1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 #include <linux/pm_runtime.h> 70 #include <linux/platform_device.h> 71 72 #include "libata.h" 73 #include "libata-transport.h" 74 75 /* debounce timing parameters in msecs { interval, duration, timeout } */ 76 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 77 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 78 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 79 80 const struct ata_port_operations ata_base_port_ops = { 81 .prereset = ata_std_prereset, 82 .postreset = ata_std_postreset, 83 .error_handler = ata_std_error_handler, 84 .sched_eh = ata_std_sched_eh, 85 .end_eh = ata_std_end_eh, 86 }; 87 88 const struct ata_port_operations sata_port_ops = { 89 .inherits = &ata_base_port_ops, 90 91 .qc_defer = ata_std_qc_defer, 92 .hardreset = sata_std_hardreset, 93 }; 94 95 static unsigned int ata_dev_init_params(struct ata_device *dev, 96 u16 heads, u16 sectors); 97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 98 static void ata_dev_xfermask(struct ata_device *dev); 99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 100 101 atomic_t ata_print_id = ATOMIC_INIT(0); 102 103 struct ata_force_param { 104 const char *name; 105 unsigned int cbl; 106 int spd_limit; 107 unsigned long xfer_mask; 108 unsigned int horkage_on; 109 unsigned int horkage_off; 110 unsigned int lflags; 111 }; 112 113 struct ata_force_ent { 114 int port; 115 int device; 116 struct ata_force_param param; 117 }; 118 119 static struct ata_force_ent *ata_force_tbl; 120 static int ata_force_tbl_size; 121 122 static char ata_force_param_buf[PAGE_SIZE] __initdata; 123 /* param_buf is thrown away after initialization, disallow read */ 124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 126 127 static int atapi_enabled = 1; 128 module_param(atapi_enabled, int, 0444); 129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 130 131 static int atapi_dmadir = 0; 132 module_param(atapi_dmadir, int, 0444); 133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 134 135 int atapi_passthru16 = 1; 136 module_param(atapi_passthru16, int, 0444); 137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 138 139 int libata_fua = 0; 140 module_param_named(fua, libata_fua, int, 0444); 141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 142 143 static int ata_ignore_hpa; 144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 146 147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 148 module_param_named(dma, libata_dma_mask, int, 0444); 149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 150 151 static int ata_probe_timeout; 152 module_param(ata_probe_timeout, int, 0444); 153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 154 155 int libata_noacpi = 0; 156 module_param_named(noacpi, libata_noacpi, int, 0444); 157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 158 159 int libata_allow_tpm = 0; 160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 162 163 static int atapi_an; 164 module_param(atapi_an, int, 0444); 165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 166 167 MODULE_AUTHOR("Jeff Garzik"); 168 MODULE_DESCRIPTION("Library module for ATA devices"); 169 MODULE_LICENSE("GPL"); 170 MODULE_VERSION(DRV_VERSION); 171 172 173 static bool ata_sstatus_online(u32 sstatus) 174 { 175 return (sstatus & 0xf) == 0x3; 176 } 177 178 /** 179 * ata_link_next - link iteration helper 180 * @link: the previous link, NULL to start 181 * @ap: ATA port containing links to iterate 182 * @mode: iteration mode, one of ATA_LITER_* 183 * 184 * LOCKING: 185 * Host lock or EH context. 186 * 187 * RETURNS: 188 * Pointer to the next link. 189 */ 190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 191 enum ata_link_iter_mode mode) 192 { 193 BUG_ON(mode != ATA_LITER_EDGE && 194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 195 196 /* NULL link indicates start of iteration */ 197 if (!link) 198 switch (mode) { 199 case ATA_LITER_EDGE: 200 case ATA_LITER_PMP_FIRST: 201 if (sata_pmp_attached(ap)) 202 return ap->pmp_link; 203 /* fall through */ 204 case ATA_LITER_HOST_FIRST: 205 return &ap->link; 206 } 207 208 /* we just iterated over the host link, what's next? */ 209 if (link == &ap->link) 210 switch (mode) { 211 case ATA_LITER_HOST_FIRST: 212 if (sata_pmp_attached(ap)) 213 return ap->pmp_link; 214 /* fall through */ 215 case ATA_LITER_PMP_FIRST: 216 if (unlikely(ap->slave_link)) 217 return ap->slave_link; 218 /* fall through */ 219 case ATA_LITER_EDGE: 220 return NULL; 221 } 222 223 /* slave_link excludes PMP */ 224 if (unlikely(link == ap->slave_link)) 225 return NULL; 226 227 /* we were over a PMP link */ 228 if (++link < ap->pmp_link + ap->nr_pmp_links) 229 return link; 230 231 if (mode == ATA_LITER_PMP_FIRST) 232 return &ap->link; 233 234 return NULL; 235 } 236 237 /** 238 * ata_dev_next - device iteration helper 239 * @dev: the previous device, NULL to start 240 * @link: ATA link containing devices to iterate 241 * @mode: iteration mode, one of ATA_DITER_* 242 * 243 * LOCKING: 244 * Host lock or EH context. 245 * 246 * RETURNS: 247 * Pointer to the next device. 248 */ 249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 250 enum ata_dev_iter_mode mode) 251 { 252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 254 255 /* NULL dev indicates start of iteration */ 256 if (!dev) 257 switch (mode) { 258 case ATA_DITER_ENABLED: 259 case ATA_DITER_ALL: 260 dev = link->device; 261 goto check; 262 case ATA_DITER_ENABLED_REVERSE: 263 case ATA_DITER_ALL_REVERSE: 264 dev = link->device + ata_link_max_devices(link) - 1; 265 goto check; 266 } 267 268 next: 269 /* move to the next one */ 270 switch (mode) { 271 case ATA_DITER_ENABLED: 272 case ATA_DITER_ALL: 273 if (++dev < link->device + ata_link_max_devices(link)) 274 goto check; 275 return NULL; 276 case ATA_DITER_ENABLED_REVERSE: 277 case ATA_DITER_ALL_REVERSE: 278 if (--dev >= link->device) 279 goto check; 280 return NULL; 281 } 282 283 check: 284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 285 !ata_dev_enabled(dev)) 286 goto next; 287 return dev; 288 } 289 290 /** 291 * ata_dev_phys_link - find physical link for a device 292 * @dev: ATA device to look up physical link for 293 * 294 * Look up physical link which @dev is attached to. Note that 295 * this is different from @dev->link only when @dev is on slave 296 * link. For all other cases, it's the same as @dev->link. 297 * 298 * LOCKING: 299 * Don't care. 300 * 301 * RETURNS: 302 * Pointer to the found physical link. 303 */ 304 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 305 { 306 struct ata_port *ap = dev->link->ap; 307 308 if (!ap->slave_link) 309 return dev->link; 310 if (!dev->devno) 311 return &ap->link; 312 return ap->slave_link; 313 } 314 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags) { 391 link->flags |= fe->param.lflags; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags, link->flags); 395 } 396 } 397 } 398 399 /** 400 * ata_force_xfermask - force xfermask according to libata.force 401 * @dev: ATA device of interest 402 * 403 * Force xfer_mask according to libata.force and whine about it. 404 * For consistency with link selection, device number 15 selects 405 * the first device connected to the host link. 406 * 407 * LOCKING: 408 * EH context. 409 */ 410 static void ata_force_xfermask(struct ata_device *dev) 411 { 412 int devno = dev->link->pmp + dev->devno; 413 int alt_devno = devno; 414 int i; 415 416 /* allow n.15/16 for devices attached to host port */ 417 if (ata_is_host_link(dev->link)) 418 alt_devno += 15; 419 420 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 421 const struct ata_force_ent *fe = &ata_force_tbl[i]; 422 unsigned long pio_mask, mwdma_mask, udma_mask; 423 424 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 425 continue; 426 427 if (fe->device != -1 && fe->device != devno && 428 fe->device != alt_devno) 429 continue; 430 431 if (!fe->param.xfer_mask) 432 continue; 433 434 ata_unpack_xfermask(fe->param.xfer_mask, 435 &pio_mask, &mwdma_mask, &udma_mask); 436 if (udma_mask) 437 dev->udma_mask = udma_mask; 438 else if (mwdma_mask) { 439 dev->udma_mask = 0; 440 dev->mwdma_mask = mwdma_mask; 441 } else { 442 dev->udma_mask = 0; 443 dev->mwdma_mask = 0; 444 dev->pio_mask = pio_mask; 445 } 446 447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 448 fe->param.name); 449 return; 450 } 451 } 452 453 /** 454 * ata_force_horkage - force horkage according to libata.force 455 * @dev: ATA device of interest 456 * 457 * Force horkage according to libata.force and whine about it. 458 * For consistency with link selection, device number 15 selects 459 * the first device connected to the host link. 460 * 461 * LOCKING: 462 * EH context. 463 */ 464 static void ata_force_horkage(struct ata_device *dev) 465 { 466 int devno = dev->link->pmp + dev->devno; 467 int alt_devno = devno; 468 int i; 469 470 /* allow n.15/16 for devices attached to host port */ 471 if (ata_is_host_link(dev->link)) 472 alt_devno += 15; 473 474 for (i = 0; i < ata_force_tbl_size; i++) { 475 const struct ata_force_ent *fe = &ata_force_tbl[i]; 476 477 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 478 continue; 479 480 if (fe->device != -1 && fe->device != devno && 481 fe->device != alt_devno) 482 continue; 483 484 if (!(~dev->horkage & fe->param.horkage_on) && 485 !(dev->horkage & fe->param.horkage_off)) 486 continue; 487 488 dev->horkage |= fe->param.horkage_on; 489 dev->horkage &= ~fe->param.horkage_off; 490 491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 492 fe->param.name); 493 } 494 } 495 496 /** 497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 498 * @opcode: SCSI opcode 499 * 500 * Determine ATAPI command type from @opcode. 501 * 502 * LOCKING: 503 * None. 504 * 505 * RETURNS: 506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 507 */ 508 int atapi_cmd_type(u8 opcode) 509 { 510 switch (opcode) { 511 case GPCMD_READ_10: 512 case GPCMD_READ_12: 513 return ATAPI_READ; 514 515 case GPCMD_WRITE_10: 516 case GPCMD_WRITE_12: 517 case GPCMD_WRITE_AND_VERIFY_10: 518 return ATAPI_WRITE; 519 520 case GPCMD_READ_CD: 521 case GPCMD_READ_CD_MSF: 522 return ATAPI_READ_CD; 523 524 case ATA_16: 525 case ATA_12: 526 if (atapi_passthru16) 527 return ATAPI_PASS_THRU; 528 /* fall thru */ 529 default: 530 return ATAPI_MISC; 531 } 532 } 533 534 /** 535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 536 * @tf: Taskfile to convert 537 * @pmp: Port multiplier port 538 * @is_cmd: This FIS is for command 539 * @fis: Buffer into which data will output 540 * 541 * Converts a standard ATA taskfile to a Serial ATA 542 * FIS structure (Register - Host to Device). 543 * 544 * LOCKING: 545 * Inherited from caller. 546 */ 547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 548 { 549 fis[0] = 0x27; /* Register - Host to Device FIS */ 550 fis[1] = pmp & 0xf; /* Port multiplier number*/ 551 if (is_cmd) 552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 553 554 fis[2] = tf->command; 555 fis[3] = tf->feature; 556 557 fis[4] = tf->lbal; 558 fis[5] = tf->lbam; 559 fis[6] = tf->lbah; 560 fis[7] = tf->device; 561 562 fis[8] = tf->hob_lbal; 563 fis[9] = tf->hob_lbam; 564 fis[10] = tf->hob_lbah; 565 fis[11] = tf->hob_feature; 566 567 fis[12] = tf->nsect; 568 fis[13] = tf->hob_nsect; 569 fis[14] = 0; 570 fis[15] = tf->ctl; 571 572 fis[16] = 0; 573 fis[17] = 0; 574 fis[18] = 0; 575 fis[19] = 0; 576 } 577 578 /** 579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 580 * @fis: Buffer from which data will be input 581 * @tf: Taskfile to output 582 * 583 * Converts a serial ATA FIS structure to a standard ATA taskfile. 584 * 585 * LOCKING: 586 * Inherited from caller. 587 */ 588 589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 590 { 591 tf->command = fis[2]; /* status */ 592 tf->feature = fis[3]; /* error */ 593 594 tf->lbal = fis[4]; 595 tf->lbam = fis[5]; 596 tf->lbah = fis[6]; 597 tf->device = fis[7]; 598 599 tf->hob_lbal = fis[8]; 600 tf->hob_lbam = fis[9]; 601 tf->hob_lbah = fis[10]; 602 603 tf->nsect = fis[12]; 604 tf->hob_nsect = fis[13]; 605 } 606 607 static const u8 ata_rw_cmds[] = { 608 /* pio multi */ 609 ATA_CMD_READ_MULTI, 610 ATA_CMD_WRITE_MULTI, 611 ATA_CMD_READ_MULTI_EXT, 612 ATA_CMD_WRITE_MULTI_EXT, 613 0, 614 0, 615 0, 616 ATA_CMD_WRITE_MULTI_FUA_EXT, 617 /* pio */ 618 ATA_CMD_PIO_READ, 619 ATA_CMD_PIO_WRITE, 620 ATA_CMD_PIO_READ_EXT, 621 ATA_CMD_PIO_WRITE_EXT, 622 0, 623 0, 624 0, 625 0, 626 /* dma */ 627 ATA_CMD_READ, 628 ATA_CMD_WRITE, 629 ATA_CMD_READ_EXT, 630 ATA_CMD_WRITE_EXT, 631 0, 632 0, 633 0, 634 ATA_CMD_WRITE_FUA_EXT 635 }; 636 637 /** 638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 639 * @tf: command to examine and configure 640 * @dev: device tf belongs to 641 * 642 * Examine the device configuration and tf->flags to calculate 643 * the proper read/write commands and protocol to use. 644 * 645 * LOCKING: 646 * caller. 647 */ 648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 649 { 650 u8 cmd; 651 652 int index, fua, lba48, write; 653 654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 657 658 if (dev->flags & ATA_DFLAG_PIO) { 659 tf->protocol = ATA_PROT_PIO; 660 index = dev->multi_count ? 0 : 8; 661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 662 /* Unable to use DMA due to host limitation */ 663 tf->protocol = ATA_PROT_PIO; 664 index = dev->multi_count ? 0 : 8; 665 } else { 666 tf->protocol = ATA_PROT_DMA; 667 index = 16; 668 } 669 670 cmd = ata_rw_cmds[index + fua + lba48 + write]; 671 if (cmd) { 672 tf->command = cmd; 673 return 0; 674 } 675 return -1; 676 } 677 678 /** 679 * ata_tf_read_block - Read block address from ATA taskfile 680 * @tf: ATA taskfile of interest 681 * @dev: ATA device @tf belongs to 682 * 683 * LOCKING: 684 * None. 685 * 686 * Read block address from @tf. This function can handle all 687 * three address formats - LBA, LBA48 and CHS. tf->protocol and 688 * flags select the address format to use. 689 * 690 * RETURNS: 691 * Block address read from @tf. 692 */ 693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 694 { 695 u64 block = 0; 696 697 if (tf->flags & ATA_TFLAG_LBA) { 698 if (tf->flags & ATA_TFLAG_LBA48) { 699 block |= (u64)tf->hob_lbah << 40; 700 block |= (u64)tf->hob_lbam << 32; 701 block |= (u64)tf->hob_lbal << 24; 702 } else 703 block |= (tf->device & 0xf) << 24; 704 705 block |= tf->lbah << 16; 706 block |= tf->lbam << 8; 707 block |= tf->lbal; 708 } else { 709 u32 cyl, head, sect; 710 711 cyl = tf->lbam | (tf->lbah << 8); 712 head = tf->device & 0xf; 713 sect = tf->lbal; 714 715 if (!sect) { 716 ata_dev_warn(dev, 717 "device reported invalid CHS sector 0\n"); 718 sect = 1; /* oh well */ 719 } 720 721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 722 } 723 724 return block; 725 } 726 727 /** 728 * ata_build_rw_tf - Build ATA taskfile for given read/write request 729 * @tf: Target ATA taskfile 730 * @dev: ATA device @tf belongs to 731 * @block: Block address 732 * @n_block: Number of blocks 733 * @tf_flags: RW/FUA etc... 734 * @tag: tag 735 * 736 * LOCKING: 737 * None. 738 * 739 * Build ATA taskfile @tf for read/write request described by 740 * @block, @n_block, @tf_flags and @tag on @dev. 741 * 742 * RETURNS: 743 * 744 * 0 on success, -ERANGE if the request is too large for @dev, 745 * -EINVAL if the request is invalid. 746 */ 747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 748 u64 block, u32 n_block, unsigned int tf_flags, 749 unsigned int tag) 750 { 751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 752 tf->flags |= tf_flags; 753 754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 755 /* yay, NCQ */ 756 if (!lba_48_ok(block, n_block)) 757 return -ERANGE; 758 759 tf->protocol = ATA_PROT_NCQ; 760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 761 762 if (tf->flags & ATA_TFLAG_WRITE) 763 tf->command = ATA_CMD_FPDMA_WRITE; 764 else 765 tf->command = ATA_CMD_FPDMA_READ; 766 767 tf->nsect = tag << 3; 768 tf->hob_feature = (n_block >> 8) & 0xff; 769 tf->feature = n_block & 0xff; 770 771 tf->hob_lbah = (block >> 40) & 0xff; 772 tf->hob_lbam = (block >> 32) & 0xff; 773 tf->hob_lbal = (block >> 24) & 0xff; 774 tf->lbah = (block >> 16) & 0xff; 775 tf->lbam = (block >> 8) & 0xff; 776 tf->lbal = block & 0xff; 777 778 tf->device = ATA_LBA; 779 if (tf->flags & ATA_TFLAG_FUA) 780 tf->device |= 1 << 7; 781 } else if (dev->flags & ATA_DFLAG_LBA) { 782 tf->flags |= ATA_TFLAG_LBA; 783 784 if (lba_28_ok(block, n_block)) { 785 /* use LBA28 */ 786 tf->device |= (block >> 24) & 0xf; 787 } else if (lba_48_ok(block, n_block)) { 788 if (!(dev->flags & ATA_DFLAG_LBA48)) 789 return -ERANGE; 790 791 /* use LBA48 */ 792 tf->flags |= ATA_TFLAG_LBA48; 793 794 tf->hob_nsect = (n_block >> 8) & 0xff; 795 796 tf->hob_lbah = (block >> 40) & 0xff; 797 tf->hob_lbam = (block >> 32) & 0xff; 798 tf->hob_lbal = (block >> 24) & 0xff; 799 } else 800 /* request too large even for LBA48 */ 801 return -ERANGE; 802 803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 804 return -EINVAL; 805 806 tf->nsect = n_block & 0xff; 807 808 tf->lbah = (block >> 16) & 0xff; 809 tf->lbam = (block >> 8) & 0xff; 810 tf->lbal = block & 0xff; 811 812 tf->device |= ATA_LBA; 813 } else { 814 /* CHS */ 815 u32 sect, head, cyl, track; 816 817 /* The request -may- be too large for CHS addressing. */ 818 if (!lba_28_ok(block, n_block)) 819 return -ERANGE; 820 821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 822 return -EINVAL; 823 824 /* Convert LBA to CHS */ 825 track = (u32)block / dev->sectors; 826 cyl = track / dev->heads; 827 head = track % dev->heads; 828 sect = (u32)block % dev->sectors + 1; 829 830 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 831 (u32)block, track, cyl, head, sect); 832 833 /* Check whether the converted CHS can fit. 834 Cylinder: 0-65535 835 Head: 0-15 836 Sector: 1-255*/ 837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 838 return -ERANGE; 839 840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 841 tf->lbal = sect; 842 tf->lbam = cyl; 843 tf->lbah = cyl >> 8; 844 tf->device |= head; 845 } 846 847 return 0; 848 } 849 850 /** 851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 852 * @pio_mask: pio_mask 853 * @mwdma_mask: mwdma_mask 854 * @udma_mask: udma_mask 855 * 856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 857 * unsigned int xfer_mask. 858 * 859 * LOCKING: 860 * None. 861 * 862 * RETURNS: 863 * Packed xfer_mask. 864 */ 865 unsigned long ata_pack_xfermask(unsigned long pio_mask, 866 unsigned long mwdma_mask, 867 unsigned long udma_mask) 868 { 869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 872 } 873 874 /** 875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 876 * @xfer_mask: xfer_mask to unpack 877 * @pio_mask: resulting pio_mask 878 * @mwdma_mask: resulting mwdma_mask 879 * @udma_mask: resulting udma_mask 880 * 881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 882 * Any NULL distination masks will be ignored. 883 */ 884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 885 unsigned long *mwdma_mask, unsigned long *udma_mask) 886 { 887 if (pio_mask) 888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 889 if (mwdma_mask) 890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 891 if (udma_mask) 892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 893 } 894 895 static const struct ata_xfer_ent { 896 int shift, bits; 897 u8 base; 898 } ata_xfer_tbl[] = { 899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 902 { -1, }, 903 }; 904 905 /** 906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 907 * @xfer_mask: xfer_mask of interest 908 * 909 * Return matching XFER_* value for @xfer_mask. Only the highest 910 * bit of @xfer_mask is considered. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching XFER_* value, 0xff if no match found. 917 */ 918 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 919 { 920 int highbit = fls(xfer_mask) - 1; 921 const struct ata_xfer_ent *ent; 922 923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 925 return ent->base + highbit - ent->shift; 926 return 0xff; 927 } 928 929 /** 930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 931 * @xfer_mode: XFER_* of interest 932 * 933 * Return matching xfer_mask for @xfer_mode. 934 * 935 * LOCKING: 936 * None. 937 * 938 * RETURNS: 939 * Matching xfer_mask, 0 if no match found. 940 */ 941 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 942 { 943 const struct ata_xfer_ent *ent; 944 945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 948 & ~((1 << ent->shift) - 1); 949 return 0; 950 } 951 952 /** 953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 954 * @xfer_mode: XFER_* of interest 955 * 956 * Return matching xfer_shift for @xfer_mode. 957 * 958 * LOCKING: 959 * None. 960 * 961 * RETURNS: 962 * Matching xfer_shift, -1 if no match found. 963 */ 964 int ata_xfer_mode2shift(unsigned long xfer_mode) 965 { 966 const struct ata_xfer_ent *ent; 967 968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 970 return ent->shift; 971 return -1; 972 } 973 974 /** 975 * ata_mode_string - convert xfer_mask to string 976 * @xfer_mask: mask of bits supported; only highest bit counts. 977 * 978 * Determine string which represents the highest speed 979 * (highest bit in @modemask). 980 * 981 * LOCKING: 982 * None. 983 * 984 * RETURNS: 985 * Constant C string representing highest speed listed in 986 * @mode_mask, or the constant C string "<n/a>". 987 */ 988 const char *ata_mode_string(unsigned long xfer_mask) 989 { 990 static const char * const xfer_mode_str[] = { 991 "PIO0", 992 "PIO1", 993 "PIO2", 994 "PIO3", 995 "PIO4", 996 "PIO5", 997 "PIO6", 998 "MWDMA0", 999 "MWDMA1", 1000 "MWDMA2", 1001 "MWDMA3", 1002 "MWDMA4", 1003 "UDMA/16", 1004 "UDMA/25", 1005 "UDMA/33", 1006 "UDMA/44", 1007 "UDMA/66", 1008 "UDMA/100", 1009 "UDMA/133", 1010 "UDMA7", 1011 }; 1012 int highbit; 1013 1014 highbit = fls(xfer_mask) - 1; 1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1016 return xfer_mode_str[highbit]; 1017 return "<n/a>"; 1018 } 1019 1020 const char *sata_spd_string(unsigned int spd) 1021 { 1022 static const char * const spd_str[] = { 1023 "1.5 Gbps", 1024 "3.0 Gbps", 1025 "6.0 Gbps", 1026 }; 1027 1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1029 return "<unknown>"; 1030 return spd_str[spd - 1]; 1031 } 1032 1033 /** 1034 * ata_dev_classify - determine device type based on ATA-spec signature 1035 * @tf: ATA taskfile register set for device to be identified 1036 * 1037 * Determine from taskfile register contents whether a device is 1038 * ATA or ATAPI, as per "Signature and persistence" section 1039 * of ATA/PI spec (volume 1, sect 5.14). 1040 * 1041 * LOCKING: 1042 * None. 1043 * 1044 * RETURNS: 1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1046 * %ATA_DEV_UNKNOWN the event of failure. 1047 */ 1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1049 { 1050 /* Apple's open source Darwin code hints that some devices only 1051 * put a proper signature into the LBA mid/high registers, 1052 * So, we only check those. It's sufficient for uniqueness. 1053 * 1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1055 * signatures for ATA and ATAPI devices attached on SerialATA, 1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1057 * spec has never mentioned about using different signatures 1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1059 * Multiplier specification began to use 0x69/0x96 to identify 1060 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1062 * 0x69/0x96 shortly and described them as reserved for 1063 * SerialATA. 1064 * 1065 * We follow the current spec and consider that 0x69/0x96 1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1068 * SEMB signature. This is worked around in 1069 * ata_dev_read_id(). 1070 */ 1071 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1072 DPRINTK("found ATA device by sig\n"); 1073 return ATA_DEV_ATA; 1074 } 1075 1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1077 DPRINTK("found ATAPI device by sig\n"); 1078 return ATA_DEV_ATAPI; 1079 } 1080 1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1082 DPRINTK("found PMP device by sig\n"); 1083 return ATA_DEV_PMP; 1084 } 1085 1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1087 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1088 return ATA_DEV_SEMB; 1089 } 1090 1091 DPRINTK("unknown device\n"); 1092 return ATA_DEV_UNKNOWN; 1093 } 1094 1095 /** 1096 * ata_id_string - Convert IDENTIFY DEVICE page into string 1097 * @id: IDENTIFY DEVICE results we will examine 1098 * @s: string into which data is output 1099 * @ofs: offset into identify device page 1100 * @len: length of string to return. must be an even number. 