xref: /openbmc/linux/drivers/ata/libata-core.c (revision a977d045)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/driver-api/libata.rst
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78 
79 #include "libata.h"
80 #include "libata-transport.h"
81 
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
85 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
86 
87 const struct ata_port_operations ata_base_port_ops = {
88 	.prereset		= ata_std_prereset,
89 	.postreset		= ata_std_postreset,
90 	.error_handler		= ata_std_error_handler,
91 	.sched_eh		= ata_std_sched_eh,
92 	.end_eh			= ata_std_end_eh,
93 };
94 
95 const struct ata_port_operations sata_port_ops = {
96 	.inherits		= &ata_base_port_ops,
97 
98 	.qc_defer		= ata_std_qc_defer,
99 	.hardreset		= sata_std_hardreset,
100 };
101 
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 					u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107 
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109 
110 struct ata_force_param {
111 	const char	*name;
112 	unsigned int	cbl;
113 	int		spd_limit;
114 	unsigned long	xfer_mask;
115 	unsigned int	horkage_on;
116 	unsigned int	horkage_off;
117 	unsigned int	lflags;
118 };
119 
120 struct ata_force_ent {
121 	int			port;
122 	int			device;
123 	struct ata_force_param	param;
124 };
125 
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128 
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133 
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137 
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141 
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145 
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149 
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153 
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157 
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161 
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165 
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169 
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173 
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178 
179 
180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 	return (sstatus & 0xf) == 0x3;
183 }
184 
185 /**
186  *	ata_link_next - link iteration helper
187  *	@link: the previous link, NULL to start
188  *	@ap: ATA port containing links to iterate
189  *	@mode: iteration mode, one of ATA_LITER_*
190  *
191  *	LOCKING:
192  *	Host lock or EH context.
193  *
194  *	RETURNS:
195  *	Pointer to the next link.
196  */
197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 			       enum ata_link_iter_mode mode)
199 {
200 	BUG_ON(mode != ATA_LITER_EDGE &&
201 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202 
203 	/* NULL link indicates start of iteration */
204 	if (!link)
205 		switch (mode) {
206 		case ATA_LITER_EDGE:
207 		case ATA_LITER_PMP_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			/* fall through */
211 		case ATA_LITER_HOST_FIRST:
212 			return &ap->link;
213 		}
214 
215 	/* we just iterated over the host link, what's next? */
216 	if (link == &ap->link)
217 		switch (mode) {
218 		case ATA_LITER_HOST_FIRST:
219 			if (sata_pmp_attached(ap))
220 				return ap->pmp_link;
221 			/* fall through */
222 		case ATA_LITER_PMP_FIRST:
223 			if (unlikely(ap->slave_link))
224 				return ap->slave_link;
225 			/* fall through */
226 		case ATA_LITER_EDGE:
227 			return NULL;
228 		}
229 
230 	/* slave_link excludes PMP */
231 	if (unlikely(link == ap->slave_link))
232 		return NULL;
233 
234 	/* we were over a PMP link */
235 	if (++link < ap->pmp_link + ap->nr_pmp_links)
236 		return link;
237 
238 	if (mode == ATA_LITER_PMP_FIRST)
239 		return &ap->link;
240 
241 	return NULL;
242 }
243 
244 /**
245  *	ata_dev_next - device iteration helper
246  *	@dev: the previous device, NULL to start
247  *	@link: ATA link containing devices to iterate
248  *	@mode: iteration mode, one of ATA_DITER_*
249  *
250  *	LOCKING:
251  *	Host lock or EH context.
252  *
253  *	RETURNS:
254  *	Pointer to the next device.
255  */
256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 				enum ata_dev_iter_mode mode)
258 {
259 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261 
262 	/* NULL dev indicates start of iteration */
263 	if (!dev)
264 		switch (mode) {
265 		case ATA_DITER_ENABLED:
266 		case ATA_DITER_ALL:
267 			dev = link->device;
268 			goto check;
269 		case ATA_DITER_ENABLED_REVERSE:
270 		case ATA_DITER_ALL_REVERSE:
271 			dev = link->device + ata_link_max_devices(link) - 1;
272 			goto check;
273 		}
274 
275  next:
276 	/* move to the next one */
277 	switch (mode) {
278 	case ATA_DITER_ENABLED:
279 	case ATA_DITER_ALL:
280 		if (++dev < link->device + ata_link_max_devices(link))
281 			goto check;
282 		return NULL;
283 	case ATA_DITER_ENABLED_REVERSE:
284 	case ATA_DITER_ALL_REVERSE:
285 		if (--dev >= link->device)
286 			goto check;
287 		return NULL;
288 	}
289 
290  check:
291 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 	    !ata_dev_enabled(dev))
293 		goto next;
294 	return dev;
295 }
296 
297 /**
298  *	ata_dev_phys_link - find physical link for a device
299  *	@dev: ATA device to look up physical link for
300  *
301  *	Look up physical link which @dev is attached to.  Note that
302  *	this is different from @dev->link only when @dev is on slave
303  *	link.  For all other cases, it's the same as @dev->link.
304  *
305  *	LOCKING:
306  *	Don't care.
307  *
308  *	RETURNS:
309  *	Pointer to the found physical link.
310  */
311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 	struct ata_port *ap = dev->link->ap;
314 
315 	if (!ap->slave_link)
316 		return dev->link;
317 	if (!dev->devno)
318 		return &ap->link;
319 	return ap->slave_link;
320 }
321 
322 /**
323  *	ata_force_cbl - force cable type according to libata.force
324  *	@ap: ATA port of interest
325  *
326  *	Force cable type according to libata.force and whine about it.
327  *	The last entry which has matching port number is used, so it
328  *	can be specified as part of device force parameters.  For
329  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330  *	same effect.
331  *
332  *	LOCKING:
333  *	EH context.
334  */
335 void ata_force_cbl(struct ata_port *ap)
336 {
337 	int i;
338 
339 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 		const struct ata_force_ent *fe = &ata_force_tbl[i];
341 
342 		if (fe->port != -1 && fe->port != ap->print_id)
343 			continue;
344 
345 		if (fe->param.cbl == ATA_CBL_NONE)
346 			continue;
347 
348 		ap->cbl = fe->param.cbl;
349 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 		return;
351 	}
352 }
353 
354 /**
355  *	ata_force_link_limits - force link limits according to libata.force
356  *	@link: ATA link of interest
357  *
358  *	Force link flags and SATA spd limit according to libata.force
359  *	and whine about it.  When only the port part is specified
360  *	(e.g. 1:), the limit applies to all links connected to both
361  *	the host link and all fan-out ports connected via PMP.  If the
362  *	device part is specified as 0 (e.g. 1.00:), it specifies the
363  *	first fan-out link not the host link.  Device number 15 always
364  *	points to the host link whether PMP is attached or not.  If the
365  *	controller has slave link, device number 16 points to it.
366  *
367  *	LOCKING:
368  *	EH context.
369  */
370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 	bool did_spd = false;
373 	int linkno = link->pmp;
374 	int i;
375 
376 	if (ata_is_host_link(link))
377 		linkno += 15;
378 
379 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 		const struct ata_force_ent *fe = &ata_force_tbl[i];
381 
382 		if (fe->port != -1 && fe->port != link->ap->print_id)
383 			continue;
384 
385 		if (fe->device != -1 && fe->device != linkno)
386 			continue;
387 
388 		/* only honor the first spd limit */
389 		if (!did_spd && fe->param.spd_limit) {
390 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 					fe->param.name);
393 			did_spd = true;
394 		}
395 
396 		/* let lflags stack */
397 		if (fe->param.lflags) {
398 			link->flags |= fe->param.lflags;
399 			ata_link_notice(link,
400 					"FORCE: link flag 0x%x forced -> 0x%x\n",
401 					fe->param.lflags, link->flags);
402 		}
403 	}
404 }
405 
406 /**
407  *	ata_force_xfermask - force xfermask according to libata.force
408  *	@dev: ATA device of interest
409  *
410  *	Force xfer_mask according to libata.force and whine about it.
411  *	For consistency with link selection, device number 15 selects
412  *	the first device connected to the host link.
413  *
414  *	LOCKING:
415  *	EH context.
416  */
417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 	int devno = dev->link->pmp + dev->devno;
420 	int alt_devno = devno;
421 	int i;
422 
423 	/* allow n.15/16 for devices attached to host port */
424 	if (ata_is_host_link(dev->link))
425 		alt_devno += 15;
426 
427 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 		const struct ata_force_ent *fe = &ata_force_tbl[i];
429 		unsigned long pio_mask, mwdma_mask, udma_mask;
430 
431 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 			continue;
433 
434 		if (fe->device != -1 && fe->device != devno &&
435 		    fe->device != alt_devno)
436 			continue;
437 
438 		if (!fe->param.xfer_mask)
439 			continue;
440 
441 		ata_unpack_xfermask(fe->param.xfer_mask,
442 				    &pio_mask, &mwdma_mask, &udma_mask);
443 		if (udma_mask)
444 			dev->udma_mask = udma_mask;
445 		else if (mwdma_mask) {
446 			dev->udma_mask = 0;
447 			dev->mwdma_mask = mwdma_mask;
448 		} else {
449 			dev->udma_mask = 0;
450 			dev->mwdma_mask = 0;
451 			dev->pio_mask = pio_mask;
452 		}
453 
454 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 			       fe->param.name);
456 		return;
457 	}
458 }
459 
460 /**
461  *	ata_force_horkage - force horkage according to libata.force
462  *	@dev: ATA device of interest
463  *
464  *	Force horkage according to libata.force and whine about it.
465  *	For consistency with link selection, device number 15 selects
466  *	the first device connected to the host link.
467  *
468  *	LOCKING:
469  *	EH context.
470  */
471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 	int devno = dev->link->pmp + dev->devno;
474 	int alt_devno = devno;
475 	int i;
476 
477 	/* allow n.15/16 for devices attached to host port */
478 	if (ata_is_host_link(dev->link))
479 		alt_devno += 15;
480 
481 	for (i = 0; i < ata_force_tbl_size; i++) {
482 		const struct ata_force_ent *fe = &ata_force_tbl[i];
483 
484 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 			continue;
486 
487 		if (fe->device != -1 && fe->device != devno &&
488 		    fe->device != alt_devno)
489 			continue;
490 
491 		if (!(~dev->horkage & fe->param.horkage_on) &&
492 		    !(dev->horkage & fe->param.horkage_off))
493 			continue;
494 
495 		dev->horkage |= fe->param.horkage_on;
496 		dev->horkage &= ~fe->param.horkage_off;
497 
498 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 			       fe->param.name);
500 	}
501 }
502 
503 /**
504  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505  *	@opcode: SCSI opcode
506  *
507  *	Determine ATAPI command type from @opcode.
508  *
509  *	LOCKING:
510  *	None.
511  *
512  *	RETURNS:
513  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514  */
515 int atapi_cmd_type(u8 opcode)
516 {
517 	switch (opcode) {
518 	case GPCMD_READ_10:
519 	case GPCMD_READ_12:
520 		return ATAPI_READ;
521 
522 	case GPCMD_WRITE_10:
523 	case GPCMD_WRITE_12:
524 	case GPCMD_WRITE_AND_VERIFY_10:
525 		return ATAPI_WRITE;
526 
527 	case GPCMD_READ_CD:
528 	case GPCMD_READ_CD_MSF:
529 		return ATAPI_READ_CD;
530 
531 	case ATA_16:
532 	case ATA_12:
533 		if (atapi_passthru16)
534 			return ATAPI_PASS_THRU;
535 		/* fall thru */
536 	default:
537 		return ATAPI_MISC;
538 	}
539 }
540 
541 /**
542  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543  *	@tf: Taskfile to convert
544  *	@pmp: Port multiplier port
545  *	@is_cmd: This FIS is for command
546  *	@fis: Buffer into which data will output
547  *
548  *	Converts a standard ATA taskfile to a Serial ATA
549  *	FIS structure (Register - Host to Device).
550  *
551  *	LOCKING:
552  *	Inherited from caller.
553  */
554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 	fis[0] = 0x27;			/* Register - Host to Device FIS */
557 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
558 	if (is_cmd)
559 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
560 
561 	fis[2] = tf->command;
562 	fis[3] = tf->feature;
563 
564 	fis[4] = tf->lbal;
565 	fis[5] = tf->lbam;
566 	fis[6] = tf->lbah;
567 	fis[7] = tf->device;
568 
569 	fis[8] = tf->hob_lbal;
570 	fis[9] = tf->hob_lbam;
571 	fis[10] = tf->hob_lbah;
572 	fis[11] = tf->hob_feature;
573 
574 	fis[12] = tf->nsect;
575 	fis[13] = tf->hob_nsect;
576 	fis[14] = 0;
577 	fis[15] = tf->ctl;
578 
579 	fis[16] = tf->auxiliary & 0xff;
580 	fis[17] = (tf->auxiliary >> 8) & 0xff;
581 	fis[18] = (tf->auxiliary >> 16) & 0xff;
582 	fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584 
585 /**
586  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587  *	@fis: Buffer from which data will be input
588  *	@tf: Taskfile to output
589  *
590  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
591  *
592  *	LOCKING:
593  *	Inherited from caller.
594  */
595 
596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 	tf->command	= fis[2];	/* status */
599 	tf->feature	= fis[3];	/* error */
600 
601 	tf->lbal	= fis[4];
602 	tf->lbam	= fis[5];
603 	tf->lbah	= fis[6];
604 	tf->device	= fis[7];
605 
606 	tf->hob_lbal	= fis[8];
607 	tf->hob_lbam	= fis[9];
608 	tf->hob_lbah	= fis[10];
609 
610 	tf->nsect	= fis[12];
611 	tf->hob_nsect	= fis[13];
612 }
613 
614 static const u8 ata_rw_cmds[] = {
615 	/* pio multi */
616 	ATA_CMD_READ_MULTI,
617 	ATA_CMD_WRITE_MULTI,
618 	ATA_CMD_READ_MULTI_EXT,
619 	ATA_CMD_WRITE_MULTI_EXT,
620 	0,
621 	0,
622 	0,
623 	ATA_CMD_WRITE_MULTI_FUA_EXT,
624 	/* pio */
625 	ATA_CMD_PIO_READ,
626 	ATA_CMD_PIO_WRITE,
627 	ATA_CMD_PIO_READ_EXT,
628 	ATA_CMD_PIO_WRITE_EXT,
629 	0,
630 	0,
631 	0,
632 	0,
633 	/* dma */
634 	ATA_CMD_READ,
635 	ATA_CMD_WRITE,
636 	ATA_CMD_READ_EXT,
637 	ATA_CMD_WRITE_EXT,
638 	0,
639 	0,
640 	0,
641 	ATA_CMD_WRITE_FUA_EXT
642 };
643 
644 /**
645  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
646  *	@tf: command to examine and configure
647  *	@dev: device tf belongs to
648  *
649  *	Examine the device configuration and tf->flags to calculate
650  *	the proper read/write commands and protocol to use.
651  *
652  *	LOCKING:
653  *	caller.
654  */
655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 	u8 cmd;
658 
659 	int index, fua, lba48, write;
660 
661 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664 
665 	if (dev->flags & ATA_DFLAG_PIO) {
666 		tf->protocol = ATA_PROT_PIO;
667 		index = dev->multi_count ? 0 : 8;
668 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 		/* Unable to use DMA due to host limitation */
670 		tf->protocol = ATA_PROT_PIO;
671 		index = dev->multi_count ? 0 : 8;
672 	} else {
673 		tf->protocol = ATA_PROT_DMA;
674 		index = 16;
675 	}
676 
677 	cmd = ata_rw_cmds[index + fua + lba48 + write];
678 	if (cmd) {
679 		tf->command = cmd;
680 		return 0;
681 	}
682 	return -1;
683 }
684 
685 /**
686  *	ata_tf_read_block - Read block address from ATA taskfile
687  *	@tf: ATA taskfile of interest
688  *	@dev: ATA device @tf belongs to
689  *
690  *	LOCKING:
691  *	None.
692  *
693  *	Read block address from @tf.  This function can handle all
694  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
695  *	flags select the address format to use.
696  *
697  *	RETURNS:
698  *	Block address read from @tf.
699  */
700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 	u64 block = 0;
703 
704 	if (tf->flags & ATA_TFLAG_LBA) {
705 		if (tf->flags & ATA_TFLAG_LBA48) {
706 			block |= (u64)tf->hob_lbah << 40;
707 			block |= (u64)tf->hob_lbam << 32;
708 			block |= (u64)tf->hob_lbal << 24;
709 		} else
710 			block |= (tf->device & 0xf) << 24;
711 
712 		block |= tf->lbah << 16;
713 		block |= tf->lbam << 8;
714 		block |= tf->lbal;
715 	} else {
716 		u32 cyl, head, sect;
717 
718 		cyl = tf->lbam | (tf->lbah << 8);
719 		head = tf->device & 0xf;
720 		sect = tf->lbal;
721 
722 		if (!sect) {
723 			ata_dev_warn(dev,
724 				     "device reported invalid CHS sector 0\n");
725 			return U64_MAX;
726 		}
727 
728 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 	}
730 
731 	return block;
732 }
733 
734 /**
735  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
736  *	@tf: Target ATA taskfile
737  *	@dev: ATA device @tf belongs to
738  *	@block: Block address
739  *	@n_block: Number of blocks
740  *	@tf_flags: RW/FUA etc...
741  *	@tag: tag
742  *	@class: IO priority class
743  *
744  *	LOCKING:
745  *	None.
746  *
747  *	Build ATA taskfile @tf for read/write request described by
748  *	@block, @n_block, @tf_flags and @tag on @dev.
749  *
750  *	RETURNS:
751  *
752  *	0 on success, -ERANGE if the request is too large for @dev,
753  *	-EINVAL if the request is invalid.
754  */
755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 		    u64 block, u32 n_block, unsigned int tf_flags,
757 		    unsigned int tag, int class)
758 {
759 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 	tf->flags |= tf_flags;
761 
762 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
763 		/* yay, NCQ */
764 		if (!lba_48_ok(block, n_block))
765 			return -ERANGE;
766 
767 		tf->protocol = ATA_PROT_NCQ;
768 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769 
770 		if (tf->flags & ATA_TFLAG_WRITE)
771 			tf->command = ATA_CMD_FPDMA_WRITE;
772 		else
773 			tf->command = ATA_CMD_FPDMA_READ;
774 
775 		tf->nsect = tag << 3;
776 		tf->hob_feature = (n_block >> 8) & 0xff;
777 		tf->feature = n_block & 0xff;
778 
779 		tf->hob_lbah = (block >> 40) & 0xff;
780 		tf->hob_lbam = (block >> 32) & 0xff;
781 		tf->hob_lbal = (block >> 24) & 0xff;
782 		tf->lbah = (block >> 16) & 0xff;
783 		tf->lbam = (block >> 8) & 0xff;
784 		tf->lbal = block & 0xff;
785 
786 		tf->device = ATA_LBA;
787 		if (tf->flags & ATA_TFLAG_FUA)
788 			tf->device |= 1 << 7;
789 
790 		if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 			if (class == IOPRIO_CLASS_RT)
792 				tf->hob_nsect |= ATA_PRIO_HIGH <<
793 						 ATA_SHIFT_PRIO;
794 		}
795 	} else if (dev->flags & ATA_DFLAG_LBA) {
796 		tf->flags |= ATA_TFLAG_LBA;
797 
798 		if (lba_28_ok(block, n_block)) {
799 			/* use LBA28 */
800 			tf->device |= (block >> 24) & 0xf;
801 		} else if (lba_48_ok(block, n_block)) {
802 			if (!(dev->flags & ATA_DFLAG_LBA48))
803 				return -ERANGE;
804 
805 			/* use LBA48 */
806 			tf->flags |= ATA_TFLAG_LBA48;
807 
808 			tf->hob_nsect = (n_block >> 8) & 0xff;
809 
810 			tf->hob_lbah = (block >> 40) & 0xff;
811 			tf->hob_lbam = (block >> 32) & 0xff;
812 			tf->hob_lbal = (block >> 24) & 0xff;
813 		} else
814 			/* request too large even for LBA48 */
815 			return -ERANGE;
816 
817 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 			return -EINVAL;
819 
820 		tf->nsect = n_block & 0xff;
821 
822 		tf->lbah = (block >> 16) & 0xff;
823 		tf->lbam = (block >> 8) & 0xff;
824 		tf->lbal = block & 0xff;
825 
826 		tf->device |= ATA_LBA;
827 	} else {
828 		/* CHS */
829 		u32 sect, head, cyl, track;
830 
831 		/* The request -may- be too large for CHS addressing. */
832 		if (!lba_28_ok(block, n_block))
833 			return -ERANGE;
834 
835 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 			return -EINVAL;
837 
838 		/* Convert LBA to CHS */
839 		track = (u32)block / dev->sectors;
840 		cyl   = track / dev->heads;
841 		head  = track % dev->heads;
842 		sect  = (u32)block % dev->sectors + 1;
843 
844 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 			(u32)block, track, cyl, head, sect);
846 
847 		/* Check whether the converted CHS can fit.
848 		   Cylinder: 0-65535
849 		   Head: 0-15
850 		   Sector: 1-255*/
851 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 			return -ERANGE;
853 
854 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 		tf->lbal = sect;
856 		tf->lbam = cyl;
857 		tf->lbah = cyl >> 8;
858 		tf->device |= head;
859 	}
860 
861 	return 0;
862 }
863 
864 /**
865  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866  *	@pio_mask: pio_mask
867  *	@mwdma_mask: mwdma_mask
868  *	@udma_mask: udma_mask
869  *
870  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871  *	unsigned int xfer_mask.
872  *
873  *	LOCKING:
874  *	None.
875  *
876  *	RETURNS:
877  *	Packed xfer_mask.
878  */
879 unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 				unsigned long mwdma_mask,
881 				unsigned long udma_mask)
882 {
883 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886 }
887 
888 /**
889  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890  *	@xfer_mask: xfer_mask to unpack
891  *	@pio_mask: resulting pio_mask
892  *	@mwdma_mask: resulting mwdma_mask
893  *	@udma_mask: resulting udma_mask
894  *
895  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896  *	Any NULL destination masks will be ignored.
897  */
898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
900 {
901 	if (pio_mask)
902 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 	if (mwdma_mask)
904 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 	if (udma_mask)
906 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907 }
908 
909 static const struct ata_xfer_ent {
910 	int shift, bits;
911 	u8 base;
912 } ata_xfer_tbl[] = {
913 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 	{ -1, },
917 };
918 
919 /**
920  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921  *	@xfer_mask: xfer_mask of interest
922  *
923  *	Return matching XFER_* value for @xfer_mask.  Only the highest
924  *	bit of @xfer_mask is considered.
925  *
926  *	LOCKING:
927  *	None.
928  *
929  *	RETURNS:
930  *	Matching XFER_* value, 0xff if no match found.
931  */
932 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933 {
934 	int highbit = fls(xfer_mask) - 1;
935 	const struct ata_xfer_ent *ent;
936 
937 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 			return ent->base + highbit - ent->shift;
940 	return 0xff;
941 }
942 
943 /**
944  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945  *	@xfer_mode: XFER_* of interest
946  *
947  *	Return matching xfer_mask for @xfer_mode.
948  *
949  *	LOCKING:
950  *	None.
951  *
952  *	RETURNS:
953  *	Matching xfer_mask, 0 if no match found.
954  */
955 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956 {
957 	const struct ata_xfer_ent *ent;
958 
959 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 				& ~((1 << ent->shift) - 1);
963 	return 0;
964 }
965 
966 /**
967  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968  *	@xfer_mode: XFER_* of interest
969  *
970  *	Return matching xfer_shift for @xfer_mode.
971  *
972  *	LOCKING:
973  *	None.
974  *
975  *	RETURNS:
976  *	Matching xfer_shift, -1 if no match found.
977  */
978 int ata_xfer_mode2shift(unsigned long xfer_mode)
979 {
980 	const struct ata_xfer_ent *ent;
981 
982 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 			return ent->shift;
985 	return -1;
986 }
987 
988 /**
989  *	ata_mode_string - convert xfer_mask to string
990  *	@xfer_mask: mask of bits supported; only highest bit counts.
991  *
992  *	Determine string which represents the highest speed
993  *	(highest bit in @modemask).
994  *
995  *	LOCKING:
996  *	None.
997  *
998  *	RETURNS:
999  *	Constant C string representing highest speed listed in
1000  *	@mode_mask, or the constant C string "<n/a>".
1001  */
1002 const char *ata_mode_string(unsigned long xfer_mask)
1003 {
1004 	static const char * const xfer_mode_str[] = {
1005 		"PIO0",
1006 		"PIO1",
1007 		"PIO2",
1008 		"PIO3",
1009 		"PIO4",
1010 		"PIO5",
1011 		"PIO6",
1012 		"MWDMA0",
1013 		"MWDMA1",
1014 		"MWDMA2",
1015 		"MWDMA3",
1016 		"MWDMA4",
1017 		"UDMA/16",
1018 		"UDMA/25",
1019 		"UDMA/33",
1020 		"UDMA/44",
1021 		"UDMA/66",
1022 		"UDMA/100",
1023 		"UDMA/133",
1024 		"UDMA7",
1025 	};
1026 	int highbit;
1027 
1028 	highbit = fls(xfer_mask) - 1;
1029 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 		return xfer_mode_str[highbit];
1031 	return "<n/a>";
1032 }
1033 
1034 const char *sata_spd_string(unsigned int spd)
1035 {
1036 	static const char * const spd_str[] = {
1037 		"1.5 Gbps",
1038 		"3.0 Gbps",
1039 		"6.0 Gbps",
1040 	};
1041 
1042 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 		return "<unknown>";
1044 	return spd_str[spd - 1];
1045 }
1046 
1047 /**
1048  *	ata_dev_classify - determine device type based on ATA-spec signature
1049  *	@tf: ATA taskfile register set for device to be identified
1050  *
1051  *	Determine from taskfile register contents whether a device is
1052  *	ATA or ATAPI, as per "Signature and persistence" section
1053  *	of ATA/PI spec (volume 1, sect 5.14).
1054  *
1055  *	LOCKING:
1056  *	None.
1057  *
1058  *	RETURNS:
1059  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061  */
1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063 {
1064 	/* Apple's open source Darwin code hints that some devices only
1065 	 * put a proper signature into the LBA mid/high registers,
1066 	 * So, we only check those.  It's sufficient for uniqueness.
1067 	 *
1068 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1071 	 * spec has never mentioned about using different signatures
1072 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1073 	 * Multiplier specification began to use 0x69/0x96 to identify
1074 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 	 * 0x69/0x96 shortly and described them as reserved for
1077 	 * SerialATA.
1078 	 *
1079 	 * We follow the current spec and consider that 0x69/0x96
1080 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 	 * SEMB signature.  This is worked around in
1083 	 * ata_dev_read_id().
