1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_host.h> 62 #include <linux/libata.h> 63 #include <asm/byteorder.h> 64 #include <linux/cdrom.h> 65 66 #include "libata.h" 67 68 69 /* debounce timing parameters in msecs { interval, duration, timeout } */ 70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 73 74 const struct ata_port_operations ata_base_port_ops = { 75 .prereset = ata_std_prereset, 76 .postreset = ata_std_postreset, 77 .error_handler = ata_std_error_handler, 78 }; 79 80 const struct ata_port_operations sata_port_ops = { 81 .inherits = &ata_base_port_ops, 82 83 .qc_defer = ata_std_qc_defer, 84 .hardreset = sata_std_hardreset, 85 }; 86 87 static unsigned int ata_dev_init_params(struct ata_device *dev, 88 u16 heads, u16 sectors); 89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 90 static unsigned int ata_dev_set_feature(struct ata_device *dev, 91 u8 enable, u8 feature); 92 static void ata_dev_xfermask(struct ata_device *dev); 93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 94 95 unsigned int ata_print_id = 1; 96 static struct workqueue_struct *ata_wq; 97 98 struct workqueue_struct *ata_aux_wq; 99 100 struct ata_force_param { 101 const char *name; 102 unsigned int cbl; 103 int spd_limit; 104 unsigned long xfer_mask; 105 unsigned int horkage_on; 106 unsigned int horkage_off; 107 unsigned int lflags; 108 }; 109 110 struct ata_force_ent { 111 int port; 112 int device; 113 struct ata_force_param param; 114 }; 115 116 static struct ata_force_ent *ata_force_tbl; 117 static int ata_force_tbl_size; 118 119 static char ata_force_param_buf[PAGE_SIZE] __initdata; 120 /* param_buf is thrown away after initialization, disallow read */ 121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 123 124 static int atapi_enabled = 1; 125 module_param(atapi_enabled, int, 0444); 126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 127 128 static int atapi_dmadir = 0; 129 module_param(atapi_dmadir, int, 0444); 130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 131 132 int atapi_passthru16 = 1; 133 module_param(atapi_passthru16, int, 0444); 134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)"); 135 136 int libata_fua = 0; 137 module_param_named(fua, libata_fua, int, 0444); 138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 139 140 static int ata_ignore_hpa; 141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 143 144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 145 module_param_named(dma, libata_dma_mask, int, 0444); 146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 147 148 static int ata_probe_timeout; 149 module_param(ata_probe_timeout, int, 0444); 150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 151 152 int libata_noacpi = 0; 153 module_param_named(noacpi, libata_noacpi, int, 0444); 154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set"); 155 156 int libata_allow_tpm = 0; 157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands"); 159 160 MODULE_AUTHOR("Jeff Garzik"); 161 MODULE_DESCRIPTION("Library module for ATA devices"); 162 MODULE_LICENSE("GPL"); 163 MODULE_VERSION(DRV_VERSION); 164 165 166 /* 167 * Iterator helpers. Don't use directly. 168 * 169 * LOCKING: 170 * Host lock or EH context. 171 */ 172 struct ata_link *__ata_port_next_link(struct ata_port *ap, 173 struct ata_link *link, bool dev_only) 174 { 175 /* NULL link indicates start of iteration */ 176 if (!link) { 177 if (dev_only && sata_pmp_attached(ap)) 178 return ap->pmp_link; 179 return &ap->link; 180 } 181 182 /* we just iterated over the host master link, what's next? */ 183 if (link == &ap->link) { 184 if (!sata_pmp_attached(ap)) { 185 if (unlikely(ap->slave_link) && !dev_only) 186 return ap->slave_link; 187 return NULL; 188 } 189 return ap->pmp_link; 190 } 191 192 /* slave_link excludes PMP */ 193 if (unlikely(link == ap->slave_link)) 194 return NULL; 195 196 /* iterate to the next PMP link */ 197 if (++link < ap->pmp_link + ap->nr_pmp_links) 198 return link; 199 return NULL; 200 } 201 202 /** 203 * ata_dev_phys_link - find physical link for a device 204 * @dev: ATA device to look up physical link for 205 * 206 * Look up physical link which @dev is attached to. Note that 207 * this is different from @dev->link only when @dev is on slave 208 * link. For all other cases, it's the same as @dev->link. 209 * 210 * LOCKING: 211 * Don't care. 212 * 213 * RETURNS: 214 * Pointer to the found physical link. 215 */ 216 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 217 { 218 struct ata_port *ap = dev->link->ap; 219 220 if (!ap->slave_link) 221 return dev->link; 222 if (!dev->devno) 223 return &ap->link; 224 return ap->slave_link; 225 } 226 227 /** 228 * ata_force_cbl - force cable type according to libata.force 229 * @ap: ATA port of interest 230 * 231 * Force cable type according to libata.force and whine about it. 232 * The last entry which has matching port number is used, so it 233 * can be specified as part of device force parameters. For 234 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 235 * same effect. 236 * 237 * LOCKING: 238 * EH context. 239 */ 240 void ata_force_cbl(struct ata_port *ap) 241 { 242 int i; 243 244 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 245 const struct ata_force_ent *fe = &ata_force_tbl[i]; 246 247 if (fe->port != -1 && fe->port != ap->print_id) 248 continue; 249 250 if (fe->param.cbl == ATA_CBL_NONE) 251 continue; 252 253 ap->cbl = fe->param.cbl; 254 ata_port_printk(ap, KERN_NOTICE, 255 "FORCE: cable set to %s\n", fe->param.name); 256 return; 257 } 258 } 259 260 /** 261 * ata_force_link_limits - force link limits according to libata.force 262 * @link: ATA link of interest 263 * 264 * Force link flags and SATA spd limit according to libata.force 265 * and whine about it. When only the port part is specified 266 * (e.g. 1:), the limit applies to all links connected to both 267 * the host link and all fan-out ports connected via PMP. If the 268 * device part is specified as 0 (e.g. 1.00:), it specifies the 269 * first fan-out link not the host link. Device number 15 always 270 * points to the host link whether PMP is attached or not. If the 271 * controller has slave link, device number 16 points to it. 272 * 273 * LOCKING: 274 * EH context. 275 */ 276 static void ata_force_link_limits(struct ata_link *link) 277 { 278 bool did_spd = false; 279 int linkno = link->pmp; 280 int i; 281 282 if (ata_is_host_link(link)) 283 linkno += 15; 284 285 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 286 const struct ata_force_ent *fe = &ata_force_tbl[i]; 287 288 if (fe->port != -1 && fe->port != link->ap->print_id) 289 continue; 290 291 if (fe->device != -1 && fe->device != linkno) 292 continue; 293 294 /* only honor the first spd limit */ 295 if (!did_spd && fe->param.spd_limit) { 296 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 297 ata_link_printk(link, KERN_NOTICE, 298 "FORCE: PHY spd limit set to %s\n", 299 fe->param.name); 300 did_spd = true; 301 } 302 303 /* let lflags stack */ 304 if (fe->param.lflags) { 305 link->flags |= fe->param.lflags; 306 ata_link_printk(link, KERN_NOTICE, 307 "FORCE: link flag 0x%x forced -> 0x%x\n", 308 fe->param.lflags, link->flags); 309 } 310 } 311 } 312 313 /** 314 * ata_force_xfermask - force xfermask according to libata.force 315 * @dev: ATA device of interest 316 * 317 * Force xfer_mask according to libata.force and whine about it. 318 * For consistency with link selection, device number 15 selects 319 * the first device connected to the host link. 320 * 321 * LOCKING: 322 * EH context. 323 */ 324 static void ata_force_xfermask(struct ata_device *dev) 325 { 326 int devno = dev->link->pmp + dev->devno; 327 int alt_devno = devno; 328 int i; 329 330 /* allow n.15/16 for devices attached to host port */ 331 if (ata_is_host_link(dev->link)) 332 alt_devno += 15; 333 334 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 335 const struct ata_force_ent *fe = &ata_force_tbl[i]; 336 unsigned long pio_mask, mwdma_mask, udma_mask; 337 338 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 339 continue; 340 341 if (fe->device != -1 && fe->device != devno && 342 fe->device != alt_devno) 343 continue; 344 345 if (!fe->param.xfer_mask) 346 continue; 347 348 ata_unpack_xfermask(fe->param.xfer_mask, 349 &pio_mask, &mwdma_mask, &udma_mask); 350 if (udma_mask) 351 dev->udma_mask = udma_mask; 352 else if (mwdma_mask) { 353 dev->udma_mask = 0; 354 dev->mwdma_mask = mwdma_mask; 355 } else { 356 dev->udma_mask = 0; 357 dev->mwdma_mask = 0; 358 dev->pio_mask = pio_mask; 359 } 360 361 ata_dev_printk(dev, KERN_NOTICE, 362 "FORCE: xfer_mask set to %s\n", fe->param.name); 363 return; 364 } 365 } 366 367 /** 368 * ata_force_horkage - force horkage according to libata.force 369 * @dev: ATA device of interest 370 * 371 * Force horkage according to libata.force and whine about it. 372 * For consistency with link selection, device number 15 selects 373 * the first device connected to the host link. 374 * 375 * LOCKING: 376 * EH context. 377 */ 378 static void ata_force_horkage(struct ata_device *dev) 379 { 380 int devno = dev->link->pmp + dev->devno; 381 int alt_devno = devno; 382 int i; 383 384 /* allow n.15/16 for devices attached to host port */ 385 if (ata_is_host_link(dev->link)) 386 alt_devno += 15; 387 388 for (i = 0; i < ata_force_tbl_size; i++) { 389 const struct ata_force_ent *fe = &ata_force_tbl[i]; 390 391 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 392 continue; 393 394 if (fe->device != -1 && fe->device != devno && 395 fe->device != alt_devno) 396 continue; 397 398 if (!(~dev->horkage & fe->param.horkage_on) && 399 !(dev->horkage & fe->param.horkage_off)) 400 continue; 401 402 dev->horkage |= fe->param.horkage_on; 403 dev->horkage &= ~fe->param.horkage_off; 404 405 ata_dev_printk(dev, KERN_NOTICE, 406 "FORCE: horkage modified (%s)\n", fe->param.name); 407 } 408 } 409 410 /** 411 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 412 * @opcode: SCSI opcode 413 * 414 * Determine ATAPI command type from @opcode. 415 * 416 * LOCKING: 417 * None. 418 * 419 * RETURNS: 420 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 421 */ 422 int atapi_cmd_type(u8 opcode) 423 { 424 switch (opcode) { 425 case GPCMD_READ_10: 426 case GPCMD_READ_12: 427 return ATAPI_READ; 428 429 case GPCMD_WRITE_10: 430 case GPCMD_WRITE_12: 431 case GPCMD_WRITE_AND_VERIFY_10: 432 return ATAPI_WRITE; 433 434 case GPCMD_READ_CD: 435 case GPCMD_READ_CD_MSF: 436 return ATAPI_READ_CD; 437 438 case ATA_16: 439 case ATA_12: 440 if (atapi_passthru16) 441 return ATAPI_PASS_THRU; 442 /* fall thru */ 443 default: 444 return ATAPI_MISC; 445 } 446 } 447 448 /** 449 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 450 * @tf: Taskfile to convert 451 * @pmp: Port multiplier port 452 * @is_cmd: This FIS is for command 453 * @fis: Buffer into which data will output 454 * 455 * Converts a standard ATA taskfile to a Serial ATA 456 * FIS structure (Register - Host to Device). 457 * 458 * LOCKING: 459 * Inherited from caller. 460 */ 461 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 462 { 463 fis[0] = 0x27; /* Register - Host to Device FIS */ 464 fis[1] = pmp & 0xf; /* Port multiplier number*/ 465 if (is_cmd) 466 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 467 468 fis[2] = tf->command; 469 fis[3] = tf->feature; 470 471 fis[4] = tf->lbal; 472 fis[5] = tf->lbam; 473 fis[6] = tf->lbah; 474 fis[7] = tf->device; 475 476 fis[8] = tf->hob_lbal; 477 fis[9] = tf->hob_lbam; 478 fis[10] = tf->hob_lbah; 479 fis[11] = tf->hob_feature; 480 481 fis[12] = tf->nsect; 482 fis[13] = tf->hob_nsect; 483 fis[14] = 0; 484 fis[15] = tf->ctl; 485 486 fis[16] = 0; 487 fis[17] = 0; 488 fis[18] = 0; 489 fis[19] = 0; 490 } 491 492 /** 493 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 494 * @fis: Buffer from which data will be input 495 * @tf: Taskfile to output 496 * 497 * Converts a serial ATA FIS structure to a standard ATA taskfile. 498 * 499 * LOCKING: 500 * Inherited from caller. 501 */ 502 503 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 504 { 505 tf->command = fis[2]; /* status */ 506 tf->feature = fis[3]; /* error */ 507 508 tf->lbal = fis[4]; 509 tf->lbam = fis[5]; 510 tf->lbah = fis[6]; 511 tf->device = fis[7]; 512 513 tf->hob_lbal = fis[8]; 514 tf->hob_lbam = fis[9]; 515 tf->hob_lbah = fis[10]; 516 517 tf->nsect = fis[12]; 518 tf->hob_nsect = fis[13]; 519 } 520 521 static const u8 ata_rw_cmds[] = { 522 /* pio multi */ 523 ATA_CMD_READ_MULTI, 524 ATA_CMD_WRITE_MULTI, 525 ATA_CMD_READ_MULTI_EXT, 526 ATA_CMD_WRITE_MULTI_EXT, 527 0, 528 0, 529 0, 530 ATA_CMD_WRITE_MULTI_FUA_EXT, 531 /* pio */ 532 ATA_CMD_PIO_READ, 533 ATA_CMD_PIO_WRITE, 534 ATA_CMD_PIO_READ_EXT, 535 ATA_CMD_PIO_WRITE_EXT, 536 0, 537 0, 538 0, 539 0, 540 /* dma */ 541 ATA_CMD_READ, 542 ATA_CMD_WRITE, 543 ATA_CMD_READ_EXT, 544 ATA_CMD_WRITE_EXT, 545 0, 546 0, 547 0, 548 ATA_CMD_WRITE_FUA_EXT 549 }; 550 551 /** 552 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 553 * @tf: command to examine and configure 554 * @dev: device tf belongs to 555 * 556 * Examine the device configuration and tf->flags to calculate 557 * the proper read/write commands and protocol to use. 558 * 559 * LOCKING: 560 * caller. 561 */ 562 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 563 { 564 u8 cmd; 565 566 int index, fua, lba48, write; 567 568 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 569 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 570 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 571 572 if (dev->flags & ATA_DFLAG_PIO) { 573 tf->protocol = ATA_PROT_PIO; 574 index = dev->multi_count ? 0 : 8; 575 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 576 /* Unable to use DMA due to host limitation */ 577 tf->protocol = ATA_PROT_PIO; 578 index = dev->multi_count ? 0 : 8; 579 } else { 580 tf->protocol = ATA_PROT_DMA; 581 index = 16; 582 } 583 584 cmd = ata_rw_cmds[index + fua + lba48 + write]; 585 if (cmd) { 586 tf->command = cmd; 587 return 0; 588 } 589 return -1; 590 } 591 592 /** 593 * ata_tf_read_block - Read block address from ATA taskfile 594 * @tf: ATA taskfile of interest 595 * @dev: ATA device @tf belongs to 596 * 597 * LOCKING: 598 * None. 599 * 600 * Read block address from @tf. This function can handle all 601 * three address formats - LBA, LBA48 and CHS. tf->protocol and 602 * flags select the address format to use. 603 * 604 * RETURNS: 605 * Block address read from @tf. 606 */ 607 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 608 { 609 u64 block = 0; 610 611 if (tf->flags & ATA_TFLAG_LBA) { 612 if (tf->flags & ATA_TFLAG_LBA48) { 613 block |= (u64)tf->hob_lbah << 40; 614 block |= (u64)tf->hob_lbam << 32; 615 block |= tf->hob_lbal << 24; 616 } else 617 block |= (tf->device & 0xf) << 24; 618 619 block |= tf->lbah << 16; 620 block |= tf->lbam << 8; 621 block |= tf->lbal; 622 } else { 623 u32 cyl, head, sect; 624 625 cyl = tf->lbam | (tf->lbah << 8); 626 head = tf->device & 0xf; 627 sect = tf->lbal; 628 629 block = (cyl * dev->heads + head) * dev->sectors + sect; 630 } 631 632 return block; 633 } 634 635 /** 636 * ata_build_rw_tf - Build ATA taskfile for given read/write request 637 * @tf: Target ATA taskfile 638 * @dev: ATA device @tf belongs to 639 * @block: Block address 640 * @n_block: Number of blocks 641 * @tf_flags: RW/FUA etc... 642 * @tag: tag 643 * 644 * LOCKING: 645 * None. 646 * 647 * Build ATA taskfile @tf for read/write request described by 648 * @block, @n_block, @tf_flags and @tag on @dev. 649 * 650 * RETURNS: 651 * 652 * 0 on success, -ERANGE if the request is too large for @dev, 653 * -EINVAL if the request is invalid. 654 */ 655 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 656 u64 block, u32 n_block, unsigned int tf_flags, 657 unsigned int tag) 658 { 659 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 660 tf->flags |= tf_flags; 661 662 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 663 /* yay, NCQ */ 664 if (!lba_48_ok(block, n_block)) 665 return -ERANGE; 666 667 tf->protocol = ATA_PROT_NCQ; 668 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 669 670 if (tf->flags & ATA_TFLAG_WRITE) 671 tf->command = ATA_CMD_FPDMA_WRITE; 672 else 673 tf->command = ATA_CMD_FPDMA_READ; 674 675 tf->nsect = tag << 3; 676 tf->hob_feature = (n_block >> 8) & 0xff; 677 tf->feature = n_block & 0xff; 678 679 tf->hob_lbah = (block >> 40) & 0xff; 680 tf->hob_lbam = (block >> 32) & 0xff; 681 tf->hob_lbal = (block >> 24) & 0xff; 682 tf->lbah = (block >> 16) & 0xff; 683 tf->lbam = (block >> 8) & 0xff; 684 tf->lbal = block & 0xff; 685 686 tf->device = 1 << 6; 687 if (tf->flags & ATA_TFLAG_FUA) 688 tf->device |= 1 << 7; 689 } else if (dev->flags & ATA_DFLAG_LBA) { 690 tf->flags |= ATA_TFLAG_LBA; 691 692 if (lba_28_ok(block, n_block)) { 693 /* use LBA28 */ 694 tf->device |= (block >> 24) & 0xf; 695 } else if (lba_48_ok(block, n_block)) { 696 if (!(dev->flags & ATA_DFLAG_LBA48)) 697 return -ERANGE; 698 699 /* use LBA48 */ 700 tf->flags |= ATA_TFLAG_LBA48; 701 702 tf->hob_nsect = (n_block >> 8) & 0xff; 703 704 tf->hob_lbah = (block >> 40) & 0xff; 705 tf->hob_lbam = (block >> 32) & 0xff; 706 tf->hob_lbal = (block >> 24) & 0xff; 707 } else 708 /* request too large even for LBA48 */ 709 return -ERANGE; 710 711 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 712 return -EINVAL; 713 714 tf->nsect = n_block & 0xff; 715 716 tf->lbah = (block >> 16) & 0xff; 717 tf->lbam = (block >> 8) & 0xff; 718 tf->lbal = block & 0xff; 719 720 tf->device |= ATA_LBA; 721 } else { 722 /* CHS */ 723 u32 sect, head, cyl, track; 724 725 /* The request -may- be too large for CHS addressing. */ 726 if (!lba_28_ok(block, n_block)) 727 return -ERANGE; 728 729 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 730 return -EINVAL; 731 732 /* Convert LBA to CHS */ 733 track = (u32)block / dev->sectors; 734 cyl = track / dev->heads; 735 head = track % dev->heads; 736 sect = (u32)block % dev->sectors + 1; 737 738 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 739 (u32)block, track, cyl, head, sect); 740 741 /* Check whether the converted CHS can fit. 742 Cylinder: 0-65535 743 Head: 0-15 744 Sector: 1-255*/ 745 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 746 return -ERANGE; 747 748 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 749 tf->lbal = sect; 750 tf->lbam = cyl; 751 tf->lbah = cyl >> 8; 752 tf->device |= head; 753 } 754 755 return 0; 756 } 757 758 /** 759 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 760 * @pio_mask: pio_mask 761 * @mwdma_mask: mwdma_mask 762 * @udma_mask: udma_mask 763 * 764 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 765 * unsigned int xfer_mask. 766 * 767 * LOCKING: 768 * None. 769 * 770 * RETURNS: 771 * Packed xfer_mask. 772 */ 773 unsigned long ata_pack_xfermask(unsigned long pio_mask, 774 unsigned long mwdma_mask, 775 unsigned long udma_mask) 776 { 777 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 778 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 779 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 780 } 781 782 /** 783 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 784 * @xfer_mask: xfer_mask to unpack 785 * @pio_mask: resulting pio_mask 786 * @mwdma_mask: resulting mwdma_mask 787 * @udma_mask: resulting udma_mask 788 * 789 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 790 * Any NULL distination masks will be ignored. 791 */ 792 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 793 unsigned long *mwdma_mask, unsigned long *udma_mask) 794 { 795 if (pio_mask) 796 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 797 if (mwdma_mask) 798 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 799 if (udma_mask) 800 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 801 } 802 803 static const struct ata_xfer_ent { 804 int shift, bits; 805 u8 base; 806 } ata_xfer_tbl[] = { 807 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 808 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 809 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 810 { -1, }, 811 }; 812 813 /** 814 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 815 * @xfer_mask: xfer_mask of interest 816 * 817 * Return matching XFER_* value for @xfer_mask. Only the highest 818 * bit of @xfer_mask is considered. 819 * 820 * LOCKING: 821 * None. 822 * 823 * RETURNS: 824 * Matching XFER_* value, 0xff if no match found. 825 */ 826 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 827 { 828 int highbit = fls(xfer_mask) - 1; 829 const struct ata_xfer_ent *ent; 830 831 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 832 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 833 return ent->base + highbit - ent->shift; 834 return 0xff; 835 } 836 837 /** 838 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 839 * @xfer_mode: XFER_* of interest 840 * 841 * Return matching xfer_mask for @xfer_mode. 842 * 843 * LOCKING: 844 * None. 845 * 846 * RETURNS: 847 * Matching xfer_mask, 0 if no match found. 848 */ 849 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 850 { 851 const struct ata_xfer_ent *ent; 852 853 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 854 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 855 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 856 & ~((1 << ent->shift) - 1); 857 return 0; 858 } 859 860 /** 861 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 862 * @xfer_mode: XFER_* of interest 863 * 864 * Return matching xfer_shift for @xfer_mode. 865 * 866 * LOCKING: 867 * None. 868 * 869 * RETURNS: 870 * Matching xfer_shift, -1 if no match found. 871 */ 872 int ata_xfer_mode2shift(unsigned long xfer_mode) 873 { 874 const struct ata_xfer_ent *ent; 875 876 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 877 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 878 return ent->shift; 879 return -1; 880 } 881 882 /** 883 * ata_mode_string - convert xfer_mask to string 884 * @xfer_mask: mask of bits supported; only highest bit counts. 885 * 886 * Determine string which represents the highest speed 887 * (highest bit in @modemask). 888 * 889 * LOCKING: 890 * None. 891 * 892 * RETURNS: 893 * Constant C string representing highest speed listed in 894 * @mode_mask, or the constant C string "<n/a>". 895 */ 896 const char *ata_mode_string(unsigned long xfer_mask) 897 { 898 static const char * const xfer_mode_str[] = { 899 "PIO0", 900 "PIO1", 901 "PIO2", 902 "PIO3", 903 "PIO4", 904 "PIO5", 905 "PIO6", 906 "MWDMA0", 907 "MWDMA1", 908 "MWDMA2", 909 "MWDMA3", 910 "MWDMA4", 911 "UDMA/16", 912 "UDMA/25", 913 "UDMA/33", 914 "UDMA/44", 915 "UDMA/66", 916 "UDMA/100", 917 "UDMA/133", 918 "UDMA7", 919 }; 920 int highbit; 921 922 highbit = fls(xfer_mask) - 1; 923 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 924 return xfer_mode_str[highbit]; 925 return "<n/a>"; 926 } 927 928 static const char *sata_spd_string(unsigned int spd) 929 { 930 static const char * const spd_str[] = { 931 "1.5 Gbps", 932 "3.0 Gbps", 933 }; 934 935 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 936 return "<unknown>"; 937 return spd_str[spd - 1]; 938 } 939 940 void ata_dev_disable(struct ata_device *dev) 941 { 942 if (ata_dev_enabled(dev)) { 943 if (ata_msg_drv(dev->link->ap)) 944 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 945 ata_acpi_on_disable(dev); 946 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 947 ATA_DNXFER_QUIET); 948 dev->class++; 949 } 950 } 951 952 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 953 { 954 struct ata_link *link = dev->link; 955 struct ata_port *ap = link->ap; 956 u32 scontrol; 957 unsigned int err_mask; 958 int rc; 959 960 /* 961 * disallow DIPM for drivers which haven't set 962 * ATA_FLAG_IPM. This is because when DIPM is enabled, 963 * phy ready will be set in the interrupt status on 964 * state changes, which will cause some drivers to 965 * think there are errors - additionally drivers will 966 * need to disable hot plug. 967 */ 968 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 969 ap->pm_policy = NOT_AVAILABLE; 970 return -EINVAL; 971 } 972 973 /* 974 * For DIPM, we will only enable it for the 975 * min_power setting. 