1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 #include <linux/pm_runtime.h> 70 71 #include "libata.h" 72 #include "libata-transport.h" 73 74 /* debounce timing parameters in msecs { interval, duration, timeout } */ 75 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 76 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 77 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 78 79 const struct ata_port_operations ata_base_port_ops = { 80 .prereset = ata_std_prereset, 81 .postreset = ata_std_postreset, 82 .error_handler = ata_std_error_handler, 83 .sched_eh = ata_std_sched_eh, 84 .end_eh = ata_std_end_eh, 85 }; 86 87 const struct ata_port_operations sata_port_ops = { 88 .inherits = &ata_base_port_ops, 89 90 .qc_defer = ata_std_qc_defer, 91 .hardreset = sata_std_hardreset, 92 }; 93 94 static unsigned int ata_dev_init_params(struct ata_device *dev, 95 u16 heads, u16 sectors); 96 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 97 static void ata_dev_xfermask(struct ata_device *dev); 98 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 99 100 atomic_t ata_print_id = ATOMIC_INIT(0); 101 102 struct ata_force_param { 103 const char *name; 104 unsigned int cbl; 105 int spd_limit; 106 unsigned long xfer_mask; 107 unsigned int horkage_on; 108 unsigned int horkage_off; 109 unsigned int lflags; 110 }; 111 112 struct ata_force_ent { 113 int port; 114 int device; 115 struct ata_force_param param; 116 }; 117 118 static struct ata_force_ent *ata_force_tbl; 119 static int ata_force_tbl_size; 120 121 static char ata_force_param_buf[PAGE_SIZE] __initdata; 122 /* param_buf is thrown away after initialization, disallow read */ 123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 125 126 static int atapi_enabled = 1; 127 module_param(atapi_enabled, int, 0444); 128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 129 130 static int atapi_dmadir = 0; 131 module_param(atapi_dmadir, int, 0444); 132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 133 134 int atapi_passthru16 = 1; 135 module_param(atapi_passthru16, int, 0444); 136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 137 138 int libata_fua = 0; 139 module_param_named(fua, libata_fua, int, 0444); 140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 141 142 static int ata_ignore_hpa; 143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 145 146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 147 module_param_named(dma, libata_dma_mask, int, 0444); 148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 149 150 static int ata_probe_timeout; 151 module_param(ata_probe_timeout, int, 0444); 152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 153 154 int libata_noacpi = 0; 155 module_param_named(noacpi, libata_noacpi, int, 0444); 156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 157 158 int libata_allow_tpm = 0; 159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 161 162 static int atapi_an; 163 module_param(atapi_an, int, 0444); 164 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 165 166 MODULE_AUTHOR("Jeff Garzik"); 167 MODULE_DESCRIPTION("Library module for ATA devices"); 168 MODULE_LICENSE("GPL"); 169 MODULE_VERSION(DRV_VERSION); 170 171 172 static bool ata_sstatus_online(u32 sstatus) 173 { 174 return (sstatus & 0xf) == 0x3; 175 } 176 177 /** 178 * ata_link_next - link iteration helper 179 * @link: the previous link, NULL to start 180 * @ap: ATA port containing links to iterate 181 * @mode: iteration mode, one of ATA_LITER_* 182 * 183 * LOCKING: 184 * Host lock or EH context. 185 * 186 * RETURNS: 187 * Pointer to the next link. 188 */ 189 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 190 enum ata_link_iter_mode mode) 191 { 192 BUG_ON(mode != ATA_LITER_EDGE && 193 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 194 195 /* NULL link indicates start of iteration */ 196 if (!link) 197 switch (mode) { 198 case ATA_LITER_EDGE: 199 case ATA_LITER_PMP_FIRST: 200 if (sata_pmp_attached(ap)) 201 return ap->pmp_link; 202 /* fall through */ 203 case ATA_LITER_HOST_FIRST: 204 return &ap->link; 205 } 206 207 /* we just iterated over the host link, what's next? */ 208 if (link == &ap->link) 209 switch (mode) { 210 case ATA_LITER_HOST_FIRST: 211 if (sata_pmp_attached(ap)) 212 return ap->pmp_link; 213 /* fall through */ 214 case ATA_LITER_PMP_FIRST: 215 if (unlikely(ap->slave_link)) 216 return ap->slave_link; 217 /* fall through */ 218 case ATA_LITER_EDGE: 219 return NULL; 220 } 221 222 /* slave_link excludes PMP */ 223 if (unlikely(link == ap->slave_link)) 224 return NULL; 225 226 /* we were over a PMP link */ 227 if (++link < ap->pmp_link + ap->nr_pmp_links) 228 return link; 229 230 if (mode == ATA_LITER_PMP_FIRST) 231 return &ap->link; 232 233 return NULL; 234 } 235 236 /** 237 * ata_dev_next - device iteration helper 238 * @dev: the previous device, NULL to start 239 * @link: ATA link containing devices to iterate 240 * @mode: iteration mode, one of ATA_DITER_* 241 * 242 * LOCKING: 243 * Host lock or EH context. 244 * 245 * RETURNS: 246 * Pointer to the next device. 247 */ 248 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 249 enum ata_dev_iter_mode mode) 250 { 251 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 252 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 253 254 /* NULL dev indicates start of iteration */ 255 if (!dev) 256 switch (mode) { 257 case ATA_DITER_ENABLED: 258 case ATA_DITER_ALL: 259 dev = link->device; 260 goto check; 261 case ATA_DITER_ENABLED_REVERSE: 262 case ATA_DITER_ALL_REVERSE: 263 dev = link->device + ata_link_max_devices(link) - 1; 264 goto check; 265 } 266 267 next: 268 /* move to the next one */ 269 switch (mode) { 270 case ATA_DITER_ENABLED: 271 case ATA_DITER_ALL: 272 if (++dev < link->device + ata_link_max_devices(link)) 273 goto check; 274 return NULL; 275 case ATA_DITER_ENABLED_REVERSE: 276 case ATA_DITER_ALL_REVERSE: 277 if (--dev >= link->device) 278 goto check; 279 return NULL; 280 } 281 282 check: 283 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 284 !ata_dev_enabled(dev)) 285 goto next; 286 return dev; 287 } 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 /** 315 * ata_force_cbl - force cable type according to libata.force 316 * @ap: ATA port of interest 317 * 318 * Force cable type according to libata.force and whine about it. 319 * The last entry which has matching port number is used, so it 320 * can be specified as part of device force parameters. For 321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 322 * same effect. 323 * 324 * LOCKING: 325 * EH context. 326 */ 327 void ata_force_cbl(struct ata_port *ap) 328 { 329 int i; 330 331 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 332 const struct ata_force_ent *fe = &ata_force_tbl[i]; 333 334 if (fe->port != -1 && fe->port != ap->print_id) 335 continue; 336 337 if (fe->param.cbl == ATA_CBL_NONE) 338 continue; 339 340 ap->cbl = fe->param.cbl; 341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 342 return; 343 } 344 } 345 346 /** 347 * ata_force_link_limits - force link limits according to libata.force 348 * @link: ATA link of interest 349 * 350 * Force link flags and SATA spd limit according to libata.force 351 * and whine about it. When only the port part is specified 352 * (e.g. 1:), the limit applies to all links connected to both 353 * the host link and all fan-out ports connected via PMP. If the 354 * device part is specified as 0 (e.g. 1.00:), it specifies the 355 * first fan-out link not the host link. Device number 15 always 356 * points to the host link whether PMP is attached or not. If the 357 * controller has slave link, device number 16 points to it. 358 * 359 * LOCKING: 360 * EH context. 361 */ 362 static void ata_force_link_limits(struct ata_link *link) 363 { 364 bool did_spd = false; 365 int linkno = link->pmp; 366 int i; 367 368 if (ata_is_host_link(link)) 369 linkno += 15; 370 371 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 372 const struct ata_force_ent *fe = &ata_force_tbl[i]; 373 374 if (fe->port != -1 && fe->port != link->ap->print_id) 375 continue; 376 377 if (fe->device != -1 && fe->device != linkno) 378 continue; 379 380 /* only honor the first spd limit */ 381 if (!did_spd && fe->param.spd_limit) { 382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 384 fe->param.name); 385 did_spd = true; 386 } 387 388 /* let lflags stack */ 389 if (fe->param.lflags) { 390 link->flags |= fe->param.lflags; 391 ata_link_notice(link, 392 "FORCE: link flag 0x%x forced -> 0x%x\n", 393 fe->param.lflags, link->flags); 394 } 395 } 396 } 397 398 /** 399 * ata_force_xfermask - force xfermask according to libata.force 400 * @dev: ATA device of interest 401 * 402 * Force xfer_mask according to libata.force and whine about it. 403 * For consistency with link selection, device number 15 selects 404 * the first device connected to the host link. 405 * 406 * LOCKING: 407 * EH context. 408 */ 409 static void ata_force_xfermask(struct ata_device *dev) 410 { 411 int devno = dev->link->pmp + dev->devno; 412 int alt_devno = devno; 413 int i; 414 415 /* allow n.15/16 for devices attached to host port */ 416 if (ata_is_host_link(dev->link)) 417 alt_devno += 15; 418 419 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 420 const struct ata_force_ent *fe = &ata_force_tbl[i]; 421 unsigned long pio_mask, mwdma_mask, udma_mask; 422 423 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 424 continue; 425 426 if (fe->device != -1 && fe->device != devno && 427 fe->device != alt_devno) 428 continue; 429 430 if (!fe->param.xfer_mask) 431 continue; 432 433 ata_unpack_xfermask(fe->param.xfer_mask, 434 &pio_mask, &mwdma_mask, &udma_mask); 435 if (udma_mask) 436 dev->udma_mask = udma_mask; 437 else if (mwdma_mask) { 438 dev->udma_mask = 0; 439 dev->mwdma_mask = mwdma_mask; 440 } else { 441 dev->udma_mask = 0; 442 dev->mwdma_mask = 0; 443 dev->pio_mask = pio_mask; 444 } 445 446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 447 fe->param.name); 448 return; 449 } 450 } 451 452 /** 453 * ata_force_horkage - force horkage according to libata.force 454 * @dev: ATA device of interest 455 * 456 * Force horkage according to libata.force and whine about it. 457 * For consistency with link selection, device number 15 selects 458 * the first device connected to the host link. 459 * 460 * LOCKING: 461 * EH context. 462 */ 463 static void ata_force_horkage(struct ata_device *dev) 464 { 465 int devno = dev->link->pmp + dev->devno; 466 int alt_devno = devno; 467 int i; 468 469 /* allow n.15/16 for devices attached to host port */ 470 if (ata_is_host_link(dev->link)) 471 alt_devno += 15; 472 473 for (i = 0; i < ata_force_tbl_size; i++) { 474 const struct ata_force_ent *fe = &ata_force_tbl[i]; 475 476 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 477 continue; 478 479 if (fe->device != -1 && fe->device != devno && 480 fe->device != alt_devno) 481 continue; 482 483 if (!(~dev->horkage & fe->param.horkage_on) && 484 !(dev->horkage & fe->param.horkage_off)) 485 continue; 486 487 dev->horkage |= fe->param.horkage_on; 488 dev->horkage &= ~fe->param.horkage_off; 489 490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 491 fe->param.name); 492 } 493 } 494 495 /** 496 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 497 * @opcode: SCSI opcode 498 * 499 * Determine ATAPI command type from @opcode. 500 * 501 * LOCKING: 502 * None. 503 * 504 * RETURNS: 505 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 506 */ 507 int atapi_cmd_type(u8 opcode) 508 { 509 switch (opcode) { 510 case GPCMD_READ_10: 511 case GPCMD_READ_12: 512 return ATAPI_READ; 513 514 case GPCMD_WRITE_10: 515 case GPCMD_WRITE_12: 516 case GPCMD_WRITE_AND_VERIFY_10: 517 return ATAPI_WRITE; 518 519 case GPCMD_READ_CD: 520 case GPCMD_READ_CD_MSF: 521 return ATAPI_READ_CD; 522 523 case ATA_16: 524 case ATA_12: 525 if (atapi_passthru16) 526 return ATAPI_PASS_THRU; 527 /* fall thru */ 528 default: 529 return ATAPI_MISC; 530 } 531 } 532 533 /** 534 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 535 * @tf: Taskfile to convert 536 * @pmp: Port multiplier port 537 * @is_cmd: This FIS is for command 538 * @fis: Buffer into which data will output 539 * 540 * Converts a standard ATA taskfile to a Serial ATA 541 * FIS structure (Register - Host to Device). 542 * 543 * LOCKING: 544 * Inherited from caller. 545 */ 546 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 547 { 548 fis[0] = 0x27; /* Register - Host to Device FIS */ 549 fis[1] = pmp & 0xf; /* Port multiplier number*/ 550 if (is_cmd) 551 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 552 553 fis[2] = tf->command; 554 fis[3] = tf->feature; 555 556 fis[4] = tf->lbal; 557 fis[5] = tf->lbam; 558 fis[6] = tf->lbah; 559 fis[7] = tf->device; 560 561 fis[8] = tf->hob_lbal; 562 fis[9] = tf->hob_lbam; 563 fis[10] = tf->hob_lbah; 564 fis[11] = tf->hob_feature; 565 566 fis[12] = tf->nsect; 567 fis[13] = tf->hob_nsect; 568 fis[14] = 0; 569 fis[15] = tf->ctl; 570 571 fis[16] = 0; 572 fis[17] = 0; 573 fis[18] = 0; 574 fis[19] = 0; 575 } 576 577 /** 578 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 579 * @fis: Buffer from which data will be input 580 * @tf: Taskfile to output 581 * 582 * Converts a serial ATA FIS structure to a standard ATA taskfile. 583 * 584 * LOCKING: 585 * Inherited from caller. 586 */ 587 588 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 589 { 590 tf->command = fis[2]; /* status */ 591 tf->feature = fis[3]; /* error */ 592 593 tf->lbal = fis[4]; 594 tf->lbam = fis[5]; 595 tf->lbah = fis[6]; 596 tf->device = fis[7]; 597 598 tf->hob_lbal = fis[8]; 599 tf->hob_lbam = fis[9]; 600 tf->hob_lbah = fis[10]; 601 602 tf->nsect = fis[12]; 603 tf->hob_nsect = fis[13]; 604 } 605 606 static const u8 ata_rw_cmds[] = { 607 /* pio multi */ 608 ATA_CMD_READ_MULTI, 609 ATA_CMD_WRITE_MULTI, 610 ATA_CMD_READ_MULTI_EXT, 611 ATA_CMD_WRITE_MULTI_EXT, 612 0, 613 0, 614 0, 615 ATA_CMD_WRITE_MULTI_FUA_EXT, 616 /* pio */ 617 ATA_CMD_PIO_READ, 618 ATA_CMD_PIO_WRITE, 619 ATA_CMD_PIO_READ_EXT, 620 ATA_CMD_PIO_WRITE_EXT, 621 0, 622 0, 623 0, 624 0, 625 /* dma */ 626 ATA_CMD_READ, 627 ATA_CMD_WRITE, 628 ATA_CMD_READ_EXT, 629 ATA_CMD_WRITE_EXT, 630 0, 631 0, 632 0, 633 ATA_CMD_WRITE_FUA_EXT 634 }; 635 636 /** 637 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 638 * @tf: command to examine and configure 639 * @dev: device tf belongs to 640 * 641 * Examine the device configuration and tf->flags to calculate 642 * the proper read/write commands and protocol to use. 643 * 644 * LOCKING: 645 * caller. 646 */ 647 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 648 { 649 u8 cmd; 650 651 int index, fua, lba48, write; 652 653 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 654 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 655 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 656 657 if (dev->flags & ATA_DFLAG_PIO) { 658 tf->protocol = ATA_PROT_PIO; 659 index = dev->multi_count ? 0 : 8; 660 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 661 /* Unable to use DMA due to host limitation */ 662 tf->protocol = ATA_PROT_PIO; 663 index = dev->multi_count ? 0 : 8; 664 } else { 665 tf->protocol = ATA_PROT_DMA; 666 index = 16; 667 } 668 669 cmd = ata_rw_cmds[index + fua + lba48 + write]; 670 if (cmd) { 671 tf->command = cmd; 672 return 0; 673 } 674 return -1; 675 } 676 677 /** 678 * ata_tf_read_block - Read block address from ATA taskfile 679 * @tf: ATA taskfile of interest 680 * @dev: ATA device @tf belongs to 681 * 682 * LOCKING: 683 * None. 684 * 685 * Read block address from @tf. This function can handle all 686 * three address formats - LBA, LBA48 and CHS. tf->protocol and 687 * flags select the address format to use. 688 * 689 * RETURNS: 690 * Block address read from @tf. 691 */ 692 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 693 { 694 u64 block = 0; 695 696 if (tf->flags & ATA_TFLAG_LBA) { 697 if (tf->flags & ATA_TFLAG_LBA48) { 698 block |= (u64)tf->hob_lbah << 40; 699 block |= (u64)tf->hob_lbam << 32; 700 block |= (u64)tf->hob_lbal << 24; 701 } else 702 block |= (tf->device & 0xf) << 24; 703 704 block |= tf->lbah << 16; 705 block |= tf->lbam << 8; 706 block |= tf->lbal; 707 } else { 708 u32 cyl, head, sect; 709 710 cyl = tf->lbam | (tf->lbah << 8); 711 head = tf->device & 0xf; 712 sect = tf->lbal; 713 714 if (!sect) { 715 ata_dev_warn(dev, 716 "device reported invalid CHS sector 0\n"); 717 sect = 1; /* oh well */ 718 } 719 720 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 721 } 722 723 return block; 724 } 725 726 /** 727 * ata_build_rw_tf - Build ATA taskfile for given read/write request 728 * @tf: Target ATA taskfile 729 * @dev: ATA device @tf belongs to 730 * @block: Block address 731 * @n_block: Number of blocks 732 * @tf_flags: RW/FUA etc... 733 * @tag: tag 734 * 735 * LOCKING: 736 * None. 737 * 738 * Build ATA taskfile @tf for read/write request described by 739 * @block, @n_block, @tf_flags and @tag on @dev. 740 * 741 * RETURNS: 742 * 743 * 0 on success, -ERANGE if the request is too large for @dev, 744 * -EINVAL if the request is invalid. 745 */ 746 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 747 u64 block, u32 n_block, unsigned int tf_flags, 748 unsigned int tag) 749 { 750 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 751 tf->flags |= tf_flags; 752 753 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 754 /* yay, NCQ */ 755 if (!lba_48_ok(block, n_block)) 756 return -ERANGE; 757 758 tf->protocol = ATA_PROT_NCQ; 759 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 760 761 if (tf->flags & ATA_TFLAG_WRITE) 762 tf->command = ATA_CMD_FPDMA_WRITE; 763 else 764 tf->command = ATA_CMD_FPDMA_READ; 765 766 tf->nsect = tag << 3; 767 tf->hob_feature = (n_block >> 8) & 0xff; 768 tf->feature = n_block & 0xff; 769 770 tf->hob_lbah = (block >> 40) & 0xff; 771 tf->hob_lbam = (block >> 32) & 0xff; 772 tf->hob_lbal = (block >> 24) & 0xff; 773 tf->lbah = (block >> 16) & 0xff; 774 tf->lbam = (block >> 8) & 0xff; 775 tf->lbal = block & 0xff; 776 777 tf->device = 1 << 6; 778 if (tf->flags & ATA_TFLAG_FUA) 779 tf->device |= 1 << 7; 780 } else if (dev->flags & ATA_DFLAG_LBA) { 781 tf->flags |= ATA_TFLAG_LBA; 782 783 if (lba_28_ok(block, n_block)) { 784 /* use LBA28 */ 785 tf->device |= (block >> 24) & 0xf; 786 } else if (lba_48_ok(block, n_block)) { 787 if (!(dev->flags & ATA_DFLAG_LBA48)) 788 return -ERANGE; 789 790 /* use LBA48 */ 791 tf->flags |= ATA_TFLAG_LBA48; 792 793 tf->hob_nsect = (n_block >> 8) & 0xff; 794 795 tf->hob_lbah = (block >> 40) & 0xff; 796 tf->hob_lbam = (block >> 32) & 0xff; 797 tf->hob_lbal = (block >> 24) & 0xff; 798 } else 799 /* request too large even for LBA48 */ 800 return -ERANGE; 801 802 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 803 return -EINVAL; 804 805 tf->nsect = n_block & 0xff; 806 807 tf->lbah = (block >> 16) & 0xff; 808 tf->lbam = (block >> 8) & 0xff; 809 tf->lbal = block & 0xff; 810 811 tf->device |= ATA_LBA; 812 } else { 813 /* CHS */ 814 u32 sect, head, cyl, track; 815 816 /* The request -may- be too large for CHS addressing. */ 817 if (!lba_28_ok(block, n_block)) 818 return -ERANGE; 819 820 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 821 return -EINVAL; 822 823 /* Convert LBA to CHS */ 824 track = (u32)block / dev->sectors; 825 cyl = track / dev->heads; 826 head = track % dev->heads; 827 sect = (u32)block % dev->sectors + 1; 828 829 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 830 (u32)block, track, cyl, head, sect); 831 832 /* Check whether the converted CHS can fit. 833 Cylinder: 0-65535 834 Head: 0-15 835 Sector: 1-255*/ 836 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 837 return -ERANGE; 838 839 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 840 tf->lbal = sect; 841 tf->lbam = cyl; 842 tf->lbah = cyl >> 8; 843 tf->device |= head; 844 } 845 846 return 0; 847 } 848 849 /** 850 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 851 * @pio_mask: pio_mask 852 * @mwdma_mask: mwdma_mask 853 * @udma_mask: udma_mask 854 * 855 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 856 * unsigned int xfer_mask. 857 * 858 * LOCKING: 859 * None. 860 * 861 * RETURNS: 862 * Packed xfer_mask. 863 */ 864 unsigned long ata_pack_xfermask(unsigned long pio_mask, 865 unsigned long mwdma_mask, 866 unsigned long udma_mask) 867 { 868 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 869 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 870 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 871 } 872 873 /** 874 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 875 * @xfer_mask: xfer_mask to unpack 876 * @pio_mask: resulting pio_mask 877 * @mwdma_mask: resulting mwdma_mask 878 * @udma_mask: resulting udma_mask 879 * 880 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 881 * Any NULL distination masks will be ignored. 882 */ 883 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 884 unsigned long *mwdma_mask, unsigned long *udma_mask) 885 { 886 if (pio_mask) 887 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 888 if (mwdma_mask) 889 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 890 if (udma_mask) 891 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 892 } 893 894 static const struct ata_xfer_ent { 895 int shift, bits; 896 u8 base; 897 } ata_xfer_tbl[] = { 898 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 899 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 900 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 901 { -1, }, 902 }; 903 904 /** 905 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 906 * @xfer_mask: xfer_mask of interest 907 * 908 * Return matching XFER_* value for @xfer_mask. Only the highest 909 * bit of @xfer_mask is considered. 910 * 911 * LOCKING: 912 * None. 913 * 914 * RETURNS: 915 * Matching XFER_* value, 0xff if no match found. 916 */ 917 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 918 { 919 int highbit = fls(xfer_mask) - 1; 920 const struct ata_xfer_ent *ent; 921 922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 923 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 924 return ent->base + highbit - ent->shift; 925 return 0xff; 926 } 927 928 /** 929 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 930 * @xfer_mode: XFER_* of interest 931 * 932 * Return matching xfer_mask for @xfer_mode. 933 * 934 * LOCKING: 935 * None. 936 * 937 * RETURNS: 938 * Matching xfer_mask, 0 if no match found. 939 */ 940 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 941 { 942 const struct ata_xfer_ent *ent; 943 944 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 945 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 946 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 947 & ~((1 << ent->shift) - 1); 948 return 0; 949 } 950 951 /** 952 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 953 * @xfer_mode: XFER_* of interest 954 * 955 * Return matching xfer_shift for @xfer_mode. 956 * 957 * LOCKING: 958 * None. 959 * 960 * RETURNS: 961 * Matching xfer_shift, -1 if no match found. 962 */ 963 int ata_xfer_mode2shift(unsigned long xfer_mode) 964 { 965 const struct ata_xfer_ent *ent; 966 967 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 968 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 969 return ent->shift; 970 return -1; 971 } 972 973 /** 974 * ata_mode_string - convert xfer_mask to string 975 * @xfer_mask: mask of bits supported; only highest bit counts. 976 * 977 * Determine string which represents the highest speed 978 * (highest bit in @modemask). 979 * 980 * LOCKING: 981 * None. 982 * 983 * RETURNS: 984 * Constant C string representing highest speed listed in 985 * @mode_mask, or the constant C string "<n/a>". 986 */ 987 const char *ata_mode_string(unsigned long xfer_mask) 988 { 989 static const char * const xfer_mode_str[] = { 990 "PIO0", 991 "PIO1", 992 "PIO2", 993 "PIO3", 994 "PIO4", 995 "PIO5", 996 "PIO6", 997 "MWDMA0", 998 "MWDMA1", 999 "MWDMA2", 1000 "MWDMA3", 1001 "MWDMA4", 1002 "UDMA/16", 1003 "UDMA/25", 1004 "UDMA/33", 1005 "UDMA/44", 1006 "UDMA/66", 1007 "UDMA/100", 1008 "UDMA/133", 1009 "UDMA7", 1010 }; 1011 int highbit; 1012 1013 highbit = fls(xfer_mask) - 1; 1014 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1015 return xfer_mode_str[highbit]; 1016 return "<n/a>"; 1017 } 1018 1019 const char *sata_spd_string(unsigned int spd) 1020 { 1021 static const char * const spd_str[] = { 1022 "1.5 Gbps", 1023 "3.0 Gbps", 1024 "6.0 Gbps", 1025 }; 1026 1027 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1028 return "<unknown>"; 1029 return spd_str[spd - 1]; 1030 } 1031 1032 /** 1033 * ata_dev_classify - determine device type based on ATA-spec signature 1034 * @tf: ATA taskfile register set for device to be identified 1035 * 1036 * Determine from taskfile register contents whether a device is 1037 * ATA or ATAPI, as per "Signature and persistence" section 1038 * of ATA/PI spec (volume 1, sect 5.14). 