xref: /openbmc/linux/drivers/ata/libata-core.c (revision 9c1f8594)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 
70 #include "libata.h"
71 #include "libata-transport.h"
72 
73 /* debounce timing parameters in msecs { interval, duration, timeout } */
74 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
75 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
76 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
77 
78 const struct ata_port_operations ata_base_port_ops = {
79 	.prereset		= ata_std_prereset,
80 	.postreset		= ata_std_postreset,
81 	.error_handler		= ata_std_error_handler,
82 };
83 
84 const struct ata_port_operations sata_port_ops = {
85 	.inherits		= &ata_base_port_ops,
86 
87 	.qc_defer		= ata_std_qc_defer,
88 	.hardreset		= sata_std_hardreset,
89 };
90 
91 static unsigned int ata_dev_init_params(struct ata_device *dev,
92 					u16 heads, u16 sectors);
93 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96 
97 unsigned int ata_print_id = 1;
98 
99 struct ata_force_param {
100 	const char	*name;
101 	unsigned int	cbl;
102 	int		spd_limit;
103 	unsigned long	xfer_mask;
104 	unsigned int	horkage_on;
105 	unsigned int	horkage_off;
106 	unsigned int	lflags;
107 };
108 
109 struct ata_force_ent {
110 	int			port;
111 	int			device;
112 	struct ata_force_param	param;
113 };
114 
115 static struct ata_force_ent *ata_force_tbl;
116 static int ata_force_tbl_size;
117 
118 static char ata_force_param_buf[PAGE_SIZE] __initdata;
119 /* param_buf is thrown away after initialization, disallow read */
120 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
121 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
122 
123 static int atapi_enabled = 1;
124 module_param(atapi_enabled, int, 0444);
125 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
126 
127 static int atapi_dmadir = 0;
128 module_param(atapi_dmadir, int, 0444);
129 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
130 
131 int atapi_passthru16 = 1;
132 module_param(atapi_passthru16, int, 0444);
133 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
134 
135 int libata_fua = 0;
136 module_param_named(fua, libata_fua, int, 0444);
137 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
138 
139 static int ata_ignore_hpa;
140 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
141 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
142 
143 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
144 module_param_named(dma, libata_dma_mask, int, 0444);
145 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
146 
147 static int ata_probe_timeout;
148 module_param(ata_probe_timeout, int, 0444);
149 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
150 
151 int libata_noacpi = 0;
152 module_param_named(noacpi, libata_noacpi, int, 0444);
153 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
154 
155 int libata_allow_tpm = 0;
156 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
157 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
158 
159 static int atapi_an;
160 module_param(atapi_an, int, 0444);
161 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
162 
163 MODULE_AUTHOR("Jeff Garzik");
164 MODULE_DESCRIPTION("Library module for ATA devices");
165 MODULE_LICENSE("GPL");
166 MODULE_VERSION(DRV_VERSION);
167 
168 
169 static bool ata_sstatus_online(u32 sstatus)
170 {
171 	return (sstatus & 0xf) == 0x3;
172 }
173 
174 /**
175  *	ata_link_next - link iteration helper
176  *	@link: the previous link, NULL to start
177  *	@ap: ATA port containing links to iterate
178  *	@mode: iteration mode, one of ATA_LITER_*
179  *
180  *	LOCKING:
181  *	Host lock or EH context.
182  *
183  *	RETURNS:
184  *	Pointer to the next link.
185  */
186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 			       enum ata_link_iter_mode mode)
188 {
189 	BUG_ON(mode != ATA_LITER_EDGE &&
190 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191 
192 	/* NULL link indicates start of iteration */
193 	if (!link)
194 		switch (mode) {
195 		case ATA_LITER_EDGE:
196 		case ATA_LITER_PMP_FIRST:
197 			if (sata_pmp_attached(ap))
198 				return ap->pmp_link;
199 			/* fall through */
200 		case ATA_LITER_HOST_FIRST:
201 			return &ap->link;
202 		}
203 
204 	/* we just iterated over the host link, what's next? */
205 	if (link == &ap->link)
206 		switch (mode) {
207 		case ATA_LITER_HOST_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			/* fall through */
211 		case ATA_LITER_PMP_FIRST:
212 			if (unlikely(ap->slave_link))
213 				return ap->slave_link;
214 			/* fall through */
215 		case ATA_LITER_EDGE:
216 			return NULL;
217 		}
218 
219 	/* slave_link excludes PMP */
220 	if (unlikely(link == ap->slave_link))
221 		return NULL;
222 
223 	/* we were over a PMP link */
224 	if (++link < ap->pmp_link + ap->nr_pmp_links)
225 		return link;
226 
227 	if (mode == ATA_LITER_PMP_FIRST)
228 		return &ap->link;
229 
230 	return NULL;
231 }
232 
233 /**
234  *	ata_dev_next - device iteration helper
235  *	@dev: the previous device, NULL to start
236  *	@link: ATA link containing devices to iterate
237  *	@mode: iteration mode, one of ATA_DITER_*
238  *
239  *	LOCKING:
240  *	Host lock or EH context.
241  *
242  *	RETURNS:
243  *	Pointer to the next device.
244  */
245 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
246 				enum ata_dev_iter_mode mode)
247 {
248 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
249 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
250 
251 	/* NULL dev indicates start of iteration */
252 	if (!dev)
253 		switch (mode) {
254 		case ATA_DITER_ENABLED:
255 		case ATA_DITER_ALL:
256 			dev = link->device;
257 			goto check;
258 		case ATA_DITER_ENABLED_REVERSE:
259 		case ATA_DITER_ALL_REVERSE:
260 			dev = link->device + ata_link_max_devices(link) - 1;
261 			goto check;
262 		}
263 
264  next:
265 	/* move to the next one */
266 	switch (mode) {
267 	case ATA_DITER_ENABLED:
268 	case ATA_DITER_ALL:
269 		if (++dev < link->device + ata_link_max_devices(link))
270 			goto check;
271 		return NULL;
272 	case ATA_DITER_ENABLED_REVERSE:
273 	case ATA_DITER_ALL_REVERSE:
274 		if (--dev >= link->device)
275 			goto check;
276 		return NULL;
277 	}
278 
279  check:
280 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
281 	    !ata_dev_enabled(dev))
282 		goto next;
283 	return dev;
284 }
285 
286 /**
287  *	ata_dev_phys_link - find physical link for a device
288  *	@dev: ATA device to look up physical link for
289  *
290  *	Look up physical link which @dev is attached to.  Note that
291  *	this is different from @dev->link only when @dev is on slave
292  *	link.  For all other cases, it's the same as @dev->link.
293  *
294  *	LOCKING:
295  *	Don't care.
296  *
297  *	RETURNS:
298  *	Pointer to the found physical link.
299  */
300 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
301 {
302 	struct ata_port *ap = dev->link->ap;
303 
304 	if (!ap->slave_link)
305 		return dev->link;
306 	if (!dev->devno)
307 		return &ap->link;
308 	return ap->slave_link;
309 }
310 
311 /**
312  *	ata_force_cbl - force cable type according to libata.force
313  *	@ap: ATA port of interest
314  *
315  *	Force cable type according to libata.force and whine about it.
316  *	The last entry which has matching port number is used, so it
317  *	can be specified as part of device force parameters.  For
318  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
319  *	same effect.
320  *
321  *	LOCKING:
322  *	EH context.
323  */
324 void ata_force_cbl(struct ata_port *ap)
325 {
326 	int i;
327 
328 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
329 		const struct ata_force_ent *fe = &ata_force_tbl[i];
330 
331 		if (fe->port != -1 && fe->port != ap->print_id)
332 			continue;
333 
334 		if (fe->param.cbl == ATA_CBL_NONE)
335 			continue;
336 
337 		ap->cbl = fe->param.cbl;
338 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
339 		return;
340 	}
341 }
342 
343 /**
344  *	ata_force_link_limits - force link limits according to libata.force
345  *	@link: ATA link of interest
346  *
347  *	Force link flags and SATA spd limit according to libata.force
348  *	and whine about it.  When only the port part is specified
349  *	(e.g. 1:), the limit applies to all links connected to both
350  *	the host link and all fan-out ports connected via PMP.  If the
351  *	device part is specified as 0 (e.g. 1.00:), it specifies the
352  *	first fan-out link not the host link.  Device number 15 always
353  *	points to the host link whether PMP is attached or not.  If the
354  *	controller has slave link, device number 16 points to it.
355  *
356  *	LOCKING:
357  *	EH context.
358  */
359 static void ata_force_link_limits(struct ata_link *link)
360 {
361 	bool did_spd = false;
362 	int linkno = link->pmp;
363 	int i;
364 
365 	if (ata_is_host_link(link))
366 		linkno += 15;
367 
368 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
369 		const struct ata_force_ent *fe = &ata_force_tbl[i];
370 
371 		if (fe->port != -1 && fe->port != link->ap->print_id)
372 			continue;
373 
374 		if (fe->device != -1 && fe->device != linkno)
375 			continue;
376 
377 		/* only honor the first spd limit */
378 		if (!did_spd && fe->param.spd_limit) {
379 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
380 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
381 					fe->param.name);
382 			did_spd = true;
383 		}
384 
385 		/* let lflags stack */
386 		if (fe->param.lflags) {
387 			link->flags |= fe->param.lflags;
388 			ata_link_notice(link,
389 					"FORCE: link flag 0x%x forced -> 0x%x\n",
390 					fe->param.lflags, link->flags);
391 		}
392 	}
393 }
394 
395 /**
396  *	ata_force_xfermask - force xfermask according to libata.force
397  *	@dev: ATA device of interest
398  *
399  *	Force xfer_mask according to libata.force and whine about it.
400  *	For consistency with link selection, device number 15 selects
401  *	the first device connected to the host link.
402  *
403  *	LOCKING:
404  *	EH context.
405  */
406 static void ata_force_xfermask(struct ata_device *dev)
407 {
408 	int devno = dev->link->pmp + dev->devno;
409 	int alt_devno = devno;
410 	int i;
411 
412 	/* allow n.15/16 for devices attached to host port */
413 	if (ata_is_host_link(dev->link))
414 		alt_devno += 15;
415 
416 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
417 		const struct ata_force_ent *fe = &ata_force_tbl[i];
418 		unsigned long pio_mask, mwdma_mask, udma_mask;
419 
420 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
421 			continue;
422 
423 		if (fe->device != -1 && fe->device != devno &&
424 		    fe->device != alt_devno)
425 			continue;
426 
427 		if (!fe->param.xfer_mask)
428 			continue;
429 
430 		ata_unpack_xfermask(fe->param.xfer_mask,
431 				    &pio_mask, &mwdma_mask, &udma_mask);
432 		if (udma_mask)
433 			dev->udma_mask = udma_mask;
434 		else if (mwdma_mask) {
435 			dev->udma_mask = 0;
436 			dev->mwdma_mask = mwdma_mask;
437 		} else {
438 			dev->udma_mask = 0;
439 			dev->mwdma_mask = 0;
440 			dev->pio_mask = pio_mask;
441 		}
442 
443 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
444 			       fe->param.name);
445 		return;
446 	}
447 }
448 
449 /**
450  *	ata_force_horkage - force horkage according to libata.force
451  *	@dev: ATA device of interest
452  *
453  *	Force horkage according to libata.force and whine about it.
454  *	For consistency with link selection, device number 15 selects
455  *	the first device connected to the host link.
456  *
457  *	LOCKING:
458  *	EH context.
459  */
460 static void ata_force_horkage(struct ata_device *dev)
461 {
462 	int devno = dev->link->pmp + dev->devno;
463 	int alt_devno = devno;
464 	int i;
465 
466 	/* allow n.15/16 for devices attached to host port */
467 	if (ata_is_host_link(dev->link))
468 		alt_devno += 15;
469 
470 	for (i = 0; i < ata_force_tbl_size; i++) {
471 		const struct ata_force_ent *fe = &ata_force_tbl[i];
472 
473 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
474 			continue;
475 
476 		if (fe->device != -1 && fe->device != devno &&
477 		    fe->device != alt_devno)
478 			continue;
479 
480 		if (!(~dev->horkage & fe->param.horkage_on) &&
481 		    !(dev->horkage & fe->param.horkage_off))
482 			continue;
483 
484 		dev->horkage |= fe->param.horkage_on;
485 		dev->horkage &= ~fe->param.horkage_off;
486 
487 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
488 			       fe->param.name);
489 	}
490 }
491 
492 /**
493  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
494  *	@opcode: SCSI opcode
495  *
496  *	Determine ATAPI command type from @opcode.
497  *
498  *	LOCKING:
499  *	None.
500  *
501  *	RETURNS:
502  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
503  */
504 int atapi_cmd_type(u8 opcode)
505 {
506 	switch (opcode) {
507 	case GPCMD_READ_10:
508 	case GPCMD_READ_12:
509 		return ATAPI_READ;
510 
511 	case GPCMD_WRITE_10:
512 	case GPCMD_WRITE_12:
513 	case GPCMD_WRITE_AND_VERIFY_10:
514 		return ATAPI_WRITE;
515 
516 	case GPCMD_READ_CD:
517 	case GPCMD_READ_CD_MSF:
518 		return ATAPI_READ_CD;
519 
520 	case ATA_16:
521 	case ATA_12:
522 		if (atapi_passthru16)
523 			return ATAPI_PASS_THRU;
524 		/* fall thru */
525 	default:
526 		return ATAPI_MISC;
527 	}
528 }
529 
530 /**
531  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
532  *	@tf: Taskfile to convert
533  *	@pmp: Port multiplier port
534  *	@is_cmd: This FIS is for command
535  *	@fis: Buffer into which data will output
536  *
537  *	Converts a standard ATA taskfile to a Serial ATA
538  *	FIS structure (Register - Host to Device).
539  *
540  *	LOCKING:
541  *	Inherited from caller.
542  */
543 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
544 {
545 	fis[0] = 0x27;			/* Register - Host to Device FIS */
546 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
547 	if (is_cmd)
548 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
549 
550 	fis[2] = tf->command;
551 	fis[3] = tf->feature;
552 
553 	fis[4] = tf->lbal;
554 	fis[5] = tf->lbam;
555 	fis[6] = tf->lbah;
556 	fis[7] = tf->device;
557 
558 	fis[8] = tf->hob_lbal;
559 	fis[9] = tf->hob_lbam;
560 	fis[10] = tf->hob_lbah;
561 	fis[11] = tf->hob_feature;
562 
563 	fis[12] = tf->nsect;
564 	fis[13] = tf->hob_nsect;
565 	fis[14] = 0;
566 	fis[15] = tf->ctl;
567 
568 	fis[16] = 0;
569 	fis[17] = 0;
570 	fis[18] = 0;
571 	fis[19] = 0;
572 }
573 
574 /**
575  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
576  *	@fis: Buffer from which data will be input
577  *	@tf: Taskfile to output
578  *
579  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
580  *
581  *	LOCKING:
582  *	Inherited from caller.
583  */
584 
585 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
586 {
587 	tf->command	= fis[2];	/* status */
588 	tf->feature	= fis[3];	/* error */
589 
590 	tf->lbal	= fis[4];
591 	tf->lbam	= fis[5];
592 	tf->lbah	= fis[6];
593 	tf->device	= fis[7];
594 
595 	tf->hob_lbal	= fis[8];
596 	tf->hob_lbam	= fis[9];
597 	tf->hob_lbah	= fis[10];
598 
599 	tf->nsect	= fis[12];
600 	tf->hob_nsect	= fis[13];
601 }
602 
603 static const u8 ata_rw_cmds[] = {
604 	/* pio multi */
605 	ATA_CMD_READ_MULTI,
606 	ATA_CMD_WRITE_MULTI,
607 	ATA_CMD_READ_MULTI_EXT,
608 	ATA_CMD_WRITE_MULTI_EXT,
609 	0,
610 	0,
611 	0,
612 	ATA_CMD_WRITE_MULTI_FUA_EXT,
613 	/* pio */
614 	ATA_CMD_PIO_READ,
615 	ATA_CMD_PIO_WRITE,
616 	ATA_CMD_PIO_READ_EXT,
617 	ATA_CMD_PIO_WRITE_EXT,
618 	0,
619 	0,
620 	0,
621 	0,
622 	/* dma */
623 	ATA_CMD_READ,
624 	ATA_CMD_WRITE,
625 	ATA_CMD_READ_EXT,
626 	ATA_CMD_WRITE_EXT,
627 	0,
628 	0,
629 	0,
630 	ATA_CMD_WRITE_FUA_EXT
631 };
632 
633 /**
634  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
635  *	@tf: command to examine and configure
636  *	@dev: device tf belongs to
637  *
638  *	Examine the device configuration and tf->flags to calculate
639  *	the proper read/write commands and protocol to use.
640  *
641  *	LOCKING:
642  *	caller.
643  */
644 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
645 {
646 	u8 cmd;
647 
648 	int index, fua, lba48, write;
649 
650 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
651 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
652 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
653 
654 	if (dev->flags & ATA_DFLAG_PIO) {
655 		tf->protocol = ATA_PROT_PIO;
656 		index = dev->multi_count ? 0 : 8;
657 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
658 		/* Unable to use DMA due to host limitation */
659 		tf->protocol = ATA_PROT_PIO;
660 		index = dev->multi_count ? 0 : 8;
661 	} else {
662 		tf->protocol = ATA_PROT_DMA;
663 		index = 16;
664 	}
665 
666 	cmd = ata_rw_cmds[index + fua + lba48 + write];
667 	if (cmd) {
668 		tf->command = cmd;
669 		return 0;
670 	}
671 	return -1;
672 }
673 
674 /**
675  *	ata_tf_read_block - Read block address from ATA taskfile
676  *	@tf: ATA taskfile of interest
677  *	@dev: ATA device @tf belongs to
678  *
679  *	LOCKING:
680  *	None.
681  *
682  *	Read block address from @tf.  This function can handle all
683  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
684  *	flags select the address format to use.
685  *
686  *	RETURNS:
687  *	Block address read from @tf.
688  */
689 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
690 {
691 	u64 block = 0;
692 
693 	if (tf->flags & ATA_TFLAG_LBA) {
694 		if (tf->flags & ATA_TFLAG_LBA48) {
695 			block |= (u64)tf->hob_lbah << 40;
696 			block |= (u64)tf->hob_lbam << 32;
697 			block |= (u64)tf->hob_lbal << 24;
698 		} else
699 			block |= (tf->device & 0xf) << 24;
700 
701 		block |= tf->lbah << 16;
702 		block |= tf->lbam << 8;
703 		block |= tf->lbal;
704 	} else {
705 		u32 cyl, head, sect;
706 
707 		cyl = tf->lbam | (tf->lbah << 8);
708 		head = tf->device & 0xf;
709 		sect = tf->lbal;
710 
711 		if (!sect) {
712 			ata_dev_warn(dev,
713 				     "device reported invalid CHS sector 0\n");
714 			sect = 1; /* oh well */
715 		}
716 
717 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
718 	}
719 
720 	return block;
721 }
722 
723 /**
724  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
725  *	@tf: Target ATA taskfile
726  *	@dev: ATA device @tf belongs to
727  *	@block: Block address
728  *	@n_block: Number of blocks
729  *	@tf_flags: RW/FUA etc...
730  *	@tag: tag
731  *
732  *	LOCKING:
733  *	None.
734  *
735  *	Build ATA taskfile @tf for read/write request described by
736  *	@block, @n_block, @tf_flags and @tag on @dev.
737  *
738  *	RETURNS:
739  *
740  *	0 on success, -ERANGE if the request is too large for @dev,
741  *	-EINVAL if the request is invalid.
742  */
743 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
744 		    u64 block, u32 n_block, unsigned int tf_flags,
745 		    unsigned int tag)
746 {
747 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
748 	tf->flags |= tf_flags;
749 
750 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
751 		/* yay, NCQ */
752 		if (!lba_48_ok(block, n_block))
753 			return -ERANGE;
754 
755 		tf->protocol = ATA_PROT_NCQ;
756 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
757 
758 		if (tf->flags & ATA_TFLAG_WRITE)
759 			tf->command = ATA_CMD_FPDMA_WRITE;
760 		else
761 			tf->command = ATA_CMD_FPDMA_READ;
762 
763 		tf->nsect = tag << 3;
764 		tf->hob_feature = (n_block >> 8) & 0xff;
765 		tf->feature = n_block & 0xff;
766 
767 		tf->hob_lbah = (block >> 40) & 0xff;
768 		tf->hob_lbam = (block >> 32) & 0xff;
769 		tf->hob_lbal = (block >> 24) & 0xff;
770 		tf->lbah = (block >> 16) & 0xff;
771 		tf->lbam = (block >> 8) & 0xff;
772 		tf->lbal = block & 0xff;
773 
774 		tf->device = 1 << 6;
775 		if (tf->flags & ATA_TFLAG_FUA)
776 			tf->device |= 1 << 7;
777 	} else if (dev->flags & ATA_DFLAG_LBA) {
778 		tf->flags |= ATA_TFLAG_LBA;
779 
780 		if (lba_28_ok(block, n_block)) {
781 			/* use LBA28 */
782 			tf->device |= (block >> 24) & 0xf;
783 		} else if (lba_48_ok(block, n_block)) {
784 			if (!(dev->flags & ATA_DFLAG_LBA48))
785 				return -ERANGE;
786 
787 			/* use LBA48 */
788 			tf->flags |= ATA_TFLAG_LBA48;
789 
790 			tf->hob_nsect = (n_block >> 8) & 0xff;
791 
792 			tf->hob_lbah = (block >> 40) & 0xff;
793 			tf->hob_lbam = (block >> 32) & 0xff;
794 			tf->hob_lbal = (block >> 24) & 0xff;
795 		} else
796 			/* request too large even for LBA48 */
797 			return -ERANGE;
798 
799 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
800 			return -EINVAL;
801 
802 		tf->nsect = n_block & 0xff;
803 
804 		tf->lbah = (block >> 16) & 0xff;
805 		tf->lbam = (block >> 8) & 0xff;
806 		tf->lbal = block & 0xff;
807 
808 		tf->device |= ATA_LBA;
809 	} else {
810 		/* CHS */
811 		u32 sect, head, cyl, track;
812 
813 		/* The request -may- be too large for CHS addressing. */
814 		if (!lba_28_ok(block, n_block))
815 			return -ERANGE;
816 
817 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 			return -EINVAL;
819 
820 		/* Convert LBA to CHS */
821 		track = (u32)block / dev->sectors;
822 		cyl   = track / dev->heads;
823 		head  = track % dev->heads;
824 		sect  = (u32)block % dev->sectors + 1;
825 
826 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
827 			(u32)block, track, cyl, head, sect);
828 
829 		/* Check whether the converted CHS can fit.
830 		   Cylinder: 0-65535
831 		   Head: 0-15
832 		   Sector: 1-255*/
833 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
834 			return -ERANGE;
835 
836 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
837 		tf->lbal = sect;
838 		tf->lbam = cyl;
839 		tf->lbah = cyl >> 8;
840 		tf->device |= head;
841 	}
842 
843 	return 0;
844 }
845 
846 /**
847  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
848  *	@pio_mask: pio_mask
849  *	@mwdma_mask: mwdma_mask
850  *	@udma_mask: udma_mask
851  *
852  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
853  *	unsigned int xfer_mask.
854  *
855  *	LOCKING:
856  *	None.
857  *
858  *	RETURNS:
859  *	Packed xfer_mask.
860  */
861 unsigned long ata_pack_xfermask(unsigned long pio_mask,
862 				unsigned long mwdma_mask,
863 				unsigned long udma_mask)
864 {
865 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
866 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
867 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
868 }
869 
870 /**
871  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
872  *	@xfer_mask: xfer_mask to unpack
873  *	@pio_mask: resulting pio_mask
874  *	@mwdma_mask: resulting mwdma_mask
875  *	@udma_mask: resulting udma_mask
876  *
877  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
878  *	Any NULL distination masks will be ignored.
879  */
880 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
881 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
882 {
883 	if (pio_mask)
884 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
885 	if (mwdma_mask)
886 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
887 	if (udma_mask)
888 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
889 }
890 
891 static const struct ata_xfer_ent {
892 	int shift, bits;
893 	u8 base;
894 } ata_xfer_tbl[] = {
895 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
896 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
897 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
898 	{ -1, },
899 };
900 
901 /**
902  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
903  *	@xfer_mask: xfer_mask of interest
904  *
905  *	Return matching XFER_* value for @xfer_mask.  Only the highest
906  *	bit of @xfer_mask is considered.
907  *
908  *	LOCKING:
909  *	None.
910  *
911  *	RETURNS:
912  *	Matching XFER_* value, 0xff if no match found.
913  */
914 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
915 {
916 	int highbit = fls(xfer_mask) - 1;
917 	const struct ata_xfer_ent *ent;
918 
919 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
920 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
921 			return ent->base + highbit - ent->shift;
922 	return 0xff;
923 }
924 
925 /**
926  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
927  *	@xfer_mode: XFER_* of interest
928  *
929  *	Return matching xfer_mask for @xfer_mode.
930  *
931  *	LOCKING:
932  *	None.
933  *
934  *	RETURNS:
935  *	Matching xfer_mask, 0 if no match found.
936  */
937 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
938 {
939 	const struct ata_xfer_ent *ent;
940 
941 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
942 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
943 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
944 				& ~((1 << ent->shift) - 1);
945 	return 0;
946 }
947 
948 /**
949  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
950  *	@xfer_mode: XFER_* of interest
951  *
952  *	Return matching xfer_shift for @xfer_mode.