976 * 977 * Why? Because Disks are too stupid to know that 978 * If the host rejects a request to go to SLUMBER 979 * they should retry at PARTIAL, and instead it 980 * just would give up. So, for medium_power to 981 * work at all, we need to only allow HIPM. 982 */ 983 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 984 if (rc) 985 return rc; 986 987 switch (policy) { 988 case MIN_POWER: 989 /* no restrictions on IPM transitions */ 990 scontrol &= ~(0x3 << 8); 991 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 992 if (rc) 993 return rc; 994 995 /* enable DIPM */ 996 if (dev->flags & ATA_DFLAG_DIPM) 997 err_mask = ata_dev_set_feature(dev, 998 SETFEATURES_SATA_ENABLE, SATA_DIPM); 999 break; 1000 case MEDIUM_POWER: 1001 /* allow IPM to PARTIAL */ 1002 scontrol &= ~(0x1 << 8); 1003 scontrol |= (0x2 << 8); 1004 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1005 if (rc) 1006 return rc; 1007 1008 /* 1009 * we don't have to disable DIPM since IPM flags 1010 * disallow transitions to SLUMBER, which effectively 1011 * disable DIPM if it does not support PARTIAL 1012 */ 1013 break; 1014 case NOT_AVAILABLE: 1015 case MAX_PERFORMANCE: 1016 /* disable all IPM transitions */ 1017 scontrol |= (0x3 << 8); 1018 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1019 if (rc) 1020 return rc; 1021 1022 /* 1023 * we don't have to disable DIPM since IPM flags 1024 * disallow all transitions which effectively 1025 * disable DIPM anyway. 1026 */ 1027 break; 1028 } 1029 1030 /* FIXME: handle SET FEATURES failure */ 1031 (void) err_mask; 1032 1033 return 0; 1034 } 1035 1036 /** 1037 * ata_dev_enable_pm - enable SATA interface power management 1038 * @dev: device to enable power management 1039 * @policy: the link power management policy 1040 * 1041 * Enable SATA Interface power management. This will enable 1042 * Device Interface Power Management (DIPM) for min_power 1043 * policy, and then call driver specific callbacks for 1044 * enabling Host Initiated Power management. 1045 * 1046 * Locking: Caller. 1047 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 1048 */ 1049 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 1050 { 1051 int rc = 0; 1052 struct ata_port *ap = dev->link->ap; 1053 1054 /* set HIPM first, then DIPM */ 1055 if (ap->ops->enable_pm) 1056 rc = ap->ops->enable_pm(ap, policy); 1057 if (rc) 1058 goto enable_pm_out; 1059 rc = ata_dev_set_dipm(dev, policy); 1060 1061 enable_pm_out: 1062 if (rc) 1063 ap->pm_policy = MAX_PERFORMANCE; 1064 else 1065 ap->pm_policy = policy; 1066 return /* rc */; /* hopefully we can use 'rc' eventually */ 1067 } 1068 1069 #ifdef CONFIG_PM 1070 /** 1071 * ata_dev_disable_pm - disable SATA interface power management 1072 * @dev: device to disable power management 1073 * 1074 * Disable SATA Interface power management. This will disable 1075 * Device Interface Power Management (DIPM) without changing 1076 * policy, call driver specific callbacks for disabling Host 1077 * Initiated Power management. 1078 * 1079 * Locking: Caller. 1080 * Returns: void 1081 */ 1082 static void ata_dev_disable_pm(struct ata_device *dev) 1083 { 1084 struct ata_port *ap = dev->link->ap; 1085 1086 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1087 if (ap->ops->disable_pm) 1088 ap->ops->disable_pm(ap); 1089 } 1090 #endif /* CONFIG_PM */ 1091 1092 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1093 { 1094 ap->pm_policy = policy; 1095 ap->link.eh_info.action |= ATA_EH_LPM; 1096 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1097 ata_port_schedule_eh(ap); 1098 } 1099 1100 #ifdef CONFIG_PM 1101 static void ata_lpm_enable(struct ata_host *host) 1102 { 1103 struct ata_link *link; 1104 struct ata_port *ap; 1105 struct ata_device *dev; 1106 int i; 1107 1108 for (i = 0; i < host->n_ports; i++) { 1109 ap = host->ports[i]; 1110 ata_port_for_each_link(link, ap) { 1111 ata_link_for_each_dev(dev, link) 1112 ata_dev_disable_pm(dev); 1113 } 1114 } 1115 } 1116 1117 static void ata_lpm_disable(struct ata_host *host) 1118 { 1119 int i; 1120 1121 for (i = 0; i < host->n_ports; i++) { 1122 struct ata_port *ap = host->ports[i]; 1123 ata_lpm_schedule(ap, ap->pm_policy); 1124 } 1125 } 1126 #endif /* CONFIG_PM */ 1127 1128 /** 1129 * ata_dev_classify - determine device type based on ATA-spec signature 1130 * @tf: ATA taskfile register set for device to be identified 1131 * 1132 * Determine from taskfile register contents whether a device is 1133 * ATA or ATAPI, as per "Signature and persistence" section 1134 * of ATA/PI spec (volume 1, sect 5.14). 1135 * 1136 * LOCKING: 1137 * None. 1138 * 1139 * RETURNS: 1140 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1141 * %ATA_DEV_UNKNOWN the event of failure. 1142 */ 1143 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1144 { 1145 /* Apple's open source Darwin code hints that some devices only 1146 * put a proper signature into the LBA mid/high registers, 1147 * So, we only check those. It's sufficient for uniqueness. 1148 * 1149 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1150 * signatures for ATA and ATAPI devices attached on SerialATA, 1151 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1152 * spec has never mentioned about using different signatures 1153 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1154 * Multiplier specification began to use 0x69/0x96 to identify 1155 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1156 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1157 * 0x69/0x96 shortly and described them as reserved for 1158 * SerialATA. 1159 * 1160 * We follow the current spec and consider that 0x69/0x96 1161 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1162 */ 1163 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1164 DPRINTK("found ATA device by sig\n"); 1165 return ATA_DEV_ATA; 1166 } 1167 1168 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1169 DPRINTK("found ATAPI device by sig\n"); 1170 return ATA_DEV_ATAPI; 1171 } 1172 1173 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1174 DPRINTK("found PMP device by sig\n"); 1175 return ATA_DEV_PMP; 1176 } 1177 1178 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1179 printk(KERN_INFO "ata: SEMB device ignored\n"); 1180 return ATA_DEV_SEMB_UNSUP; /* not yet */ 1181 } 1182 1183 DPRINTK("unknown device\n"); 1184 return ATA_DEV_UNKNOWN; 1185 } 1186 1187 /** 1188 * ata_id_string - Convert IDENTIFY DEVICE page into string 1189 * @id: IDENTIFY DEVICE results we will examine 1190 * @s: string into which data is output 1191 * @ofs: offset into identify device page 1192 * @len: length of string to return. must be an even number. 1193 * 1194 * The strings in the IDENTIFY DEVICE page are broken up into 1195 * 16-bit chunks. Run through the string, and output each 1196 * 8-bit chunk linearly, regardless of platform. 1197 * 1198 * LOCKING: 1199 * caller. 1200 */ 1201 1202 void ata_id_string(const u16 *id, unsigned char *s, 1203 unsigned int ofs, unsigned int len) 1204 { 1205 unsigned int c; 1206 1207 BUG_ON(len & 1); 1208 1209 while (len > 0) { 1210 c = id[ofs] >> 8; 1211 *s = c; 1212 s++; 1213 1214 c = id[ofs] & 0xff; 1215 *s = c; 1216 s++; 1217 1218 ofs++; 1219 len -= 2; 1220 } 1221 } 1222 1223 /** 1224 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1225 * @id: IDENTIFY DEVICE results we will examine 1226 * @s: string into which data is output 1227 * @ofs: offset into identify device page 1228 * @len: length of string to return. must be an odd number. 1229 * 1230 * This function is identical to ata_id_string except that it 1231 * trims trailing spaces and terminates the resulting string with 1232 * null. @len must be actual maximum length (even number) + 1. 1233 * 1234 * LOCKING: 1235 * caller. 1236 */ 1237 void ata_id_c_string(const u16 *id, unsigned char *s, 1238 unsigned int ofs, unsigned int len) 1239 { 1240 unsigned char *p; 1241 1242 ata_id_string(id, s, ofs, len - 1); 1243 1244 p = s + strnlen(s, len - 1); 1245 while (p > s && p[-1] == ' ') 1246 p--; 1247 *p = '\0'; 1248 } 1249 1250 static u64 ata_id_n_sectors(const u16 *id) 1251 { 1252 if (ata_id_has_lba(id)) { 1253 if (ata_id_has_lba48(id)) 1254 return ata_id_u64(id, 100); 1255 else 1256 return ata_id_u32(id, 60); 1257 } else { 1258 if (ata_id_current_chs_valid(id)) 1259 return ata_id_u32(id, 57); 1260 else 1261 return id[1] * id[3] * id[6]; 1262 } 1263 } 1264 1265 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1266 { 1267 u64 sectors = 0; 1268 1269 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1270 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1271 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1272 sectors |= (tf->lbah & 0xff) << 16; 1273 sectors |= (tf->lbam & 0xff) << 8; 1274 sectors |= (tf->lbal & 0xff); 1275 1276 return sectors; 1277 } 1278 1279 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1280 { 1281 u64 sectors = 0; 1282 1283 sectors |= (tf->device & 0x0f) << 24; 1284 sectors |= (tf->lbah & 0xff) << 16; 1285 sectors |= (tf->lbam & 0xff) << 8; 1286 sectors |= (tf->lbal & 0xff); 1287 1288 return sectors; 1289 } 1290 1291 /** 1292 * ata_read_native_max_address - Read native max address 1293 * @dev: target device 1294 * @max_sectors: out parameter for the result native max address 1295 * 1296 * Perform an LBA48 or LBA28 native size query upon the device in 1297 * question. 1298 * 1299 * RETURNS: 1300 * 0 on success, -EACCES if command is aborted by the drive. 1301 * -EIO on other errors. 1302 */ 1303 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1304 { 1305 unsigned int err_mask; 1306 struct ata_taskfile tf; 1307 int lba48 = ata_id_has_lba48(dev->id); 1308 1309 ata_tf_init(dev, &tf); 1310 1311 /* always clear all address registers */ 1312 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1313 1314 if (lba48) { 1315 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1316 tf.flags |= ATA_TFLAG_LBA48; 1317 } else 1318 tf.command = ATA_CMD_READ_NATIVE_MAX; 1319 1320 tf.protocol |= ATA_PROT_NODATA; 1321 tf.device |= ATA_LBA; 1322 1323 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1324 if (err_mask) { 1325 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1326 "max address (err_mask=0x%x)\n", err_mask); 1327 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1328 return -EACCES; 1329 return -EIO; 1330 } 1331 1332 if (lba48) 1333 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1334 else 1335 *max_sectors = ata_tf_to_lba(&tf) + 1; 1336 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1337 (*max_sectors)--; 1338 return 0; 1339 } 1340 1341 /** 1342 * ata_set_max_sectors - Set max sectors 1343 * @dev: target device 1344 * @new_sectors: new max sectors value to set for the device 1345 * 1346 * Set max sectors of @dev to @new_sectors. 1347 * 1348 * RETURNS: 1349 * 0 on success, -EACCES if command is aborted or denied (due to 1350 * previous non-volatile SET_MAX) by the drive. -EIO on other 1351 * errors. 1352 */ 1353 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1354 { 1355 unsigned int err_mask; 1356 struct ata_taskfile tf; 1357 int lba48 = ata_id_has_lba48(dev->id); 1358 1359 new_sectors--; 1360 1361 ata_tf_init(dev, &tf); 1362 1363 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1364 1365 if (lba48) { 1366 tf.command = ATA_CMD_SET_MAX_EXT; 1367 tf.flags |= ATA_TFLAG_LBA48; 1368 1369 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1370 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1371 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1372 } else { 1373 tf.command = ATA_CMD_SET_MAX; 1374 1375 tf.device |= (new_sectors >> 24) & 0xf; 1376 } 1377 1378 tf.protocol |= ATA_PROT_NODATA; 1379 tf.device |= ATA_LBA; 1380 1381 tf.lbal = (new_sectors >> 0) & 0xff; 1382 tf.lbam = (new_sectors >> 8) & 0xff; 1383 tf.lbah = (new_sectors >> 16) & 0xff; 1384 1385 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1386 if (err_mask) { 1387 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1388 "max address (err_mask=0x%x)\n", err_mask); 1389 if (err_mask == AC_ERR_DEV && 1390 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1391 return -EACCES; 1392 return -EIO; 1393 } 1394 1395 return 0; 1396 } 1397 1398 /** 1399 * ata_hpa_resize - Resize a device with an HPA set 1400 * @dev: Device to resize 1401 * 1402 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1403 * it if required to the full size of the media. The caller must check 1404 * the drive has the HPA feature set enabled. 1405 * 1406 * RETURNS: 1407 * 0 on success, -errno on failure. 1408 */ 1409 static int ata_hpa_resize(struct ata_device *dev) 1410 { 1411 struct ata_eh_context *ehc = &dev->link->eh_context; 1412 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1413 u64 sectors = ata_id_n_sectors(dev->id); 1414 u64 native_sectors; 1415 int rc; 1416 1417 /* do we need to do it? */ 1418 if (dev->class != ATA_DEV_ATA || 1419 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1420 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1421 return 0; 1422 1423 /* read native max address */ 1424 rc = ata_read_native_max_address(dev, &native_sectors); 1425 if (rc) { 1426 /* If device aborted the command or HPA isn't going to 1427 * be unlocked, skip HPA resizing. 1428 */ 1429 if (rc == -EACCES || !ata_ignore_hpa) { 1430 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1431 "broken, skipping HPA handling\n"); 1432 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1433 1434 /* we can continue if device aborted the command */ 1435 if (rc == -EACCES) 1436 rc = 0; 1437 } 1438 1439 return rc; 1440 } 1441 1442 /* nothing to do? */ 1443 if (native_sectors <= sectors || !ata_ignore_hpa) { 1444 if (!print_info || native_sectors == sectors) 1445 return 0; 1446 1447 if (native_sectors > sectors) 1448 ata_dev_printk(dev, KERN_INFO, 1449 "HPA detected: current %llu, native %llu\n", 1450 (unsigned long long)sectors, 1451 (unsigned long long)native_sectors); 1452 else if (native_sectors < sectors) 1453 ata_dev_printk(dev, KERN_WARNING, 1454 "native sectors (%llu) is smaller than " 1455 "sectors (%llu)\n", 1456 (unsigned long long)native_sectors, 1457 (unsigned long long)sectors); 1458 return 0; 1459 } 1460 1461 /* let's unlock HPA */ 1462 rc = ata_set_max_sectors(dev, native_sectors); 1463 if (rc == -EACCES) { 1464 /* if device aborted the command, skip HPA resizing */ 1465 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1466 "(%llu -> %llu), skipping HPA handling\n", 1467 (unsigned long long)sectors, 1468 (unsigned long long)native_sectors); 1469 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1470 return 0; 1471 } else if (rc) 1472 return rc; 1473 1474 /* re-read IDENTIFY data */ 1475 rc = ata_dev_reread_id(dev, 0); 1476 if (rc) { 1477 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1478 "data after HPA resizing\n"); 1479 return rc; 1480 } 1481 1482 if (print_info) { 1483 u64 new_sectors = ata_id_n_sectors(dev->id); 1484 ata_dev_printk(dev, KERN_INFO, 1485 "HPA unlocked: %llu -> %llu, native %llu\n", 1486 (unsigned long long)sectors, 1487 (unsigned long long)new_sectors, 1488 (unsigned long long)native_sectors); 1489 } 1490 1491 return 0; 1492 } 1493 1494 /** 1495 * ata_dump_id - IDENTIFY DEVICE info debugging output 1496 * @id: IDENTIFY DEVICE page to dump 1497 * 1498 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1499 * page. 1500 * 1501 * LOCKING: 1502 * caller. 1503 */ 1504 1505 static inline void ata_dump_id(const u16 *id) 1506 { 1507 DPRINTK("49==0x%04x " 1508 "53==0x%04x " 1509 "63==0x%04x " 1510 "64==0x%04x " 1511 "75==0x%04x \n", 1512 id[49], 1513 id[53], 1514 id[63], 1515 id[64], 1516 id[75]); 1517 DPRINTK("80==0x%04x " 1518 "81==0x%04x " 1519 "82==0x%04x " 1520 "83==0x%04x " 1521 "84==0x%04x \n", 1522 id[80], 1523 id[81], 1524 id[82], 1525 id[83], 1526 id[84]); 1527 DPRINTK("88==0x%04x " 1528 "93==0x%04x\n", 1529 id[88], 1530 id[93]); 1531 } 1532 1533 /** 1534 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1535 * @id: IDENTIFY data to compute xfer mask from 1536 * 1537 * Compute the xfermask for this device. This is not as trivial 1538 * as it seems if we must consider early devices correctly. 1539 * 1540 * FIXME: pre IDE drive timing (do we care ?). 1541 * 1542 * LOCKING: 1543 * None. 1544 * 1545 * RETURNS: 1546 * Computed xfermask 1547 */ 1548 unsigned long ata_id_xfermask(const u16 *id) 1549 { 1550 unsigned long pio_mask, mwdma_mask, udma_mask; 1551 1552 /* Usual case. Word 53 indicates word 64 is valid */ 1553 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1554 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1555 pio_mask <<= 3; 1556 pio_mask |= 0x7; 1557 } else { 1558 /* If word 64 isn't valid then Word 51 high byte holds 1559 * the PIO timing number for the maximum. Turn it into 1560 * a mask. 1561 */ 1562 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1563 if (mode < 5) /* Valid PIO range */ 1564 pio_mask = (2 << mode) - 1; 1565 else 1566 pio_mask = 1; 1567 1568 /* But wait.. there's more. Design your standards by 1569 * committee and you too can get a free iordy field to 1570 * process. However its the speeds not the modes that 1571 * are supported... Note drivers using the timing API 1572 * will get this right anyway 1573 */ 1574 } 1575 1576 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1577 1578 if (ata_id_is_cfa(id)) { 1579 /* 1580 * Process compact flash extended modes 1581 */ 1582 int pio = id[163] & 0x7; 1583 int dma = (id[163] >> 3) & 7; 1584 1585 if (pio) 1586 pio_mask |= (1 << 5); 1587 if (pio > 1) 1588 pio_mask |= (1 << 6); 1589 if (dma) 1590 mwdma_mask |= (1 << 3); 1591 if (dma > 1) 1592 mwdma_mask |= (1 << 4); 1593 } 1594 1595 udma_mask = 0; 1596 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1597 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1598 1599 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1600 } 1601 1602 /** 1603 * ata_pio_queue_task - Queue port_task 1604 * @ap: The ata_port to queue port_task for 1605 * @data: data for @fn to use 1606 * @delay: delay time in msecs for workqueue function 1607 * 1608 * Schedule @fn(@data) for execution after @delay jiffies using 1609 * port_task. There is one port_task per port and it's the 1610 * user(low level driver)'s responsibility to make sure that only 1611 * one task is active at any given time. 1612 * 1613 * libata core layer takes care of synchronization between 1614 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1615 * synchronization. 1616 * 1617 * LOCKING: 1618 * Inherited from caller. 1619 */ 1620 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1621 { 1622 ap->port_task_data = data; 1623 1624 /* may fail if ata_port_flush_task() in progress */ 1625 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1626 } 1627 1628 /** 1629 * ata_port_flush_task - Flush port_task 1630 * @ap: The ata_port to flush port_task for 1631 * 1632 * After this function completes, port_task is guranteed not to 1633 * be running or scheduled. 1634 * 1635 * LOCKING: 1636 * Kernel thread context (may sleep) 1637 */ 1638 void ata_port_flush_task(struct ata_port *ap) 1639 { 1640 DPRINTK("ENTER\n"); 1641 1642 cancel_rearming_delayed_work(&ap->port_task); 1643 1644 if (ata_msg_ctl(ap)) 1645 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1646 } 1647 1648 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1649 { 1650 struct completion *waiting = qc->private_data; 1651 1652 complete(waiting); 1653 } 1654 1655 /** 1656 * ata_exec_internal_sg - execute libata internal command 1657 * @dev: Device to which the command is sent 1658 * @tf: Taskfile registers for the command and the result 1659 * @cdb: CDB for packet command 1660 * @dma_dir: Data tranfer direction of the command 1661 * @sgl: sg list for the data buffer of the command 1662 * @n_elem: Number of sg entries 1663 * @timeout: Timeout in msecs (0 for default) 1664 * 1665 * Executes libata internal command with timeout. @tf contains 1666 * command on entry and result on return. Timeout and error 1667 * conditions are reported via return value. No recovery action 1668 * is taken after a command times out. It's caller's duty to 1669 * clean up after timeout. 1670 * 1671 * LOCKING: 1672 * None. Should be called with kernel context, might sleep. 1673 * 1674 * RETURNS: 1675 * Zero on success, AC_ERR_* mask on failure 1676 */ 1677 unsigned ata_exec_internal_sg(struct ata_device *dev, 1678 struct ata_taskfile *tf, const u8 *cdb, 1679 int dma_dir, struct scatterlist *sgl, 1680 unsigned int n_elem, unsigned long timeout) 1681 { 1682 struct ata_link *link = dev->link; 1683 struct ata_port *ap = link->ap; 1684 u8 command = tf->command; 1685 int auto_timeout = 0; 1686 struct ata_queued_cmd *qc; 1687 unsigned int tag, preempted_tag; 1688 u32 preempted_sactive, preempted_qc_active; 1689 int preempted_nr_active_links; 1690 DECLARE_COMPLETION_ONSTACK(wait); 1691 unsigned long flags; 1692 unsigned int err_mask; 1693 int rc; 1694 1695 spin_lock_irqsave(ap->lock, flags); 1696 1697 /* no internal command while frozen */ 1698 if (ap->pflags & ATA_PFLAG_FROZEN) { 1699 spin_unlock_irqrestore(ap->lock, flags); 1700 return AC_ERR_SYSTEM; 1701 } 1702 1703 /* initialize internal qc */ 1704 1705 /* XXX: Tag 0 is used for drivers with legacy EH as some 1706 * drivers choke if any other tag is given. This breaks 1707 * ata_tag_internal() test for those drivers. Don't use new 1708 * EH stuff without converting to it. 1709 */ 1710 if (ap->ops->error_handler) 1711 tag = ATA_TAG_INTERNAL; 1712 else 1713 tag = 0; 1714 1715 qc = __ata_qc_from_tag(ap, tag); 1716 1717 qc->tag = tag; 1718 qc->scsicmd = NULL; 1719 qc->ap = ap; 1720 qc->dev = dev; 1721 ata_qc_reinit(qc); 1722 1723 preempted_tag = link->active_tag; 1724 preempted_sactive = link->sactive; 1725 preempted_qc_active = ap->qc_active; 1726 preempted_nr_active_links = ap->nr_active_links; 1727 link->active_tag = ATA_TAG_POISON; 1728 link->sactive = 0; 1729 ap->qc_active = 0; 1730 ap->nr_active_links = 0; 1731 1732 /* prepare & issue qc */ 1733 qc->tf = *tf; 1734 if (cdb) 1735 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1736 qc->flags |= ATA_QCFLAG_RESULT_TF; 1737 qc->dma_dir = dma_dir; 1738 if (dma_dir != DMA_NONE) { 1739 unsigned int i, buflen = 0; 1740 struct scatterlist *sg; 1741 1742 for_each_sg(sgl, sg, n_elem, i) 1743 buflen += sg->length; 1744 1745 ata_sg_init(qc, sgl, n_elem); 1746 qc->nbytes = buflen; 1747 } 1748 1749 qc->private_data = &wait; 1750 qc->complete_fn = ata_qc_complete_internal; 1751 1752 ata_qc_issue(qc); 1753 1754 spin_unlock_irqrestore(ap->lock, flags); 1755 1756 if (!timeout) { 1757 if (ata_probe_timeout) 1758 timeout = ata_probe_timeout * 1000; 1759 else { 1760 timeout = ata_internal_cmd_timeout(dev, command); 1761 auto_timeout = 1; 1762 } 1763 } 1764 1765 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1766 1767 ata_port_flush_task(ap); 1768 1769 if (!rc) { 1770 spin_lock_irqsave(ap->lock, flags); 1771 1772 /* We're racing with irq here. If we lose, the 1773 * following test prevents us from completing the qc 1774 * twice. If we win, the port is frozen and will be 1775 * cleaned up by ->post_internal_cmd(). 