Delay 200ms before 3881 * debouncing. 3882 */ 3883 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY)) 3884 ata_msleep(link->ap, 200); 3885 3886 /* is SControl restored correctly? */ 3887 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3888 return rc; 3889 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3890 3891 if ((scontrol & 0xf0f) != 0x300) { 3892 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3893 scontrol); 3894 return 0; 3895 } 3896 3897 if (tries < ATA_LINK_RESUME_TRIES) 3898 ata_link_warn(link, "link resume succeeded after %d retries\n", 3899 ATA_LINK_RESUME_TRIES - tries); 3900 3901 if ((rc = sata_link_debounce(link, params, deadline))) 3902 return rc; 3903 3904 /* clear SError, some PHYs require this even for SRST to work */ 3905 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3906 rc = sata_scr_write(link, SCR_ERROR, serror); 3907 3908 return rc != -EINVAL ? rc : 0; 3909 } 3910 3911 /** 3912 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3913 * @link: ATA link to manipulate SControl for 3914 * @policy: LPM policy to configure 3915 * @spm_wakeup: initiate LPM transition to active state 3916 * 3917 * Manipulate the IPM field of the SControl register of @link 3918 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3919 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3920 * the link. This function also clears PHYRDY_CHG before 3921 * returning. 3922 * 3923 * LOCKING: 3924 * EH context. 3925 * 3926 * RETURNS: 3927 * 0 on success, -errno otherwise. 3928 */ 3929 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3930 bool spm_wakeup) 3931 { 3932 struct ata_eh_context *ehc = &link->eh_context; 3933 bool woken_up = false; 3934 u32 scontrol; 3935 int rc; 3936 3937 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3938 if (rc) 3939 return rc; 3940 3941 switch (policy) { 3942 case ATA_LPM_MAX_POWER: 3943 /* disable all LPM transitions */ 3944 scontrol |= (0x7 << 8); 3945 /* initiate transition to active state */ 3946 if (spm_wakeup) { 3947 scontrol |= (0x4 << 12); 3948 woken_up = true; 3949 } 3950 break; 3951 case ATA_LPM_MED_POWER: 3952 /* allow LPM to PARTIAL */ 3953 scontrol &= ~(0x1 << 8); 3954 scontrol |= (0x6 << 8); 3955 break; 3956 case ATA_LPM_MED_POWER_WITH_DIPM: 3957 case ATA_LPM_MIN_POWER_WITH_PARTIAL: 3958 case ATA_LPM_MIN_POWER: 3959 if (ata_link_nr_enabled(link) > 0) 3960 /* no restrictions on LPM transitions */ 3961 scontrol &= ~(0x7 << 8); 3962 else { 3963 /* empty port, power off */ 3964 scontrol &= ~0xf; 3965 scontrol |= (0x1 << 2); 3966 } 3967 break; 3968 default: 3969 WARN_ON(1); 3970 } 3971 3972 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3973 if (rc) 3974 return rc; 3975 3976 /* give the link time to transit out of LPM state */ 3977 if (woken_up) 3978 msleep(10); 3979 3980 /* clear PHYRDY_CHG from SError */ 3981 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3982 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3983 } 3984 3985 /** 3986 * ata_std_prereset - prepare for reset 3987 * @link: ATA link to be reset 3988 * @deadline: deadline jiffies for the operation 3989 * 3990 * @link is about to be reset. Initialize it. Failure from 3991 * prereset makes libata abort whole reset sequence and give up 3992 * that port, so prereset should be best-effort. It does its 3993 * best to prepare for reset sequence but if things go wrong, it 3994 * should just whine, not fail. 3995 * 3996 * LOCKING: 3997 * Kernel thread context (may sleep) 3998 * 3999 * RETURNS: 4000 * 0 on success, -errno otherwise. 4001 */ 4002 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 4003 { 4004 struct ata_port *ap = link->ap; 4005 struct ata_eh_context *ehc = &link->eh_context; 4006 const unsigned long *timing = sata_ehc_deb_timing(ehc); 4007 int rc; 4008 4009 /* if we're about to do hardreset, nothing more to do */ 4010 if (ehc->i.action & ATA_EH_HARDRESET) 4011 return 0; 4012 4013 /* if SATA, resume link */ 4014 if (ap->flags & ATA_FLAG_SATA) { 4015 rc = sata_link_resume(link, timing, deadline); 4016 /* whine about phy resume failure but proceed */ 4017 if (rc && rc != -EOPNOTSUPP) 4018 ata_link_warn(link, 4019 "failed to resume link for reset (errno=%d)\n", 4020 rc); 4021 } 4022 4023 /* no point in trying softreset on offline link */ 4024 if (ata_phys_link_offline(link)) 4025 ehc->i.action &= ~ATA_EH_SOFTRESET; 4026 4027 return 0; 4028 } 4029 4030 /** 4031 * sata_link_hardreset - reset link via SATA phy reset 4032 * @link: link to reset 4033 * @timing: timing parameters { interval, duration, timeout } in msec 4034 * @deadline: deadline jiffies for the operation 4035 * @online: optional out parameter indicating link onlineness 4036 * @check_ready: optional callback to check link readiness 4037 * 4038 * SATA phy-reset @link using DET bits of SControl register. 4039 * After hardreset, link readiness is waited upon using 4040 * ata_wait_ready() if @check_ready is specified. LLDs are 4041 * allowed to not specify @check_ready and wait itself after this 4042 * function returns. Device classification is LLD's 4043 * responsibility. 4044 * 4045 * *@online is set to one iff reset succeeded and @link is online 4046 * after reset. 4047 * 4048 * LOCKING: 4049 * Kernel thread context (may sleep) 4050 * 4051 * RETURNS: 4052 * 0 on success, -errno otherwise. 4053 */ 4054 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 4055 unsigned long deadline, 4056 bool *online, int (*check_ready)(struct ata_link *)) 4057 { 4058 u32 scontrol; 4059 int rc; 4060 4061 DPRINTK("ENTER\n"); 4062 4063 if (online) 4064 *online = false; 4065 4066 if (sata_set_spd_needed(link)) { 4067 /* SATA spec says nothing about how to reconfigure 4068 * spd. To be on the safe side, turn off phy during 4069 * reconfiguration. This works for at least ICH7 AHCI 4070 * and Sil3124. 4071 */ 4072 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 4073 goto out; 4074 4075 scontrol = (scontrol & 0x0f0) | 0x304; 4076 4077 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 4078 goto out; 4079 4080 sata_set_spd(link); 4081 } 4082 4083 /* issue phy wake/reset */ 4084 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 4085 goto out; 4086 4087 scontrol = (scontrol & 0x0f0) | 0x301; 4088 4089 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 4090 goto out; 4091 4092 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 4093 * 10.4.2 says at least 1 ms. 4094 */ 4095 ata_msleep(link->ap, 1); 4096 4097 /* bring link back */ 4098 rc = sata_link_resume(link, timing, deadline); 4099 if (rc) 4100 goto out; 4101 /* if link is offline nothing more to do */ 4102 if (ata_phys_link_offline(link)) 4103 goto out; 4104 4105 /* Link is online. From this point, -ENODEV too is an error. */ 4106 if (online) 4107 *online = true; 4108 4109 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 4110 /* If PMP is supported, we have to do follow-up SRST. 4111 * Some PMPs don't send D2H Reg FIS after hardreset if 4112 * the first port is empty. Wait only for 4113 * ATA_TMOUT_PMP_SRST_WAIT. 4114 */ 4115 if (check_ready) { 4116 unsigned long pmp_deadline; 4117 4118 pmp_deadline = ata_deadline(jiffies, 4119 ATA_TMOUT_PMP_SRST_WAIT); 4120 if (time_after(pmp_deadline, deadline)) 4121 pmp_deadline = deadline; 4122 ata_wait_ready(link, pmp_deadline, check_ready); 4123 } 4124 rc = -EAGAIN; 4125 goto out; 4126 } 4127 4128 rc = 0; 4129 if (check_ready) 4130 rc = ata_wait_ready(link, deadline, check_ready); 4131 out: 4132 if (rc && rc != -EAGAIN) { 4133 /* online is set iff link is online && reset succeeded */ 4134 if (online) 4135 *online = false; 4136 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 4137 } 4138 DPRINTK("EXIT, rc=%d\n", rc); 4139 return rc; 4140 } 4141 4142 /** 4143 * sata_std_hardreset - COMRESET w/o waiting or classification 4144 * @link: link to reset 4145 * @class: resulting class of attached device 4146 * @deadline: deadline jiffies for the operation 4147 * 4148 * Standard SATA COMRESET w/o waiting or classification. 4149 * 4150 * LOCKING: 4151 * Kernel thread context (may sleep) 4152 * 4153 * RETURNS: 4154 * 0 if link offline, -EAGAIN if link online, -errno on errors. 4155 */ 4156 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 4157 unsigned long deadline) 4158 { 4159 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 4160 bool online; 4161 int rc; 4162 4163 /* do hardreset */ 4164 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 4165 return online ? -EAGAIN : rc; 4166 } 4167 4168 /** 4169 * ata_std_postreset - standard postreset callback 4170 * @link: the target ata_link 4171 * @classes: classes of attached devices 4172 * 4173 * This function is invoked after a successful reset. Note that 4174 * the device might have been reset more than once using 4175 * different reset methods before postreset is invoked. 4176 * 4177 * LOCKING: 4178 * Kernel thread context (may sleep) 4179 */ 4180 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 4181 { 4182 u32 serror; 4183 4184 DPRINTK("ENTER\n"); 4185 4186 /* reset complete, clear SError */ 4187 if (!sata_scr_read(link, SCR_ERROR, &serror)) 4188 sata_scr_write(link, SCR_ERROR, serror); 4189 4190 /* print link status */ 4191 sata_print_link_status(link); 4192 4193 DPRINTK("EXIT\n"); 4194 } 4195 4196 /** 4197 * ata_dev_same_device - Determine whether new ID matches configured device 4198 * @dev: device to compare against 4199 * @new_class: class of the new device 4200 * @new_id: IDENTIFY page of the new device 4201 * 4202 * Compare @new_class and @new_id against @dev and determine 4203 * whether @dev is the device indicated by @new_class and 4204 * @new_id. 4205 * 4206 * LOCKING: 4207 * None. 4208 * 4209 * RETURNS: 4210 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 4211 */ 4212 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 4213 const u16 *new_id) 4214 { 4215 const u16 *old_id = dev->id; 4216 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 4217 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 4218 4219 if (dev->class != new_class) { 4220 ata_dev_info(dev, "class mismatch %d != %d\n", 4221 dev->class, new_class); 4222 return 0; 4223 } 4224 4225 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 4226 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 4227 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 4228 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 4229 4230 if (strcmp(model[0], model[1])) { 4231 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 4232 model[0], model[1]); 4233 return 0; 4234 } 4235 4236 if (strcmp(serial[0], serial[1])) { 4237 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 4238 serial[0], serial[1]); 4239 return 0; 4240 } 4241 4242 return 1; 4243 } 4244 4245 /** 4246 * ata_dev_reread_id - Re-read IDENTIFY data 4247 * @dev: target ATA device 4248 * @readid_flags: read ID flags 4249 * 4250 * Re-read IDENTIFY page and make sure @dev is still attached to 4251 * the port. 4252 * 4253 * LOCKING: 4254 * Kernel thread context (may sleep) 4255 * 4256 * RETURNS: 4257 * 0 on success, negative errno otherwise 4258 */ 4259 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4260 { 4261 unsigned int class = dev->class; 4262 u16 *id = (void *)dev->link->ap->sector_buf; 4263 int rc; 4264 4265 /* read ID data */ 4266 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4267 if (rc) 4268 return rc; 4269 4270 /* is the device still there? */ 4271 if (!ata_dev_same_device(dev, class, id)) 4272 return -ENODEV; 4273 4274 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4275 return 0; 4276 } 4277 4278 /** 4279 * ata_dev_revalidate - Revalidate ATA device 4280 * @dev: device to revalidate 4281 * @new_class: new class code 4282 * @readid_flags: read ID flags 4283 * 4284 * Re-read IDENTIFY page, make sure @dev is still attached to the 4285 * port and reconfigure it according to the new IDENTIFY page. 4286 * 4287 * LOCKING: 4288 * Kernel thread context (may sleep) 4289 * 4290 * RETURNS: 4291 * 0 on success, negative errno otherwise 4292 */ 4293 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4294 unsigned int readid_flags) 4295 { 4296 u64 n_sectors = dev->n_sectors; 4297 u64 n_native_sectors = dev->n_native_sectors; 4298 int rc; 4299 4300 if (!ata_dev_enabled(dev)) 4301 return -ENODEV; 4302 4303 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4304 if (ata_class_enabled(new_class) && 4305 new_class != ATA_DEV_ATA && 4306 new_class != ATA_DEV_ATAPI && 4307 new_class != ATA_DEV_ZAC && 4308 new_class != ATA_DEV_SEMB) { 4309 ata_dev_info(dev, "class mismatch %u != %u\n", 4310 dev->class, new_class); 4311 rc = -ENODEV; 4312 goto fail; 4313 } 4314 4315 /* re-read ID */ 4316 rc = ata_dev_reread_id(dev, readid_flags); 4317 if (rc) 4318 goto fail; 4319 4320 /* configure device according to the new ID */ 4321 rc = ata_dev_configure(dev); 4322 if (rc) 4323 goto fail; 4324 4325 /* verify n_sectors hasn't changed */ 4326 if (dev->class != ATA_DEV_ATA || !n_sectors || 4327 dev->n_sectors == n_sectors) 4328 return 0; 4329 4330 /* n_sectors has changed */ 4331 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4332 (unsigned long long)n_sectors, 4333 (unsigned long long)dev->n_sectors); 4334 4335 /* 4336 * Something could have caused HPA to be unlocked 4337 * involuntarily. If n_native_sectors hasn't changed and the 4338 * new size matches it, keep the device. 