953  *
954  *	LOCKING:
955  *	None.
956  *
957  *	RETURNS:
958  *	Matching xfer_shift, -1 if no match found.
959  */
960 int ata_xfer_mode2shift(unsigned long xfer_mode)
961 {
962 	const struct ata_xfer_ent *ent;
963 
964 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
965 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
966 			return ent->shift;
967 	return -1;
968 }
969 
970 /**
971  *	ata_mode_string - convert xfer_mask to string
972  *	@xfer_mask: mask of bits supported; only highest bit counts.
973  *
974  *	Determine string which represents the highest speed
975  *	(highest bit in @modemask).
976  *
977  *	LOCKING:
978  *	None.
979  *
980  *	RETURNS:
981  *	Constant C string representing highest speed listed in
982  *	@mode_mask, or the constant C string "<n/a>".
983  */
984 const char *ata_mode_string(unsigned long xfer_mask)
985 {
986 	static const char * const xfer_mode_str[] = {
987 		"PIO0",
988 		"PIO1",
989 		"PIO2",
990 		"PIO3",
991 		"PIO4",
992 		"PIO5",
993 		"PIO6",
994 		"MWDMA0",
995 		"MWDMA1",
996 		"MWDMA2",
997 		"MWDMA3",
998 		"MWDMA4",
999 		"UDMA/16",
1000 		"UDMA/25",
1001 		"UDMA/33",
1002 		"UDMA/44",
1003 		"UDMA/66",
1004 		"UDMA/100",
1005 		"UDMA/133",
1006 		"UDMA7",
1007 	};
1008 	int highbit;
1009 
1010 	highbit = fls(xfer_mask) - 1;
1011 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1012 		return xfer_mode_str[highbit];
1013 	return "<n/a>";
1014 }
1015 
1016 const char *sata_spd_string(unsigned int spd)
1017 {
1018 	static const char * const spd_str[] = {
1019 		"1.5 Gbps",
1020 		"3.0 Gbps",
1021 		"6.0 Gbps",
1022 	};
1023 
1024 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1025 		return "<unknown>";
1026 	return spd_str[spd - 1];
1027 }
1028 
1029 /**
1030  *	ata_dev_classify - determine device type based on ATA-spec signature
1031  *	@tf: ATA taskfile register set for device to be identified
1032  *
1033  *	Determine from taskfile register contents whether a device is
1034  *	ATA or ATAPI, as per "Signature and persistence" section
1035  *	of ATA/PI spec (volume 1, sect 5.14).
1036  *
1037  *	LOCKING:
1038  *	None.
1039  *
1040  *	RETURNS:
1041  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1042  *	%ATA_DEV_UNKNOWN the event of failure.
1043  */
1044 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1045 {
1046 	/* Apple's open source Darwin code hints that some devices only
1047 	 * put a proper signature into the LBA mid/high registers,
1048 	 * So, we only check those.  It's sufficient for uniqueness.
1049 	 *
1050 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1051 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1052 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1053 	 * spec has never mentioned about using different signatures
1054 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1055 	 * Multiplier specification began to use 0x69/0x96 to identify
1056 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1057 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1058 	 * 0x69/0x96 shortly and described them as reserved for
1059 	 * SerialATA.
1060 	 *
1061 	 * We follow the current spec and consider that 0x69/0x96
1062 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1063 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1064 	 * SEMB signature.  This is worked around in
1065 	 * ata_dev_read_id().
1066 	 */
1067 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1068 		DPRINTK("found ATA device by sig\n");
1069 		return ATA_DEV_ATA;
1070 	}
1071 
1072 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1073 		DPRINTK("found ATAPI device by sig\n");
1074 		return ATA_DEV_ATAPI;
1075 	}
1076 
1077 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1078 		DPRINTK("found PMP device by sig\n");
1079 		return ATA_DEV_PMP;
1080 	}
1081 
1082 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1083 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1084 		return ATA_DEV_SEMB;
1085 	}
1086 
1087 	DPRINTK("unknown device\n");
1088 	return ATA_DEV_UNKNOWN;
1089 }
1090 
1091 /**
1092  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1093  *	@id: IDENTIFY DEVICE results we will examine
1094  *	@s: string into which data is output
1095  *	@ofs: offset into identify device page
1096  *	@len: length of string to return. must be an even number.
1097  *
1098  *	The strings in the IDENTIFY DEVICE page are broken up into
1099  *	16-bit chunks.  Run through the string, and output each
1100  *	8-bit chunk linearly, regardless of platform.
1101  *
1102  *	LOCKING:
1103  *	caller.
1104  */
1105 
1106 void ata_id_string(const u16 *id, unsigned char *s,
1107 		   unsigned int ofs, unsigned int len)
1108 {
1109 	unsigned int c;
1110 
1111 	BUG_ON(len & 1);
1112 
1113 	while (len > 0) {
1114 		c = id[ofs] >> 8;
1115 		*s = c;
1116 		s++;
1117 
1118 		c = id[ofs] & 0xff;
1119 		*s = c;
1120 		s++;
1121 
1122 		ofs++;
1123 		len -= 2;
1124 	}
1125 }
1126 
1127 /**
1128  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1129  *	@id: IDENTIFY DEVICE results we will examine
1130  *	@s: string into which data is output
1131  *	@ofs: offset into identify device page
1132  *	@len: length of string to return. must be an odd number.
1133  *
1134  *	This function is identical to ata_id_string except that it
1135  *	trims trailing spaces and terminates the resulting string with
1136  *	null.  @len must be actual maximum length (even number) + 1.
1137  *
1138  *	LOCKING:
1139  *	caller.
1140  */
1141 void ata_id_c_string(const u16 *id, unsigned char *s,
1142 		     unsigned int ofs, unsigned int len)
1143 {
1144 	unsigned char *p;
1145 
1146 	ata_id_string(id, s, ofs, len - 1);
1147 
1148 	p = s + strnlen(s, len - 1);
1149 	while (p > s && p[-1] == ' ')
1150 		p--;
1151 	*p = '\0';
1152 }
1153 
1154 static u64 ata_id_n_sectors(const u16 *id)
1155 {
1156 	if (ata_id_has_lba(id)) {
1157 		if (ata_id_has_lba48(id))
1158 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1159 		else
1160 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1161 	} else {
1162 		if (ata_id_current_chs_valid(id))
1163 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1164 			       id[ATA_ID_CUR_SECTORS];
1165 		else
1166 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1167 			       id[ATA_ID_SECTORS];
1168 	}
1169 }
1170 
1171 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1172 {
1173 	u64 sectors = 0;
1174 
1175 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1176 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1177 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1178 	sectors |= (tf->lbah & 0xff) << 16;
1179 	sectors |= (tf->lbam & 0xff) << 8;
1180 	sectors |= (tf->lbal & 0xff);
1181 
1182 	return sectors;
1183 }
1184 
1185 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1186 {
1187 	u64 sectors = 0;
1188 
1189 	sectors |= (tf->device & 0x0f) << 24;
1190 	sectors |= (tf->lbah & 0xff) << 16;
1191 	sectors |= (tf->lbam & 0xff) << 8;
1192 	sectors |= (tf->lbal & 0xff);
1193 
1194 	return sectors;
1195 }
1196 
1197 /**
1198  *	ata_read_native_max_address - Read native max address
1199  *	@dev: target device
1200  *	@max_sectors: out parameter for the result native max address
1201  *
1202  *	Perform an LBA48 or LBA28 native size query upon the device in
1203  *	question.
1204  *
1205  *	RETURNS:
1206  *	0 on success, -EACCES if command is aborted by the drive.
1207  *	-EIO on other errors.
1208  */
1209 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1210 {
1211 	unsigned int err_mask;
1212 	struct ata_taskfile tf;
1213 	int lba48 = ata_id_has_lba48(dev->id);
1214 
1215 	ata_tf_init(dev, &tf);
1216 
1217 	/* always clear all address registers */
1218 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1219 
1220 	if (lba48) {
1221 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1222 		tf.flags |= ATA_TFLAG_LBA48;
1223 	} else
1224 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1225 
1226 	tf.protocol |= ATA_PROT_NODATA;
1227 	tf.device |= ATA_LBA;
1228 
1229 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1230 	if (err_mask) {
1231 		ata_dev_warn(dev,
1232 			     "failed to read native max address (err_mask=0x%x)\n",
1233 			     err_mask);
1234 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1235 			return -EACCES;
1236 		return -EIO;
1237 	}
1238 
1239 	if (lba48)
1240 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1241 	else
1242 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1243 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1244 		(*max_sectors)--;
1245 	return 0;
1246 }
1247 
1248 /**
1249  *	ata_set_max_sectors - Set max sectors
1250  *	@dev: target device
1251  *	@new_sectors: new max sectors value to set for the device
1252  *
1253  *	Set max sectors of @dev to @new_sectors.
1254  *
1255  *	RETURNS:
1256  *	0 on success, -EACCES if command is aborted or denied (due to
1257  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1258  *	errors.
1259  */
1260 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1261 {
1262 	unsigned int err_mask;
1263 	struct ata_taskfile tf;
1264 	int lba48 = ata_id_has_lba48(dev->id);
1265 
1266 	new_sectors--;
1267 
1268 	ata_tf_init(dev, &tf);
1269 
1270 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1271 
1272 	if (lba48) {
1273 		tf.command = ATA_CMD_SET_MAX_EXT;
1274 		tf.flags |= ATA_TFLAG_LBA48;
1275 
1276 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1277 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1278 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1279 	} else {
1280 		tf.command = ATA_CMD_SET_MAX;
1281 
1282 		tf.device |= (new_sectors >> 24) & 0xf;
1283 	}
1284 
1285 	tf.protocol |= ATA_PROT_NODATA;
1286 	tf.device |= ATA_LBA;
1287 
1288 	tf.lbal = (new_sectors >> 0) & 0xff;
1289 	tf.lbam = (new_sectors >> 8) & 0xff;
1290 	tf.lbah = (new_sectors >> 16) & 0xff;
1291 
1292 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1293 	if (err_mask) {
1294 		ata_dev_warn(dev,
1295 			     "failed to set max address (err_mask=0x%x)\n",
1296 			     err_mask);
1297 		if (err_mask == AC_ERR_DEV &&
1298 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1299 			return -EACCES;
1300 		return -EIO;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 /**
1307  *	ata_hpa_resize		-	Resize a device with an HPA set
1308  *	@dev: Device to resize
1309  *
1310  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1311  *	it if required to the full size of the media. The caller must check
1312  *	the drive has the HPA feature set enabled.
1313  *
1314  *	RETURNS:
1315  *	0 on success, -errno on failure.
1316  */
1317 static int ata_hpa_resize(struct ata_device *dev)
1318 {
1319 	struct ata_eh_context *ehc = &dev->link->eh_context;
1320 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1321 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1322 	u64 sectors = ata_id_n_sectors(dev->id);
1323 	u64 native_sectors;
1324 	int rc;
1325 
1326 	/* do we need to do it? */
1327 	if (dev->class != ATA_DEV_ATA ||
1328 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1329 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1330 		return 0;
1331 
1332 	/* read native max address */
1333 	rc = ata_read_native_max_address(dev, &native_sectors);
1334 	if (rc) {
1335 		/* If device aborted the command or HPA isn't going to
1336 		 * be unlocked, skip HPA resizing.
1337 		 */
1338 		if (rc == -EACCES || !unlock_hpa) {
1339 			ata_dev_warn(dev,
1340 				     "HPA support seems broken, skipping HPA handling\n");
1341 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1342 
1343 			/* we can continue if device aborted the command */
1344 			if (rc == -EACCES)
1345 				rc = 0;
1346 		}
1347 
1348 		return rc;
1349 	}
1350 	dev->n_native_sectors = native_sectors;
1351 
1352 	/* nothing to do? */
1353 	if (native_sectors <= sectors || !unlock_hpa) {
1354 		if (!print_info || native_sectors == sectors)
1355 			return 0;
1356 
1357 		if (native_sectors > sectors)
1358 			ata_dev_info(dev,
1359 				"HPA detected: current %llu, native %llu\n",
1360 				(unsigned long long)sectors,
1361 				(unsigned long long)native_sectors);
1362 		else if (native_sectors < sectors)
1363 			ata_dev_warn(dev,
1364 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1365 				(unsigned long long)native_sectors,
1366 				(unsigned long long)sectors);
1367 		return 0;
1368 	}
1369 
1370 	/* let's unlock HPA */
1371 	rc = ata_set_max_sectors(dev, native_sectors);
1372 	if (rc == -EACCES) {
1373 		/* if device aborted the command, skip HPA resizing */
1374 		ata_dev_warn(dev,
1375 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1376 			     (unsigned long long)sectors,
1377 			     (unsigned long long)native_sectors);
1378 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1379 		return 0;
1380 	} else if (rc)
1381 		return rc;
1382 
1383 	/* re-read IDENTIFY data */
1384 	rc = ata_dev_reread_id(dev, 0);
1385 	if (rc) {
1386 		ata_dev_err(dev,
1387 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1388 		return rc;
1389 	}
1390 
1391 	if (print_info) {
1392 		u64 new_sectors = ata_id_n_sectors(dev->id);
1393 		ata_dev_info(dev,
1394 			"HPA unlocked: %llu -> %llu, native %llu\n",
1395 			(unsigned long long)sectors,
1396 			(unsigned long long)new_sectors,
1397 			(unsigned long long)native_sectors);
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 /**
1404  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1405  *	@id: IDENTIFY DEVICE page to dump
1406  *
1407  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1408  *	page.
1409  *
1410  *	LOCKING:
1411  *	caller.
1412  */
1413 
1414 static inline void ata_dump_id(const u16 *id)
1415 {
1416 	DPRINTK("49==0x%04x  "
1417 		"53==0x%04x  "
1418 		"63==0x%04x  "
1419 		"64==0x%04x  "
1420 		"75==0x%04x  \n",
1421 		id[49],
1422 		id[53],
1423 		id[63],
1424 		id[64],
1425 		id[75]);
1426 	DPRINTK("80==0x%04x  "
1427 		"81==0x%04x  "
1428 		"82==0x%04x  "
1429 		"83==0x%04x  "
1430 		"84==0x%04x  \n",
1431 		id[80],
1432 		id[81],
1433 		id[82],
1434 		id[83],
1435 		id[84]);
1436 	DPRINTK("88==0x%04x  "
1437 		"93==0x%04x\n",
1438 		id[88],
1439 		id[93]);
1440 }
1441 
1442 /**
1443  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1444  *	@id: IDENTIFY data to compute xfer mask from
1445  *
1446  *	Compute the xfermask for this device. This is not as trivial
1447  *	as it seems if we must consider early devices correctly.
1448  *
1449  *	FIXME: pre IDE drive timing (do we care ?).
1450  *
1451  *	LOCKING:
1452  *	None.
1453  *
1454  *	RETURNS:
1455  *	Computed xfermask
1456  */
1457 unsigned long ata_id_xfermask(const u16 *id)
1458 {
1459 	unsigned long pio_mask, mwdma_mask, udma_mask;
1460 
1461 	/* Usual case. Word 53 indicates word 64 is valid */
1462 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1463 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1464 		pio_mask <<= 3;
1465 		pio_mask |= 0x7;
1466 	} else {
1467 		/* If word 64 isn't valid then Word 51 high byte holds
1468 		 * the PIO timing number for the maximum. Turn it into
1469 		 * a mask.
1470 		 */
1471 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1472 		if (mode < 5)	/* Valid PIO range */
1473 			pio_mask = (2 << mode) - 1;
1474 		else
1475 			pio_mask = 1;
1476 
1477 		/* But wait.. there's more. Design your standards by
1478 		 * committee and you too can get a free iordy field to
1479 		 * process. However its the speeds not the modes that
1480 		 * are supported... Note drivers using the timing API
1481 		 * will get this right anyway
1482 		 */
1483 	}
1484 
1485 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1486 
1487 	if (ata_id_is_cfa(id)) {
1488 		/*
1489 		 *	Process compact flash extended modes
1490 		 */
1491 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1492 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1493 
1494 		if (pio)
1495 			pio_mask |= (1 << 5);
1496 		if (pio > 1)
1497 			pio_mask |= (1 << 6);
1498 		if (dma)
1499 			mwdma_mask |= (1 << 3);
1500 		if (dma > 1)
1501 			mwdma_mask |= (1 << 4);
1502 	}
1503 
1504 	udma_mask = 0;
1505 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1506 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1507 
1508 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1509 }
1510 
1511 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1512 {
1513 	struct completion *waiting = qc->private_data;
1514 
1515 	complete(waiting);
1516 }
1517 
1518 /**
1519  *	ata_exec_internal_sg - execute libata internal command
1520  *	@dev: Device to which the command is sent
1521  *	@tf: Taskfile registers for the command and the result
1522  *	@cdb: CDB for packet command
1523  *	@dma_dir: Data tranfer direction of the command
1524  *	@sgl: sg list for the data buffer of the command
1525  *	@n_elem: Number of sg entries
1526  *	@timeout: Timeout in msecs (0 for default)
1527  *
1528  *	Executes libata internal command with timeout.  @tf contains
1529  *	command on entry and result on return.  Timeout and error
1530  *	conditions are reported via return value.  No recovery action
1531  *	is taken after a command times out.  It's caller's duty to
1532  *	clean up after timeout.
1533  *
1534  *	LOCKING:
1535  *	None.  Should be called with kernel context, might sleep.
1536  *
1537  *	RETURNS:
1538  *	Zero on success, AC_ERR_* mask on failure
1539  */
1540 unsigned ata_exec_internal_sg(struct ata_device *dev,
1541 			      struct ata_taskfile *tf, const u8 *cdb,
1542 			      int dma_dir, struct scatterlist *sgl,
1543 			      unsigned int n_elem, unsigned long timeout)
1544 {
1545 	struct ata_link *link = dev->link;
1546 	struct ata_port *ap = link->ap;
1547 	u8 command = tf->command;
1548 	int auto_timeout = 0;
1549 	struct ata_queued_cmd *qc;
1550 	unsigned int tag, preempted_tag;
1551 	u32 preempted_sactive, preempted_qc_active;
1552 	int preempted_nr_active_links;
1553 	DECLARE_COMPLETION_ONSTACK(wait);
1554 	unsigned long flags;
1555 	unsigned int err_mask;
1556 	int rc;
1557 
1558 	spin_lock_irqsave(ap->lock, flags);
1559 
1560 	/* no internal command while frozen */
1561 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1562 		spin_unlock_irqrestore(ap->lock, flags);
1563 		return AC_ERR_SYSTEM;
1564 	}
1565 
1566 	/* initialize internal qc */
1567 
1568 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1569 	 * drivers choke if any other tag is given.  This breaks
1570 	 * ata_tag_internal() test for those drivers.  Don't use new
1571 	 * EH stuff without converting to it.
1572 	 */
1573 	if (ap->ops->error_handler)
1574 		tag = ATA_TAG_INTERNAL;
1575 	else
1576 		tag = 0;
1577 
1578 	if (test_and_set_bit(tag, &ap->qc_allocated))
1579 		BUG();
1580 	qc = __ata_qc_from_tag(ap, tag);
1581 
1582 	qc->tag = tag;
1583 	qc->scsicmd = NULL;
1584 	qc->ap = ap;
1585 	qc->dev = dev;
1586 	ata_qc_reinit(qc);
1587 
1588 	preempted_tag = link->active_tag;
1589 	preempted_sactive = link->sactive;
1590 	preempted_qc_active = ap->qc_active;
1591 	preempted_nr_active_links = ap->nr_active_links;
1592 	link->active_tag = ATA_TAG_POISON;
1593 	link->sactive = 0;
1594 	ap->qc_active = 0;
1595 	ap->nr_active_links = 0;
1596 
1597 	/* prepare & issue qc */
1598 	qc->tf = *tf;
1599 	if (cdb)
1600 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1601 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1602 	qc->dma_dir = dma_dir;
1603 	if (dma_dir != DMA_NONE) {
1604 		unsigned int i, buflen = 0;
1605 		struct scatterlist *sg;
1606 
1607 		for_each_sg(sgl, sg, n_elem, i)
1608 			buflen += sg->length;
1609 
1610 		ata_sg_init(qc, sgl, n_elem);
1611 		qc->nbytes = buflen;
1612 	}
1613 
1614 	qc->private_data = &wait;
1615 	qc->complete_fn = ata_qc_complete_internal;
1616 
1617 	ata_qc_issue(qc);
1618 
1619 	spin_unlock_irqrestore(ap->lock, flags);
1620 
1621 	if (!timeout) {
1622 		if (ata_probe_timeout)
1623 			timeout = ata_probe_timeout * 1000;
1624 		else {
1625 			timeout = ata_internal_cmd_timeout(dev, command);
1626 			auto_timeout = 1;
1627 		}
1628 	}
1629 
1630 	if (ap->ops->error_handler)
1631 		ata_eh_release(ap);
1632 
1633 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1634 
1635 	if (ap->ops->error_handler)
1636 		ata_eh_acquire(ap);
1637 
1638 	ata_sff_flush_pio_task(ap);
1639 
1640 	if (!rc) {
1641 		spin_lock_irqsave(ap->lock, flags);
1642 
1643 		/* We're racing with irq here.  If we lose, the
1644 		 * following test prevents us from completing the qc
1645 		 * twice.  If we win, the port is frozen and will be
1646 		 * cleaned up by ->post_internal_cmd().
1647 		 */
1648 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1649 			qc->err_mask |= AC_ERR_TIMEOUT;
1650 
1651 			if (ap->ops->error_handler)
1652 				ata_port_freeze(ap);
1653 			else
1654 				ata_qc_complete(qc);
1655 
1656 			if (ata_msg_warn(ap))
1657 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1658 					     command);
1659 		}
1660 
1661 		spin_unlock_irqrestore(ap->lock, flags);
1662 	}
1663 
1664 	/* do post_internal_cmd */
1665 	if (ap->ops->post_internal_cmd)
1666 		ap->ops->post_internal_cmd(qc);
1667 
1668 	/* perform minimal error analysis */
1669 	if (qc->flags & ATA_QCFLAG_FAILED) {
1670 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1671 			qc->err_mask |= AC_ERR_DEV;
1672 
1673 		if (!qc->err_mask)
1674 			qc->err_mask |= AC_ERR_OTHER;
1675 
1676 		if (qc->err_mask & ~AC_ERR_OTHER)
1677 			qc->err_mask &= ~AC_ERR_OTHER;
1678 	}
1679 
1680 	/* finish up */
1681 	spin_lock_irqsave(ap->lock, flags);
1682 
1683 	*tf = qc->result_tf;
1684 	err_mask = qc->err_mask;
1685 
1686 	ata_qc_free(qc);
1687 	link->active_tag = preempted_tag;
1688 	link->sactive = preempted_sactive;
1689 	ap->qc_active = preempted_qc_active;
1690 	ap->nr_active_links = preempted_nr_active_links;
1691 
1692 	spin_unlock_irqrestore(ap->lock, flags);
1693 
1694 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1695 		ata_internal_cmd_timed_out(dev, command);
1696 
1697 	return err_mask;
1698 }
1699 
1700 /**
1701  *	ata_exec_internal - execute libata internal command
1702  *	@dev: Device to which the command is sent
1703  *	@tf: Taskfile registers for the command and the result
1704  *	@cdb: CDB for packet command
1705  *	@dma_dir: Data tranfer direction of the command
1706  *	@buf: Data buffer of the command
1707  *	@buflen: Length of data buffer
1708  *	@timeout: Timeout in msecs (0 for default)
1709  *
1710  *	Wrapper around ata_exec_internal_sg() which takes simple
1711  *	buffer instead of sg list.
1712  *
1713  *	LOCKING:
1714  *	None.  Should be called with kernel context, might sleep.
1715  *
1716  *	RETURNS:
1717  *	Zero on success, AC_ERR_* mask on failure
1718  */
1719 unsigned ata_exec_internal(struct ata_device *dev,
1720 			   struct ata_taskfile *tf, const u8 *cdb,
1721 			   int dma_dir, void *buf, unsigned int buflen,
1722 			   unsigned long timeout)
1723 {
1724 	struct scatterlist *psg = NULL, sg;
1725 	unsigned int n_elem = 0;
1726 
1727 	if (dma_dir != DMA_NONE) {
1728 		WARN_ON(!buf);
1729 		sg_init_one(&sg, buf, buflen);
1730 		psg = &sg;
1731 		n_elem++;
1732 	}
1733 
1734 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1735 				    timeout);
1736 }
1737 
1738 /**
1739  *	ata_do_simple_cmd - execute simple internal command
1740  *	@dev: Device to which the command is sent
1741  *	@cmd: Opcode to execute
1742  *
1743  *	Execute a 'simple' command, that only consists of the opcode
1744  *	'cmd' itself, without filling any other registers
1745  *
1746  *	LOCKING:
1747  *	Kernel thread context (may sleep).
1748  *
1749  *	RETURNS:
1750  *	Zero on success, AC_ERR_* mask on failure
1751  */
1752 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1753 {
1754 	struct ata_taskfile tf;
1755 
1756 	ata_tf_init(dev, &tf);
1757 
1758 	tf.command = cmd;
1759 	tf.flags |= ATA_TFLAG_DEVICE;
1760 	tf.protocol = ATA_PROT_NODATA;
1761 
1762 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1763 }
1764 
1765 /**
1766  *	ata_pio_need_iordy	-	check if iordy needed
1767  *	@adev: ATA device
1768  *
1769  *	Check if the current speed of the device requires IORDY. Used
1770  *	by various controllers for chip configuration.