1776 */ 1777 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1778 qc->err_mask |= AC_ERR_TIMEOUT; 1779 1780 if (ap->ops->error_handler) 1781 ata_port_freeze(ap); 1782 else 1783 ata_qc_complete(qc); 1784 1785 if (ata_msg_warn(ap)) 1786 ata_dev_printk(dev, KERN_WARNING, 1787 "qc timeout (cmd 0x%x)\n", command); 1788 } 1789 1790 spin_unlock_irqrestore(ap->lock, flags); 1791 } 1792 1793 /* do post_internal_cmd */ 1794 if (ap->ops->post_internal_cmd) 1795 ap->ops->post_internal_cmd(qc); 1796 1797 /* perform minimal error analysis */ 1798 if (qc->flags & ATA_QCFLAG_FAILED) { 1799 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1800 qc->err_mask |= AC_ERR_DEV; 1801 1802 if (!qc->err_mask) 1803 qc->err_mask |= AC_ERR_OTHER; 1804 1805 if (qc->err_mask & ~AC_ERR_OTHER) 1806 qc->err_mask &= ~AC_ERR_OTHER; 1807 } 1808 1809 /* finish up */ 1810 spin_lock_irqsave(ap->lock, flags); 1811 1812 *tf = qc->result_tf; 1813 err_mask = qc->err_mask; 1814 1815 ata_qc_free(qc); 1816 link->active_tag = preempted_tag; 1817 link->sactive = preempted_sactive; 1818 ap->qc_active = preempted_qc_active; 1819 ap->nr_active_links = preempted_nr_active_links; 1820 1821 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1822 * Until those drivers are fixed, we detect the condition 1823 * here, fail the command with AC_ERR_SYSTEM and reenable the 1824 * port. 1825 * 1826 * Note that this doesn't change any behavior as internal 1827 * command failure results in disabling the device in the 1828 * higher layer for LLDDs without new reset/EH callbacks. 1829 * 1830 * Kill the following code as soon as those drivers are fixed. 1831 */ 1832 if (ap->flags & ATA_FLAG_DISABLED) { 1833 err_mask |= AC_ERR_SYSTEM; 1834 ata_port_probe(ap); 1835 } 1836 1837 spin_unlock_irqrestore(ap->lock, flags); 1838 1839 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1840 ata_internal_cmd_timed_out(dev, command); 1841 1842 return err_mask; 1843 } 1844 1845 /** 1846 * ata_exec_internal - execute libata internal command 1847 * @dev: Device to which the command is sent 1848 * @tf: Taskfile registers for the command and the result 1849 * @cdb: CDB for packet command 1850 * @dma_dir: Data tranfer direction of the command 1851 * @buf: Data buffer of the command 1852 * @buflen: Length of data buffer 1853 * @timeout: Timeout in msecs (0 for default) 1854 * 1855 * Wrapper around ata_exec_internal_sg() which takes simple 1856 * buffer instead of sg list. 1857 * 1858 * LOCKING: 1859 * None. Should be called with kernel context, might sleep. 1860 * 1861 * RETURNS: 1862 * Zero on success, AC_ERR_* mask on failure 1863 */ 1864 unsigned ata_exec_internal(struct ata_device *dev, 1865 struct ata_taskfile *tf, const u8 *cdb, 1866 int dma_dir, void *buf, unsigned int buflen, 1867 unsigned long timeout) 1868 { 1869 struct scatterlist *psg = NULL, sg; 1870 unsigned int n_elem = 0; 1871 1872 if (dma_dir != DMA_NONE) { 1873 WARN_ON(!buf); 1874 sg_init_one(&sg, buf, buflen); 1875 psg = &sg; 1876 n_elem++; 1877 } 1878 1879 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1880 timeout); 1881 } 1882 1883 /** 1884 * ata_do_simple_cmd - execute simple internal command 1885 * @dev: Device to which the command is sent 1886 * @cmd: Opcode to execute 1887 * 1888 * Execute a 'simple' command, that only consists of the opcode 1889 * 'cmd' itself, without filling any other registers 1890 * 1891 * LOCKING: 1892 * Kernel thread context (may sleep). 1893 * 1894 * RETURNS: 1895 * Zero on success, AC_ERR_* mask on failure 1896 */ 1897 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1898 { 1899 struct ata_taskfile tf; 1900 1901 ata_tf_init(dev, &tf); 1902 1903 tf.command = cmd; 1904 tf.flags |= ATA_TFLAG_DEVICE; 1905 tf.protocol = ATA_PROT_NODATA; 1906 1907 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1908 } 1909 1910 /** 1911 * ata_pio_need_iordy - check if iordy needed 1912 * @adev: ATA device 1913 * 1914 * Check if the current speed of the device requires IORDY. Used 1915 * by various controllers for chip configuration. 1916 */ 1917 1918 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1919 { 1920 /* Controller doesn't support IORDY. Probably a pointless check 1921 as the caller should know this */ 1922 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1923 return 0; 1924 /* PIO3 and higher it is mandatory */ 1925 if (adev->pio_mode > XFER_PIO_2) 1926 return 1; 1927 /* We turn it on when possible */ 1928 if (ata_id_has_iordy(adev->id)) 1929 return 1; 1930 return 0; 1931 } 1932 1933 /** 1934 * ata_pio_mask_no_iordy - Return the non IORDY mask 1935 * @adev: ATA device 1936 * 1937 * Compute the highest mode possible if we are not using iordy. Return 1938 * -1 if no iordy mode is available. 1939 */ 1940 1941 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1942 { 1943 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1944 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1945 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1946 /* Is the speed faster than the drive allows non IORDY ? */ 1947 if (pio) { 1948 /* This is cycle times not frequency - watch the logic! */ 1949 if (pio > 240) /* PIO2 is 240nS per cycle */ 1950 return 3 << ATA_SHIFT_PIO; 1951 return 7 << ATA_SHIFT_PIO; 1952 } 1953 } 1954 return 3 << ATA_SHIFT_PIO; 1955 } 1956 1957 /** 1958 * ata_do_dev_read_id - default ID read method 1959 * @dev: device 1960 * @tf: proposed taskfile 1961 * @id: data buffer 1962 * 1963 * Issue the identify taskfile and hand back the buffer containing 1964 * identify data. For some RAID controllers and for pre ATA devices 1965 * this function is wrapped or replaced by the driver 1966 */ 1967 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1968 struct ata_taskfile *tf, u16 *id) 1969 { 1970 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1971 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1972 } 1973 1974 /** 1975 * ata_dev_read_id - Read ID data from the specified device 1976 * @dev: target device 1977 * @p_class: pointer to class of the target device (may be changed) 1978 * @flags: ATA_READID_* flags 1979 * @id: buffer to read IDENTIFY data into 1980 * 1981 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1982 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1983 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1984 * for pre-ATA4 drives. 1985 * 1986 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1987 * now we abort if we hit that case. 1988 * 1989 * LOCKING: 1990 * Kernel thread context (may sleep) 1991 * 1992 * RETURNS: 1993 * 0 on success, -errno otherwise. 1994 */ 1995 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1996 unsigned int flags, u16 *id) 1997 { 1998 struct ata_port *ap = dev->link->ap; 1999 unsigned int class = *p_class; 2000 struct ata_taskfile tf; 2001 unsigned int err_mask = 0; 2002 const char *reason; 2003 int may_fallback = 1, tried_spinup = 0; 2004 int rc; 2005 2006 if (ata_msg_ctl(ap)) 2007 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2008 2009 retry: 2010 ata_tf_init(dev, &tf); 2011 2012 switch (class) { 2013 case ATA_DEV_ATA: 2014 tf.command = ATA_CMD_ID_ATA; 2015 break; 2016 case ATA_DEV_ATAPI: 2017 tf.command = ATA_CMD_ID_ATAPI; 2018 break; 2019 default: 2020 rc = -ENODEV; 2021 reason = "unsupported class"; 2022 goto err_out; 2023 } 2024 2025 tf.protocol = ATA_PROT_PIO; 2026 2027 /* Some devices choke if TF registers contain garbage. Make 2028 * sure those are properly initialized. 2029 */ 2030 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 2031 2032 /* Device presence detection is unreliable on some 2033 * controllers. Always poll IDENTIFY if available. 2034 */ 2035 tf.flags |= ATA_TFLAG_POLLING; 2036 2037 if (ap->ops->read_id) 2038 err_mask = ap->ops->read_id(dev, &tf, id); 2039 else 2040 err_mask = ata_do_dev_read_id(dev, &tf, id); 2041 2042 if (err_mask) { 2043 if (err_mask & AC_ERR_NODEV_HINT) { 2044 ata_dev_printk(dev, KERN_DEBUG, 2045 "NODEV after polling detection\n"); 2046 return -ENOENT; 2047 } 2048 2049 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 2050 /* Device or controller might have reported 2051 * the wrong device class. Give a shot at the 2052 * other IDENTIFY if the current one is 2053 * aborted by the device. 2054 */ 2055 if (may_fallback) { 2056 may_fallback = 0; 2057 2058 if (class == ATA_DEV_ATA) 2059 class = ATA_DEV_ATAPI; 2060 else 2061 class = ATA_DEV_ATA; 2062 goto retry; 2063 } 2064 2065 /* Control reaches here iff the device aborted 2066 * both flavors of IDENTIFYs which happens 2067 * sometimes with phantom devices. 2068 */ 2069 ata_dev_printk(dev, KERN_DEBUG, 2070 "both IDENTIFYs aborted, assuming NODEV\n"); 2071 return -ENOENT; 2072 } 2073 2074 rc = -EIO; 2075 reason = "I/O error"; 2076 goto err_out; 2077 } 2078 2079 /* Falling back doesn't make sense if ID data was read 2080 * successfully at least once. 2081 */ 2082 may_fallback = 0; 2083 2084 swap_buf_le16(id, ATA_ID_WORDS); 2085 2086 /* sanity check */ 2087 rc = -EINVAL; 2088 reason = "device reports invalid type"; 2089 2090 if (class == ATA_DEV_ATA) { 2091 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2092 goto err_out; 2093 } else { 2094 if (ata_id_is_ata(id)) 2095 goto err_out; 2096 } 2097 2098 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2099 tried_spinup = 1; 2100 /* 2101 * Drive powered-up in standby mode, and requires a specific 2102 * SET_FEATURES spin-up subcommand before it will accept 2103 * anything other than the original IDENTIFY command. 2104 */ 2105 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2106 if (err_mask && id[2] != 0x738c) { 2107 rc = -EIO; 2108 reason = "SPINUP failed"; 2109 goto err_out; 2110 } 2111 /* 2112 * If the drive initially returned incomplete IDENTIFY info, 2113 * we now must reissue the IDENTIFY command. 2114 */ 2115 if (id[2] == 0x37c8) 2116 goto retry; 2117 } 2118 2119 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2120 /* 2121 * The exact sequence expected by certain pre-ATA4 drives is: 2122 * SRST RESET 2123 * IDENTIFY (optional in early ATA) 2124 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2125 * anything else.. 2126 * Some drives were very specific about that exact sequence. 2127 * 2128 * Note that ATA4 says lba is mandatory so the second check 2129 * shoud never trigger. 2130 */ 2131 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2132 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2133 if (err_mask) { 2134 rc = -EIO; 2135 reason = "INIT_DEV_PARAMS failed"; 2136 goto err_out; 2137 } 2138 2139 /* current CHS translation info (id[53-58]) might be 2140 * changed. reread the identify device info. 2141 */ 2142 flags &= ~ATA_READID_POSTRESET; 2143 goto retry; 2144 } 2145 } 2146 2147 *p_class = class; 2148 2149 return 0; 2150 2151 err_out: 2152 if (ata_msg_warn(ap)) 2153 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2154 "(%s, err_mask=0x%x)\n", reason, err_mask); 2155 return rc; 2156 } 2157 2158 static inline u8 ata_dev_knobble(struct ata_device *dev) 2159 { 2160 struct ata_port *ap = dev->link->ap; 2161 2162 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2163 return 0; 2164 2165 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2166 } 2167 2168 static void ata_dev_config_ncq(struct ata_device *dev, 2169 char *desc, size_t desc_sz) 2170 { 2171 struct ata_port *ap = dev->link->ap; 2172 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2173 2174 if (!ata_id_has_ncq(dev->id)) { 2175 desc[0] = '\0'; 2176 return; 2177 } 2178 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2179 snprintf(desc, desc_sz, "NCQ (not used)"); 2180 return; 2181 } 2182 if (ap->flags & ATA_FLAG_NCQ) { 2183 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2184 dev->flags |= ATA_DFLAG_NCQ; 2185 } 2186 2187 if (hdepth >= ddepth) 2188 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 2189 else 2190 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 2191 } 2192 2193 /** 2194 * ata_dev_configure - Configure the specified ATA/ATAPI device 2195 * @dev: Target device to configure 2196 * 2197 * Configure @dev according to @dev->id. Generic and low-level 2198 * driver specific fixups are also applied. 2199 * 2200 * LOCKING: 2201 * Kernel thread context (may sleep) 2202 * 2203 * RETURNS: 2204 * 0 on success, -errno otherwise 2205 */ 2206 int ata_dev_configure(struct ata_device *dev) 2207 { 2208 struct ata_port *ap = dev->link->ap; 2209 struct ata_eh_context *ehc = &dev->link->eh_context; 2210 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2211 const u16 *id = dev->id; 2212 unsigned long xfer_mask; 2213 char revbuf[7]; /* XYZ-99\0 */ 2214 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2215 char modelbuf[ATA_ID_PROD_LEN+1]; 2216 int rc; 2217 2218 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2219 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2220 __func__); 2221 return 0; 2222 } 2223 2224 if (ata_msg_probe(ap)) 2225 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2226 2227 /* set horkage */ 2228 dev->horkage |= ata_dev_blacklisted(dev); 2229 ata_force_horkage(dev); 2230 2231 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2232 ata_dev_printk(dev, KERN_INFO, 2233 "unsupported device, disabling\n"); 2234 ata_dev_disable(dev); 2235 return 0; 2236 } 2237 2238 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2239 dev->class == ATA_DEV_ATAPI) { 2240 ata_dev_printk(dev, KERN_WARNING, 2241 "WARNING: ATAPI is %s, device ignored.\n", 2242 atapi_enabled ? "not supported with this driver" 2243 : "disabled"); 2244 ata_dev_disable(dev); 2245 return 0; 2246 } 2247 2248 /* let ACPI work its magic */ 2249 rc = ata_acpi_on_devcfg(dev); 2250 if (rc) 2251 return rc; 2252 2253 /* massage HPA, do it early as it might change IDENTIFY data */ 2254 rc = ata_hpa_resize(dev); 2255 if (rc) 2256 return rc; 2257 2258 /* print device capabilities */ 2259 if (ata_msg_probe(ap)) 2260 ata_dev_printk(dev, KERN_DEBUG, 2261 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2262 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2263 __func__, 2264 id[49], id[82], id[83], id[84], 2265 id[85], id[86], id[87], id[88]); 2266 2267 /* initialize to-be-configured parameters */ 2268 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2269 dev->max_sectors = 0; 2270 dev->cdb_len = 0; 2271 dev->n_sectors = 0; 2272 dev->cylinders = 0; 2273 dev->heads = 0; 2274 dev->sectors = 0; 2275 2276 /* 2277 * common ATA, ATAPI feature tests 2278 */ 2279 2280 /* find max transfer mode; for printk only */ 2281 xfer_mask = ata_id_xfermask(id); 2282 2283 if (ata_msg_probe(ap)) 2284 ata_dump_id(id); 2285 2286 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2287 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2288 sizeof(fwrevbuf)); 2289 2290 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2291 sizeof(modelbuf)); 2292 2293 /* ATA-specific feature tests */ 2294 if (dev->class == ATA_DEV_ATA) { 2295 if (ata_id_is_cfa(id)) { 2296 if (id[162] & 1) /* CPRM may make this media unusable */ 2297 ata_dev_printk(dev, KERN_WARNING, 2298 "supports DRM functions and may " 2299 "not be fully accessable.\n"); 2300 snprintf(revbuf, 7, "CFA"); 2301 } else { 2302 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2303 /* Warn the user if the device has TPM extensions */ 2304 if (ata_id_has_tpm(id)) 2305 ata_dev_printk(dev, KERN_WARNING, 2306 "supports DRM functions and may " 2307 "not be fully accessable.\n"); 2308 } 2309 2310 dev->n_sectors = ata_id_n_sectors(id); 2311 2312 if (dev->id[59] & 0x100) 2313 dev->multi_count = dev->id[59] & 0xff; 2314 2315 if (ata_id_has_lba(id)) { 2316 const char *lba_desc; 2317 char ncq_desc[20]; 2318 2319 lba_desc = "LBA"; 2320 dev->flags |= ATA_DFLAG_LBA; 2321 if (ata_id_has_lba48(id)) { 2322 dev->flags |= ATA_DFLAG_LBA48; 2323 lba_desc = "LBA48"; 2324 2325 if (dev->n_sectors >= (1UL << 28) && 2326 ata_id_has_flush_ext(id)) 2327 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2328 } 2329 2330 /* config NCQ */ 2331 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2332 2333 /* print device info to dmesg */ 2334 if (ata_msg_drv(ap) && print_info) { 2335 ata_dev_printk(dev, KERN_INFO, 2336 "%s: %s, %s, max %s\n", 2337 revbuf, modelbuf, fwrevbuf, 2338 ata_mode_string(xfer_mask)); 2339 ata_dev_printk(dev, KERN_INFO, 2340 "%Lu sectors, multi %u: %s %s\n", 2341 (unsigned long long)dev->n_sectors, 2342 dev->multi_count, lba_desc, ncq_desc); 2343 } 2344 } else { 2345 /* CHS */ 2346 2347 /* Default translation */ 2348 dev->cylinders = id[1]; 2349 dev->heads = id[3]; 2350 dev->sectors = id[6]; 2351 2352 if (ata_id_current_chs_valid(id)) { 2353 /* Current CHS translation is valid. */ 2354 dev->cylinders = id[54]; 2355 dev->heads = id[55]; 2356 dev->sectors = id[56]; 2357 } 2358 2359 /* print device info to dmesg */ 2360 if (ata_msg_drv(ap) && print_info) { 2361 ata_dev_printk(dev, KERN_INFO, 2362 "%s: %s, %s, max %s\n", 2363 revbuf, modelbuf, fwrevbuf, 2364 ata_mode_string(xfer_mask)); 2365 ata_dev_printk(dev, KERN_INFO, 2366 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2367 (unsigned long long)dev->n_sectors, 2368 dev->multi_count, dev->cylinders, 2369 dev->heads, dev->sectors); 2370 } 2371 } 2372 2373 dev->cdb_len = 16; 2374 } 2375 2376 /* ATAPI-specific feature tests */ 2377 else if (dev->class == ATA_DEV_ATAPI) { 2378 const char *cdb_intr_string = ""; 2379 const char *atapi_an_string = ""; 2380 const char *dma_dir_string = ""; 2381 u32 sntf; 2382 2383 rc = atapi_cdb_len(id); 2384 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2385 if (ata_msg_warn(ap)) 2386 ata_dev_printk(dev, KERN_WARNING, 2387 "unsupported CDB len\n"); 2388 rc = -EINVAL; 2389 goto err_out_nosup; 2390 } 2391 dev->cdb_len = (unsigned int) rc; 2392 2393 /* Enable ATAPI AN if both the host and device have 2394 * the support. If PMP is attached, SNTF is required 2395 * to enable ATAPI AN to discern between PHY status 2396 * changed notifications and ATAPI ANs. 2397 */ 2398 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2399 (!sata_pmp_attached(ap) || 2400 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2401 unsigned int err_mask; 2402 2403 /* issue SET feature command to turn this on */ 2404 err_mask = ata_dev_set_feature(dev, 2405 SETFEATURES_SATA_ENABLE, SATA_AN); 2406 if (err_mask) 2407 ata_dev_printk(dev, KERN_ERR, 2408 "failed to enable ATAPI AN " 2409 "(err_mask=0x%x)\n", err_mask); 2410 else { 2411 dev->flags |= ATA_DFLAG_AN; 2412 atapi_an_string = ", ATAPI AN"; 2413 } 2414 } 2415 2416 if (ata_id_cdb_intr(dev->id)) { 2417 dev->flags |= ATA_DFLAG_CDB_INTR; 2418 cdb_intr_string = ", CDB intr"; 2419 } 2420 2421 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2422 dev->flags |= ATA_DFLAG_DMADIR; 2423 dma_dir_string = ", DMADIR"; 2424 } 2425 2426 /* print device info to dmesg */ 2427 if (ata_msg_drv(ap) && print_info) 2428 ata_dev_printk(dev, KERN_INFO, 2429 "ATAPI: %s, %s, max %s%s%s%s\n", 2430 modelbuf, fwrevbuf, 2431 ata_mode_string(xfer_mask), 2432 cdb_intr_string, atapi_an_string, 2433 dma_dir_string); 2434 } 2435 2436 /* determine max_sectors */ 2437 dev->max_sectors = ATA_MAX_SECTORS; 2438 if (dev->flags & ATA_DFLAG_LBA48) 2439 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2440 2441 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2442 if (ata_id_has_hipm(dev->id)) 2443 dev->flags |= ATA_DFLAG_HIPM; 2444 if (ata_id_has_dipm(dev->id)) 2445 dev->flags |= ATA_DFLAG_DIPM; 2446 } 2447 2448 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2449 200 sectors */ 2450 if (ata_dev_knobble(dev)) { 2451 if (ata_msg_drv(ap) && print_info) 2452 ata_dev_printk(dev, KERN_INFO, 2453 "applying bridge limits\n"); 2454 dev->udma_mask &= ATA_UDMA5; 2455 dev->max_sectors = ATA_MAX_SECTORS; 2456 } 2457 2458 if ((dev->class == ATA_DEV_ATAPI) && 2459 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2460 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2461 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2462 } 2463 2464 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2465 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2466 dev->max_sectors); 2467 2468 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2469 dev->horkage |= ATA_HORKAGE_IPM; 2470 2471 /* reset link pm_policy for this port to no pm */ 2472 ap->pm_policy = MAX_PERFORMANCE; 2473 } 2474 2475 if (ap->ops->dev_config) 2476 ap->ops->dev_config(dev); 2477 2478 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2479 /* Let the user know. We don't want to disallow opens for 2480 rescue purposes, or in case the vendor is just a blithering 2481 idiot. Do this after the dev_config call as some controllers 2482 with buggy firmware may want to avoid reporting false device 2483 bugs */ 2484 2485 if (print_info) { 2486 ata_dev_printk(dev, KERN_WARNING, 2487 "Drive reports diagnostics failure. This may indicate a drive\n"); 2488 ata_dev_printk(dev, KERN_WARNING, 2489 "fault or invalid emulation. Contact drive vendor for information.\n"); 2490 } 2491 } 2492 2493 return 0; 2494 2495 err_out_nosup: 2496 if (ata_msg_probe(ap)) 2497 ata_dev_printk(dev, KERN_DEBUG, 2498 "%s: EXIT, err\n", __func__); 2499 return rc; 2500 } 2501 2502 /** 2503 * ata_cable_40wire - return 40 wire cable type 2504 * @ap: port 2505 * 2506 * Helper method for drivers which want to hardwire 40 wire cable 2507 * detection. 2508 */ 2509 2510 int ata_cable_40wire(struct ata_port *ap) 2511 { 2512 return ATA_CBL_PATA40; 2513 } 2514 2515 /** 2516 * ata_cable_80wire - return 80 wire cable type 2517 * @ap: port 2518 * 2519 * Helper method for drivers which want to hardwire 80 wire cable 2520 * detection. 2521 */ 2522 2523 int ata_cable_80wire(struct ata_port *ap) 2524 { 2525 return ATA_CBL_PATA80; 2526 } 2527 2528 /** 2529 * ata_cable_unknown - return unknown PATA cable. 2530 * @ap: port 2531 * 2532 * Helper method for drivers which have no PATA cable detection. 2533 */ 2534 2535 int ata_cable_unknown(struct ata_port *ap) 2536 { 2537 return ATA_CBL_PATA_UNK; 2538 } 2539 2540 /** 2541 * ata_cable_ignore - return ignored PATA cable. 2542 * @ap: port 2543 * 2544 * Helper method for drivers which don't use cable type to limit 2545 * transfer mode. 2546 */ 2547 int ata_cable_ignore(struct ata_port *ap) 2548 { 2549 return ATA_CBL_PATA_IGN; 2550 } 2551 2552 /** 2553 * ata_cable_sata - return SATA cable type 2554 * @ap: port 2555 * 2556 * Helper method for drivers which have SATA cables 2557 */ 2558 2559 int ata_cable_sata(struct ata_port *ap) 2560 { 2561 return ATA_CBL_SATA; 2562 } 2563 2564 /** 2565 * ata_bus_probe - Reset and probe ATA bus 2566 * @ap: Bus to probe 2567 * 2568 * Master ATA bus probing function. Initiates a hardware-dependent 2569 * bus reset, then attempts to identify any devices found on 2570 * the bus. 2571 * 2572 * LOCKING: 2573 * PCI/etc. bus probe sem. 2574 * 2575 * RETURNS: 2576 * Zero on success, negative errno otherwise. 