1084 	 */
1085 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 		DPRINTK("found ATA device by sig\n");
1087 		return ATA_DEV_ATA;
1088 	}
1089 
1090 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 		DPRINTK("found ATAPI device by sig\n");
1092 		return ATA_DEV_ATAPI;
1093 	}
1094 
1095 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 		DPRINTK("found PMP device by sig\n");
1097 		return ATA_DEV_PMP;
1098 	}
1099 
1100 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 		return ATA_DEV_SEMB;
1103 	}
1104 
1105 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 		DPRINTK("found ZAC device by sig\n");
1107 		return ATA_DEV_ZAC;
1108 	}
1109 
1110 	DPRINTK("unknown device\n");
1111 	return ATA_DEV_UNKNOWN;
1112 }
1113 
1114 /**
1115  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1116  *	@id: IDENTIFY DEVICE results we will examine
1117  *	@s: string into which data is output
1118  *	@ofs: offset into identify device page
1119  *	@len: length of string to return. must be an even number.
1120  *
1121  *	The strings in the IDENTIFY DEVICE page are broken up into
1122  *	16-bit chunks.  Run through the string, and output each
1123  *	8-bit chunk linearly, regardless of platform.
1124  *
1125  *	LOCKING:
1126  *	caller.
1127  */
1128 
1129 void ata_id_string(const u16 *id, unsigned char *s,
1130 		   unsigned int ofs, unsigned int len)
1131 {
1132 	unsigned int c;
1133 
1134 	BUG_ON(len & 1);
1135 
1136 	while (len > 0) {
1137 		c = id[ofs] >> 8;
1138 		*s = c;
1139 		s++;
1140 
1141 		c = id[ofs] & 0xff;
1142 		*s = c;
1143 		s++;
1144 
1145 		ofs++;
1146 		len -= 2;
1147 	}
1148 }
1149 
1150 /**
1151  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152  *	@id: IDENTIFY DEVICE results we will examine
1153  *	@s: string into which data is output
1154  *	@ofs: offset into identify device page
1155  *	@len: length of string to return. must be an odd number.
1156  *
1157  *	This function is identical to ata_id_string except that it
1158  *	trims trailing spaces and terminates the resulting string with
1159  *	null.  @len must be actual maximum length (even number) + 1.
1160  *
1161  *	LOCKING:
1162  *	caller.
1163  */
1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 		     unsigned int ofs, unsigned int len)
1166 {
1167 	unsigned char *p;
1168 
1169 	ata_id_string(id, s, ofs, len - 1);
1170 
1171 	p = s + strnlen(s, len - 1);
1172 	while (p > s && p[-1] == ' ')
1173 		p--;
1174 	*p = '\0';
1175 }
1176 
1177 static u64 ata_id_n_sectors(const u16 *id)
1178 {
1179 	if (ata_id_has_lba(id)) {
1180 		if (ata_id_has_lba48(id))
1181 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 		else
1183 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 	} else {
1185 		if (ata_id_current_chs_valid(id))
1186 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 			       id[ATA_ID_CUR_SECTORS];
1188 		else
1189 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 			       id[ATA_ID_SECTORS];
1191 	}
1192 }
1193 
1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195 {
1196 	u64 sectors = 0;
1197 
1198 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 	sectors |= (tf->lbah & 0xff) << 16;
1202 	sectors |= (tf->lbam & 0xff) << 8;
1203 	sectors |= (tf->lbal & 0xff);
1204 
1205 	return sectors;
1206 }
1207 
1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209 {
1210 	u64 sectors = 0;
1211 
1212 	sectors |= (tf->device & 0x0f) << 24;
1213 	sectors |= (tf->lbah & 0xff) << 16;
1214 	sectors |= (tf->lbam & 0xff) << 8;
1215 	sectors |= (tf->lbal & 0xff);
1216 
1217 	return sectors;
1218 }
1219 
1220 /**
1221  *	ata_read_native_max_address - Read native max address
1222  *	@dev: target device
1223  *	@max_sectors: out parameter for the result native max address
1224  *
1225  *	Perform an LBA48 or LBA28 native size query upon the device in
1226  *	question.
1227  *
1228  *	RETURNS:
1229  *	0 on success, -EACCES if command is aborted by the drive.
1230  *	-EIO on other errors.
1231  */
1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233 {
1234 	unsigned int err_mask;
1235 	struct ata_taskfile tf;
1236 	int lba48 = ata_id_has_lba48(dev->id);
1237 
1238 	ata_tf_init(dev, &tf);
1239 
1240 	/* always clear all address registers */
1241 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242 
1243 	if (lba48) {
1244 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 		tf.flags |= ATA_TFLAG_LBA48;
1246 	} else
1247 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1248 
1249 	tf.protocol = ATA_PROT_NODATA;
1250 	tf.device |= ATA_LBA;
1251 
1252 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 	if (err_mask) {
1254 		ata_dev_warn(dev,
1255 			     "failed to read native max address (err_mask=0x%x)\n",
1256 			     err_mask);
1257 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 			return -EACCES;
1259 		return -EIO;
1260 	}
1261 
1262 	if (lba48)
1263 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 	else
1265 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1266 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 		(*max_sectors)--;
1268 	return 0;
1269 }
1270 
1271 /**
1272  *	ata_set_max_sectors - Set max sectors
1273  *	@dev: target device
1274  *	@new_sectors: new max sectors value to set for the device
1275  *
1276  *	Set max sectors of @dev to @new_sectors.
1277  *
1278  *	RETURNS:
1279  *	0 on success, -EACCES if command is aborted or denied (due to
1280  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1281  *	errors.
1282  */
1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 {
1285 	unsigned int err_mask;
1286 	struct ata_taskfile tf;
1287 	int lba48 = ata_id_has_lba48(dev->id);
1288 
1289 	new_sectors--;
1290 
1291 	ata_tf_init(dev, &tf);
1292 
1293 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294 
1295 	if (lba48) {
1296 		tf.command = ATA_CMD_SET_MAX_EXT;
1297 		tf.flags |= ATA_TFLAG_LBA48;
1298 
1299 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 	} else {
1303 		tf.command = ATA_CMD_SET_MAX;
1304 
1305 		tf.device |= (new_sectors >> 24) & 0xf;
1306 	}
1307 
1308 	tf.protocol = ATA_PROT_NODATA;
1309 	tf.device |= ATA_LBA;
1310 
1311 	tf.lbal = (new_sectors >> 0) & 0xff;
1312 	tf.lbam = (new_sectors >> 8) & 0xff;
1313 	tf.lbah = (new_sectors >> 16) & 0xff;
1314 
1315 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 	if (err_mask) {
1317 		ata_dev_warn(dev,
1318 			     "failed to set max address (err_mask=0x%x)\n",
1319 			     err_mask);
1320 		if (err_mask == AC_ERR_DEV &&
1321 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 			return -EACCES;
1323 		return -EIO;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  *	ata_hpa_resize		-	Resize a device with an HPA set
1331  *	@dev: Device to resize
1332  *
1333  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334  *	it if required to the full size of the media. The caller must check
1335  *	the drive has the HPA feature set enabled.
1336  *
1337  *	RETURNS:
1338  *	0 on success, -errno on failure.
1339  */
1340 static int ata_hpa_resize(struct ata_device *dev)
1341 {
1342 	struct ata_eh_context *ehc = &dev->link->eh_context;
1343 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 	u64 sectors = ata_id_n_sectors(dev->id);
1346 	u64 native_sectors;
1347 	int rc;
1348 
1349 	/* do we need to do it? */
1350 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 		return 0;
1354 
1355 	/* read native max address */
1356 	rc = ata_read_native_max_address(dev, &native_sectors);
1357 	if (rc) {
1358 		/* If device aborted the command or HPA isn't going to
1359 		 * be unlocked, skip HPA resizing.
1360 		 */
1361 		if (rc == -EACCES || !unlock_hpa) {
1362 			ata_dev_warn(dev,
1363 				     "HPA support seems broken, skipping HPA handling\n");
1364 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365 
1366 			/* we can continue if device aborted the command */
1367 			if (rc == -EACCES)
1368 				rc = 0;
1369 		}
1370 
1371 		return rc;
1372 	}
1373 	dev->n_native_sectors = native_sectors;
1374 
1375 	/* nothing to do? */
1376 	if (native_sectors <= sectors || !unlock_hpa) {
1377 		if (!print_info || native_sectors == sectors)
1378 			return 0;
1379 
1380 		if (native_sectors > sectors)
1381 			ata_dev_info(dev,
1382 				"HPA detected: current %llu, native %llu\n",
1383 				(unsigned long long)sectors,
1384 				(unsigned long long)native_sectors);
1385 		else if (native_sectors < sectors)
1386 			ata_dev_warn(dev,
1387 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1388 				(unsigned long long)native_sectors,
1389 				(unsigned long long)sectors);
1390 		return 0;
1391 	}
1392 
1393 	/* let's unlock HPA */
1394 	rc = ata_set_max_sectors(dev, native_sectors);
1395 	if (rc == -EACCES) {
1396 		/* if device aborted the command, skip HPA resizing */
1397 		ata_dev_warn(dev,
1398 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 			     (unsigned long long)sectors,
1400 			     (unsigned long long)native_sectors);
1401 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 		return 0;
1403 	} else if (rc)
1404 		return rc;
1405 
1406 	/* re-read IDENTIFY data */
1407 	rc = ata_dev_reread_id(dev, 0);
1408 	if (rc) {
1409 		ata_dev_err(dev,
1410 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1411 		return rc;
1412 	}
1413 
1414 	if (print_info) {
1415 		u64 new_sectors = ata_id_n_sectors(dev->id);
1416 		ata_dev_info(dev,
1417 			"HPA unlocked: %llu -> %llu, native %llu\n",
1418 			(unsigned long long)sectors,
1419 			(unsigned long long)new_sectors,
1420 			(unsigned long long)native_sectors);
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1428  *	@id: IDENTIFY DEVICE page to dump
1429  *
1430  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1431  *	page.
1432  *
1433  *	LOCKING:
1434  *	caller.
1435  */
1436 
1437 static inline void ata_dump_id(const u16 *id)
1438 {
1439 	DPRINTK("49==0x%04x  "
1440 		"53==0x%04x  "
1441 		"63==0x%04x  "
1442 		"64==0x%04x  "
1443 		"75==0x%04x  \n",
1444 		id[49],
1445 		id[53],
1446 		id[63],
1447 		id[64],
1448 		id[75]);
1449 	DPRINTK("80==0x%04x  "
1450 		"81==0x%04x  "
1451 		"82==0x%04x  "
1452 		"83==0x%04x  "
1453 		"84==0x%04x  \n",
1454 		id[80],
1455 		id[81],
1456 		id[82],
1457 		id[83],
1458 		id[84]);
1459 	DPRINTK("88==0x%04x  "
1460 		"93==0x%04x\n",
1461 		id[88],
1462 		id[93]);
1463 }
1464 
1465 /**
1466  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467  *	@id: IDENTIFY data to compute xfer mask from
1468  *
1469  *	Compute the xfermask for this device. This is not as trivial
1470  *	as it seems if we must consider early devices correctly.
1471  *
1472  *	FIXME: pre IDE drive timing (do we care ?).
1473  *
1474  *	LOCKING:
1475  *	None.
1476  *
1477  *	RETURNS:
1478  *	Computed xfermask
1479  */
1480 unsigned long ata_id_xfermask(const u16 *id)
1481 {
1482 	unsigned long pio_mask, mwdma_mask, udma_mask;
1483 
1484 	/* Usual case. Word 53 indicates word 64 is valid */
1485 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 		pio_mask <<= 3;
1488 		pio_mask |= 0x7;
1489 	} else {
1490 		/* If word 64 isn't valid then Word 51 high byte holds
1491 		 * the PIO timing number for the maximum. Turn it into
1492 		 * a mask.
1493 		 */
1494 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 		if (mode < 5)	/* Valid PIO range */
1496 			pio_mask = (2 << mode) - 1;
1497 		else
1498 			pio_mask = 1;
1499 
1500 		/* But wait.. there's more. Design your standards by
1501 		 * committee and you too can get a free iordy field to
1502 		 * process. However its the speeds not the modes that
1503 		 * are supported... Note drivers using the timing API
1504 		 * will get this right anyway
1505 		 */
1506 	}
1507 
1508 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509 
1510 	if (ata_id_is_cfa(id)) {
1511 		/*
1512 		 *	Process compact flash extended modes
1513 		 */
1514 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516 
1517 		if (pio)
1518 			pio_mask |= (1 << 5);
1519 		if (pio > 1)
1520 			pio_mask |= (1 << 6);
1521 		if (dma)
1522 			mwdma_mask |= (1 << 3);
1523 		if (dma > 1)
1524 			mwdma_mask |= (1 << 4);
1525 	}
1526 
1527 	udma_mask = 0;
1528 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530 
1531 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 }
1533 
1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535 {
1536 	struct completion *waiting = qc->private_data;
1537 
1538 	complete(waiting);
1539 }
1540 
1541 /**
1542  *	ata_exec_internal_sg - execute libata internal command
1543  *	@dev: Device to which the command is sent
1544  *	@tf: Taskfile registers for the command and the result
1545  *	@cdb: CDB for packet command
1546  *	@dma_dir: Data transfer direction of the command
1547  *	@sgl: sg list for the data buffer of the command
1548  *	@n_elem: Number of sg entries
1549  *	@timeout: Timeout in msecs (0 for default)
1550  *
1551  *	Executes libata internal command with timeout.  @tf contains
1552  *	command on entry and result on return.  Timeout and error
1553  *	conditions are reported via return value.  No recovery action
1554  *	is taken after a command times out.  It's caller's duty to
1555  *	clean up after timeout.
1556  *
1557  *	LOCKING:
1558  *	None.  Should be called with kernel context, might sleep.
1559  *
1560  *	RETURNS:
1561  *	Zero on success, AC_ERR_* mask on failure
1562  */
1563 unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 			      struct ata_taskfile *tf, const u8 *cdb,
1565 			      int dma_dir, struct scatterlist *sgl,
1566 			      unsigned int n_elem, unsigned long timeout)
1567 {
1568 	struct ata_link *link = dev->link;
1569 	struct ata_port *ap = link->ap;
1570 	u8 command = tf->command;
1571 	int auto_timeout = 0;
1572 	struct ata_queued_cmd *qc;
1573 	unsigned int tag, preempted_tag;
1574 	u32 preempted_sactive, preempted_qc_active;
1575 	int preempted_nr_active_links;
1576 	DECLARE_COMPLETION_ONSTACK(wait);
1577 	unsigned long flags;
1578 	unsigned int err_mask;
1579 	int rc;
1580 
1581 	spin_lock_irqsave(ap->lock, flags);
1582 
1583 	/* no internal command while frozen */
1584 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 		spin_unlock_irqrestore(ap->lock, flags);
1586 		return AC_ERR_SYSTEM;
1587 	}
1588 
1589 	/* initialize internal qc */
1590 
1591 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1592 	 * drivers choke if any other tag is given.  This breaks
1593 	 * ata_tag_internal() test for those drivers.  Don't use new
1594 	 * EH stuff without converting to it.
1595 	 */
1596 	if (ap->ops->error_handler)
1597 		tag = ATA_TAG_INTERNAL;
1598 	else
1599 		tag = 0;
1600 
1601 	qc = __ata_qc_from_tag(ap, tag);
1602 
1603 	qc->tag = tag;
1604 	qc->scsicmd = NULL;
1605 	qc->ap = ap;
1606 	qc->dev = dev;
1607 	ata_qc_reinit(qc);
1608 
1609 	preempted_tag = link->active_tag;
1610 	preempted_sactive = link->sactive;
1611 	preempted_qc_active = ap->qc_active;
1612 	preempted_nr_active_links = ap->nr_active_links;
1613 	link->active_tag = ATA_TAG_POISON;
1614 	link->sactive = 0;
1615 	ap->qc_active = 0;
1616 	ap->nr_active_links = 0;
1617 
1618 	/* prepare & issue qc */
1619 	qc->tf = *tf;
1620 	if (cdb)
1621 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622 
1623 	/* some SATA bridges need us to indicate data xfer direction */
1624 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 	    dma_dir == DMA_FROM_DEVICE)
1626 		qc->tf.feature |= ATAPI_DMADIR;
1627 
1628 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 	qc->dma_dir = dma_dir;
1630 	if (dma_dir != DMA_NONE) {
1631 		unsigned int i, buflen = 0;
1632 		struct scatterlist *sg;
1633 
1634 		for_each_sg(sgl, sg, n_elem, i)
1635 			buflen += sg->length;
1636 
1637 		ata_sg_init(qc, sgl, n_elem);
1638 		qc->nbytes = buflen;
1639 	}
1640 
1641 	qc->private_data = &wait;
1642 	qc->complete_fn = ata_qc_complete_internal;
1643 
1644 	ata_qc_issue(qc);
1645 
1646 	spin_unlock_irqrestore(ap->lock, flags);
1647 
1648 	if (!timeout) {
1649 		if (ata_probe_timeout)
1650 			timeout = ata_probe_timeout * 1000;
1651 		else {
1652 			timeout = ata_internal_cmd_timeout(dev, command);
1653 			auto_timeout = 1;
1654 		}
1655 	}
1656 
1657 	if (ap->ops->error_handler)
1658 		ata_eh_release(ap);
1659 
1660 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661 
1662 	if (ap->ops->error_handler)
1663 		ata_eh_acquire(ap);
1664 
1665 	ata_sff_flush_pio_task(ap);
1666 
1667 	if (!rc) {
1668 		spin_lock_irqsave(ap->lock, flags);
1669 
1670 		/* We're racing with irq here.  If we lose, the
1671 		 * following test prevents us from completing the qc
1672 		 * twice.  If we win, the port is frozen and will be
1673 		 * cleaned up by ->post_internal_cmd().
1674 		 */
1675 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 			qc->err_mask |= AC_ERR_TIMEOUT;
1677 
1678 			if (ap->ops->error_handler)
1679 				ata_port_freeze(ap);
1680 			else
1681 				ata_qc_complete(qc);
1682 
1683 			if (ata_msg_warn(ap))
1684 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 					     command);
1686 		}
1687 
1688 		spin_unlock_irqrestore(ap->lock, flags);
1689 	}
1690 
1691 	/* do post_internal_cmd */
1692 	if (ap->ops->post_internal_cmd)
1693 		ap->ops->post_internal_cmd(qc);
1694 
1695 	/* perform minimal error analysis */
1696 	if (qc->flags & ATA_QCFLAG_FAILED) {
1697 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 			qc->err_mask |= AC_ERR_DEV;
1699 
1700 		if (!qc->err_mask)
1701 			qc->err_mask |= AC_ERR_OTHER;
1702 
1703 		if (qc->err_mask & ~AC_ERR_OTHER)
1704 			qc->err_mask &= ~AC_ERR_OTHER;
1705 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 		qc->result_tf.command |= ATA_SENSE;
1707 	}
1708 
1709 	/* finish up */
1710 	spin_lock_irqsave(ap->lock, flags);
1711 
1712 	*tf = qc->result_tf;
1713 	err_mask = qc->err_mask;
1714 
1715 	ata_qc_free(qc);
1716 	link->active_tag = preempted_tag;
1717 	link->sactive = preempted_sactive;
1718 	ap->qc_active = preempted_qc_active;
1719 	ap->nr_active_links = preempted_nr_active_links;
1720 
1721 	spin_unlock_irqrestore(ap->lock, flags);
1722 
1723 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 		ata_internal_cmd_timed_out(dev, command);
1725 
1726 	return err_mask;
1727 }
1728 
1729 /**
1730  *	ata_exec_internal - execute libata internal command
1731  *	@dev: Device to which the command is sent
1732  *	@tf: Taskfile registers for the command and the result
1733  *	@cdb: CDB for packet command
1734  *	@dma_dir: Data transfer direction of the command
1735  *	@buf: Data buffer of the command
1736  *	@buflen: Length of data buffer
1737  *	@timeout: Timeout in msecs (0 for default)
1738  *
1739  *	Wrapper around ata_exec_internal_sg() which takes simple
1740  *	buffer instead of sg list.
1741  *
1742  *	LOCKING:
1743  *	None.  Should be called with kernel context, might sleep.
1744  *
1745  *	RETURNS:
1746  *	Zero on success, AC_ERR_* mask on failure
1747  */
1748 unsigned ata_exec_internal(struct ata_device *dev,
1749 			   struct ata_taskfile *tf, const u8 *cdb,
1750 			   int dma_dir, void *buf, unsigned int buflen,
1751 			   unsigned long timeout)
1752 {
1753 	struct scatterlist *psg = NULL, sg;
1754 	unsigned int n_elem = 0;
1755 
1756 	if (dma_dir != DMA_NONE) {
1757 		WARN_ON(!buf);
1758 		sg_init_one(&sg, buf, buflen);
1759 		psg = &sg;
1760 		n_elem++;
1761 	}
1762 
1763 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 				    timeout);
1765 }
1766 
1767 /**
1768  *	ata_pio_need_iordy	-	check if iordy needed
1769  *	@adev: ATA device
1770  *
1771  *	Check if the current speed of the device requires IORDY. Used
1772  *	by various controllers for chip configuration.
1773  */
1774 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775 {
1776 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1777 	 * lead to controller lock up on certain controllers if the
1778 	 * port is not occupied.  See bko#11703 for details.
1779 	 */
1780 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 		return 0;
1782 	/* Controller doesn't support IORDY.  Probably a pointless
1783 	 * check as the caller should know this.
1784 	 */
1785 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1786 		return 0;
1787 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1788 	if (ata_id_is_cfa(adev->id)
1789 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 		return 0;
1791 	/* PIO3 and higher it is mandatory */
1792 	if (adev->pio_mode > XFER_PIO_2)
1793 		return 1;
1794 	/* We turn it on when possible */
1795 	if (ata_id_has_iordy(adev->id))
1796 		return 1;
1797 	return 0;
1798 }
1799 
1800 /**
1801  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1802  *	@adev: ATA device
1803  *
1804  *	Compute the highest mode possible if we are not using iordy. Return
1805  *	-1 if no iordy mode is available.
1806  */
1807 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808 {
1809 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1810 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1811 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812 		/* Is the speed faster than the drive allows non IORDY ? */
1813 		if (pio) {
1814 			/* This is cycle times not frequency - watch the logic! */
1815 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1816 				return 3 << ATA_SHIFT_PIO;
1817 			return 7 << ATA_SHIFT_PIO;
1818 		}
1819 	}
1820 	return 3 << ATA_SHIFT_PIO;
1821 }
1822 
1823 /**
1824  *	ata_do_dev_read_id		-	default ID read method
1825  *	@dev: device
1826  *	@tf: proposed taskfile
1827  *	@id: data buffer
1828  *
1829  *	Issue the identify taskfile and hand back the buffer containing
1830  *	identify data. For some RAID controllers and for pre ATA devices
1831  *	this function is wrapped or replaced by the driver
1832  */
1833 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 					struct ata_taskfile *tf, u16 *id)
1835 {
1836 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838 }
1839 
1840 /**
1841  *	ata_dev_read_id - Read ID data from the specified device
1842  *	@dev: target device
1843  *	@p_class: pointer to class of the target device (may be changed)
1844  *	@flags: ATA_READID_* flags
1845  *	@id: buffer to read IDENTIFY data into
1846  *
1847  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1848  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1850  *	for pre-ATA4 drives.
1851  *
1852  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853  *	now we abort if we hit that case.
1854  *
1855  *	LOCKING:
1856  *	Kernel thread context (may sleep)
1857  *
1858  *	RETURNS:
1859  *	0 on success, -errno otherwise.
1860  */
1861 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862 		    unsigned int flags, u16 *id)
1863 {
1864 	struct ata_port *ap = dev->link->ap;
1865 	unsigned int class = *p_class;
1866 	struct ata_taskfile tf;
1867 	unsigned int err_mask = 0;
1868 	const char *reason;
1869 	bool is_semb = class == ATA_DEV_SEMB;
1870 	int may_fallback = 1, tried_spinup = 0;
1871 	int rc;
1872 
1873 	if (ata_msg_ctl(ap))
1874 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875 
1876 retry:
1877 	ata_tf_init(dev, &tf);
1878 
1879 	switch (class) {
1880 	case ATA_DEV_SEMB:
1881 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1882 	case ATA_DEV_ATA:
1883 	case ATA_DEV_ZAC:
1884 		tf.command = ATA_CMD_ID_ATA;
1885 		break;
1886 	case ATA_DEV_ATAPI:
1887 		tf.command = ATA_CMD_ID_ATAPI;
1888 		break;
1889 	default:
1890 		rc = -ENODEV;
1891 		reason = "unsupported class";
1892 		goto err_out;
1893 	}
1894 
1895 	tf.protocol = ATA_PROT_PIO;
1896 
1897 	/* Some devices choke if TF registers contain garbage.  Make
1898 	 * sure those are properly initialized.
1899 	 */
1900 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901 
1902 	/* Device presence detection is unreliable on some
1903 	 * controllers.  Always poll IDENTIFY if available.
1904 	 */
1905 	tf.flags |= ATA_TFLAG_POLLING;
1906 
1907 	if (ap->ops->read_id)
1908 		err_mask = ap->ops->read_id(dev, &tf, id);
1909 	else
1910 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1911 
1912 	if (err_mask) {
1913 		if (err_mask & AC_ERR_NODEV_HINT) {
1914 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1915 			return -ENOENT;
1916 		}
1917 
1918 		if (is_semb) {
1919 			ata_dev_info(dev,
1920 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1921 			/* SEMB is not supported yet */
1922 			*p_class = ATA_DEV_SEMB_UNSUP;
1923 			return 0;
1924 		}
1925 
1926 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927 			/* Device or controller might have reported
1928 			 * the wrong device class.  Give a shot at the
1929 			 * other IDENTIFY if the current one is
1930 			 * aborted by the device.
1931 			 */
1932 			if (may_fallback) {
1933 				may_fallback = 0;
1934 
1935 				if (class == ATA_DEV_ATA)
1936 					class = ATA_DEV_ATAPI;
1937 				else
1938 					class = ATA_DEV_ATA;
1939 				goto retry;
1940 			}
1941 
1942 			/* Control reaches here iff the device aborted
1943 			 * both flavors of IDENTIFYs which happens
1944 			 * sometimes with phantom devices.
1945 			 */
1946 			ata_dev_dbg(dev,
1947 				    "both IDENTIFYs aborted, assuming NODEV\n");
1948 			return -ENOENT;
1949 		}
1950 
1951 		rc = -EIO;
1952 		reason = "I/O error";
1953 		goto err_out;
1954 	}
1955 
1956 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1957 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1959 			    class, may_fallback, tried_spinup);
1960 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962 	}
1963 
1964 	/* Falling back doesn't make sense if ID data was read
1965 	 * successfully at least once.