1039 * 1040 * LOCKING: 1041 * None. 1042 * 1043 * RETURNS: 1044 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1045 * %ATA_DEV_UNKNOWN the event of failure. 1046 */ 1047 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1048 { 1049 /* Apple's open source Darwin code hints that some devices only 1050 * put a proper signature into the LBA mid/high registers, 1051 * So, we only check those. It's sufficient for uniqueness. 1052 * 1053 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1054 * signatures for ATA and ATAPI devices attached on SerialATA, 1055 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1056 * spec has never mentioned about using different signatures 1057 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1058 * Multiplier specification began to use 0x69/0x96 to identify 1059 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1060 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1061 * 0x69/0x96 shortly and described them as reserved for 1062 * SerialATA. 1063 * 1064 * We follow the current spec and consider that 0x69/0x96 1065 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1066 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1067 * SEMB signature. This is worked around in 1068 * ata_dev_read_id(). 1069 */ 1070 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1071 DPRINTK("found ATA device by sig\n"); 1072 return ATA_DEV_ATA; 1073 } 1074 1075 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1076 DPRINTK("found ATAPI device by sig\n"); 1077 return ATA_DEV_ATAPI; 1078 } 1079 1080 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1081 DPRINTK("found PMP device by sig\n"); 1082 return ATA_DEV_PMP; 1083 } 1084 1085 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1086 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1087 return ATA_DEV_SEMB; 1088 } 1089 1090 DPRINTK("unknown device\n"); 1091 return ATA_DEV_UNKNOWN; 1092 } 1093 1094 /** 1095 * ata_id_string - Convert IDENTIFY DEVICE page into string 1096 * @id: IDENTIFY DEVICE results we will examine 1097 * @s: string into which data is output 1098 * @ofs: offset into identify device page 1099 * @len: length of string to return. must be an even number. 1100 * 1101 * The strings in the IDENTIFY DEVICE page are broken up into 1102 * 16-bit chunks. Run through the string, and output each 1103 * 8-bit chunk linearly, regardless of platform. 1104 * 1105 * LOCKING: 1106 * caller. 1107 */ 1108 1109 void ata_id_string(const u16 *id, unsigned char *s, 1110 unsigned int ofs, unsigned int len) 1111 { 1112 unsigned int c; 1113 1114 BUG_ON(len & 1); 1115 1116 while (len > 0) { 1117 c = id[ofs] >> 8; 1118 *s = c; 1119 s++; 1120 1121 c = id[ofs] & 0xff; 1122 *s = c; 1123 s++; 1124 1125 ofs++; 1126 len -= 2; 1127 } 1128 } 1129 1130 /** 1131 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1132 * @id: IDENTIFY DEVICE results we will examine 1133 * @s: string into which data is output 1134 * @ofs: offset into identify device page 1135 * @len: length of string to return. must be an odd number. 1136 * 1137 * This function is identical to ata_id_string except that it 1138 * trims trailing spaces and terminates the resulting string with 1139 * null. @len must be actual maximum length (even number) + 1. 1140 * 1141 * LOCKING: 1142 * caller. 1143 */ 1144 void ata_id_c_string(const u16 *id, unsigned char *s, 1145 unsigned int ofs, unsigned int len) 1146 { 1147 unsigned char *p; 1148 1149 ata_id_string(id, s, ofs, len - 1); 1150 1151 p = s + strnlen(s, len - 1); 1152 while (p > s && p[-1] == ' ') 1153 p--; 1154 *p = '\0'; 1155 } 1156 1157 static u64 ata_id_n_sectors(const u16 *id) 1158 { 1159 if (ata_id_has_lba(id)) { 1160 if (ata_id_has_lba48(id)) 1161 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1162 else 1163 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1164 } else { 1165 if (ata_id_current_chs_valid(id)) 1166 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1167 id[ATA_ID_CUR_SECTORS]; 1168 else 1169 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1170 id[ATA_ID_SECTORS]; 1171 } 1172 } 1173 1174 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1175 { 1176 u64 sectors = 0; 1177 1178 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1179 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1180 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1181 sectors |= (tf->lbah & 0xff) << 16; 1182 sectors |= (tf->lbam & 0xff) << 8; 1183 sectors |= (tf->lbal & 0xff); 1184 1185 return sectors; 1186 } 1187 1188 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1189 { 1190 u64 sectors = 0; 1191 1192 sectors |= (tf->device & 0x0f) << 24; 1193 sectors |= (tf->lbah & 0xff) << 16; 1194 sectors |= (tf->lbam & 0xff) << 8; 1195 sectors |= (tf->lbal & 0xff); 1196 1197 return sectors; 1198 } 1199 1200 /** 1201 * ata_read_native_max_address - Read native max address 1202 * @dev: target device 1203 * @max_sectors: out parameter for the result native max address 1204 * 1205 * Perform an LBA48 or LBA28 native size query upon the device in 1206 * question. 1207 * 1208 * RETURNS: 1209 * 0 on success, -EACCES if command is aborted by the drive. 1210 * -EIO on other errors. 1211 */ 1212 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1213 { 1214 unsigned int err_mask; 1215 struct ata_taskfile tf; 1216 int lba48 = ata_id_has_lba48(dev->id); 1217 1218 ata_tf_init(dev, &tf); 1219 1220 /* always clear all address registers */ 1221 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1222 1223 if (lba48) { 1224 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1225 tf.flags |= ATA_TFLAG_LBA48; 1226 } else 1227 tf.command = ATA_CMD_READ_NATIVE_MAX; 1228 1229 tf.protocol |= ATA_PROT_NODATA; 1230 tf.device |= ATA_LBA; 1231 1232 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1233 if (err_mask) { 1234 ata_dev_warn(dev, 1235 "failed to read native max address (err_mask=0x%x)\n", 1236 err_mask); 1237 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1238 return -EACCES; 1239 return -EIO; 1240 } 1241 1242 if (lba48) 1243 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1244 else 1245 *max_sectors = ata_tf_to_lba(&tf) + 1; 1246 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1247 (*max_sectors)--; 1248 return 0; 1249 } 1250 1251 /** 1252 * ata_set_max_sectors - Set max sectors 1253 * @dev: target device 1254 * @new_sectors: new max sectors value to set for the device 1255 * 1256 * Set max sectors of @dev to @new_sectors. 1257 * 1258 * RETURNS: 1259 * 0 on success, -EACCES if command is aborted or denied (due to 1260 * previous non-volatile SET_MAX) by the drive. -EIO on other 1261 * errors. 1262 */ 1263 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1264 { 1265 unsigned int err_mask; 1266 struct ata_taskfile tf; 1267 int lba48 = ata_id_has_lba48(dev->id); 1268 1269 new_sectors--; 1270 1271 ata_tf_init(dev, &tf); 1272 1273 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1274 1275 if (lba48) { 1276 tf.command = ATA_CMD_SET_MAX_EXT; 1277 tf.flags |= ATA_TFLAG_LBA48; 1278 1279 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1280 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1281 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1282 } else { 1283 tf.command = ATA_CMD_SET_MAX; 1284 1285 tf.device |= (new_sectors >> 24) & 0xf; 1286 } 1287 1288 tf.protocol |= ATA_PROT_NODATA; 1289 tf.device |= ATA_LBA; 1290 1291 tf.lbal = (new_sectors >> 0) & 0xff; 1292 tf.lbam = (new_sectors >> 8) & 0xff; 1293 tf.lbah = (new_sectors >> 16) & 0xff; 1294 1295 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1296 if (err_mask) { 1297 ata_dev_warn(dev, 1298 "failed to set max address (err_mask=0x%x)\n", 1299 err_mask); 1300 if (err_mask == AC_ERR_DEV && 1301 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1302 return -EACCES; 1303 return -EIO; 1304 } 1305 1306 return 0; 1307 } 1308 1309 /** 1310 * ata_hpa_resize - Resize a device with an HPA set 1311 * @dev: Device to resize 1312 * 1313 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1314 * it if required to the full size of the media. The caller must check 1315 * the drive has the HPA feature set enabled. 1316 * 1317 * RETURNS: 1318 * 0 on success, -errno on failure. 1319 */ 1320 static int ata_hpa_resize(struct ata_device *dev) 1321 { 1322 struct ata_eh_context *ehc = &dev->link->eh_context; 1323 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1324 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1325 u64 sectors = ata_id_n_sectors(dev->id); 1326 u64 native_sectors; 1327 int rc; 1328 1329 /* do we need to do it? */ 1330 if (dev->class != ATA_DEV_ATA || 1331 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1332 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1333 return 0; 1334 1335 /* read native max address */ 1336 rc = ata_read_native_max_address(dev, &native_sectors); 1337 if (rc) { 1338 /* If device aborted the command or HPA isn't going to 1339 * be unlocked, skip HPA resizing. 1340 */ 1341 if (rc == -EACCES || !unlock_hpa) { 1342 ata_dev_warn(dev, 1343 "HPA support seems broken, skipping HPA handling\n"); 1344 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1345 1346 /* we can continue if device aborted the command */ 1347 if (rc == -EACCES) 1348 rc = 0; 1349 } 1350 1351 return rc; 1352 } 1353 dev->n_native_sectors = native_sectors; 1354 1355 /* nothing to do? */ 1356 if (native_sectors <= sectors || !unlock_hpa) { 1357 if (!print_info || native_sectors == sectors) 1358 return 0; 1359 1360 if (native_sectors > sectors) 1361 ata_dev_info(dev, 1362 "HPA detected: current %llu, native %llu\n", 1363 (unsigned long long)sectors, 1364 (unsigned long long)native_sectors); 1365 else if (native_sectors < sectors) 1366 ata_dev_warn(dev, 1367 "native sectors (%llu) is smaller than sectors (%llu)\n", 1368 (unsigned long long)native_sectors, 1369 (unsigned long long)sectors); 1370 return 0; 1371 } 1372 1373 /* let's unlock HPA */ 1374 rc = ata_set_max_sectors(dev, native_sectors); 1375 if (rc == -EACCES) { 1376 /* if device aborted the command, skip HPA resizing */ 1377 ata_dev_warn(dev, 1378 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1379 (unsigned long long)sectors, 1380 (unsigned long long)native_sectors); 1381 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1382 return 0; 1383 } else if (rc) 1384 return rc; 1385 1386 /* re-read IDENTIFY data */ 1387 rc = ata_dev_reread_id(dev, 0); 1388 if (rc) { 1389 ata_dev_err(dev, 1390 "failed to re-read IDENTIFY data after HPA resizing\n"); 1391 return rc; 1392 } 1393 1394 if (print_info) { 1395 u64 new_sectors = ata_id_n_sectors(dev->id); 1396 ata_dev_info(dev, 1397 "HPA unlocked: %llu -> %llu, native %llu\n", 1398 (unsigned long long)sectors, 1399 (unsigned long long)new_sectors, 1400 (unsigned long long)native_sectors); 1401 } 1402 1403 return 0; 1404 } 1405 1406 /** 1407 * ata_dump_id - IDENTIFY DEVICE info debugging output 1408 * @id: IDENTIFY DEVICE page to dump 1409 * 1410 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1411 * page. 1412 * 1413 * LOCKING: 1414 * caller. 1415 */ 1416 1417 static inline void ata_dump_id(const u16 *id) 1418 { 1419 DPRINTK("49==0x%04x " 1420 "53==0x%04x " 1421 "63==0x%04x " 1422 "64==0x%04x " 1423 "75==0x%04x \n", 1424 id[49], 1425 id[53], 1426 id[63], 1427 id[64], 1428 id[75]); 1429 DPRINTK("80==0x%04x " 1430 "81==0x%04x " 1431 "82==0x%04x " 1432 "83==0x%04x " 1433 "84==0x%04x \n", 1434 id[80], 1435 id[81], 1436 id[82], 1437 id[83], 1438 id[84]); 1439 DPRINTK("88==0x%04x " 1440 "93==0x%04x\n", 1441 id[88], 1442 id[93]); 1443 } 1444 1445 /** 1446 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1447 * @id: IDENTIFY data to compute xfer mask from 1448 * 1449 * Compute the xfermask for this device. This is not as trivial 1450 * as it seems if we must consider early devices correctly. 1451 * 1452 * FIXME: pre IDE drive timing (do we care ?). 1453 * 1454 * LOCKING: 1455 * None. 1456 * 1457 * RETURNS: 1458 * Computed xfermask 1459 */ 1460 unsigned long ata_id_xfermask(const u16 *id) 1461 { 1462 unsigned long pio_mask, mwdma_mask, udma_mask; 1463 1464 /* Usual case. Word 53 indicates word 64 is valid */ 1465 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1466 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1467 pio_mask <<= 3; 1468 pio_mask |= 0x7; 1469 } else { 1470 /* If word 64 isn't valid then Word 51 high byte holds 1471 * the PIO timing number for the maximum. Turn it into 1472 * a mask. 1473 */ 1474 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1475 if (mode < 5) /* Valid PIO range */ 1476 pio_mask = (2 << mode) - 1; 1477 else 1478 pio_mask = 1; 1479 1480 /* But wait.. there's more. Design your standards by 1481 * committee and you too can get a free iordy field to 1482 * process. However its the speeds not the modes that 1483 * are supported... Note drivers using the timing API 1484 * will get this right anyway 1485 */ 1486 } 1487 1488 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1489 1490 if (ata_id_is_cfa(id)) { 1491 /* 1492 * Process compact flash extended modes 1493 */ 1494 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1495 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1496 1497 if (pio) 1498 pio_mask |= (1 << 5); 1499 if (pio > 1) 1500 pio_mask |= (1 << 6); 1501 if (dma) 1502 mwdma_mask |= (1 << 3); 1503 if (dma > 1) 1504 mwdma_mask |= (1 << 4); 1505 } 1506 1507 udma_mask = 0; 1508 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1509 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1510 1511 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1512 } 1513 1514 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1515 { 1516 struct completion *waiting = qc->private_data; 1517 1518 complete(waiting); 1519 } 1520 1521 /** 1522 * ata_exec_internal_sg - execute libata internal command 1523 * @dev: Device to which the command is sent 1524 * @tf: Taskfile registers for the command and the result 1525 * @cdb: CDB for packet command 1526 * @dma_dir: Data tranfer direction of the command 1527 * @sgl: sg list for the data buffer of the command 1528 * @n_elem: Number of sg entries 1529 * @timeout: Timeout in msecs (0 for default) 1530 * 1531 * Executes libata internal command with timeout. @tf contains 1532 * command on entry and result on return. Timeout and error 1533 * conditions are reported via return value. No recovery action 1534 * is taken after a command times out. It's caller's duty to 1535 * clean up after timeout. 1536 * 1537 * LOCKING: 1538 * None. Should be called with kernel context, might sleep. 1539 * 1540 * RETURNS: 1541 * Zero on success, AC_ERR_* mask on failure 1542 */ 1543 unsigned ata_exec_internal_sg(struct ata_device *dev, 1544 struct ata_taskfile *tf, const u8 *cdb, 1545 int dma_dir, struct scatterlist *sgl, 1546 unsigned int n_elem, unsigned long timeout) 1547 { 1548 struct ata_link *link = dev->link; 1549 struct ata_port *ap = link->ap; 1550 u8 command = tf->command; 1551 int auto_timeout = 0; 1552 struct ata_queued_cmd *qc; 1553 unsigned int tag, preempted_tag; 1554 u32 preempted_sactive, preempted_qc_active; 1555 int preempted_nr_active_links; 1556 DECLARE_COMPLETION_ONSTACK(wait); 1557 unsigned long flags; 1558 unsigned int err_mask; 1559 int rc; 1560 1561 spin_lock_irqsave(ap->lock, flags); 1562 1563 /* no internal command while frozen */ 1564 if (ap->pflags & ATA_PFLAG_FROZEN) { 1565 spin_unlock_irqrestore(ap->lock, flags); 1566 return AC_ERR_SYSTEM; 1567 } 1568 1569 /* initialize internal qc */ 1570 1571 /* XXX: Tag 0 is used for drivers with legacy EH as some 1572 * drivers choke if any other tag is given. This breaks 1573 * ata_tag_internal() test for those drivers. Don't use new 1574 * EH stuff without converting to it. 1575 */ 1576 if (ap->ops->error_handler) 1577 tag = ATA_TAG_INTERNAL; 1578 else 1579 tag = 0; 1580 1581 if (test_and_set_bit(tag, &ap->qc_allocated)) 1582 BUG(); 1583 qc = __ata_qc_from_tag(ap, tag); 1584 1585 qc->tag = tag; 1586 qc->scsicmd = NULL; 1587 qc->ap = ap; 1588 qc->dev = dev; 1589 ata_qc_reinit(qc); 1590 1591 preempted_tag = link->active_tag; 1592 preempted_sactive = link->sactive; 1593 preempted_qc_active = ap->qc_active; 1594 preempted_nr_active_links = ap->nr_active_links; 1595 link->active_tag = ATA_TAG_POISON; 1596 link->sactive = 0; 1597 ap->qc_active = 0; 1598 ap->nr_active_links = 0; 1599 1600 /* prepare & issue qc */ 1601 qc->tf = *tf; 1602 if (cdb) 1603 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1604 qc->flags |= ATA_QCFLAG_RESULT_TF; 1605 qc->dma_dir = dma_dir; 1606 if (dma_dir != DMA_NONE) { 1607 unsigned int i, buflen = 0; 1608 struct scatterlist *sg; 1609 1610 for_each_sg(sgl, sg, n_elem, i) 1611 buflen += sg->length; 1612 1613 ata_sg_init(qc, sgl, n_elem); 1614 qc->nbytes = buflen; 1615 } 1616 1617 qc->private_data = &wait; 1618 qc->complete_fn = ata_qc_complete_internal; 1619 1620 ata_qc_issue(qc); 1621 1622 spin_unlock_irqrestore(ap->lock, flags); 1623 1624 if (!timeout) { 1625 if (ata_probe_timeout) 1626 timeout = ata_probe_timeout * 1000; 1627 else { 1628 timeout = ata_internal_cmd_timeout(dev, command); 1629 auto_timeout = 1; 1630 } 1631 } 1632 1633 if (ap->ops->error_handler) 1634 ata_eh_release(ap); 1635 1636 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1637 1638 if (ap->ops->error_handler) 1639 ata_eh_acquire(ap); 1640 1641 ata_sff_flush_pio_task(ap); 1642 1643 if (!rc) { 1644 spin_lock_irqsave(ap->lock, flags); 1645 1646 /* We're racing with irq here. If we lose, the 1647 * following test prevents us from completing the qc 1648 * twice. If we win, the port is frozen and will be 1649 * cleaned up by ->post_internal_cmd(). 1650 */ 1651 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1652 qc->err_mask |= AC_ERR_TIMEOUT; 1653 1654 if (ap->ops->error_handler) 1655 ata_port_freeze(ap); 1656 else 1657 ata_qc_complete(qc); 1658 1659 if (ata_msg_warn(ap)) 1660 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1661 command); 1662 } 1663 1664 spin_unlock_irqrestore(ap->lock, flags); 1665 } 1666 1667 /* do post_internal_cmd */ 1668 if (ap->ops->post_internal_cmd) 1669 ap->ops->post_internal_cmd(qc); 1670 1671 /* perform minimal error analysis */ 1672 if (qc->flags & ATA_QCFLAG_FAILED) { 1673 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1674 qc->err_mask |= AC_ERR_DEV; 1675 1676 if (!qc->err_mask) 1677 qc->err_mask |= AC_ERR_OTHER; 1678 1679 if (qc->err_mask & ~AC_ERR_OTHER) 1680 qc->err_mask &= ~AC_ERR_OTHER; 1681 } 1682 1683 /* finish up */ 1684 spin_lock_irqsave(ap->lock, flags); 1685 1686 *tf = qc->result_tf; 1687 err_mask = qc->err_mask; 1688 1689 ata_qc_free(qc); 1690 link->active_tag = preempted_tag; 1691 link->sactive = preempted_sactive; 1692 ap->qc_active = preempted_qc_active; 1693 ap->nr_active_links = preempted_nr_active_links; 1694 1695 spin_unlock_irqrestore(ap->lock, flags); 1696 1697 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1698 ata_internal_cmd_timed_out(dev, command); 1699 1700 return err_mask; 1701 } 1702 1703 /** 1704 * ata_exec_internal - execute libata internal command 1705 * @dev: Device to which the command is sent 1706 * @tf: Taskfile registers for the command and the result 1707 * @cdb: CDB for packet command 1708 * @dma_dir: Data tranfer direction of the command 1709 * @buf: Data buffer of the command 1710 * @buflen: Length of data buffer 1711 * @timeout: Timeout in msecs (0 for default) 1712 * 1713 * Wrapper around ata_exec_internal_sg() which takes simple 1714 * buffer instead of sg list. 1715 * 1716 * LOCKING: 1717 * None. Should be called with kernel context, might sleep. 1718 * 1719 * RETURNS: 1720 * Zero on success, AC_ERR_* mask on failure 1721 */ 1722 unsigned ata_exec_internal(struct ata_device *dev, 1723 struct ata_taskfile *tf, const u8 *cdb, 1724 int dma_dir, void *buf, unsigned int buflen, 1725 unsigned long timeout) 1726 { 1727 struct scatterlist *psg = NULL, sg; 1728 unsigned int n_elem = 0; 1729 1730 if (dma_dir != DMA_NONE) { 1731 WARN_ON(!buf); 1732 sg_init_one(&sg, buf, buflen); 1733 psg = &sg; 1734 n_elem++; 1735 } 1736 1737 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1738 timeout); 1739 } 1740 1741 /** 1742 * ata_do_simple_cmd - execute simple internal command 1743 * @dev: Device to which the command is sent 1744 * @cmd: Opcode to execute 1745 * 1746 * Execute a 'simple' command, that only consists of the opcode 1747 * 'cmd' itself, without filling any other registers 1748 * 1749 * LOCKING: 1750 * Kernel thread context (may sleep). 1751 * 1752 * RETURNS: 1753 * Zero on success, AC_ERR_* mask on failure 1754 */ 1755 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1756 { 1757 struct ata_taskfile tf; 1758 1759 ata_tf_init(dev, &tf); 1760 1761 tf.command = cmd; 1762 tf.flags |= ATA_TFLAG_DEVICE; 1763 tf.protocol = ATA_PROT_NODATA; 1764 1765 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1766 } 1767 1768 /** 1769 * ata_pio_need_iordy - check if iordy needed 1770 * @adev: ATA device 1771 * 1772 * Check if the current speed of the device requires IORDY. Used 1773 * by various controllers for chip configuration. 1774 */ 1775 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1776 { 1777 /* Don't set IORDY if we're preparing for reset. IORDY may 1778 * lead to controller lock up on certain controllers if the 1779 * port is not occupied. See bko#11703 for details. 1780 */ 1781 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1782 return 0; 1783 /* Controller doesn't support IORDY. Probably a pointless 1784 * check as the caller should know this. 1785 */ 1786 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1787 return 0; 1788 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1789 if (ata_id_is_cfa(adev->id) 1790 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1791 return 0; 1792 /* PIO3 and higher it is mandatory */ 1793 if (adev->pio_mode > XFER_PIO_2) 1794 return 1; 1795 /* We turn it on when possible */ 1796 if (ata_id_has_iordy(adev->id)) 1797 return 1; 1798 return 0; 1799 } 1800 1801 /** 1802 * ata_pio_mask_no_iordy - Return the non IORDY mask 1803 * @adev: ATA device 1804 * 1805 * Compute the highest mode possible if we are not using iordy. Return 1806 * -1 if no iordy mode is available. 1807 */ 1808 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1809 { 1810 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1811 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1812 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1813 /* Is the speed faster than the drive allows non IORDY ? */ 1814 if (pio) { 1815 /* This is cycle times not frequency - watch the logic! */ 1816 if (pio > 240) /* PIO2 is 240nS per cycle */ 1817 return 3 << ATA_SHIFT_PIO; 1818 return 7 << ATA_SHIFT_PIO; 1819 } 1820 } 1821 return 3 << ATA_SHIFT_PIO; 1822 } 1823 1824 /** 1825 * ata_do_dev_read_id - default ID read method 1826 * @dev: device 1827 * @tf: proposed taskfile 1828 * @id: data buffer 1829 * 1830 * Issue the identify taskfile and hand back the buffer containing 1831 * identify data. For some RAID controllers and for pre ATA devices 1832 * this function is wrapped or replaced by the driver 1833 */ 1834 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1835 struct ata_taskfile *tf, u16 *id) 1836 { 1837 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1838 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1839 } 1840 1841 /** 1842 * ata_dev_read_id - Read ID data from the specified device 1843 * @dev: target device 1844 * @p_class: pointer to class of the target device (may be changed) 1845 * @flags: ATA_READID_* flags 1846 * @id: buffer to read IDENTIFY data into 1847 * 1848 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1849 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1850 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1851 * for pre-ATA4 drives. 1852 * 1853 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1854 * now we abort if we hit that case. 1855 * 1856 * LOCKING: 1857 * Kernel thread context (may sleep) 1858 * 1859 * RETURNS: 1860 * 0 on success, -errno otherwise. 