xref: /openbmc/linux/drivers/ata/libata-core.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned int	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags_on;
100 	u16		lflags_off;
101 };
102 
103 struct ata_force_ent {
104 	int			port;
105 	int			device;
106 	struct ata_force_param	param;
107 };
108 
109 static struct ata_force_ent *ata_force_tbl;
110 static int ata_force_tbl_size;
111 
112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113 /* param_buf is thrown away after initialization, disallow read */
114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116 #endif
117 
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121 
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125 
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129 
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133 
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137 
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141 
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145 
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149 
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153 
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157 
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162 
163 static inline bool ata_dev_print_info(struct ata_device *dev)
164 {
165 	struct ata_eh_context *ehc = &dev->link->eh_context;
166 
167 	return ehc->i.flags & ATA_EHI_PRINTINFO;
168 }
169 
170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 	return (sstatus & 0xf) == 0x3;
173 }
174 
175 /**
176  *	ata_link_next - link iteration helper
177  *	@link: the previous link, NULL to start
178  *	@ap: ATA port containing links to iterate
179  *	@mode: iteration mode, one of ATA_LITER_*
180  *
181  *	LOCKING:
182  *	Host lock or EH context.
183  *
184  *	RETURNS:
185  *	Pointer to the next link.
186  */
187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 			       enum ata_link_iter_mode mode)
189 {
190 	BUG_ON(mode != ATA_LITER_EDGE &&
191 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192 
193 	/* NULL link indicates start of iteration */
194 	if (!link)
195 		switch (mode) {
196 		case ATA_LITER_EDGE:
197 		case ATA_LITER_PMP_FIRST:
198 			if (sata_pmp_attached(ap))
199 				return ap->pmp_link;
200 			fallthrough;
201 		case ATA_LITER_HOST_FIRST:
202 			return &ap->link;
203 		}
204 
205 	/* we just iterated over the host link, what's next? */
206 	if (link == &ap->link)
207 		switch (mode) {
208 		case ATA_LITER_HOST_FIRST:
209 			if (sata_pmp_attached(ap))
210 				return ap->pmp_link;
211 			fallthrough;
212 		case ATA_LITER_PMP_FIRST:
213 			if (unlikely(ap->slave_link))
214 				return ap->slave_link;
215 			fallthrough;
216 		case ATA_LITER_EDGE:
217 			return NULL;
218 		}
219 
220 	/* slave_link excludes PMP */
221 	if (unlikely(link == ap->slave_link))
222 		return NULL;
223 
224 	/* we were over a PMP link */
225 	if (++link < ap->pmp_link + ap->nr_pmp_links)
226 		return link;
227 
228 	if (mode == ATA_LITER_PMP_FIRST)
229 		return &ap->link;
230 
231 	return NULL;
232 }
233 EXPORT_SYMBOL_GPL(ata_link_next);
234 
235 /**
236  *	ata_dev_next - device iteration helper
237  *	@dev: the previous device, NULL to start
238  *	@link: ATA link containing devices to iterate
239  *	@mode: iteration mode, one of ATA_DITER_*
240  *
241  *	LOCKING:
242  *	Host lock or EH context.
243  *
244  *	RETURNS:
245  *	Pointer to the next device.
246  */
247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 				enum ata_dev_iter_mode mode)
249 {
250 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252 
253 	/* NULL dev indicates start of iteration */
254 	if (!dev)
255 		switch (mode) {
256 		case ATA_DITER_ENABLED:
257 		case ATA_DITER_ALL:
258 			dev = link->device;
259 			goto check;
260 		case ATA_DITER_ENABLED_REVERSE:
261 		case ATA_DITER_ALL_REVERSE:
262 			dev = link->device + ata_link_max_devices(link) - 1;
263 			goto check;
264 		}
265 
266  next:
267 	/* move to the next one */
268 	switch (mode) {
269 	case ATA_DITER_ENABLED:
270 	case ATA_DITER_ALL:
271 		if (++dev < link->device + ata_link_max_devices(link))
272 			goto check;
273 		return NULL;
274 	case ATA_DITER_ENABLED_REVERSE:
275 	case ATA_DITER_ALL_REVERSE:
276 		if (--dev >= link->device)
277 			goto check;
278 		return NULL;
279 	}
280 
281  check:
282 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 	    !ata_dev_enabled(dev))
284 		goto next;
285 	return dev;
286 }
287 EXPORT_SYMBOL_GPL(ata_dev_next);
288 
289 /**
290  *	ata_dev_phys_link - find physical link for a device
291  *	@dev: ATA device to look up physical link for
292  *
293  *	Look up physical link which @dev is attached to.  Note that
294  *	this is different from @dev->link only when @dev is on slave
295  *	link.  For all other cases, it's the same as @dev->link.
296  *
297  *	LOCKING:
298  *	Don't care.
299  *
300  *	RETURNS:
301  *	Pointer to the found physical link.
302  */
303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 	struct ata_port *ap = dev->link->ap;
306 
307 	if (!ap->slave_link)
308 		return dev->link;
309 	if (!dev->devno)
310 		return &ap->link;
311 	return ap->slave_link;
312 }
313 
314 #ifdef CONFIG_ATA_FORCE
315 /**
316  *	ata_force_cbl - force cable type according to libata.force
317  *	@ap: ATA port of interest
318  *
319  *	Force cable type according to libata.force and whine about it.
320  *	The last entry which has matching port number is used, so it
321  *	can be specified as part of device force parameters.  For
322  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323  *	same effect.
324  *
325  *	LOCKING:
326  *	EH context.
327  */
328 void ata_force_cbl(struct ata_port *ap)
329 {
330 	int i;
331 
332 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 		const struct ata_force_ent *fe = &ata_force_tbl[i];
334 
335 		if (fe->port != -1 && fe->port != ap->print_id)
336 			continue;
337 
338 		if (fe->param.cbl == ATA_CBL_NONE)
339 			continue;
340 
341 		ap->cbl = fe->param.cbl;
342 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 		return;
344 	}
345 }
346 
347 /**
348  *	ata_force_link_limits - force link limits according to libata.force
349  *	@link: ATA link of interest
350  *
351  *	Force link flags and SATA spd limit according to libata.force
352  *	and whine about it.  When only the port part is specified
353  *	(e.g. 1:), the limit applies to all links connected to both
354  *	the host link and all fan-out ports connected via PMP.  If the
355  *	device part is specified as 0 (e.g. 1.00:), it specifies the
356  *	first fan-out link not the host link.  Device number 15 always
357  *	points to the host link whether PMP is attached or not.  If the
358  *	controller has slave link, device number 16 points to it.
359  *
360  *	LOCKING:
361  *	EH context.
362  */
363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 	bool did_spd = false;
366 	int linkno = link->pmp;
367 	int i;
368 
369 	if (ata_is_host_link(link))
370 		linkno += 15;
371 
372 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 		const struct ata_force_ent *fe = &ata_force_tbl[i];
374 
375 		if (fe->port != -1 && fe->port != link->ap->print_id)
376 			continue;
377 
378 		if (fe->device != -1 && fe->device != linkno)
379 			continue;
380 
381 		/* only honor the first spd limit */
382 		if (!did_spd && fe->param.spd_limit) {
383 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 					fe->param.name);
386 			did_spd = true;
387 		}
388 
389 		/* let lflags stack */
390 		if (fe->param.lflags_on) {
391 			link->flags |= fe->param.lflags_on;
392 			ata_link_notice(link,
393 					"FORCE: link flag 0x%x forced -> 0x%x\n",
394 					fe->param.lflags_on, link->flags);
395 		}
396 		if (fe->param.lflags_off) {
397 			link->flags &= ~fe->param.lflags_off;
398 			ata_link_notice(link,
399 				"FORCE: link flag 0x%x cleared -> 0x%x\n",
400 				fe->param.lflags_off, link->flags);
401 		}
402 	}
403 }
404 
405 /**
406  *	ata_force_xfermask - force xfermask according to libata.force
407  *	@dev: ATA device of interest
408  *
409  *	Force xfer_mask according to libata.force and whine about it.
410  *	For consistency with link selection, device number 15 selects
411  *	the first device connected to the host link.
412  *
413  *	LOCKING:
414  *	EH context.
415  */
416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 	int devno = dev->link->pmp + dev->devno;
419 	int alt_devno = devno;
420 	int i;
421 
422 	/* allow n.15/16 for devices attached to host port */
423 	if (ata_is_host_link(dev->link))
424 		alt_devno += 15;
425 
426 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 		const struct ata_force_ent *fe = &ata_force_tbl[i];
428 		unsigned int pio_mask, mwdma_mask, udma_mask;
429 
430 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 			continue;
432 
433 		if (fe->device != -1 && fe->device != devno &&
434 		    fe->device != alt_devno)
435 			continue;
436 
437 		if (!fe->param.xfer_mask)
438 			continue;
439 
440 		ata_unpack_xfermask(fe->param.xfer_mask,
441 				    &pio_mask, &mwdma_mask, &udma_mask);
442 		if (udma_mask)
443 			dev->udma_mask = udma_mask;
444 		else if (mwdma_mask) {
445 			dev->udma_mask = 0;
446 			dev->mwdma_mask = mwdma_mask;
447 		} else {
448 			dev->udma_mask = 0;
449 			dev->mwdma_mask = 0;
450 			dev->pio_mask = pio_mask;
451 		}
452 
453 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 			       fe->param.name);
455 		return;
456 	}
457 }
458 
459 /**
460  *	ata_force_horkage - force horkage according to libata.force
461  *	@dev: ATA device of interest
462  *
463  *	Force horkage according to libata.force and whine about it.