1966 	 */
1967 	may_fallback = 0;
1968 
1969 	swap_buf_le16(id, ATA_ID_WORDS);
1970 
1971 	/* sanity check */
1972 	rc = -EINVAL;
1973 	reason = "device reports invalid type";
1974 
1975 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1976 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 			goto err_out;
1978 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979 							ata_id_is_ata(id)) {
1980 			ata_dev_dbg(dev,
1981 				"host indicates ignore ATA devices, ignored\n");
1982 			return -ENOENT;
1983 		}
1984 	} else {
1985 		if (ata_id_is_ata(id))
1986 			goto err_out;
1987 	}
1988 
1989 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990 		tried_spinup = 1;
1991 		/*
1992 		 * Drive powered-up in standby mode, and requires a specific
1993 		 * SET_FEATURES spin-up subcommand before it will accept
1994 		 * anything other than the original IDENTIFY command.
1995 		 */
1996 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1997 		if (err_mask && id[2] != 0x738c) {
1998 			rc = -EIO;
1999 			reason = "SPINUP failed";
2000 			goto err_out;
2001 		}
2002 		/*
2003 		 * If the drive initially returned incomplete IDENTIFY info,
2004 		 * we now must reissue the IDENTIFY command.
2005 		 */
2006 		if (id[2] == 0x37c8)
2007 			goto retry;
2008 	}
2009 
2010 	if ((flags & ATA_READID_POSTRESET) &&
2011 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2012 		/*
2013 		 * The exact sequence expected by certain pre-ATA4 drives is:
2014 		 * SRST RESET
2015 		 * IDENTIFY (optional in early ATA)
2016 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2017 		 * anything else..
2018 		 * Some drives were very specific about that exact sequence.
2019 		 *
2020 		 * Note that ATA4 says lba is mandatory so the second check
2021 		 * should never trigger.
2022 		 */
2023 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2024 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2025 			if (err_mask) {
2026 				rc = -EIO;
2027 				reason = "INIT_DEV_PARAMS failed";
2028 				goto err_out;
2029 			}
2030 
2031 			/* current CHS translation info (id[53-58]) might be
2032 			 * changed. reread the identify device info.
2033 			 */
2034 			flags &= ~ATA_READID_POSTRESET;
2035 			goto retry;
2036 		}
2037 	}
2038 
2039 	*p_class = class;
2040 
2041 	return 0;
2042 
2043  err_out:
2044 	if (ata_msg_warn(ap))
2045 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046 			     reason, err_mask);
2047 	return rc;
2048 }
2049 
2050 /**
2051  *	ata_read_log_page - read a specific log page
2052  *	@dev: target device
2053  *	@log: log to read
2054  *	@page: page to read
2055  *	@buf: buffer to store read page
2056  *	@sectors: number of sectors to read
2057  *
2058  *	Read log page using READ_LOG_EXT command.
2059  *
2060  *	LOCKING:
2061  *	Kernel thread context (may sleep).
2062  *
2063  *	RETURNS:
2064  *	0 on success, AC_ERR_* mask otherwise.
2065  */
2066 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2067 			       u8 page, void *buf, unsigned int sectors)
2068 {
2069 	unsigned long ap_flags = dev->link->ap->flags;
2070 	struct ata_taskfile tf;
2071 	unsigned int err_mask;
2072 	bool dma = false;
2073 
2074 	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2075 
2076 	/*
2077 	 * Return error without actually issuing the command on controllers
2078 	 * which e.g. lockup on a read log page.
2079 	 */
2080 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2081 		return AC_ERR_DEV;
2082 
2083 retry:
2084 	ata_tf_init(dev, &tf);
2085 	if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2086 	    !(dev->horkage & ATA_HORKAGE_NO_NCQ_LOG)) {
2087 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2088 		tf.protocol = ATA_PROT_DMA;
2089 		dma = true;
2090 	} else {
2091 		tf.command = ATA_CMD_READ_LOG_EXT;
2092 		tf.protocol = ATA_PROT_PIO;
2093 		dma = false;
2094 	}
2095 	tf.lbal = log;
2096 	tf.lbam = page;
2097 	tf.nsect = sectors;
2098 	tf.hob_nsect = sectors >> 8;
2099 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2100 
2101 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2102 				     buf, sectors * ATA_SECT_SIZE, 0);
2103 
2104 	if (err_mask && dma) {
2105 		dev->horkage |= ATA_HORKAGE_NO_NCQ_LOG;
2106 		ata_dev_warn(dev, "READ LOG DMA EXT failed, trying unqueued\n");
2107 		goto retry;
2108 	}
2109 
2110 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
2111 	return err_mask;
2112 }
2113 
2114 static bool ata_log_supported(struct ata_device *dev, u8 log)
2115 {
2116 	struct ata_port *ap = dev->link->ap;
2117 
2118 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2119 		return false;
2120 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2121 }
2122 
2123 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2124 {
2125 	struct ata_port *ap = dev->link->ap;
2126 	unsigned int err, i;
2127 
2128 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2129 		ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2130 		return false;
2131 	}
2132 
2133 	/*
2134 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2135 	 * supported.
2136 	 */
2137 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2138 				1);
2139 	if (err) {
2140 		ata_dev_info(dev,
2141 			     "failed to get Device Identify Log Emask 0x%x\n",
2142 			     err);
2143 		return false;
2144 	}
2145 
2146 	for (i = 0; i < ap->sector_buf[8]; i++) {
2147 		if (ap->sector_buf[9 + i] == page)
2148 			return true;
2149 	}
2150 
2151 	return false;
2152 }
2153 
2154 static int ata_do_link_spd_horkage(struct ata_device *dev)
2155 {
2156 	struct ata_link *plink = ata_dev_phys_link(dev);
2157 	u32 target, target_limit;
2158 
2159 	if (!sata_scr_valid(plink))
2160 		return 0;
2161 
2162 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2163 		target = 1;
2164 	else
2165 		return 0;
2166 
2167 	target_limit = (1 << target) - 1;
2168 
2169 	/* if already on stricter limit, no need to push further */
2170 	if (plink->sata_spd_limit <= target_limit)
2171 		return 0;
2172 
2173 	plink->sata_spd_limit = target_limit;
2174 
2175 	/* Request another EH round by returning -EAGAIN if link is
2176 	 * going faster than the target speed.  Forward progress is
2177 	 * guaranteed by setting sata_spd_limit to target_limit above.
2178 	 */
2179 	if (plink->sata_spd > target) {
2180 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2181 			     sata_spd_string(target));
2182 		return -EAGAIN;
2183 	}
2184 	return 0;
2185 }
2186 
2187 static inline u8 ata_dev_knobble(struct ata_device *dev)
2188 {
2189 	struct ata_port *ap = dev->link->ap;
2190 
2191 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2192 		return 0;
2193 
2194 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2195 }
2196 
2197 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2198 {
2199 	struct ata_port *ap = dev->link->ap;
2200 	unsigned int err_mask;
2201 
2202 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2203 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2204 		return;
2205 	}
2206 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2207 				     0, ap->sector_buf, 1);
2208 	if (err_mask) {
2209 		ata_dev_dbg(dev,
2210 			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2211 			    err_mask);
2212 	} else {
2213 		u8 *cmds = dev->ncq_send_recv_cmds;
2214 
2215 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2216 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2217 
2218 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2219 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2220 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2221 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2222 		}
2223 	}
2224 }
2225 
2226 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2227 {
2228 	struct ata_port *ap = dev->link->ap;
2229 	unsigned int err_mask;
2230 
2231 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2232 		ata_dev_warn(dev,
2233 			     "NCQ Send/Recv Log not supported\n");
2234 		return;
2235 	}
2236 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2237 				     0, ap->sector_buf, 1);
2238 	if (err_mask) {
2239 		ata_dev_dbg(dev,
2240 			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2241 			    err_mask);
2242 	} else {
2243 		u8 *cmds = dev->ncq_non_data_cmds;
2244 
2245 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2246 	}
2247 }
2248 
2249 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2250 {
2251 	struct ata_port *ap = dev->link->ap;
2252 	unsigned int err_mask;
2253 
2254 	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2255 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2256 		return;
2257 	}
2258 
2259 	err_mask = ata_read_log_page(dev,
2260 				     ATA_LOG_IDENTIFY_DEVICE,
2261 				     ATA_LOG_SATA_SETTINGS,
2262 				     ap->sector_buf,
2263 				     1);
2264 	if (err_mask) {
2265 		ata_dev_dbg(dev,
2266 			    "failed to get Identify Device data, Emask 0x%x\n",
2267 			    err_mask);
2268 		return;
2269 	}
2270 
2271 	if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2272 		dev->flags |= ATA_DFLAG_NCQ_PRIO;
2273 	} else {
2274 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2275 		ata_dev_dbg(dev, "SATA page does not support priority\n");
2276 	}
2277 
2278 }
2279 
2280 static int ata_dev_config_ncq(struct ata_device *dev,
2281 			       char *desc, size_t desc_sz)
2282 {
2283 	struct ata_port *ap = dev->link->ap;
2284 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2285 	unsigned int err_mask;
2286 	char *aa_desc = "";
2287 
2288 	if (!ata_id_has_ncq(dev->id)) {
2289 		desc[0] = '\0';
2290 		return 0;
2291 	}
2292 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2293 		snprintf(desc, desc_sz, "NCQ (not used)");
2294 		return 0;
2295 	}
2296 	if (ap->flags & ATA_FLAG_NCQ) {
2297 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2298 		dev->flags |= ATA_DFLAG_NCQ;
2299 	}
2300 
2301 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2302 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2303 		ata_id_has_fpdma_aa(dev->id)) {
2304 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2305 			SATA_FPDMA_AA);
2306 		if (err_mask) {
2307 			ata_dev_err(dev,
2308 				    "failed to enable AA (error_mask=0x%x)\n",
2309 				    err_mask);
2310 			if (err_mask != AC_ERR_DEV) {
2311 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2312 				return -EIO;
2313 			}
2314 		} else
2315 			aa_desc = ", AA";
2316 	}
2317 
2318 	if (hdepth >= ddepth)
2319 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2320 	else
2321 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2322 			ddepth, aa_desc);
2323 
2324 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2325 		if (ata_id_has_ncq_send_and_recv(dev->id))
2326 			ata_dev_config_ncq_send_recv(dev);
2327 		if (ata_id_has_ncq_non_data(dev->id))
2328 			ata_dev_config_ncq_non_data(dev);
2329 		if (ata_id_has_ncq_prio(dev->id))
2330 			ata_dev_config_ncq_prio(dev);
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2337 {
2338 	unsigned int err_mask;
2339 
2340 	if (!ata_id_has_sense_reporting(dev->id))
2341 		return;
2342 
2343 	if (ata_id_sense_reporting_enabled(dev->id))
2344 		return;
2345 
2346 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2347 	if (err_mask) {
2348 		ata_dev_dbg(dev,
2349 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2350 			    err_mask);
2351 	}
2352 }
2353 
2354 static void ata_dev_config_zac(struct ata_device *dev)
2355 {
2356 	struct ata_port *ap = dev->link->ap;
2357 	unsigned int err_mask;
2358 	u8 *identify_buf = ap->sector_buf;
2359 
2360 	dev->zac_zones_optimal_open = U32_MAX;
2361 	dev->zac_zones_optimal_nonseq = U32_MAX;
2362 	dev->zac_zones_max_open = U32_MAX;
2363 
2364 	/*
2365 	 * Always set the 'ZAC' flag for Host-managed devices.
2366 	 */
2367 	if (dev->class == ATA_DEV_ZAC)
2368 		dev->flags |= ATA_DFLAG_ZAC;
2369 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2370 		/*
2371 		 * Check for host-aware devices.
2372 		 */
2373 		dev->flags |= ATA_DFLAG_ZAC;
2374 
2375 	if (!(dev->flags & ATA_DFLAG_ZAC))
2376 		return;
2377 
2378 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2379 		ata_dev_warn(dev,
2380 			     "ATA Zoned Information Log not supported\n");
2381 		return;
2382 	}
2383 
2384 	/*
2385 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2386 	 */
2387 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2388 				     ATA_LOG_ZONED_INFORMATION,
2389 				     identify_buf, 1);
2390 	if (!err_mask) {
2391 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2392 
2393 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2394 		if ((zoned_cap >> 63))
2395 			dev->zac_zoned_cap = (zoned_cap & 1);
2396 		opt_open = get_unaligned_le64(&identify_buf[24]);
2397 		if ((opt_open >> 63))
2398 			dev->zac_zones_optimal_open = (u32)opt_open;
2399 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2400 		if ((opt_nonseq >> 63))
2401 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2402 		max_open = get_unaligned_le64(&identify_buf[40]);
2403 		if ((max_open >> 63))
2404 			dev->zac_zones_max_open = (u32)max_open;
2405 	}
2406 }
2407 
2408 static void ata_dev_config_trusted(struct ata_device *dev)
2409 {
2410 	struct ata_port *ap = dev->link->ap;
2411 	u64 trusted_cap;
2412 	unsigned int err;
2413 
2414 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2415 		ata_dev_warn(dev,
2416 			     "Security Log not supported\n");
2417 		return;
2418 	}
2419 
2420 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2421 			ap->sector_buf, 1);
2422 	if (err) {
2423 		ata_dev_dbg(dev,
2424 			    "failed to read Security Log, Emask 0x%x\n", err);
2425 		return;
2426 	}
2427 
2428 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2429 	if (!(trusted_cap & (1ULL << 63))) {
2430 		ata_dev_dbg(dev,
2431 			    "Trusted Computing capability qword not valid!\n");
2432 		return;
2433 	}
2434 
2435 	if (trusted_cap & (1 << 0))
2436 		dev->flags |= ATA_DFLAG_TRUSTED;
2437 }
2438 
2439 /**
2440  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2441  *	@dev: Target device to configure
2442  *
2443  *	Configure @dev according to @dev->id.  Generic and low-level
2444  *	driver specific fixups are also applied.
2445  *
2446  *	LOCKING:
2447  *	Kernel thread context (may sleep)
2448  *
2449  *	RETURNS:
2450  *	0 on success, -errno otherwise
2451  */
2452 int ata_dev_configure(struct ata_device *dev)
2453 {
2454 	struct ata_port *ap = dev->link->ap;
2455 	struct ata_eh_context *ehc = &dev->link->eh_context;
2456 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2457 	const u16 *id = dev->id;
2458 	unsigned long xfer_mask;
2459 	unsigned int err_mask;
2460 	char revbuf[7];		/* XYZ-99\0 */
2461 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2462 	char modelbuf[ATA_ID_PROD_LEN+1];
2463 	int rc;
2464 
2465 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2466 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2467 		return 0;
2468 	}
2469 
2470 	if (ata_msg_probe(ap))
2471 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2472 
2473 	/* set horkage */
2474 	dev->horkage |= ata_dev_blacklisted(dev);
2475 	ata_force_horkage(dev);
2476 
2477 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2478 		ata_dev_info(dev, "unsupported device, disabling\n");
2479 		ata_dev_disable(dev);
2480 		return 0;
2481 	}
2482 
2483 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2484 	    dev->class == ATA_DEV_ATAPI) {
2485 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2486 			     atapi_enabled ? "not supported with this driver"
2487 			     : "disabled");
2488 		ata_dev_disable(dev);
2489 		return 0;
2490 	}
2491 
2492 	rc = ata_do_link_spd_horkage(dev);
2493 	if (rc)
2494 		return rc;
2495 
2496 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2497 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2498 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2499 		dev->horkage |= ATA_HORKAGE_NOLPM;
2500 
2501 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2502 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2503 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2504 	}
2505 
2506 	/* let ACPI work its magic */
2507 	rc = ata_acpi_on_devcfg(dev);
2508 	if (rc)
2509 		return rc;
2510 
2511 	/* massage HPA, do it early as it might change IDENTIFY data */
2512 	rc = ata_hpa_resize(dev);
2513 	if (rc)
2514 		return rc;
2515 
2516 	/* print device capabilities */
2517 	if (ata_msg_probe(ap))
2518 		ata_dev_dbg(dev,
2519 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2520 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2521 			    __func__,
2522 			    id[49], id[82], id[83], id[84],
2523 			    id[85], id[86], id[87], id[88]);
2524 
2525 	/* initialize to-be-configured parameters */
2526 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2527 	dev->max_sectors = 0;
2528 	dev->cdb_len = 0;
2529 	dev->n_sectors = 0;
2530 	dev->cylinders = 0;
2531 	dev->heads = 0;
2532 	dev->sectors = 0;
2533 	dev->multi_count = 0;
2534 
2535 	/*
2536 	 * common ATA, ATAPI feature tests
2537 	 */
2538 
2539 	/* find max transfer mode; for printk only */
2540 	xfer_mask = ata_id_xfermask(id);
2541 
2542 	if (ata_msg_probe(ap))
2543 		ata_dump_id(id);
2544 
2545 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2546 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2547 			sizeof(fwrevbuf));
2548 
2549 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2550 			sizeof(modelbuf));
2551 
2552 	/* ATA-specific feature tests */
2553 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2554 		if (ata_id_is_cfa(id)) {
2555 			/* CPRM may make this media unusable */
2556 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2557 				ata_dev_warn(dev,
2558 	"supports DRM functions and may not be fully accessible\n");
2559 			snprintf(revbuf, 7, "CFA");
2560 		} else {
2561 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2562 			/* Warn the user if the device has TPM extensions */
2563 			if (ata_id_has_tpm(id))
2564 				ata_dev_warn(dev,
2565 	"supports DRM functions and may not be fully accessible\n");
2566 		}
2567 
2568 		dev->n_sectors = ata_id_n_sectors(id);
2569 
2570 		/* get current R/W Multiple count setting */
2571 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2572 			unsigned int max = dev->id[47] & 0xff;
2573 			unsigned int cnt = dev->id[59] & 0xff;
2574 			/* only recognize/allow powers of two here */
2575 			if (is_power_of_2(max) && is_power_of_2(cnt))
2576 				if (cnt <= max)
2577 					dev->multi_count = cnt;
2578 		}
2579 
2580 		if (ata_id_has_lba(id)) {
2581 			const char *lba_desc;
2582 			char ncq_desc[24];
2583 
2584 			lba_desc = "LBA";
2585 			dev->flags |= ATA_DFLAG_LBA;
2586 			if (ata_id_has_lba48(id)) {
2587 				dev->flags |= ATA_DFLAG_LBA48;
2588 				lba_desc = "LBA48";
2589 
2590 				if (dev->n_sectors >= (1UL << 28) &&
2591 				    ata_id_has_flush_ext(id))
2592 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2593 			}
2594 
2595 			/* config NCQ */
2596 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2597 			if (rc)
2598 				return rc;
2599 
2600 			/* print device info to dmesg */
2601 			if (ata_msg_drv(ap) && print_info) {
2602 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2603 					     revbuf, modelbuf, fwrevbuf,
2604 					     ata_mode_string(xfer_mask));
2605 				ata_dev_info(dev,
2606 					     "%llu sectors, multi %u: %s %s\n",
2607 					(unsigned long long)dev->n_sectors,
2608 					dev->multi_count, lba_desc, ncq_desc);
2609 			}
2610 		} else {
2611 			/* CHS */
2612 
2613 			/* Default translation */
2614 			dev->cylinders	= id[1];
2615 			dev->heads	= id[3];
2616 			dev->sectors	= id[6];
2617 
2618 			if (ata_id_current_chs_valid(id)) {
2619 				/* Current CHS translation is valid. */
2620 				dev->cylinders = id[54];
2621 				dev->heads     = id[55];
2622 				dev->sectors   = id[56];
2623 			}
2624 
2625 			/* print device info to dmesg */
2626 			if (ata_msg_drv(ap) && print_info) {
2627 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2628 					     revbuf,	modelbuf, fwrevbuf,
2629 					     ata_mode_string(xfer_mask));
2630 				ata_dev_info(dev,
2631 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2632 					     (unsigned long long)dev->n_sectors,
2633 					     dev->multi_count, dev->cylinders,
2634 					     dev->heads, dev->sectors);
2635 			}
2636 		}
2637 
2638 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2639 		 * from SATA Settings page of Identify Device Data Log.
2640 		 */
2641 		if (ata_id_has_devslp(dev->id)) {
2642 			u8 *sata_setting = ap->sector_buf;
2643 			int i, j;
2644 
2645 			dev->flags |= ATA_DFLAG_DEVSLP;
2646 			err_mask = ata_read_log_page(dev,
2647 						     ATA_LOG_IDENTIFY_DEVICE,
2648 						     ATA_LOG_SATA_SETTINGS,
2649 						     sata_setting,
2650 						     1);
2651 			if (err_mask)
2652 				ata_dev_dbg(dev,
2653 					    "failed to get Identify Device Data, Emask 0x%x\n",
2654 					    err_mask);
2655 			else
2656 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2657 					j = ATA_LOG_DEVSLP_OFFSET + i;
2658 					dev->devslp_timing[i] = sata_setting[j];
2659 				}
2660 		}
2661 		ata_dev_config_sense_reporting(dev);
2662 		ata_dev_config_zac(dev);
2663 		ata_dev_config_trusted(dev);
2664 		dev->cdb_len = 32;
2665 	}
2666 
2667 	/* ATAPI-specific feature tests */
2668 	else if (dev->class == ATA_DEV_ATAPI) {
2669 		const char *cdb_intr_string = "";
2670 		const char *atapi_an_string = "";
2671 		const char *dma_dir_string = "";
2672 		u32 sntf;
2673 
2674 		rc = atapi_cdb_len(id);
2675 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2676 			if (ata_msg_warn(ap))
2677 				ata_dev_warn(dev, "unsupported CDB len\n");
2678 			rc = -EINVAL;
2679 			goto err_out_nosup;
2680 		}
2681 		dev->cdb_len = (unsigned int) rc;
2682 
2683 		/* Enable ATAPI AN if both the host and device have
2684 		 * the support.  If PMP is attached, SNTF is required
2685 		 * to enable ATAPI AN to discern between PHY status
2686 		 * changed notifications and ATAPI ANs.
2687 		 */
2688 		if (atapi_an &&
2689 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2690 		    (!sata_pmp_attached(ap) ||
2691 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2692 			/* issue SET feature command to turn this on */
2693 			err_mask = ata_dev_set_feature(dev,
2694 					SETFEATURES_SATA_ENABLE, SATA_AN);
2695 			if (err_mask)
2696 				ata_dev_err(dev,
2697 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2698 					    err_mask);
2699 			else {
2700 				dev->flags |= ATA_DFLAG_AN;
2701 				atapi_an_string = ", ATAPI AN";
2702 			}
2703 		}
2704 
2705 		if (ata_id_cdb_intr(dev->id)) {
2706 			dev->flags |= ATA_DFLAG_CDB_INTR;
2707 			cdb_intr_string = ", CDB intr";
2708 		}
2709 
2710 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2711 			dev->flags |= ATA_DFLAG_DMADIR;
2712 			dma_dir_string = ", DMADIR";
2713 		}
2714 
2715 		if (ata_id_has_da(dev->id)) {
2716 			dev->flags |= ATA_DFLAG_DA;
2717 			zpodd_init(dev);
2718 		}
2719 
2720 		/* print device info to dmesg */
2721 		if (ata_msg_drv(ap) && print_info)
2722 			ata_dev_info(dev,
2723 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2724 				     modelbuf, fwrevbuf,
2725 				     ata_mode_string(xfer_mask),
2726 				     cdb_intr_string, atapi_an_string,
2727 				     dma_dir_string);
2728 	}
2729 
2730 	/* determine max_sectors */
2731 	dev->max_sectors = ATA_MAX_SECTORS;
2732 	if (dev->flags & ATA_DFLAG_LBA48)
2733 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2734 
2735 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2736 	   200 sectors */
2737 	if (ata_dev_knobble(dev)) {
2738 		if (ata_msg_drv(ap) && print_info)
2739 			ata_dev_info(dev, "applying bridge limits\n");
2740 		dev->udma_mask &= ATA_UDMA5;
2741 		dev->max_sectors = ATA_MAX_SECTORS;
2742 	}
2743 
2744 	if ((dev->class == ATA_DEV_ATAPI) &&
2745 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2746 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2747 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2748 	}
2749 
2750 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2751 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2752 					 dev->max_sectors);
2753 
2754 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2755 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2756 					 dev->max_sectors);
2757 
2758 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2759 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2760 
2761 	if (ap->ops->dev_config)
2762 		ap->ops->dev_config(dev);
2763 
2764 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2765 		/* Let the user know. We don't want to disallow opens for
2766 		   rescue purposes, or in case the vendor is just a blithering
2767 		   idiot. Do this after the dev_config call as some controllers
2768 		   with buggy firmware may want to avoid reporting false device
2769 		   bugs */
2770 
2771 		if (print_info) {
2772 			ata_dev_warn(dev,
2773 "Drive reports diagnostics failure. This may indicate a drive\n");
2774 			ata_dev_warn(dev,
2775 "fault or invalid emulation. Contact drive vendor for information.\n");
2776 		}
2777 	}
2778 
2779 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2780 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2781 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2782 	}
2783 
2784 	return 0;
2785 
2786 err_out_nosup:
2787 	if (ata_msg_probe(ap))
2788 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2789 	return rc;
2790 }
2791 
2792 /**
2793  *	ata_cable_40wire	-	return 40 wire cable type
2794  *	@ap: port
2795  *
2796  *	Helper method for drivers which want to hardwire 40 wire cable
2797  *	detection.
2798  */
2799 
2800 int ata_cable_40wire(struct ata_port *ap)
2801 {
2802 	return ATA_CBL_PATA40;
2803 }
2804 
2805 /**
2806  *	ata_cable_80wire	-	return 80 wire cable type
2807  *	@ap: port
2808  *
2809  *	Helper method for drivers which want to hardwire 80 wire cable
2810  *	detection.
2811  */
2812 
2813 int ata_cable_80wire(struct ata_port *ap)
2814 {
2815 	return ATA_CBL_PATA80;
2816 }
2817 
2818 /**
2819  *	ata_cable_unknown	-	return unknown PATA cable.
2820  *	@ap: port
2821  *
2822  *	Helper method for drivers which have no PATA cable detection.
2823  */
2824 
2825 int ata_cable_unknown(struct ata_port *ap)
2826 {
2827 	return ATA_CBL_PATA_UNK;
2828 }
2829 
2830 /**
2831  *	ata_cable_ignore	-	return ignored PATA cable.
2832  *	@ap: port
2833  *
2834  *	Helper method for drivers which don't use cable type to limit
2835  *	transfer mode.
2836  */
2837 int ata_cable_ignore(struct ata_port *ap)
2838 {
2839 	return ATA_CBL_PATA_IGN;
2840 }
2841 
2842 /**
2843  *	ata_cable_sata	-	return SATA cable type
2844  *	@ap: port
2845  *
2846  *	Helper method for drivers which have SATA cables
2847  */
2848 
2849 int ata_cable_sata(struct ata_port *ap)
2850 {
2851 	return ATA_CBL_SATA;
2852 }
2853 
2854 /**
2855  *	ata_bus_probe - Reset and probe ATA bus
2856  *	@ap: Bus to probe
2857  *
2858  *	Master ATA bus probing function.  Initiates a hardware-dependent
2859  *	bus reset, then attempts to identify any devices found on
2860  *	the bus.
2861  *
2862  *	LOCKING:
2863  *	PCI/etc. bus probe sem.
2864  *
2865  *	RETURNS:
2866  *	Zero on success, negative errno otherwise.