2577 */ 2578 2579 int ata_bus_probe(struct ata_port *ap) 2580 { 2581 unsigned int classes[ATA_MAX_DEVICES]; 2582 int tries[ATA_MAX_DEVICES]; 2583 int rc; 2584 struct ata_device *dev; 2585 2586 ata_port_probe(ap); 2587 2588 ata_link_for_each_dev(dev, &ap->link) 2589 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2590 2591 retry: 2592 ata_link_for_each_dev(dev, &ap->link) { 2593 /* If we issue an SRST then an ATA drive (not ATAPI) 2594 * may change configuration and be in PIO0 timing. If 2595 * we do a hard reset (or are coming from power on) 2596 * this is true for ATA or ATAPI. Until we've set a 2597 * suitable controller mode we should not touch the 2598 * bus as we may be talking too fast. 2599 */ 2600 dev->pio_mode = XFER_PIO_0; 2601 2602 /* If the controller has a pio mode setup function 2603 * then use it to set the chipset to rights. Don't 2604 * touch the DMA setup as that will be dealt with when 2605 * configuring devices. 2606 */ 2607 if (ap->ops->set_piomode) 2608 ap->ops->set_piomode(ap, dev); 2609 } 2610 2611 /* reset and determine device classes */ 2612 ap->ops->phy_reset(ap); 2613 2614 ata_link_for_each_dev(dev, &ap->link) { 2615 if (!(ap->flags & ATA_FLAG_DISABLED) && 2616 dev->class != ATA_DEV_UNKNOWN) 2617 classes[dev->devno] = dev->class; 2618 else 2619 classes[dev->devno] = ATA_DEV_NONE; 2620 2621 dev->class = ATA_DEV_UNKNOWN; 2622 } 2623 2624 ata_port_probe(ap); 2625 2626 /* read IDENTIFY page and configure devices. We have to do the identify 2627 specific sequence bass-ackwards so that PDIAG- is released by 2628 the slave device */ 2629 2630 ata_link_for_each_dev_reverse(dev, &ap->link) { 2631 if (tries[dev->devno]) 2632 dev->class = classes[dev->devno]; 2633 2634 if (!ata_dev_enabled(dev)) 2635 continue; 2636 2637 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2638 dev->id); 2639 if (rc) 2640 goto fail; 2641 } 2642 2643 /* Now ask for the cable type as PDIAG- should have been released */ 2644 if (ap->ops->cable_detect) 2645 ap->cbl = ap->ops->cable_detect(ap); 2646 2647 /* We may have SATA bridge glue hiding here irrespective of the 2648 reported cable types and sensed types */ 2649 ata_link_for_each_dev(dev, &ap->link) { 2650 if (!ata_dev_enabled(dev)) 2651 continue; 2652 /* SATA drives indicate we have a bridge. We don't know which 2653 end of the link the bridge is which is a problem */ 2654 if (ata_id_is_sata(dev->id)) 2655 ap->cbl = ATA_CBL_SATA; 2656 } 2657 2658 /* After the identify sequence we can now set up the devices. We do 2659 this in the normal order so that the user doesn't get confused */ 2660 2661 ata_link_for_each_dev(dev, &ap->link) { 2662 if (!ata_dev_enabled(dev)) 2663 continue; 2664 2665 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2666 rc = ata_dev_configure(dev); 2667 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2668 if (rc) 2669 goto fail; 2670 } 2671 2672 /* configure transfer mode */ 2673 rc = ata_set_mode(&ap->link, &dev); 2674 if (rc) 2675 goto fail; 2676 2677 ata_link_for_each_dev(dev, &ap->link) 2678 if (ata_dev_enabled(dev)) 2679 return 0; 2680 2681 /* no device present, disable port */ 2682 ata_port_disable(ap); 2683 return -ENODEV; 2684 2685 fail: 2686 tries[dev->devno]--; 2687 2688 switch (rc) { 2689 case -EINVAL: 2690 /* eeek, something went very wrong, give up */ 2691 tries[dev->devno] = 0; 2692 break; 2693 2694 case -ENODEV: 2695 /* give it just one more chance */ 2696 tries[dev->devno] = min(tries[dev->devno], 1); 2697 case -EIO: 2698 if (tries[dev->devno] == 1) { 2699 /* This is the last chance, better to slow 2700 * down than lose it. 2701 */ 2702 sata_down_spd_limit(&ap->link); 2703 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2704 } 2705 } 2706 2707 if (!tries[dev->devno]) 2708 ata_dev_disable(dev); 2709 2710 goto retry; 2711 } 2712 2713 /** 2714 * ata_port_probe - Mark port as enabled 2715 * @ap: Port for which we indicate enablement 2716 * 2717 * Modify @ap data structure such that the system 2718 * thinks that the entire port is enabled. 2719 * 2720 * LOCKING: host lock, or some other form of 2721 * serialization. 2722 */ 2723 2724 void ata_port_probe(struct ata_port *ap) 2725 { 2726 ap->flags &= ~ATA_FLAG_DISABLED; 2727 } 2728 2729 /** 2730 * sata_print_link_status - Print SATA link status 2731 * @link: SATA link to printk link status about 2732 * 2733 * This function prints link speed and status of a SATA link. 2734 * 2735 * LOCKING: 2736 * None. 2737 */ 2738 static void sata_print_link_status(struct ata_link *link) 2739 { 2740 u32 sstatus, scontrol, tmp; 2741 2742 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2743 return; 2744 sata_scr_read(link, SCR_CONTROL, &scontrol); 2745 2746 if (ata_phys_link_online(link)) { 2747 tmp = (sstatus >> 4) & 0xf; 2748 ata_link_printk(link, KERN_INFO, 2749 "SATA link up %s (SStatus %X SControl %X)\n", 2750 sata_spd_string(tmp), sstatus, scontrol); 2751 } else { 2752 ata_link_printk(link, KERN_INFO, 2753 "SATA link down (SStatus %X SControl %X)\n", 2754 sstatus, scontrol); 2755 } 2756 } 2757 2758 /** 2759 * ata_dev_pair - return other device on cable 2760 * @adev: device 2761 * 2762 * Obtain the other device on the same cable, or if none is 2763 * present NULL is returned 2764 */ 2765 2766 struct ata_device *ata_dev_pair(struct ata_device *adev) 2767 { 2768 struct ata_link *link = adev->link; 2769 struct ata_device *pair = &link->device[1 - adev->devno]; 2770 if (!ata_dev_enabled(pair)) 2771 return NULL; 2772 return pair; 2773 } 2774 2775 /** 2776 * ata_port_disable - Disable port. 2777 * @ap: Port to be disabled. 2778 * 2779 * Modify @ap data structure such that the system 2780 * thinks that the entire port is disabled, and should 2781 * never attempt to probe or communicate with devices 2782 * on this port. 2783 * 2784 * LOCKING: host lock, or some other form of 2785 * serialization. 2786 */ 2787 2788 void ata_port_disable(struct ata_port *ap) 2789 { 2790 ap->link.device[0].class = ATA_DEV_NONE; 2791 ap->link.device[1].class = ATA_DEV_NONE; 2792 ap->flags |= ATA_FLAG_DISABLED; 2793 } 2794 2795 /** 2796 * sata_down_spd_limit - adjust SATA spd limit downward 2797 * @link: Link to adjust SATA spd limit for 2798 * 2799 * Adjust SATA spd limit of @link downward. Note that this 2800 * function only adjusts the limit. The change must be applied 2801 * using sata_set_spd(). 2802 * 2803 * LOCKING: 2804 * Inherited from caller. 2805 * 2806 * RETURNS: 2807 * 0 on success, negative errno on failure 2808 */ 2809 int sata_down_spd_limit(struct ata_link *link) 2810 { 2811 u32 sstatus, spd, mask; 2812 int rc, highbit; 2813 2814 if (!sata_scr_valid(link)) 2815 return -EOPNOTSUPP; 2816 2817 /* If SCR can be read, use it to determine the current SPD. 2818 * If not, use cached value in link->sata_spd. 2819 */ 2820 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2821 if (rc == 0) 2822 spd = (sstatus >> 4) & 0xf; 2823 else 2824 spd = link->sata_spd; 2825 2826 mask = link->sata_spd_limit; 2827 if (mask <= 1) 2828 return -EINVAL; 2829 2830 /* unconditionally mask off the highest bit */ 2831 highbit = fls(mask) - 1; 2832 mask &= ~(1 << highbit); 2833 2834 /* Mask off all speeds higher than or equal to the current 2835 * one. Force 1.5Gbps if current SPD is not available. 2836 */ 2837 if (spd > 1) 2838 mask &= (1 << (spd - 1)) - 1; 2839 else 2840 mask &= 1; 2841 2842 /* were we already at the bottom? */ 2843 if (!mask) 2844 return -EINVAL; 2845 2846 link->sata_spd_limit = mask; 2847 2848 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2849 sata_spd_string(fls(mask))); 2850 2851 return 0; 2852 } 2853 2854 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2855 { 2856 struct ata_link *host_link = &link->ap->link; 2857 u32 limit, target, spd; 2858 2859 limit = link->sata_spd_limit; 2860 2861 /* Don't configure downstream link faster than upstream link. 2862 * It doesn't speed up anything and some PMPs choke on such 2863 * configuration. 2864 */ 2865 if (!ata_is_host_link(link) && host_link->sata_spd) 2866 limit &= (1 << host_link->sata_spd) - 1; 2867 2868 if (limit == UINT_MAX) 2869 target = 0; 2870 else 2871 target = fls(limit); 2872 2873 spd = (*scontrol >> 4) & 0xf; 2874 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2875 2876 return spd != target; 2877 } 2878 2879 /** 2880 * sata_set_spd_needed - is SATA spd configuration needed 2881 * @link: Link in question 2882 * 2883 * Test whether the spd limit in SControl matches 2884 * @link->sata_spd_limit. This function is used to determine 2885 * whether hardreset is necessary to apply SATA spd 2886 * configuration. 2887 * 2888 * LOCKING: 2889 * Inherited from caller. 2890 * 2891 * RETURNS: 2892 * 1 if SATA spd configuration is needed, 0 otherwise. 2893 */ 2894 static int sata_set_spd_needed(struct ata_link *link) 2895 { 2896 u32 scontrol; 2897 2898 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2899 return 1; 2900 2901 return __sata_set_spd_needed(link, &scontrol); 2902 } 2903 2904 /** 2905 * sata_set_spd - set SATA spd according to spd limit 2906 * @link: Link to set SATA spd for 2907 * 2908 * Set SATA spd of @link according to sata_spd_limit. 2909 * 2910 * LOCKING: 2911 * Inherited from caller. 2912 * 2913 * RETURNS: 2914 * 0 if spd doesn't need to be changed, 1 if spd has been 2915 * changed. Negative errno if SCR registers are inaccessible. 2916 */ 2917 int sata_set_spd(struct ata_link *link) 2918 { 2919 u32 scontrol; 2920 int rc; 2921 2922 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2923 return rc; 2924 2925 if (!__sata_set_spd_needed(link, &scontrol)) 2926 return 0; 2927 2928 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2929 return rc; 2930 2931 return 1; 2932 } 2933 2934 /* 2935 * This mode timing computation functionality is ported over from 2936 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2937 */ 2938 /* 2939 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2940 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2941 * for UDMA6, which is currently supported only by Maxtor drives. 2942 * 2943 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2944 */ 2945 2946 static const struct ata_timing ata_timing[] = { 2947 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2948 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2949 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2950 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2951 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2952 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2953 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2954 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2955 2956 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2957 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2958 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2959 2960 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2961 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2962 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2963 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2964 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2965 2966 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2967 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2968 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2969 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2970 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2971 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2972 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2973 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2974 2975 { 0xFF } 2976 }; 2977 2978 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2979 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2980 2981 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2982 { 2983 q->setup = EZ(t->setup * 1000, T); 2984 q->act8b = EZ(t->act8b * 1000, T); 2985 q->rec8b = EZ(t->rec8b * 1000, T); 2986 q->cyc8b = EZ(t->cyc8b * 1000, T); 2987 q->active = EZ(t->active * 1000, T); 2988 q->recover = EZ(t->recover * 1000, T); 2989 q->cycle = EZ(t->cycle * 1000, T); 2990 q->udma = EZ(t->udma * 1000, UT); 2991 } 2992 2993 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2994 struct ata_timing *m, unsigned int what) 2995 { 2996 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2997 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2998 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2999 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3000 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3001 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3002 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3003 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3004 } 3005 3006 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3007 { 3008 const struct ata_timing *t = ata_timing; 3009 3010 while (xfer_mode > t->mode) 3011 t++; 3012 3013 if (xfer_mode == t->mode) 3014 return t; 3015 return NULL; 3016 } 3017 3018 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3019 struct ata_timing *t, int T, int UT) 3020 { 3021 const struct ata_timing *s; 3022 struct ata_timing p; 3023 3024 /* 3025 * Find the mode. 3026 */ 3027 3028 if (!(s = ata_timing_find_mode(speed))) 3029 return -EINVAL; 3030 3031 memcpy(t, s, sizeof(*s)); 3032 3033 /* 3034 * If the drive is an EIDE drive, it can tell us it needs extended 3035 * PIO/MW_DMA cycle timing. 3036 */ 3037 3038 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3039 memset(&p, 0, sizeof(p)); 3040 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 3041 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 3042 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 3043 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 3044 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 3045 } 3046 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3047 } 3048 3049 /* 3050 * Convert the timing to bus clock counts. 3051 */ 3052 3053 ata_timing_quantize(t, t, T, UT); 3054 3055 /* 3056 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3057 * S.M.A.R.T * and some other commands. We have to ensure that the 3058 * DMA cycle timing is slower/equal than the fastest PIO timing. 3059 */ 3060 3061 if (speed > XFER_PIO_6) { 3062 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3063 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3064 } 3065 3066 /* 3067 * Lengthen active & recovery time so that cycle time is correct. 3068 */ 3069 3070 if (t->act8b + t->rec8b < t->cyc8b) { 3071 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3072 t->rec8b = t->cyc8b - t->act8b; 3073 } 3074 3075 if (t->active + t->recover < t->cycle) { 3076 t->active += (t->cycle - (t->active + t->recover)) / 2; 3077 t->recover = t->cycle - t->active; 3078 } 3079 3080 /* In a few cases quantisation may produce enough errors to 3081 leave t->cycle too low for the sum of active and recovery 3082 if so we must correct this */ 3083 if (t->active + t->recover > t->cycle) 3084 t->cycle = t->active + t->recover; 3085 3086 return 0; 3087 } 3088 3089 /** 3090 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3091 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3092 * @cycle: cycle duration in ns 3093 * 3094 * Return matching xfer mode for @cycle. The returned mode is of 3095 * the transfer type specified by @xfer_shift. If @cycle is too 3096 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3097 * than the fastest known mode, the fasted mode is returned. 3098 * 3099 * LOCKING: 3100 * None. 3101 * 3102 * RETURNS: 3103 * Matching xfer_mode, 0xff if no match found. 3104 */ 3105 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3106 { 3107 u8 base_mode = 0xff, last_mode = 0xff; 3108 const struct ata_xfer_ent *ent; 3109 const struct ata_timing *t; 3110 3111 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3112 if (ent->shift == xfer_shift) 3113 base_mode = ent->base; 3114 3115 for (t = ata_timing_find_mode(base_mode); 3116 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3117 unsigned short this_cycle; 3118 3119 switch (xfer_shift) { 3120 case ATA_SHIFT_PIO: 3121 case ATA_SHIFT_MWDMA: 3122 this_cycle = t->cycle; 3123 break; 3124 case ATA_SHIFT_UDMA: 3125 this_cycle = t->udma; 3126 break; 3127 default: 3128 return 0xff; 3129 } 3130 3131 if (cycle > this_cycle) 3132 break; 3133 3134 last_mode = t->mode; 3135 } 3136 3137 return last_mode; 3138 } 3139 3140 /** 3141 * ata_down_xfermask_limit - adjust dev xfer masks downward 3142 * @dev: Device to adjust xfer masks 3143 * @sel: ATA_DNXFER_* selector 3144 * 3145 * Adjust xfer masks of @dev downward. Note that this function 3146 * does not apply the change. Invoking ata_set_mode() afterwards 3147 * will apply the limit. 3148 * 3149 * LOCKING: 3150 * Inherited from caller. 3151 * 3152 * RETURNS: 3153 * 0 on success, negative errno on failure 3154 */ 3155 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3156 { 3157 char buf[32]; 3158 unsigned long orig_mask, xfer_mask; 3159 unsigned long pio_mask, mwdma_mask, udma_mask; 3160 int quiet, highbit; 3161 3162 quiet = !!(sel & ATA_DNXFER_QUIET); 3163 sel &= ~ATA_DNXFER_QUIET; 3164 3165 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3166 dev->mwdma_mask, 3167 dev->udma_mask); 3168 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3169 3170 switch (sel) { 3171 case ATA_DNXFER_PIO: 3172 highbit = fls(pio_mask) - 1; 3173 pio_mask &= ~(1 << highbit); 3174 break; 3175 3176 case ATA_DNXFER_DMA: 3177 if (udma_mask) { 3178 highbit = fls(udma_mask) - 1; 3179 udma_mask &= ~(1 << highbit); 3180 if (!udma_mask) 3181 return -ENOENT; 3182 } else if (mwdma_mask) { 3183 highbit = fls(mwdma_mask) - 1; 3184 mwdma_mask &= ~(1 << highbit); 3185 if (!mwdma_mask) 3186 return -ENOENT; 3187 } 3188 break; 3189 3190 case ATA_DNXFER_40C: 3191 udma_mask &= ATA_UDMA_MASK_40C; 3192 break; 3193 3194 case ATA_DNXFER_FORCE_PIO0: 3195 pio_mask &= 1; 3196 case ATA_DNXFER_FORCE_PIO: 3197 mwdma_mask = 0; 3198 udma_mask = 0; 3199 break; 3200 3201 default: 3202 BUG(); 3203 } 3204 3205 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3206 3207 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3208 return -ENOENT; 3209 3210 if (!quiet) { 3211 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3212 snprintf(buf, sizeof(buf), "%s:%s", 3213 ata_mode_string(xfer_mask), 3214 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3215 else 3216 snprintf(buf, sizeof(buf), "%s", 3217 ata_mode_string(xfer_mask)); 3218 3219 ata_dev_printk(dev, KERN_WARNING, 3220 "limiting speed to %s\n", buf); 3221 } 3222 3223 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3224 &dev->udma_mask); 3225 3226 return 0; 3227 } 3228 3229 static int ata_dev_set_mode(struct ata_device *dev) 3230 { 3231 struct ata_eh_context *ehc = &dev->link->eh_context; 3232 const char *dev_err_whine = ""; 3233 int ign_dev_err = 0; 3234 unsigned int err_mask; 3235 int rc; 3236 3237 dev->flags &= ~ATA_DFLAG_PIO; 3238 if (dev->xfer_shift == ATA_SHIFT_PIO) 3239 dev->flags |= ATA_DFLAG_PIO; 3240 3241 err_mask = ata_dev_set_xfermode(dev); 3242 3243 if (err_mask & ~AC_ERR_DEV) 3244 goto fail; 3245 3246 /* revalidate */ 3247 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3248 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3249 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3250 if (rc) 3251 return rc; 3252 3253 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3254 /* Old CFA may refuse this command, which is just fine */ 3255 if (ata_id_is_cfa(dev->id)) 3256 ign_dev_err = 1; 3257 /* Catch several broken garbage emulations plus some pre 3258 ATA devices */ 3259 if (ata_id_major_version(dev->id) == 0 && 3260 dev->pio_mode <= XFER_PIO_2) 3261 ign_dev_err = 1; 3262 /* Some very old devices and some bad newer ones fail 3263 any kind of SET_XFERMODE request but support PIO0-2 3264 timings and no IORDY */ 3265 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3266 ign_dev_err = 1; 3267 } 3268 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3269 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3270 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3271 dev->dma_mode == XFER_MW_DMA_0 && 3272 (dev->id[63] >> 8) & 1) 3273 ign_dev_err = 1; 3274 3275 /* if the device is actually configured correctly, ignore dev err */ 3276 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3277 ign_dev_err = 1; 3278 3279 if (err_mask & AC_ERR_DEV) { 3280 if (!ign_dev_err) 3281 goto fail; 3282 else 3283 dev_err_whine = " (device error ignored)"; 3284 } 3285 3286 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3287 dev->xfer_shift, (int)dev->xfer_mode); 3288 3289 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3290 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3291 dev_err_whine); 3292 3293 return 0; 3294 3295 fail: 3296 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3297 "(err_mask=0x%x)\n", err_mask); 3298 return -EIO; 3299 } 3300 3301 /** 3302 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3303 * @link: link on which timings will be programmed 3304 * @r_failed_dev: out parameter for failed device 3305 * 3306 * Standard implementation of the function used to tune and set 3307 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3308 * ata_dev_set_mode() fails, pointer to the failing device is 3309 * returned in @r_failed_dev. 3310 * 3311 * LOCKING: 3312 * PCI/etc. bus probe sem. 3313 * 3314 * RETURNS: 3315 * 0 on success, negative errno otherwise 3316 */ 3317 3318 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3319 { 3320 struct ata_port *ap = link->ap; 3321 struct ata_device *dev; 3322 int rc = 0, used_dma = 0, found = 0; 3323 3324 /* step 1: calculate xfer_mask */ 3325 ata_link_for_each_dev(dev, link) { 3326 unsigned long pio_mask, dma_mask; 3327 unsigned int mode_mask; 3328 3329 if (!ata_dev_enabled(dev)) 3330 continue; 3331 3332 mode_mask = ATA_DMA_MASK_ATA; 3333 if (dev->class == ATA_DEV_ATAPI) 3334 mode_mask = ATA_DMA_MASK_ATAPI; 3335 else if (ata_id_is_cfa(dev->id)) 3336 mode_mask = ATA_DMA_MASK_CFA; 3337 3338 ata_dev_xfermask(dev); 3339 ata_force_xfermask(dev); 3340 3341 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3342 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3343 3344 if (libata_dma_mask & mode_mask) 3345 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3346 else 3347 dma_mask = 0; 3348 3349 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3350 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3351 3352 found = 1; 3353 if (ata_dma_enabled(dev)) 3354 used_dma = 1; 3355 } 3356 if (!found) 3357 goto out; 3358 3359 /* step 2: always set host PIO timings */ 3360 ata_link_for_each_dev(dev, link) { 3361 if (!ata_dev_enabled(dev)) 3362 continue; 3363 3364 if (dev->pio_mode == 0xff) { 3365 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3366 rc = -EINVAL; 3367 goto out; 3368 } 3369 3370 dev->xfer_mode = dev->pio_mode; 3371 dev->xfer_shift = ATA_SHIFT_PIO; 3372 if (ap->ops->set_piomode) 3373 ap->ops->set_piomode(ap, dev); 3374 } 3375 3376 /* step 3: set host DMA timings */ 3377 ata_link_for_each_dev(dev, link) { 3378 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev)) 3379 continue; 3380 3381 dev->xfer_mode = dev->dma_mode; 3382 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3383 if (ap->ops->set_dmamode) 3384 ap->ops->set_dmamode(ap, dev); 3385 } 3386 3387 /* step 4: update devices' xfer mode */ 3388 ata_link_for_each_dev(dev, link) { 3389 /* don't update suspended devices' xfer mode */ 3390 if (!ata_dev_enabled(dev)) 3391 continue; 3392 3393 rc = ata_dev_set_mode(dev); 3394 if (rc) 3395 goto out; 3396 } 3397 3398 /* Record simplex status. If we selected DMA then the other 3399 * host channels are not permitted to do so. 3400 */ 3401 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3402 ap->host->simplex_claimed = ap; 3403 3404 out: 3405 if (rc) 3406 *r_failed_dev = dev; 3407 return rc; 3408 } 3409 3410 /** 3411 * ata_wait_ready - wait for link to become ready 3412 * @link: link to be waited on 3413 * @deadline: deadline jiffies for the operation 3414 * @check_ready: callback to check link readiness 3415 * 3416 * Wait for @link to become ready. @check_ready should return 3417 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3418 * link doesn't seem to be occupied, other errno for other error 3419 * conditions. 