4339 */ 4340 if (dev->n_native_sectors == n_native_sectors && 4341 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4342 ata_dev_warn(dev, 4343 "new n_sectors matches native, probably " 4344 "late HPA unlock, n_sectors updated\n"); 4345 /* use the larger n_sectors */ 4346 return 0; 4347 } 4348 4349 /* 4350 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4351 * unlocking HPA in those cases. 4352 * 4353 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4354 */ 4355 if (dev->n_native_sectors == n_native_sectors && 4356 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4357 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4358 ata_dev_warn(dev, 4359 "old n_sectors matches native, probably " 4360 "late HPA lock, will try to unlock HPA\n"); 4361 /* try unlocking HPA */ 4362 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4363 rc = -EIO; 4364 } else 4365 rc = -ENODEV; 4366 4367 /* restore original n_[native_]sectors and fail */ 4368 dev->n_native_sectors = n_native_sectors; 4369 dev->n_sectors = n_sectors; 4370 fail: 4371 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4372 return rc; 4373 } 4374 4375 struct ata_blacklist_entry { 4376 const char *model_num; 4377 const char *model_rev; 4378 unsigned long horkage; 4379 }; 4380 4381 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4382 /* Devices with DMA related problems under Linux */ 4383 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4384 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4385 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4386 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4387 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4388 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4389 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4390 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4391 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4392 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4393 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4394 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4395 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4396 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4397 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4398 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4399 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4400 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4401 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4402 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4403 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4404 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4405 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4406 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4407 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4408 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4409 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4410 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4411 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4412 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 4413 /* Odd clown on sil3726/4726 PMPs */ 4414 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4415 4416 /* Weird ATAPI devices */ 4417 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4418 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4419 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4420 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4421 4422 /* 4423 * Causes silent data corruption with higher max sects. 4424 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4425 */ 4426 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 4427 4428 /* 4429 * These devices time out with higher max sects. 4430 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4431 */ 4432 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4433 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4434 4435 /* Devices we expect to fail diagnostics */ 4436 4437 /* Devices where NCQ should be avoided */ 4438 /* NCQ is slow */ 4439 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4440 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4441 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4442 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4443 /* NCQ is broken */ 4444 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4445 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4446 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4447 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4448 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4449 4450 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4451 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4452 ATA_HORKAGE_FIRMWARE_WARN }, 4453 4454 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4455 ATA_HORKAGE_FIRMWARE_WARN }, 4456 4457 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4458 ATA_HORKAGE_FIRMWARE_WARN }, 4459 4460 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4461 ATA_HORKAGE_FIRMWARE_WARN }, 4462 4463 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */ 4464 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4465 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4466 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4467 4468 /* Blacklist entries taken from Silicon Image 3124/3132 4469 Windows driver .inf file - also several Linux problem reports */ 4470 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4471 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4472 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4473 4474 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4475 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4476 4477 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on 4478 SD7SN6S256G and SD8SN8U256G */ 4479 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, }, 4480 4481 /* devices which puke on READ_NATIVE_MAX */ 4482 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4483 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4484 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4485 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4486 4487 /* this one allows HPA unlocking but fails IOs on the area */ 4488 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4489 4490 /* Devices which report 1 sector over size HPA */ 4491 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4492 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4493 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4494 4495 /* Devices which get the IVB wrong */ 4496 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4497 /* Maybe we should just blacklist TSSTcorp... */ 4498 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4499 4500 /* Devices that do not need bridging limits applied */ 4501 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4502 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4503 4504 /* Devices which aren't very happy with higher link speeds */ 4505 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4506 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4507 4508 /* 4509 * Devices which choke on SETXFER. Applies only if both the 4510 * device and controller are SATA. 4511 */ 4512 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4513 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4514 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4515 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4516 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4517 4518 /* Crucial BX100 SSD 500GB has broken LPM support */ 4519 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 4520 4521 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4522 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4523 ATA_HORKAGE_ZERO_AFTER_TRIM | 4524 ATA_HORKAGE_NOLPM, }, 4525 /* 512GB MX100 with newer firmware has only LPM issues */ 4526 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4527 ATA_HORKAGE_NOLPM, }, 4528 4529 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4530 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4531 ATA_HORKAGE_ZERO_AFTER_TRIM | 4532 ATA_HORKAGE_NOLPM, }, 4533 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4534 ATA_HORKAGE_ZERO_AFTER_TRIM | 4535 ATA_HORKAGE_NOLPM, }, 4536 4537 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4538 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, }, 4539 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, }, 4540 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, }, 4541 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, }, 4542 4543 /* devices that don't properly handle queued TRIM commands */ 4544 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4545 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4546 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4547 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4548 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4549 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4550 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4551 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4552 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4553 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4554 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4555 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4556 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4557 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4558 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4559 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4560 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4561 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4562 4563 /* devices that don't properly handle TRIM commands */ 4564 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 4565 4566 /* 4567 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4568 * (Return Zero After Trim) flags in the ATA Command Set are 4569 * unreliable in the sense that they only define what happens if 4570 * the device successfully executed the DSM TRIM command. TRIM 4571 * is only advisory, however, and the device is free to silently 4572 * ignore all or parts of the request. 4573 * 4574 * Whitelist drives that are known to reliably return zeroes 4575 * after TRIM. 4576 */ 4577 4578 /* 4579 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4580 * that model before whitelisting all other intel SSDs. 4581 */ 4582 { "INTEL*SSDSC2MH*", NULL, 0, }, 4583 4584 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4585 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4586 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4587 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4588 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4589 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4590 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4591 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4592 4593 /* 4594 * Some WD SATA-I drives spin up and down erratically when the link 4595 * is put into the slumber mode. We don't have full list of the 4596 * affected devices. Disable LPM if the device matches one of the 4597 * known prefixes and is SATA-1. As a side effect LPM partial is 4598 * lost too. 4599 * 4600 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4601 */ 4602 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4603 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4604 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4605 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4606 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4607 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4608 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4609 4610 /* End Marker */ 4611 { } 4612 }; 4613 4614 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4615 { 4616 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4617 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4618 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4619 4620 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4621 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4622 4623 while (ad->model_num) { 4624 if (glob_match(ad->model_num, model_num)) { 4625 if (ad->model_rev == NULL) 4626 return ad->horkage; 4627 if (glob_match(ad->model_rev, model_rev)) 4628 return ad->horkage; 4629 } 4630 ad++; 4631 } 4632 return 0; 4633 } 4634 4635 static int ata_dma_blacklisted(const struct ata_device *dev) 4636 { 4637 /* We don't support polling DMA. 4638 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4639 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4640 */ 4641 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4642 (dev->flags & ATA_DFLAG_CDB_INTR)) 4643 return 1; 4644 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4645 } 4646 4647 /** 4648 * ata_is_40wire - check drive side detection 4649 * @dev: device 4650 * 4651 * Perform drive side detection decoding, allowing for device vendors 4652 * who can't follow the documentation. 