1101 * 1102 * The strings in the IDENTIFY DEVICE page are broken up into 1103 * 16-bit chunks. Run through the string, and output each 1104 * 8-bit chunk linearly, regardless of platform. 1105 * 1106 * LOCKING: 1107 * caller. 1108 */ 1109 1110 void ata_id_string(const u16 *id, unsigned char *s, 1111 unsigned int ofs, unsigned int len) 1112 { 1113 unsigned int c; 1114 1115 BUG_ON(len & 1); 1116 1117 while (len > 0) { 1118 c = id[ofs] >> 8; 1119 *s = c; 1120 s++; 1121 1122 c = id[ofs] & 0xff; 1123 *s = c; 1124 s++; 1125 1126 ofs++; 1127 len -= 2; 1128 } 1129 } 1130 1131 /** 1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1133 * @id: IDENTIFY DEVICE results we will examine 1134 * @s: string into which data is output 1135 * @ofs: offset into identify device page 1136 * @len: length of string to return. must be an odd number. 1137 * 1138 * This function is identical to ata_id_string except that it 1139 * trims trailing spaces and terminates the resulting string with 1140 * null. @len must be actual maximum length (even number) + 1. 1141 * 1142 * LOCKING: 1143 * caller. 1144 */ 1145 void ata_id_c_string(const u16 *id, unsigned char *s, 1146 unsigned int ofs, unsigned int len) 1147 { 1148 unsigned char *p; 1149 1150 ata_id_string(id, s, ofs, len - 1); 1151 1152 p = s + strnlen(s, len - 1); 1153 while (p > s && p[-1] == ' ') 1154 p--; 1155 *p = '\0'; 1156 } 1157 1158 static u64 ata_id_n_sectors(const u16 *id) 1159 { 1160 if (ata_id_has_lba(id)) { 1161 if (ata_id_has_lba48(id)) 1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1163 else 1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1165 } else { 1166 if (ata_id_current_chs_valid(id)) 1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1168 id[ATA_ID_CUR_SECTORS]; 1169 else 1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1171 id[ATA_ID_SECTORS]; 1172 } 1173 } 1174 1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1176 { 1177 u64 sectors = 0; 1178 1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1182 sectors |= (tf->lbah & 0xff) << 16; 1183 sectors |= (tf->lbam & 0xff) << 8; 1184 sectors |= (tf->lbal & 0xff); 1185 1186 return sectors; 1187 } 1188 1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1190 { 1191 u64 sectors = 0; 1192 1193 sectors |= (tf->device & 0x0f) << 24; 1194 sectors |= (tf->lbah & 0xff) << 16; 1195 sectors |= (tf->lbam & 0xff) << 8; 1196 sectors |= (tf->lbal & 0xff); 1197 1198 return sectors; 1199 } 1200 1201 /** 1202 * ata_read_native_max_address - Read native max address 1203 * @dev: target device 1204 * @max_sectors: out parameter for the result native max address 1205 * 1206 * Perform an LBA48 or LBA28 native size query upon the device in 1207 * question. 1208 * 1209 * RETURNS: 1210 * 0 on success, -EACCES if command is aborted by the drive. 1211 * -EIO on other errors. 1212 */ 1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1214 { 1215 unsigned int err_mask; 1216 struct ata_taskfile tf; 1217 int lba48 = ata_id_has_lba48(dev->id); 1218 1219 ata_tf_init(dev, &tf); 1220 1221 /* always clear all address registers */ 1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1223 1224 if (lba48) { 1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1226 tf.flags |= ATA_TFLAG_LBA48; 1227 } else 1228 tf.command = ATA_CMD_READ_NATIVE_MAX; 1229 1230 tf.protocol |= ATA_PROT_NODATA; 1231 tf.device |= ATA_LBA; 1232 1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1234 if (err_mask) { 1235 ata_dev_warn(dev, 1236 "failed to read native max address (err_mask=0x%x)\n", 1237 err_mask); 1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1239 return -EACCES; 1240 return -EIO; 1241 } 1242 1243 if (lba48) 1244 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1245 else 1246 *max_sectors = ata_tf_to_lba(&tf) + 1; 1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1248 (*max_sectors)--; 1249 return 0; 1250 } 1251 1252 /** 1253 * ata_set_max_sectors - Set max sectors 1254 * @dev: target device 1255 * @new_sectors: new max sectors value to set for the device 1256 * 1257 * Set max sectors of @dev to @new_sectors. 1258 * 1259 * RETURNS: 1260 * 0 on success, -EACCES if command is aborted or denied (due to 1261 * previous non-volatile SET_MAX) by the drive. -EIO on other 1262 * errors. 1263 */ 1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1265 { 1266 unsigned int err_mask; 1267 struct ata_taskfile tf; 1268 int lba48 = ata_id_has_lba48(dev->id); 1269 1270 new_sectors--; 1271 1272 ata_tf_init(dev, &tf); 1273 1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1275 1276 if (lba48) { 1277 tf.command = ATA_CMD_SET_MAX_EXT; 1278 tf.flags |= ATA_TFLAG_LBA48; 1279 1280 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1281 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1282 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1283 } else { 1284 tf.command = ATA_CMD_SET_MAX; 1285 1286 tf.device |= (new_sectors >> 24) & 0xf; 1287 } 1288 1289 tf.protocol |= ATA_PROT_NODATA; 1290 tf.device |= ATA_LBA; 1291 1292 tf.lbal = (new_sectors >> 0) & 0xff; 1293 tf.lbam = (new_sectors >> 8) & 0xff; 1294 tf.lbah = (new_sectors >> 16) & 0xff; 1295 1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1297 if (err_mask) { 1298 ata_dev_warn(dev, 1299 "failed to set max address (err_mask=0x%x)\n", 1300 err_mask); 1301 if (err_mask == AC_ERR_DEV && 1302 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1303 return -EACCES; 1304 return -EIO; 1305 } 1306 1307 return 0; 1308 } 1309 1310 /** 1311 * ata_hpa_resize - Resize a device with an HPA set 1312 * @dev: Device to resize 1313 * 1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1315 * it if required to the full size of the media. The caller must check 1316 * the drive has the HPA feature set enabled. 1317 * 1318 * RETURNS: 1319 * 0 on success, -errno on failure. 1320 */ 1321 static int ata_hpa_resize(struct ata_device *dev) 1322 { 1323 struct ata_eh_context *ehc = &dev->link->eh_context; 1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1326 u64 sectors = ata_id_n_sectors(dev->id); 1327 u64 native_sectors; 1328 int rc; 1329 1330 /* do we need to do it? */ 1331 if (dev->class != ATA_DEV_ATA || 1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1334 return 0; 1335 1336 /* read native max address */ 1337 rc = ata_read_native_max_address(dev, &native_sectors); 1338 if (rc) { 1339 /* If device aborted the command or HPA isn't going to 1340 * be unlocked, skip HPA resizing. 1341 */ 1342 if (rc == -EACCES || !unlock_hpa) { 1343 ata_dev_warn(dev, 1344 "HPA support seems broken, skipping HPA handling\n"); 1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1346 1347 /* we can continue if device aborted the command */ 1348 if (rc == -EACCES) 1349 rc = 0; 1350 } 1351 1352 return rc; 1353 } 1354 dev->n_native_sectors = native_sectors; 1355 1356 /* nothing to do? */ 1357 if (native_sectors <= sectors || !unlock_hpa) { 1358 if (!print_info || native_sectors == sectors) 1359 return 0; 1360 1361 if (native_sectors > sectors) 1362 ata_dev_info(dev, 1363 "HPA detected: current %llu, native %llu\n", 1364 (unsigned long long)sectors, 1365 (unsigned long long)native_sectors); 1366 else if (native_sectors < sectors) 1367 ata_dev_warn(dev, 1368 "native sectors (%llu) is smaller than sectors (%llu)\n", 1369 (unsigned long long)native_sectors, 1370 (unsigned long long)sectors); 1371 return 0; 1372 } 1373 1374 /* let's unlock HPA */ 1375 rc = ata_set_max_sectors(dev, native_sectors); 1376 if (rc == -EACCES) { 1377 /* if device aborted the command, skip HPA resizing */ 1378 ata_dev_warn(dev, 1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1380 (unsigned long long)sectors, 1381 (unsigned long long)native_sectors); 1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1383 return 0; 1384 } else if (rc) 1385 return rc; 1386 1387 /* re-read IDENTIFY data */ 1388 rc = ata_dev_reread_id(dev, 0); 1389 if (rc) { 1390 ata_dev_err(dev, 1391 "failed to re-read IDENTIFY data after HPA resizing\n"); 1392 return rc; 1393 } 1394 1395 if (print_info) { 1396 u64 new_sectors = ata_id_n_sectors(dev->id); 1397 ata_dev_info(dev, 1398 "HPA unlocked: %llu -> %llu, native %llu\n", 1399 (unsigned long long)sectors, 1400 (unsigned long long)new_sectors, 1401 (unsigned long long)native_sectors); 1402 } 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * ata_dump_id - IDENTIFY DEVICE info debugging output 1409 * @id: IDENTIFY DEVICE page to dump 1410 * 1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1412 * page. 1413 * 1414 * LOCKING: 1415 * caller. 1416 */ 1417 1418 static inline void ata_dump_id(const u16 *id) 1419 { 1420 DPRINTK("49==0x%04x " 1421 "53==0x%04x " 1422 "63==0x%04x " 1423 "64==0x%04x " 1424 "75==0x%04x \n", 1425 id[49], 1426 id[53], 1427 id[63], 1428 id[64], 1429 id[75]); 1430 DPRINTK("80==0x%04x " 1431 "81==0x%04x " 1432 "82==0x%04x " 1433 "83==0x%04x " 1434 "84==0x%04x \n", 1435 id[80], 1436 id[81], 1437 id[82], 1438 id[83], 1439 id[84]); 1440 DPRINTK("88==0x%04x " 1441 "93==0x%04x\n", 1442 id[88], 1443 id[93]); 1444 } 1445 1446 /** 1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1448 * @id: IDENTIFY data to compute xfer mask from 1449 * 1450 * Compute the xfermask for this device. This is not as trivial 1451 * as it seems if we must consider early devices correctly. 1452 * 1453 * FIXME: pre IDE drive timing (do we care ?). 1454 * 1455 * LOCKING: 1456 * None. 1457 * 1458 * RETURNS: 1459 * Computed xfermask 1460 */ 1461 unsigned long ata_id_xfermask(const u16 *id) 1462 { 1463 unsigned long pio_mask, mwdma_mask, udma_mask; 1464 1465 /* Usual case. Word 53 indicates word 64 is valid */ 1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1468 pio_mask <<= 3; 1469 pio_mask |= 0x7; 1470 } else { 1471 /* If word 64 isn't valid then Word 51 high byte holds 1472 * the PIO timing number for the maximum. Turn it into 1473 * a mask. 1474 */ 1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1476 if (mode < 5) /* Valid PIO range */ 1477 pio_mask = (2 << mode) - 1; 1478 else 1479 pio_mask = 1; 1480 1481 /* But wait.. there's more. Design your standards by 1482 * committee and you too can get a free iordy field to 1483 * process. However its the speeds not the modes that 1484 * are supported... Note drivers using the timing API 1485 * will get this right anyway 1486 */ 1487 } 1488 1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1490 1491 if (ata_id_is_cfa(id)) { 1492 /* 1493 * Process compact flash extended modes 1494 */ 1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1497 1498 if (pio) 1499 pio_mask |= (1 << 5); 1500 if (pio > 1) 1501 pio_mask |= (1 << 6); 1502 if (dma) 1503 mwdma_mask |= (1 << 3); 1504 if (dma > 1) 1505 mwdma_mask |= (1 << 4); 1506 } 1507 1508 udma_mask = 0; 1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1511 1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1513 } 1514 1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1516 { 1517 struct completion *waiting = qc->private_data; 1518 1519 complete(waiting); 1520 } 1521 1522 /** 1523 * ata_exec_internal_sg - execute libata internal command 1524 * @dev: Device to which the command is sent 1525 * @tf: Taskfile registers for the command and the result 1526 * @cdb: CDB for packet command 1527 * @dma_dir: Data tranfer direction of the command 1528 * @sgl: sg list for the data buffer of the command 1529 * @n_elem: Number of sg entries 1530 * @timeout: Timeout in msecs (0 for default) 1531 * 1532 * Executes libata internal command with timeout. @tf contains 1533 * command on entry and result on return. Timeout and error 1534 * conditions are reported via return value. No recovery action 1535 * is taken after a command times out. It's caller's duty to 1536 * clean up after timeout. 1537 * 1538 * LOCKING: 1539 * None. Should be called with kernel context, might sleep. 1540 * 1541 * RETURNS: 1542 * Zero on success, AC_ERR_* mask on failure 1543 */ 1544 unsigned ata_exec_internal_sg(struct ata_device *dev, 1545 struct ata_taskfile *tf, const u8 *cdb, 1546 int dma_dir, struct scatterlist *sgl, 1547 unsigned int n_elem, unsigned long timeout) 1548 { 1549 struct ata_link *link = dev->link; 1550 struct ata_port *ap = link->ap; 1551 u8 command = tf->command; 1552 int auto_timeout = 0; 1553 struct ata_queued_cmd *qc; 1554 unsigned int tag, preempted_tag; 1555 u32 preempted_sactive, preempted_qc_active; 1556 int preempted_nr_active_links; 1557 DECLARE_COMPLETION_ONSTACK(wait); 1558 unsigned long flags; 1559 unsigned int err_mask; 1560 int rc; 1561 1562 spin_lock_irqsave(ap->lock, flags); 1563 1564 /* no internal command while frozen */ 1565 if (ap->pflags & ATA_PFLAG_FROZEN) { 1566 spin_unlock_irqrestore(ap->lock, flags); 1567 return AC_ERR_SYSTEM; 1568 } 1569 1570 /* initialize internal qc */ 1571 1572 /* XXX: Tag 0 is used for drivers with legacy EH as some 1573 * drivers choke if any other tag is given. This breaks 1574 * ata_tag_internal() test for those drivers. Don't use new 1575 * EH stuff without converting to it. 1576 */ 1577 if (ap->ops->error_handler) 1578 tag = ATA_TAG_INTERNAL; 1579 else 1580 tag = 0; 1581 1582 if (test_and_set_bit(tag, &ap->qc_allocated)) 1583 BUG(); 1584 qc = __ata_qc_from_tag(ap, tag); 1585 1586 qc->tag = tag; 1587 qc->scsicmd = NULL; 1588 qc->ap = ap; 1589 qc->dev = dev; 1590 ata_qc_reinit(qc); 1591 1592 preempted_tag = link->active_tag; 1593 preempted_sactive = link->sactive; 1594 preempted_qc_active = ap->qc_active; 1595 preempted_nr_active_links = ap->nr_active_links; 1596 link->active_tag = ATA_TAG_POISON; 1597 link->sactive = 0; 1598 ap->qc_active = 0; 1599 ap->nr_active_links = 0; 1600 1601 /* prepare & issue qc */ 1602 qc->tf = *tf; 1603 if (cdb) 1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1605 qc->flags |= ATA_QCFLAG_RESULT_TF; 1606 qc->dma_dir = dma_dir; 1607 if (dma_dir != DMA_NONE) { 1608 unsigned int i, buflen = 0; 1609 struct scatterlist *sg; 1610 1611 for_each_sg(sgl, sg, n_elem, i) 1612 buflen += sg->length; 1613 1614 ata_sg_init(qc, sgl, n_elem); 1615 qc->nbytes = buflen; 1616 } 1617 1618 qc->private_data = &wait; 1619 qc->complete_fn = ata_qc_complete_internal; 1620 1621 ata_qc_issue(qc); 1622 1623 spin_unlock_irqrestore(ap->lock, flags); 1624 1625 if (!timeout) { 1626 if (ata_probe_timeout) 1627 timeout = ata_probe_timeout * 1000; 1628 else { 1629 timeout = ata_internal_cmd_timeout(dev, command); 1630 auto_timeout = 1; 1631 } 1632 } 1633 1634 if (ap->ops->error_handler) 1635 ata_eh_release(ap); 1636 1637 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1638 1639 if (ap->ops->error_handler) 1640 ata_eh_acquire(ap); 1641 1642 ata_sff_flush_pio_task(ap); 1643 1644 if (!rc) { 1645 spin_lock_irqsave(ap->lock, flags); 1646 1647 /* We're racing with irq here. If we lose, the 1648 * following test prevents us from completing the qc 1649 * twice. If we win, the port is frozen and will be 1650 * cleaned up by ->post_internal_cmd(). 1651 */ 1652 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1653 qc->err_mask |= AC_ERR_TIMEOUT; 1654 1655 if (ap->ops->error_handler) 1656 ata_port_freeze(ap); 1657 else 1658 ata_qc_complete(qc); 1659 1660 if (ata_msg_warn(ap)) 1661 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1662 command); 1663 } 1664 1665 spin_unlock_irqrestore(ap->lock, flags); 1666 } 1667 1668 /* do post_internal_cmd */ 1669 if (ap->ops->post_internal_cmd) 1670 ap->ops->post_internal_cmd(qc); 1671 1672 /* perform minimal error analysis */ 1673 if (qc->flags & ATA_QCFLAG_FAILED) { 1674 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1675 qc->err_mask |= AC_ERR_DEV; 1676 1677 if (!qc->err_mask) 1678 qc->err_mask |= AC_ERR_OTHER; 1679 1680 if (qc->err_mask & ~AC_ERR_OTHER) 1681 qc->err_mask &= ~AC_ERR_OTHER; 1682 } 1683 1684 /* finish up */ 1685 spin_lock_irqsave(ap->lock, flags); 1686 1687 *tf = qc->result_tf; 1688 err_mask = qc->err_mask; 1689 1690 ata_qc_free(qc); 1691 link->active_tag = preempted_tag; 1692 link->sactive = preempted_sactive; 1693 ap->qc_active = preempted_qc_active; 1694 ap->nr_active_links = preempted_nr_active_links; 1695 1696 spin_unlock_irqrestore(ap->lock, flags); 1697 1698 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1699 ata_internal_cmd_timed_out(dev, command); 1700 1701 return err_mask; 1702 } 1703 1704 /** 1705 * ata_exec_internal - execute libata internal command 1706 * @dev: Device to which the command is sent 1707 * @tf: Taskfile registers for the command and the result 1708 * @cdb: CDB for packet command 1709 * @dma_dir: Data tranfer direction of the command 1710 * @buf: Data buffer of the command 1711 * @buflen: Length of data buffer 1712 * @timeout: Timeout in msecs (0 for default) 1713 * 1714 * Wrapper around ata_exec_internal_sg() which takes simple 1715 * buffer instead of sg list. 1716 * 1717 * LOCKING: 1718 * None. Should be called with kernel context, might sleep. 1719 * 1720 * RETURNS: 1721 * Zero on success, AC_ERR_* mask on failure 1722 */ 1723 unsigned ata_exec_internal(struct ata_device *dev, 1724 struct ata_taskfile *tf, const u8 *cdb, 1725 int dma_dir, void *buf, unsigned int buflen, 1726 unsigned long timeout) 1727 { 1728 struct scatterlist *psg = NULL, sg; 1729 unsigned int n_elem = 0; 1730 1731 if (dma_dir != DMA_NONE) { 1732 WARN_ON(!buf); 1733 sg_init_one(&sg, buf, buflen); 1734 psg = &sg; 1735 n_elem++; 1736 } 1737 1738 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1739 timeout); 1740 } 1741 1742 /** 1743 * ata_do_simple_cmd - execute simple internal command 1744 * @dev: Device to which the command is sent 1745 * @cmd: Opcode to execute 1746 * 1747 * Execute a 'simple' command, that only consists of the opcode 1748 * 'cmd' itself, without filling any other registers 1749 * 1750 * LOCKING: 1751 * Kernel thread context (may sleep). 1752 * 1753 * RETURNS: 1754 * Zero on success, AC_ERR_* mask on failure 1755 */ 1756 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1757 { 1758 struct ata_taskfile tf; 1759 1760 ata_tf_init(dev, &tf); 1761 1762 tf.command = cmd; 1763 tf.flags |= ATA_TFLAG_DEVICE; 1764 tf.protocol = ATA_PROT_NODATA; 1765 1766 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1767 } 1768 1769 /** 1770 * ata_pio_need_iordy - check if iordy needed 1771 * @adev: ATA device 1772 * 1773 * Check if the current speed of the device requires IORDY. Used 1774 * by various controllers for chip configuration. 1775 */ 1776 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1777 { 1778 /* Don't set IORDY if we're preparing for reset. IORDY may 1779 * lead to controller lock up on certain controllers if the 1780 * port is not occupied. See bko#11703 for details. 1781 */ 1782 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1783 return 0; 1784 /* Controller doesn't support IORDY. Probably a pointless 1785 * check as the caller should know this. 1786 */ 1787 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1788 return 0; 1789 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1790 if (ata_id_is_cfa(adev->id) 1791 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1792 return 0; 1793 /* PIO3 and higher it is mandatory */ 1794 if (adev->pio_mode > XFER_PIO_2) 1795 return 1; 1796 /* We turn it on when possible */ 1797 if (ata_id_has_iordy(adev->id)) 1798 return 1; 1799 return 0; 1800 } 1801 1802 /** 1803 * ata_pio_mask_no_iordy - Return the non IORDY mask 1804 * @adev: ATA device 1805 * 1806 * Compute the highest mode possible if we are not using iordy. Return 1807 * -1 if no iordy mode is available. 1808 */ 1809 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1810 { 1811 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1812 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1813 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1814 /* Is the speed faster than the drive allows non IORDY ? */ 1815 if (pio) { 1816 /* This is cycle times not frequency - watch the logic! */ 1817 if (pio > 240) /* PIO2 is 240nS per cycle */ 1818 return 3 << ATA_SHIFT_PIO; 1819 return 7 << ATA_SHIFT_PIO; 1820 } 1821 } 1822 return 3 << ATA_SHIFT_PIO; 1823 } 1824 1825 /** 1826 * ata_do_dev_read_id - default ID read method 1827 * @dev: device 1828 * @tf: proposed taskfile 1829 * @id: data buffer 1830 * 1831 * Issue the identify taskfile and hand back the buffer containing 1832 * identify data. For some RAID controllers and for pre ATA devices 1833 * this function is wrapped or replaced by the driver 1834 */ 1835 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1836 struct ata_taskfile *tf, u16 *id) 1837 { 1838 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1839 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1840 } 1841 1842 /** 1843 * ata_dev_read_id - Read ID data from the specified device 1844 * @dev: target device 1845 * @p_class: pointer to class of the target device (may be changed) 1846 * @flags: ATA_READID_* flags 1847 * @id: buffer to read IDENTIFY data into 1848 * 1849 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1850 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1851 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1852 * for pre-ATA4 drives. 1853 * 1854 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1855 * now we abort if we hit that case. 1856 * 1857 * LOCKING: 1858 * Kernel thread context (may sleep) 1859 * 1860 * RETURNS: 1861 * 0 on success, -errno otherwise. 1862 */ 1863 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1864 unsigned int flags, u16 *id) 1865 { 1866 struct ata_port *ap = dev->link->ap; 1867 unsigned int class = *p_class; 1868 struct ata_taskfile tf; 1869 unsigned int err_mask = 0; 1870 const char *reason; 1871 bool is_semb = class == ATA_DEV_SEMB; 1872 int may_fallback = 1, tried_spinup = 0; 1873 int rc; 1874 1875 if (ata_msg_ctl(ap)) 1876 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1877 1878 retry: 1879 ata_tf_init(dev, &tf); 1880 1881 switch (class) { 1882 case ATA_DEV_SEMB: 1883 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1884 case ATA_DEV_ATA: 1885 tf.command = ATA_CMD_ID_ATA; 1886 break; 1887 case ATA_DEV_ATAPI: 1888 tf.command = ATA_CMD_ID_ATAPI; 1889 break; 1890 default: 1891 rc = -ENODEV; 1892 reason = "unsupported class"; 1893 goto err_out; 1894 } 1895 1896 tf.protocol = ATA_PROT_PIO; 1897 1898 /* Some devices choke if TF registers contain garbage. Make 1899 * sure those are properly initialized. 1900 */ 1901 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1902 1903 /* Device presence detection is unreliable on some 1904 * controllers. Always poll IDENTIFY if available. 1905 */ 1906 tf.flags |= ATA_TFLAG_POLLING; 1907 1908 if (ap->ops->read_id) 1909 err_mask = ap->ops->read_id(dev, &tf, id); 1910 else 1911 err_mask = ata_do_dev_read_id(dev, &tf, id); 1912 1913 if (err_mask) { 1914 if (err_mask & AC_ERR_NODEV_HINT) { 1915 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1916 return -ENOENT; 1917 } 1918 1919 if (is_semb) { 1920 ata_dev_info(dev, 1921 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1922 /* SEMB is not supported yet */ 1923 *p_class = ATA_DEV_SEMB_UNSUP; 1924 return 0; 1925 } 1926 1927 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1928 /* Device or controller might have reported 1929 * the wrong device class. Give a shot at the 1930 * other IDENTIFY if the current one is 1931 * aborted by the device. 1932 */ 1933 if (may_fallback) { 1934 may_fallback = 0; 1935 1936 if (class == ATA_DEV_ATA) 1937 class = ATA_DEV_ATAPI; 1938 else 1939 class = ATA_DEV_ATA; 1940 goto retry; 1941 } 1942 1943 /* Control reaches here iff the device aborted 1944 * both flavors of IDENTIFYs which happens 1945 * sometimes with phantom devices. 1946 */ 1947 ata_dev_dbg(dev, 1948 "both IDENTIFYs aborted, assuming NODEV\n"); 1949 return -ENOENT; 1950 } 1951 1952 rc = -EIO; 1953 reason = "I/O error"; 1954 goto err_out; 1955 } 1956 1957 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1958 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1959 "class=%d may_fallback=%d tried_spinup=%d\n", 1960 class, may_fallback, tried_spinup); 1961 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1962 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1963 } 1964 1965 /* Falling back doesn't make sense if ID data was read 1966 * successfully at least once. 1967 */ 1968 may_fallback = 0; 1969 1970 swap_buf_le16(id, ATA_ID_WORDS); 1971 1972 /* sanity check */ 1973 rc = -EINVAL; 1974 reason = "device reports invalid type"; 1975 1976 if (class == ATA_DEV_ATA) { 1977 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1978 goto err_out; 1979 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1980 ata_id_is_ata(id)) { 1981 ata_dev_dbg(dev, 1982 "host indicates ignore ATA devices, ignored\n"); 1983 return -ENOENT; 1984 } 1985 } else { 1986 if (ata_id_is_ata(id)) 1987 goto err_out; 1988 } 1989 1990 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1991 tried_spinup = 1; 1992 /* 1993 * Drive powered-up in standby mode, and requires a specific 1994 * SET_FEATURES spin-up subcommand before it will accept 1995 * anything other than the original IDENTIFY command. 