2867  */
2868 
2869 int ata_bus_probe(struct ata_port *ap)
2870 {
2871 	unsigned int classes[ATA_MAX_DEVICES];
2872 	int tries[ATA_MAX_DEVICES];
2873 	int rc;
2874 	struct ata_device *dev;
2875 
2876 	ata_for_each_dev(dev, &ap->link, ALL)
2877 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2878 
2879  retry:
2880 	ata_for_each_dev(dev, &ap->link, ALL) {
2881 		/* If we issue an SRST then an ATA drive (not ATAPI)
2882 		 * may change configuration and be in PIO0 timing. If
2883 		 * we do a hard reset (or are coming from power on)
2884 		 * this is true for ATA or ATAPI. Until we've set a
2885 		 * suitable controller mode we should not touch the
2886 		 * bus as we may be talking too fast.
2887 		 */
2888 		dev->pio_mode = XFER_PIO_0;
2889 		dev->dma_mode = 0xff;
2890 
2891 		/* If the controller has a pio mode setup function
2892 		 * then use it to set the chipset to rights. Don't
2893 		 * touch the DMA setup as that will be dealt with when
2894 		 * configuring devices.
2895 		 */
2896 		if (ap->ops->set_piomode)
2897 			ap->ops->set_piomode(ap, dev);
2898 	}
2899 
2900 	/* reset and determine device classes */
2901 	ap->ops->phy_reset(ap);
2902 
2903 	ata_for_each_dev(dev, &ap->link, ALL) {
2904 		if (dev->class != ATA_DEV_UNKNOWN)
2905 			classes[dev->devno] = dev->class;
2906 		else
2907 			classes[dev->devno] = ATA_DEV_NONE;
2908 
2909 		dev->class = ATA_DEV_UNKNOWN;
2910 	}
2911 
2912 	/* read IDENTIFY page and configure devices. We have to do the identify
2913 	   specific sequence bass-ackwards so that PDIAG- is released by
2914 	   the slave device */
2915 
2916 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2917 		if (tries[dev->devno])
2918 			dev->class = classes[dev->devno];
2919 
2920 		if (!ata_dev_enabled(dev))
2921 			continue;
2922 
2923 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2924 				     dev->id);
2925 		if (rc)
2926 			goto fail;
2927 	}
2928 
2929 	/* Now ask for the cable type as PDIAG- should have been released */
2930 	if (ap->ops->cable_detect)
2931 		ap->cbl = ap->ops->cable_detect(ap);
2932 
2933 	/* We may have SATA bridge glue hiding here irrespective of
2934 	 * the reported cable types and sensed types.  When SATA
2935 	 * drives indicate we have a bridge, we don't know which end
2936 	 * of the link the bridge is which is a problem.
2937 	 */
2938 	ata_for_each_dev(dev, &ap->link, ENABLED)
2939 		if (ata_id_is_sata(dev->id))
2940 			ap->cbl = ATA_CBL_SATA;
2941 
2942 	/* After the identify sequence we can now set up the devices. We do
2943 	   this in the normal order so that the user doesn't get confused */
2944 
2945 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2946 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2947 		rc = ata_dev_configure(dev);
2948 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2949 		if (rc)
2950 			goto fail;
2951 	}
2952 
2953 	/* configure transfer mode */
2954 	rc = ata_set_mode(&ap->link, &dev);
2955 	if (rc)
2956 		goto fail;
2957 
2958 	ata_for_each_dev(dev, &ap->link, ENABLED)
2959 		return 0;
2960 
2961 	return -ENODEV;
2962 
2963  fail:
2964 	tries[dev->devno]--;
2965 
2966 	switch (rc) {
2967 	case -EINVAL:
2968 		/* eeek, something went very wrong, give up */
2969 		tries[dev->devno] = 0;
2970 		break;
2971 
2972 	case -ENODEV:
2973 		/* give it just one more chance */
2974 		tries[dev->devno] = min(tries[dev->devno], 1);
2975 	case -EIO:
2976 		if (tries[dev->devno] == 1) {
2977 			/* This is the last chance, better to slow
2978 			 * down than lose it.
2979 			 */
2980 			sata_down_spd_limit(&ap->link, 0);
2981 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2982 		}
2983 	}
2984 
2985 	if (!tries[dev->devno])
2986 		ata_dev_disable(dev);
2987 
2988 	goto retry;
2989 }
2990 
2991 /**
2992  *	sata_print_link_status - Print SATA link status
2993  *	@link: SATA link to printk link status about
2994  *
2995  *	This function prints link speed and status of a SATA link.
2996  *
2997  *	LOCKING:
2998  *	None.
2999  */
3000 static void sata_print_link_status(struct ata_link *link)
3001 {
3002 	u32 sstatus, scontrol, tmp;
3003 
3004 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3005 		return;
3006 	sata_scr_read(link, SCR_CONTROL, &scontrol);
3007 
3008 	if (ata_phys_link_online(link)) {
3009 		tmp = (sstatus >> 4) & 0xf;
3010 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3011 			      sata_spd_string(tmp), sstatus, scontrol);
3012 	} else {
3013 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3014 			      sstatus, scontrol);
3015 	}
3016 }
3017 
3018 /**
3019  *	ata_dev_pair		-	return other device on cable
3020  *	@adev: device
3021  *
3022  *	Obtain the other device on the same cable, or if none is
3023  *	present NULL is returned
3024  */
3025 
3026 struct ata_device *ata_dev_pair(struct ata_device *adev)
3027 {
3028 	struct ata_link *link = adev->link;
3029 	struct ata_device *pair = &link->device[1 - adev->devno];
3030 	if (!ata_dev_enabled(pair))
3031 		return NULL;
3032 	return pair;
3033 }
3034 
3035 /**
3036  *	sata_down_spd_limit - adjust SATA spd limit downward
3037  *	@link: Link to adjust SATA spd limit for
3038  *	@spd_limit: Additional limit
3039  *
3040  *	Adjust SATA spd limit of @link downward.  Note that this
3041  *	function only adjusts the limit.  The change must be applied
3042  *	using sata_set_spd().
3043  *
3044  *	If @spd_limit is non-zero, the speed is limited to equal to or
3045  *	lower than @spd_limit if such speed is supported.  If
3046  *	@spd_limit is slower than any supported speed, only the lowest
3047  *	supported speed is allowed.
3048  *
3049  *	LOCKING:
3050  *	Inherited from caller.
3051  *
3052  *	RETURNS:
3053  *	0 on success, negative errno on failure
3054  */
3055 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3056 {
3057 	u32 sstatus, spd, mask;
3058 	int rc, bit;
3059 
3060 	if (!sata_scr_valid(link))
3061 		return -EOPNOTSUPP;
3062 
3063 	/* If SCR can be read, use it to determine the current SPD.
3064 	 * If not, use cached value in link->sata_spd.
3065 	 */
3066 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3067 	if (rc == 0 && ata_sstatus_online(sstatus))
3068 		spd = (sstatus >> 4) & 0xf;
3069 	else
3070 		spd = link->sata_spd;
3071 
3072 	mask = link->sata_spd_limit;
3073 	if (mask <= 1)
3074 		return -EINVAL;
3075 
3076 	/* unconditionally mask off the highest bit */
3077 	bit = fls(mask) - 1;
3078 	mask &= ~(1 << bit);
3079 
3080 	/* Mask off all speeds higher than or equal to the current
3081 	 * one.  Force 1.5Gbps if current SPD is not available.
3082 	 */
3083 	if (spd > 1)
3084 		mask &= (1 << (spd - 1)) - 1;
3085 	else
3086 		mask &= 1;
3087 
3088 	/* were we already at the bottom? */
3089 	if (!mask)
3090 		return -EINVAL;
3091 
3092 	if (spd_limit) {
3093 		if (mask & ((1 << spd_limit) - 1))
3094 			mask &= (1 << spd_limit) - 1;
3095 		else {
3096 			bit = ffs(mask) - 1;
3097 			mask = 1 << bit;
3098 		}
3099 	}
3100 
3101 	link->sata_spd_limit = mask;
3102 
3103 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3104 		      sata_spd_string(fls(mask)));
3105 
3106 	return 0;
3107 }
3108 
3109 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3110 {
3111 	struct ata_link *host_link = &link->ap->link;
3112 	u32 limit, target, spd;
3113 
3114 	limit = link->sata_spd_limit;
3115 
3116 	/* Don't configure downstream link faster than upstream link.
3117 	 * It doesn't speed up anything and some PMPs choke on such
3118 	 * configuration.
3119 	 */
3120 	if (!ata_is_host_link(link) && host_link->sata_spd)
3121 		limit &= (1 << host_link->sata_spd) - 1;
3122 
3123 	if (limit == UINT_MAX)
3124 		target = 0;
3125 	else
3126 		target = fls(limit);
3127 
3128 	spd = (*scontrol >> 4) & 0xf;
3129 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3130 
3131 	return spd != target;
3132 }
3133 
3134 /**
3135  *	sata_set_spd_needed - is SATA spd configuration needed
3136  *	@link: Link in question
3137  *
3138  *	Test whether the spd limit in SControl matches
3139  *	@link->sata_spd_limit.  This function is used to determine
3140  *	whether hardreset is necessary to apply SATA spd
3141  *	configuration.
3142  *
3143  *	LOCKING:
3144  *	Inherited from caller.
3145  *
3146  *	RETURNS:
3147  *	1 if SATA spd configuration is needed, 0 otherwise.
3148  */
3149 static int sata_set_spd_needed(struct ata_link *link)
3150 {
3151 	u32 scontrol;
3152 
3153 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3154 		return 1;
3155 
3156 	return __sata_set_spd_needed(link, &scontrol);
3157 }
3158 
3159 /**
3160  *	sata_set_spd - set SATA spd according to spd limit
3161  *	@link: Link to set SATA spd for
3162  *
3163  *	Set SATA spd of @link according to sata_spd_limit.
3164  *
3165  *	LOCKING:
3166  *	Inherited from caller.
3167  *
3168  *	RETURNS:
3169  *	0 if spd doesn't need to be changed, 1 if spd has been
3170  *	changed.  Negative errno if SCR registers are inaccessible.
3171  */
3172 int sata_set_spd(struct ata_link *link)
3173 {
3174 	u32 scontrol;
3175 	int rc;
3176 
3177 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3178 		return rc;
3179 
3180 	if (!__sata_set_spd_needed(link, &scontrol))
3181 		return 0;
3182 
3183 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3184 		return rc;
3185 
3186 	return 1;
3187 }
3188 
3189 /*
3190  * This mode timing computation functionality is ported over from
3191  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3192  */
3193 /*
3194  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3195  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3196  * for UDMA6, which is currently supported only by Maxtor drives.
3197  *
3198  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3199  */
3200 
3201 static const struct ata_timing ata_timing[] = {
3202 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3203 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3204 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3205 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3206 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3207 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3208 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3209 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3210 
3211 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3212 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3213 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3214 
3215 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3216 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3217 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3218 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3219 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3220 
3221 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3222 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3223 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3224 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3225 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3226 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3227 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3228 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3229 
3230 	{ 0xFF }
3231 };
3232 
3233 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3234 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
3235 
3236 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3237 {
3238 	q->setup	= EZ(t->setup      * 1000,  T);
3239 	q->act8b	= EZ(t->act8b      * 1000,  T);
3240 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
3241 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
3242 	q->active	= EZ(t->active     * 1000,  T);
3243 	q->recover	= EZ(t->recover    * 1000,  T);
3244 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
3245 	q->cycle	= EZ(t->cycle      * 1000,  T);
3246 	q->udma		= EZ(t->udma       * 1000, UT);
3247 }
3248 
3249 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3250 		      struct ata_timing *m, unsigned int what)
3251 {
3252 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3253 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3254 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3255 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3256 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3257 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3258 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3259 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3260 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3261 }
3262 
3263 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3264 {
3265 	const struct ata_timing *t = ata_timing;
3266 
3267 	while (xfer_mode > t->mode)
3268 		t++;
3269 
3270 	if (xfer_mode == t->mode)
3271 		return t;
3272 
3273 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3274 			__func__, xfer_mode);
3275 
3276 	return NULL;
3277 }
3278 
3279 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3280 		       struct ata_timing *t, int T, int UT)
3281 {
3282 	const u16 *id = adev->id;
3283 	const struct ata_timing *s;
3284 	struct ata_timing p;
3285 
3286 	/*
3287 	 * Find the mode.
3288 	 */
3289 
3290 	if (!(s = ata_timing_find_mode(speed)))
3291 		return -EINVAL;
3292 
3293 	memcpy(t, s, sizeof(*s));
3294 
3295 	/*
3296 	 * If the drive is an EIDE drive, it can tell us it needs extended
3297 	 * PIO/MW_DMA cycle timing.
3298 	 */
3299 
3300 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3301 		memset(&p, 0, sizeof(p));
3302 
3303 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3304 			if (speed <= XFER_PIO_2)
3305 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3306 			else if ((speed <= XFER_PIO_4) ||
3307 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3308 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3309 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3310 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3311 
3312 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3313 	}
3314 
3315 	/*
3316 	 * Convert the timing to bus clock counts.
3317 	 */
3318 
3319 	ata_timing_quantize(t, t, T, UT);
3320 
3321 	/*
3322 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3323 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3324 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3325 	 */
3326 
3327 	if (speed > XFER_PIO_6) {
3328 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3329 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3330 	}
3331 
3332 	/*
3333 	 * Lengthen active & recovery time so that cycle time is correct.
3334 	 */
3335 
3336 	if (t->act8b + t->rec8b < t->cyc8b) {
3337 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3338 		t->rec8b = t->cyc8b - t->act8b;
3339 	}
3340 
3341 	if (t->active + t->recover < t->cycle) {
3342 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3343 		t->recover = t->cycle - t->active;
3344 	}
3345 
3346 	/* In a few cases quantisation may produce enough errors to
3347 	   leave t->cycle too low for the sum of active and recovery
3348 	   if so we must correct this */
3349 	if (t->active + t->recover > t->cycle)
3350 		t->cycle = t->active + t->recover;
3351 
3352 	return 0;
3353 }
3354 
3355 /**
3356  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3357  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3358  *	@cycle: cycle duration in ns
3359  *
3360  *	Return matching xfer mode for @cycle.  The returned mode is of
3361  *	the transfer type specified by @xfer_shift.  If @cycle is too
3362  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3363  *	than the fastest known mode, the fasted mode is returned.
3364  *
3365  *	LOCKING:
3366  *	None.
3367  *
3368  *	RETURNS:
3369  *	Matching xfer_mode, 0xff if no match found.
3370  */
3371 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3372 {
3373 	u8 base_mode = 0xff, last_mode = 0xff;
3374 	const struct ata_xfer_ent *ent;
3375 	const struct ata_timing *t;
3376 
3377 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3378 		if (ent->shift == xfer_shift)
3379 			base_mode = ent->base;
3380 
3381 	for (t = ata_timing_find_mode(base_mode);
3382 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3383 		unsigned short this_cycle;
3384 
3385 		switch (xfer_shift) {
3386 		case ATA_SHIFT_PIO:
3387 		case ATA_SHIFT_MWDMA:
3388 			this_cycle = t->cycle;
3389 			break;
3390 		case ATA_SHIFT_UDMA:
3391 			this_cycle = t->udma;
3392 			break;
3393 		default:
3394 			return 0xff;
3395 		}
3396 
3397 		if (cycle > this_cycle)
3398 			break;
3399 
3400 		last_mode = t->mode;
3401 	}
3402 
3403 	return last_mode;
3404 }
3405 
3406 /**
3407  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3408  *	@dev: Device to adjust xfer masks
3409  *	@sel: ATA_DNXFER_* selector
3410  *
3411  *	Adjust xfer masks of @dev downward.  Note that this function
3412  *	does not apply the change.  Invoking ata_set_mode() afterwards
3413  *	will apply the limit.
3414  *
3415  *	LOCKING:
3416  *	Inherited from caller.
3417  *
3418  *	RETURNS:
3419  *	0 on success, negative errno on failure
3420  */
3421 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3422 {
3423 	char buf[32];
3424 	unsigned long orig_mask, xfer_mask;
3425 	unsigned long pio_mask, mwdma_mask, udma_mask;
3426 	int quiet, highbit;
3427 
3428 	quiet = !!(sel & ATA_DNXFER_QUIET);
3429 	sel &= ~ATA_DNXFER_QUIET;
3430 
3431 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3432 						  dev->mwdma_mask,
3433 						  dev->udma_mask);
3434 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3435 
3436 	switch (sel) {
3437 	case ATA_DNXFER_PIO:
3438 		highbit = fls(pio_mask) - 1;
3439 		pio_mask &= ~(1 << highbit);
3440 		break;
3441 
3442 	case ATA_DNXFER_DMA:
3443 		if (udma_mask) {
3444 			highbit = fls(udma_mask) - 1;
3445 			udma_mask &= ~(1 << highbit);
3446 			if (!udma_mask)
3447 				return -ENOENT;
3448 		} else if (mwdma_mask) {
3449 			highbit = fls(mwdma_mask) - 1;
3450 			mwdma_mask &= ~(1 << highbit);
3451 			if (!mwdma_mask)
3452 				return -ENOENT;
3453 		}
3454 		break;
3455 
3456 	case ATA_DNXFER_40C:
3457 		udma_mask &= ATA_UDMA_MASK_40C;
3458 		break;
3459 
3460 	case ATA_DNXFER_FORCE_PIO0:
3461 		pio_mask &= 1;
3462 	case ATA_DNXFER_FORCE_PIO:
3463 		mwdma_mask = 0;
3464 		udma_mask = 0;
3465 		break;
3466 
3467 	default:
3468 		BUG();
3469 	}
3470 
3471 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3472 
3473 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3474 		return -ENOENT;
3475 
3476 	if (!quiet) {
3477 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3478 			snprintf(buf, sizeof(buf), "%s:%s",
3479 				 ata_mode_string(xfer_mask),
3480 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3481 		else
3482 			snprintf(buf, sizeof(buf), "%s",
3483 				 ata_mode_string(xfer_mask));
3484 
3485 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3486 	}
3487 
3488 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3489 			    &dev->udma_mask);
3490 
3491 	return 0;
3492 }
3493 
3494 static int ata_dev_set_mode(struct ata_device *dev)
3495 {
3496 	struct ata_port *ap = dev->link->ap;
3497 	struct ata_eh_context *ehc = &dev->link->eh_context;
3498 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3499 	const char *dev_err_whine = "";
3500 	int ign_dev_err = 0;
3501 	unsigned int err_mask = 0;
3502 	int rc;
3503 
3504 	dev->flags &= ~ATA_DFLAG_PIO;
3505 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3506 		dev->flags |= ATA_DFLAG_PIO;
3507 
3508 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3509 		dev_err_whine = " (SET_XFERMODE skipped)";
3510 	else {
3511 		if (nosetxfer)
3512 			ata_dev_warn(dev,
3513 				     "NOSETXFER but PATA detected - can't "
3514 				     "skip SETXFER, might malfunction\n");
3515 		err_mask = ata_dev_set_xfermode(dev);
3516 	}
3517 
3518 	if (err_mask & ~AC_ERR_DEV)
3519 		goto fail;
3520 
3521 	/* revalidate */
3522 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3523 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3524 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3525 	if (rc)
3526 		return rc;
3527 
3528 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3529 		/* Old CFA may refuse this command, which is just fine */
3530 		if (ata_id_is_cfa(dev->id))
3531 			ign_dev_err = 1;
3532 		/* Catch several broken garbage emulations plus some pre
3533 		   ATA devices */
3534 		if (ata_id_major_version(dev->id) == 0 &&
3535 					dev->pio_mode <= XFER_PIO_2)
3536 			ign_dev_err = 1;
3537 		/* Some very old devices and some bad newer ones fail
3538 		   any kind of SET_XFERMODE request but support PIO0-2
3539 		   timings and no IORDY */
3540 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3541 			ign_dev_err = 1;
3542 	}
3543 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3544 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3545 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3546 	    dev->dma_mode == XFER_MW_DMA_0 &&
3547 	    (dev->id[63] >> 8) & 1)
3548 		ign_dev_err = 1;
3549 
3550 	/* if the device is actually configured correctly, ignore dev err */
3551 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3552 		ign_dev_err = 1;
3553 
3554 	if (err_mask & AC_ERR_DEV) {
3555 		if (!ign_dev_err)
3556 			goto fail;
3557 		else
3558 			dev_err_whine = " (device error ignored)";
3559 	}
3560 
3561 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3562 		dev->xfer_shift, (int)dev->xfer_mode);
3563 
3564 	ata_dev_info(dev, "configured for %s%s\n",
3565 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3566 		     dev_err_whine);
3567 
3568 	return 0;
3569 
3570  fail:
3571 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3572 	return -EIO;
3573 }
3574 
3575 /**
3576  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3577  *	@link: link on which timings will be programmed
3578  *	@r_failed_dev: out parameter for failed device
3579  *
3580  *	Standard implementation of the function used to tune and set
3581  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3582  *	ata_dev_set_mode() fails, pointer to the failing device is
3583  *	returned in @r_failed_dev.
3584  *
3585  *	LOCKING:
3586  *	PCI/etc. bus probe sem.
3587  *
3588  *	RETURNS:
3589  *	0 on success, negative errno otherwise
3590  */
3591 
3592 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3593 {
3594 	struct ata_port *ap = link->ap;
3595 	struct ata_device *dev;
3596 	int rc = 0, used_dma = 0, found = 0;
3597 
3598 	/* step 1: calculate xfer_mask */
3599 	ata_for_each_dev(dev, link, ENABLED) {
3600 		unsigned long pio_mask, dma_mask;
3601 		unsigned int mode_mask;
3602 
3603 		mode_mask = ATA_DMA_MASK_ATA;
3604 		if (dev->class == ATA_DEV_ATAPI)
3605 			mode_mask = ATA_DMA_MASK_ATAPI;
3606 		else if (ata_id_is_cfa(dev->id))
3607 			mode_mask = ATA_DMA_MASK_CFA;
3608 
3609 		ata_dev_xfermask(dev);
3610 		ata_force_xfermask(dev);
3611 
3612 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3613 
3614 		if (libata_dma_mask & mode_mask)
3615 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3616 						     dev->udma_mask);
3617 		else
3618 			dma_mask = 0;
3619 
3620 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3621 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3622 
3623 		found = 1;
3624 		if (ata_dma_enabled(dev))
3625 			used_dma = 1;
3626 	}
3627 	if (!found)
3628 		goto out;
3629 
3630 	/* step 2: always set host PIO timings */
3631 	ata_for_each_dev(dev, link, ENABLED) {
3632 		if (dev->pio_mode == 0xff) {
3633 			ata_dev_warn(dev, "no PIO support\n");
3634 			rc = -EINVAL;
3635 			goto out;
3636 		}
3637 
3638 		dev->xfer_mode = dev->pio_mode;
3639 		dev->xfer_shift = ATA_SHIFT_PIO;
3640 		if (ap->ops->set_piomode)
3641 			ap->ops->set_piomode(ap, dev);
3642 	}
3643 
3644 	/* step 3: set host DMA timings */
3645 	ata_for_each_dev(dev, link, ENABLED) {
3646 		if (!ata_dma_enabled(dev))
3647 			continue;
3648 
3649 		dev->xfer_mode = dev->dma_mode;
3650 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3651 		if (ap->ops->set_dmamode)
3652 			ap->ops->set_dmamode(ap, dev);
3653 	}
3654 
3655 	/* step 4: update devices' xfer mode */
3656 	ata_for_each_dev(dev, link, ENABLED) {
3657 		rc = ata_dev_set_mode(dev);
3658 		if (rc)
3659 			goto out;
3660 	}
3661 
3662 	/* Record simplex status. If we selected DMA then the other
3663 	 * host channels are not permitted to do so.
3664 	 */
3665 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3666 		ap->host->simplex_claimed = ap;
3667 
3668  out:
3669 	if (rc)
3670 		*r_failed_dev = dev;
3671 	return rc;
3672 }
3673 
3674 /**
3675  *	ata_wait_ready - wait for link to become ready
3676  *	@link: link to be waited on
3677  *	@deadline: deadline jiffies for the operation
3678  *	@check_ready: callback to check link readiness
3679  *
3680  *	Wait for @link to become ready.  @check_ready should return
3681  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3682  *	link doesn't seem to be occupied, other errno for other error
3683  *	conditions.
3684  *
3685  *	Transient -ENODEV conditions are allowed for
3686  *	ATA_TMOUT_FF_WAIT.
3687  *
3688  *	LOCKING:
3689  *	EH context.
3690  *
3691  *	RETURNS:
3692  *	0 if @link is ready before @deadline; otherwise, -errno.
3693  */
3694 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3695 		   int (*check_ready)(struct ata_link *link))
3696 {
3697 	unsigned long start = jiffies;
3698 	unsigned long nodev_deadline;
3699 	int warned = 0;
3700 
3701 	/* choose which 0xff timeout to use, read comment in libata.h */
3702 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3703 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3704 	else
3705 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3706 
3707 	/* Slave readiness can't be tested separately from master.  On
3708 	 * M/S emulation configuration, this function should be called
3709 	 * only on the master and it will handle both master and slave.
3710 	 */
3711 	WARN_ON(link == link->ap->slave_link);
3712 
3713 	if (time_after(nodev_deadline, deadline))
3714 		nodev_deadline = deadline;
3715 
3716 	while (1) {
3717 		unsigned long now = jiffies;
3718 		int ready, tmp;
3719 
3720 		ready = tmp = check_ready(link);
3721 		if (ready > 0)
3722 			return 0;
3723 
3724 		/*
3725 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3726 		 * is online.  Also, some SATA devices take a long
3727 		 * time to clear 0xff after reset.  Wait for
3728 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3729 		 * offline.
3730 		 *
3731 		 * Note that some PATA controllers (pata_ali) explode
3732 		 * if status register is read more than once when
3733 		 * there's no device attached.
3734 		 */
3735 		if (ready == -ENODEV) {
3736 			if (ata_link_online(link))
3737 				ready = 0;
3738 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3739 				 !ata_link_offline(link) &&
3740 				 time_before(now, nodev_deadline))
3741 				ready = 0;
3742 		}
3743 
3744 		if (ready)
3745 			return ready;
3746 		if (time_after(now, deadline))
3747 			return -EBUSY;
3748 
3749 		if (!warned && time_after(now, start + 5 * HZ) &&
3750 		    (deadline - now > 3 * HZ)) {
3751 			ata_link_warn(link,
3752 				"link is slow to respond, please be patient "
3753 				"(ready=%d)\n", tmp);
3754 			warned = 1;
3755 		}
3756 
3757 		ata_msleep(link->ap, 50);
3758 	}
3759 }
3760 
3761 /**
3762  *	ata_wait_after_reset - wait for link to become ready after reset
3763  *	@link: link to be waited on
3764  *	@deadline: deadline jiffies for the operation
3765  *	@check_ready: callback to check link readiness
3766  *
3767  *	Wait for @link to become ready after reset.
3768  *
3769  *	LOCKING:
3770  *	EH context.