1771  */
1772 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1773 {
1774 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1775 	 * lead to controller lock up on certain controllers if the
1776 	 * port is not occupied.  See bko#11703 for details.
1777 	 */
1778 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1779 		return 0;
1780 	/* Controller doesn't support IORDY.  Probably a pointless
1781 	 * check as the caller should know this.
1782 	 */
1783 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1784 		return 0;
1785 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1786 	if (ata_id_is_cfa(adev->id)
1787 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1788 		return 0;
1789 	/* PIO3 and higher it is mandatory */
1790 	if (adev->pio_mode > XFER_PIO_2)
1791 		return 1;
1792 	/* We turn it on when possible */
1793 	if (ata_id_has_iordy(adev->id))
1794 		return 1;
1795 	return 0;
1796 }
1797 
1798 /**
1799  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1800  *	@adev: ATA device
1801  *
1802  *	Compute the highest mode possible if we are not using iordy. Return
1803  *	-1 if no iordy mode is available.
1804  */
1805 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1806 {
1807 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1808 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1809 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1810 		/* Is the speed faster than the drive allows non IORDY ? */
1811 		if (pio) {
1812 			/* This is cycle times not frequency - watch the logic! */
1813 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1814 				return 3 << ATA_SHIFT_PIO;
1815 			return 7 << ATA_SHIFT_PIO;
1816 		}
1817 	}
1818 	return 3 << ATA_SHIFT_PIO;
1819 }
1820 
1821 /**
1822  *	ata_do_dev_read_id		-	default ID read method
1823  *	@dev: device
1824  *	@tf: proposed taskfile
1825  *	@id: data buffer
1826  *
1827  *	Issue the identify taskfile and hand back the buffer containing
1828  *	identify data. For some RAID controllers and for pre ATA devices
1829  *	this function is wrapped or replaced by the driver
1830  */
1831 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1832 					struct ata_taskfile *tf, u16 *id)
1833 {
1834 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1835 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1836 }
1837 
1838 /**
1839  *	ata_dev_read_id - Read ID data from the specified device
1840  *	@dev: target device
1841  *	@p_class: pointer to class of the target device (may be changed)
1842  *	@flags: ATA_READID_* flags
1843  *	@id: buffer to read IDENTIFY data into
1844  *
1845  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1846  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1847  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1848  *	for pre-ATA4 drives.
1849  *
1850  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1851  *	now we abort if we hit that case.
1852  *
1853  *	LOCKING:
1854  *	Kernel thread context (may sleep)
1855  *
1856  *	RETURNS:
1857  *	0 on success, -errno otherwise.
1858  */
1859 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1860 		    unsigned int flags, u16 *id)
1861 {
1862 	struct ata_port *ap = dev->link->ap;
1863 	unsigned int class = *p_class;
1864 	struct ata_taskfile tf;
1865 	unsigned int err_mask = 0;
1866 	const char *reason;
1867 	bool is_semb = class == ATA_DEV_SEMB;
1868 	int may_fallback = 1, tried_spinup = 0;
1869 	int rc;
1870 
1871 	if (ata_msg_ctl(ap))
1872 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1873 
1874 retry:
1875 	ata_tf_init(dev, &tf);
1876 
1877 	switch (class) {
1878 	case ATA_DEV_SEMB:
1879 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1880 	case ATA_DEV_ATA:
1881 		tf.command = ATA_CMD_ID_ATA;
1882 		break;
1883 	case ATA_DEV_ATAPI:
1884 		tf.command = ATA_CMD_ID_ATAPI;
1885 		break;
1886 	default:
1887 		rc = -ENODEV;
1888 		reason = "unsupported class";
1889 		goto err_out;
1890 	}
1891 
1892 	tf.protocol = ATA_PROT_PIO;
1893 
1894 	/* Some devices choke if TF registers contain garbage.  Make
1895 	 * sure those are properly initialized.
1896 	 */
1897 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1898 
1899 	/* Device presence detection is unreliable on some
1900 	 * controllers.  Always poll IDENTIFY if available.
1901 	 */
1902 	tf.flags |= ATA_TFLAG_POLLING;
1903 
1904 	if (ap->ops->read_id)
1905 		err_mask = ap->ops->read_id(dev, &tf, id);
1906 	else
1907 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1908 
1909 	if (err_mask) {
1910 		if (err_mask & AC_ERR_NODEV_HINT) {
1911 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1912 			return -ENOENT;
1913 		}
1914 
1915 		if (is_semb) {
1916 			ata_dev_info(dev,
1917 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1918 			/* SEMB is not supported yet */
1919 			*p_class = ATA_DEV_SEMB_UNSUP;
1920 			return 0;
1921 		}
1922 
1923 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1924 			/* Device or controller might have reported
1925 			 * the wrong device class.  Give a shot at the
1926 			 * other IDENTIFY if the current one is
1927 			 * aborted by the device.
1928 			 */
1929 			if (may_fallback) {
1930 				may_fallback = 0;
1931 
1932 				if (class == ATA_DEV_ATA)
1933 					class = ATA_DEV_ATAPI;
1934 				else
1935 					class = ATA_DEV_ATA;
1936 				goto retry;
1937 			}
1938 
1939 			/* Control reaches here iff the device aborted
1940 			 * both flavors of IDENTIFYs which happens
1941 			 * sometimes with phantom devices.
1942 			 */
1943 			ata_dev_dbg(dev,
1944 				    "both IDENTIFYs aborted, assuming NODEV\n");
1945 			return -ENOENT;
1946 		}
1947 
1948 		rc = -EIO;
1949 		reason = "I/O error";
1950 		goto err_out;
1951 	}
1952 
1953 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1954 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1955 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1956 			    class, may_fallback, tried_spinup);
1957 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1958 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1959 	}
1960 
1961 	/* Falling back doesn't make sense if ID data was read
1962 	 * successfully at least once.
1963 	 */
1964 	may_fallback = 0;
1965 
1966 	swap_buf_le16(id, ATA_ID_WORDS);
1967 
1968 	/* sanity check */
1969 	rc = -EINVAL;
1970 	reason = "device reports invalid type";
1971 
1972 	if (class == ATA_DEV_ATA) {
1973 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1974 			goto err_out;
1975 	} else {
1976 		if (ata_id_is_ata(id))
1977 			goto err_out;
1978 	}
1979 
1980 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1981 		tried_spinup = 1;
1982 		/*
1983 		 * Drive powered-up in standby mode, and requires a specific
1984 		 * SET_FEATURES spin-up subcommand before it will accept
1985 		 * anything other than the original IDENTIFY command.
1986 		 */
1987 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1988 		if (err_mask && id[2] != 0x738c) {
1989 			rc = -EIO;
1990 			reason = "SPINUP failed";
1991 			goto err_out;
1992 		}
1993 		/*
1994 		 * If the drive initially returned incomplete IDENTIFY info,
1995 		 * we now must reissue the IDENTIFY command.
1996 		 */
1997 		if (id[2] == 0x37c8)
1998 			goto retry;
1999 	}
2000 
2001 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2002 		/*
2003 		 * The exact sequence expected by certain pre-ATA4 drives is:
2004 		 * SRST RESET
2005 		 * IDENTIFY (optional in early ATA)
2006 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2007 		 * anything else..
2008 		 * Some drives were very specific about that exact sequence.
2009 		 *
2010 		 * Note that ATA4 says lba is mandatory so the second check
2011 		 * should never trigger.
2012 		 */
2013 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2014 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2015 			if (err_mask) {
2016 				rc = -EIO;
2017 				reason = "INIT_DEV_PARAMS failed";
2018 				goto err_out;
2019 			}
2020 
2021 			/* current CHS translation info (id[53-58]) might be
2022 			 * changed. reread the identify device info.
2023 			 */
2024 			flags &= ~ATA_READID_POSTRESET;
2025 			goto retry;
2026 		}
2027 	}
2028 
2029 	*p_class = class;
2030 
2031 	return 0;
2032 
2033  err_out:
2034 	if (ata_msg_warn(ap))
2035 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2036 			     reason, err_mask);
2037 	return rc;
2038 }
2039 
2040 static int ata_do_link_spd_horkage(struct ata_device *dev)
2041 {
2042 	struct ata_link *plink = ata_dev_phys_link(dev);
2043 	u32 target, target_limit;
2044 
2045 	if (!sata_scr_valid(plink))
2046 		return 0;
2047 
2048 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2049 		target = 1;
2050 	else
2051 		return 0;
2052 
2053 	target_limit = (1 << target) - 1;
2054 
2055 	/* if already on stricter limit, no need to push further */
2056 	if (plink->sata_spd_limit <= target_limit)
2057 		return 0;
2058 
2059 	plink->sata_spd_limit = target_limit;
2060 
2061 	/* Request another EH round by returning -EAGAIN if link is
2062 	 * going faster than the target speed.  Forward progress is
2063 	 * guaranteed by setting sata_spd_limit to target_limit above.
2064 	 */
2065 	if (plink->sata_spd > target) {
2066 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2067 			     sata_spd_string(target));
2068 		return -EAGAIN;
2069 	}
2070 	return 0;
2071 }
2072 
2073 static inline u8 ata_dev_knobble(struct ata_device *dev)
2074 {
2075 	struct ata_port *ap = dev->link->ap;
2076 
2077 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2078 		return 0;
2079 
2080 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2081 }
2082 
2083 static int ata_dev_config_ncq(struct ata_device *dev,
2084 			       char *desc, size_t desc_sz)
2085 {
2086 	struct ata_port *ap = dev->link->ap;
2087 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2088 	unsigned int err_mask;
2089 	char *aa_desc = "";
2090 
2091 	if (!ata_id_has_ncq(dev->id)) {
2092 		desc[0] = '\0';
2093 		return 0;
2094 	}
2095 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2096 		snprintf(desc, desc_sz, "NCQ (not used)");
2097 		return 0;
2098 	}
2099 	if (ap->flags & ATA_FLAG_NCQ) {
2100 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2101 		dev->flags |= ATA_DFLAG_NCQ;
2102 	}
2103 
2104 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2105 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2106 		ata_id_has_fpdma_aa(dev->id)) {
2107 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2108 			SATA_FPDMA_AA);
2109 		if (err_mask) {
2110 			ata_dev_err(dev,
2111 				    "failed to enable AA (error_mask=0x%x)\n",
2112 				    err_mask);
2113 			if (err_mask != AC_ERR_DEV) {
2114 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2115 				return -EIO;
2116 			}
2117 		} else
2118 			aa_desc = ", AA";
2119 	}
2120 
2121 	if (hdepth >= ddepth)
2122 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2123 	else
2124 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2125 			ddepth, aa_desc);
2126 	return 0;
2127 }
2128 
2129 /**
2130  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2131  *	@dev: Target device to configure
2132  *
2133  *	Configure @dev according to @dev->id.  Generic and low-level
2134  *	driver specific fixups are also applied.
2135  *
2136  *	LOCKING:
2137  *	Kernel thread context (may sleep)
2138  *
2139  *	RETURNS:
2140  *	0 on success, -errno otherwise
2141  */
2142 int ata_dev_configure(struct ata_device *dev)
2143 {
2144 	struct ata_port *ap = dev->link->ap;
2145 	struct ata_eh_context *ehc = &dev->link->eh_context;
2146 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2147 	const u16 *id = dev->id;
2148 	unsigned long xfer_mask;
2149 	char revbuf[7];		/* XYZ-99\0 */
2150 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2151 	char modelbuf[ATA_ID_PROD_LEN+1];
2152 	int rc;
2153 
2154 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2155 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2156 		return 0;
2157 	}
2158 
2159 	if (ata_msg_probe(ap))
2160 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2161 
2162 	/* set horkage */
2163 	dev->horkage |= ata_dev_blacklisted(dev);
2164 	ata_force_horkage(dev);
2165 
2166 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2167 		ata_dev_info(dev, "unsupported device, disabling\n");
2168 		ata_dev_disable(dev);
2169 		return 0;
2170 	}
2171 
2172 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2173 	    dev->class == ATA_DEV_ATAPI) {
2174 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2175 			     atapi_enabled ? "not supported with this driver"
2176 			     : "disabled");
2177 		ata_dev_disable(dev);
2178 		return 0;
2179 	}
2180 
2181 	rc = ata_do_link_spd_horkage(dev);
2182 	if (rc)
2183 		return rc;
2184 
2185 	/* let ACPI work its magic */
2186 	rc = ata_acpi_on_devcfg(dev);
2187 	if (rc)
2188 		return rc;
2189 
2190 	/* massage HPA, do it early as it might change IDENTIFY data */
2191 	rc = ata_hpa_resize(dev);
2192 	if (rc)
2193 		return rc;
2194 
2195 	/* print device capabilities */
2196 	if (ata_msg_probe(ap))
2197 		ata_dev_dbg(dev,
2198 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2199 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2200 			    __func__,
2201 			    id[49], id[82], id[83], id[84],
2202 			    id[85], id[86], id[87], id[88]);
2203 
2204 	/* initialize to-be-configured parameters */
2205 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2206 	dev->max_sectors = 0;
2207 	dev->cdb_len = 0;
2208 	dev->n_sectors = 0;
2209 	dev->cylinders = 0;
2210 	dev->heads = 0;
2211 	dev->sectors = 0;
2212 	dev->multi_count = 0;
2213 
2214 	/*
2215 	 * common ATA, ATAPI feature tests
2216 	 */
2217 
2218 	/* find max transfer mode; for printk only */
2219 	xfer_mask = ata_id_xfermask(id);
2220 
2221 	if (ata_msg_probe(ap))
2222 		ata_dump_id(id);
2223 
2224 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2225 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2226 			sizeof(fwrevbuf));
2227 
2228 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2229 			sizeof(modelbuf));
2230 
2231 	/* ATA-specific feature tests */
2232 	if (dev->class == ATA_DEV_ATA) {
2233 		if (ata_id_is_cfa(id)) {
2234 			/* CPRM may make this media unusable */
2235 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2236 				ata_dev_warn(dev,
2237 	"supports DRM functions and may not be fully accessible\n");
2238 			snprintf(revbuf, 7, "CFA");
2239 		} else {
2240 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2241 			/* Warn the user if the device has TPM extensions */
2242 			if (ata_id_has_tpm(id))
2243 				ata_dev_warn(dev,
2244 	"supports DRM functions and may not be fully accessible\n");
2245 		}
2246 
2247 		dev->n_sectors = ata_id_n_sectors(id);
2248 
2249 		/* get current R/W Multiple count setting */
2250 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2251 			unsigned int max = dev->id[47] & 0xff;
2252 			unsigned int cnt = dev->id[59] & 0xff;
2253 			/* only recognize/allow powers of two here */
2254 			if (is_power_of_2(max) && is_power_of_2(cnt))
2255 				if (cnt <= max)
2256 					dev->multi_count = cnt;
2257 		}
2258 
2259 		if (ata_id_has_lba(id)) {
2260 			const char *lba_desc;
2261 			char ncq_desc[24];
2262 
2263 			lba_desc = "LBA";
2264 			dev->flags |= ATA_DFLAG_LBA;
2265 			if (ata_id_has_lba48(id)) {
2266 				dev->flags |= ATA_DFLAG_LBA48;
2267 				lba_desc = "LBA48";
2268 
2269 				if (dev->n_sectors >= (1UL << 28) &&
2270 				    ata_id_has_flush_ext(id))
2271 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2272 			}
2273 
2274 			/* config NCQ */
2275 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2276 			if (rc)
2277 				return rc;
2278 
2279 			/* print device info to dmesg */
2280 			if (ata_msg_drv(ap) && print_info) {
2281 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2282 					     revbuf, modelbuf, fwrevbuf,
2283 					     ata_mode_string(xfer_mask));
2284 				ata_dev_info(dev,
2285 					     "%llu sectors, multi %u: %s %s\n",
2286 					(unsigned long long)dev->n_sectors,
2287 					dev->multi_count, lba_desc, ncq_desc);
2288 			}
2289 		} else {
2290 			/* CHS */
2291 
2292 			/* Default translation */
2293 			dev->cylinders	= id[1];
2294 			dev->heads	= id[3];
2295 			dev->sectors	= id[6];
2296 
2297 			if (ata_id_current_chs_valid(id)) {
2298 				/* Current CHS translation is valid. */
2299 				dev->cylinders = id[54];
2300 				dev->heads     = id[55];
2301 				dev->sectors   = id[56];
2302 			}
2303 
2304 			/* print device info to dmesg */
2305 			if (ata_msg_drv(ap) && print_info) {
2306 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2307 					     revbuf,	modelbuf, fwrevbuf,
2308 					     ata_mode_string(xfer_mask));
2309 				ata_dev_info(dev,
2310 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2311 					     (unsigned long long)dev->n_sectors,
2312 					     dev->multi_count, dev->cylinders,
2313 					     dev->heads, dev->sectors);
2314 			}
2315 		}
2316 
2317 		dev->cdb_len = 16;
2318 	}
2319 
2320 	/* ATAPI-specific feature tests */
2321 	else if (dev->class == ATA_DEV_ATAPI) {
2322 		const char *cdb_intr_string = "";
2323 		const char *atapi_an_string = "";
2324 		const char *dma_dir_string = "";
2325 		u32 sntf;
2326 
2327 		rc = atapi_cdb_len(id);
2328 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2329 			if (ata_msg_warn(ap))
2330 				ata_dev_warn(dev, "unsupported CDB len\n");
2331 			rc = -EINVAL;
2332 			goto err_out_nosup;
2333 		}
2334 		dev->cdb_len = (unsigned int) rc;
2335 
2336 		/* Enable ATAPI AN if both the host and device have
2337 		 * the support.  If PMP is attached, SNTF is required
2338 		 * to enable ATAPI AN to discern between PHY status
2339 		 * changed notifications and ATAPI ANs.
2340 		 */
2341 		if (atapi_an &&
2342 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2343 		    (!sata_pmp_attached(ap) ||
2344 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2345 			unsigned int err_mask;
2346 
2347 			/* issue SET feature command to turn this on */
2348 			err_mask = ata_dev_set_feature(dev,
2349 					SETFEATURES_SATA_ENABLE, SATA_AN);
2350 			if (err_mask)
2351 				ata_dev_err(dev,
2352 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2353 					    err_mask);
2354 			else {
2355 				dev->flags |= ATA_DFLAG_AN;
2356 				atapi_an_string = ", ATAPI AN";
2357 			}
2358 		}
2359 
2360 		if (ata_id_cdb_intr(dev->id)) {
2361 			dev->flags |= ATA_DFLAG_CDB_INTR;
2362 			cdb_intr_string = ", CDB intr";
2363 		}
2364 
2365 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2366 			dev->flags |= ATA_DFLAG_DMADIR;
2367 			dma_dir_string = ", DMADIR";
2368 		}
2369 
2370 		/* print device info to dmesg */
2371 		if (ata_msg_drv(ap) && print_info)
2372 			ata_dev_info(dev,
2373 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2374 				     modelbuf, fwrevbuf,
2375 				     ata_mode_string(xfer_mask),
2376 				     cdb_intr_string, atapi_an_string,
2377 				     dma_dir_string);
2378 	}
2379 
2380 	/* determine max_sectors */
2381 	dev->max_sectors = ATA_MAX_SECTORS;
2382 	if (dev->flags & ATA_DFLAG_LBA48)
2383 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2384 
2385 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2386 	   200 sectors */
2387 	if (ata_dev_knobble(dev)) {
2388 		if (ata_msg_drv(ap) && print_info)
2389 			ata_dev_info(dev, "applying bridge limits\n");
2390 		dev->udma_mask &= ATA_UDMA5;
2391 		dev->max_sectors = ATA_MAX_SECTORS;
2392 	}
2393 
2394 	if ((dev->class == ATA_DEV_ATAPI) &&
2395 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2396 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2397 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2398 	}
2399 
2400 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2401 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2402 					 dev->max_sectors);
2403 
2404 	if (ap->ops->dev_config)
2405 		ap->ops->dev_config(dev);
2406 
2407 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2408 		/* Let the user know. We don't want to disallow opens for
2409 		   rescue purposes, or in case the vendor is just a blithering
2410 		   idiot. Do this after the dev_config call as some controllers
2411 		   with buggy firmware may want to avoid reporting false device
2412 		   bugs */
2413 
2414 		if (print_info) {
2415 			ata_dev_warn(dev,
2416 "Drive reports diagnostics failure. This may indicate a drive\n");
2417 			ata_dev_warn(dev,
2418 "fault or invalid emulation. Contact drive vendor for information.\n");
2419 		}
2420 	}
2421 
2422 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2423 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2424 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2425 	}
2426 
2427 	return 0;
2428 
2429 err_out_nosup:
2430 	if (ata_msg_probe(ap))
2431 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2432 	return rc;
2433 }
2434 
2435 /**
2436  *	ata_cable_40wire	-	return 40 wire cable type
2437  *	@ap: port
2438  *
2439  *	Helper method for drivers which want to hardwire 40 wire cable
2440  *	detection.
2441  */
2442 
2443 int ata_cable_40wire(struct ata_port *ap)
2444 {
2445 	return ATA_CBL_PATA40;
2446 }
2447 
2448 /**
2449  *	ata_cable_80wire	-	return 80 wire cable type
2450  *	@ap: port
2451  *
2452  *	Helper method for drivers which want to hardwire 80 wire cable
2453  *	detection.
2454  */
2455 
2456 int ata_cable_80wire(struct ata_port *ap)
2457 {
2458 	return ATA_CBL_PATA80;
2459 }
2460 
2461 /**
2462  *	ata_cable_unknown	-	return unknown PATA cable.
2463  *	@ap: port
2464  *
2465  *	Helper method for drivers which have no PATA cable detection.
2466  */
2467 
2468 int ata_cable_unknown(struct ata_port *ap)
2469 {
2470 	return ATA_CBL_PATA_UNK;
2471 }
2472 
2473 /**
2474  *	ata_cable_ignore	-	return ignored PATA cable.
2475  *	@ap: port
2476  *
2477  *	Helper method for drivers which don't use cable type to limit
2478  *	transfer mode.
2479  */
2480 int ata_cable_ignore(struct ata_port *ap)
2481 {
2482 	return ATA_CBL_PATA_IGN;
2483 }
2484 
2485 /**
2486  *	ata_cable_sata	-	return SATA cable type
2487  *	@ap: port
2488  *
2489  *	Helper method for drivers which have SATA cables
2490  */
2491 
2492 int ata_cable_sata(struct ata_port *ap)
2493 {
2494 	return ATA_CBL_SATA;
2495 }
2496 
2497 /**
2498  *	ata_bus_probe - Reset and probe ATA bus
2499  *	@ap: Bus to probe
2500  *
2501  *	Master ATA bus probing function.  Initiates a hardware-dependent
2502  *	bus reset, then attempts to identify any devices found on
2503  *	the bus.
2504  *
2505  *	LOCKING:
2506  *	PCI/etc. bus probe sem.
2507  *
2508  *	RETURNS:
2509  *	Zero on success, negative errno otherwise.
2510  */
2511 
2512 int ata_bus_probe(struct ata_port *ap)
2513 {
2514 	unsigned int classes[ATA_MAX_DEVICES];
2515 	int tries[ATA_MAX_DEVICES];
2516 	int rc;
2517 	struct ata_device *dev;
2518 
2519 	ata_for_each_dev(dev, &ap->link, ALL)
2520 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2521 
2522  retry:
2523 	ata_for_each_dev(dev, &ap->link, ALL) {
2524 		/* If we issue an SRST then an ATA drive (not ATAPI)
2525 		 * may change configuration and be in PIO0 timing. If
2526 		 * we do a hard reset (or are coming from power on)
2527 		 * this is true for ATA or ATAPI. Until we've set a
2528 		 * suitable controller mode we should not touch the
2529 		 * bus as we may be talking too fast.
2530 		 */
2531 		dev->pio_mode = XFER_PIO_0;
2532 
2533 		/* If the controller has a pio mode setup function
2534 		 * then use it to set the chipset to rights. Don't
2535 		 * touch the DMA setup as that will be dealt with when
2536 		 * configuring devices.
2537 		 */
2538 		if (ap->ops->set_piomode)
2539 			ap->ops->set_piomode(ap, dev);
2540 	}
2541 
2542 	/* reset and determine device classes */
2543 	ap->ops->phy_reset(ap);
2544 
2545 	ata_for_each_dev(dev, &ap->link, ALL) {
2546 		if (dev->class != ATA_DEV_UNKNOWN)
2547 			classes[dev->devno] = dev->class;
2548 		else
2549 			classes[dev->devno] = ATA_DEV_NONE;
2550 
2551 		dev->class = ATA_DEV_UNKNOWN;
2552 	}
2553 
2554 	/* read IDENTIFY page and configure devices. We have to do the identify
2555 	   specific sequence bass-ackwards so that PDIAG- is released by
2556 	   the slave device */
2557 
2558 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2559 		if (tries[dev->devno])
2560 			dev->class = classes[dev->devno];
2561 
2562 		if (!ata_dev_enabled(dev))
2563 			continue;
2564 
2565 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2566 				     dev->id);
2567 		if (rc)
2568 			goto fail;
2569 	}
2570 
2571 	/* Now ask for the cable type as PDIAG- should have been released */
2572 	if (ap->ops->cable_detect)
2573 		ap->cbl = ap->ops->cable_detect(ap);
2574 
2575 	/* We may have SATA bridge glue hiding here irrespective of
2576 	 * the reported cable types and sensed types.  When SATA
2577 	 * drives indicate we have a bridge, we don't know which end
2578 	 * of the link the bridge is which is a problem.