1996 */ 1997 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1998 if (err_mask && id[2] != 0x738c) { 1999 rc = -EIO; 2000 reason = "SPINUP failed"; 2001 goto err_out; 2002 } 2003 /* 2004 * If the drive initially returned incomplete IDENTIFY info, 2005 * we now must reissue the IDENTIFY command. 2006 */ 2007 if (id[2] == 0x37c8) 2008 goto retry; 2009 } 2010 2011 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2012 /* 2013 * The exact sequence expected by certain pre-ATA4 drives is: 2014 * SRST RESET 2015 * IDENTIFY (optional in early ATA) 2016 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2017 * anything else.. 2018 * Some drives were very specific about that exact sequence. 2019 * 2020 * Note that ATA4 says lba is mandatory so the second check 2021 * should never trigger. 2022 */ 2023 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2024 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2025 if (err_mask) { 2026 rc = -EIO; 2027 reason = "INIT_DEV_PARAMS failed"; 2028 goto err_out; 2029 } 2030 2031 /* current CHS translation info (id[53-58]) might be 2032 * changed. reread the identify device info. 2033 */ 2034 flags &= ~ATA_READID_POSTRESET; 2035 goto retry; 2036 } 2037 } 2038 2039 *p_class = class; 2040 2041 return 0; 2042 2043 err_out: 2044 if (ata_msg_warn(ap)) 2045 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2046 reason, err_mask); 2047 return rc; 2048 } 2049 2050 static int ata_do_link_spd_horkage(struct ata_device *dev) 2051 { 2052 struct ata_link *plink = ata_dev_phys_link(dev); 2053 u32 target, target_limit; 2054 2055 if (!sata_scr_valid(plink)) 2056 return 0; 2057 2058 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2059 target = 1; 2060 else 2061 return 0; 2062 2063 target_limit = (1 << target) - 1; 2064 2065 /* if already on stricter limit, no need to push further */ 2066 if (plink->sata_spd_limit <= target_limit) 2067 return 0; 2068 2069 plink->sata_spd_limit = target_limit; 2070 2071 /* Request another EH round by returning -EAGAIN if link is 2072 * going faster than the target speed. Forward progress is 2073 * guaranteed by setting sata_spd_limit to target_limit above. 2074 */ 2075 if (plink->sata_spd > target) { 2076 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2077 sata_spd_string(target)); 2078 return -EAGAIN; 2079 } 2080 return 0; 2081 } 2082 2083 static inline u8 ata_dev_knobble(struct ata_device *dev) 2084 { 2085 struct ata_port *ap = dev->link->ap; 2086 2087 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2088 return 0; 2089 2090 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2091 } 2092 2093 static int ata_dev_config_ncq(struct ata_device *dev, 2094 char *desc, size_t desc_sz) 2095 { 2096 struct ata_port *ap = dev->link->ap; 2097 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2098 unsigned int err_mask; 2099 char *aa_desc = ""; 2100 2101 if (!ata_id_has_ncq(dev->id)) { 2102 desc[0] = '\0'; 2103 return 0; 2104 } 2105 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2106 snprintf(desc, desc_sz, "NCQ (not used)"); 2107 return 0; 2108 } 2109 if (ap->flags & ATA_FLAG_NCQ) { 2110 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2111 dev->flags |= ATA_DFLAG_NCQ; 2112 } 2113 2114 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2115 (ap->flags & ATA_FLAG_FPDMA_AA) && 2116 ata_id_has_fpdma_aa(dev->id)) { 2117 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2118 SATA_FPDMA_AA); 2119 if (err_mask) { 2120 ata_dev_err(dev, 2121 "failed to enable AA (error_mask=0x%x)\n", 2122 err_mask); 2123 if (err_mask != AC_ERR_DEV) { 2124 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2125 return -EIO; 2126 } 2127 } else 2128 aa_desc = ", AA"; 2129 } 2130 2131 if (hdepth >= ddepth) 2132 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2133 else 2134 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2135 ddepth, aa_desc); 2136 return 0; 2137 } 2138 2139 /** 2140 * ata_dev_configure - Configure the specified ATA/ATAPI device 2141 * @dev: Target device to configure 2142 * 2143 * Configure @dev according to @dev->id. Generic and low-level 2144 * driver specific fixups are also applied. 2145 * 2146 * LOCKING: 2147 * Kernel thread context (may sleep) 2148 * 2149 * RETURNS: 2150 * 0 on success, -errno otherwise 2151 */ 2152 int ata_dev_configure(struct ata_device *dev) 2153 { 2154 struct ata_port *ap = dev->link->ap; 2155 struct ata_eh_context *ehc = &dev->link->eh_context; 2156 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2157 const u16 *id = dev->id; 2158 unsigned long xfer_mask; 2159 unsigned int err_mask; 2160 char revbuf[7]; /* XYZ-99\0 */ 2161 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2162 char modelbuf[ATA_ID_PROD_LEN+1]; 2163 int rc; 2164 2165 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2166 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2167 return 0; 2168 } 2169 2170 if (ata_msg_probe(ap)) 2171 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2172 2173 /* set horkage */ 2174 dev->horkage |= ata_dev_blacklisted(dev); 2175 ata_force_horkage(dev); 2176 2177 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2178 ata_dev_info(dev, "unsupported device, disabling\n"); 2179 ata_dev_disable(dev); 2180 return 0; 2181 } 2182 2183 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2184 dev->class == ATA_DEV_ATAPI) { 2185 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2186 atapi_enabled ? "not supported with this driver" 2187 : "disabled"); 2188 ata_dev_disable(dev); 2189 return 0; 2190 } 2191 2192 rc = ata_do_link_spd_horkage(dev); 2193 if (rc) 2194 return rc; 2195 2196 /* let ACPI work its magic */ 2197 rc = ata_acpi_on_devcfg(dev); 2198 if (rc) 2199 return rc; 2200 2201 /* massage HPA, do it early as it might change IDENTIFY data */ 2202 rc = ata_hpa_resize(dev); 2203 if (rc) 2204 return rc; 2205 2206 /* print device capabilities */ 2207 if (ata_msg_probe(ap)) 2208 ata_dev_dbg(dev, 2209 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2210 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2211 __func__, 2212 id[49], id[82], id[83], id[84], 2213 id[85], id[86], id[87], id[88]); 2214 2215 /* initialize to-be-configured parameters */ 2216 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2217 dev->max_sectors = 0; 2218 dev->cdb_len = 0; 2219 dev->n_sectors = 0; 2220 dev->cylinders = 0; 2221 dev->heads = 0; 2222 dev->sectors = 0; 2223 dev->multi_count = 0; 2224 2225 /* 2226 * common ATA, ATAPI feature tests 2227 */ 2228 2229 /* find max transfer mode; for printk only */ 2230 xfer_mask = ata_id_xfermask(id); 2231 2232 if (ata_msg_probe(ap)) 2233 ata_dump_id(id); 2234 2235 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2236 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2237 sizeof(fwrevbuf)); 2238 2239 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2240 sizeof(modelbuf)); 2241 2242 /* ATA-specific feature tests */ 2243 if (dev->class == ATA_DEV_ATA) { 2244 if (ata_id_is_cfa(id)) { 2245 /* CPRM may make this media unusable */ 2246 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2247 ata_dev_warn(dev, 2248 "supports DRM functions and may not be fully accessible\n"); 2249 snprintf(revbuf, 7, "CFA"); 2250 } else { 2251 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2252 /* Warn the user if the device has TPM extensions */ 2253 if (ata_id_has_tpm(id)) 2254 ata_dev_warn(dev, 2255 "supports DRM functions and may not be fully accessible\n"); 2256 } 2257 2258 dev->n_sectors = ata_id_n_sectors(id); 2259 2260 /* get current R/W Multiple count setting */ 2261 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2262 unsigned int max = dev->id[47] & 0xff; 2263 unsigned int cnt = dev->id[59] & 0xff; 2264 /* only recognize/allow powers of two here */ 2265 if (is_power_of_2(max) && is_power_of_2(cnt)) 2266 if (cnt <= max) 2267 dev->multi_count = cnt; 2268 } 2269 2270 if (ata_id_has_lba(id)) { 2271 const char *lba_desc; 2272 char ncq_desc[24]; 2273 2274 lba_desc = "LBA"; 2275 dev->flags |= ATA_DFLAG_LBA; 2276 if (ata_id_has_lba48(id)) { 2277 dev->flags |= ATA_DFLAG_LBA48; 2278 lba_desc = "LBA48"; 2279 2280 if (dev->n_sectors >= (1UL << 28) && 2281 ata_id_has_flush_ext(id)) 2282 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2283 } 2284 2285 /* config NCQ */ 2286 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2287 if (rc) 2288 return rc; 2289 2290 /* print device info to dmesg */ 2291 if (ata_msg_drv(ap) && print_info) { 2292 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2293 revbuf, modelbuf, fwrevbuf, 2294 ata_mode_string(xfer_mask)); 2295 ata_dev_info(dev, 2296 "%llu sectors, multi %u: %s %s\n", 2297 (unsigned long long)dev->n_sectors, 2298 dev->multi_count, lba_desc, ncq_desc); 2299 } 2300 } else { 2301 /* CHS */ 2302 2303 /* Default translation */ 2304 dev->cylinders = id[1]; 2305 dev->heads = id[3]; 2306 dev->sectors = id[6]; 2307 2308 if (ata_id_current_chs_valid(id)) { 2309 /* Current CHS translation is valid. */ 2310 dev->cylinders = id[54]; 2311 dev->heads = id[55]; 2312 dev->sectors = id[56]; 2313 } 2314 2315 /* print device info to dmesg */ 2316 if (ata_msg_drv(ap) && print_info) { 2317 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2318 revbuf, modelbuf, fwrevbuf, 2319 ata_mode_string(xfer_mask)); 2320 ata_dev_info(dev, 2321 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2322 (unsigned long long)dev->n_sectors, 2323 dev->multi_count, dev->cylinders, 2324 dev->heads, dev->sectors); 2325 } 2326 } 2327 2328 /* Check and mark DevSlp capability. Get DevSlp timing variables 2329 * from SATA Settings page of Identify Device Data Log. 2330 */ 2331 if (ata_id_has_devslp(dev->id)) { 2332 u8 sata_setting[ATA_SECT_SIZE]; 2333 int i, j; 2334 2335 dev->flags |= ATA_DFLAG_DEVSLP; 2336 err_mask = ata_read_log_page(dev, 2337 ATA_LOG_SATA_ID_DEV_DATA, 2338 ATA_LOG_SATA_SETTINGS, 2339 sata_setting, 2340 1); 2341 if (err_mask) 2342 ata_dev_dbg(dev, 2343 "failed to get Identify Device Data, Emask 0x%x\n", 2344 err_mask); 2345 else 2346 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2347 j = ATA_LOG_DEVSLP_OFFSET + i; 2348 dev->devslp_timing[i] = sata_setting[j]; 2349 } 2350 } 2351 2352 dev->cdb_len = 16; 2353 } 2354 2355 /* ATAPI-specific feature tests */ 2356 else if (dev->class == ATA_DEV_ATAPI) { 2357 const char *cdb_intr_string = ""; 2358 const char *atapi_an_string = ""; 2359 const char *dma_dir_string = ""; 2360 u32 sntf; 2361 2362 rc = atapi_cdb_len(id); 2363 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2364 if (ata_msg_warn(ap)) 2365 ata_dev_warn(dev, "unsupported CDB len\n"); 2366 rc = -EINVAL; 2367 goto err_out_nosup; 2368 } 2369 dev->cdb_len = (unsigned int) rc; 2370 2371 /* Enable ATAPI AN if both the host and device have 2372 * the support. If PMP is attached, SNTF is required 2373 * to enable ATAPI AN to discern between PHY status 2374 * changed notifications and ATAPI ANs. 2375 */ 2376 if (atapi_an && 2377 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2378 (!sata_pmp_attached(ap) || 2379 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2380 /* issue SET feature command to turn this on */ 2381 err_mask = ata_dev_set_feature(dev, 2382 SETFEATURES_SATA_ENABLE, SATA_AN); 2383 if (err_mask) 2384 ata_dev_err(dev, 2385 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2386 err_mask); 2387 else { 2388 dev->flags |= ATA_DFLAG_AN; 2389 atapi_an_string = ", ATAPI AN"; 2390 } 2391 } 2392 2393 if (ata_id_cdb_intr(dev->id)) { 2394 dev->flags |= ATA_DFLAG_CDB_INTR; 2395 cdb_intr_string = ", CDB intr"; 2396 } 2397 2398 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2399 dev->flags |= ATA_DFLAG_DMADIR; 2400 dma_dir_string = ", DMADIR"; 2401 } 2402 2403 if (ata_id_has_da(dev->id)) { 2404 dev->flags |= ATA_DFLAG_DA; 2405 zpodd_init(dev); 2406 } 2407 2408 /* print device info to dmesg */ 2409 if (ata_msg_drv(ap) && print_info) 2410 ata_dev_info(dev, 2411 "ATAPI: %s, %s, max %s%s%s%s\n", 2412 modelbuf, fwrevbuf, 2413 ata_mode_string(xfer_mask), 2414 cdb_intr_string, atapi_an_string, 2415 dma_dir_string); 2416 } 2417 2418 /* determine max_sectors */ 2419 dev->max_sectors = ATA_MAX_SECTORS; 2420 if (dev->flags & ATA_DFLAG_LBA48) 2421 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2422 2423 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2424 200 sectors */ 2425 if (ata_dev_knobble(dev)) { 2426 if (ata_msg_drv(ap) && print_info) 2427 ata_dev_info(dev, "applying bridge limits\n"); 2428 dev->udma_mask &= ATA_UDMA5; 2429 dev->max_sectors = ATA_MAX_SECTORS; 2430 } 2431 2432 if ((dev->class == ATA_DEV_ATAPI) && 2433 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2434 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2435 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2436 } 2437 2438 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2439 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2440 dev->max_sectors); 2441 2442 if (ap->ops->dev_config) 2443 ap->ops->dev_config(dev); 2444 2445 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2446 /* Let the user know. We don't want to disallow opens for 2447 rescue purposes, or in case the vendor is just a blithering 2448 idiot. Do this after the dev_config call as some controllers 2449 with buggy firmware may want to avoid reporting false device 2450 bugs */ 2451 2452 if (print_info) { 2453 ata_dev_warn(dev, 2454 "Drive reports diagnostics failure. This may indicate a drive\n"); 2455 ata_dev_warn(dev, 2456 "fault or invalid emulation. Contact drive vendor for information.\n"); 2457 } 2458 } 2459 2460 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2461 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2462 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2463 } 2464 2465 return 0; 2466 2467 err_out_nosup: 2468 if (ata_msg_probe(ap)) 2469 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2470 return rc; 2471 } 2472 2473 /** 2474 * ata_cable_40wire - return 40 wire cable type 2475 * @ap: port 2476 * 2477 * Helper method for drivers which want to hardwire 40 wire cable 2478 * detection. 2479 */ 2480 2481 int ata_cable_40wire(struct ata_port *ap) 2482 { 2483 return ATA_CBL_PATA40; 2484 } 2485 2486 /** 2487 * ata_cable_80wire - return 80 wire cable type 2488 * @ap: port 2489 * 2490 * Helper method for drivers which want to hardwire 80 wire cable 2491 * detection. 2492 */ 2493 2494 int ata_cable_80wire(struct ata_port *ap) 2495 { 2496 return ATA_CBL_PATA80; 2497 } 2498 2499 /** 2500 * ata_cable_unknown - return unknown PATA cable. 2501 * @ap: port 2502 * 2503 * Helper method for drivers which have no PATA cable detection. 2504 */ 2505 2506 int ata_cable_unknown(struct ata_port *ap) 2507 { 2508 return ATA_CBL_PATA_UNK; 2509 } 2510 2511 /** 2512 * ata_cable_ignore - return ignored PATA cable. 2513 * @ap: port 2514 * 2515 * Helper method for drivers which don't use cable type to limit 2516 * transfer mode. 2517 */ 2518 int ata_cable_ignore(struct ata_port *ap) 2519 { 2520 return ATA_CBL_PATA_IGN; 2521 } 2522 2523 /** 2524 * ata_cable_sata - return SATA cable type 2525 * @ap: port 2526 * 2527 * Helper method for drivers which have SATA cables 2528 */ 2529 2530 int ata_cable_sata(struct ata_port *ap) 2531 { 2532 return ATA_CBL_SATA; 2533 } 2534 2535 /** 2536 * ata_bus_probe - Reset and probe ATA bus 2537 * @ap: Bus to probe 2538 * 2539 * Master ATA bus probing function. Initiates a hardware-dependent 2540 * bus reset, then attempts to identify any devices found on 2541 * the bus. 2542 * 2543 * LOCKING: 2544 * PCI/etc. bus probe sem. 2545 * 2546 * RETURNS: 2547 * Zero on success, negative errno otherwise. 2548 */ 2549 2550 int ata_bus_probe(struct ata_port *ap) 2551 { 2552 unsigned int classes[ATA_MAX_DEVICES]; 2553 int tries[ATA_MAX_DEVICES]; 2554 int rc; 2555 struct ata_device *dev; 2556 2557 ata_for_each_dev(dev, &ap->link, ALL) 2558 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2559 2560 retry: 2561 ata_for_each_dev(dev, &ap->link, ALL) { 2562 /* If we issue an SRST then an ATA drive (not ATAPI) 2563 * may change configuration and be in PIO0 timing. If 2564 * we do a hard reset (or are coming from power on) 2565 * this is true for ATA or ATAPI. Until we've set a 2566 * suitable controller mode we should not touch the 2567 * bus as we may be talking too fast. 2568 */ 2569 dev->pio_mode = XFER_PIO_0; 2570 dev->dma_mode = 0xff; 2571 2572 /* If the controller has a pio mode setup function 2573 * then use it to set the chipset to rights. Don't 2574 * touch the DMA setup as that will be dealt with when 2575 * configuring devices. 2576 */ 2577 if (ap->ops->set_piomode) 2578 ap->ops->set_piomode(ap, dev); 2579 } 2580 2581 /* reset and determine device classes */ 2582 ap->ops->phy_reset(ap); 2583 2584 ata_for_each_dev(dev, &ap->link, ALL) { 2585 if (dev->class != ATA_DEV_UNKNOWN) 2586 classes[dev->devno] = dev->class; 2587 else 2588 classes[dev->devno] = ATA_DEV_NONE; 2589 2590 dev->class = ATA_DEV_UNKNOWN; 2591 } 2592 2593 /* read IDENTIFY page and configure devices. We have to do the identify 2594 specific sequence bass-ackwards so that PDIAG- is released by 2595 the slave device */ 2596 2597 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2598 if (tries[dev->devno]) 2599 dev->class = classes[dev->devno]; 2600 2601 if (!ata_dev_enabled(dev)) 2602 continue; 2603 2604 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2605 dev->id); 2606 if (rc) 2607 goto fail; 2608 } 2609 2610 /* Now ask for the cable type as PDIAG- should have been released */ 2611 if (ap->ops->cable_detect) 2612 ap->cbl = ap->ops->cable_detect(ap); 2613 2614 /* We may have SATA bridge glue hiding here irrespective of 2615 * the reported cable types and sensed types. When SATA 2616 * drives indicate we have a bridge, we don't know which end 2617 * of the link the bridge is which is a problem. 2618 */ 2619 ata_for_each_dev(dev, &ap->link, ENABLED) 2620 if (ata_id_is_sata(dev->id)) 2621 ap->cbl = ATA_CBL_SATA; 2622 2623 /* After the identify sequence we can now set up the devices. We do 2624 this in the normal order so that the user doesn't get confused */ 2625 2626 ata_for_each_dev(dev, &ap->link, ENABLED) { 2627 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2628 rc = ata_dev_configure(dev); 2629 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2630 if (rc) 2631 goto fail; 2632 } 2633 2634 /* configure transfer mode */ 2635 rc = ata_set_mode(&ap->link, &dev); 2636 if (rc) 2637 goto fail; 2638 2639 ata_for_each_dev(dev, &ap->link, ENABLED) 2640 return 0; 2641 2642 return -ENODEV; 2643 2644 fail: 2645 tries[dev->devno]--; 2646 2647 switch (rc) { 2648 case -EINVAL: 2649 /* eeek, something went very wrong, give up */ 2650 tries[dev->devno] = 0; 2651 break; 2652 2653 case -ENODEV: 2654 /* give it just one more chance */ 2655 tries[dev->devno] = min(tries[dev->devno], 1); 2656 case -EIO: 2657 if (tries[dev->devno] == 1) { 2658 /* This is the last chance, better to slow 2659 * down than lose it. 2660 */ 2661 sata_down_spd_limit(&ap->link, 0); 2662 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2663 } 2664 } 2665 2666 if (!tries[dev->devno]) 2667 ata_dev_disable(dev); 2668 2669 goto retry; 2670 } 2671 2672 /** 2673 * sata_print_link_status - Print SATA link status 2674 * @link: SATA link to printk link status about 2675 * 2676 * This function prints link speed and status of a SATA link. 2677 * 2678 * LOCKING: 2679 * None. 2680 */ 2681 static void sata_print_link_status(struct ata_link *link) 2682 { 2683 u32 sstatus, scontrol, tmp; 2684 2685 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2686 return; 2687 sata_scr_read(link, SCR_CONTROL, &scontrol); 2688 2689 if (ata_phys_link_online(link)) { 2690 tmp = (sstatus >> 4) & 0xf; 2691 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2692 sata_spd_string(tmp), sstatus, scontrol); 2693 } else { 2694 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2695 sstatus, scontrol); 2696 } 2697 } 2698 2699 /** 2700 * ata_dev_pair - return other device on cable 2701 * @adev: device 2702 * 2703 * Obtain the other device on the same cable, or if none is 2704 * present NULL is returned 2705 */ 2706 2707 struct ata_device *ata_dev_pair(struct ata_device *adev) 2708 { 2709 struct ata_link *link = adev->link; 2710 struct ata_device *pair = &link->device[1 - adev->devno]; 2711 if (!ata_dev_enabled(pair)) 2712 return NULL; 2713 return pair; 2714 } 2715 2716 /** 2717 * sata_down_spd_limit - adjust SATA spd limit downward 2718 * @link: Link to adjust SATA spd limit for 2719 * @spd_limit: Additional limit 2720 * 2721 * Adjust SATA spd limit of @link downward. Note that this 2722 * function only adjusts the limit. The change must be applied 2723 * using sata_set_spd(). 2724 * 2725 * If @spd_limit is non-zero, the speed is limited to equal to or 2726 * lower than @spd_limit if such speed is supported. If 2727 * @spd_limit is slower than any supported speed, only the lowest 2728 * supported speed is allowed. 2729 * 2730 * LOCKING: 2731 * Inherited from caller. 2732 * 2733 * RETURNS: 2734 * 0 on success, negative errno on failure 2735 */ 2736 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2737 { 2738 u32 sstatus, spd, mask; 2739 int rc, bit; 2740 2741 if (!sata_scr_valid(link)) 2742 return -EOPNOTSUPP; 2743 2744 /* If SCR can be read, use it to determine the current SPD. 2745 * If not, use cached value in link->sata_spd. 2746 */ 2747 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2748 if (rc == 0 && ata_sstatus_online(sstatus)) 2749 spd = (sstatus >> 4) & 0xf; 2750 else 2751 spd = link->sata_spd; 2752 2753 mask = link->sata_spd_limit; 2754 if (mask <= 1) 2755 return -EINVAL; 2756 2757 /* unconditionally mask off the highest bit */ 2758 bit = fls(mask) - 1; 2759 mask &= ~(1 << bit); 2760 2761 /* Mask off all speeds higher than or equal to the current 2762 * one. Force 1.5Gbps if current SPD is not available. 2763 */ 2764 if (spd > 1) 2765 mask &= (1 << (spd - 1)) - 1; 2766 else 2767 mask &= 1; 2768 2769 /* were we already at the bottom? */ 2770 if (!mask) 2771 return -EINVAL; 2772 2773 if (spd_limit) { 2774 if (mask & ((1 << spd_limit) - 1)) 2775 mask &= (1 << spd_limit) - 1; 2776 else { 2777 bit = ffs(mask) - 1; 2778 mask = 1 << bit; 2779 } 2780 } 2781 2782 link->sata_spd_limit = mask; 2783 2784 ata_link_warn(link, "limiting SATA link speed to %s\n", 2785 sata_spd_string(fls(mask))); 2786 2787 return 0; 2788 } 2789 2790 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2791 { 2792 struct ata_link *host_link = &link->ap->link; 2793 u32 limit, target, spd; 2794 2795 limit = link->sata_spd_limit; 2796 2797 /* Don't configure downstream link faster than upstream link. 2798 * It doesn't speed up anything and some PMPs choke on such 2799 * configuration. 2800 */ 2801 if (!ata_is_host_link(link) && host_link->sata_spd) 2802 limit &= (1 << host_link->sata_spd) - 1; 2803 2804 if (limit == UINT_MAX) 2805 target = 0; 2806 else 2807 target = fls(limit); 2808 2809 spd = (*scontrol >> 4) & 0xf; 2810 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2811 2812 return spd != target; 2813 } 2814 2815 /** 2816 * sata_set_spd_needed - is SATA spd configuration needed 2817 * @link: Link in question 2818 * 2819 * Test whether the spd limit in SControl matches 2820 * @link->sata_spd_limit. This function is used to determine 2821 * whether hardreset is necessary to apply SATA spd 2822 * configuration. 2823 * 2824 * LOCKING: 2825 * Inherited from caller. 2826 * 2827 * RETURNS: 2828 * 1 if SATA spd configuration is needed, 0 otherwise. 2829 */ 2830 static int sata_set_spd_needed(struct ata_link *link) 2831 { 2832 u32 scontrol; 2833 2834 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2835 return 1; 2836 2837 return __sata_set_spd_needed(link, &scontrol); 2838 } 2839 2840 /** 2841 * sata_set_spd - set SATA spd according to spd limit 2842 * @link: Link to set SATA spd for 2843 * 2844 * Set SATA spd of @link according to sata_spd_limit. 2845 * 2846 * LOCKING: 2847 * Inherited from caller. 