xref: /openbmc/linux/drivers/ata/libata-core.c (revision abed054f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned long	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags;
100 };
101 
102 struct ata_force_ent {
103 	int			port;
104 	int			device;
105 	struct ata_force_param	param;
106 };
107 
108 static struct ata_force_ent *ata_force_tbl;
109 static int ata_force_tbl_size;
110 
111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112 /* param_buf is thrown away after initialization, disallow read */
113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115 #endif
116 
117 static int atapi_enabled = 1;
118 module_param(atapi_enabled, int, 0444);
119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120 
121 static int atapi_dmadir = 0;
122 module_param(atapi_dmadir, int, 0444);
123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124 
125 int atapi_passthru16 = 1;
126 module_param(atapi_passthru16, int, 0444);
127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128 
129 int libata_fua = 0;
130 module_param_named(fua, libata_fua, int, 0444);
131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132 
133 static int ata_ignore_hpa;
134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136 
137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138 module_param_named(dma, libata_dma_mask, int, 0444);
139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140 
141 static int ata_probe_timeout;
142 module_param(ata_probe_timeout, int, 0444);
143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144 
145 int libata_noacpi = 0;
146 module_param_named(noacpi, libata_noacpi, int, 0444);
147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148 
149 int libata_allow_tpm = 0;
150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152 
153 static int atapi_an;
154 module_param(atapi_an, int, 0444);
155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156 
157 MODULE_AUTHOR("Jeff Garzik");
158 MODULE_DESCRIPTION("Library module for ATA devices");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION);
161 
162 static inline bool ata_dev_print_info(struct ata_device *dev)
163 {
164 	struct ata_eh_context *ehc = &dev->link->eh_context;
165 
166 	return ehc->i.flags & ATA_EHI_PRINTINFO;
167 }
168 
169 static bool ata_sstatus_online(u32 sstatus)
170 {
171 	return (sstatus & 0xf) == 0x3;
172 }
173 
174 /**
175  *	ata_link_next - link iteration helper
176  *	@link: the previous link, NULL to start
177  *	@ap: ATA port containing links to iterate
178  *	@mode: iteration mode, one of ATA_LITER_*
179  *
180  *	LOCKING:
181  *	Host lock or EH context.
182  *
183  *	RETURNS:
184  *	Pointer to the next link.
185  */
186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 			       enum ata_link_iter_mode mode)
188 {
189 	BUG_ON(mode != ATA_LITER_EDGE &&
190 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191 
192 	/* NULL link indicates start of iteration */
193 	if (!link)
194 		switch (mode) {
195 		case ATA_LITER_EDGE:
196 		case ATA_LITER_PMP_FIRST:
197 			if (sata_pmp_attached(ap))
198 				return ap->pmp_link;
199 			fallthrough;
200 		case ATA_LITER_HOST_FIRST:
201 			return &ap->link;
202 		}
203 
204 	/* we just iterated over the host link, what's next? */
205 	if (link == &ap->link)
206 		switch (mode) {
207 		case ATA_LITER_HOST_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			fallthrough;
211 		case ATA_LITER_PMP_FIRST:
212 			if (unlikely(ap->slave_link))
213 				return ap->slave_link;
214 			fallthrough;
215 		case ATA_LITER_EDGE:
216 			return NULL;
217 		}
218 
219 	/* slave_link excludes PMP */
220 	if (unlikely(link == ap->slave_link))
221 		return NULL;
222 
223 	/* we were over a PMP link */
224 	if (++link < ap->pmp_link + ap->nr_pmp_links)
225 		return link;
226 
227 	if (mode == ATA_LITER_PMP_FIRST)
228 		return &ap->link;
229 
230 	return NULL;
231 }
232 EXPORT_SYMBOL_GPL(ata_link_next);
233 
234 /**
235  *	ata_dev_next - device iteration helper
236  *	@dev: the previous device, NULL to start
237  *	@link: ATA link containing devices to iterate
238  *	@mode: iteration mode, one of ATA_DITER_*
239  *
240  *	LOCKING:
241  *	Host lock or EH context.
242  *
243  *	RETURNS:
244  *	Pointer to the next device.
245  */
246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 				enum ata_dev_iter_mode mode)
248 {
249 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251 
252 	/* NULL dev indicates start of iteration */
253 	if (!dev)
254 		switch (mode) {
255 		case ATA_DITER_ENABLED:
256 		case ATA_DITER_ALL:
257 			dev = link->device;
258 			goto check;
259 		case ATA_DITER_ENABLED_REVERSE:
260 		case ATA_DITER_ALL_REVERSE:
261 			dev = link->device + ata_link_max_devices(link) - 1;
262 			goto check;
263 		}
264 
265  next:
266 	/* move to the next one */
267 	switch (mode) {
268 	case ATA_DITER_ENABLED:
269 	case ATA_DITER_ALL:
270 		if (++dev < link->device + ata_link_max_devices(link))
271 			goto check;
272 		return NULL;
273 	case ATA_DITER_ENABLED_REVERSE:
274 	case ATA_DITER_ALL_REVERSE:
275 		if (--dev >= link->device)
276 			goto check;
277 		return NULL;
278 	}
279 
280  check:
281 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 	    !ata_dev_enabled(dev))
283 		goto next;
284 	return dev;
285 }
286 EXPORT_SYMBOL_GPL(ata_dev_next);
287 
288 /**
289  *	ata_dev_phys_link - find physical link for a device
290  *	@dev: ATA device to look up physical link for
291  *
292  *	Look up physical link which @dev is attached to.  Note that
293  *	this is different from @dev->link only when @dev is on slave
294  *	link.  For all other cases, it's the same as @dev->link.
295  *
296  *	LOCKING:
297  *	Don't care.
298  *
299  *	RETURNS:
300  *	Pointer to the found physical link.
301  */
302 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
303 {
304 	struct ata_port *ap = dev->link->ap;
305 
306 	if (!ap->slave_link)
307 		return dev->link;
308 	if (!dev->devno)
309 		return &ap->link;
310 	return ap->slave_link;
311 }
312 
313 #ifdef CONFIG_ATA_FORCE
314 /**
315  *	ata_force_cbl - force cable type according to libata.force
316  *	@ap: ATA port of interest
317  *
318  *	Force cable type according to libata.force and whine about it.
319  *	The last entry which has matching port number is used, so it
320  *	can be specified as part of device force parameters.  For
321  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322  *	same effect.
323  *
324  *	LOCKING:
325  *	EH context.
326  */
327 void ata_force_cbl(struct ata_port *ap)
328 {
329 	int i;
330 
331 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 		const struct ata_force_ent *fe = &ata_force_tbl[i];
333 
334 		if (fe->port != -1 && fe->port != ap->print_id)
335 			continue;
336 
337 		if (fe->param.cbl == ATA_CBL_NONE)
338 			continue;
339 
340 		ap->cbl = fe->param.cbl;
341 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
342 		return;
343 	}
344 }
345 
346 /**
347  *	ata_force_link_limits - force link limits according to libata.force
348  *	@link: ATA link of interest
349  *
350  *	Force link flags and SATA spd limit according to libata.force
351  *	and whine about it.  When only the port part is specified
352  *	(e.g. 1:), the limit applies to all links connected to both
353  *	the host link and all fan-out ports connected via PMP.  If the
354  *	device part is specified as 0 (e.g. 1.00:), it specifies the
355  *	first fan-out link not the host link.  Device number 15 always
356  *	points to the host link whether PMP is attached or not.  If the
357  *	controller has slave link, device number 16 points to it.
358  *
359  *	LOCKING:
360  *	EH context.
361  */
362 static void ata_force_link_limits(struct ata_link *link)
363 {
364 	bool did_spd = false;
365 	int linkno = link->pmp;
366 	int i;
367 
368 	if (ata_is_host_link(link))
369 		linkno += 15;
370 
371 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 		const struct ata_force_ent *fe = &ata_force_tbl[i];
373 
374 		if (fe->port != -1 && fe->port != link->ap->print_id)
375 			continue;
376 
377 		if (fe->device != -1 && fe->device != linkno)
378 			continue;
379 
380 		/* only honor the first spd limit */
381 		if (!did_spd && fe->param.spd_limit) {
382 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
384 					fe->param.name);
385 			did_spd = true;
386 		}
387 
388 		/* let lflags stack */
389 		if (fe->param.lflags) {
390 			link->flags |= fe->param.lflags;
391 			ata_link_notice(link,
392 					"FORCE: link flag 0x%x forced -> 0x%x\n",
393 					fe->param.lflags, link->flags);
394 		}
395 	}
396 }
397 
398 /**
399  *	ata_force_xfermask - force xfermask according to libata.force
400  *	@dev: ATA device of interest
401  *
402  *	Force xfer_mask according to libata.force and whine about it.
403  *	For consistency with link selection, device number 15 selects
404  *	the first device connected to the host link.
405  *
406  *	LOCKING:
407  *	EH context.
408  */
409 static void ata_force_xfermask(struct ata_device *dev)
410 {
411 	int devno = dev->link->pmp + dev->devno;
412 	int alt_devno = devno;
413 	int i;
414 
415 	/* allow n.15/16 for devices attached to host port */
416 	if (ata_is_host_link(dev->link))
417 		alt_devno += 15;
418 
419 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 		const struct ata_force_ent *fe = &ata_force_tbl[i];
421 		unsigned long pio_mask, mwdma_mask, udma_mask;
422 
423 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 			continue;
425 
426 		if (fe->device != -1 && fe->device != devno &&
427 		    fe->device != alt_devno)
428 			continue;
429 
430 		if (!fe->param.xfer_mask)
431 			continue;
432 
433 		ata_unpack_xfermask(fe->param.xfer_mask,
434 				    &pio_mask, &mwdma_mask, &udma_mask);
435 		if (udma_mask)
436 			dev->udma_mask = udma_mask;
437 		else if (mwdma_mask) {
438 			dev->udma_mask = 0;
439 			dev->mwdma_mask = mwdma_mask;
440 		} else {
441 			dev->udma_mask = 0;
442 			dev->mwdma_mask = 0;
443 			dev->pio_mask = pio_mask;
444 		}
445 
446 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
447 			       fe->param.name);
448 		return;
449 	}
450 }
451 
452 /**
453  *	ata_force_horkage - force horkage according to libata.force
454  *	@dev: ATA device of interest
455  *
456  *	Force horkage according to libata.force and whine about it.
457  *	For consistency with link selection, device number 15 selects
458  *	the first device connected to the host link.
459  *
460  *	LOCKING:
461  *	EH context.
462  */
463 static void ata_force_horkage(struct ata_device *dev)
464 {
465 	int devno = dev->link->pmp + dev->devno;
466 	int alt_devno = devno;
467 	int i;
468 
469 	/* allow n.15/16 for devices attached to host port */
470 	if (ata_is_host_link(dev->link))
471 		alt_devno += 15;
472 
473 	for (i = 0; i < ata_force_tbl_size; i++) {
474 		const struct ata_force_ent *fe = &ata_force_tbl[i];
475 
476 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 			continue;
478 
479 		if (fe->device != -1 && fe->device != devno &&
480 		    fe->device != alt_devno)
481 			continue;
482 
483 		if (!(~dev->horkage & fe->param.horkage_on) &&
484 		    !(dev->horkage & fe->param.horkage_off))
485 			continue;
486 
487 		dev->horkage |= fe->param.horkage_on;
488 		dev->horkage &= ~fe->param.horkage_off;
489 
490 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
491 			       fe->param.name);
492 	}
493 }
494 #else
495 static inline void ata_force_link_limits(struct ata_link *link) { }
496 static inline void ata_force_xfermask(struct ata_device *dev) { }
497 static inline void ata_force_horkage(struct ata_device *dev) { }
498 #endif
499 
500 /**
501  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502  *	@opcode: SCSI opcode
503  *
504  *	Determine ATAPI command type from @opcode.
505  *
506  *	LOCKING:
507  *	None.
508  *
509  *	RETURNS:
510  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
511  */
512 int atapi_cmd_type(u8 opcode)
513 {
514 	switch (opcode) {
515 	case GPCMD_READ_10:
516 	case GPCMD_READ_12:
517 		return ATAPI_READ;
518 
519 	case GPCMD_WRITE_10:
520 	case GPCMD_WRITE_12:
521 	case GPCMD_WRITE_AND_VERIFY_10:
522 		return ATAPI_WRITE;
523 
524 	case GPCMD_READ_CD:
525 	case GPCMD_READ_CD_MSF:
526 		return ATAPI_READ_CD;
527 
528 	case ATA_16:
529 	case ATA_12:
530 		if (atapi_passthru16)
531 			return ATAPI_PASS_THRU;
532 		fallthrough;
533 	default:
534 		return ATAPI_MISC;
535 	}
536 }
537 EXPORT_SYMBOL_GPL(atapi_cmd_type);
538 
539 static const u8 ata_rw_cmds[] = {
540 	/* pio multi */
541 	ATA_CMD_READ_MULTI,
542 	ATA_CMD_WRITE_MULTI,
543 	ATA_CMD_READ_MULTI_EXT,
544 	ATA_CMD_WRITE_MULTI_EXT,
545 	0,
546 	0,
547 	0,
548 	ATA_CMD_WRITE_MULTI_FUA_EXT,
549 	/* pio */
550 	ATA_CMD_PIO_READ,
551 	ATA_CMD_PIO_WRITE,
552 	ATA_CMD_PIO_READ_EXT,
553 	ATA_CMD_PIO_WRITE_EXT,
554 	0,
555 	0,
556 	0,
557 	0,
558 	/* dma */
559 	ATA_CMD_READ,
560 	ATA_CMD_WRITE,
561 	ATA_CMD_READ_EXT,
562 	ATA_CMD_WRITE_EXT,
563 	0,
564 	0,
565 	0,
566 	ATA_CMD_WRITE_FUA_EXT
567 };
568 
569 /**
570  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
571  *	@tf: command to examine and configure
572  *	@dev: device tf belongs to
573  *
574  *	Examine the device configuration and tf->flags to calculate
575  *	the proper read/write commands and protocol to use.
576  *
577  *	LOCKING:
578  *	caller.
579  */
580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
581 {
582 	u8 cmd;
583 
584 	int index, fua, lba48, write;
585 
586 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
587 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
588 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
589 
590 	if (dev->flags & ATA_DFLAG_PIO) {
591 		tf->protocol = ATA_PROT_PIO;
592 		index = dev->multi_count ? 0 : 8;
593 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
594 		/* Unable to use DMA due to host limitation */
595 		tf->protocol = ATA_PROT_PIO;
596 		index = dev->multi_count ? 0 : 8;
597 	} else {
598 		tf->protocol = ATA_PROT_DMA;
599 		index = 16;
600 	}
601 
602 	cmd = ata_rw_cmds[index + fua + lba48 + write];
603 	if (cmd) {
604 		tf->command = cmd;
605 		return 0;
606 	}
607 	return -1;
608 }
609 
610 /**
611  *	ata_tf_read_block - Read block address from ATA taskfile
612  *	@tf: ATA taskfile of interest
613  *	@dev: ATA device @tf belongs to
614  *
615  *	LOCKING:
616  *	None.
617  *
618  *	Read block address from @tf.  This function can handle all
619  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
620  *	flags select the address format to use.
621  *
622  *	RETURNS:
623  *	Block address read from @tf.
624  */
625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
626 {
627 	u64 block = 0;
628 
629 	if (tf->flags & ATA_TFLAG_LBA) {
630 		if (tf->flags & ATA_TFLAG_LBA48) {
631 			block |= (u64)tf->hob_lbah << 40;
632 			block |= (u64)tf->hob_lbam << 32;
633 			block |= (u64)tf->hob_lbal << 24;
634 		} else
635 			block |= (tf->device & 0xf) << 24;
636 
637 		block |= tf->lbah << 16;
638 		block |= tf->lbam << 8;
639 		block |= tf->lbal;
640 	} else {
641 		u32 cyl, head, sect;
642 
643 		cyl = tf->lbam | (tf->lbah << 8);
644 		head = tf->device & 0xf;
645 		sect = tf->lbal;
646 
647 		if (!sect) {
648 			ata_dev_warn(dev,
649 				     "device reported invalid CHS sector 0\n");
650 			return U64_MAX;
651 		}
652 
653 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
654 	}
655 
656 	return block;
657 }
658 
659 /**
660  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
661  *	@tf: Target ATA taskfile
662  *	@dev: ATA device @tf belongs to
663  *	@block: Block address
664  *	@n_block: Number of blocks
665  *	@tf_flags: RW/FUA etc...
666  *	@tag: tag
667  *	@class: IO priority class
668  *
669  *	LOCKING:
670  *	None.
671  *
672  *	Build ATA taskfile @tf for read/write request described by
673  *	@block, @n_block, @tf_flags and @tag on @dev.
674  *
675  *	RETURNS:
676  *
677  *	0 on success, -ERANGE if the request is too large for @dev,
678  *	-EINVAL if the request is invalid.
679  */
680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
681 		    u64 block, u32 n_block, unsigned int tf_flags,
682 		    unsigned int tag, int class)
683 {
684 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
685 	tf->flags |= tf_flags;
686 
687 	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
688 		/* yay, NCQ */
689 		if (!lba_48_ok(block, n_block))
690 			return -ERANGE;
691 
692 		tf->protocol = ATA_PROT_NCQ;
693 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
694 
695 		if (tf->flags & ATA_TFLAG_WRITE)
696 			tf->command = ATA_CMD_FPDMA_WRITE;
697 		else
698 			tf->command = ATA_CMD_FPDMA_READ;
699 
700 		tf->nsect = tag << 3;
701 		tf->hob_feature = (n_block >> 8) & 0xff;
702 		tf->feature = n_block & 0xff;
703 
704 		tf->hob_lbah = (block >> 40) & 0xff;
705 		tf->hob_lbam = (block >> 32) & 0xff;
706 		tf->hob_lbal = (block >> 24) & 0xff;
707 		tf->lbah = (block >> 16) & 0xff;
708 		tf->lbam = (block >> 8) & 0xff;
709 		tf->lbal = block & 0xff;
710 
711 		tf->device = ATA_LBA;
712 		if (tf->flags & ATA_TFLAG_FUA)
713 			tf->device |= 1 << 7;
714 
715 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE &&
716 		    class == IOPRIO_CLASS_RT)
717 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
718 	} else if (dev->flags & ATA_DFLAG_LBA) {
719 		tf->flags |= ATA_TFLAG_LBA;
720 
721 		if (lba_28_ok(block, n_block)) {
722 			/* use LBA28 */
723 			tf->device |= (block >> 24) & 0xf;
724 		} else if (lba_48_ok(block, n_block)) {
725 			if (!(dev->flags & ATA_DFLAG_LBA48))
726 				return -ERANGE;
727 
728 			/* use LBA48 */
729 			tf->flags |= ATA_TFLAG_LBA48;
730 
731 			tf->hob_nsect = (n_block >> 8) & 0xff;
732 
733 			tf->hob_lbah = (block >> 40) & 0xff;
734 			tf->hob_lbam = (block >> 32) & 0xff;
735 			tf->hob_lbal = (block >> 24) & 0xff;
736 		} else
737 			/* request too large even for LBA48 */
738 			return -ERANGE;
739 
740 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
741 			return -EINVAL;
742 
743 		tf->nsect = n_block & 0xff;
744 
745 		tf->lbah = (block >> 16) & 0xff;
746 		tf->lbam = (block >> 8) & 0xff;
747 		tf->lbal = block & 0xff;
748 
749 		tf->device |= ATA_LBA;
750 	} else {
751 		/* CHS */
752 		u32 sect, head, cyl, track;
753 
754 		/* The request -may- be too large for CHS addressing. */
755 		if (!lba_28_ok(block, n_block))
756 			return -ERANGE;
757 
758 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
759 			return -EINVAL;
760 
761 		/* Convert LBA to CHS */
762 		track = (u32)block / dev->sectors;
763 		cyl   = track / dev->heads;
764 		head  = track % dev->heads;
765 		sect  = (u32)block % dev->sectors + 1;
766 
767 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
768 			(u32)block, track, cyl, head, sect);
769 
770 		/* Check whether the converted CHS can fit.
771 		   Cylinder: 0-65535
772 		   Head: 0-15
773 		   Sector: 1-255*/
774 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
775 			return -ERANGE;
776 
777 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
778 		tf->lbal = sect;
779 		tf->lbam = cyl;
780 		tf->lbah = cyl >> 8;
781 		tf->device |= head;
782 	}
783 
784 	return 0;
785 }
786 
787 /**
788  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
789  *	@pio_mask: pio_mask
790  *	@mwdma_mask: mwdma_mask
791  *	@udma_mask: udma_mask
792  *
793  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
794  *	unsigned int xfer_mask.
795  *
796  *	LOCKING:
797  *	None.
798  *
799  *	RETURNS:
800  *	Packed xfer_mask.
801  */
802 unsigned long ata_pack_xfermask(unsigned long pio_mask,
803 				unsigned long mwdma_mask,
804 				unsigned long udma_mask)
805 {
806 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
807 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
808 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
809 }
810 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
811 
812 /**
813  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
814  *	@xfer_mask: xfer_mask to unpack
815  *	@pio_mask: resulting pio_mask
816  *	@mwdma_mask: resulting mwdma_mask
817  *	@udma_mask: resulting udma_mask
818  *
819  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
820  *	Any NULL destination masks will be ignored.
821  */
822 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
823 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
824 {
825 	if (pio_mask)
826 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
827 	if (mwdma_mask)
828 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
829 	if (udma_mask)
830 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
831 }
832 
833 static const struct ata_xfer_ent {
834 	int shift, bits;
835 	u8 base;
836 } ata_xfer_tbl[] = {
837 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
838 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
839 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
840 	{ -1, },
841 };
842 
843 /**
844  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
845  *	@xfer_mask: xfer_mask of interest
846  *
847  *	Return matching XFER_* value for @xfer_mask.  Only the highest
848  *	bit of @xfer_mask is considered.
849  *
850  *	LOCKING:
851  *	None.
852  *
853  *	RETURNS:
854  *	Matching XFER_* value, 0xff if no match found.
855  */
856 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
857 {
858 	int highbit = fls(xfer_mask) - 1;
859 	const struct ata_xfer_ent *ent;
860 
861 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
862 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
863 			return ent->base + highbit - ent->shift;
864 	return 0xff;
865 }
866 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
867 
868 /**
869  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
870  *	@xfer_mode: XFER_* of interest
871  *
872  *	Return matching xfer_mask for @xfer_mode.
873  *
874  *	LOCKING:
875  *	None.
876  *
877  *	RETURNS:
878  *	Matching xfer_mask, 0 if no match found.
879  */
880 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
881 {
882 	const struct ata_xfer_ent *ent;
883 
884 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
885 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
886 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
887 				& ~((1 << ent->shift) - 1);
888 	return 0;
889 }
890 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
891 
892 /**
893  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
894  *	@xfer_mode: XFER_* of interest
895  *
896  *	Return matching xfer_shift for @xfer_mode.
897  *
898  *	LOCKING:
899  *	None.
900  *
901  *	RETURNS:
902  *	Matching xfer_shift, -1 if no match found.
903  */
904 int ata_xfer_mode2shift(unsigned long xfer_mode)
905 {
906 	const struct ata_xfer_ent *ent;
907 
908 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
909 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
910 			return ent->shift;
911 	return -1;
912 }
913 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
914 
915 /**
916  *	ata_mode_string - convert xfer_mask to string
917  *	@xfer_mask: mask of bits supported; only highest bit counts.
918  *
919  *	Determine string which represents the highest speed
920  *	(highest bit in @modemask).
921  *
922  *	LOCKING:
923  *	None.
924  *
925  *	RETURNS:
926  *	Constant C string representing highest speed listed in
927  *	@mode_mask, or the constant C string "<n/a>".