2579 	 */
2580 	ata_for_each_dev(dev, &ap->link, ENABLED)
2581 		if (ata_id_is_sata(dev->id))
2582 			ap->cbl = ATA_CBL_SATA;
2583 
2584 	/* After the identify sequence we can now set up the devices. We do
2585 	   this in the normal order so that the user doesn't get confused */
2586 
2587 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2588 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2589 		rc = ata_dev_configure(dev);
2590 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2591 		if (rc)
2592 			goto fail;
2593 	}
2594 
2595 	/* configure transfer mode */
2596 	rc = ata_set_mode(&ap->link, &dev);
2597 	if (rc)
2598 		goto fail;
2599 
2600 	ata_for_each_dev(dev, &ap->link, ENABLED)
2601 		return 0;
2602 
2603 	return -ENODEV;
2604 
2605  fail:
2606 	tries[dev->devno]--;
2607 
2608 	switch (rc) {
2609 	case -EINVAL:
2610 		/* eeek, something went very wrong, give up */
2611 		tries[dev->devno] = 0;
2612 		break;
2613 
2614 	case -ENODEV:
2615 		/* give it just one more chance */
2616 		tries[dev->devno] = min(tries[dev->devno], 1);
2617 	case -EIO:
2618 		if (tries[dev->devno] == 1) {
2619 			/* This is the last chance, better to slow
2620 			 * down than lose it.
2621 			 */
2622 			sata_down_spd_limit(&ap->link, 0);
2623 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2624 		}
2625 	}
2626 
2627 	if (!tries[dev->devno])
2628 		ata_dev_disable(dev);
2629 
2630 	goto retry;
2631 }
2632 
2633 /**
2634  *	sata_print_link_status - Print SATA link status
2635  *	@link: SATA link to printk link status about
2636  *
2637  *	This function prints link speed and status of a SATA link.
2638  *
2639  *	LOCKING:
2640  *	None.
2641  */
2642 static void sata_print_link_status(struct ata_link *link)
2643 {
2644 	u32 sstatus, scontrol, tmp;
2645 
2646 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2647 		return;
2648 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2649 
2650 	if (ata_phys_link_online(link)) {
2651 		tmp = (sstatus >> 4) & 0xf;
2652 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2653 			      sata_spd_string(tmp), sstatus, scontrol);
2654 	} else {
2655 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2656 			      sstatus, scontrol);
2657 	}
2658 }
2659 
2660 /**
2661  *	ata_dev_pair		-	return other device on cable
2662  *	@adev: device
2663  *
2664  *	Obtain the other device on the same cable, or if none is
2665  *	present NULL is returned
2666  */
2667 
2668 struct ata_device *ata_dev_pair(struct ata_device *adev)
2669 {
2670 	struct ata_link *link = adev->link;
2671 	struct ata_device *pair = &link->device[1 - adev->devno];
2672 	if (!ata_dev_enabled(pair))
2673 		return NULL;
2674 	return pair;
2675 }
2676 
2677 /**
2678  *	sata_down_spd_limit - adjust SATA spd limit downward
2679  *	@link: Link to adjust SATA spd limit for
2680  *	@spd_limit: Additional limit
2681  *
2682  *	Adjust SATA spd limit of @link downward.  Note that this
2683  *	function only adjusts the limit.  The change must be applied
2684  *	using sata_set_spd().
2685  *
2686  *	If @spd_limit is non-zero, the speed is limited to equal to or
2687  *	lower than @spd_limit if such speed is supported.  If
2688  *	@spd_limit is slower than any supported speed, only the lowest
2689  *	supported speed is allowed.
2690  *
2691  *	LOCKING:
2692  *	Inherited from caller.
2693  *
2694  *	RETURNS:
2695  *	0 on success, negative errno on failure
2696  */
2697 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2698 {
2699 	u32 sstatus, spd, mask;
2700 	int rc, bit;
2701 
2702 	if (!sata_scr_valid(link))
2703 		return -EOPNOTSUPP;
2704 
2705 	/* If SCR can be read, use it to determine the current SPD.
2706 	 * If not, use cached value in link->sata_spd.
2707 	 */
2708 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2709 	if (rc == 0 && ata_sstatus_online(sstatus))
2710 		spd = (sstatus >> 4) & 0xf;
2711 	else
2712 		spd = link->sata_spd;
2713 
2714 	mask = link->sata_spd_limit;
2715 	if (mask <= 1)
2716 		return -EINVAL;
2717 
2718 	/* unconditionally mask off the highest bit */
2719 	bit = fls(mask) - 1;
2720 	mask &= ~(1 << bit);
2721 
2722 	/* Mask off all speeds higher than or equal to the current
2723 	 * one.  Force 1.5Gbps if current SPD is not available.
2724 	 */
2725 	if (spd > 1)
2726 		mask &= (1 << (spd - 1)) - 1;
2727 	else
2728 		mask &= 1;
2729 
2730 	/* were we already at the bottom? */
2731 	if (!mask)
2732 		return -EINVAL;
2733 
2734 	if (spd_limit) {
2735 		if (mask & ((1 << spd_limit) - 1))
2736 			mask &= (1 << spd_limit) - 1;
2737 		else {
2738 			bit = ffs(mask) - 1;
2739 			mask = 1 << bit;
2740 		}
2741 	}
2742 
2743 	link->sata_spd_limit = mask;
2744 
2745 	ata_link_warn(link, "limiting SATA link speed to %s\n",
2746 		      sata_spd_string(fls(mask)));
2747 
2748 	return 0;
2749 }
2750 
2751 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2752 {
2753 	struct ata_link *host_link = &link->ap->link;
2754 	u32 limit, target, spd;
2755 
2756 	limit = link->sata_spd_limit;
2757 
2758 	/* Don't configure downstream link faster than upstream link.
2759 	 * It doesn't speed up anything and some PMPs choke on such
2760 	 * configuration.
2761 	 */
2762 	if (!ata_is_host_link(link) && host_link->sata_spd)
2763 		limit &= (1 << host_link->sata_spd) - 1;
2764 
2765 	if (limit == UINT_MAX)
2766 		target = 0;
2767 	else
2768 		target = fls(limit);
2769 
2770 	spd = (*scontrol >> 4) & 0xf;
2771 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2772 
2773 	return spd != target;
2774 }
2775 
2776 /**
2777  *	sata_set_spd_needed - is SATA spd configuration needed
2778  *	@link: Link in question
2779  *
2780  *	Test whether the spd limit in SControl matches
2781  *	@link->sata_spd_limit.  This function is used to determine
2782  *	whether hardreset is necessary to apply SATA spd
2783  *	configuration.
2784  *
2785  *	LOCKING:
2786  *	Inherited from caller.
2787  *
2788  *	RETURNS:
2789  *	1 if SATA spd configuration is needed, 0 otherwise.
2790  */
2791 static int sata_set_spd_needed(struct ata_link *link)
2792 {
2793 	u32 scontrol;
2794 
2795 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2796 		return 1;
2797 
2798 	return __sata_set_spd_needed(link, &scontrol);
2799 }
2800 
2801 /**
2802  *	sata_set_spd - set SATA spd according to spd limit
2803  *	@link: Link to set SATA spd for
2804  *
2805  *	Set SATA spd of @link according to sata_spd_limit.
2806  *
2807  *	LOCKING:
2808  *	Inherited from caller.
2809  *
2810  *	RETURNS:
2811  *	0 if spd doesn't need to be changed, 1 if spd has been
2812  *	changed.  Negative errno if SCR registers are inaccessible.
2813  */
2814 int sata_set_spd(struct ata_link *link)
2815 {
2816 	u32 scontrol;
2817 	int rc;
2818 
2819 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2820 		return rc;
2821 
2822 	if (!__sata_set_spd_needed(link, &scontrol))
2823 		return 0;
2824 
2825 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2826 		return rc;
2827 
2828 	return 1;
2829 }
2830 
2831 /*
2832  * This mode timing computation functionality is ported over from
2833  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2834  */
2835 /*
2836  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2837  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2838  * for UDMA6, which is currently supported only by Maxtor drives.
2839  *
2840  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2841  */
2842 
2843 static const struct ata_timing ata_timing[] = {
2844 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2845 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2846 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2847 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2848 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2849 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2850 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2851 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2852 
2853 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2854 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2855 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2856 
2857 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2858 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2859 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2860 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2861 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2862 
2863 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2864 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2865 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2866 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2867 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2868 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2869 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2870 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2871 
2872 	{ 0xFF }
2873 };
2874 
2875 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2876 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2877 
2878 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2879 {
2880 	q->setup	= EZ(t->setup      * 1000,  T);
2881 	q->act8b	= EZ(t->act8b      * 1000,  T);
2882 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2883 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2884 	q->active	= EZ(t->active     * 1000,  T);
2885 	q->recover	= EZ(t->recover    * 1000,  T);
2886 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2887 	q->cycle	= EZ(t->cycle      * 1000,  T);
2888 	q->udma		= EZ(t->udma       * 1000, UT);
2889 }
2890 
2891 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2892 		      struct ata_timing *m, unsigned int what)
2893 {
2894 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2895 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2896 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2897 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2898 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2899 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2900 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2901 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2902 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2903 }
2904 
2905 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2906 {
2907 	const struct ata_timing *t = ata_timing;
2908 
2909 	while (xfer_mode > t->mode)
2910 		t++;
2911 
2912 	if (xfer_mode == t->mode)
2913 		return t;
2914 	return NULL;
2915 }
2916 
2917 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2918 		       struct ata_timing *t, int T, int UT)
2919 {
2920 	const u16 *id = adev->id;
2921 	const struct ata_timing *s;
2922 	struct ata_timing p;
2923 
2924 	/*
2925 	 * Find the mode.
2926 	 */
2927 
2928 	if (!(s = ata_timing_find_mode(speed)))
2929 		return -EINVAL;
2930 
2931 	memcpy(t, s, sizeof(*s));
2932 
2933 	/*
2934 	 * If the drive is an EIDE drive, it can tell us it needs extended
2935 	 * PIO/MW_DMA cycle timing.
2936 	 */
2937 
2938 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2939 		memset(&p, 0, sizeof(p));
2940 
2941 		if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2942 			if (speed <= XFER_PIO_2)
2943 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2944 			else if ((speed <= XFER_PIO_4) ||
2945 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2946 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2947 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2948 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2949 
2950 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2951 	}
2952 
2953 	/*
2954 	 * Convert the timing to bus clock counts.
2955 	 */
2956 
2957 	ata_timing_quantize(t, t, T, UT);
2958 
2959 	/*
2960 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2961 	 * S.M.A.R.T * and some other commands. We have to ensure that the
2962 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
2963 	 */
2964 
2965 	if (speed > XFER_PIO_6) {
2966 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2967 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2968 	}
2969 
2970 	/*
2971 	 * Lengthen active & recovery time so that cycle time is correct.
2972 	 */
2973 
2974 	if (t->act8b + t->rec8b < t->cyc8b) {
2975 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2976 		t->rec8b = t->cyc8b - t->act8b;
2977 	}
2978 
2979 	if (t->active + t->recover < t->cycle) {
2980 		t->active += (t->cycle - (t->active + t->recover)) / 2;
2981 		t->recover = t->cycle - t->active;
2982 	}
2983 
2984 	/* In a few cases quantisation may produce enough errors to
2985 	   leave t->cycle too low for the sum of active and recovery
2986 	   if so we must correct this */
2987 	if (t->active + t->recover > t->cycle)
2988 		t->cycle = t->active + t->recover;
2989 
2990 	return 0;
2991 }
2992 
2993 /**
2994  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2995  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2996  *	@cycle: cycle duration in ns
2997  *
2998  *	Return matching xfer mode for @cycle.  The returned mode is of
2999  *	the transfer type specified by @xfer_shift.  If @cycle is too
3000  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3001  *	than the fastest known mode, the fasted mode is returned.
3002  *
3003  *	LOCKING:
3004  *	None.
3005  *
3006  *	RETURNS:
3007  *	Matching xfer_mode, 0xff if no match found.
3008  */
3009 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3010 {
3011 	u8 base_mode = 0xff, last_mode = 0xff;
3012 	const struct ata_xfer_ent *ent;
3013 	const struct ata_timing *t;
3014 
3015 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3016 		if (ent->shift == xfer_shift)
3017 			base_mode = ent->base;
3018 
3019 	for (t = ata_timing_find_mode(base_mode);
3020 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3021 		unsigned short this_cycle;
3022 
3023 		switch (xfer_shift) {
3024 		case ATA_SHIFT_PIO:
3025 		case ATA_SHIFT_MWDMA:
3026 			this_cycle = t->cycle;
3027 			break;
3028 		case ATA_SHIFT_UDMA:
3029 			this_cycle = t->udma;
3030 			break;
3031 		default:
3032 			return 0xff;
3033 		}
3034 
3035 		if (cycle > this_cycle)
3036 			break;
3037 
3038 		last_mode = t->mode;
3039 	}
3040 
3041 	return last_mode;
3042 }
3043 
3044 /**
3045  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3046  *	@dev: Device to adjust xfer masks
3047  *	@sel: ATA_DNXFER_* selector
3048  *
3049  *	Adjust xfer masks of @dev downward.  Note that this function
3050  *	does not apply the change.  Invoking ata_set_mode() afterwards
3051  *	will apply the limit.
3052  *
3053  *	LOCKING:
3054  *	Inherited from caller.
3055  *
3056  *	RETURNS:
3057  *	0 on success, negative errno on failure
3058  */
3059 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3060 {
3061 	char buf[32];
3062 	unsigned long orig_mask, xfer_mask;
3063 	unsigned long pio_mask, mwdma_mask, udma_mask;
3064 	int quiet, highbit;
3065 
3066 	quiet = !!(sel & ATA_DNXFER_QUIET);
3067 	sel &= ~ATA_DNXFER_QUIET;
3068 
3069 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3070 						  dev->mwdma_mask,
3071 						  dev->udma_mask);
3072 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3073 
3074 	switch (sel) {
3075 	case ATA_DNXFER_PIO:
3076 		highbit = fls(pio_mask) - 1;
3077 		pio_mask &= ~(1 << highbit);
3078 		break;
3079 
3080 	case ATA_DNXFER_DMA:
3081 		if (udma_mask) {
3082 			highbit = fls(udma_mask) - 1;
3083 			udma_mask &= ~(1 << highbit);
3084 			if (!udma_mask)
3085 				return -ENOENT;
3086 		} else if (mwdma_mask) {
3087 			highbit = fls(mwdma_mask) - 1;
3088 			mwdma_mask &= ~(1 << highbit);
3089 			if (!mwdma_mask)
3090 				return -ENOENT;
3091 		}
3092 		break;
3093 
3094 	case ATA_DNXFER_40C:
3095 		udma_mask &= ATA_UDMA_MASK_40C;
3096 		break;
3097 
3098 	case ATA_DNXFER_FORCE_PIO0:
3099 		pio_mask &= 1;
3100 	case ATA_DNXFER_FORCE_PIO:
3101 		mwdma_mask = 0;
3102 		udma_mask = 0;
3103 		break;
3104 
3105 	default:
3106 		BUG();
3107 	}
3108 
3109 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3110 
3111 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3112 		return -ENOENT;
3113 
3114 	if (!quiet) {
3115 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3116 			snprintf(buf, sizeof(buf), "%s:%s",
3117 				 ata_mode_string(xfer_mask),
3118 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3119 		else
3120 			snprintf(buf, sizeof(buf), "%s",
3121 				 ata_mode_string(xfer_mask));
3122 
3123 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3124 	}
3125 
3126 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3127 			    &dev->udma_mask);
3128 
3129 	return 0;
3130 }
3131 
3132 static int ata_dev_set_mode(struct ata_device *dev)
3133 {
3134 	struct ata_port *ap = dev->link->ap;
3135 	struct ata_eh_context *ehc = &dev->link->eh_context;
3136 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3137 	const char *dev_err_whine = "";
3138 	int ign_dev_err = 0;
3139 	unsigned int err_mask = 0;
3140 	int rc;
3141 
3142 	dev->flags &= ~ATA_DFLAG_PIO;
3143 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3144 		dev->flags |= ATA_DFLAG_PIO;
3145 
3146 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3147 		dev_err_whine = " (SET_XFERMODE skipped)";
3148 	else {
3149 		if (nosetxfer)
3150 			ata_dev_warn(dev,
3151 				     "NOSETXFER but PATA detected - can't "
3152 				     "skip SETXFER, might malfunction\n");
3153 		err_mask = ata_dev_set_xfermode(dev);
3154 	}
3155 
3156 	if (err_mask & ~AC_ERR_DEV)
3157 		goto fail;
3158 
3159 	/* revalidate */
3160 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3161 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3162 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3163 	if (rc)
3164 		return rc;
3165 
3166 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3167 		/* Old CFA may refuse this command, which is just fine */
3168 		if (ata_id_is_cfa(dev->id))
3169 			ign_dev_err = 1;
3170 		/* Catch several broken garbage emulations plus some pre
3171 		   ATA devices */
3172 		if (ata_id_major_version(dev->id) == 0 &&
3173 					dev->pio_mode <= XFER_PIO_2)
3174 			ign_dev_err = 1;
3175 		/* Some very old devices and some bad newer ones fail
3176 		   any kind of SET_XFERMODE request but support PIO0-2
3177 		   timings and no IORDY */
3178 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3179 			ign_dev_err = 1;
3180 	}
3181 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3182 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3183 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3184 	    dev->dma_mode == XFER_MW_DMA_0 &&
3185 	    (dev->id[63] >> 8) & 1)
3186 		ign_dev_err = 1;
3187 
3188 	/* if the device is actually configured correctly, ignore dev err */
3189 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3190 		ign_dev_err = 1;
3191 
3192 	if (err_mask & AC_ERR_DEV) {
3193 		if (!ign_dev_err)
3194 			goto fail;
3195 		else
3196 			dev_err_whine = " (device error ignored)";
3197 	}
3198 
3199 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3200 		dev->xfer_shift, (int)dev->xfer_mode);
3201 
3202 	ata_dev_info(dev, "configured for %s%s\n",
3203 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3204 		     dev_err_whine);
3205 
3206 	return 0;
3207 
3208  fail:
3209 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3210 	return -EIO;
3211 }
3212 
3213 /**
3214  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3215  *	@link: link on which timings will be programmed
3216  *	@r_failed_dev: out parameter for failed device
3217  *
3218  *	Standard implementation of the function used to tune and set
3219  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3220  *	ata_dev_set_mode() fails, pointer to the failing device is
3221  *	returned in @r_failed_dev.
3222  *
3223  *	LOCKING:
3224  *	PCI/etc. bus probe sem.
3225  *
3226  *	RETURNS:
3227  *	0 on success, negative errno otherwise
3228  */
3229 
3230 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3231 {
3232 	struct ata_port *ap = link->ap;
3233 	struct ata_device *dev;
3234 	int rc = 0, used_dma = 0, found = 0;
3235 
3236 	/* step 1: calculate xfer_mask */
3237 	ata_for_each_dev(dev, link, ENABLED) {
3238 		unsigned long pio_mask, dma_mask;
3239 		unsigned int mode_mask;
3240 
3241 		mode_mask = ATA_DMA_MASK_ATA;
3242 		if (dev->class == ATA_DEV_ATAPI)
3243 			mode_mask = ATA_DMA_MASK_ATAPI;
3244 		else if (ata_id_is_cfa(dev->id))
3245 			mode_mask = ATA_DMA_MASK_CFA;
3246 
3247 		ata_dev_xfermask(dev);
3248 		ata_force_xfermask(dev);
3249 
3250 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3251 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3252 
3253 		if (libata_dma_mask & mode_mask)
3254 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3255 		else
3256 			dma_mask = 0;
3257 
3258 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3259 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3260 
3261 		found = 1;
3262 		if (ata_dma_enabled(dev))
3263 			used_dma = 1;
3264 	}
3265 	if (!found)
3266 		goto out;
3267 
3268 	/* step 2: always set host PIO timings */
3269 	ata_for_each_dev(dev, link, ENABLED) {
3270 		if (dev->pio_mode == 0xff) {
3271 			ata_dev_warn(dev, "no PIO support\n");
3272 			rc = -EINVAL;
3273 			goto out;
3274 		}
3275 
3276 		dev->xfer_mode = dev->pio_mode;
3277 		dev->xfer_shift = ATA_SHIFT_PIO;
3278 		if (ap->ops->set_piomode)
3279 			ap->ops->set_piomode(ap, dev);
3280 	}
3281 
3282 	/* step 3: set host DMA timings */
3283 	ata_for_each_dev(dev, link, ENABLED) {
3284 		if (!ata_dma_enabled(dev))
3285 			continue;
3286 
3287 		dev->xfer_mode = dev->dma_mode;
3288 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3289 		if (ap->ops->set_dmamode)
3290 			ap->ops->set_dmamode(ap, dev);
3291 	}
3292 
3293 	/* step 4: update devices' xfer mode */
3294 	ata_for_each_dev(dev, link, ENABLED) {
3295 		rc = ata_dev_set_mode(dev);
3296 		if (rc)
3297 			goto out;
3298 	}
3299 
3300 	/* Record simplex status. If we selected DMA then the other
3301 	 * host channels are not permitted to do so.
3302 	 */
3303 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3304 		ap->host->simplex_claimed = ap;
3305 
3306  out:
3307 	if (rc)
3308 		*r_failed_dev = dev;
3309 	return rc;
3310 }
3311 
3312 /**
3313  *	ata_wait_ready - wait for link to become ready
3314  *	@link: link to be waited on
3315  *	@deadline: deadline jiffies for the operation
3316  *	@check_ready: callback to check link readiness
3317  *
3318  *	Wait for @link to become ready.  @check_ready should return
3319  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3320  *	link doesn't seem to be occupied, other errno for other error
3321  *	conditions.
3322  *
3323  *	Transient -ENODEV conditions are allowed for
3324  *	ATA_TMOUT_FF_WAIT.
3325  *
3326  *	LOCKING:
3327  *	EH context.
3328  *
3329  *	RETURNS:
3330  *	0 if @linke is ready before @deadline; otherwise, -errno.
3331  */
3332 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3333 		   int (*check_ready)(struct ata_link *link))
3334 {
3335 	unsigned long start = jiffies;
3336 	unsigned long nodev_deadline;
3337 	int warned = 0;
3338 
3339 	/* choose which 0xff timeout to use, read comment in libata.h */
3340 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3341 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3342 	else
3343 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3344 
3345 	/* Slave readiness can't be tested separately from master.  On
3346 	 * M/S emulation configuration, this function should be called
3347 	 * only on the master and it will handle both master and slave.
3348 	 */
3349 	WARN_ON(link == link->ap->slave_link);
3350 
3351 	if (time_after(nodev_deadline, deadline))
3352 		nodev_deadline = deadline;
3353 
3354 	while (1) {
3355 		unsigned long now = jiffies;
3356 		int ready, tmp;
3357 
3358 		ready = tmp = check_ready(link);
3359 		if (ready > 0)
3360 			return 0;
3361 
3362 		/*
3363 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3364 		 * is online.  Also, some SATA devices take a long
3365 		 * time to clear 0xff after reset.  Wait for
3366 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3367 		 * offline.
3368 		 *
3369 		 * Note that some PATA controllers (pata_ali) explode
3370 		 * if status register is read more than once when
3371 		 * there's no device attached.
3372 		 */
3373 		if (ready == -ENODEV) {
3374 			if (ata_link_online(link))
3375 				ready = 0;
3376 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3377 				 !ata_link_offline(link) &&
3378 				 time_before(now, nodev_deadline))
3379 				ready = 0;
3380 		}
3381 
3382 		if (ready)
3383 			return ready;
3384 		if (time_after(now, deadline))
3385 			return -EBUSY;
3386 
3387 		if (!warned && time_after(now, start + 5 * HZ) &&
3388 		    (deadline - now > 3 * HZ)) {
3389 			ata_link_warn(link,
3390 				"link is slow to respond, please be patient "
3391 				"(ready=%d)\n", tmp);
3392 			warned = 1;
3393 		}
3394 
3395 		ata_msleep(link->ap, 50);
3396 	}
3397 }
3398 
3399 /**
3400  *	ata_wait_after_reset - wait for link to become ready after reset
3401  *	@link: link to be waited on
3402  *	@deadline: deadline jiffies for the operation
3403  *	@check_ready: callback to check link readiness
3404  *
3405  *	Wait for @link to become ready after reset.
3406  *
3407  *	LOCKING:
3408  *	EH context.
3409  *
3410  *	RETURNS:
3411  *	0 if @linke is ready before @deadline; otherwise, -errno.
3412  */
3413 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3414 				int (*check_ready)(struct ata_link *link))
3415 {
3416 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3417 
3418 	return ata_wait_ready(link, deadline, check_ready);
3419 }
3420 
3421 /**
3422  *	sata_link_debounce - debounce SATA phy status
3423  *	@link: ATA link to debounce SATA phy status for
3424  *	@params: timing parameters { interval, duratinon, timeout } in msec
3425  *	@deadline: deadline jiffies for the operation
3426  *
3427  *	Make sure SStatus of @link reaches stable state, determined by
3428  *	holding the same value where DET is not 1 for @duration polled
3429  *	every @interval, before @timeout.  Timeout constraints the
3430  *	beginning of the stable state.  Because DET gets stuck at 1 on
3431  *	some controllers after hot unplugging, this functions waits
3432  *	until timeout then returns 0 if DET is stable at 1.