2848 * 2849 * RETURNS: 2850 * 0 if spd doesn't need to be changed, 1 if spd has been 2851 * changed. Negative errno if SCR registers are inaccessible. 2852 */ 2853 int sata_set_spd(struct ata_link *link) 2854 { 2855 u32 scontrol; 2856 int rc; 2857 2858 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2859 return rc; 2860 2861 if (!__sata_set_spd_needed(link, &scontrol)) 2862 return 0; 2863 2864 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2865 return rc; 2866 2867 return 1; 2868 } 2869 2870 /* 2871 * This mode timing computation functionality is ported over from 2872 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2873 */ 2874 /* 2875 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2876 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2877 * for UDMA6, which is currently supported only by Maxtor drives. 2878 * 2879 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2880 */ 2881 2882 static const struct ata_timing ata_timing[] = { 2883 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2884 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2885 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2886 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2887 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2888 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2889 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2890 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2891 2892 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2893 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2894 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2895 2896 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2897 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2898 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2899 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2900 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2901 2902 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2903 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2904 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2905 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2906 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2907 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2908 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2909 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2910 2911 { 0xFF } 2912 }; 2913 2914 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2915 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2916 2917 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2918 { 2919 q->setup = EZ(t->setup * 1000, T); 2920 q->act8b = EZ(t->act8b * 1000, T); 2921 q->rec8b = EZ(t->rec8b * 1000, T); 2922 q->cyc8b = EZ(t->cyc8b * 1000, T); 2923 q->active = EZ(t->active * 1000, T); 2924 q->recover = EZ(t->recover * 1000, T); 2925 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2926 q->cycle = EZ(t->cycle * 1000, T); 2927 q->udma = EZ(t->udma * 1000, UT); 2928 } 2929 2930 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2931 struct ata_timing *m, unsigned int what) 2932 { 2933 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2934 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2935 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2936 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2937 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2938 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2939 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2940 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2941 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2942 } 2943 2944 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2945 { 2946 const struct ata_timing *t = ata_timing; 2947 2948 while (xfer_mode > t->mode) 2949 t++; 2950 2951 if (xfer_mode == t->mode) 2952 return t; 2953 2954 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 2955 __func__, xfer_mode); 2956 2957 return NULL; 2958 } 2959 2960 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2961 struct ata_timing *t, int T, int UT) 2962 { 2963 const u16 *id = adev->id; 2964 const struct ata_timing *s; 2965 struct ata_timing p; 2966 2967 /* 2968 * Find the mode. 2969 */ 2970 2971 if (!(s = ata_timing_find_mode(speed))) 2972 return -EINVAL; 2973 2974 memcpy(t, s, sizeof(*s)); 2975 2976 /* 2977 * If the drive is an EIDE drive, it can tell us it needs extended 2978 * PIO/MW_DMA cycle timing. 2979 */ 2980 2981 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2982 memset(&p, 0, sizeof(p)); 2983 2984 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 2985 if (speed <= XFER_PIO_2) 2986 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 2987 else if ((speed <= XFER_PIO_4) || 2988 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 2989 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 2990 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 2991 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 2992 2993 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2994 } 2995 2996 /* 2997 * Convert the timing to bus clock counts. 2998 */ 2999 3000 ata_timing_quantize(t, t, T, UT); 3001 3002 /* 3003 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3004 * S.M.A.R.T * and some other commands. We have to ensure that the 3005 * DMA cycle timing is slower/equal than the fastest PIO timing. 3006 */ 3007 3008 if (speed > XFER_PIO_6) { 3009 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3010 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3011 } 3012 3013 /* 3014 * Lengthen active & recovery time so that cycle time is correct. 3015 */ 3016 3017 if (t->act8b + t->rec8b < t->cyc8b) { 3018 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3019 t->rec8b = t->cyc8b - t->act8b; 3020 } 3021 3022 if (t->active + t->recover < t->cycle) { 3023 t->active += (t->cycle - (t->active + t->recover)) / 2; 3024 t->recover = t->cycle - t->active; 3025 } 3026 3027 /* In a few cases quantisation may produce enough errors to 3028 leave t->cycle too low for the sum of active and recovery 3029 if so we must correct this */ 3030 if (t->active + t->recover > t->cycle) 3031 t->cycle = t->active + t->recover; 3032 3033 return 0; 3034 } 3035 3036 /** 3037 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3038 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3039 * @cycle: cycle duration in ns 3040 * 3041 * Return matching xfer mode for @cycle. The returned mode is of 3042 * the transfer type specified by @xfer_shift. If @cycle is too 3043 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3044 * than the fastest known mode, the fasted mode is returned. 3045 * 3046 * LOCKING: 3047 * None. 3048 * 3049 * RETURNS: 3050 * Matching xfer_mode, 0xff if no match found. 3051 */ 3052 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3053 { 3054 u8 base_mode = 0xff, last_mode = 0xff; 3055 const struct ata_xfer_ent *ent; 3056 const struct ata_timing *t; 3057 3058 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3059 if (ent->shift == xfer_shift) 3060 base_mode = ent->base; 3061 3062 for (t = ata_timing_find_mode(base_mode); 3063 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3064 unsigned short this_cycle; 3065 3066 switch (xfer_shift) { 3067 case ATA_SHIFT_PIO: 3068 case ATA_SHIFT_MWDMA: 3069 this_cycle = t->cycle; 3070 break; 3071 case ATA_SHIFT_UDMA: 3072 this_cycle = t->udma; 3073 break; 3074 default: 3075 return 0xff; 3076 } 3077 3078 if (cycle > this_cycle) 3079 break; 3080 3081 last_mode = t->mode; 3082 } 3083 3084 return last_mode; 3085 } 3086 3087 /** 3088 * ata_down_xfermask_limit - adjust dev xfer masks downward 3089 * @dev: Device to adjust xfer masks 3090 * @sel: ATA_DNXFER_* selector 3091 * 3092 * Adjust xfer masks of @dev downward. Note that this function 3093 * does not apply the change. Invoking ata_set_mode() afterwards 3094 * will apply the limit. 3095 * 3096 * LOCKING: 3097 * Inherited from caller. 3098 * 3099 * RETURNS: 3100 * 0 on success, negative errno on failure 3101 */ 3102 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3103 { 3104 char buf[32]; 3105 unsigned long orig_mask, xfer_mask; 3106 unsigned long pio_mask, mwdma_mask, udma_mask; 3107 int quiet, highbit; 3108 3109 quiet = !!(sel & ATA_DNXFER_QUIET); 3110 sel &= ~ATA_DNXFER_QUIET; 3111 3112 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3113 dev->mwdma_mask, 3114 dev->udma_mask); 3115 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3116 3117 switch (sel) { 3118 case ATA_DNXFER_PIO: 3119 highbit = fls(pio_mask) - 1; 3120 pio_mask &= ~(1 << highbit); 3121 break; 3122 3123 case ATA_DNXFER_DMA: 3124 if (udma_mask) { 3125 highbit = fls(udma_mask) - 1; 3126 udma_mask &= ~(1 << highbit); 3127 if (!udma_mask) 3128 return -ENOENT; 3129 } else if (mwdma_mask) { 3130 highbit = fls(mwdma_mask) - 1; 3131 mwdma_mask &= ~(1 << highbit); 3132 if (!mwdma_mask) 3133 return -ENOENT; 3134 } 3135 break; 3136 3137 case ATA_DNXFER_40C: 3138 udma_mask &= ATA_UDMA_MASK_40C; 3139 break; 3140 3141 case ATA_DNXFER_FORCE_PIO0: 3142 pio_mask &= 1; 3143 case ATA_DNXFER_FORCE_PIO: 3144 mwdma_mask = 0; 3145 udma_mask = 0; 3146 break; 3147 3148 default: 3149 BUG(); 3150 } 3151 3152 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3153 3154 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3155 return -ENOENT; 3156 3157 if (!quiet) { 3158 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3159 snprintf(buf, sizeof(buf), "%s:%s", 3160 ata_mode_string(xfer_mask), 3161 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3162 else 3163 snprintf(buf, sizeof(buf), "%s", 3164 ata_mode_string(xfer_mask)); 3165 3166 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3167 } 3168 3169 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3170 &dev->udma_mask); 3171 3172 return 0; 3173 } 3174 3175 static int ata_dev_set_mode(struct ata_device *dev) 3176 { 3177 struct ata_port *ap = dev->link->ap; 3178 struct ata_eh_context *ehc = &dev->link->eh_context; 3179 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3180 const char *dev_err_whine = ""; 3181 int ign_dev_err = 0; 3182 unsigned int err_mask = 0; 3183 int rc; 3184 3185 dev->flags &= ~ATA_DFLAG_PIO; 3186 if (dev->xfer_shift == ATA_SHIFT_PIO) 3187 dev->flags |= ATA_DFLAG_PIO; 3188 3189 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3190 dev_err_whine = " (SET_XFERMODE skipped)"; 3191 else { 3192 if (nosetxfer) 3193 ata_dev_warn(dev, 3194 "NOSETXFER but PATA detected - can't " 3195 "skip SETXFER, might malfunction\n"); 3196 err_mask = ata_dev_set_xfermode(dev); 3197 } 3198 3199 if (err_mask & ~AC_ERR_DEV) 3200 goto fail; 3201 3202 /* revalidate */ 3203 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3204 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3205 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3206 if (rc) 3207 return rc; 3208 3209 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3210 /* Old CFA may refuse this command, which is just fine */ 3211 if (ata_id_is_cfa(dev->id)) 3212 ign_dev_err = 1; 3213 /* Catch several broken garbage emulations plus some pre 3214 ATA devices */ 3215 if (ata_id_major_version(dev->id) == 0 && 3216 dev->pio_mode <= XFER_PIO_2) 3217 ign_dev_err = 1; 3218 /* Some very old devices and some bad newer ones fail 3219 any kind of SET_XFERMODE request but support PIO0-2 3220 timings and no IORDY */ 3221 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3222 ign_dev_err = 1; 3223 } 3224 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3225 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3226 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3227 dev->dma_mode == XFER_MW_DMA_0 && 3228 (dev->id[63] >> 8) & 1) 3229 ign_dev_err = 1; 3230 3231 /* if the device is actually configured correctly, ignore dev err */ 3232 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3233 ign_dev_err = 1; 3234 3235 if (err_mask & AC_ERR_DEV) { 3236 if (!ign_dev_err) 3237 goto fail; 3238 else 3239 dev_err_whine = " (device error ignored)"; 3240 } 3241 3242 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3243 dev->xfer_shift, (int)dev->xfer_mode); 3244 3245 ata_dev_info(dev, "configured for %s%s\n", 3246 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3247 dev_err_whine); 3248 3249 return 0; 3250 3251 fail: 3252 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3253 return -EIO; 3254 } 3255 3256 /** 3257 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3258 * @link: link on which timings will be programmed 3259 * @r_failed_dev: out parameter for failed device 3260 * 3261 * Standard implementation of the function used to tune and set 3262 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3263 * ata_dev_set_mode() fails, pointer to the failing device is 3264 * returned in @r_failed_dev. 3265 * 3266 * LOCKING: 3267 * PCI/etc. bus probe sem. 3268 * 3269 * RETURNS: 3270 * 0 on success, negative errno otherwise 3271 */ 3272 3273 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3274 { 3275 struct ata_port *ap = link->ap; 3276 struct ata_device *dev; 3277 int rc = 0, used_dma = 0, found = 0; 3278 3279 /* step 1: calculate xfer_mask */ 3280 ata_for_each_dev(dev, link, ENABLED) { 3281 unsigned long pio_mask, dma_mask; 3282 unsigned int mode_mask; 3283 3284 mode_mask = ATA_DMA_MASK_ATA; 3285 if (dev->class == ATA_DEV_ATAPI) 3286 mode_mask = ATA_DMA_MASK_ATAPI; 3287 else if (ata_id_is_cfa(dev->id)) 3288 mode_mask = ATA_DMA_MASK_CFA; 3289 3290 ata_dev_xfermask(dev); 3291 ata_force_xfermask(dev); 3292 3293 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3294 3295 if (libata_dma_mask & mode_mask) 3296 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3297 dev->udma_mask); 3298 else 3299 dma_mask = 0; 3300 3301 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3302 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3303 3304 found = 1; 3305 if (ata_dma_enabled(dev)) 3306 used_dma = 1; 3307 } 3308 if (!found) 3309 goto out; 3310 3311 /* step 2: always set host PIO timings */ 3312 ata_for_each_dev(dev, link, ENABLED) { 3313 if (dev->pio_mode == 0xff) { 3314 ata_dev_warn(dev, "no PIO support\n"); 3315 rc = -EINVAL; 3316 goto out; 3317 } 3318 3319 dev->xfer_mode = dev->pio_mode; 3320 dev->xfer_shift = ATA_SHIFT_PIO; 3321 if (ap->ops->set_piomode) 3322 ap->ops->set_piomode(ap, dev); 3323 } 3324 3325 /* step 3: set host DMA timings */ 3326 ata_for_each_dev(dev, link, ENABLED) { 3327 if (!ata_dma_enabled(dev)) 3328 continue; 3329 3330 dev->xfer_mode = dev->dma_mode; 3331 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3332 if (ap->ops->set_dmamode) 3333 ap->ops->set_dmamode(ap, dev); 3334 } 3335 3336 /* step 4: update devices' xfer mode */ 3337 ata_for_each_dev(dev, link, ENABLED) { 3338 rc = ata_dev_set_mode(dev); 3339 if (rc) 3340 goto out; 3341 } 3342 3343 /* Record simplex status. If we selected DMA then the other 3344 * host channels are not permitted to do so. 3345 */ 3346 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3347 ap->host->simplex_claimed = ap; 3348 3349 out: 3350 if (rc) 3351 *r_failed_dev = dev; 3352 return rc; 3353 } 3354 3355 /** 3356 * ata_wait_ready - wait for link to become ready 3357 * @link: link to be waited on 3358 * @deadline: deadline jiffies for the operation 3359 * @check_ready: callback to check link readiness 3360 * 3361 * Wait for @link to become ready. @check_ready should return 3362 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3363 * link doesn't seem to be occupied, other errno for other error 3364 * conditions. 3365 * 3366 * Transient -ENODEV conditions are allowed for 3367 * ATA_TMOUT_FF_WAIT. 3368 * 3369 * LOCKING: 3370 * EH context. 3371 * 3372 * RETURNS: 3373 * 0 if @linke is ready before @deadline; otherwise, -errno. 3374 */ 3375 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3376 int (*check_ready)(struct ata_link *link)) 3377 { 3378 unsigned long start = jiffies; 3379 unsigned long nodev_deadline; 3380 int warned = 0; 3381 3382 /* choose which 0xff timeout to use, read comment in libata.h */ 3383 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3384 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3385 else 3386 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3387 3388 /* Slave readiness can't be tested separately from master. On 3389 * M/S emulation configuration, this function should be called 3390 * only on the master and it will handle both master and slave. 3391 */ 3392 WARN_ON(link == link->ap->slave_link); 3393 3394 if (time_after(nodev_deadline, deadline)) 3395 nodev_deadline = deadline; 3396 3397 while (1) { 3398 unsigned long now = jiffies; 3399 int ready, tmp; 3400 3401 ready = tmp = check_ready(link); 3402 if (ready > 0) 3403 return 0; 3404 3405 /* 3406 * -ENODEV could be transient. Ignore -ENODEV if link 3407 * is online. Also, some SATA devices take a long 3408 * time to clear 0xff after reset. Wait for 3409 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3410 * offline. 3411 * 3412 * Note that some PATA controllers (pata_ali) explode 3413 * if status register is read more than once when 3414 * there's no device attached. 3415 */ 3416 if (ready == -ENODEV) { 3417 if (ata_link_online(link)) 3418 ready = 0; 3419 else if ((link->ap->flags & ATA_FLAG_SATA) && 3420 !ata_link_offline(link) && 3421 time_before(now, nodev_deadline)) 3422 ready = 0; 3423 } 3424 3425 if (ready) 3426 return ready; 3427 if (time_after(now, deadline)) 3428 return -EBUSY; 3429 3430 if (!warned && time_after(now, start + 5 * HZ) && 3431 (deadline - now > 3 * HZ)) { 3432 ata_link_warn(link, 3433 "link is slow to respond, please be patient " 3434 "(ready=%d)\n", tmp); 3435 warned = 1; 3436 } 3437 3438 ata_msleep(link->ap, 50); 3439 } 3440 } 3441 3442 /** 3443 * ata_wait_after_reset - wait for link to become ready after reset 3444 * @link: link to be waited on 3445 * @deadline: deadline jiffies for the operation 3446 * @check_ready: callback to check link readiness 3447 * 3448 * Wait for @link to become ready after reset. 3449 * 3450 * LOCKING: 3451 * EH context. 3452 * 3453 * RETURNS: 3454 * 0 if @linke is ready before @deadline; otherwise, -errno. 3455 */ 3456 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3457 int (*check_ready)(struct ata_link *link)) 3458 { 3459 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3460 3461 return ata_wait_ready(link, deadline, check_ready); 3462 } 3463 3464 /** 3465 * sata_link_debounce - debounce SATA phy status 3466 * @link: ATA link to debounce SATA phy status for 3467 * @params: timing parameters { interval, duratinon, timeout } in msec 3468 * @deadline: deadline jiffies for the operation 3469 * 3470 * Make sure SStatus of @link reaches stable state, determined by 3471 * holding the same value where DET is not 1 for @duration polled 3472 * every @interval, before @timeout. Timeout constraints the 3473 * beginning of the stable state. Because DET gets stuck at 1 on 3474 * some controllers after hot unplugging, this functions waits 3475 * until timeout then returns 0 if DET is stable at 1. 3476 * 3477 * @timeout is further limited by @deadline. The sooner of the 3478 * two is used. 3479 * 3480 * LOCKING: 3481 * Kernel thread context (may sleep) 3482 * 3483 * RETURNS: 3484 * 0 on success, -errno on failure. 3485 */ 3486 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3487 unsigned long deadline) 3488 { 3489 unsigned long interval = params[0]; 3490 unsigned long duration = params[1]; 3491 unsigned long last_jiffies, t; 3492 u32 last, cur; 3493 int rc; 3494 3495 t = ata_deadline(jiffies, params[2]); 3496 if (time_before(t, deadline)) 3497 deadline = t; 3498 3499 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3500 return rc; 3501 cur &= 0xf; 3502 3503 last = cur; 3504 last_jiffies = jiffies; 3505 3506 while (1) { 3507 ata_msleep(link->ap, interval); 3508 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3509 return rc; 3510 cur &= 0xf; 3511 3512 /* DET stable? */ 3513 if (cur == last) { 3514 if (cur == 1 && time_before(jiffies, deadline)) 3515 continue; 3516 if (time_after(jiffies, 3517 ata_deadline(last_jiffies, duration))) 3518 return 0; 3519 continue; 3520 } 3521 3522 /* unstable, start over */ 3523 last = cur; 3524 last_jiffies = jiffies; 3525 3526 /* Check deadline. If debouncing failed, return 3527 * -EPIPE to tell upper layer to lower link speed. 3528 */ 3529 if (time_after(jiffies, deadline)) 3530 return -EPIPE; 3531 } 3532 } 3533 3534 /** 3535 * sata_link_resume - resume SATA link 3536 * @link: ATA link to resume SATA 3537 * @params: timing parameters { interval, duratinon, timeout } in msec 3538 * @deadline: deadline jiffies for the operation 3539 * 3540 * Resume SATA phy @link and debounce it. 3541 * 3542 * LOCKING: 3543 * Kernel thread context (may sleep) 3544 * 3545 * RETURNS: 3546 * 0 on success, -errno on failure. 3547 */ 3548 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3549 unsigned long deadline) 3550 { 3551 int tries = ATA_LINK_RESUME_TRIES; 3552 u32 scontrol, serror; 3553 int rc; 3554 3555 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3556 return rc; 3557 3558 /* 3559 * Writes to SControl sometimes get ignored under certain 3560 * controllers (ata_piix SIDPR). Make sure DET actually is 3561 * cleared. 3562 */ 3563 do { 3564 scontrol = (scontrol & 0x0f0) | 0x300; 3565 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3566 return rc; 3567 /* 3568 * Some PHYs react badly if SStatus is pounded 3569 * immediately after resuming. Delay 200ms before 3570 * debouncing. 3571 */ 3572 ata_msleep(link->ap, 200); 3573 3574 /* is SControl restored correctly? */ 3575 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3576 return rc; 3577 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3578 3579 if ((scontrol & 0xf0f) != 0x300) { 3580 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3581 scontrol); 3582 return 0; 3583 } 3584 3585 if (tries < ATA_LINK_RESUME_TRIES) 3586 ata_link_warn(link, "link resume succeeded after %d retries\n", 3587 ATA_LINK_RESUME_TRIES - tries); 3588 3589 if ((rc = sata_link_debounce(link, params, deadline))) 3590 return rc; 3591 3592 /* clear SError, some PHYs require this even for SRST to work */ 3593 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3594 rc = sata_scr_write(link, SCR_ERROR, serror); 3595 3596 return rc != -EINVAL ? rc : 0; 3597 } 3598 3599 /** 3600 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3601 * @link: ATA link to manipulate SControl for 3602 * @policy: LPM policy to configure 3603 * @spm_wakeup: initiate LPM transition to active state 3604 * 3605 * Manipulate the IPM field of the SControl register of @link 3606 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3607 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3608 * the link. This function also clears PHYRDY_CHG before 3609 * returning. 3610 * 3611 * LOCKING: 3612 * EH context. 3613 * 3614 * RETURNS: 3615 * 0 on succes, -errno otherwise. 3616 */ 3617 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3618 bool spm_wakeup) 3619 { 3620 struct ata_eh_context *ehc = &link->eh_context; 3621 bool woken_up = false; 3622 u32 scontrol; 3623 int rc; 3624 3625 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3626 if (rc) 3627 return rc; 3628 3629 switch (policy) { 3630 case ATA_LPM_MAX_POWER: 3631 /* disable all LPM transitions */ 3632 scontrol |= (0x7 << 8); 3633 /* initiate transition to active state */ 3634 if (spm_wakeup) { 3635 scontrol |= (0x4 << 12); 3636 woken_up = true; 3637 } 3638 break; 3639 case ATA_LPM_MED_POWER: 3640 /* allow LPM to PARTIAL */ 3641 scontrol &= ~(0x1 << 8); 3642 scontrol |= (0x6 << 8); 3643 break; 3644 case ATA_LPM_MIN_POWER: 3645 if (ata_link_nr_enabled(link) > 0) 3646 /* no restrictions on LPM transitions */ 3647 scontrol &= ~(0x7 << 8); 3648 else { 3649 /* empty port, power off */ 3650 scontrol &= ~0xf; 3651 scontrol |= (0x1 << 2); 3652 } 3653 break; 3654 default: 3655 WARN_ON(1); 3656 } 3657 3658 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3659 if (rc) 3660 return rc; 3661 3662 /* give the link time to transit out of LPM state */ 3663 if (woken_up) 3664 msleep(10); 3665 3666 /* clear PHYRDY_CHG from SError */ 3667 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3668 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3669 } 3670 3671 /** 3672 * ata_std_prereset - prepare for reset 3673 * @link: ATA link to be reset 3674 * @deadline: deadline jiffies for the operation 3675 * 3676 * @link is about to be reset. Initialize it. Failure from 3677 * prereset makes libata abort whole reset sequence and give up 3678 * that port, so prereset should be best-effort. It does its 3679 * best to prepare for reset sequence but if things go wrong, it 3680 * should just whine, not fail. 3681 * 3682 * LOCKING: 3683 * Kernel thread context (may sleep) 3684 * 3685 * RETURNS: 3686 * 0 on success, -errno otherwise. 