3420 * 3421 * Transient -ENODEV conditions are allowed for 3422 * ATA_TMOUT_FF_WAIT. 3423 * 3424 * LOCKING: 3425 * EH context. 3426 * 3427 * RETURNS: 3428 * 0 if @linke is ready before @deadline; otherwise, -errno. 3429 */ 3430 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3431 int (*check_ready)(struct ata_link *link)) 3432 { 3433 unsigned long start = jiffies; 3434 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3435 int warned = 0; 3436 3437 /* Slave readiness can't be tested separately from master. On 3438 * M/S emulation configuration, this function should be called 3439 * only on the master and it will handle both master and slave. 3440 */ 3441 WARN_ON(link == link->ap->slave_link); 3442 3443 if (time_after(nodev_deadline, deadline)) 3444 nodev_deadline = deadline; 3445 3446 while (1) { 3447 unsigned long now = jiffies; 3448 int ready, tmp; 3449 3450 ready = tmp = check_ready(link); 3451 if (ready > 0) 3452 return 0; 3453 3454 /* -ENODEV could be transient. Ignore -ENODEV if link 3455 * is online. Also, some SATA devices take a long 3456 * time to clear 0xff after reset. For example, 3457 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3458 * GoVault needs even more than that. Wait for 3459 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3460 * 3461 * Note that some PATA controllers (pata_ali) explode 3462 * if status register is read more than once when 3463 * there's no device attached. 3464 */ 3465 if (ready == -ENODEV) { 3466 if (ata_link_online(link)) 3467 ready = 0; 3468 else if ((link->ap->flags & ATA_FLAG_SATA) && 3469 !ata_link_offline(link) && 3470 time_before(now, nodev_deadline)) 3471 ready = 0; 3472 } 3473 3474 if (ready) 3475 return ready; 3476 if (time_after(now, deadline)) 3477 return -EBUSY; 3478 3479 if (!warned && time_after(now, start + 5 * HZ) && 3480 (deadline - now > 3 * HZ)) { 3481 ata_link_printk(link, KERN_WARNING, 3482 "link is slow to respond, please be patient " 3483 "(ready=%d)\n", tmp); 3484 warned = 1; 3485 } 3486 3487 msleep(50); 3488 } 3489 } 3490 3491 /** 3492 * ata_wait_after_reset - wait for link to become ready after reset 3493 * @link: link to be waited on 3494 * @deadline: deadline jiffies for the operation 3495 * @check_ready: callback to check link readiness 3496 * 3497 * Wait for @link to become ready after reset. 3498 * 3499 * LOCKING: 3500 * EH context. 3501 * 3502 * RETURNS: 3503 * 0 if @linke is ready before @deadline; otherwise, -errno. 3504 */ 3505 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3506 int (*check_ready)(struct ata_link *link)) 3507 { 3508 msleep(ATA_WAIT_AFTER_RESET); 3509 3510 return ata_wait_ready(link, deadline, check_ready); 3511 } 3512 3513 /** 3514 * sata_link_debounce - debounce SATA phy status 3515 * @link: ATA link to debounce SATA phy status for 3516 * @params: timing parameters { interval, duratinon, timeout } in msec 3517 * @deadline: deadline jiffies for the operation 3518 * 3519 * Make sure SStatus of @link reaches stable state, determined by 3520 * holding the same value where DET is not 1 for @duration polled 3521 * every @interval, before @timeout. Timeout constraints the 3522 * beginning of the stable state. Because DET gets stuck at 1 on 3523 * some controllers after hot unplugging, this functions waits 3524 * until timeout then returns 0 if DET is stable at 1. 3525 * 3526 * @timeout is further limited by @deadline. The sooner of the 3527 * two is used. 3528 * 3529 * LOCKING: 3530 * Kernel thread context (may sleep) 3531 * 3532 * RETURNS: 3533 * 0 on success, -errno on failure. 3534 */ 3535 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3536 unsigned long deadline) 3537 { 3538 unsigned long interval = params[0]; 3539 unsigned long duration = params[1]; 3540 unsigned long last_jiffies, t; 3541 u32 last, cur; 3542 int rc; 3543 3544 t = ata_deadline(jiffies, params[2]); 3545 if (time_before(t, deadline)) 3546 deadline = t; 3547 3548 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3549 return rc; 3550 cur &= 0xf; 3551 3552 last = cur; 3553 last_jiffies = jiffies; 3554 3555 while (1) { 3556 msleep(interval); 3557 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3558 return rc; 3559 cur &= 0xf; 3560 3561 /* DET stable? */ 3562 if (cur == last) { 3563 if (cur == 1 && time_before(jiffies, deadline)) 3564 continue; 3565 if (time_after(jiffies, 3566 ata_deadline(last_jiffies, duration))) 3567 return 0; 3568 continue; 3569 } 3570 3571 /* unstable, start over */ 3572 last = cur; 3573 last_jiffies = jiffies; 3574 3575 /* Check deadline. If debouncing failed, return 3576 * -EPIPE to tell upper layer to lower link speed. 3577 */ 3578 if (time_after(jiffies, deadline)) 3579 return -EPIPE; 3580 } 3581 } 3582 3583 /** 3584 * sata_link_resume - resume SATA link 3585 * @link: ATA link to resume SATA 3586 * @params: timing parameters { interval, duratinon, timeout } in msec 3587 * @deadline: deadline jiffies for the operation 3588 * 3589 * Resume SATA phy @link and debounce it. 3590 * 3591 * LOCKING: 3592 * Kernel thread context (may sleep) 3593 * 3594 * RETURNS: 3595 * 0 on success, -errno on failure. 3596 */ 3597 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3598 unsigned long deadline) 3599 { 3600 u32 scontrol, serror; 3601 int rc; 3602 3603 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3604 return rc; 3605 3606 scontrol = (scontrol & 0x0f0) | 0x300; 3607 3608 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3609 return rc; 3610 3611 /* Some PHYs react badly if SStatus is pounded immediately 3612 * after resuming. Delay 200ms before debouncing. 3613 */ 3614 msleep(200); 3615 3616 if ((rc = sata_link_debounce(link, params, deadline))) 3617 return rc; 3618 3619 /* clear SError, some PHYs require this even for SRST to work */ 3620 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3621 rc = sata_scr_write(link, SCR_ERROR, serror); 3622 3623 return rc != -EINVAL ? rc : 0; 3624 } 3625 3626 /** 3627 * ata_std_prereset - prepare for reset 3628 * @link: ATA link to be reset 3629 * @deadline: deadline jiffies for the operation 3630 * 3631 * @link is about to be reset. Initialize it. Failure from 3632 * prereset makes libata abort whole reset sequence and give up 3633 * that port, so prereset should be best-effort. It does its 3634 * best to prepare for reset sequence but if things go wrong, it 3635 * should just whine, not fail. 3636 * 3637 * LOCKING: 3638 * Kernel thread context (may sleep) 3639 * 3640 * RETURNS: 3641 * 0 on success, -errno otherwise. 3642 */ 3643 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3644 { 3645 struct ata_port *ap = link->ap; 3646 struct ata_eh_context *ehc = &link->eh_context; 3647 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3648 int rc; 3649 3650 /* if we're about to do hardreset, nothing more to do */ 3651 if (ehc->i.action & ATA_EH_HARDRESET) 3652 return 0; 3653 3654 /* if SATA, resume link */ 3655 if (ap->flags & ATA_FLAG_SATA) { 3656 rc = sata_link_resume(link, timing, deadline); 3657 /* whine about phy resume failure but proceed */ 3658 if (rc && rc != -EOPNOTSUPP) 3659 ata_link_printk(link, KERN_WARNING, "failed to resume " 3660 "link for reset (errno=%d)\n", rc); 3661 } 3662 3663 /* no point in trying softreset on offline link */ 3664 if (ata_phys_link_offline(link)) 3665 ehc->i.action &= ~ATA_EH_SOFTRESET; 3666 3667 return 0; 3668 } 3669 3670 /** 3671 * sata_link_hardreset - reset link via SATA phy reset 3672 * @link: link to reset 3673 * @timing: timing parameters { interval, duratinon, timeout } in msec 3674 * @deadline: deadline jiffies for the operation 3675 * @online: optional out parameter indicating link onlineness 3676 * @check_ready: optional callback to check link readiness 3677 * 3678 * SATA phy-reset @link using DET bits of SControl register. 3679 * After hardreset, link readiness is waited upon using 3680 * ata_wait_ready() if @check_ready is specified. LLDs are 3681 * allowed to not specify @check_ready and wait itself after this 3682 * function returns. Device classification is LLD's 3683 * responsibility. 3684 * 3685 * *@online is set to one iff reset succeeded and @link is online 3686 * after reset. 3687 * 3688 * LOCKING: 3689 * Kernel thread context (may sleep) 3690 * 3691 * RETURNS: 3692 * 0 on success, -errno otherwise. 3693 */ 3694 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3695 unsigned long deadline, 3696 bool *online, int (*check_ready)(struct ata_link *)) 3697 { 3698 u32 scontrol; 3699 int rc; 3700 3701 DPRINTK("ENTER\n"); 3702 3703 if (online) 3704 *online = false; 3705 3706 if (sata_set_spd_needed(link)) { 3707 /* SATA spec says nothing about how to reconfigure 3708 * spd. To be on the safe side, turn off phy during 3709 * reconfiguration. This works for at least ICH7 AHCI 3710 * and Sil3124. 3711 */ 3712 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3713 goto out; 3714 3715 scontrol = (scontrol & 0x0f0) | 0x304; 3716 3717 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3718 goto out; 3719 3720 sata_set_spd(link); 3721 } 3722 3723 /* issue phy wake/reset */ 3724 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3725 goto out; 3726 3727 scontrol = (scontrol & 0x0f0) | 0x301; 3728 3729 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3730 goto out; 3731 3732 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3733 * 10.4.2 says at least 1 ms. 3734 */ 3735 msleep(1); 3736 3737 /* bring link back */ 3738 rc = sata_link_resume(link, timing, deadline); 3739 if (rc) 3740 goto out; 3741 /* if link is offline nothing more to do */ 3742 if (ata_phys_link_offline(link)) 3743 goto out; 3744 3745 /* Link is online. From this point, -ENODEV too is an error. */ 3746 if (online) 3747 *online = true; 3748 3749 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3750 /* If PMP is supported, we have to do follow-up SRST. 3751 * Some PMPs don't send D2H Reg FIS after hardreset if 3752 * the first port is empty. Wait only for 3753 * ATA_TMOUT_PMP_SRST_WAIT. 3754 */ 3755 if (check_ready) { 3756 unsigned long pmp_deadline; 3757 3758 pmp_deadline = ata_deadline(jiffies, 3759 ATA_TMOUT_PMP_SRST_WAIT); 3760 if (time_after(pmp_deadline, deadline)) 3761 pmp_deadline = deadline; 3762 ata_wait_ready(link, pmp_deadline, check_ready); 3763 } 3764 rc = -EAGAIN; 3765 goto out; 3766 } 3767 3768 rc = 0; 3769 if (check_ready) 3770 rc = ata_wait_ready(link, deadline, check_ready); 3771 out: 3772 if (rc && rc != -EAGAIN) { 3773 /* online is set iff link is online && reset succeeded */ 3774 if (online) 3775 *online = false; 3776 ata_link_printk(link, KERN_ERR, 3777 "COMRESET failed (errno=%d)\n", rc); 3778 } 3779 DPRINTK("EXIT, rc=%d\n", rc); 3780 return rc; 3781 } 3782 3783 /** 3784 * sata_std_hardreset - COMRESET w/o waiting or classification 3785 * @link: link to reset 3786 * @class: resulting class of attached device 3787 * @deadline: deadline jiffies for the operation 3788 * 3789 * Standard SATA COMRESET w/o waiting or classification. 3790 * 3791 * LOCKING: 3792 * Kernel thread context (may sleep) 3793 * 3794 * RETURNS: 3795 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3796 */ 3797 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3798 unsigned long deadline) 3799 { 3800 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3801 bool online; 3802 int rc; 3803 3804 /* do hardreset */ 3805 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3806 return online ? -EAGAIN : rc; 3807 } 3808 3809 /** 3810 * ata_std_postreset - standard postreset callback 3811 * @link: the target ata_link 3812 * @classes: classes of attached devices 3813 * 3814 * This function is invoked after a successful reset. Note that 3815 * the device might have been reset more than once using 3816 * different reset methods before postreset is invoked. 3817 * 3818 * LOCKING: 3819 * Kernel thread context (may sleep) 3820 */ 3821 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3822 { 3823 u32 serror; 3824 3825 DPRINTK("ENTER\n"); 3826 3827 /* reset complete, clear SError */ 3828 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3829 sata_scr_write(link, SCR_ERROR, serror); 3830 3831 /* print link status */ 3832 sata_print_link_status(link); 3833 3834 DPRINTK("EXIT\n"); 3835 } 3836 3837 /** 3838 * ata_dev_same_device - Determine whether new ID matches configured device 3839 * @dev: device to compare against 3840 * @new_class: class of the new device 3841 * @new_id: IDENTIFY page of the new device 3842 * 3843 * Compare @new_class and @new_id against @dev and determine 3844 * whether @dev is the device indicated by @new_class and 3845 * @new_id. 3846 * 3847 * LOCKING: 3848 * None. 3849 * 3850 * RETURNS: 3851 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3852 */ 3853 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3854 const u16 *new_id) 3855 { 3856 const u16 *old_id = dev->id; 3857 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3858 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3859 3860 if (dev->class != new_class) { 3861 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3862 dev->class, new_class); 3863 return 0; 3864 } 3865 3866 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3867 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3868 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3869 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3870 3871 if (strcmp(model[0], model[1])) { 3872 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3873 "'%s' != '%s'\n", model[0], model[1]); 3874 return 0; 3875 } 3876 3877 if (strcmp(serial[0], serial[1])) { 3878 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3879 "'%s' != '%s'\n", serial[0], serial[1]); 3880 return 0; 3881 } 3882 3883 return 1; 3884 } 3885 3886 /** 3887 * ata_dev_reread_id - Re-read IDENTIFY data 3888 * @dev: target ATA device 3889 * @readid_flags: read ID flags 3890 * 3891 * Re-read IDENTIFY page and make sure @dev is still attached to 3892 * the port. 3893 * 3894 * LOCKING: 3895 * Kernel thread context (may sleep) 3896 * 3897 * RETURNS: 3898 * 0 on success, negative errno otherwise 3899 */ 3900 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3901 { 3902 unsigned int class = dev->class; 3903 u16 *id = (void *)dev->link->ap->sector_buf; 3904 int rc; 3905 3906 /* read ID data */ 3907 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3908 if (rc) 3909 return rc; 3910 3911 /* is the device still there? */ 3912 if (!ata_dev_same_device(dev, class, id)) 3913 return -ENODEV; 3914 3915 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3916 return 0; 3917 } 3918 3919 /** 3920 * ata_dev_revalidate - Revalidate ATA device 3921 * @dev: device to revalidate 3922 * @new_class: new class code 3923 * @readid_flags: read ID flags 3924 * 3925 * Re-read IDENTIFY page, make sure @dev is still attached to the 3926 * port and reconfigure it according to the new IDENTIFY page. 3927 * 3928 * LOCKING: 3929 * Kernel thread context (may sleep) 3930 * 3931 * RETURNS: 3932 * 0 on success, negative errno otherwise 3933 */ 3934 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3935 unsigned int readid_flags) 3936 { 3937 u64 n_sectors = dev->n_sectors; 3938 int rc; 3939 3940 if (!ata_dev_enabled(dev)) 3941 return -ENODEV; 3942 3943 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3944 if (ata_class_enabled(new_class) && 3945 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) { 3946 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 3947 dev->class, new_class); 3948 rc = -ENODEV; 3949 goto fail; 3950 } 3951 3952 /* re-read ID */ 3953 rc = ata_dev_reread_id(dev, readid_flags); 3954 if (rc) 3955 goto fail; 3956 3957 /* configure device according to the new ID */ 3958 rc = ata_dev_configure(dev); 3959 if (rc) 3960 goto fail; 3961 3962 /* verify n_sectors hasn't changed */ 3963 if (dev->class == ATA_DEV_ATA && n_sectors && 3964 dev->n_sectors != n_sectors) { 3965 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3966 "%llu != %llu\n", 3967 (unsigned long long)n_sectors, 3968 (unsigned long long)dev->n_sectors); 3969 3970 /* restore original n_sectors */ 3971 dev->n_sectors = n_sectors; 3972 3973 rc = -ENODEV; 3974 goto fail; 3975 } 3976 3977 return 0; 3978 3979 fail: 3980 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3981 return rc; 3982 } 3983 3984 struct ata_blacklist_entry { 3985 const char *model_num; 3986 const char *model_rev; 3987 unsigned long horkage; 3988 }; 3989 3990 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3991 /* Devices with DMA related problems under Linux */ 3992 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3993 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3994 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3995 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3996 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3997 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3998 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3999 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4000 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4001 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 4002 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 4003 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4004 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4005 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4006 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4007 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4008 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 4009 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 4010 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4011 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4012 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4013 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4014 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4015 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4016 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4017 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4018 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4019 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4020 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4021 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4022 /* Odd clown on sil3726/4726 PMPs */ 4023 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4024 4025 /* Weird ATAPI devices */ 4026 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4027 4028 /* Devices we expect to fail diagnostics */ 4029 4030 /* Devices where NCQ should be avoided */ 4031 /* NCQ is slow */ 4032 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4033 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4034 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4035 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4036 /* NCQ is broken */ 4037 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4038 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4039 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4040 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4041 4042 /* Blacklist entries taken from Silicon Image 3124/3132 4043 Windows driver .inf file - also several Linux problem reports */ 4044 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4045 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4046 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4047 4048 /* devices which puke on READ_NATIVE_MAX */ 4049 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4050 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4051 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4052 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4053 4054 /* Devices which report 1 sector over size HPA */ 4055 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4056 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4057 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4058 4059 /* Devices which get the IVB wrong */ 4060 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4061 /* Maybe we should just blacklist TSSTcorp... */ 4062 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 4063 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 4064 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 4065 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 4066 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 4067 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 4068 4069 /* Devices that do not need bridging limits applied */ 4070 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4071 4072 /* End Marker */ 4073 { } 4074 }; 4075 4076 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4077 { 4078 const char *p; 4079 int len; 4080 4081 /* 4082 * check for trailing wildcard: *\0 4083 */ 4084 p = strchr(patt, wildchar); 4085 if (p && ((*(p + 1)) == 0)) 4086 len = p - patt; 4087 else { 4088 len = strlen(name); 4089 if (!len) { 4090 if (!*patt) 4091 return 0; 4092 return -1; 4093 } 4094 } 4095 4096 return strncmp(patt, name, len); 4097 } 4098 4099 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4100 { 4101 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4102 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4103 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4104 4105 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4106 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4107 4108 while (ad->model_num) { 4109 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4110 if (ad->model_rev == NULL) 4111 return ad->horkage; 4112 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4113 return ad->horkage; 4114 } 4115 ad++; 4116 } 4117 return 0; 4118 } 4119 4120 static int ata_dma_blacklisted(const struct ata_device *dev) 4121 { 4122 /* We don't support polling DMA. 4123 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4124 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4125 */ 4126 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4127 (dev->flags & ATA_DFLAG_CDB_INTR)) 4128 return 1; 4129 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4130 } 4131 4132 /** 4133 * ata_is_40wire - check drive side detection 4134 * @dev: device 4135 * 4136 * Perform drive side detection decoding, allowing for device vendors 4137 * who can't follow the documentation. 