4653 */ 4654 4655 static int ata_is_40wire(struct ata_device *dev) 4656 { 4657 if (dev->horkage & ATA_HORKAGE_IVB) 4658 return ata_drive_40wire_relaxed(dev->id); 4659 return ata_drive_40wire(dev->id); 4660 } 4661 4662 /** 4663 * cable_is_40wire - 40/80/SATA decider 4664 * @ap: port to consider 4665 * 4666 * This function encapsulates the policy for speed management 4667 * in one place. At the moment we don't cache the result but 4668 * there is a good case for setting ap->cbl to the result when 4669 * we are called with unknown cables (and figuring out if it 4670 * impacts hotplug at all). 4671 * 4672 * Return 1 if the cable appears to be 40 wire. 4673 */ 4674 4675 static int cable_is_40wire(struct ata_port *ap) 4676 { 4677 struct ata_link *link; 4678 struct ata_device *dev; 4679 4680 /* If the controller thinks we are 40 wire, we are. */ 4681 if (ap->cbl == ATA_CBL_PATA40) 4682 return 1; 4683 4684 /* If the controller thinks we are 80 wire, we are. */ 4685 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4686 return 0; 4687 4688 /* If the system is known to be 40 wire short cable (eg 4689 * laptop), then we allow 80 wire modes even if the drive 4690 * isn't sure. 4691 */ 4692 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4693 return 0; 4694 4695 /* If the controller doesn't know, we scan. 4696 * 4697 * Note: We look for all 40 wire detects at this point. Any 4698 * 80 wire detect is taken to be 80 wire cable because 4699 * - in many setups only the one drive (slave if present) will 4700 * give a valid detect 4701 * - if you have a non detect capable drive you don't want it 4702 * to colour the choice 4703 */ 4704 ata_for_each_link(link, ap, EDGE) { 4705 ata_for_each_dev(dev, link, ENABLED) { 4706 if (!ata_is_40wire(dev)) 4707 return 0; 4708 } 4709 } 4710 return 1; 4711 } 4712 4713 /** 4714 * ata_dev_xfermask - Compute supported xfermask of the given device 4715 * @dev: Device to compute xfermask for 4716 * 4717 * Compute supported xfermask of @dev and store it in 4718 * dev->*_mask. This function is responsible for applying all 4719 * known limits including host controller limits, device 4720 * blacklist, etc... 4721 * 4722 * LOCKING: 4723 * None. 4724 */ 4725 static void ata_dev_xfermask(struct ata_device *dev) 4726 { 4727 struct ata_link *link = dev->link; 4728 struct ata_port *ap = link->ap; 4729 struct ata_host *host = ap->host; 4730 unsigned long xfer_mask; 4731 4732 /* controller modes available */ 4733 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4734 ap->mwdma_mask, ap->udma_mask); 4735 4736 /* drive modes available */ 4737 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4738 dev->mwdma_mask, dev->udma_mask); 4739 xfer_mask &= ata_id_xfermask(dev->id); 4740 4741 /* 4742 * CFA Advanced TrueIDE timings are not allowed on a shared 4743 * cable 4744 */ 4745 if (ata_dev_pair(dev)) { 4746 /* No PIO5 or PIO6 */ 4747 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4748 /* No MWDMA3 or MWDMA 4 */ 4749 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4750 } 4751 4752 if (ata_dma_blacklisted(dev)) { 4753 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4754 ata_dev_warn(dev, 4755 "device is on DMA blacklist, disabling DMA\n"); 4756 } 4757 4758 if ((host->flags & ATA_HOST_SIMPLEX) && 4759 host->simplex_claimed && host->simplex_claimed != ap) { 4760 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4761 ata_dev_warn(dev, 4762 "simplex DMA is claimed by other device, disabling DMA\n"); 4763 } 4764 4765 if (ap->flags & ATA_FLAG_NO_IORDY) 4766 xfer_mask &= ata_pio_mask_no_iordy(dev); 4767 4768 if (ap->ops->mode_filter) 4769 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4770 4771 /* Apply cable rule here. Don't apply it early because when 4772 * we handle hot plug the cable type can itself change. 4773 * Check this last so that we know if the transfer rate was 4774 * solely limited by the cable. 4775 * Unknown or 80 wire cables reported host side are checked 4776 * drive side as well. Cases where we know a 40wire cable 4777 * is used safely for 80 are not checked here. 4778 */ 4779 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4780 /* UDMA/44 or higher would be available */ 4781 if (cable_is_40wire(ap)) { 4782 ata_dev_warn(dev, 4783 "limited to UDMA/33 due to 40-wire cable\n"); 4784 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4785 } 4786 4787 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4788 &dev->mwdma_mask, &dev->udma_mask); 4789 } 4790 4791 /** 4792 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4793 * @dev: Device to which command will be sent 4794 * 4795 * Issue SET FEATURES - XFER MODE command to device @dev 4796 * on port @ap. 4797 * 4798 * LOCKING: 4799 * PCI/etc. bus probe sem. 4800 * 4801 * RETURNS: 4802 * 0 on success, AC_ERR_* mask otherwise. 4803 */ 4804 4805 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4806 { 4807 struct ata_taskfile tf; 4808 unsigned int err_mask; 4809 4810 /* set up set-features taskfile */ 4811 DPRINTK("set features - xfer mode\n"); 4812 4813 /* Some controllers and ATAPI devices show flaky interrupt 4814 * behavior after setting xfer mode. Use polling instead. 4815 */ 4816 ata_tf_init(dev, &tf); 4817 tf.command = ATA_CMD_SET_FEATURES; 4818 tf.feature = SETFEATURES_XFER; 4819 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4820 tf.protocol = ATA_PROT_NODATA; 4821 /* If we are using IORDY we must send the mode setting command */ 4822 if (ata_pio_need_iordy(dev)) 4823 tf.nsect = dev->xfer_mode; 4824 /* If the device has IORDY and the controller does not - turn it off */ 4825 else if (ata_id_has_iordy(dev->id)) 4826 tf.nsect = 0x01; 4827 else /* In the ancient relic department - skip all of this */ 4828 return 0; 4829 4830 /* On some disks, this command causes spin-up, so we need longer timeout */ 4831 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4832 4833 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4834 return err_mask; 4835 } 4836 4837 /** 4838 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4839 * @dev: Device to which command will be sent 4840 * @enable: Whether to enable or disable the feature 4841 * @feature: The sector count represents the feature to set 4842 * 4843 * Issue SET FEATURES - SATA FEATURES command to device @dev 4844 * on port @ap with sector count 4845 * 4846 * LOCKING: 4847 * PCI/etc. bus probe sem. 4848 * 4849 * RETURNS: 4850 * 0 on success, AC_ERR_* mask otherwise. 4851 */ 4852 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4853 { 4854 struct ata_taskfile tf; 4855 unsigned int err_mask; 4856 unsigned long timeout = 0; 4857 4858 /* set up set-features taskfile */ 4859 DPRINTK("set features - SATA features\n"); 4860 4861 ata_tf_init(dev, &tf); 4862 tf.command = ATA_CMD_SET_FEATURES; 4863 tf.feature = enable; 4864 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4865 tf.protocol = ATA_PROT_NODATA; 4866 tf.nsect = feature; 4867 4868 if (enable == SETFEATURES_SPINUP) 4869 timeout = ata_probe_timeout ? 4870 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4871 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4872 4873 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4874 return err_mask; 4875 } 4876 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4877 4878 /** 4879 * ata_dev_init_params - Issue INIT DEV PARAMS command 4880 * @dev: Device to which command will be sent 4881 * @heads: Number of heads (taskfile parameter) 4882 * @sectors: Number of sectors (taskfile parameter) 4883 * 4884 * LOCKING: 4885 * Kernel thread context (may sleep) 4886 * 4887 * RETURNS: 4888 * 0 on success, AC_ERR_* mask otherwise. 4889 */ 4890 static unsigned int ata_dev_init_params(struct ata_device *dev, 4891 u16 heads, u16 sectors) 4892 { 4893 struct ata_taskfile tf; 4894 unsigned int err_mask; 4895 4896 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4897 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4898 return AC_ERR_INVALID; 4899 4900 /* set up init dev params taskfile */ 4901 DPRINTK("init dev params \n"); 4902 4903 ata_tf_init(dev, &tf); 4904 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4905 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4906 tf.protocol = ATA_PROT_NODATA; 4907 tf.nsect = sectors; 4908 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4909 4910 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4911 /* A clean abort indicates an original or just out of spec drive 4912 and we should continue as we issue the setup based on the 4913 drive reported working geometry */ 4914 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4915 err_mask = 0; 4916 4917 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4918 return err_mask; 4919 } 4920 4921 /** 4922 * atapi_check_dma - Check whether ATAPI DMA can be supported 4923 * @qc: Metadata associated with taskfile to check 4924 * 4925 * Allow low-level driver to filter ATA PACKET commands, returning 4926 * a status indicating whether or not it is OK to use DMA for the 4927 * supplied PACKET command. 4928 * 4929 * LOCKING: 4930 * spin_lock_irqsave(host lock) 4931 * 4932 * RETURNS: 0 when ATAPI DMA can be used 4933 * nonzero otherwise 4934 */ 4935 int atapi_check_dma(struct ata_queued_cmd *qc) 4936 { 4937 struct ata_port *ap = qc->ap; 4938 4939 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4940 * few ATAPI devices choke on such DMA requests. 4941 */ 4942 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4943 unlikely(qc->nbytes & 15)) 4944 return 1; 4945 4946 if (ap->ops->check_atapi_dma) 4947 return ap->ops->check_atapi_dma(qc); 4948 4949 return 0; 4950 } 4951 4952 /** 4953 * ata_std_qc_defer - Check whether a qc needs to be deferred 4954 * @qc: ATA command in question 4955 * 4956 * Non-NCQ commands cannot run with any other command, NCQ or 4957 * not. As upper layer only knows the queue depth, we are 4958 * responsible for maintaining exclusion. This function checks 4959 * whether a new command @qc can be issued. 4960 * 4961 * LOCKING: 4962 * spin_lock_irqsave(host lock) 4963 * 4964 * RETURNS: 4965 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4966 */ 4967 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4968 { 4969 struct ata_link *link = qc->dev->link; 4970 4971 if (ata_is_ncq(qc->tf.protocol)) { 4972 if (!ata_tag_valid(link->active_tag)) 4973 return 0; 4974 } else { 4975 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4976 return 0; 4977 } 4978 4979 return ATA_DEFER_LINK; 4980 } 4981 4982 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4983 4984 /** 4985 * ata_sg_init - Associate command with scatter-gather table. 4986 * @qc: Command to be associated 4987 * @sg: Scatter-gather table. 4988 * @n_elem: Number of elements in s/g table. 4989 * 4990 * Initialize the data-related elements of queued_cmd @qc 4991 * to point to a scatter-gather table @sg, containing @n_elem 4992 * elements. 4993 * 4994 * LOCKING: 4995 * spin_lock_irqsave(host lock) 4996 */ 4997 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4998 unsigned int n_elem) 4999 { 5000 qc->sg = sg; 5001 qc->n_elem = n_elem; 5002 qc->cursg = qc->sg; 5003 } 5004 5005 #ifdef CONFIG_HAS_DMA 5006 5007 /** 5008 * ata_sg_clean - Unmap DMA memory associated with command 5009 * @qc: Command containing DMA memory to be released 5010 * 5011 * Unmap all mapped DMA memory associated with this command. 5012 * 5013 * LOCKING: 5014 * spin_lock_irqsave(host lock) 5015 */ 5016 static void ata_sg_clean(struct ata_queued_cmd *qc) 5017 { 5018 struct ata_port *ap = qc->ap; 5019 struct scatterlist *sg = qc->sg; 5020 int dir = qc->dma_dir; 5021 5022 WARN_ON_ONCE(sg == NULL); 5023 5024 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 5025 5026 if (qc->n_elem) 5027 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 5028 5029 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5030 qc->sg = NULL; 5031 } 5032 5033 /** 5034 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 5035 * @qc: Command with scatter-gather table to be mapped. 5036 * 5037 * DMA-map the scatter-gather table associated with queued_cmd @qc. 5038 * 5039 * LOCKING: 5040 * spin_lock_irqsave(host lock) 5041 * 5042 * RETURNS: 5043 * Zero on success, negative on error. 5044 * 5045 */ 5046 static int ata_sg_setup(struct ata_queued_cmd *qc) 5047 { 5048 struct ata_port *ap = qc->ap; 5049 unsigned int n_elem; 5050 5051 VPRINTK("ENTER, ata%u\n", ap->print_id); 5052 5053 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 5054 if (n_elem < 1) 5055 return -1; 5056 5057 VPRINTK("%d sg elements mapped\n", n_elem); 5058 qc->orig_n_elem = qc->n_elem; 5059 qc->n_elem = n_elem; 5060 qc->flags |= ATA_QCFLAG_DMAMAP; 5061 5062 return 0; 5063 } 5064 5065 #else /* !CONFIG_HAS_DMA */ 5066 5067 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 5068 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 5069 5070 #endif /* !CONFIG_HAS_DMA */ 5071 5072 /** 5073 * swap_buf_le16 - swap halves of 16-bit words in place 5074 * @buf: Buffer to swap 5075 * @buf_words: Number of 16-bit words in buffer. 5076 * 5077 * Swap halves of 16-bit words if needed to convert from 5078 * little-endian byte order to native cpu byte order, or 5079 * vice-versa. 5080 * 5081 * LOCKING: 5082 * Inherited from caller. 