3687 */ 3688 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3689 { 3690 struct ata_port *ap = link->ap; 3691 struct ata_eh_context *ehc = &link->eh_context; 3692 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3693 int rc; 3694 3695 /* if we're about to do hardreset, nothing more to do */ 3696 if (ehc->i.action & ATA_EH_HARDRESET) 3697 return 0; 3698 3699 /* if SATA, resume link */ 3700 if (ap->flags & ATA_FLAG_SATA) { 3701 rc = sata_link_resume(link, timing, deadline); 3702 /* whine about phy resume failure but proceed */ 3703 if (rc && rc != -EOPNOTSUPP) 3704 ata_link_warn(link, 3705 "failed to resume link for reset (errno=%d)\n", 3706 rc); 3707 } 3708 3709 /* no point in trying softreset on offline link */ 3710 if (ata_phys_link_offline(link)) 3711 ehc->i.action &= ~ATA_EH_SOFTRESET; 3712 3713 return 0; 3714 } 3715 3716 /** 3717 * sata_link_hardreset - reset link via SATA phy reset 3718 * @link: link to reset 3719 * @timing: timing parameters { interval, duratinon, timeout } in msec 3720 * @deadline: deadline jiffies for the operation 3721 * @online: optional out parameter indicating link onlineness 3722 * @check_ready: optional callback to check link readiness 3723 * 3724 * SATA phy-reset @link using DET bits of SControl register. 3725 * After hardreset, link readiness is waited upon using 3726 * ata_wait_ready() if @check_ready is specified. LLDs are 3727 * allowed to not specify @check_ready and wait itself after this 3728 * function returns. Device classification is LLD's 3729 * responsibility. 3730 * 3731 * *@online is set to one iff reset succeeded and @link is online 3732 * after reset. 3733 * 3734 * LOCKING: 3735 * Kernel thread context (may sleep) 3736 * 3737 * RETURNS: 3738 * 0 on success, -errno otherwise. 3739 */ 3740 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3741 unsigned long deadline, 3742 bool *online, int (*check_ready)(struct ata_link *)) 3743 { 3744 u32 scontrol; 3745 int rc; 3746 3747 DPRINTK("ENTER\n"); 3748 3749 if (online) 3750 *online = false; 3751 3752 if (sata_set_spd_needed(link)) { 3753 /* SATA spec says nothing about how to reconfigure 3754 * spd. To be on the safe side, turn off phy during 3755 * reconfiguration. This works for at least ICH7 AHCI 3756 * and Sil3124. 3757 */ 3758 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3759 goto out; 3760 3761 scontrol = (scontrol & 0x0f0) | 0x304; 3762 3763 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3764 goto out; 3765 3766 sata_set_spd(link); 3767 } 3768 3769 /* issue phy wake/reset */ 3770 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3771 goto out; 3772 3773 scontrol = (scontrol & 0x0f0) | 0x301; 3774 3775 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3776 goto out; 3777 3778 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3779 * 10.4.2 says at least 1 ms. 3780 */ 3781 ata_msleep(link->ap, 1); 3782 3783 /* bring link back */ 3784 rc = sata_link_resume(link, timing, deadline); 3785 if (rc) 3786 goto out; 3787 /* if link is offline nothing more to do */ 3788 if (ata_phys_link_offline(link)) 3789 goto out; 3790 3791 /* Link is online. From this point, -ENODEV too is an error. */ 3792 if (online) 3793 *online = true; 3794 3795 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3796 /* If PMP is supported, we have to do follow-up SRST. 3797 * Some PMPs don't send D2H Reg FIS after hardreset if 3798 * the first port is empty. Wait only for 3799 * ATA_TMOUT_PMP_SRST_WAIT. 3800 */ 3801 if (check_ready) { 3802 unsigned long pmp_deadline; 3803 3804 pmp_deadline = ata_deadline(jiffies, 3805 ATA_TMOUT_PMP_SRST_WAIT); 3806 if (time_after(pmp_deadline, deadline)) 3807 pmp_deadline = deadline; 3808 ata_wait_ready(link, pmp_deadline, check_ready); 3809 } 3810 rc = -EAGAIN; 3811 goto out; 3812 } 3813 3814 rc = 0; 3815 if (check_ready) 3816 rc = ata_wait_ready(link, deadline, check_ready); 3817 out: 3818 if (rc && rc != -EAGAIN) { 3819 /* online is set iff link is online && reset succeeded */ 3820 if (online) 3821 *online = false; 3822 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3823 } 3824 DPRINTK("EXIT, rc=%d\n", rc); 3825 return rc; 3826 } 3827 3828 /** 3829 * sata_std_hardreset - COMRESET w/o waiting or classification 3830 * @link: link to reset 3831 * @class: resulting class of attached device 3832 * @deadline: deadline jiffies for the operation 3833 * 3834 * Standard SATA COMRESET w/o waiting or classification. 3835 * 3836 * LOCKING: 3837 * Kernel thread context (may sleep) 3838 * 3839 * RETURNS: 3840 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3841 */ 3842 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3843 unsigned long deadline) 3844 { 3845 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3846 bool online; 3847 int rc; 3848 3849 /* do hardreset */ 3850 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3851 return online ? -EAGAIN : rc; 3852 } 3853 3854 /** 3855 * ata_std_postreset - standard postreset callback 3856 * @link: the target ata_link 3857 * @classes: classes of attached devices 3858 * 3859 * This function is invoked after a successful reset. Note that 3860 * the device might have been reset more than once using 3861 * different reset methods before postreset is invoked. 3862 * 3863 * LOCKING: 3864 * Kernel thread context (may sleep) 3865 */ 3866 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3867 { 3868 u32 serror; 3869 3870 DPRINTK("ENTER\n"); 3871 3872 /* reset complete, clear SError */ 3873 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3874 sata_scr_write(link, SCR_ERROR, serror); 3875 3876 /* print link status */ 3877 sata_print_link_status(link); 3878 3879 DPRINTK("EXIT\n"); 3880 } 3881 3882 /** 3883 * ata_dev_same_device - Determine whether new ID matches configured device 3884 * @dev: device to compare against 3885 * @new_class: class of the new device 3886 * @new_id: IDENTIFY page of the new device 3887 * 3888 * Compare @new_class and @new_id against @dev and determine 3889 * whether @dev is the device indicated by @new_class and 3890 * @new_id. 3891 * 3892 * LOCKING: 3893 * None. 3894 * 3895 * RETURNS: 3896 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3897 */ 3898 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3899 const u16 *new_id) 3900 { 3901 const u16 *old_id = dev->id; 3902 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3903 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3904 3905 if (dev->class != new_class) { 3906 ata_dev_info(dev, "class mismatch %d != %d\n", 3907 dev->class, new_class); 3908 return 0; 3909 } 3910 3911 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3912 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3913 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3914 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3915 3916 if (strcmp(model[0], model[1])) { 3917 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3918 model[0], model[1]); 3919 return 0; 3920 } 3921 3922 if (strcmp(serial[0], serial[1])) { 3923 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3924 serial[0], serial[1]); 3925 return 0; 3926 } 3927 3928 return 1; 3929 } 3930 3931 /** 3932 * ata_dev_reread_id - Re-read IDENTIFY data 3933 * @dev: target ATA device 3934 * @readid_flags: read ID flags 3935 * 3936 * Re-read IDENTIFY page and make sure @dev is still attached to 3937 * the port. 3938 * 3939 * LOCKING: 3940 * Kernel thread context (may sleep) 3941 * 3942 * RETURNS: 3943 * 0 on success, negative errno otherwise 3944 */ 3945 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3946 { 3947 unsigned int class = dev->class; 3948 u16 *id = (void *)dev->link->ap->sector_buf; 3949 int rc; 3950 3951 /* read ID data */ 3952 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3953 if (rc) 3954 return rc; 3955 3956 /* is the device still there? */ 3957 if (!ata_dev_same_device(dev, class, id)) 3958 return -ENODEV; 3959 3960 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3961 return 0; 3962 } 3963 3964 /** 3965 * ata_dev_revalidate - Revalidate ATA device 3966 * @dev: device to revalidate 3967 * @new_class: new class code 3968 * @readid_flags: read ID flags 3969 * 3970 * Re-read IDENTIFY page, make sure @dev is still attached to the 3971 * port and reconfigure it according to the new IDENTIFY page. 3972 * 3973 * LOCKING: 3974 * Kernel thread context (may sleep) 3975 * 3976 * RETURNS: 3977 * 0 on success, negative errno otherwise 3978 */ 3979 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3980 unsigned int readid_flags) 3981 { 3982 u64 n_sectors = dev->n_sectors; 3983 u64 n_native_sectors = dev->n_native_sectors; 3984 int rc; 3985 3986 if (!ata_dev_enabled(dev)) 3987 return -ENODEV; 3988 3989 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3990 if (ata_class_enabled(new_class) && 3991 new_class != ATA_DEV_ATA && 3992 new_class != ATA_DEV_ATAPI && 3993 new_class != ATA_DEV_SEMB) { 3994 ata_dev_info(dev, "class mismatch %u != %u\n", 3995 dev->class, new_class); 3996 rc = -ENODEV; 3997 goto fail; 3998 } 3999 4000 /* re-read ID */ 4001 rc = ata_dev_reread_id(dev, readid_flags); 4002 if (rc) 4003 goto fail; 4004 4005 /* configure device according to the new ID */ 4006 rc = ata_dev_configure(dev); 4007 if (rc) 4008 goto fail; 4009 4010 /* verify n_sectors hasn't changed */ 4011 if (dev->class != ATA_DEV_ATA || !n_sectors || 4012 dev->n_sectors == n_sectors) 4013 return 0; 4014 4015 /* n_sectors has changed */ 4016 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4017 (unsigned long long)n_sectors, 4018 (unsigned long long)dev->n_sectors); 4019 4020 /* 4021 * Something could have caused HPA to be unlocked 4022 * involuntarily. If n_native_sectors hasn't changed and the 4023 * new size matches it, keep the device. 4024 */ 4025 if (dev->n_native_sectors == n_native_sectors && 4026 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4027 ata_dev_warn(dev, 4028 "new n_sectors matches native, probably " 4029 "late HPA unlock, n_sectors updated\n"); 4030 /* use the larger n_sectors */ 4031 return 0; 4032 } 4033 4034 /* 4035 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4036 * unlocking HPA in those cases. 4037 * 4038 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4039 */ 4040 if (dev->n_native_sectors == n_native_sectors && 4041 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4042 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4043 ata_dev_warn(dev, 4044 "old n_sectors matches native, probably " 4045 "late HPA lock, will try to unlock HPA\n"); 4046 /* try unlocking HPA */ 4047 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4048 rc = -EIO; 4049 } else 4050 rc = -ENODEV; 4051 4052 /* restore original n_[native_]sectors and fail */ 4053 dev->n_native_sectors = n_native_sectors; 4054 dev->n_sectors = n_sectors; 4055 fail: 4056 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4057 return rc; 4058 } 4059 4060 struct ata_blacklist_entry { 4061 const char *model_num; 4062 const char *model_rev; 4063 unsigned long horkage; 4064 }; 4065 4066 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4067 /* Devices with DMA related problems under Linux */ 4068 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4069 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4070 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4071 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4072 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4073 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4074 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4075 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4076 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4077 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4078 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4079 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4080 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4081 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4082 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4083 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4084 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4085 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4086 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4087 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4088 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4089 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4090 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4091 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4092 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4093 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4094 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4095 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4096 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4097 /* Odd clown on sil3726/4726 PMPs */ 4098 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4099 4100 /* Weird ATAPI devices */ 4101 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4102 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4103 4104 /* Devices we expect to fail diagnostics */ 4105 4106 /* Devices where NCQ should be avoided */ 4107 /* NCQ is slow */ 4108 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4109 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4110 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4111 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4112 /* NCQ is broken */ 4113 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4114 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4115 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4116 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4117 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4118 4119 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4120 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4121 ATA_HORKAGE_FIRMWARE_WARN }, 4122 4123 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4124 ATA_HORKAGE_FIRMWARE_WARN }, 4125 4126 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4127 ATA_HORKAGE_FIRMWARE_WARN }, 4128 4129 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4130 ATA_HORKAGE_FIRMWARE_WARN }, 4131 4132 /* Blacklist entries taken from Silicon Image 3124/3132 4133 Windows driver .inf file - also several Linux problem reports */ 4134 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4135 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4136 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4137 4138 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4139 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4140 4141 /* devices which puke on READ_NATIVE_MAX */ 4142 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4143 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4144 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4145 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4146 4147 /* this one allows HPA unlocking but fails IOs on the area */ 4148 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4149 4150 /* Devices which report 1 sector over size HPA */ 4151 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4152 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4153 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4154 4155 /* Devices which get the IVB wrong */ 4156 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4157 /* Maybe we should just blacklist TSSTcorp... */ 4158 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4159 4160 /* Devices that do not need bridging limits applied */ 4161 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4162 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4163 4164 /* Devices which aren't very happy with higher link speeds */ 4165 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4166 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4167 4168 /* 4169 * Devices which choke on SETXFER. Applies only if both the 4170 * device and controller are SATA. 4171 */ 4172 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4173 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4174 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4175 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4176 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4177 4178 /* End Marker */ 4179 { } 4180 }; 4181 4182 /** 4183 * glob_match - match a text string against a glob-style pattern 4184 * @text: the string to be examined 4185 * @pattern: the glob-style pattern to be matched against 4186 * 4187 * Either/both of text and pattern can be empty strings. 4188 * 4189 * Match text against a glob-style pattern, with wildcards and simple sets: 4190 * 4191 * ? matches any single character. 4192 * * matches any run of characters. 4193 * [xyz] matches a single character from the set: x, y, or z. 4194 * [a-d] matches a single character from the range: a, b, c, or d. 4195 * [a-d0-9] matches a single character from either range. 4196 * 4197 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4198 * Behaviour with malformed patterns is undefined, though generally reasonable. 4199 * 4200 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4201 * 4202 * This function uses one level of recursion per '*' in pattern. 4203 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4204 * this will not cause stack problems for any reasonable use here. 4205 * 4206 * RETURNS: 4207 * 0 on match, 1 otherwise. 4208 */ 4209 static int glob_match (const char *text, const char *pattern) 4210 { 4211 do { 4212 /* Match single character or a '?' wildcard */ 4213 if (*text == *pattern || *pattern == '?') { 4214 if (!*pattern++) 4215 return 0; /* End of both strings: match */ 4216 } else { 4217 /* Match single char against a '[' bracketed ']' pattern set */ 4218 if (!*text || *pattern != '[') 4219 break; /* Not a pattern set */ 4220 while (*++pattern && *pattern != ']' && *text != *pattern) { 4221 if (*pattern == '-' && *(pattern - 1) != '[') 4222 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4223 ++pattern; 4224 break; 4225 } 4226 } 4227 if (!*pattern || *pattern == ']') 4228 return 1; /* No match */ 4229 while (*pattern && *pattern++ != ']'); 4230 } 4231 } while (*++text && *pattern); 4232 4233 /* Match any run of chars against a '*' wildcard */ 4234 if (*pattern == '*') { 4235 if (!*++pattern) 4236 return 0; /* Match: avoid recursion at end of pattern */ 4237 /* Loop to handle additional pattern chars after the wildcard */ 4238 while (*text) { 4239 if (glob_match(text, pattern) == 0) 4240 return 0; /* Remainder matched */ 4241 ++text; /* Absorb (match) this char and try again */ 4242 } 4243 } 4244 if (!*text && !*pattern) 4245 return 0; /* End of both strings: match */ 4246 return 1; /* No match */ 4247 } 4248 4249 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4250 { 4251 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4252 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4253 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4254 4255 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4256 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4257 4258 while (ad->model_num) { 4259 if (!glob_match(model_num, ad->model_num)) { 4260 if (ad->model_rev == NULL) 4261 return ad->horkage; 4262 if (!glob_match(model_rev, ad->model_rev)) 4263 return ad->horkage; 4264 } 4265 ad++; 4266 } 4267 return 0; 4268 } 4269 4270 static int ata_dma_blacklisted(const struct ata_device *dev) 4271 { 4272 /* We don't support polling DMA. 4273 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4274 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4275 */ 4276 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4277 (dev->flags & ATA_DFLAG_CDB_INTR)) 4278 return 1; 4279 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4280 } 4281 4282 /** 4283 * ata_is_40wire - check drive side detection 4284 * @dev: device 4285 * 4286 * Perform drive side detection decoding, allowing for device vendors 4287 * who can't follow the documentation. 4288 */ 4289 4290 static int ata_is_40wire(struct ata_device *dev) 4291 { 4292 if (dev->horkage & ATA_HORKAGE_IVB) 4293 return ata_drive_40wire_relaxed(dev->id); 4294 return ata_drive_40wire(dev->id); 4295 } 4296 4297 /** 4298 * cable_is_40wire - 40/80/SATA decider 4299 * @ap: port to consider 4300 * 4301 * This function encapsulates the policy for speed management 4302 * in one place. At the moment we don't cache the result but 4303 * there is a good case for setting ap->cbl to the result when 4304 * we are called with unknown cables (and figuring out if it 4305 * impacts hotplug at all). 4306 * 4307 * Return 1 if the cable appears to be 40 wire. 4308 */ 4309 4310 static int cable_is_40wire(struct ata_port *ap) 4311 { 4312 struct ata_link *link; 4313 struct ata_device *dev; 4314 4315 /* If the controller thinks we are 40 wire, we are. */ 4316 if (ap->cbl == ATA_CBL_PATA40) 4317 return 1; 4318 4319 /* If the controller thinks we are 80 wire, we are. */ 4320 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4321 return 0; 4322 4323 /* If the system is known to be 40 wire short cable (eg 4324 * laptop), then we allow 80 wire modes even if the drive 4325 * isn't sure. 4326 */ 4327 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4328 return 0; 4329 4330 /* If the controller doesn't know, we scan. 4331 * 4332 * Note: We look for all 40 wire detects at this point. Any 4333 * 80 wire detect is taken to be 80 wire cable because 4334 * - in many setups only the one drive (slave if present) will 4335 * give a valid detect 4336 * - if you have a non detect capable drive you don't want it 4337 * to colour the choice 4338 */ 4339 ata_for_each_link(link, ap, EDGE) { 4340 ata_for_each_dev(dev, link, ENABLED) { 4341 if (!ata_is_40wire(dev)) 4342 return 0; 4343 } 4344 } 4345 return 1; 4346 } 4347 4348 /** 4349 * ata_dev_xfermask - Compute supported xfermask of the given device 4350 * @dev: Device to compute xfermask for 4351 * 4352 * Compute supported xfermask of @dev and store it in 4353 * dev->*_mask. This function is responsible for applying all 4354 * known limits including host controller limits, device 4355 * blacklist, etc... 4356 * 4357 * LOCKING: 4358 * None. 4359 */ 4360 static void ata_dev_xfermask(struct ata_device *dev) 4361 { 4362 struct ata_link *link = dev->link; 4363 struct ata_port *ap = link->ap; 4364 struct ata_host *host = ap->host; 4365 unsigned long xfer_mask; 4366 4367 /* controller modes available */ 4368 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4369 ap->mwdma_mask, ap->udma_mask); 4370 4371 /* drive modes available */ 4372 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4373 dev->mwdma_mask, dev->udma_mask); 4374 xfer_mask &= ata_id_xfermask(dev->id); 4375 4376 /* 4377 * CFA Advanced TrueIDE timings are not allowed on a shared 4378 * cable 4379 */ 4380 if (ata_dev_pair(dev)) { 4381 /* No PIO5 or PIO6 */ 4382 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4383 /* No MWDMA3 or MWDMA 4 */ 4384 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4385 } 4386 4387 if (ata_dma_blacklisted(dev)) { 4388 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4389 ata_dev_warn(dev, 4390 "device is on DMA blacklist, disabling DMA\n"); 4391 } 4392 4393 if ((host->flags & ATA_HOST_SIMPLEX) && 4394 host->simplex_claimed && host->simplex_claimed != ap) { 4395 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4396 ata_dev_warn(dev, 4397 "simplex DMA is claimed by other device, disabling DMA\n"); 4398 } 4399 4400 if (ap->flags & ATA_FLAG_NO_IORDY) 4401 xfer_mask &= ata_pio_mask_no_iordy(dev); 4402 4403 if (ap->ops->mode_filter) 4404 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4405 4406 /* Apply cable rule here. Don't apply it early because when 4407 * we handle hot plug the cable type can itself change. 4408 * Check this last so that we know if the transfer rate was 4409 * solely limited by the cable. 