464  *	For consistency with link selection, device number 15 selects
465  *	the first device connected to the host link.
466  *
467  *	LOCKING:
468  *	EH context.
469  */
470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 	int devno = dev->link->pmp + dev->devno;
473 	int alt_devno = devno;
474 	int i;
475 
476 	/* allow n.15/16 for devices attached to host port */
477 	if (ata_is_host_link(dev->link))
478 		alt_devno += 15;
479 
480 	for (i = 0; i < ata_force_tbl_size; i++) {
481 		const struct ata_force_ent *fe = &ata_force_tbl[i];
482 
483 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 			continue;
485 
486 		if (fe->device != -1 && fe->device != devno &&
487 		    fe->device != alt_devno)
488 			continue;
489 
490 		if (!(~dev->horkage & fe->param.horkage_on) &&
491 		    !(dev->horkage & fe->param.horkage_off))
492 			continue;
493 
494 		dev->horkage |= fe->param.horkage_on;
495 		dev->horkage &= ~fe->param.horkage_off;
496 
497 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 			       fe->param.name);
499 	}
500 }
501 #else
502 static inline void ata_force_link_limits(struct ata_link *link) { }
503 static inline void ata_force_xfermask(struct ata_device *dev) { }
504 static inline void ata_force_horkage(struct ata_device *dev) { }
505 #endif
506 
507 /**
508  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509  *	@opcode: SCSI opcode
510  *
511  *	Determine ATAPI command type from @opcode.
512  *
513  *	LOCKING:
514  *	None.
515  *
516  *	RETURNS:
517  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518  */
519 int atapi_cmd_type(u8 opcode)
520 {
521 	switch (opcode) {
522 	case GPCMD_READ_10:
523 	case GPCMD_READ_12:
524 		return ATAPI_READ;
525 
526 	case GPCMD_WRITE_10:
527 	case GPCMD_WRITE_12:
528 	case GPCMD_WRITE_AND_VERIFY_10:
529 		return ATAPI_WRITE;
530 
531 	case GPCMD_READ_CD:
532 	case GPCMD_READ_CD_MSF:
533 		return ATAPI_READ_CD;
534 
535 	case ATA_16:
536 	case ATA_12:
537 		if (atapi_passthru16)
538 			return ATAPI_PASS_THRU;
539 		fallthrough;
540 	default:
541 		return ATAPI_MISC;
542 	}
543 }
544 EXPORT_SYMBOL_GPL(atapi_cmd_type);
545 
546 static const u8 ata_rw_cmds[] = {
547 	/* pio multi */
548 	ATA_CMD_READ_MULTI,
549 	ATA_CMD_WRITE_MULTI,
550 	ATA_CMD_READ_MULTI_EXT,
551 	ATA_CMD_WRITE_MULTI_EXT,
552 	0,
553 	0,
554 	0,
555 	0,
556 	/* pio */
557 	ATA_CMD_PIO_READ,
558 	ATA_CMD_PIO_WRITE,
559 	ATA_CMD_PIO_READ_EXT,
560 	ATA_CMD_PIO_WRITE_EXT,
561 	0,
562 	0,
563 	0,
564 	0,
565 	/* dma */
566 	ATA_CMD_READ,
567 	ATA_CMD_WRITE,
568 	ATA_CMD_READ_EXT,
569 	ATA_CMD_WRITE_EXT,
570 	0,
571 	0,
572 	0,
573 	ATA_CMD_WRITE_FUA_EXT
574 };
575 
576 /**
577  *	ata_set_rwcmd_protocol - set taskfile r/w command and protocol
578  *	@dev: target device for the taskfile
579  *	@tf: taskfile to examine and configure
580  *
581  *	Examine the device configuration and tf->flags to determine
582  *	the proper read/write command and protocol to use for @tf.
583  *
584  *	LOCKING:
585  *	caller.
586  */
587 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
588 				   struct ata_taskfile *tf)
589 {
590 	u8 cmd;
591 
592 	int index, fua, lba48, write;
593 
594 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
595 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
596 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
597 
598 	if (dev->flags & ATA_DFLAG_PIO) {
599 		tf->protocol = ATA_PROT_PIO;
600 		index = dev->multi_count ? 0 : 8;
601 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
602 		/* Unable to use DMA due to host limitation */
603 		tf->protocol = ATA_PROT_PIO;
604 		index = dev->multi_count ? 0 : 8;
605 	} else {
606 		tf->protocol = ATA_PROT_DMA;
607 		index = 16;
608 	}
609 
610 	cmd = ata_rw_cmds[index + fua + lba48 + write];
611 	if (!cmd)
612 		return false;
613 
614 	tf->command = cmd;
615 
616 	return true;
617 }
618 
619 /**
620  *	ata_tf_read_block - Read block address from ATA taskfile
621  *	@tf: ATA taskfile of interest
622  *	@dev: ATA device @tf belongs to
623  *
624  *	LOCKING:
625  *	None.
626  *
627  *	Read block address from @tf.  This function can handle all
628  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
629  *	flags select the address format to use.
630  *
631  *	RETURNS:
632  *	Block address read from @tf.
633  */
634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
635 {
636 	u64 block = 0;
637 
638 	if (tf->flags & ATA_TFLAG_LBA) {
639 		if (tf->flags & ATA_TFLAG_LBA48) {
640 			block |= (u64)tf->hob_lbah << 40;
641 			block |= (u64)tf->hob_lbam << 32;
642 			block |= (u64)tf->hob_lbal << 24;
643 		} else
644 			block |= (tf->device & 0xf) << 24;
645 
646 		block |= tf->lbah << 16;
647 		block |= tf->lbam << 8;
648 		block |= tf->lbal;
649 	} else {
650 		u32 cyl, head, sect;
651 
652 		cyl = tf->lbam | (tf->lbah << 8);
653 		head = tf->device & 0xf;
654 		sect = tf->lbal;
655 
656 		if (!sect) {
657 			ata_dev_warn(dev,
658 				     "device reported invalid CHS sector 0\n");
659 			return U64_MAX;
660 		}
661 
662 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
663 	}
664 
665 	return block;
666 }
667 
668 /**
669  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
670  *	@qc: Metadata associated with the taskfile to build
671  *	@block: Block address
672  *	@n_block: Number of blocks
673  *	@tf_flags: RW/FUA etc...
674  *	@class: IO priority class
675  *
676  *	LOCKING:
677  *	None.
678  *
679  *	Build ATA taskfile for the command @qc for read/write request described
680  *	by @block, @n_block, @tf_flags and @class.
681  *
682  *	RETURNS:
683  *
684  *	0 on success, -ERANGE if the request is too large for @dev,
685  *	-EINVAL if the request is invalid.
686  */
687 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
688 		    unsigned int tf_flags, int class)
689 {
690 	struct ata_taskfile *tf = &qc->tf;
691 	struct ata_device *dev = qc->dev;
692 
693 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
694 	tf->flags |= tf_flags;
695 
696 	if (ata_ncq_enabled(dev)) {
697 		/* yay, NCQ */
698 		if (!lba_48_ok(block, n_block))
699 			return -ERANGE;
700 
701 		tf->protocol = ATA_PROT_NCQ;
702 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
703 
704 		if (tf->flags & ATA_TFLAG_WRITE)
705 			tf->command = ATA_CMD_FPDMA_WRITE;
706 		else
707 			tf->command = ATA_CMD_FPDMA_READ;
708 
709 		tf->nsect = qc->hw_tag << 3;
710 		tf->hob_feature = (n_block >> 8) & 0xff;
711 		tf->feature = n_block & 0xff;
712 
713 		tf->hob_lbah = (block >> 40) & 0xff;
714 		tf->hob_lbam = (block >> 32) & 0xff;
715 		tf->hob_lbal = (block >> 24) & 0xff;
716 		tf->lbah = (block >> 16) & 0xff;
717 		tf->lbam = (block >> 8) & 0xff;
718 		tf->lbal = block & 0xff;
719 
720 		tf->device = ATA_LBA;
721 		if (tf->flags & ATA_TFLAG_FUA)
722 			tf->device |= 1 << 7;
723 
724 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
725 		    class == IOPRIO_CLASS_RT)
726 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
727 	} else if (dev->flags & ATA_DFLAG_LBA) {
728 		tf->flags |= ATA_TFLAG_LBA;
729 
730 		/* We need LBA48 for FUA writes */
731 		if (!(tf->flags & ATA_TFLAG_FUA) && lba_28_ok(block, n_block)) {
732 			/* use LBA28 */
733 			tf->device |= (block >> 24) & 0xf;
734 		} else if (lba_48_ok(block, n_block)) {
735 			if (!(dev->flags & ATA_DFLAG_LBA48))
736 				return -ERANGE;
737 
738 			/* use LBA48 */
739 			tf->flags |= ATA_TFLAG_LBA48;
740 
741 			tf->hob_nsect = (n_block >> 8) & 0xff;
742 
743 			tf->hob_lbah = (block >> 40) & 0xff;
744 			tf->hob_lbam = (block >> 32) & 0xff;
745 			tf->hob_lbal = (block >> 24) & 0xff;
746 		} else {
747 			/* request too large even for LBA48 */
748 			return -ERANGE;
749 		}
750 
751 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
752 			return -EINVAL;
753 
754 		tf->nsect = n_block & 0xff;
755 
756 		tf->lbah = (block >> 16) & 0xff;
757 		tf->lbam = (block >> 8) & 0xff;
758 		tf->lbal = block & 0xff;
759 
760 		tf->device |= ATA_LBA;
761 	} else {
762 		/* CHS */
763 		u32 sect, head, cyl, track;
764 
765 		/* The request -may- be too large for CHS addressing. */
766 		if (!lba_28_ok(block, n_block))
767 			return -ERANGE;
768 
769 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
770 			return -EINVAL;
771 
772 		/* Convert LBA to CHS */
773 		track = (u32)block / dev->sectors;
774 		cyl   = track / dev->heads;
775 		head  = track % dev->heads;
776 		sect  = (u32)block % dev->sectors + 1;
777 
778 		/* Check whether the converted CHS can fit.