5083 */ 5084 void swap_buf_le16(u16 *buf, unsigned int buf_words) 5085 { 5086 #ifdef __BIG_ENDIAN 5087 unsigned int i; 5088 5089 for (i = 0; i < buf_words; i++) 5090 buf[i] = le16_to_cpu(buf[i]); 5091 #endif /* __BIG_ENDIAN */ 5092 } 5093 5094 /** 5095 * ata_qc_new_init - Request an available ATA command, and initialize it 5096 * @dev: Device from whom we request an available command structure 5097 * @tag: tag 5098 * 5099 * LOCKING: 5100 * None. 5101 */ 5102 5103 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 5104 { 5105 struct ata_port *ap = dev->link->ap; 5106 struct ata_queued_cmd *qc; 5107 5108 /* no command while frozen */ 5109 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 5110 return NULL; 5111 5112 /* libsas case */ 5113 if (ap->flags & ATA_FLAG_SAS_HOST) { 5114 tag = ata_sas_allocate_tag(ap); 5115 if (tag < 0) 5116 return NULL; 5117 } 5118 5119 qc = __ata_qc_from_tag(ap, tag); 5120 qc->tag = qc->hw_tag = tag; 5121 qc->scsicmd = NULL; 5122 qc->ap = ap; 5123 qc->dev = dev; 5124 5125 ata_qc_reinit(qc); 5126 5127 return qc; 5128 } 5129 5130 /** 5131 * ata_qc_free - free unused ata_queued_cmd 5132 * @qc: Command to complete 5133 * 5134 * Designed to free unused ata_queued_cmd object 5135 * in case something prevents using it. 5136 * 5137 * LOCKING: 5138 * spin_lock_irqsave(host lock) 5139 */ 5140 void ata_qc_free(struct ata_queued_cmd *qc) 5141 { 5142 struct ata_port *ap; 5143 unsigned int tag; 5144 5145 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5146 ap = qc->ap; 5147 5148 qc->flags = 0; 5149 tag = qc->tag; 5150 if (ata_tag_valid(tag)) { 5151 qc->tag = ATA_TAG_POISON; 5152 if (ap->flags & ATA_FLAG_SAS_HOST) 5153 ata_sas_free_tag(tag, ap); 5154 } 5155 } 5156 5157 void __ata_qc_complete(struct ata_queued_cmd *qc) 5158 { 5159 struct ata_port *ap; 5160 struct ata_link *link; 5161 5162 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5163 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 5164 ap = qc->ap; 5165 link = qc->dev->link; 5166 5167 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 5168 ata_sg_clean(qc); 5169 5170 /* command should be marked inactive atomically with qc completion */ 5171 if (ata_is_ncq(qc->tf.protocol)) { 5172 link->sactive &= ~(1 << qc->hw_tag); 5173 if (!link->sactive) 5174 ap->nr_active_links--; 5175 } else { 5176 link->active_tag = ATA_TAG_POISON; 5177 ap->nr_active_links--; 5178 } 5179 5180 /* clear exclusive status */ 5181 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 5182 ap->excl_link == link)) 5183 ap->excl_link = NULL; 5184 5185 /* atapi: mark qc as inactive to prevent the interrupt handler 5186 * from completing the command twice later, before the error handler 5187 * is called. (when rc != 0 and atapi request sense is needed) 5188 */ 5189 qc->flags &= ~ATA_QCFLAG_ACTIVE; 5190 ap->qc_active &= ~(1ULL << qc->tag); 5191 5192 /* call completion callback */ 5193 qc->complete_fn(qc); 5194 } 5195 5196 static void fill_result_tf(struct ata_queued_cmd *qc) 5197 { 5198 struct ata_port *ap = qc->ap; 5199 5200 qc->result_tf.flags = qc->tf.flags; 5201 ap->ops->qc_fill_rtf(qc); 5202 } 5203 5204 static void ata_verify_xfer(struct ata_queued_cmd *qc) 5205 { 5206 struct ata_device *dev = qc->dev; 5207 5208 if (!ata_is_data(qc->tf.protocol)) 5209 return; 5210 5211 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 5212 return; 5213 5214 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 5215 } 5216 5217 /** 5218 * ata_qc_complete - Complete an active ATA command 5219 * @qc: Command to complete 5220 * 5221 * Indicate to the mid and upper layers that an ATA command has 5222 * completed, with either an ok or not-ok status. 5223 * 5224 * Refrain from calling this function multiple times when 5225 * successfully completing multiple NCQ commands. 5226 * ata_qc_complete_multiple() should be used instead, which will 5227 * properly update IRQ expect state. 5228 * 5229 * LOCKING: 5230 * spin_lock_irqsave(host lock) 5231 */ 5232 void ata_qc_complete(struct ata_queued_cmd *qc) 5233 { 5234 struct ata_port *ap = qc->ap; 5235 5236 /* Trigger the LED (if available) */ 5237 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 5238 5239 /* XXX: New EH and old EH use different mechanisms to 5240 * synchronize EH with regular execution path. 5241 * 5242 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5243 * Normal execution path is responsible for not accessing a 5244 * failed qc. libata core enforces the rule by returning NULL 5245 * from ata_qc_from_tag() for failed qcs. 5246 * 5247 * Old EH depends on ata_qc_complete() nullifying completion 5248 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5249 * not synchronize with interrupt handler. Only PIO task is 5250 * taken care of. 5251 */ 5252 if (ap->ops->error_handler) { 5253 struct ata_device *dev = qc->dev; 5254 struct ata_eh_info *ehi = &dev->link->eh_info; 5255 5256 if (unlikely(qc->err_mask)) 5257 qc->flags |= ATA_QCFLAG_FAILED; 5258 5259 /* 5260 * Finish internal commands without any further processing 5261 * and always with the result TF filled. 5262 */ 5263 if (unlikely(ata_tag_internal(qc->tag))) { 5264 fill_result_tf(qc); 5265 trace_ata_qc_complete_internal(qc); 5266 __ata_qc_complete(qc); 5267 return; 5268 } 5269 5270 /* 5271 * Non-internal qc has failed. Fill the result TF and 5272 * summon EH. 5273 */ 5274 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5275 fill_result_tf(qc); 5276 trace_ata_qc_complete_failed(qc); 5277 ata_qc_schedule_eh(qc); 5278 return; 5279 } 5280 5281 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 5282 5283 /* read result TF if requested */ 5284 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5285 fill_result_tf(qc); 5286 5287 trace_ata_qc_complete_done(qc); 5288 /* Some commands need post-processing after successful 5289 * completion. 5290 */ 5291 switch (qc->tf.command) { 5292 case ATA_CMD_SET_FEATURES: 5293 if (qc->tf.feature != SETFEATURES_WC_ON && 5294 qc->tf.feature != SETFEATURES_WC_OFF && 5295 qc->tf.feature != SETFEATURES_RA_ON && 5296 qc->tf.feature != SETFEATURES_RA_OFF) 5297 break; 5298 /* fall through */ 5299 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5300 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5301 /* revalidate device */ 5302 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5303 ata_port_schedule_eh(ap); 5304 break; 5305 5306 case ATA_CMD_SLEEP: 5307 dev->flags |= ATA_DFLAG_SLEEPING; 5308 break; 5309 } 5310 5311 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5312 ata_verify_xfer(qc); 5313 5314 __ata_qc_complete(qc); 5315 } else { 5316 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5317 return; 5318 5319 /* read result TF if failed or requested */ 5320 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5321 fill_result_tf(qc); 5322 5323 __ata_qc_complete(qc); 5324 } 5325 } 5326 5327 /** 5328 * ata_qc_complete_multiple - Complete multiple qcs successfully 5329 * @ap: port in question 5330 * @qc_active: new qc_active mask 5331 * 5332 * Complete in-flight commands. This functions is meant to be 5333 * called from low-level driver's interrupt routine to complete 5334 * requests normally. ap->qc_active and @qc_active is compared 5335 * and commands are completed accordingly. 5336 * 5337 * Always use this function when completing multiple NCQ commands 5338 * from IRQ handlers instead of calling ata_qc_complete() 5339 * multiple times to keep IRQ expect status properly in sync. 5340 * 5341 * LOCKING: 5342 * spin_lock_irqsave(host lock) 5343 * 5344 * RETURNS: 5345 * Number of completed commands on success, -errno otherwise. 5346 */ 5347 int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active) 5348 { 5349 u64 done_mask, ap_qc_active = ap->qc_active; 5350 int nr_done = 0; 5351 5352 /* 5353 * If the internal tag is set on ap->qc_active, then we care about 5354 * bit0 on the passed in qc_active mask. Move that bit up to match 5355 * the internal tag. 5356 */ 5357 if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) { 5358 qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL; 5359 qc_active ^= qc_active & 0x01; 5360 } 5361 5362 done_mask = ap_qc_active ^ qc_active; 5363 5364 if (unlikely(done_mask & qc_active)) { 5365 ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n", 5366 ap->qc_active, qc_active); 5367 return -EINVAL; 5368 } 5369 5370 while (done_mask) { 5371 struct ata_queued_cmd *qc; 5372 unsigned int tag = __ffs64(done_mask); 5373 5374 qc = ata_qc_from_tag(ap, tag); 5375 if (qc) { 5376 ata_qc_complete(qc); 5377 nr_done++; 5378 } 5379 done_mask &= ~(1ULL << tag); 5380 } 5381 5382 return nr_done; 5383 } 5384 5385 /** 5386 * ata_qc_issue - issue taskfile to device 5387 * @qc: command to issue to device 5388 * 5389 * Prepare an ATA command to submission to device. 5390 * This includes mapping the data into a DMA-able 5391 * area, filling in the S/G table, and finally 5392 * writing the taskfile to hardware, starting the command. 5393 * 5394 * LOCKING: 5395 * spin_lock_irqsave(host lock) 5396 */ 5397 void ata_qc_issue(struct ata_queued_cmd *qc) 5398 { 5399 struct ata_port *ap = qc->ap; 5400 struct ata_link *link = qc->dev->link; 5401 u8 prot = qc->tf.protocol; 5402 5403 /* Make sure only one non-NCQ command is outstanding. The 5404 * check is skipped for old EH because it reuses active qc to 5405 * request ATAPI sense. 5406 */ 5407 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5408 5409 if (ata_is_ncq(prot)) { 5410 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 5411 5412 if (!link->sactive) 5413 ap->nr_active_links++; 5414 link->sactive |= 1 << qc->hw_tag; 5415 } else { 5416 WARN_ON_ONCE(link->sactive); 5417 5418 ap->nr_active_links++; 5419 link->active_tag = qc->tag; 5420 } 5421 5422 qc->flags |= ATA_QCFLAG_ACTIVE; 5423 ap->qc_active |= 1ULL << qc->tag; 5424 5425 /* 5426 * We guarantee to LLDs that they will have at least one 5427 * non-zero sg if the command is a data command. 5428 */ 5429 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 5430 goto sys_err; 5431 5432 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5433 (ap->flags & ATA_FLAG_PIO_DMA))) 5434 if (ata_sg_setup(qc)) 5435 goto sys_err; 5436 5437 /* if device is sleeping, schedule reset and abort the link */ 5438 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5439 link->eh_info.action |= ATA_EH_RESET; 5440 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5441 ata_link_abort(link); 5442 return; 5443 } 5444 5445 ap->ops->qc_prep(qc); 5446 trace_ata_qc_issue(qc); 5447 qc->err_mask |= ap->ops->qc_issue(qc); 5448 if (unlikely(qc->err_mask)) 5449 goto err; 5450 return; 5451 5452 sys_err: 5453 qc->err_mask |= AC_ERR_SYSTEM; 5454 err: 5455 ata_qc_complete(qc); 5456 } 5457 5458 /** 5459 * sata_scr_valid - test whether SCRs are accessible 5460 * @link: ATA link to test SCR accessibility for 5461 * 5462 * Test whether SCRs are accessible for @link. 5463 * 5464 * LOCKING: 5465 * None. 5466 * 5467 * RETURNS: 5468 * 1 if SCRs are accessible, 0 otherwise. 5469 */ 5470 int sata_scr_valid(struct ata_link *link) 5471 { 5472 struct ata_port *ap = link->ap; 5473 5474 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5475 } 5476 5477 /** 5478 * sata_scr_read - read SCR register of the specified port 5479 * @link: ATA link to read SCR for 5480 * @reg: SCR to read 5481 * @val: Place to store read value 5482 * 5483 * Read SCR register @reg of @link into *@val. This function is 5484 * guaranteed to succeed if @link is ap->link, the cable type of 5485 * the port is SATA and the port implements ->scr_read. 5486 * 5487 * LOCKING: 5488 * None if @link is ap->link. Kernel thread context otherwise. 5489 * 5490 * RETURNS: 5491 * 0 on success, negative errno on failure. 5492 */ 5493 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5494 { 5495 if (ata_is_host_link(link)) { 5496 if (sata_scr_valid(link)) 5497 return link->ap->ops->scr_read(link, reg, val); 5498 return -EOPNOTSUPP; 5499 } 5500 5501 return sata_pmp_scr_read(link, reg, val); 5502 } 5503 5504 /** 5505 * sata_scr_write - write SCR register of the specified port 5506 * @link: ATA link to write SCR for 5507 * @reg: SCR to write 5508 * @val: value to write 5509 * 5510 * Write @val to SCR register @reg of @link. This function is 5511 * guaranteed to succeed if @link is ap->link, the cable type of 5512 * the port is SATA and the port implements ->scr_read. 5513 * 5514 * LOCKING: 5515 * None if @link is ap->link. Kernel thread context otherwise. 5516 * 5517 * RETURNS: 5518 * 0 on success, negative errno on failure. 5519 */ 5520 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5521 { 5522 if (ata_is_host_link(link)) { 5523 if (sata_scr_valid(link)) 5524 return link->ap->ops->scr_write(link, reg, val); 5525 return -EOPNOTSUPP; 5526 } 5527 5528 return sata_pmp_scr_write(link, reg, val); 5529 } 5530 5531 /** 5532 * sata_scr_write_flush - write SCR register of the specified port and flush 5533 * @link: ATA link to write SCR for 5534 * @reg: SCR to write 5535 * @val: value to write 5536 * 5537 * This function is identical to sata_scr_write() except that this 5538 * function performs flush after writing to the register. 5539 * 5540 * LOCKING: 5541 * None if @link is ap->link. Kernel thread context otherwise. 5542 * 5543 * RETURNS: 5544 * 0 on success, negative errno on failure. 5545 */ 5546 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5547 { 5548 if (ata_is_host_link(link)) { 5549 int rc; 5550 5551 if (sata_scr_valid(link)) { 5552 rc = link->ap->ops->scr_write(link, reg, val); 5553 if (rc == 0) 5554 rc = link->ap->ops->scr_read(link, reg, &val); 5555 return rc; 5556 } 5557 return -EOPNOTSUPP; 5558 } 5559 5560 return sata_pmp_scr_write(link, reg, val); 5561 } 5562 5563 /** 5564 * ata_phys_link_online - test whether the given link is online 5565 * @link: ATA link to test 5566 * 5567 * Test whether @link is online. Note that this function returns 5568 * 0 if online status of @link cannot be obtained, so 5569 * ata_link_online(link) != !ata_link_offline(link). 