4410 * Unknown or 80 wire cables reported host side are checked 4411 * drive side as well. Cases where we know a 40wire cable 4412 * is used safely for 80 are not checked here. 4413 */ 4414 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4415 /* UDMA/44 or higher would be available */ 4416 if (cable_is_40wire(ap)) { 4417 ata_dev_warn(dev, 4418 "limited to UDMA/33 due to 40-wire cable\n"); 4419 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4420 } 4421 4422 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4423 &dev->mwdma_mask, &dev->udma_mask); 4424 } 4425 4426 /** 4427 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4428 * @dev: Device to which command will be sent 4429 * 4430 * Issue SET FEATURES - XFER MODE command to device @dev 4431 * on port @ap. 4432 * 4433 * LOCKING: 4434 * PCI/etc. bus probe sem. 4435 * 4436 * RETURNS: 4437 * 0 on success, AC_ERR_* mask otherwise. 4438 */ 4439 4440 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4441 { 4442 struct ata_taskfile tf; 4443 unsigned int err_mask; 4444 4445 /* set up set-features taskfile */ 4446 DPRINTK("set features - xfer mode\n"); 4447 4448 /* Some controllers and ATAPI devices show flaky interrupt 4449 * behavior after setting xfer mode. Use polling instead. 4450 */ 4451 ata_tf_init(dev, &tf); 4452 tf.command = ATA_CMD_SET_FEATURES; 4453 tf.feature = SETFEATURES_XFER; 4454 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4455 tf.protocol = ATA_PROT_NODATA; 4456 /* If we are using IORDY we must send the mode setting command */ 4457 if (ata_pio_need_iordy(dev)) 4458 tf.nsect = dev->xfer_mode; 4459 /* If the device has IORDY and the controller does not - turn it off */ 4460 else if (ata_id_has_iordy(dev->id)) 4461 tf.nsect = 0x01; 4462 else /* In the ancient relic department - skip all of this */ 4463 return 0; 4464 4465 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4466 4467 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4468 return err_mask; 4469 } 4470 4471 /** 4472 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4473 * @dev: Device to which command will be sent 4474 * @enable: Whether to enable or disable the feature 4475 * @feature: The sector count represents the feature to set 4476 * 4477 * Issue SET FEATURES - SATA FEATURES command to device @dev 4478 * on port @ap with sector count 4479 * 4480 * LOCKING: 4481 * PCI/etc. bus probe sem. 4482 * 4483 * RETURNS: 4484 * 0 on success, AC_ERR_* mask otherwise. 4485 */ 4486 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4487 { 4488 struct ata_taskfile tf; 4489 unsigned int err_mask; 4490 4491 /* set up set-features taskfile */ 4492 DPRINTK("set features - SATA features\n"); 4493 4494 ata_tf_init(dev, &tf); 4495 tf.command = ATA_CMD_SET_FEATURES; 4496 tf.feature = enable; 4497 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4498 tf.protocol = ATA_PROT_NODATA; 4499 tf.nsect = feature; 4500 4501 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4502 4503 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4504 return err_mask; 4505 } 4506 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4507 4508 /** 4509 * ata_dev_init_params - Issue INIT DEV PARAMS command 4510 * @dev: Device to which command will be sent 4511 * @heads: Number of heads (taskfile parameter) 4512 * @sectors: Number of sectors (taskfile parameter) 4513 * 4514 * LOCKING: 4515 * Kernel thread context (may sleep) 4516 * 4517 * RETURNS: 4518 * 0 on success, AC_ERR_* mask otherwise. 4519 */ 4520 static unsigned int ata_dev_init_params(struct ata_device *dev, 4521 u16 heads, u16 sectors) 4522 { 4523 struct ata_taskfile tf; 4524 unsigned int err_mask; 4525 4526 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4527 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4528 return AC_ERR_INVALID; 4529 4530 /* set up init dev params taskfile */ 4531 DPRINTK("init dev params \n"); 4532 4533 ata_tf_init(dev, &tf); 4534 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4535 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4536 tf.protocol = ATA_PROT_NODATA; 4537 tf.nsect = sectors; 4538 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4539 4540 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4541 /* A clean abort indicates an original or just out of spec drive 4542 and we should continue as we issue the setup based on the 4543 drive reported working geometry */ 4544 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4545 err_mask = 0; 4546 4547 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4548 return err_mask; 4549 } 4550 4551 /** 4552 * ata_sg_clean - Unmap DMA memory associated with command 4553 * @qc: Command containing DMA memory to be released 4554 * 4555 * Unmap all mapped DMA memory associated with this command. 4556 * 4557 * LOCKING: 4558 * spin_lock_irqsave(host lock) 4559 */ 4560 void ata_sg_clean(struct ata_queued_cmd *qc) 4561 { 4562 struct ata_port *ap = qc->ap; 4563 struct scatterlist *sg = qc->sg; 4564 int dir = qc->dma_dir; 4565 4566 WARN_ON_ONCE(sg == NULL); 4567 4568 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4569 4570 if (qc->n_elem) 4571 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4572 4573 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4574 qc->sg = NULL; 4575 } 4576 4577 /** 4578 * atapi_check_dma - Check whether ATAPI DMA can be supported 4579 * @qc: Metadata associated with taskfile to check 4580 * 4581 * Allow low-level driver to filter ATA PACKET commands, returning 4582 * a status indicating whether or not it is OK to use DMA for the 4583 * supplied PACKET command. 4584 * 4585 * LOCKING: 4586 * spin_lock_irqsave(host lock) 4587 * 4588 * RETURNS: 0 when ATAPI DMA can be used 4589 * nonzero otherwise 4590 */ 4591 int atapi_check_dma(struct ata_queued_cmd *qc) 4592 { 4593 struct ata_port *ap = qc->ap; 4594 4595 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4596 * few ATAPI devices choke on such DMA requests. 4597 */ 4598 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4599 unlikely(qc->nbytes & 15)) 4600 return 1; 4601 4602 if (ap->ops->check_atapi_dma) 4603 return ap->ops->check_atapi_dma(qc); 4604 4605 return 0; 4606 } 4607 4608 /** 4609 * ata_std_qc_defer - Check whether a qc needs to be deferred 4610 * @qc: ATA command in question 4611 * 4612 * Non-NCQ commands cannot run with any other command, NCQ or 4613 * not. As upper layer only knows the queue depth, we are 4614 * responsible for maintaining exclusion. This function checks 4615 * whether a new command @qc can be issued. 4616 * 4617 * LOCKING: 4618 * spin_lock_irqsave(host lock) 4619 * 4620 * RETURNS: 4621 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4622 */ 4623 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4624 { 4625 struct ata_link *link = qc->dev->link; 4626 4627 if (qc->tf.protocol == ATA_PROT_NCQ) { 4628 if (!ata_tag_valid(link->active_tag)) 4629 return 0; 4630 } else { 4631 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4632 return 0; 4633 } 4634 4635 return ATA_DEFER_LINK; 4636 } 4637 4638 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4639 4640 /** 4641 * ata_sg_init - Associate command with scatter-gather table. 4642 * @qc: Command to be associated 4643 * @sg: Scatter-gather table. 4644 * @n_elem: Number of elements in s/g table. 4645 * 4646 * Initialize the data-related elements of queued_cmd @qc 4647 * to point to a scatter-gather table @sg, containing @n_elem 4648 * elements. 4649 * 4650 * LOCKING: 4651 * spin_lock_irqsave(host lock) 4652 */ 4653 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4654 unsigned int n_elem) 4655 { 4656 qc->sg = sg; 4657 qc->n_elem = n_elem; 4658 qc->cursg = qc->sg; 4659 } 4660 4661 /** 4662 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4663 * @qc: Command with scatter-gather table to be mapped. 4664 * 4665 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4666 * 4667 * LOCKING: 4668 * spin_lock_irqsave(host lock) 4669 * 4670 * RETURNS: 4671 * Zero on success, negative on error. 4672 * 4673 */ 4674 static int ata_sg_setup(struct ata_queued_cmd *qc) 4675 { 4676 struct ata_port *ap = qc->ap; 4677 unsigned int n_elem; 4678 4679 VPRINTK("ENTER, ata%u\n", ap->print_id); 4680 4681 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4682 if (n_elem < 1) 4683 return -1; 4684 4685 DPRINTK("%d sg elements mapped\n", n_elem); 4686 qc->orig_n_elem = qc->n_elem; 4687 qc->n_elem = n_elem; 4688 qc->flags |= ATA_QCFLAG_DMAMAP; 4689 4690 return 0; 4691 } 4692 4693 /** 4694 * swap_buf_le16 - swap halves of 16-bit words in place 4695 * @buf: Buffer to swap 4696 * @buf_words: Number of 16-bit words in buffer. 4697 * 4698 * Swap halves of 16-bit words if needed to convert from 4699 * little-endian byte order to native cpu byte order, or 4700 * vice-versa. 4701 * 4702 * LOCKING: 4703 * Inherited from caller. 4704 */ 4705 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4706 { 4707 #ifdef __BIG_ENDIAN 4708 unsigned int i; 4709 4710 for (i = 0; i < buf_words; i++) 4711 buf[i] = le16_to_cpu(buf[i]); 4712 #endif /* __BIG_ENDIAN */ 4713 } 4714 4715 /** 4716 * ata_qc_new - Request an available ATA command, for queueing 4717 * @ap: target port 4718 * 4719 * LOCKING: 4720 * None. 4721 */ 4722 4723 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4724 { 4725 struct ata_queued_cmd *qc = NULL; 4726 unsigned int i; 4727 4728 /* no command while frozen */ 4729 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4730 return NULL; 4731 4732 /* the last tag is reserved for internal command. */ 4733 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4734 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4735 qc = __ata_qc_from_tag(ap, i); 4736 break; 4737 } 4738 4739 if (qc) 4740 qc->tag = i; 4741 4742 return qc; 4743 } 4744 4745 /** 4746 * ata_qc_new_init - Request an available ATA command, and initialize it 4747 * @dev: Device from whom we request an available command structure 4748 * 4749 * LOCKING: 4750 * None. 4751 */ 4752 4753 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4754 { 4755 struct ata_port *ap = dev->link->ap; 4756 struct ata_queued_cmd *qc; 4757 4758 qc = ata_qc_new(ap); 4759 if (qc) { 4760 qc->scsicmd = NULL; 4761 qc->ap = ap; 4762 qc->dev = dev; 4763 4764 ata_qc_reinit(qc); 4765 } 4766 4767 return qc; 4768 } 4769 4770 /** 4771 * ata_qc_free - free unused ata_queued_cmd 4772 * @qc: Command to complete 4773 * 4774 * Designed to free unused ata_queued_cmd object 4775 * in case something prevents using it. 4776 * 4777 * LOCKING: 4778 * spin_lock_irqsave(host lock) 4779 */ 4780 void ata_qc_free(struct ata_queued_cmd *qc) 4781 { 4782 struct ata_port *ap; 4783 unsigned int tag; 4784 4785 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4786 ap = qc->ap; 4787 4788 qc->flags = 0; 4789 tag = qc->tag; 4790 if (likely(ata_tag_valid(tag))) { 4791 qc->tag = ATA_TAG_POISON; 4792 clear_bit(tag, &ap->qc_allocated); 4793 } 4794 } 4795 4796 void __ata_qc_complete(struct ata_queued_cmd *qc) 4797 { 4798 struct ata_port *ap; 4799 struct ata_link *link; 4800 4801 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4802 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4803 ap = qc->ap; 4804 link = qc->dev->link; 4805 4806 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4807 ata_sg_clean(qc); 4808 4809 /* command should be marked inactive atomically with qc completion */ 4810 if (qc->tf.protocol == ATA_PROT_NCQ) { 4811 link->sactive &= ~(1 << qc->tag); 4812 if (!link->sactive) 4813 ap->nr_active_links--; 4814 } else { 4815 link->active_tag = ATA_TAG_POISON; 4816 ap->nr_active_links--; 4817 } 4818 4819 /* clear exclusive status */ 4820 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4821 ap->excl_link == link)) 4822 ap->excl_link = NULL; 4823 4824 /* atapi: mark qc as inactive to prevent the interrupt handler 4825 * from completing the command twice later, before the error handler 4826 * is called. (when rc != 0 and atapi request sense is needed) 4827 */ 4828 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4829 ap->qc_active &= ~(1 << qc->tag); 4830 4831 /* call completion callback */ 4832 qc->complete_fn(qc); 4833 } 4834 4835 static void fill_result_tf(struct ata_queued_cmd *qc) 4836 { 4837 struct ata_port *ap = qc->ap; 4838 4839 qc->result_tf.flags = qc->tf.flags; 4840 ap->ops->qc_fill_rtf(qc); 4841 } 4842 4843 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4844 { 4845 struct ata_device *dev = qc->dev; 4846 4847 if (ata_is_nodata(qc->tf.protocol)) 4848 return; 4849 4850 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4851 return; 4852 4853 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4854 } 4855 4856 /** 4857 * ata_qc_complete - Complete an active ATA command 4858 * @qc: Command to complete 4859 * 4860 * Indicate to the mid and upper layers that an ATA command has 4861 * completed, with either an ok or not-ok status. 4862 * 4863 * Refrain from calling this function multiple times when 4864 * successfully completing multiple NCQ commands. 4865 * ata_qc_complete_multiple() should be used instead, which will 4866 * properly update IRQ expect state. 4867 * 4868 * LOCKING: 4869 * spin_lock_irqsave(host lock) 4870 */ 4871 void ata_qc_complete(struct ata_queued_cmd *qc) 4872 { 4873 struct ata_port *ap = qc->ap; 4874 4875 /* XXX: New EH and old EH use different mechanisms to 4876 * synchronize EH with regular execution path. 4877 * 4878 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4879 * Normal execution path is responsible for not accessing a 4880 * failed qc. libata core enforces the rule by returning NULL 4881 * from ata_qc_from_tag() for failed qcs. 4882 * 4883 * Old EH depends on ata_qc_complete() nullifying completion 4884 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4885 * not synchronize with interrupt handler. Only PIO task is 4886 * taken care of. 4887 */ 4888 if (ap->ops->error_handler) { 4889 struct ata_device *dev = qc->dev; 4890 struct ata_eh_info *ehi = &dev->link->eh_info; 4891 4892 if (unlikely(qc->err_mask)) 4893 qc->flags |= ATA_QCFLAG_FAILED; 4894 4895 /* 4896 * Finish internal commands without any further processing 4897 * and always with the result TF filled. 4898 */ 4899 if (unlikely(ata_tag_internal(qc->tag))) { 4900 fill_result_tf(qc); 4901 __ata_qc_complete(qc); 4902 return; 4903 } 4904 4905 /* 4906 * Non-internal qc has failed. Fill the result TF and 4907 * summon EH. 4908 */ 4909 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4910 fill_result_tf(qc); 4911 ata_qc_schedule_eh(qc); 4912 return; 4913 } 4914 4915 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4916 4917 /* read result TF if requested */ 4918 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4919 fill_result_tf(qc); 4920 4921 /* Some commands need post-processing after successful 4922 * completion. 4923 */ 4924 switch (qc->tf.command) { 4925 case ATA_CMD_SET_FEATURES: 4926 if (qc->tf.feature != SETFEATURES_WC_ON && 4927 qc->tf.feature != SETFEATURES_WC_OFF) 4928 break; 4929 /* fall through */ 4930 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4931 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4932 /* revalidate device */ 4933 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4934 ata_port_schedule_eh(ap); 4935 break; 4936 4937 case ATA_CMD_SLEEP: 4938 dev->flags |= ATA_DFLAG_SLEEPING; 4939 break; 4940 } 4941 4942 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4943 ata_verify_xfer(qc); 4944 4945 __ata_qc_complete(qc); 4946 } else { 4947 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4948 return; 4949 4950 /* read result TF if failed or requested */ 4951 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4952 fill_result_tf(qc); 4953 4954 __ata_qc_complete(qc); 4955 } 4956 } 4957 4958 /** 4959 * ata_qc_complete_multiple - Complete multiple qcs successfully 4960 * @ap: port in question 4961 * @qc_active: new qc_active mask 4962 * 4963 * Complete in-flight commands. This functions is meant to be 4964 * called from low-level driver's interrupt routine to complete 4965 * requests normally. ap->qc_active and @qc_active is compared 4966 * and commands are completed accordingly. 4967 * 4968 * Always use this function when completing multiple NCQ commands 4969 * from IRQ handlers instead of calling ata_qc_complete() 4970 * multiple times to keep IRQ expect status properly in sync. 4971 * 4972 * LOCKING: 4973 * spin_lock_irqsave(host lock) 4974 * 4975 * RETURNS: 4976 * Number of completed commands on success, -errno otherwise. 4977 */ 4978 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4979 { 4980 int nr_done = 0; 4981 u32 done_mask; 4982 4983 done_mask = ap->qc_active ^ qc_active; 4984 4985 if (unlikely(done_mask & qc_active)) { 4986 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 4987 ap->qc_active, qc_active); 4988 return -EINVAL; 4989 } 4990 4991 while (done_mask) { 4992 struct ata_queued_cmd *qc; 4993 unsigned int tag = __ffs(done_mask); 4994 4995 qc = ata_qc_from_tag(ap, tag); 4996 if (qc) { 4997 ata_qc_complete(qc); 4998 nr_done++; 4999 } 5000 done_mask &= ~(1 << tag); 5001 } 5002 5003 return nr_done; 5004 } 5005 5006 /** 5007 * ata_qc_issue - issue taskfile to device 5008 * @qc: command to issue to device 5009 * 5010 * Prepare an ATA command to submission to device. 5011 * This includes mapping the data into a DMA-able 5012 * area, filling in the S/G table, and finally 5013 * writing the taskfile to hardware, starting the command. 5014 * 5015 * LOCKING: 5016 * spin_lock_irqsave(host lock) 5017 */ 5018 void ata_qc_issue(struct ata_queued_cmd *qc) 5019 { 5020 struct ata_port *ap = qc->ap; 5021 struct ata_link *link = qc->dev->link; 5022 u8 prot = qc->tf.protocol; 5023 5024 /* Make sure only one non-NCQ command is outstanding. The 5025 * check is skipped for old EH because it reuses active qc to 5026 * request ATAPI sense. 5027 */ 5028 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5029 5030 if (ata_is_ncq(prot)) { 5031 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5032 5033 if (!link->sactive) 5034 ap->nr_active_links++; 5035 link->sactive |= 1 << qc->tag; 5036 } else { 5037 WARN_ON_ONCE(link->sactive); 5038 5039 ap->nr_active_links++; 5040 link->active_tag = qc->tag; 5041 } 5042 5043 qc->flags |= ATA_QCFLAG_ACTIVE; 5044 ap->qc_active |= 1 << qc->tag; 5045 5046 /* 5047 * We guarantee to LLDs that they will have at least one 5048 * non-zero sg if the command is a data command. 5049 */ 5050 if (WARN_ON_ONCE(ata_is_data(prot) && 5051 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5052 goto sys_err; 5053 5054 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5055 (ap->flags & ATA_FLAG_PIO_DMA))) 5056 if (ata_sg_setup(qc)) 5057 goto sys_err; 5058 5059 /* if device is sleeping, schedule reset and abort the link */ 5060 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5061 link->eh_info.action |= ATA_EH_RESET; 5062 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5063 ata_link_abort(link); 5064 return; 5065 } 5066 5067 ap->ops->qc_prep(qc); 5068 5069 qc->err_mask |= ap->ops->qc_issue(qc); 5070 if (unlikely(qc->err_mask)) 5071 goto err; 5072 return; 5073 5074 sys_err: 5075 qc->err_mask |= AC_ERR_SYSTEM; 5076 err: 5077 ata_qc_complete(qc); 5078 } 5079 5080 /** 5081 * sata_scr_valid - test whether SCRs are accessible 5082 * @link: ATA link to test SCR accessibility for 5083 * 5084 * Test whether SCRs are accessible for @link. 5085 * 5086 * LOCKING: 5087 * None. 5088 * 5089 * RETURNS: 5090 * 1 if SCRs are accessible, 0 otherwise. 5091 */ 5092 int sata_scr_valid(struct ata_link *link) 5093 { 5094 struct ata_port *ap = link->ap; 5095 5096 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5097 } 5098 5099 /** 5100 * sata_scr_read - read SCR register of the specified port 5101 * @link: ATA link to read SCR for 5102 * @reg: SCR to read 5103 * @val: Place to store read value 5104 * 5105 * Read SCR register @reg of @link into *@val. This function is 5106 * guaranteed to succeed if @link is ap->link, the cable type of 5107 * the port is SATA and the port implements ->scr_read. 5108 * 5109 * LOCKING: 5110 * None if @link is ap->link. Kernel thread context otherwise. 5111 * 5112 * RETURNS: 5113 * 0 on success, negative errno on failure. 5114 */ 5115 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5116 { 5117 if (ata_is_host_link(link)) { 5118 if (sata_scr_valid(link)) 5119 return link->ap->ops->scr_read(link, reg, val); 5120 return -EOPNOTSUPP; 5121 } 5122 5123 return sata_pmp_scr_read(link, reg, val); 5124 } 5125 5126 /** 5127 * sata_scr_write - write SCR register of the specified port 5128 * @link: ATA link to write SCR for 5129 * @reg: SCR to write 5130 * @val: value to write 5131 * 5132 * Write @val to SCR register @reg of @link. This function is 5133 * guaranteed to succeed if @link is ap->link, the cable type of 5134 * the port is SATA and the port implements ->scr_read. 5135 * 5136 * LOCKING: 5137 * None if @link is ap->link. Kernel thread context otherwise. 5138 * 5139 * RETURNS: 5140 * 0 on success, negative errno on failure. 5141 */ 5142 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5143 { 5144 if (ata_is_host_link(link)) { 5145 if (sata_scr_valid(link)) 5146 return link->ap->ops->scr_write(link, reg, val); 5147 return -EOPNOTSUPP; 5148 } 5149 5150 return sata_pmp_scr_write(link, reg, val); 5151 } 5152 5153 /** 5154 * sata_scr_write_flush - write SCR register of the specified port and flush 5155 * @link: ATA link to write SCR for 5156 * @reg: SCR to write 5157 * @val: value to write 5158 * 5159 * This function is identical to sata_scr_write() except that this 5160 * function performs flush after writing to the register. 5161 * 5162 * LOCKING: 5163 * None if @link is ap->link. Kernel thread context otherwise. 5164 * 5165 * RETURNS: 5166 * 0 on success, negative errno on failure. 5167 */ 5168 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5169 { 5170 if (ata_is_host_link(link)) { 5171 int rc; 5172 5173 if (sata_scr_valid(link)) { 5174 rc = link->ap->ops->scr_write(link, reg, val); 5175 if (rc == 0) 5176 rc = link->ap->ops->scr_read(link, reg, &val); 5177 return rc; 5178 } 5179 return -EOPNOTSUPP; 5180 } 5181 5182 return sata_pmp_scr_write(link, reg, val); 5183 } 5184 5185 /** 5186 * ata_phys_link_online - test whether the given link is online 5187 * @link: ATA link to test 5188 * 5189 * Test whether @link is online. Note that this function returns 5190 * 0 if online status of @link cannot be obtained, so 5191 * ata_link_online(link) != !ata_link_offline(link). 5192 * 5193 * LOCKING: 5194 * None. 5195 * 5196 * RETURNS: 5197 * True if the port online status is available and online. 5198 */ 5199 bool ata_phys_link_online(struct ata_link *link) 5200 { 5201 u32 sstatus; 5202 5203 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5204 ata_sstatus_online(sstatus)) 5205 return true; 5206 return false; 5207 } 5208 5209 /** 5210 * ata_phys_link_offline - test whether the given link is offline 5211 * @link: ATA link to test 5212 * 5213 * Test whether @link is offline. Note that this function 5214 * returns 0 if offline status of @link cannot be obtained, so 5215 * ata_link_online(link) != !ata_link_offline(link). 5216 * 5217 * LOCKING: 5218 * None. 5219 * 5220 * RETURNS: 5221 * True if the port offline status is available and offline. 5222 */ 5223 bool ata_phys_link_offline(struct ata_link *link) 5224 { 5225 u32 sstatus; 5226 5227 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5228 !ata_sstatus_online(sstatus)) 5229 return true; 5230 return false; 5231 } 5232 5233 /** 5234 * ata_link_online - test whether the given link is online 5235 * @link: ATA link to test 5236 * 5237 * Test whether @link is online. This is identical to 5238 * ata_phys_link_online() when there's no slave link. When 5239 * there's a slave link, this function should only be called on 5240 * the master link and will return true if any of M/S links is 5241 * online. 5242 * 5243 * LOCKING: 5244 * None. 5245 * 5246 * RETURNS: 5247 * True if the port online status is available and online. 5248 */ 5249 bool ata_link_online(struct ata_link *link) 5250 { 5251 struct ata_link *slave = link->ap->slave_link; 5252 5253 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5254 5255 return ata_phys_link_online(link) || 5256 (slave && ata_phys_link_online(slave)); 5257 } 5258 5259 /** 5260 * ata_link_offline - test whether the given link is offline 5261 * @link: ATA link to test 5262 * 5263 * Test whether @link is offline. This is identical to 5264 * ata_phys_link_offline() when there's no slave link. When 5265 * there's a slave link, this function should only be called on 5266 * the master link and will return true if both M/S links are 5267 * offline. 5268 * 5269 * LOCKING: 5270 * None. 5271 * 5272 * RETURNS: 5273 * True if the port offline status is available and offline. 