1861 */ 1862 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1863 unsigned int flags, u16 *id) 1864 { 1865 struct ata_port *ap = dev->link->ap; 1866 unsigned int class = *p_class; 1867 struct ata_taskfile tf; 1868 unsigned int err_mask = 0; 1869 const char *reason; 1870 bool is_semb = class == ATA_DEV_SEMB; 1871 int may_fallback = 1, tried_spinup = 0; 1872 int rc; 1873 1874 if (ata_msg_ctl(ap)) 1875 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1876 1877 retry: 1878 ata_tf_init(dev, &tf); 1879 1880 switch (class) { 1881 case ATA_DEV_SEMB: 1882 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1883 case ATA_DEV_ATA: 1884 tf.command = ATA_CMD_ID_ATA; 1885 break; 1886 case ATA_DEV_ATAPI: 1887 tf.command = ATA_CMD_ID_ATAPI; 1888 break; 1889 default: 1890 rc = -ENODEV; 1891 reason = "unsupported class"; 1892 goto err_out; 1893 } 1894 1895 tf.protocol = ATA_PROT_PIO; 1896 1897 /* Some devices choke if TF registers contain garbage. Make 1898 * sure those are properly initialized. 1899 */ 1900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1901 1902 /* Device presence detection is unreliable on some 1903 * controllers. Always poll IDENTIFY if available. 1904 */ 1905 tf.flags |= ATA_TFLAG_POLLING; 1906 1907 if (ap->ops->read_id) 1908 err_mask = ap->ops->read_id(dev, &tf, id); 1909 else 1910 err_mask = ata_do_dev_read_id(dev, &tf, id); 1911 1912 if (err_mask) { 1913 if (err_mask & AC_ERR_NODEV_HINT) { 1914 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1915 return -ENOENT; 1916 } 1917 1918 if (is_semb) { 1919 ata_dev_info(dev, 1920 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1921 /* SEMB is not supported yet */ 1922 *p_class = ATA_DEV_SEMB_UNSUP; 1923 return 0; 1924 } 1925 1926 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1927 /* Device or controller might have reported 1928 * the wrong device class. Give a shot at the 1929 * other IDENTIFY if the current one is 1930 * aborted by the device. 1931 */ 1932 if (may_fallback) { 1933 may_fallback = 0; 1934 1935 if (class == ATA_DEV_ATA) 1936 class = ATA_DEV_ATAPI; 1937 else 1938 class = ATA_DEV_ATA; 1939 goto retry; 1940 } 1941 1942 /* Control reaches here iff the device aborted 1943 * both flavors of IDENTIFYs which happens 1944 * sometimes with phantom devices. 1945 */ 1946 ata_dev_dbg(dev, 1947 "both IDENTIFYs aborted, assuming NODEV\n"); 1948 return -ENOENT; 1949 } 1950 1951 rc = -EIO; 1952 reason = "I/O error"; 1953 goto err_out; 1954 } 1955 1956 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1957 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1958 "class=%d may_fallback=%d tried_spinup=%d\n", 1959 class, may_fallback, tried_spinup); 1960 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1961 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1962 } 1963 1964 /* Falling back doesn't make sense if ID data was read 1965 * successfully at least once. 1966 */ 1967 may_fallback = 0; 1968 1969 swap_buf_le16(id, ATA_ID_WORDS); 1970 1971 /* sanity check */ 1972 rc = -EINVAL; 1973 reason = "device reports invalid type"; 1974 1975 if (class == ATA_DEV_ATA) { 1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1977 goto err_out; 1978 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1979 ata_id_is_ata(id)) { 1980 ata_dev_dbg(dev, 1981 "host indicates ignore ATA devices, ignored\n"); 1982 return -ENOENT; 1983 } 1984 } else { 1985 if (ata_id_is_ata(id)) 1986 goto err_out; 1987 } 1988 1989 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1990 tried_spinup = 1; 1991 /* 1992 * Drive powered-up in standby mode, and requires a specific 1993 * SET_FEATURES spin-up subcommand before it will accept 1994 * anything other than the original IDENTIFY command. 1995 */ 1996 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1997 if (err_mask && id[2] != 0x738c) { 1998 rc = -EIO; 1999 reason = "SPINUP failed"; 2000 goto err_out; 2001 } 2002 /* 2003 * If the drive initially returned incomplete IDENTIFY info, 2004 * we now must reissue the IDENTIFY command. 2005 */ 2006 if (id[2] == 0x37c8) 2007 goto retry; 2008 } 2009 2010 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2011 /* 2012 * The exact sequence expected by certain pre-ATA4 drives is: 2013 * SRST RESET 2014 * IDENTIFY (optional in early ATA) 2015 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2016 * anything else.. 2017 * Some drives were very specific about that exact sequence. 2018 * 2019 * Note that ATA4 says lba is mandatory so the second check 2020 * should never trigger. 2021 */ 2022 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2023 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2024 if (err_mask) { 2025 rc = -EIO; 2026 reason = "INIT_DEV_PARAMS failed"; 2027 goto err_out; 2028 } 2029 2030 /* current CHS translation info (id[53-58]) might be 2031 * changed. reread the identify device info. 2032 */ 2033 flags &= ~ATA_READID_POSTRESET; 2034 goto retry; 2035 } 2036 } 2037 2038 *p_class = class; 2039 2040 return 0; 2041 2042 err_out: 2043 if (ata_msg_warn(ap)) 2044 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2045 reason, err_mask); 2046 return rc; 2047 } 2048 2049 static int ata_do_link_spd_horkage(struct ata_device *dev) 2050 { 2051 struct ata_link *plink = ata_dev_phys_link(dev); 2052 u32 target, target_limit; 2053 2054 if (!sata_scr_valid(plink)) 2055 return 0; 2056 2057 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2058 target = 1; 2059 else 2060 return 0; 2061 2062 target_limit = (1 << target) - 1; 2063 2064 /* if already on stricter limit, no need to push further */ 2065 if (plink->sata_spd_limit <= target_limit) 2066 return 0; 2067 2068 plink->sata_spd_limit = target_limit; 2069 2070 /* Request another EH round by returning -EAGAIN if link is 2071 * going faster than the target speed. Forward progress is 2072 * guaranteed by setting sata_spd_limit to target_limit above. 2073 */ 2074 if (plink->sata_spd > target) { 2075 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2076 sata_spd_string(target)); 2077 return -EAGAIN; 2078 } 2079 return 0; 2080 } 2081 2082 static inline u8 ata_dev_knobble(struct ata_device *dev) 2083 { 2084 struct ata_port *ap = dev->link->ap; 2085 2086 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2087 return 0; 2088 2089 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2090 } 2091 2092 static int ata_dev_config_ncq(struct ata_device *dev, 2093 char *desc, size_t desc_sz) 2094 { 2095 struct ata_port *ap = dev->link->ap; 2096 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2097 unsigned int err_mask; 2098 char *aa_desc = ""; 2099 2100 if (!ata_id_has_ncq(dev->id)) { 2101 desc[0] = '\0'; 2102 return 0; 2103 } 2104 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2105 snprintf(desc, desc_sz, "NCQ (not used)"); 2106 return 0; 2107 } 2108 if (ap->flags & ATA_FLAG_NCQ) { 2109 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2110 dev->flags |= ATA_DFLAG_NCQ; 2111 } 2112 2113 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2114 (ap->flags & ATA_FLAG_FPDMA_AA) && 2115 ata_id_has_fpdma_aa(dev->id)) { 2116 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2117 SATA_FPDMA_AA); 2118 if (err_mask) { 2119 ata_dev_err(dev, 2120 "failed to enable AA (error_mask=0x%x)\n", 2121 err_mask); 2122 if (err_mask != AC_ERR_DEV) { 2123 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2124 return -EIO; 2125 } 2126 } else 2127 aa_desc = ", AA"; 2128 } 2129 2130 if (hdepth >= ddepth) 2131 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2132 else 2133 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2134 ddepth, aa_desc); 2135 return 0; 2136 } 2137 2138 /** 2139 * ata_dev_configure - Configure the specified ATA/ATAPI device 2140 * @dev: Target device to configure 2141 * 2142 * Configure @dev according to @dev->id. Generic and low-level 2143 * driver specific fixups are also applied. 2144 * 2145 * LOCKING: 2146 * Kernel thread context (may sleep) 2147 * 2148 * RETURNS: 2149 * 0 on success, -errno otherwise 2150 */ 2151 int ata_dev_configure(struct ata_device *dev) 2152 { 2153 struct ata_port *ap = dev->link->ap; 2154 struct ata_eh_context *ehc = &dev->link->eh_context; 2155 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2156 const u16 *id = dev->id; 2157 unsigned long xfer_mask; 2158 char revbuf[7]; /* XYZ-99\0 */ 2159 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2160 char modelbuf[ATA_ID_PROD_LEN+1]; 2161 int rc; 2162 2163 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2164 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2165 return 0; 2166 } 2167 2168 if (ata_msg_probe(ap)) 2169 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2170 2171 /* set horkage */ 2172 dev->horkage |= ata_dev_blacklisted(dev); 2173 ata_force_horkage(dev); 2174 2175 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2176 ata_dev_info(dev, "unsupported device, disabling\n"); 2177 ata_dev_disable(dev); 2178 return 0; 2179 } 2180 2181 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2182 dev->class == ATA_DEV_ATAPI) { 2183 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2184 atapi_enabled ? "not supported with this driver" 2185 : "disabled"); 2186 ata_dev_disable(dev); 2187 return 0; 2188 } 2189 2190 rc = ata_do_link_spd_horkage(dev); 2191 if (rc) 2192 return rc; 2193 2194 /* let ACPI work its magic */ 2195 rc = ata_acpi_on_devcfg(dev); 2196 if (rc) 2197 return rc; 2198 2199 /* massage HPA, do it early as it might change IDENTIFY data */ 2200 rc = ata_hpa_resize(dev); 2201 if (rc) 2202 return rc; 2203 2204 /* print device capabilities */ 2205 if (ata_msg_probe(ap)) 2206 ata_dev_dbg(dev, 2207 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2208 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2209 __func__, 2210 id[49], id[82], id[83], id[84], 2211 id[85], id[86], id[87], id[88]); 2212 2213 /* initialize to-be-configured parameters */ 2214 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2215 dev->max_sectors = 0; 2216 dev->cdb_len = 0; 2217 dev->n_sectors = 0; 2218 dev->cylinders = 0; 2219 dev->heads = 0; 2220 dev->sectors = 0; 2221 dev->multi_count = 0; 2222 2223 /* 2224 * common ATA, ATAPI feature tests 2225 */ 2226 2227 /* find max transfer mode; for printk only */ 2228 xfer_mask = ata_id_xfermask(id); 2229 2230 if (ata_msg_probe(ap)) 2231 ata_dump_id(id); 2232 2233 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2234 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2235 sizeof(fwrevbuf)); 2236 2237 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2238 sizeof(modelbuf)); 2239 2240 /* ATA-specific feature tests */ 2241 if (dev->class == ATA_DEV_ATA) { 2242 if (ata_id_is_cfa(id)) { 2243 /* CPRM may make this media unusable */ 2244 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2245 ata_dev_warn(dev, 2246 "supports DRM functions and may not be fully accessible\n"); 2247 snprintf(revbuf, 7, "CFA"); 2248 } else { 2249 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2250 /* Warn the user if the device has TPM extensions */ 2251 if (ata_id_has_tpm(id)) 2252 ata_dev_warn(dev, 2253 "supports DRM functions and may not be fully accessible\n"); 2254 } 2255 2256 dev->n_sectors = ata_id_n_sectors(id); 2257 2258 /* get current R/W Multiple count setting */ 2259 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2260 unsigned int max = dev->id[47] & 0xff; 2261 unsigned int cnt = dev->id[59] & 0xff; 2262 /* only recognize/allow powers of two here */ 2263 if (is_power_of_2(max) && is_power_of_2(cnt)) 2264 if (cnt <= max) 2265 dev->multi_count = cnt; 2266 } 2267 2268 if (ata_id_has_lba(id)) { 2269 const char *lba_desc; 2270 char ncq_desc[24]; 2271 2272 lba_desc = "LBA"; 2273 dev->flags |= ATA_DFLAG_LBA; 2274 if (ata_id_has_lba48(id)) { 2275 dev->flags |= ATA_DFLAG_LBA48; 2276 lba_desc = "LBA48"; 2277 2278 if (dev->n_sectors >= (1UL << 28) && 2279 ata_id_has_flush_ext(id)) 2280 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2281 } 2282 2283 /* config NCQ */ 2284 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2285 if (rc) 2286 return rc; 2287 2288 /* print device info to dmesg */ 2289 if (ata_msg_drv(ap) && print_info) { 2290 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2291 revbuf, modelbuf, fwrevbuf, 2292 ata_mode_string(xfer_mask)); 2293 ata_dev_info(dev, 2294 "%llu sectors, multi %u: %s %s\n", 2295 (unsigned long long)dev->n_sectors, 2296 dev->multi_count, lba_desc, ncq_desc); 2297 } 2298 } else { 2299 /* CHS */ 2300 2301 /* Default translation */ 2302 dev->cylinders = id[1]; 2303 dev->heads = id[3]; 2304 dev->sectors = id[6]; 2305 2306 if (ata_id_current_chs_valid(id)) { 2307 /* Current CHS translation is valid. */ 2308 dev->cylinders = id[54]; 2309 dev->heads = id[55]; 2310 dev->sectors = id[56]; 2311 } 2312 2313 /* print device info to dmesg */ 2314 if (ata_msg_drv(ap) && print_info) { 2315 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2316 revbuf, modelbuf, fwrevbuf, 2317 ata_mode_string(xfer_mask)); 2318 ata_dev_info(dev, 2319 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2320 (unsigned long long)dev->n_sectors, 2321 dev->multi_count, dev->cylinders, 2322 dev->heads, dev->sectors); 2323 } 2324 } 2325 2326 dev->cdb_len = 16; 2327 } 2328 2329 /* ATAPI-specific feature tests */ 2330 else if (dev->class == ATA_DEV_ATAPI) { 2331 const char *cdb_intr_string = ""; 2332 const char *atapi_an_string = ""; 2333 const char *dma_dir_string = ""; 2334 u32 sntf; 2335 2336 rc = atapi_cdb_len(id); 2337 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2338 if (ata_msg_warn(ap)) 2339 ata_dev_warn(dev, "unsupported CDB len\n"); 2340 rc = -EINVAL; 2341 goto err_out_nosup; 2342 } 2343 dev->cdb_len = (unsigned int) rc; 2344 2345 /* Enable ATAPI AN if both the host and device have 2346 * the support. If PMP is attached, SNTF is required 2347 * to enable ATAPI AN to discern between PHY status 2348 * changed notifications and ATAPI ANs. 2349 */ 2350 if (atapi_an && 2351 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2352 (!sata_pmp_attached(ap) || 2353 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2354 unsigned int err_mask; 2355 2356 /* issue SET feature command to turn this on */ 2357 err_mask = ata_dev_set_feature(dev, 2358 SETFEATURES_SATA_ENABLE, SATA_AN); 2359 if (err_mask) 2360 ata_dev_err(dev, 2361 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2362 err_mask); 2363 else { 2364 dev->flags |= ATA_DFLAG_AN; 2365 atapi_an_string = ", ATAPI AN"; 2366 } 2367 } 2368 2369 if (ata_id_cdb_intr(dev->id)) { 2370 dev->flags |= ATA_DFLAG_CDB_INTR; 2371 cdb_intr_string = ", CDB intr"; 2372 } 2373 2374 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2375 dev->flags |= ATA_DFLAG_DMADIR; 2376 dma_dir_string = ", DMADIR"; 2377 } 2378 2379 if (ata_id_has_da(dev->id)) 2380 dev->flags |= ATA_DFLAG_DA; 2381 2382 /* print device info to dmesg */ 2383 if (ata_msg_drv(ap) && print_info) 2384 ata_dev_info(dev, 2385 "ATAPI: %s, %s, max %s%s%s%s\n", 2386 modelbuf, fwrevbuf, 2387 ata_mode_string(xfer_mask), 2388 cdb_intr_string, atapi_an_string, 2389 dma_dir_string); 2390 } 2391 2392 /* determine max_sectors */ 2393 dev->max_sectors = ATA_MAX_SECTORS; 2394 if (dev->flags & ATA_DFLAG_LBA48) 2395 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2396 2397 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2398 200 sectors */ 2399 if (ata_dev_knobble(dev)) { 2400 if (ata_msg_drv(ap) && print_info) 2401 ata_dev_info(dev, "applying bridge limits\n"); 2402 dev->udma_mask &= ATA_UDMA5; 2403 dev->max_sectors = ATA_MAX_SECTORS; 2404 } 2405 2406 if ((dev->class == ATA_DEV_ATAPI) && 2407 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2408 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2409 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2410 } 2411 2412 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2413 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2414 dev->max_sectors); 2415 2416 if (ap->ops->dev_config) 2417 ap->ops->dev_config(dev); 2418 2419 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2420 /* Let the user know. We don't want to disallow opens for 2421 rescue purposes, or in case the vendor is just a blithering 2422 idiot. Do this after the dev_config call as some controllers 2423 with buggy firmware may want to avoid reporting false device 2424 bugs */ 2425 2426 if (print_info) { 2427 ata_dev_warn(dev, 2428 "Drive reports diagnostics failure. This may indicate a drive\n"); 2429 ata_dev_warn(dev, 2430 "fault or invalid emulation. Contact drive vendor for information.\n"); 2431 } 2432 } 2433 2434 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2435 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2436 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2437 } 2438 2439 return 0; 2440 2441 err_out_nosup: 2442 if (ata_msg_probe(ap)) 2443 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2444 return rc; 2445 } 2446 2447 /** 2448 * ata_cable_40wire - return 40 wire cable type 2449 * @ap: port 2450 * 2451 * Helper method for drivers which want to hardwire 40 wire cable 2452 * detection. 2453 */ 2454 2455 int ata_cable_40wire(struct ata_port *ap) 2456 { 2457 return ATA_CBL_PATA40; 2458 } 2459 2460 /** 2461 * ata_cable_80wire - return 80 wire cable type 2462 * @ap: port 2463 * 2464 * Helper method for drivers which want to hardwire 80 wire cable 2465 * detection. 2466 */ 2467 2468 int ata_cable_80wire(struct ata_port *ap) 2469 { 2470 return ATA_CBL_PATA80; 2471 } 2472 2473 /** 2474 * ata_cable_unknown - return unknown PATA cable. 2475 * @ap: port 2476 * 2477 * Helper method for drivers which have no PATA cable detection. 2478 */ 2479 2480 int ata_cable_unknown(struct ata_port *ap) 2481 { 2482 return ATA_CBL_PATA_UNK; 2483 } 2484 2485 /** 2486 * ata_cable_ignore - return ignored PATA cable. 2487 * @ap: port 2488 * 2489 * Helper method for drivers which don't use cable type to limit 2490 * transfer mode. 2491 */ 2492 int ata_cable_ignore(struct ata_port *ap) 2493 { 2494 return ATA_CBL_PATA_IGN; 2495 } 2496 2497 /** 2498 * ata_cable_sata - return SATA cable type 2499 * @ap: port 2500 * 2501 * Helper method for drivers which have SATA cables 2502 */ 2503 2504 int ata_cable_sata(struct ata_port *ap) 2505 { 2506 return ATA_CBL_SATA; 2507 } 2508 2509 /** 2510 * ata_bus_probe - Reset and probe ATA bus 2511 * @ap: Bus to probe 2512 * 2513 * Master ATA bus probing function. Initiates a hardware-dependent 2514 * bus reset, then attempts to identify any devices found on 2515 * the bus. 2516 * 2517 * LOCKING: 2518 * PCI/etc. bus probe sem. 2519 * 2520 * RETURNS: 2521 * Zero on success, negative errno otherwise. 2522 */ 2523 2524 int ata_bus_probe(struct ata_port *ap) 2525 { 2526 unsigned int classes[ATA_MAX_DEVICES]; 2527 int tries[ATA_MAX_DEVICES]; 2528 int rc; 2529 struct ata_device *dev; 2530 2531 ata_for_each_dev(dev, &ap->link, ALL) 2532 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2533 2534 retry: 2535 ata_for_each_dev(dev, &ap->link, ALL) { 2536 /* If we issue an SRST then an ATA drive (not ATAPI) 2537 * may change configuration and be in PIO0 timing. If 2538 * we do a hard reset (or are coming from power on) 2539 * this is true for ATA or ATAPI. Until we've set a 2540 * suitable controller mode we should not touch the 2541 * bus as we may be talking too fast. 2542 */ 2543 dev->pio_mode = XFER_PIO_0; 2544 2545 /* If the controller has a pio mode setup function 2546 * then use it to set the chipset to rights. Don't 2547 * touch the DMA setup as that will be dealt with when 2548 * configuring devices. 2549 */ 2550 if (ap->ops->set_piomode) 2551 ap->ops->set_piomode(ap, dev); 2552 } 2553 2554 /* reset and determine device classes */ 2555 ap->ops->phy_reset(ap); 2556 2557 ata_for_each_dev(dev, &ap->link, ALL) { 2558 if (dev->class != ATA_DEV_UNKNOWN) 2559 classes[dev->devno] = dev->class; 2560 else 2561 classes[dev->devno] = ATA_DEV_NONE; 2562 2563 dev->class = ATA_DEV_UNKNOWN; 2564 } 2565 2566 /* read IDENTIFY page and configure devices. We have to do the identify 2567 specific sequence bass-ackwards so that PDIAG- is released by 2568 the slave device */ 2569 2570 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2571 if (tries[dev->devno]) 2572 dev->class = classes[dev->devno]; 2573 2574 if (!ata_dev_enabled(dev)) 2575 continue; 2576 2577 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2578 dev->id); 2579 if (rc) 2580 goto fail; 2581 } 2582 2583 /* Now ask for the cable type as PDIAG- should have been released */ 2584 if (ap->ops->cable_detect) 2585 ap->cbl = ap->ops->cable_detect(ap); 2586 2587 /* We may have SATA bridge glue hiding here irrespective of 2588 * the reported cable types and sensed types. When SATA 2589 * drives indicate we have a bridge, we don't know which end 2590 * of the link the bridge is which is a problem. 2591 */ 2592 ata_for_each_dev(dev, &ap->link, ENABLED) 2593 if (ata_id_is_sata(dev->id)) 2594 ap->cbl = ATA_CBL_SATA; 2595 2596 /* After the identify sequence we can now set up the devices. We do 2597 this in the normal order so that the user doesn't get confused */ 2598 2599 ata_for_each_dev(dev, &ap->link, ENABLED) { 2600 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2601 rc = ata_dev_configure(dev); 2602 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2603 if (rc) 2604 goto fail; 2605 } 2606 2607 /* configure transfer mode */ 2608 rc = ata_set_mode(&ap->link, &dev); 2609 if (rc) 2610 goto fail; 2611 2612 ata_for_each_dev(dev, &ap->link, ENABLED) 2613 return 0; 2614 2615 return -ENODEV; 2616 2617 fail: 2618 tries[dev->devno]--; 2619 2620 switch (rc) { 2621 case -EINVAL: 2622 /* eeek, something went very wrong, give up */ 2623 tries[dev->devno] = 0; 2624 break; 2625 2626 case -ENODEV: 2627 /* give it just one more chance */ 2628 tries[dev->devno] = min(tries[dev->devno], 1); 2629 case -EIO: 2630 if (tries[dev->devno] == 1) { 2631 /* This is the last chance, better to slow 2632 * down than lose it. 2633 */ 2634 sata_down_spd_limit(&ap->link, 0); 2635 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2636 } 2637 } 2638 2639 if (!tries[dev->devno]) 2640 ata_dev_disable(dev); 2641 2642 goto retry; 2643 } 2644 2645 /** 2646 * sata_print_link_status - Print SATA link status 2647 * @link: SATA link to printk link status about 2648 * 2649 * This function prints link speed and status of a SATA link. 2650 * 2651 * LOCKING: 2652 * None. 2653 */ 2654 static void sata_print_link_status(struct ata_link *link) 2655 { 2656 u32 sstatus, scontrol, tmp; 2657 2658 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2659 return; 2660 sata_scr_read(link, SCR_CONTROL, &scontrol); 2661 2662 if (ata_phys_link_online(link)) { 2663 tmp = (sstatus >> 4) & 0xf; 2664 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2665 sata_spd_string(tmp), sstatus, scontrol); 2666 } else { 2667 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2668 sstatus, scontrol); 2669 } 2670 } 2671 2672 /** 2673 * ata_dev_pair - return other device on cable 2674 * @adev: device 2675 * 2676 * Obtain the other device on the same cable, or if none is 2677 * present NULL is returned 2678 */ 2679 2680 struct ata_device *ata_dev_pair(struct ata_device *adev) 2681 { 2682 struct ata_link *link = adev->link; 2683 struct ata_device *pair = &link->device[1 - adev->devno]; 2684 if (!ata_dev_enabled(pair)) 2685 return NULL; 2686 return pair; 2687 } 2688 2689 /** 2690 * sata_down_spd_limit - adjust SATA spd limit downward 2691 * @link: Link to adjust SATA spd limit for 2692 * @spd_limit: Additional limit 2693 * 2694 * Adjust SATA spd limit of @link downward. Note that this 2695 * function only adjusts the limit. The change must be applied 2696 * using sata_set_spd(). 2697 * 2698 * If @spd_limit is non-zero, the speed is limited to equal to or 2699 * lower than @spd_limit if such speed is supported. If 2700 * @spd_limit is slower than any supported speed, only the lowest 2701 * supported speed is allowed. 2702 * 2703 * LOCKING: 2704 * Inherited from caller. 2705 * 2706 * RETURNS: 2707 * 0 on success, negative errno on failure 2708 */ 2709 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2710 { 2711 u32 sstatus, spd, mask; 2712 int rc, bit; 2713 2714 if (!sata_scr_valid(link)) 2715 return -EOPNOTSUPP; 2716 2717 /* If SCR can be read, use it to determine the current SPD. 2718 * If not, use cached value in link->sata_spd. 2719 */ 2720 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2721 if (rc == 0 && ata_sstatus_online(sstatus)) 2722 spd = (sstatus >> 4) & 0xf; 2723 else 2724 spd = link->sata_spd; 2725 2726 mask = link->sata_spd_limit; 2727 if (mask <= 1) 2728 return -EINVAL; 2729 2730 /* unconditionally mask off the highest bit */ 2731 bit = fls(mask) - 1; 2732 mask &= ~(1 << bit); 2733 2734 /* Mask off all speeds higher than or equal to the current 2735 * one. Force 1.5Gbps if current SPD is not available. 