3771  *
3772  *	RETURNS:
3773  *	0 if @link is ready before @deadline; otherwise, -errno.
3774  */
3775 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3776 				int (*check_ready)(struct ata_link *link))
3777 {
3778 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3779 
3780 	return ata_wait_ready(link, deadline, check_ready);
3781 }
3782 
3783 /**
3784  *	sata_link_debounce - debounce SATA phy status
3785  *	@link: ATA link to debounce SATA phy status for
3786  *	@params: timing parameters { interval, duration, timeout } in msec
3787  *	@deadline: deadline jiffies for the operation
3788  *
3789  *	Make sure SStatus of @link reaches stable state, determined by
3790  *	holding the same value where DET is not 1 for @duration polled
3791  *	every @interval, before @timeout.  Timeout constraints the
3792  *	beginning of the stable state.  Because DET gets stuck at 1 on
3793  *	some controllers after hot unplugging, this functions waits
3794  *	until timeout then returns 0 if DET is stable at 1.
3795  *
3796  *	@timeout is further limited by @deadline.  The sooner of the
3797  *	two is used.
3798  *
3799  *	LOCKING:
3800  *	Kernel thread context (may sleep)
3801  *
3802  *	RETURNS:
3803  *	0 on success, -errno on failure.
3804  */
3805 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3806 		       unsigned long deadline)
3807 {
3808 	unsigned long interval = params[0];
3809 	unsigned long duration = params[1];
3810 	unsigned long last_jiffies, t;
3811 	u32 last, cur;
3812 	int rc;
3813 
3814 	t = ata_deadline(jiffies, params[2]);
3815 	if (time_before(t, deadline))
3816 		deadline = t;
3817 
3818 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3819 		return rc;
3820 	cur &= 0xf;
3821 
3822 	last = cur;
3823 	last_jiffies = jiffies;
3824 
3825 	while (1) {
3826 		ata_msleep(link->ap, interval);
3827 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3828 			return rc;
3829 		cur &= 0xf;
3830 
3831 		/* DET stable? */
3832 		if (cur == last) {
3833 			if (cur == 1 && time_before(jiffies, deadline))
3834 				continue;
3835 			if (time_after(jiffies,
3836 				       ata_deadline(last_jiffies, duration)))
3837 				return 0;
3838 			continue;
3839 		}
3840 
3841 		/* unstable, start over */
3842 		last = cur;
3843 		last_jiffies = jiffies;
3844 
3845 		/* Check deadline.  If debouncing failed, return
3846 		 * -EPIPE to tell upper layer to lower link speed.
3847 		 */
3848 		if (time_after(jiffies, deadline))
3849 			return -EPIPE;
3850 	}
3851 }
3852 
3853 /**
3854  *	sata_link_resume - resume SATA link
3855  *	@link: ATA link to resume SATA
3856  *	@params: timing parameters { interval, duration, timeout } in msec
3857  *	@deadline: deadline jiffies for the operation
3858  *
3859  *	Resume SATA phy @link and debounce it.
3860  *
3861  *	LOCKING:
3862  *	Kernel thread context (may sleep)
3863  *
3864  *	RETURNS:
3865  *	0 on success, -errno on failure.
3866  */
3867 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3868 		     unsigned long deadline)
3869 {
3870 	int tries = ATA_LINK_RESUME_TRIES;
3871 	u32 scontrol, serror;
3872 	int rc;
3873 
3874 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3875 		return rc;
3876 
3877 	/*
3878 	 * Writes to SControl sometimes get ignored under certain
3879 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3880 	 * cleared.
3881 	 */
3882 	do {
3883 		scontrol = (scontrol & 0x0f0) | 0x300;
3884 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3885 			return rc;
3886 		/*
3887 		 * Some PHYs react badly if SStatus is pounded
3888 		 * immediately after resuming.  Delay 200ms before
3889 		 * debouncing.
3890 		 */
3891 		if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3892 			ata_msleep(link->ap, 200);
3893 
3894 		/* is SControl restored correctly? */
3895 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3896 			return rc;
3897 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3898 
3899 	if ((scontrol & 0xf0f) != 0x300) {
3900 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3901 			     scontrol);
3902 		return 0;
3903 	}
3904 
3905 	if (tries < ATA_LINK_RESUME_TRIES)
3906 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3907 			      ATA_LINK_RESUME_TRIES - tries);
3908 
3909 	if ((rc = sata_link_debounce(link, params, deadline)))
3910 		return rc;
3911 
3912 	/* clear SError, some PHYs require this even for SRST to work */
3913 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3914 		rc = sata_scr_write(link, SCR_ERROR, serror);
3915 
3916 	return rc != -EINVAL ? rc : 0;
3917 }
3918 
3919 /**
3920  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3921  *	@link: ATA link to manipulate SControl for
3922  *	@policy: LPM policy to configure
3923  *	@spm_wakeup: initiate LPM transition to active state
3924  *
3925  *	Manipulate the IPM field of the SControl register of @link
3926  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3927  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3928  *	the link.  This function also clears PHYRDY_CHG before
3929  *	returning.
3930  *
3931  *	LOCKING:
3932  *	EH context.
3933  *
3934  *	RETURNS:
3935  *	0 on success, -errno otherwise.
3936  */
3937 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3938 		      bool spm_wakeup)
3939 {
3940 	struct ata_eh_context *ehc = &link->eh_context;
3941 	bool woken_up = false;
3942 	u32 scontrol;
3943 	int rc;
3944 
3945 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3946 	if (rc)
3947 		return rc;
3948 
3949 	switch (policy) {
3950 	case ATA_LPM_MAX_POWER:
3951 		/* disable all LPM transitions */
3952 		scontrol |= (0x7 << 8);
3953 		/* initiate transition to active state */
3954 		if (spm_wakeup) {
3955 			scontrol |= (0x4 << 12);
3956 			woken_up = true;
3957 		}
3958 		break;
3959 	case ATA_LPM_MED_POWER:
3960 		/* allow LPM to PARTIAL */
3961 		scontrol &= ~(0x1 << 8);
3962 		scontrol |= (0x6 << 8);
3963 		break;
3964 	case ATA_LPM_MIN_POWER:
3965 		if (ata_link_nr_enabled(link) > 0)
3966 			/* no restrictions on LPM transitions */
3967 			scontrol &= ~(0x7 << 8);
3968 		else {
3969 			/* empty port, power off */
3970 			scontrol &= ~0xf;
3971 			scontrol |= (0x1 << 2);
3972 		}
3973 		break;
3974 	default:
3975 		WARN_ON(1);
3976 	}
3977 
3978 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3979 	if (rc)
3980 		return rc;
3981 
3982 	/* give the link time to transit out of LPM state */
3983 	if (woken_up)
3984 		msleep(10);
3985 
3986 	/* clear PHYRDY_CHG from SError */
3987 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3988 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3989 }
3990 
3991 /**
3992  *	ata_std_prereset - prepare for reset
3993  *	@link: ATA link to be reset
3994  *	@deadline: deadline jiffies for the operation
3995  *
3996  *	@link is about to be reset.  Initialize it.  Failure from
3997  *	prereset makes libata abort whole reset sequence and give up
3998  *	that port, so prereset should be best-effort.  It does its
3999  *	best to prepare for reset sequence but if things go wrong, it
4000  *	should just whine, not fail.
4001  *
4002  *	LOCKING:
4003  *	Kernel thread context (may sleep)
4004  *
4005  *	RETURNS:
4006  *	0 on success, -errno otherwise.
4007  */
4008 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4009 {
4010 	struct ata_port *ap = link->ap;
4011 	struct ata_eh_context *ehc = &link->eh_context;
4012 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
4013 	int rc;
4014 
4015 	/* if we're about to do hardreset, nothing more to do */
4016 	if (ehc->i.action & ATA_EH_HARDRESET)
4017 		return 0;
4018 
4019 	/* if SATA, resume link */
4020 	if (ap->flags & ATA_FLAG_SATA) {
4021 		rc = sata_link_resume(link, timing, deadline);
4022 		/* whine about phy resume failure but proceed */
4023 		if (rc && rc != -EOPNOTSUPP)
4024 			ata_link_warn(link,
4025 				      "failed to resume link for reset (errno=%d)\n",
4026 				      rc);
4027 	}
4028 
4029 	/* no point in trying softreset on offline link */
4030 	if (ata_phys_link_offline(link))
4031 		ehc->i.action &= ~ATA_EH_SOFTRESET;
4032 
4033 	return 0;
4034 }
4035 
4036 /**
4037  *	sata_link_hardreset - reset link via SATA phy reset
4038  *	@link: link to reset
4039  *	@timing: timing parameters { interval, duration, timeout } in msec
4040  *	@deadline: deadline jiffies for the operation
4041  *	@online: optional out parameter indicating link onlineness
4042  *	@check_ready: optional callback to check link readiness
4043  *
4044  *	SATA phy-reset @link using DET bits of SControl register.
4045  *	After hardreset, link readiness is waited upon using
4046  *	ata_wait_ready() if @check_ready is specified.  LLDs are
4047  *	allowed to not specify @check_ready and wait itself after this
4048  *	function returns.  Device classification is LLD's
4049  *	responsibility.
4050  *
4051  *	*@online is set to one iff reset succeeded and @link is online
4052  *	after reset.
4053  *
4054  *	LOCKING:
4055  *	Kernel thread context (may sleep)
4056  *
4057  *	RETURNS:
4058  *	0 on success, -errno otherwise.
4059  */
4060 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4061 			unsigned long deadline,
4062 			bool *online, int (*check_ready)(struct ata_link *))
4063 {
4064 	u32 scontrol;
4065 	int rc;
4066 
4067 	DPRINTK("ENTER\n");
4068 
4069 	if (online)
4070 		*online = false;
4071 
4072 	if (sata_set_spd_needed(link)) {
4073 		/* SATA spec says nothing about how to reconfigure
4074 		 * spd.  To be on the safe side, turn off phy during
4075 		 * reconfiguration.  This works for at least ICH7 AHCI
4076 		 * and Sil3124.
4077 		 */
4078 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4079 			goto out;
4080 
4081 		scontrol = (scontrol & 0x0f0) | 0x304;
4082 
4083 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4084 			goto out;
4085 
4086 		sata_set_spd(link);
4087 	}
4088 
4089 	/* issue phy wake/reset */
4090 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4091 		goto out;
4092 
4093 	scontrol = (scontrol & 0x0f0) | 0x301;
4094 
4095 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4096 		goto out;
4097 
4098 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4099 	 * 10.4.2 says at least 1 ms.
4100 	 */
4101 	ata_msleep(link->ap, 1);
4102 
4103 	/* bring link back */
4104 	rc = sata_link_resume(link, timing, deadline);
4105 	if (rc)
4106 		goto out;
4107 	/* if link is offline nothing more to do */
4108 	if (ata_phys_link_offline(link))
4109 		goto out;
4110 
4111 	/* Link is online.  From this point, -ENODEV too is an error. */
4112 	if (online)
4113 		*online = true;
4114 
4115 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4116 		/* If PMP is supported, we have to do follow-up SRST.
4117 		 * Some PMPs don't send D2H Reg FIS after hardreset if
4118 		 * the first port is empty.  Wait only for
4119 		 * ATA_TMOUT_PMP_SRST_WAIT.
4120 		 */
4121 		if (check_ready) {
4122 			unsigned long pmp_deadline;
4123 
4124 			pmp_deadline = ata_deadline(jiffies,
4125 						    ATA_TMOUT_PMP_SRST_WAIT);
4126 			if (time_after(pmp_deadline, deadline))
4127 				pmp_deadline = deadline;
4128 			ata_wait_ready(link, pmp_deadline, check_ready);
4129 		}
4130 		rc = -EAGAIN;
4131 		goto out;
4132 	}
4133 
4134 	rc = 0;
4135 	if (check_ready)
4136 		rc = ata_wait_ready(link, deadline, check_ready);
4137  out:
4138 	if (rc && rc != -EAGAIN) {
4139 		/* online is set iff link is online && reset succeeded */
4140 		if (online)
4141 			*online = false;
4142 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4143 	}
4144 	DPRINTK("EXIT, rc=%d\n", rc);
4145 	return rc;
4146 }
4147 
4148 /**
4149  *	sata_std_hardreset - COMRESET w/o waiting or classification
4150  *	@link: link to reset
4151  *	@class: resulting class of attached device
4152  *	@deadline: deadline jiffies for the operation
4153  *
4154  *	Standard SATA COMRESET w/o waiting or classification.
4155  *
4156  *	LOCKING:
4157  *	Kernel thread context (may sleep)
4158  *
4159  *	RETURNS:
4160  *	0 if link offline, -EAGAIN if link online, -errno on errors.
4161  */
4162 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4163 		       unsigned long deadline)
4164 {
4165 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4166 	bool online;
4167 	int rc;
4168 
4169 	/* do hardreset */
4170 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4171 	return online ? -EAGAIN : rc;
4172 }
4173 
4174 /**
4175  *	ata_std_postreset - standard postreset callback
4176  *	@link: the target ata_link
4177  *	@classes: classes of attached devices
4178  *
4179  *	This function is invoked after a successful reset.  Note that
4180  *	the device might have been reset more than once using
4181  *	different reset methods before postreset is invoked.
4182  *
4183  *	LOCKING:
4184  *	Kernel thread context (may sleep)
4185  */
4186 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4187 {
4188 	u32 serror;
4189 
4190 	DPRINTK("ENTER\n");
4191 
4192 	/* reset complete, clear SError */
4193 	if (!sata_scr_read(link, SCR_ERROR, &serror))
4194 		sata_scr_write(link, SCR_ERROR, serror);
4195 
4196 	/* print link status */
4197 	sata_print_link_status(link);
4198 
4199 	DPRINTK("EXIT\n");
4200 }
4201 
4202 /**
4203  *	ata_dev_same_device - Determine whether new ID matches configured device
4204  *	@dev: device to compare against
4205  *	@new_class: class of the new device
4206  *	@new_id: IDENTIFY page of the new device
4207  *
4208  *	Compare @new_class and @new_id against @dev and determine
4209  *	whether @dev is the device indicated by @new_class and
4210  *	@new_id.
4211  *
4212  *	LOCKING:
4213  *	None.
4214  *
4215  *	RETURNS:
4216  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
4217  */
4218 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4219 			       const u16 *new_id)
4220 {
4221 	const u16 *old_id = dev->id;
4222 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
4223 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4224 
4225 	if (dev->class != new_class) {
4226 		ata_dev_info(dev, "class mismatch %d != %d\n",
4227 			     dev->class, new_class);
4228 		return 0;
4229 	}
4230 
4231 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4232 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4233 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4234 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4235 
4236 	if (strcmp(model[0], model[1])) {
4237 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4238 			     model[0], model[1]);
4239 		return 0;
4240 	}
4241 
4242 	if (strcmp(serial[0], serial[1])) {
4243 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4244 			     serial[0], serial[1]);
4245 		return 0;
4246 	}
4247 
4248 	return 1;
4249 }
4250 
4251 /**
4252  *	ata_dev_reread_id - Re-read IDENTIFY data
4253  *	@dev: target ATA device
4254  *	@readid_flags: read ID flags
4255  *
4256  *	Re-read IDENTIFY page and make sure @dev is still attached to
4257  *	the port.
4258  *
4259  *	LOCKING:
4260  *	Kernel thread context (may sleep)
4261  *
4262  *	RETURNS:
4263  *	0 on success, negative errno otherwise
4264  */
4265 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4266 {
4267 	unsigned int class = dev->class;
4268 	u16 *id = (void *)dev->link->ap->sector_buf;
4269 	int rc;
4270 
4271 	/* read ID data */
4272 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4273 	if (rc)
4274 		return rc;
4275 
4276 	/* is the device still there? */
4277 	if (!ata_dev_same_device(dev, class, id))
4278 		return -ENODEV;
4279 
4280 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4281 	return 0;
4282 }
4283 
4284 /**
4285  *	ata_dev_revalidate - Revalidate ATA device
4286  *	@dev: device to revalidate
4287  *	@new_class: new class code
4288  *	@readid_flags: read ID flags
4289  *
4290  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4291  *	port and reconfigure it according to the new IDENTIFY page.
4292  *
4293  *	LOCKING:
4294  *	Kernel thread context (may sleep)
4295  *
4296  *	RETURNS:
4297  *	0 on success, negative errno otherwise
4298  */
4299 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4300 		       unsigned int readid_flags)
4301 {
4302 	u64 n_sectors = dev->n_sectors;
4303 	u64 n_native_sectors = dev->n_native_sectors;
4304 	int rc;
4305 
4306 	if (!ata_dev_enabled(dev))
4307 		return -ENODEV;
4308 
4309 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4310 	if (ata_class_enabled(new_class) &&
4311 	    new_class != ATA_DEV_ATA &&
4312 	    new_class != ATA_DEV_ATAPI &&
4313 	    new_class != ATA_DEV_ZAC &&
4314 	    new_class != ATA_DEV_SEMB) {
4315 		ata_dev_info(dev, "class mismatch %u != %u\n",
4316 			     dev->class, new_class);
4317 		rc = -ENODEV;
4318 		goto fail;
4319 	}
4320 
4321 	/* re-read ID */
4322 	rc = ata_dev_reread_id(dev, readid_flags);
4323 	if (rc)
4324 		goto fail;
4325 
4326 	/* configure device according to the new ID */
4327 	rc = ata_dev_configure(dev);
4328 	if (rc)
4329 		goto fail;
4330 
4331 	/* verify n_sectors hasn't changed */
4332 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4333 	    dev->n_sectors == n_sectors)
4334 		return 0;
4335 
4336 	/* n_sectors has changed */
4337 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4338 		     (unsigned long long)n_sectors,
4339 		     (unsigned long long)dev->n_sectors);
4340 
4341 	/*
4342 	 * Something could have caused HPA to be unlocked
4343 	 * involuntarily.  If n_native_sectors hasn't changed and the
4344 	 * new size matches it, keep the device.
4345 	 */
4346 	if (dev->n_native_sectors == n_native_sectors &&
4347 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4348 		ata_dev_warn(dev,
4349 			     "new n_sectors matches native, probably "
4350 			     "late HPA unlock, n_sectors updated\n");
4351 		/* use the larger n_sectors */
4352 		return 0;
4353 	}
4354 
4355 	/*
4356 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4357 	 * unlocking HPA in those cases.
4358 	 *
4359 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4360 	 */
4361 	if (dev->n_native_sectors == n_native_sectors &&
4362 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4363 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4364 		ata_dev_warn(dev,
4365 			     "old n_sectors matches native, probably "
4366 			     "late HPA lock, will try to unlock HPA\n");
4367 		/* try unlocking HPA */
4368 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4369 		rc = -EIO;
4370 	} else
4371 		rc = -ENODEV;
4372 
4373 	/* restore original n_[native_]sectors and fail */
4374 	dev->n_native_sectors = n_native_sectors;
4375 	dev->n_sectors = n_sectors;
4376  fail:
4377 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4378 	return rc;
4379 }
4380 
4381 struct ata_blacklist_entry {
4382 	const char *model_num;
4383 	const char *model_rev;
4384 	unsigned long horkage;
4385 };
4386 
4387 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4388 	/* Devices with DMA related problems under Linux */
4389 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4390 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4391 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4392 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4393 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4394 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4395 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4396 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4397 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4398 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4399 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4400 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4401 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4402 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4403 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4404 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4405 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4406 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4407 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4408 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4409 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4410 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4411 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4412 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4413 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4414 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4415 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4416 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4417 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4418 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4419 	/* Odd clown on sil3726/4726 PMPs */
4420 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4421 
4422 	/* Weird ATAPI devices */
4423 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4424 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4425 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4426 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4427 
4428 	/*
4429 	 * Causes silent data corruption with higher max sects.
4430 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4431 	 */
4432 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4433 
4434 	/*
4435 	 * These devices time out with higher max sects.
4436 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4437 	 */
4438 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4439 
4440 	/* Devices we expect to fail diagnostics */
4441 
4442 	/* Devices where NCQ should be avoided */
4443 	/* NCQ is slow */
4444 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4445 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4446 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4447 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4448 	/* NCQ is broken */
4449 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4450 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4451 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4452 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4453 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4454 
4455 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4456 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4457 						ATA_HORKAGE_FIRMWARE_WARN },
4458 
4459 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4460 						ATA_HORKAGE_FIRMWARE_WARN },
4461 
4462 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4463 						ATA_HORKAGE_FIRMWARE_WARN },
4464 
4465 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4466 						ATA_HORKAGE_FIRMWARE_WARN },
4467 
4468 	/* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4469 	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4470 	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4471 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4472 
4473 	/* Blacklist entries taken from Silicon Image 3124/3132
4474 	   Windows driver .inf file - also several Linux problem reports */
4475 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4476 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4477 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4478 
4479 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4480 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4481 
4482 	/* devices which puke on READ_NATIVE_MAX */
4483 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4484 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4485 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4486 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4487 
4488 	/* this one allows HPA unlocking but fails IOs on the area */
4489 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4490 
4491 	/* Devices which report 1 sector over size HPA */
4492 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4493 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4494 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4495 
4496 	/* Devices which get the IVB wrong */
4497 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4498 	/* Maybe we should just blacklist TSSTcorp... */
4499 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4500 
4501 	/* Devices that do not need bridging limits applied */
4502 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4503 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4504 
4505 	/* Devices which aren't very happy with higher link speeds */
4506 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4507 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4508 
4509 	/*
4510 	 * Devices which choke on SETXFER.  Applies only if both the
4511 	 * device and controller are SATA.
4512 	 */
4513 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4514 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4515 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4516 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4517 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4518 
4519 	/* devices that don't properly handle queued TRIM commands */
4520 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4521 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4522 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4523 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4524 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4525 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4526 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4527 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4528 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4529 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4530 	{ "Samsung SSD 8*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4531 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4532 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4533 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4534 
4535 	/* devices that don't properly handle TRIM commands */
4536 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4537 
4538 	/*
4539 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4540 	 * (Return Zero After Trim) flags in the ATA Command Set are
4541 	 * unreliable in the sense that they only define what happens if
4542 	 * the device successfully executed the DSM TRIM command. TRIM
4543 	 * is only advisory, however, and the device is free to silently
4544 	 * ignore all or parts of the request.
4545 	 *
4546 	 * Whitelist drives that are known to reliably return zeroes
4547 	 * after TRIM.
4548 	 */
4549 
4550 	/*
4551 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4552 	 * that model before whitelisting all other intel SSDs.
4553 	 */
4554 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4555 
4556 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4557 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4558 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4559 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4560 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4561 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4562 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563 
4564 	/*
4565 	 * Some WD SATA-I drives spin up and down erratically when the link
4566 	 * is put into the slumber mode.  We don't have full list of the
4567 	 * affected devices.  Disable LPM if the device matches one of the
4568 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4569 	 * lost too.
4570 	 *
4571 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4572 	 */
4573 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4574 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4575 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4576 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4577 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4578 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4579 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4580 
4581 	/* End Marker */
4582 	{ }
4583 };
4584 
4585 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4586 {
4587 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4588 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4589 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4590 
4591 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4592 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4593 
4594 	while (ad->model_num) {
4595 		if (glob_match(ad->model_num, model_num)) {
4596 			if (ad->model_rev == NULL)
4597 				return ad->horkage;
4598 			if (glob_match(ad->model_rev, model_rev))
4599 				return ad->horkage;
4600 		}
4601 		ad++;
4602 	}
4603 	return 0;
4604 }
4605 
4606 static int ata_dma_blacklisted(const struct ata_device *dev)
4607 {
4608 	/* We don't support polling DMA.
4609 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4610 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4611 	 */
4612 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4613 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4614 		return 1;
4615 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4616 }
4617 
4618 /**
4619  *	ata_is_40wire		-	check drive side detection
4620  *	@dev: device
4621  *
4622  *	Perform drive side detection decoding, allowing for device vendors
4623  *	who can't follow the documentation.
4624  */
4625 
4626 static int ata_is_40wire(struct ata_device *dev)
4627 {
4628 	if (dev->horkage & ATA_HORKAGE_IVB)
4629 		return ata_drive_40wire_relaxed(dev->id);
4630 	return ata_drive_40wire(dev->id);
4631 }
4632 
4633 /**
4634  *	cable_is_40wire		-	40/80/SATA decider
4635  *	@ap: port to consider
4636  *
4637  *	This function encapsulates the policy for speed management
4638  *	in one place. At the moment we don't cache the result but
4639  *	there is a good case for setting ap->cbl to the result when
4640  *	we are called with unknown cables (and figuring out if it
4641  *	impacts hotplug at all).
4642  *
4643  *	Return 1 if the cable appears to be 40 wire.
4644  */
4645 
4646 static int cable_is_40wire(struct ata_port *ap)
4647 {
4648 	struct ata_link *link;
4649 	struct ata_device *dev;
4650 
4651 	/* If the controller thinks we are 40 wire, we are. */
4652 	if (ap->cbl == ATA_CBL_PATA40)
4653 		return 1;
4654 
4655 	/* If the controller thinks we are 80 wire, we are. */
4656 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4657 		return 0;
4658 
4659 	/* If the system is known to be 40 wire short cable (eg
4660 	 * laptop), then we allow 80 wire modes even if the drive
4661 	 * isn't sure.
4662 	 */
4663 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4664 		return 0;
4665 
4666 	/* If the controller doesn't know, we scan.
4667 	 *
4668 	 * Note: We look for all 40 wire detects at this point.  Any
4669 	 *       80 wire detect is taken to be 80 wire cable because
4670 	 * - in many setups only the one drive (slave if present) will
4671 	 *   give a valid detect
4672 	 * - if you have a non detect capable drive you don't want it
4673 	 *   to colour the choice
4674 	 */
4675 	ata_for_each_link(link, ap, EDGE) {
4676 		ata_for_each_dev(dev, link, ENABLED) {
4677 			if (!ata_is_40wire(dev))
4678 				return 0;
4679 		}
4680 	}
4681 	return 1;
4682 }
4683 
4684 /**
4685  *	ata_dev_xfermask - Compute supported xfermask of the given device
4686  *	@dev: Device to compute xfermask for
4687  *
4688  *	Compute supported xfermask of @dev and store it in
4689  *	dev->*_mask.  This function is responsible for applying all
4690  *	known limits including host controller limits, device
4691  *	blacklist, etc...
4692  *
4693  *	LOCKING:
4694  *	None.