5570 * 5571 * LOCKING: 5572 * None. 5573 * 5574 * RETURNS: 5575 * True if the port online status is available and online. 5576 */ 5577 bool ata_phys_link_online(struct ata_link *link) 5578 { 5579 u32 sstatus; 5580 5581 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5582 ata_sstatus_online(sstatus)) 5583 return true; 5584 return false; 5585 } 5586 5587 /** 5588 * ata_phys_link_offline - test whether the given link is offline 5589 * @link: ATA link to test 5590 * 5591 * Test whether @link is offline. Note that this function 5592 * returns 0 if offline status of @link cannot be obtained, so 5593 * ata_link_online(link) != !ata_link_offline(link). 5594 * 5595 * LOCKING: 5596 * None. 5597 * 5598 * RETURNS: 5599 * True if the port offline status is available and offline. 5600 */ 5601 bool ata_phys_link_offline(struct ata_link *link) 5602 { 5603 u32 sstatus; 5604 5605 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5606 !ata_sstatus_online(sstatus)) 5607 return true; 5608 return false; 5609 } 5610 5611 /** 5612 * ata_link_online - test whether the given link is online 5613 * @link: ATA link to test 5614 * 5615 * Test whether @link is online. This is identical to 5616 * ata_phys_link_online() when there's no slave link. When 5617 * there's a slave link, this function should only be called on 5618 * the master link and will return true if any of M/S links is 5619 * online. 5620 * 5621 * LOCKING: 5622 * None. 5623 * 5624 * RETURNS: 5625 * True if the port online status is available and online. 5626 */ 5627 bool ata_link_online(struct ata_link *link) 5628 { 5629 struct ata_link *slave = link->ap->slave_link; 5630 5631 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5632 5633 return ata_phys_link_online(link) || 5634 (slave && ata_phys_link_online(slave)); 5635 } 5636 5637 /** 5638 * ata_link_offline - test whether the given link is offline 5639 * @link: ATA link to test 5640 * 5641 * Test whether @link is offline. This is identical to 5642 * ata_phys_link_offline() when there's no slave link. When 5643 * there's a slave link, this function should only be called on 5644 * the master link and will return true if both M/S links are 5645 * offline. 5646 * 5647 * LOCKING: 5648 * None. 5649 * 5650 * RETURNS: 5651 * True if the port offline status is available and offline. 5652 */ 5653 bool ata_link_offline(struct ata_link *link) 5654 { 5655 struct ata_link *slave = link->ap->slave_link; 5656 5657 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5658 5659 return ata_phys_link_offline(link) && 5660 (!slave || ata_phys_link_offline(slave)); 5661 } 5662 5663 #ifdef CONFIG_PM 5664 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5665 unsigned int action, unsigned int ehi_flags, 5666 bool async) 5667 { 5668 struct ata_link *link; 5669 unsigned long flags; 5670 5671 /* Previous resume operation might still be in 5672 * progress. Wait for PM_PENDING to clear. 5673 */ 5674 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5675 ata_port_wait_eh(ap); 5676 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5677 } 5678 5679 /* request PM ops to EH */ 5680 spin_lock_irqsave(ap->lock, flags); 5681 5682 ap->pm_mesg = mesg; 5683 ap->pflags |= ATA_PFLAG_PM_PENDING; 5684 ata_for_each_link(link, ap, HOST_FIRST) { 5685 link->eh_info.action |= action; 5686 link->eh_info.flags |= ehi_flags; 5687 } 5688 5689 ata_port_schedule_eh(ap); 5690 5691 spin_unlock_irqrestore(ap->lock, flags); 5692 5693 if (!async) { 5694 ata_port_wait_eh(ap); 5695 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5696 } 5697 } 5698 5699 /* 5700 * On some hardware, device fails to respond after spun down for suspend. As 5701 * the device won't be used before being resumed, we don't need to touch the 5702 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5703 * 5704 * http://thread.gmane.org/gmane.linux.ide/46764 5705 */ 5706 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5707 | ATA_EHI_NO_AUTOPSY 5708 | ATA_EHI_NO_RECOVERY; 5709 5710 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5711 { 5712 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5713 } 5714 5715 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5716 { 5717 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5718 } 5719 5720 static int ata_port_pm_suspend(struct device *dev) 5721 { 5722 struct ata_port *ap = to_ata_port(dev); 5723 5724 if (pm_runtime_suspended(dev)) 5725 return 0; 5726 5727 ata_port_suspend(ap, PMSG_SUSPEND); 5728 return 0; 5729 } 5730 5731 static int ata_port_pm_freeze(struct device *dev) 5732 { 5733 struct ata_port *ap = to_ata_port(dev); 5734 5735 if (pm_runtime_suspended(dev)) 5736 return 0; 5737 5738 ata_port_suspend(ap, PMSG_FREEZE); 5739 return 0; 5740 } 5741 5742 static int ata_port_pm_poweroff(struct device *dev) 5743 { 5744 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5745 return 0; 5746 } 5747 5748 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5749 | ATA_EHI_QUIET; 5750 5751 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5752 { 5753 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5754 } 5755 5756 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5757 { 5758 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5759 } 5760 5761 static int ata_port_pm_resume(struct device *dev) 5762 { 5763 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5764 pm_runtime_disable(dev); 5765 pm_runtime_set_active(dev); 5766 pm_runtime_enable(dev); 5767 return 0; 5768 } 5769 5770 /* 5771 * For ODDs, the upper layer will poll for media change every few seconds, 5772 * which will make it enter and leave suspend state every few seconds. And 5773 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5774 * is very little and the ODD may malfunction after constantly being reset. 5775 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5776 * ODD is attached to the port. 5777 */ 5778 static int ata_port_runtime_idle(struct device *dev) 5779 { 5780 struct ata_port *ap = to_ata_port(dev); 5781 struct ata_link *link; 5782 struct ata_device *adev; 5783 5784 ata_for_each_link(link, ap, HOST_FIRST) { 5785 ata_for_each_dev(adev, link, ENABLED) 5786 if (adev->class == ATA_DEV_ATAPI && 5787 !zpodd_dev_enabled(adev)) 5788 return -EBUSY; 5789 } 5790 5791 return 0; 5792 } 5793 5794 static int ata_port_runtime_suspend(struct device *dev) 5795 { 5796 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5797 return 0; 5798 } 5799 5800 static int ata_port_runtime_resume(struct device *dev) 5801 { 5802 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5803 return 0; 5804 } 5805 5806 static const struct dev_pm_ops ata_port_pm_ops = { 5807 .suspend = ata_port_pm_suspend, 5808 .resume = ata_port_pm_resume, 5809 .freeze = ata_port_pm_freeze, 5810 .thaw = ata_port_pm_resume, 5811 .poweroff = ata_port_pm_poweroff, 5812 .restore = ata_port_pm_resume, 5813 5814 .runtime_suspend = ata_port_runtime_suspend, 5815 .runtime_resume = ata_port_runtime_resume, 5816 .runtime_idle = ata_port_runtime_idle, 5817 }; 5818 5819 /* sas ports don't participate in pm runtime management of ata_ports, 5820 * and need to resume ata devices at the domain level, not the per-port 5821 * level. sas suspend/resume is async to allow parallel port recovery 5822 * since sas has multiple ata_port instances per Scsi_Host. 5823 */ 5824 void ata_sas_port_suspend(struct ata_port *ap) 5825 { 5826 ata_port_suspend_async(ap, PMSG_SUSPEND); 5827 } 5828 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5829 5830 void ata_sas_port_resume(struct ata_port *ap) 5831 { 5832 ata_port_resume_async(ap, PMSG_RESUME); 5833 } 5834 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5835 5836 /** 5837 * ata_host_suspend - suspend host 5838 * @host: host to suspend 5839 * @mesg: PM message 5840 * 5841 * Suspend @host. Actual operation is performed by port suspend. 5842 */ 5843 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5844 { 5845 host->dev->power.power_state = mesg; 5846 return 0; 5847 } 5848 5849 /** 5850 * ata_host_resume - resume host 5851 * @host: host to resume 5852 * 5853 * Resume @host. Actual operation is performed by port resume. 5854 */ 5855 void ata_host_resume(struct ata_host *host) 5856 { 5857 host->dev->power.power_state = PMSG_ON; 5858 } 5859 #endif 5860 5861 const struct device_type ata_port_type = { 5862 .name = "ata_port", 5863 #ifdef CONFIG_PM 5864 .pm = &ata_port_pm_ops, 5865 #endif 5866 }; 5867 5868 /** 5869 * ata_dev_init - Initialize an ata_device structure 5870 * @dev: Device structure to initialize 5871 * 5872 * Initialize @dev in preparation for probing. 5873 * 5874 * LOCKING: 5875 * Inherited from caller. 5876 */ 5877 void ata_dev_init(struct ata_device *dev) 5878 { 5879 struct ata_link *link = ata_dev_phys_link(dev); 5880 struct ata_port *ap = link->ap; 5881 unsigned long flags; 5882 5883 /* SATA spd limit is bound to the attached device, reset together */ 5884 link->sata_spd_limit = link->hw_sata_spd_limit; 5885 link->sata_spd = 0; 5886 5887 /* High bits of dev->flags are used to record warm plug 5888 * requests which occur asynchronously. Synchronize using 5889 * host lock. 5890 */ 5891 spin_lock_irqsave(ap->lock, flags); 5892 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5893 dev->horkage = 0; 5894 spin_unlock_irqrestore(ap->lock, flags); 5895 5896 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5897 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5898 dev->pio_mask = UINT_MAX; 5899 dev->mwdma_mask = UINT_MAX; 5900 dev->udma_mask = UINT_MAX; 5901 } 5902 5903 /** 5904 * ata_link_init - Initialize an ata_link structure 5905 * @ap: ATA port link is attached to 5906 * @link: Link structure to initialize 5907 * @pmp: Port multiplier port number 5908 * 5909 * Initialize @link. 5910 * 5911 * LOCKING: 5912 * Kernel thread context (may sleep) 5913 */ 5914 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5915 { 5916 int i; 5917 5918 /* clear everything except for devices */ 5919 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5920 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5921 5922 link->ap = ap; 5923 link->pmp = pmp; 5924 link->active_tag = ATA_TAG_POISON; 5925 link->hw_sata_spd_limit = UINT_MAX; 5926 5927 /* can't use iterator, ap isn't initialized yet */ 5928 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5929 struct ata_device *dev = &link->device[i]; 5930 5931 dev->link = link; 5932 dev->devno = dev - link->device; 5933 #ifdef CONFIG_ATA_ACPI 5934 dev->gtf_filter = ata_acpi_gtf_filter; 5935 #endif 5936 ata_dev_init(dev); 5937 } 5938 } 5939 5940 /** 5941 * sata_link_init_spd - Initialize link->sata_spd_limit 5942 * @link: Link to configure sata_spd_limit for 5943 * 5944 * Initialize @link->[hw_]sata_spd_limit to the currently 5945 * configured value. 5946 * 5947 * LOCKING: 5948 * Kernel thread context (may sleep). 5949 * 5950 * RETURNS: 5951 * 0 on success, -errno on failure. 5952 */ 5953 int sata_link_init_spd(struct ata_link *link) 5954 { 5955 u8 spd; 5956 int rc; 5957 5958 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5959 if (rc) 5960 return rc; 5961 5962 spd = (link->saved_scontrol >> 4) & 0xf; 5963 if (spd) 5964 link->hw_sata_spd_limit &= (1 << spd) - 1; 5965 5966 ata_force_link_limits(link); 5967 5968 link->sata_spd_limit = link->hw_sata_spd_limit; 5969 5970 return 0; 5971 } 5972 5973 /** 5974 * ata_port_alloc - allocate and initialize basic ATA port resources 5975 * @host: ATA host this allocated port belongs to 5976 * 5977 * Allocate and initialize basic ATA port resources. 5978 * 5979 * RETURNS: 5980 * Allocate ATA port on success, NULL on failure. 5981 * 5982 * LOCKING: 5983 * Inherited from calling layer (may sleep). 5984 */ 5985 struct ata_port *ata_port_alloc(struct ata_host *host) 5986 { 5987 struct ata_port *ap; 5988 5989 DPRINTK("ENTER\n"); 5990 5991 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5992 if (!ap) 5993 return NULL; 5994 5995 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5996 ap->lock = &host->lock; 5997 ap->print_id = -1; 5998 ap->local_port_no = -1; 5999 ap->host = host; 6000 ap->dev = host->dev; 6001 6002 #if defined(ATA_VERBOSE_DEBUG) 6003 /* turn on all debugging levels */ 6004 ap->msg_enable = 0x00FF; 6005 #elif defined(ATA_DEBUG) 6006 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 6007 #else 6008 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 6009 #endif 6010 6011 mutex_init(&ap->scsi_scan_mutex); 6012 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 6013 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 6014 INIT_LIST_HEAD(&ap->eh_done_q); 6015 init_waitqueue_head(&ap->eh_wait_q); 6016 init_completion(&ap->park_req_pending); 6017 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 6018 TIMER_DEFERRABLE); 6019 6020 ap->cbl = ATA_CBL_NONE; 6021 6022 ata_link_init(ap, &ap->link, 0); 6023 6024 #ifdef ATA_IRQ_TRAP 6025 ap->stats.unhandled_irq = 1; 6026 ap->stats.idle_irq = 1; 6027 #endif 6028 ata_sff_port_init(ap); 6029 6030 return ap; 6031 } 6032 6033 static void ata_devres_release(struct device *gendev, void *res) 6034 { 6035 struct ata_host *host = dev_get_drvdata(gendev); 6036 int i; 6037 6038 for (i = 0; i < host->n_ports; i++) { 6039 struct ata_port *ap = host->ports[i]; 6040 6041 if (!ap) 6042 continue; 6043 6044 if (ap->scsi_host) 6045 scsi_host_put(ap->scsi_host); 6046 6047 } 6048 6049 dev_set_drvdata(gendev, NULL); 6050 ata_host_put(host); 6051 } 6052 6053 static void ata_host_release(struct kref *kref) 6054 { 6055 struct ata_host *host = container_of(kref, struct ata_host, kref); 6056 int i; 6057 6058 for (i = 0; i < host->n_ports; i++) { 6059 struct ata_port *ap = host->ports[i]; 6060 6061 kfree(ap->pmp_link); 6062 kfree(ap->slave_link); 6063 kfree(ap); 6064 host->ports[i] = NULL; 6065 } 6066 kfree(host); 6067 } 6068 6069 void ata_host_get(struct ata_host *host) 6070 { 6071 kref_get(&host->kref); 6072 } 6073 6074 void ata_host_put(struct ata_host *host) 6075 { 6076 kref_put(&host->kref, ata_host_release); 6077 } 6078 6079 /** 6080 * ata_host_alloc - allocate and init basic ATA host resources 6081 * @dev: generic device this host is associated with 6082 * @max_ports: maximum number of ATA ports associated with this host 6083 * 6084 * Allocate and initialize basic ATA host resources. LLD calls 6085 * this function to allocate a host, initializes it fully and 6086 * attaches it using ata_host_register(). 