928  */
929 const char *ata_mode_string(unsigned long xfer_mask)
930 {
931 	static const char * const xfer_mode_str[] = {
932 		"PIO0",
933 		"PIO1",
934 		"PIO2",
935 		"PIO3",
936 		"PIO4",
937 		"PIO5",
938 		"PIO6",
939 		"MWDMA0",
940 		"MWDMA1",
941 		"MWDMA2",
942 		"MWDMA3",
943 		"MWDMA4",
944 		"UDMA/16",
945 		"UDMA/25",
946 		"UDMA/33",
947 		"UDMA/44",
948 		"UDMA/66",
949 		"UDMA/100",
950 		"UDMA/133",
951 		"UDMA7",
952 	};
953 	int highbit;
954 
955 	highbit = fls(xfer_mask) - 1;
956 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
957 		return xfer_mode_str[highbit];
958 	return "<n/a>";
959 }
960 EXPORT_SYMBOL_GPL(ata_mode_string);
961 
962 const char *sata_spd_string(unsigned int spd)
963 {
964 	static const char * const spd_str[] = {
965 		"1.5 Gbps",
966 		"3.0 Gbps",
967 		"6.0 Gbps",
968 	};
969 
970 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
971 		return "<unknown>";
972 	return spd_str[spd - 1];
973 }
974 
975 /**
976  *	ata_dev_classify - determine device type based on ATA-spec signature
977  *	@tf: ATA taskfile register set for device to be identified
978  *
979  *	Determine from taskfile register contents whether a device is
980  *	ATA or ATAPI, as per "Signature and persistence" section
981  *	of ATA/PI spec (volume 1, sect 5.14).
982  *
983  *	LOCKING:
984  *	None.
985  *
986  *	RETURNS:
987  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
988  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
989  */
990 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
991 {
992 	/* Apple's open source Darwin code hints that some devices only
993 	 * put a proper signature into the LBA mid/high registers,
994 	 * So, we only check those.  It's sufficient for uniqueness.
995 	 *
996 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
997 	 * signatures for ATA and ATAPI devices attached on SerialATA,
998 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
999 	 * spec has never mentioned about using different signatures
1000 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1001 	 * Multiplier specification began to use 0x69/0x96 to identify
1002 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1003 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1004 	 * 0x69/0x96 shortly and described them as reserved for
1005 	 * SerialATA.
1006 	 *
1007 	 * We follow the current spec and consider that 0x69/0x96
1008 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1009 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1010 	 * SEMB signature.  This is worked around in
1011 	 * ata_dev_read_id().
1012 	 */
1013 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1014 		DPRINTK("found ATA device by sig\n");
1015 		return ATA_DEV_ATA;
1016 	}
1017 
1018 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1019 		DPRINTK("found ATAPI device by sig\n");
1020 		return ATA_DEV_ATAPI;
1021 	}
1022 
1023 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1024 		DPRINTK("found PMP device by sig\n");
1025 		return ATA_DEV_PMP;
1026 	}
1027 
1028 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1029 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1030 		return ATA_DEV_SEMB;
1031 	}
1032 
1033 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1034 		DPRINTK("found ZAC device by sig\n");
1035 		return ATA_DEV_ZAC;
1036 	}
1037 
1038 	DPRINTK("unknown device\n");
1039 	return ATA_DEV_UNKNOWN;
1040 }
1041 EXPORT_SYMBOL_GPL(ata_dev_classify);
1042 
1043 /**
1044  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1045  *	@id: IDENTIFY DEVICE results we will examine
1046  *	@s: string into which data is output
1047  *	@ofs: offset into identify device page
1048  *	@len: length of string to return. must be an even number.
1049  *
1050  *	The strings in the IDENTIFY DEVICE page are broken up into
1051  *	16-bit chunks.  Run through the string, and output each
1052  *	8-bit chunk linearly, regardless of platform.
1053  *
1054  *	LOCKING:
1055  *	caller.
1056  */
1057 
1058 void ata_id_string(const u16 *id, unsigned char *s,
1059 		   unsigned int ofs, unsigned int len)
1060 {
1061 	unsigned int c;
1062 
1063 	BUG_ON(len & 1);
1064 
1065 	while (len > 0) {
1066 		c = id[ofs] >> 8;
1067 		*s = c;
1068 		s++;
1069 
1070 		c = id[ofs] & 0xff;
1071 		*s = c;
1072 		s++;
1073 
1074 		ofs++;
1075 		len -= 2;
1076 	}
1077 }
1078 EXPORT_SYMBOL_GPL(ata_id_string);
1079 
1080 /**
1081  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1082  *	@id: IDENTIFY DEVICE results we will examine
1083  *	@s: string into which data is output
1084  *	@ofs: offset into identify device page
1085  *	@len: length of string to return. must be an odd number.
1086  *
1087  *	This function is identical to ata_id_string except that it
1088  *	trims trailing spaces and terminates the resulting string with
1089  *	null.  @len must be actual maximum length (even number) + 1.
1090  *
1091  *	LOCKING:
1092  *	caller.
1093  */
1094 void ata_id_c_string(const u16 *id, unsigned char *s,
1095 		     unsigned int ofs, unsigned int len)
1096 {
1097 	unsigned char *p;
1098 
1099 	ata_id_string(id, s, ofs, len - 1);
1100 
1101 	p = s + strnlen(s, len - 1);
1102 	while (p > s && p[-1] == ' ')
1103 		p--;
1104 	*p = '\0';
1105 }
1106 EXPORT_SYMBOL_GPL(ata_id_c_string);
1107 
1108 static u64 ata_id_n_sectors(const u16 *id)
1109 {
1110 	if (ata_id_has_lba(id)) {
1111 		if (ata_id_has_lba48(id))
1112 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1113 		else
1114 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1115 	} else {
1116 		if (ata_id_current_chs_valid(id))
1117 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1118 			       id[ATA_ID_CUR_SECTORS];
1119 		else
1120 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1121 			       id[ATA_ID_SECTORS];
1122 	}
1123 }
1124 
1125 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1126 {
1127 	u64 sectors = 0;
1128 
1129 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1130 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1131 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1132 	sectors |= (tf->lbah & 0xff) << 16;
1133 	sectors |= (tf->lbam & 0xff) << 8;
1134 	sectors |= (tf->lbal & 0xff);
1135 
1136 	return sectors;
1137 }
1138 
1139 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1140 {
1141 	u64 sectors = 0;
1142 
1143 	sectors |= (tf->device & 0x0f) << 24;
1144 	sectors |= (tf->lbah & 0xff) << 16;
1145 	sectors |= (tf->lbam & 0xff) << 8;
1146 	sectors |= (tf->lbal & 0xff);
1147 
1148 	return sectors;
1149 }
1150 
1151 /**
1152  *	ata_read_native_max_address - Read native max address
1153  *	@dev: target device
1154  *	@max_sectors: out parameter for the result native max address
1155  *
1156  *	Perform an LBA48 or LBA28 native size query upon the device in
1157  *	question.
1158  *
1159  *	RETURNS:
1160  *	0 on success, -EACCES if command is aborted by the drive.
1161  *	-EIO on other errors.
1162  */
1163 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1164 {
1165 	unsigned int err_mask;
1166 	struct ata_taskfile tf;
1167 	int lba48 = ata_id_has_lba48(dev->id);
1168 
1169 	ata_tf_init(dev, &tf);
1170 
1171 	/* always clear all address registers */
1172 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1173 
1174 	if (lba48) {
1175 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1176 		tf.flags |= ATA_TFLAG_LBA48;
1177 	} else
1178 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1179 
1180 	tf.protocol = ATA_PROT_NODATA;
1181 	tf.device |= ATA_LBA;
1182 
1183 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1184 	if (err_mask) {
1185 		ata_dev_warn(dev,
1186 			     "failed to read native max address (err_mask=0x%x)\n",
1187 			     err_mask);
1188 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1189 			return -EACCES;
1190 		return -EIO;
1191 	}
1192 
1193 	if (lba48)
1194 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1195 	else
1196 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1197 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1198 		(*max_sectors)--;
1199 	return 0;
1200 }
1201 
1202 /**
1203  *	ata_set_max_sectors - Set max sectors
1204  *	@dev: target device
1205  *	@new_sectors: new max sectors value to set for the device
1206  *
1207  *	Set max sectors of @dev to @new_sectors.
1208  *
1209  *	RETURNS:
1210  *	0 on success, -EACCES if command is aborted or denied (due to
1211  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1212  *	errors.
1213  */
1214 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1215 {
1216 	unsigned int err_mask;
1217 	struct ata_taskfile tf;
1218 	int lba48 = ata_id_has_lba48(dev->id);
1219 
1220 	new_sectors--;
1221 
1222 	ata_tf_init(dev, &tf);
1223 
1224 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1225 
1226 	if (lba48) {
1227 		tf.command = ATA_CMD_SET_MAX_EXT;
1228 		tf.flags |= ATA_TFLAG_LBA48;
1229 
1230 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1231 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1232 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1233 	} else {
1234 		tf.command = ATA_CMD_SET_MAX;
1235 
1236 		tf.device |= (new_sectors >> 24) & 0xf;
1237 	}
1238 
1239 	tf.protocol = ATA_PROT_NODATA;
1240 	tf.device |= ATA_LBA;
1241 
1242 	tf.lbal = (new_sectors >> 0) & 0xff;
1243 	tf.lbam = (new_sectors >> 8) & 0xff;
1244 	tf.lbah = (new_sectors >> 16) & 0xff;
1245 
1246 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1247 	if (err_mask) {
1248 		ata_dev_warn(dev,
1249 			     "failed to set max address (err_mask=0x%x)\n",
1250 			     err_mask);
1251 		if (err_mask == AC_ERR_DEV &&
1252 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1253 			return -EACCES;
1254 		return -EIO;
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 /**
1261  *	ata_hpa_resize		-	Resize a device with an HPA set
1262  *	@dev: Device to resize
1263  *
1264  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1265  *	it if required to the full size of the media. The caller must check
1266  *	the drive has the HPA feature set enabled.
1267  *
1268  *	RETURNS:
1269  *	0 on success, -errno on failure.
1270  */
1271 static int ata_hpa_resize(struct ata_device *dev)
1272 {
1273 	bool print_info = ata_dev_print_info(dev);
1274 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1275 	u64 sectors = ata_id_n_sectors(dev->id);
1276 	u64 native_sectors;
1277 	int rc;
1278 
1279 	/* do we need to do it? */
1280 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1281 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1282 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1283 		return 0;
1284 
1285 	/* read native max address */
1286 	rc = ata_read_native_max_address(dev, &native_sectors);
1287 	if (rc) {
1288 		/* If device aborted the command or HPA isn't going to
1289 		 * be unlocked, skip HPA resizing.
1290 		 */
1291 		if (rc == -EACCES || !unlock_hpa) {
1292 			ata_dev_warn(dev,
1293 				     "HPA support seems broken, skipping HPA handling\n");
1294 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1295 
1296 			/* we can continue if device aborted the command */
1297 			if (rc == -EACCES)
1298 				rc = 0;
1299 		}
1300 
1301 		return rc;
1302 	}
1303 	dev->n_native_sectors = native_sectors;
1304 
1305 	/* nothing to do? */
1306 	if (native_sectors <= sectors || !unlock_hpa) {
1307 		if (!print_info || native_sectors == sectors)
1308 			return 0;
1309 
1310 		if (native_sectors > sectors)
1311 			ata_dev_info(dev,
1312 				"HPA detected: current %llu, native %llu\n",
1313 				(unsigned long long)sectors,
1314 				(unsigned long long)native_sectors);
1315 		else if (native_sectors < sectors)
1316 			ata_dev_warn(dev,
1317 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1318 				(unsigned long long)native_sectors,
1319 				(unsigned long long)sectors);
1320 		return 0;
1321 	}
1322 
1323 	/* let's unlock HPA */
1324 	rc = ata_set_max_sectors(dev, native_sectors);
1325 	if (rc == -EACCES) {
1326 		/* if device aborted the command, skip HPA resizing */
1327 		ata_dev_warn(dev,
1328 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1329 			     (unsigned long long)sectors,
1330 			     (unsigned long long)native_sectors);
1331 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1332 		return 0;
1333 	} else if (rc)
1334 		return rc;
1335 
1336 	/* re-read IDENTIFY data */
1337 	rc = ata_dev_reread_id(dev, 0);
1338 	if (rc) {
1339 		ata_dev_err(dev,
1340 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1341 		return rc;
1342 	}
1343 
1344 	if (print_info) {
1345 		u64 new_sectors = ata_id_n_sectors(dev->id);
1346 		ata_dev_info(dev,
1347 			"HPA unlocked: %llu -> %llu, native %llu\n",
1348 			(unsigned long long)sectors,
1349 			(unsigned long long)new_sectors,
1350 			(unsigned long long)native_sectors);
1351 	}
1352 
1353 	return 0;
1354 }
1355 
1356 /**
1357  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1358  *	@id: IDENTIFY DEVICE page to dump
1359  *
1360  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1361  *	page.
1362  *
1363  *	LOCKING:
1364  *	caller.
1365  */
1366 
1367 static inline void ata_dump_id(const u16 *id)
1368 {
1369 	DPRINTK("49==0x%04x  "
1370 		"53==0x%04x  "
1371 		"63==0x%04x  "
1372 		"64==0x%04x  "
1373 		"75==0x%04x  \n",
1374 		id[49],
1375 		id[53],
1376 		id[63],
1377 		id[64],
1378 		id[75]);
1379 	DPRINTK("80==0x%04x  "
1380 		"81==0x%04x  "
1381 		"82==0x%04x  "
1382 		"83==0x%04x  "
1383 		"84==0x%04x  \n",
1384 		id[80],
1385 		id[81],
1386 		id[82],
1387 		id[83],
1388 		id[84]);
1389 	DPRINTK("88==0x%04x  "
1390 		"93==0x%04x\n",
1391 		id[88],
1392 		id[93]);
1393 }
1394 
1395 /**
1396  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1397  *	@id: IDENTIFY data to compute xfer mask from
1398  *
1399  *	Compute the xfermask for this device. This is not as trivial
1400  *	as it seems if we must consider early devices correctly.
1401  *
1402  *	FIXME: pre IDE drive timing (do we care ?).
1403  *
1404  *	LOCKING:
1405  *	None.
1406  *
1407  *	RETURNS:
1408  *	Computed xfermask
1409  */
1410 unsigned long ata_id_xfermask(const u16 *id)
1411 {
1412 	unsigned long pio_mask, mwdma_mask, udma_mask;
1413 
1414 	/* Usual case. Word 53 indicates word 64 is valid */
1415 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1416 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1417 		pio_mask <<= 3;
1418 		pio_mask |= 0x7;
1419 	} else {
1420 		/* If word 64 isn't valid then Word 51 high byte holds
1421 		 * the PIO timing number for the maximum. Turn it into
1422 		 * a mask.
1423 		 */
1424 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1425 		if (mode < 5)	/* Valid PIO range */
1426 			pio_mask = (2 << mode) - 1;
1427 		else
1428 			pio_mask = 1;
1429 
1430 		/* But wait.. there's more. Design your standards by
1431 		 * committee and you too can get a free iordy field to
1432 		 * process. However its the speeds not the modes that
1433 		 * are supported... Note drivers using the timing API
1434 		 * will get this right anyway
1435 		 */
1436 	}
1437 
1438 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1439 
1440 	if (ata_id_is_cfa(id)) {
1441 		/*
1442 		 *	Process compact flash extended modes
1443 		 */
1444 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1445 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1446 
1447 		if (pio)
1448 			pio_mask |= (1 << 5);
1449 		if (pio > 1)
1450 			pio_mask |= (1 << 6);
1451 		if (dma)
1452 			mwdma_mask |= (1 << 3);
1453 		if (dma > 1)
1454 			mwdma_mask |= (1 << 4);
1455 	}
1456 
1457 	udma_mask = 0;
1458 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1459 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1460 
1461 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1462 }
1463 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1464 
1465 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1466 {
1467 	struct completion *waiting = qc->private_data;
1468 
1469 	complete(waiting);
1470 }
1471 
1472 /**
1473  *	ata_exec_internal_sg - execute libata internal command
1474  *	@dev: Device to which the command is sent
1475  *	@tf: Taskfile registers for the command and the result
1476  *	@cdb: CDB for packet command
1477  *	@dma_dir: Data transfer direction of the command
1478  *	@sgl: sg list for the data buffer of the command
1479  *	@n_elem: Number of sg entries
1480  *	@timeout: Timeout in msecs (0 for default)
1481  *
1482  *	Executes libata internal command with timeout.  @tf contains
1483  *	command on entry and result on return.  Timeout and error
1484  *	conditions are reported via return value.  No recovery action
1485  *	is taken after a command times out.  It's caller's duty to
1486  *	clean up after timeout.
1487  *
1488  *	LOCKING:
1489  *	None.  Should be called with kernel context, might sleep.
1490  *
1491  *	RETURNS:
1492  *	Zero on success, AC_ERR_* mask on failure
1493  */
1494 unsigned ata_exec_internal_sg(struct ata_device *dev,
1495 			      struct ata_taskfile *tf, const u8 *cdb,
1496 			      int dma_dir, struct scatterlist *sgl,
1497 			      unsigned int n_elem, unsigned long timeout)
1498 {
1499 	struct ata_link *link = dev->link;
1500 	struct ata_port *ap = link->ap;
1501 	u8 command = tf->command;
1502 	int auto_timeout = 0;
1503 	struct ata_queued_cmd *qc;
1504 	unsigned int preempted_tag;
1505 	u32 preempted_sactive;
1506 	u64 preempted_qc_active;
1507 	int preempted_nr_active_links;
1508 	DECLARE_COMPLETION_ONSTACK(wait);
1509 	unsigned long flags;
1510 	unsigned int err_mask;
1511 	int rc;
1512 
1513 	spin_lock_irqsave(ap->lock, flags);
1514 
1515 	/* no internal command while frozen */
1516 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1517 		spin_unlock_irqrestore(ap->lock, flags);
1518 		return AC_ERR_SYSTEM;
1519 	}
1520 
1521 	/* initialize internal qc */
1522 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1523 
1524 	qc->tag = ATA_TAG_INTERNAL;
1525 	qc->hw_tag = 0;
1526 	qc->scsicmd = NULL;
1527 	qc->ap = ap;
1528 	qc->dev = dev;
1529 	ata_qc_reinit(qc);
1530 
1531 	preempted_tag = link->active_tag;
1532 	preempted_sactive = link->sactive;
1533 	preempted_qc_active = ap->qc_active;
1534 	preempted_nr_active_links = ap->nr_active_links;
1535 	link->active_tag = ATA_TAG_POISON;
1536 	link->sactive = 0;
1537 	ap->qc_active = 0;
1538 	ap->nr_active_links = 0;
1539 
1540 	/* prepare & issue qc */
1541 	qc->tf = *tf;
1542 	if (cdb)
1543 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1544 
1545 	/* some SATA bridges need us to indicate data xfer direction */
1546 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1547 	    dma_dir == DMA_FROM_DEVICE)
1548 		qc->tf.feature |= ATAPI_DMADIR;
1549 
1550 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1551 	qc->dma_dir = dma_dir;
1552 	if (dma_dir != DMA_NONE) {
1553 		unsigned int i, buflen = 0;
1554 		struct scatterlist *sg;
1555 
1556 		for_each_sg(sgl, sg, n_elem, i)
1557 			buflen += sg->length;
1558 
1559 		ata_sg_init(qc, sgl, n_elem);
1560 		qc->nbytes = buflen;
1561 	}
1562 
1563 	qc->private_data = &wait;
1564 	qc->complete_fn = ata_qc_complete_internal;
1565 
1566 	ata_qc_issue(qc);
1567 
1568 	spin_unlock_irqrestore(ap->lock, flags);
1569 
1570 	if (!timeout) {
1571 		if (ata_probe_timeout)
1572 			timeout = ata_probe_timeout * 1000;
1573 		else {
1574 			timeout = ata_internal_cmd_timeout(dev, command);
1575 			auto_timeout = 1;
1576 		}
1577 	}
1578 
1579 	if (ap->ops->error_handler)
1580 		ata_eh_release(ap);
1581 
1582 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1583 
1584 	if (ap->ops->error_handler)
1585 		ata_eh_acquire(ap);
1586 
1587 	ata_sff_flush_pio_task(ap);
1588 
1589 	if (!rc) {
1590 		spin_lock_irqsave(ap->lock, flags);
1591 
1592 		/* We're racing with irq here.  If we lose, the
1593 		 * following test prevents us from completing the qc
1594 		 * twice.  If we win, the port is frozen and will be
1595 		 * cleaned up by ->post_internal_cmd().
1596 		 */
1597 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1598 			qc->err_mask |= AC_ERR_TIMEOUT;
1599 
1600 			if (ap->ops->error_handler)
1601 				ata_port_freeze(ap);
1602 			else
1603 				ata_qc_complete(qc);
1604 
1605 			if (ata_msg_warn(ap))
1606 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1607 					     command);
1608 		}
1609 
1610 		spin_unlock_irqrestore(ap->lock, flags);
1611 	}
1612 
1613 	/* do post_internal_cmd */
1614 	if (ap->ops->post_internal_cmd)
1615 		ap->ops->post_internal_cmd(qc);
1616 
1617 	/* perform minimal error analysis */
1618 	if (qc->flags & ATA_QCFLAG_FAILED) {
1619 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1620 			qc->err_mask |= AC_ERR_DEV;
1621 
1622 		if (!qc->err_mask)
1623 			qc->err_mask |= AC_ERR_OTHER;
1624 
1625 		if (qc->err_mask & ~AC_ERR_OTHER)
1626 			qc->err_mask &= ~AC_ERR_OTHER;
1627 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1628 		qc->result_tf.command |= ATA_SENSE;
1629 	}
1630 
1631 	/* finish up */
1632 	spin_lock_irqsave(ap->lock, flags);
1633 
1634 	*tf = qc->result_tf;
1635 	err_mask = qc->err_mask;
1636 
1637 	ata_qc_free(qc);
1638 	link->active_tag = preempted_tag;
1639 	link->sactive = preempted_sactive;
1640 	ap->qc_active = preempted_qc_active;
1641 	ap->nr_active_links = preempted_nr_active_links;
1642 
1643 	spin_unlock_irqrestore(ap->lock, flags);
1644 
1645 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1646 		ata_internal_cmd_timed_out(dev, command);
1647 
1648 	return err_mask;
1649 }
1650 
1651 /**
1652  *	ata_exec_internal - execute libata internal command
1653  *	@dev: Device to which the command is sent
1654  *	@tf: Taskfile registers for the command and the result
1655  *	@cdb: CDB for packet command
1656  *	@dma_dir: Data transfer direction of the command
1657  *	@buf: Data buffer of the command
1658  *	@buflen: Length of data buffer
1659  *	@timeout: Timeout in msecs (0 for default)
1660  *
1661  *	Wrapper around ata_exec_internal_sg() which takes simple
1662  *	buffer instead of sg list.
1663  *
1664  *	LOCKING:
1665  *	None.  Should be called with kernel context, might sleep.
1666  *
1667  *	RETURNS:
1668  *	Zero on success, AC_ERR_* mask on failure
1669  */
1670 unsigned ata_exec_internal(struct ata_device *dev,
1671 			   struct ata_taskfile *tf, const u8 *cdb,
1672 			   int dma_dir, void *buf, unsigned int buflen,
1673 			   unsigned long timeout)
1674 {
1675 	struct scatterlist *psg = NULL, sg;
1676 	unsigned int n_elem = 0;
1677 
1678 	if (dma_dir != DMA_NONE) {
1679 		WARN_ON(!buf);
1680 		sg_init_one(&sg, buf, buflen);
1681 		psg = &sg;
1682 		n_elem++;
1683 	}
1684 
1685 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1686 				    timeout);
1687 }
1688 
1689 /**
1690  *	ata_pio_need_iordy	-	check if iordy needed
1691  *	@adev: ATA device
1692  *
1693  *	Check if the current speed of the device requires IORDY. Used
1694  *	by various controllers for chip configuration.
1695  */
1696 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1697 {
1698 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1699 	 * lead to controller lock up on certain controllers if the
1700 	 * port is not occupied.  See bko#11703 for details.
1701 	 */
1702 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1703 		return 0;
1704 	/* Controller doesn't support IORDY.  Probably a pointless
1705 	 * check as the caller should know this.