779 		   Cylinder: 0-65535
780 		   Head: 0-15
781 		   Sector: 1-255*/
782 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
783 			return -ERANGE;
784 
785 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
786 		tf->lbal = sect;
787 		tf->lbam = cyl;
788 		tf->lbah = cyl >> 8;
789 		tf->device |= head;
790 	}
791 
792 	return 0;
793 }
794 
795 /**
796  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
797  *	@pio_mask: pio_mask
798  *	@mwdma_mask: mwdma_mask
799  *	@udma_mask: udma_mask
800  *
801  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
802  *	unsigned int xfer_mask.
803  *
804  *	LOCKING:
805  *	None.
806  *
807  *	RETURNS:
808  *	Packed xfer_mask.
809  */
810 unsigned int ata_pack_xfermask(unsigned int pio_mask,
811 			       unsigned int mwdma_mask,
812 			       unsigned int udma_mask)
813 {
814 	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
815 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
816 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
817 }
818 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
819 
820 /**
821  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
822  *	@xfer_mask: xfer_mask to unpack
823  *	@pio_mask: resulting pio_mask
824  *	@mwdma_mask: resulting mwdma_mask
825  *	@udma_mask: resulting udma_mask
826  *
827  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
828  *	Any NULL destination masks will be ignored.
829  */
830 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
831 			 unsigned int *mwdma_mask, unsigned int *udma_mask)
832 {
833 	if (pio_mask)
834 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
835 	if (mwdma_mask)
836 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
837 	if (udma_mask)
838 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
839 }
840 
841 static const struct ata_xfer_ent {
842 	int shift, bits;
843 	u8 base;
844 } ata_xfer_tbl[] = {
845 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
846 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
847 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
848 	{ -1, },
849 };
850 
851 /**
852  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
853  *	@xfer_mask: xfer_mask of interest
854  *
855  *	Return matching XFER_* value for @xfer_mask.  Only the highest
856  *	bit of @xfer_mask is considered.
857  *
858  *	LOCKING:
859  *	None.
860  *
861  *	RETURNS:
862  *	Matching XFER_* value, 0xff if no match found.
863  */
864 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
865 {
866 	int highbit = fls(xfer_mask) - 1;
867 	const struct ata_xfer_ent *ent;
868 
869 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
870 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
871 			return ent->base + highbit - ent->shift;
872 	return 0xff;
873 }
874 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
875 
876 /**
877  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
878  *	@xfer_mode: XFER_* of interest
879  *
880  *	Return matching xfer_mask for @xfer_mode.
881  *
882  *	LOCKING:
883  *	None.
884  *
885  *	RETURNS:
886  *	Matching xfer_mask, 0 if no match found.
887  */
888 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
889 {
890 	const struct ata_xfer_ent *ent;
891 
892 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
893 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
894 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
895 				& ~((1 << ent->shift) - 1);
896 	return 0;
897 }
898 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
899 
900 /**
901  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
902  *	@xfer_mode: XFER_* of interest
903  *
904  *	Return matching xfer_shift for @xfer_mode.
905  *
906  *	LOCKING:
907  *	None.
908  *
909  *	RETURNS:
910  *	Matching xfer_shift, -1 if no match found.
911  */
912 int ata_xfer_mode2shift(u8 xfer_mode)
913 {
914 	const struct ata_xfer_ent *ent;
915 
916 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
917 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
918 			return ent->shift;
919 	return -1;
920 }
921 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
922 
923 /**
924  *	ata_mode_string - convert xfer_mask to string
925  *	@xfer_mask: mask of bits supported; only highest bit counts.
926  *
927  *	Determine string which represents the highest speed
928  *	(highest bit in @modemask).
929  *
930  *	LOCKING:
931  *	None.
932  *
933  *	RETURNS:
934  *	Constant C string representing highest speed listed in
935  *	@mode_mask, or the constant C string "<n/a>".
936  */
937 const char *ata_mode_string(unsigned int xfer_mask)
938 {
939 	static const char * const xfer_mode_str[] = {
940 		"PIO0",
941 		"PIO1",
942 		"PIO2",
943 		"PIO3",
944 		"PIO4",
945 		"PIO5",
946 		"PIO6",
947 		"MWDMA0",
948 		"MWDMA1",
949 		"MWDMA2",
950 		"MWDMA3",
951 		"MWDMA4",
952 		"UDMA/16",
953 		"UDMA/25",
954 		"UDMA/33",
955 		"UDMA/44",
956 		"UDMA/66",
957 		"UDMA/100",
958 		"UDMA/133",
959 		"UDMA7",
960 	};
961 	int highbit;
962 
963 	highbit = fls(xfer_mask) - 1;
964 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
965 		return xfer_mode_str[highbit];
966 	return "<n/a>";
967 }
968 EXPORT_SYMBOL_GPL(ata_mode_string);
969 
970 const char *sata_spd_string(unsigned int spd)
971 {
972 	static const char * const spd_str[] = {
973 		"1.5 Gbps",
974 		"3.0 Gbps",
975 		"6.0 Gbps",
976 	};
977 
978 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
979 		return "<unknown>";
980 	return spd_str[spd - 1];
981 }
982 
983 /**
984  *	ata_dev_classify - determine device type based on ATA-spec signature
985  *	@tf: ATA taskfile register set for device to be identified
986  *
987  *	Determine from taskfile register contents whether a device is
988  *	ATA or ATAPI, as per "Signature and persistence" section
989  *	of ATA/PI spec (volume 1, sect 5.14).
990  *
991  *	LOCKING:
992  *	None.
993  *
994  *	RETURNS:
995  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
996  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
997  */
998 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
999 {
1000 	/* Apple's open source Darwin code hints that some devices only
1001 	 * put a proper signature into the LBA mid/high registers,
1002 	 * So, we only check those.  It's sufficient for uniqueness.
1003 	 *
1004 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1005 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1006 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1007 	 * spec has never mentioned about using different signatures
1008 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1009 	 * Multiplier specification began to use 0x69/0x96 to identify
1010 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1011 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1012 	 * 0x69/0x96 shortly and described them as reserved for
1013 	 * SerialATA.
1014 	 *
1015 	 * We follow the current spec and consider that 0x69/0x96
1016 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1017 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1018 	 * SEMB signature.  This is worked around in
1019 	 * ata_dev_read_id().
1020 	 */
1021 	if (tf->lbam == 0 && tf->lbah == 0)
1022 		return ATA_DEV_ATA;
1023 
1024 	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1025 		return ATA_DEV_ATAPI;
1026 
1027 	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1028 		return ATA_DEV_PMP;
1029 
1030 	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1031 		return ATA_DEV_SEMB;
1032 
1033 	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1034 		return ATA_DEV_ZAC;
1035 
1036 	return ATA_DEV_UNKNOWN;
1037 }
1038 EXPORT_SYMBOL_GPL(ata_dev_classify);
1039 
1040 /**
1041  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1042  *	@id: IDENTIFY DEVICE results we will examine
1043  *	@s: string into which data is output
1044  *	@ofs: offset into identify device page
1045  *	@len: length of string to return. must be an even number.
1046  *
1047  *	The strings in the IDENTIFY DEVICE page are broken up into
1048  *	16-bit chunks.  Run through the string, and output each
1049  *	8-bit chunk linearly, regardless of platform.
1050  *
1051  *	LOCKING:
1052  *	caller.
1053  */
1054 
1055 void ata_id_string(const u16 *id, unsigned char *s,
1056 		   unsigned int ofs, unsigned int len)
1057 {
1058 	unsigned int c;
1059 
1060 	BUG_ON(len & 1);
1061 
1062 	while (len > 0) {
1063 		c = id[ofs] >> 8;
1064 		*s = c;
1065 		s++;
1066 
1067 		c = id[ofs] & 0xff;
1068 		*s = c;
1069 		s++;
1070 
1071 		ofs++;
1072 		len -= 2;
1073 	}
1074 }
1075 EXPORT_SYMBOL_GPL(ata_id_string);
1076 
1077 /**
1078  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1079  *	@id: IDENTIFY DEVICE results we will examine
1080  *	@s: string into which data is output
1081  *	@ofs: offset into identify device page
1082  *	@len: length of string to return. must be an odd number.