5274 */ 5275 bool ata_link_offline(struct ata_link *link) 5276 { 5277 struct ata_link *slave = link->ap->slave_link; 5278 5279 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5280 5281 return ata_phys_link_offline(link) && 5282 (!slave || ata_phys_link_offline(slave)); 5283 } 5284 5285 #ifdef CONFIG_PM 5286 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5287 unsigned int action, unsigned int ehi_flags, 5288 int *async) 5289 { 5290 struct ata_link *link; 5291 unsigned long flags; 5292 int rc = 0; 5293 5294 /* Previous resume operation might still be in 5295 * progress. Wait for PM_PENDING to clear. 5296 */ 5297 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5298 if (async) { 5299 *async = -EAGAIN; 5300 return 0; 5301 } 5302 ata_port_wait_eh(ap); 5303 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5304 } 5305 5306 /* request PM ops to EH */ 5307 spin_lock_irqsave(ap->lock, flags); 5308 5309 ap->pm_mesg = mesg; 5310 if (async) 5311 ap->pm_result = async; 5312 else 5313 ap->pm_result = &rc; 5314 5315 ap->pflags |= ATA_PFLAG_PM_PENDING; 5316 ata_for_each_link(link, ap, HOST_FIRST) { 5317 link->eh_info.action |= action; 5318 link->eh_info.flags |= ehi_flags; 5319 } 5320 5321 ata_port_schedule_eh(ap); 5322 5323 spin_unlock_irqrestore(ap->lock, flags); 5324 5325 /* wait and check result */ 5326 if (!async) { 5327 ata_port_wait_eh(ap); 5328 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5329 } 5330 5331 return rc; 5332 } 5333 5334 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async) 5335 { 5336 /* 5337 * On some hardware, device fails to respond after spun down 5338 * for suspend. As the device won't be used before being 5339 * resumed, we don't need to touch the device. Ask EH to skip 5340 * the usual stuff and proceed directly to suspend. 5341 * 5342 * http://thread.gmane.org/gmane.linux.ide/46764 5343 */ 5344 unsigned int ehi_flags = ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY | 5345 ATA_EHI_NO_RECOVERY; 5346 return ata_port_request_pm(ap, mesg, 0, ehi_flags, async); 5347 } 5348 5349 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg) 5350 { 5351 struct ata_port *ap = to_ata_port(dev); 5352 5353 return __ata_port_suspend_common(ap, mesg, NULL); 5354 } 5355 5356 static int ata_port_suspend(struct device *dev) 5357 { 5358 if (pm_runtime_suspended(dev)) 5359 return 0; 5360 5361 return ata_port_suspend_common(dev, PMSG_SUSPEND); 5362 } 5363 5364 static int ata_port_do_freeze(struct device *dev) 5365 { 5366 if (pm_runtime_suspended(dev)) 5367 return 0; 5368 5369 return ata_port_suspend_common(dev, PMSG_FREEZE); 5370 } 5371 5372 static int ata_port_poweroff(struct device *dev) 5373 { 5374 return ata_port_suspend_common(dev, PMSG_HIBERNATE); 5375 } 5376 5377 static int __ata_port_resume_common(struct ata_port *ap, pm_message_t mesg, 5378 int *async) 5379 { 5380 int rc; 5381 5382 rc = ata_port_request_pm(ap, mesg, ATA_EH_RESET, 5383 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async); 5384 return rc; 5385 } 5386 5387 static int ata_port_resume_common(struct device *dev, pm_message_t mesg) 5388 { 5389 struct ata_port *ap = to_ata_port(dev); 5390 5391 return __ata_port_resume_common(ap, mesg, NULL); 5392 } 5393 5394 static int ata_port_resume(struct device *dev) 5395 { 5396 int rc; 5397 5398 rc = ata_port_resume_common(dev, PMSG_RESUME); 5399 if (!rc) { 5400 pm_runtime_disable(dev); 5401 pm_runtime_set_active(dev); 5402 pm_runtime_enable(dev); 5403 } 5404 5405 return rc; 5406 } 5407 5408 /* 5409 * For ODDs, the upper layer will poll for media change every few seconds, 5410 * which will make it enter and leave suspend state every few seconds. And 5411 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5412 * is very little and the ODD may malfunction after constantly being reset. 5413 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5414 * ODD is attached to the port. 5415 */ 5416 static int ata_port_runtime_idle(struct device *dev) 5417 { 5418 struct ata_port *ap = to_ata_port(dev); 5419 struct ata_link *link; 5420 struct ata_device *adev; 5421 5422 ata_for_each_link(link, ap, HOST_FIRST) { 5423 ata_for_each_dev(adev, link, ENABLED) 5424 if (adev->class == ATA_DEV_ATAPI && 5425 !zpodd_dev_enabled(adev)) 5426 return -EBUSY; 5427 } 5428 5429 return pm_runtime_suspend(dev); 5430 } 5431 5432 static int ata_port_runtime_suspend(struct device *dev) 5433 { 5434 return ata_port_suspend_common(dev, PMSG_AUTO_SUSPEND); 5435 } 5436 5437 static int ata_port_runtime_resume(struct device *dev) 5438 { 5439 return ata_port_resume_common(dev, PMSG_AUTO_RESUME); 5440 } 5441 5442 static const struct dev_pm_ops ata_port_pm_ops = { 5443 .suspend = ata_port_suspend, 5444 .resume = ata_port_resume, 5445 .freeze = ata_port_do_freeze, 5446 .thaw = ata_port_resume, 5447 .poweroff = ata_port_poweroff, 5448 .restore = ata_port_resume, 5449 5450 .runtime_suspend = ata_port_runtime_suspend, 5451 .runtime_resume = ata_port_runtime_resume, 5452 .runtime_idle = ata_port_runtime_idle, 5453 }; 5454 5455 /* sas ports don't participate in pm runtime management of ata_ports, 5456 * and need to resume ata devices at the domain level, not the per-port 5457 * level. sas suspend/resume is async to allow parallel port recovery 5458 * since sas has multiple ata_port instances per Scsi_Host. 5459 */ 5460 int ata_sas_port_async_suspend(struct ata_port *ap, int *async) 5461 { 5462 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async); 5463 } 5464 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend); 5465 5466 int ata_sas_port_async_resume(struct ata_port *ap, int *async) 5467 { 5468 return __ata_port_resume_common(ap, PMSG_RESUME, async); 5469 } 5470 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume); 5471 5472 5473 /** 5474 * ata_host_suspend - suspend host 5475 * @host: host to suspend 5476 * @mesg: PM message 5477 * 5478 * Suspend @host. Actual operation is performed by port suspend. 5479 */ 5480 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5481 { 5482 host->dev->power.power_state = mesg; 5483 return 0; 5484 } 5485 5486 /** 5487 * ata_host_resume - resume host 5488 * @host: host to resume 5489 * 5490 * Resume @host. Actual operation is performed by port resume. 5491 */ 5492 void ata_host_resume(struct ata_host *host) 5493 { 5494 host->dev->power.power_state = PMSG_ON; 5495 } 5496 #endif 5497 5498 struct device_type ata_port_type = { 5499 .name = "ata_port", 5500 #ifdef CONFIG_PM 5501 .pm = &ata_port_pm_ops, 5502 #endif 5503 }; 5504 5505 /** 5506 * ata_dev_init - Initialize an ata_device structure 5507 * @dev: Device structure to initialize 5508 * 5509 * Initialize @dev in preparation for probing. 5510 * 5511 * LOCKING: 5512 * Inherited from caller. 5513 */ 5514 void ata_dev_init(struct ata_device *dev) 5515 { 5516 struct ata_link *link = ata_dev_phys_link(dev); 5517 struct ata_port *ap = link->ap; 5518 unsigned long flags; 5519 5520 /* SATA spd limit is bound to the attached device, reset together */ 5521 link->sata_spd_limit = link->hw_sata_spd_limit; 5522 link->sata_spd = 0; 5523 5524 /* High bits of dev->flags are used to record warm plug 5525 * requests which occur asynchronously. Synchronize using 5526 * host lock. 5527 */ 5528 spin_lock_irqsave(ap->lock, flags); 5529 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5530 dev->horkage = 0; 5531 spin_unlock_irqrestore(ap->lock, flags); 5532 5533 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5534 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5535 dev->pio_mask = UINT_MAX; 5536 dev->mwdma_mask = UINT_MAX; 5537 dev->udma_mask = UINT_MAX; 5538 } 5539 5540 /** 5541 * ata_link_init - Initialize an ata_link structure 5542 * @ap: ATA port link is attached to 5543 * @link: Link structure to initialize 5544 * @pmp: Port multiplier port number 5545 * 5546 * Initialize @link. 5547 * 5548 * LOCKING: 5549 * Kernel thread context (may sleep) 5550 */ 5551 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5552 { 5553 int i; 5554 5555 /* clear everything except for devices */ 5556 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5557 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5558 5559 link->ap = ap; 5560 link->pmp = pmp; 5561 link->active_tag = ATA_TAG_POISON; 5562 link->hw_sata_spd_limit = UINT_MAX; 5563 5564 /* can't use iterator, ap isn't initialized yet */ 5565 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5566 struct ata_device *dev = &link->device[i]; 5567 5568 dev->link = link; 5569 dev->devno = dev - link->device; 5570 #ifdef CONFIG_ATA_ACPI 5571 dev->gtf_filter = ata_acpi_gtf_filter; 5572 #endif 5573 ata_dev_init(dev); 5574 } 5575 } 5576 5577 /** 5578 * sata_link_init_spd - Initialize link->sata_spd_limit 5579 * @link: Link to configure sata_spd_limit for 5580 * 5581 * Initialize @link->[hw_]sata_spd_limit to the currently 5582 * configured value. 5583 * 5584 * LOCKING: 5585 * Kernel thread context (may sleep). 5586 * 5587 * RETURNS: 5588 * 0 on success, -errno on failure. 5589 */ 5590 int sata_link_init_spd(struct ata_link *link) 5591 { 5592 u8 spd; 5593 int rc; 5594 5595 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5596 if (rc) 5597 return rc; 5598 5599 spd = (link->saved_scontrol >> 4) & 0xf; 5600 if (spd) 5601 link->hw_sata_spd_limit &= (1 << spd) - 1; 5602 5603 ata_force_link_limits(link); 5604 5605 link->sata_spd_limit = link->hw_sata_spd_limit; 5606 5607 return 0; 5608 } 5609 5610 /** 5611 * ata_port_alloc - allocate and initialize basic ATA port resources 5612 * @host: ATA host this allocated port belongs to 5613 * 5614 * Allocate and initialize basic ATA port resources. 5615 * 5616 * RETURNS: 5617 * Allocate ATA port on success, NULL on failure. 5618 * 5619 * LOCKING: 5620 * Inherited from calling layer (may sleep). 5621 */ 5622 struct ata_port *ata_port_alloc(struct ata_host *host) 5623 { 5624 struct ata_port *ap; 5625 5626 DPRINTK("ENTER\n"); 5627 5628 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5629 if (!ap) 5630 return NULL; 5631 5632 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5633 ap->lock = &host->lock; 5634 ap->print_id = -1; 5635 ap->host = host; 5636 ap->dev = host->dev; 5637 5638 #if defined(ATA_VERBOSE_DEBUG) 5639 /* turn on all debugging levels */ 5640 ap->msg_enable = 0x00FF; 5641 #elif defined(ATA_DEBUG) 5642 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5643 #else 5644 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5645 #endif 5646 5647 mutex_init(&ap->scsi_scan_mutex); 5648 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5649 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5650 INIT_LIST_HEAD(&ap->eh_done_q); 5651 init_waitqueue_head(&ap->eh_wait_q); 5652 init_completion(&ap->park_req_pending); 5653 init_timer_deferrable(&ap->fastdrain_timer); 5654 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5655 ap->fastdrain_timer.data = (unsigned long)ap; 5656 5657 ap->cbl = ATA_CBL_NONE; 5658 5659 ata_link_init(ap, &ap->link, 0); 5660 5661 #ifdef ATA_IRQ_TRAP 5662 ap->stats.unhandled_irq = 1; 5663 ap->stats.idle_irq = 1; 5664 #endif 5665 ata_sff_port_init(ap); 5666 5667 return ap; 5668 } 5669 5670 static void ata_host_release(struct device *gendev, void *res) 5671 { 5672 struct ata_host *host = dev_get_drvdata(gendev); 5673 int i; 5674 5675 for (i = 0; i < host->n_ports; i++) { 5676 struct ata_port *ap = host->ports[i]; 5677 5678 if (!ap) 5679 continue; 5680 5681 if (ap->scsi_host) 5682 scsi_host_put(ap->scsi_host); 5683 5684 kfree(ap->pmp_link); 5685 kfree(ap->slave_link); 5686 kfree(ap); 5687 host->ports[i] = NULL; 5688 } 5689 5690 dev_set_drvdata(gendev, NULL); 5691 } 5692 5693 /** 5694 * ata_host_alloc - allocate and init basic ATA host resources 5695 * @dev: generic device this host is associated with 5696 * @max_ports: maximum number of ATA ports associated with this host 5697 * 5698 * Allocate and initialize basic ATA host resources. LLD calls 5699 * this function to allocate a host, initializes it fully and 5700 * attaches it using ata_host_register(). 5701 * 5702 * @max_ports ports are allocated and host->n_ports is 5703 * initialized to @max_ports. The caller is allowed to decrease 5704 * host->n_ports before calling ata_host_register(). The unused 5705 * ports will be automatically freed on registration. 5706 * 5707 * RETURNS: 5708 * Allocate ATA host on success, NULL on failure. 5709 * 5710 * LOCKING: 5711 * Inherited from calling layer (may sleep). 5712 */ 5713 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5714 { 5715 struct ata_host *host; 5716 size_t sz; 5717 int i; 5718 5719 DPRINTK("ENTER\n"); 5720 5721 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5722 return NULL; 5723 5724 /* alloc a container for our list of ATA ports (buses) */ 5725 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5726 /* alloc a container for our list of ATA ports (buses) */ 5727 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5728 if (!host) 5729 goto err_out; 5730 5731 devres_add(dev, host); 5732 dev_set_drvdata(dev, host); 5733 5734 spin_lock_init(&host->lock); 5735 mutex_init(&host->eh_mutex); 5736 host->dev = dev; 5737 host->n_ports = max_ports; 5738 5739 /* allocate ports bound to this host */ 5740 for (i = 0; i < max_ports; i++) { 5741 struct ata_port *ap; 5742 5743 ap = ata_port_alloc(host); 5744 if (!ap) 5745 goto err_out; 5746 5747 ap->port_no = i; 5748 host->ports[i] = ap; 5749 } 5750 5751 devres_remove_group(dev, NULL); 5752 return host; 5753 5754 err_out: 5755 devres_release_group(dev, NULL); 5756 return NULL; 5757 } 5758 5759 /** 5760 * ata_host_alloc_pinfo - alloc host and init with port_info array 5761 * @dev: generic device this host is associated with 5762 * @ppi: array of ATA port_info to initialize host with 5763 * @n_ports: number of ATA ports attached to this host 5764 * 5765 * Allocate ATA host and initialize with info from @ppi. If NULL 5766 * terminated, @ppi may contain fewer entries than @n_ports. The 5767 * last entry will be used for the remaining ports. 5768 * 5769 * RETURNS: 5770 * Allocate ATA host on success, NULL on failure. 5771 * 5772 * LOCKING: 5773 * Inherited from calling layer (may sleep). 5774 */ 5775 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5776 const struct ata_port_info * const * ppi, 5777 int n_ports) 5778 { 5779 const struct ata_port_info *pi; 5780 struct ata_host *host; 5781 int i, j; 5782 5783 host = ata_host_alloc(dev, n_ports); 5784 if (!host) 5785 return NULL; 5786 5787 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5788 struct ata_port *ap = host->ports[i]; 5789 5790 if (ppi[j]) 5791 pi = ppi[j++]; 5792 5793 ap->pio_mask = pi->pio_mask; 5794 ap->mwdma_mask = pi->mwdma_mask; 5795 ap->udma_mask = pi->udma_mask; 5796 ap->flags |= pi->flags; 5797 ap->link.flags |= pi->link_flags; 5798 ap->ops = pi->port_ops; 5799 5800 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5801 host->ops = pi->port_ops; 5802 } 5803 5804 return host; 5805 } 5806 5807 /** 5808 * ata_slave_link_init - initialize slave link 5809 * @ap: port to initialize slave link for 5810 * 5811 * Create and initialize slave link for @ap. This enables slave 5812 * link handling on the port. 5813 * 5814 * In libata, a port contains links and a link contains devices. 5815 * There is single host link but if a PMP is attached to it, 5816 * there can be multiple fan-out links. On SATA, there's usually 5817 * a single device connected to a link but PATA and SATA 5818 * controllers emulating TF based interface can have two - master 5819 * and slave. 5820 * 5821 * However, there are a few controllers which don't fit into this 5822 * abstraction too well - SATA controllers which emulate TF 5823 * interface with both master and slave devices but also have 5824 * separate SCR register sets for each device. These controllers 5825 * need separate links for physical link handling 5826 * (e.g. onlineness, link speed) but should be treated like a 5827 * traditional M/S controller for everything else (e.g. command 5828 * issue, softreset). 5829 * 5830 * slave_link is libata's way of handling this class of 5831 * controllers without impacting core layer too much. For 5832 * anything other than physical link handling, the default host 5833 * link is used for both master and slave. For physical link 5834 * handling, separate @ap->slave_link is used. All dirty details 5835 * are implemented inside libata core layer. From LLD's POV, the 5836 * only difference is that prereset, hardreset and postreset are 5837 * called once more for the slave link, so the reset sequence 5838 * looks like the following. 5839 * 5840 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5841 * softreset(M) -> postreset(M) -> postreset(S) 5842 * 5843 * Note that softreset is called only for the master. Softreset 5844 * resets both M/S by definition, so SRST on master should handle 5845 * both (the standard method will work just fine). 5846 * 5847 * LOCKING: 5848 * Should be called before host is registered. 5849 * 5850 * RETURNS: 5851 * 0 on success, -errno on failure. 5852 */ 5853 int ata_slave_link_init(struct ata_port *ap) 5854 { 5855 struct ata_link *link; 5856 5857 WARN_ON(ap->slave_link); 5858 WARN_ON(ap->flags & ATA_FLAG_PMP); 5859 5860 link = kzalloc(sizeof(*link), GFP_KERNEL); 5861 if (!link) 5862 return -ENOMEM; 5863 5864 ata_link_init(ap, link, 1); 5865 ap->slave_link = link; 5866 return 0; 5867 } 5868 5869 static void ata_host_stop(struct device *gendev, void *res) 5870 { 5871 struct ata_host *host = dev_get_drvdata(gendev); 5872 int i; 5873 5874 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5875 5876 for (i = 0; i < host->n_ports; i++) { 5877 struct ata_port *ap = host->ports[i]; 5878 5879 if (ap->ops->port_stop) 5880 ap->ops->port_stop(ap); 5881 } 5882 5883 if (host->ops->host_stop) 5884 host->ops->host_stop(host); 5885 } 5886 5887 /** 5888 * ata_finalize_port_ops - finalize ata_port_operations 5889 * @ops: ata_port_operations to finalize 5890 * 5891 * An ata_port_operations can inherit from another ops and that 5892 * ops can again inherit from another. This can go on as many 5893 * times as necessary as long as there is no loop in the 5894 * inheritance chain. 5895 * 5896 * Ops tables are finalized when the host is started. NULL or 5897 * unspecified entries are inherited from the closet ancestor 5898 * which has the method and the entry is populated with it. 5899 * After finalization, the ops table directly points to all the 5900 * methods and ->inherits is no longer necessary and cleared. 5901 * 5902 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5903 * 5904 * LOCKING: 5905 * None. 5906 */ 5907 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5908 { 5909 static DEFINE_SPINLOCK(lock); 5910 const struct ata_port_operations *cur; 5911 void **begin = (void **)ops; 5912 void **end = (void **)&ops->inherits; 5913 void **pp; 5914 5915 if (!ops || !ops->inherits) 5916 return; 5917 5918 spin_lock(&lock); 5919 5920 for (cur = ops->inherits; cur; cur = cur->inherits) { 5921 void **inherit = (void **)cur; 5922 5923 for (pp = begin; pp < end; pp++, inherit++) 5924 if (!*pp) 5925 *pp = *inherit; 5926 } 5927 5928 for (pp = begin; pp < end; pp++) 5929 if (IS_ERR(*pp)) 5930 *pp = NULL; 5931 5932 ops->inherits = NULL; 5933 5934 spin_unlock(&lock); 5935 } 5936 5937 /** 5938 * ata_host_start - start and freeze ports of an ATA host 5939 * @host: ATA host to start ports for 5940 * 5941 * Start and then freeze ports of @host. Started status is 5942 * recorded in host->flags, so this function can be called 5943 * multiple times. Ports are guaranteed to get started only 5944 * once. If host->ops isn't initialized yet, its set to the 5945 * first non-dummy port ops. 5946 * 5947 * LOCKING: 5948 * Inherited from calling layer (may sleep). 5949 * 5950 * RETURNS: 5951 * 0 if all ports are started successfully, -errno otherwise. 5952 */ 5953 int ata_host_start(struct ata_host *host) 5954 { 5955 int have_stop = 0; 5956 void *start_dr = NULL; 5957 int i, rc; 5958 5959 if (host->flags & ATA_HOST_STARTED) 5960 return 0; 5961 5962 ata_finalize_port_ops(host->ops); 5963 5964 for (i = 0; i < host->n_ports; i++) { 5965 struct ata_port *ap = host->ports[i]; 5966 5967 ata_finalize_port_ops(ap->ops); 5968 5969 if (!host->ops && !ata_port_is_dummy(ap)) 5970 host->ops = ap->ops; 5971 5972 if (ap->ops->port_stop) 5973 have_stop = 1; 5974 } 5975 5976 if (host->ops->host_stop) 5977 have_stop = 1; 5978 5979 if (have_stop) { 5980 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5981 if (!start_dr) 5982 return -ENOMEM; 5983 } 5984 5985 for (i = 0; i < host->n_ports; i++) { 5986 struct ata_port *ap = host->ports[i]; 5987 5988 if (ap->ops->port_start) { 5989 rc = ap->ops->port_start(ap); 5990 if (rc) { 5991 if (rc != -ENODEV) 5992 dev_err(host->dev, 5993 "failed to start port %d (errno=%d)\n", 5994 i, rc); 5995 goto err_out; 5996 } 5997 } 5998 ata_eh_freeze_port(ap); 5999 } 6000 6001 if (start_dr) 6002 devres_add(host->dev, start_dr); 6003 host->flags |= ATA_HOST_STARTED; 6004 return 0; 6005 6006 err_out: 6007 while (--i >= 0) { 6008 struct ata_port *ap = host->ports[i]; 6009 6010 if (ap->ops->port_stop) 6011 ap->ops->port_stop(ap); 6012 } 6013 devres_free(start_dr); 6014 return rc; 6015 } 6016 6017 /** 6018 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6019 * @host: host to initialize 6020 * @dev: device host is attached to 6021 * @ops: port_ops 6022 * 6023 */ 6024 void ata_host_init(struct ata_host *host, struct device *dev, 6025 struct ata_port_operations *ops) 6026 { 6027 spin_lock_init(&host->lock); 6028 mutex_init(&host->eh_mutex); 6029 host->dev = dev; 6030 host->ops = ops; 6031 } 6032 6033 void __ata_port_probe(struct ata_port *ap) 6034 { 6035 struct ata_eh_info *ehi = &ap->link.eh_info; 6036 unsigned long flags; 6037 6038 /* kick EH for boot probing */ 6039 spin_lock_irqsave(ap->lock, flags); 6040 6041 ehi->probe_mask |= ATA_ALL_DEVICES; 6042 ehi->action |= ATA_EH_RESET; 6043 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6044 6045 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6046 ap->pflags |= ATA_PFLAG_LOADING; 6047 ata_port_schedule_eh(ap); 6048 6049 spin_unlock_irqrestore(ap->lock, flags); 6050 } 6051 6052 int ata_port_probe(struct ata_port *ap) 6053 { 6054 int rc = 0; 6055 6056 if (ap->ops->error_handler) { 6057 __ata_port_probe(ap); 6058 ata_port_wait_eh(ap); 6059 } else { 6060 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6061 rc = ata_bus_probe(ap); 6062 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6063 } 6064 return rc; 6065 } 6066 6067 6068 static void async_port_probe(void *data, async_cookie_t cookie) 6069 { 6070 struct ata_port *ap = data; 6071 6072 /* 6073 * If we're not allowed to scan this host in parallel, 6074 * we need to wait until all previous scans have completed 6075 * before going further. 6076 * Jeff Garzik says this is only within a controller, so we 6077 * don't need to wait for port 0, only for later ports. 6078 */ 6079 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6080 async_synchronize_cookie(cookie); 6081 6082 (void)ata_port_probe(ap); 6083 6084 /* in order to keep device order, we need to synchronize at this point */ 6085 async_synchronize_cookie(cookie); 6086 6087 ata_scsi_scan_host(ap, 1); 6088 } 6089 6090 /** 6091 * ata_host_register - register initialized ATA host 6092 * @host: ATA host to register 6093 * @sht: template for SCSI host 6094 * 6095 * Register initialized ATA host. @host is allocated using 6096 * ata_host_alloc() and fully initialized by LLD. This function 6097 * starts ports, registers @host with ATA and SCSI layers and 6098 * probe registered devices. 6099 * 6100 * LOCKING: 6101 * Inherited from calling layer (may sleep). 6102 * 6103 * RETURNS: 6104 * 0 on success, -errno otherwise. 6105 */ 6106 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6107 { 6108 int i, rc; 6109 6110 /* host must have been started */ 6111 if (!