2736 */ 2737 if (spd > 1) 2738 mask &= (1 << (spd - 1)) - 1; 2739 else 2740 mask &= 1; 2741 2742 /* were we already at the bottom? */ 2743 if (!mask) 2744 return -EINVAL; 2745 2746 if (spd_limit) { 2747 if (mask & ((1 << spd_limit) - 1)) 2748 mask &= (1 << spd_limit) - 1; 2749 else { 2750 bit = ffs(mask) - 1; 2751 mask = 1 << bit; 2752 } 2753 } 2754 2755 link->sata_spd_limit = mask; 2756 2757 ata_link_warn(link, "limiting SATA link speed to %s\n", 2758 sata_spd_string(fls(mask))); 2759 2760 return 0; 2761 } 2762 2763 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2764 { 2765 struct ata_link *host_link = &link->ap->link; 2766 u32 limit, target, spd; 2767 2768 limit = link->sata_spd_limit; 2769 2770 /* Don't configure downstream link faster than upstream link. 2771 * It doesn't speed up anything and some PMPs choke on such 2772 * configuration. 2773 */ 2774 if (!ata_is_host_link(link) && host_link->sata_spd) 2775 limit &= (1 << host_link->sata_spd) - 1; 2776 2777 if (limit == UINT_MAX) 2778 target = 0; 2779 else 2780 target = fls(limit); 2781 2782 spd = (*scontrol >> 4) & 0xf; 2783 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2784 2785 return spd != target; 2786 } 2787 2788 /** 2789 * sata_set_spd_needed - is SATA spd configuration needed 2790 * @link: Link in question 2791 * 2792 * Test whether the spd limit in SControl matches 2793 * @link->sata_spd_limit. This function is used to determine 2794 * whether hardreset is necessary to apply SATA spd 2795 * configuration. 2796 * 2797 * LOCKING: 2798 * Inherited from caller. 2799 * 2800 * RETURNS: 2801 * 1 if SATA spd configuration is needed, 0 otherwise. 2802 */ 2803 static int sata_set_spd_needed(struct ata_link *link) 2804 { 2805 u32 scontrol; 2806 2807 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2808 return 1; 2809 2810 return __sata_set_spd_needed(link, &scontrol); 2811 } 2812 2813 /** 2814 * sata_set_spd - set SATA spd according to spd limit 2815 * @link: Link to set SATA spd for 2816 * 2817 * Set SATA spd of @link according to sata_spd_limit. 2818 * 2819 * LOCKING: 2820 * Inherited from caller. 2821 * 2822 * RETURNS: 2823 * 0 if spd doesn't need to be changed, 1 if spd has been 2824 * changed. Negative errno if SCR registers are inaccessible. 2825 */ 2826 int sata_set_spd(struct ata_link *link) 2827 { 2828 u32 scontrol; 2829 int rc; 2830 2831 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2832 return rc; 2833 2834 if (!__sata_set_spd_needed(link, &scontrol)) 2835 return 0; 2836 2837 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2838 return rc; 2839 2840 return 1; 2841 } 2842 2843 /* 2844 * This mode timing computation functionality is ported over from 2845 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2846 */ 2847 /* 2848 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2849 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2850 * for UDMA6, which is currently supported only by Maxtor drives. 2851 * 2852 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2853 */ 2854 2855 static const struct ata_timing ata_timing[] = { 2856 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2857 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2858 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2859 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2860 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2861 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2862 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2863 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2864 2865 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2866 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2867 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2868 2869 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2870 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2871 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2872 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2873 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2874 2875 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2876 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2877 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2878 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2879 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2880 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2881 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2882 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2883 2884 { 0xFF } 2885 }; 2886 2887 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2888 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2889 2890 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2891 { 2892 q->setup = EZ(t->setup * 1000, T); 2893 q->act8b = EZ(t->act8b * 1000, T); 2894 q->rec8b = EZ(t->rec8b * 1000, T); 2895 q->cyc8b = EZ(t->cyc8b * 1000, T); 2896 q->active = EZ(t->active * 1000, T); 2897 q->recover = EZ(t->recover * 1000, T); 2898 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2899 q->cycle = EZ(t->cycle * 1000, T); 2900 q->udma = EZ(t->udma * 1000, UT); 2901 } 2902 2903 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2904 struct ata_timing *m, unsigned int what) 2905 { 2906 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2907 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2908 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2909 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2910 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2911 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2912 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2913 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2914 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2915 } 2916 2917 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2918 { 2919 const struct ata_timing *t = ata_timing; 2920 2921 while (xfer_mode > t->mode) 2922 t++; 2923 2924 if (xfer_mode == t->mode) 2925 return t; 2926 return NULL; 2927 } 2928 2929 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2930 struct ata_timing *t, int T, int UT) 2931 { 2932 const u16 *id = adev->id; 2933 const struct ata_timing *s; 2934 struct ata_timing p; 2935 2936 /* 2937 * Find the mode. 2938 */ 2939 2940 if (!(s = ata_timing_find_mode(speed))) 2941 return -EINVAL; 2942 2943 memcpy(t, s, sizeof(*s)); 2944 2945 /* 2946 * If the drive is an EIDE drive, it can tell us it needs extended 2947 * PIO/MW_DMA cycle timing. 2948 */ 2949 2950 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2951 memset(&p, 0, sizeof(p)); 2952 2953 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 2954 if (speed <= XFER_PIO_2) 2955 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 2956 else if ((speed <= XFER_PIO_4) || 2957 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 2958 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 2959 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 2960 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 2961 2962 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2963 } 2964 2965 /* 2966 * Convert the timing to bus clock counts. 2967 */ 2968 2969 ata_timing_quantize(t, t, T, UT); 2970 2971 /* 2972 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2973 * S.M.A.R.T * and some other commands. We have to ensure that the 2974 * DMA cycle timing is slower/equal than the fastest PIO timing. 2975 */ 2976 2977 if (speed > XFER_PIO_6) { 2978 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2979 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2980 } 2981 2982 /* 2983 * Lengthen active & recovery time so that cycle time is correct. 2984 */ 2985 2986 if (t->act8b + t->rec8b < t->cyc8b) { 2987 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2988 t->rec8b = t->cyc8b - t->act8b; 2989 } 2990 2991 if (t->active + t->recover < t->cycle) { 2992 t->active += (t->cycle - (t->active + t->recover)) / 2; 2993 t->recover = t->cycle - t->active; 2994 } 2995 2996 /* In a few cases quantisation may produce enough errors to 2997 leave t->cycle too low for the sum of active and recovery 2998 if so we must correct this */ 2999 if (t->active + t->recover > t->cycle) 3000 t->cycle = t->active + t->recover; 3001 3002 return 0; 3003 } 3004 3005 /** 3006 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3007 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3008 * @cycle: cycle duration in ns 3009 * 3010 * Return matching xfer mode for @cycle. The returned mode is of 3011 * the transfer type specified by @xfer_shift. If @cycle is too 3012 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3013 * than the fastest known mode, the fasted mode is returned. 3014 * 3015 * LOCKING: 3016 * None. 3017 * 3018 * RETURNS: 3019 * Matching xfer_mode, 0xff if no match found. 3020 */ 3021 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3022 { 3023 u8 base_mode = 0xff, last_mode = 0xff; 3024 const struct ata_xfer_ent *ent; 3025 const struct ata_timing *t; 3026 3027 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3028 if (ent->shift == xfer_shift) 3029 base_mode = ent->base; 3030 3031 for (t = ata_timing_find_mode(base_mode); 3032 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3033 unsigned short this_cycle; 3034 3035 switch (xfer_shift) { 3036 case ATA_SHIFT_PIO: 3037 case ATA_SHIFT_MWDMA: 3038 this_cycle = t->cycle; 3039 break; 3040 case ATA_SHIFT_UDMA: 3041 this_cycle = t->udma; 3042 break; 3043 default: 3044 return 0xff; 3045 } 3046 3047 if (cycle > this_cycle) 3048 break; 3049 3050 last_mode = t->mode; 3051 } 3052 3053 return last_mode; 3054 } 3055 3056 /** 3057 * ata_down_xfermask_limit - adjust dev xfer masks downward 3058 * @dev: Device to adjust xfer masks 3059 * @sel: ATA_DNXFER_* selector 3060 * 3061 * Adjust xfer masks of @dev downward. Note that this function 3062 * does not apply the change. Invoking ata_set_mode() afterwards 3063 * will apply the limit. 3064 * 3065 * LOCKING: 3066 * Inherited from caller. 3067 * 3068 * RETURNS: 3069 * 0 on success, negative errno on failure 3070 */ 3071 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3072 { 3073 char buf[32]; 3074 unsigned long orig_mask, xfer_mask; 3075 unsigned long pio_mask, mwdma_mask, udma_mask; 3076 int quiet, highbit; 3077 3078 quiet = !!(sel & ATA_DNXFER_QUIET); 3079 sel &= ~ATA_DNXFER_QUIET; 3080 3081 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3082 dev->mwdma_mask, 3083 dev->udma_mask); 3084 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3085 3086 switch (sel) { 3087 case ATA_DNXFER_PIO: 3088 highbit = fls(pio_mask) - 1; 3089 pio_mask &= ~(1 << highbit); 3090 break; 3091 3092 case ATA_DNXFER_DMA: 3093 if (udma_mask) { 3094 highbit = fls(udma_mask) - 1; 3095 udma_mask &= ~(1 << highbit); 3096 if (!udma_mask) 3097 return -ENOENT; 3098 } else if (mwdma_mask) { 3099 highbit = fls(mwdma_mask) - 1; 3100 mwdma_mask &= ~(1 << highbit); 3101 if (!mwdma_mask) 3102 return -ENOENT; 3103 } 3104 break; 3105 3106 case ATA_DNXFER_40C: 3107 udma_mask &= ATA_UDMA_MASK_40C; 3108 break; 3109 3110 case ATA_DNXFER_FORCE_PIO0: 3111 pio_mask &= 1; 3112 case ATA_DNXFER_FORCE_PIO: 3113 mwdma_mask = 0; 3114 udma_mask = 0; 3115 break; 3116 3117 default: 3118 BUG(); 3119 } 3120 3121 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3122 3123 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3124 return -ENOENT; 3125 3126 if (!quiet) { 3127 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3128 snprintf(buf, sizeof(buf), "%s:%s", 3129 ata_mode_string(xfer_mask), 3130 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3131 else 3132 snprintf(buf, sizeof(buf), "%s", 3133 ata_mode_string(xfer_mask)); 3134 3135 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3136 } 3137 3138 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3139 &dev->udma_mask); 3140 3141 return 0; 3142 } 3143 3144 static int ata_dev_set_mode(struct ata_device *dev) 3145 { 3146 struct ata_port *ap = dev->link->ap; 3147 struct ata_eh_context *ehc = &dev->link->eh_context; 3148 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3149 const char *dev_err_whine = ""; 3150 int ign_dev_err = 0; 3151 unsigned int err_mask = 0; 3152 int rc; 3153 3154 dev->flags &= ~ATA_DFLAG_PIO; 3155 if (dev->xfer_shift == ATA_SHIFT_PIO) 3156 dev->flags |= ATA_DFLAG_PIO; 3157 3158 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3159 dev_err_whine = " (SET_XFERMODE skipped)"; 3160 else { 3161 if (nosetxfer) 3162 ata_dev_warn(dev, 3163 "NOSETXFER but PATA detected - can't " 3164 "skip SETXFER, might malfunction\n"); 3165 err_mask = ata_dev_set_xfermode(dev); 3166 } 3167 3168 if (err_mask & ~AC_ERR_DEV) 3169 goto fail; 3170 3171 /* revalidate */ 3172 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3173 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3174 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3175 if (rc) 3176 return rc; 3177 3178 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3179 /* Old CFA may refuse this command, which is just fine */ 3180 if (ata_id_is_cfa(dev->id)) 3181 ign_dev_err = 1; 3182 /* Catch several broken garbage emulations plus some pre 3183 ATA devices */ 3184 if (ata_id_major_version(dev->id) == 0 && 3185 dev->pio_mode <= XFER_PIO_2) 3186 ign_dev_err = 1; 3187 /* Some very old devices and some bad newer ones fail 3188 any kind of SET_XFERMODE request but support PIO0-2 3189 timings and no IORDY */ 3190 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3191 ign_dev_err = 1; 3192 } 3193 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3194 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3195 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3196 dev->dma_mode == XFER_MW_DMA_0 && 3197 (dev->id[63] >> 8) & 1) 3198 ign_dev_err = 1; 3199 3200 /* if the device is actually configured correctly, ignore dev err */ 3201 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3202 ign_dev_err = 1; 3203 3204 if (err_mask & AC_ERR_DEV) { 3205 if (!ign_dev_err) 3206 goto fail; 3207 else 3208 dev_err_whine = " (device error ignored)"; 3209 } 3210 3211 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3212 dev->xfer_shift, (int)dev->xfer_mode); 3213 3214 ata_dev_info(dev, "configured for %s%s\n", 3215 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3216 dev_err_whine); 3217 3218 return 0; 3219 3220 fail: 3221 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3222 return -EIO; 3223 } 3224 3225 /** 3226 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3227 * @link: link on which timings will be programmed 3228 * @r_failed_dev: out parameter for failed device 3229 * 3230 * Standard implementation of the function used to tune and set 3231 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3232 * ata_dev_set_mode() fails, pointer to the failing device is 3233 * returned in @r_failed_dev. 3234 * 3235 * LOCKING: 3236 * PCI/etc. bus probe sem. 3237 * 3238 * RETURNS: 3239 * 0 on success, negative errno otherwise 3240 */ 3241 3242 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3243 { 3244 struct ata_port *ap = link->ap; 3245 struct ata_device *dev; 3246 int rc = 0, used_dma = 0, found = 0; 3247 3248 /* step 1: calculate xfer_mask */ 3249 ata_for_each_dev(dev, link, ENABLED) { 3250 unsigned long pio_mask, dma_mask; 3251 unsigned int mode_mask; 3252 3253 mode_mask = ATA_DMA_MASK_ATA; 3254 if (dev->class == ATA_DEV_ATAPI) 3255 mode_mask = ATA_DMA_MASK_ATAPI; 3256 else if (ata_id_is_cfa(dev->id)) 3257 mode_mask = ATA_DMA_MASK_CFA; 3258 3259 ata_dev_xfermask(dev); 3260 ata_force_xfermask(dev); 3261 3262 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3263 3264 if (libata_dma_mask & mode_mask) 3265 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3266 dev->udma_mask); 3267 else 3268 dma_mask = 0; 3269 3270 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3271 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3272 3273 found = 1; 3274 if (ata_dma_enabled(dev)) 3275 used_dma = 1; 3276 } 3277 if (!found) 3278 goto out; 3279 3280 /* step 2: always set host PIO timings */ 3281 ata_for_each_dev(dev, link, ENABLED) { 3282 if (dev->pio_mode == 0xff) { 3283 ata_dev_warn(dev, "no PIO support\n"); 3284 rc = -EINVAL; 3285 goto out; 3286 } 3287 3288 dev->xfer_mode = dev->pio_mode; 3289 dev->xfer_shift = ATA_SHIFT_PIO; 3290 if (ap->ops->set_piomode) 3291 ap->ops->set_piomode(ap, dev); 3292 } 3293 3294 /* step 3: set host DMA timings */ 3295 ata_for_each_dev(dev, link, ENABLED) { 3296 if (!ata_dma_enabled(dev)) 3297 continue; 3298 3299 dev->xfer_mode = dev->dma_mode; 3300 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3301 if (ap->ops->set_dmamode) 3302 ap->ops->set_dmamode(ap, dev); 3303 } 3304 3305 /* step 4: update devices' xfer mode */ 3306 ata_for_each_dev(dev, link, ENABLED) { 3307 rc = ata_dev_set_mode(dev); 3308 if (rc) 3309 goto out; 3310 } 3311 3312 /* Record simplex status. If we selected DMA then the other 3313 * host channels are not permitted to do so. 3314 */ 3315 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3316 ap->host->simplex_claimed = ap; 3317 3318 out: 3319 if (rc) 3320 *r_failed_dev = dev; 3321 return rc; 3322 } 3323 3324 /** 3325 * ata_wait_ready - wait for link to become ready 3326 * @link: link to be waited on 3327 * @deadline: deadline jiffies for the operation 3328 * @check_ready: callback to check link readiness 3329 * 3330 * Wait for @link to become ready. @check_ready should return 3331 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3332 * link doesn't seem to be occupied, other errno for other error 3333 * conditions. 3334 * 3335 * Transient -ENODEV conditions are allowed for 3336 * ATA_TMOUT_FF_WAIT. 3337 * 3338 * LOCKING: 3339 * EH context. 3340 * 3341 * RETURNS: 3342 * 0 if @linke is ready before @deadline; otherwise, -errno. 3343 */ 3344 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3345 int (*check_ready)(struct ata_link *link)) 3346 { 3347 unsigned long start = jiffies; 3348 unsigned long nodev_deadline; 3349 int warned = 0; 3350 3351 /* choose which 0xff timeout to use, read comment in libata.h */ 3352 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3353 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3354 else 3355 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3356 3357 /* Slave readiness can't be tested separately from master. On 3358 * M/S emulation configuration, this function should be called 3359 * only on the master and it will handle both master and slave. 3360 */ 3361 WARN_ON(link == link->ap->slave_link); 3362 3363 if (time_after(nodev_deadline, deadline)) 3364 nodev_deadline = deadline; 3365 3366 while (1) { 3367 unsigned long now = jiffies; 3368 int ready, tmp; 3369 3370 ready = tmp = check_ready(link); 3371 if (ready > 0) 3372 return 0; 3373 3374 /* 3375 * -ENODEV could be transient. Ignore -ENODEV if link 3376 * is online. Also, some SATA devices take a long 3377 * time to clear 0xff after reset. Wait for 3378 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3379 * offline. 3380 * 3381 * Note that some PATA controllers (pata_ali) explode 3382 * if status register is read more than once when 3383 * there's no device attached. 3384 */ 3385 if (ready == -ENODEV) { 3386 if (ata_link_online(link)) 3387 ready = 0; 3388 else if ((link->ap->flags & ATA_FLAG_SATA) && 3389 !ata_link_offline(link) && 3390 time_before(now, nodev_deadline)) 3391 ready = 0; 3392 } 3393 3394 if (ready) 3395 return ready; 3396 if (time_after(now, deadline)) 3397 return -EBUSY; 3398 3399 if (!warned && time_after(now, start + 5 * HZ) && 3400 (deadline - now > 3 * HZ)) { 3401 ata_link_warn(link, 3402 "link is slow to respond, please be patient " 3403 "(ready=%d)\n", tmp); 3404 warned = 1; 3405 } 3406 3407 ata_msleep(link->ap, 50); 3408 } 3409 } 3410 3411 /** 3412 * ata_wait_after_reset - wait for link to become ready after reset 3413 * @link: link to be waited on 3414 * @deadline: deadline jiffies for the operation 3415 * @check_ready: callback to check link readiness 3416 * 3417 * Wait for @link to become ready after reset. 3418 * 3419 * LOCKING: 3420 * EH context. 3421 * 3422 * RETURNS: 3423 * 0 if @linke is ready before @deadline; otherwise, -errno. 3424 */ 3425 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3426 int (*check_ready)(struct ata_link *link)) 3427 { 3428 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3429 3430 return ata_wait_ready(link, deadline, check_ready); 3431 } 3432 3433 /** 3434 * sata_link_debounce - debounce SATA phy status 3435 * @link: ATA link to debounce SATA phy status for 3436 * @params: timing parameters { interval, duratinon, timeout } in msec 3437 * @deadline: deadline jiffies for the operation 3438 * 3439 * Make sure SStatus of @link reaches stable state, determined by 3440 * holding the same value where DET is not 1 for @duration polled 3441 * every @interval, before @timeout. Timeout constraints the 3442 * beginning of the stable state. Because DET gets stuck at 1 on 3443 * some controllers after hot unplugging, this functions waits 3444 * until timeout then returns 0 if DET is stable at 1. 3445 * 3446 * @timeout is further limited by @deadline. The sooner of the 3447 * two is used. 3448 * 3449 * LOCKING: 3450 * Kernel thread context (may sleep) 3451 * 3452 * RETURNS: 3453 * 0 on success, -errno on failure. 3454 */ 3455 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3456 unsigned long deadline) 3457 { 3458 unsigned long interval = params[0]; 3459 unsigned long duration = params[1]; 3460 unsigned long last_jiffies, t; 3461 u32 last, cur; 3462 int rc; 3463 3464 t = ata_deadline(jiffies, params[2]); 3465 if (time_before(t, deadline)) 3466 deadline = t; 3467 3468 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3469 return rc; 3470 cur &= 0xf; 3471 3472 last = cur; 3473 last_jiffies = jiffies; 3474 3475 while (1) { 3476 ata_msleep(link->ap, interval); 3477 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3478 return rc; 3479 cur &= 0xf; 3480 3481 /* DET stable? */ 3482 if (cur == last) { 3483 if (cur == 1 && time_before(jiffies, deadline)) 3484 continue; 3485 if (time_after(jiffies, 3486 ata_deadline(last_jiffies, duration))) 3487 return 0; 3488 continue; 3489 } 3490 3491 /* unstable, start over */ 3492 last = cur; 3493 last_jiffies = jiffies; 3494 3495 /* Check deadline. If debouncing failed, return 3496 * -EPIPE to tell upper layer to lower link speed. 3497 */ 3498 if (time_after(jiffies, deadline)) 3499 return -EPIPE; 3500 } 3501 } 3502 3503 /** 3504 * sata_link_resume - resume SATA link 3505 * @link: ATA link to resume SATA 3506 * @params: timing parameters { interval, duratinon, timeout } in msec 3507 * @deadline: deadline jiffies for the operation 3508 * 3509 * Resume SATA phy @link and debounce it. 3510 * 3511 * LOCKING: 3512 * Kernel thread context (may sleep) 3513 * 3514 * RETURNS: 3515 * 0 on success, -errno on failure. 3516 */ 3517 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3518 unsigned long deadline) 3519 { 3520 int tries = ATA_LINK_RESUME_TRIES; 3521 u32 scontrol, serror; 3522 int rc; 3523 3524 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3525 return rc; 3526 3527 /* 3528 * Writes to SControl sometimes get ignored under certain 3529 * controllers (ata_piix SIDPR). Make sure DET actually is 3530 * cleared. 3531 */ 3532 do { 3533 scontrol = (scontrol & 0x0f0) | 0x300; 3534 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3535 return rc; 3536 /* 3537 * Some PHYs react badly if SStatus is pounded 3538 * immediately after resuming. Delay 200ms before 3539 * debouncing. 3540 */ 3541 ata_msleep(link->ap, 200); 3542 3543 /* is SControl restored correctly? */ 3544 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3545 return rc; 3546 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3547 3548 if ((scontrol & 0xf0f) != 0x300) { 3549 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3550 scontrol); 3551 return 0; 3552 } 3553 3554 if (tries < ATA_LINK_RESUME_TRIES) 3555 ata_link_warn(link, "link resume succeeded after %d retries\n", 3556 ATA_LINK_RESUME_TRIES - tries); 3557 3558 if ((rc = sata_link_debounce(link, params, deadline))) 3559 return rc; 3560 3561 /* clear SError, some PHYs require this even for SRST to work */ 3562 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3563 rc = sata_scr_write(link, SCR_ERROR, serror); 3564 3565 return rc != -EINVAL ? rc : 0; 3566 } 3567 3568 /** 3569 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3570 * @link: ATA link to manipulate SControl for 3571 * @policy: LPM policy to configure 3572 * @spm_wakeup: initiate LPM transition to active state 3573 * 3574 * Manipulate the IPM field of the SControl register of @link 3575 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3576 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3577 * the link. This function also clears PHYRDY_CHG before 3578 * returning. 