1083  *
1084  *	This function is identical to ata_id_string except that it
1085  *	trims trailing spaces and terminates the resulting string with
1086  *	null.  @len must be actual maximum length (even number) + 1.
1087  *
1088  *	LOCKING:
1089  *	caller.
1090  */
1091 void ata_id_c_string(const u16 *id, unsigned char *s,
1092 		     unsigned int ofs, unsigned int len)
1093 {
1094 	unsigned char *p;
1095 
1096 	ata_id_string(id, s, ofs, len - 1);
1097 
1098 	p = s + strnlen(s, len - 1);
1099 	while (p > s && p[-1] == ' ')
1100 		p--;
1101 	*p = '\0';
1102 }
1103 EXPORT_SYMBOL_GPL(ata_id_c_string);
1104 
1105 static u64 ata_id_n_sectors(const u16 *id)
1106 {
1107 	if (ata_id_has_lba(id)) {
1108 		if (ata_id_has_lba48(id))
1109 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1110 
1111 		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1112 	}
1113 
1114 	if (ata_id_current_chs_valid(id))
1115 		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1116 		       (u32)id[ATA_ID_CUR_SECTORS];
1117 
1118 	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1119 	       (u32)id[ATA_ID_SECTORS];
1120 }
1121 
1122 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1123 {
1124 	u64 sectors = 0;
1125 
1126 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1127 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1128 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1129 	sectors |= (tf->lbah & 0xff) << 16;
1130 	sectors |= (tf->lbam & 0xff) << 8;
1131 	sectors |= (tf->lbal & 0xff);
1132 
1133 	return sectors;
1134 }
1135 
1136 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1137 {
1138 	u64 sectors = 0;
1139 
1140 	sectors |= (tf->device & 0x0f) << 24;
1141 	sectors |= (tf->lbah & 0xff) << 16;
1142 	sectors |= (tf->lbam & 0xff) << 8;
1143 	sectors |= (tf->lbal & 0xff);
1144 
1145 	return sectors;
1146 }
1147 
1148 /**
1149  *	ata_read_native_max_address - Read native max address
1150  *	@dev: target device
1151  *	@max_sectors: out parameter for the result native max address
1152  *
1153  *	Perform an LBA48 or LBA28 native size query upon the device in
1154  *	question.
1155  *
1156  *	RETURNS:
1157  *	0 on success, -EACCES if command is aborted by the drive.
1158  *	-EIO on other errors.
1159  */
1160 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1161 {
1162 	unsigned int err_mask;
1163 	struct ata_taskfile tf;
1164 	int lba48 = ata_id_has_lba48(dev->id);
1165 
1166 	ata_tf_init(dev, &tf);
1167 
1168 	/* always clear all address registers */
1169 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1170 
1171 	if (lba48) {
1172 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1173 		tf.flags |= ATA_TFLAG_LBA48;
1174 	} else
1175 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1176 
1177 	tf.protocol = ATA_PROT_NODATA;
1178 	tf.device |= ATA_LBA;
1179 
1180 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1181 	if (err_mask) {
1182 		ata_dev_warn(dev,
1183 			     "failed to read native max address (err_mask=0x%x)\n",
1184 			     err_mask);
1185 		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1186 			return -EACCES;
1187 		return -EIO;
1188 	}
1189 
1190 	if (lba48)
1191 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1192 	else
1193 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1194 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1195 		(*max_sectors)--;
1196 	return 0;
1197 }
1198 
1199 /**
1200  *	ata_set_max_sectors - Set max sectors
1201  *	@dev: target device
1202  *	@new_sectors: new max sectors value to set for the device
1203  *
1204  *	Set max sectors of @dev to @new_sectors.
1205  *
1206  *	RETURNS:
1207  *	0 on success, -EACCES if command is aborted or denied (due to
1208  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1209  *	errors.
1210  */
1211 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1212 {
1213 	unsigned int err_mask;
1214 	struct ata_taskfile tf;
1215 	int lba48 = ata_id_has_lba48(dev->id);
1216 
1217 	new_sectors--;
1218 
1219 	ata_tf_init(dev, &tf);
1220 
1221 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1222 
1223 	if (lba48) {
1224 		tf.command = ATA_CMD_SET_MAX_EXT;
1225 		tf.flags |= ATA_TFLAG_LBA48;
1226 
1227 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1228 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1229 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1230 	} else {
1231 		tf.command = ATA_CMD_SET_MAX;
1232 
1233 		tf.device |= (new_sectors >> 24) & 0xf;
1234 	}
1235 
1236 	tf.protocol = ATA_PROT_NODATA;
1237 	tf.device |= ATA_LBA;
1238 
1239 	tf.lbal = (new_sectors >> 0) & 0xff;
1240 	tf.lbam = (new_sectors >> 8) & 0xff;
1241 	tf.lbah = (new_sectors >> 16) & 0xff;
1242 
1243 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1244 	if (err_mask) {
1245 		ata_dev_warn(dev,
1246 			     "failed to set max address (err_mask=0x%x)\n",
1247 			     err_mask);
1248 		if (err_mask == AC_ERR_DEV &&
1249 		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1250 			return -EACCES;
1251 		return -EIO;
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 /**
1258  *	ata_hpa_resize		-	Resize a device with an HPA set
1259  *	@dev: Device to resize
1260  *
1261  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1262  *	it if required to the full size of the media. The caller must check
1263  *	the drive has the HPA feature set enabled.
1264  *
1265  *	RETURNS:
1266  *	0 on success, -errno on failure.
1267  */
1268 static int ata_hpa_resize(struct ata_device *dev)
1269 {
1270 	bool print_info = ata_dev_print_info(dev);
1271 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1272 	u64 sectors = ata_id_n_sectors(dev->id);
1273 	u64 native_sectors;
1274 	int rc;
1275 
1276 	/* do we need to do it? */
1277 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1278 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1279 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1280 		return 0;
1281 
1282 	/* read native max address */
1283 	rc = ata_read_native_max_address(dev, &native_sectors);
1284 	if (rc) {
1285 		/* If device aborted the command or HPA isn't going to
1286 		 * be unlocked, skip HPA resizing.
1287 		 */
1288 		if (rc == -EACCES || !unlock_hpa) {
1289 			ata_dev_warn(dev,
1290 				     "HPA support seems broken, skipping HPA handling\n");
1291 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1292 
1293 			/* we can continue if device aborted the command */
1294 			if (rc == -EACCES)
1295 				rc = 0;
1296 		}
1297 
1298 		return rc;
1299 	}
1300 	dev->n_native_sectors = native_sectors;
1301 
1302 	/* nothing to do? */
1303 	if (native_sectors <= sectors || !unlock_hpa) {
1304 		if (!print_info || native_sectors == sectors)
1305 			return 0;
1306 
1307 		if (native_sectors > sectors)
1308 			ata_dev_info(dev,
1309 				"HPA detected: current %llu, native %llu\n",
1310 				(unsigned long long)sectors,
1311 				(unsigned long long)native_sectors);
1312 		else if (native_sectors < sectors)
1313 			ata_dev_warn(dev,
1314 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1315 				(unsigned long long)native_sectors,
1316 				(unsigned long long)sectors);
1317 		return 0;
1318 	}
1319 
1320 	/* let's unlock HPA */
1321 	rc = ata_set_max_sectors(dev, native_sectors);
1322 	if (rc == -EACCES) {
1323 		/* if device aborted the command, skip HPA resizing */
1324 		ata_dev_warn(dev,
1325 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1326 			     (unsigned long long)sectors,
1327 			     (unsigned long long)native_sectors);
1328 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1329 		return 0;
1330 	} else if (rc)
1331 		return rc;
1332 
1333 	/* re-read IDENTIFY data */
1334 	rc = ata_dev_reread_id(dev, 0);
1335 	if (rc) {
1336 		ata_dev_err(dev,
1337 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1338 		return rc;
1339 	}
1340 
1341 	if (print_info) {
1342 		u64 new_sectors = ata_id_n_sectors(dev->id);
1343 		ata_dev_info(dev,
1344 			"HPA unlocked: %llu -> %llu, native %llu\n",
1345 			(unsigned long long)sectors,
1346 			(unsigned long long)new_sectors,
1347 			(unsigned long long)native_sectors);
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 /**
1354  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1355  *	@dev: device from which the information is fetched
1356  *	@id: IDENTIFY DEVICE page to dump
1357  *
1358  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1359  *	page.
1360  *
1361  *	LOCKING:
1362  *	caller.
1363  */
1364 
1365 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1366 {
1367 	ata_dev_dbg(dev,
1368 		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1369 		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1370 		"88==0x%04x  93==0x%04x\n",
1371 		id[49], id[53], id[63], id[64], id[75], id[80],
1372 		id[81], id[82], id[83], id[84], id[88], id[93]);
1373 }
1374 
1375 /**
1376  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1377  *	@id: IDENTIFY data to compute xfer mask from
1378  *
1379  *	Compute the xfermask for this device. This is not as trivial
1380  *	as it seems if we must consider early devices correctly.