6087 * 6088 * @max_ports ports are allocated and host->n_ports is 6089 * initialized to @max_ports. The caller is allowed to decrease 6090 * host->n_ports before calling ata_host_register(). The unused 6091 * ports will be automatically freed on registration. 6092 * 6093 * RETURNS: 6094 * Allocate ATA host on success, NULL on failure. 6095 * 6096 * LOCKING: 6097 * Inherited from calling layer (may sleep). 6098 */ 6099 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 6100 { 6101 struct ata_host *host; 6102 size_t sz; 6103 int i; 6104 void *dr; 6105 6106 DPRINTK("ENTER\n"); 6107 6108 /* alloc a container for our list of ATA ports (buses) */ 6109 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 6110 host = kzalloc(sz, GFP_KERNEL); 6111 if (!host) 6112 return NULL; 6113 6114 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 6115 goto err_free; 6116 6117 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 6118 if (!dr) 6119 goto err_out; 6120 6121 devres_add(dev, dr); 6122 dev_set_drvdata(dev, host); 6123 6124 spin_lock_init(&host->lock); 6125 mutex_init(&host->eh_mutex); 6126 host->dev = dev; 6127 host->n_ports = max_ports; 6128 kref_init(&host->kref); 6129 6130 /* allocate ports bound to this host */ 6131 for (i = 0; i < max_ports; i++) { 6132 struct ata_port *ap; 6133 6134 ap = ata_port_alloc(host); 6135 if (!ap) 6136 goto err_out; 6137 6138 ap->port_no = i; 6139 host->ports[i] = ap; 6140 } 6141 6142 devres_remove_group(dev, NULL); 6143 return host; 6144 6145 err_out: 6146 devres_release_group(dev, NULL); 6147 err_free: 6148 kfree(host); 6149 return NULL; 6150 } 6151 6152 /** 6153 * ata_host_alloc_pinfo - alloc host and init with port_info array 6154 * @dev: generic device this host is associated with 6155 * @ppi: array of ATA port_info to initialize host with 6156 * @n_ports: number of ATA ports attached to this host 6157 * 6158 * Allocate ATA host and initialize with info from @ppi. If NULL 6159 * terminated, @ppi may contain fewer entries than @n_ports. The 6160 * last entry will be used for the remaining ports. 6161 * 6162 * RETURNS: 6163 * Allocate ATA host on success, NULL on failure. 6164 * 6165 * LOCKING: 6166 * Inherited from calling layer (may sleep). 6167 */ 6168 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 6169 const struct ata_port_info * const * ppi, 6170 int n_ports) 6171 { 6172 const struct ata_port_info *pi; 6173 struct ata_host *host; 6174 int i, j; 6175 6176 host = ata_host_alloc(dev, n_ports); 6177 if (!host) 6178 return NULL; 6179 6180 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 6181 struct ata_port *ap = host->ports[i]; 6182 6183 if (ppi[j]) 6184 pi = ppi[j++]; 6185 6186 ap->pio_mask = pi->pio_mask; 6187 ap->mwdma_mask = pi->mwdma_mask; 6188 ap->udma_mask = pi->udma_mask; 6189 ap->flags |= pi->flags; 6190 ap->link.flags |= pi->link_flags; 6191 ap->ops = pi->port_ops; 6192 6193 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 6194 host->ops = pi->port_ops; 6195 } 6196 6197 return host; 6198 } 6199 6200 /** 6201 * ata_slave_link_init - initialize slave link 6202 * @ap: port to initialize slave link for 6203 * 6204 * Create and initialize slave link for @ap. This enables slave 6205 * link handling on the port. 6206 * 6207 * In libata, a port contains links and a link contains devices. 6208 * There is single host link but if a PMP is attached to it, 6209 * there can be multiple fan-out links. On SATA, there's usually 6210 * a single device connected to a link but PATA and SATA 6211 * controllers emulating TF based interface can have two - master 6212 * and slave. 6213 * 6214 * However, there are a few controllers which don't fit into this 6215 * abstraction too well - SATA controllers which emulate TF 6216 * interface with both master and slave devices but also have 6217 * separate SCR register sets for each device. These controllers 6218 * need separate links for physical link handling 6219 * (e.g. onlineness, link speed) but should be treated like a 6220 * traditional M/S controller for everything else (e.g. command 6221 * issue, softreset). 6222 * 6223 * slave_link is libata's way of handling this class of 6224 * controllers without impacting core layer too much. For 6225 * anything other than physical link handling, the default host 6226 * link is used for both master and slave. For physical link 6227 * handling, separate @ap->slave_link is used. All dirty details 6228 * are implemented inside libata core layer. From LLD's POV, the 6229 * only difference is that prereset, hardreset and postreset are 6230 * called once more for the slave link, so the reset sequence 6231 * looks like the following. 6232 * 6233 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 6234 * softreset(M) -> postreset(M) -> postreset(S) 6235 * 6236 * Note that softreset is called only for the master. Softreset 6237 * resets both M/S by definition, so SRST on master should handle 6238 * both (the standard method will work just fine). 6239 * 6240 * LOCKING: 6241 * Should be called before host is registered. 6242 * 6243 * RETURNS: 6244 * 0 on success, -errno on failure. 6245 */ 6246 int ata_slave_link_init(struct ata_port *ap) 6247 { 6248 struct ata_link *link; 6249 6250 WARN_ON(ap->slave_link); 6251 WARN_ON(ap->flags & ATA_FLAG_PMP); 6252 6253 link = kzalloc(sizeof(*link), GFP_KERNEL); 6254 if (!link) 6255 return -ENOMEM; 6256 6257 ata_link_init(ap, link, 1); 6258 ap->slave_link = link; 6259 return 0; 6260 } 6261 6262 static void ata_host_stop(struct device *gendev, void *res) 6263 { 6264 struct ata_host *host = dev_get_drvdata(gendev); 6265 int i; 6266 6267 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 6268 6269 for (i = 0; i < host->n_ports; i++) { 6270 struct ata_port *ap = host->ports[i]; 6271 6272 if (ap->ops->port_stop) 6273 ap->ops->port_stop(ap); 6274 } 6275 6276 if (host->ops->host_stop) 6277 host->ops->host_stop(host); 6278 } 6279 6280 /** 6281 * ata_finalize_port_ops - finalize ata_port_operations 6282 * @ops: ata_port_operations to finalize 6283 * 6284 * An ata_port_operations can inherit from another ops and that 6285 * ops can again inherit from another. This can go on as many 6286 * times as necessary as long as there is no loop in the 6287 * inheritance chain. 6288 * 6289 * Ops tables are finalized when the host is started. NULL or 6290 * unspecified entries are inherited from the closet ancestor 6291 * which has the method and the entry is populated with it. 6292 * After finalization, the ops table directly points to all the 6293 * methods and ->inherits is no longer necessary and cleared. 6294 * 6295 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 6296 * 6297 * LOCKING: 6298 * None. 6299 */ 6300 static void ata_finalize_port_ops(struct ata_port_operations *ops) 6301 { 6302 static DEFINE_SPINLOCK(lock); 6303 const struct ata_port_operations *cur; 6304 void **begin = (void **)ops; 6305 void **end = (void **)&ops->inherits; 6306 void **pp; 6307 6308 if (!ops || !ops->inherits) 6309 return; 6310 6311 spin_lock(&lock); 6312 6313 for (cur = ops->inherits; cur; cur = cur->inherits) { 6314 void **inherit = (void **)cur; 6315 6316 for (pp = begin; pp < end; pp++, inherit++) 6317 if (!*pp) 6318 *pp = *inherit; 6319 } 6320 6321 for (pp = begin; pp < end; pp++) 6322 if (IS_ERR(*pp)) 6323 *pp = NULL; 6324 6325 ops->inherits = NULL; 6326 6327 spin_unlock(&lock); 6328 } 6329 6330 /** 6331 * ata_host_start - start and freeze ports of an ATA host 6332 * @host: ATA host to start ports for 6333 * 6334 * Start and then freeze ports of @host. Started status is 6335 * recorded in host->flags, so this function can be called 6336 * multiple times. Ports are guaranteed to get started only 6337 * once. If host->ops isn't initialized yet, its set to the 6338 * first non-dummy port ops. 6339 * 6340 * LOCKING: 6341 * Inherited from calling layer (may sleep). 6342 * 6343 * RETURNS: 6344 * 0 if all ports are started successfully, -errno otherwise. 6345 */ 6346 int ata_host_start(struct ata_host *host) 6347 { 6348 int have_stop = 0; 6349 void *start_dr = NULL; 6350 int i, rc; 6351 6352 if (host->flags & ATA_HOST_STARTED) 6353 return 0; 6354 6355 ata_finalize_port_ops(host->ops); 6356 6357 for (i = 0; i < host->n_ports; i++) { 6358 struct ata_port *ap = host->ports[i]; 6359 6360 ata_finalize_port_ops(ap->ops); 6361 6362 if (!host->ops && !ata_port_is_dummy(ap)) 6363 host->ops = ap->ops; 6364 6365 if (ap->ops->port_stop) 6366 have_stop = 1; 6367 } 6368 6369 if (host->ops->host_stop) 6370 have_stop = 1; 6371 6372 if (have_stop) { 6373 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 6374 if (!start_dr) 6375 return -ENOMEM; 6376 } 6377 6378 for (i = 0; i < host->n_ports; i++) { 6379 struct ata_port *ap = host->ports[i]; 6380 6381 if (ap->ops->port_start) { 6382 rc = ap->ops->port_start(ap); 6383 if (rc) { 6384 if (rc != -ENODEV) 6385 dev_err(host->dev, 6386 "failed to start port %d (errno=%d)\n", 6387 i, rc); 6388 goto err_out; 6389 } 6390 } 6391 ata_eh_freeze_port(ap); 6392 } 6393 6394 if (start_dr) 6395 devres_add(host->dev, start_dr); 6396 host->flags |= ATA_HOST_STARTED; 6397 return 0; 6398 6399 err_out: 6400 while (--i >= 0) { 6401 struct ata_port *ap = host->ports[i]; 6402 6403 if (ap->ops->port_stop) 6404 ap->ops->port_stop(ap); 6405 } 6406 devres_free(start_dr); 6407 return rc; 6408 } 6409 6410 /** 6411 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6412 * @host: host to initialize 6413 * @dev: device host is attached to 6414 * @ops: port_ops 6415 * 6416 */ 6417 void ata_host_init(struct ata_host *host, struct device *dev, 6418 struct ata_port_operations *ops) 6419 { 6420 spin_lock_init(&host->lock); 6421 mutex_init(&host->eh_mutex); 6422 host->n_tags = ATA_MAX_QUEUE; 6423 host->dev = dev; 6424 host->ops = ops; 6425 kref_init(&host->kref); 6426 } 6427 6428 void __ata_port_probe(struct ata_port *ap) 6429 { 6430 struct ata_eh_info *ehi = &ap->link.eh_info; 6431 unsigned long flags; 6432 6433 /* kick EH for boot probing */ 6434 spin_lock_irqsave(ap->lock, flags); 6435 6436 ehi->probe_mask |= ATA_ALL_DEVICES; 6437 ehi->action |= ATA_EH_RESET; 6438 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6439 6440 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6441 ap->pflags |= ATA_PFLAG_LOADING; 6442 ata_port_schedule_eh(ap); 6443 6444 spin_unlock_irqrestore(ap->lock, flags); 6445 } 6446 6447 int ata_port_probe(struct ata_port *ap) 6448 { 6449 int rc = 0; 6450 6451 if (ap->ops->error_handler) { 6452 __ata_port_probe(ap); 6453 ata_port_wait_eh(ap); 6454 } else { 6455 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6456 rc = ata_bus_probe(ap); 6457 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6458 } 6459 return rc; 6460 } 6461 6462 6463 static void async_port_probe(void *data, async_cookie_t cookie) 6464 { 6465 struct ata_port *ap = data; 6466 6467 /* 6468 * If we're not allowed to scan this host in parallel, 6469 * we need to wait until all previous scans have completed 6470 * before going further. 6471 * Jeff Garzik says this is only within a controller, so we 6472 * don't need to wait for port 0, only for later ports. 6473 */ 6474 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6475 async_synchronize_cookie(cookie); 6476 6477 (void)ata_port_probe(ap); 6478 6479 /* in order to keep device order, we need to synchronize at this point */ 6480 async_synchronize_cookie(cookie); 6481 6482 ata_scsi_scan_host(ap, 1); 6483 } 6484 6485 /** 6486 * ata_host_register - register initialized ATA host 6487 * @host: ATA host to register 6488 * @sht: template for SCSI host 6489 * 6490 * Register initialized ATA host. @host is allocated using 6491 * ata_host_alloc() and fully initialized by LLD. This function 6492 * starts ports, registers @host with ATA and SCSI layers and 6493 * probe registered devices. 6494 * 6495 * LOCKING: 6496 * Inherited from calling layer (may sleep). 6497 * 6498 * RETURNS: 6499 * 0 on success, -errno otherwise. 6500 */ 6501 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6502 { 6503 int i, rc; 6504 6505 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 6506 6507 /* host must have been started */ 6508 if (!