1706 	 */
1707 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1708 		return 0;
1709 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1710 	if (ata_id_is_cfa(adev->id)
1711 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1712 		return 0;
1713 	/* PIO3 and higher it is mandatory */
1714 	if (adev->pio_mode > XFER_PIO_2)
1715 		return 1;
1716 	/* We turn it on when possible */
1717 	if (ata_id_has_iordy(adev->id))
1718 		return 1;
1719 	return 0;
1720 }
1721 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1722 
1723 /**
1724  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1725  *	@adev: ATA device
1726  *
1727  *	Compute the highest mode possible if we are not using iordy. Return
1728  *	-1 if no iordy mode is available.
1729  */
1730 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1731 {
1732 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1733 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1734 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1735 		/* Is the speed faster than the drive allows non IORDY ? */
1736 		if (pio) {
1737 			/* This is cycle times not frequency - watch the logic! */
1738 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1739 				return 3 << ATA_SHIFT_PIO;
1740 			return 7 << ATA_SHIFT_PIO;
1741 		}
1742 	}
1743 	return 3 << ATA_SHIFT_PIO;
1744 }
1745 
1746 /**
1747  *	ata_do_dev_read_id		-	default ID read method
1748  *	@dev: device
1749  *	@tf: proposed taskfile
1750  *	@id: data buffer
1751  *
1752  *	Issue the identify taskfile and hand back the buffer containing
1753  *	identify data. For some RAID controllers and for pre ATA devices
1754  *	this function is wrapped or replaced by the driver
1755  */
1756 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1757 					struct ata_taskfile *tf, u16 *id)
1758 {
1759 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1760 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1761 }
1762 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1763 
1764 /**
1765  *	ata_dev_read_id - Read ID data from the specified device
1766  *	@dev: target device
1767  *	@p_class: pointer to class of the target device (may be changed)
1768  *	@flags: ATA_READID_* flags
1769  *	@id: buffer to read IDENTIFY data into
1770  *
1771  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1772  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1773  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1774  *	for pre-ATA4 drives.
1775  *
1776  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1777  *	now we abort if we hit that case.
1778  *
1779  *	LOCKING:
1780  *	Kernel thread context (may sleep)
1781  *
1782  *	RETURNS:
1783  *	0 on success, -errno otherwise.
1784  */
1785 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1786 		    unsigned int flags, u16 *id)
1787 {
1788 	struct ata_port *ap = dev->link->ap;
1789 	unsigned int class = *p_class;
1790 	struct ata_taskfile tf;
1791 	unsigned int err_mask = 0;
1792 	const char *reason;
1793 	bool is_semb = class == ATA_DEV_SEMB;
1794 	int may_fallback = 1, tried_spinup = 0;
1795 	int rc;
1796 
1797 	if (ata_msg_ctl(ap))
1798 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1799 
1800 retry:
1801 	ata_tf_init(dev, &tf);
1802 
1803 	switch (class) {
1804 	case ATA_DEV_SEMB:
1805 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1806 		fallthrough;
1807 	case ATA_DEV_ATA:
1808 	case ATA_DEV_ZAC:
1809 		tf.command = ATA_CMD_ID_ATA;
1810 		break;
1811 	case ATA_DEV_ATAPI:
1812 		tf.command = ATA_CMD_ID_ATAPI;
1813 		break;
1814 	default:
1815 		rc = -ENODEV;
1816 		reason = "unsupported class";
1817 		goto err_out;
1818 	}
1819 
1820 	tf.protocol = ATA_PROT_PIO;
1821 
1822 	/* Some devices choke if TF registers contain garbage.  Make
1823 	 * sure those are properly initialized.
1824 	 */
1825 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1826 
1827 	/* Device presence detection is unreliable on some
1828 	 * controllers.  Always poll IDENTIFY if available.
1829 	 */
1830 	tf.flags |= ATA_TFLAG_POLLING;
1831 
1832 	if (ap->ops->read_id)
1833 		err_mask = ap->ops->read_id(dev, &tf, id);
1834 	else
1835 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1836 
1837 	if (err_mask) {
1838 		if (err_mask & AC_ERR_NODEV_HINT) {
1839 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1840 			return -ENOENT;
1841 		}
1842 
1843 		if (is_semb) {
1844 			ata_dev_info(dev,
1845 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1846 			/* SEMB is not supported yet */
1847 			*p_class = ATA_DEV_SEMB_UNSUP;
1848 			return 0;
1849 		}
1850 
1851 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1852 			/* Device or controller might have reported
1853 			 * the wrong device class.  Give a shot at the
1854 			 * other IDENTIFY if the current one is
1855 			 * aborted by the device.
1856 			 */
1857 			if (may_fallback) {
1858 				may_fallback = 0;
1859 
1860 				if (class == ATA_DEV_ATA)
1861 					class = ATA_DEV_ATAPI;
1862 				else
1863 					class = ATA_DEV_ATA;
1864 				goto retry;
1865 			}
1866 
1867 			/* Control reaches here iff the device aborted
1868 			 * both flavors of IDENTIFYs which happens
1869 			 * sometimes with phantom devices.
1870 			 */
1871 			ata_dev_dbg(dev,
1872 				    "both IDENTIFYs aborted, assuming NODEV\n");
1873 			return -ENOENT;
1874 		}
1875 
1876 		rc = -EIO;
1877 		reason = "I/O error";
1878 		goto err_out;
1879 	}
1880 
1881 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1882 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1883 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1884 			    class, may_fallback, tried_spinup);
1885 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1886 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1887 	}
1888 
1889 	/* Falling back doesn't make sense if ID data was read
1890 	 * successfully at least once.
1891 	 */
1892 	may_fallback = 0;
1893 
1894 	swap_buf_le16(id, ATA_ID_WORDS);
1895 
1896 	/* sanity check */
1897 	rc = -EINVAL;
1898 	reason = "device reports invalid type";
1899 
1900 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1901 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1902 			goto err_out;
1903 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1904 							ata_id_is_ata(id)) {
1905 			ata_dev_dbg(dev,
1906 				"host indicates ignore ATA devices, ignored\n");
1907 			return -ENOENT;
1908 		}
1909 	} else {
1910 		if (ata_id_is_ata(id))
1911 			goto err_out;
1912 	}
1913 
1914 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1915 		tried_spinup = 1;
1916 		/*
1917 		 * Drive powered-up in standby mode, and requires a specific
1918 		 * SET_FEATURES spin-up subcommand before it will accept
1919 		 * anything other than the original IDENTIFY command.
1920 		 */
1921 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1922 		if (err_mask && id[2] != 0x738c) {
1923 			rc = -EIO;
1924 			reason = "SPINUP failed";
1925 			goto err_out;
1926 		}
1927 		/*
1928 		 * If the drive initially returned incomplete IDENTIFY info,
1929 		 * we now must reissue the IDENTIFY command.
1930 		 */
1931 		if (id[2] == 0x37c8)
1932 			goto retry;
1933 	}
1934 
1935 	if ((flags & ATA_READID_POSTRESET) &&
1936 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1937 		/*
1938 		 * The exact sequence expected by certain pre-ATA4 drives is:
1939 		 * SRST RESET
1940 		 * IDENTIFY (optional in early ATA)
1941 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1942 		 * anything else..
1943 		 * Some drives were very specific about that exact sequence.
1944 		 *
1945 		 * Note that ATA4 says lba is mandatory so the second check
1946 		 * should never trigger.
1947 		 */
1948 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1949 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1950 			if (err_mask) {
1951 				rc = -EIO;
1952 				reason = "INIT_DEV_PARAMS failed";
1953 				goto err_out;
1954 			}
1955 
1956 			/* current CHS translation info (id[53-58]) might be
1957 			 * changed. reread the identify device info.
1958 			 */
1959 			flags &= ~ATA_READID_POSTRESET;
1960 			goto retry;
1961 		}
1962 	}
1963 
1964 	*p_class = class;
1965 
1966 	return 0;
1967 
1968  err_out:
1969 	if (ata_msg_warn(ap))
1970 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971 			     reason, err_mask);
1972 	return rc;
1973 }
1974 
1975 /**
1976  *	ata_read_log_page - read a specific log page
1977  *	@dev: target device
1978  *	@log: log to read
1979  *	@page: page to read
1980  *	@buf: buffer to store read page
1981  *	@sectors: number of sectors to read
1982  *
1983  *	Read log page using READ_LOG_EXT command.
1984  *
1985  *	LOCKING:
1986  *	Kernel thread context (may sleep).
1987  *
1988  *	RETURNS:
1989  *	0 on success, AC_ERR_* mask otherwise.
1990  */
1991 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1992 			       u8 page, void *buf, unsigned int sectors)
1993 {
1994 	unsigned long ap_flags = dev->link->ap->flags;
1995 	struct ata_taskfile tf;
1996 	unsigned int err_mask;
1997 	bool dma = false;
1998 
1999 	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2000 
2001 	/*
2002 	 * Return error without actually issuing the command on controllers
2003 	 * which e.g. lockup on a read log page.
2004 	 */
2005 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2006 		return AC_ERR_DEV;
2007 
2008 retry:
2009 	ata_tf_init(dev, &tf);
2010 	if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2011 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2012 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2013 		tf.protocol = ATA_PROT_DMA;
2014 		dma = true;
2015 	} else {
2016 		tf.command = ATA_CMD_READ_LOG_EXT;
2017 		tf.protocol = ATA_PROT_PIO;
2018 		dma = false;
2019 	}
2020 	tf.lbal = log;
2021 	tf.lbam = page;
2022 	tf.nsect = sectors;
2023 	tf.hob_nsect = sectors >> 8;
2024 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2025 
2026 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2027 				     buf, sectors * ATA_SECT_SIZE, 0);
2028 
2029 	if (err_mask) {
2030 		if (dma) {
2031 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2032 			goto retry;
2033 		}
2034 		ata_dev_err(dev, "Read log page 0x%02x failed, Emask 0x%x\n",
2035 			    (unsigned int)page, err_mask);
2036 	}
2037 
2038 	return err_mask;
2039 }
2040 
2041 static bool ata_log_supported(struct ata_device *dev, u8 log)
2042 {
2043 	struct ata_port *ap = dev->link->ap;
2044 
2045 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2046 		return false;
2047 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2048 }
2049 
2050 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2051 {
2052 	struct ata_port *ap = dev->link->ap;
2053 	unsigned int err, i;
2054 
2055 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2056 		ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2057 		return false;
2058 	}
2059 
2060 	/*
2061 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2062 	 * supported.
2063 	 */
2064 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2065 				1);
2066 	if (err)
2067 		return false;
2068 
2069 	for (i = 0; i < ap->sector_buf[8]; i++) {
2070 		if (ap->sector_buf[9 + i] == page)
2071 			return true;
2072 	}
2073 
2074 	return false;
2075 }
2076 
2077 static int ata_do_link_spd_horkage(struct ata_device *dev)
2078 {
2079 	struct ata_link *plink = ata_dev_phys_link(dev);
2080 	u32 target, target_limit;
2081 
2082 	if (!sata_scr_valid(plink))
2083 		return 0;
2084 
2085 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2086 		target = 1;
2087 	else
2088 		return 0;
2089 
2090 	target_limit = (1 << target) - 1;
2091 
2092 	/* if already on stricter limit, no need to push further */
2093 	if (plink->sata_spd_limit <= target_limit)
2094 		return 0;
2095 
2096 	plink->sata_spd_limit = target_limit;
2097 
2098 	/* Request another EH round by returning -EAGAIN if link is
2099 	 * going faster than the target speed.  Forward progress is
2100 	 * guaranteed by setting sata_spd_limit to target_limit above.
2101 	 */
2102 	if (plink->sata_spd > target) {
2103 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2104 			     sata_spd_string(target));
2105 		return -EAGAIN;
2106 	}
2107 	return 0;
2108 }
2109 
2110 static inline u8 ata_dev_knobble(struct ata_device *dev)
2111 {
2112 	struct ata_port *ap = dev->link->ap;
2113 
2114 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2115 		return 0;
2116 
2117 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2118 }
2119 
2120 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2121 {
2122 	struct ata_port *ap = dev->link->ap;
2123 	unsigned int err_mask;
2124 
2125 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2126 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2127 		return;
2128 	}
2129 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2130 				     0, ap->sector_buf, 1);
2131 	if (!err_mask) {
2132 		u8 *cmds = dev->ncq_send_recv_cmds;
2133 
2134 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2135 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2136 
2137 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2138 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2139 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2140 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2141 		}
2142 	}
2143 }
2144 
2145 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2146 {
2147 	struct ata_port *ap = dev->link->ap;
2148 	unsigned int err_mask;
2149 
2150 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2151 		ata_dev_warn(dev,
2152 			     "NCQ Send/Recv Log not supported\n");
2153 		return;
2154 	}
2155 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2156 				     0, ap->sector_buf, 1);
2157 	if (!err_mask) {
2158 		u8 *cmds = dev->ncq_non_data_cmds;
2159 
2160 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2161 	}
2162 }
2163 
2164 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2165 {
2166 	struct ata_port *ap = dev->link->ap;
2167 	unsigned int err_mask;
2168 
2169 	err_mask = ata_read_log_page(dev,
2170 				     ATA_LOG_IDENTIFY_DEVICE,
2171 				     ATA_LOG_SATA_SETTINGS,
2172 				     ap->sector_buf,
2173 				     1);
2174 	if (err_mask)
2175 		goto not_supported;
2176 
2177 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2178 		goto not_supported;
2179 
2180 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2181 
2182 	return;
2183 
2184 not_supported:
2185 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
2186 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2187 }
2188 
2189 static bool ata_dev_check_adapter(struct ata_device *dev,
2190 				  unsigned short vendor_id)
2191 {
2192 	struct pci_dev *pcidev = NULL;
2193 	struct device *parent_dev = NULL;
2194 
2195 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2196 	     parent_dev = parent_dev->parent) {
2197 		if (dev_is_pci(parent_dev)) {
2198 			pcidev = to_pci_dev(parent_dev);
2199 			if (pcidev->vendor == vendor_id)
2200 				return true;
2201 			break;
2202 		}
2203 	}
2204 
2205 	return false;
2206 }
2207 
2208 static int ata_dev_config_ncq(struct ata_device *dev,
2209 			       char *desc, size_t desc_sz)
2210 {
2211 	struct ata_port *ap = dev->link->ap;
2212 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2213 	unsigned int err_mask;
2214 	char *aa_desc = "";
2215 
2216 	if (!ata_id_has_ncq(dev->id)) {
2217 		desc[0] = '\0';
2218 		return 0;
2219 	}
2220 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2221 		return 0;
2222 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2223 		snprintf(desc, desc_sz, "NCQ (not used)");
2224 		return 0;
2225 	}
2226 
2227 	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2228 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2229 		snprintf(desc, desc_sz, "NCQ (not used)");
2230 		return 0;
2231 	}
2232 
2233 	if (ap->flags & ATA_FLAG_NCQ) {
2234 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2235 		dev->flags |= ATA_DFLAG_NCQ;
2236 	}
2237 
2238 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2239 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2240 		ata_id_has_fpdma_aa(dev->id)) {
2241 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2242 			SATA_FPDMA_AA);
2243 		if (err_mask) {
2244 			ata_dev_err(dev,
2245 				    "failed to enable AA (error_mask=0x%x)\n",
2246 				    err_mask);
2247 			if (err_mask != AC_ERR_DEV) {
2248 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2249 				return -EIO;
2250 			}
2251 		} else
2252 			aa_desc = ", AA";
2253 	}
2254 
2255 	if (hdepth >= ddepth)
2256 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2257 	else
2258 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2259 			ddepth, aa_desc);
2260 
2261 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2262 		if (ata_id_has_ncq_send_and_recv(dev->id))
2263 			ata_dev_config_ncq_send_recv(dev);
2264 		if (ata_id_has_ncq_non_data(dev->id))
2265 			ata_dev_config_ncq_non_data(dev);
2266 		if (ata_id_has_ncq_prio(dev->id))
2267 			ata_dev_config_ncq_prio(dev);
2268 	}
2269 
2270 	return 0;
2271 }
2272 
2273 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2274 {
2275 	unsigned int err_mask;
2276 
2277 	if (!ata_id_has_sense_reporting(dev->id))
2278 		return;
2279 
2280 	if (ata_id_sense_reporting_enabled(dev->id))
2281 		return;
2282 
2283 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2284 	if (err_mask) {
2285 		ata_dev_dbg(dev,
2286 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2287 			    err_mask);
2288 	}
2289 }
2290 
2291 static void ata_dev_config_zac(struct ata_device *dev)
2292 {
2293 	struct ata_port *ap = dev->link->ap;
2294 	unsigned int err_mask;
2295 	u8 *identify_buf = ap->sector_buf;
2296 
2297 	dev->zac_zones_optimal_open = U32_MAX;
2298 	dev->zac_zones_optimal_nonseq = U32_MAX;
2299 	dev->zac_zones_max_open = U32_MAX;
2300 
2301 	/*
2302 	 * Always set the 'ZAC' flag for Host-managed devices.
2303 	 */
2304 	if (dev->class == ATA_DEV_ZAC)
2305 		dev->flags |= ATA_DFLAG_ZAC;
2306 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2307 		/*
2308 		 * Check for host-aware devices.
2309 		 */
2310 		dev->flags |= ATA_DFLAG_ZAC;
2311 
2312 	if (!(dev->flags & ATA_DFLAG_ZAC))
2313 		return;
2314 
2315 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2316 		ata_dev_warn(dev,
2317 			     "ATA Zoned Information Log not supported\n");
2318 		return;
2319 	}
2320 
2321 	/*
2322 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2323 	 */
2324 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2325 				     ATA_LOG_ZONED_INFORMATION,
2326 				     identify_buf, 1);
2327 	if (!err_mask) {
2328 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2329 
2330 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2331 		if ((zoned_cap >> 63))
2332 			dev->zac_zoned_cap = (zoned_cap & 1);
2333 		opt_open = get_unaligned_le64(&identify_buf[24]);
2334 		if ((opt_open >> 63))
2335 			dev->zac_zones_optimal_open = (u32)opt_open;
2336 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2337 		if ((opt_nonseq >> 63))
2338 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2339 		max_open = get_unaligned_le64(&identify_buf[40]);
2340 		if ((max_open >> 63))
2341 			dev->zac_zones_max_open = (u32)max_open;
2342 	}
2343 }
2344 
2345 static void ata_dev_config_trusted(struct ata_device *dev)
2346 {
2347 	struct ata_port *ap = dev->link->ap;
2348 	u64 trusted_cap;
2349 	unsigned int err;
2350 
2351 	if (!ata_id_has_trusted(dev->id))
2352 		return;
2353 
2354 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2355 		ata_dev_warn(dev,
2356 			     "Security Log not supported\n");
2357 		return;
2358 	}
2359 
2360 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2361 			ap->sector_buf, 1);
2362 	if (err)
2363 		return;
2364 
2365 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2366 	if (!(trusted_cap & (1ULL << 63))) {
2367 		ata_dev_dbg(dev,
2368 			    "Trusted Computing capability qword not valid!\n");
2369 		return;
2370 	}
2371 
2372 	if (trusted_cap & (1 << 0))
2373 		dev->flags |= ATA_DFLAG_TRUSTED;
2374 }
2375 
2376 static int ata_dev_config_lba(struct ata_device *dev)
2377 {
2378 	struct ata_port *ap = dev->link->ap;
2379 	const u16 *id = dev->id;
2380 	const char *lba_desc;
2381 	char ncq_desc[24];
2382 	int ret;
2383 
2384 	dev->flags |= ATA_DFLAG_LBA;
2385 
2386 	if (ata_id_has_lba48(id)) {
2387 		lba_desc = "LBA48";
2388 		dev->flags |= ATA_DFLAG_LBA48;
2389 		if (dev->n_sectors >= (1UL << 28) &&
2390 		    ata_id_has_flush_ext(id))
2391 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2392 	} else {
2393 		lba_desc = "LBA";
2394 	}
2395 
2396 	/* config NCQ */
2397 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2398 
2399 	/* print device info to dmesg */
2400 	if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2401 		ata_dev_info(dev,
2402 			     "%llu sectors, multi %u: %s %s\n",
2403 			     (unsigned long long)dev->n_sectors,
2404 			     dev->multi_count, lba_desc, ncq_desc);
2405 
2406 	return ret;
2407 }
2408 
2409 static void ata_dev_config_chs(struct ata_device *dev)
2410 {
2411 	struct ata_port *ap = dev->link->ap;
2412 	const u16 *id = dev->id;
2413 
2414 	if (ata_id_current_chs_valid(id)) {
2415 		/* Current CHS translation is valid. */
2416 		dev->cylinders = id[54];
2417 		dev->heads     = id[55];
2418 		dev->sectors   = id[56];
2419 	} else {
2420 		/* Default translation */
2421 		dev->cylinders	= id[1];
2422 		dev->heads	= id[3];
2423 		dev->sectors	= id[6];
2424 	}
2425 
2426 	/* print device info to dmesg */
2427 	if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2428 		ata_dev_info(dev,
2429 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2430 			     (unsigned long long)dev->n_sectors,
2431 			     dev->multi_count, dev->cylinders,
2432 			     dev->heads, dev->sectors);
2433 }
2434 
2435 static void ata_dev_config_devslp(struct ata_device *dev)
2436 {
2437 	u8 *sata_setting = dev->link->ap->sector_buf;
2438 	unsigned int err_mask;
2439 	int i, j;
2440 
2441 	/*
2442 	 * Check device sleep capability. Get DevSlp timing variables
2443 	 * from SATA Settings page of Identify Device Data Log.
2444 	 */
2445 	if (!ata_id_has_devslp(dev->id))
2446 		return;
2447 
2448 	err_mask = ata_read_log_page(dev,
2449 				     ATA_LOG_IDENTIFY_DEVICE,
2450 				     ATA_LOG_SATA_SETTINGS,
2451 				     sata_setting, 1);
2452 	if (err_mask)
2453 		return;
2454 
2455 	dev->flags |= ATA_DFLAG_DEVSLP;
2456 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2457 		j = ATA_LOG_DEVSLP_OFFSET + i;
2458 		dev->devslp_timing[i] = sata_setting[j];
2459 	}
2460 }
2461 
2462 static void ata_dev_print_features(struct ata_device *dev)
2463 {
2464 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2465 		return;
2466 
2467 	ata_dev_info(dev,
2468 		     "Features:%s%s%s%s%s\n",
2469 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2470 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2471 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2472 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2473 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "");
2474 }
2475 
2476 /**
2477  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2478  *	@dev: Target device to configure
2479  *
2480  *	Configure @dev according to @dev->id.  Generic and low-level
2481  *	driver specific fixups are also applied.