1381  *
1382  *	FIXME: pre IDE drive timing (do we care ?).
1383  *
1384  *	LOCKING:
1385  *	None.
1386  *
1387  *	RETURNS:
1388  *	Computed xfermask
1389  */
1390 unsigned int ata_id_xfermask(const u16 *id)
1391 {
1392 	unsigned int pio_mask, mwdma_mask, udma_mask;
1393 
1394 	/* Usual case. Word 53 indicates word 64 is valid */
1395 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1396 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1397 		pio_mask <<= 3;
1398 		pio_mask |= 0x7;
1399 	} else {
1400 		/* If word 64 isn't valid then Word 51 high byte holds
1401 		 * the PIO timing number for the maximum. Turn it into
1402 		 * a mask.
1403 		 */
1404 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1405 		if (mode < 5)	/* Valid PIO range */
1406 			pio_mask = (2 << mode) - 1;
1407 		else
1408 			pio_mask = 1;
1409 
1410 		/* But wait.. there's more. Design your standards by
1411 		 * committee and you too can get a free iordy field to
1412 		 * process. However it is the speeds not the modes that
1413 		 * are supported... Note drivers using the timing API
1414 		 * will get this right anyway
1415 		 */
1416 	}
1417 
1418 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1419 
1420 	if (ata_id_is_cfa(id)) {
1421 		/*
1422 		 *	Process compact flash extended modes
1423 		 */
1424 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1425 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1426 
1427 		if (pio)
1428 			pio_mask |= (1 << 5);
1429 		if (pio > 1)
1430 			pio_mask |= (1 << 6);
1431 		if (dma)
1432 			mwdma_mask |= (1 << 3);
1433 		if (dma > 1)
1434 			mwdma_mask |= (1 << 4);
1435 	}
1436 
1437 	udma_mask = 0;
1438 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1439 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1440 
1441 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1442 }
1443 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1444 
1445 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1446 {
1447 	struct completion *waiting = qc->private_data;
1448 
1449 	complete(waiting);
1450 }
1451 
1452 /**
1453  *	ata_exec_internal_sg - execute libata internal command
1454  *	@dev: Device to which the command is sent
1455  *	@tf: Taskfile registers for the command and the result
1456  *	@cdb: CDB for packet command
1457  *	@dma_dir: Data transfer direction of the command
1458  *	@sgl: sg list for the data buffer of the command
1459  *	@n_elem: Number of sg entries
1460  *	@timeout: Timeout in msecs (0 for default)
1461  *
1462  *	Executes libata internal command with timeout.  @tf contains
1463  *	command on entry and result on return.  Timeout and error
1464  *	conditions are reported via return value.  No recovery action
1465  *	is taken after a command times out.  It's caller's duty to
1466  *	clean up after timeout.
1467  *
1468  *	LOCKING:
1469  *	None.  Should be called with kernel context, might sleep.
1470  *
1471  *	RETURNS:
1472  *	Zero on success, AC_ERR_* mask on failure
1473  */
1474 static unsigned ata_exec_internal_sg(struct ata_device *dev,
1475 				     struct ata_taskfile *tf, const u8 *cdb,
1476 				     int dma_dir, struct scatterlist *sgl,
1477 				     unsigned int n_elem, unsigned int timeout)
1478 {
1479 	struct ata_link *link = dev->link;
1480 	struct ata_port *ap = link->ap;
1481 	u8 command = tf->command;
1482 	int auto_timeout = 0;
1483 	struct ata_queued_cmd *qc;
1484 	unsigned int preempted_tag;
1485 	u32 preempted_sactive;
1486 	u64 preempted_qc_active;
1487 	int preempted_nr_active_links;
1488 	DECLARE_COMPLETION_ONSTACK(wait);
1489 	unsigned long flags;
1490 	unsigned int err_mask;
1491 	int rc;
1492 
1493 	spin_lock_irqsave(ap->lock, flags);
1494 
1495 	/* no internal command while frozen */
1496 	if (ata_port_is_frozen(ap)) {
1497 		spin_unlock_irqrestore(ap->lock, flags);
1498 		return AC_ERR_SYSTEM;
1499 	}
1500 
1501 	/* initialize internal qc */
1502 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1503 
1504 	qc->tag = ATA_TAG_INTERNAL;
1505 	qc->hw_tag = 0;
1506 	qc->scsicmd = NULL;
1507 	qc->ap = ap;
1508 	qc->dev = dev;
1509 	ata_qc_reinit(qc);
1510 
1511 	preempted_tag = link->active_tag;
1512 	preempted_sactive = link->sactive;
1513 	preempted_qc_active = ap->qc_active;
1514 	preempted_nr_active_links = ap->nr_active_links;
1515 	link->active_tag = ATA_TAG_POISON;
1516 	link->sactive = 0;
1517 	ap->qc_active = 0;
1518 	ap->nr_active_links = 0;
1519 
1520 	/* prepare & issue qc */
1521 	qc->tf = *tf;
1522 	if (cdb)
1523 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1524 
1525 	/* some SATA bridges need us to indicate data xfer direction */
1526 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1527 	    dma_dir == DMA_FROM_DEVICE)
1528 		qc->tf.feature |= ATAPI_DMADIR;
1529 
1530 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1531 	qc->dma_dir = dma_dir;
1532 	if (dma_dir != DMA_NONE) {
1533 		unsigned int i, buflen = 0;
1534 		struct scatterlist *sg;
1535 
1536 		for_each_sg(sgl, sg, n_elem, i)
1537 			buflen += sg->length;
1538 
1539 		ata_sg_init(qc, sgl, n_elem);
1540 		qc->nbytes = buflen;
1541 	}
1542 
1543 	qc->private_data = &wait;
1544 	qc->complete_fn = ata_qc_complete_internal;
1545 
1546 	ata_qc_issue(qc);
1547 
1548 	spin_unlock_irqrestore(ap->lock, flags);
1549 
1550 	if (!timeout) {
1551 		if (ata_probe_timeout)
1552 			timeout = ata_probe_timeout * 1000;
1553 		else {
1554 			timeout = ata_internal_cmd_timeout(dev, command);
1555 			auto_timeout = 1;
1556 		}
1557 	}
1558 
1559 	if (ap->ops->error_handler)
1560 		ata_eh_release(ap);
1561 
1562 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1563 
1564 	if (ap->ops->error_handler)
1565 		ata_eh_acquire(ap);
1566 
1567 	ata_sff_flush_pio_task(ap);
1568 
1569 	if (!rc) {
1570 		spin_lock_irqsave(ap->lock, flags);
1571 
1572 		/* We're racing with irq here.  If we lose, the
1573 		 * following test prevents us from completing the qc
1574 		 * twice.  If we win, the port is frozen and will be
1575 		 * cleaned up by ->post_internal_cmd().
1576 		 */
1577 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1578 			qc->err_mask |= AC_ERR_TIMEOUT;
1579 
1580 			if (ap->ops->error_handler)
1581 				ata_port_freeze(ap);
1582 			else
1583 				ata_qc_complete(qc);
1584 
1585 			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1586 				     timeout, command);
1587 		}
1588 
1589 		spin_unlock_irqrestore(ap->lock, flags);
1590 	}
1591 
1592 	/* do post_internal_cmd */
1593 	if (ap->ops->post_internal_cmd)
1594 		ap->ops->post_internal_cmd(qc);
1595 
1596 	/* perform minimal error analysis */
1597 	if (qc->flags & ATA_QCFLAG_EH) {
1598 		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1599 			qc->err_mask |= AC_ERR_DEV;
1600 
1601 		if (!qc->err_mask)
1602 			qc->err_mask |= AC_ERR_OTHER;
1603 
1604 		if (qc->err_mask & ~AC_ERR_OTHER)
1605 			qc->err_mask &= ~AC_ERR_OTHER;
1606 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1607 		qc->result_tf.status |= ATA_SENSE;
1608 	}
1609 
1610 	/* finish up */
1611 	spin_lock_irqsave(ap->lock, flags);
1612 
1613 	*tf = qc->result_tf;
1614 	err_mask = qc->err_mask;
1615 
1616 	ata_qc_free(qc);
1617 	link->active_tag = preempted_tag;
1618 	link->sactive = preempted_sactive;
1619 	ap->qc_active = preempted_qc_active;
1620 	ap->nr_active_links = preempted_nr_active_links;
1621 
1622 	spin_unlock_irqrestore(ap->lock, flags);
1623 
1624 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1625 		ata_internal_cmd_timed_out(dev, command);
1626 
1627 	return err_mask;
1628 }
1629 
1630 /**
1631  *	ata_exec_internal - execute libata internal command
1632  *	@dev: Device to which the command is sent
1633  *	@tf: Taskfile registers for the command and the result
1634  *	@cdb: CDB for packet command
1635  *	@dma_dir: Data transfer direction of the command
1636  *	@buf: Data buffer of the command
1637  *	@buflen: Length of data buffer
1638  *	@timeout: Timeout in msecs (0 for default)
1639  *
1640  *	Wrapper around ata_exec_internal_sg() which takes simple
1641  *	buffer instead of sg list.