3433  *
3434  *	@timeout is further limited by @deadline.  The sooner of the
3435  *	two is used.
3436  *
3437  *	LOCKING:
3438  *	Kernel thread context (may sleep)
3439  *
3440  *	RETURNS:
3441  *	0 on success, -errno on failure.
3442  */
3443 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3444 		       unsigned long deadline)
3445 {
3446 	unsigned long interval = params[0];
3447 	unsigned long duration = params[1];
3448 	unsigned long last_jiffies, t;
3449 	u32 last, cur;
3450 	int rc;
3451 
3452 	t = ata_deadline(jiffies, params[2]);
3453 	if (time_before(t, deadline))
3454 		deadline = t;
3455 
3456 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3457 		return rc;
3458 	cur &= 0xf;
3459 
3460 	last = cur;
3461 	last_jiffies = jiffies;
3462 
3463 	while (1) {
3464 		ata_msleep(link->ap, interval);
3465 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3466 			return rc;
3467 		cur &= 0xf;
3468 
3469 		/* DET stable? */
3470 		if (cur == last) {
3471 			if (cur == 1 && time_before(jiffies, deadline))
3472 				continue;
3473 			if (time_after(jiffies,
3474 				       ata_deadline(last_jiffies, duration)))
3475 				return 0;
3476 			continue;
3477 		}
3478 
3479 		/* unstable, start over */
3480 		last = cur;
3481 		last_jiffies = jiffies;
3482 
3483 		/* Check deadline.  If debouncing failed, return
3484 		 * -EPIPE to tell upper layer to lower link speed.
3485 		 */
3486 		if (time_after(jiffies, deadline))
3487 			return -EPIPE;
3488 	}
3489 }
3490 
3491 /**
3492  *	sata_link_resume - resume SATA link
3493  *	@link: ATA link to resume SATA
3494  *	@params: timing parameters { interval, duratinon, timeout } in msec
3495  *	@deadline: deadline jiffies for the operation
3496  *
3497  *	Resume SATA phy @link and debounce it.
3498  *
3499  *	LOCKING:
3500  *	Kernel thread context (may sleep)
3501  *
3502  *	RETURNS:
3503  *	0 on success, -errno on failure.
3504  */
3505 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3506 		     unsigned long deadline)
3507 {
3508 	int tries = ATA_LINK_RESUME_TRIES;
3509 	u32 scontrol, serror;
3510 	int rc;
3511 
3512 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3513 		return rc;
3514 
3515 	/*
3516 	 * Writes to SControl sometimes get ignored under certain
3517 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3518 	 * cleared.
3519 	 */
3520 	do {
3521 		scontrol = (scontrol & 0x0f0) | 0x300;
3522 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3523 			return rc;
3524 		/*
3525 		 * Some PHYs react badly if SStatus is pounded
3526 		 * immediately after resuming.  Delay 200ms before
3527 		 * debouncing.
3528 		 */
3529 		ata_msleep(link->ap, 200);
3530 
3531 		/* is SControl restored correctly? */
3532 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3533 			return rc;
3534 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3535 
3536 	if ((scontrol & 0xf0f) != 0x300) {
3537 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3538 			     scontrol);
3539 		return 0;
3540 	}
3541 
3542 	if (tries < ATA_LINK_RESUME_TRIES)
3543 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3544 			      ATA_LINK_RESUME_TRIES - tries);
3545 
3546 	if ((rc = sata_link_debounce(link, params, deadline)))
3547 		return rc;
3548 
3549 	/* clear SError, some PHYs require this even for SRST to work */
3550 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3551 		rc = sata_scr_write(link, SCR_ERROR, serror);
3552 
3553 	return rc != -EINVAL ? rc : 0;
3554 }
3555 
3556 /**
3557  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3558  *	@link: ATA link to manipulate SControl for
3559  *	@policy: LPM policy to configure
3560  *	@spm_wakeup: initiate LPM transition to active state
3561  *
3562  *	Manipulate the IPM field of the SControl register of @link
3563  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3564  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3565  *	the link.  This function also clears PHYRDY_CHG before
3566  *	returning.
3567  *
3568  *	LOCKING:
3569  *	EH context.
3570  *
3571  *	RETURNS:
3572  *	0 on succes, -errno otherwise.
3573  */
3574 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3575 		      bool spm_wakeup)
3576 {
3577 	struct ata_eh_context *ehc = &link->eh_context;
3578 	bool woken_up = false;
3579 	u32 scontrol;
3580 	int rc;
3581 
3582 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3583 	if (rc)
3584 		return rc;
3585 
3586 	switch (policy) {
3587 	case ATA_LPM_MAX_POWER:
3588 		/* disable all LPM transitions */
3589 		scontrol |= (0x3 << 8);
3590 		/* initiate transition to active state */
3591 		if (spm_wakeup) {
3592 			scontrol |= (0x4 << 12);
3593 			woken_up = true;
3594 		}
3595 		break;
3596 	case ATA_LPM_MED_POWER:
3597 		/* allow LPM to PARTIAL */
3598 		scontrol &= ~(0x1 << 8);
3599 		scontrol |= (0x2 << 8);
3600 		break;
3601 	case ATA_LPM_MIN_POWER:
3602 		if (ata_link_nr_enabled(link) > 0)
3603 			/* no restrictions on LPM transitions */
3604 			scontrol &= ~(0x3 << 8);
3605 		else {
3606 			/* empty port, power off */
3607 			scontrol &= ~0xf;
3608 			scontrol |= (0x1 << 2);
3609 		}
3610 		break;
3611 	default:
3612 		WARN_ON(1);
3613 	}
3614 
3615 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3616 	if (rc)
3617 		return rc;
3618 
3619 	/* give the link time to transit out of LPM state */
3620 	if (woken_up)
3621 		msleep(10);
3622 
3623 	/* clear PHYRDY_CHG from SError */
3624 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3625 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3626 }
3627 
3628 /**
3629  *	ata_std_prereset - prepare for reset
3630  *	@link: ATA link to be reset
3631  *	@deadline: deadline jiffies for the operation
3632  *
3633  *	@link is about to be reset.  Initialize it.  Failure from
3634  *	prereset makes libata abort whole reset sequence and give up
3635  *	that port, so prereset should be best-effort.  It does its
3636  *	best to prepare for reset sequence but if things go wrong, it
3637  *	should just whine, not fail.
3638  *
3639  *	LOCKING:
3640  *	Kernel thread context (may sleep)
3641  *
3642  *	RETURNS:
3643  *	0 on success, -errno otherwise.
3644  */
3645 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3646 {
3647 	struct ata_port *ap = link->ap;
3648 	struct ata_eh_context *ehc = &link->eh_context;
3649 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3650 	int rc;
3651 
3652 	/* if we're about to do hardreset, nothing more to do */
3653 	if (ehc->i.action & ATA_EH_HARDRESET)
3654 		return 0;
3655 
3656 	/* if SATA, resume link */
3657 	if (ap->flags & ATA_FLAG_SATA) {
3658 		rc = sata_link_resume(link, timing, deadline);
3659 		/* whine about phy resume failure but proceed */
3660 		if (rc && rc != -EOPNOTSUPP)
3661 			ata_link_warn(link,
3662 				      "failed to resume link for reset (errno=%d)\n",
3663 				      rc);
3664 	}
3665 
3666 	/* no point in trying softreset on offline link */
3667 	if (ata_phys_link_offline(link))
3668 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3669 
3670 	return 0;
3671 }
3672 
3673 /**
3674  *	sata_link_hardreset - reset link via SATA phy reset
3675  *	@link: link to reset
3676  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3677  *	@deadline: deadline jiffies for the operation
3678  *	@online: optional out parameter indicating link onlineness
3679  *	@check_ready: optional callback to check link readiness
3680  *
3681  *	SATA phy-reset @link using DET bits of SControl register.
3682  *	After hardreset, link readiness is waited upon using
3683  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3684  *	allowed to not specify @check_ready and wait itself after this
3685  *	function returns.  Device classification is LLD's
3686  *	responsibility.
3687  *
3688  *	*@online is set to one iff reset succeeded and @link is online
3689  *	after reset.
3690  *
3691  *	LOCKING:
3692  *	Kernel thread context (may sleep)
3693  *
3694  *	RETURNS:
3695  *	0 on success, -errno otherwise.
3696  */
3697 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3698 			unsigned long deadline,
3699 			bool *online, int (*check_ready)(struct ata_link *))
3700 {
3701 	u32 scontrol;
3702 	int rc;
3703 
3704 	DPRINTK("ENTER\n");
3705 
3706 	if (online)
3707 		*online = false;
3708 
3709 	if (sata_set_spd_needed(link)) {
3710 		/* SATA spec says nothing about how to reconfigure
3711 		 * spd.  To be on the safe side, turn off phy during
3712 		 * reconfiguration.  This works for at least ICH7 AHCI
3713 		 * and Sil3124.
3714 		 */
3715 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3716 			goto out;
3717 
3718 		scontrol = (scontrol & 0x0f0) | 0x304;
3719 
3720 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3721 			goto out;
3722 
3723 		sata_set_spd(link);
3724 	}
3725 
3726 	/* issue phy wake/reset */
3727 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3728 		goto out;
3729 
3730 	scontrol = (scontrol & 0x0f0) | 0x301;
3731 
3732 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3733 		goto out;
3734 
3735 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3736 	 * 10.4.2 says at least 1 ms.
3737 	 */
3738 	ata_msleep(link->ap, 1);
3739 
3740 	/* bring link back */
3741 	rc = sata_link_resume(link, timing, deadline);
3742 	if (rc)
3743 		goto out;
3744 	/* if link is offline nothing more to do */
3745 	if (ata_phys_link_offline(link))
3746 		goto out;
3747 
3748 	/* Link is online.  From this point, -ENODEV too is an error. */
3749 	if (online)
3750 		*online = true;
3751 
3752 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3753 		/* If PMP is supported, we have to do follow-up SRST.
3754 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3755 		 * the first port is empty.  Wait only for
3756 		 * ATA_TMOUT_PMP_SRST_WAIT.
3757 		 */
3758 		if (check_ready) {
3759 			unsigned long pmp_deadline;
3760 
3761 			pmp_deadline = ata_deadline(jiffies,
3762 						    ATA_TMOUT_PMP_SRST_WAIT);
3763 			if (time_after(pmp_deadline, deadline))
3764 				pmp_deadline = deadline;
3765 			ata_wait_ready(link, pmp_deadline, check_ready);
3766 		}
3767 		rc = -EAGAIN;
3768 		goto out;
3769 	}
3770 
3771 	rc = 0;
3772 	if (check_ready)
3773 		rc = ata_wait_ready(link, deadline, check_ready);
3774  out:
3775 	if (rc && rc != -EAGAIN) {
3776 		/* online is set iff link is online && reset succeeded */
3777 		if (online)
3778 			*online = false;
3779 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3780 	}
3781 	DPRINTK("EXIT, rc=%d\n", rc);
3782 	return rc;
3783 }
3784 
3785 /**
3786  *	sata_std_hardreset - COMRESET w/o waiting or classification
3787  *	@link: link to reset
3788  *	@class: resulting class of attached device
3789  *	@deadline: deadline jiffies for the operation
3790  *
3791  *	Standard SATA COMRESET w/o waiting or classification.
3792  *
3793  *	LOCKING:
3794  *	Kernel thread context (may sleep)
3795  *
3796  *	RETURNS:
3797  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3798  */
3799 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3800 		       unsigned long deadline)
3801 {
3802 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3803 	bool online;
3804 	int rc;
3805 
3806 	/* do hardreset */
3807 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3808 	return online ? -EAGAIN : rc;
3809 }
3810 
3811 /**
3812  *	ata_std_postreset - standard postreset callback
3813  *	@link: the target ata_link
3814  *	@classes: classes of attached devices
3815  *
3816  *	This function is invoked after a successful reset.  Note that
3817  *	the device might have been reset more than once using
3818  *	different reset methods before postreset is invoked.
3819  *
3820  *	LOCKING:
3821  *	Kernel thread context (may sleep)
3822  */
3823 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3824 {
3825 	u32 serror;
3826 
3827 	DPRINTK("ENTER\n");
3828 
3829 	/* reset complete, clear SError */
3830 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3831 		sata_scr_write(link, SCR_ERROR, serror);
3832 
3833 	/* print link status */
3834 	sata_print_link_status(link);
3835 
3836 	DPRINTK("EXIT\n");
3837 }
3838 
3839 /**
3840  *	ata_dev_same_device - Determine whether new ID matches configured device
3841  *	@dev: device to compare against
3842  *	@new_class: class of the new device
3843  *	@new_id: IDENTIFY page of the new device
3844  *
3845  *	Compare @new_class and @new_id against @dev and determine
3846  *	whether @dev is the device indicated by @new_class and
3847  *	@new_id.
3848  *
3849  *	LOCKING:
3850  *	None.
3851  *
3852  *	RETURNS:
3853  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3854  */
3855 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3856 			       const u16 *new_id)
3857 {
3858 	const u16 *old_id = dev->id;
3859 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3860 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3861 
3862 	if (dev->class != new_class) {
3863 		ata_dev_info(dev, "class mismatch %d != %d\n",
3864 			     dev->class, new_class);
3865 		return 0;
3866 	}
3867 
3868 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3869 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3870 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3871 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3872 
3873 	if (strcmp(model[0], model[1])) {
3874 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3875 			     model[0], model[1]);
3876 		return 0;
3877 	}
3878 
3879 	if (strcmp(serial[0], serial[1])) {
3880 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3881 			     serial[0], serial[1]);
3882 		return 0;
3883 	}
3884 
3885 	return 1;
3886 }
3887 
3888 /**
3889  *	ata_dev_reread_id - Re-read IDENTIFY data
3890  *	@dev: target ATA device
3891  *	@readid_flags: read ID flags
3892  *
3893  *	Re-read IDENTIFY page and make sure @dev is still attached to
3894  *	the port.
3895  *
3896  *	LOCKING:
3897  *	Kernel thread context (may sleep)
3898  *
3899  *	RETURNS:
3900  *	0 on success, negative errno otherwise
3901  */
3902 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3903 {
3904 	unsigned int class = dev->class;
3905 	u16 *id = (void *)dev->link->ap->sector_buf;
3906 	int rc;
3907 
3908 	/* read ID data */
3909 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3910 	if (rc)
3911 		return rc;
3912 
3913 	/* is the device still there? */
3914 	if (!ata_dev_same_device(dev, class, id))
3915 		return -ENODEV;
3916 
3917 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3918 	return 0;
3919 }
3920 
3921 /**
3922  *	ata_dev_revalidate - Revalidate ATA device
3923  *	@dev: device to revalidate
3924  *	@new_class: new class code
3925  *	@readid_flags: read ID flags
3926  *
3927  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3928  *	port and reconfigure it according to the new IDENTIFY page.
3929  *
3930  *	LOCKING:
3931  *	Kernel thread context (may sleep)
3932  *
3933  *	RETURNS:
3934  *	0 on success, negative errno otherwise
3935  */
3936 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3937 		       unsigned int readid_flags)
3938 {
3939 	u64 n_sectors = dev->n_sectors;
3940 	u64 n_native_sectors = dev->n_native_sectors;
3941 	int rc;
3942 
3943 	if (!ata_dev_enabled(dev))
3944 		return -ENODEV;
3945 
3946 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3947 	if (ata_class_enabled(new_class) &&
3948 	    new_class != ATA_DEV_ATA &&
3949 	    new_class != ATA_DEV_ATAPI &&
3950 	    new_class != ATA_DEV_SEMB) {
3951 		ata_dev_info(dev, "class mismatch %u != %u\n",
3952 			     dev->class, new_class);
3953 		rc = -ENODEV;
3954 		goto fail;
3955 	}
3956 
3957 	/* re-read ID */
3958 	rc = ata_dev_reread_id(dev, readid_flags);
3959 	if (rc)
3960 		goto fail;
3961 
3962 	/* configure device according to the new ID */
3963 	rc = ata_dev_configure(dev);
3964 	if (rc)
3965 		goto fail;
3966 
3967 	/* verify n_sectors hasn't changed */
3968 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3969 	    dev->n_sectors == n_sectors)
3970 		return 0;
3971 
3972 	/* n_sectors has changed */
3973 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3974 		     (unsigned long long)n_sectors,
3975 		     (unsigned long long)dev->n_sectors);
3976 
3977 	/*
3978 	 * Something could have caused HPA to be unlocked
3979 	 * involuntarily.  If n_native_sectors hasn't changed and the
3980 	 * new size matches it, keep the device.
3981 	 */
3982 	if (dev->n_native_sectors == n_native_sectors &&
3983 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3984 		ata_dev_warn(dev,
3985 			     "new n_sectors matches native, probably "
3986 			     "late HPA unlock, n_sectors updated\n");
3987 		/* use the larger n_sectors */
3988 		return 0;
3989 	}
3990 
3991 	/*
3992 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3993 	 * unlocking HPA in those cases.
3994 	 *
3995 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3996 	 */
3997 	if (dev->n_native_sectors == n_native_sectors &&
3998 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3999 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4000 		ata_dev_warn(dev,
4001 			     "old n_sectors matches native, probably "
4002 			     "late HPA lock, will try to unlock HPA\n");
4003 		/* try unlocking HPA */
4004 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4005 		rc = -EIO;
4006 	} else
4007 		rc = -ENODEV;
4008 
4009 	/* restore original n_[native_]sectors and fail */
4010 	dev->n_native_sectors = n_native_sectors;
4011 	dev->n_sectors = n_sectors;
4012  fail:
4013 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4014 	return rc;
4015 }
4016 
4017 struct ata_blacklist_entry {
4018 	const char *model_num;
4019 	const char *model_rev;
4020 	unsigned long horkage;
4021 };
4022 
4023 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4024 	/* Devices with DMA related problems under Linux */
4025 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4026 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4027 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4028 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4029 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4030 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4031 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4032 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4033 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4034 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4035 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4036 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4037 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4038 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4039 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4040 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4041 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4042 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4043 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4044 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4045 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4046 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4047 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4048 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4049 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4050 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4051 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4052 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4053 	/* Odd clown on sil3726/4726 PMPs */
4054 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4055 
4056 	/* Weird ATAPI devices */
4057 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4058 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4059 
4060 	/* Devices we expect to fail diagnostics */
4061 
4062 	/* Devices where NCQ should be avoided */
4063 	/* NCQ is slow */
4064 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4065 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4066 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4067 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4068 	/* NCQ is broken */
4069 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4070 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4071 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4072 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4073 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4074 
4075 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4076 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4077 						ATA_HORKAGE_FIRMWARE_WARN },
4078 
4079 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4080 						ATA_HORKAGE_FIRMWARE_WARN },
4081 
4082 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4083 						ATA_HORKAGE_FIRMWARE_WARN },
4084 
4085 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4086 						ATA_HORKAGE_FIRMWARE_WARN },
4087 
4088 	/* Blacklist entries taken from Silicon Image 3124/3132
4089 	   Windows driver .inf file - also several Linux problem reports */
4090 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4091 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4092 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4093 
4094 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4095 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4096 
4097 	/* devices which puke on READ_NATIVE_MAX */
4098 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4099 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4100 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4101 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4102 
4103 	/* this one allows HPA unlocking but fails IOs on the area */
4104 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4105 
4106 	/* Devices which report 1 sector over size HPA */
4107 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4108 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4109 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4110 
4111 	/* Devices which get the IVB wrong */
4112 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4113 	/* Maybe we should just blacklist TSSTcorp... */
4114 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4115 
4116 	/* Devices that do not need bridging limits applied */
4117 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4118 
4119 	/* Devices which aren't very happy with higher link speeds */
4120 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4121 
4122 	/*
4123 	 * Devices which choke on SETXFER.  Applies only if both the
4124 	 * device and controller are SATA.
4125 	 */
4126 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4127 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4128 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4129 
4130 	/* End Marker */
4131 	{ }
4132 };
4133 
4134 /**
4135  *	glob_match - match a text string against a glob-style pattern
4136  *	@text: the string to be examined
4137  *	@pattern: the glob-style pattern to be matched against
4138  *
4139  *	Either/both of text and pattern can be empty strings.
4140  *
4141  *	Match text against a glob-style pattern, with wildcards and simple sets:
4142  *
4143  *		?	matches any single character.
4144  *		*	matches any run of characters.
4145  *		[xyz]	matches a single character from the set: x, y, or z.
4146  *		[a-d]	matches a single character from the range: a, b, c, or d.
4147  *		[a-d0-9] matches a single character from either range.
4148  *
4149  *	The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4150  *	Behaviour with malformed patterns is undefined, though generally reasonable.
4151  *
4152  *	Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4153  *
4154  *	This function uses one level of recursion per '*' in pattern.
4155  *	Since it calls _nothing_ else, and has _no_ explicit local variables,
4156  *	this will not cause stack problems for any reasonable use here.
4157  *
4158  *	RETURNS:
4159  *	0 on match, 1 otherwise.
4160  */
4161 static int glob_match (const char *text, const char *pattern)
4162 {
4163 	do {
4164 		/* Match single character or a '?' wildcard */
4165 		if (*text == *pattern || *pattern == '?') {
4166 			if (!*pattern++)
4167 				return 0;  /* End of both strings: match */
4168 		} else {
4169 			/* Match single char against a '[' bracketed ']' pattern set */
4170 			if (!*text || *pattern != '[')
4171 				break;  /* Not a pattern set */
4172 			while (*++pattern && *pattern != ']' && *text != *pattern) {
4173 				if (*pattern == '-' && *(pattern - 1) != '[')
4174 					if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4175 						++pattern;
4176 						break;
4177 					}
4178 			}
4179 			if (!*pattern || *pattern == ']')
4180 				return 1;  /* No match */
4181 			while (*pattern && *pattern++ != ']');
4182 		}
4183 	} while (*++text && *pattern);
4184 
4185 	/* Match any run of chars against a '*' wildcard */
4186 	if (*pattern == '*') {
4187 		if (!*++pattern)
4188 			return 0;  /* Match: avoid recursion at end of pattern */
4189 		/* Loop to handle additional pattern chars after the wildcard */
4190 		while (*text) {
4191 			if (glob_match(text, pattern) == 0)
4192 				return 0;  /* Remainder matched */
4193 			++text;  /* Absorb (match) this char and try again */
4194 		}
4195 	}
4196 	if (!*text && !*pattern)
4197 		return 0;  /* End of both strings: match */
4198 	return 1;  /* No match */
4199 }
4200 
4201 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4202 {
4203 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4204 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4205 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4206 
4207 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4208 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4209 
4210 	while (ad->model_num) {
4211 		if (!glob_match(model_num, ad->model_num)) {
4212 			if (ad->model_rev == NULL)
4213 				return ad->horkage;
4214 			if (!glob_match(model_rev, ad->model_rev))
4215 				return ad->horkage;
4216 		}
4217 		ad++;
4218 	}
4219 	return 0;
4220 }
4221 
4222 static int ata_dma_blacklisted(const struct ata_device *dev)
4223 {
4224 	/* We don't support polling DMA.
4225 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4226 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4227 	 */
4228 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4229 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4230 		return 1;
4231 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4232 }
4233 
4234 /**
4235  *	ata_is_40wire		-	check drive side detection
4236  *	@dev: device
4237  *
4238  *	Perform drive side detection decoding, allowing for device vendors
4239  *	who can't follow the documentation.
4240  */
4241 
4242 static int ata_is_40wire(struct ata_device *dev)
4243 {
4244 	if (dev->horkage & ATA_HORKAGE_IVB)
4245 		return ata_drive_40wire_relaxed(dev->id);
4246 	return ata_drive_40wire(dev->id);
4247 }
4248 
4249 /**
4250  *	cable_is_40wire		-	40/80/SATA decider
4251  *	@ap: port to consider
4252  *
4253  *	This function encapsulates the policy for speed management
4254  *	in one place. At the moment we don't cache the result but
4255  *	there is a good case for setting ap->cbl to the result when
4256  *	we are called with unknown cables (and figuring out if it
4257  *	impacts hotplug at all).
4258  *
4259  *	Return 1 if the cable appears to be 40 wire.
4260  */
4261 
4262 static int cable_is_40wire(struct ata_port *ap)
4263 {
4264 	struct ata_link *link;
4265 	struct ata_device *dev;
4266 
4267 	/* If the controller thinks we are 40 wire, we are. */
4268 	if (ap->cbl == ATA_CBL_PATA40)
4269 		return 1;
4270 
4271 	/* If the controller thinks we are 80 wire, we are. */
4272 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4273 		return 0;
4274 
4275 	/* If the system is known to be 40 wire short cable (eg
4276 	 * laptop), then we allow 80 wire modes even if the drive
4277 	 * isn't sure.
4278 	 */
4279 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4280 		return 0;
4281 
4282 	/* If the controller doesn't know, we scan.