4138 */ 4139 4140 static int ata_is_40wire(struct ata_device *dev) 4141 { 4142 if (dev->horkage & ATA_HORKAGE_IVB) 4143 return ata_drive_40wire_relaxed(dev->id); 4144 return ata_drive_40wire(dev->id); 4145 } 4146 4147 /** 4148 * cable_is_40wire - 40/80/SATA decider 4149 * @ap: port to consider 4150 * 4151 * This function encapsulates the policy for speed management 4152 * in one place. At the moment we don't cache the result but 4153 * there is a good case for setting ap->cbl to the result when 4154 * we are called with unknown cables (and figuring out if it 4155 * impacts hotplug at all). 4156 * 4157 * Return 1 if the cable appears to be 40 wire. 4158 */ 4159 4160 static int cable_is_40wire(struct ata_port *ap) 4161 { 4162 struct ata_link *link; 4163 struct ata_device *dev; 4164 4165 /* If the controller thinks we are 40 wire, we are. */ 4166 if (ap->cbl == ATA_CBL_PATA40) 4167 return 1; 4168 4169 /* If the controller thinks we are 80 wire, we are. */ 4170 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4171 return 0; 4172 4173 /* If the system is known to be 40 wire short cable (eg 4174 * laptop), then we allow 80 wire modes even if the drive 4175 * isn't sure. 4176 */ 4177 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4178 return 0; 4179 4180 /* If the controller doesn't know, we scan. 4181 * 4182 * Note: We look for all 40 wire detects at this point. Any 4183 * 80 wire detect is taken to be 80 wire cable because 4184 * - in many setups only the one drive (slave if present) will 4185 * give a valid detect 4186 * - if you have a non detect capable drive you don't want it 4187 * to colour the choice 4188 */ 4189 ata_port_for_each_link(link, ap) { 4190 ata_link_for_each_dev(dev, link) { 4191 if (ata_dev_enabled(dev) && !ata_is_40wire(dev)) 4192 return 0; 4193 } 4194 } 4195 return 1; 4196 } 4197 4198 /** 4199 * ata_dev_xfermask - Compute supported xfermask of the given device 4200 * @dev: Device to compute xfermask for 4201 * 4202 * Compute supported xfermask of @dev and store it in 4203 * dev->*_mask. This function is responsible for applying all 4204 * known limits including host controller limits, device 4205 * blacklist, etc... 4206 * 4207 * LOCKING: 4208 * None. 4209 */ 4210 static void ata_dev_xfermask(struct ata_device *dev) 4211 { 4212 struct ata_link *link = dev->link; 4213 struct ata_port *ap = link->ap; 4214 struct ata_host *host = ap->host; 4215 unsigned long xfer_mask; 4216 4217 /* controller modes available */ 4218 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4219 ap->mwdma_mask, ap->udma_mask); 4220 4221 /* drive modes available */ 4222 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4223 dev->mwdma_mask, dev->udma_mask); 4224 xfer_mask &= ata_id_xfermask(dev->id); 4225 4226 /* 4227 * CFA Advanced TrueIDE timings are not allowed on a shared 4228 * cable 4229 */ 4230 if (ata_dev_pair(dev)) { 4231 /* No PIO5 or PIO6 */ 4232 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4233 /* No MWDMA3 or MWDMA 4 */ 4234 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4235 } 4236 4237 if (ata_dma_blacklisted(dev)) { 4238 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4239 ata_dev_printk(dev, KERN_WARNING, 4240 "device is on DMA blacklist, disabling DMA\n"); 4241 } 4242 4243 if ((host->flags & ATA_HOST_SIMPLEX) && 4244 host->simplex_claimed && host->simplex_claimed != ap) { 4245 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4246 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4247 "other device, disabling DMA\n"); 4248 } 4249 4250 if (ap->flags & ATA_FLAG_NO_IORDY) 4251 xfer_mask &= ata_pio_mask_no_iordy(dev); 4252 4253 if (ap->ops->mode_filter) 4254 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4255 4256 /* Apply cable rule here. Don't apply it early because when 4257 * we handle hot plug the cable type can itself change. 4258 * Check this last so that we know if the transfer rate was 4259 * solely limited by the cable. 4260 * Unknown or 80 wire cables reported host side are checked 4261 * drive side as well. Cases where we know a 40wire cable 4262 * is used safely for 80 are not checked here. 4263 */ 4264 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4265 /* UDMA/44 or higher would be available */ 4266 if (cable_is_40wire(ap)) { 4267 ata_dev_printk(dev, KERN_WARNING, 4268 "limited to UDMA/33 due to 40-wire cable\n"); 4269 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4270 } 4271 4272 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4273 &dev->mwdma_mask, &dev->udma_mask); 4274 } 4275 4276 /** 4277 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4278 * @dev: Device to which command will be sent 4279 * 4280 * Issue SET FEATURES - XFER MODE command to device @dev 4281 * on port @ap. 4282 * 4283 * LOCKING: 4284 * PCI/etc. bus probe sem. 4285 * 4286 * RETURNS: 4287 * 0 on success, AC_ERR_* mask otherwise. 4288 */ 4289 4290 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4291 { 4292 struct ata_taskfile tf; 4293 unsigned int err_mask; 4294 4295 /* set up set-features taskfile */ 4296 DPRINTK("set features - xfer mode\n"); 4297 4298 /* Some controllers and ATAPI devices show flaky interrupt 4299 * behavior after setting xfer mode. Use polling instead. 4300 */ 4301 ata_tf_init(dev, &tf); 4302 tf.command = ATA_CMD_SET_FEATURES; 4303 tf.feature = SETFEATURES_XFER; 4304 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4305 tf.protocol = ATA_PROT_NODATA; 4306 /* If we are using IORDY we must send the mode setting command */ 4307 if (ata_pio_need_iordy(dev)) 4308 tf.nsect = dev->xfer_mode; 4309 /* If the device has IORDY and the controller does not - turn it off */ 4310 else if (ata_id_has_iordy(dev->id)) 4311 tf.nsect = 0x01; 4312 else /* In the ancient relic department - skip all of this */ 4313 return 0; 4314 4315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4316 4317 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4318 return err_mask; 4319 } 4320 /** 4321 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4322 * @dev: Device to which command will be sent 4323 * @enable: Whether to enable or disable the feature 4324 * @feature: The sector count represents the feature to set 4325 * 4326 * Issue SET FEATURES - SATA FEATURES command to device @dev 4327 * on port @ap with sector count 4328 * 4329 * LOCKING: 4330 * PCI/etc. bus probe sem. 4331 * 4332 * RETURNS: 4333 * 0 on success, AC_ERR_* mask otherwise. 4334 */ 4335 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4336 u8 feature) 4337 { 4338 struct ata_taskfile tf; 4339 unsigned int err_mask; 4340 4341 /* set up set-features taskfile */ 4342 DPRINTK("set features - SATA features\n"); 4343 4344 ata_tf_init(dev, &tf); 4345 tf.command = ATA_CMD_SET_FEATURES; 4346 tf.feature = enable; 4347 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4348 tf.protocol = ATA_PROT_NODATA; 4349 tf.nsect = feature; 4350 4351 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4352 4353 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4354 return err_mask; 4355 } 4356 4357 /** 4358 * ata_dev_init_params - Issue INIT DEV PARAMS command 4359 * @dev: Device to which command will be sent 4360 * @heads: Number of heads (taskfile parameter) 4361 * @sectors: Number of sectors (taskfile parameter) 4362 * 4363 * LOCKING: 4364 * Kernel thread context (may sleep) 4365 * 4366 * RETURNS: 4367 * 0 on success, AC_ERR_* mask otherwise. 4368 */ 4369 static unsigned int ata_dev_init_params(struct ata_device *dev, 4370 u16 heads, u16 sectors) 4371 { 4372 struct ata_taskfile tf; 4373 unsigned int err_mask; 4374 4375 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4376 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4377 return AC_ERR_INVALID; 4378 4379 /* set up init dev params taskfile */ 4380 DPRINTK("init dev params \n"); 4381 4382 ata_tf_init(dev, &tf); 4383 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4384 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4385 tf.protocol = ATA_PROT_NODATA; 4386 tf.nsect = sectors; 4387 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4388 4389 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4390 /* A clean abort indicates an original or just out of spec drive 4391 and we should continue as we issue the setup based on the 4392 drive reported working geometry */ 4393 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4394 err_mask = 0; 4395 4396 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4397 return err_mask; 4398 } 4399 4400 /** 4401 * ata_sg_clean - Unmap DMA memory associated with command 4402 * @qc: Command containing DMA memory to be released 4403 * 4404 * Unmap all mapped DMA memory associated with this command. 4405 * 4406 * LOCKING: 4407 * spin_lock_irqsave(host lock) 4408 */ 4409 void ata_sg_clean(struct ata_queued_cmd *qc) 4410 { 4411 struct ata_port *ap = qc->ap; 4412 struct scatterlist *sg = qc->sg; 4413 int dir = qc->dma_dir; 4414 4415 WARN_ON(sg == NULL); 4416 4417 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4418 4419 if (qc->n_elem) 4420 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4421 4422 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4423 qc->sg = NULL; 4424 } 4425 4426 /** 4427 * atapi_check_dma - Check whether ATAPI DMA can be supported 4428 * @qc: Metadata associated with taskfile to check 4429 * 4430 * Allow low-level driver to filter ATA PACKET commands, returning 4431 * a status indicating whether or not it is OK to use DMA for the 4432 * supplied PACKET command. 4433 * 4434 * LOCKING: 4435 * spin_lock_irqsave(host lock) 4436 * 4437 * RETURNS: 0 when ATAPI DMA can be used 4438 * nonzero otherwise 4439 */ 4440 int atapi_check_dma(struct ata_queued_cmd *qc) 4441 { 4442 struct ata_port *ap = qc->ap; 4443 4444 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4445 * few ATAPI devices choke on such DMA requests. 4446 */ 4447 if (unlikely(qc->nbytes & 15)) 4448 return 1; 4449 4450 if (ap->ops->check_atapi_dma) 4451 return ap->ops->check_atapi_dma(qc); 4452 4453 return 0; 4454 } 4455 4456 /** 4457 * ata_std_qc_defer - Check whether a qc needs to be deferred 4458 * @qc: ATA command in question 4459 * 4460 * Non-NCQ commands cannot run with any other command, NCQ or 4461 * not. As upper layer only knows the queue depth, we are 4462 * responsible for maintaining exclusion. This function checks 4463 * whether a new command @qc can be issued. 4464 * 4465 * LOCKING: 4466 * spin_lock_irqsave(host lock) 4467 * 4468 * RETURNS: 4469 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4470 */ 4471 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4472 { 4473 struct ata_link *link = qc->dev->link; 4474 4475 if (qc->tf.protocol == ATA_PROT_NCQ) { 4476 if (!ata_tag_valid(link->active_tag)) 4477 return 0; 4478 } else { 4479 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4480 return 0; 4481 } 4482 4483 return ATA_DEFER_LINK; 4484 } 4485 4486 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4487 4488 /** 4489 * ata_sg_init - Associate command with scatter-gather table. 4490 * @qc: Command to be associated 4491 * @sg: Scatter-gather table. 4492 * @n_elem: Number of elements in s/g table. 4493 * 4494 * Initialize the data-related elements of queued_cmd @qc 4495 * to point to a scatter-gather table @sg, containing @n_elem 4496 * elements. 4497 * 4498 * LOCKING: 4499 * spin_lock_irqsave(host lock) 4500 */ 4501 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4502 unsigned int n_elem) 4503 { 4504 qc->sg = sg; 4505 qc->n_elem = n_elem; 4506 qc->cursg = qc->sg; 4507 } 4508 4509 /** 4510 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4511 * @qc: Command with scatter-gather table to be mapped. 4512 * 4513 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4514 * 4515 * LOCKING: 4516 * spin_lock_irqsave(host lock) 4517 * 4518 * RETURNS: 4519 * Zero on success, negative on error. 4520 * 4521 */ 4522 static int ata_sg_setup(struct ata_queued_cmd *qc) 4523 { 4524 struct ata_port *ap = qc->ap; 4525 unsigned int n_elem; 4526 4527 VPRINTK("ENTER, ata%u\n", ap->print_id); 4528 4529 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4530 if (n_elem < 1) 4531 return -1; 4532 4533 DPRINTK("%d sg elements mapped\n", n_elem); 4534 4535 qc->n_elem = n_elem; 4536 qc->flags |= ATA_QCFLAG_DMAMAP; 4537 4538 return 0; 4539 } 4540 4541 /** 4542 * swap_buf_le16 - swap halves of 16-bit words in place 4543 * @buf: Buffer to swap 4544 * @buf_words: Number of 16-bit words in buffer. 4545 * 4546 * Swap halves of 16-bit words if needed to convert from 4547 * little-endian byte order to native cpu byte order, or 4548 * vice-versa. 4549 * 4550 * LOCKING: 4551 * Inherited from caller. 4552 */ 4553 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4554 { 4555 #ifdef __BIG_ENDIAN 4556 unsigned int i; 4557 4558 for (i = 0; i < buf_words; i++) 4559 buf[i] = le16_to_cpu(buf[i]); 4560 #endif /* __BIG_ENDIAN */ 4561 } 4562 4563 /** 4564 * ata_qc_new_init - Request an available ATA command, and initialize it 4565 * @dev: Device from whom we request an available command structure 4566 * @tag: command tag 4567 * 4568 * LOCKING: 4569 * None. 4570 */ 4571 4572 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 4573 { 4574 struct ata_port *ap = dev->link->ap; 4575 struct ata_queued_cmd *qc; 4576 4577 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4578 return NULL; 4579 4580 qc = __ata_qc_from_tag(ap, tag); 4581 if (qc) { 4582 qc->scsicmd = NULL; 4583 qc->ap = ap; 4584 qc->dev = dev; 4585 qc->tag = tag; 4586 4587 ata_qc_reinit(qc); 4588 } 4589 4590 return qc; 4591 } 4592 4593 void __ata_qc_complete(struct ata_queued_cmd *qc) 4594 { 4595 struct ata_port *ap = qc->ap; 4596 struct ata_link *link = qc->dev->link; 4597 4598 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4599 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4600 4601 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4602 ata_sg_clean(qc); 4603 4604 /* command should be marked inactive atomically with qc completion */ 4605 if (qc->tf.protocol == ATA_PROT_NCQ) { 4606 link->sactive &= ~(1 << qc->tag); 4607 if (!link->sactive) 4608 ap->nr_active_links--; 4609 } else { 4610 link->active_tag = ATA_TAG_POISON; 4611 ap->nr_active_links--; 4612 } 4613 4614 /* clear exclusive status */ 4615 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4616 ap->excl_link == link)) 4617 ap->excl_link = NULL; 4618 4619 /* atapi: mark qc as inactive to prevent the interrupt handler 4620 * from completing the command twice later, before the error handler 4621 * is called. (when rc != 0 and atapi request sense is needed) 4622 */ 4623 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4624 ap->qc_active &= ~(1 << qc->tag); 4625 4626 /* call completion callback */ 4627 qc->complete_fn(qc); 4628 } 4629 4630 static void fill_result_tf(struct ata_queued_cmd *qc) 4631 { 4632 struct ata_port *ap = qc->ap; 4633 4634 qc->result_tf.flags = qc->tf.flags; 4635 ap->ops->qc_fill_rtf(qc); 4636 } 4637 4638 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4639 { 4640 struct ata_device *dev = qc->dev; 4641 4642 if (ata_tag_internal(qc->tag)) 4643 return; 4644 4645 if (ata_is_nodata(qc->tf.protocol)) 4646 return; 4647 4648 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4649 return; 4650 4651 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4652 } 4653 4654 /** 4655 * ata_qc_complete - Complete an active ATA command 4656 * @qc: Command to complete 4657 * 4658 * Indicate to the mid and upper layers that an ATA 4659 * command has completed, with either an ok or not-ok status. 4660 * 4661 * LOCKING: 4662 * spin_lock_irqsave(host lock) 4663 */ 4664 void ata_qc_complete(struct ata_queued_cmd *qc) 4665 { 4666 struct ata_port *ap = qc->ap; 4667 4668 /* XXX: New EH and old EH use different mechanisms to 4669 * synchronize EH with regular execution path. 4670 * 4671 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4672 * Normal execution path is responsible for not accessing a 4673 * failed qc. libata core enforces the rule by returning NULL 4674 * from ata_qc_from_tag() for failed qcs. 4675 * 4676 * Old EH depends on ata_qc_complete() nullifying completion 4677 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4678 * not synchronize with interrupt handler. Only PIO task is 4679 * taken care of. 4680 */ 4681 if (ap->ops->error_handler) { 4682 struct ata_device *dev = qc->dev; 4683 struct ata_eh_info *ehi = &dev->link->eh_info; 4684 4685 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 4686 4687 if (unlikely(qc->err_mask)) 4688 qc->flags |= ATA_QCFLAG_FAILED; 4689 4690 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4691 if (!ata_tag_internal(qc->tag)) { 4692 /* always fill result TF for failed qc */ 4693 fill_result_tf(qc); 4694 ata_qc_schedule_eh(qc); 4695 return; 4696 } 4697 } 4698 4699 /* read result TF if requested */ 4700 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4701 fill_result_tf(qc); 4702 4703 /* Some commands need post-processing after successful 4704 * completion. 4705 */ 4706 switch (qc->tf.command) { 4707 case ATA_CMD_SET_FEATURES: 4708 if (qc->tf.feature != SETFEATURES_WC_ON && 4709 qc->tf.feature != SETFEATURES_WC_OFF) 4710 break; 4711 /* fall through */ 4712 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4713 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4714 /* revalidate device */ 4715 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4716 ata_port_schedule_eh(ap); 4717 break; 4718 4719 case ATA_CMD_SLEEP: 4720 dev->flags |= ATA_DFLAG_SLEEPING; 4721 break; 4722 } 4723 4724 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4725 ata_verify_xfer(qc); 4726 4727 __ata_qc_complete(qc); 4728 } else { 4729 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4730 return; 4731 4732 /* read result TF if failed or requested */ 4733 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4734 fill_result_tf(qc); 4735 4736 __ata_qc_complete(qc); 4737 } 4738 } 4739 4740 /** 4741 * ata_qc_complete_multiple - Complete multiple qcs successfully 4742 * @ap: port in question 4743 * @qc_active: new qc_active mask 4744 * 4745 * Complete in-flight commands. This functions is meant to be 4746 * called from low-level driver's interrupt routine to complete 4747 * requests normally. ap->qc_active and @qc_active is compared 4748 * and commands are completed accordingly. 4749 * 4750 * LOCKING: 4751 * spin_lock_irqsave(host lock) 4752 * 4753 * RETURNS: 4754 * Number of completed commands on success, -errno otherwise. 4755 */ 4756 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4757 { 4758 int nr_done = 0; 4759 u32 done_mask; 4760 int i; 4761 4762 done_mask = ap->qc_active ^ qc_active; 4763 4764 if (unlikely(done_mask & qc_active)) { 4765 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 4766 "(%08x->%08x)\n", ap->qc_active, qc_active); 4767 return -EINVAL; 4768 } 4769 4770 for (i = 0; i < ATA_MAX_QUEUE; i++) { 4771 struct ata_queued_cmd *qc; 4772 4773 if (!(done_mask & (1 << i))) 4774 continue; 4775 4776 if ((qc = ata_qc_from_tag(ap, i))) { 4777 ata_qc_complete(qc); 4778 nr_done++; 4779 } 4780 } 4781 4782 return nr_done; 4783 } 4784 4785 /** 4786 * ata_qc_issue - issue taskfile to device 4787 * @qc: command to issue to device 4788 * 4789 * Prepare an ATA command to submission to device. 4790 * This includes mapping the data into a DMA-able 4791 * area, filling in the S/G table, and finally 4792 * writing the taskfile to hardware, starting the command. 4793 * 4794 * LOCKING: 4795 * spin_lock_irqsave(host lock) 4796 */ 4797 void ata_qc_issue(struct ata_queued_cmd *qc) 4798 { 4799 struct ata_port *ap = qc->ap; 4800 struct ata_link *link = qc->dev->link; 4801 u8 prot = qc->tf.protocol; 4802 4803 /* Make sure only one non-NCQ command is outstanding. The 4804 * check is skipped for old EH because it reuses active qc to 4805 * request ATAPI sense. 4806 */ 4807 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4808 4809 if (ata_is_ncq(prot)) { 4810 WARN_ON(link->sactive & (1 << qc->tag)); 4811 4812 if (!link->sactive) 4813 ap->nr_active_links++; 4814 link->sactive |= 1 << qc->tag; 4815 } else { 4816 WARN_ON(link->sactive); 4817 4818 ap->nr_active_links++; 4819 link->active_tag = qc->tag; 4820 } 4821 4822 qc->flags |= ATA_QCFLAG_ACTIVE; 4823 ap->qc_active |= 1 << qc->tag; 4824 4825 /* We guarantee to LLDs that they will have at least one 4826 * non-zero sg if the command is a data command. 4827 */ 4828 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 4829 4830 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4831 (ap->flags & ATA_FLAG_PIO_DMA))) 4832 if (ata_sg_setup(qc)) 4833 goto sg_err; 4834 4835 /* if device is sleeping, schedule reset and abort the link */ 4836 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4837 link->eh_info.action |= ATA_EH_RESET; 4838 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4839 ata_link_abort(link); 4840 return; 4841 } 4842 4843 ap->ops->qc_prep(qc); 4844 4845 qc->err_mask |= ap->ops->qc_issue(qc); 4846 if (unlikely(qc->err_mask)) 4847 goto err; 4848 return; 4849 4850 sg_err: 4851 qc->err_mask |= AC_ERR_SYSTEM; 4852 err: 4853 ata_qc_complete(qc); 4854 } 4855 4856 /** 4857 * sata_scr_valid - test whether SCRs are accessible 4858 * @link: ATA link to test SCR accessibility for 4859 * 4860 * Test whether SCRs are accessible for @link. 4861 * 4862 * LOCKING: 4863 * None. 4864 * 4865 * RETURNS: 4866 * 1 if SCRs are accessible, 0 otherwise. 4867 */ 4868 int sata_scr_valid(struct ata_link *link) 4869 { 4870 struct ata_port *ap = link->ap; 4871 4872 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 4873 } 4874 4875 /** 4876 * sata_scr_read - read SCR register of the specified port 4877 * @link: ATA link to read SCR for 4878 * @reg: SCR to read 4879 * @val: Place to store read value 4880 * 4881 * Read SCR register @reg of @link into *@val. This function is 4882 * guaranteed to succeed if @link is ap->link, the cable type of 4883 * the port is SATA and the port implements ->scr_read. 4884 * 4885 * LOCKING: 4886 * None if @link is ap->link. Kernel thread context otherwise. 4887 * 4888 * RETURNS: 4889 * 0 on success, negative errno on failure. 4890 */ 4891 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 4892 { 4893 if (ata_is_host_link(link)) { 4894 if (sata_scr_valid(link)) 4895 return link->ap->ops->scr_read(link, reg, val); 4896 return -EOPNOTSUPP; 4897 } 4898 4899 return sata_pmp_scr_read(link, reg, val); 4900 } 4901 4902 /** 4903 * sata_scr_write - write SCR register of the specified port 4904 * @link: ATA link to write SCR for 4905 * @reg: SCR to write 4906 * @val: value to write 4907 * 4908 * Write @val to SCR register @reg of @link. This function is 4909 * guaranteed to succeed if @link is ap->link, the cable type of 4910 * the port is SATA and the port implements ->scr_read. 4911 * 4912 * LOCKING: 4913 * None if @link is ap->link. Kernel thread context otherwise. 4914 * 4915 * RETURNS: 4916 * 0 on success, negative errno on failure. 