1642  *
1643  *	LOCKING:
1644  *	None.  Should be called with kernel context, might sleep.
1645  *
1646  *	RETURNS:
1647  *	Zero on success, AC_ERR_* mask on failure
1648  */
1649 unsigned ata_exec_internal(struct ata_device *dev,
1650 			   struct ata_taskfile *tf, const u8 *cdb,
1651 			   int dma_dir, void *buf, unsigned int buflen,
1652 			   unsigned int timeout)
1653 {
1654 	struct scatterlist *psg = NULL, sg;
1655 	unsigned int n_elem = 0;
1656 
1657 	if (dma_dir != DMA_NONE) {
1658 		WARN_ON(!buf);
1659 		sg_init_one(&sg, buf, buflen);
1660 		psg = &sg;
1661 		n_elem++;
1662 	}
1663 
1664 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1665 				    timeout);
1666 }
1667 
1668 /**
1669  *	ata_pio_need_iordy	-	check if iordy needed
1670  *	@adev: ATA device
1671  *
1672  *	Check if the current speed of the device requires IORDY. Used
1673  *	by various controllers for chip configuration.
1674  */
1675 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1676 {
1677 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1678 	 * lead to controller lock up on certain controllers if the
1679 	 * port is not occupied.  See bko#11703 for details.
1680 	 */
1681 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1682 		return 0;
1683 	/* Controller doesn't support IORDY.  Probably a pointless
1684 	 * check as the caller should know this.
1685 	 */
1686 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1687 		return 0;
1688 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1689 	if (ata_id_is_cfa(adev->id)
1690 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1691 		return 0;
1692 	/* PIO3 and higher it is mandatory */
1693 	if (adev->pio_mode > XFER_PIO_2)
1694 		return 1;
1695 	/* We turn it on when possible */
1696 	if (ata_id_has_iordy(adev->id))
1697 		return 1;
1698 	return 0;
1699 }
1700 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1701 
1702 /**
1703  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1704  *	@adev: ATA device
1705  *
1706  *	Compute the highest mode possible if we are not using iordy. Return
1707  *	-1 if no iordy mode is available.
1708  */
1709 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1710 {
1711 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1712 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1713 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1714 		/* Is the speed faster than the drive allows non IORDY ? */
1715 		if (pio) {
1716 			/* This is cycle times not frequency - watch the logic! */
1717 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1718 				return 3 << ATA_SHIFT_PIO;
1719 			return 7 << ATA_SHIFT_PIO;
1720 		}
1721 	}
1722 	return 3 << ATA_SHIFT_PIO;
1723 }
1724 
1725 /**
1726  *	ata_do_dev_read_id		-	default ID read method
1727  *	@dev: device
1728  *	@tf: proposed taskfile
1729  *	@id: data buffer
1730  *
1731  *	Issue the identify taskfile and hand back the buffer containing
1732  *	identify data. For some RAID controllers and for pre ATA devices
1733  *	this function is wrapped or replaced by the driver
1734  */
1735 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1736 				struct ata_taskfile *tf, __le16 *id)
1737 {
1738 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1739 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1740 }
1741 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1742 
1743 /**
1744  *	ata_dev_read_id - Read ID data from the specified device
1745  *	@dev: target device
1746  *	@p_class: pointer to class of the target device (may be changed)
1747  *	@flags: ATA_READID_* flags
1748  *	@id: buffer to read IDENTIFY data into
1749  *
1750  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1751  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1752  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1753  *	for pre-ATA4 drives.
1754  *
1755  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1756  *	now we abort if we hit that case.
1757  *
1758  *	LOCKING:
1759  *	Kernel thread context (may sleep)
1760  *
1761  *	RETURNS:
1762  *	0 on success, -errno otherwise.
1763  */
1764 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1765 		    unsigned int flags, u16 *id)
1766 {
1767 	struct ata_port *ap = dev->link->ap;
1768 	unsigned int class = *p_class;
1769 	struct ata_taskfile tf;
1770 	unsigned int err_mask = 0;
1771 	const char *reason;
1772 	bool is_semb = class == ATA_DEV_SEMB;
1773 	int may_fallback = 1, tried_spinup = 0;
1774 	int rc;
1775 
1776 retry:
1777 	ata_tf_init(dev, &tf);
1778 
1779 	switch (class) {
1780 	case ATA_DEV_SEMB:
1781 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1782 		fallthrough;
1783 	case ATA_DEV_ATA:
1784 	case ATA_DEV_ZAC:
1785 		tf.command = ATA_CMD_ID_ATA;
1786 		break;
1787 	case ATA_DEV_ATAPI:
1788 		tf.command = ATA_CMD_ID_ATAPI;
1789 		break;
1790 	default:
1791 		rc = -ENODEV;
1792 		reason = "unsupported class";
1793 		goto err_out;
1794 	}
1795 
1796 	tf.protocol = ATA_PROT_PIO;
1797 
1798 	/* Some devices choke if TF registers contain garbage.  Make
1799 	 * sure those are properly initialized.
1800 	 */
1801 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1802 
1803 	/* Device presence detection is unreliable on some
1804 	 * controllers.  Always poll IDENTIFY if available.
1805 	 */
1806 	tf.flags |= ATA_TFLAG_POLLING;
1807 
1808 	if (ap->ops->read_id)
1809 		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1810 	else
1811 		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1812 
1813 	if (err_mask) {
1814 		if (err_mask & AC_ERR_NODEV_HINT) {
1815 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1816 			return -ENOENT;
1817 		}
1818 
1819 		if (is_semb) {
1820 			ata_dev_info(dev,
1821 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1822 			/* SEMB is not supported yet */
1823 			*p_class = ATA_DEV_SEMB_UNSUP;
1824 			return 0;
1825 		}
1826 
1827 		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1828 			/* Device or controller might have reported
1829 			 * the wrong device class.  Give a shot at the
1830 			 * other IDENTIFY if the current one is
1831 			 * aborted by the device.
1832 			 */
1833 			if (may_fallback) {
1834 				may_fallback = 0;
1835 
1836 				if (class == ATA_DEV_ATA)
1837 					class = ATA_DEV_ATAPI;
1838 				else
1839 					class = ATA_DEV_ATA;
1840 				goto retry;
1841 			}
1842 
1843 			/* Control reaches here iff the device aborted
1844 			 * both flavors of IDENTIFYs which happens
1845 			 * sometimes with phantom devices.
1846 			 */
1847 			ata_dev_dbg(dev,
1848 				    "both IDENTIFYs aborted, assuming NODEV\n");
1849 			return -ENOENT;
1850 		}
1851 
1852 		rc = -EIO;
1853 		reason = "I/O error";
1854 		goto err_out;
1855 	}
1856 
1857 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1858 		ata_dev_info(dev, "dumping IDENTIFY data, "
1859 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1860 			    class, may_fallback, tried_spinup);
1861 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1862 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1863 	}
1864 
1865 	/* Falling back doesn't make sense if ID data was read
1866 	 * successfully at least once.
1867 	 */
1868 	may_fallback = 0;
1869 
1870 	swap_buf_le16(id, ATA_ID_WORDS);
1871 
1872 	/* sanity check */
1873 	rc = -EINVAL;
1874 	reason = "device reports invalid type";
1875 
1876 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1877 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1878 			goto err_out;
1879 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1880 							ata_id_is_ata(id)) {
1881 			ata_dev_dbg(dev,
1882 				"host indicates ignore ATA devices, ignored\n");
1883 			return -ENOENT;
1884 		}
1885 	} else {
1886 		if (ata_id_is_ata(id))
1887 			goto err_out;
1888 	}
1889 
1890 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1891 		tried_spinup = 1;
1892 		/*
1893 		 * Drive powered-up in standby mode, and requires a specific
1894 		 * SET_FEATURES spin-up subcommand before it will accept
1895 		 * anything other than the original IDENTIFY command.
1896 		 */
1897 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1898 		if (err_mask && id[2] != 0x738c) {
1899 			rc = -EIO;
1900 			reason = "SPINUP failed";
1901 			goto err_out;
1902 		}
1903 		/*
1904 		 * If the drive initially returned incomplete IDENTIFY info,
1905 		 * we now must reissue the IDENTIFY command.
1906 		 */
1907 		if (id[2] == 0x37c8)
1908 			goto retry;
1909 	}
1910 
1911 	if ((flags & ATA_READID_POSTRESET) &&
1912 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1913 		/*
1914 		 * The exact sequence expected by certain pre-ATA4 drives is:
1915 		 * SRST RESET
1916 		 * IDENTIFY (optional in early ATA)
1917 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1918 		 * anything else..
1919 		 * Some drives were very specific about that exact sequence.
1920 		 *
1921 		 * Note that ATA4 says lba is mandatory so the second check
1922 		 * should never trigger.
1923 		 */
1924 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1925 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1926 			if (err_mask) {
1927 				rc = -EIO;
1928 				reason = "INIT_DEV_PARAMS failed";
1929 				goto err_out;
1930 			}
1931 
1932 			/* current CHS translation info (id[53-58]) might be
1933 			 * changed. reread the identify device info.