4283 	 *
4284 	 * Note: We look for all 40 wire detects at this point.  Any
4285 	 *       80 wire detect is taken to be 80 wire cable because
4286 	 * - in many setups only the one drive (slave if present) will
4287 	 *   give a valid detect
4288 	 * - if you have a non detect capable drive you don't want it
4289 	 *   to colour the choice
4290 	 */
4291 	ata_for_each_link(link, ap, EDGE) {
4292 		ata_for_each_dev(dev, link, ENABLED) {
4293 			if (!ata_is_40wire(dev))
4294 				return 0;
4295 		}
4296 	}
4297 	return 1;
4298 }
4299 
4300 /**
4301  *	ata_dev_xfermask - Compute supported xfermask of the given device
4302  *	@dev: Device to compute xfermask for
4303  *
4304  *	Compute supported xfermask of @dev and store it in
4305  *	dev->*_mask.  This function is responsible for applying all
4306  *	known limits including host controller limits, device
4307  *	blacklist, etc...
4308  *
4309  *	LOCKING:
4310  *	None.
4311  */
4312 static void ata_dev_xfermask(struct ata_device *dev)
4313 {
4314 	struct ata_link *link = dev->link;
4315 	struct ata_port *ap = link->ap;
4316 	struct ata_host *host = ap->host;
4317 	unsigned long xfer_mask;
4318 
4319 	/* controller modes available */
4320 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4321 				      ap->mwdma_mask, ap->udma_mask);
4322 
4323 	/* drive modes available */
4324 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4325 				       dev->mwdma_mask, dev->udma_mask);
4326 	xfer_mask &= ata_id_xfermask(dev->id);
4327 
4328 	/*
4329 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4330 	 *	cable
4331 	 */
4332 	if (ata_dev_pair(dev)) {
4333 		/* No PIO5 or PIO6 */
4334 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4335 		/* No MWDMA3 or MWDMA 4 */
4336 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4337 	}
4338 
4339 	if (ata_dma_blacklisted(dev)) {
4340 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4341 		ata_dev_warn(dev,
4342 			     "device is on DMA blacklist, disabling DMA\n");
4343 	}
4344 
4345 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4346 	    host->simplex_claimed && host->simplex_claimed != ap) {
4347 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4348 		ata_dev_warn(dev,
4349 			     "simplex DMA is claimed by other device, disabling DMA\n");
4350 	}
4351 
4352 	if (ap->flags & ATA_FLAG_NO_IORDY)
4353 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4354 
4355 	if (ap->ops->mode_filter)
4356 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4357 
4358 	/* Apply cable rule here.  Don't apply it early because when
4359 	 * we handle hot plug the cable type can itself change.
4360 	 * Check this last so that we know if the transfer rate was
4361 	 * solely limited by the cable.
4362 	 * Unknown or 80 wire cables reported host side are checked
4363 	 * drive side as well. Cases where we know a 40wire cable
4364 	 * is used safely for 80 are not checked here.
4365 	 */
4366 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4367 		/* UDMA/44 or higher would be available */
4368 		if (cable_is_40wire(ap)) {
4369 			ata_dev_warn(dev,
4370 				     "limited to UDMA/33 due to 40-wire cable\n");
4371 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4372 		}
4373 
4374 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4375 			    &dev->mwdma_mask, &dev->udma_mask);
4376 }
4377 
4378 /**
4379  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4380  *	@dev: Device to which command will be sent
4381  *
4382  *	Issue SET FEATURES - XFER MODE command to device @dev
4383  *	on port @ap.
4384  *
4385  *	LOCKING:
4386  *	PCI/etc. bus probe sem.
4387  *
4388  *	RETURNS:
4389  *	0 on success, AC_ERR_* mask otherwise.
4390  */
4391 
4392 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4393 {
4394 	struct ata_taskfile tf;
4395 	unsigned int err_mask;
4396 
4397 	/* set up set-features taskfile */
4398 	DPRINTK("set features - xfer mode\n");
4399 
4400 	/* Some controllers and ATAPI devices show flaky interrupt
4401 	 * behavior after setting xfer mode.  Use polling instead.
4402 	 */
4403 	ata_tf_init(dev, &tf);
4404 	tf.command = ATA_CMD_SET_FEATURES;
4405 	tf.feature = SETFEATURES_XFER;
4406 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4407 	tf.protocol = ATA_PROT_NODATA;
4408 	/* If we are using IORDY we must send the mode setting command */
4409 	if (ata_pio_need_iordy(dev))
4410 		tf.nsect = dev->xfer_mode;
4411 	/* If the device has IORDY and the controller does not - turn it off */
4412  	else if (ata_id_has_iordy(dev->id))
4413 		tf.nsect = 0x01;
4414 	else /* In the ancient relic department - skip all of this */
4415 		return 0;
4416 
4417 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4418 
4419 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4420 	return err_mask;
4421 }
4422 
4423 /**
4424  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4425  *	@dev: Device to which command will be sent
4426  *	@enable: Whether to enable or disable the feature
4427  *	@feature: The sector count represents the feature to set
4428  *
4429  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4430  *	on port @ap with sector count
4431  *
4432  *	LOCKING:
4433  *	PCI/etc. bus probe sem.
4434  *
4435  *	RETURNS:
4436  *	0 on success, AC_ERR_* mask otherwise.
4437  */
4438 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4439 {
4440 	struct ata_taskfile tf;
4441 	unsigned int err_mask;
4442 
4443 	/* set up set-features taskfile */
4444 	DPRINTK("set features - SATA features\n");
4445 
4446 	ata_tf_init(dev, &tf);
4447 	tf.command = ATA_CMD_SET_FEATURES;
4448 	tf.feature = enable;
4449 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4450 	tf.protocol = ATA_PROT_NODATA;
4451 	tf.nsect = feature;
4452 
4453 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4454 
4455 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4456 	return err_mask;
4457 }
4458 
4459 /**
4460  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4461  *	@dev: Device to which command will be sent
4462  *	@heads: Number of heads (taskfile parameter)
4463  *	@sectors: Number of sectors (taskfile parameter)
4464  *
4465  *	LOCKING:
4466  *	Kernel thread context (may sleep)
4467  *
4468  *	RETURNS:
4469  *	0 on success, AC_ERR_* mask otherwise.
4470  */
4471 static unsigned int ata_dev_init_params(struct ata_device *dev,
4472 					u16 heads, u16 sectors)
4473 {
4474 	struct ata_taskfile tf;
4475 	unsigned int err_mask;
4476 
4477 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4478 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4479 		return AC_ERR_INVALID;
4480 
4481 	/* set up init dev params taskfile */
4482 	DPRINTK("init dev params \n");
4483 
4484 	ata_tf_init(dev, &tf);
4485 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4486 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4487 	tf.protocol = ATA_PROT_NODATA;
4488 	tf.nsect = sectors;
4489 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4490 
4491 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4492 	/* A clean abort indicates an original or just out of spec drive
4493 	   and we should continue as we issue the setup based on the
4494 	   drive reported working geometry */
4495 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4496 		err_mask = 0;
4497 
4498 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4499 	return err_mask;
4500 }
4501 
4502 /**
4503  *	ata_sg_clean - Unmap DMA memory associated with command
4504  *	@qc: Command containing DMA memory to be released
4505  *
4506  *	Unmap all mapped DMA memory associated with this command.
4507  *
4508  *	LOCKING:
4509  *	spin_lock_irqsave(host lock)
4510  */
4511 void ata_sg_clean(struct ata_queued_cmd *qc)
4512 {
4513 	struct ata_port *ap = qc->ap;
4514 	struct scatterlist *sg = qc->sg;
4515 	int dir = qc->dma_dir;
4516 
4517 	WARN_ON_ONCE(sg == NULL);
4518 
4519 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4520 
4521 	if (qc->n_elem)
4522 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4523 
4524 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4525 	qc->sg = NULL;
4526 }
4527 
4528 /**
4529  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4530  *	@qc: Metadata associated with taskfile to check
4531  *
4532  *	Allow low-level driver to filter ATA PACKET commands, returning
4533  *	a status indicating whether or not it is OK to use DMA for the
4534  *	supplied PACKET command.
4535  *
4536  *	LOCKING:
4537  *	spin_lock_irqsave(host lock)
4538  *
4539  *	RETURNS: 0 when ATAPI DMA can be used
4540  *               nonzero otherwise
4541  */
4542 int atapi_check_dma(struct ata_queued_cmd *qc)
4543 {
4544 	struct ata_port *ap = qc->ap;
4545 
4546 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4547 	 * few ATAPI devices choke on such DMA requests.
4548 	 */
4549 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4550 	    unlikely(qc->nbytes & 15))
4551 		return 1;
4552 
4553 	if (ap->ops->check_atapi_dma)
4554 		return ap->ops->check_atapi_dma(qc);
4555 
4556 	return 0;
4557 }
4558 
4559 /**
4560  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4561  *	@qc: ATA command in question
4562  *
4563  *	Non-NCQ commands cannot run with any other command, NCQ or
4564  *	not.  As upper layer only knows the queue depth, we are
4565  *	responsible for maintaining exclusion.  This function checks
4566  *	whether a new command @qc can be issued.
4567  *
4568  *	LOCKING:
4569  *	spin_lock_irqsave(host lock)
4570  *
4571  *	RETURNS:
4572  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4573  */
4574 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4575 {
4576 	struct ata_link *link = qc->dev->link;
4577 
4578 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4579 		if (!ata_tag_valid(link->active_tag))
4580 			return 0;
4581 	} else {
4582 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4583 			return 0;
4584 	}
4585 
4586 	return ATA_DEFER_LINK;
4587 }
4588 
4589 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4590 
4591 /**
4592  *	ata_sg_init - Associate command with scatter-gather table.
4593  *	@qc: Command to be associated
4594  *	@sg: Scatter-gather table.
4595  *	@n_elem: Number of elements in s/g table.
4596  *
4597  *	Initialize the data-related elements of queued_cmd @qc
4598  *	to point to a scatter-gather table @sg, containing @n_elem
4599  *	elements.
4600  *
4601  *	LOCKING:
4602  *	spin_lock_irqsave(host lock)
4603  */
4604 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4605 		 unsigned int n_elem)
4606 {
4607 	qc->sg = sg;
4608 	qc->n_elem = n_elem;
4609 	qc->cursg = qc->sg;
4610 }
4611 
4612 /**
4613  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4614  *	@qc: Command with scatter-gather table to be mapped.
4615  *
4616  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4617  *
4618  *	LOCKING:
4619  *	spin_lock_irqsave(host lock)
4620  *
4621  *	RETURNS:
4622  *	Zero on success, negative on error.
4623  *
4624  */
4625 static int ata_sg_setup(struct ata_queued_cmd *qc)
4626 {
4627 	struct ata_port *ap = qc->ap;
4628 	unsigned int n_elem;
4629 
4630 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4631 
4632 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4633 	if (n_elem < 1)
4634 		return -1;
4635 
4636 	DPRINTK("%d sg elements mapped\n", n_elem);
4637 	qc->orig_n_elem = qc->n_elem;
4638 	qc->n_elem = n_elem;
4639 	qc->flags |= ATA_QCFLAG_DMAMAP;
4640 
4641 	return 0;
4642 }
4643 
4644 /**
4645  *	swap_buf_le16 - swap halves of 16-bit words in place
4646  *	@buf:  Buffer to swap
4647  *	@buf_words:  Number of 16-bit words in buffer.
4648  *
4649  *	Swap halves of 16-bit words if needed to convert from
4650  *	little-endian byte order to native cpu byte order, or
4651  *	vice-versa.
4652  *
4653  *	LOCKING:
4654  *	Inherited from caller.
4655  */
4656 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4657 {
4658 #ifdef __BIG_ENDIAN
4659 	unsigned int i;
4660 
4661 	for (i = 0; i < buf_words; i++)
4662 		buf[i] = le16_to_cpu(buf[i]);
4663 #endif /* __BIG_ENDIAN */
4664 }
4665 
4666 /**
4667  *	ata_qc_new - Request an available ATA command, for queueing
4668  *	@ap: target port
4669  *
4670  *	LOCKING:
4671  *	None.
4672  */
4673 
4674 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4675 {
4676 	struct ata_queued_cmd *qc = NULL;
4677 	unsigned int i;
4678 
4679 	/* no command while frozen */
4680 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4681 		return NULL;
4682 
4683 	/* the last tag is reserved for internal command. */
4684 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4685 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4686 			qc = __ata_qc_from_tag(ap, i);
4687 			break;
4688 		}
4689 
4690 	if (qc)
4691 		qc->tag = i;
4692 
4693 	return qc;
4694 }
4695 
4696 /**
4697  *	ata_qc_new_init - Request an available ATA command, and initialize it
4698  *	@dev: Device from whom we request an available command structure
4699  *
4700  *	LOCKING:
4701  *	None.
4702  */
4703 
4704 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4705 {
4706 	struct ata_port *ap = dev->link->ap;
4707 	struct ata_queued_cmd *qc;
4708 
4709 	qc = ata_qc_new(ap);
4710 	if (qc) {
4711 		qc->scsicmd = NULL;
4712 		qc->ap = ap;
4713 		qc->dev = dev;
4714 
4715 		ata_qc_reinit(qc);
4716 	}
4717 
4718 	return qc;
4719 }
4720 
4721 /**
4722  *	ata_qc_free - free unused ata_queued_cmd
4723  *	@qc: Command to complete
4724  *
4725  *	Designed to free unused ata_queued_cmd object
4726  *	in case something prevents using it.
4727  *
4728  *	LOCKING:
4729  *	spin_lock_irqsave(host lock)
4730  */
4731 void ata_qc_free(struct ata_queued_cmd *qc)
4732 {
4733 	struct ata_port *ap;
4734 	unsigned int tag;
4735 
4736 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4737 	ap = qc->ap;
4738 
4739 	qc->flags = 0;
4740 	tag = qc->tag;
4741 	if (likely(ata_tag_valid(tag))) {
4742 		qc->tag = ATA_TAG_POISON;
4743 		clear_bit(tag, &ap->qc_allocated);
4744 	}
4745 }
4746 
4747 void __ata_qc_complete(struct ata_queued_cmd *qc)
4748 {
4749 	struct ata_port *ap;
4750 	struct ata_link *link;
4751 
4752 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4753 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4754 	ap = qc->ap;
4755 	link = qc->dev->link;
4756 
4757 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4758 		ata_sg_clean(qc);
4759 
4760 	/* command should be marked inactive atomically with qc completion */
4761 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4762 		link->sactive &= ~(1 << qc->tag);
4763 		if (!link->sactive)
4764 			ap->nr_active_links--;
4765 	} else {
4766 		link->active_tag = ATA_TAG_POISON;
4767 		ap->nr_active_links--;
4768 	}
4769 
4770 	/* clear exclusive status */
4771 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4772 		     ap->excl_link == link))
4773 		ap->excl_link = NULL;
4774 
4775 	/* atapi: mark qc as inactive to prevent the interrupt handler
4776 	 * from completing the command twice later, before the error handler
4777 	 * is called. (when rc != 0 and atapi request sense is needed)
4778 	 */
4779 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4780 	ap->qc_active &= ~(1 << qc->tag);
4781 
4782 	/* call completion callback */
4783 	qc->complete_fn(qc);
4784 }
4785 
4786 static void fill_result_tf(struct ata_queued_cmd *qc)
4787 {
4788 	struct ata_port *ap = qc->ap;
4789 
4790 	qc->result_tf.flags = qc->tf.flags;
4791 	ap->ops->qc_fill_rtf(qc);
4792 }
4793 
4794 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4795 {
4796 	struct ata_device *dev = qc->dev;
4797 
4798 	if (ata_is_nodata(qc->tf.protocol))
4799 		return;
4800 
4801 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4802 		return;
4803 
4804 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4805 }
4806 
4807 /**
4808  *	ata_qc_complete - Complete an active ATA command
4809  *	@qc: Command to complete
4810  *
4811  *	Indicate to the mid and upper layers that an ATA command has
4812  *	completed, with either an ok or not-ok status.
4813  *
4814  *	Refrain from calling this function multiple times when
4815  *	successfully completing multiple NCQ commands.
4816  *	ata_qc_complete_multiple() should be used instead, which will
4817  *	properly update IRQ expect state.
4818  *
4819  *	LOCKING:
4820  *	spin_lock_irqsave(host lock)
4821  */
4822 void ata_qc_complete(struct ata_queued_cmd *qc)
4823 {
4824 	struct ata_port *ap = qc->ap;
4825 
4826 	/* XXX: New EH and old EH use different mechanisms to
4827 	 * synchronize EH with regular execution path.
4828 	 *
4829 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4830 	 * Normal execution path is responsible for not accessing a
4831 	 * failed qc.  libata core enforces the rule by returning NULL
4832 	 * from ata_qc_from_tag() for failed qcs.
4833 	 *
4834 	 * Old EH depends on ata_qc_complete() nullifying completion
4835 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4836 	 * not synchronize with interrupt handler.  Only PIO task is
4837 	 * taken care of.
4838 	 */
4839 	if (ap->ops->error_handler) {
4840 		struct ata_device *dev = qc->dev;
4841 		struct ata_eh_info *ehi = &dev->link->eh_info;
4842 
4843 		if (unlikely(qc->err_mask))
4844 			qc->flags |= ATA_QCFLAG_FAILED;
4845 
4846 		/*
4847 		 * Finish internal commands without any further processing
4848 		 * and always with the result TF filled.
4849 		 */
4850 		if (unlikely(ata_tag_internal(qc->tag))) {
4851 			fill_result_tf(qc);
4852 			__ata_qc_complete(qc);
4853 			return;
4854 		}
4855 
4856 		/*
4857 		 * Non-internal qc has failed.  Fill the result TF and
4858 		 * summon EH.
4859 		 */
4860 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4861 			fill_result_tf(qc);
4862 			ata_qc_schedule_eh(qc);
4863 			return;
4864 		}
4865 
4866 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4867 
4868 		/* read result TF if requested */
4869 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4870 			fill_result_tf(qc);
4871 
4872 		/* Some commands need post-processing after successful
4873 		 * completion.
4874 		 */
4875 		switch (qc->tf.command) {
4876 		case ATA_CMD_SET_FEATURES:
4877 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4878 			    qc->tf.feature != SETFEATURES_WC_OFF)
4879 				break;
4880 			/* fall through */
4881 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4882 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4883 			/* revalidate device */
4884 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4885 			ata_port_schedule_eh(ap);
4886 			break;
4887 
4888 		case ATA_CMD_SLEEP:
4889 			dev->flags |= ATA_DFLAG_SLEEPING;
4890 			break;
4891 		}
4892 
4893 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4894 			ata_verify_xfer(qc);
4895 
4896 		__ata_qc_complete(qc);
4897 	} else {
4898 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4899 			return;
4900 
4901 		/* read result TF if failed or requested */
4902 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4903 			fill_result_tf(qc);
4904 
4905 		__ata_qc_complete(qc);
4906 	}
4907 }
4908 
4909 /**
4910  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4911  *	@ap: port in question
4912  *	@qc_active: new qc_active mask
4913  *
4914  *	Complete in-flight commands.  This functions is meant to be
4915  *	called from low-level driver's interrupt routine to complete
4916  *	requests normally.  ap->qc_active and @qc_active is compared
4917  *	and commands are completed accordingly.
4918  *
4919  *	Always use this function when completing multiple NCQ commands
4920  *	from IRQ handlers instead of calling ata_qc_complete()
4921  *	multiple times to keep IRQ expect status properly in sync.
4922  *
4923  *	LOCKING:
4924  *	spin_lock_irqsave(host lock)
4925  *
4926  *	RETURNS:
4927  *	Number of completed commands on success, -errno otherwise.
4928  */
4929 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4930 {
4931 	int nr_done = 0;
4932 	u32 done_mask;
4933 
4934 	done_mask = ap->qc_active ^ qc_active;
4935 
4936 	if (unlikely(done_mask & qc_active)) {
4937 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4938 			     ap->qc_active, qc_active);
4939 		return -EINVAL;
4940 	}
4941 
4942 	while (done_mask) {
4943 		struct ata_queued_cmd *qc;
4944 		unsigned int tag = __ffs(done_mask);
4945 
4946 		qc = ata_qc_from_tag(ap, tag);
4947 		if (qc) {
4948 			ata_qc_complete(qc);
4949 			nr_done++;
4950 		}
4951 		done_mask &= ~(1 << tag);
4952 	}
4953 
4954 	return nr_done;
4955 }
4956 
4957 /**
4958  *	ata_qc_issue - issue taskfile to device
4959  *	@qc: command to issue to device
4960  *
4961  *	Prepare an ATA command to submission to device.
4962  *	This includes mapping the data into a DMA-able
4963  *	area, filling in the S/G table, and finally
4964  *	writing the taskfile to hardware, starting the command.
4965  *
4966  *	LOCKING:
4967  *	spin_lock_irqsave(host lock)
4968  */
4969 void ata_qc_issue(struct ata_queued_cmd *qc)
4970 {
4971 	struct ata_port *ap = qc->ap;
4972 	struct ata_link *link = qc->dev->link;
4973 	u8 prot = qc->tf.protocol;
4974 
4975 	/* Make sure only one non-NCQ command is outstanding.  The
4976 	 * check is skipped for old EH because it reuses active qc to
4977 	 * request ATAPI sense.
4978 	 */
4979 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4980 
4981 	if (ata_is_ncq(prot)) {
4982 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
4983 
4984 		if (!link->sactive)
4985 			ap->nr_active_links++;
4986 		link->sactive |= 1 << qc->tag;
4987 	} else {
4988 		WARN_ON_ONCE(link->sactive);
4989 
4990 		ap->nr_active_links++;
4991 		link->active_tag = qc->tag;
4992 	}
4993 
4994 	qc->flags |= ATA_QCFLAG_ACTIVE;
4995 	ap->qc_active |= 1 << qc->tag;
4996 
4997 	/*
4998 	 * We guarantee to LLDs that they will have at least one
4999 	 * non-zero sg if the command is a data command.
5000 	 */
5001 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5002 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5003 		goto sys_err;
5004 
5005 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5006 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5007 		if (ata_sg_setup(qc))
5008 			goto sys_err;
5009 
5010 	/* if device is sleeping, schedule reset and abort the link */
5011 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5012 		link->eh_info.action |= ATA_EH_RESET;
5013 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5014 		ata_link_abort(link);
5015 		return;
5016 	}
5017 
5018 	ap->ops->qc_prep(qc);
5019 
5020 	qc->err_mask |= ap->ops->qc_issue(qc);
5021 	if (unlikely(qc->err_mask))
5022 		goto err;
5023 	return;
5024 
5025 sys_err:
5026 	qc->err_mask |= AC_ERR_SYSTEM;
5027 err:
5028 	ata_qc_complete(qc);
5029 }
5030 
5031 /**
5032  *	sata_scr_valid - test whether SCRs are accessible
5033  *	@link: ATA link to test SCR accessibility for
5034  *
5035  *	Test whether SCRs are accessible for @link.
5036  *
5037  *	LOCKING:
5038  *	None.
5039  *
5040  *	RETURNS:
5041  *	1 if SCRs are accessible, 0 otherwise.
5042  */
5043 int sata_scr_valid(struct ata_link *link)
5044 {
5045 	struct ata_port *ap = link->ap;
5046 
5047 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5048 }
5049 
5050 /**
5051  *	sata_scr_read - read SCR register of the specified port
5052  *	@link: ATA link to read SCR for
5053  *	@reg: SCR to read
5054  *	@val: Place to store read value
5055  *
5056  *	Read SCR register @reg of @link into *@val.  This function is
5057  *	guaranteed to succeed if @link is ap->link, the cable type of
5058  *	the port is SATA and the port implements ->scr_read.
5059  *
5060  *	LOCKING:
5061  *	None if @link is ap->link.  Kernel thread context otherwise.
5062  *
5063  *	RETURNS:
5064  *	0 on success, negative errno on failure.
5065  */
5066 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5067 {
5068 	if (ata_is_host_link(link)) {
5069 		if (sata_scr_valid(link))
5070 			return link->ap->ops->scr_read(link, reg, val);
5071 		return -EOPNOTSUPP;
5072 	}
5073 
5074 	return sata_pmp_scr_read(link, reg, val);
5075 }
5076 
5077 /**
5078  *	sata_scr_write - write SCR register of the specified port
5079  *	@link: ATA link to write SCR for
5080  *	@reg: SCR to write
5081  *	@val: value to write
5082  *
5083  *	Write @val to SCR register @reg of @link.  This function is
5084  *	guaranteed to succeed if @link is ap->link, the cable type of
5085  *	the port is SATA and the port implements ->scr_read.
5086  *
5087  *	LOCKING:
5088  *	None if @link is ap->link.  Kernel thread context otherwise.
5089  *
5090  *	RETURNS:
5091  *	0 on success, negative errno on failure.
5092  */
5093 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5094 {
5095 	if (ata_is_host_link(link)) {
5096 		if (sata_scr_valid(link))
5097 			return link->ap->ops->scr_write(link, reg, val);
5098 		return -EOPNOTSUPP;
5099 	}
5100 
5101 	return sata_pmp_scr_write(link, reg, val);
5102 }
5103 
5104 /**
5105  *	sata_scr_write_flush - write SCR register of the specified port and flush
5106  *	@link: ATA link to write SCR for
5107  *	@reg: SCR to write
5108  *	@val: value to write
5109  *
5110  *	This function is identical to sata_scr_write() except that this
5111  *	function performs flush after writing to the register.
5112  *
5113  *	LOCKING:
5114  *	None if @link is ap->link.  Kernel thread context otherwise.
5115  *
5116  *	RETURNS:
5117  *	0 on success, negative errno on failure.