4917 */ 4918 int sata_scr_write(struct ata_link *link, int reg, u32 val) 4919 { 4920 if (ata_is_host_link(link)) { 4921 if (sata_scr_valid(link)) 4922 return link->ap->ops->scr_write(link, reg, val); 4923 return -EOPNOTSUPP; 4924 } 4925 4926 return sata_pmp_scr_write(link, reg, val); 4927 } 4928 4929 /** 4930 * sata_scr_write_flush - write SCR register of the specified port and flush 4931 * @link: ATA link to write SCR for 4932 * @reg: SCR to write 4933 * @val: value to write 4934 * 4935 * This function is identical to sata_scr_write() except that this 4936 * function performs flush after writing to the register. 4937 * 4938 * LOCKING: 4939 * None if @link is ap->link. Kernel thread context otherwise. 4940 * 4941 * RETURNS: 4942 * 0 on success, negative errno on failure. 4943 */ 4944 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 4945 { 4946 if (ata_is_host_link(link)) { 4947 int rc; 4948 4949 if (sata_scr_valid(link)) { 4950 rc = link->ap->ops->scr_write(link, reg, val); 4951 if (rc == 0) 4952 rc = link->ap->ops->scr_read(link, reg, &val); 4953 return rc; 4954 } 4955 return -EOPNOTSUPP; 4956 } 4957 4958 return sata_pmp_scr_write(link, reg, val); 4959 } 4960 4961 /** 4962 * ata_phys_link_online - test whether the given link is online 4963 * @link: ATA link to test 4964 * 4965 * Test whether @link is online. Note that this function returns 4966 * 0 if online status of @link cannot be obtained, so 4967 * ata_link_online(link) != !ata_link_offline(link). 4968 * 4969 * LOCKING: 4970 * None. 4971 * 4972 * RETURNS: 4973 * True if the port online status is available and online. 4974 */ 4975 bool ata_phys_link_online(struct ata_link *link) 4976 { 4977 u32 sstatus; 4978 4979 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4980 (sstatus & 0xf) == 0x3) 4981 return true; 4982 return false; 4983 } 4984 4985 /** 4986 * ata_phys_link_offline - test whether the given link is offline 4987 * @link: ATA link to test 4988 * 4989 * Test whether @link is offline. Note that this function 4990 * returns 0 if offline status of @link cannot be obtained, so 4991 * ata_link_online(link) != !ata_link_offline(link). 4992 * 4993 * LOCKING: 4994 * None. 4995 * 4996 * RETURNS: 4997 * True if the port offline status is available and offline. 4998 */ 4999 bool ata_phys_link_offline(struct ata_link *link) 5000 { 5001 u32 sstatus; 5002 5003 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5004 (sstatus & 0xf) != 0x3) 5005 return true; 5006 return false; 5007 } 5008 5009 /** 5010 * ata_link_online - test whether the given link is online 5011 * @link: ATA link to test 5012 * 5013 * Test whether @link is online. This is identical to 5014 * ata_phys_link_online() when there's no slave link. When 5015 * there's a slave link, this function should only be called on 5016 * the master link and will return true if any of M/S links is 5017 * online. 5018 * 5019 * LOCKING: 5020 * None. 5021 * 5022 * RETURNS: 5023 * True if the port online status is available and online. 5024 */ 5025 bool ata_link_online(struct ata_link *link) 5026 { 5027 struct ata_link *slave = link->ap->slave_link; 5028 5029 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5030 5031 return ata_phys_link_online(link) || 5032 (slave && ata_phys_link_online(slave)); 5033 } 5034 5035 /** 5036 * ata_link_offline - test whether the given link is offline 5037 * @link: ATA link to test 5038 * 5039 * Test whether @link is offline. This is identical to 5040 * ata_phys_link_offline() when there's no slave link. When 5041 * there's a slave link, this function should only be called on 5042 * the master link and will return true if both M/S links are 5043 * offline. 5044 * 5045 * LOCKING: 5046 * None. 5047 * 5048 * RETURNS: 5049 * True if the port offline status is available and offline. 5050 */ 5051 bool ata_link_offline(struct ata_link *link) 5052 { 5053 struct ata_link *slave = link->ap->slave_link; 5054 5055 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5056 5057 return ata_phys_link_offline(link) && 5058 (!slave || ata_phys_link_offline(slave)); 5059 } 5060 5061 #ifdef CONFIG_PM 5062 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5063 unsigned int action, unsigned int ehi_flags, 5064 int wait) 5065 { 5066 unsigned long flags; 5067 int i, rc; 5068 5069 for (i = 0; i < host->n_ports; i++) { 5070 struct ata_port *ap = host->ports[i]; 5071 struct ata_link *link; 5072 5073 /* Previous resume operation might still be in 5074 * progress. Wait for PM_PENDING to clear. 5075 */ 5076 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5077 ata_port_wait_eh(ap); 5078 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5079 } 5080 5081 /* request PM ops to EH */ 5082 spin_lock_irqsave(ap->lock, flags); 5083 5084 ap->pm_mesg = mesg; 5085 if (wait) { 5086 rc = 0; 5087 ap->pm_result = &rc; 5088 } 5089 5090 ap->pflags |= ATA_PFLAG_PM_PENDING; 5091 __ata_port_for_each_link(link, ap) { 5092 link->eh_info.action |= action; 5093 link->eh_info.flags |= ehi_flags; 5094 } 5095 5096 ata_port_schedule_eh(ap); 5097 5098 spin_unlock_irqrestore(ap->lock, flags); 5099 5100 /* wait and check result */ 5101 if (wait) { 5102 ata_port_wait_eh(ap); 5103 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5104 if (rc) 5105 return rc; 5106 } 5107 } 5108 5109 return 0; 5110 } 5111 5112 /** 5113 * ata_host_suspend - suspend host 5114 * @host: host to suspend 5115 * @mesg: PM message 5116 * 5117 * Suspend @host. Actual operation is performed by EH. This 5118 * function requests EH to perform PM operations and waits for EH 5119 * to finish. 5120 * 5121 * LOCKING: 5122 * Kernel thread context (may sleep). 5123 * 5124 * RETURNS: 5125 * 0 on success, -errno on failure. 5126 */ 5127 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5128 { 5129 int rc; 5130 5131 /* 5132 * disable link pm on all ports before requesting 5133 * any pm activity 5134 */ 5135 ata_lpm_enable(host); 5136 5137 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5138 if (rc == 0) 5139 host->dev->power.power_state = mesg; 5140 return rc; 5141 } 5142 5143 /** 5144 * ata_host_resume - resume host 5145 * @host: host to resume 5146 * 5147 * Resume @host. Actual operation is performed by EH. This 5148 * function requests EH to perform PM operations and returns. 5149 * Note that all resume operations are performed parallely. 5150 * 5151 * LOCKING: 5152 * Kernel thread context (may sleep). 5153 */ 5154 void ata_host_resume(struct ata_host *host) 5155 { 5156 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5157 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5158 host->dev->power.power_state = PMSG_ON; 5159 5160 /* reenable link pm */ 5161 ata_lpm_disable(host); 5162 } 5163 #endif 5164 5165 /** 5166 * ata_port_start - Set port up for dma. 5167 * @ap: Port to initialize 5168 * 5169 * Called just after data structures for each port are 5170 * initialized. Allocates space for PRD table. 5171 * 5172 * May be used as the port_start() entry in ata_port_operations. 5173 * 5174 * LOCKING: 5175 * Inherited from caller. 5176 */ 5177 int ata_port_start(struct ata_port *ap) 5178 { 5179 struct device *dev = ap->dev; 5180 5181 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5182 GFP_KERNEL); 5183 if (!ap->prd) 5184 return -ENOMEM; 5185 5186 return 0; 5187 } 5188 5189 /** 5190 * ata_dev_init - Initialize an ata_device structure 5191 * @dev: Device structure to initialize 5192 * 5193 * Initialize @dev in preparation for probing. 5194 * 5195 * LOCKING: 5196 * Inherited from caller. 5197 */ 5198 void ata_dev_init(struct ata_device *dev) 5199 { 5200 struct ata_link *link = ata_dev_phys_link(dev); 5201 struct ata_port *ap = link->ap; 5202 unsigned long flags; 5203 5204 /* SATA spd limit is bound to the attached device, reset together */ 5205 link->sata_spd_limit = link->hw_sata_spd_limit; 5206 link->sata_spd = 0; 5207 5208 /* High bits of dev->flags are used to record warm plug 5209 * requests which occur asynchronously. Synchronize using 5210 * host lock. 5211 */ 5212 spin_lock_irqsave(ap->lock, flags); 5213 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5214 dev->horkage = 0; 5215 spin_unlock_irqrestore(ap->lock, flags); 5216 5217 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5218 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5219 dev->pio_mask = UINT_MAX; 5220 dev->mwdma_mask = UINT_MAX; 5221 dev->udma_mask = UINT_MAX; 5222 } 5223 5224 /** 5225 * ata_link_init - Initialize an ata_link structure 5226 * @ap: ATA port link is attached to 5227 * @link: Link structure to initialize 5228 * @pmp: Port multiplier port number 5229 * 5230 * Initialize @link. 5231 * 5232 * LOCKING: 5233 * Kernel thread context (may sleep) 5234 */ 5235 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5236 { 5237 int i; 5238 5239 /* clear everything except for devices */ 5240 memset(link, 0, offsetof(struct ata_link, device[0])); 5241 5242 link->ap = ap; 5243 link->pmp = pmp; 5244 link->active_tag = ATA_TAG_POISON; 5245 link->hw_sata_spd_limit = UINT_MAX; 5246 5247 /* can't use iterator, ap isn't initialized yet */ 5248 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5249 struct ata_device *dev = &link->device[i]; 5250 5251 dev->link = link; 5252 dev->devno = dev - link->device; 5253 ata_dev_init(dev); 5254 } 5255 } 5256 5257 /** 5258 * sata_link_init_spd - Initialize link->sata_spd_limit 5259 * @link: Link to configure sata_spd_limit for 5260 * 5261 * Initialize @link->[hw_]sata_spd_limit to the currently 5262 * configured value. 5263 * 5264 * LOCKING: 5265 * Kernel thread context (may sleep). 5266 * 5267 * RETURNS: 5268 * 0 on success, -errno on failure. 5269 */ 5270 int sata_link_init_spd(struct ata_link *link) 5271 { 5272 u8 spd; 5273 int rc; 5274 5275 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5276 if (rc) 5277 return rc; 5278 5279 spd = (link->saved_scontrol >> 4) & 0xf; 5280 if (spd) 5281 link->hw_sata_spd_limit &= (1 << spd) - 1; 5282 5283 ata_force_link_limits(link); 5284 5285 link->sata_spd_limit = link->hw_sata_spd_limit; 5286 5287 return 0; 5288 } 5289 5290 /** 5291 * ata_port_alloc - allocate and initialize basic ATA port resources 5292 * @host: ATA host this allocated port belongs to 5293 * 5294 * Allocate and initialize basic ATA port resources. 5295 * 5296 * RETURNS: 5297 * Allocate ATA port on success, NULL on failure. 5298 * 5299 * LOCKING: 5300 * Inherited from calling layer (may sleep). 5301 */ 5302 struct ata_port *ata_port_alloc(struct ata_host *host) 5303 { 5304 struct ata_port *ap; 5305 5306 DPRINTK("ENTER\n"); 5307 5308 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5309 if (!ap) 5310 return NULL; 5311 5312 ap->pflags |= ATA_PFLAG_INITIALIZING; 5313 ap->lock = &host->lock; 5314 ap->flags = ATA_FLAG_DISABLED; 5315 ap->print_id = -1; 5316 ap->ctl = ATA_DEVCTL_OBS; 5317 ap->host = host; 5318 ap->dev = host->dev; 5319 ap->last_ctl = 0xFF; 5320 5321 #if defined(ATA_VERBOSE_DEBUG) 5322 /* turn on all debugging levels */ 5323 ap->msg_enable = 0x00FF; 5324 #elif defined(ATA_DEBUG) 5325 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5326 #else 5327 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5328 #endif 5329 5330 #ifdef CONFIG_ATA_SFF 5331 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5332 #else 5333 INIT_DELAYED_WORK(&ap->port_task, NULL); 5334 #endif 5335 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5336 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5337 INIT_LIST_HEAD(&ap->eh_done_q); 5338 init_waitqueue_head(&ap->eh_wait_q); 5339 init_completion(&ap->park_req_pending); 5340 init_timer_deferrable(&ap->fastdrain_timer); 5341 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5342 ap->fastdrain_timer.data = (unsigned long)ap; 5343 5344 ap->cbl = ATA_CBL_NONE; 5345 5346 ata_link_init(ap, &ap->link, 0); 5347 5348 #ifdef ATA_IRQ_TRAP 5349 ap->stats.unhandled_irq = 1; 5350 ap->stats.idle_irq = 1; 5351 #endif 5352 return ap; 5353 } 5354 5355 static void ata_host_release(struct device *gendev, void *res) 5356 { 5357 struct ata_host *host = dev_get_drvdata(gendev); 5358 int i; 5359 5360 for (i = 0; i < host->n_ports; i++) { 5361 struct ata_port *ap = host->ports[i]; 5362 5363 if (!ap) 5364 continue; 5365 5366 if (ap->scsi_host) 5367 scsi_host_put(ap->scsi_host); 5368 5369 kfree(ap->pmp_link); 5370 kfree(ap->slave_link); 5371 kfree(ap); 5372 host->ports[i] = NULL; 5373 } 5374 5375 dev_set_drvdata(gendev, NULL); 5376 } 5377 5378 /** 5379 * ata_host_alloc - allocate and init basic ATA host resources 5380 * @dev: generic device this host is associated with 5381 * @max_ports: maximum number of ATA ports associated with this host 5382 * 5383 * Allocate and initialize basic ATA host resources. LLD calls 5384 * this function to allocate a host, initializes it fully and 5385 * attaches it using ata_host_register(). 5386 * 5387 * @max_ports ports are allocated and host->n_ports is 5388 * initialized to @max_ports. The caller is allowed to decrease 5389 * host->n_ports before calling ata_host_register(). The unused 5390 * ports will be automatically freed on registration. 5391 * 5392 * RETURNS: 5393 * Allocate ATA host on success, NULL on failure. 5394 * 5395 * LOCKING: 5396 * Inherited from calling layer (may sleep). 5397 */ 5398 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5399 { 5400 struct ata_host *host; 5401 size_t sz; 5402 int i; 5403 5404 DPRINTK("ENTER\n"); 5405 5406 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5407 return NULL; 5408 5409 /* alloc a container for our list of ATA ports (buses) */ 5410 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5411 /* alloc a container for our list of ATA ports (buses) */ 5412 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5413 if (!host) 5414 goto err_out; 5415 5416 devres_add(dev, host); 5417 dev_set_drvdata(dev, host); 5418 5419 spin_lock_init(&host->lock); 5420 host->dev = dev; 5421 host->n_ports = max_ports; 5422 5423 /* allocate ports bound to this host */ 5424 for (i = 0; i < max_ports; i++) { 5425 struct ata_port *ap; 5426 5427 ap = ata_port_alloc(host); 5428 if (!ap) 5429 goto err_out; 5430 5431 ap->port_no = i; 5432 host->ports[i] = ap; 5433 } 5434 5435 devres_remove_group(dev, NULL); 5436 return host; 5437 5438 err_out: 5439 devres_release_group(dev, NULL); 5440 return NULL; 5441 } 5442 5443 /** 5444 * ata_host_alloc_pinfo - alloc host and init with port_info array 5445 * @dev: generic device this host is associated with 5446 * @ppi: array of ATA port_info to initialize host with 5447 * @n_ports: number of ATA ports attached to this host 5448 * 5449 * Allocate ATA host and initialize with info from @ppi. If NULL 5450 * terminated, @ppi may contain fewer entries than @n_ports. The 5451 * last entry will be used for the remaining ports. 5452 * 5453 * RETURNS: 5454 * Allocate ATA host on success, NULL on failure. 5455 * 5456 * LOCKING: 5457 * Inherited from calling layer (may sleep). 5458 */ 5459 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5460 const struct ata_port_info * const * ppi, 5461 int n_ports) 5462 { 5463 const struct ata_port_info *pi; 5464 struct ata_host *host; 5465 int i, j; 5466 5467 host = ata_host_alloc(dev, n_ports); 5468 if (!host) 5469 return NULL; 5470 5471 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5472 struct ata_port *ap = host->ports[i]; 5473 5474 if (ppi[j]) 5475 pi = ppi[j++]; 5476 5477 ap->pio_mask = pi->pio_mask; 5478 ap->mwdma_mask = pi->mwdma_mask; 5479 ap->udma_mask = pi->udma_mask; 5480 ap->flags |= pi->flags; 5481 ap->link.flags |= pi->link_flags; 5482 ap->ops = pi->port_ops; 5483 5484 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5485 host->ops = pi->port_ops; 5486 } 5487 5488 return host; 5489 } 5490 5491 /** 5492 * ata_slave_link_init - initialize slave link 5493 * @ap: port to initialize slave link for 5494 * 5495 * Create and initialize slave link for @ap. This enables slave 5496 * link handling on the port. 5497 * 5498 * In libata, a port contains links and a link contains devices. 5499 * There is single host link but if a PMP is attached to it, 5500 * there can be multiple fan-out links. On SATA, there's usually 5501 * a single device connected to a link but PATA and SATA 5502 * controllers emulating TF based interface can have two - master 5503 * and slave. 5504 * 5505 * However, there are a few controllers which don't fit into this 5506 * abstraction too well - SATA controllers which emulate TF 5507 * interface with both master and slave devices but also have 5508 * separate SCR register sets for each device. These controllers 5509 * need separate links for physical link handling 5510 * (e.g. onlineness, link speed) but should be treated like a 5511 * traditional M/S controller for everything else (e.g. command 5512 * issue, softreset). 5513 * 5514 * slave_link is libata's way of handling this class of 5515 * controllers without impacting core layer too much. For 5516 * anything other than physical link handling, the default host 5517 * link is used for both master and slave. For physical link 5518 * handling, separate @ap->slave_link is used. All dirty details 5519 * are implemented inside libata core layer. From LLD's POV, the 5520 * only difference is that prereset, hardreset and postreset are 5521 * called once more for the slave link, so the reset sequence 5522 * looks like the following. 5523 * 5524 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5525 * softreset(M) -> postreset(M) -> postreset(S) 5526 * 5527 * Note that softreset is called only for the master. Softreset 5528 * resets both M/S by definition, so SRST on master should handle 5529 * both (the standard method will work just fine). 5530 * 5531 * LOCKING: 5532 * Should be called before host is registered. 5533 * 5534 * RETURNS: 5535 * 0 on success, -errno on failure. 5536 */ 5537 int ata_slave_link_init(struct ata_port *ap) 5538 { 5539 struct ata_link *link; 5540 5541 WARN_ON(ap->slave_link); 5542 WARN_ON(ap->flags & ATA_FLAG_PMP); 5543 5544 link = kzalloc(sizeof(*link), GFP_KERNEL); 5545 if (!link) 5546 return -ENOMEM; 5547 5548 ata_link_init(ap, link, 1); 5549 ap->slave_link = link; 5550 return 0; 5551 } 5552 5553 static void ata_host_stop(struct device *gendev, void *res) 5554 { 5555 struct ata_host *host = dev_get_drvdata(gendev); 5556 int i; 5557 5558 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5559 5560 for (i = 0; i < host->n_ports; i++) { 5561 struct ata_port *ap = host->ports[i]; 5562 5563 if (ap->ops->port_stop) 5564 ap->ops->port_stop(ap); 5565 } 5566 5567 if (host->ops->host_stop) 5568 host->ops->host_stop(host); 5569 } 5570 5571 /** 5572 * ata_finalize_port_ops - finalize ata_port_operations 5573 * @ops: ata_port_operations to finalize 5574 * 5575 * An ata_port_operations can inherit from another ops and that 5576 * ops can again inherit from another. This can go on as many 5577 * times as necessary as long as there is no loop in the 5578 * inheritance chain. 5579 * 5580 * Ops tables are finalized when the host is started. NULL or 5581 * unspecified entries are inherited from the closet ancestor 5582 * which has the method and the entry is populated with it. 5583 * After finalization, the ops table directly points to all the 5584 * methods and ->inherits is no longer necessary and cleared. 5585 * 5586 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5587 * 5588 * LOCKING: 5589 * None. 5590 */ 5591 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5592 { 5593 static DEFINE_SPINLOCK(lock); 5594 const struct ata_port_operations *cur; 5595 void **begin = (void **)ops; 5596 void **end = (void **)&ops->inherits; 5597 void **pp; 5598 5599 if (!ops || !ops->inherits) 5600 return; 5601 5602 spin_lock(&lock); 5603 5604 for (cur = ops->inherits; cur; cur = cur->inherits) { 5605 void **inherit = (void **)cur; 5606 5607 for (pp = begin; pp < end; pp++, inherit++) 5608 if (!*pp) 5609 *pp = *inherit; 5610 } 5611 5612 for (pp = begin; pp < end; pp++) 5613 if (IS_ERR(*pp)) 5614 *pp = NULL; 5615 5616 ops->inherits = NULL; 5617 5618 spin_unlock(&lock); 5619 } 5620 5621 /** 5622 * ata_host_start - start and freeze ports of an ATA host 5623 * @host: ATA host to start ports for 5624 * 5625 * Start and then freeze ports of @host. Started status is 5626 * recorded in host->flags, so this function can be called 5627 * multiple times. Ports are guaranteed to get started only 5628 * once. If host->ops isn't initialized yet, its set to the 5629 * first non-dummy port ops. 5630 * 5631 * LOCKING: 5632 * Inherited from calling layer (may sleep). 5633 * 5634 * RETURNS: 5635 * 0 if all ports are started successfully, -errno otherwise. 5636 */ 5637 int ata_host_start(struct ata_host *host) 5638 { 5639 int have_stop = 0; 5640 void *start_dr = NULL; 5641 int i, rc; 5642 5643 if (host->flags & ATA_HOST_STARTED) 5644 return 0; 5645 5646 ata_finalize_port_ops(host->ops); 5647 5648 for (i = 0; i < host->n_ports; i++) { 5649 struct ata_port *ap = host->ports[i]; 5650 5651 ata_finalize_port_ops(ap->ops); 5652 5653 if (!host->ops && !ata_port_is_dummy(ap)) 5654 host->ops = ap->ops; 5655 5656 if (ap->ops->port_stop) 5657 have_stop = 1; 5658 } 5659 5660 if (host->ops->host_stop) 5661 have_stop = 1; 5662 5663 if (have_stop) { 5664 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5665 if (!start_dr) 5666 return -ENOMEM; 5667 } 5668 5669 for (i = 0; i < host->n_ports; i++) { 5670 struct ata_port *ap = host->ports[i]; 5671 5672 if (ap->ops->port_start) { 5673 rc = ap->ops->port_start(ap); 5674 if (rc) { 5675 if (rc != -ENODEV) 5676 dev_printk(KERN_ERR, host->dev, 5677 "failed to start port %d " 5678 "(errno=%d)\n", i, rc); 5679 goto err_out; 5680 } 5681 } 5682 ata_eh_freeze_port(ap); 5683 } 5684 5685 if (start_dr) 5686 devres_add(host->dev, start_dr); 5687 host->flags |= ATA_HOST_STARTED; 5688 return 0; 5689 5690 err_out: 5691 while (--i >= 0) { 5692 struct ata_port *ap = host->ports[i]; 5693 5694 if (ap->ops->port_stop) 5695 ap->ops->port_stop(ap); 5696 } 5697 devres_free(start_dr); 5698 return rc; 5699 } 5700 5701 /** 5702 * ata_sas_host_init - Initialize a host struct 5703 * @host: host to initialize 5704 * @dev: device host is attached to 5705 * @flags: host flags 5706 * @ops: port_ops 5707 * 5708 * LOCKING: 5709 * PCI/etc. bus probe sem. 5710 * 5711 */ 5712 /* KILLME - the only user left is ipr */ 5713 void ata_host_init(struct ata_host *host, struct device *dev, 5714 unsigned long flags, struct ata_port_operations *ops) 5715 { 5716 spin_lock_init(&host->lock); 5717 host->dev = dev; 5718 host->flags = flags; 5719 host->ops = ops; 5720 } 5721 5722 /** 5723 * ata_host_register - register initialized ATA host 5724 * @host: ATA host to register 5725 * @sht: template for SCSI host 5726 * 5727 * Register initialized ATA host. @host is allocated using 5728 * ata_host_alloc() and fully initialized by LLD. This function 5729 * starts ports, registers @host with ATA and SCSI layers and 5730 * probe registered devices. 5731 * 5732 * LOCKING: 5733 * Inherited from calling layer (may sleep). 5734 * 5735 * RETURNS: 5736 * 0 on success, -errno otherwise. 5737 */ 5738 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5739 { 5740 int i, rc; 5741 5742 /* host must have been started */ 5743 if (!