1934 			 */
1935 			flags &= ~ATA_READID_POSTRESET;
1936 			goto retry;
1937 		}
1938 	}
1939 
1940 	*p_class = class;
1941 
1942 	return 0;
1943 
1944  err_out:
1945 	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1946 		     reason, err_mask);
1947 	return rc;
1948 }
1949 
1950 /**
1951  *	ata_read_log_page - read a specific log page
1952  *	@dev: target device
1953  *	@log: log to read
1954  *	@page: page to read
1955  *	@buf: buffer to store read page
1956  *	@sectors: number of sectors to read
1957  *
1958  *	Read log page using READ_LOG_EXT command.
1959  *
1960  *	LOCKING:
1961  *	Kernel thread context (may sleep).
1962  *
1963  *	RETURNS:
1964  *	0 on success, AC_ERR_* mask otherwise.
1965  */
1966 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1967 			       u8 page, void *buf, unsigned int sectors)
1968 {
1969 	unsigned long ap_flags = dev->link->ap->flags;
1970 	struct ata_taskfile tf;
1971 	unsigned int err_mask;
1972 	bool dma = false;
1973 
1974 	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
1975 
1976 	/*
1977 	 * Return error without actually issuing the command on controllers
1978 	 * which e.g. lockup on a read log page.
1979 	 */
1980 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
1981 		return AC_ERR_DEV;
1982 
1983 retry:
1984 	ata_tf_init(dev, &tf);
1985 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
1986 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
1987 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
1988 		tf.protocol = ATA_PROT_DMA;
1989 		dma = true;
1990 	} else {
1991 		tf.command = ATA_CMD_READ_LOG_EXT;
1992 		tf.protocol = ATA_PROT_PIO;
1993 		dma = false;
1994 	}
1995 	tf.lbal = log;
1996 	tf.lbam = page;
1997 	tf.nsect = sectors;
1998 	tf.hob_nsect = sectors >> 8;
1999 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2000 
2001 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2002 				     buf, sectors * ATA_SECT_SIZE, 0);
2003 
2004 	if (err_mask) {
2005 		if (dma) {
2006 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2007 			if (!ata_port_is_frozen(dev->link->ap))
2008 				goto retry;
2009 		}
2010 		ata_dev_err(dev,
2011 			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2012 			    (unsigned int)log, (unsigned int)page, err_mask);
2013 	}
2014 
2015 	return err_mask;
2016 }
2017 
2018 static int ata_log_supported(struct ata_device *dev, u8 log)
2019 {
2020 	struct ata_port *ap = dev->link->ap;
2021 
2022 	if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2023 		return 0;
2024 
2025 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2026 		return 0;
2027 	return get_unaligned_le16(&ap->sector_buf[log * 2]);
2028 }
2029 
2030 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2031 {
2032 	struct ata_port *ap = dev->link->ap;
2033 	unsigned int err, i;
2034 
2035 	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2036 		return false;
2037 
2038 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2039 		/*
2040 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2041 		 * with ACS-3 (ATA version 10). Warn about the missing log
2042 		 * for drives which implement this ATA level or above.
2043 		 */
2044 		if (ata_id_major_version(dev->id) >= 10)
2045 			ata_dev_warn(dev,
2046 				"ATA Identify Device Log not supported\n");
2047 		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2048 		return false;
2049 	}
2050 
2051 	/*
2052 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2053 	 * supported.
2054 	 */
2055 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2056 				1);
2057 	if (err)
2058 		return false;
2059 
2060 	for (i = 0; i < ap->sector_buf[8]; i++) {
2061 		if (ap->sector_buf[9 + i] == page)
2062 			return true;
2063 	}
2064 
2065 	return false;
2066 }
2067 
2068 static int ata_do_link_spd_horkage(struct ata_device *dev)
2069 {
2070 	struct ata_link *plink = ata_dev_phys_link(dev);
2071 	u32 target, target_limit;
2072 
2073 	if (!sata_scr_valid(plink))
2074 		return 0;
2075 
2076 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2077 		target = 1;
2078 	else
2079 		return 0;
2080 
2081 	target_limit = (1 << target) - 1;
2082 
2083 	/* if already on stricter limit, no need to push further */
2084 	if (plink->sata_spd_limit <= target_limit)
2085 		return 0;
2086 
2087 	plink->sata_spd_limit = target_limit;
2088 
2089 	/* Request another EH round by returning -EAGAIN if link is
2090 	 * going faster than the target speed.  Forward progress is
2091 	 * guaranteed by setting sata_spd_limit to target_limit above.
2092 	 */
2093 	if (plink->sata_spd > target) {
2094 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2095 			     sata_spd_string(target));
2096 		return -EAGAIN;
2097 	}
2098 	return 0;
2099 }
2100 
2101 static inline u8 ata_dev_knobble(struct ata_device *dev)
2102 {
2103 	struct ata_port *ap = dev->link->ap;
2104 
2105 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2106 		return 0;
2107 
2108 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2109 }
2110 
2111 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2112 {
2113 	struct ata_port *ap = dev->link->ap;
2114 	unsigned int err_mask;
2115 
2116 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2117 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2118 		return;
2119 	}
2120 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2121 				     0, ap->sector_buf, 1);
2122 	if (!err_mask) {
2123 		u8 *cmds = dev->ncq_send_recv_cmds;
2124 
2125 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2126 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2127 
2128 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2129 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2130 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2131 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2132 		}
2133 	}
2134 }
2135 
2136 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2137 {
2138 	struct ata_port *ap = dev->link->ap;
2139 	unsigned int err_mask;
2140 
2141 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2142 		ata_dev_warn(dev,
2143 			     "NCQ Send/Recv Log not supported\n");
2144 		return;
2145 	}
2146 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2147 				     0, ap->sector_buf, 1);
2148 	if (!err_mask) {
2149 		u8 *cmds = dev->ncq_non_data_cmds;
2150 
2151 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2152 	}
2153 }
2154 
2155 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2156 {
2157 	struct ata_port *ap = dev->link->ap;
2158 	unsigned int err_mask;
2159 
2160 	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2161 		return;
2162 
2163 	err_mask = ata_read_log_page(dev,
2164 				     ATA_LOG_IDENTIFY_DEVICE,
2165 				     ATA_LOG_SATA_SETTINGS,
2166 				     ap->sector_buf,
2167 				     1);
2168 	if (err_mask)
2169 		goto not_supported;
2170 
2171 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2172 		goto not_supported;
2173 
2174 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2175 
2176 	return;
2177 
2178 not_supported:
2179 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2180 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2181 }
2182 
2183 static bool ata_dev_check_adapter(struct ata_device *dev,
2184 				  unsigned short vendor_id)
2185 {
2186 	struct pci_dev *pcidev = NULL;
2187 	struct device *parent_dev = NULL;
2188 
2189 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2190 	     parent_dev = parent_dev->parent) {
2191 		if (dev_is_pci(parent_dev)) {
2192 			pcidev = to_pci_dev(parent_dev);
2193 			if (pcidev->vendor == vendor_id)
2194 				return true;
2195 			break;
2196 		}
2197 	}
2198 
2199 	return false;
2200 }
2201 
2202 static int ata_dev_config_ncq(struct ata_device *dev,
2203 			       char *desc, size_t desc_sz)
2204 {
2205 	struct ata_port *ap = dev->link->ap;
2206 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2207 	unsigned int err_mask;
2208 	char *aa_desc = "";
2209 
2210 	if (!ata_id_has_ncq(dev->id)) {
2211 		desc[0] = '\0';
2212 		return 0;
2213 	}
2214 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2215 		return 0;
2216 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2217 		snprintf(desc, desc_sz, "NCQ (not used)");
2218 		return 0;
2219 	}
2220 
2221 	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2222 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2223 		snprintf(desc, desc_sz, "NCQ (not used)");
2224 		return 0;
2225 	}
2226 
2227 	if (ap->flags & ATA_FLAG_NCQ) {
2228 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2229 		dev->flags |= ATA_DFLAG_NCQ;
2230 	}
2231 
2232 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2233 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2234 		ata_id_has_fpdma_aa(dev->id)) {
2235 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2236 			SATA_FPDMA_AA);
2237 		if (err_mask) {
2238 			ata_dev_err(dev,
2239 				    "failed to enable AA (error_mask=0x%x)\n",
2240 				    err_mask);
2241 			if (err_mask != AC_ERR_DEV) {
2242 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2243 				return -EIO;
2244 			}
2245 		} else
2246 			aa_desc = ", AA";
2247 	}
2248 
2249 	if (hdepth >= ddepth)
2250 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2251 	else
2252 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2253 			ddepth, aa_desc);
2254 
2255 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2256 		if (ata_id_has_ncq_send_and_recv(dev->id))
2257 			ata_dev_config_ncq_send_recv(dev);
2258 		if (ata_id_has_ncq_non_data(dev->id))
2259 			ata_dev_config_ncq_non_data(dev);
2260 		if (ata_id_has_ncq_prio(dev->id))
2261 			ata_dev_config_ncq_prio(dev);
2262 	}
2263 
2264 	return 0;
2265 }
2266 
2267 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2268 {
2269 	unsigned int err_mask;
2270 
2271 	if (!ata_id_has_sense_reporting(dev->id))
2272 		return;
2273 
2274 	if (ata_id_sense_reporting_enabled(dev->id))
2275 		return;
2276 
2277 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2278 	if (err_mask) {
2279 		ata_dev_dbg(dev,
2280 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2281 			    err_mask);
2282 	}
2283 }
2284 
2285 static void ata_dev_config_zac(struct ata_device *dev)
2286 {
2287 	struct ata_port *ap = dev->link->ap;
2288 	unsigned int err_mask;
2289 	u8 *identify_buf = ap->sector_buf;
2290 
2291 	dev->zac_zones_optimal_open = U32_MAX;
2292 	dev->zac_zones_optimal_nonseq = U32_MAX;
2293 	dev->zac_zones_max_open = U32_MAX;
2294 
2295 	/*
2296 	 * Always set the 'ZAC' flag for Host-managed devices.