5118  */
5119 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5120 {
5121 	if (ata_is_host_link(link)) {
5122 		int rc;
5123 
5124 		if (sata_scr_valid(link)) {
5125 			rc = link->ap->ops->scr_write(link, reg, val);
5126 			if (rc == 0)
5127 				rc = link->ap->ops->scr_read(link, reg, &val);
5128 			return rc;
5129 		}
5130 		return -EOPNOTSUPP;
5131 	}
5132 
5133 	return sata_pmp_scr_write(link, reg, val);
5134 }
5135 
5136 /**
5137  *	ata_phys_link_online - test whether the given link is online
5138  *	@link: ATA link to test
5139  *
5140  *	Test whether @link is online.  Note that this function returns
5141  *	0 if online status of @link cannot be obtained, so
5142  *	ata_link_online(link) != !ata_link_offline(link).
5143  *
5144  *	LOCKING:
5145  *	None.
5146  *
5147  *	RETURNS:
5148  *	True if the port online status is available and online.
5149  */
5150 bool ata_phys_link_online(struct ata_link *link)
5151 {
5152 	u32 sstatus;
5153 
5154 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5155 	    ata_sstatus_online(sstatus))
5156 		return true;
5157 	return false;
5158 }
5159 
5160 /**
5161  *	ata_phys_link_offline - test whether the given link is offline
5162  *	@link: ATA link to test
5163  *
5164  *	Test whether @link is offline.  Note that this function
5165  *	returns 0 if offline status of @link cannot be obtained, so
5166  *	ata_link_online(link) != !ata_link_offline(link).
5167  *
5168  *	LOCKING:
5169  *	None.
5170  *
5171  *	RETURNS:
5172  *	True if the port offline status is available and offline.
5173  */
5174 bool ata_phys_link_offline(struct ata_link *link)
5175 {
5176 	u32 sstatus;
5177 
5178 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5179 	    !ata_sstatus_online(sstatus))
5180 		return true;
5181 	return false;
5182 }
5183 
5184 /**
5185  *	ata_link_online - test whether the given link is online
5186  *	@link: ATA link to test
5187  *
5188  *	Test whether @link is online.  This is identical to
5189  *	ata_phys_link_online() when there's no slave link.  When
5190  *	there's a slave link, this function should only be called on
5191  *	the master link and will return true if any of M/S links is
5192  *	online.
5193  *
5194  *	LOCKING:
5195  *	None.
5196  *
5197  *	RETURNS:
5198  *	True if the port online status is available and online.
5199  */
5200 bool ata_link_online(struct ata_link *link)
5201 {
5202 	struct ata_link *slave = link->ap->slave_link;
5203 
5204 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5205 
5206 	return ata_phys_link_online(link) ||
5207 		(slave && ata_phys_link_online(slave));
5208 }
5209 
5210 /**
5211  *	ata_link_offline - test whether the given link is offline
5212  *	@link: ATA link to test
5213  *
5214  *	Test whether @link is offline.  This is identical to
5215  *	ata_phys_link_offline() when there's no slave link.  When
5216  *	there's a slave link, this function should only be called on
5217  *	the master link and will return true if both M/S links are
5218  *	offline.
5219  *
5220  *	LOCKING:
5221  *	None.
5222  *
5223  *	RETURNS:
5224  *	True if the port offline status is available and offline.
5225  */
5226 bool ata_link_offline(struct ata_link *link)
5227 {
5228 	struct ata_link *slave = link->ap->slave_link;
5229 
5230 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5231 
5232 	return ata_phys_link_offline(link) &&
5233 		(!slave || ata_phys_link_offline(slave));
5234 }
5235 
5236 #ifdef CONFIG_PM
5237 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5238 			       unsigned int action, unsigned int ehi_flags,
5239 			       int wait)
5240 {
5241 	unsigned long flags;
5242 	int i, rc;
5243 
5244 	for (i = 0; i < host->n_ports; i++) {
5245 		struct ata_port *ap = host->ports[i];
5246 		struct ata_link *link;
5247 
5248 		/* Previous resume operation might still be in
5249 		 * progress.  Wait for PM_PENDING to clear.
5250 		 */
5251 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5252 			ata_port_wait_eh(ap);
5253 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5254 		}
5255 
5256 		/* request PM ops to EH */
5257 		spin_lock_irqsave(ap->lock, flags);
5258 
5259 		ap->pm_mesg = mesg;
5260 		if (wait) {
5261 			rc = 0;
5262 			ap->pm_result = &rc;
5263 		}
5264 
5265 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5266 		ata_for_each_link(link, ap, HOST_FIRST) {
5267 			link->eh_info.action |= action;
5268 			link->eh_info.flags |= ehi_flags;
5269 		}
5270 
5271 		ata_port_schedule_eh(ap);
5272 
5273 		spin_unlock_irqrestore(ap->lock, flags);
5274 
5275 		/* wait and check result */
5276 		if (wait) {
5277 			ata_port_wait_eh(ap);
5278 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5279 			if (rc)
5280 				return rc;
5281 		}
5282 	}
5283 
5284 	return 0;
5285 }
5286 
5287 /**
5288  *	ata_host_suspend - suspend host
5289  *	@host: host to suspend
5290  *	@mesg: PM message
5291  *
5292  *	Suspend @host.  Actual operation is performed by EH.  This
5293  *	function requests EH to perform PM operations and waits for EH
5294  *	to finish.
5295  *
5296  *	LOCKING:
5297  *	Kernel thread context (may sleep).
5298  *
5299  *	RETURNS:
5300  *	0 on success, -errno on failure.
5301  */
5302 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5303 {
5304 	unsigned int ehi_flags = ATA_EHI_QUIET;
5305 	int rc;
5306 
5307 	/*
5308 	 * On some hardware, device fails to respond after spun down
5309 	 * for suspend.  As the device won't be used before being
5310 	 * resumed, we don't need to touch the device.  Ask EH to skip
5311 	 * the usual stuff and proceed directly to suspend.
5312 	 *
5313 	 * http://thread.gmane.org/gmane.linux.ide/46764
5314 	 */
5315 	if (mesg.event == PM_EVENT_SUSPEND)
5316 		ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5317 
5318 	rc = ata_host_request_pm(host, mesg, 0, ehi_flags, 1);
5319 	if (rc == 0)
5320 		host->dev->power.power_state = mesg;
5321 	return rc;
5322 }
5323 
5324 /**
5325  *	ata_host_resume - resume host
5326  *	@host: host to resume
5327  *
5328  *	Resume @host.  Actual operation is performed by EH.  This
5329  *	function requests EH to perform PM operations and returns.
5330  *	Note that all resume operations are performed parallelly.
5331  *
5332  *	LOCKING:
5333  *	Kernel thread context (may sleep).
5334  */
5335 void ata_host_resume(struct ata_host *host)
5336 {
5337 	ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5338 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5339 	host->dev->power.power_state = PMSG_ON;
5340 }
5341 #endif
5342 
5343 /**
5344  *	ata_dev_init - Initialize an ata_device structure
5345  *	@dev: Device structure to initialize
5346  *
5347  *	Initialize @dev in preparation for probing.
5348  *
5349  *	LOCKING:
5350  *	Inherited from caller.
5351  */
5352 void ata_dev_init(struct ata_device *dev)
5353 {
5354 	struct ata_link *link = ata_dev_phys_link(dev);
5355 	struct ata_port *ap = link->ap;
5356 	unsigned long flags;
5357 
5358 	/* SATA spd limit is bound to the attached device, reset together */
5359 	link->sata_spd_limit = link->hw_sata_spd_limit;
5360 	link->sata_spd = 0;
5361 
5362 	/* High bits of dev->flags are used to record warm plug
5363 	 * requests which occur asynchronously.  Synchronize using
5364 	 * host lock.
5365 	 */
5366 	spin_lock_irqsave(ap->lock, flags);
5367 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5368 	dev->horkage = 0;
5369 	spin_unlock_irqrestore(ap->lock, flags);
5370 
5371 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5372 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5373 	dev->pio_mask = UINT_MAX;
5374 	dev->mwdma_mask = UINT_MAX;
5375 	dev->udma_mask = UINT_MAX;
5376 }
5377 
5378 /**
5379  *	ata_link_init - Initialize an ata_link structure
5380  *	@ap: ATA port link is attached to
5381  *	@link: Link structure to initialize
5382  *	@pmp: Port multiplier port number
5383  *
5384  *	Initialize @link.
5385  *
5386  *	LOCKING:
5387  *	Kernel thread context (may sleep)
5388  */
5389 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5390 {
5391 	int i;
5392 
5393 	/* clear everything except for devices */
5394 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5395 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5396 
5397 	link->ap = ap;
5398 	link->pmp = pmp;
5399 	link->active_tag = ATA_TAG_POISON;
5400 	link->hw_sata_spd_limit = UINT_MAX;
5401 
5402 	/* can't use iterator, ap isn't initialized yet */
5403 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5404 		struct ata_device *dev = &link->device[i];
5405 
5406 		dev->link = link;
5407 		dev->devno = dev - link->device;
5408 #ifdef CONFIG_ATA_ACPI
5409 		dev->gtf_filter = ata_acpi_gtf_filter;
5410 #endif
5411 		ata_dev_init(dev);
5412 	}
5413 }
5414 
5415 /**
5416  *	sata_link_init_spd - Initialize link->sata_spd_limit
5417  *	@link: Link to configure sata_spd_limit for
5418  *
5419  *	Initialize @link->[hw_]sata_spd_limit to the currently
5420  *	configured value.
5421  *
5422  *	LOCKING:
5423  *	Kernel thread context (may sleep).
5424  *
5425  *	RETURNS:
5426  *	0 on success, -errno on failure.
5427  */
5428 int sata_link_init_spd(struct ata_link *link)
5429 {
5430 	u8 spd;
5431 	int rc;
5432 
5433 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5434 	if (rc)
5435 		return rc;
5436 
5437 	spd = (link->saved_scontrol >> 4) & 0xf;
5438 	if (spd)
5439 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5440 
5441 	ata_force_link_limits(link);
5442 
5443 	link->sata_spd_limit = link->hw_sata_spd_limit;
5444 
5445 	return 0;
5446 }
5447 
5448 /**
5449  *	ata_port_alloc - allocate and initialize basic ATA port resources
5450  *	@host: ATA host this allocated port belongs to
5451  *
5452  *	Allocate and initialize basic ATA port resources.
5453  *
5454  *	RETURNS:
5455  *	Allocate ATA port on success, NULL on failure.
5456  *
5457  *	LOCKING:
5458  *	Inherited from calling layer (may sleep).
5459  */
5460 struct ata_port *ata_port_alloc(struct ata_host *host)
5461 {
5462 	struct ata_port *ap;
5463 
5464 	DPRINTK("ENTER\n");
5465 
5466 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5467 	if (!ap)
5468 		return NULL;
5469 
5470 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5471 	ap->lock = &host->lock;
5472 	ap->print_id = -1;
5473 	ap->host = host;
5474 	ap->dev = host->dev;
5475 
5476 #if defined(ATA_VERBOSE_DEBUG)
5477 	/* turn on all debugging levels */
5478 	ap->msg_enable = 0x00FF;
5479 #elif defined(ATA_DEBUG)
5480 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5481 #else
5482 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5483 #endif
5484 
5485 	mutex_init(&ap->scsi_scan_mutex);
5486 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5487 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5488 	INIT_LIST_HEAD(&ap->eh_done_q);
5489 	init_waitqueue_head(&ap->eh_wait_q);
5490 	init_completion(&ap->park_req_pending);
5491 	init_timer_deferrable(&ap->fastdrain_timer);
5492 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5493 	ap->fastdrain_timer.data = (unsigned long)ap;
5494 
5495 	ap->cbl = ATA_CBL_NONE;
5496 
5497 	ata_link_init(ap, &ap->link, 0);
5498 
5499 #ifdef ATA_IRQ_TRAP
5500 	ap->stats.unhandled_irq = 1;
5501 	ap->stats.idle_irq = 1;
5502 #endif
5503 	ata_sff_port_init(ap);
5504 
5505 	return ap;
5506 }
5507 
5508 static void ata_host_release(struct device *gendev, void *res)
5509 {
5510 	struct ata_host *host = dev_get_drvdata(gendev);
5511 	int i;
5512 
5513 	for (i = 0; i < host->n_ports; i++) {
5514 		struct ata_port *ap = host->ports[i];
5515 
5516 		if (!ap)
5517 			continue;
5518 
5519 		if (ap->scsi_host)
5520 			scsi_host_put(ap->scsi_host);
5521 
5522 		kfree(ap->pmp_link);
5523 		kfree(ap->slave_link);
5524 		kfree(ap);
5525 		host->ports[i] = NULL;
5526 	}
5527 
5528 	dev_set_drvdata(gendev, NULL);
5529 }
5530 
5531 /**
5532  *	ata_host_alloc - allocate and init basic ATA host resources
5533  *	@dev: generic device this host is associated with
5534  *	@max_ports: maximum number of ATA ports associated with this host
5535  *
5536  *	Allocate and initialize basic ATA host resources.  LLD calls
5537  *	this function to allocate a host, initializes it fully and
5538  *	attaches it using ata_host_register().
5539  *
5540  *	@max_ports ports are allocated and host->n_ports is
5541  *	initialized to @max_ports.  The caller is allowed to decrease
5542  *	host->n_ports before calling ata_host_register().  The unused
5543  *	ports will be automatically freed on registration.
5544  *
5545  *	RETURNS:
5546  *	Allocate ATA host on success, NULL on failure.
5547  *
5548  *	LOCKING:
5549  *	Inherited from calling layer (may sleep).
5550  */
5551 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5552 {
5553 	struct ata_host *host;
5554 	size_t sz;
5555 	int i;
5556 
5557 	DPRINTK("ENTER\n");
5558 
5559 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5560 		return NULL;
5561 
5562 	/* alloc a container for our list of ATA ports (buses) */
5563 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5564 	/* alloc a container for our list of ATA ports (buses) */
5565 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5566 	if (!host)
5567 		goto err_out;
5568 
5569 	devres_add(dev, host);
5570 	dev_set_drvdata(dev, host);
5571 
5572 	spin_lock_init(&host->lock);
5573 	mutex_init(&host->eh_mutex);
5574 	host->dev = dev;
5575 	host->n_ports = max_ports;
5576 
5577 	/* allocate ports bound to this host */
5578 	for (i = 0; i < max_ports; i++) {
5579 		struct ata_port *ap;
5580 
5581 		ap = ata_port_alloc(host);
5582 		if (!ap)
5583 			goto err_out;
5584 
5585 		ap->port_no = i;
5586 		host->ports[i] = ap;
5587 	}
5588 
5589 	devres_remove_group(dev, NULL);
5590 	return host;
5591 
5592  err_out:
5593 	devres_release_group(dev, NULL);
5594 	return NULL;
5595 }
5596 
5597 /**
5598  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5599  *	@dev: generic device this host is associated with
5600  *	@ppi: array of ATA port_info to initialize host with
5601  *	@n_ports: number of ATA ports attached to this host
5602  *
5603  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5604  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5605  *	last entry will be used for the remaining ports.
5606  *
5607  *	RETURNS:
5608  *	Allocate ATA host on success, NULL on failure.
5609  *
5610  *	LOCKING:
5611  *	Inherited from calling layer (may sleep).
5612  */
5613 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5614 				      const struct ata_port_info * const * ppi,
5615 				      int n_ports)
5616 {
5617 	const struct ata_port_info *pi;
5618 	struct ata_host *host;
5619 	int i, j;
5620 
5621 	host = ata_host_alloc(dev, n_ports);
5622 	if (!host)
5623 		return NULL;
5624 
5625 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5626 		struct ata_port *ap = host->ports[i];
5627 
5628 		if (ppi[j])
5629 			pi = ppi[j++];
5630 
5631 		ap->pio_mask = pi->pio_mask;
5632 		ap->mwdma_mask = pi->mwdma_mask;
5633 		ap->udma_mask = pi->udma_mask;
5634 		ap->flags |= pi->flags;
5635 		ap->link.flags |= pi->link_flags;
5636 		ap->ops = pi->port_ops;
5637 
5638 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5639 			host->ops = pi->port_ops;
5640 	}
5641 
5642 	return host;
5643 }
5644 
5645 /**
5646  *	ata_slave_link_init - initialize slave link
5647  *	@ap: port to initialize slave link for
5648  *
5649  *	Create and initialize slave link for @ap.  This enables slave
5650  *	link handling on the port.
5651  *
5652  *	In libata, a port contains links and a link contains devices.
5653  *	There is single host link but if a PMP is attached to it,
5654  *	there can be multiple fan-out links.  On SATA, there's usually
5655  *	a single device connected to a link but PATA and SATA
5656  *	controllers emulating TF based interface can have two - master
5657  *	and slave.
5658  *
5659  *	However, there are a few controllers which don't fit into this
5660  *	abstraction too well - SATA controllers which emulate TF
5661  *	interface with both master and slave devices but also have
5662  *	separate SCR register sets for each device.  These controllers
5663  *	need separate links for physical link handling
5664  *	(e.g. onlineness, link speed) but should be treated like a
5665  *	traditional M/S controller for everything else (e.g. command
5666  *	issue, softreset).
5667  *
5668  *	slave_link is libata's way of handling this class of
5669  *	controllers without impacting core layer too much.  For
5670  *	anything other than physical link handling, the default host
5671  *	link is used for both master and slave.  For physical link
5672  *	handling, separate @ap->slave_link is used.  All dirty details
5673  *	are implemented inside libata core layer.  From LLD's POV, the
5674  *	only difference is that prereset, hardreset and postreset are
5675  *	called once more for the slave link, so the reset sequence
5676  *	looks like the following.
5677  *
5678  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5679  *	softreset(M) -> postreset(M) -> postreset(S)
5680  *
5681  *	Note that softreset is called only for the master.  Softreset
5682  *	resets both M/S by definition, so SRST on master should handle
5683  *	both (the standard method will work just fine).
5684  *
5685  *	LOCKING:
5686  *	Should be called before host is registered.
5687  *
5688  *	RETURNS:
5689  *	0 on success, -errno on failure.
5690  */
5691 int ata_slave_link_init(struct ata_port *ap)
5692 {
5693 	struct ata_link *link;
5694 
5695 	WARN_ON(ap->slave_link);
5696 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5697 
5698 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5699 	if (!link)
5700 		return -ENOMEM;
5701 
5702 	ata_link_init(ap, link, 1);
5703 	ap->slave_link = link;
5704 	return 0;
5705 }
5706 
5707 static void ata_host_stop(struct device *gendev, void *res)
5708 {
5709 	struct ata_host *host = dev_get_drvdata(gendev);
5710 	int i;
5711 
5712 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5713 
5714 	for (i = 0; i < host->n_ports; i++) {
5715 		struct ata_port *ap = host->ports[i];
5716 
5717 		if (ap->ops->port_stop)
5718 			ap->ops->port_stop(ap);
5719 	}
5720 
5721 	if (host->ops->host_stop)
5722 		host->ops->host_stop(host);
5723 }
5724 
5725 /**
5726  *	ata_finalize_port_ops - finalize ata_port_operations
5727  *	@ops: ata_port_operations to finalize
5728  *
5729  *	An ata_port_operations can inherit from another ops and that
5730  *	ops can again inherit from another.  This can go on as many
5731  *	times as necessary as long as there is no loop in the
5732  *	inheritance chain.
5733  *
5734  *	Ops tables are finalized when the host is started.  NULL or
5735  *	unspecified entries are inherited from the closet ancestor
5736  *	which has the method and the entry is populated with it.
5737  *	After finalization, the ops table directly points to all the
5738  *	methods and ->inherits is no longer necessary and cleared.
5739  *
5740  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5741  *
5742  *	LOCKING:
5743  *	None.
5744  */
5745 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5746 {
5747 	static DEFINE_SPINLOCK(lock);
5748 	const struct ata_port_operations *cur;
5749 	void **begin = (void **)ops;
5750 	void **end = (void **)&ops->inherits;
5751 	void **pp;
5752 
5753 	if (!ops || !ops->inherits)
5754 		return;
5755 
5756 	spin_lock(&lock);
5757 
5758 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5759 		void **inherit = (void **)cur;
5760 
5761 		for (pp = begin; pp < end; pp++, inherit++)
5762 			if (!*pp)
5763 				*pp = *inherit;
5764 	}
5765 
5766 	for (pp = begin; pp < end; pp++)
5767 		if (IS_ERR(*pp))
5768 			*pp = NULL;
5769 
5770 	ops->inherits = NULL;
5771 
5772 	spin_unlock(&lock);
5773 }
5774 
5775 /**
5776  *	ata_host_start - start and freeze ports of an ATA host
5777  *	@host: ATA host to start ports for
5778  *
5779  *	Start and then freeze ports of @host.  Started status is
5780  *	recorded in host->flags, so this function can be called
5781  *	multiple times.  Ports are guaranteed to get started only
5782  *	once.  If host->ops isn't initialized yet, its set to the
5783  *	first non-dummy port ops.
5784  *
5785  *	LOCKING:
5786  *	Inherited from calling layer (may sleep).
5787  *
5788  *	RETURNS:
5789  *	0 if all ports are started successfully, -errno otherwise.
5790  */
5791 int ata_host_start(struct ata_host *host)
5792 {
5793 	int have_stop = 0;
5794 	void *start_dr = NULL;
5795 	int i, rc;
5796 
5797 	if (host->flags & ATA_HOST_STARTED)
5798 		return 0;
5799 
5800 	ata_finalize_port_ops(host->ops);
5801 
5802 	for (i = 0; i < host->n_ports; i++) {
5803 		struct ata_port *ap = host->ports[i];
5804 
5805 		ata_finalize_port_ops(ap->ops);
5806 
5807 		if (!host->ops && !ata_port_is_dummy(ap))
5808 			host->ops = ap->ops;
5809 
5810 		if (ap->ops->port_stop)
5811 			have_stop = 1;
5812 	}
5813 
5814 	if (host->ops->host_stop)
5815 		have_stop = 1;
5816 
5817 	if (have_stop) {
5818 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5819 		if (!start_dr)
5820 			return -ENOMEM;
5821 	}
5822 
5823 	for (i = 0; i < host->n_ports; i++) {
5824 		struct ata_port *ap = host->ports[i];
5825 
5826 		if (ap->ops->port_start) {
5827 			rc = ap->ops->port_start(ap);
5828 			if (rc) {
5829 				if (rc != -ENODEV)
5830 					dev_err(host->dev,
5831 						"failed to start port %d (errno=%d)\n",
5832 						i, rc);
5833 				goto err_out;
5834 			}
5835 		}
5836 		ata_eh_freeze_port(ap);
5837 	}
5838 
5839 	if (start_dr)
5840 		devres_add(host->dev, start_dr);
5841 	host->flags |= ATA_HOST_STARTED;
5842 	return 0;
5843 
5844  err_out:
5845 	while (--i >= 0) {
5846 		struct ata_port *ap = host->ports[i];
5847 
5848 		if (ap->ops->port_stop)
5849 			ap->ops->port_stop(ap);
5850 	}
5851 	devres_free(start_dr);
5852 	return rc;
5853 }
5854 
5855 /**
5856  *	ata_sas_host_init - Initialize a host struct
5857  *	@host:	host to initialize
5858  *	@dev:	device host is attached to
5859  *	@flags:	host flags
5860  *	@ops:	port_ops
5861  *
5862  *	LOCKING:
5863  *	PCI/etc. bus probe sem.
5864  *
5865  */
5866 /* KILLME - the only user left is ipr */
5867 void ata_host_init(struct ata_host *host, struct device *dev,
5868 		   unsigned long flags, struct ata_port_operations *ops)
5869 {
5870 	spin_lock_init(&host->lock);
5871 	mutex_init(&host->eh_mutex);
5872 	host->dev = dev;
5873 	host->flags = flags;
5874 	host->ops = ops;
5875 }
5876 
5877 int ata_port_probe(struct ata_port *ap)
5878 {
5879 	int rc = 0;
5880 
5881 	/* probe */
5882 	if (ap->ops->error_handler) {
5883 		struct ata_eh_info *ehi = &ap->link.eh_info;
5884 		unsigned long flags;
5885 
5886 		/* kick EH for boot probing */
5887 		spin_lock_irqsave(ap->lock, flags);
5888 
5889 		ehi->probe_mask |= ATA_ALL_DEVICES;
5890 		ehi->action |= ATA_EH_RESET;
5891 		ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5892 
5893 		ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5894 		ap->pflags |= ATA_PFLAG_LOADING;
5895 		ata_port_schedule_eh(ap);
5896 
5897 		spin_unlock_irqrestore(ap->lock, flags);
5898 
5899 		/* wait for EH to finish */
5900 		ata_port_wait_eh(ap);
5901 	} else {
5902 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5903 		rc = ata_bus_probe(ap);
5904 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
5905 	}
5906 	return rc;
5907 }
5908 
5909 
5910 static void async_port_probe(void *data, async_cookie_t cookie)
5911 {
5912 	struct ata_port *ap = data;
5913 
5914 	/*
5915 	 * If we're not allowed to scan this host in parallel,
5916 	 * we need to wait until all previous scans have completed
5917 	 * before going further.
5918 	 * Jeff Garzik says this is only within a controller, so we
5919 	 * don't need to wait for port 0, only for later ports.