4695  */
4696 static void ata_dev_xfermask(struct ata_device *dev)
4697 {
4698 	struct ata_link *link = dev->link;
4699 	struct ata_port *ap = link->ap;
4700 	struct ata_host *host = ap->host;
4701 	unsigned long xfer_mask;
4702 
4703 	/* controller modes available */
4704 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4705 				      ap->mwdma_mask, ap->udma_mask);
4706 
4707 	/* drive modes available */
4708 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4709 				       dev->mwdma_mask, dev->udma_mask);
4710 	xfer_mask &= ata_id_xfermask(dev->id);
4711 
4712 	/*
4713 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4714 	 *	cable
4715 	 */
4716 	if (ata_dev_pair(dev)) {
4717 		/* No PIO5 or PIO6 */
4718 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4719 		/* No MWDMA3 or MWDMA 4 */
4720 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4721 	}
4722 
4723 	if (ata_dma_blacklisted(dev)) {
4724 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4725 		ata_dev_warn(dev,
4726 			     "device is on DMA blacklist, disabling DMA\n");
4727 	}
4728 
4729 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4730 	    host->simplex_claimed && host->simplex_claimed != ap) {
4731 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4732 		ata_dev_warn(dev,
4733 			     "simplex DMA is claimed by other device, disabling DMA\n");
4734 	}
4735 
4736 	if (ap->flags & ATA_FLAG_NO_IORDY)
4737 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4738 
4739 	if (ap->ops->mode_filter)
4740 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4741 
4742 	/* Apply cable rule here.  Don't apply it early because when
4743 	 * we handle hot plug the cable type can itself change.
4744 	 * Check this last so that we know if the transfer rate was
4745 	 * solely limited by the cable.
4746 	 * Unknown or 80 wire cables reported host side are checked
4747 	 * drive side as well. Cases where we know a 40wire cable
4748 	 * is used safely for 80 are not checked here.
4749 	 */
4750 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4751 		/* UDMA/44 or higher would be available */
4752 		if (cable_is_40wire(ap)) {
4753 			ata_dev_warn(dev,
4754 				     "limited to UDMA/33 due to 40-wire cable\n");
4755 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4756 		}
4757 
4758 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4759 			    &dev->mwdma_mask, &dev->udma_mask);
4760 }
4761 
4762 /**
4763  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4764  *	@dev: Device to which command will be sent
4765  *
4766  *	Issue SET FEATURES - XFER MODE command to device @dev
4767  *	on port @ap.
4768  *
4769  *	LOCKING:
4770  *	PCI/etc. bus probe sem.
4771  *
4772  *	RETURNS:
4773  *	0 on success, AC_ERR_* mask otherwise.
4774  */
4775 
4776 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4777 {
4778 	struct ata_taskfile tf;
4779 	unsigned int err_mask;
4780 
4781 	/* set up set-features taskfile */
4782 	DPRINTK("set features - xfer mode\n");
4783 
4784 	/* Some controllers and ATAPI devices show flaky interrupt
4785 	 * behavior after setting xfer mode.  Use polling instead.
4786 	 */
4787 	ata_tf_init(dev, &tf);
4788 	tf.command = ATA_CMD_SET_FEATURES;
4789 	tf.feature = SETFEATURES_XFER;
4790 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4791 	tf.protocol = ATA_PROT_NODATA;
4792 	/* If we are using IORDY we must send the mode setting command */
4793 	if (ata_pio_need_iordy(dev))
4794 		tf.nsect = dev->xfer_mode;
4795 	/* If the device has IORDY and the controller does not - turn it off */
4796  	else if (ata_id_has_iordy(dev->id))
4797 		tf.nsect = 0x01;
4798 	else /* In the ancient relic department - skip all of this */
4799 		return 0;
4800 
4801 	/* On some disks, this command causes spin-up, so we need longer timeout */
4802 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4803 
4804 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4805 	return err_mask;
4806 }
4807 
4808 /**
4809  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4810  *	@dev: Device to which command will be sent
4811  *	@enable: Whether to enable or disable the feature
4812  *	@feature: The sector count represents the feature to set
4813  *
4814  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4815  *	on port @ap with sector count
4816  *
4817  *	LOCKING:
4818  *	PCI/etc. bus probe sem.
4819  *
4820  *	RETURNS:
4821  *	0 on success, AC_ERR_* mask otherwise.
4822  */
4823 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4824 {
4825 	struct ata_taskfile tf;
4826 	unsigned int err_mask;
4827 	unsigned long timeout = 0;
4828 
4829 	/* set up set-features taskfile */
4830 	DPRINTK("set features - SATA features\n");
4831 
4832 	ata_tf_init(dev, &tf);
4833 	tf.command = ATA_CMD_SET_FEATURES;
4834 	tf.feature = enable;
4835 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4836 	tf.protocol = ATA_PROT_NODATA;
4837 	tf.nsect = feature;
4838 
4839 	if (enable == SETFEATURES_SPINUP)
4840 		timeout = ata_probe_timeout ?
4841 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4842 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4843 
4844 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4845 	return err_mask;
4846 }
4847 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4848 
4849 /**
4850  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4851  *	@dev: Device to which command will be sent
4852  *	@heads: Number of heads (taskfile parameter)
4853  *	@sectors: Number of sectors (taskfile parameter)
4854  *
4855  *	LOCKING:
4856  *	Kernel thread context (may sleep)
4857  *
4858  *	RETURNS:
4859  *	0 on success, AC_ERR_* mask otherwise.
4860  */
4861 static unsigned int ata_dev_init_params(struct ata_device *dev,
4862 					u16 heads, u16 sectors)
4863 {
4864 	struct ata_taskfile tf;
4865 	unsigned int err_mask;
4866 
4867 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4868 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4869 		return AC_ERR_INVALID;
4870 
4871 	/* set up init dev params taskfile */
4872 	DPRINTK("init dev params \n");
4873 
4874 	ata_tf_init(dev, &tf);
4875 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4876 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4877 	tf.protocol = ATA_PROT_NODATA;
4878 	tf.nsect = sectors;
4879 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4880 
4881 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4882 	/* A clean abort indicates an original or just out of spec drive
4883 	   and we should continue as we issue the setup based on the
4884 	   drive reported working geometry */
4885 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4886 		err_mask = 0;
4887 
4888 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4889 	return err_mask;
4890 }
4891 
4892 /**
4893  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4894  *	@qc: Metadata associated with taskfile to check
4895  *
4896  *	Allow low-level driver to filter ATA PACKET commands, returning
4897  *	a status indicating whether or not it is OK to use DMA for the
4898  *	supplied PACKET command.
4899  *
4900  *	LOCKING:
4901  *	spin_lock_irqsave(host lock)
4902  *
4903  *	RETURNS: 0 when ATAPI DMA can be used
4904  *               nonzero otherwise
4905  */
4906 int atapi_check_dma(struct ata_queued_cmd *qc)
4907 {
4908 	struct ata_port *ap = qc->ap;
4909 
4910 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4911 	 * few ATAPI devices choke on such DMA requests.
4912 	 */
4913 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4914 	    unlikely(qc->nbytes & 15))
4915 		return 1;
4916 
4917 	if (ap->ops->check_atapi_dma)
4918 		return ap->ops->check_atapi_dma(qc);
4919 
4920 	return 0;
4921 }
4922 
4923 /**
4924  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4925  *	@qc: ATA command in question
4926  *
4927  *	Non-NCQ commands cannot run with any other command, NCQ or
4928  *	not.  As upper layer only knows the queue depth, we are
4929  *	responsible for maintaining exclusion.  This function checks
4930  *	whether a new command @qc can be issued.
4931  *
4932  *	LOCKING:
4933  *	spin_lock_irqsave(host lock)
4934  *
4935  *	RETURNS:
4936  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4937  */
4938 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4939 {
4940 	struct ata_link *link = qc->dev->link;
4941 
4942 	if (ata_is_ncq(qc->tf.protocol)) {
4943 		if (!ata_tag_valid(link->active_tag))
4944 			return 0;
4945 	} else {
4946 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4947 			return 0;
4948 	}
4949 
4950 	return ATA_DEFER_LINK;
4951 }
4952 
4953 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4954 
4955 /**
4956  *	ata_sg_init - Associate command with scatter-gather table.
4957  *	@qc: Command to be associated
4958  *	@sg: Scatter-gather table.
4959  *	@n_elem: Number of elements in s/g table.
4960  *
4961  *	Initialize the data-related elements of queued_cmd @qc
4962  *	to point to a scatter-gather table @sg, containing @n_elem
4963  *	elements.
4964  *
4965  *	LOCKING:
4966  *	spin_lock_irqsave(host lock)
4967  */
4968 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4969 		 unsigned int n_elem)
4970 {
4971 	qc->sg = sg;
4972 	qc->n_elem = n_elem;
4973 	qc->cursg = qc->sg;
4974 }
4975 
4976 #ifdef CONFIG_HAS_DMA
4977 
4978 /**
4979  *	ata_sg_clean - Unmap DMA memory associated with command
4980  *	@qc: Command containing DMA memory to be released
4981  *
4982  *	Unmap all mapped DMA memory associated with this command.
4983  *
4984  *	LOCKING:
4985  *	spin_lock_irqsave(host lock)
4986  */
4987 static void ata_sg_clean(struct ata_queued_cmd *qc)
4988 {
4989 	struct ata_port *ap = qc->ap;
4990 	struct scatterlist *sg = qc->sg;
4991 	int dir = qc->dma_dir;
4992 
4993 	WARN_ON_ONCE(sg == NULL);
4994 
4995 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4996 
4997 	if (qc->n_elem)
4998 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4999 
5000 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
5001 	qc->sg = NULL;
5002 }
5003 
5004 /**
5005  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5006  *	@qc: Command with scatter-gather table to be mapped.
5007  *
5008  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
5009  *
5010  *	LOCKING:
5011  *	spin_lock_irqsave(host lock)
5012  *
5013  *	RETURNS:
5014  *	Zero on success, negative on error.
5015  *
5016  */
5017 static int ata_sg_setup(struct ata_queued_cmd *qc)
5018 {
5019 	struct ata_port *ap = qc->ap;
5020 	unsigned int n_elem;
5021 
5022 	VPRINTK("ENTER, ata%u\n", ap->print_id);
5023 
5024 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5025 	if (n_elem < 1)
5026 		return -1;
5027 
5028 	DPRINTK("%d sg elements mapped\n", n_elem);
5029 	qc->orig_n_elem = qc->n_elem;
5030 	qc->n_elem = n_elem;
5031 	qc->flags |= ATA_QCFLAG_DMAMAP;
5032 
5033 	return 0;
5034 }
5035 
5036 #else /* !CONFIG_HAS_DMA */
5037 
5038 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5039 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5040 
5041 #endif /* !CONFIG_HAS_DMA */
5042 
5043 /**
5044  *	swap_buf_le16 - swap halves of 16-bit words in place
5045  *	@buf:  Buffer to swap
5046  *	@buf_words:  Number of 16-bit words in buffer.
5047  *
5048  *	Swap halves of 16-bit words if needed to convert from
5049  *	little-endian byte order to native cpu byte order, or
5050  *	vice-versa.
5051  *
5052  *	LOCKING:
5053  *	Inherited from caller.
5054  */
5055 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5056 {
5057 #ifdef __BIG_ENDIAN
5058 	unsigned int i;
5059 
5060 	for (i = 0; i < buf_words; i++)
5061 		buf[i] = le16_to_cpu(buf[i]);
5062 #endif /* __BIG_ENDIAN */
5063 }
5064 
5065 /**
5066  *	ata_qc_new_init - Request an available ATA command, and initialize it
5067  *	@dev: Device from whom we request an available command structure
5068  *	@tag: tag
5069  *
5070  *	LOCKING:
5071  *	None.
5072  */
5073 
5074 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5075 {
5076 	struct ata_port *ap = dev->link->ap;
5077 	struct ata_queued_cmd *qc;
5078 
5079 	/* no command while frozen */
5080 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5081 		return NULL;
5082 
5083 	/* libsas case */
5084 	if (ap->flags & ATA_FLAG_SAS_HOST) {
5085 		tag = ata_sas_allocate_tag(ap);
5086 		if (tag < 0)
5087 			return NULL;
5088 	}
5089 
5090 	qc = __ata_qc_from_tag(ap, tag);
5091 	qc->tag = tag;
5092 	qc->scsicmd = NULL;
5093 	qc->ap = ap;
5094 	qc->dev = dev;
5095 
5096 	ata_qc_reinit(qc);
5097 
5098 	return qc;
5099 }
5100 
5101 /**
5102  *	ata_qc_free - free unused ata_queued_cmd
5103  *	@qc: Command to complete
5104  *
5105  *	Designed to free unused ata_queued_cmd object
5106  *	in case something prevents using it.
5107  *
5108  *	LOCKING:
5109  *	spin_lock_irqsave(host lock)
5110  */
5111 void ata_qc_free(struct ata_queued_cmd *qc)
5112 {
5113 	struct ata_port *ap;
5114 	unsigned int tag;
5115 
5116 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5117 	ap = qc->ap;
5118 
5119 	qc->flags = 0;
5120 	tag = qc->tag;
5121 	if (likely(ata_tag_valid(tag))) {
5122 		qc->tag = ATA_TAG_POISON;
5123 		if (ap->flags & ATA_FLAG_SAS_HOST)
5124 			ata_sas_free_tag(tag, ap);
5125 	}
5126 }
5127 
5128 void __ata_qc_complete(struct ata_queued_cmd *qc)
5129 {
5130 	struct ata_port *ap;
5131 	struct ata_link *link;
5132 
5133 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5134 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5135 	ap = qc->ap;
5136 	link = qc->dev->link;
5137 
5138 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5139 		ata_sg_clean(qc);
5140 
5141 	/* command should be marked inactive atomically with qc completion */
5142 	if (ata_is_ncq(qc->tf.protocol)) {
5143 		link->sactive &= ~(1 << qc->tag);
5144 		if (!link->sactive)
5145 			ap->nr_active_links--;
5146 	} else {
5147 		link->active_tag = ATA_TAG_POISON;
5148 		ap->nr_active_links--;
5149 	}
5150 
5151 	/* clear exclusive status */
5152 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5153 		     ap->excl_link == link))
5154 		ap->excl_link = NULL;
5155 
5156 	/* atapi: mark qc as inactive to prevent the interrupt handler
5157 	 * from completing the command twice later, before the error handler
5158 	 * is called. (when rc != 0 and atapi request sense is needed)
5159 	 */
5160 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5161 	ap->qc_active &= ~(1 << qc->tag);
5162 
5163 	/* call completion callback */
5164 	qc->complete_fn(qc);
5165 }
5166 
5167 static void fill_result_tf(struct ata_queued_cmd *qc)
5168 {
5169 	struct ata_port *ap = qc->ap;
5170 
5171 	qc->result_tf.flags = qc->tf.flags;
5172 	ap->ops->qc_fill_rtf(qc);
5173 }
5174 
5175 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5176 {
5177 	struct ata_device *dev = qc->dev;
5178 
5179 	if (!ata_is_data(qc->tf.protocol))
5180 		return;
5181 
5182 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5183 		return;
5184 
5185 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5186 }
5187 
5188 /**
5189  *	ata_qc_complete - Complete an active ATA command
5190  *	@qc: Command to complete
5191  *
5192  *	Indicate to the mid and upper layers that an ATA command has
5193  *	completed, with either an ok or not-ok status.
5194  *
5195  *	Refrain from calling this function multiple times when
5196  *	successfully completing multiple NCQ commands.
5197  *	ata_qc_complete_multiple() should be used instead, which will
5198  *	properly update IRQ expect state.
5199  *
5200  *	LOCKING:
5201  *	spin_lock_irqsave(host lock)
5202  */
5203 void ata_qc_complete(struct ata_queued_cmd *qc)
5204 {
5205 	struct ata_port *ap = qc->ap;
5206 
5207 	/* Trigger the LED (if available) */
5208 	ledtrig_disk_activity();
5209 
5210 	/* XXX: New EH and old EH use different mechanisms to
5211 	 * synchronize EH with regular execution path.
5212 	 *
5213 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5214 	 * Normal execution path is responsible for not accessing a
5215 	 * failed qc.  libata core enforces the rule by returning NULL
5216 	 * from ata_qc_from_tag() for failed qcs.
5217 	 *
5218 	 * Old EH depends on ata_qc_complete() nullifying completion
5219 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5220 	 * not synchronize with interrupt handler.  Only PIO task is
5221 	 * taken care of.
5222 	 */
5223 	if (ap->ops->error_handler) {
5224 		struct ata_device *dev = qc->dev;
5225 		struct ata_eh_info *ehi = &dev->link->eh_info;
5226 
5227 		if (unlikely(qc->err_mask))
5228 			qc->flags |= ATA_QCFLAG_FAILED;
5229 
5230 		/*
5231 		 * Finish internal commands without any further processing
5232 		 * and always with the result TF filled.
5233 		 */
5234 		if (unlikely(ata_tag_internal(qc->tag))) {
5235 			fill_result_tf(qc);
5236 			trace_ata_qc_complete_internal(qc);
5237 			__ata_qc_complete(qc);
5238 			return;
5239 		}
5240 
5241 		/*
5242 		 * Non-internal qc has failed.  Fill the result TF and
5243 		 * summon EH.
5244 		 */
5245 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5246 			fill_result_tf(qc);
5247 			trace_ata_qc_complete_failed(qc);
5248 			ata_qc_schedule_eh(qc);
5249 			return;
5250 		}
5251 
5252 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5253 
5254 		/* read result TF if requested */
5255 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5256 			fill_result_tf(qc);
5257 
5258 		trace_ata_qc_complete_done(qc);
5259 		/* Some commands need post-processing after successful
5260 		 * completion.
5261 		 */
5262 		switch (qc->tf.command) {
5263 		case ATA_CMD_SET_FEATURES:
5264 			if (qc->tf.feature != SETFEATURES_WC_ON &&
5265 			    qc->tf.feature != SETFEATURES_WC_OFF &&
5266 			    qc->tf.feature != SETFEATURES_RA_ON &&
5267 			    qc->tf.feature != SETFEATURES_RA_OFF)
5268 				break;
5269 			/* fall through */
5270 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5271 		case ATA_CMD_SET_MULTI: /* multi_count changed */
5272 			/* revalidate device */
5273 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5274 			ata_port_schedule_eh(ap);
5275 			break;
5276 
5277 		case ATA_CMD_SLEEP:
5278 			dev->flags |= ATA_DFLAG_SLEEPING;
5279 			break;
5280 		}
5281 
5282 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5283 			ata_verify_xfer(qc);
5284 
5285 		__ata_qc_complete(qc);
5286 	} else {
5287 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5288 			return;
5289 
5290 		/* read result TF if failed or requested */
5291 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5292 			fill_result_tf(qc);
5293 
5294 		__ata_qc_complete(qc);
5295 	}
5296 }
5297 
5298 /**
5299  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5300  *	@ap: port in question
5301  *	@qc_active: new qc_active mask
5302  *
5303  *	Complete in-flight commands.  This functions is meant to be
5304  *	called from low-level driver's interrupt routine to complete
5305  *	requests normally.  ap->qc_active and @qc_active is compared
5306  *	and commands are completed accordingly.
5307  *
5308  *	Always use this function when completing multiple NCQ commands
5309  *	from IRQ handlers instead of calling ata_qc_complete()
5310  *	multiple times to keep IRQ expect status properly in sync.
5311  *
5312  *	LOCKING:
5313  *	spin_lock_irqsave(host lock)
5314  *
5315  *	RETURNS:
5316  *	Number of completed commands on success, -errno otherwise.
5317  */
5318 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5319 {
5320 	int nr_done = 0;
5321 	u32 done_mask;
5322 
5323 	done_mask = ap->qc_active ^ qc_active;
5324 
5325 	if (unlikely(done_mask & qc_active)) {
5326 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5327 			     ap->qc_active, qc_active);
5328 		return -EINVAL;
5329 	}
5330 
5331 	while (done_mask) {
5332 		struct ata_queued_cmd *qc;
5333 		unsigned int tag = __ffs(done_mask);
5334 
5335 		qc = ata_qc_from_tag(ap, tag);
5336 		if (qc) {
5337 			ata_qc_complete(qc);
5338 			nr_done++;
5339 		}
5340 		done_mask &= ~(1 << tag);
5341 	}
5342 
5343 	return nr_done;
5344 }
5345 
5346 /**
5347  *	ata_qc_issue - issue taskfile to device
5348  *	@qc: command to issue to device
5349  *
5350  *	Prepare an ATA command to submission to device.
5351  *	This includes mapping the data into a DMA-able
5352  *	area, filling in the S/G table, and finally
5353  *	writing the taskfile to hardware, starting the command.
5354  *
5355  *	LOCKING:
5356  *	spin_lock_irqsave(host lock)
5357  */
5358 void ata_qc_issue(struct ata_queued_cmd *qc)
5359 {
5360 	struct ata_port *ap = qc->ap;
5361 	struct ata_link *link = qc->dev->link;
5362 	u8 prot = qc->tf.protocol;
5363 
5364 	/* Make sure only one non-NCQ command is outstanding.  The
5365 	 * check is skipped for old EH because it reuses active qc to
5366 	 * request ATAPI sense.
5367 	 */
5368 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5369 
5370 	if (ata_is_ncq(prot)) {
5371 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5372 
5373 		if (!link->sactive)
5374 			ap->nr_active_links++;
5375 		link->sactive |= 1 << qc->tag;
5376 	} else {
5377 		WARN_ON_ONCE(link->sactive);
5378 
5379 		ap->nr_active_links++;
5380 		link->active_tag = qc->tag;
5381 	}
5382 
5383 	qc->flags |= ATA_QCFLAG_ACTIVE;
5384 	ap->qc_active |= 1 << qc->tag;
5385 
5386 	/*
5387 	 * We guarantee to LLDs that they will have at least one
5388 	 * non-zero sg if the command is a data command.
5389 	 */
5390 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5391 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5392 		goto sys_err;
5393 
5394 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5395 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5396 		if (ata_sg_setup(qc))
5397 			goto sys_err;
5398 
5399 	/* if device is sleeping, schedule reset and abort the link */
5400 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5401 		link->eh_info.action |= ATA_EH_RESET;
5402 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5403 		ata_link_abort(link);
5404 		return;
5405 	}
5406 
5407 	ap->ops->qc_prep(qc);
5408 	trace_ata_qc_issue(qc);
5409 	qc->err_mask |= ap->ops->qc_issue(qc);
5410 	if (unlikely(qc->err_mask))
5411 		goto err;
5412 	return;
5413 
5414 sys_err:
5415 	qc->err_mask |= AC_ERR_SYSTEM;
5416 err:
5417 	ata_qc_complete(qc);
5418 }
5419 
5420 /**
5421  *	sata_scr_valid - test whether SCRs are accessible
5422  *	@link: ATA link to test SCR accessibility for
5423  *
5424  *	Test whether SCRs are accessible for @link.
5425  *
5426  *	LOCKING:
5427  *	None.
5428  *
5429  *	RETURNS:
5430  *	1 if SCRs are accessible, 0 otherwise.
5431  */
5432 int sata_scr_valid(struct ata_link *link)
5433 {
5434 	struct ata_port *ap = link->ap;
5435 
5436 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5437 }
5438 
5439 /**
5440  *	sata_scr_read - read SCR register of the specified port
5441  *	@link: ATA link to read SCR for
5442  *	@reg: SCR to read
5443  *	@val: Place to store read value
5444  *
5445  *	Read SCR register @reg of @link into *@val.  This function is
5446  *	guaranteed to succeed if @link is ap->link, the cable type of
5447  *	the port is SATA and the port implements ->scr_read.
5448  *
5449  *	LOCKING:
5450  *	None if @link is ap->link.  Kernel thread context otherwise.
5451  *
5452  *	RETURNS:
5453  *	0 on success, negative errno on failure.
5454  */
5455 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5456 {
5457 	if (ata_is_host_link(link)) {
5458 		if (sata_scr_valid(link))
5459 			return link->ap->ops->scr_read(link, reg, val);
5460 		return -EOPNOTSUPP;
5461 	}
5462 
5463 	return sata_pmp_scr_read(link, reg, val);
5464 }
5465 
5466 /**
5467  *	sata_scr_write - write SCR register of the specified port
5468  *	@link: ATA link to write SCR for
5469  *	@reg: SCR to write
5470  *	@val: value to write
5471  *
5472  *	Write @val to SCR register @reg of @link.  This function is
5473  *	guaranteed to succeed if @link is ap->link, the cable type of
5474  *	the port is SATA and the port implements ->scr_read.
5475  *
5476  *	LOCKING:
5477  *	None if @link is ap->link.  Kernel thread context otherwise.
5478  *
5479  *	RETURNS:
5480  *	0 on success, negative errno on failure.
5481  */
5482 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5483 {
5484 	if (ata_is_host_link(link)) {
5485 		if (sata_scr_valid(link))
5486 			return link->ap->ops->scr_write(link, reg, val);
5487 		return -EOPNOTSUPP;
5488 	}
5489 
5490 	return sata_pmp_scr_write(link, reg, val);
5491 }
5492 
5493 /**
5494  *	sata_scr_write_flush - write SCR register of the specified port and flush
5495  *	@link: ATA link to write SCR for
5496  *	@reg: SCR to write
5497  *	@val: value to write
5498  *
5499  *	This function is identical to sata_scr_write() except that this
5500  *	function performs flush after writing to the register.
5501  *
5502  *	LOCKING:
5503  *	None if @link is ap->link.  Kernel thread context otherwise.
5504  *
5505  *	RETURNS:
5506  *	0 on success, negative errno on failure.
5507  */
5508 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5509 {
5510 	if (ata_is_host_link(link)) {
5511 		int rc;
5512 
5513 		if (sata_scr_valid(link)) {
5514 			rc = link->ap->ops->scr_write(link, reg, val);
5515 			if (rc == 0)
5516 				rc = link->ap->ops->scr_read(link, reg, &val);
5517 			return rc;
5518 		}
5519 		return -EOPNOTSUPP;
5520 	}
5521 
5522 	return sata_pmp_scr_write(link, reg, val);
5523 }
5524 
5525 /**
5526  *	ata_phys_link_online - test whether the given link is online
5527  *	@link: ATA link to test
5528  *
5529  *	Test whether @link is online.  Note that this function returns
5530  *	0 if online status of @link cannot be obtained, so
5531  *	ata_link_online(link) != !ata_link_offline(link).
5532  *
5533  *	LOCKING:
5534  *	None.
5535  *
5536  *	RETURNS:
5537  *	True if the port online status is available and online.
5538  */
5539 bool ata_phys_link_online(struct ata_link *link)
5540 {
5541 	u32 sstatus;
5542 
5543 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5544 	    ata_sstatus_online(sstatus))
5545 		return true;
5546 	return false;
5547 }
5548 
5549 /**
5550  *	ata_phys_link_offline - test whether the given link is offline
5551  *	@link: ATA link to test
5552  *
5553  *	Test whether @link is offline.  Note that this function
5554  *	returns 0 if offline status of @link cannot be obtained, so
5555  *	ata_link_online(link) != !ata_link_offline(link).
5556  *
5557  *	LOCKING:
5558  *	None.
5559  *
5560  *	RETURNS:
5561  *	True if the port offline status is available and offline.
5562  */
5563 bool ata_phys_link_offline(struct ata_link *link)
5564 {
5565 	u32 sstatus;
5566 
5567 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5568 	    !ata_sstatus_online(sstatus))
5569 		return true;
5570 	return false;
5571 }
5572 
5573 /**
5574  *	ata_link_online - test whether the given link is online
5575  *	@link: ATA link to test
5576  *
5577  *	Test whether @link is online.  This is identical to
5578  *	ata_phys_link_online() when there's no slave link.  When
5579  *	there's a slave link, this function should only be called on
5580  *	the master link and will return true if any of M/S links is
5581  *	online.