2482  *
2483  *	LOCKING:
2484  *	Kernel thread context (may sleep)
2485  *
2486  *	RETURNS:
2487  *	0 on success, -errno otherwise
2488  */
2489 int ata_dev_configure(struct ata_device *dev)
2490 {
2491 	struct ata_port *ap = dev->link->ap;
2492 	bool print_info = ata_dev_print_info(dev);
2493 	const u16 *id = dev->id;
2494 	unsigned long xfer_mask;
2495 	unsigned int err_mask;
2496 	char revbuf[7];		/* XYZ-99\0 */
2497 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2498 	char modelbuf[ATA_ID_PROD_LEN+1];
2499 	int rc;
2500 
2501 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2502 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2503 		return 0;
2504 	}
2505 
2506 	if (ata_msg_probe(ap))
2507 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2508 
2509 	/* set horkage */
2510 	dev->horkage |= ata_dev_blacklisted(dev);
2511 	ata_force_horkage(dev);
2512 
2513 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2514 		ata_dev_info(dev, "unsupported device, disabling\n");
2515 		ata_dev_disable(dev);
2516 		return 0;
2517 	}
2518 
2519 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2520 	    dev->class == ATA_DEV_ATAPI) {
2521 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2522 			     atapi_enabled ? "not supported with this driver"
2523 			     : "disabled");
2524 		ata_dev_disable(dev);
2525 		return 0;
2526 	}
2527 
2528 	rc = ata_do_link_spd_horkage(dev);
2529 	if (rc)
2530 		return rc;
2531 
2532 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2533 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2534 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2535 		dev->horkage |= ATA_HORKAGE_NOLPM;
2536 
2537 	if (ap->flags & ATA_FLAG_NO_LPM)
2538 		dev->horkage |= ATA_HORKAGE_NOLPM;
2539 
2540 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2541 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2542 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2543 	}
2544 
2545 	/* let ACPI work its magic */
2546 	rc = ata_acpi_on_devcfg(dev);
2547 	if (rc)
2548 		return rc;
2549 
2550 	/* massage HPA, do it early as it might change IDENTIFY data */
2551 	rc = ata_hpa_resize(dev);
2552 	if (rc)
2553 		return rc;
2554 
2555 	/* print device capabilities */
2556 	if (ata_msg_probe(ap))
2557 		ata_dev_dbg(dev,
2558 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2559 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2560 			    __func__,
2561 			    id[49], id[82], id[83], id[84],
2562 			    id[85], id[86], id[87], id[88]);
2563 
2564 	/* initialize to-be-configured parameters */
2565 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2566 	dev->max_sectors = 0;
2567 	dev->cdb_len = 0;
2568 	dev->n_sectors = 0;
2569 	dev->cylinders = 0;
2570 	dev->heads = 0;
2571 	dev->sectors = 0;
2572 	dev->multi_count = 0;
2573 
2574 	/*
2575 	 * common ATA, ATAPI feature tests
2576 	 */
2577 
2578 	/* find max transfer mode; for printk only */
2579 	xfer_mask = ata_id_xfermask(id);
2580 
2581 	if (ata_msg_probe(ap))
2582 		ata_dump_id(id);
2583 
2584 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2585 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2586 			sizeof(fwrevbuf));
2587 
2588 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2589 			sizeof(modelbuf));
2590 
2591 	/* ATA-specific feature tests */
2592 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2593 		if (ata_id_is_cfa(id)) {
2594 			/* CPRM may make this media unusable */
2595 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2596 				ata_dev_warn(dev,
2597 	"supports DRM functions and may not be fully accessible\n");
2598 			snprintf(revbuf, 7, "CFA");
2599 		} else {
2600 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2601 			/* Warn the user if the device has TPM extensions */
2602 			if (ata_id_has_tpm(id))
2603 				ata_dev_warn(dev,
2604 	"supports DRM functions and may not be fully accessible\n");
2605 		}
2606 
2607 		dev->n_sectors = ata_id_n_sectors(id);
2608 
2609 		/* get current R/W Multiple count setting */
2610 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2611 			unsigned int max = dev->id[47] & 0xff;
2612 			unsigned int cnt = dev->id[59] & 0xff;
2613 			/* only recognize/allow powers of two here */
2614 			if (is_power_of_2(max) && is_power_of_2(cnt))
2615 				if (cnt <= max)
2616 					dev->multi_count = cnt;
2617 		}
2618 
2619 		/* print device info to dmesg */
2620 		if (ata_msg_drv(ap) && print_info)
2621 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2622 				     revbuf, modelbuf, fwrevbuf,
2623 				     ata_mode_string(xfer_mask));
2624 
2625 		if (ata_id_has_lba(id)) {
2626 			rc = ata_dev_config_lba(dev);
2627 			if (rc)
2628 				return rc;
2629 		} else {
2630 			ata_dev_config_chs(dev);
2631 		}
2632 
2633 		ata_dev_config_devslp(dev);
2634 		ata_dev_config_sense_reporting(dev);
2635 		ata_dev_config_zac(dev);
2636 		ata_dev_config_trusted(dev);
2637 		dev->cdb_len = 32;
2638 
2639 		if (ata_msg_drv(ap) && print_info)
2640 			ata_dev_print_features(dev);
2641 	}
2642 
2643 	/* ATAPI-specific feature tests */
2644 	else if (dev->class == ATA_DEV_ATAPI) {
2645 		const char *cdb_intr_string = "";
2646 		const char *atapi_an_string = "";
2647 		const char *dma_dir_string = "";
2648 		u32 sntf;
2649 
2650 		rc = atapi_cdb_len(id);
2651 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2652 			if (ata_msg_warn(ap))
2653 				ata_dev_warn(dev, "unsupported CDB len\n");
2654 			rc = -EINVAL;
2655 			goto err_out_nosup;
2656 		}
2657 		dev->cdb_len = (unsigned int) rc;
2658 
2659 		/* Enable ATAPI AN if both the host and device have
2660 		 * the support.  If PMP is attached, SNTF is required
2661 		 * to enable ATAPI AN to discern between PHY status
2662 		 * changed notifications and ATAPI ANs.
2663 		 */
2664 		if (atapi_an &&
2665 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2666 		    (!sata_pmp_attached(ap) ||
2667 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2668 			/* issue SET feature command to turn this on */
2669 			err_mask = ata_dev_set_feature(dev,
2670 					SETFEATURES_SATA_ENABLE, SATA_AN);
2671 			if (err_mask)
2672 				ata_dev_err(dev,
2673 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2674 					    err_mask);
2675 			else {
2676 				dev->flags |= ATA_DFLAG_AN;
2677 				atapi_an_string = ", ATAPI AN";
2678 			}
2679 		}
2680 
2681 		if (ata_id_cdb_intr(dev->id)) {
2682 			dev->flags |= ATA_DFLAG_CDB_INTR;
2683 			cdb_intr_string = ", CDB intr";
2684 		}
2685 
2686 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2687 			dev->flags |= ATA_DFLAG_DMADIR;
2688 			dma_dir_string = ", DMADIR";
2689 		}
2690 
2691 		if (ata_id_has_da(dev->id)) {
2692 			dev->flags |= ATA_DFLAG_DA;
2693 			zpodd_init(dev);
2694 		}
2695 
2696 		/* print device info to dmesg */
2697 		if (ata_msg_drv(ap) && print_info)
2698 			ata_dev_info(dev,
2699 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2700 				     modelbuf, fwrevbuf,
2701 				     ata_mode_string(xfer_mask),
2702 				     cdb_intr_string, atapi_an_string,
2703 				     dma_dir_string);
2704 	}
2705 
2706 	/* determine max_sectors */
2707 	dev->max_sectors = ATA_MAX_SECTORS;
2708 	if (dev->flags & ATA_DFLAG_LBA48)
2709 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2710 
2711 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2712 	   200 sectors */
2713 	if (ata_dev_knobble(dev)) {
2714 		if (ata_msg_drv(ap) && print_info)
2715 			ata_dev_info(dev, "applying bridge limits\n");
2716 		dev->udma_mask &= ATA_UDMA5;
2717 		dev->max_sectors = ATA_MAX_SECTORS;
2718 	}
2719 
2720 	if ((dev->class == ATA_DEV_ATAPI) &&
2721 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2722 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2723 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2724 	}
2725 
2726 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2727 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2728 					 dev->max_sectors);
2729 
2730 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2731 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2732 					 dev->max_sectors);
2733 
2734 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2735 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2736 
2737 	if (ap->ops->dev_config)
2738 		ap->ops->dev_config(dev);
2739 
2740 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2741 		/* Let the user know. We don't want to disallow opens for
2742 		   rescue purposes, or in case the vendor is just a blithering
2743 		   idiot. Do this after the dev_config call as some controllers
2744 		   with buggy firmware may want to avoid reporting false device
2745 		   bugs */
2746 
2747 		if (print_info) {
2748 			ata_dev_warn(dev,
2749 "Drive reports diagnostics failure. This may indicate a drive\n");
2750 			ata_dev_warn(dev,
2751 "fault or invalid emulation. Contact drive vendor for information.\n");
2752 		}
2753 	}
2754 
2755 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2756 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2757 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2758 	}
2759 
2760 	return 0;
2761 
2762 err_out_nosup:
2763 	if (ata_msg_probe(ap))
2764 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2765 	return rc;
2766 }
2767 
2768 /**
2769  *	ata_cable_40wire	-	return 40 wire cable type
2770  *	@ap: port
2771  *
2772  *	Helper method for drivers which want to hardwire 40 wire cable
2773  *	detection.
2774  */
2775 
2776 int ata_cable_40wire(struct ata_port *ap)
2777 {
2778 	return ATA_CBL_PATA40;
2779 }
2780 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2781 
2782 /**
2783  *	ata_cable_80wire	-	return 80 wire cable type
2784  *	@ap: port
2785  *
2786  *	Helper method for drivers which want to hardwire 80 wire cable
2787  *	detection.
2788  */
2789 
2790 int ata_cable_80wire(struct ata_port *ap)
2791 {
2792 	return ATA_CBL_PATA80;
2793 }
2794 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2795 
2796 /**
2797  *	ata_cable_unknown	-	return unknown PATA cable.
2798  *	@ap: port
2799  *
2800  *	Helper method for drivers which have no PATA cable detection.
2801  */
2802 
2803 int ata_cable_unknown(struct ata_port *ap)
2804 {
2805 	return ATA_CBL_PATA_UNK;
2806 }
2807 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2808 
2809 /**
2810  *	ata_cable_ignore	-	return ignored PATA cable.
2811  *	@ap: port
2812  *
2813  *	Helper method for drivers which don't use cable type to limit
2814  *	transfer mode.
2815  */
2816 int ata_cable_ignore(struct ata_port *ap)
2817 {
2818 	return ATA_CBL_PATA_IGN;
2819 }
2820 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2821 
2822 /**
2823  *	ata_cable_sata	-	return SATA cable type
2824  *	@ap: port
2825  *
2826  *	Helper method for drivers which have SATA cables
2827  */
2828 
2829 int ata_cable_sata(struct ata_port *ap)
2830 {
2831 	return ATA_CBL_SATA;
2832 }
2833 EXPORT_SYMBOL_GPL(ata_cable_sata);
2834 
2835 /**
2836  *	ata_bus_probe - Reset and probe ATA bus
2837  *	@ap: Bus to probe
2838  *
2839  *	Master ATA bus probing function.  Initiates a hardware-dependent
2840  *	bus reset, then attempts to identify any devices found on
2841  *	the bus.
2842  *
2843  *	LOCKING:
2844  *	PCI/etc. bus probe sem.
2845  *
2846  *	RETURNS:
2847  *	Zero on success, negative errno otherwise.
2848  */
2849 
2850 int ata_bus_probe(struct ata_port *ap)
2851 {
2852 	unsigned int classes[ATA_MAX_DEVICES];
2853 	int tries[ATA_MAX_DEVICES];
2854 	int rc;
2855 	struct ata_device *dev;
2856 
2857 	ata_for_each_dev(dev, &ap->link, ALL)
2858 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2859 
2860  retry:
2861 	ata_for_each_dev(dev, &ap->link, ALL) {
2862 		/* If we issue an SRST then an ATA drive (not ATAPI)
2863 		 * may change configuration and be in PIO0 timing. If
2864 		 * we do a hard reset (or are coming from power on)
2865 		 * this is true for ATA or ATAPI. Until we've set a
2866 		 * suitable controller mode we should not touch the
2867 		 * bus as we may be talking too fast.
2868 		 */
2869 		dev->pio_mode = XFER_PIO_0;
2870 		dev->dma_mode = 0xff;
2871 
2872 		/* If the controller has a pio mode setup function
2873 		 * then use it to set the chipset to rights. Don't
2874 		 * touch the DMA setup as that will be dealt with when
2875 		 * configuring devices.
2876 		 */
2877 		if (ap->ops->set_piomode)
2878 			ap->ops->set_piomode(ap, dev);
2879 	}
2880 
2881 	/* reset and determine device classes */
2882 	ap->ops->phy_reset(ap);
2883 
2884 	ata_for_each_dev(dev, &ap->link, ALL) {
2885 		if (dev->class != ATA_DEV_UNKNOWN)
2886 			classes[dev->devno] = dev->class;
2887 		else
2888 			classes[dev->devno] = ATA_DEV_NONE;
2889 
2890 		dev->class = ATA_DEV_UNKNOWN;
2891 	}
2892 
2893 	/* read IDENTIFY page and configure devices. We have to do the identify
2894 	   specific sequence bass-ackwards so that PDIAG- is released by
2895 	   the slave device */
2896 
2897 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2898 		if (tries[dev->devno])
2899 			dev->class = classes[dev->devno];
2900 
2901 		if (!ata_dev_enabled(dev))
2902 			continue;
2903 
2904 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2905 				     dev->id);
2906 		if (rc)
2907 			goto fail;
2908 	}
2909 
2910 	/* Now ask for the cable type as PDIAG- should have been released */
2911 	if (ap->ops->cable_detect)
2912 		ap->cbl = ap->ops->cable_detect(ap);
2913 
2914 	/* We may have SATA bridge glue hiding here irrespective of
2915 	 * the reported cable types and sensed types.  When SATA
2916 	 * drives indicate we have a bridge, we don't know which end
2917 	 * of the link the bridge is which is a problem.
2918 	 */
2919 	ata_for_each_dev(dev, &ap->link, ENABLED)
2920 		if (ata_id_is_sata(dev->id))
2921 			ap->cbl = ATA_CBL_SATA;
2922 
2923 	/* After the identify sequence we can now set up the devices. We do
2924 	   this in the normal order so that the user doesn't get confused */
2925 
2926 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2927 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2928 		rc = ata_dev_configure(dev);
2929 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2930 		if (rc)
2931 			goto fail;
2932 	}
2933 
2934 	/* configure transfer mode */
2935 	rc = ata_set_mode(&ap->link, &dev);
2936 	if (rc)
2937 		goto fail;
2938 
2939 	ata_for_each_dev(dev, &ap->link, ENABLED)
2940 		return 0;
2941 
2942 	return -ENODEV;
2943 
2944  fail:
2945 	tries[dev->devno]--;
2946 
2947 	switch (rc) {
2948 	case -EINVAL:
2949 		/* eeek, something went very wrong, give up */
2950 		tries[dev->devno] = 0;
2951 		break;
2952 
2953 	case -ENODEV:
2954 		/* give it just one more chance */
2955 		tries[dev->devno] = min(tries[dev->devno], 1);
2956 		fallthrough;
2957 	case -EIO:
2958 		if (tries[dev->devno] == 1) {
2959 			/* This is the last chance, better to slow
2960 			 * down than lose it.
2961 			 */
2962 			sata_down_spd_limit(&ap->link, 0);
2963 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2964 		}
2965 	}
2966 
2967 	if (!tries[dev->devno])
2968 		ata_dev_disable(dev);
2969 
2970 	goto retry;
2971 }
2972 
2973 /**
2974  *	sata_print_link_status - Print SATA link status
2975  *	@link: SATA link to printk link status about
2976  *
2977  *	This function prints link speed and status of a SATA link.
2978  *
2979  *	LOCKING:
2980  *	None.
2981  */
2982 static void sata_print_link_status(struct ata_link *link)
2983 {
2984 	u32 sstatus, scontrol, tmp;
2985 
2986 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2987 		return;
2988 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2989 
2990 	if (ata_phys_link_online(link)) {
2991 		tmp = (sstatus >> 4) & 0xf;
2992 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2993 			      sata_spd_string(tmp), sstatus, scontrol);
2994 	} else {
2995 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2996 			      sstatus, scontrol);
2997 	}
2998 }
2999 
3000 /**
3001  *	ata_dev_pair		-	return other device on cable
3002  *	@adev: device
3003  *
3004  *	Obtain the other device on the same cable, or if none is
3005  *	present NULL is returned
3006  */
3007 
3008 struct ata_device *ata_dev_pair(struct ata_device *adev)
3009 {
3010 	struct ata_link *link = adev->link;
3011 	struct ata_device *pair = &link->device[1 - adev->devno];
3012 	if (!ata_dev_enabled(pair))
3013 		return NULL;
3014 	return pair;
3015 }
3016 EXPORT_SYMBOL_GPL(ata_dev_pair);
3017 
3018 /**
3019  *	sata_down_spd_limit - adjust SATA spd limit downward
3020  *	@link: Link to adjust SATA spd limit for
3021  *	@spd_limit: Additional limit
3022  *
3023  *	Adjust SATA spd limit of @link downward.  Note that this
3024  *	function only adjusts the limit.  The change must be applied
3025  *	using sata_set_spd().
3026  *
3027  *	If @spd_limit is non-zero, the speed is limited to equal to or
3028  *	lower than @spd_limit if such speed is supported.  If
3029  *	@spd_limit is slower than any supported speed, only the lowest
3030  *	supported speed is allowed.
3031  *
3032  *	LOCKING:
3033  *	Inherited from caller.
3034  *
3035  *	RETURNS:
3036  *	0 on success, negative errno on failure
3037  */
3038 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3039 {
3040 	u32 sstatus, spd, mask;
3041 	int rc, bit;
3042 
3043 	if (!sata_scr_valid(link))
3044 		return -EOPNOTSUPP;
3045 
3046 	/* If SCR can be read, use it to determine the current SPD.
3047 	 * If not, use cached value in link->sata_spd.
3048 	 */
3049 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3050 	if (rc == 0 && ata_sstatus_online(sstatus))
3051 		spd = (sstatus >> 4) & 0xf;
3052 	else
3053 		spd = link->sata_spd;
3054 
3055 	mask = link->sata_spd_limit;
3056 	if (mask <= 1)
3057 		return -EINVAL;
3058 
3059 	/* unconditionally mask off the highest bit */
3060 	bit = fls(mask) - 1;
3061 	mask &= ~(1 << bit);
3062 
3063 	/*
3064 	 * Mask off all speeds higher than or equal to the current one.  At
3065 	 * this point, if current SPD is not available and we previously
3066 	 * recorded the link speed from SStatus, the driver has already
3067 	 * masked off the highest bit so mask should already be 1 or 0.
3068 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3069 	 * not previously recorded speed from SStatus.  Just return in this
3070 	 * case.
3071 	 */
3072 	if (spd > 1)
3073 		mask &= (1 << (spd - 1)) - 1;
3074 	else
3075 		return -EINVAL;
3076 
3077 	/* were we already at the bottom? */
3078 	if (!mask)
3079 		return -EINVAL;
3080 
3081 	if (spd_limit) {
3082 		if (mask & ((1 << spd_limit) - 1))
3083 			mask &= (1 << spd_limit) - 1;
3084 		else {
3085 			bit = ffs(mask) - 1;
3086 			mask = 1 << bit;
3087 		}
3088 	}
3089 
3090 	link->sata_spd_limit = mask;
3091 
3092 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3093 		      sata_spd_string(fls(mask)));
3094 
3095 	return 0;
3096 }
3097 
3098 #ifdef CONFIG_ATA_ACPI
3099 /**
3100  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3101  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3102  *	@cycle: cycle duration in ns
3103  *
3104  *	Return matching xfer mode for @cycle.  The returned mode is of
3105  *	the transfer type specified by @xfer_shift.  If @cycle is too
3106  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3107  *	than the fastest known mode, the fasted mode is returned.
3108  *
3109  *	LOCKING:
3110  *	None.
3111  *
3112  *	RETURNS:
3113  *	Matching xfer_mode, 0xff if no match found.
3114  */
3115 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3116 {
3117 	u8 base_mode = 0xff, last_mode = 0xff;
3118 	const struct ata_xfer_ent *ent;
3119 	const struct ata_timing *t;
3120 
3121 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3122 		if (ent->shift == xfer_shift)
3123 			base_mode = ent->base;
3124 
3125 	for (t = ata_timing_find_mode(base_mode);
3126 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3127 		unsigned short this_cycle;
3128 
3129 		switch (xfer_shift) {
3130 		case ATA_SHIFT_PIO:
3131 		case ATA_SHIFT_MWDMA:
3132 			this_cycle = t->cycle;
3133 			break;
3134 		case ATA_SHIFT_UDMA:
3135 			this_cycle = t->udma;
3136 			break;
3137 		default:
3138 			return 0xff;
3139 		}
3140 
3141 		if (cycle > this_cycle)
3142 			break;
3143 
3144 		last_mode = t->mode;
3145 	}
3146 
3147 	return last_mode;
3148 }
3149 #endif
3150 
3151 /**
3152  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3153  *	@dev: Device to adjust xfer masks
3154  *	@sel: ATA_DNXFER_* selector
3155  *
3156  *	Adjust xfer masks of @dev downward.  Note that this function
3157  *	does not apply the change.  Invoking ata_set_mode() afterwards
3158  *	will apply the limit.
3159  *
3160  *	LOCKING:
3161  *	Inherited from caller.
3162  *
3163  *	RETURNS:
3164  *	0 on success, negative errno on failure
3165  */
3166 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3167 {
3168 	char buf[32];
3169 	unsigned long orig_mask, xfer_mask;
3170 	unsigned long pio_mask, mwdma_mask, udma_mask;
3171 	int quiet, highbit;
3172 
3173 	quiet = !!(sel & ATA_DNXFER_QUIET);
3174 	sel &= ~ATA_DNXFER_QUIET;
3175 
3176 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3177 						  dev->mwdma_mask,
3178 						  dev->udma_mask);
3179 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3180 
3181 	switch (sel) {
3182 	case ATA_DNXFER_PIO:
3183 		highbit = fls(pio_mask) - 1;
3184 		pio_mask &= ~(1 << highbit);
3185 		break;
3186 
3187 	case ATA_DNXFER_DMA:
3188 		if (udma_mask) {
3189 			highbit = fls(udma_mask) - 1;
3190 			udma_mask &= ~(1 << highbit);
3191 			if (!udma_mask)
3192 				return -ENOENT;
3193 		} else if (mwdma_mask) {
3194 			highbit = fls(mwdma_mask) - 1;
3195 			mwdma_mask &= ~(1 << highbit);
3196 			if (!mwdma_mask)
3197 				return -ENOENT;
3198 		}
3199 		break;
3200 
3201 	case ATA_DNXFER_40C:
3202 		udma_mask &= ATA_UDMA_MASK_40C;
3203 		break;
3204 
3205 	case ATA_DNXFER_FORCE_PIO0:
3206 		pio_mask &= 1;
3207 		fallthrough;
3208 	case ATA_DNXFER_FORCE_PIO:
3209 		mwdma_mask = 0;
3210 		udma_mask = 0;
3211 		break;
3212 
3213 	default:
3214 		BUG();
3215 	}
3216 
3217 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3218 
3219 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3220 		return -ENOENT;
3221 
3222 	if (!quiet) {
3223 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3224 			snprintf(buf, sizeof(buf), "%s:%s",
3225 				 ata_mode_string(xfer_mask),
3226 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3227 		else
3228 			snprintf(buf, sizeof(buf), "%s",
3229 				 ata_mode_string(xfer_mask));
3230 
3231 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3232 	}
3233 
3234 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3235 			    &dev->udma_mask);
3236 
3237 	return 0;
3238 }
3239 
3240 static int ata_dev_set_mode(struct ata_device *dev)
3241 {
3242 	struct ata_port *ap = dev->link->ap;
3243 	struct ata_eh_context *ehc = &dev->link->eh_context;
3244 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3245 	const char *dev_err_whine = "";
3246 	int ign_dev_err = 0;
3247 	unsigned int err_mask = 0;
3248 	int rc;
3249 
3250 	dev->flags &= ~ATA_DFLAG_PIO;
3251 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3252 		dev->flags |= ATA_DFLAG_PIO;
3253 
3254 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3255 		dev_err_whine = " (SET_XFERMODE skipped)";
3256 	else {
3257 		if (nosetxfer)
3258 			ata_dev_warn(dev,
3259 				     "NOSETXFER but PATA detected - can't "
3260 				     "skip SETXFER, might malfunction\n");
3261 		err_mask = ata_dev_set_xfermode(dev);
3262 	}
3263 
3264 	if (err_mask & ~AC_ERR_DEV)
3265 		goto fail;
3266 
3267 	/* revalidate */
3268 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3269 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3270 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3271 	if (rc)
3272 		return rc;
3273 
3274 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3275 		/* Old CFA may refuse this command, which is just fine */
3276 		if (ata_id_is_cfa(dev->id))
3277 			ign_dev_err = 1;
3278 		/* Catch several broken garbage emulations plus some pre
3279 		   ATA devices */
3280 		if (ata_id_major_version(dev->id) == 0 &&
3281 					dev->pio_mode <= XFER_PIO_2)
3282 			ign_dev_err = 1;
3283 		/* Some very old devices and some bad newer ones fail
3284 		   any kind of SET_XFERMODE request but support PIO0-2
3285 		   timings and no IORDY */
3286 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3287 			ign_dev_err = 1;
3288 	}
3289 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3290 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3291 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3292 	    dev->dma_mode == XFER_MW_DMA_0 &&
3293 	    (dev->id[63] >> 8) & 1)
3294 		ign_dev_err = 1;
3295 
3296 	/* if the device is actually configured correctly, ignore dev err */
3297 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3298 		ign_dev_err = 1;
3299 
3300 	if (err_mask & AC_ERR_DEV) {
3301 		if (!ign_dev_err)
3302 			goto fail;
3303 		else
3304 			dev_err_whine = " (device error ignored)";
3305 	}
3306 
3307 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3308 		dev->xfer_shift, (int)dev->xfer_mode);
3309 
3310 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3311 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3312 		ata_dev_info(dev, "configured for %s%s\n",
3313 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3314 			     dev_err_whine);
3315 
3316 	return 0;
3317 
3318  fail:
3319 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3320 	return -EIO;
3321 }
3322 
3323 /**
3324  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3325  *	@link: link on which timings will be programmed
3326  *	@r_failed_dev: out parameter for failed device
3327  *
3328  *	Standard implementation of the function used to tune and set
3329  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3330  *	ata_dev_set_mode() fails, pointer to the failing device is
3331  *	returned in @r_failed_dev.