5920 	 */
5921 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5922 		async_synchronize_cookie(cookie);
5923 
5924 	(void)ata_port_probe(ap);
5925 
5926 	/* in order to keep device order, we need to synchronize at this point */
5927 	async_synchronize_cookie(cookie);
5928 
5929 	ata_scsi_scan_host(ap, 1);
5930 }
5931 
5932 /**
5933  *	ata_host_register - register initialized ATA host
5934  *	@host: ATA host to register
5935  *	@sht: template for SCSI host
5936  *
5937  *	Register initialized ATA host.  @host is allocated using
5938  *	ata_host_alloc() and fully initialized by LLD.  This function
5939  *	starts ports, registers @host with ATA and SCSI layers and
5940  *	probe registered devices.
5941  *
5942  *	LOCKING:
5943  *	Inherited from calling layer (may sleep).
5944  *
5945  *	RETURNS:
5946  *	0 on success, -errno otherwise.
5947  */
5948 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5949 {
5950 	int i, rc;
5951 
5952 	/* host must have been started */
5953 	if (!(host->flags & ATA_HOST_STARTED)) {
5954 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5955 		WARN_ON(1);
5956 		return -EINVAL;
5957 	}
5958 
5959 	/* Blow away unused ports.  This happens when LLD can't
5960 	 * determine the exact number of ports to allocate at
5961 	 * allocation time.
5962 	 */
5963 	for (i = host->n_ports; host->ports[i]; i++)
5964 		kfree(host->ports[i]);
5965 
5966 	/* give ports names and add SCSI hosts */
5967 	for (i = 0; i < host->n_ports; i++)
5968 		host->ports[i]->print_id = ata_print_id++;
5969 
5970 
5971 	/* Create associated sysfs transport objects  */
5972 	for (i = 0; i < host->n_ports; i++) {
5973 		rc = ata_tport_add(host->dev,host->ports[i]);
5974 		if (rc) {
5975 			goto err_tadd;
5976 		}
5977 	}
5978 
5979 	rc = ata_scsi_add_hosts(host, sht);
5980 	if (rc)
5981 		goto err_tadd;
5982 
5983 	/* associate with ACPI nodes */
5984 	ata_acpi_associate(host);
5985 
5986 	/* set cable, sata_spd_limit and report */
5987 	for (i = 0; i < host->n_ports; i++) {
5988 		struct ata_port *ap = host->ports[i];
5989 		unsigned long xfer_mask;
5990 
5991 		/* set SATA cable type if still unset */
5992 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5993 			ap->cbl = ATA_CBL_SATA;
5994 
5995 		/* init sata_spd_limit to the current value */
5996 		sata_link_init_spd(&ap->link);
5997 		if (ap->slave_link)
5998 			sata_link_init_spd(ap->slave_link);
5999 
6000 		/* print per-port info to dmesg */
6001 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6002 					      ap->udma_mask);
6003 
6004 		if (!ata_port_is_dummy(ap)) {
6005 			ata_port_info(ap, "%cATA max %s %s\n",
6006 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6007 				      ata_mode_string(xfer_mask),
6008 				      ap->link.eh_info.desc);
6009 			ata_ehi_clear_desc(&ap->link.eh_info);
6010 		} else
6011 			ata_port_info(ap, "DUMMY\n");
6012 	}
6013 
6014 	/* perform each probe asynchronously */
6015 	for (i = 0; i < host->n_ports; i++) {
6016 		struct ata_port *ap = host->ports[i];
6017 		async_schedule(async_port_probe, ap);
6018 	}
6019 
6020 	return 0;
6021 
6022  err_tadd:
6023 	while (--i >= 0) {
6024 		ata_tport_delete(host->ports[i]);
6025 	}
6026 	return rc;
6027 
6028 }
6029 
6030 /**
6031  *	ata_host_activate - start host, request IRQ and register it
6032  *	@host: target ATA host
6033  *	@irq: IRQ to request
6034  *	@irq_handler: irq_handler used when requesting IRQ
6035  *	@irq_flags: irq_flags used when requesting IRQ
6036  *	@sht: scsi_host_template to use when registering the host
6037  *
6038  *	After allocating an ATA host and initializing it, most libata
6039  *	LLDs perform three steps to activate the host - start host,
6040  *	request IRQ and register it.  This helper takes necessasry
6041  *	arguments and performs the three steps in one go.
6042  *
6043  *	An invalid IRQ skips the IRQ registration and expects the host to
6044  *	have set polling mode on the port. In this case, @irq_handler
6045  *	should be NULL.
6046  *
6047  *	LOCKING:
6048  *	Inherited from calling layer (may sleep).
6049  *
6050  *	RETURNS:
6051  *	0 on success, -errno otherwise.
6052  */
6053 int ata_host_activate(struct ata_host *host, int irq,
6054 		      irq_handler_t irq_handler, unsigned long irq_flags,
6055 		      struct scsi_host_template *sht)
6056 {
6057 	int i, rc;
6058 
6059 	rc = ata_host_start(host);
6060 	if (rc)
6061 		return rc;
6062 
6063 	/* Special case for polling mode */
6064 	if (!irq) {
6065 		WARN_ON(irq_handler);
6066 		return ata_host_register(host, sht);
6067 	}
6068 
6069 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6070 			      dev_driver_string(host->dev), host);
6071 	if (rc)
6072 		return rc;
6073 
6074 	for (i = 0; i < host->n_ports; i++)
6075 		ata_port_desc(host->ports[i], "irq %d", irq);
6076 
6077 	rc = ata_host_register(host, sht);
6078 	/* if failed, just free the IRQ and leave ports alone */
6079 	if (rc)
6080 		devm_free_irq(host->dev, irq, host);
6081 
6082 	return rc;
6083 }
6084 
6085 /**
6086  *	ata_port_detach - Detach ATA port in prepration of device removal
6087  *	@ap: ATA port to be detached
6088  *
6089  *	Detach all ATA devices and the associated SCSI devices of @ap;
6090  *	then, remove the associated SCSI host.  @ap is guaranteed to
6091  *	be quiescent on return from this function.
6092  *
6093  *	LOCKING:
6094  *	Kernel thread context (may sleep).
6095  */
6096 static void ata_port_detach(struct ata_port *ap)
6097 {
6098 	unsigned long flags;
6099 
6100 	if (!ap->ops->error_handler)
6101 		goto skip_eh;
6102 
6103 	/* tell EH we're leaving & flush EH */
6104 	spin_lock_irqsave(ap->lock, flags);
6105 	ap->pflags |= ATA_PFLAG_UNLOADING;
6106 	ata_port_schedule_eh(ap);
6107 	spin_unlock_irqrestore(ap->lock, flags);
6108 
6109 	/* wait till EH commits suicide */
6110 	ata_port_wait_eh(ap);
6111 
6112 	/* it better be dead now */
6113 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6114 
6115 	cancel_delayed_work_sync(&ap->hotplug_task);
6116 
6117  skip_eh:
6118 	if (ap->pmp_link) {
6119 		int i;
6120 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6121 			ata_tlink_delete(&ap->pmp_link[i]);
6122 	}
6123 	ata_tport_delete(ap);
6124 
6125 	/* remove the associated SCSI host */
6126 	scsi_remove_host(ap->scsi_host);
6127 }
6128 
6129 /**
6130  *	ata_host_detach - Detach all ports of an ATA host
6131  *	@host: Host to detach
6132  *
6133  *	Detach all ports of @host.
6134  *
6135  *	LOCKING:
6136  *	Kernel thread context (may sleep).
6137  */
6138 void ata_host_detach(struct ata_host *host)
6139 {
6140 	int i;
6141 
6142 	for (i = 0; i < host->n_ports; i++)
6143 		ata_port_detach(host->ports[i]);
6144 
6145 	/* the host is dead now, dissociate ACPI */
6146 	ata_acpi_dissociate(host);
6147 }
6148 
6149 #ifdef CONFIG_PCI
6150 
6151 /**
6152  *	ata_pci_remove_one - PCI layer callback for device removal
6153  *	@pdev: PCI device that was removed
6154  *
6155  *	PCI layer indicates to libata via this hook that hot-unplug or
6156  *	module unload event has occurred.  Detach all ports.  Resource
6157  *	release is handled via devres.
6158  *
6159  *	LOCKING:
6160  *	Inherited from PCI layer (may sleep).
6161  */
6162 void ata_pci_remove_one(struct pci_dev *pdev)
6163 {
6164 	struct device *dev = &pdev->dev;
6165 	struct ata_host *host = dev_get_drvdata(dev);
6166 
6167 	ata_host_detach(host);
6168 }
6169 
6170 /* move to PCI subsystem */
6171 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6172 {
6173 	unsigned long tmp = 0;
6174 
6175 	switch (bits->width) {
6176 	case 1: {
6177 		u8 tmp8 = 0;
6178 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6179 		tmp = tmp8;
6180 		break;
6181 	}
6182 	case 2: {
6183 		u16 tmp16 = 0;
6184 		pci_read_config_word(pdev, bits->reg, &tmp16);
6185 		tmp = tmp16;
6186 		break;
6187 	}
6188 	case 4: {
6189 		u32 tmp32 = 0;
6190 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6191 		tmp = tmp32;
6192 		break;
6193 	}
6194 
6195 	default:
6196 		return -EINVAL;
6197 	}
6198 
6199 	tmp &= bits->mask;
6200 
6201 	return (tmp == bits->val) ? 1 : 0;
6202 }
6203 
6204 #ifdef CONFIG_PM
6205 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6206 {
6207 	pci_save_state(pdev);
6208 	pci_disable_device(pdev);
6209 
6210 	if (mesg.event & PM_EVENT_SLEEP)
6211 		pci_set_power_state(pdev, PCI_D3hot);
6212 }
6213 
6214 int ata_pci_device_do_resume(struct pci_dev *pdev)
6215 {
6216 	int rc;
6217 
6218 	pci_set_power_state(pdev, PCI_D0);
6219 	pci_restore_state(pdev);
6220 
6221 	rc = pcim_enable_device(pdev);
6222 	if (rc) {
6223 		dev_err(&pdev->dev,
6224 			"failed to enable device after resume (%d)\n", rc);
6225 		return rc;
6226 	}
6227 
6228 	pci_set_master(pdev);
6229 	return 0;
6230 }
6231 
6232 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6233 {
6234 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6235 	int rc = 0;
6236 
6237 	rc = ata_host_suspend(host, mesg);
6238 	if (rc)
6239 		return rc;
6240 
6241 	ata_pci_device_do_suspend(pdev, mesg);
6242 
6243 	return 0;
6244 }
6245 
6246 int ata_pci_device_resume(struct pci_dev *pdev)
6247 {
6248 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6249 	int rc;
6250 
6251 	rc = ata_pci_device_do_resume(pdev);
6252 	if (rc == 0)
6253 		ata_host_resume(host);
6254 	return rc;
6255 }
6256 #endif /* CONFIG_PM */
6257 
6258 #endif /* CONFIG_PCI */
6259 
6260 static int __init ata_parse_force_one(char **cur,
6261 				      struct ata_force_ent *force_ent,
6262 				      const char **reason)
6263 {
6264 	/* FIXME: Currently, there's no way to tag init const data and
6265 	 * using __initdata causes build failure on some versions of
6266 	 * gcc.  Once __initdataconst is implemented, add const to the
6267 	 * following structure.
6268 	 */
6269 	static struct ata_force_param force_tbl[] __initdata = {
6270 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6271 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6272 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6273 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6274 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6275 		{ "sata",	.cbl		= ATA_CBL_SATA },
6276 		{ "1.5Gbps",	.spd_limit	= 1 },
6277 		{ "3.0Gbps",	.spd_limit	= 2 },
6278 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6279 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6280 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6281 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6282 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6283 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6284 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6285 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6286 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6287 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6288 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6289 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6290 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6291 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6292 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6293 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6294 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6295 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6296 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6297 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6298 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6299 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6300 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6301 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6302 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6303 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6304 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6305 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6306 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6307 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6308 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6309 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6310 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6311 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6312 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6313 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6314 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6315 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6316 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6317 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6318 	};
6319 	char *start = *cur, *p = *cur;
6320 	char *id, *val, *endp;
6321 	const struct ata_force_param *match_fp = NULL;
6322 	int nr_matches = 0, i;
6323 
6324 	/* find where this param ends and update *cur */
6325 	while (*p != '\0' && *p != ',')
6326 		p++;
6327 
6328 	if (*p == '\0')
6329 		*cur = p;
6330 	else
6331 		*cur = p + 1;
6332 
6333 	*p = '\0';
6334 
6335 	/* parse */
6336 	p = strchr(start, ':');
6337 	if (!p) {
6338 		val = strstrip(start);
6339 		goto parse_val;
6340 	}
6341 	*p = '\0';
6342 
6343 	id = strstrip(start);
6344 	val = strstrip(p + 1);
6345 
6346 	/* parse id */
6347 	p = strchr(id, '.');
6348 	if (p) {
6349 		*p++ = '\0';
6350 		force_ent->device = simple_strtoul(p, &endp, 10);
6351 		if (p == endp || *endp != '\0') {
6352 			*reason = "invalid device";
6353 			return -EINVAL;
6354 		}
6355 	}
6356 
6357 	force_ent->port = simple_strtoul(id, &endp, 10);
6358 	if (p == endp || *endp != '\0') {
6359 		*reason = "invalid port/link";
6360 		return -EINVAL;
6361 	}
6362 
6363  parse_val:
6364 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6365 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6366 		const struct ata_force_param *fp = &force_tbl[i];
6367 
6368 		if (strncasecmp(val, fp->name, strlen(val)))
6369 			continue;
6370 
6371 		nr_matches++;
6372 		match_fp = fp;
6373 
6374 		if (strcasecmp(val, fp->name) == 0) {
6375 			nr_matches = 1;
6376 			break;
6377 		}
6378 	}
6379 
6380 	if (!nr_matches) {
6381 		*reason = "unknown value";
6382 		return -EINVAL;
6383 	}
6384 	if (nr_matches > 1) {
6385 		*reason = "ambigious value";
6386 		return -EINVAL;
6387 	}
6388 
6389 	force_ent->param = *match_fp;
6390 
6391 	return 0;
6392 }
6393 
6394 static void __init ata_parse_force_param(void)
6395 {
6396 	int idx = 0, size = 1;
6397 	int last_port = -1, last_device = -1;
6398 	char *p, *cur, *next;
6399 
6400 	/* calculate maximum number of params and allocate force_tbl */
6401 	for (p = ata_force_param_buf; *p; p++)
6402 		if (*p == ',')
6403 			size++;
6404 
6405 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6406 	if (!ata_force_tbl) {
6407 		printk(KERN_WARNING "ata: failed to extend force table, "
6408 		       "libata.force ignored\n");
6409 		return;
6410 	}
6411 
6412 	/* parse and populate the table */
6413 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6414 		const char *reason = "";
6415 		struct ata_force_ent te = { .port = -1, .device = -1 };
6416 
6417 		next = cur;
6418 		if (ata_parse_force_one(&next, &te, &reason)) {
6419 			printk(KERN_WARNING "ata: failed to parse force "
6420 			       "parameter \"%s\" (%s)\n",
6421 			       cur, reason);
6422 			continue;
6423 		}
6424 
6425 		if (te.port == -1) {
6426 			te.port = last_port;
6427 			te.device = last_device;
6428 		}
6429 
6430 		ata_force_tbl[idx++] = te;
6431 
6432 		last_port = te.port;
6433 		last_device = te.device;
6434 	}
6435 
6436 	ata_force_tbl_size = idx;
6437 }
6438 
6439 static int __init ata_init(void)
6440 {
6441 	int rc;
6442 
6443 	ata_parse_force_param();
6444 
6445 	rc = ata_sff_init();
6446 	if (rc) {
6447 		kfree(ata_force_tbl);
6448 		return rc;
6449 	}
6450 
6451 	libata_transport_init();
6452 	ata_scsi_transport_template = ata_attach_transport();
6453 	if (!ata_scsi_transport_template) {
6454 		ata_sff_exit();
6455 		rc = -ENOMEM;
6456 		goto err_out;
6457 	}
6458 
6459 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6460 	return 0;
6461 
6462 err_out:
6463 	return rc;
6464 }
6465 
6466 static void __exit ata_exit(void)
6467 {
6468 	ata_release_transport(ata_scsi_transport_template);
6469 	libata_transport_exit();
6470 	ata_sff_exit();
6471 	kfree(ata_force_tbl);
6472 }
6473 
6474 subsys_initcall(ata_init);
6475 module_exit(ata_exit);
6476 
6477 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6478 
6479 int ata_ratelimit(void)
6480 {
6481 	return __ratelimit(&ratelimit);
6482 }
6483 
6484 /**
6485  *	ata_msleep - ATA EH owner aware msleep
6486  *	@ap: ATA port to attribute the sleep to
6487  *	@msecs: duration to sleep in milliseconds
6488  *
6489  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6490  *	ownership is released before going to sleep and reacquired
6491  *	after the sleep is complete.  IOW, other ports sharing the
6492  *	@ap->host will be allowed to own the EH while this task is
6493  *	sleeping.
6494  *
6495  *	LOCKING:
6496  *	Might sleep.
6497  */
6498 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6499 {
6500 	bool owns_eh = ap && ap->host->eh_owner == current;
6501 
6502 	if (owns_eh)
6503 		ata_eh_release(ap);
6504 
6505 	msleep(msecs);
6506 
6507 	if (owns_eh)
6508 		ata_eh_acquire(ap);
6509 }
6510 
6511 /**
6512  *	ata_wait_register - wait until register value changes
6513  *	@ap: ATA port to wait register for, can be NULL
6514  *	@reg: IO-mapped register
6515  *	@mask: Mask to apply to read register value
6516  *	@val: Wait condition
6517  *	@interval: polling interval in milliseconds
6518  *	@timeout: timeout in milliseconds
6519  *
6520  *	Waiting for some bits of register to change is a common
6521  *	operation for ATA controllers.  This function reads 32bit LE
6522  *	IO-mapped register @reg and tests for the following condition.
6523  *
6524  *	(*@reg & mask) != val
6525  *
6526  *	If the condition is met, it returns; otherwise, the process is
6527  *	repeated after @interval_msec until timeout.
6528  *
6529  *	LOCKING:
6530  *	Kernel thread context (may sleep)
6531  *
6532  *	RETURNS:
6533  *	The final register value.
6534  */
6535 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6536 		      unsigned long interval, unsigned long timeout)
6537 {
6538 	unsigned long deadline;
6539 	u32 tmp;
6540 
6541 	tmp = ioread32(reg);
6542 
6543 	/* Calculate timeout _after_ the first read to make sure
6544 	 * preceding writes reach the controller before starting to
6545 	 * eat away the timeout.
6546 	 */
6547 	deadline = ata_deadline(jiffies, timeout);
6548 
6549 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6550 		ata_msleep(ap, interval);
6551 		tmp = ioread32(reg);
6552 	}
6553 
6554 	return tmp;
6555 }
6556 
6557 /*
6558  * Dummy port_ops
6559  */
6560 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6561 {
6562 	return AC_ERR_SYSTEM;
6563 }
6564 
6565 static void ata_dummy_error_handler(struct ata_port *ap)
6566 {
6567 	/* truly dummy */
6568 }
6569 
6570 struct ata_port_operations ata_dummy_port_ops = {
6571 	.qc_prep		= ata_noop_qc_prep,
6572 	.qc_issue		= ata_dummy_qc_issue,
6573 	.error_handler		= ata_dummy_error_handler,
6574 };
6575 
6576 const struct ata_port_info ata_dummy_port_info = {
6577 	.port_ops		= &ata_dummy_port_ops,
6578 };
6579 
6580 /*
6581  * Utility print functions
6582  */
6583 int ata_port_printk(const struct ata_port *ap, const char *level,
6584 		    const char *fmt, ...)
6585 {
6586 	struct va_format vaf;
6587 	va_list args;
6588 	int r;
6589 
6590 	va_start(args, fmt);
6591 
6592 	vaf.fmt = fmt;
6593 	vaf.va = &args;
6594 
6595 	r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6596 
6597 	va_end(args);
6598 
6599 	return r;
6600 }
6601 EXPORT_SYMBOL(ata_port_printk);
6602 
6603 int ata_link_printk(const struct ata_link *link, const char *level,
6604 		    const char *fmt, ...)
6605 {
6606 	struct va_format vaf;
6607 	va_list args;
6608 	int r;
6609 
6610 	va_start(args, fmt);
6611 
6612 	vaf.fmt = fmt;
6613 	vaf.va = &args;
6614 
6615 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6616 		r = printk("%sata%u.%02u: %pV",
6617 			   level, link->ap->print_id, link->pmp, &vaf);
6618 	else
6619 		r = printk("%sata%u: %pV",
6620 			   level, link->ap->print_id, &vaf);
6621 
6622 	va_end(args);
6623 
6624 	return r;
6625 }
6626 EXPORT_SYMBOL(ata_link_printk);
6627 
6628 int ata_dev_printk(const struct ata_device *dev, const char *level,
6629 		    const char *fmt, ...)
6630 {
6631 	struct va_format vaf;
6632 	va_list args;
6633 	int r;
6634 
6635 	va_start(args, fmt);
6636 
6637 	vaf.fmt = fmt;
6638 	vaf.va = &args;
6639 
6640 	r = printk("%sata%u.%02u: %pV",
6641 		   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6642 		   &vaf);
6643 
6644 	va_end(args);
6645 
6646 	return r;
6647 }
6648 EXPORT_SYMBOL(ata_dev_printk);
6649 
6650 void ata_print_version(const struct device *dev, const char *version)
6651 {
6652 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6653 }
6654 EXPORT_SYMBOL(ata_print_version);
6655 
6656 /*
6657  * libata is essentially a library of internal helper functions for
6658  * low-level ATA host controller drivers.  As such, the API/ABI is
6659  * likely to change as new drivers are added and updated.
6660  * Do not depend on ABI/API stability.
6661  */
6662 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6663 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6664 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6665 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6666 EXPORT_SYMBOL_GPL(sata_port_ops);
6667 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6668 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6669 EXPORT_SYMBOL_GPL(ata_link_next);
6670 EXPORT_SYMBOL_GPL(ata_dev_next);
6671 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6672 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6673 EXPORT_SYMBOL_GPL(ata_host_init);
6674 EXPORT_SYMBOL_GPL(ata_host_alloc);
6675 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6676 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6677 EXPORT_SYMBOL_GPL(ata_host_start);
6678 EXPORT_SYMBOL_GPL(ata_host_register);
6679 EXPORT_SYMBOL_GPL(ata_host_activate);
6680 EXPORT_SYMBOL_GPL(ata_host_detach);
6681 EXPORT_SYMBOL_GPL(ata_sg_init);
6682 EXPORT_SYMBOL_GPL(ata_qc_complete);
6683 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6684 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6685 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6686 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6687 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6688 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6689 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6690 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6691 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6692 EXPORT_SYMBOL_GPL(ata_mode_string);
6693 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6694 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6695 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6696 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6697 EXPORT_SYMBOL_GPL(ata_dev_disable);
6698 EXPORT_SYMBOL_GPL(sata_set_spd);
6699 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6700 EXPORT_SYMBOL_GPL(sata_link_debounce);
6701 EXPORT_SYMBOL_GPL(sata_link_resume);
6702 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6703 EXPORT_SYMBOL_GPL(ata_std_prereset);
6704 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6705 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6706 EXPORT_SYMBOL_GPL(ata_std_postreset);
6707 EXPORT_SYMBOL_GPL(ata_dev_classify);
6708 EXPORT_SYMBOL_GPL(ata_dev_pair);
6709 EXPORT_SYMBOL_GPL(ata_ratelimit);
6710 EXPORT_SYMBOL_GPL(ata_msleep);
6711 EXPORT_SYMBOL_GPL(ata_wait_register);
6712 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6713 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6714 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6715 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6716 EXPORT_SYMBOL_GPL(sata_scr_valid);
6717 EXPORT_SYMBOL_GPL(sata_scr_read);
6718 EXPORT_SYMBOL_GPL(sata_scr_write);
6719 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6720 EXPORT_SYMBOL_GPL(ata_link_online);
6721 EXPORT_SYMBOL_GPL(ata_link_offline);
6722 #ifdef CONFIG_PM
6723 EXPORT_SYMBOL_GPL(ata_host_suspend);
6724 EXPORT_SYMBOL_GPL(ata_host_resume);
6725 #endif /* CONFIG_PM */
6726 EXPORT_SYMBOL_GPL(ata_id_string);
6727 EXPORT_SYMBOL_GPL(ata_id_c_string);
6728 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6729 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6730 
6731 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6732 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6733 EXPORT_SYMBOL_GPL(ata_timing_compute);
6734 EXPORT_SYMBOL_GPL(ata_timing_merge);
6735 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6736 
6737 #ifdef CONFIG_PCI
6738 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6739 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6740 #ifdef CONFIG_PM
6741 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6742 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6743 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6744 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6745 #endif /* CONFIG_PM */
6746 #endif /* CONFIG_PCI */
6747 
6748 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6749 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6750 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6751 EXPORT_SYMBOL_GPL(ata_port_desc);
6752 #ifdef CONFIG_PCI
6753 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6754 #endif /* CONFIG_PCI */
6755 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6756 EXPORT_SYMBOL_GPL(ata_link_abort);
6757 EXPORT_SYMBOL_GPL(ata_port_abort);
6758 EXPORT_SYMBOL_GPL(ata_port_freeze);
6759 EXPORT_SYMBOL_GPL(sata_async_notification);
6760 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6761 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6762 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6763 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6764 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6765 EXPORT_SYMBOL_GPL(ata_do_eh);
6766 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6767 
6768 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6769 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6770 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6771 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6772 EXPORT_SYMBOL_GPL(ata_cable_sata);
6773