3579 * 3580 * LOCKING: 3581 * EH context. 3582 * 3583 * RETURNS: 3584 * 0 on succes, -errno otherwise. 3585 */ 3586 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3587 bool spm_wakeup) 3588 { 3589 struct ata_eh_context *ehc = &link->eh_context; 3590 bool woken_up = false; 3591 u32 scontrol; 3592 int rc; 3593 3594 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3595 if (rc) 3596 return rc; 3597 3598 switch (policy) { 3599 case ATA_LPM_MAX_POWER: 3600 /* disable all LPM transitions */ 3601 scontrol |= (0x3 << 8); 3602 /* initiate transition to active state */ 3603 if (spm_wakeup) { 3604 scontrol |= (0x4 << 12); 3605 woken_up = true; 3606 } 3607 break; 3608 case ATA_LPM_MED_POWER: 3609 /* allow LPM to PARTIAL */ 3610 scontrol &= ~(0x1 << 8); 3611 scontrol |= (0x2 << 8); 3612 break; 3613 case ATA_LPM_MIN_POWER: 3614 if (ata_link_nr_enabled(link) > 0) 3615 /* no restrictions on LPM transitions */ 3616 scontrol &= ~(0x3 << 8); 3617 else { 3618 /* empty port, power off */ 3619 scontrol &= ~0xf; 3620 scontrol |= (0x1 << 2); 3621 } 3622 break; 3623 default: 3624 WARN_ON(1); 3625 } 3626 3627 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3628 if (rc) 3629 return rc; 3630 3631 /* give the link time to transit out of LPM state */ 3632 if (woken_up) 3633 msleep(10); 3634 3635 /* clear PHYRDY_CHG from SError */ 3636 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3637 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3638 } 3639 3640 /** 3641 * ata_std_prereset - prepare for reset 3642 * @link: ATA link to be reset 3643 * @deadline: deadline jiffies for the operation 3644 * 3645 * @link is about to be reset. Initialize it. Failure from 3646 * prereset makes libata abort whole reset sequence and give up 3647 * that port, so prereset should be best-effort. It does its 3648 * best to prepare for reset sequence but if things go wrong, it 3649 * should just whine, not fail. 3650 * 3651 * LOCKING: 3652 * Kernel thread context (may sleep) 3653 * 3654 * RETURNS: 3655 * 0 on success, -errno otherwise. 3656 */ 3657 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3658 { 3659 struct ata_port *ap = link->ap; 3660 struct ata_eh_context *ehc = &link->eh_context; 3661 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3662 int rc; 3663 3664 /* if we're about to do hardreset, nothing more to do */ 3665 if (ehc->i.action & ATA_EH_HARDRESET) 3666 return 0; 3667 3668 /* if SATA, resume link */ 3669 if (ap->flags & ATA_FLAG_SATA) { 3670 rc = sata_link_resume(link, timing, deadline); 3671 /* whine about phy resume failure but proceed */ 3672 if (rc && rc != -EOPNOTSUPP) 3673 ata_link_warn(link, 3674 "failed to resume link for reset (errno=%d)\n", 3675 rc); 3676 } 3677 3678 /* no point in trying softreset on offline link */ 3679 if (ata_phys_link_offline(link)) 3680 ehc->i.action &= ~ATA_EH_SOFTRESET; 3681 3682 return 0; 3683 } 3684 3685 /** 3686 * sata_link_hardreset - reset link via SATA phy reset 3687 * @link: link to reset 3688 * @timing: timing parameters { interval, duratinon, timeout } in msec 3689 * @deadline: deadline jiffies for the operation 3690 * @online: optional out parameter indicating link onlineness 3691 * @check_ready: optional callback to check link readiness 3692 * 3693 * SATA phy-reset @link using DET bits of SControl register. 3694 * After hardreset, link readiness is waited upon using 3695 * ata_wait_ready() if @check_ready is specified. LLDs are 3696 * allowed to not specify @check_ready and wait itself after this 3697 * function returns. Device classification is LLD's 3698 * responsibility. 3699 * 3700 * *@online is set to one iff reset succeeded and @link is online 3701 * after reset. 3702 * 3703 * LOCKING: 3704 * Kernel thread context (may sleep) 3705 * 3706 * RETURNS: 3707 * 0 on success, -errno otherwise. 3708 */ 3709 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3710 unsigned long deadline, 3711 bool *online, int (*check_ready)(struct ata_link *)) 3712 { 3713 u32 scontrol; 3714 int rc; 3715 3716 DPRINTK("ENTER\n"); 3717 3718 if (online) 3719 *online = false; 3720 3721 if (sata_set_spd_needed(link)) { 3722 /* SATA spec says nothing about how to reconfigure 3723 * spd. To be on the safe side, turn off phy during 3724 * reconfiguration. This works for at least ICH7 AHCI 3725 * and Sil3124. 3726 */ 3727 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3728 goto out; 3729 3730 scontrol = (scontrol & 0x0f0) | 0x304; 3731 3732 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3733 goto out; 3734 3735 sata_set_spd(link); 3736 } 3737 3738 /* issue phy wake/reset */ 3739 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3740 goto out; 3741 3742 scontrol = (scontrol & 0x0f0) | 0x301; 3743 3744 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3745 goto out; 3746 3747 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3748 * 10.4.2 says at least 1 ms. 3749 */ 3750 ata_msleep(link->ap, 1); 3751 3752 /* bring link back */ 3753 rc = sata_link_resume(link, timing, deadline); 3754 if (rc) 3755 goto out; 3756 /* if link is offline nothing more to do */ 3757 if (ata_phys_link_offline(link)) 3758 goto out; 3759 3760 /* Link is online. From this point, -ENODEV too is an error. */ 3761 if (online) 3762 *online = true; 3763 3764 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3765 /* If PMP is supported, we have to do follow-up SRST. 3766 * Some PMPs don't send D2H Reg FIS after hardreset if 3767 * the first port is empty. Wait only for 3768 * ATA_TMOUT_PMP_SRST_WAIT. 3769 */ 3770 if (check_ready) { 3771 unsigned long pmp_deadline; 3772 3773 pmp_deadline = ata_deadline(jiffies, 3774 ATA_TMOUT_PMP_SRST_WAIT); 3775 if (time_after(pmp_deadline, deadline)) 3776 pmp_deadline = deadline; 3777 ata_wait_ready(link, pmp_deadline, check_ready); 3778 } 3779 rc = -EAGAIN; 3780 goto out; 3781 } 3782 3783 rc = 0; 3784 if (check_ready) 3785 rc = ata_wait_ready(link, deadline, check_ready); 3786 out: 3787 if (rc && rc != -EAGAIN) { 3788 /* online is set iff link is online && reset succeeded */ 3789 if (online) 3790 *online = false; 3791 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3792 } 3793 DPRINTK("EXIT, rc=%d\n", rc); 3794 return rc; 3795 } 3796 3797 /** 3798 * sata_std_hardreset - COMRESET w/o waiting or classification 3799 * @link: link to reset 3800 * @class: resulting class of attached device 3801 * @deadline: deadline jiffies for the operation 3802 * 3803 * Standard SATA COMRESET w/o waiting or classification. 3804 * 3805 * LOCKING: 3806 * Kernel thread context (may sleep) 3807 * 3808 * RETURNS: 3809 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3810 */ 3811 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3812 unsigned long deadline) 3813 { 3814 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3815 bool online; 3816 int rc; 3817 3818 /* do hardreset */ 3819 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3820 return online ? -EAGAIN : rc; 3821 } 3822 3823 /** 3824 * ata_std_postreset - standard postreset callback 3825 * @link: the target ata_link 3826 * @classes: classes of attached devices 3827 * 3828 * This function is invoked after a successful reset. Note that 3829 * the device might have been reset more than once using 3830 * different reset methods before postreset is invoked. 3831 * 3832 * LOCKING: 3833 * Kernel thread context (may sleep) 3834 */ 3835 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3836 { 3837 u32 serror; 3838 3839 DPRINTK("ENTER\n"); 3840 3841 /* reset complete, clear SError */ 3842 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3843 sata_scr_write(link, SCR_ERROR, serror); 3844 3845 /* print link status */ 3846 sata_print_link_status(link); 3847 3848 DPRINTK("EXIT\n"); 3849 } 3850 3851 /** 3852 * ata_dev_same_device - Determine whether new ID matches configured device 3853 * @dev: device to compare against 3854 * @new_class: class of the new device 3855 * @new_id: IDENTIFY page of the new device 3856 * 3857 * Compare @new_class and @new_id against @dev and determine 3858 * whether @dev is the device indicated by @new_class and 3859 * @new_id. 3860 * 3861 * LOCKING: 3862 * None. 3863 * 3864 * RETURNS: 3865 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3866 */ 3867 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3868 const u16 *new_id) 3869 { 3870 const u16 *old_id = dev->id; 3871 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3872 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3873 3874 if (dev->class != new_class) { 3875 ata_dev_info(dev, "class mismatch %d != %d\n", 3876 dev->class, new_class); 3877 return 0; 3878 } 3879 3880 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3881 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3882 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3883 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3884 3885 if (strcmp(model[0], model[1])) { 3886 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3887 model[0], model[1]); 3888 return 0; 3889 } 3890 3891 if (strcmp(serial[0], serial[1])) { 3892 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3893 serial[0], serial[1]); 3894 return 0; 3895 } 3896 3897 return 1; 3898 } 3899 3900 /** 3901 * ata_dev_reread_id - Re-read IDENTIFY data 3902 * @dev: target ATA device 3903 * @readid_flags: read ID flags 3904 * 3905 * Re-read IDENTIFY page and make sure @dev is still attached to 3906 * the port. 3907 * 3908 * LOCKING: 3909 * Kernel thread context (may sleep) 3910 * 3911 * RETURNS: 3912 * 0 on success, negative errno otherwise 3913 */ 3914 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3915 { 3916 unsigned int class = dev->class; 3917 u16 *id = (void *)dev->link->ap->sector_buf; 3918 int rc; 3919 3920 /* read ID data */ 3921 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3922 if (rc) 3923 return rc; 3924 3925 /* is the device still there? */ 3926 if (!ata_dev_same_device(dev, class, id)) 3927 return -ENODEV; 3928 3929 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3930 return 0; 3931 } 3932 3933 /** 3934 * ata_dev_revalidate - Revalidate ATA device 3935 * @dev: device to revalidate 3936 * @new_class: new class code 3937 * @readid_flags: read ID flags 3938 * 3939 * Re-read IDENTIFY page, make sure @dev is still attached to the 3940 * port and reconfigure it according to the new IDENTIFY page. 3941 * 3942 * LOCKING: 3943 * Kernel thread context (may sleep) 3944 * 3945 * RETURNS: 3946 * 0 on success, negative errno otherwise 3947 */ 3948 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3949 unsigned int readid_flags) 3950 { 3951 u64 n_sectors = dev->n_sectors; 3952 u64 n_native_sectors = dev->n_native_sectors; 3953 int rc; 3954 3955 if (!ata_dev_enabled(dev)) 3956 return -ENODEV; 3957 3958 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3959 if (ata_class_enabled(new_class) && 3960 new_class != ATA_DEV_ATA && 3961 new_class != ATA_DEV_ATAPI && 3962 new_class != ATA_DEV_SEMB) { 3963 ata_dev_info(dev, "class mismatch %u != %u\n", 3964 dev->class, new_class); 3965 rc = -ENODEV; 3966 goto fail; 3967 } 3968 3969 /* re-read ID */ 3970 rc = ata_dev_reread_id(dev, readid_flags); 3971 if (rc) 3972 goto fail; 3973 3974 /* configure device according to the new ID */ 3975 rc = ata_dev_configure(dev); 3976 if (rc) 3977 goto fail; 3978 3979 /* verify n_sectors hasn't changed */ 3980 if (dev->class != ATA_DEV_ATA || !n_sectors || 3981 dev->n_sectors == n_sectors) 3982 return 0; 3983 3984 /* n_sectors has changed */ 3985 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3986 (unsigned long long)n_sectors, 3987 (unsigned long long)dev->n_sectors); 3988 3989 /* 3990 * Something could have caused HPA to be unlocked 3991 * involuntarily. If n_native_sectors hasn't changed and the 3992 * new size matches it, keep the device. 3993 */ 3994 if (dev->n_native_sectors == n_native_sectors && 3995 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3996 ata_dev_warn(dev, 3997 "new n_sectors matches native, probably " 3998 "late HPA unlock, n_sectors updated\n"); 3999 /* use the larger n_sectors */ 4000 return 0; 4001 } 4002 4003 /* 4004 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4005 * unlocking HPA in those cases. 4006 * 4007 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4008 */ 4009 if (dev->n_native_sectors == n_native_sectors && 4010 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4011 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4012 ata_dev_warn(dev, 4013 "old n_sectors matches native, probably " 4014 "late HPA lock, will try to unlock HPA\n"); 4015 /* try unlocking HPA */ 4016 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4017 rc = -EIO; 4018 } else 4019 rc = -ENODEV; 4020 4021 /* restore original n_[native_]sectors and fail */ 4022 dev->n_native_sectors = n_native_sectors; 4023 dev->n_sectors = n_sectors; 4024 fail: 4025 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4026 return rc; 4027 } 4028 4029 struct ata_blacklist_entry { 4030 const char *model_num; 4031 const char *model_rev; 4032 unsigned long horkage; 4033 }; 4034 4035 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4036 /* Devices with DMA related problems under Linux */ 4037 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4038 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4039 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4040 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4041 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4042 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4043 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4044 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4045 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4046 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4047 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4048 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4049 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4050 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4051 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4052 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4053 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4054 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4055 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4056 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4057 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4058 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4059 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4060 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4061 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4062 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4063 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4064 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4065 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4066 /* Odd clown on sil3726/4726 PMPs */ 4067 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4068 4069 /* Weird ATAPI devices */ 4070 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4071 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4072 4073 /* Devices we expect to fail diagnostics */ 4074 4075 /* Devices where NCQ should be avoided */ 4076 /* NCQ is slow */ 4077 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4078 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4079 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4080 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4081 /* NCQ is broken */ 4082 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4083 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4084 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4085 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4086 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4087 4088 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4089 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4090 ATA_HORKAGE_FIRMWARE_WARN }, 4091 4092 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4093 ATA_HORKAGE_FIRMWARE_WARN }, 4094 4095 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4096 ATA_HORKAGE_FIRMWARE_WARN }, 4097 4098 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4099 ATA_HORKAGE_FIRMWARE_WARN }, 4100 4101 /* Blacklist entries taken from Silicon Image 3124/3132 4102 Windows driver .inf file - also several Linux problem reports */ 4103 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4104 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4105 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4106 4107 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4108 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4109 4110 /* devices which puke on READ_NATIVE_MAX */ 4111 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4112 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4113 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4114 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4115 4116 /* this one allows HPA unlocking but fails IOs on the area */ 4117 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4118 4119 /* Devices which report 1 sector over size HPA */ 4120 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4121 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4122 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4123 4124 /* Devices which get the IVB wrong */ 4125 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4126 /* Maybe we should just blacklist TSSTcorp... */ 4127 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4128 4129 /* Devices that do not need bridging limits applied */ 4130 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4131 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4132 4133 /* Devices which aren't very happy with higher link speeds */ 4134 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4135 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4136 4137 /* 4138 * Devices which choke on SETXFER. Applies only if both the 4139 * device and controller are SATA. 4140 */ 4141 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4142 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4143 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4144 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4145 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4146 4147 /* End Marker */ 4148 { } 4149 }; 4150 4151 /** 4152 * glob_match - match a text string against a glob-style pattern 4153 * @text: the string to be examined 4154 * @pattern: the glob-style pattern to be matched against 4155 * 4156 * Either/both of text and pattern can be empty strings. 4157 * 4158 * Match text against a glob-style pattern, with wildcards and simple sets: 4159 * 4160 * ? matches any single character. 4161 * * matches any run of characters. 4162 * [xyz] matches a single character from the set: x, y, or z. 4163 * [a-d] matches a single character from the range: a, b, c, or d. 4164 * [a-d0-9] matches a single character from either range. 4165 * 4166 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4167 * Behaviour with malformed patterns is undefined, though generally reasonable. 4168 * 4169 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4170 * 4171 * This function uses one level of recursion per '*' in pattern. 4172 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4173 * this will not cause stack problems for any reasonable use here. 4174 * 4175 * RETURNS: 4176 * 0 on match, 1 otherwise. 4177 */ 4178 static int glob_match (const char *text, const char *pattern) 4179 { 4180 do { 4181 /* Match single character or a '?' wildcard */ 4182 if (*text == *pattern || *pattern == '?') { 4183 if (!*pattern++) 4184 return 0; /* End of both strings: match */ 4185 } else { 4186 /* Match single char against a '[' bracketed ']' pattern set */ 4187 if (!*text || *pattern != '[') 4188 break; /* Not a pattern set */ 4189 while (*++pattern && *pattern != ']' && *text != *pattern) { 4190 if (*pattern == '-' && *(pattern - 1) != '[') 4191 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4192 ++pattern; 4193 break; 4194 } 4195 } 4196 if (!*pattern || *pattern == ']') 4197 return 1; /* No match */ 4198 while (*pattern && *pattern++ != ']'); 4199 } 4200 } while (*++text && *pattern); 4201 4202 /* Match any run of chars against a '*' wildcard */ 4203 if (*pattern == '*') { 4204 if (!*++pattern) 4205 return 0; /* Match: avoid recursion at end of pattern */ 4206 /* Loop to handle additional pattern chars after the wildcard */ 4207 while (*text) { 4208 if (glob_match(text, pattern) == 0) 4209 return 0; /* Remainder matched */ 4210 ++text; /* Absorb (match) this char and try again */ 4211 } 4212 } 4213 if (!*text && !*pattern) 4214 return 0; /* End of both strings: match */ 4215 return 1; /* No match */ 4216 } 4217 4218 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4219 { 4220 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4221 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4222 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4223 4224 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4225 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4226 4227 while (ad->model_num) { 4228 if (!glob_match(model_num, ad->model_num)) { 4229 if (ad->model_rev == NULL) 4230 return ad->horkage; 4231 if (!glob_match(model_rev, ad->model_rev)) 4232 return ad->horkage; 4233 } 4234 ad++; 4235 } 4236 return 0; 4237 } 4238 4239 static int ata_dma_blacklisted(const struct ata_device *dev) 4240 { 4241 /* We don't support polling DMA. 4242 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4243 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4244 */ 4245 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4246 (dev->flags & ATA_DFLAG_CDB_INTR)) 4247 return 1; 4248 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4249 } 4250 4251 /** 4252 * ata_is_40wire - check drive side detection 4253 * @dev: device 4254 * 4255 * Perform drive side detection decoding, allowing for device vendors 4256 * who can't follow the documentation. 4257 */ 4258 4259 static int ata_is_40wire(struct ata_device *dev) 4260 { 4261 if (dev->horkage & ATA_HORKAGE_IVB) 4262 return ata_drive_40wire_relaxed(dev->id); 4263 return ata_drive_40wire(dev->id); 4264 } 4265 4266 /** 4267 * cable_is_40wire - 40/80/SATA decider 4268 * @ap: port to consider 4269 * 4270 * This function encapsulates the policy for speed management 4271 * in one place. At the moment we don't cache the result but 4272 * there is a good case for setting ap->cbl to the result when 4273 * we are called with unknown cables (and figuring out if it 4274 * impacts hotplug at all). 