(host->flags & ATA_HOST_STARTED)) { 6509 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6510 WARN_ON(1); 6511 return -EINVAL; 6512 } 6513 6514 /* Blow away unused ports. This happens when LLD can't 6515 * determine the exact number of ports to allocate at 6516 * allocation time. 6517 */ 6518 for (i = host->n_ports; host->ports[i]; i++) 6519 kfree(host->ports[i]); 6520 6521 /* give ports names and add SCSI hosts */ 6522 for (i = 0; i < host->n_ports; i++) { 6523 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6524 host->ports[i]->local_port_no = i + 1; 6525 } 6526 6527 /* Create associated sysfs transport objects */ 6528 for (i = 0; i < host->n_ports; i++) { 6529 rc = ata_tport_add(host->dev,host->ports[i]); 6530 if (rc) { 6531 goto err_tadd; 6532 } 6533 } 6534 6535 rc = ata_scsi_add_hosts(host, sht); 6536 if (rc) 6537 goto err_tadd; 6538 6539 /* set cable, sata_spd_limit and report */ 6540 for (i = 0; i < host->n_ports; i++) { 6541 struct ata_port *ap = host->ports[i]; 6542 unsigned long xfer_mask; 6543 6544 /* set SATA cable type if still unset */ 6545 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6546 ap->cbl = ATA_CBL_SATA; 6547 6548 /* init sata_spd_limit to the current value */ 6549 sata_link_init_spd(&ap->link); 6550 if (ap->slave_link) 6551 sata_link_init_spd(ap->slave_link); 6552 6553 /* print per-port info to dmesg */ 6554 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6555 ap->udma_mask); 6556 6557 if (!ata_port_is_dummy(ap)) { 6558 ata_port_info(ap, "%cATA max %s %s\n", 6559 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6560 ata_mode_string(xfer_mask), 6561 ap->link.eh_info.desc); 6562 ata_ehi_clear_desc(&ap->link.eh_info); 6563 } else 6564 ata_port_info(ap, "DUMMY\n"); 6565 } 6566 6567 /* perform each probe asynchronously */ 6568 for (i = 0; i < host->n_ports; i++) { 6569 struct ata_port *ap = host->ports[i]; 6570 async_schedule(async_port_probe, ap); 6571 } 6572 6573 return 0; 6574 6575 err_tadd: 6576 while (--i >= 0) { 6577 ata_tport_delete(host->ports[i]); 6578 } 6579 return rc; 6580 6581 } 6582 6583 /** 6584 * ata_host_activate - start host, request IRQ and register it 6585 * @host: target ATA host 6586 * @irq: IRQ to request 6587 * @irq_handler: irq_handler used when requesting IRQ 6588 * @irq_flags: irq_flags used when requesting IRQ 6589 * @sht: scsi_host_template to use when registering the host 6590 * 6591 * After allocating an ATA host and initializing it, most libata 6592 * LLDs perform three steps to activate the host - start host, 6593 * request IRQ and register it. This helper takes necessary 6594 * arguments and performs the three steps in one go. 6595 * 6596 * An invalid IRQ skips the IRQ registration and expects the host to 6597 * have set polling mode on the port. In this case, @irq_handler 6598 * should be NULL. 6599 * 6600 * LOCKING: 6601 * Inherited from calling layer (may sleep). 6602 * 6603 * RETURNS: 6604 * 0 on success, -errno otherwise. 6605 */ 6606 int ata_host_activate(struct ata_host *host, int irq, 6607 irq_handler_t irq_handler, unsigned long irq_flags, 6608 struct scsi_host_template *sht) 6609 { 6610 int i, rc; 6611 char *irq_desc; 6612 6613 rc = ata_host_start(host); 6614 if (rc) 6615 return rc; 6616 6617 /* Special case for polling mode */ 6618 if (!irq) { 6619 WARN_ON(irq_handler); 6620 return ata_host_register(host, sht); 6621 } 6622 6623 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6624 dev_driver_string(host->dev), 6625 dev_name(host->dev)); 6626 if (!irq_desc) 6627 return -ENOMEM; 6628 6629 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6630 irq_desc, host); 6631 if (rc) 6632 return rc; 6633 6634 for (i = 0; i < host->n_ports; i++) 6635 ata_port_desc(host->ports[i], "irq %d", irq); 6636 6637 rc = ata_host_register(host, sht); 6638 /* if failed, just free the IRQ and leave ports alone */ 6639 if (rc) 6640 devm_free_irq(host->dev, irq, host); 6641 6642 return rc; 6643 } 6644 6645 /** 6646 * ata_port_detach - Detach ATA port in preparation of device removal 6647 * @ap: ATA port to be detached 6648 * 6649 * Detach all ATA devices and the associated SCSI devices of @ap; 6650 * then, remove the associated SCSI host. @ap is guaranteed to 6651 * be quiescent on return from this function. 6652 * 6653 * LOCKING: 6654 * Kernel thread context (may sleep). 6655 */ 6656 static void ata_port_detach(struct ata_port *ap) 6657 { 6658 unsigned long flags; 6659 struct ata_link *link; 6660 struct ata_device *dev; 6661 6662 if (!ap->ops->error_handler) 6663 goto skip_eh; 6664 6665 /* tell EH we're leaving & flush EH */ 6666 spin_lock_irqsave(ap->lock, flags); 6667 ap->pflags |= ATA_PFLAG_UNLOADING; 6668 ata_port_schedule_eh(ap); 6669 spin_unlock_irqrestore(ap->lock, flags); 6670 6671 /* wait till EH commits suicide */ 6672 ata_port_wait_eh(ap); 6673 6674 /* it better be dead now */ 6675 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6676 6677 cancel_delayed_work_sync(&ap->hotplug_task); 6678 6679 skip_eh: 6680 /* clean up zpodd on port removal */ 6681 ata_for_each_link(link, ap, HOST_FIRST) { 6682 ata_for_each_dev(dev, link, ALL) { 6683 if (zpodd_dev_enabled(dev)) 6684 zpodd_exit(dev); 6685 } 6686 } 6687 if (ap->pmp_link) { 6688 int i; 6689 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6690 ata_tlink_delete(&ap->pmp_link[i]); 6691 } 6692 /* remove the associated SCSI host */ 6693 scsi_remove_host(ap->scsi_host); 6694 ata_tport_delete(ap); 6695 } 6696 6697 /** 6698 * ata_host_detach - Detach all ports of an ATA host 6699 * @host: Host to detach 6700 * 6701 * Detach all ports of @host. 6702 * 6703 * LOCKING: 6704 * Kernel thread context (may sleep). 6705 */ 6706 void ata_host_detach(struct ata_host *host) 6707 { 6708 int i; 6709 6710 for (i = 0; i < host->n_ports; i++) 6711 ata_port_detach(host->ports[i]); 6712 6713 /* the host is dead now, dissociate ACPI */ 6714 ata_acpi_dissociate(host); 6715 } 6716 6717 #ifdef CONFIG_PCI 6718 6719 /** 6720 * ata_pci_remove_one - PCI layer callback for device removal 6721 * @pdev: PCI device that was removed 6722 * 6723 * PCI layer indicates to libata via this hook that hot-unplug or 6724 * module unload event has occurred. Detach all ports. Resource 6725 * release is handled via devres. 6726 * 6727 * LOCKING: 6728 * Inherited from PCI layer (may sleep). 6729 */ 6730 void ata_pci_remove_one(struct pci_dev *pdev) 6731 { 6732 struct ata_host *host = pci_get_drvdata(pdev); 6733 6734 ata_host_detach(host); 6735 } 6736 6737 /* move to PCI subsystem */ 6738 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6739 { 6740 unsigned long tmp = 0; 6741 6742 switch (bits->width) { 6743 case 1: { 6744 u8 tmp8 = 0; 6745 pci_read_config_byte(pdev, bits->reg, &tmp8); 6746 tmp = tmp8; 6747 break; 6748 } 6749 case 2: { 6750 u16 tmp16 = 0; 6751 pci_read_config_word(pdev, bits->reg, &tmp16); 6752 tmp = tmp16; 6753 break; 6754 } 6755 case 4: { 6756 u32 tmp32 = 0; 6757 pci_read_config_dword(pdev, bits->reg, &tmp32); 6758 tmp = tmp32; 6759 break; 6760 } 6761 6762 default: 6763 return -EINVAL; 6764 } 6765 6766 tmp &= bits->mask; 6767 6768 return (tmp == bits->val) ? 1 : 0; 6769 } 6770 6771 #ifdef CONFIG_PM 6772 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6773 { 6774 pci_save_state(pdev); 6775 pci_disable_device(pdev); 6776 6777 if (mesg.event & PM_EVENT_SLEEP) 6778 pci_set_power_state(pdev, PCI_D3hot); 6779 } 6780 6781 int ata_pci_device_do_resume(struct pci_dev *pdev) 6782 { 6783 int rc; 6784 6785 pci_set_power_state(pdev, PCI_D0); 6786 pci_restore_state(pdev); 6787 6788 rc = pcim_enable_device(pdev); 6789 if (rc) { 6790 dev_err(&pdev->dev, 6791 "failed to enable device after resume (%d)\n", rc); 6792 return rc; 6793 } 6794 6795 pci_set_master(pdev); 6796 return 0; 6797 } 6798 6799 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6800 { 6801 struct ata_host *host = pci_get_drvdata(pdev); 6802 int rc = 0; 6803 6804 rc = ata_host_suspend(host, mesg); 6805 if (rc) 6806 return rc; 6807 6808 ata_pci_device_do_suspend(pdev, mesg); 6809 6810 return 0; 6811 } 6812 6813 int ata_pci_device_resume(struct pci_dev *pdev) 6814 { 6815 struct ata_host *host = pci_get_drvdata(pdev); 6816 int rc; 6817 6818 rc = ata_pci_device_do_resume(pdev); 6819 if (rc == 0) 6820 ata_host_resume(host); 6821 return rc; 6822 } 6823 #endif /* CONFIG_PM */ 6824 6825 #endif /* CONFIG_PCI */ 6826 6827 /** 6828 * ata_platform_remove_one - Platform layer callback for device removal 6829 * @pdev: Platform device that was removed 6830 * 6831 * Platform layer indicates to libata via this hook that hot-unplug or 6832 * module unload event has occurred. Detach all ports. Resource 6833 * release is handled via devres. 6834 * 6835 * LOCKING: 6836 * Inherited from platform layer (may sleep). 6837 */ 6838 int ata_platform_remove_one(struct platform_device *pdev) 6839 { 6840 struct ata_host *host = platform_get_drvdata(pdev); 6841 6842 ata_host_detach(host); 6843 6844 return 0; 6845 } 6846 6847 static int __init ata_parse_force_one(char **cur, 6848 struct ata_force_ent *force_ent, 6849 const char **reason) 6850 { 6851 static const struct ata_force_param force_tbl[] __initconst = { 6852 { "40c", .cbl = ATA_CBL_PATA40 }, 6853 { "80c", .cbl = ATA_CBL_PATA80 }, 6854 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6855 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6856 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6857 { "sata", .cbl = ATA_CBL_SATA }, 6858 { "1.5Gbps", .spd_limit = 1 }, 6859 { "3.0Gbps", .spd_limit = 2 }, 6860 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6861 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6862 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6863 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6864 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6865 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6866 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6867 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6868 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6869 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6870 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6871 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6872 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6873 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6874 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6875 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6876 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6877 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6878 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6879 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6880 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6881 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6882 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6883 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6884 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6885 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6886 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6887 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6888 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6889 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6890 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6891 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6892 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6893 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6894 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6895 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6896 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6897 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6898 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6899 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6900 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6901 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6902 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6903 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6904 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6905 }; 6906 char *start = *cur, *p = *cur; 6907 char *id, *val, *endp; 6908 const struct ata_force_param *match_fp = NULL; 6909 int nr_matches = 0, i; 6910 6911 /* find where this param ends and update *cur */ 6912 while (*p != '\0' && *p != ',') 6913 p++; 6914 6915 if (*p == '\0') 6916 *cur = p; 6917 else 6918 *cur = p + 1; 6919 6920 *p = '\0'; 6921 6922 /* parse */ 6923 p = strchr(start, ':'); 6924 if (!p) { 6925 val = strstrip(start); 6926 goto parse_val; 6927 } 6928 *p = '\0'; 6929 6930 id = strstrip(start); 6931 val = strstrip(p + 1); 6932 6933 /* parse id */ 6934 p = strchr(id, '.'); 6935 if (p) { 6936 *p++ = '\0'; 6937 force_ent->device = simple_strtoul(p, &endp, 10); 6938 if (p == endp || *endp != '\0') { 6939 *reason = "invalid device"; 6940 return -EINVAL; 6941 } 6942 } 6943 6944 force_ent->port = simple_strtoul(id, &endp, 10); 6945 if (id == endp || *endp != '\0') { 6946 *reason = "invalid port/link"; 6947 return -EINVAL; 6948 } 6949 6950 parse_val: 6951 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6952 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6953 const struct ata_force_param *fp = &force_tbl[i]; 6954 6955 if (strncasecmp(val, fp->name, strlen(val))) 6956 continue; 6957 6958 nr_matches++; 6959 match_fp = fp; 6960 