5582  *
5583  *	LOCKING:
5584  *	None.
5585  *
5586  *	RETURNS:
5587  *	True if the port online status is available and online.
5588  */
5589 bool ata_link_online(struct ata_link *link)
5590 {
5591 	struct ata_link *slave = link->ap->slave_link;
5592 
5593 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5594 
5595 	return ata_phys_link_online(link) ||
5596 		(slave && ata_phys_link_online(slave));
5597 }
5598 
5599 /**
5600  *	ata_link_offline - test whether the given link is offline
5601  *	@link: ATA link to test
5602  *
5603  *	Test whether @link is offline.  This is identical to
5604  *	ata_phys_link_offline() when there's no slave link.  When
5605  *	there's a slave link, this function should only be called on
5606  *	the master link and will return true if both M/S links are
5607  *	offline.
5608  *
5609  *	LOCKING:
5610  *	None.
5611  *
5612  *	RETURNS:
5613  *	True if the port offline status is available and offline.
5614  */
5615 bool ata_link_offline(struct ata_link *link)
5616 {
5617 	struct ata_link *slave = link->ap->slave_link;
5618 
5619 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5620 
5621 	return ata_phys_link_offline(link) &&
5622 		(!slave || ata_phys_link_offline(slave));
5623 }
5624 
5625 #ifdef CONFIG_PM
5626 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5627 				unsigned int action, unsigned int ehi_flags,
5628 				bool async)
5629 {
5630 	struct ata_link *link;
5631 	unsigned long flags;
5632 
5633 	/* Previous resume operation might still be in
5634 	 * progress.  Wait for PM_PENDING to clear.
5635 	 */
5636 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5637 		ata_port_wait_eh(ap);
5638 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5639 	}
5640 
5641 	/* request PM ops to EH */
5642 	spin_lock_irqsave(ap->lock, flags);
5643 
5644 	ap->pm_mesg = mesg;
5645 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5646 	ata_for_each_link(link, ap, HOST_FIRST) {
5647 		link->eh_info.action |= action;
5648 		link->eh_info.flags |= ehi_flags;
5649 	}
5650 
5651 	ata_port_schedule_eh(ap);
5652 
5653 	spin_unlock_irqrestore(ap->lock, flags);
5654 
5655 	if (!async) {
5656 		ata_port_wait_eh(ap);
5657 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5658 	}
5659 }
5660 
5661 /*
5662  * On some hardware, device fails to respond after spun down for suspend.  As
5663  * the device won't be used before being resumed, we don't need to touch the
5664  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5665  *
5666  * http://thread.gmane.org/gmane.linux.ide/46764
5667  */
5668 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5669 						 | ATA_EHI_NO_AUTOPSY
5670 						 | ATA_EHI_NO_RECOVERY;
5671 
5672 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5673 {
5674 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5675 }
5676 
5677 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5678 {
5679 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5680 }
5681 
5682 static int ata_port_pm_suspend(struct device *dev)
5683 {
5684 	struct ata_port *ap = to_ata_port(dev);
5685 
5686 	if (pm_runtime_suspended(dev))
5687 		return 0;
5688 
5689 	ata_port_suspend(ap, PMSG_SUSPEND);
5690 	return 0;
5691 }
5692 
5693 static int ata_port_pm_freeze(struct device *dev)
5694 {
5695 	struct ata_port *ap = to_ata_port(dev);
5696 
5697 	if (pm_runtime_suspended(dev))
5698 		return 0;
5699 
5700 	ata_port_suspend(ap, PMSG_FREEZE);
5701 	return 0;
5702 }
5703 
5704 static int ata_port_pm_poweroff(struct device *dev)
5705 {
5706 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5707 	return 0;
5708 }
5709 
5710 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5711 						| ATA_EHI_QUIET;
5712 
5713 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5714 {
5715 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5716 }
5717 
5718 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5719 {
5720 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5721 }
5722 
5723 static int ata_port_pm_resume(struct device *dev)
5724 {
5725 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5726 	pm_runtime_disable(dev);
5727 	pm_runtime_set_active(dev);
5728 	pm_runtime_enable(dev);
5729 	return 0;
5730 }
5731 
5732 /*
5733  * For ODDs, the upper layer will poll for media change every few seconds,
5734  * which will make it enter and leave suspend state every few seconds. And
5735  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5736  * is very little and the ODD may malfunction after constantly being reset.
5737  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5738  * ODD is attached to the port.
5739  */
5740 static int ata_port_runtime_idle(struct device *dev)
5741 {
5742 	struct ata_port *ap = to_ata_port(dev);
5743 	struct ata_link *link;
5744 	struct ata_device *adev;
5745 
5746 	ata_for_each_link(link, ap, HOST_FIRST) {
5747 		ata_for_each_dev(adev, link, ENABLED)
5748 			if (adev->class == ATA_DEV_ATAPI &&
5749 			    !zpodd_dev_enabled(adev))
5750 				return -EBUSY;
5751 	}
5752 
5753 	return 0;
5754 }
5755 
5756 static int ata_port_runtime_suspend(struct device *dev)
5757 {
5758 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5759 	return 0;
5760 }
5761 
5762 static int ata_port_runtime_resume(struct device *dev)
5763 {
5764 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5765 	return 0;
5766 }
5767 
5768 static const struct dev_pm_ops ata_port_pm_ops = {
5769 	.suspend = ata_port_pm_suspend,
5770 	.resume = ata_port_pm_resume,
5771 	.freeze = ata_port_pm_freeze,
5772 	.thaw = ata_port_pm_resume,
5773 	.poweroff = ata_port_pm_poweroff,
5774 	.restore = ata_port_pm_resume,
5775 
5776 	.runtime_suspend = ata_port_runtime_suspend,
5777 	.runtime_resume = ata_port_runtime_resume,
5778 	.runtime_idle = ata_port_runtime_idle,
5779 };
5780 
5781 /* sas ports don't participate in pm runtime management of ata_ports,
5782  * and need to resume ata devices at the domain level, not the per-port
5783  * level. sas suspend/resume is async to allow parallel port recovery
5784  * since sas has multiple ata_port instances per Scsi_Host.
5785  */
5786 void ata_sas_port_suspend(struct ata_port *ap)
5787 {
5788 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5789 }
5790 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5791 
5792 void ata_sas_port_resume(struct ata_port *ap)
5793 {
5794 	ata_port_resume_async(ap, PMSG_RESUME);
5795 }
5796 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5797 
5798 /**
5799  *	ata_host_suspend - suspend host
5800  *	@host: host to suspend
5801  *	@mesg: PM message
5802  *
5803  *	Suspend @host.  Actual operation is performed by port suspend.
5804  */
5805 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5806 {
5807 	host->dev->power.power_state = mesg;
5808 	return 0;
5809 }
5810 
5811 /**
5812  *	ata_host_resume - resume host
5813  *	@host: host to resume
5814  *
5815  *	Resume @host.  Actual operation is performed by port resume.
5816  */
5817 void ata_host_resume(struct ata_host *host)
5818 {
5819 	host->dev->power.power_state = PMSG_ON;
5820 }
5821 #endif
5822 
5823 struct device_type ata_port_type = {
5824 	.name = "ata_port",
5825 #ifdef CONFIG_PM
5826 	.pm = &ata_port_pm_ops,
5827 #endif
5828 };
5829 
5830 /**
5831  *	ata_dev_init - Initialize an ata_device structure
5832  *	@dev: Device structure to initialize
5833  *
5834  *	Initialize @dev in preparation for probing.
5835  *
5836  *	LOCKING:
5837  *	Inherited from caller.
5838  */
5839 void ata_dev_init(struct ata_device *dev)
5840 {
5841 	struct ata_link *link = ata_dev_phys_link(dev);
5842 	struct ata_port *ap = link->ap;
5843 	unsigned long flags;
5844 
5845 	/* SATA spd limit is bound to the attached device, reset together */
5846 	link->sata_spd_limit = link->hw_sata_spd_limit;
5847 	link->sata_spd = 0;
5848 
5849 	/* High bits of dev->flags are used to record warm plug
5850 	 * requests which occur asynchronously.  Synchronize using
5851 	 * host lock.
5852 	 */
5853 	spin_lock_irqsave(ap->lock, flags);
5854 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5855 	dev->horkage = 0;
5856 	spin_unlock_irqrestore(ap->lock, flags);
5857 
5858 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5859 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5860 	dev->pio_mask = UINT_MAX;
5861 	dev->mwdma_mask = UINT_MAX;
5862 	dev->udma_mask = UINT_MAX;
5863 }
5864 
5865 /**
5866  *	ata_link_init - Initialize an ata_link structure
5867  *	@ap: ATA port link is attached to
5868  *	@link: Link structure to initialize
5869  *	@pmp: Port multiplier port number
5870  *
5871  *	Initialize @link.
5872  *
5873  *	LOCKING:
5874  *	Kernel thread context (may sleep)
5875  */
5876 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5877 {
5878 	int i;
5879 
5880 	/* clear everything except for devices */
5881 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5882 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5883 
5884 	link->ap = ap;
5885 	link->pmp = pmp;
5886 	link->active_tag = ATA_TAG_POISON;
5887 	link->hw_sata_spd_limit = UINT_MAX;
5888 
5889 	/* can't use iterator, ap isn't initialized yet */
5890 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5891 		struct ata_device *dev = &link->device[i];
5892 
5893 		dev->link = link;
5894 		dev->devno = dev - link->device;
5895 #ifdef CONFIG_ATA_ACPI
5896 		dev->gtf_filter = ata_acpi_gtf_filter;
5897 #endif
5898 		ata_dev_init(dev);
5899 	}
5900 }
5901 
5902 /**
5903  *	sata_link_init_spd - Initialize link->sata_spd_limit
5904  *	@link: Link to configure sata_spd_limit for
5905  *
5906  *	Initialize @link->[hw_]sata_spd_limit to the currently
5907  *	configured value.
5908  *
5909  *	LOCKING:
5910  *	Kernel thread context (may sleep).
5911  *
5912  *	RETURNS:
5913  *	0 on success, -errno on failure.
5914  */
5915 int sata_link_init_spd(struct ata_link *link)
5916 {
5917 	u8 spd;
5918 	int rc;
5919 
5920 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5921 	if (rc)
5922 		return rc;
5923 
5924 	spd = (link->saved_scontrol >> 4) & 0xf;
5925 	if (spd)
5926 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5927 
5928 	ata_force_link_limits(link);
5929 
5930 	link->sata_spd_limit = link->hw_sata_spd_limit;
5931 
5932 	return 0;
5933 }
5934 
5935 /**
5936  *	ata_port_alloc - allocate and initialize basic ATA port resources
5937  *	@host: ATA host this allocated port belongs to
5938  *
5939  *	Allocate and initialize basic ATA port resources.
5940  *
5941  *	RETURNS:
5942  *	Allocate ATA port on success, NULL on failure.
5943  *
5944  *	LOCKING:
5945  *	Inherited from calling layer (may sleep).
5946  */
5947 struct ata_port *ata_port_alloc(struct ata_host *host)
5948 {
5949 	struct ata_port *ap;
5950 
5951 	DPRINTK("ENTER\n");
5952 
5953 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5954 	if (!ap)
5955 		return NULL;
5956 
5957 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5958 	ap->lock = &host->lock;
5959 	ap->print_id = -1;
5960 	ap->local_port_no = -1;
5961 	ap->host = host;
5962 	ap->dev = host->dev;
5963 
5964 #if defined(ATA_VERBOSE_DEBUG)
5965 	/* turn on all debugging levels */
5966 	ap->msg_enable = 0x00FF;
5967 #elif defined(ATA_DEBUG)
5968 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5969 #else
5970 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5971 #endif
5972 
5973 	mutex_init(&ap->scsi_scan_mutex);
5974 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5975 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5976 	INIT_LIST_HEAD(&ap->eh_done_q);
5977 	init_waitqueue_head(&ap->eh_wait_q);
5978 	init_completion(&ap->park_req_pending);
5979 	setup_deferrable_timer(&ap->fastdrain_timer,
5980 			       ata_eh_fastdrain_timerfn,
5981 			       (unsigned long)ap);
5982 
5983 	ap->cbl = ATA_CBL_NONE;
5984 
5985 	ata_link_init(ap, &ap->link, 0);
5986 
5987 #ifdef ATA_IRQ_TRAP
5988 	ap->stats.unhandled_irq = 1;
5989 	ap->stats.idle_irq = 1;
5990 #endif
5991 	ata_sff_port_init(ap);
5992 
5993 	return ap;
5994 }
5995 
5996 static void ata_host_release(struct device *gendev, void *res)
5997 {
5998 	struct ata_host *host = dev_get_drvdata(gendev);
5999 	int i;
6000 
6001 	for (i = 0; i < host->n_ports; i++) {
6002 		struct ata_port *ap = host->ports[i];
6003 
6004 		if (!ap)
6005 			continue;
6006 
6007 		if (ap->scsi_host)
6008 			scsi_host_put(ap->scsi_host);
6009 
6010 		kfree(ap->pmp_link);
6011 		kfree(ap->slave_link);
6012 		kfree(ap);
6013 		host->ports[i] = NULL;
6014 	}
6015 
6016 	dev_set_drvdata(gendev, NULL);
6017 }
6018 
6019 /**
6020  *	ata_host_alloc - allocate and init basic ATA host resources
6021  *	@dev: generic device this host is associated with
6022  *	@max_ports: maximum number of ATA ports associated with this host
6023  *
6024  *	Allocate and initialize basic ATA host resources.  LLD calls
6025  *	this function to allocate a host, initializes it fully and
6026  *	attaches it using ata_host_register().
6027  *
6028  *	@max_ports ports are allocated and host->n_ports is
6029  *	initialized to @max_ports.  The caller is allowed to decrease
6030  *	host->n_ports before calling ata_host_register().  The unused
6031  *	ports will be automatically freed on registration.
6032  *
6033  *	RETURNS:
6034  *	Allocate ATA host on success, NULL on failure.
6035  *
6036  *	LOCKING:
6037  *	Inherited from calling layer (may sleep).
6038  */
6039 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6040 {
6041 	struct ata_host *host;
6042 	size_t sz;
6043 	int i;
6044 
6045 	DPRINTK("ENTER\n");
6046 
6047 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
6048 		return NULL;
6049 
6050 	/* alloc a container for our list of ATA ports (buses) */
6051 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6052 	/* alloc a container for our list of ATA ports (buses) */
6053 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6054 	if (!host)
6055 		goto err_out;
6056 
6057 	devres_add(dev, host);
6058 	dev_set_drvdata(dev, host);
6059 
6060 	spin_lock_init(&host->lock);
6061 	mutex_init(&host->eh_mutex);
6062 	host->dev = dev;
6063 	host->n_ports = max_ports;
6064 
6065 	/* allocate ports bound to this host */
6066 	for (i = 0; i < max_ports; i++) {
6067 		struct ata_port *ap;
6068 
6069 		ap = ata_port_alloc(host);
6070 		if (!ap)
6071 			goto err_out;
6072 
6073 		ap->port_no = i;
6074 		host->ports[i] = ap;
6075 	}
6076 
6077 	devres_remove_group(dev, NULL);
6078 	return host;
6079 
6080  err_out:
6081 	devres_release_group(dev, NULL);
6082 	return NULL;
6083 }
6084 
6085 /**
6086  *	ata_host_alloc_pinfo - alloc host and init with port_info array
6087  *	@dev: generic device this host is associated with
6088  *	@ppi: array of ATA port_info to initialize host with
6089  *	@n_ports: number of ATA ports attached to this host
6090  *
6091  *	Allocate ATA host and initialize with info from @ppi.  If NULL
6092  *	terminated, @ppi may contain fewer entries than @n_ports.  The
6093  *	last entry will be used for the remaining ports.
6094  *
6095  *	RETURNS:
6096  *	Allocate ATA host on success, NULL on failure.
6097  *
6098  *	LOCKING:
6099  *	Inherited from calling layer (may sleep).
6100  */
6101 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6102 				      const struct ata_port_info * const * ppi,
6103 				      int n_ports)
6104 {
6105 	const struct ata_port_info *pi;
6106 	struct ata_host *host;
6107 	int i, j;
6108 
6109 	host = ata_host_alloc(dev, n_ports);
6110 	if (!host)
6111 		return NULL;
6112 
6113 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6114 		struct ata_port *ap = host->ports[i];
6115 
6116 		if (ppi[j])
6117 			pi = ppi[j++];
6118 
6119 		ap->pio_mask = pi->pio_mask;
6120 		ap->mwdma_mask = pi->mwdma_mask;
6121 		ap->udma_mask = pi->udma_mask;
6122 		ap->flags |= pi->flags;
6123 		ap->link.flags |= pi->link_flags;
6124 		ap->ops = pi->port_ops;
6125 
6126 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6127 			host->ops = pi->port_ops;
6128 	}
6129 
6130 	return host;
6131 }
6132 
6133 /**
6134  *	ata_slave_link_init - initialize slave link
6135  *	@ap: port to initialize slave link for
6136  *
6137  *	Create and initialize slave link for @ap.  This enables slave
6138  *	link handling on the port.
6139  *
6140  *	In libata, a port contains links and a link contains devices.
6141  *	There is single host link but if a PMP is attached to it,
6142  *	there can be multiple fan-out links.  On SATA, there's usually
6143  *	a single device connected to a link but PATA and SATA
6144  *	controllers emulating TF based interface can have two - master
6145  *	and slave.
6146  *
6147  *	However, there are a few controllers which don't fit into this
6148  *	abstraction too well - SATA controllers which emulate TF
6149  *	interface with both master and slave devices but also have
6150  *	separate SCR register sets for each device.  These controllers
6151  *	need separate links for physical link handling
6152  *	(e.g. onlineness, link speed) but should be treated like a
6153  *	traditional M/S controller for everything else (e.g. command
6154  *	issue, softreset).
6155  *
6156  *	slave_link is libata's way of handling this class of
6157  *	controllers without impacting core layer too much.  For
6158  *	anything other than physical link handling, the default host
6159  *	link is used for both master and slave.  For physical link
6160  *	handling, separate @ap->slave_link is used.  All dirty details
6161  *	are implemented inside libata core layer.  From LLD's POV, the
6162  *	only difference is that prereset, hardreset and postreset are
6163  *	called once more for the slave link, so the reset sequence
6164  *	looks like the following.
6165  *
6166  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6167  *	softreset(M) -> postreset(M) -> postreset(S)
6168  *
6169  *	Note that softreset is called only for the master.  Softreset
6170  *	resets both M/S by definition, so SRST on master should handle
6171  *	both (the standard method will work just fine).
6172  *
6173  *	LOCKING:
6174  *	Should be called before host is registered.
6175  *
6176  *	RETURNS:
6177  *	0 on success, -errno on failure.
6178  */
6179 int ata_slave_link_init(struct ata_port *ap)
6180 {
6181 	struct ata_link *link;
6182 
6183 	WARN_ON(ap->slave_link);
6184 	WARN_ON(ap->flags & ATA_FLAG_PMP);
6185 
6186 	link = kzalloc(sizeof(*link), GFP_KERNEL);
6187 	if (!link)
6188 		return -ENOMEM;
6189 
6190 	ata_link_init(ap, link, 1);
6191 	ap->slave_link = link;
6192 	return 0;
6193 }
6194 
6195 static void ata_host_stop(struct device *gendev, void *res)
6196 {
6197 	struct ata_host *host = dev_get_drvdata(gendev);
6198 	int i;
6199 
6200 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
6201 
6202 	for (i = 0; i < host->n_ports; i++) {
6203 		struct ata_port *ap = host->ports[i];
6204 
6205 		if (ap->ops->port_stop)
6206 			ap->ops->port_stop(ap);
6207 	}
6208 
6209 	if (host->ops->host_stop)
6210 		host->ops->host_stop(host);
6211 }
6212 
6213 /**
6214  *	ata_finalize_port_ops - finalize ata_port_operations
6215  *	@ops: ata_port_operations to finalize
6216  *
6217  *	An ata_port_operations can inherit from another ops and that
6218  *	ops can again inherit from another.  This can go on as many
6219  *	times as necessary as long as there is no loop in the
6220  *	inheritance chain.
6221  *
6222  *	Ops tables are finalized when the host is started.  NULL or
6223  *	unspecified entries are inherited from the closet ancestor
6224  *	which has the method and the entry is populated with it.
6225  *	After finalization, the ops table directly points to all the
6226  *	methods and ->inherits is no longer necessary and cleared.
6227  *
6228  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6229  *
6230  *	LOCKING:
6231  *	None.
6232  */
6233 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6234 {
6235 	static DEFINE_SPINLOCK(lock);
6236 	const struct ata_port_operations *cur;
6237 	void **begin = (void **)ops;
6238 	void **end = (void **)&ops->inherits;
6239 	void **pp;
6240 
6241 	if (!ops || !ops->inherits)
6242 		return;
6243 
6244 	spin_lock(&lock);
6245 
6246 	for (cur = ops->inherits; cur; cur = cur->inherits) {
6247 		void **inherit = (void **)cur;
6248 
6249 		for (pp = begin; pp < end; pp++, inherit++)
6250 			if (!*pp)
6251 				*pp = *inherit;
6252 	}
6253 
6254 	for (pp = begin; pp < end; pp++)
6255 		if (IS_ERR(*pp))
6256 			*pp = NULL;
6257 
6258 	ops->inherits = NULL;
6259 
6260 	spin_unlock(&lock);
6261 }
6262 
6263 /**
6264  *	ata_host_start - start and freeze ports of an ATA host
6265  *	@host: ATA host to start ports for
6266  *
6267  *	Start and then freeze ports of @host.  Started status is
6268  *	recorded in host->flags, so this function can be called
6269  *	multiple times.  Ports are guaranteed to get started only
6270  *	once.  If host->ops isn't initialized yet, its set to the
6271  *	first non-dummy port ops.
6272  *
6273  *	LOCKING:
6274  *	Inherited from calling layer (may sleep).
6275  *
6276  *	RETURNS:
6277  *	0 if all ports are started successfully, -errno otherwise.
6278  */
6279 int ata_host_start(struct ata_host *host)
6280 {
6281 	int have_stop = 0;
6282 	void *start_dr = NULL;
6283 	int i, rc;
6284 
6285 	if (host->flags & ATA_HOST_STARTED)
6286 		return 0;
6287 
6288 	ata_finalize_port_ops(host->ops);
6289 
6290 	for (i = 0; i < host->n_ports; i++) {
6291 		struct ata_port *ap = host->ports[i];
6292 
6293 		ata_finalize_port_ops(ap->ops);
6294 
6295 		if (!host->ops && !ata_port_is_dummy(ap))
6296 			host->ops = ap->ops;
6297 
6298 		if (ap->ops->port_stop)
6299 			have_stop = 1;
6300 	}
6301 
6302 	if (host->ops->host_stop)
6303 		have_stop = 1;
6304 
6305 	if (have_stop) {
6306 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6307 		if (!start_dr)
6308 			return -ENOMEM;
6309 	}
6310 
6311 	for (i = 0; i < host->n_ports; i++) {
6312 		struct ata_port *ap = host->ports[i];
6313 
6314 		if (ap->ops->port_start) {
6315 			rc = ap->ops->port_start(ap);
6316 			if (rc) {
6317 				if (rc != -ENODEV)
6318 					dev_err(host->dev,
6319 						"failed to start port %d (errno=%d)\n",
6320 						i, rc);
6321 				goto err_out;
6322 			}
6323 		}
6324 		ata_eh_freeze_port(ap);
6325 	}
6326 
6327 	if (start_dr)
6328 		devres_add(host->dev, start_dr);
6329 	host->flags |= ATA_HOST_STARTED;
6330 	return 0;
6331 
6332  err_out:
6333 	while (--i >= 0) {
6334 		struct ata_port *ap = host->ports[i];
6335 
6336 		if (ap->ops->port_stop)
6337 			ap->ops->port_stop(ap);
6338 	}
6339 	devres_free(start_dr);
6340 	return rc;
6341 }
6342 
6343 /**
6344  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6345  *	@host:	host to initialize
6346  *	@dev:	device host is attached to
6347  *	@ops:	port_ops
6348  *
6349  */
6350 void ata_host_init(struct ata_host *host, struct device *dev,
6351 		   struct ata_port_operations *ops)
6352 {
6353 	spin_lock_init(&host->lock);
6354 	mutex_init(&host->eh_mutex);
6355 	host->n_tags = ATA_MAX_QUEUE - 1;
6356 	host->dev = dev;
6357 	host->ops = ops;
6358 }
6359 
6360 void __ata_port_probe(struct ata_port *ap)
6361 {
6362 	struct ata_eh_info *ehi = &ap->link.eh_info;
6363 	unsigned long flags;
6364 
6365 	/* kick EH for boot probing */
6366 	spin_lock_irqsave(ap->lock, flags);
6367 
6368 	ehi->probe_mask |= ATA_ALL_DEVICES;
6369 	ehi->action |= ATA_EH_RESET;
6370 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6371 
6372 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6373 	ap->pflags |= ATA_PFLAG_LOADING;
6374 	ata_port_schedule_eh(ap);
6375 
6376 	spin_unlock_irqrestore(ap->lock, flags);
6377 }
6378 
6379 int ata_port_probe(struct ata_port *ap)
6380 {
6381 	int rc = 0;
6382 
6383 	if (ap->ops->error_handler) {
6384 		__ata_port_probe(ap);
6385 		ata_port_wait_eh(ap);
6386 	} else {
6387 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6388 		rc = ata_bus_probe(ap);
6389 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6390 	}
6391 	return rc;
6392 }
6393 
6394 
6395 static void async_port_probe(void *data, async_cookie_t cookie)
6396 {
6397 	struct ata_port *ap = data;
6398 
6399 	/*
6400 	 * If we're not allowed to scan this host in parallel,
6401 	 * we need to wait until all previous scans have completed
6402 	 * before going further.
6403 	 * Jeff Garzik says this is only within a controller, so we
6404 	 * don't need to wait for port 0, only for later ports.
6405 	 */
6406 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6407 		async_synchronize_cookie(cookie);
6408 
6409 	(void)ata_port_probe(ap);
6410 
6411 	/* in order to keep device order, we need to synchronize at this point */
6412 	async_synchronize_cookie(cookie);
6413 
6414 	ata_scsi_scan_host(ap, 1);
6415 }
6416 
6417 /**
6418  *	ata_host_register - register initialized ATA host
6419  *	@host: ATA host to register
6420  *	@sht: template for SCSI host
6421  *
6422  *	Register initialized ATA host.  @host is allocated using
6423  *	ata_host_alloc() and fully initialized by LLD.  This function
6424  *	starts ports, registers @host with ATA and SCSI layers and
6425  *	probe registered devices.
6426  *
6427  *	LOCKING:
6428  *	Inherited from calling layer (may sleep).
6429  *
6430  *	RETURNS:
6431  *	0 on success, -errno otherwise.