4275 * 4276 * Return 1 if the cable appears to be 40 wire. 4277 */ 4278 4279 static int cable_is_40wire(struct ata_port *ap) 4280 { 4281 struct ata_link *link; 4282 struct ata_device *dev; 4283 4284 /* If the controller thinks we are 40 wire, we are. */ 4285 if (ap->cbl == ATA_CBL_PATA40) 4286 return 1; 4287 4288 /* If the controller thinks we are 80 wire, we are. */ 4289 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4290 return 0; 4291 4292 /* If the system is known to be 40 wire short cable (eg 4293 * laptop), then we allow 80 wire modes even if the drive 4294 * isn't sure. 4295 */ 4296 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4297 return 0; 4298 4299 /* If the controller doesn't know, we scan. 4300 * 4301 * Note: We look for all 40 wire detects at this point. Any 4302 * 80 wire detect is taken to be 80 wire cable because 4303 * - in many setups only the one drive (slave if present) will 4304 * give a valid detect 4305 * - if you have a non detect capable drive you don't want it 4306 * to colour the choice 4307 */ 4308 ata_for_each_link(link, ap, EDGE) { 4309 ata_for_each_dev(dev, link, ENABLED) { 4310 if (!ata_is_40wire(dev)) 4311 return 0; 4312 } 4313 } 4314 return 1; 4315 } 4316 4317 /** 4318 * ata_dev_xfermask - Compute supported xfermask of the given device 4319 * @dev: Device to compute xfermask for 4320 * 4321 * Compute supported xfermask of @dev and store it in 4322 * dev->*_mask. This function is responsible for applying all 4323 * known limits including host controller limits, device 4324 * blacklist, etc... 4325 * 4326 * LOCKING: 4327 * None. 4328 */ 4329 static void ata_dev_xfermask(struct ata_device *dev) 4330 { 4331 struct ata_link *link = dev->link; 4332 struct ata_port *ap = link->ap; 4333 struct ata_host *host = ap->host; 4334 unsigned long xfer_mask; 4335 4336 /* controller modes available */ 4337 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4338 ap->mwdma_mask, ap->udma_mask); 4339 4340 /* drive modes available */ 4341 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4342 dev->mwdma_mask, dev->udma_mask); 4343 xfer_mask &= ata_id_xfermask(dev->id); 4344 4345 /* 4346 * CFA Advanced TrueIDE timings are not allowed on a shared 4347 * cable 4348 */ 4349 if (ata_dev_pair(dev)) { 4350 /* No PIO5 or PIO6 */ 4351 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4352 /* No MWDMA3 or MWDMA 4 */ 4353 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4354 } 4355 4356 if (ata_dma_blacklisted(dev)) { 4357 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4358 ata_dev_warn(dev, 4359 "device is on DMA blacklist, disabling DMA\n"); 4360 } 4361 4362 if ((host->flags & ATA_HOST_SIMPLEX) && 4363 host->simplex_claimed && host->simplex_claimed != ap) { 4364 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4365 ata_dev_warn(dev, 4366 "simplex DMA is claimed by other device, disabling DMA\n"); 4367 } 4368 4369 if (ap->flags & ATA_FLAG_NO_IORDY) 4370 xfer_mask &= ata_pio_mask_no_iordy(dev); 4371 4372 if (ap->ops->mode_filter) 4373 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4374 4375 /* Apply cable rule here. Don't apply it early because when 4376 * we handle hot plug the cable type can itself change. 4377 * Check this last so that we know if the transfer rate was 4378 * solely limited by the cable. 4379 * Unknown or 80 wire cables reported host side are checked 4380 * drive side as well. Cases where we know a 40wire cable 4381 * is used safely for 80 are not checked here. 4382 */ 4383 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4384 /* UDMA/44 or higher would be available */ 4385 if (cable_is_40wire(ap)) { 4386 ata_dev_warn(dev, 4387 "limited to UDMA/33 due to 40-wire cable\n"); 4388 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4389 } 4390 4391 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4392 &dev->mwdma_mask, &dev->udma_mask); 4393 } 4394 4395 /** 4396 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4397 * @dev: Device to which command will be sent 4398 * 4399 * Issue SET FEATURES - XFER MODE command to device @dev 4400 * on port @ap. 4401 * 4402 * LOCKING: 4403 * PCI/etc. bus probe sem. 4404 * 4405 * RETURNS: 4406 * 0 on success, AC_ERR_* mask otherwise. 4407 */ 4408 4409 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4410 { 4411 struct ata_taskfile tf; 4412 unsigned int err_mask; 4413 4414 /* set up set-features taskfile */ 4415 DPRINTK("set features - xfer mode\n"); 4416 4417 /* Some controllers and ATAPI devices show flaky interrupt 4418 * behavior after setting xfer mode. Use polling instead. 4419 */ 4420 ata_tf_init(dev, &tf); 4421 tf.command = ATA_CMD_SET_FEATURES; 4422 tf.feature = SETFEATURES_XFER; 4423 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4424 tf.protocol = ATA_PROT_NODATA; 4425 /* If we are using IORDY we must send the mode setting command */ 4426 if (ata_pio_need_iordy(dev)) 4427 tf.nsect = dev->xfer_mode; 4428 /* If the device has IORDY and the controller does not - turn it off */ 4429 else if (ata_id_has_iordy(dev->id)) 4430 tf.nsect = 0x01; 4431 else /* In the ancient relic department - skip all of this */ 4432 return 0; 4433 4434 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4435 4436 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4437 return err_mask; 4438 } 4439 4440 /** 4441 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4442 * @dev: Device to which command will be sent 4443 * @enable: Whether to enable or disable the feature 4444 * @feature: The sector count represents the feature to set 4445 * 4446 * Issue SET FEATURES - SATA FEATURES command to device @dev 4447 * on port @ap with sector count 4448 * 4449 * LOCKING: 4450 * PCI/etc. bus probe sem. 4451 * 4452 * RETURNS: 4453 * 0 on success, AC_ERR_* mask otherwise. 4454 */ 4455 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4456 { 4457 struct ata_taskfile tf; 4458 unsigned int err_mask; 4459 4460 /* set up set-features taskfile */ 4461 DPRINTK("set features - SATA features\n"); 4462 4463 ata_tf_init(dev, &tf); 4464 tf.command = ATA_CMD_SET_FEATURES; 4465 tf.feature = enable; 4466 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4467 tf.protocol = ATA_PROT_NODATA; 4468 tf.nsect = feature; 4469 4470 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4471 4472 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4473 return err_mask; 4474 } 4475 4476 /** 4477 * ata_dev_init_params - Issue INIT DEV PARAMS command 4478 * @dev: Device to which command will be sent 4479 * @heads: Number of heads (taskfile parameter) 4480 * @sectors: Number of sectors (taskfile parameter) 4481 * 4482 * LOCKING: 4483 * Kernel thread context (may sleep) 4484 * 4485 * RETURNS: 4486 * 0 on success, AC_ERR_* mask otherwise. 4487 */ 4488 static unsigned int ata_dev_init_params(struct ata_device *dev, 4489 u16 heads, u16 sectors) 4490 { 4491 struct ata_taskfile tf; 4492 unsigned int err_mask; 4493 4494 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4495 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4496 return AC_ERR_INVALID; 4497 4498 /* set up init dev params taskfile */ 4499 DPRINTK("init dev params \n"); 4500 4501 ata_tf_init(dev, &tf); 4502 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4503 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4504 tf.protocol = ATA_PROT_NODATA; 4505 tf.nsect = sectors; 4506 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4507 4508 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4509 /* A clean abort indicates an original or just out of spec drive 4510 and we should continue as we issue the setup based on the 4511 drive reported working geometry */ 4512 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4513 err_mask = 0; 4514 4515 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4516 return err_mask; 4517 } 4518 4519 /** 4520 * ata_sg_clean - Unmap DMA memory associated with command 4521 * @qc: Command containing DMA memory to be released 4522 * 4523 * Unmap all mapped DMA memory associated with this command. 4524 * 4525 * LOCKING: 4526 * spin_lock_irqsave(host lock) 4527 */ 4528 void ata_sg_clean(struct ata_queued_cmd *qc) 4529 { 4530 struct ata_port *ap = qc->ap; 4531 struct scatterlist *sg = qc->sg; 4532 int dir = qc->dma_dir; 4533 4534 WARN_ON_ONCE(sg == NULL); 4535 4536 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4537 4538 if (qc->n_elem) 4539 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4540 4541 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4542 qc->sg = NULL; 4543 } 4544 4545 /** 4546 * atapi_check_dma - Check whether ATAPI DMA can be supported 4547 * @qc: Metadata associated with taskfile to check 4548 * 4549 * Allow low-level driver to filter ATA PACKET commands, returning 4550 * a status indicating whether or not it is OK to use DMA for the 4551 * supplied PACKET command. 4552 * 4553 * LOCKING: 4554 * spin_lock_irqsave(host lock) 4555 * 4556 * RETURNS: 0 when ATAPI DMA can be used 4557 * nonzero otherwise 4558 */ 4559 int atapi_check_dma(struct ata_queued_cmd *qc) 4560 { 4561 struct ata_port *ap = qc->ap; 4562 4563 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4564 * few ATAPI devices choke on such DMA requests. 4565 */ 4566 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4567 unlikely(qc->nbytes & 15)) 4568 return 1; 4569 4570 if (ap->ops->check_atapi_dma) 4571 return ap->ops->check_atapi_dma(qc); 4572 4573 return 0; 4574 } 4575 4576 /** 4577 * ata_std_qc_defer - Check whether a qc needs to be deferred 4578 * @qc: ATA command in question 4579 * 4580 * Non-NCQ commands cannot run with any other command, NCQ or 4581 * not. As upper layer only knows the queue depth, we are 4582 * responsible for maintaining exclusion. This function checks 4583 * whether a new command @qc can be issued. 4584 * 4585 * LOCKING: 4586 * spin_lock_irqsave(host lock) 4587 * 4588 * RETURNS: 4589 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4590 */ 4591 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4592 { 4593 struct ata_link *link = qc->dev->link; 4594 4595 if (qc->tf.protocol == ATA_PROT_NCQ) { 4596 if (!ata_tag_valid(link->active_tag)) 4597 return 0; 4598 } else { 4599 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4600 return 0; 4601 } 4602 4603 return ATA_DEFER_LINK; 4604 } 4605 4606 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4607 4608 /** 4609 * ata_sg_init - Associate command with scatter-gather table. 4610 * @qc: Command to be associated 4611 * @sg: Scatter-gather table. 4612 * @n_elem: Number of elements in s/g table. 4613 * 4614 * Initialize the data-related elements of queued_cmd @qc 4615 * to point to a scatter-gather table @sg, containing @n_elem 4616 * elements. 4617 * 4618 * LOCKING: 4619 * spin_lock_irqsave(host lock) 4620 */ 4621 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4622 unsigned int n_elem) 4623 { 4624 qc->sg = sg; 4625 qc->n_elem = n_elem; 4626 qc->cursg = qc->sg; 4627 } 4628 4629 /** 4630 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4631 * @qc: Command with scatter-gather table to be mapped. 4632 * 4633 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4634 * 4635 * LOCKING: 4636 * spin_lock_irqsave(host lock) 4637 * 4638 * RETURNS: 4639 * Zero on success, negative on error. 4640 * 4641 */ 4642 static int ata_sg_setup(struct ata_queued_cmd *qc) 4643 { 4644 struct ata_port *ap = qc->ap; 4645 unsigned int n_elem; 4646 4647 VPRINTK("ENTER, ata%u\n", ap->print_id); 4648 4649 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4650 if (n_elem < 1) 4651 return -1; 4652 4653 DPRINTK("%d sg elements mapped\n", n_elem); 4654 qc->orig_n_elem = qc->n_elem; 4655 qc->n_elem = n_elem; 4656 qc->flags |= ATA_QCFLAG_DMAMAP; 4657 4658 return 0; 4659 } 4660 4661 /** 4662 * swap_buf_le16 - swap halves of 16-bit words in place 4663 * @buf: Buffer to swap 4664 * @buf_words: Number of 16-bit words in buffer. 4665 * 4666 * Swap halves of 16-bit words if needed to convert from 4667 * little-endian byte order to native cpu byte order, or 4668 * vice-versa. 4669 * 4670 * LOCKING: 4671 * Inherited from caller. 4672 */ 4673 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4674 { 4675 #ifdef __BIG_ENDIAN 4676 unsigned int i; 4677 4678 for (i = 0; i < buf_words; i++) 4679 buf[i] = le16_to_cpu(buf[i]); 4680 #endif /* __BIG_ENDIAN */ 4681 } 4682 4683 /** 4684 * ata_qc_new - Request an available ATA command, for queueing 4685 * @ap: target port 4686 * 4687 * LOCKING: 4688 * None. 4689 */ 4690 4691 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4692 { 4693 struct ata_queued_cmd *qc = NULL; 4694 unsigned int i; 4695 4696 /* no command while frozen */ 4697 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4698 return NULL; 4699 4700 /* the last tag is reserved for internal command. */ 4701 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4702 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4703 qc = __ata_qc_from_tag(ap, i); 4704 break; 4705 } 4706 4707 if (qc) 4708 qc->tag = i; 4709 4710 return qc; 4711 } 4712 4713 /** 4714 * ata_qc_new_init - Request an available ATA command, and initialize it 4715 * @dev: Device from whom we request an available command structure 4716 * 4717 * LOCKING: 4718 * None. 4719 */ 4720 4721 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4722 { 4723 struct ata_port *ap = dev->link->ap; 4724 struct ata_queued_cmd *qc; 4725 4726 qc = ata_qc_new(ap); 4727 if (qc) { 4728 qc->scsicmd = NULL; 4729 qc->ap = ap; 4730 qc->dev = dev; 4731 4732 ata_qc_reinit(qc); 4733 } 4734 4735 return qc; 4736 } 4737 4738 /** 4739 * ata_qc_free - free unused ata_queued_cmd 4740 * @qc: Command to complete 4741 * 4742 * Designed to free unused ata_queued_cmd object 4743 * in case something prevents using it. 4744 * 4745 * LOCKING: 4746 * spin_lock_irqsave(host lock) 4747 */ 4748 void ata_qc_free(struct ata_queued_cmd *qc) 4749 { 4750 struct ata_port *ap; 4751 unsigned int tag; 4752 4753 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4754 ap = qc->ap; 4755 4756 qc->flags = 0; 4757 tag = qc->tag; 4758 if (likely(ata_tag_valid(tag))) { 4759 qc->tag = ATA_TAG_POISON; 4760 clear_bit(tag, &ap->qc_allocated); 4761 } 4762 } 4763 4764 void __ata_qc_complete(struct ata_queued_cmd *qc) 4765 { 4766 struct ata_port *ap; 4767 struct ata_link *link; 4768 4769 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4770 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4771 ap = qc->ap; 4772 link = qc->dev->link; 4773 4774 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4775 ata_sg_clean(qc); 4776 4777 /* command should be marked inactive atomically with qc completion */ 4778 if (qc->tf.protocol == ATA_PROT_NCQ) { 4779 link->sactive &= ~(1 << qc->tag); 4780 if (!link->sactive) 4781 ap->nr_active_links--; 4782 } else { 4783 link->active_tag = ATA_TAG_POISON; 4784 ap->nr_active_links--; 4785 } 4786 4787 /* clear exclusive status */ 4788 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4789 ap->excl_link == link)) 4790 ap->excl_link = NULL; 4791 4792 /* atapi: mark qc as inactive to prevent the interrupt handler 4793 * from completing the command twice later, before the error handler 4794 * is called. (when rc != 0 and atapi request sense is needed) 4795 */ 4796 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4797 ap->qc_active &= ~(1 << qc->tag); 4798 4799 /* call completion callback */ 4800 qc->complete_fn(qc); 4801 } 4802 4803 static void fill_result_tf(struct ata_queued_cmd *qc) 4804 { 4805 struct ata_port *ap = qc->ap; 4806 4807 qc->result_tf.flags = qc->tf.flags; 4808 ap->ops->qc_fill_rtf(qc); 4809 } 4810 4811 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4812 { 4813 struct ata_device *dev = qc->dev; 4814 4815 if (ata_is_nodata(qc->tf.protocol)) 4816 return; 4817 4818 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4819 return; 4820 4821 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4822 } 4823 4824 /** 4825 * ata_qc_complete - Complete an active ATA command 4826 * @qc: Command to complete 4827 * 4828 * Indicate to the mid and upper layers that an ATA command has 4829 * completed, with either an ok or not-ok status. 4830 * 4831 * Refrain from calling this function multiple times when 4832 * successfully completing multiple NCQ commands. 4833 * ata_qc_complete_multiple() should be used instead, which will 4834 * properly update IRQ expect state. 4835 * 4836 * LOCKING: 4837 * spin_lock_irqsave(host lock) 4838 */ 4839 void ata_qc_complete(struct ata_queued_cmd *qc) 4840 { 4841 struct ata_port *ap = qc->ap; 4842 4843 /* XXX: New EH and old EH use different mechanisms to 4844 * synchronize EH with regular execution path. 4845 * 4846 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4847 * Normal execution path is responsible for not accessing a 4848 * failed qc. libata core enforces the rule by returning NULL 4849 * from ata_qc_from_tag() for failed qcs. 4850 * 4851 * Old EH depends on ata_qc_complete() nullifying completion 4852 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4853 * not synchronize with interrupt handler. Only PIO task is 4854 * taken care of. 4855 */ 4856 if (ap->ops->error_handler) { 4857 struct ata_device *dev = qc->dev; 4858 struct ata_eh_info *ehi = &dev->link->eh_info; 4859 4860 if (unlikely(qc->err_mask)) 4861 qc->flags |= ATA_QCFLAG_FAILED; 4862 4863 /* 4864 * Finish internal commands without any further processing 4865 * and always with the result TF filled. 4866 */ 4867 if (unlikely(ata_tag_internal(qc->tag))) { 4868 fill_result_tf(qc); 4869 __ata_qc_complete(qc); 4870 return; 4871 } 4872 4873 /* 4874 * Non-internal qc has failed. Fill the result TF and 4875 * summon EH. 4876 */ 4877 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4878 fill_result_tf(qc); 4879 ata_qc_schedule_eh(qc); 4880 return; 4881 } 4882 4883 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4884 4885 /* read result TF if requested */ 4886 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4887 fill_result_tf(qc); 4888 4889 /* Some commands need post-processing after successful 4890 * completion. 4891 */ 4892 switch (qc->tf.command) { 4893 case ATA_CMD_SET_FEATURES: 4894 if (qc->tf.feature != SETFEATURES_WC_ON && 4895 qc->tf.feature != SETFEATURES_WC_OFF) 4896 break; 4897 /* fall through */ 4898 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4899 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4900 /* revalidate device */ 4901 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4902 ata_port_schedule_eh(ap); 4903 break; 4904 4905 case ATA_CMD_SLEEP: 4906 dev->flags |= ATA_DFLAG_SLEEPING; 4907 break; 4908 } 4909 4910 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4911 ata_verify_xfer(qc); 4912 4913 __ata_qc_complete(qc); 4914 } else { 4915 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4916 return; 4917 4918 /* read result TF if failed or requested */ 4919 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4920 fill_result_tf(qc); 4921 4922 __ata_qc_complete(qc); 4923 } 4924 } 4925 4926 /** 4927 * ata_qc_complete_multiple - Complete multiple qcs successfully 4928 * @ap: port in question 4929 * @qc_active: new qc_active mask 4930 * 4931 * Complete in-flight commands. This functions is meant to be 4932 * called from low-level driver's interrupt routine to complete 4933 * requests normally. ap->qc_active and @qc_active is compared 4934 * and commands are completed accordingly. 4935 * 4936 * Always use this function when completing multiple NCQ commands 4937 * from IRQ handlers instead of calling ata_qc_complete() 4938 * multiple times to keep IRQ expect status properly in sync. 4939 * 4940 * LOCKING: 4941 * spin_lock_irqsave(host lock) 4942 * 4943 * RETURNS: 4944 * Number of completed commands on success, -errno otherwise. 4945 */ 4946 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4947 { 4948 int nr_done = 0; 4949 u32 done_mask; 4950 4951 done_mask = ap->qc_active ^ qc_active; 4952 4953 if (unlikely(done_mask & qc_active)) { 4954 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 4955 ap->qc_active, qc_active); 4956 return -EINVAL; 4957 } 4958 4959 while (done_mask) { 4960 struct ata_queued_cmd *qc; 4961 unsigned int tag = __ffs(done_mask); 4962 4963 qc = ata_qc_from_tag(ap, tag); 4964 if (qc) { 4965 ata_qc_complete(qc); 4966 nr_done++; 4967 } 4968 done_mask &= ~(1 << tag); 4969 } 4970 4971 return nr_done; 4972 } 4973 4974 /** 4975 * ata_qc_issue - issue taskfile to device 4976 * @qc: command to issue to device 4977 * 4978 * Prepare an ATA command to submission to device. 4979 * This includes mapping the data into a DMA-able 4980 * area, filling in the S/G table, and finally 4981 * writing the taskfile to hardware, starting the command. 4982 * 4983 * LOCKING: 4984 * spin_lock_irqsave(host lock) 4985 */ 4986 void ata_qc_issue(struct ata_queued_cmd *qc) 4987 { 4988 struct ata_port *ap = qc->ap; 4989 struct ata_link *link = qc->dev->link; 4990 u8 prot = qc->tf.protocol; 4991 4992 /* Make sure only one non-NCQ command is outstanding. The 4993 * check is skipped for old EH because it reuses active qc to 4994 * request ATAPI sense. 4995 */ 4996 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4997 4998 if (ata_is_ncq(prot)) { 4999 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5000 5001 if (!link->sactive) 5002 ap->nr_active_links++; 5003 link->sactive |= 1 << qc->tag; 5004 } else { 5005 WARN_ON_ONCE(link->sactive); 5006 5007 ap->nr_active_links++; 5008 link->active_tag = qc->tag; 5009 } 5010 5011 qc->flags |= ATA_QCFLAG_ACTIVE; 5012 ap->qc_active |= 1 << qc->tag; 5013 5014 /* 5015 * We guarantee to LLDs that they will have at least one 5016 * non-zero sg if the command is a data command. 5017 */ 5018 if (WARN_ON_ONCE(ata_is_data(prot) && 5019 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5020 goto sys_err; 5021 5022 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5023 (ap->flags & ATA_FLAG_PIO_DMA))) 5024 if (ata_sg_setup(qc)) 5025 goto sys_err; 5026 5027 /* if device is sleeping, schedule reset and abort the link */ 5028 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5029 link->eh_info.action |= ATA_EH_RESET; 5030 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5031 ata_link_abort(link); 5032 return; 5033 } 5034 5035 ap->ops->qc_prep(qc); 5036 5037 qc->err_mask |= ap->ops->qc_issue(qc); 5038 if (unlikely(qc->err_mask)) 5039 goto err; 5040 return; 5041 5042 sys_err: 5043 qc->err_mask |= AC_ERR_SYSTEM; 5044 err: 5045 ata_qc_complete(qc); 5046 } 5047 5048 /** 5049 * sata_scr_valid - test whether SCRs are accessible 5050 * @link: ATA link to test SCR accessibility for 5051 * 5052 * Test whether SCRs are accessible for @link. 5053 * 5054 * LOCKING: 5055 * None. 5056 * 5057 * RETURNS: 5058 * 1 if SCRs are accessible, 0 otherwise. 5059 */ 5060 int sata_scr_valid(struct ata_link *link) 5061 { 5062 struct ata_port *ap = link->ap; 5063 5064 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5065 } 5066 5067 /** 5068 * sata_scr_read - read SCR register of the specified port 5069 * @link: ATA link to read SCR for 5070 * @reg: SCR to read 5071 * @val: Place to store read value 5072 * 5073 * Read SCR register @reg of @link into *@val. This function is 5074 * guaranteed to succeed if @link is ap->link, the cable type of 5075 * the port is SATA and the port implements ->scr_read. 5076 * 5077 * LOCKING: 5078 * None if @link is ap->link. Kernel thread context otherwise. 5079 * 5080 * RETURNS: 5081 * 0 on success, negative errno on failure. 5082 */ 5083 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5084 { 5085 if (ata_is_host_link(link)) { 5086 if (sata_scr_valid(link)) 5087 return link->ap->ops->scr_read(link, reg, val); 5088 return -EOPNOTSUPP; 5089 } 5090 5091 return sata_pmp_scr_read(link, reg, val); 5092 } 5093 5094 /** 5095 * sata_scr_write - write SCR register of the specified port 5096 * @link: ATA link to write SCR for 5097 * @reg: SCR to write 5098 * @val: value to write 5099 * 5100 * Write @val to SCR register @reg of @link. This function is 5101 * guaranteed to succeed if @link is ap->link, the cable type of 5102 * the port is SATA and the port implements ->scr_read. 5103 * 5104 * LOCKING: 5105 * None if @link is ap->link. Kernel thread context otherwise. 5106 * 5107 * RETURNS: 5108 * 0 on success, negative errno on failure. 5109 */ 5110 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5111 { 5112 if (ata_is_host_link(link)) { 5113 if (sata_scr_valid(link)) 5114 return link->ap->ops->scr_write(link, reg, val); 5115 return -EOPNOTSUPP; 5116 } 5117 5118 return sata_pmp_scr_write(link, reg, val); 5119 } 5120 5121 /** 5122 * sata_scr_write_flush - write SCR register of the specified port and flush 5123 * @link: ATA link to write SCR for 5124 * @reg: SCR to write 5125 * @val: value to write 5126 * 5127 * This function is identical to sata_scr_write() except that this 5128 * function performs flush after writing to the register. 5129 * 5130 * LOCKING: 5131 * None if @link is ap->link. Kernel thread context otherwise. 5132 * 5133 * RETURNS: 5134 * 0 on success, negative errno on failure. 5135 */ 5136 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5137 { 5138 if (ata_is_host_link(link)) { 5139 int rc; 5140 5141 if (sata_scr_valid(link)) { 5142 rc = link->ap->ops->scr_write(link, reg, val); 5143 if (rc == 0) 5144 rc = link->ap->ops->scr_read(link, reg, &val); 5145 return rc; 5146 } 5147 return -EOPNOTSUPP; 5148 } 5149 5150 return sata_pmp_scr_write(link, reg, val); 5151 } 5152 5153 /** 5154 * ata_phys_link_online - test whether the given link is online 5155 * @link: ATA link to test 5156 * 5157 * Test whether @link is online. Note that this function returns 5158 * 0 if online status of @link cannot be obtained, so 5159 * ata_link_online(link) != !ata_link_offline(link). 5160 * 5161 * LOCKING: 5162 * None. 5163 * 5164 * RETURNS: 5165 * True if the port online status is available and online. 