(host->flags & ATA_HOST_STARTED)) { 6112 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6113 WARN_ON(1); 6114 return -EINVAL; 6115 } 6116 6117 /* Blow away unused ports. This happens when LLD can't 6118 * determine the exact number of ports to allocate at 6119 * allocation time. 6120 */ 6121 for (i = host->n_ports; host->ports[i]; i++) 6122 kfree(host->ports[i]); 6123 6124 /* give ports names and add SCSI hosts */ 6125 for (i = 0; i < host->n_ports; i++) 6126 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6127 6128 6129 /* Create associated sysfs transport objects */ 6130 for (i = 0; i < host->n_ports; i++) { 6131 rc = ata_tport_add(host->dev,host->ports[i]); 6132 if (rc) { 6133 goto err_tadd; 6134 } 6135 } 6136 6137 rc = ata_scsi_add_hosts(host, sht); 6138 if (rc) 6139 goto err_tadd; 6140 6141 /* set cable, sata_spd_limit and report */ 6142 for (i = 0; i < host->n_ports; i++) { 6143 struct ata_port *ap = host->ports[i]; 6144 unsigned long xfer_mask; 6145 6146 /* set SATA cable type if still unset */ 6147 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6148 ap->cbl = ATA_CBL_SATA; 6149 6150 /* init sata_spd_limit to the current value */ 6151 sata_link_init_spd(&ap->link); 6152 if (ap->slave_link) 6153 sata_link_init_spd(ap->slave_link); 6154 6155 /* print per-port info to dmesg */ 6156 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6157 ap->udma_mask); 6158 6159 if (!ata_port_is_dummy(ap)) { 6160 ata_port_info(ap, "%cATA max %s %s\n", 6161 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6162 ata_mode_string(xfer_mask), 6163 ap->link.eh_info.desc); 6164 ata_ehi_clear_desc(&ap->link.eh_info); 6165 } else 6166 ata_port_info(ap, "DUMMY\n"); 6167 } 6168 6169 /* perform each probe asynchronously */ 6170 for (i = 0; i < host->n_ports; i++) { 6171 struct ata_port *ap = host->ports[i]; 6172 async_schedule(async_port_probe, ap); 6173 } 6174 6175 return 0; 6176 6177 err_tadd: 6178 while (--i >= 0) { 6179 ata_tport_delete(host->ports[i]); 6180 } 6181 return rc; 6182 6183 } 6184 6185 /** 6186 * ata_host_activate - start host, request IRQ and register it 6187 * @host: target ATA host 6188 * @irq: IRQ to request 6189 * @irq_handler: irq_handler used when requesting IRQ 6190 * @irq_flags: irq_flags used when requesting IRQ 6191 * @sht: scsi_host_template to use when registering the host 6192 * 6193 * After allocating an ATA host and initializing it, most libata 6194 * LLDs perform three steps to activate the host - start host, 6195 * request IRQ and register it. This helper takes necessasry 6196 * arguments and performs the three steps in one go. 6197 * 6198 * An invalid IRQ skips the IRQ registration and expects the host to 6199 * have set polling mode on the port. In this case, @irq_handler 6200 * should be NULL. 6201 * 6202 * LOCKING: 6203 * Inherited from calling layer (may sleep). 6204 * 6205 * RETURNS: 6206 * 0 on success, -errno otherwise. 6207 */ 6208 int ata_host_activate(struct ata_host *host, int irq, 6209 irq_handler_t irq_handler, unsigned long irq_flags, 6210 struct scsi_host_template *sht) 6211 { 6212 int i, rc; 6213 6214 rc = ata_host_start(host); 6215 if (rc) 6216 return rc; 6217 6218 /* Special case for polling mode */ 6219 if (!irq) { 6220 WARN_ON(irq_handler); 6221 return ata_host_register(host, sht); 6222 } 6223 6224 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6225 dev_driver_string(host->dev), host); 6226 if (rc) 6227 return rc; 6228 6229 for (i = 0; i < host->n_ports; i++) 6230 ata_port_desc(host->ports[i], "irq %d", irq); 6231 6232 rc = ata_host_register(host, sht); 6233 /* if failed, just free the IRQ and leave ports alone */ 6234 if (rc) 6235 devm_free_irq(host->dev, irq, host); 6236 6237 return rc; 6238 } 6239 6240 /** 6241 * ata_port_detach - Detach ATA port in prepration of device removal 6242 * @ap: ATA port to be detached 6243 * 6244 * Detach all ATA devices and the associated SCSI devices of @ap; 6245 * then, remove the associated SCSI host. @ap is guaranteed to 6246 * be quiescent on return from this function. 6247 * 6248 * LOCKING: 6249 * Kernel thread context (may sleep). 6250 */ 6251 static void ata_port_detach(struct ata_port *ap) 6252 { 6253 unsigned long flags; 6254 6255 if (!ap->ops->error_handler) 6256 goto skip_eh; 6257 6258 /* tell EH we're leaving & flush EH */ 6259 spin_lock_irqsave(ap->lock, flags); 6260 ap->pflags |= ATA_PFLAG_UNLOADING; 6261 ata_port_schedule_eh(ap); 6262 spin_unlock_irqrestore(ap->lock, flags); 6263 6264 /* wait till EH commits suicide */ 6265 ata_port_wait_eh(ap); 6266 6267 /* it better be dead now */ 6268 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6269 6270 cancel_delayed_work_sync(&ap->hotplug_task); 6271 6272 skip_eh: 6273 if (ap->pmp_link) { 6274 int i; 6275 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6276 ata_tlink_delete(&ap->pmp_link[i]); 6277 } 6278 ata_tport_delete(ap); 6279 6280 /* remove the associated SCSI host */ 6281 scsi_remove_host(ap->scsi_host); 6282 } 6283 6284 /** 6285 * ata_host_detach - Detach all ports of an ATA host 6286 * @host: Host to detach 6287 * 6288 * Detach all ports of @host. 6289 * 6290 * LOCKING: 6291 * Kernel thread context (may sleep). 6292 */ 6293 void ata_host_detach(struct ata_host *host) 6294 { 6295 int i; 6296 6297 for (i = 0; i < host->n_ports; i++) 6298 ata_port_detach(host->ports[i]); 6299 6300 /* the host is dead now, dissociate ACPI */ 6301 ata_acpi_dissociate(host); 6302 } 6303 6304 #ifdef CONFIG_PCI 6305 6306 /** 6307 * ata_pci_remove_one - PCI layer callback for device removal 6308 * @pdev: PCI device that was removed 6309 * 6310 * PCI layer indicates to libata via this hook that hot-unplug or 6311 * module unload event has occurred. Detach all ports. Resource 6312 * release is handled via devres. 6313 * 6314 * LOCKING: 6315 * Inherited from PCI layer (may sleep). 6316 */ 6317 void ata_pci_remove_one(struct pci_dev *pdev) 6318 { 6319 struct ata_host *host = pci_get_drvdata(pdev); 6320 6321 ata_host_detach(host); 6322 } 6323 6324 /* move to PCI subsystem */ 6325 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6326 { 6327 unsigned long tmp = 0; 6328 6329 switch (bits->width) { 6330 case 1: { 6331 u8 tmp8 = 0; 6332 pci_read_config_byte(pdev, bits->reg, &tmp8); 6333 tmp = tmp8; 6334 break; 6335 } 6336 case 2: { 6337 u16 tmp16 = 0; 6338 pci_read_config_word(pdev, bits->reg, &tmp16); 6339 tmp = tmp16; 6340 break; 6341 } 6342 case 4: { 6343 u32 tmp32 = 0; 6344 pci_read_config_dword(pdev, bits->reg, &tmp32); 6345 tmp = tmp32; 6346 break; 6347 } 6348 6349 default: 6350 return -EINVAL; 6351 } 6352 6353 tmp &= bits->mask; 6354 6355 return (tmp == bits->val) ? 1 : 0; 6356 } 6357 6358 #ifdef CONFIG_PM 6359 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6360 { 6361 pci_save_state(pdev); 6362 pci_disable_device(pdev); 6363 6364 if (mesg.event & PM_EVENT_SLEEP) 6365 pci_set_power_state(pdev, PCI_D3hot); 6366 } 6367 6368 int ata_pci_device_do_resume(struct pci_dev *pdev) 6369 { 6370 int rc; 6371 6372 pci_set_power_state(pdev, PCI_D0); 6373 pci_restore_state(pdev); 6374 6375 rc = pcim_enable_device(pdev); 6376 if (rc) { 6377 dev_err(&pdev->dev, 6378 "failed to enable device after resume (%d)\n", rc); 6379 return rc; 6380 } 6381 6382 pci_set_master(pdev); 6383 return 0; 6384 } 6385 6386 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6387 { 6388 struct ata_host *host = pci_get_drvdata(pdev); 6389 int rc = 0; 6390 6391 rc = ata_host_suspend(host, mesg); 6392 if (rc) 6393 return rc; 6394 6395 ata_pci_device_do_suspend(pdev, mesg); 6396 6397 return 0; 6398 } 6399 6400 int ata_pci_device_resume(struct pci_dev *pdev) 6401 { 6402 struct ata_host *host = pci_get_drvdata(pdev); 6403 int rc; 6404 6405 rc = ata_pci_device_do_resume(pdev); 6406 if (rc == 0) 6407 ata_host_resume(host); 6408 return rc; 6409 } 6410 #endif /* CONFIG_PM */ 6411 6412 #endif /* CONFIG_PCI */ 6413 6414 /** 6415 * ata_platform_remove_one - Platform layer callback for device removal 6416 * @pdev: Platform device that was removed 6417 * 6418 * Platform layer indicates to libata via this hook that hot-unplug or 6419 * module unload event has occurred. Detach all ports. Resource 6420 * release is handled via devres. 6421 * 6422 * LOCKING: 6423 * Inherited from platform layer (may sleep). 6424 */ 6425 int ata_platform_remove_one(struct platform_device *pdev) 6426 { 6427 struct ata_host *host = platform_get_drvdata(pdev); 6428 6429 ata_host_detach(host); 6430 6431 return 0; 6432 } 6433 6434 static int __init ata_parse_force_one(char **cur, 6435 struct ata_force_ent *force_ent, 6436 const char **reason) 6437 { 6438 /* FIXME: Currently, there's no way to tag init const data and 6439 * using __initdata causes build failure on some versions of 6440 * gcc. Once __initdataconst is implemented, add const to the 6441 * following structure. 6442 */ 6443 static struct ata_force_param force_tbl[] __initdata = { 6444 { "40c", .cbl = ATA_CBL_PATA40 }, 6445 { "80c", .cbl = ATA_CBL_PATA80 }, 6446 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6447 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6448 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6449 { "sata", .cbl = ATA_CBL_SATA }, 6450 { "1.5Gbps", .spd_limit = 1 }, 6451 { "3.0Gbps", .spd_limit = 2 }, 6452 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6453 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6454 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6455 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6456 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6457 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6458 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6459 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6460 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6461 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6462 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6463 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6464 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6465 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6466 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6467 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6468 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6469 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6470 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6471 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6472 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6473 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6474 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6475 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6476 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6477 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6478 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6479 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6480 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6481 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6482 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6483 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6484 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6485 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6486 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6487 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6488 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6489 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6490 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6491 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6492 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6493 }; 6494 char *start = *cur, *p = *cur; 6495 char *id, *val, *endp; 6496 const struct ata_force_param *match_fp = NULL; 6497 int nr_matches = 0, i; 6498 6499 /* find where this param ends and update *cur */ 6500 while (*p != '\0' && *p != ',') 6501 p++; 6502 6503 if (*p == '\0') 6504 *cur = p; 6505 else 6506 *cur = p + 1; 6507 6508 *p = '\0'; 6509 6510 /* parse */ 6511 p = strchr(start, ':'); 6512 if (!p) { 6513 val = strstrip(start); 6514 goto parse_val; 6515 } 6516 *p = '\0'; 6517 6518 id = strstrip(start); 6519 val = strstrip(p + 1); 6520 6521 /* parse id */ 6522 p = strchr(id, '.'); 6523 if (p) { 6524 *p++ = '\0'; 6525 force_ent->device = simple_strtoul(p, &endp, 10); 6526 if (p == endp || *endp != '\0') { 6527 *reason = "invalid device"; 6528 return -EINVAL; 6529 } 6530 } 6531 6532 force_ent->port = simple_strtoul(id, &endp, 10); 6533 if (p == endp || *endp != '\0') { 6534 *reason = "invalid port/link"; 6535 return -EINVAL; 6536 } 6537 6538 parse_val: 6539 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6540 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6541 const struct ata_force_param *fp = &force_tbl[i]; 6542 6543 if (strncasecmp(val, fp->name, strlen(val))) 6544 continue; 6545 6546 nr_matches++; 6547 match_fp = fp; 6548 6549 if (strcasecmp(val, fp->name) == 0) { 6550 nr_matches = 1; 6551 break; 6552 } 6553 } 6554 6555 if (!nr_matches) { 6556 *reason = "unknown value"; 6557 return -EINVAL; 6558 } 6559 if (nr_matches > 1) { 6560 *reason = "ambigious value"; 6561 return -EINVAL; 6562 } 6563 6564 force_ent->param = *match_fp; 6565 6566 return 0; 6567 } 6568 6569 static void __init ata_parse_force_param(void) 6570 { 6571 int idx = 0, size = 1; 6572 int last_port = -1, last_device = -1; 6573 char *p, *cur, *next; 6574 6575 /* calculate maximum number of params and allocate force_tbl */ 6576 for (p = ata_force_param_buf; *p; p++) 6577 if (*p == ',') 6578 size++; 6579 6580 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6581 if (!ata_force_tbl) { 6582 printk(KERN_WARNING "ata: failed to extend force table, " 6583 "libata.force ignored\n"); 6584 return; 6585 } 6586 6587 /* parse and populate the table */ 6588 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6589 const char *reason = ""; 6590 struct ata_force_ent te = { .port = -1, .device = -1 }; 6591 6592 next = cur; 6593 if (ata_parse_force_one(&next, &te, &reason)) { 6594 printk(KERN_WARNING "ata: failed to parse force " 6595 "parameter \"%s\" (%s)\n", 6596 cur, reason); 6597 continue; 6598 } 6599 6600 if (te.port == -1) { 6601 te.port = last_port; 6602 te.device = last_device; 6603 } 6604 6605 ata_force_tbl[idx++] = te; 6606 6607 last_port = te.port; 6608 last_device = te.device; 6609 } 6610 6611 ata_force_tbl_size = idx; 6612 } 6613 6614 static int __init ata_init(void) 6615 { 6616 int rc; 6617 6618 ata_parse_force_param(); 6619 6620 ata_acpi_register(); 6621 6622 rc = ata_sff_init(); 6623 if (rc) { 6624 kfree(ata_force_tbl); 6625 return rc; 6626 } 6627 6628 libata_transport_init(); 6629 ata_scsi_transport_template = ata_attach_transport(); 6630 if (!ata_scsi_transport_template) { 6631 ata_sff_exit(); 6632 rc = -ENOMEM; 6633 goto err_out; 6634 } 6635 6636 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6637 return 0; 6638 6639 err_out: 6640 return rc; 6641 } 6642 6643 static void __exit ata_exit(void) 6644 { 6645 ata_release_transport(ata_scsi_transport_template); 6646 libata_transport_exit(); 6647 ata_sff_exit(); 6648 ata_acpi_unregister(); 6649 kfree(ata_force_tbl); 6650 } 6651 6652 subsys_initcall(ata_init); 6653 module_exit(ata_exit); 6654 6655 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6656 6657 int ata_ratelimit(void) 6658 { 6659 return __ratelimit(&ratelimit); 6660 } 6661 6662 /** 6663 * ata_msleep - ATA EH owner aware msleep 6664 * @ap: ATA port to attribute the sleep to 6665 * @msecs: duration to sleep in milliseconds 6666 * 6667 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6668 * ownership is released before going to sleep and reacquired 6669 * after the sleep is complete. IOW, other ports sharing the 6670 * @ap->host will be allowed to own the EH while this task is 6671 * sleeping. 6672 * 6673 * LOCKING: 6674 * Might sleep. 6675 */ 6676 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6677 { 6678 bool owns_eh = ap && ap->host->eh_owner == current; 6679 6680 if (owns_eh) 6681 ata_eh_release(ap); 6682 6683 msleep(msecs); 6684 6685 if (owns_eh) 6686 ata_eh_acquire(ap); 6687 } 6688 6689 /** 6690 * ata_wait_register - wait until register value changes 6691 * @ap: ATA port to wait register for, can be NULL 6692 * @reg: IO-mapped register 6693 * @mask: Mask to apply to read register value 6694 * @val: Wait condition 6695 * @interval: polling interval in milliseconds 6696 * @timeout: timeout in milliseconds 6697 * 6698 * Waiting for some bits of register to change is a common 6699 * operation for ATA controllers. This function reads 32bit LE 6700 * IO-mapped register @reg and tests for the following condition. 6701 * 6702 * (*@reg & mask) != val 6703 * 6704 * If the condition is met, it returns; otherwise, the process is 6705 * repeated after @interval_msec until timeout. 6706 * 6707 * LOCKING: 6708 * Kernel thread context (may sleep) 6709 * 6710 * RETURNS: 6711 * The final register value. 6712 */ 6713 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6714 unsigned long interval, unsigned long timeout) 6715 { 6716 unsigned long deadline; 6717 u32 tmp; 6718 6719 tmp = ioread32(reg); 6720 6721 /* Calculate timeout _after_ the first read to make sure 6722 * preceding writes reach the controller before starting to 6723 * eat away the timeout. 6724 */ 6725 deadline = ata_deadline(jiffies, timeout); 6726 6727 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6728 ata_msleep(ap, interval); 6729 tmp = ioread32(reg); 6730 } 6731 6732 return tmp; 6733 } 6734 6735 /* 6736 * Dummy port_ops 6737 */ 6738 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6739 { 6740 return AC_ERR_SYSTEM; 6741 } 6742 6743 static void ata_dummy_error_handler(struct ata_port *ap) 6744 { 6745 /* truly dummy */ 6746 } 6747 6748 struct ata_port_operations ata_dummy_port_ops = { 6749 .qc_prep = ata_noop_qc_prep, 6750 .qc_issue = ata_dummy_qc_issue, 6751 .error_handler = ata_dummy_error_handler, 6752 .sched_eh = ata_std_sched_eh, 6753 .end_eh = ata_std_end_eh, 6754 }; 6755 6756 const struct ata_port_info ata_dummy_port_info = { 6757 .port_ops = &ata_dummy_port_ops, 6758 }; 6759 6760 /* 6761 * Utility print functions 6762 */ 6763 int ata_port_printk(const struct ata_port *ap, const char *level, 6764 const char *fmt, ...) 6765 { 6766 struct va_format vaf; 6767 va_list args; 6768 int r; 6769 6770 va_start(args, fmt); 6771 6772 vaf.fmt = fmt; 6773 vaf.va = &args; 6774 6775 r = printk("%sata%u: %pV", level, ap->print_id, &vaf); 6776 6777 va_end(args); 6778 6779 return r; 6780 } 6781 EXPORT_SYMBOL(ata_port_printk); 6782 6783 int ata_link_printk(const struct ata_link *link, const char *level, 6784 const char *fmt, ...) 6785 { 6786 struct va_format vaf; 6787 va_list args; 6788 int r; 6789 6790 va_start(args, fmt); 6791 6792 vaf.fmt = fmt; 6793 vaf.va = &args; 6794 6795 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6796 r = printk("%sata%u.%02u: %pV", 6797 level, link->ap->print_id, link->pmp, &vaf); 6798 else 6799 r = printk("%sata%u: %pV", 6800 level, link->ap->print_id, &vaf); 6801 6802 va_end(args); 6803 6804 return r; 6805 } 6806 EXPORT_SYMBOL(ata_link_printk); 6807 6808 int ata_dev_printk(const struct ata_device *dev, const char *level, 6809 const char *fmt, ...) 6810 { 6811 struct va_format vaf; 6812 va_list args; 6813 int r; 6814 6815 va_start(args, fmt); 6816 6817 vaf.fmt = fmt; 6818 vaf.va = &args; 6819 6820 r = printk("%sata%u.%02u: %pV", 6821 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6822 &vaf); 6823 6824 va_end(args); 6825 6826 return r; 6827 } 6828 EXPORT_SYMBOL(ata_dev_printk); 6829 6830 void ata_print_version(const struct device *dev, const char *version) 6831 { 6832 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6833 } 6834 EXPORT_SYMBOL(ata_print_version); 6835 6836 /* 6837 * libata is essentially a library of internal helper functions for 6838 * low-level ATA host controller drivers. As such, the API/ABI is 6839 * likely to change as new drivers are added and updated. 6840 * Do not depend on ABI/API stability. 6841 */ 6842 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6843 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6844 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6845 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6846 EXPORT_SYMBOL_GPL(sata_port_ops); 6847 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6848 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6849 EXPORT_SYMBOL_GPL(ata_link_next); 6850 EXPORT_SYMBOL_GPL(ata_dev_next); 6851 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6852 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6853 EXPORT_SYMBOL_GPL(ata_host_init); 6854 EXPORT_SYMBOL_GPL(ata_host_alloc); 6855 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6856 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6857 EXPORT_SYMBOL_GPL(ata_host_start); 6858 EXPORT_SYMBOL_GPL(ata_host_register); 6859 EXPORT_SYMBOL_GPL(ata_host_activate); 6860 EXPORT_SYMBOL_GPL(ata_host_detach); 6861 EXPORT_SYMBOL_GPL(ata_sg_init); 6862 EXPORT_SYMBOL_GPL(ata_qc_complete); 6863 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6864 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6865 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6866 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6867 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6868 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6869 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6870 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6871 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6872 EXPORT_SYMBOL_GPL(ata_mode_string); 6873 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6874 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6875 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6876 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6877 EXPORT_SYMBOL_GPL(ata_dev_disable); 6878 EXPORT_SYMBOL_GPL(sata_set_spd); 6879 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6880 EXPORT_SYMBOL_GPL(sata_link_debounce); 6881 EXPORT_SYMBOL_GPL(sata_link_resume); 6882 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6883 EXPORT_SYMBOL_GPL(ata_std_prereset); 6884 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6885 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6886 EXPORT_SYMBOL_GPL(ata_std_postreset); 6887 EXPORT_SYMBOL_GPL(ata_dev_classify); 6888 EXPORT_SYMBOL_GPL(ata_dev_pair); 6889 EXPORT_SYMBOL_GPL(ata_ratelimit); 6890 EXPORT_SYMBOL_GPL(ata_msleep); 6891 EXPORT_SYMBOL_GPL(ata_wait_register); 6892 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6893 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6894 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6895 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6896 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6897 EXPORT_SYMBOL_GPL(sata_scr_valid); 6898 EXPORT_SYMBOL_GPL(sata_scr_read); 6899 EXPORT_SYMBOL_GPL(sata_scr_write); 6900 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6901 EXPORT_SYMBOL_GPL(ata_link_online); 6902 EXPORT_SYMBOL_GPL(ata_link_offline); 6903 #ifdef CONFIG_PM 6904 EXPORT_SYMBOL_GPL(ata_host_suspend); 6905 EXPORT_SYMBOL_GPL(ata_host_resume); 6906 #endif /* CONFIG_PM */ 6907 EXPORT_SYMBOL_GPL(ata_id_string); 6908 EXPORT_SYMBOL_GPL(ata_id_c_string); 6909 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6910 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6911 6912 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6913 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6914 EXPORT_SYMBOL_GPL(ata_timing_compute); 6915 EXPORT_SYMBOL_GPL(ata_timing_merge); 6916 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6917 6918 #ifdef CONFIG_PCI 6919 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6920 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6921 #ifdef CONFIG_PM 6922 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6923 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6924 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6925 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6926 #endif /* CONFIG_PM */ 6927 #endif /* CONFIG_PCI */ 6928 6929 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6930 6931 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6932 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6933 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6934 EXPORT_SYMBOL_GPL(ata_port_desc); 6935 #ifdef CONFIG_PCI 6936 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6937 #endif /* CONFIG_PCI */ 6938 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6939 EXPORT_SYMBOL_GPL(ata_link_abort); 6940 EXPORT_SYMBOL_GPL(ata_port_abort); 6941 EXPORT_SYMBOL_GPL(ata_port_freeze); 6942 EXPORT_SYMBOL_GPL(sata_async_notification); 6943 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6944 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6945 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6946 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6947 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6948 EXPORT_SYMBOL_GPL(ata_do_eh); 6949 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6950 6951 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6952 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6953 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6954 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6955 EXPORT_SYMBOL_GPL(ata_cable_sata); 6956