3332  *
3333  *	LOCKING:
3334  *	PCI/etc. bus probe sem.
3335  *
3336  *	RETURNS:
3337  *	0 on success, negative errno otherwise
3338  */
3339 
3340 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3341 {
3342 	struct ata_port *ap = link->ap;
3343 	struct ata_device *dev;
3344 	int rc = 0, used_dma = 0, found = 0;
3345 
3346 	/* step 1: calculate xfer_mask */
3347 	ata_for_each_dev(dev, link, ENABLED) {
3348 		unsigned long pio_mask, dma_mask;
3349 		unsigned int mode_mask;
3350 
3351 		mode_mask = ATA_DMA_MASK_ATA;
3352 		if (dev->class == ATA_DEV_ATAPI)
3353 			mode_mask = ATA_DMA_MASK_ATAPI;
3354 		else if (ata_id_is_cfa(dev->id))
3355 			mode_mask = ATA_DMA_MASK_CFA;
3356 
3357 		ata_dev_xfermask(dev);
3358 		ata_force_xfermask(dev);
3359 
3360 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3361 
3362 		if (libata_dma_mask & mode_mask)
3363 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3364 						     dev->udma_mask);
3365 		else
3366 			dma_mask = 0;
3367 
3368 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3369 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3370 
3371 		found = 1;
3372 		if (ata_dma_enabled(dev))
3373 			used_dma = 1;
3374 	}
3375 	if (!found)
3376 		goto out;
3377 
3378 	/* step 2: always set host PIO timings */
3379 	ata_for_each_dev(dev, link, ENABLED) {
3380 		if (dev->pio_mode == 0xff) {
3381 			ata_dev_warn(dev, "no PIO support\n");
3382 			rc = -EINVAL;
3383 			goto out;
3384 		}
3385 
3386 		dev->xfer_mode = dev->pio_mode;
3387 		dev->xfer_shift = ATA_SHIFT_PIO;
3388 		if (ap->ops->set_piomode)
3389 			ap->ops->set_piomode(ap, dev);
3390 	}
3391 
3392 	/* step 3: set host DMA timings */
3393 	ata_for_each_dev(dev, link, ENABLED) {
3394 		if (!ata_dma_enabled(dev))
3395 			continue;
3396 
3397 		dev->xfer_mode = dev->dma_mode;
3398 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3399 		if (ap->ops->set_dmamode)
3400 			ap->ops->set_dmamode(ap, dev);
3401 	}
3402 
3403 	/* step 4: update devices' xfer mode */
3404 	ata_for_each_dev(dev, link, ENABLED) {
3405 		rc = ata_dev_set_mode(dev);
3406 		if (rc)
3407 			goto out;
3408 	}
3409 
3410 	/* Record simplex status. If we selected DMA then the other
3411 	 * host channels are not permitted to do so.
3412 	 */
3413 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3414 		ap->host->simplex_claimed = ap;
3415 
3416  out:
3417 	if (rc)
3418 		*r_failed_dev = dev;
3419 	return rc;
3420 }
3421 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3422 
3423 /**
3424  *	ata_wait_ready - wait for link to become ready
3425  *	@link: link to be waited on
3426  *	@deadline: deadline jiffies for the operation
3427  *	@check_ready: callback to check link readiness
3428  *
3429  *	Wait for @link to become ready.  @check_ready should return
3430  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3431  *	link doesn't seem to be occupied, other errno for other error
3432  *	conditions.
3433  *
3434  *	Transient -ENODEV conditions are allowed for
3435  *	ATA_TMOUT_FF_WAIT.
3436  *
3437  *	LOCKING:
3438  *	EH context.
3439  *
3440  *	RETURNS:
3441  *	0 if @link is ready before @deadline; otherwise, -errno.
3442  */
3443 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3444 		   int (*check_ready)(struct ata_link *link))
3445 {
3446 	unsigned long start = jiffies;
3447 	unsigned long nodev_deadline;
3448 	int warned = 0;
3449 
3450 	/* choose which 0xff timeout to use, read comment in libata.h */
3451 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3452 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3453 	else
3454 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3455 
3456 	/* Slave readiness can't be tested separately from master.  On
3457 	 * M/S emulation configuration, this function should be called
3458 	 * only on the master and it will handle both master and slave.
3459 	 */
3460 	WARN_ON(link == link->ap->slave_link);
3461 
3462 	if (time_after(nodev_deadline, deadline))
3463 		nodev_deadline = deadline;
3464 
3465 	while (1) {
3466 		unsigned long now = jiffies;
3467 		int ready, tmp;
3468 
3469 		ready = tmp = check_ready(link);
3470 		if (ready > 0)
3471 			return 0;
3472 
3473 		/*
3474 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3475 		 * is online.  Also, some SATA devices take a long
3476 		 * time to clear 0xff after reset.  Wait for
3477 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3478 		 * offline.
3479 		 *
3480 		 * Note that some PATA controllers (pata_ali) explode
3481 		 * if status register is read more than once when
3482 		 * there's no device attached.
3483 		 */
3484 		if (ready == -ENODEV) {
3485 			if (ata_link_online(link))
3486 				ready = 0;
3487 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3488 				 !ata_link_offline(link) &&
3489 				 time_before(now, nodev_deadline))
3490 				ready = 0;
3491 		}
3492 
3493 		if (ready)
3494 			return ready;
3495 		if (time_after(now, deadline))
3496 			return -EBUSY;
3497 
3498 		if (!warned && time_after(now, start + 5 * HZ) &&
3499 		    (deadline - now > 3 * HZ)) {
3500 			ata_link_warn(link,
3501 				"link is slow to respond, please be patient "
3502 				"(ready=%d)\n", tmp);
3503 			warned = 1;
3504 		}
3505 
3506 		ata_msleep(link->ap, 50);
3507 	}
3508 }
3509 
3510 /**
3511  *	ata_wait_after_reset - wait for link to become ready after reset
3512  *	@link: link to be waited on
3513  *	@deadline: deadline jiffies for the operation
3514  *	@check_ready: callback to check link readiness
3515  *
3516  *	Wait for @link to become ready after reset.
3517  *
3518  *	LOCKING:
3519  *	EH context.
3520  *
3521  *	RETURNS:
3522  *	0 if @link is ready before @deadline; otherwise, -errno.
3523  */
3524 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3525 				int (*check_ready)(struct ata_link *link))
3526 {
3527 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3528 
3529 	return ata_wait_ready(link, deadline, check_ready);
3530 }
3531 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3532 
3533 /**
3534  *	ata_std_prereset - prepare for reset
3535  *	@link: ATA link to be reset
3536  *	@deadline: deadline jiffies for the operation
3537  *
3538  *	@link is about to be reset.  Initialize it.  Failure from
3539  *	prereset makes libata abort whole reset sequence and give up
3540  *	that port, so prereset should be best-effort.  It does its
3541  *	best to prepare for reset sequence but if things go wrong, it
3542  *	should just whine, not fail.
3543  *
3544  *	LOCKING:
3545  *	Kernel thread context (may sleep)
3546  *
3547  *	RETURNS:
3548  *	0 on success, -errno otherwise.
3549  */
3550 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3551 {
3552 	struct ata_port *ap = link->ap;
3553 	struct ata_eh_context *ehc = &link->eh_context;
3554 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3555 	int rc;
3556 
3557 	/* if we're about to do hardreset, nothing more to do */
3558 	if (ehc->i.action & ATA_EH_HARDRESET)
3559 		return 0;
3560 
3561 	/* if SATA, resume link */
3562 	if (ap->flags & ATA_FLAG_SATA) {
3563 		rc = sata_link_resume(link, timing, deadline);
3564 		/* whine about phy resume failure but proceed */
3565 		if (rc && rc != -EOPNOTSUPP)
3566 			ata_link_warn(link,
3567 				      "failed to resume link for reset (errno=%d)\n",
3568 				      rc);
3569 	}
3570 
3571 	/* no point in trying softreset on offline link */
3572 	if (ata_phys_link_offline(link))
3573 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3574 
3575 	return 0;
3576 }
3577 EXPORT_SYMBOL_GPL(ata_std_prereset);
3578 
3579 /**
3580  *	sata_std_hardreset - COMRESET w/o waiting or classification
3581  *	@link: link to reset
3582  *	@class: resulting class of attached device
3583  *	@deadline: deadline jiffies for the operation
3584  *
3585  *	Standard SATA COMRESET w/o waiting or classification.
3586  *
3587  *	LOCKING:
3588  *	Kernel thread context (may sleep)
3589  *
3590  *	RETURNS:
3591  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3592  */
3593 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3594 		       unsigned long deadline)
3595 {
3596 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3597 	bool online;
3598 	int rc;
3599 
3600 	/* do hardreset */
3601 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3602 	return online ? -EAGAIN : rc;
3603 }
3604 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3605 
3606 /**
3607  *	ata_std_postreset - standard postreset callback
3608  *	@link: the target ata_link
3609  *	@classes: classes of attached devices
3610  *
3611  *	This function is invoked after a successful reset.  Note that
3612  *	the device might have been reset more than once using
3613  *	different reset methods before postreset is invoked.
3614  *
3615  *	LOCKING:
3616  *	Kernel thread context (may sleep)
3617  */
3618 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3619 {
3620 	u32 serror;
3621 
3622 	DPRINTK("ENTER\n");
3623 
3624 	/* reset complete, clear SError */
3625 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3626 		sata_scr_write(link, SCR_ERROR, serror);
3627 
3628 	/* print link status */
3629 	sata_print_link_status(link);
3630 
3631 	DPRINTK("EXIT\n");
3632 }
3633 EXPORT_SYMBOL_GPL(ata_std_postreset);
3634 
3635 /**
3636  *	ata_dev_same_device - Determine whether new ID matches configured device
3637  *	@dev: device to compare against
3638  *	@new_class: class of the new device
3639  *	@new_id: IDENTIFY page of the new device
3640  *
3641  *	Compare @new_class and @new_id against @dev and determine
3642  *	whether @dev is the device indicated by @new_class and
3643  *	@new_id.
3644  *
3645  *	LOCKING:
3646  *	None.
3647  *
3648  *	RETURNS:
3649  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3650  */
3651 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3652 			       const u16 *new_id)
3653 {
3654 	const u16 *old_id = dev->id;
3655 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3656 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3657 
3658 	if (dev->class != new_class) {
3659 		ata_dev_info(dev, "class mismatch %d != %d\n",
3660 			     dev->class, new_class);
3661 		return 0;
3662 	}
3663 
3664 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3665 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3666 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3667 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3668 
3669 	if (strcmp(model[0], model[1])) {
3670 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3671 			     model[0], model[1]);
3672 		return 0;
3673 	}
3674 
3675 	if (strcmp(serial[0], serial[1])) {
3676 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3677 			     serial[0], serial[1]);
3678 		return 0;
3679 	}
3680 
3681 	return 1;
3682 }
3683 
3684 /**
3685  *	ata_dev_reread_id - Re-read IDENTIFY data
3686  *	@dev: target ATA device
3687  *	@readid_flags: read ID flags
3688  *
3689  *	Re-read IDENTIFY page and make sure @dev is still attached to
3690  *	the port.
3691  *
3692  *	LOCKING:
3693  *	Kernel thread context (may sleep)
3694  *
3695  *	RETURNS:
3696  *	0 on success, negative errno otherwise
3697  */
3698 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3699 {
3700 	unsigned int class = dev->class;
3701 	u16 *id = (void *)dev->link->ap->sector_buf;
3702 	int rc;
3703 
3704 	/* read ID data */
3705 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3706 	if (rc)
3707 		return rc;
3708 
3709 	/* is the device still there? */
3710 	if (!ata_dev_same_device(dev, class, id))
3711 		return -ENODEV;
3712 
3713 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3714 	return 0;
3715 }
3716 
3717 /**
3718  *	ata_dev_revalidate - Revalidate ATA device
3719  *	@dev: device to revalidate
3720  *	@new_class: new class code
3721  *	@readid_flags: read ID flags
3722  *
3723  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3724  *	port and reconfigure it according to the new IDENTIFY page.
3725  *
3726  *	LOCKING:
3727  *	Kernel thread context (may sleep)
3728  *
3729  *	RETURNS:
3730  *	0 on success, negative errno otherwise
3731  */
3732 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3733 		       unsigned int readid_flags)
3734 {
3735 	u64 n_sectors = dev->n_sectors;
3736 	u64 n_native_sectors = dev->n_native_sectors;
3737 	int rc;
3738 
3739 	if (!ata_dev_enabled(dev))
3740 		return -ENODEV;
3741 
3742 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3743 	if (ata_class_enabled(new_class) &&
3744 	    new_class != ATA_DEV_ATA &&
3745 	    new_class != ATA_DEV_ATAPI &&
3746 	    new_class != ATA_DEV_ZAC &&
3747 	    new_class != ATA_DEV_SEMB) {
3748 		ata_dev_info(dev, "class mismatch %u != %u\n",
3749 			     dev->class, new_class);
3750 		rc = -ENODEV;
3751 		goto fail;
3752 	}
3753 
3754 	/* re-read ID */
3755 	rc = ata_dev_reread_id(dev, readid_flags);
3756 	if (rc)
3757 		goto fail;
3758 
3759 	/* configure device according to the new ID */
3760 	rc = ata_dev_configure(dev);
3761 	if (rc)
3762 		goto fail;
3763 
3764 	/* verify n_sectors hasn't changed */
3765 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3766 	    dev->n_sectors == n_sectors)
3767 		return 0;
3768 
3769 	/* n_sectors has changed */
3770 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3771 		     (unsigned long long)n_sectors,
3772 		     (unsigned long long)dev->n_sectors);
3773 
3774 	/*
3775 	 * Something could have caused HPA to be unlocked
3776 	 * involuntarily.  If n_native_sectors hasn't changed and the
3777 	 * new size matches it, keep the device.
3778 	 */
3779 	if (dev->n_native_sectors == n_native_sectors &&
3780 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3781 		ata_dev_warn(dev,
3782 			     "new n_sectors matches native, probably "
3783 			     "late HPA unlock, n_sectors updated\n");
3784 		/* use the larger n_sectors */
3785 		return 0;
3786 	}
3787 
3788 	/*
3789 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3790 	 * unlocking HPA in those cases.
3791 	 *
3792 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3793 	 */
3794 	if (dev->n_native_sectors == n_native_sectors &&
3795 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3796 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3797 		ata_dev_warn(dev,
3798 			     "old n_sectors matches native, probably "
3799 			     "late HPA lock, will try to unlock HPA\n");
3800 		/* try unlocking HPA */
3801 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3802 		rc = -EIO;
3803 	} else
3804 		rc = -ENODEV;
3805 
3806 	/* restore original n_[native_]sectors and fail */
3807 	dev->n_native_sectors = n_native_sectors;
3808 	dev->n_sectors = n_sectors;
3809  fail:
3810 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3811 	return rc;
3812 }
3813 
3814 struct ata_blacklist_entry {
3815 	const char *model_num;
3816 	const char *model_rev;
3817 	unsigned long horkage;
3818 };
3819 
3820 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3821 	/* Devices with DMA related problems under Linux */
3822 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3823 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3824 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3825 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3826 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3827 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3828 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3829 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3830 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3831 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3832 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3833 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3834 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3835 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3836 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3837 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3838 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3839 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3840 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3841 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3842 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3843 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3844 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3845 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3846 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3847 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3848 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3849 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3850 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3851 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3852 	/* Odd clown on sil3726/4726 PMPs */
3853 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3854 
3855 	/* Weird ATAPI devices */
3856 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3857 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3858 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3859 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3860 
3861 	/*
3862 	 * Causes silent data corruption with higher max sects.
3863 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3864 	 */
3865 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3866 
3867 	/*
3868 	 * These devices time out with higher max sects.
3869 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3870 	 */
3871 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3872 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3873 
3874 	/* Devices we expect to fail diagnostics */
3875 
3876 	/* Devices where NCQ should be avoided */
3877 	/* NCQ is slow */
3878 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3879 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3880 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3881 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3882 	/* NCQ is broken */
3883 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3884 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3885 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3886 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3887 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3888 
3889 	/* Seagate NCQ + FLUSH CACHE firmware bug */
3890 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3891 						ATA_HORKAGE_FIRMWARE_WARN },
3892 
3893 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3894 						ATA_HORKAGE_FIRMWARE_WARN },
3895 
3896 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3897 						ATA_HORKAGE_FIRMWARE_WARN },
3898 
3899 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3900 						ATA_HORKAGE_FIRMWARE_WARN },
3901 
3902 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3903 	   the ST disks also have LPM issues */
3904 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3905 						ATA_HORKAGE_NOLPM, },
3906 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3907 
3908 	/* Blacklist entries taken from Silicon Image 3124/3132
3909 	   Windows driver .inf file - also several Linux problem reports */
3910 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3911 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3912 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3913 
3914 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3915 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
3916 
3917 	/* Sandisk SD7/8/9s lock up hard on large trims */
3918 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M, },
3919 
3920 	/* devices which puke on READ_NATIVE_MAX */
3921 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
3922 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3923 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3924 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3925 
3926 	/* this one allows HPA unlocking but fails IOs on the area */
3927 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3928 
3929 	/* Devices which report 1 sector over size HPA */
3930 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3931 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3932 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3933 
3934 	/* Devices which get the IVB wrong */
3935 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3936 	/* Maybe we should just blacklist TSSTcorp... */
3937 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
3938 
3939 	/* Devices that do not need bridging limits applied */
3940 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3941 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3942 
3943 	/* Devices which aren't very happy with higher link speeds */
3944 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
3945 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
3946 
3947 	/*
3948 	 * Devices which choke on SETXFER.  Applies only if both the
3949 	 * device and controller are SATA.
3950 	 */
3951 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
3952 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
3953 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
3954 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
3955 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
3956 
3957 	/* Crucial BX100 SSD 500GB has broken LPM support */
3958 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
3959 
3960 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3961 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3962 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3963 						ATA_HORKAGE_NOLPM, },
3964 	/* 512GB MX100 with newer firmware has only LPM issues */
3965 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
3966 						ATA_HORKAGE_NOLPM, },
3967 
3968 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3969 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3970 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3971 						ATA_HORKAGE_NOLPM, },
3972 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3973 						ATA_HORKAGE_ZERO_AFTER_TRIM |
3974 						ATA_HORKAGE_NOLPM, },
3975 
3976 	/* These specific Samsung models/firmware-revs do not handle LPM well */
3977 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
3978 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
3979 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
3980 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
3981 
3982 	/* devices that don't properly handle queued TRIM commands */
3983 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3984 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3985 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3986 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3987 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3988 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3989 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3990 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3991 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3992 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3993 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3994 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3995 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3996 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3997 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3998 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3999 	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4000 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4001 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4002 	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4003 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4004 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4005 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4006 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4007 
4008 	/* devices that don't properly handle TRIM commands */
4009 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4010 
4011 	/*
4012 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4013 	 * (Return Zero After Trim) flags in the ATA Command Set are
4014 	 * unreliable in the sense that they only define what happens if
4015 	 * the device successfully executed the DSM TRIM command. TRIM
4016 	 * is only advisory, however, and the device is free to silently
4017 	 * ignore all or parts of the request.
4018 	 *
4019 	 * Whitelist drives that are known to reliably return zeroes
4020 	 * after TRIM.
4021 	 */
4022 
4023 	/*
4024 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4025 	 * that model before whitelisting all other intel SSDs.
4026 	 */
4027 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4028 
4029 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4030 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4031 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4032 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4033 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4034 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4035 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4036 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4037 
4038 	/*
4039 	 * Some WD SATA-I drives spin up and down erratically when the link
4040 	 * is put into the slumber mode.  We don't have full list of the
4041 	 * affected devices.  Disable LPM if the device matches one of the
4042 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4043 	 * lost too.
4044 	 *
4045 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4046 	 */
4047 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4048 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4049 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4050 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4051 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4052 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4053 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4054 
4055 	/* End Marker */
4056 	{ }
4057 };
4058 
4059 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4060 {
4061 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4062 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4063 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4064 
4065 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4066 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4067 
4068 	while (ad->model_num) {
4069 		if (glob_match(ad->model_num, model_num)) {
4070 			if (ad->model_rev == NULL)
4071 				return ad->horkage;
4072 			if (glob_match(ad->model_rev, model_rev))
4073 				return ad->horkage;
4074 		}
4075 		ad++;
4076 	}
4077 	return 0;
4078 }
4079 
4080 static int ata_dma_blacklisted(const struct ata_device *dev)
4081 {
4082 	/* We don't support polling DMA.
4083 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4084 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4085 	 */
4086 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4087 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4088 		return 1;
4089 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4090 }
4091 
4092 /**
4093  *	ata_is_40wire		-	check drive side detection
4094  *	@dev: device
4095  *
4096  *	Perform drive side detection decoding, allowing for device vendors
4097  *	who can't follow the documentation.
4098  */
4099 
4100 static int ata_is_40wire(struct ata_device *dev)
4101 {
4102 	if (dev->horkage & ATA_HORKAGE_IVB)
4103 		return ata_drive_40wire_relaxed(dev->id);
4104 	return ata_drive_40wire(dev->id);
4105 }
4106 
4107 /**
4108  *	cable_is_40wire		-	40/80/SATA decider
4109  *	@ap: port to consider
4110  *
4111  *	This function encapsulates the policy for speed management
4112  *	in one place. At the moment we don't cache the result but
4113  *	there is a good case for setting ap->cbl to the result when
4114  *	we are called with unknown cables (and figuring out if it
4115  *	impacts hotplug at all).
4116  *
4117  *	Return 1 if the cable appears to be 40 wire.
4118  */
4119 
4120 static int cable_is_40wire(struct ata_port *ap)
4121 {
4122 	struct ata_link *link;
4123 	struct ata_device *dev;
4124 
4125 	/* If the controller thinks we are 40 wire, we are. */
4126 	if (ap->cbl == ATA_CBL_PATA40)
4127 		return 1;
4128 
4129 	/* If the controller thinks we are 80 wire, we are. */
4130 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4131 		return 0;
4132 
4133 	/* If the system is known to be 40 wire short cable (eg
4134 	 * laptop), then we allow 80 wire modes even if the drive
4135 	 * isn't sure.
4136 	 */
4137 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4138 		return 0;
4139 
4140 	/* If the controller doesn't know, we scan.
4141 	 *
4142 	 * Note: We look for all 40 wire detects at this point.  Any
4143 	 *       80 wire detect is taken to be 80 wire cable because
4144 	 * - in many setups only the one drive (slave if present) will
4145 	 *   give a valid detect
4146 	 * - if you have a non detect capable drive you don't want it
4147 	 *   to colour the choice
4148 	 */
4149 	ata_for_each_link(link, ap, EDGE) {
4150 		ata_for_each_dev(dev, link, ENABLED) {
4151 			if (!ata_is_40wire(dev))
4152 				return 0;
4153 		}
4154 	}
4155 	return 1;
4156 }
4157 
4158 /**
4159  *	ata_dev_xfermask - Compute supported xfermask of the given device
4160  *	@dev: Device to compute xfermask for
4161  *
4162  *	Compute supported xfermask of @dev and store it in
4163  *	dev->*_mask.  This function is responsible for applying all
4164  *	known limits including host controller limits, device
4165  *	blacklist, etc...
4166  *
4167  *	LOCKING:
4168  *	None.