6961 if (strcasecmp(val, fp->name) == 0) { 6962 nr_matches = 1; 6963 break; 6964 } 6965 } 6966 6967 if (!nr_matches) { 6968 *reason = "unknown value"; 6969 return -EINVAL; 6970 } 6971 if (nr_matches > 1) { 6972 *reason = "ambiguous value"; 6973 return -EINVAL; 6974 } 6975 6976 force_ent->param = *match_fp; 6977 6978 return 0; 6979 } 6980 6981 static void __init ata_parse_force_param(void) 6982 { 6983 int idx = 0, size = 1; 6984 int last_port = -1, last_device = -1; 6985 char *p, *cur, *next; 6986 6987 /* calculate maximum number of params and allocate force_tbl */ 6988 for (p = ata_force_param_buf; *p; p++) 6989 if (*p == ',') 6990 size++; 6991 6992 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6993 if (!ata_force_tbl) { 6994 printk(KERN_WARNING "ata: failed to extend force table, " 6995 "libata.force ignored\n"); 6996 return; 6997 } 6998 6999 /* parse and populate the table */ 7000 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 7001 const char *reason = ""; 7002 struct ata_force_ent te = { .port = -1, .device = -1 }; 7003 7004 next = cur; 7005 if (ata_parse_force_one(&next, &te, &reason)) { 7006 printk(KERN_WARNING "ata: failed to parse force " 7007 "parameter \"%s\" (%s)\n", 7008 cur, reason); 7009 continue; 7010 } 7011 7012 if (te.port == -1) { 7013 te.port = last_port; 7014 te.device = last_device; 7015 } 7016 7017 ata_force_tbl[idx++] = te; 7018 7019 last_port = te.port; 7020 last_device = te.device; 7021 } 7022 7023 ata_force_tbl_size = idx; 7024 } 7025 7026 static int __init ata_init(void) 7027 { 7028 int rc; 7029 7030 ata_parse_force_param(); 7031 7032 rc = ata_sff_init(); 7033 if (rc) { 7034 kfree(ata_force_tbl); 7035 return rc; 7036 } 7037 7038 libata_transport_init(); 7039 ata_scsi_transport_template = ata_attach_transport(); 7040 if (!ata_scsi_transport_template) { 7041 ata_sff_exit(); 7042 rc = -ENOMEM; 7043 goto err_out; 7044 } 7045 7046 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 7047 return 0; 7048 7049 err_out: 7050 return rc; 7051 } 7052 7053 static void __exit ata_exit(void) 7054 { 7055 ata_release_transport(ata_scsi_transport_template); 7056 libata_transport_exit(); 7057 ata_sff_exit(); 7058 kfree(ata_force_tbl); 7059 } 7060 7061 subsys_initcall(ata_init); 7062 module_exit(ata_exit); 7063 7064 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 7065 7066 int ata_ratelimit(void) 7067 { 7068 return __ratelimit(&ratelimit); 7069 } 7070 7071 /** 7072 * ata_msleep - ATA EH owner aware msleep 7073 * @ap: ATA port to attribute the sleep to 7074 * @msecs: duration to sleep in milliseconds 7075 * 7076 * Sleeps @msecs. If the current task is owner of @ap's EH, the 7077 * ownership is released before going to sleep and reacquired 7078 * after the sleep is complete. IOW, other ports sharing the 7079 * @ap->host will be allowed to own the EH while this task is 7080 * sleeping. 7081 * 7082 * LOCKING: 7083 * Might sleep. 7084 */ 7085 void ata_msleep(struct ata_port *ap, unsigned int msecs) 7086 { 7087 bool owns_eh = ap && ap->host->eh_owner == current; 7088 7089 if (owns_eh) 7090 ata_eh_release(ap); 7091 7092 if (msecs < 20) { 7093 unsigned long usecs = msecs * USEC_PER_MSEC; 7094 usleep_range(usecs, usecs + 50); 7095 } else { 7096 msleep(msecs); 7097 } 7098 7099 if (owns_eh) 7100 ata_eh_acquire(ap); 7101 } 7102 7103 /** 7104 * ata_wait_register - wait until register value changes 7105 * @ap: ATA port to wait register for, can be NULL 7106 * @reg: IO-mapped register 7107 * @mask: Mask to apply to read register value 7108 * @val: Wait condition 7109 * @interval: polling interval in milliseconds 7110 * @timeout: timeout in milliseconds 7111 * 7112 * Waiting for some bits of register to change is a common 7113 * operation for ATA controllers. This function reads 32bit LE 7114 * IO-mapped register @reg and tests for the following condition. 7115 * 7116 * (*@reg & mask) != val 7117 * 7118 * If the condition is met, it returns; otherwise, the process is 7119 * repeated after @interval_msec until timeout. 7120 * 7121 * LOCKING: 7122 * Kernel thread context (may sleep) 7123 * 7124 * RETURNS: 7125 * The final register value. 7126 */ 7127 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 7128 unsigned long interval, unsigned long timeout) 7129 { 7130 unsigned long deadline; 7131 u32 tmp; 7132 7133 tmp = ioread32(reg); 7134 7135 /* Calculate timeout _after_ the first read to make sure 7136 * preceding writes reach the controller before starting to 7137 * eat away the timeout. 7138 */ 7139 deadline = ata_deadline(jiffies, timeout); 7140 7141 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 7142 ata_msleep(ap, interval); 7143 tmp = ioread32(reg); 7144 } 7145 7146 return tmp; 7147 } 7148 7149 /** 7150 * sata_lpm_ignore_phy_events - test if PHY event should be ignored 7151 * @link: Link receiving the event 7152 * 7153 * Test whether the received PHY event has to be ignored or not. 7154 * 7155 * LOCKING: 7156 * None: 7157 * 7158 * RETURNS: 7159 * True if the event has to be ignored. 7160 */ 7161 bool sata_lpm_ignore_phy_events(struct ata_link *link) 7162 { 7163 unsigned long lpm_timeout = link->last_lpm_change + 7164 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY); 7165 7166 /* if LPM is enabled, PHYRDY doesn't mean anything */ 7167 if (link->lpm_policy > ATA_LPM_MAX_POWER) 7168 return true; 7169 7170 /* ignore the first PHY event after the LPM policy changed 7171 * as it is might be spurious 7172 */ 7173 if ((link->flags & ATA_LFLAG_CHANGED) && 7174 time_before(jiffies, lpm_timeout)) 7175 return true; 7176 7177 return false; 7178 } 7179 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events); 7180 7181 /* 7182 * Dummy port_ops 7183 */ 7184 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 7185 { 7186 return AC_ERR_SYSTEM; 7187 } 7188 7189 static void ata_dummy_error_handler(struct ata_port *ap) 7190 { 7191 /* truly dummy */ 7192 } 7193 7194 struct ata_port_operations ata_dummy_port_ops = { 7195 .qc_prep = ata_noop_qc_prep, 7196 .qc_issue = ata_dummy_qc_issue, 7197 .error_handler = ata_dummy_error_handler, 7198 .sched_eh = ata_std_sched_eh, 7199 .end_eh = ata_std_end_eh, 7200 }; 7201 7202 const struct ata_port_info ata_dummy_port_info = { 7203 .port_ops = &ata_dummy_port_ops, 7204 }; 7205 7206 /* 7207 * Utility print functions 7208 */ 7209 void ata_port_printk(const struct ata_port *ap, const char *level, 7210 const char *fmt, ...) 7211 { 7212 struct va_format vaf; 7213 va_list args; 7214 7215 va_start(args, fmt); 7216 7217 vaf.fmt = fmt; 7218 vaf.va = &args; 7219 7220 printk("%sata%u: %pV", level, ap->print_id, &vaf); 7221 7222 va_end(args); 7223 } 7224 EXPORT_SYMBOL(ata_port_printk); 7225 7226 void ata_link_printk(const struct ata_link *link, const char *level, 7227 const char *fmt, ...) 7228 { 7229 struct va_format vaf; 7230 va_list args; 7231 7232 va_start(args, fmt); 7233 7234 vaf.fmt = fmt; 7235 vaf.va = &args; 7236 7237 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 7238 printk("%sata%u.%02u: %pV", 7239 level, link->ap->print_id, link->pmp, &vaf); 7240 else 7241 printk("%sata%u: %pV", 7242 level, link->ap->print_id, &vaf); 7243 7244 va_end(args); 7245 } 7246 EXPORT_SYMBOL(ata_link_printk); 7247 7248 void ata_dev_printk(const struct ata_device *dev, const char *level, 7249 const char *fmt, ...) 7250 { 7251 struct va_format vaf; 7252 va_list args; 7253 7254 va_start(args, fmt); 7255 7256 vaf.fmt = fmt; 7257 vaf.va = &args; 7258 7259 printk("%sata%u.%02u: %pV", 7260 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 7261 &vaf); 7262 7263 va_end(args); 7264 } 7265 EXPORT_SYMBOL(ata_dev_printk); 7266 7267 void ata_print_version(const struct device *dev, const char *version) 7268 { 7269 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 7270 } 7271 EXPORT_SYMBOL(ata_print_version); 7272 7273 /* 7274 * libata is essentially a library of internal helper functions for 7275 * low-level ATA host controller drivers. As such, the API/ABI is 7276 * likely to change as new drivers are added and updated. 7277 * Do not depend on ABI/API stability. 7278 */ 7279 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 7280 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 7281 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 7282 EXPORT_SYMBOL_GPL(ata_base_port_ops); 7283 EXPORT_SYMBOL_GPL(sata_port_ops); 7284 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 7285 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 7286 EXPORT_SYMBOL_GPL(ata_link_next); 7287 EXPORT_SYMBOL_GPL(ata_dev_next); 7288 EXPORT_SYMBOL_GPL(ata_std_bios_param); 7289 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 7290 EXPORT_SYMBOL_GPL(ata_host_init); 7291 EXPORT_SYMBOL_GPL(ata_host_alloc); 7292 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 7293 EXPORT_SYMBOL_GPL(ata_slave_link_init); 7294 EXPORT_SYMBOL_GPL(ata_host_start); 7295 EXPORT_SYMBOL_GPL(ata_host_register); 7296 EXPORT_SYMBOL_GPL(ata_host_activate); 7297 EXPORT_SYMBOL_GPL(ata_host_detach); 7298 EXPORT_SYMBOL_GPL(ata_sg_init); 7299 EXPORT_SYMBOL_GPL(ata_qc_complete); 7300 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 7301 EXPORT_SYMBOL_GPL(atapi_cmd_type); 7302 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 7303 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 7304 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 7305 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 7306 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 7307 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 7308 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 7309 EXPORT_SYMBOL_GPL(ata_mode_string); 7310 EXPORT_SYMBOL_GPL(ata_id_xfermask); 7311 EXPORT_SYMBOL_GPL(ata_do_set_mode); 7312 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 7313 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 7314 EXPORT_SYMBOL_GPL(ata_dev_disable); 7315 EXPORT_SYMBOL_GPL(sata_set_spd); 7316 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 7317 EXPORT_SYMBOL_GPL(sata_link_debounce); 7318 EXPORT_SYMBOL_GPL(sata_link_resume); 7319 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 7320 EXPORT_SYMBOL_GPL(ata_std_prereset); 7321 EXPORT_SYMBOL_GPL(sata_link_hardreset); 7322 EXPORT_SYMBOL_GPL(sata_std_hardreset); 7323 EXPORT_SYMBOL_GPL(ata_std_postreset); 7324 EXPORT_SYMBOL_GPL(ata_dev_classify); 7325 EXPORT_SYMBOL_GPL(ata_dev_pair); 7326 EXPORT_SYMBOL_GPL(ata_ratelimit); 7327 EXPORT_SYMBOL_GPL(ata_msleep); 7328 EXPORT_SYMBOL_GPL(ata_wait_register); 7329 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 7330 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 7331 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 7332 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 7333 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 7334 EXPORT_SYMBOL_GPL(sata_scr_valid); 7335 EXPORT_SYMBOL_GPL(sata_scr_read); 7336 EXPORT_SYMBOL_GPL(sata_scr_write); 7337 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 7338 EXPORT_SYMBOL_GPL(ata_link_online); 7339 EXPORT_SYMBOL_GPL(ata_link_offline); 7340 #ifdef CONFIG_PM 7341 EXPORT_SYMBOL_GPL(ata_host_suspend); 7342 EXPORT_SYMBOL_GPL(ata_host_resume); 7343 #endif /* CONFIG_PM */ 7344 EXPORT_SYMBOL_GPL(ata_id_string); 7345 EXPORT_SYMBOL_GPL(ata_id_c_string); 7346 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 7347 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 7348 7349 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 7350 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 7351 EXPORT_SYMBOL_GPL(ata_timing_compute); 7352 EXPORT_SYMBOL_GPL(ata_timing_merge); 7353 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 7354 7355 #ifdef CONFIG_PCI 7356 EXPORT_SYMBOL_GPL(pci_test_config_bits); 7357 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 7358 #ifdef CONFIG_PM 7359 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 7360 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 7361 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 7362 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 7363 #endif /* CONFIG_PM */ 7364 #endif /* CONFIG_PCI */ 7365 7366 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 7367 7368 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 7369 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 7370 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 7371 EXPORT_SYMBOL_GPL(ata_port_desc); 7372 #ifdef CONFIG_PCI 7373 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 7374 #endif /* CONFIG_PCI */ 7375 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 7376 EXPORT_SYMBOL_GPL(ata_link_abort); 7377 EXPORT_SYMBOL_GPL(ata_port_abort); 7378 EXPORT_SYMBOL_GPL(ata_port_freeze); 7379 EXPORT_SYMBOL_GPL(sata_async_notification); 7380 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 7381 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 7382 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 7383 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 7384 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 7385 EXPORT_SYMBOL_GPL(ata_do_eh); 7386 EXPORT_SYMBOL_GPL(ata_std_error_handler); 7387 7388 EXPORT_SYMBOL_GPL(ata_cable_40wire); 7389 EXPORT_SYMBOL_GPL(ata_cable_80wire); 7390 EXPORT_SYMBOL_GPL(ata_cable_unknown); 7391 EXPORT_SYMBOL_GPL(ata_cable_ignore); 7392 EXPORT_SYMBOL_GPL(ata_cable_sata); 7393 EXPORT_SYMBOL_GPL(ata_host_get); 7394 EXPORT_SYMBOL_GPL(ata_host_put); 7395