5166 */ 5167 bool ata_phys_link_online(struct ata_link *link) 5168 { 5169 u32 sstatus; 5170 5171 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5172 ata_sstatus_online(sstatus)) 5173 return true; 5174 return false; 5175 } 5176 5177 /** 5178 * ata_phys_link_offline - test whether the given link is offline 5179 * @link: ATA link to test 5180 * 5181 * Test whether @link is offline. Note that this function 5182 * returns 0 if offline status of @link cannot be obtained, so 5183 * ata_link_online(link) != !ata_link_offline(link). 5184 * 5185 * LOCKING: 5186 * None. 5187 * 5188 * RETURNS: 5189 * True if the port offline status is available and offline. 5190 */ 5191 bool ata_phys_link_offline(struct ata_link *link) 5192 { 5193 u32 sstatus; 5194 5195 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5196 !ata_sstatus_online(sstatus)) 5197 return true; 5198 return false; 5199 } 5200 5201 /** 5202 * ata_link_online - test whether the given link is online 5203 * @link: ATA link to test 5204 * 5205 * Test whether @link is online. This is identical to 5206 * ata_phys_link_online() when there's no slave link. When 5207 * there's a slave link, this function should only be called on 5208 * the master link and will return true if any of M/S links is 5209 * online. 5210 * 5211 * LOCKING: 5212 * None. 5213 * 5214 * RETURNS: 5215 * True if the port online status is available and online. 5216 */ 5217 bool ata_link_online(struct ata_link *link) 5218 { 5219 struct ata_link *slave = link->ap->slave_link; 5220 5221 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5222 5223 return ata_phys_link_online(link) || 5224 (slave && ata_phys_link_online(slave)); 5225 } 5226 5227 /** 5228 * ata_link_offline - test whether the given link is offline 5229 * @link: ATA link to test 5230 * 5231 * Test whether @link is offline. This is identical to 5232 * ata_phys_link_offline() when there's no slave link. When 5233 * there's a slave link, this function should only be called on 5234 * the master link and will return true if both M/S links are 5235 * offline. 5236 * 5237 * LOCKING: 5238 * None. 5239 * 5240 * RETURNS: 5241 * True if the port offline status is available and offline. 5242 */ 5243 bool ata_link_offline(struct ata_link *link) 5244 { 5245 struct ata_link *slave = link->ap->slave_link; 5246 5247 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5248 5249 return ata_phys_link_offline(link) && 5250 (!slave || ata_phys_link_offline(slave)); 5251 } 5252 5253 #ifdef CONFIG_PM 5254 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5255 unsigned int action, unsigned int ehi_flags, 5256 int wait) 5257 { 5258 struct ata_link *link; 5259 unsigned long flags; 5260 int rc; 5261 5262 /* Previous resume operation might still be in 5263 * progress. Wait for PM_PENDING to clear. 5264 */ 5265 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5266 ata_port_wait_eh(ap); 5267 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5268 } 5269 5270 /* request PM ops to EH */ 5271 spin_lock_irqsave(ap->lock, flags); 5272 5273 ap->pm_mesg = mesg; 5274 if (wait) { 5275 rc = 0; 5276 ap->pm_result = &rc; 5277 } 5278 5279 ap->pflags |= ATA_PFLAG_PM_PENDING; 5280 ata_for_each_link(link, ap, HOST_FIRST) { 5281 link->eh_info.action |= action; 5282 link->eh_info.flags |= ehi_flags; 5283 } 5284 5285 ata_port_schedule_eh(ap); 5286 5287 spin_unlock_irqrestore(ap->lock, flags); 5288 5289 /* wait and check result */ 5290 if (wait) { 5291 ata_port_wait_eh(ap); 5292 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5293 } 5294 5295 return rc; 5296 } 5297 5298 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg) 5299 { 5300 struct ata_port *ap = to_ata_port(dev); 5301 unsigned int ehi_flags = ATA_EHI_QUIET; 5302 int rc; 5303 5304 /* 5305 * On some hardware, device fails to respond after spun down 5306 * for suspend. As the device won't be used before being 5307 * resumed, we don't need to touch the device. Ask EH to skip 5308 * the usual stuff and proceed directly to suspend. 5309 * 5310 * http://thread.gmane.org/gmane.linux.ide/46764 5311 */ 5312 if (mesg.event == PM_EVENT_SUSPEND) 5313 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY; 5314 5315 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1); 5316 return rc; 5317 } 5318 5319 static int ata_port_suspend(struct device *dev) 5320 { 5321 if (pm_runtime_suspended(dev)) 5322 return 0; 5323 5324 return ata_port_suspend_common(dev, PMSG_SUSPEND); 5325 } 5326 5327 static int ata_port_do_freeze(struct device *dev) 5328 { 5329 if (pm_runtime_suspended(dev)) 5330 pm_runtime_resume(dev); 5331 5332 return ata_port_suspend_common(dev, PMSG_FREEZE); 5333 } 5334 5335 static int ata_port_poweroff(struct device *dev) 5336 { 5337 if (pm_runtime_suspended(dev)) 5338 return 0; 5339 5340 return ata_port_suspend_common(dev, PMSG_HIBERNATE); 5341 } 5342 5343 static int ata_port_resume_common(struct device *dev) 5344 { 5345 struct ata_port *ap = to_ata_port(dev); 5346 int rc; 5347 5348 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET, 5349 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1); 5350 return rc; 5351 } 5352 5353 static int ata_port_resume(struct device *dev) 5354 { 5355 int rc; 5356 5357 rc = ata_port_resume_common(dev); 5358 if (!rc) { 5359 pm_runtime_disable(dev); 5360 pm_runtime_set_active(dev); 5361 pm_runtime_enable(dev); 5362 } 5363 5364 return rc; 5365 } 5366 5367 static int ata_port_runtime_idle(struct device *dev) 5368 { 5369 return pm_runtime_suspend(dev); 5370 } 5371 5372 static const struct dev_pm_ops ata_port_pm_ops = { 5373 .suspend = ata_port_suspend, 5374 .resume = ata_port_resume, 5375 .freeze = ata_port_do_freeze, 5376 .thaw = ata_port_resume, 5377 .poweroff = ata_port_poweroff, 5378 .restore = ata_port_resume, 5379 5380 .runtime_suspend = ata_port_suspend, 5381 .runtime_resume = ata_port_resume_common, 5382 .runtime_idle = ata_port_runtime_idle, 5383 }; 5384 5385 /** 5386 * ata_host_suspend - suspend host 5387 * @host: host to suspend 5388 * @mesg: PM message 5389 * 5390 * Suspend @host. Actual operation is performed by port suspend. 5391 */ 5392 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5393 { 5394 host->dev->power.power_state = mesg; 5395 return 0; 5396 } 5397 5398 /** 5399 * ata_host_resume - resume host 5400 * @host: host to resume 5401 * 5402 * Resume @host. Actual operation is performed by port resume. 5403 */ 5404 void ata_host_resume(struct ata_host *host) 5405 { 5406 host->dev->power.power_state = PMSG_ON; 5407 } 5408 #endif 5409 5410 struct device_type ata_port_type = { 5411 .name = "ata_port", 5412 #ifdef CONFIG_PM 5413 .pm = &ata_port_pm_ops, 5414 #endif 5415 }; 5416 5417 /** 5418 * ata_dev_init - Initialize an ata_device structure 5419 * @dev: Device structure to initialize 5420 * 5421 * Initialize @dev in preparation for probing. 5422 * 5423 * LOCKING: 5424 * Inherited from caller. 5425 */ 5426 void ata_dev_init(struct ata_device *dev) 5427 { 5428 struct ata_link *link = ata_dev_phys_link(dev); 5429 struct ata_port *ap = link->ap; 5430 unsigned long flags; 5431 5432 /* SATA spd limit is bound to the attached device, reset together */ 5433 link->sata_spd_limit = link->hw_sata_spd_limit; 5434 link->sata_spd = 0; 5435 5436 /* High bits of dev->flags are used to record warm plug 5437 * requests which occur asynchronously. Synchronize using 5438 * host lock. 5439 */ 5440 spin_lock_irqsave(ap->lock, flags); 5441 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5442 dev->horkage = 0; 5443 spin_unlock_irqrestore(ap->lock, flags); 5444 5445 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5446 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5447 dev->pio_mask = UINT_MAX; 5448 dev->mwdma_mask = UINT_MAX; 5449 dev->udma_mask = UINT_MAX; 5450 } 5451 5452 /** 5453 * ata_link_init - Initialize an ata_link structure 5454 * @ap: ATA port link is attached to 5455 * @link: Link structure to initialize 5456 * @pmp: Port multiplier port number 5457 * 5458 * Initialize @link. 5459 * 5460 * LOCKING: 5461 * Kernel thread context (may sleep) 5462 */ 5463 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5464 { 5465 int i; 5466 5467 /* clear everything except for devices */ 5468 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5469 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5470 5471 link->ap = ap; 5472 link->pmp = pmp; 5473 link->active_tag = ATA_TAG_POISON; 5474 link->hw_sata_spd_limit = UINT_MAX; 5475 5476 /* can't use iterator, ap isn't initialized yet */ 5477 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5478 struct ata_device *dev = &link->device[i]; 5479 5480 dev->link = link; 5481 dev->devno = dev - link->device; 5482 #ifdef CONFIG_ATA_ACPI 5483 dev->gtf_filter = ata_acpi_gtf_filter; 5484 #endif 5485 ata_dev_init(dev); 5486 } 5487 } 5488 5489 /** 5490 * sata_link_init_spd - Initialize link->sata_spd_limit 5491 * @link: Link to configure sata_spd_limit for 5492 * 5493 * Initialize @link->[hw_]sata_spd_limit to the currently 5494 * configured value. 5495 * 5496 * LOCKING: 5497 * Kernel thread context (may sleep). 5498 * 5499 * RETURNS: 5500 * 0 on success, -errno on failure. 5501 */ 5502 int sata_link_init_spd(struct ata_link *link) 5503 { 5504 u8 spd; 5505 int rc; 5506 5507 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5508 if (rc) 5509 return rc; 5510 5511 spd = (link->saved_scontrol >> 4) & 0xf; 5512 if (spd) 5513 link->hw_sata_spd_limit &= (1 << spd) - 1; 5514 5515 ata_force_link_limits(link); 5516 5517 link->sata_spd_limit = link->hw_sata_spd_limit; 5518 5519 return 0; 5520 } 5521 5522 /** 5523 * ata_port_alloc - allocate and initialize basic ATA port resources 5524 * @host: ATA host this allocated port belongs to 5525 * 5526 * Allocate and initialize basic ATA port resources. 5527 * 5528 * RETURNS: 5529 * Allocate ATA port on success, NULL on failure. 5530 * 5531 * LOCKING: 5532 * Inherited from calling layer (may sleep). 5533 */ 5534 struct ata_port *ata_port_alloc(struct ata_host *host) 5535 { 5536 struct ata_port *ap; 5537 5538 DPRINTK("ENTER\n"); 5539 5540 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5541 if (!ap) 5542 return NULL; 5543 5544 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5545 ap->lock = &host->lock; 5546 ap->print_id = -1; 5547 ap->host = host; 5548 ap->dev = host->dev; 5549 5550 #if defined(ATA_VERBOSE_DEBUG) 5551 /* turn on all debugging levels */ 5552 ap->msg_enable = 0x00FF; 5553 #elif defined(ATA_DEBUG) 5554 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5555 #else 5556 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5557 #endif 5558 5559 mutex_init(&ap->scsi_scan_mutex); 5560 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5561 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5562 INIT_LIST_HEAD(&ap->eh_done_q); 5563 init_waitqueue_head(&ap->eh_wait_q); 5564 init_completion(&ap->park_req_pending); 5565 init_timer_deferrable(&ap->fastdrain_timer); 5566 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5567 ap->fastdrain_timer.data = (unsigned long)ap; 5568 5569 ap->cbl = ATA_CBL_NONE; 5570 5571 ata_link_init(ap, &ap->link, 0); 5572 5573 #ifdef ATA_IRQ_TRAP 5574 ap->stats.unhandled_irq = 1; 5575 ap->stats.idle_irq = 1; 5576 #endif 5577 ata_sff_port_init(ap); 5578 5579 return ap; 5580 } 5581 5582 static void ata_host_release(struct device *gendev, void *res) 5583 { 5584 struct ata_host *host = dev_get_drvdata(gendev); 5585 int i; 5586 5587 for (i = 0; i < host->n_ports; i++) { 5588 struct ata_port *ap = host->ports[i]; 5589 5590 if (!ap) 5591 continue; 5592 5593 if (ap->scsi_host) 5594 scsi_host_put(ap->scsi_host); 5595 5596 kfree(ap->pmp_link); 5597 kfree(ap->slave_link); 5598 kfree(ap); 5599 host->ports[i] = NULL; 5600 } 5601 5602 dev_set_drvdata(gendev, NULL); 5603 } 5604 5605 /** 5606 * ata_host_alloc - allocate and init basic ATA host resources 5607 * @dev: generic device this host is associated with 5608 * @max_ports: maximum number of ATA ports associated with this host 5609 * 5610 * Allocate and initialize basic ATA host resources. LLD calls 5611 * this function to allocate a host, initializes it fully and 5612 * attaches it using ata_host_register(). 5613 * 5614 * @max_ports ports are allocated and host->n_ports is 5615 * initialized to @max_ports. The caller is allowed to decrease 5616 * host->n_ports before calling ata_host_register(). The unused 5617 * ports will be automatically freed on registration. 5618 * 5619 * RETURNS: 5620 * Allocate ATA host on success, NULL on failure. 5621 * 5622 * LOCKING: 5623 * Inherited from calling layer (may sleep). 5624 */ 5625 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5626 { 5627 struct ata_host *host; 5628 size_t sz; 5629 int i; 5630 5631 DPRINTK("ENTER\n"); 5632 5633 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5634 return NULL; 5635 5636 /* alloc a container for our list of ATA ports (buses) */ 5637 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5638 /* alloc a container for our list of ATA ports (buses) */ 5639 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5640 if (!host) 5641 goto err_out; 5642 5643 devres_add(dev, host); 5644 dev_set_drvdata(dev, host); 5645 5646 spin_lock_init(&host->lock); 5647 mutex_init(&host->eh_mutex); 5648 host->dev = dev; 5649 host->n_ports = max_ports; 5650 5651 /* allocate ports bound to this host */ 5652 for (i = 0; i < max_ports; i++) { 5653 struct ata_port *ap; 5654 5655 ap = ata_port_alloc(host); 5656 if (!ap) 5657 goto err_out; 5658 5659 ap->port_no = i; 5660 host->ports[i] = ap; 5661 } 5662 5663 devres_remove_group(dev, NULL); 5664 return host; 5665 5666 err_out: 5667 devres_release_group(dev, NULL); 5668 return NULL; 5669 } 5670 5671 /** 5672 * ata_host_alloc_pinfo - alloc host and init with port_info array 5673 * @dev: generic device this host is associated with 5674 * @ppi: array of ATA port_info to initialize host with 5675 * @n_ports: number of ATA ports attached to this host 5676 * 5677 * Allocate ATA host and initialize with info from @ppi. If NULL 5678 * terminated, @ppi may contain fewer entries than @n_ports. The 5679 * last entry will be used for the remaining ports. 5680 * 5681 * RETURNS: 5682 * Allocate ATA host on success, NULL on failure. 5683 * 5684 * LOCKING: 5685 * Inherited from calling layer (may sleep). 5686 */ 5687 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5688 const struct ata_port_info * const * ppi, 5689 int n_ports) 5690 { 5691 const struct ata_port_info *pi; 5692 struct ata_host *host; 5693 int i, j; 5694 5695 host = ata_host_alloc(dev, n_ports); 5696 if (!host) 5697 return NULL; 5698 5699 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5700 struct ata_port *ap = host->ports[i]; 5701 5702 if (ppi[j]) 5703 pi = ppi[j++]; 5704 5705 ap->pio_mask = pi->pio_mask; 5706 ap->mwdma_mask = pi->mwdma_mask; 5707 ap->udma_mask = pi->udma_mask; 5708 ap->flags |= pi->flags; 5709 ap->link.flags |= pi->link_flags; 5710 ap->ops = pi->port_ops; 5711 5712 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5713 host->ops = pi->port_ops; 5714 } 5715 5716 return host; 5717 } 5718 5719 /** 5720 * ata_slave_link_init - initialize slave link 5721 * @ap: port to initialize slave link for 5722 * 5723 * Create and initialize slave link for @ap. This enables slave 5724 * link handling on the port. 5725 * 5726 * In libata, a port contains links and a link contains devices. 5727 * There is single host link but if a PMP is attached to it, 5728 * there can be multiple fan-out links. On SATA, there's usually 5729 * a single device connected to a link but PATA and SATA 5730 * controllers emulating TF based interface can have two - master 5731 * and slave. 5732 * 5733 * However, there are a few controllers which don't fit into this 5734 * abstraction too well - SATA controllers which emulate TF 5735 * interface with both master and slave devices but also have 5736 * separate SCR register sets for each device. These controllers 5737 * need separate links for physical link handling 5738 * (e.g. onlineness, link speed) but should be treated like a 5739 * traditional M/S controller for everything else (e.g. command 5740 * issue, softreset). 5741 * 5742 * slave_link is libata's way of handling this class of 5743 * controllers without impacting core layer too much. For 5744 * anything other than physical link handling, the default host 5745 * link is used for both master and slave. For physical link 5746 * handling, separate @ap->slave_link is used. All dirty details 5747 * are implemented inside libata core layer. From LLD's POV, the 5748 * only difference is that prereset, hardreset and postreset are 5749 * called once more for the slave link, so the reset sequence 5750 * looks like the following. 5751 * 5752 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5753 * softreset(M) -> postreset(M) -> postreset(S) 5754 * 5755 * Note that softreset is called only for the master. Softreset 5756 * resets both M/S by definition, so SRST on master should handle 5757 * both (the standard method will work just fine). 5758 * 5759 * LOCKING: 5760 * Should be called before host is registered. 5761 * 5762 * RETURNS: 5763 * 0 on success, -errno on failure. 5764 */ 5765 int ata_slave_link_init(struct ata_port *ap) 5766 { 5767 struct ata_link *link; 5768 5769 WARN_ON(ap->slave_link); 5770 WARN_ON(ap->flags & ATA_FLAG_PMP); 5771 5772 link = kzalloc(sizeof(*link), GFP_KERNEL); 5773 if (!link) 5774 return -ENOMEM; 5775 5776 ata_link_init(ap, link, 1); 5777 ap->slave_link = link; 5778 return 0; 5779 } 5780 5781 static void ata_host_stop(struct device *gendev, void *res) 5782 { 5783 struct ata_host *host = dev_get_drvdata(gendev); 5784 int i; 5785 5786 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5787 5788 for (i = 0; i < host->n_ports; i++) { 5789 struct ata_port *ap = host->ports[i]; 5790 5791 if (ap->ops->port_stop) 5792 ap->ops->port_stop(ap); 5793 } 5794 5795 if (host->ops->host_stop) 5796 host->ops->host_stop(host); 5797 } 5798 5799 /** 5800 * ata_finalize_port_ops - finalize ata_port_operations 5801 * @ops: ata_port_operations to finalize 5802 * 5803 * An ata_port_operations can inherit from another ops and that 5804 * ops can again inherit from another. This can go on as many 5805 * times as necessary as long as there is no loop in the 5806 * inheritance chain. 5807 * 5808 * Ops tables are finalized when the host is started. NULL or 5809 * unspecified entries are inherited from the closet ancestor 5810 * which has the method and the entry is populated with it. 5811 * After finalization, the ops table directly points to all the 5812 * methods and ->inherits is no longer necessary and cleared. 5813 * 5814 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5815 * 5816 * LOCKING: 5817 * None. 5818 */ 5819 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5820 { 5821 static DEFINE_SPINLOCK(lock); 5822 const struct ata_port_operations *cur; 5823 void **begin = (void **)ops; 5824 void **end = (void **)&ops->inherits; 5825 void **pp; 5826 5827 if (!ops || !ops->inherits) 5828 return; 5829 5830 spin_lock(&lock); 5831 5832 for (cur = ops->inherits; cur; cur = cur->inherits) { 5833 void **inherit = (void **)cur; 5834 5835 for (pp = begin; pp < end; pp++, inherit++) 5836 if (!*pp) 5837 *pp = *inherit; 5838 } 5839 5840 for (pp = begin; pp < end; pp++) 5841 if (IS_ERR(*pp)) 5842 *pp = NULL; 5843 5844 ops->inherits = NULL; 5845 5846 spin_unlock(&lock); 5847 } 5848 5849 /** 5850 * ata_host_start - start and freeze ports of an ATA host 5851 * @host: ATA host to start ports for 5852 * 5853 * Start and then freeze ports of @host. Started status is 5854 * recorded in host->flags, so this function can be called 5855 * multiple times. Ports are guaranteed to get started only 5856 * once. If host->ops isn't initialized yet, its set to the 5857 * first non-dummy port ops. 5858 * 5859 * LOCKING: 5860 * Inherited from calling layer (may sleep). 5861 * 5862 * RETURNS: 5863 * 0 if all ports are started successfully, -errno otherwise. 5864 */ 5865 int ata_host_start(struct ata_host *host) 5866 { 5867 int have_stop = 0; 5868 void *start_dr = NULL; 5869 int i, rc; 5870 5871 if (host->flags & ATA_HOST_STARTED) 5872 return 0; 5873 5874 ata_finalize_port_ops(host->ops); 5875 5876 for (i = 0; i < host->n_ports; i++) { 5877 struct ata_port *ap = host->ports[i]; 5878 5879 ata_finalize_port_ops(ap->ops); 5880 5881 if (!host->ops && !ata_port_is_dummy(ap)) 5882 host->ops = ap->ops; 5883 5884 if (ap->ops->port_stop) 5885 have_stop = 1; 5886 } 5887 5888 if (host->ops->host_stop) 5889 have_stop = 1; 5890 5891 if (have_stop) { 5892 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5893 if (!start_dr) 5894 return -ENOMEM; 5895 } 5896 5897 for (i = 0; i < host->n_ports; i++) { 5898 struct ata_port *ap = host->ports[i]; 5899 5900 if (ap->ops->port_start) { 5901 rc = ap->ops->port_start(ap); 5902 if (rc) { 5903 if (rc != -ENODEV) 5904 dev_err(host->dev, 5905 "failed to start port %d (errno=%d)\n", 5906 i, rc); 5907 goto err_out; 5908 } 5909 } 5910 ata_eh_freeze_port(ap); 5911 } 5912 5913 if (start_dr) 5914 devres_add(host->dev, start_dr); 5915 host->flags |= ATA_HOST_STARTED; 5916 return 0; 5917 5918 err_out: 5919 while (--i >= 0) { 5920 struct ata_port *ap = host->ports[i]; 5921 5922 if (ap->ops->port_stop) 5923 ap->ops->port_stop(ap); 5924 } 5925 devres_free(start_dr); 5926 return rc; 5927 } 5928 5929 /** 5930 * ata_sas_host_init - Initialize a host struct 5931 * @host: host to initialize 5932 * @dev: device host is attached to 5933 * @flags: host flags 5934 * @ops: port_ops 5935 * 5936 * LOCKING: 5937 * PCI/etc. bus probe sem. 5938 * 5939 */ 5940 /* KILLME - the only user left is ipr */ 5941 void ata_host_init(struct ata_host *host, struct device *dev, 5942 unsigned long flags, struct ata_port_operations *ops) 5943 { 5944 spin_lock_init(&host->lock); 5945 mutex_init(&host->eh_mutex); 5946 host->dev = dev; 5947 host->flags = flags; 5948 host->ops = ops; 5949 } 5950 5951 void __ata_port_probe(struct ata_port *ap) 5952 { 5953 struct ata_eh_info *ehi = &ap->link.eh_info; 5954 unsigned long flags; 5955 5956 /* kick EH for boot probing */ 5957 spin_lock_irqsave(ap->lock, flags); 5958 5959 ehi->probe_mask |= ATA_ALL_DEVICES; 5960 ehi->action |= ATA_EH_RESET; 5961 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5962 5963 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5964 ap->pflags |= ATA_PFLAG_LOADING; 5965 ata_port_schedule_eh(ap); 5966 5967 spin_unlock_irqrestore(ap->lock, flags); 5968 } 5969 5970 int ata_port_probe(struct ata_port *ap) 5971 { 5972 int rc = 0; 5973 5974 if (ap->ops->error_handler) { 5975 __ata_port_probe(ap); 5976 ata_port_wait_eh(ap); 5977 } else { 5978 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5979 rc = ata_bus_probe(ap); 5980 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5981 } 5982 return rc; 5983 } 5984 5985 5986 static void async_port_probe(void *data, async_cookie_t cookie) 5987 { 5988 struct ata_port *ap = data; 5989 5990 /* 5991 * If we're not allowed to scan this host in parallel, 5992 * we need to wait until all previous scans have completed 5993 * before going further. 5994 * Jeff Garzik says this is only within a controller, so we 5995 * don't need to wait for port 0, only for later ports. 5996 */ 5997 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5998 async_synchronize_cookie(cookie); 5999 6000 (void)ata_port_probe(ap); 6001 6002 /* in order to keep device order, we need to synchronize at this point */ 6003 async_synchronize_cookie(cookie); 6004 6005 ata_scsi_scan_host(ap, 1); 6006 } 6007 6008 /** 6009 * ata_host_register - register initialized ATA host 6010 * @host: ATA host to register 6011 * @sht: template for SCSI host 6012 * 6013 * Register initialized ATA host. @host is allocated using 6014 * ata_host_alloc() and fully initialized by LLD. This function 6015 * starts ports, registers @host with ATA and SCSI layers and 6016 * probe registered devices. 6017 * 6018 * LOCKING: 6019 * Inherited from calling layer (may sleep). 6020 * 6021 * RETURNS: 6022 * 0 on success, -errno otherwise. 6023 */ 6024 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6025 { 6026 int i, rc; 6027 6028 /* host must have been started */ 6029 if (!