4169  */
4170 static void ata_dev_xfermask(struct ata_device *dev)
4171 {
4172 	struct ata_link *link = dev->link;
4173 	struct ata_port *ap = link->ap;
4174 	struct ata_host *host = ap->host;
4175 	unsigned long xfer_mask;
4176 
4177 	/* controller modes available */
4178 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4179 				      ap->mwdma_mask, ap->udma_mask);
4180 
4181 	/* drive modes available */
4182 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4183 				       dev->mwdma_mask, dev->udma_mask);
4184 	xfer_mask &= ata_id_xfermask(dev->id);
4185 
4186 	/*
4187 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4188 	 *	cable
4189 	 */
4190 	if (ata_dev_pair(dev)) {
4191 		/* No PIO5 or PIO6 */
4192 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4193 		/* No MWDMA3 or MWDMA 4 */
4194 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4195 	}
4196 
4197 	if (ata_dma_blacklisted(dev)) {
4198 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4199 		ata_dev_warn(dev,
4200 			     "device is on DMA blacklist, disabling DMA\n");
4201 	}
4202 
4203 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4204 	    host->simplex_claimed && host->simplex_claimed != ap) {
4205 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4206 		ata_dev_warn(dev,
4207 			     "simplex DMA is claimed by other device, disabling DMA\n");
4208 	}
4209 
4210 	if (ap->flags & ATA_FLAG_NO_IORDY)
4211 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4212 
4213 	if (ap->ops->mode_filter)
4214 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4215 
4216 	/* Apply cable rule here.  Don't apply it early because when
4217 	 * we handle hot plug the cable type can itself change.
4218 	 * Check this last so that we know if the transfer rate was
4219 	 * solely limited by the cable.
4220 	 * Unknown or 80 wire cables reported host side are checked
4221 	 * drive side as well. Cases where we know a 40wire cable
4222 	 * is used safely for 80 are not checked here.
4223 	 */
4224 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4225 		/* UDMA/44 or higher would be available */
4226 		if (cable_is_40wire(ap)) {
4227 			ata_dev_warn(dev,
4228 				     "limited to UDMA/33 due to 40-wire cable\n");
4229 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4230 		}
4231 
4232 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4233 			    &dev->mwdma_mask, &dev->udma_mask);
4234 }
4235 
4236 /**
4237  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4238  *	@dev: Device to which command will be sent
4239  *
4240  *	Issue SET FEATURES - XFER MODE command to device @dev
4241  *	on port @ap.
4242  *
4243  *	LOCKING:
4244  *	PCI/etc. bus probe sem.
4245  *
4246  *	RETURNS:
4247  *	0 on success, AC_ERR_* mask otherwise.
4248  */
4249 
4250 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4251 {
4252 	struct ata_taskfile tf;
4253 	unsigned int err_mask;
4254 
4255 	/* set up set-features taskfile */
4256 	DPRINTK("set features - xfer mode\n");
4257 
4258 	/* Some controllers and ATAPI devices show flaky interrupt
4259 	 * behavior after setting xfer mode.  Use polling instead.
4260 	 */
4261 	ata_tf_init(dev, &tf);
4262 	tf.command = ATA_CMD_SET_FEATURES;
4263 	tf.feature = SETFEATURES_XFER;
4264 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4265 	tf.protocol = ATA_PROT_NODATA;
4266 	/* If we are using IORDY we must send the mode setting command */
4267 	if (ata_pio_need_iordy(dev))
4268 		tf.nsect = dev->xfer_mode;
4269 	/* If the device has IORDY and the controller does not - turn it off */
4270  	else if (ata_id_has_iordy(dev->id))
4271 		tf.nsect = 0x01;
4272 	else /* In the ancient relic department - skip all of this */
4273 		return 0;
4274 
4275 	/* On some disks, this command causes spin-up, so we need longer timeout */
4276 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4277 
4278 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4279 	return err_mask;
4280 }
4281 
4282 /**
4283  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4284  *	@dev: Device to which command will be sent
4285  *	@enable: Whether to enable or disable the feature
4286  *	@feature: The sector count represents the feature to set
4287  *
4288  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4289  *	on port @ap with sector count
4290  *
4291  *	LOCKING:
4292  *	PCI/etc. bus probe sem.
4293  *
4294  *	RETURNS:
4295  *	0 on success, AC_ERR_* mask otherwise.
4296  */
4297 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4298 {
4299 	struct ata_taskfile tf;
4300 	unsigned int err_mask;
4301 	unsigned long timeout = 0;
4302 
4303 	/* set up set-features taskfile */
4304 	DPRINTK("set features - SATA features\n");
4305 
4306 	ata_tf_init(dev, &tf);
4307 	tf.command = ATA_CMD_SET_FEATURES;
4308 	tf.feature = enable;
4309 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4310 	tf.protocol = ATA_PROT_NODATA;
4311 	tf.nsect = feature;
4312 
4313 	if (enable == SETFEATURES_SPINUP)
4314 		timeout = ata_probe_timeout ?
4315 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4316 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4317 
4318 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4319 	return err_mask;
4320 }
4321 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4322 
4323 /**
4324  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4325  *	@dev: Device to which command will be sent
4326  *	@heads: Number of heads (taskfile parameter)
4327  *	@sectors: Number of sectors (taskfile parameter)
4328  *
4329  *	LOCKING:
4330  *	Kernel thread context (may sleep)
4331  *
4332  *	RETURNS:
4333  *	0 on success, AC_ERR_* mask otherwise.
4334  */
4335 static unsigned int ata_dev_init_params(struct ata_device *dev,
4336 					u16 heads, u16 sectors)
4337 {
4338 	struct ata_taskfile tf;
4339 	unsigned int err_mask;
4340 
4341 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4342 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4343 		return AC_ERR_INVALID;
4344 
4345 	/* set up init dev params taskfile */
4346 	DPRINTK("init dev params \n");
4347 
4348 	ata_tf_init(dev, &tf);
4349 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4350 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4351 	tf.protocol = ATA_PROT_NODATA;
4352 	tf.nsect = sectors;
4353 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4354 
4355 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4356 	/* A clean abort indicates an original or just out of spec drive
4357 	   and we should continue as we issue the setup based on the
4358 	   drive reported working geometry */
4359 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4360 		err_mask = 0;
4361 
4362 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4363 	return err_mask;
4364 }
4365 
4366 /**
4367  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4368  *	@qc: Metadata associated with taskfile to check
4369  *
4370  *	Allow low-level driver to filter ATA PACKET commands, returning
4371  *	a status indicating whether or not it is OK to use DMA for the
4372  *	supplied PACKET command.
4373  *
4374  *	LOCKING:
4375  *	spin_lock_irqsave(host lock)
4376  *
4377  *	RETURNS: 0 when ATAPI DMA can be used
4378  *               nonzero otherwise
4379  */
4380 int atapi_check_dma(struct ata_queued_cmd *qc)
4381 {
4382 	struct ata_port *ap = qc->ap;
4383 
4384 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4385 	 * few ATAPI devices choke on such DMA requests.
4386 	 */
4387 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4388 	    unlikely(qc->nbytes & 15))
4389 		return 1;
4390 
4391 	if (ap->ops->check_atapi_dma)
4392 		return ap->ops->check_atapi_dma(qc);
4393 
4394 	return 0;
4395 }
4396 
4397 /**
4398  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4399  *	@qc: ATA command in question
4400  *
4401  *	Non-NCQ commands cannot run with any other command, NCQ or
4402  *	not.  As upper layer only knows the queue depth, we are
4403  *	responsible for maintaining exclusion.  This function checks
4404  *	whether a new command @qc can be issued.
4405  *
4406  *	LOCKING:
4407  *	spin_lock_irqsave(host lock)
4408  *
4409  *	RETURNS:
4410  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4411  */
4412 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4413 {
4414 	struct ata_link *link = qc->dev->link;
4415 
4416 	if (ata_is_ncq(qc->tf.protocol)) {
4417 		if (!ata_tag_valid(link->active_tag))
4418 			return 0;
4419 	} else {
4420 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4421 			return 0;
4422 	}
4423 
4424 	return ATA_DEFER_LINK;
4425 }
4426 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4427 
4428 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4429 {
4430 	return AC_ERR_OK;
4431 }
4432 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4433 
4434 /**
4435  *	ata_sg_init - Associate command with scatter-gather table.
4436  *	@qc: Command to be associated
4437  *	@sg: Scatter-gather table.
4438  *	@n_elem: Number of elements in s/g table.
4439  *
4440  *	Initialize the data-related elements of queued_cmd @qc
4441  *	to point to a scatter-gather table @sg, containing @n_elem
4442  *	elements.
4443  *
4444  *	LOCKING:
4445  *	spin_lock_irqsave(host lock)
4446  */
4447 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4448 		 unsigned int n_elem)
4449 {
4450 	qc->sg = sg;
4451 	qc->n_elem = n_elem;
4452 	qc->cursg = qc->sg;
4453 }
4454 
4455 #ifdef CONFIG_HAS_DMA
4456 
4457 /**
4458  *	ata_sg_clean - Unmap DMA memory associated with command
4459  *	@qc: Command containing DMA memory to be released
4460  *
4461  *	Unmap all mapped DMA memory associated with this command.
4462  *
4463  *	LOCKING:
4464  *	spin_lock_irqsave(host lock)
4465  */
4466 static void ata_sg_clean(struct ata_queued_cmd *qc)
4467 {
4468 	struct ata_port *ap = qc->ap;
4469 	struct scatterlist *sg = qc->sg;
4470 	int dir = qc->dma_dir;
4471 
4472 	WARN_ON_ONCE(sg == NULL);
4473 
4474 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4475 
4476 	if (qc->n_elem)
4477 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4478 
4479 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4480 	qc->sg = NULL;
4481 }
4482 
4483 /**
4484  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4485  *	@qc: Command with scatter-gather table to be mapped.
4486  *
4487  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4488  *
4489  *	LOCKING:
4490  *	spin_lock_irqsave(host lock)
4491  *
4492  *	RETURNS:
4493  *	Zero on success, negative on error.
4494  *
4495  */
4496 static int ata_sg_setup(struct ata_queued_cmd *qc)
4497 {
4498 	struct ata_port *ap = qc->ap;
4499 	unsigned int n_elem;
4500 
4501 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4502 
4503 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4504 	if (n_elem < 1)
4505 		return -1;
4506 
4507 	VPRINTK("%d sg elements mapped\n", n_elem);
4508 	qc->orig_n_elem = qc->n_elem;
4509 	qc->n_elem = n_elem;
4510 	qc->flags |= ATA_QCFLAG_DMAMAP;
4511 
4512 	return 0;
4513 }
4514 
4515 #else /* !CONFIG_HAS_DMA */
4516 
4517 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4518 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4519 
4520 #endif /* !CONFIG_HAS_DMA */
4521 
4522 /**
4523  *	swap_buf_le16 - swap halves of 16-bit words in place
4524  *	@buf:  Buffer to swap
4525  *	@buf_words:  Number of 16-bit words in buffer.
4526  *
4527  *	Swap halves of 16-bit words if needed to convert from
4528  *	little-endian byte order to native cpu byte order, or
4529  *	vice-versa.
4530  *
4531  *	LOCKING:
4532  *	Inherited from caller.
4533  */
4534 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4535 {
4536 #ifdef __BIG_ENDIAN
4537 	unsigned int i;
4538 
4539 	for (i = 0; i < buf_words; i++)
4540 		buf[i] = le16_to_cpu(buf[i]);
4541 #endif /* __BIG_ENDIAN */
4542 }
4543 
4544 /**
4545  *	ata_qc_new_init - Request an available ATA command, and initialize it
4546  *	@dev: Device from whom we request an available command structure
4547  *	@tag: tag
4548  *
4549  *	LOCKING:
4550  *	None.
4551  */
4552 
4553 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4554 {
4555 	struct ata_port *ap = dev->link->ap;
4556 	struct ata_queued_cmd *qc;
4557 
4558 	/* no command while frozen */
4559 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4560 		return NULL;
4561 
4562 	/* libsas case */
4563 	if (ap->flags & ATA_FLAG_SAS_HOST) {
4564 		tag = ata_sas_allocate_tag(ap);
4565 		if (tag < 0)
4566 			return NULL;
4567 	}
4568 
4569 	qc = __ata_qc_from_tag(ap, tag);
4570 	qc->tag = qc->hw_tag = tag;
4571 	qc->scsicmd = NULL;
4572 	qc->ap = ap;
4573 	qc->dev = dev;
4574 
4575 	ata_qc_reinit(qc);
4576 
4577 	return qc;
4578 }
4579 
4580 /**
4581  *	ata_qc_free - free unused ata_queued_cmd
4582  *	@qc: Command to complete
4583  *
4584  *	Designed to free unused ata_queued_cmd object
4585  *	in case something prevents using it.
4586  *
4587  *	LOCKING:
4588  *	spin_lock_irqsave(host lock)
4589  */
4590 void ata_qc_free(struct ata_queued_cmd *qc)
4591 {
4592 	struct ata_port *ap;
4593 	unsigned int tag;
4594 
4595 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4596 	ap = qc->ap;
4597 
4598 	qc->flags = 0;
4599 	tag = qc->tag;
4600 	if (ata_tag_valid(tag)) {
4601 		qc->tag = ATA_TAG_POISON;
4602 		if (ap->flags & ATA_FLAG_SAS_HOST)
4603 			ata_sas_free_tag(tag, ap);
4604 	}
4605 }
4606 
4607 void __ata_qc_complete(struct ata_queued_cmd *qc)
4608 {
4609 	struct ata_port *ap;
4610 	struct ata_link *link;
4611 
4612 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4613 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4614 	ap = qc->ap;
4615 	link = qc->dev->link;
4616 
4617 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4618 		ata_sg_clean(qc);
4619 
4620 	/* command should be marked inactive atomically with qc completion */
4621 	if (ata_is_ncq(qc->tf.protocol)) {
4622 		link->sactive &= ~(1 << qc->hw_tag);
4623 		if (!link->sactive)
4624 			ap->nr_active_links--;
4625 	} else {
4626 		link->active_tag = ATA_TAG_POISON;
4627 		ap->nr_active_links--;
4628 	}
4629 
4630 	/* clear exclusive status */
4631 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4632 		     ap->excl_link == link))
4633 		ap->excl_link = NULL;
4634 
4635 	/* atapi: mark qc as inactive to prevent the interrupt handler
4636 	 * from completing the command twice later, before the error handler
4637 	 * is called. (when rc != 0 and atapi request sense is needed)
4638 	 */
4639 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4640 	ap->qc_active &= ~(1ULL << qc->tag);
4641 
4642 	/* call completion callback */
4643 	qc->complete_fn(qc);
4644 }
4645 
4646 static void fill_result_tf(struct ata_queued_cmd *qc)
4647 {
4648 	struct ata_port *ap = qc->ap;
4649 
4650 	qc->result_tf.flags = qc->tf.flags;
4651 	ap->ops->qc_fill_rtf(qc);
4652 }
4653 
4654 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4655 {
4656 	struct ata_device *dev = qc->dev;
4657 
4658 	if (!ata_is_data(qc->tf.protocol))
4659 		return;
4660 
4661 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4662 		return;
4663 
4664 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4665 }
4666 
4667 /**
4668  *	ata_qc_complete - Complete an active ATA command
4669  *	@qc: Command to complete
4670  *
4671  *	Indicate to the mid and upper layers that an ATA command has
4672  *	completed, with either an ok or not-ok status.
4673  *
4674  *	Refrain from calling this function multiple times when
4675  *	successfully completing multiple NCQ commands.
4676  *	ata_qc_complete_multiple() should be used instead, which will
4677  *	properly update IRQ expect state.
4678  *
4679  *	LOCKING:
4680  *	spin_lock_irqsave(host lock)
4681  */
4682 void ata_qc_complete(struct ata_queued_cmd *qc)
4683 {
4684 	struct ata_port *ap = qc->ap;
4685 
4686 	/* Trigger the LED (if available) */
4687 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4688 
4689 	/* XXX: New EH and old EH use different mechanisms to
4690 	 * synchronize EH with regular execution path.
4691 	 *
4692 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4693 	 * Normal execution path is responsible for not accessing a
4694 	 * failed qc.  libata core enforces the rule by returning NULL
4695 	 * from ata_qc_from_tag() for failed qcs.
4696 	 *
4697 	 * Old EH depends on ata_qc_complete() nullifying completion
4698 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4699 	 * not synchronize with interrupt handler.  Only PIO task is
4700 	 * taken care of.
4701 	 */
4702 	if (ap->ops->error_handler) {
4703 		struct ata_device *dev = qc->dev;
4704 		struct ata_eh_info *ehi = &dev->link->eh_info;
4705 
4706 		if (unlikely(qc->err_mask))
4707 			qc->flags |= ATA_QCFLAG_FAILED;
4708 
4709 		/*
4710 		 * Finish internal commands without any further processing
4711 		 * and always with the result TF filled.
4712 		 */
4713 		if (unlikely(ata_tag_internal(qc->tag))) {
4714 			fill_result_tf(qc);
4715 			trace_ata_qc_complete_internal(qc);
4716 			__ata_qc_complete(qc);
4717 			return;
4718 		}
4719 
4720 		/*
4721 		 * Non-internal qc has failed.  Fill the result TF and
4722 		 * summon EH.
4723 		 */
4724 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4725 			fill_result_tf(qc);
4726 			trace_ata_qc_complete_failed(qc);
4727 			ata_qc_schedule_eh(qc);
4728 			return;
4729 		}
4730 
4731 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4732 
4733 		/* read result TF if requested */
4734 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4735 			fill_result_tf(qc);
4736 
4737 		trace_ata_qc_complete_done(qc);
4738 		/* Some commands need post-processing after successful
4739 		 * completion.
4740 		 */
4741 		switch (qc->tf.command) {
4742 		case ATA_CMD_SET_FEATURES:
4743 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4744 			    qc->tf.feature != SETFEATURES_WC_OFF &&
4745 			    qc->tf.feature != SETFEATURES_RA_ON &&
4746 			    qc->tf.feature != SETFEATURES_RA_OFF)
4747 				break;
4748 			fallthrough;
4749 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4750 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4751 			/* revalidate device */
4752 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4753 			ata_port_schedule_eh(ap);
4754 			break;
4755 
4756 		case ATA_CMD_SLEEP:
4757 			dev->flags |= ATA_DFLAG_SLEEPING;
4758 			break;
4759 		}
4760 
4761 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4762 			ata_verify_xfer(qc);
4763 
4764 		__ata_qc_complete(qc);
4765 	} else {
4766 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4767 			return;
4768 
4769 		/* read result TF if failed or requested */
4770 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4771 			fill_result_tf(qc);
4772 
4773 		__ata_qc_complete(qc);
4774 	}
4775 }
4776 EXPORT_SYMBOL_GPL(ata_qc_complete);
4777 
4778 /**
4779  *	ata_qc_get_active - get bitmask of active qcs
4780  *	@ap: port in question
4781  *
4782  *	LOCKING:
4783  *	spin_lock_irqsave(host lock)
4784  *
4785  *	RETURNS:
4786  *	Bitmask of active qcs
4787  */
4788 u64 ata_qc_get_active(struct ata_port *ap)
4789 {
4790 	u64 qc_active = ap->qc_active;
4791 
4792 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4793 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4794 		qc_active |= (1 << 0);
4795 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4796 	}
4797 
4798 	return qc_active;
4799 }
4800 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4801 
4802 /**
4803  *	ata_qc_issue - issue taskfile to device
4804  *	@qc: command to issue to device
4805  *
4806  *	Prepare an ATA command to submission to device.
4807  *	This includes mapping the data into a DMA-able
4808  *	area, filling in the S/G table, and finally
4809  *	writing the taskfile to hardware, starting the command.
4810  *
4811  *	LOCKING:
4812  *	spin_lock_irqsave(host lock)
4813  */
4814 void ata_qc_issue(struct ata_queued_cmd *qc)
4815 {
4816 	struct ata_port *ap = qc->ap;
4817 	struct ata_link *link = qc->dev->link;
4818 	u8 prot = qc->tf.protocol;
4819 
4820 	/* Make sure only one non-NCQ command is outstanding.  The
4821 	 * check is skipped for old EH because it reuses active qc to
4822 	 * request ATAPI sense.
4823 	 */
4824 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4825 
4826 	if (ata_is_ncq(prot)) {
4827 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4828 
4829 		if (!link->sactive)
4830 			ap->nr_active_links++;
4831 		link->sactive |= 1 << qc->hw_tag;
4832 	} else {
4833 		WARN_ON_ONCE(link->sactive);
4834 
4835 		ap->nr_active_links++;
4836 		link->active_tag = qc->tag;
4837 	}
4838 
4839 	qc->flags |= ATA_QCFLAG_ACTIVE;
4840 	ap->qc_active |= 1ULL << qc->tag;
4841 
4842 	/*
4843 	 * We guarantee to LLDs that they will have at least one
4844 	 * non-zero sg if the command is a data command.
4845 	 */
4846 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4847 		goto sys_err;
4848 
4849 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4850 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4851 		if (ata_sg_setup(qc))
4852 			goto sys_err;
4853 
4854 	/* if device is sleeping, schedule reset and abort the link */
4855 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4856 		link->eh_info.action |= ATA_EH_RESET;
4857 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4858 		ata_link_abort(link);
4859 		return;
4860 	}
4861 
4862 	qc->err_mask |= ap->ops->qc_prep(qc);
4863 	if (unlikely(qc->err_mask))
4864 		goto err;
4865 	trace_ata_qc_issue(qc);
4866 	qc->err_mask |= ap->ops->qc_issue(qc);
4867 	if (unlikely(qc->err_mask))
4868 		goto err;
4869 	return;
4870 
4871 sys_err:
4872 	qc->err_mask |= AC_ERR_SYSTEM;
4873 err:
4874 	ata_qc_complete(qc);
4875 }
4876 
4877 /**
4878  *	ata_phys_link_online - test whether the given link is online
4879  *	@link: ATA link to test
4880  *
4881  *	Test whether @link is online.  Note that this function returns
4882  *	0 if online status of @link cannot be obtained, so
4883  *	ata_link_online(link) != !ata_link_offline(link).
4884  *
4885  *	LOCKING:
4886  *	None.
4887  *
4888  *	RETURNS:
4889  *	True if the port online status is available and online.
4890  */
4891 bool ata_phys_link_online(struct ata_link *link)
4892 {
4893 	u32 sstatus;
4894 
4895 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4896 	    ata_sstatus_online(sstatus))
4897 		return true;
4898 	return false;
4899 }
4900 
4901 /**
4902  *	ata_phys_link_offline - test whether the given link is offline
4903  *	@link: ATA link to test
4904  *
4905  *	Test whether @link is offline.  Note that this function
4906  *	returns 0 if offline status of @link cannot be obtained, so
4907  *	ata_link_online(link) != !ata_link_offline(link).
4908  *
4909  *	LOCKING:
4910  *	None.
4911  *
4912  *	RETURNS:
4913  *	True if the port offline status is available and offline.
4914  */
4915 bool ata_phys_link_offline(struct ata_link *link)
4916 {
4917 	u32 sstatus;
4918 
4919 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4920 	    !ata_sstatus_online(sstatus))
4921 		return true;
4922 	return false;
4923 }
4924 
4925 /**
4926  *	ata_link_online - test whether the given link is online
4927  *	@link: ATA link to test
4928  *
4929  *	Test whether @link is online.  This is identical to
4930  *	ata_phys_link_online() when there's no slave link.  When
4931  *	there's a slave link, this function should only be called on
4932  *	the master link and will return true if any of M/S links is
4933  *	online.
4934  *
4935  *	LOCKING:
4936  *	None.
4937  *
4938  *	RETURNS:
4939  *	True if the port online status is available and online.
4940  */
4941 bool ata_link_online(struct ata_link *link)
4942 {
4943 	struct ata_link *slave = link->ap->slave_link;
4944 
4945 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4946 
4947 	return ata_phys_link_online(link) ||
4948 		(slave && ata_phys_link_online(slave));
4949 }
4950 EXPORT_SYMBOL_GPL(ata_link_online);
4951 
4952 /**
4953  *	ata_link_offline - test whether the given link is offline
4954  *	@link: ATA link to test
4955  *
4956  *	Test whether @link is offline.  This is identical to
4957  *	ata_phys_link_offline() when there's no slave link.  When
4958  *	there's a slave link, this function should only be called on
4959  *	the master link and will return true if both M/S links are
4960  *	offline.