(host->flags & ATA_HOST_STARTED)) { 5744 dev_printk(KERN_ERR, host->dev, 5745 "BUG: trying to register unstarted host\n"); 5746 WARN_ON(1); 5747 return -EINVAL; 5748 } 5749 5750 /* Blow away unused ports. This happens when LLD can't 5751 * determine the exact number of ports to allocate at 5752 * allocation time. 5753 */ 5754 for (i = host->n_ports; host->ports[i]; i++) 5755 kfree(host->ports[i]); 5756 5757 /* give ports names and add SCSI hosts */ 5758 for (i = 0; i < host->n_ports; i++) 5759 host->ports[i]->print_id = ata_print_id++; 5760 5761 rc = ata_scsi_add_hosts(host, sht); 5762 if (rc) 5763 return rc; 5764 5765 /* associate with ACPI nodes */ 5766 ata_acpi_associate(host); 5767 5768 /* set cable, sata_spd_limit and report */ 5769 for (i = 0; i < host->n_ports; i++) { 5770 struct ata_port *ap = host->ports[i]; 5771 unsigned long xfer_mask; 5772 5773 /* set SATA cable type if still unset */ 5774 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5775 ap->cbl = ATA_CBL_SATA; 5776 5777 /* init sata_spd_limit to the current value */ 5778 sata_link_init_spd(&ap->link); 5779 if (ap->slave_link) 5780 sata_link_init_spd(ap->slave_link); 5781 5782 /* print per-port info to dmesg */ 5783 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5784 ap->udma_mask); 5785 5786 if (!ata_port_is_dummy(ap)) { 5787 ata_port_printk(ap, KERN_INFO, 5788 "%cATA max %s %s\n", 5789 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5790 ata_mode_string(xfer_mask), 5791 ap->link.eh_info.desc); 5792 ata_ehi_clear_desc(&ap->link.eh_info); 5793 } else 5794 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 5795 } 5796 5797 /* perform each probe synchronously */ 5798 DPRINTK("probe begin\n"); 5799 for (i = 0; i < host->n_ports; i++) { 5800 struct ata_port *ap = host->ports[i]; 5801 5802 /* probe */ 5803 if (ap->ops->error_handler) { 5804 struct ata_eh_info *ehi = &ap->link.eh_info; 5805 unsigned long flags; 5806 5807 ata_port_probe(ap); 5808 5809 /* kick EH for boot probing */ 5810 spin_lock_irqsave(ap->lock, flags); 5811 5812 ehi->probe_mask |= ATA_ALL_DEVICES; 5813 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 5814 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5815 5816 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5817 ap->pflags |= ATA_PFLAG_LOADING; 5818 ata_port_schedule_eh(ap); 5819 5820 spin_unlock_irqrestore(ap->lock, flags); 5821 5822 /* wait for EH to finish */ 5823 ata_port_wait_eh(ap); 5824 } else { 5825 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5826 rc = ata_bus_probe(ap); 5827 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5828 5829 if (rc) { 5830 /* FIXME: do something useful here? 5831 * Current libata behavior will 5832 * tear down everything when 5833 * the module is removed 5834 * or the h/w is unplugged. 5835 */ 5836 } 5837 } 5838 } 5839 5840 /* probes are done, now scan each port's disk(s) */ 5841 DPRINTK("host probe begin\n"); 5842 for (i = 0; i < host->n_ports; i++) { 5843 struct ata_port *ap = host->ports[i]; 5844 5845 ata_scsi_scan_host(ap, 1); 5846 } 5847 5848 return 0; 5849 } 5850 5851 /** 5852 * ata_host_activate - start host, request IRQ and register it 5853 * @host: target ATA host 5854 * @irq: IRQ to request 5855 * @irq_handler: irq_handler used when requesting IRQ 5856 * @irq_flags: irq_flags used when requesting IRQ 5857 * @sht: scsi_host_template to use when registering the host 5858 * 5859 * After allocating an ATA host and initializing it, most libata 5860 * LLDs perform three steps to activate the host - start host, 5861 * request IRQ and register it. This helper takes necessasry 5862 * arguments and performs the three steps in one go. 5863 * 5864 * An invalid IRQ skips the IRQ registration and expects the host to 5865 * have set polling mode on the port. In this case, @irq_handler 5866 * should be NULL. 5867 * 5868 * LOCKING: 5869 * Inherited from calling layer (may sleep). 5870 * 5871 * RETURNS: 5872 * 0 on success, -errno otherwise. 5873 */ 5874 int ata_host_activate(struct ata_host *host, int irq, 5875 irq_handler_t irq_handler, unsigned long irq_flags, 5876 struct scsi_host_template *sht) 5877 { 5878 int i, rc; 5879 5880 rc = ata_host_start(host); 5881 if (rc) 5882 return rc; 5883 5884 /* Special case for polling mode */ 5885 if (!irq) { 5886 WARN_ON(irq_handler); 5887 return ata_host_register(host, sht); 5888 } 5889 5890 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5891 dev_driver_string(host->dev), host); 5892 if (rc) 5893 return rc; 5894 5895 for (i = 0; i < host->n_ports; i++) 5896 ata_port_desc(host->ports[i], "irq %d", irq); 5897 5898 rc = ata_host_register(host, sht); 5899 /* if failed, just free the IRQ and leave ports alone */ 5900 if (rc) 5901 devm_free_irq(host->dev, irq, host); 5902 5903 return rc; 5904 } 5905 5906 /** 5907 * ata_port_detach - Detach ATA port in prepration of device removal 5908 * @ap: ATA port to be detached 5909 * 5910 * Detach all ATA devices and the associated SCSI devices of @ap; 5911 * then, remove the associated SCSI host. @ap is guaranteed to 5912 * be quiescent on return from this function. 5913 * 5914 * LOCKING: 5915 * Kernel thread context (may sleep). 5916 */ 5917 static void ata_port_detach(struct ata_port *ap) 5918 { 5919 unsigned long flags; 5920 struct ata_link *link; 5921 struct ata_device *dev; 5922 5923 if (!ap->ops->error_handler) 5924 goto skip_eh; 5925 5926 /* tell EH we're leaving & flush EH */ 5927 spin_lock_irqsave(ap->lock, flags); 5928 ap->pflags |= ATA_PFLAG_UNLOADING; 5929 spin_unlock_irqrestore(ap->lock, flags); 5930 5931 ata_port_wait_eh(ap); 5932 5933 /* EH is now guaranteed to see UNLOADING - EH context belongs 5934 * to us. Restore SControl and disable all existing devices. 5935 */ 5936 __ata_port_for_each_link(link, ap) { 5937 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol); 5938 ata_link_for_each_dev(dev, link) 5939 ata_dev_disable(dev); 5940 } 5941 5942 /* Final freeze & EH. All in-flight commands are aborted. EH 5943 * will be skipped and retrials will be terminated with bad 5944 * target. 5945 */ 5946 spin_lock_irqsave(ap->lock, flags); 5947 ata_port_freeze(ap); /* won't be thawed */ 5948 spin_unlock_irqrestore(ap->lock, flags); 5949 5950 ata_port_wait_eh(ap); 5951 cancel_rearming_delayed_work(&ap->hotplug_task); 5952 5953 skip_eh: 5954 /* remove the associated SCSI host */ 5955 scsi_remove_host(ap->scsi_host); 5956 } 5957 5958 /** 5959 * ata_host_detach - Detach all ports of an ATA host 5960 * @host: Host to detach 5961 * 5962 * Detach all ports of @host. 5963 * 5964 * LOCKING: 5965 * Kernel thread context (may sleep). 5966 */ 5967 void ata_host_detach(struct ata_host *host) 5968 { 5969 int i; 5970 5971 for (i = 0; i < host->n_ports; i++) 5972 ata_port_detach(host->ports[i]); 5973 5974 /* the host is dead now, dissociate ACPI */ 5975 ata_acpi_dissociate(host); 5976 } 5977 5978 #ifdef CONFIG_PCI 5979 5980 /** 5981 * ata_pci_remove_one - PCI layer callback for device removal 5982 * @pdev: PCI device that was removed 5983 * 5984 * PCI layer indicates to libata via this hook that hot-unplug or 5985 * module unload event has occurred. Detach all ports. Resource 5986 * release is handled via devres. 5987 * 5988 * LOCKING: 5989 * Inherited from PCI layer (may sleep). 5990 */ 5991 void ata_pci_remove_one(struct pci_dev *pdev) 5992 { 5993 struct device *dev = &pdev->dev; 5994 struct ata_host *host = dev_get_drvdata(dev); 5995 5996 ata_host_detach(host); 5997 } 5998 5999 /* move to PCI subsystem */ 6000 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6001 { 6002 unsigned long tmp = 0; 6003 6004 switch (bits->width) { 6005 case 1: { 6006 u8 tmp8 = 0; 6007 pci_read_config_byte(pdev, bits->reg, &tmp8); 6008 tmp = tmp8; 6009 break; 6010 } 6011 case 2: { 6012 u16 tmp16 = 0; 6013 pci_read_config_word(pdev, bits->reg, &tmp16); 6014 tmp = tmp16; 6015 break; 6016 } 6017 case 4: { 6018 u32 tmp32 = 0; 6019 pci_read_config_dword(pdev, bits->reg, &tmp32); 6020 tmp = tmp32; 6021 break; 6022 } 6023 6024 default: 6025 return -EINVAL; 6026 } 6027 6028 tmp &= bits->mask; 6029 6030 return (tmp == bits->val) ? 1 : 0; 6031 } 6032 6033 #ifdef CONFIG_PM 6034 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6035 { 6036 pci_save_state(pdev); 6037 pci_disable_device(pdev); 6038 6039 if (mesg.event & PM_EVENT_SLEEP) 6040 pci_set_power_state(pdev, PCI_D3hot); 6041 } 6042 6043 int ata_pci_device_do_resume(struct pci_dev *pdev) 6044 { 6045 int rc; 6046 6047 pci_set_power_state(pdev, PCI_D0); 6048 pci_restore_state(pdev); 6049 6050 rc = pcim_enable_device(pdev); 6051 if (rc) { 6052 dev_printk(KERN_ERR, &pdev->dev, 6053 "failed to enable device after resume (%d)\n", rc); 6054 return rc; 6055 } 6056 6057 pci_set_master(pdev); 6058 return 0; 6059 } 6060 6061 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6062 { 6063 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6064 int rc = 0; 6065 6066 rc = ata_host_suspend(host, mesg); 6067 if (rc) 6068 return rc; 6069 6070 ata_pci_device_do_suspend(pdev, mesg); 6071 6072 return 0; 6073 } 6074 6075 int ata_pci_device_resume(struct pci_dev *pdev) 6076 { 6077 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6078 int rc; 6079 6080 rc = ata_pci_device_do_resume(pdev); 6081 if (rc == 0) 6082 ata_host_resume(host); 6083 return rc; 6084 } 6085 #endif /* CONFIG_PM */ 6086 6087 #endif /* CONFIG_PCI */ 6088 6089 static int __init ata_parse_force_one(char **cur, 6090 struct ata_force_ent *force_ent, 6091 const char **reason) 6092 { 6093 /* FIXME: Currently, there's no way to tag init const data and 6094 * using __initdata causes build failure on some versions of 6095 * gcc. Once __initdataconst is implemented, add const to the 6096 * following structure. 6097 */ 6098 static struct ata_force_param force_tbl[] __initdata = { 6099 { "40c", .cbl = ATA_CBL_PATA40 }, 6100 { "80c", .cbl = ATA_CBL_PATA80 }, 6101 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6102 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6103 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6104 { "sata", .cbl = ATA_CBL_SATA }, 6105 { "1.5Gbps", .spd_limit = 1 }, 6106 { "3.0Gbps", .spd_limit = 2 }, 6107 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6108 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6109 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6110 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6111 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6112 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6113 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6114 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6115 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6116 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6117 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6118 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6119 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6120 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6121 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6122 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6123 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6124 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6125 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6126 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6127 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6128 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6129 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6130 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6131 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6132 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6133 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6134 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6135 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6136 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6137 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6138 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6139 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6140 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6141 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6142 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6143 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6144 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6145 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6146 }; 6147 char *start = *cur, *p = *cur; 6148 char *id, *val, *endp; 6149 const struct ata_force_param *match_fp = NULL; 6150 int nr_matches = 0, i; 6151 6152 /* find where this param ends and update *cur */ 6153 while (*p != '\0' && *p != ',') 6154 p++; 6155 6156 if (*p == '\0') 6157 *cur = p; 6158 else 6159 *cur = p + 1; 6160 6161 *p = '\0'; 6162 6163 /* parse */ 6164 p = strchr(start, ':'); 6165 if (!p) { 6166 val = strstrip(start); 6167 goto parse_val; 6168 } 6169 *p = '\0'; 6170 6171 id = strstrip(start); 6172 val = strstrip(p + 1); 6173 6174 /* parse id */ 6175 p = strchr(id, '.'); 6176 if (p) { 6177 *p++ = '\0'; 6178 force_ent->device = simple_strtoul(p, &endp, 10); 6179 if (p == endp || *endp != '\0') { 6180 *reason = "invalid device"; 6181 return -EINVAL; 6182 } 6183 } 6184 6185 force_ent->port = simple_strtoul(id, &endp, 10); 6186 if (p == endp || *endp != '\0') { 6187 *reason = "invalid port/link"; 6188 return -EINVAL; 6189 } 6190 6191 parse_val: 6192 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6193 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6194 const struct ata_force_param *fp = &force_tbl[i]; 6195 6196 if (strncasecmp(val, fp->name, strlen(val))) 6197 continue; 6198 6199 nr_matches++; 6200 match_fp = fp; 6201 6202 if (strcasecmp(val, fp->name) == 0) { 6203 nr_matches = 1; 6204 break; 6205 } 6206 } 6207 6208 if (!nr_matches) { 6209 *reason = "unknown value"; 6210 return -EINVAL; 6211 } 6212 if (nr_matches > 1) { 6213 *reason = "ambigious value"; 6214 return -EINVAL; 6215 } 6216 6217 force_ent->param = *match_fp; 6218 6219 return 0; 6220 } 6221 6222 static void __init ata_parse_force_param(void) 6223 { 6224 int idx = 0, size = 1; 6225 int last_port = -1, last_device = -1; 6226 char *p, *cur, *next; 6227 6228 /* calculate maximum number of params and allocate force_tbl */ 6229 for (p = ata_force_param_buf; *p; p++) 6230 if (*p == ',') 6231 size++; 6232 6233 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6234 if (!ata_force_tbl) { 6235 printk(KERN_WARNING "ata: failed to extend force table, " 6236 "libata.force ignored\n"); 6237 return; 6238 } 6239 6240 /* parse and populate the table */ 6241 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6242 const char *reason = ""; 6243 struct ata_force_ent te = { .port = -1, .device = -1 }; 6244 6245 next = cur; 6246 if (ata_parse_force_one(&next, &te, &reason)) { 6247 printk(KERN_WARNING "ata: failed to parse force " 6248 "parameter \"%s\" (%s)\n", 6249 cur, reason); 6250 continue; 6251 } 6252 6253 if (te.port == -1) { 6254 te.port = last_port; 6255 te.device = last_device; 6256 } 6257 6258 ata_force_tbl[idx++] = te; 6259 6260 last_port = te.port; 6261 last_device = te.device; 6262 } 6263 6264 ata_force_tbl_size = idx; 6265 } 6266 6267 static int __init ata_init(void) 6268 { 6269 ata_parse_force_param(); 6270 6271 ata_wq = create_workqueue("ata"); 6272 if (!ata_wq) 6273 goto free_force_tbl; 6274 6275 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6276 if (!ata_aux_wq) 6277 goto free_wq; 6278 6279 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6280 return 0; 6281 6282 free_wq: 6283 destroy_workqueue(ata_wq); 6284 free_force_tbl: 6285 kfree(ata_force_tbl); 6286 return -ENOMEM; 6287 } 6288 6289 static void __exit ata_exit(void) 6290 { 6291 kfree(ata_force_tbl); 6292 destroy_workqueue(ata_wq); 6293 destroy_workqueue(ata_aux_wq); 6294 } 6295 6296 subsys_initcall(ata_init); 6297 module_exit(ata_exit); 6298 6299 static unsigned long ratelimit_time; 6300 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6301 6302 int ata_ratelimit(void) 6303 { 6304 int rc; 6305 unsigned long flags; 6306 6307 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6308 6309 if (time_after(jiffies, ratelimit_time)) { 6310 rc = 1; 6311 ratelimit_time = jiffies + (HZ/5); 6312 } else 6313 rc = 0; 6314 6315 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6316 6317 return rc; 6318 } 6319 6320 /** 6321 * ata_wait_register - wait until register value changes 6322 * @reg: IO-mapped register 6323 * @mask: Mask to apply to read register value 6324 * @val: Wait condition 6325 * @interval: polling interval in milliseconds 6326 * @timeout: timeout in milliseconds 6327 * 6328 * Waiting for some bits of register to change is a common 6329 * operation for ATA controllers. This function reads 32bit LE 6330 * IO-mapped register @reg and tests for the following condition. 6331 * 6332 * (*@reg & mask) != val 6333 * 6334 * If the condition is met, it returns; otherwise, the process is 6335 * repeated after @interval_msec until timeout. 6336 * 6337 * LOCKING: 6338 * Kernel thread context (may sleep) 6339 * 6340 * RETURNS: 6341 * The final register value. 6342 */ 6343 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6344 unsigned long interval, unsigned long timeout) 6345 { 6346 unsigned long deadline; 6347 u32 tmp; 6348 6349 tmp = ioread32(reg); 6350 6351 /* Calculate timeout _after_ the first read to make sure 6352 * preceding writes reach the controller before starting to 6353 * eat away the timeout. 6354 */ 6355 deadline = ata_deadline(jiffies, timeout); 6356 6357 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6358 msleep(interval); 6359 tmp = ioread32(reg); 6360 } 6361 6362 return tmp; 6363 } 6364 6365 /* 6366 * Dummy port_ops 6367 */ 6368 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6369 { 6370 return AC_ERR_SYSTEM; 6371 } 6372 6373 static void ata_dummy_error_handler(struct ata_port *ap) 6374 { 6375 /* truly dummy */ 6376 } 6377 6378 struct ata_port_operations ata_dummy_port_ops = { 6379 .qc_prep = ata_noop_qc_prep, 6380 .qc_issue = ata_dummy_qc_issue, 6381 .error_handler = ata_dummy_error_handler, 6382 }; 6383 6384 const struct ata_port_info ata_dummy_port_info = { 6385 .port_ops = &ata_dummy_port_ops, 6386 }; 6387 6388 /* 6389 * libata is essentially a library of internal helper functions for 6390 * low-level ATA host controller drivers. As such, the API/ABI is 6391 * likely to change as new drivers are added and updated. 6392 * Do not depend on ABI/API stability. 6393 */ 6394 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6395 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6396 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6397 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6398 EXPORT_SYMBOL_GPL(sata_port_ops); 6399 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6400 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6401 EXPORT_SYMBOL_GPL(__ata_port_next_link); 6402 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6403 EXPORT_SYMBOL_GPL(ata_host_init); 6404 EXPORT_SYMBOL_GPL(ata_host_alloc); 6405 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6406 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6407 EXPORT_SYMBOL_GPL(ata_host_start); 6408 EXPORT_SYMBOL_GPL(ata_host_register); 6409 EXPORT_SYMBOL_GPL(ata_host_activate); 6410 EXPORT_SYMBOL_GPL(ata_host_detach); 6411 EXPORT_SYMBOL_GPL(ata_sg_init); 6412 EXPORT_SYMBOL_GPL(ata_qc_complete); 6413 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6414 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6415 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6416 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6417 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6418 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6419 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6420 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6421 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6422 EXPORT_SYMBOL_GPL(ata_mode_string); 6423 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6424 EXPORT_SYMBOL_GPL(ata_port_start); 6425 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6426 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6427 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6428 EXPORT_SYMBOL_GPL(ata_port_probe); 6429 EXPORT_SYMBOL_GPL(ata_dev_disable); 6430 EXPORT_SYMBOL_GPL(sata_set_spd); 6431 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6432 EXPORT_SYMBOL_GPL(sata_link_debounce); 6433 EXPORT_SYMBOL_GPL(sata_link_resume); 6434 EXPORT_SYMBOL_GPL(ata_std_prereset); 6435 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6436 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6437 EXPORT_SYMBOL_GPL(ata_std_postreset); 6438 EXPORT_SYMBOL_GPL(ata_dev_classify); 6439 EXPORT_SYMBOL_GPL(ata_dev_pair); 6440 EXPORT_SYMBOL_GPL(ata_port_disable); 6441 EXPORT_SYMBOL_GPL(ata_ratelimit); 6442 EXPORT_SYMBOL_GPL(ata_wait_register); 6443 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6444 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6445 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6446 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6447 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6448 EXPORT_SYMBOL_GPL(sata_scr_valid); 6449 EXPORT_SYMBOL_GPL(sata_scr_read); 6450 EXPORT_SYMBOL_GPL(sata_scr_write); 6451 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6452 EXPORT_SYMBOL_GPL(ata_link_online); 6453 EXPORT_SYMBOL_GPL(ata_link_offline); 6454 #ifdef CONFIG_PM 6455 EXPORT_SYMBOL_GPL(ata_host_suspend); 6456 EXPORT_SYMBOL_GPL(ata_host_resume); 6457 #endif /* CONFIG_PM */ 6458 EXPORT_SYMBOL_GPL(ata_id_string); 6459 EXPORT_SYMBOL_GPL(ata_id_c_string); 6460 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6461 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6462 6463 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6464 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6465 EXPORT_SYMBOL_GPL(ata_timing_compute); 6466 EXPORT_SYMBOL_GPL(ata_timing_merge); 6467 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6468 6469 #ifdef CONFIG_PCI 6470 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6471 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6472 #ifdef CONFIG_PM 6473 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6474 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6475 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6476 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6477 #endif /* CONFIG_PM */ 6478 #endif /* CONFIG_PCI */ 6479 6480 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6481 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6482 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6483 EXPORT_SYMBOL_GPL(ata_port_desc); 6484 #ifdef CONFIG_PCI 6485 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6486 #endif /* CONFIG_PCI */ 6487 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6488 EXPORT_SYMBOL_GPL(ata_link_abort); 6489 EXPORT_SYMBOL_GPL(ata_port_abort); 6490 EXPORT_SYMBOL_GPL(ata_port_freeze); 6491 EXPORT_SYMBOL_GPL(sata_async_notification); 6492 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6493 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6494 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6495 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6496 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6497 EXPORT_SYMBOL_GPL(ata_do_eh); 6498 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6499 6500 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6501 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6502 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6503 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6504 EXPORT_SYMBOL_GPL(ata_cable_sata); 6505