(host->flags & ATA_HOST_STARTED)) { 6030 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6031 WARN_ON(1); 6032 return -EINVAL; 6033 } 6034 6035 /* Blow away unused ports. This happens when LLD can't 6036 * determine the exact number of ports to allocate at 6037 * allocation time. 6038 */ 6039 for (i = host->n_ports; host->ports[i]; i++) 6040 kfree(host->ports[i]); 6041 6042 /* give ports names and add SCSI hosts */ 6043 for (i = 0; i < host->n_ports; i++) 6044 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6045 6046 6047 /* Create associated sysfs transport objects */ 6048 for (i = 0; i < host->n_ports; i++) { 6049 rc = ata_tport_add(host->dev,host->ports[i]); 6050 if (rc) { 6051 goto err_tadd; 6052 } 6053 } 6054 6055 rc = ata_scsi_add_hosts(host, sht); 6056 if (rc) 6057 goto err_tadd; 6058 6059 /* set cable, sata_spd_limit and report */ 6060 for (i = 0; i < host->n_ports; i++) { 6061 struct ata_port *ap = host->ports[i]; 6062 unsigned long xfer_mask; 6063 6064 /* set SATA cable type if still unset */ 6065 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6066 ap->cbl = ATA_CBL_SATA; 6067 6068 /* init sata_spd_limit to the current value */ 6069 sata_link_init_spd(&ap->link); 6070 if (ap->slave_link) 6071 sata_link_init_spd(ap->slave_link); 6072 6073 /* print per-port info to dmesg */ 6074 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6075 ap->udma_mask); 6076 6077 if (!ata_port_is_dummy(ap)) { 6078 ata_port_info(ap, "%cATA max %s %s\n", 6079 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6080 ata_mode_string(xfer_mask), 6081 ap->link.eh_info.desc); 6082 ata_ehi_clear_desc(&ap->link.eh_info); 6083 } else 6084 ata_port_info(ap, "DUMMY\n"); 6085 } 6086 6087 /* perform each probe asynchronously */ 6088 for (i = 0; i < host->n_ports; i++) { 6089 struct ata_port *ap = host->ports[i]; 6090 async_schedule(async_port_probe, ap); 6091 } 6092 6093 return 0; 6094 6095 err_tadd: 6096 while (--i >= 0) { 6097 ata_tport_delete(host->ports[i]); 6098 } 6099 return rc; 6100 6101 } 6102 6103 /** 6104 * ata_host_activate - start host, request IRQ and register it 6105 * @host: target ATA host 6106 * @irq: IRQ to request 6107 * @irq_handler: irq_handler used when requesting IRQ 6108 * @irq_flags: irq_flags used when requesting IRQ 6109 * @sht: scsi_host_template to use when registering the host 6110 * 6111 * After allocating an ATA host and initializing it, most libata 6112 * LLDs perform three steps to activate the host - start host, 6113 * request IRQ and register it. This helper takes necessasry 6114 * arguments and performs the three steps in one go. 6115 * 6116 * An invalid IRQ skips the IRQ registration and expects the host to 6117 * have set polling mode on the port. In this case, @irq_handler 6118 * should be NULL. 6119 * 6120 * LOCKING: 6121 * Inherited from calling layer (may sleep). 6122 * 6123 * RETURNS: 6124 * 0 on success, -errno otherwise. 6125 */ 6126 int ata_host_activate(struct ata_host *host, int irq, 6127 irq_handler_t irq_handler, unsigned long irq_flags, 6128 struct scsi_host_template *sht) 6129 { 6130 int i, rc; 6131 6132 rc = ata_host_start(host); 6133 if (rc) 6134 return rc; 6135 6136 /* Special case for polling mode */ 6137 if (!irq) { 6138 WARN_ON(irq_handler); 6139 return ata_host_register(host, sht); 6140 } 6141 6142 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6143 dev_driver_string(host->dev), host); 6144 if (rc) 6145 return rc; 6146 6147 for (i = 0; i < host->n_ports; i++) 6148 ata_port_desc(host->ports[i], "irq %d", irq); 6149 6150 rc = ata_host_register(host, sht); 6151 /* if failed, just free the IRQ and leave ports alone */ 6152 if (rc) 6153 devm_free_irq(host->dev, irq, host); 6154 6155 return rc; 6156 } 6157 6158 /** 6159 * ata_port_detach - Detach ATA port in prepration of device removal 6160 * @ap: ATA port to be detached 6161 * 6162 * Detach all ATA devices and the associated SCSI devices of @ap; 6163 * then, remove the associated SCSI host. @ap is guaranteed to 6164 * be quiescent on return from this function. 6165 * 6166 * LOCKING: 6167 * Kernel thread context (may sleep). 6168 */ 6169 static void ata_port_detach(struct ata_port *ap) 6170 { 6171 unsigned long flags; 6172 6173 if (!ap->ops->error_handler) 6174 goto skip_eh; 6175 6176 /* tell EH we're leaving & flush EH */ 6177 spin_lock_irqsave(ap->lock, flags); 6178 ap->pflags |= ATA_PFLAG_UNLOADING; 6179 ata_port_schedule_eh(ap); 6180 spin_unlock_irqrestore(ap->lock, flags); 6181 6182 /* wait till EH commits suicide */ 6183 ata_port_wait_eh(ap); 6184 6185 /* it better be dead now */ 6186 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6187 6188 cancel_delayed_work_sync(&ap->hotplug_task); 6189 6190 skip_eh: 6191 if (ap->pmp_link) { 6192 int i; 6193 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6194 ata_tlink_delete(&ap->pmp_link[i]); 6195 } 6196 ata_tport_delete(ap); 6197 6198 /* remove the associated SCSI host */ 6199 scsi_remove_host(ap->scsi_host); 6200 } 6201 6202 /** 6203 * ata_host_detach - Detach all ports of an ATA host 6204 * @host: Host to detach 6205 * 6206 * Detach all ports of @host. 6207 * 6208 * LOCKING: 6209 * Kernel thread context (may sleep). 6210 */ 6211 void ata_host_detach(struct ata_host *host) 6212 { 6213 int i; 6214 6215 for (i = 0; i < host->n_ports; i++) 6216 ata_port_detach(host->ports[i]); 6217 6218 /* the host is dead now, dissociate ACPI */ 6219 ata_acpi_dissociate(host); 6220 } 6221 6222 #ifdef CONFIG_PCI 6223 6224 /** 6225 * ata_pci_remove_one - PCI layer callback for device removal 6226 * @pdev: PCI device that was removed 6227 * 6228 * PCI layer indicates to libata via this hook that hot-unplug or 6229 * module unload event has occurred. Detach all ports. Resource 6230 * release is handled via devres. 6231 * 6232 * LOCKING: 6233 * Inherited from PCI layer (may sleep). 6234 */ 6235 void ata_pci_remove_one(struct pci_dev *pdev) 6236 { 6237 struct device *dev = &pdev->dev; 6238 struct ata_host *host = dev_get_drvdata(dev); 6239 6240 ata_host_detach(host); 6241 } 6242 6243 /* move to PCI subsystem */ 6244 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6245 { 6246 unsigned long tmp = 0; 6247 6248 switch (bits->width) { 6249 case 1: { 6250 u8 tmp8 = 0; 6251 pci_read_config_byte(pdev, bits->reg, &tmp8); 6252 tmp = tmp8; 6253 break; 6254 } 6255 case 2: { 6256 u16 tmp16 = 0; 6257 pci_read_config_word(pdev, bits->reg, &tmp16); 6258 tmp = tmp16; 6259 break; 6260 } 6261 case 4: { 6262 u32 tmp32 = 0; 6263 pci_read_config_dword(pdev, bits->reg, &tmp32); 6264 tmp = tmp32; 6265 break; 6266 } 6267 6268 default: 6269 return -EINVAL; 6270 } 6271 6272 tmp &= bits->mask; 6273 6274 return (tmp == bits->val) ? 1 : 0; 6275 } 6276 6277 #ifdef CONFIG_PM 6278 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6279 { 6280 pci_save_state(pdev); 6281 pci_disable_device(pdev); 6282 6283 if (mesg.event & PM_EVENT_SLEEP) 6284 pci_set_power_state(pdev, PCI_D3hot); 6285 } 6286 6287 int ata_pci_device_do_resume(struct pci_dev *pdev) 6288 { 6289 int rc; 6290 6291 pci_set_power_state(pdev, PCI_D0); 6292 pci_restore_state(pdev); 6293 6294 rc = pcim_enable_device(pdev); 6295 if (rc) { 6296 dev_err(&pdev->dev, 6297 "failed to enable device after resume (%d)\n", rc); 6298 return rc; 6299 } 6300 6301 pci_set_master(pdev); 6302 return 0; 6303 } 6304 6305 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6306 { 6307 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6308 int rc = 0; 6309 6310 rc = ata_host_suspend(host, mesg); 6311 if (rc) 6312 return rc; 6313 6314 ata_pci_device_do_suspend(pdev, mesg); 6315 6316 return 0; 6317 } 6318 6319 int ata_pci_device_resume(struct pci_dev *pdev) 6320 { 6321 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6322 int rc; 6323 6324 rc = ata_pci_device_do_resume(pdev); 6325 if (rc == 0) 6326 ata_host_resume(host); 6327 return rc; 6328 } 6329 #endif /* CONFIG_PM */ 6330 6331 #endif /* CONFIG_PCI */ 6332 6333 static int __init ata_parse_force_one(char **cur, 6334 struct ata_force_ent *force_ent, 6335 const char **reason) 6336 { 6337 /* FIXME: Currently, there's no way to tag init const data and 6338 * using __initdata causes build failure on some versions of 6339 * gcc. Once __initdataconst is implemented, add const to the 6340 * following structure. 6341 */ 6342 static struct ata_force_param force_tbl[] __initdata = { 6343 { "40c", .cbl = ATA_CBL_PATA40 }, 6344 { "80c", .cbl = ATA_CBL_PATA80 }, 6345 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6346 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6347 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6348 { "sata", .cbl = ATA_CBL_SATA }, 6349 { "1.5Gbps", .spd_limit = 1 }, 6350 { "3.0Gbps", .spd_limit = 2 }, 6351 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6352 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6353 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6354 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6355 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6356 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6357 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6358 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6359 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6360 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6361 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6362 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6363 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6364 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6365 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6366 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6367 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6368 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6369 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6370 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6371 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6372 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6373 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6374 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6375 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6376 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6377 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6378 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6379 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6380 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6381 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6382 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6383 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6384 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6385 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6386 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6387 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6388 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6389 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6390 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6391 }; 6392 char *start = *cur, *p = *cur; 6393 char *id, *val, *endp; 6394 const struct ata_force_param *match_fp = NULL; 6395 int nr_matches = 0, i; 6396 6397 /* find where this param ends and update *cur */ 6398 while (*p != '\0' && *p != ',') 6399 p++; 6400 6401 if (*p == '\0') 6402 *cur = p; 6403 else 6404 *cur = p + 1; 6405 6406 *p = '\0'; 6407 6408 /* parse */ 6409 p = strchr(start, ':'); 6410 if (!p) { 6411 val = strstrip(start); 6412 goto parse_val; 6413 } 6414 *p = '\0'; 6415 6416 id = strstrip(start); 6417 val = strstrip(p + 1); 6418 6419 /* parse id */ 6420 p = strchr(id, '.'); 6421 if (p) { 6422 *p++ = '\0'; 6423 force_ent->device = simple_strtoul(p, &endp, 10); 6424 if (p == endp || *endp != '\0') { 6425 *reason = "invalid device"; 6426 return -EINVAL; 6427 } 6428 } 6429 6430 force_ent->port = simple_strtoul(id, &endp, 10); 6431 if (p == endp || *endp != '\0') { 6432 *reason = "invalid port/link"; 6433 return -EINVAL; 6434 } 6435 6436 parse_val: 6437 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6438 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6439 const struct ata_force_param *fp = &force_tbl[i]; 6440 6441 if (strncasecmp(val, fp->name, strlen(val))) 6442 continue; 6443 6444 nr_matches++; 6445 match_fp = fp; 6446 6447 if (strcasecmp(val, fp->name) == 0) { 6448 nr_matches = 1; 6449 break; 6450 } 6451 } 6452 6453 if (!nr_matches) { 6454 *reason = "unknown value"; 6455 return -EINVAL; 6456 } 6457 if (nr_matches > 1) { 6458 *reason = "ambigious value"; 6459 return -EINVAL; 6460 } 6461 6462 force_ent->param = *match_fp; 6463 6464 return 0; 6465 } 6466 6467 static void __init ata_parse_force_param(void) 6468 { 6469 int idx = 0, size = 1; 6470 int last_port = -1, last_device = -1; 6471 char *p, *cur, *next; 6472 6473 /* calculate maximum number of params and allocate force_tbl */ 6474 for (p = ata_force_param_buf; *p; p++) 6475 if (*p == ',') 6476 size++; 6477 6478 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6479 if (!ata_force_tbl) { 6480 printk(KERN_WARNING "ata: failed to extend force table, " 6481 "libata.force ignored\n"); 6482 return; 6483 } 6484 6485 /* parse and populate the table */ 6486 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6487 const char *reason = ""; 6488 struct ata_force_ent te = { .port = -1, .device = -1 }; 6489 6490 next = cur; 6491 if (ata_parse_force_one(&next, &te, &reason)) { 6492 printk(KERN_WARNING "ata: failed to parse force " 6493 "parameter \"%s\" (%s)\n", 6494 cur, reason); 6495 continue; 6496 } 6497 6498 if (te.port == -1) { 6499 te.port = last_port; 6500 te.device = last_device; 6501 } 6502 6503 ata_force_tbl[idx++] = te; 6504 6505 last_port = te.port; 6506 last_device = te.device; 6507 } 6508 6509 ata_force_tbl_size = idx; 6510 } 6511 6512 static int __init ata_init(void) 6513 { 6514 int rc; 6515 6516 ata_parse_force_param(); 6517 6518 ata_acpi_register(); 6519 6520 rc = ata_sff_init(); 6521 if (rc) { 6522 kfree(ata_force_tbl); 6523 return rc; 6524 } 6525 6526 libata_transport_init(); 6527 ata_scsi_transport_template = ata_attach_transport(); 6528 if (!ata_scsi_transport_template) { 6529 ata_sff_exit(); 6530 rc = -ENOMEM; 6531 goto err_out; 6532 } 6533 6534 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6535 return 0; 6536 6537 err_out: 6538 return rc; 6539 } 6540 6541 static void __exit ata_exit(void) 6542 { 6543 ata_release_transport(ata_scsi_transport_template); 6544 libata_transport_exit(); 6545 ata_sff_exit(); 6546 ata_acpi_unregister(); 6547 kfree(ata_force_tbl); 6548 } 6549 6550 subsys_initcall(ata_init); 6551 module_exit(ata_exit); 6552 6553 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6554 6555 int ata_ratelimit(void) 6556 { 6557 return __ratelimit(&ratelimit); 6558 } 6559 6560 /** 6561 * ata_msleep - ATA EH owner aware msleep 6562 * @ap: ATA port to attribute the sleep to 6563 * @msecs: duration to sleep in milliseconds 6564 * 6565 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6566 * ownership is released before going to sleep and reacquired 6567 * after the sleep is complete. IOW, other ports sharing the 6568 * @ap->host will be allowed to own the EH while this task is 6569 * sleeping. 6570 * 6571 * LOCKING: 6572 * Might sleep. 6573 */ 6574 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6575 { 6576 bool owns_eh = ap && ap->host->eh_owner == current; 6577 6578 if (owns_eh) 6579 ata_eh_release(ap); 6580 6581 msleep(msecs); 6582 6583 if (owns_eh) 6584 ata_eh_acquire(ap); 6585 } 6586 6587 /** 6588 * ata_wait_register - wait until register value changes 6589 * @ap: ATA port to wait register for, can be NULL 6590 * @reg: IO-mapped register 6591 * @mask: Mask to apply to read register value 6592 * @val: Wait condition 6593 * @interval: polling interval in milliseconds 6594 * @timeout: timeout in milliseconds 6595 * 6596 * Waiting for some bits of register to change is a common 6597 * operation for ATA controllers. This function reads 32bit LE 6598 * IO-mapped register @reg and tests for the following condition. 6599 * 6600 * (*@reg & mask) != val 6601 * 6602 * If the condition is met, it returns; otherwise, the process is 6603 * repeated after @interval_msec until timeout. 6604 * 6605 * LOCKING: 6606 * Kernel thread context (may sleep) 6607 * 6608 * RETURNS: 6609 * The final register value. 6610 */ 6611 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6612 unsigned long interval, unsigned long timeout) 6613 { 6614 unsigned long deadline; 6615 u32 tmp; 6616 6617 tmp = ioread32(reg); 6618 6619 /* Calculate timeout _after_ the first read to make sure 6620 * preceding writes reach the controller before starting to 6621 * eat away the timeout. 6622 */ 6623 deadline = ata_deadline(jiffies, timeout); 6624 6625 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6626 ata_msleep(ap, interval); 6627 tmp = ioread32(reg); 6628 } 6629 6630 return tmp; 6631 } 6632 6633 /* 6634 * Dummy port_ops 6635 */ 6636 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6637 { 6638 return AC_ERR_SYSTEM; 6639 } 6640 6641 static void ata_dummy_error_handler(struct ata_port *ap) 6642 { 6643 /* truly dummy */ 6644 } 6645 6646 struct ata_port_operations ata_dummy_port_ops = { 6647 .qc_prep = ata_noop_qc_prep, 6648 .qc_issue = ata_dummy_qc_issue, 6649 .error_handler = ata_dummy_error_handler, 6650 .sched_eh = ata_std_sched_eh, 6651 .end_eh = ata_std_end_eh, 6652 }; 6653 6654 const struct ata_port_info ata_dummy_port_info = { 6655 .port_ops = &ata_dummy_port_ops, 6656 }; 6657 6658 /* 6659 * Utility print functions 6660 */ 6661 int ata_port_printk(const struct ata_port *ap, const char *level, 6662 const char *fmt, ...) 6663 { 6664 struct va_format vaf; 6665 va_list args; 6666 int r; 6667 6668 va_start(args, fmt); 6669 6670 vaf.fmt = fmt; 6671 vaf.va = &args; 6672 6673 r = printk("%sata%u: %pV", level, ap->print_id, &vaf); 6674 6675 va_end(args); 6676 6677 return r; 6678 } 6679 EXPORT_SYMBOL(ata_port_printk); 6680 6681 int ata_link_printk(const struct ata_link *link, const char *level, 6682 const char *fmt, ...) 6683 { 6684 struct va_format vaf; 6685 va_list args; 6686 int r; 6687 6688 va_start(args, fmt); 6689 6690 vaf.fmt = fmt; 6691 vaf.va = &args; 6692 6693 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6694 r = printk("%sata%u.%02u: %pV", 6695 level, link->ap->print_id, link->pmp, &vaf); 6696 else 6697 r = printk("%sata%u: %pV", 6698 level, link->ap->print_id, &vaf); 6699 6700 va_end(args); 6701 6702 return r; 6703 } 6704 EXPORT_SYMBOL(ata_link_printk); 6705 6706 int ata_dev_printk(const struct ata_device *dev, const char *level, 6707 const char *fmt, ...) 6708 { 6709 struct va_format vaf; 6710 va_list args; 6711 int r; 6712 6713 va_start(args, fmt); 6714 6715 vaf.fmt = fmt; 6716 vaf.va = &args; 6717 6718 r = printk("%sata%u.%02u: %pV", 6719 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6720 &vaf); 6721 6722 va_end(args); 6723 6724 return r; 6725 } 6726 EXPORT_SYMBOL(ata_dev_printk); 6727 6728 void ata_print_version(const struct device *dev, const char *version) 6729 { 6730 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6731 } 6732 EXPORT_SYMBOL(ata_print_version); 6733 6734 /* 6735 * libata is essentially a library of internal helper functions for 6736 * low-level ATA host controller drivers. As such, the API/ABI is 6737 * likely to change as new drivers are added and updated. 6738 * Do not depend on ABI/API stability. 6739 */ 6740 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6741 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6742 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6743 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6744 EXPORT_SYMBOL_GPL(sata_port_ops); 6745 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6746 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6747 EXPORT_SYMBOL_GPL(ata_link_next); 6748 EXPORT_SYMBOL_GPL(ata_dev_next); 6749 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6750 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6751 EXPORT_SYMBOL_GPL(ata_host_init); 6752 EXPORT_SYMBOL_GPL(ata_host_alloc); 6753 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6754 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6755 EXPORT_SYMBOL_GPL(ata_host_start); 6756 EXPORT_SYMBOL_GPL(ata_host_register); 6757 EXPORT_SYMBOL_GPL(ata_host_activate); 6758 EXPORT_SYMBOL_GPL(ata_host_detach); 6759 EXPORT_SYMBOL_GPL(ata_sg_init); 6760 EXPORT_SYMBOL_GPL(ata_qc_complete); 6761 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6762 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6763 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6764 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6765 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6766 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6767 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6768 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6769 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6770 EXPORT_SYMBOL_GPL(ata_mode_string); 6771 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6772 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6773 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6774 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6775 EXPORT_SYMBOL_GPL(ata_dev_disable); 6776 EXPORT_SYMBOL_GPL(sata_set_spd); 6777 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6778 EXPORT_SYMBOL_GPL(sata_link_debounce); 6779 EXPORT_SYMBOL_GPL(sata_link_resume); 6780 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6781 EXPORT_SYMBOL_GPL(ata_std_prereset); 6782 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6783 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6784 EXPORT_SYMBOL_GPL(ata_std_postreset); 6785 EXPORT_SYMBOL_GPL(ata_dev_classify); 6786 EXPORT_SYMBOL_GPL(ata_dev_pair); 6787 EXPORT_SYMBOL_GPL(ata_ratelimit); 6788 EXPORT_SYMBOL_GPL(ata_msleep); 6789 EXPORT_SYMBOL_GPL(ata_wait_register); 6790 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6791 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6792 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6793 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6794 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6795 EXPORT_SYMBOL_GPL(sata_scr_valid); 6796 EXPORT_SYMBOL_GPL(sata_scr_read); 6797 EXPORT_SYMBOL_GPL(sata_scr_write); 6798 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6799 EXPORT_SYMBOL_GPL(ata_link_online); 6800 EXPORT_SYMBOL_GPL(ata_link_offline); 6801 #ifdef CONFIG_PM 6802 EXPORT_SYMBOL_GPL(ata_host_suspend); 6803 EXPORT_SYMBOL_GPL(ata_host_resume); 6804 #endif /* CONFIG_PM */ 6805 EXPORT_SYMBOL_GPL(ata_id_string); 6806 EXPORT_SYMBOL_GPL(ata_id_c_string); 6807 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6808 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6809 6810 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6811 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6812 EXPORT_SYMBOL_GPL(ata_timing_compute); 6813 EXPORT_SYMBOL_GPL(ata_timing_merge); 6814 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6815 6816 #ifdef CONFIG_PCI 6817 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6818 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6819 #ifdef CONFIG_PM 6820 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6821 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6822 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6823 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6824 #endif /* CONFIG_PM */ 6825 #endif /* CONFIG_PCI */ 6826 6827 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6828 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6829 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6830 EXPORT_SYMBOL_GPL(ata_port_desc); 6831 #ifdef CONFIG_PCI 6832 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6833 #endif /* CONFIG_PCI */ 6834 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6835 EXPORT_SYMBOL_GPL(ata_link_abort); 6836 EXPORT_SYMBOL_GPL(ata_port_abort); 6837 EXPORT_SYMBOL_GPL(ata_port_freeze); 6838 EXPORT_SYMBOL_GPL(sata_async_notification); 6839 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6840 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6841 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6842 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6843 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6844 EXPORT_SYMBOL_GPL(ata_do_eh); 6845 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6846 6847 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6848 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6849 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6850 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6851 EXPORT_SYMBOL_GPL(ata_cable_sata); 6852