4961  *
4962  *	LOCKING:
4963  *	None.
4964  *
4965  *	RETURNS:
4966  *	True if the port offline status is available and offline.
4967  */
4968 bool ata_link_offline(struct ata_link *link)
4969 {
4970 	struct ata_link *slave = link->ap->slave_link;
4971 
4972 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4973 
4974 	return ata_phys_link_offline(link) &&
4975 		(!slave || ata_phys_link_offline(slave));
4976 }
4977 EXPORT_SYMBOL_GPL(ata_link_offline);
4978 
4979 #ifdef CONFIG_PM
4980 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4981 				unsigned int action, unsigned int ehi_flags,
4982 				bool async)
4983 {
4984 	struct ata_link *link;
4985 	unsigned long flags;
4986 
4987 	/* Previous resume operation might still be in
4988 	 * progress.  Wait for PM_PENDING to clear.
4989 	 */
4990 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4991 		ata_port_wait_eh(ap);
4992 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4993 	}
4994 
4995 	/* request PM ops to EH */
4996 	spin_lock_irqsave(ap->lock, flags);
4997 
4998 	ap->pm_mesg = mesg;
4999 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5000 	ata_for_each_link(link, ap, HOST_FIRST) {
5001 		link->eh_info.action |= action;
5002 		link->eh_info.flags |= ehi_flags;
5003 	}
5004 
5005 	ata_port_schedule_eh(ap);
5006 
5007 	spin_unlock_irqrestore(ap->lock, flags);
5008 
5009 	if (!async) {
5010 		ata_port_wait_eh(ap);
5011 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5012 	}
5013 }
5014 
5015 /*
5016  * On some hardware, device fails to respond after spun down for suspend.  As
5017  * the device won't be used before being resumed, we don't need to touch the
5018  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5019  *
5020  * http://thread.gmane.org/gmane.linux.ide/46764
5021  */
5022 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5023 						 | ATA_EHI_NO_AUTOPSY
5024 						 | ATA_EHI_NO_RECOVERY;
5025 
5026 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5027 {
5028 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5029 }
5030 
5031 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5032 {
5033 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5034 }
5035 
5036 static int ata_port_pm_suspend(struct device *dev)
5037 {
5038 	struct ata_port *ap = to_ata_port(dev);
5039 
5040 	if (pm_runtime_suspended(dev))
5041 		return 0;
5042 
5043 	ata_port_suspend(ap, PMSG_SUSPEND);
5044 	return 0;
5045 }
5046 
5047 static int ata_port_pm_freeze(struct device *dev)
5048 {
5049 	struct ata_port *ap = to_ata_port(dev);
5050 
5051 	if (pm_runtime_suspended(dev))
5052 		return 0;
5053 
5054 	ata_port_suspend(ap, PMSG_FREEZE);
5055 	return 0;
5056 }
5057 
5058 static int ata_port_pm_poweroff(struct device *dev)
5059 {
5060 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5061 	return 0;
5062 }
5063 
5064 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5065 						| ATA_EHI_QUIET;
5066 
5067 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5068 {
5069 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5070 }
5071 
5072 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5073 {
5074 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5075 }
5076 
5077 static int ata_port_pm_resume(struct device *dev)
5078 {
5079 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5080 	pm_runtime_disable(dev);
5081 	pm_runtime_set_active(dev);
5082 	pm_runtime_enable(dev);
5083 	return 0;
5084 }
5085 
5086 /*
5087  * For ODDs, the upper layer will poll for media change every few seconds,
5088  * which will make it enter and leave suspend state every few seconds. And
5089  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5090  * is very little and the ODD may malfunction after constantly being reset.
5091  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5092  * ODD is attached to the port.
5093  */
5094 static int ata_port_runtime_idle(struct device *dev)
5095 {
5096 	struct ata_port *ap = to_ata_port(dev);
5097 	struct ata_link *link;
5098 	struct ata_device *adev;
5099 
5100 	ata_for_each_link(link, ap, HOST_FIRST) {
5101 		ata_for_each_dev(adev, link, ENABLED)
5102 			if (adev->class == ATA_DEV_ATAPI &&
5103 			    !zpodd_dev_enabled(adev))
5104 				return -EBUSY;
5105 	}
5106 
5107 	return 0;
5108 }
5109 
5110 static int ata_port_runtime_suspend(struct device *dev)
5111 {
5112 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5113 	return 0;
5114 }
5115 
5116 static int ata_port_runtime_resume(struct device *dev)
5117 {
5118 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5119 	return 0;
5120 }
5121 
5122 static const struct dev_pm_ops ata_port_pm_ops = {
5123 	.suspend = ata_port_pm_suspend,
5124 	.resume = ata_port_pm_resume,
5125 	.freeze = ata_port_pm_freeze,
5126 	.thaw = ata_port_pm_resume,
5127 	.poweroff = ata_port_pm_poweroff,
5128 	.restore = ata_port_pm_resume,
5129 
5130 	.runtime_suspend = ata_port_runtime_suspend,
5131 	.runtime_resume = ata_port_runtime_resume,
5132 	.runtime_idle = ata_port_runtime_idle,
5133 };
5134 
5135 /* sas ports don't participate in pm runtime management of ata_ports,
5136  * and need to resume ata devices at the domain level, not the per-port
5137  * level. sas suspend/resume is async to allow parallel port recovery
5138  * since sas has multiple ata_port instances per Scsi_Host.
5139  */
5140 void ata_sas_port_suspend(struct ata_port *ap)
5141 {
5142 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5143 }
5144 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5145 
5146 void ata_sas_port_resume(struct ata_port *ap)
5147 {
5148 	ata_port_resume_async(ap, PMSG_RESUME);
5149 }
5150 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5151 
5152 /**
5153  *	ata_host_suspend - suspend host
5154  *	@host: host to suspend
5155  *	@mesg: PM message
5156  *
5157  *	Suspend @host.  Actual operation is performed by port suspend.
5158  */
5159 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5160 {
5161 	host->dev->power.power_state = mesg;
5162 	return 0;
5163 }
5164 EXPORT_SYMBOL_GPL(ata_host_suspend);
5165 
5166 /**
5167  *	ata_host_resume - resume host
5168  *	@host: host to resume
5169  *
5170  *	Resume @host.  Actual operation is performed by port resume.
5171  */
5172 void ata_host_resume(struct ata_host *host)
5173 {
5174 	host->dev->power.power_state = PMSG_ON;
5175 }
5176 EXPORT_SYMBOL_GPL(ata_host_resume);
5177 #endif
5178 
5179 const struct device_type ata_port_type = {
5180 	.name = "ata_port",
5181 #ifdef CONFIG_PM
5182 	.pm = &ata_port_pm_ops,
5183 #endif
5184 };
5185 
5186 /**
5187  *	ata_dev_init - Initialize an ata_device structure
5188  *	@dev: Device structure to initialize
5189  *
5190  *	Initialize @dev in preparation for probing.
5191  *
5192  *	LOCKING:
5193  *	Inherited from caller.
5194  */
5195 void ata_dev_init(struct ata_device *dev)
5196 {
5197 	struct ata_link *link = ata_dev_phys_link(dev);
5198 	struct ata_port *ap = link->ap;
5199 	unsigned long flags;
5200 
5201 	/* SATA spd limit is bound to the attached device, reset together */
5202 	link->sata_spd_limit = link->hw_sata_spd_limit;
5203 	link->sata_spd = 0;
5204 
5205 	/* High bits of dev->flags are used to record warm plug
5206 	 * requests which occur asynchronously.  Synchronize using
5207 	 * host lock.
5208 	 */
5209 	spin_lock_irqsave(ap->lock, flags);
5210 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5211 	dev->horkage = 0;
5212 	spin_unlock_irqrestore(ap->lock, flags);
5213 
5214 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5215 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5216 	dev->pio_mask = UINT_MAX;
5217 	dev->mwdma_mask = UINT_MAX;
5218 	dev->udma_mask = UINT_MAX;
5219 }
5220 
5221 /**
5222  *	ata_link_init - Initialize an ata_link structure
5223  *	@ap: ATA port link is attached to
5224  *	@link: Link structure to initialize
5225  *	@pmp: Port multiplier port number
5226  *
5227  *	Initialize @link.
5228  *
5229  *	LOCKING:
5230  *	Kernel thread context (may sleep)
5231  */
5232 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5233 {
5234 	int i;
5235 
5236 	/* clear everything except for devices */
5237 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5238 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5239 
5240 	link->ap = ap;
5241 	link->pmp = pmp;
5242 	link->active_tag = ATA_TAG_POISON;
5243 	link->hw_sata_spd_limit = UINT_MAX;
5244 
5245 	/* can't use iterator, ap isn't initialized yet */
5246 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5247 		struct ata_device *dev = &link->device[i];
5248 
5249 		dev->link = link;
5250 		dev->devno = dev - link->device;
5251 #ifdef CONFIG_ATA_ACPI
5252 		dev->gtf_filter = ata_acpi_gtf_filter;
5253 #endif
5254 		ata_dev_init(dev);
5255 	}
5256 }
5257 
5258 /**
5259  *	sata_link_init_spd - Initialize link->sata_spd_limit
5260  *	@link: Link to configure sata_spd_limit for
5261  *
5262  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5263  *	configured value.
5264  *
5265  *	LOCKING:
5266  *	Kernel thread context (may sleep).
5267  *
5268  *	RETURNS:
5269  *	0 on success, -errno on failure.
5270  */
5271 int sata_link_init_spd(struct ata_link *link)
5272 {
5273 	u8 spd;
5274 	int rc;
5275 
5276 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5277 	if (rc)
5278 		return rc;
5279 
5280 	spd = (link->saved_scontrol >> 4) & 0xf;
5281 	if (spd)
5282 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5283 
5284 	ata_force_link_limits(link);
5285 
5286 	link->sata_spd_limit = link->hw_sata_spd_limit;
5287 
5288 	return 0;
5289 }
5290 
5291 /**
5292  *	ata_port_alloc - allocate and initialize basic ATA port resources
5293  *	@host: ATA host this allocated port belongs to
5294  *
5295  *	Allocate and initialize basic ATA port resources.
5296  *
5297  *	RETURNS:
5298  *	Allocate ATA port on success, NULL on failure.
5299  *
5300  *	LOCKING:
5301  *	Inherited from calling layer (may sleep).
5302  */
5303 struct ata_port *ata_port_alloc(struct ata_host *host)
5304 {
5305 	struct ata_port *ap;
5306 
5307 	DPRINTK("ENTER\n");
5308 
5309 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5310 	if (!ap)
5311 		return NULL;
5312 
5313 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5314 	ap->lock = &host->lock;
5315 	ap->print_id = -1;
5316 	ap->local_port_no = -1;
5317 	ap->host = host;
5318 	ap->dev = host->dev;
5319 
5320 #if defined(ATA_VERBOSE_DEBUG)
5321 	/* turn on all debugging levels */
5322 	ap->msg_enable = 0x00FF;
5323 #elif defined(ATA_DEBUG)
5324 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5325 #else
5326 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5327 #endif
5328 
5329 	mutex_init(&ap->scsi_scan_mutex);
5330 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5331 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5332 	INIT_LIST_HEAD(&ap->eh_done_q);
5333 	init_waitqueue_head(&ap->eh_wait_q);
5334 	init_completion(&ap->park_req_pending);
5335 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5336 		    TIMER_DEFERRABLE);
5337 
5338 	ap->cbl = ATA_CBL_NONE;
5339 
5340 	ata_link_init(ap, &ap->link, 0);
5341 
5342 #ifdef ATA_IRQ_TRAP
5343 	ap->stats.unhandled_irq = 1;
5344 	ap->stats.idle_irq = 1;
5345 #endif
5346 	ata_sff_port_init(ap);
5347 
5348 	return ap;
5349 }
5350 
5351 static void ata_devres_release(struct device *gendev, void *res)
5352 {
5353 	struct ata_host *host = dev_get_drvdata(gendev);
5354 	int i;
5355 
5356 	for (i = 0; i < host->n_ports; i++) {
5357 		struct ata_port *ap = host->ports[i];
5358 
5359 		if (!ap)
5360 			continue;
5361 
5362 		if (ap->scsi_host)
5363 			scsi_host_put(ap->scsi_host);
5364 
5365 	}
5366 
5367 	dev_set_drvdata(gendev, NULL);
5368 	ata_host_put(host);
5369 }
5370 
5371 static void ata_host_release(struct kref *kref)
5372 {
5373 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5374 	int i;
5375 
5376 	for (i = 0; i < host->n_ports; i++) {
5377 		struct ata_port *ap = host->ports[i];
5378 
5379 		kfree(ap->pmp_link);
5380 		kfree(ap->slave_link);
5381 		kfree(ap);
5382 		host->ports[i] = NULL;
5383 	}
5384 	kfree(host);
5385 }
5386 
5387 void ata_host_get(struct ata_host *host)
5388 {
5389 	kref_get(&host->kref);
5390 }
5391 
5392 void ata_host_put(struct ata_host *host)
5393 {
5394 	kref_put(&host->kref, ata_host_release);
5395 }
5396 EXPORT_SYMBOL_GPL(ata_host_put);
5397 
5398 /**
5399  *	ata_host_alloc - allocate and init basic ATA host resources
5400  *	@dev: generic device this host is associated with
5401  *	@max_ports: maximum number of ATA ports associated with this host
5402  *
5403  *	Allocate and initialize basic ATA host resources.  LLD calls
5404  *	this function to allocate a host, initializes it fully and
5405  *	attaches it using ata_host_register().
5406  *
5407  *	@max_ports ports are allocated and host->n_ports is
5408  *	initialized to @max_ports.  The caller is allowed to decrease
5409  *	host->n_ports before calling ata_host_register().  The unused
5410  *	ports will be automatically freed on registration.
5411  *
5412  *	RETURNS:
5413  *	Allocate ATA host on success, NULL on failure.
5414  *
5415  *	LOCKING:
5416  *	Inherited from calling layer (may sleep).
5417  */
5418 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5419 {
5420 	struct ata_host *host;
5421 	size_t sz;
5422 	int i;
5423 	void *dr;
5424 
5425 	DPRINTK("ENTER\n");
5426 
5427 	/* alloc a container for our list of ATA ports (buses) */
5428 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5429 	host = kzalloc(sz, GFP_KERNEL);
5430 	if (!host)
5431 		return NULL;
5432 
5433 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5434 		goto err_free;
5435 
5436 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5437 	if (!dr)
5438 		goto err_out;
5439 
5440 	devres_add(dev, dr);
5441 	dev_set_drvdata(dev, host);
5442 
5443 	spin_lock_init(&host->lock);
5444 	mutex_init(&host->eh_mutex);
5445 	host->dev = dev;
5446 	host->n_ports = max_ports;
5447 	kref_init(&host->kref);
5448 
5449 	/* allocate ports bound to this host */
5450 	for (i = 0; i < max_ports; i++) {
5451 		struct ata_port *ap;
5452 
5453 		ap = ata_port_alloc(host);
5454 		if (!ap)
5455 			goto err_out;
5456 
5457 		ap->port_no = i;
5458 		host->ports[i] = ap;
5459 	}
5460 
5461 	devres_remove_group(dev, NULL);
5462 	return host;
5463 
5464  err_out:
5465 	devres_release_group(dev, NULL);
5466  err_free:
5467 	kfree(host);
5468 	return NULL;
5469 }
5470 EXPORT_SYMBOL_GPL(ata_host_alloc);
5471 
5472 /**
5473  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5474  *	@dev: generic device this host is associated with
5475  *	@ppi: array of ATA port_info to initialize host with
5476  *	@n_ports: number of ATA ports attached to this host
5477  *
5478  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5479  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5480  *	last entry will be used for the remaining ports.
5481  *
5482  *	RETURNS:
5483  *	Allocate ATA host on success, NULL on failure.
5484  *
5485  *	LOCKING:
5486  *	Inherited from calling layer (may sleep).
5487  */
5488 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5489 				      const struct ata_port_info * const * ppi,
5490 				      int n_ports)
5491 {
5492 	const struct ata_port_info *pi;
5493 	struct ata_host *host;
5494 	int i, j;
5495 
5496 	host = ata_host_alloc(dev, n_ports);
5497 	if (!host)
5498 		return NULL;
5499 
5500 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5501 		struct ata_port *ap = host->ports[i];
5502 
5503 		if (ppi[j])
5504 			pi = ppi[j++];
5505 
5506 		ap->pio_mask = pi->pio_mask;
5507 		ap->mwdma_mask = pi->mwdma_mask;
5508 		ap->udma_mask = pi->udma_mask;
5509 		ap->flags |= pi->flags;
5510 		ap->link.flags |= pi->link_flags;
5511 		ap->ops = pi->port_ops;
5512 
5513 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5514 			host->ops = pi->port_ops;
5515 	}
5516 
5517 	return host;
5518 }
5519 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5520 
5521 static void ata_host_stop(struct device *gendev, void *res)
5522 {
5523 	struct ata_host *host = dev_get_drvdata(gendev);
5524 	int i;
5525 
5526 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5527 
5528 	for (i = 0; i < host->n_ports; i++) {
5529 		struct ata_port *ap = host->ports[i];
5530 
5531 		if (ap->ops->port_stop)
5532 			ap->ops->port_stop(ap);
5533 	}
5534 
5535 	if (host->ops->host_stop)
5536 		host->ops->host_stop(host);
5537 }
5538 
5539 /**
5540  *	ata_finalize_port_ops - finalize ata_port_operations
5541  *	@ops: ata_port_operations to finalize
5542  *
5543  *	An ata_port_operations can inherit from another ops and that
5544  *	ops can again inherit from another.  This can go on as many
5545  *	times as necessary as long as there is no loop in the
5546  *	inheritance chain.
5547  *
5548  *	Ops tables are finalized when the host is started.  NULL or
5549  *	unspecified entries are inherited from the closet ancestor
5550  *	which has the method and the entry is populated with it.
5551  *	After finalization, the ops table directly points to all the
5552  *	methods and ->inherits is no longer necessary and cleared.
5553  *
5554  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5555  *
5556  *	LOCKING:
5557  *	None.
5558  */
5559 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5560 {
5561 	static DEFINE_SPINLOCK(lock);
5562 	const struct ata_port_operations *cur;
5563 	void **begin = (void **)ops;
5564 	void **end = (void **)&ops->inherits;
5565 	void **pp;
5566 
5567 	if (!ops || !ops->inherits)
5568 		return;
5569 
5570 	spin_lock(&lock);
5571 
5572 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5573 		void **inherit = (void **)cur;
5574 
5575 		for (pp = begin; pp < end; pp++, inherit++)
5576 			if (!*pp)
5577 				*pp = *inherit;
5578 	}
5579 
5580 	for (pp = begin; pp < end; pp++)
5581 		if (IS_ERR(*pp))
5582 			*pp = NULL;
5583 
5584 	ops->inherits = NULL;
5585 
5586 	spin_unlock(&lock);
5587 }
5588 
5589 /**
5590  *	ata_host_start - start and freeze ports of an ATA host
5591  *	@host: ATA host to start ports for
5592  *
5593  *	Start and then freeze ports of @host.  Started status is
5594  *	recorded in host->flags, so this function can be called
5595  *	multiple times.  Ports are guaranteed to get started only
5596  *	once.  If host->ops isn't initialized yet, its set to the
5597  *	first non-dummy port ops.
5598  *
5599  *	LOCKING:
5600  *	Inherited from calling layer (may sleep).
5601  *
5602  *	RETURNS:
5603  *	0 if all ports are started successfully, -errno otherwise.
5604  */
5605 int ata_host_start(struct ata_host *host)
5606 {
5607 	int have_stop = 0;
5608 	void *start_dr = NULL;
5609 	int i, rc;
5610 
5611 	if (host->flags & ATA_HOST_STARTED)
5612 		return 0;
5613 
5614 	ata_finalize_port_ops(host->ops);
5615 
5616 	for (i = 0; i < host->n_ports; i++) {
5617 		struct ata_port *ap = host->ports[i];
5618 
5619 		ata_finalize_port_ops(ap->ops);
5620 
5621 		if (!host->ops && !ata_port_is_dummy(ap))
5622 			host->ops = ap->ops;
5623 
5624 		if (ap->ops->port_stop)
5625 			have_stop = 1;
5626 	}
5627 
5628 	if (host->ops && host->ops->host_stop)
5629 		have_stop = 1;
5630 
5631 	if (have_stop) {
5632 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5633 		if (!start_dr)
5634 			return -ENOMEM;
5635 	}
5636 
5637 	for (i = 0; i < host->n_ports; i++) {
5638 		struct ata_port *ap = host->ports[i];
5639 
5640 		if (ap->ops->port_start) {
5641 			rc = ap->ops->port_start(ap);
5642 			if (rc) {
5643 				if (rc != -ENODEV)
5644 					dev_err(host->dev,
5645 						"failed to start port %d (errno=%d)\n",
5646 						i, rc);
5647 				goto err_out;
5648 			}
5649 		}
5650 		ata_eh_freeze_port(ap);
5651 	}
5652 
5653 	if (start_dr)
5654 		devres_add(host->dev, start_dr);
5655 	host->flags |= ATA_HOST_STARTED;
5656 	return 0;
5657 
5658  err_out:
5659 	while (--i >= 0) {
5660 		struct ata_port *ap = host->ports[i];
5661 
5662 		if (ap->ops->port_stop)
5663 			ap->ops->port_stop(ap);
5664 	}
5665 	devres_free(start_dr);
5666 	return rc;
5667 }
5668 EXPORT_SYMBOL_GPL(ata_host_start);
5669 
5670 /**
5671  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5672  *	@host:	host to initialize
5673  *	@dev:	device host is attached to
5674  *	@ops:	port_ops
5675  *
5676  */
5677 void ata_host_init(struct ata_host *host, struct device *dev,
5678 		   struct ata_port_operations *ops)
5679 {
5680 	spin_lock_init(&host->lock);
5681 	mutex_init(&host->eh_mutex);
5682 	host->n_tags = ATA_MAX_QUEUE;
5683 	host->dev = dev;
5684 	host->ops = ops;
5685 	kref_init(&host->kref);
5686 }
5687 EXPORT_SYMBOL_GPL(ata_host_init);
5688 
5689 void __ata_port_probe(struct ata_port *ap)
5690 {
5691 	struct ata_eh_info *ehi = &ap->link.eh_info;
5692 	unsigned long flags;
5693 
5694 	/* kick EH for boot probing */
5695 	spin_lock_irqsave(ap->lock, flags);
5696 
5697 	ehi->probe_mask |= ATA_ALL_DEVICES;
5698 	ehi->action |= ATA_EH_RESET;
5699 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5700 
5701 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5702 	ap->pflags |= ATA_PFLAG_LOADING;
5703 	ata_port_schedule_eh(ap);
5704 
5705 	spin_unlock_irqrestore(ap->lock, flags);
5706 }
5707 
5708 int ata_port_probe(struct ata_port *ap)
5709 {
5710 	int rc = 0;
5711 
5712 	if (ap->ops->error_handler) {
5713 		__ata_port_probe(ap);
5714 		ata_port_wait_eh(ap);
5715 	} else {
5716 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5717 		rc = ata_bus_probe(ap);
5718 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
5719 	}
5720 	return rc;
5721 }
5722 
5723 
5724 static void async_port_probe(void *data, async_cookie_t cookie)
5725 {
5726 	struct ata_port *ap = data;
5727 
5728 	/*
5729 	 * If we're not allowed to scan this host in parallel,
5730 	 * we need to wait until all previous scans have completed
5731 	 * before going further.
5732 	 * Jeff Garzik says this is only within a controller, so we
5733 	 * don't need to wait for port 0, only for later ports.
5734 	 */
5735 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5736 		async_synchronize_cookie(cookie);
5737 
5738 	(void)ata_port_probe(ap);
5739 
5740 	/* in order to keep device order, we need to synchronize at this point */
5741 	async_synchronize_cookie(cookie);
5742 
5743 	ata_scsi_scan_host(ap, 1);
5744 }
5745 
5746 /**
5747  *	ata_host_register - register initialized ATA host
5748  *	@host: ATA host to register
5749  *	@sht: template for SCSI host
5750  *
5751  *	Register initialized ATA host.  @host is allocated using
5752  *	ata_host_alloc() and fully initialized by LLD.  This function
5753  *	starts ports, registers @host with ATA and SCSI layers and
5754  *	probe registered devices.