6432  */
6433 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6434 {
6435 	int i, rc;
6436 
6437 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6438 
6439 	/* host must have been started */
6440 	if (!(host->flags & ATA_HOST_STARTED)) {
6441 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6442 		WARN_ON(1);
6443 		return -EINVAL;
6444 	}
6445 
6446 	/* Blow away unused ports.  This happens when LLD can't
6447 	 * determine the exact number of ports to allocate at
6448 	 * allocation time.
6449 	 */
6450 	for (i = host->n_ports; host->ports[i]; i++)
6451 		kfree(host->ports[i]);
6452 
6453 	/* give ports names and add SCSI hosts */
6454 	for (i = 0; i < host->n_ports; i++) {
6455 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6456 		host->ports[i]->local_port_no = i + 1;
6457 	}
6458 
6459 	/* Create associated sysfs transport objects  */
6460 	for (i = 0; i < host->n_ports; i++) {
6461 		rc = ata_tport_add(host->dev,host->ports[i]);
6462 		if (rc) {
6463 			goto err_tadd;
6464 		}
6465 	}
6466 
6467 	rc = ata_scsi_add_hosts(host, sht);
6468 	if (rc)
6469 		goto err_tadd;
6470 
6471 	/* set cable, sata_spd_limit and report */
6472 	for (i = 0; i < host->n_ports; i++) {
6473 		struct ata_port *ap = host->ports[i];
6474 		unsigned long xfer_mask;
6475 
6476 		/* set SATA cable type if still unset */
6477 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6478 			ap->cbl = ATA_CBL_SATA;
6479 
6480 		/* init sata_spd_limit to the current value */
6481 		sata_link_init_spd(&ap->link);
6482 		if (ap->slave_link)
6483 			sata_link_init_spd(ap->slave_link);
6484 
6485 		/* print per-port info to dmesg */
6486 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6487 					      ap->udma_mask);
6488 
6489 		if (!ata_port_is_dummy(ap)) {
6490 			ata_port_info(ap, "%cATA max %s %s\n",
6491 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6492 				      ata_mode_string(xfer_mask),
6493 				      ap->link.eh_info.desc);
6494 			ata_ehi_clear_desc(&ap->link.eh_info);
6495 		} else
6496 			ata_port_info(ap, "DUMMY\n");
6497 	}
6498 
6499 	/* perform each probe asynchronously */
6500 	for (i = 0; i < host->n_ports; i++) {
6501 		struct ata_port *ap = host->ports[i];
6502 		async_schedule(async_port_probe, ap);
6503 	}
6504 
6505 	return 0;
6506 
6507  err_tadd:
6508 	while (--i >= 0) {
6509 		ata_tport_delete(host->ports[i]);
6510 	}
6511 	return rc;
6512 
6513 }
6514 
6515 /**
6516  *	ata_host_activate - start host, request IRQ and register it
6517  *	@host: target ATA host
6518  *	@irq: IRQ to request
6519  *	@irq_handler: irq_handler used when requesting IRQ
6520  *	@irq_flags: irq_flags used when requesting IRQ
6521  *	@sht: scsi_host_template to use when registering the host
6522  *
6523  *	After allocating an ATA host and initializing it, most libata
6524  *	LLDs perform three steps to activate the host - start host,
6525  *	request IRQ and register it.  This helper takes necessary
6526  *	arguments and performs the three steps in one go.
6527  *
6528  *	An invalid IRQ skips the IRQ registration and expects the host to
6529  *	have set polling mode on the port. In this case, @irq_handler
6530  *	should be NULL.
6531  *
6532  *	LOCKING:
6533  *	Inherited from calling layer (may sleep).
6534  *
6535  *	RETURNS:
6536  *	0 on success, -errno otherwise.
6537  */
6538 int ata_host_activate(struct ata_host *host, int irq,
6539 		      irq_handler_t irq_handler, unsigned long irq_flags,
6540 		      struct scsi_host_template *sht)
6541 {
6542 	int i, rc;
6543 	char *irq_desc;
6544 
6545 	rc = ata_host_start(host);
6546 	if (rc)
6547 		return rc;
6548 
6549 	/* Special case for polling mode */
6550 	if (!irq) {
6551 		WARN_ON(irq_handler);
6552 		return ata_host_register(host, sht);
6553 	}
6554 
6555 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6556 				  dev_driver_string(host->dev),
6557 				  dev_name(host->dev));
6558 	if (!irq_desc)
6559 		return -ENOMEM;
6560 
6561 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6562 			      irq_desc, host);
6563 	if (rc)
6564 		return rc;
6565 
6566 	for (i = 0; i < host->n_ports; i++)
6567 		ata_port_desc(host->ports[i], "irq %d", irq);
6568 
6569 	rc = ata_host_register(host, sht);
6570 	/* if failed, just free the IRQ and leave ports alone */
6571 	if (rc)
6572 		devm_free_irq(host->dev, irq, host);
6573 
6574 	return rc;
6575 }
6576 
6577 /**
6578  *	ata_port_detach - Detach ATA port in preparation of device removal
6579  *	@ap: ATA port to be detached
6580  *
6581  *	Detach all ATA devices and the associated SCSI devices of @ap;
6582  *	then, remove the associated SCSI host.  @ap is guaranteed to
6583  *	be quiescent on return from this function.
6584  *
6585  *	LOCKING:
6586  *	Kernel thread context (may sleep).
6587  */
6588 static void ata_port_detach(struct ata_port *ap)
6589 {
6590 	unsigned long flags;
6591 	struct ata_link *link;
6592 	struct ata_device *dev;
6593 
6594 	if (!ap->ops->error_handler)
6595 		goto skip_eh;
6596 
6597 	/* tell EH we're leaving & flush EH */
6598 	spin_lock_irqsave(ap->lock, flags);
6599 	ap->pflags |= ATA_PFLAG_UNLOADING;
6600 	ata_port_schedule_eh(ap);
6601 	spin_unlock_irqrestore(ap->lock, flags);
6602 
6603 	/* wait till EH commits suicide */
6604 	ata_port_wait_eh(ap);
6605 
6606 	/* it better be dead now */
6607 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6608 
6609 	cancel_delayed_work_sync(&ap->hotplug_task);
6610 
6611  skip_eh:
6612 	/* clean up zpodd on port removal */
6613 	ata_for_each_link(link, ap, HOST_FIRST) {
6614 		ata_for_each_dev(dev, link, ALL) {
6615 			if (zpodd_dev_enabled(dev))
6616 				zpodd_exit(dev);
6617 		}
6618 	}
6619 	if (ap->pmp_link) {
6620 		int i;
6621 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6622 			ata_tlink_delete(&ap->pmp_link[i]);
6623 	}
6624 	/* remove the associated SCSI host */
6625 	scsi_remove_host(ap->scsi_host);
6626 	ata_tport_delete(ap);
6627 }
6628 
6629 /**
6630  *	ata_host_detach - Detach all ports of an ATA host
6631  *	@host: Host to detach
6632  *
6633  *	Detach all ports of @host.
6634  *
6635  *	LOCKING:
6636  *	Kernel thread context (may sleep).
6637  */
6638 void ata_host_detach(struct ata_host *host)
6639 {
6640 	int i;
6641 
6642 	for (i = 0; i < host->n_ports; i++)
6643 		ata_port_detach(host->ports[i]);
6644 
6645 	/* the host is dead now, dissociate ACPI */
6646 	ata_acpi_dissociate(host);
6647 }
6648 
6649 #ifdef CONFIG_PCI
6650 
6651 /**
6652  *	ata_pci_remove_one - PCI layer callback for device removal
6653  *	@pdev: PCI device that was removed
6654  *
6655  *	PCI layer indicates to libata via this hook that hot-unplug or
6656  *	module unload event has occurred.  Detach all ports.  Resource
6657  *	release is handled via devres.
6658  *
6659  *	LOCKING:
6660  *	Inherited from PCI layer (may sleep).
6661  */
6662 void ata_pci_remove_one(struct pci_dev *pdev)
6663 {
6664 	struct ata_host *host = pci_get_drvdata(pdev);
6665 
6666 	ata_host_detach(host);
6667 }
6668 
6669 /* move to PCI subsystem */
6670 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6671 {
6672 	unsigned long tmp = 0;
6673 
6674 	switch (bits->width) {
6675 	case 1: {
6676 		u8 tmp8 = 0;
6677 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6678 		tmp = tmp8;
6679 		break;
6680 	}
6681 	case 2: {
6682 		u16 tmp16 = 0;
6683 		pci_read_config_word(pdev, bits->reg, &tmp16);
6684 		tmp = tmp16;
6685 		break;
6686 	}
6687 	case 4: {
6688 		u32 tmp32 = 0;
6689 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6690 		tmp = tmp32;
6691 		break;
6692 	}
6693 
6694 	default:
6695 		return -EINVAL;
6696 	}
6697 
6698 	tmp &= bits->mask;
6699 
6700 	return (tmp == bits->val) ? 1 : 0;
6701 }
6702 
6703 #ifdef CONFIG_PM
6704 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6705 {
6706 	pci_save_state(pdev);
6707 	pci_disable_device(pdev);
6708 
6709 	if (mesg.event & PM_EVENT_SLEEP)
6710 		pci_set_power_state(pdev, PCI_D3hot);
6711 }
6712 
6713 int ata_pci_device_do_resume(struct pci_dev *pdev)
6714 {
6715 	int rc;
6716 
6717 	pci_set_power_state(pdev, PCI_D0);
6718 	pci_restore_state(pdev);
6719 
6720 	rc = pcim_enable_device(pdev);
6721 	if (rc) {
6722 		dev_err(&pdev->dev,
6723 			"failed to enable device after resume (%d)\n", rc);
6724 		return rc;
6725 	}
6726 
6727 	pci_set_master(pdev);
6728 	return 0;
6729 }
6730 
6731 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6732 {
6733 	struct ata_host *host = pci_get_drvdata(pdev);
6734 	int rc = 0;
6735 
6736 	rc = ata_host_suspend(host, mesg);
6737 	if (rc)
6738 		return rc;
6739 
6740 	ata_pci_device_do_suspend(pdev, mesg);
6741 
6742 	return 0;
6743 }
6744 
6745 int ata_pci_device_resume(struct pci_dev *pdev)
6746 {
6747 	struct ata_host *host = pci_get_drvdata(pdev);
6748 	int rc;
6749 
6750 	rc = ata_pci_device_do_resume(pdev);
6751 	if (rc == 0)
6752 		ata_host_resume(host);
6753 	return rc;
6754 }
6755 #endif /* CONFIG_PM */
6756 
6757 #endif /* CONFIG_PCI */
6758 
6759 /**
6760  *	ata_platform_remove_one - Platform layer callback for device removal
6761  *	@pdev: Platform device that was removed
6762  *
6763  *	Platform layer indicates to libata via this hook that hot-unplug or
6764  *	module unload event has occurred.  Detach all ports.  Resource
6765  *	release is handled via devres.
6766  *
6767  *	LOCKING:
6768  *	Inherited from platform layer (may sleep).
6769  */
6770 int ata_platform_remove_one(struct platform_device *pdev)
6771 {
6772 	struct ata_host *host = platform_get_drvdata(pdev);
6773 
6774 	ata_host_detach(host);
6775 
6776 	return 0;
6777 }
6778 
6779 static int __init ata_parse_force_one(char **cur,
6780 				      struct ata_force_ent *force_ent,
6781 				      const char **reason)
6782 {
6783 	static const struct ata_force_param force_tbl[] __initconst = {
6784 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6785 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6786 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6787 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6788 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6789 		{ "sata",	.cbl		= ATA_CBL_SATA },
6790 		{ "1.5Gbps",	.spd_limit	= 1 },
6791 		{ "3.0Gbps",	.spd_limit	= 2 },
6792 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6793 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6794 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6795 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6796 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6797 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6798 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6799 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6800 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6801 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6802 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6803 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6804 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6805 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6806 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6807 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6808 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6809 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6810 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6811 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6812 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6813 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6814 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6815 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6816 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6817 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6818 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6819 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6820 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6821 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6822 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6823 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6824 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6825 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6826 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6827 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6828 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6829 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6830 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6831 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6832 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6833 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6834 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6835 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6836 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6837 	};
6838 	char *start = *cur, *p = *cur;
6839 	char *id, *val, *endp;
6840 	const struct ata_force_param *match_fp = NULL;
6841 	int nr_matches = 0, i;
6842 
6843 	/* find where this param ends and update *cur */
6844 	while (*p != '\0' && *p != ',')
6845 		p++;
6846 
6847 	if (*p == '\0')
6848 		*cur = p;
6849 	else
6850 		*cur = p + 1;
6851 
6852 	*p = '\0';
6853 
6854 	/* parse */
6855 	p = strchr(start, ':');
6856 	if (!p) {
6857 		val = strstrip(start);
6858 		goto parse_val;
6859 	}
6860 	*p = '\0';
6861 
6862 	id = strstrip(start);
6863 	val = strstrip(p + 1);
6864 
6865 	/* parse id */
6866 	p = strchr(id, '.');
6867 	if (p) {
6868 		*p++ = '\0';
6869 		force_ent->device = simple_strtoul(p, &endp, 10);
6870 		if (p == endp || *endp != '\0') {
6871 			*reason = "invalid device";
6872 			return -EINVAL;
6873 		}
6874 	}
6875 
6876 	force_ent->port = simple_strtoul(id, &endp, 10);
6877 	if (id == endp || *endp != '\0') {
6878 		*reason = "invalid port/link";
6879 		return -EINVAL;
6880 	}
6881 
6882  parse_val:
6883 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6884 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6885 		const struct ata_force_param *fp = &force_tbl[i];
6886 
6887 		if (strncasecmp(val, fp->name, strlen(val)))
6888 			continue;
6889 
6890 		nr_matches++;
6891 		match_fp = fp;
6892 
6893 		if (strcasecmp(val, fp->name) == 0) {
6894 			nr_matches = 1;
6895 			break;
6896 		}
6897 	}
6898 
6899 	if (!nr_matches) {
6900 		*reason = "unknown value";
6901 		return -EINVAL;
6902 	}
6903 	if (nr_matches > 1) {
6904 		*reason = "ambigious value";
6905 		return -EINVAL;
6906 	}
6907 
6908 	force_ent->param = *match_fp;
6909 
6910 	return 0;
6911 }
6912 
6913 static void __init ata_parse_force_param(void)
6914 {
6915 	int idx = 0, size = 1;
6916 	int last_port = -1, last_device = -1;
6917 	char *p, *cur, *next;
6918 
6919 	/* calculate maximum number of params and allocate force_tbl */
6920 	for (p = ata_force_param_buf; *p; p++)
6921 		if (*p == ',')
6922 			size++;
6923 
6924 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6925 	if (!ata_force_tbl) {
6926 		printk(KERN_WARNING "ata: failed to extend force table, "
6927 		       "libata.force ignored\n");
6928 		return;
6929 	}
6930 
6931 	/* parse and populate the table */
6932 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6933 		const char *reason = "";
6934 		struct ata_force_ent te = { .port = -1, .device = -1 };
6935 
6936 		next = cur;
6937 		if (ata_parse_force_one(&next, &te, &reason)) {
6938 			printk(KERN_WARNING "ata: failed to parse force "
6939 			       "parameter \"%s\" (%s)\n",
6940 			       cur, reason);
6941 			continue;
6942 		}
6943 
6944 		if (te.port == -1) {
6945 			te.port = last_port;
6946 			te.device = last_device;
6947 		}
6948 
6949 		ata_force_tbl[idx++] = te;
6950 
6951 		last_port = te.port;
6952 		last_device = te.device;
6953 	}
6954 
6955 	ata_force_tbl_size = idx;
6956 }
6957 
6958 static int __init ata_init(void)
6959 {
6960 	int rc;
6961 
6962 	ata_parse_force_param();
6963 
6964 	rc = ata_sff_init();
6965 	if (rc) {
6966 		kfree(ata_force_tbl);
6967 		return rc;
6968 	}
6969 
6970 	libata_transport_init();
6971 	ata_scsi_transport_template = ata_attach_transport();
6972 	if (!ata_scsi_transport_template) {
6973 		ata_sff_exit();
6974 		rc = -ENOMEM;
6975 		goto err_out;
6976 	}
6977 
6978 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6979 	return 0;
6980 
6981 err_out:
6982 	return rc;
6983 }
6984 
6985 static void __exit ata_exit(void)
6986 {
6987 	ata_release_transport(ata_scsi_transport_template);
6988 	libata_transport_exit();
6989 	ata_sff_exit();
6990 	kfree(ata_force_tbl);
6991 }
6992 
6993 subsys_initcall(ata_init);
6994 module_exit(ata_exit);
6995 
6996 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6997 
6998 int ata_ratelimit(void)
6999 {
7000 	return __ratelimit(&ratelimit);
7001 }
7002 
7003 /**
7004  *	ata_msleep - ATA EH owner aware msleep
7005  *	@ap: ATA port to attribute the sleep to
7006  *	@msecs: duration to sleep in milliseconds
7007  *
7008  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
7009  *	ownership is released before going to sleep and reacquired
7010  *	after the sleep is complete.  IOW, other ports sharing the
7011  *	@ap->host will be allowed to own the EH while this task is
7012  *	sleeping.
7013  *
7014  *	LOCKING:
7015  *	Might sleep.
7016  */
7017 void ata_msleep(struct ata_port *ap, unsigned int msecs)
7018 {
7019 	bool owns_eh = ap && ap->host->eh_owner == current;
7020 
7021 	if (owns_eh)
7022 		ata_eh_release(ap);
7023 
7024 	if (msecs < 20) {
7025 		unsigned long usecs = msecs * USEC_PER_MSEC;
7026 		usleep_range(usecs, usecs + 50);
7027 	} else {
7028 		msleep(msecs);
7029 	}
7030 
7031 	if (owns_eh)
7032 		ata_eh_acquire(ap);
7033 }
7034 
7035 /**
7036  *	ata_wait_register - wait until register value changes
7037  *	@ap: ATA port to wait register for, can be NULL
7038  *	@reg: IO-mapped register
7039  *	@mask: Mask to apply to read register value
7040  *	@val: Wait condition
7041  *	@interval: polling interval in milliseconds
7042  *	@timeout: timeout in milliseconds
7043  *
7044  *	Waiting for some bits of register to change is a common
7045  *	operation for ATA controllers.  This function reads 32bit LE
7046  *	IO-mapped register @reg and tests for the following condition.
7047  *
7048  *	(*@reg & mask) != val
7049  *
7050  *	If the condition is met, it returns; otherwise, the process is
7051  *	repeated after @interval_msec until timeout.
7052  *
7053  *	LOCKING:
7054  *	Kernel thread context (may sleep)
7055  *
7056  *	RETURNS:
7057  *	The final register value.
7058  */
7059 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7060 		      unsigned long interval, unsigned long timeout)
7061 {
7062 	unsigned long deadline;
7063 	u32 tmp;
7064 
7065 	tmp = ioread32(reg);
7066 
7067 	/* Calculate timeout _after_ the first read to make sure
7068 	 * preceding writes reach the controller before starting to
7069 	 * eat away the timeout.
7070 	 */
7071 	deadline = ata_deadline(jiffies, timeout);
7072 
7073 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7074 		ata_msleep(ap, interval);
7075 		tmp = ioread32(reg);
7076 	}
7077 
7078 	return tmp;
7079 }
7080 
7081 /**
7082  *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
7083  *	@link: Link receiving the event
7084  *
7085  *	Test whether the received PHY event has to be ignored or not.
7086  *
7087  *	LOCKING:
7088  *	None:
7089  *
7090  *	RETURNS:
7091  *	True if the event has to be ignored.
7092  */
7093 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7094 {
7095 	unsigned long lpm_timeout = link->last_lpm_change +
7096 				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7097 
7098 	/* if LPM is enabled, PHYRDY doesn't mean anything */
7099 	if (link->lpm_policy > ATA_LPM_MAX_POWER)
7100 		return true;
7101 
7102 	/* ignore the first PHY event after the LPM policy changed
7103 	 * as it is might be spurious
7104 	 */
7105 	if ((link->flags & ATA_LFLAG_CHANGED) &&
7106 	    time_before(jiffies, lpm_timeout))
7107 		return true;
7108 
7109 	return false;
7110 }
7111 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7112 
7113 /*
7114  * Dummy port_ops
7115  */
7116 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7117 {
7118 	return AC_ERR_SYSTEM;
7119 }
7120 
7121 static void ata_dummy_error_handler(struct ata_port *ap)
7122 {
7123 	/* truly dummy */
7124 }
7125 
7126 struct ata_port_operations ata_dummy_port_ops = {
7127 	.qc_prep		= ata_noop_qc_prep,
7128 	.qc_issue		= ata_dummy_qc_issue,
7129 	.error_handler		= ata_dummy_error_handler,
7130 	.sched_eh		= ata_std_sched_eh,
7131 	.end_eh			= ata_std_end_eh,
7132 };
7133 
7134 const struct ata_port_info ata_dummy_port_info = {
7135 	.port_ops		= &ata_dummy_port_ops,
7136 };
7137 
7138 /*
7139  * Utility print functions
7140  */
7141 void ata_port_printk(const struct ata_port *ap, const char *level,
7142 		     const char *fmt, ...)
7143 {
7144 	struct va_format vaf;
7145 	va_list args;
7146 
7147 	va_start(args, fmt);
7148 
7149 	vaf.fmt = fmt;
7150 	vaf.va = &args;
7151 
7152 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
7153 
7154 	va_end(args);
7155 }
7156 EXPORT_SYMBOL(ata_port_printk);
7157 
7158 void ata_link_printk(const struct ata_link *link, const char *level,
7159 		     const char *fmt, ...)
7160 {
7161 	struct va_format vaf;
7162 	va_list args;
7163 
7164 	va_start(args, fmt);
7165 
7166 	vaf.fmt = fmt;
7167 	vaf.va = &args;
7168 
7169 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7170 		printk("%sata%u.%02u: %pV",
7171 		       level, link->ap->print_id, link->pmp, &vaf);
7172 	else
7173 		printk("%sata%u: %pV",
7174 		       level, link->ap->print_id, &vaf);
7175 
7176 	va_end(args);
7177 }
7178 EXPORT_SYMBOL(ata_link_printk);
7179 
7180 void ata_dev_printk(const struct ata_device *dev, const char *level,
7181 		    const char *fmt, ...)
7182 {
7183 	struct va_format vaf;
7184 	va_list args;
7185 
7186 	va_start(args, fmt);
7187 
7188 	vaf.fmt = fmt;
7189 	vaf.va = &args;
7190 
7191 	printk("%sata%u.%02u: %pV",
7192 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7193 	       &vaf);
7194 
7195 	va_end(args);
7196 }
7197 EXPORT_SYMBOL(ata_dev_printk);
7198 
7199 void ata_print_version(const struct device *dev, const char *version)
7200 {
7201 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7202 }
7203 EXPORT_SYMBOL(ata_print_version);
7204 
7205 /*
7206  * libata is essentially a library of internal helper functions for
7207  * low-level ATA host controller drivers.  As such, the API/ABI is
7208  * likely to change as new drivers are added and updated.
7209  * Do not depend on ABI/API stability.
7210  */
7211 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7212 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7213 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7214 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7215 EXPORT_SYMBOL_GPL(sata_port_ops);
7216 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7217 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7218 EXPORT_SYMBOL_GPL(ata_link_next);
7219 EXPORT_SYMBOL_GPL(ata_dev_next);
7220 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7221 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7222 EXPORT_SYMBOL_GPL(ata_host_init);
7223 EXPORT_SYMBOL_GPL(ata_host_alloc);
7224 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7225 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7226 EXPORT_SYMBOL_GPL(ata_host_start);
7227 EXPORT_SYMBOL_GPL(ata_host_register);
7228 EXPORT_SYMBOL_GPL(ata_host_activate);
7229 EXPORT_SYMBOL_GPL(ata_host_detach);
7230 EXPORT_SYMBOL_GPL(ata_sg_init);
7231 EXPORT_SYMBOL_GPL(ata_qc_complete);
7232 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7233 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7234 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7235 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7236 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7237 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7238 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7239 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7240 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7241 EXPORT_SYMBOL_GPL(ata_mode_string);
7242 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7243 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7244 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7245 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7246 EXPORT_SYMBOL_GPL(ata_dev_disable);
7247 EXPORT_SYMBOL_GPL(sata_set_spd);
7248 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7249 EXPORT_SYMBOL_GPL(sata_link_debounce);
7250 EXPORT_SYMBOL_GPL(sata_link_resume);
7251 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7252 EXPORT_SYMBOL_GPL(ata_std_prereset);
7253 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7254 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7255 EXPORT_SYMBOL_GPL(ata_std_postreset);
7256 EXPORT_SYMBOL_GPL(ata_dev_classify);
7257 EXPORT_SYMBOL_GPL(ata_dev_pair);
7258 EXPORT_SYMBOL_GPL(ata_ratelimit);
7259 EXPORT_SYMBOL_GPL(ata_msleep);
7260 EXPORT_SYMBOL_GPL(ata_wait_register);
7261 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7262 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7263 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7264 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7265 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7266 EXPORT_SYMBOL_GPL(sata_scr_valid);
7267 EXPORT_SYMBOL_GPL(sata_scr_read);
7268 EXPORT_SYMBOL_GPL(sata_scr_write);
7269 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7270 EXPORT_SYMBOL_GPL(ata_link_online);
7271 EXPORT_SYMBOL_GPL(ata_link_offline);
7272 #ifdef CONFIG_PM
7273 EXPORT_SYMBOL_GPL(ata_host_suspend);
7274 EXPORT_SYMBOL_GPL(ata_host_resume);
7275 #endif /* CONFIG_PM */
7276 EXPORT_SYMBOL_GPL(ata_id_string);
7277 EXPORT_SYMBOL_GPL(ata_id_c_string);
7278 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7279 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7280 
7281 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7282 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7283 EXPORT_SYMBOL_GPL(ata_timing_compute);
7284 EXPORT_SYMBOL_GPL(ata_timing_merge);
7285 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7286 
7287 #ifdef CONFIG_PCI
7288 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7289 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7290 #ifdef CONFIG_PM
7291 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7292 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7293 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7294 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7295 #endif /* CONFIG_PM */
7296 #endif /* CONFIG_PCI */
7297 
7298 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7299 
7300 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7301 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7302 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7303 EXPORT_SYMBOL_GPL(ata_port_desc);
7304 #ifdef CONFIG_PCI
7305 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7306 #endif /* CONFIG_PCI */
7307 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7308 EXPORT_SYMBOL_GPL(ata_link_abort);
7309 EXPORT_SYMBOL_GPL(ata_port_abort);
7310 EXPORT_SYMBOL_GPL(ata_port_freeze);
7311 EXPORT_SYMBOL_GPL(sata_async_notification);
7312 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7313 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7314 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7315 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7316 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7317 EXPORT_SYMBOL_GPL(ata_do_eh);
7318 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7319 
7320 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7321 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7322 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7323 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7324 EXPORT_SYMBOL_GPL(ata_cable_sata);
7325