5755  *
5756  *	LOCKING:
5757  *	Inherited from calling layer (may sleep).
5758  *
5759  *	RETURNS:
5760  *	0 on success, -errno otherwise.
5761  */
5762 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5763 {
5764 	int i, rc;
5765 
5766 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5767 
5768 	/* host must have been started */
5769 	if (!(host->flags & ATA_HOST_STARTED)) {
5770 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5771 		WARN_ON(1);
5772 		return -EINVAL;
5773 	}
5774 
5775 	/* Blow away unused ports.  This happens when LLD can't
5776 	 * determine the exact number of ports to allocate at
5777 	 * allocation time.
5778 	 */
5779 	for (i = host->n_ports; host->ports[i]; i++)
5780 		kfree(host->ports[i]);
5781 
5782 	/* give ports names and add SCSI hosts */
5783 	for (i = 0; i < host->n_ports; i++) {
5784 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5785 		host->ports[i]->local_port_no = i + 1;
5786 	}
5787 
5788 	/* Create associated sysfs transport objects  */
5789 	for (i = 0; i < host->n_ports; i++) {
5790 		rc = ata_tport_add(host->dev,host->ports[i]);
5791 		if (rc) {
5792 			goto err_tadd;
5793 		}
5794 	}
5795 
5796 	rc = ata_scsi_add_hosts(host, sht);
5797 	if (rc)
5798 		goto err_tadd;
5799 
5800 	/* set cable, sata_spd_limit and report */
5801 	for (i = 0; i < host->n_ports; i++) {
5802 		struct ata_port *ap = host->ports[i];
5803 		unsigned long xfer_mask;
5804 
5805 		/* set SATA cable type if still unset */
5806 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5807 			ap->cbl = ATA_CBL_SATA;
5808 
5809 		/* init sata_spd_limit to the current value */
5810 		sata_link_init_spd(&ap->link);
5811 		if (ap->slave_link)
5812 			sata_link_init_spd(ap->slave_link);
5813 
5814 		/* print per-port info to dmesg */
5815 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5816 					      ap->udma_mask);
5817 
5818 		if (!ata_port_is_dummy(ap)) {
5819 			ata_port_info(ap, "%cATA max %s %s\n",
5820 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5821 				      ata_mode_string(xfer_mask),
5822 				      ap->link.eh_info.desc);
5823 			ata_ehi_clear_desc(&ap->link.eh_info);
5824 		} else
5825 			ata_port_info(ap, "DUMMY\n");
5826 	}
5827 
5828 	/* perform each probe asynchronously */
5829 	for (i = 0; i < host->n_ports; i++) {
5830 		struct ata_port *ap = host->ports[i];
5831 		ap->cookie = async_schedule(async_port_probe, ap);
5832 	}
5833 
5834 	return 0;
5835 
5836  err_tadd:
5837 	while (--i >= 0) {
5838 		ata_tport_delete(host->ports[i]);
5839 	}
5840 	return rc;
5841 
5842 }
5843 EXPORT_SYMBOL_GPL(ata_host_register);
5844 
5845 /**
5846  *	ata_host_activate - start host, request IRQ and register it
5847  *	@host: target ATA host
5848  *	@irq: IRQ to request
5849  *	@irq_handler: irq_handler used when requesting IRQ
5850  *	@irq_flags: irq_flags used when requesting IRQ
5851  *	@sht: scsi_host_template to use when registering the host
5852  *
5853  *	After allocating an ATA host and initializing it, most libata
5854  *	LLDs perform three steps to activate the host - start host,
5855  *	request IRQ and register it.  This helper takes necessary
5856  *	arguments and performs the three steps in one go.
5857  *
5858  *	An invalid IRQ skips the IRQ registration and expects the host to
5859  *	have set polling mode on the port. In this case, @irq_handler
5860  *	should be NULL.
5861  *
5862  *	LOCKING:
5863  *	Inherited from calling layer (may sleep).
5864  *
5865  *	RETURNS:
5866  *	0 on success, -errno otherwise.
5867  */
5868 int ata_host_activate(struct ata_host *host, int irq,
5869 		      irq_handler_t irq_handler, unsigned long irq_flags,
5870 		      struct scsi_host_template *sht)
5871 {
5872 	int i, rc;
5873 	char *irq_desc;
5874 
5875 	rc = ata_host_start(host);
5876 	if (rc)
5877 		return rc;
5878 
5879 	/* Special case for polling mode */
5880 	if (!irq) {
5881 		WARN_ON(irq_handler);
5882 		return ata_host_register(host, sht);
5883 	}
5884 
5885 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5886 				  dev_driver_string(host->dev),
5887 				  dev_name(host->dev));
5888 	if (!irq_desc)
5889 		return -ENOMEM;
5890 
5891 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5892 			      irq_desc, host);
5893 	if (rc)
5894 		return rc;
5895 
5896 	for (i = 0; i < host->n_ports; i++)
5897 		ata_port_desc(host->ports[i], "irq %d", irq);
5898 
5899 	rc = ata_host_register(host, sht);
5900 	/* if failed, just free the IRQ and leave ports alone */
5901 	if (rc)
5902 		devm_free_irq(host->dev, irq, host);
5903 
5904 	return rc;
5905 }
5906 EXPORT_SYMBOL_GPL(ata_host_activate);
5907 
5908 /**
5909  *	ata_port_detach - Detach ATA port in preparation of device removal
5910  *	@ap: ATA port to be detached
5911  *
5912  *	Detach all ATA devices and the associated SCSI devices of @ap;
5913  *	then, remove the associated SCSI host.  @ap is guaranteed to
5914  *	be quiescent on return from this function.
5915  *
5916  *	LOCKING:
5917  *	Kernel thread context (may sleep).
5918  */
5919 static void ata_port_detach(struct ata_port *ap)
5920 {
5921 	unsigned long flags;
5922 	struct ata_link *link;
5923 	struct ata_device *dev;
5924 
5925 	if (!ap->ops->error_handler)
5926 		goto skip_eh;
5927 
5928 	/* tell EH we're leaving & flush EH */
5929 	spin_lock_irqsave(ap->lock, flags);
5930 	ap->pflags |= ATA_PFLAG_UNLOADING;
5931 	ata_port_schedule_eh(ap);
5932 	spin_unlock_irqrestore(ap->lock, flags);
5933 
5934 	/* wait till EH commits suicide */
5935 	ata_port_wait_eh(ap);
5936 
5937 	/* it better be dead now */
5938 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5939 
5940 	cancel_delayed_work_sync(&ap->hotplug_task);
5941 
5942  skip_eh:
5943 	/* clean up zpodd on port removal */
5944 	ata_for_each_link(link, ap, HOST_FIRST) {
5945 		ata_for_each_dev(dev, link, ALL) {
5946 			if (zpodd_dev_enabled(dev))
5947 				zpodd_exit(dev);
5948 		}
5949 	}
5950 	if (ap->pmp_link) {
5951 		int i;
5952 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5953 			ata_tlink_delete(&ap->pmp_link[i]);
5954 	}
5955 	/* remove the associated SCSI host */
5956 	scsi_remove_host(ap->scsi_host);
5957 	ata_tport_delete(ap);
5958 }
5959 
5960 /**
5961  *	ata_host_detach - Detach all ports of an ATA host
5962  *	@host: Host to detach
5963  *
5964  *	Detach all ports of @host.
5965  *
5966  *	LOCKING:
5967  *	Kernel thread context (may sleep).
5968  */
5969 void ata_host_detach(struct ata_host *host)
5970 {
5971 	int i;
5972 
5973 	for (i = 0; i < host->n_ports; i++) {
5974 		/* Ensure ata_port probe has completed */
5975 		async_synchronize_cookie(host->ports[i]->cookie + 1);
5976 		ata_port_detach(host->ports[i]);
5977 	}
5978 
5979 	/* the host is dead now, dissociate ACPI */
5980 	ata_acpi_dissociate(host);
5981 }
5982 EXPORT_SYMBOL_GPL(ata_host_detach);
5983 
5984 #ifdef CONFIG_PCI
5985 
5986 /**
5987  *	ata_pci_remove_one - PCI layer callback for device removal
5988  *	@pdev: PCI device that was removed
5989  *
5990  *	PCI layer indicates to libata via this hook that hot-unplug or
5991  *	module unload event has occurred.  Detach all ports.  Resource
5992  *	release is handled via devres.
5993  *
5994  *	LOCKING:
5995  *	Inherited from PCI layer (may sleep).
5996  */
5997 void ata_pci_remove_one(struct pci_dev *pdev)
5998 {
5999 	struct ata_host *host = pci_get_drvdata(pdev);
6000 
6001 	ata_host_detach(host);
6002 }
6003 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6004 
6005 void ata_pci_shutdown_one(struct pci_dev *pdev)
6006 {
6007 	struct ata_host *host = pci_get_drvdata(pdev);
6008 	int i;
6009 
6010 	for (i = 0; i < host->n_ports; i++) {
6011 		struct ata_port *ap = host->ports[i];
6012 
6013 		ap->pflags |= ATA_PFLAG_FROZEN;
6014 
6015 		/* Disable port interrupts */
6016 		if (ap->ops->freeze)
6017 			ap->ops->freeze(ap);
6018 
6019 		/* Stop the port DMA engines */
6020 		if (ap->ops->port_stop)
6021 			ap->ops->port_stop(ap);
6022 	}
6023 }
6024 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6025 
6026 /* move to PCI subsystem */
6027 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6028 {
6029 	unsigned long tmp = 0;
6030 
6031 	switch (bits->width) {
6032 	case 1: {
6033 		u8 tmp8 = 0;
6034 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6035 		tmp = tmp8;
6036 		break;
6037 	}
6038 	case 2: {
6039 		u16 tmp16 = 0;
6040 		pci_read_config_word(pdev, bits->reg, &tmp16);
6041 		tmp = tmp16;
6042 		break;
6043 	}
6044 	case 4: {
6045 		u32 tmp32 = 0;
6046 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6047 		tmp = tmp32;
6048 		break;
6049 	}
6050 
6051 	default:
6052 		return -EINVAL;
6053 	}
6054 
6055 	tmp &= bits->mask;
6056 
6057 	return (tmp == bits->val) ? 1 : 0;
6058 }
6059 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6060 
6061 #ifdef CONFIG_PM
6062 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6063 {
6064 	pci_save_state(pdev);
6065 	pci_disable_device(pdev);
6066 
6067 	if (mesg.event & PM_EVENT_SLEEP)
6068 		pci_set_power_state(pdev, PCI_D3hot);
6069 }
6070 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6071 
6072 int ata_pci_device_do_resume(struct pci_dev *pdev)
6073 {
6074 	int rc;
6075 
6076 	pci_set_power_state(pdev, PCI_D0);
6077 	pci_restore_state(pdev);
6078 
6079 	rc = pcim_enable_device(pdev);
6080 	if (rc) {
6081 		dev_err(&pdev->dev,
6082 			"failed to enable device after resume (%d)\n", rc);
6083 		return rc;
6084 	}
6085 
6086 	pci_set_master(pdev);
6087 	return 0;
6088 }
6089 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6090 
6091 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6092 {
6093 	struct ata_host *host = pci_get_drvdata(pdev);
6094 	int rc = 0;
6095 
6096 	rc = ata_host_suspend(host, mesg);
6097 	if (rc)
6098 		return rc;
6099 
6100 	ata_pci_device_do_suspend(pdev, mesg);
6101 
6102 	return 0;
6103 }
6104 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6105 
6106 int ata_pci_device_resume(struct pci_dev *pdev)
6107 {
6108 	struct ata_host *host = pci_get_drvdata(pdev);
6109 	int rc;
6110 
6111 	rc = ata_pci_device_do_resume(pdev);
6112 	if (rc == 0)
6113 		ata_host_resume(host);
6114 	return rc;
6115 }
6116 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6117 #endif /* CONFIG_PM */
6118 #endif /* CONFIG_PCI */
6119 
6120 /**
6121  *	ata_platform_remove_one - Platform layer callback for device removal
6122  *	@pdev: Platform device that was removed
6123  *
6124  *	Platform layer indicates to libata via this hook that hot-unplug or
6125  *	module unload event has occurred.  Detach all ports.  Resource
6126  *	release is handled via devres.
6127  *
6128  *	LOCKING:
6129  *	Inherited from platform layer (may sleep).
6130  */
6131 int ata_platform_remove_one(struct platform_device *pdev)
6132 {
6133 	struct ata_host *host = platform_get_drvdata(pdev);
6134 
6135 	ata_host_detach(host);
6136 
6137 	return 0;
6138 }
6139 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6140 
6141 #ifdef CONFIG_ATA_FORCE
6142 static int __init ata_parse_force_one(char **cur,
6143 				      struct ata_force_ent *force_ent,
6144 				      const char **reason)
6145 {
6146 	static const struct ata_force_param force_tbl[] __initconst = {
6147 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6148 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6149 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6150 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6151 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6152 		{ "sata",	.cbl		= ATA_CBL_SATA },
6153 		{ "1.5Gbps",	.spd_limit	= 1 },
6154 		{ "3.0Gbps",	.spd_limit	= 2 },
6155 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6156 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6157 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6158 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6159 		{ "noncqati",	.horkage_on	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6160 		{ "ncqati",	.horkage_off	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6161 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6162 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6163 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6164 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6165 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6166 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6167 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6168 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6169 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6170 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6171 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6172 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6173 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6174 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6175 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6176 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6177 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6178 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6179 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6180 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6181 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6182 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6183 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6184 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6185 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6186 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6187 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6188 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6189 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6190 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6191 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6192 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6193 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6194 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6195 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6196 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6197 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6198 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6199 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6200 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6201 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6202 	};
6203 	char *start = *cur, *p = *cur;
6204 	char *id, *val, *endp;
6205 	const struct ata_force_param *match_fp = NULL;
6206 	int nr_matches = 0, i;
6207 
6208 	/* find where this param ends and update *cur */
6209 	while (*p != '\0' && *p != ',')
6210 		p++;
6211 
6212 	if (*p == '\0')
6213 		*cur = p;
6214 	else
6215 		*cur = p + 1;
6216 
6217 	*p = '\0';
6218 
6219 	/* parse */
6220 	p = strchr(start, ':');
6221 	if (!p) {
6222 		val = strstrip(start);
6223 		goto parse_val;
6224 	}
6225 	*p = '\0';
6226 
6227 	id = strstrip(start);
6228 	val = strstrip(p + 1);
6229 
6230 	/* parse id */
6231 	p = strchr(id, '.');
6232 	if (p) {
6233 		*p++ = '\0';
6234 		force_ent->device = simple_strtoul(p, &endp, 10);
6235 		if (p == endp || *endp != '\0') {
6236 			*reason = "invalid device";
6237 			return -EINVAL;
6238 		}
6239 	}
6240 
6241 	force_ent->port = simple_strtoul(id, &endp, 10);
6242 	if (id == endp || *endp != '\0') {
6243 		*reason = "invalid port/link";
6244 		return -EINVAL;
6245 	}
6246 
6247  parse_val:
6248 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6249 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6250 		const struct ata_force_param *fp = &force_tbl[i];
6251 
6252 		if (strncasecmp(val, fp->name, strlen(val)))
6253 			continue;
6254 
6255 		nr_matches++;
6256 		match_fp = fp;
6257 
6258 		if (strcasecmp(val, fp->name) == 0) {
6259 			nr_matches = 1;
6260 			break;
6261 		}
6262 	}
6263 
6264 	if (!nr_matches) {
6265 		*reason = "unknown value";
6266 		return -EINVAL;
6267 	}
6268 	if (nr_matches > 1) {
6269 		*reason = "ambiguous value";
6270 		return -EINVAL;
6271 	}
6272 
6273 	force_ent->param = *match_fp;
6274 
6275 	return 0;
6276 }
6277 
6278 static void __init ata_parse_force_param(void)
6279 {
6280 	int idx = 0, size = 1;
6281 	int last_port = -1, last_device = -1;
6282 	char *p, *cur, *next;
6283 
6284 	/* calculate maximum number of params and allocate force_tbl */
6285 	for (p = ata_force_param_buf; *p; p++)
6286 		if (*p == ',')
6287 			size++;
6288 
6289 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6290 	if (!ata_force_tbl) {
6291 		printk(KERN_WARNING "ata: failed to extend force table, "
6292 		       "libata.force ignored\n");
6293 		return;
6294 	}
6295 
6296 	/* parse and populate the table */
6297 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6298 		const char *reason = "";
6299 		struct ata_force_ent te = { .port = -1, .device = -1 };
6300 
6301 		next = cur;
6302 		if (ata_parse_force_one(&next, &te, &reason)) {
6303 			printk(KERN_WARNING "ata: failed to parse force "
6304 			       "parameter \"%s\" (%s)\n",
6305 			       cur, reason);
6306 			continue;
6307 		}
6308 
6309 		if (te.port == -1) {
6310 			te.port = last_port;
6311 			te.device = last_device;
6312 		}
6313 
6314 		ata_force_tbl[idx++] = te;
6315 
6316 		last_port = te.port;
6317 		last_device = te.device;
6318 	}
6319 
6320 	ata_force_tbl_size = idx;
6321 }
6322 
6323 static void ata_free_force_param(void)
6324 {
6325 	kfree(ata_force_tbl);
6326 }
6327 #else
6328 static inline void ata_parse_force_param(void) { }
6329 static inline void ata_free_force_param(void) { }
6330 #endif
6331 
6332 static int __init ata_init(void)
6333 {
6334 	int rc;
6335 
6336 	ata_parse_force_param();
6337 
6338 	rc = ata_sff_init();
6339 	if (rc) {
6340 		ata_free_force_param();
6341 		return rc;
6342 	}
6343 
6344 	libata_transport_init();
6345 	ata_scsi_transport_template = ata_attach_transport();
6346 	if (!ata_scsi_transport_template) {
6347 		ata_sff_exit();
6348 		rc = -ENOMEM;
6349 		goto err_out;
6350 	}
6351 
6352 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6353 	return 0;
6354 
6355 err_out:
6356 	return rc;
6357 }
6358 
6359 static void __exit ata_exit(void)
6360 {
6361 	ata_release_transport(ata_scsi_transport_template);
6362 	libata_transport_exit();
6363 	ata_sff_exit();
6364 	ata_free_force_param();
6365 }
6366 
6367 subsys_initcall(ata_init);
6368 module_exit(ata_exit);
6369 
6370 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6371 
6372 int ata_ratelimit(void)
6373 {
6374 	return __ratelimit(&ratelimit);
6375 }
6376 EXPORT_SYMBOL_GPL(ata_ratelimit);
6377 
6378 /**
6379  *	ata_msleep - ATA EH owner aware msleep
6380  *	@ap: ATA port to attribute the sleep to
6381  *	@msecs: duration to sleep in milliseconds
6382  *
6383  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6384  *	ownership is released before going to sleep and reacquired
6385  *	after the sleep is complete.  IOW, other ports sharing the
6386  *	@ap->host will be allowed to own the EH while this task is
6387  *	sleeping.
6388  *
6389  *	LOCKING:
6390  *	Might sleep.
6391  */
6392 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6393 {
6394 	bool owns_eh = ap && ap->host->eh_owner == current;
6395 
6396 	if (owns_eh)
6397 		ata_eh_release(ap);
6398 
6399 	if (msecs < 20) {
6400 		unsigned long usecs = msecs * USEC_PER_MSEC;
6401 		usleep_range(usecs, usecs + 50);
6402 	} else {
6403 		msleep(msecs);
6404 	}
6405 
6406 	if (owns_eh)
6407 		ata_eh_acquire(ap);
6408 }
6409 EXPORT_SYMBOL_GPL(ata_msleep);
6410 
6411 /**
6412  *	ata_wait_register - wait until register value changes
6413  *	@ap: ATA port to wait register for, can be NULL
6414  *	@reg: IO-mapped register
6415  *	@mask: Mask to apply to read register value
6416  *	@val: Wait condition
6417  *	@interval: polling interval in milliseconds
6418  *	@timeout: timeout in milliseconds
6419  *
6420  *	Waiting for some bits of register to change is a common
6421  *	operation for ATA controllers.  This function reads 32bit LE
6422  *	IO-mapped register @reg and tests for the following condition.
6423  *
6424  *	(*@reg & mask) != val
6425  *
6426  *	If the condition is met, it returns; otherwise, the process is
6427  *	repeated after @interval_msec until timeout.
6428  *
6429  *	LOCKING:
6430  *	Kernel thread context (may sleep)
6431  *
6432  *	RETURNS:
6433  *	The final register value.
6434  */
6435 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6436 		      unsigned long interval, unsigned long timeout)
6437 {
6438 	unsigned long deadline;
6439 	u32 tmp;
6440 
6441 	tmp = ioread32(reg);
6442 
6443 	/* Calculate timeout _after_ the first read to make sure
6444 	 * preceding writes reach the controller before starting to
6445 	 * eat away the timeout.
6446 	 */
6447 	deadline = ata_deadline(jiffies, timeout);
6448 
6449 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6450 		ata_msleep(ap, interval);
6451 		tmp = ioread32(reg);
6452 	}
6453 
6454 	return tmp;
6455 }
6456 EXPORT_SYMBOL_GPL(ata_wait_register);
6457 
6458 /*
6459  * Dummy port_ops
6460  */
6461 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6462 {
6463 	return AC_ERR_SYSTEM;
6464 }
6465 
6466 static void ata_dummy_error_handler(struct ata_port *ap)
6467 {
6468 	/* truly dummy */
6469 }
6470 
6471 struct ata_port_operations ata_dummy_port_ops = {
6472 	.qc_prep		= ata_noop_qc_prep,
6473 	.qc_issue		= ata_dummy_qc_issue,
6474 	.error_handler		= ata_dummy_error_handler,
6475 	.sched_eh		= ata_std_sched_eh,
6476 	.end_eh			= ata_std_end_eh,
6477 };
6478 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6479 
6480 const struct ata_port_info ata_dummy_port_info = {
6481 	.port_ops		= &ata_dummy_port_ops,
6482 };
6483 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6484 
6485 /*
6486  * Utility print functions
6487  */
6488 void ata_port_printk(const struct ata_port *ap, const char *level,
6489 		     const char *fmt, ...)
6490 {
6491 	struct va_format vaf;
6492 	va_list args;
6493 
6494 	va_start(args, fmt);
6495 
6496 	vaf.fmt = fmt;
6497 	vaf.va = &args;
6498 
6499 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
6500 
6501 	va_end(args);
6502 }
6503 EXPORT_SYMBOL(ata_port_printk);
6504 
6505 void ata_link_printk(const struct ata_link *link, const char *level,
6506 		     const char *fmt, ...)
6507 {
6508 	struct va_format vaf;
6509 	va_list args;
6510 
6511 	va_start(args, fmt);
6512 
6513 	vaf.fmt = fmt;
6514 	vaf.va = &args;
6515 
6516 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6517 		printk("%sata%u.%02u: %pV",
6518 		       level, link->ap->print_id, link->pmp, &vaf);
6519 	else
6520 		printk("%sata%u: %pV",
6521 		       level, link->ap->print_id, &vaf);
6522 
6523 	va_end(args);
6524 }
6525 EXPORT_SYMBOL(ata_link_printk);
6526 
6527 void ata_dev_printk(const struct ata_device *dev, const char *level,
6528 		    const char *fmt, ...)
6529 {
6530 	struct va_format vaf;
6531 	va_list args;
6532 
6533 	va_start(args, fmt);
6534 
6535 	vaf.fmt = fmt;
6536 	vaf.va = &args;
6537 
6538 	printk("%sata%u.%02u: %pV",
6539 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6540 	       &vaf);
6541 
6542 	va_end(args);
6543 }
6544 EXPORT_SYMBOL(ata_dev_printk);
6545 
6546 void ata_print_version(const struct device *dev, const char *version)
6547 {
6548 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6549 }
6550 EXPORT_SYMBOL(ata_print_version);
6551