2297 	 */
2298 	if (dev->class == ATA_DEV_ZAC)
2299 		dev->flags |= ATA_DFLAG_ZAC;
2300 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2301 		/*
2302 		 * Check for host-aware devices.
2303 		 */
2304 		dev->flags |= ATA_DFLAG_ZAC;
2305 
2306 	if (!(dev->flags & ATA_DFLAG_ZAC))
2307 		return;
2308 
2309 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2310 		ata_dev_warn(dev,
2311 			     "ATA Zoned Information Log not supported\n");
2312 		return;
2313 	}
2314 
2315 	/*
2316 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2317 	 */
2318 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2319 				     ATA_LOG_ZONED_INFORMATION,
2320 				     identify_buf, 1);
2321 	if (!err_mask) {
2322 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2323 
2324 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2325 		if ((zoned_cap >> 63))
2326 			dev->zac_zoned_cap = (zoned_cap & 1);
2327 		opt_open = get_unaligned_le64(&identify_buf[24]);
2328 		if ((opt_open >> 63))
2329 			dev->zac_zones_optimal_open = (u32)opt_open;
2330 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2331 		if ((opt_nonseq >> 63))
2332 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2333 		max_open = get_unaligned_le64(&identify_buf[40]);
2334 		if ((max_open >> 63))
2335 			dev->zac_zones_max_open = (u32)max_open;
2336 	}
2337 }
2338 
2339 static void ata_dev_config_trusted(struct ata_device *dev)
2340 {
2341 	struct ata_port *ap = dev->link->ap;
2342 	u64 trusted_cap;
2343 	unsigned int err;
2344 
2345 	if (!ata_id_has_trusted(dev->id))
2346 		return;
2347 
2348 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2349 		ata_dev_warn(dev,
2350 			     "Security Log not supported\n");
2351 		return;
2352 	}
2353 
2354 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2355 			ap->sector_buf, 1);
2356 	if (err)
2357 		return;
2358 
2359 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2360 	if (!(trusted_cap & (1ULL << 63))) {
2361 		ata_dev_dbg(dev,
2362 			    "Trusted Computing capability qword not valid!\n");
2363 		return;
2364 	}
2365 
2366 	if (trusted_cap & (1 << 0))
2367 		dev->flags |= ATA_DFLAG_TRUSTED;
2368 }
2369 
2370 static int ata_dev_config_lba(struct ata_device *dev)
2371 {
2372 	const u16 *id = dev->id;
2373 	const char *lba_desc;
2374 	char ncq_desc[24];
2375 	int ret;
2376 
2377 	dev->flags |= ATA_DFLAG_LBA;
2378 
2379 	if (ata_id_has_lba48(id)) {
2380 		lba_desc = "LBA48";
2381 		dev->flags |= ATA_DFLAG_LBA48;
2382 		if (dev->n_sectors >= (1UL << 28) &&
2383 		    ata_id_has_flush_ext(id))
2384 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2385 	} else {
2386 		lba_desc = "LBA";
2387 	}
2388 
2389 	/* config NCQ */
2390 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2391 
2392 	/* print device info to dmesg */
2393 	if (ata_dev_print_info(dev))
2394 		ata_dev_info(dev,
2395 			     "%llu sectors, multi %u: %s %s\n",
2396 			     (unsigned long long)dev->n_sectors,
2397 			     dev->multi_count, lba_desc, ncq_desc);
2398 
2399 	return ret;
2400 }
2401 
2402 static void ata_dev_config_chs(struct ata_device *dev)
2403 {
2404 	const u16 *id = dev->id;
2405 
2406 	if (ata_id_current_chs_valid(id)) {
2407 		/* Current CHS translation is valid. */
2408 		dev->cylinders = id[54];
2409 		dev->heads     = id[55];
2410 		dev->sectors   = id[56];
2411 	} else {
2412 		/* Default translation */
2413 		dev->cylinders	= id[1];
2414 		dev->heads	= id[3];
2415 		dev->sectors	= id[6];
2416 	}
2417 
2418 	/* print device info to dmesg */
2419 	if (ata_dev_print_info(dev))
2420 		ata_dev_info(dev,
2421 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2422 			     (unsigned long long)dev->n_sectors,
2423 			     dev->multi_count, dev->cylinders,
2424 			     dev->heads, dev->sectors);
2425 }
2426 
2427 static void ata_dev_config_fua(struct ata_device *dev)
2428 {
2429 	/* Ignore FUA support if its use is disabled globally */
2430 	if (!libata_fua)
2431 		goto nofua;
2432 
2433 	/* Ignore devices without support for WRITE DMA FUA EXT */
2434 	if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2435 		goto nofua;
2436 
2437 	/* Ignore known bad devices and devices that lack NCQ support */
2438 	if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA))
2439 		goto nofua;
2440 
2441 	dev->flags |= ATA_DFLAG_FUA;
2442 
2443 	return;
2444 
2445 nofua:
2446 	dev->flags &= ~ATA_DFLAG_FUA;
2447 }
2448 
2449 static void ata_dev_config_devslp(struct ata_device *dev)
2450 {
2451 	u8 *sata_setting = dev->link->ap->sector_buf;
2452 	unsigned int err_mask;
2453 	int i, j;
2454 
2455 	/*
2456 	 * Check device sleep capability. Get DevSlp timing variables
2457 	 * from SATA Settings page of Identify Device Data Log.
2458 	 */
2459 	if (!ata_id_has_devslp(dev->id) ||
2460 	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2461 		return;
2462 
2463 	err_mask = ata_read_log_page(dev,
2464 				     ATA_LOG_IDENTIFY_DEVICE,
2465 				     ATA_LOG_SATA_SETTINGS,
2466 				     sata_setting, 1);
2467 	if (err_mask)
2468 		return;
2469 
2470 	dev->flags |= ATA_DFLAG_DEVSLP;
2471 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2472 		j = ATA_LOG_DEVSLP_OFFSET + i;
2473 		dev->devslp_timing[i] = sata_setting[j];
2474 	}
2475 }
2476 
2477 static void ata_dev_config_cpr(struct ata_device *dev)
2478 {
2479 	unsigned int err_mask;
2480 	size_t buf_len;
2481 	int i, nr_cpr = 0;
2482 	struct ata_cpr_log *cpr_log = NULL;
2483 	u8 *desc, *buf = NULL;
2484 
2485 	if (ata_id_major_version(dev->id) < 11)
2486 		goto out;
2487 
2488 	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2489 	if (buf_len == 0)
2490 		goto out;
2491 
2492 	/*
2493 	 * Read the concurrent positioning ranges log (0x47). We can have at
2494 	 * most 255 32B range descriptors plus a 64B header. This log varies in
2495 	 * size, so use the size reported in the GPL directory. Reading beyond
2496 	 * the supported length will result in an error.
2497 	 */
2498 	buf_len <<= 9;
2499 	buf = kzalloc(buf_len, GFP_KERNEL);
2500 	if (!buf)
2501 		goto out;
2502 
2503 	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2504 				     0, buf, buf_len >> 9);
2505 	if (err_mask)
2506 		goto out;
2507 
2508 	nr_cpr = buf[0];
2509 	if (!nr_cpr)
2510 		goto out;
2511 
2512 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2513 	if (!cpr_log)
2514 		goto out;
2515 
2516 	cpr_log->nr_cpr = nr_cpr;
2517 	desc = &buf[64];
2518 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2519 		cpr_log->cpr[i].num = desc[0];
2520 		cpr_log->cpr[i].num_storage_elements = desc[1];
2521 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2522 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2523 	}
2524 
2525 out:
2526 	swap(dev->cpr_log, cpr_log);
2527 	kfree(cpr_log);
2528 	kfree(buf);
2529 }
2530 
2531 static void ata_dev_print_features(struct ata_device *dev)
2532 {
2533 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2534 		return;
2535 
2536 	ata_dev_info(dev,
2537 		     "Features:%s%s%s%s%s%s%s\n",
2538 		     dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2539 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2540 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2541 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2542 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2543 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2544 		     dev->cpr_log ? " CPR" : "");
2545 }
2546 
2547 /**
2548  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2549  *	@dev: Target device to configure
2550  *
2551  *	Configure @dev according to @dev->id.  Generic and low-level
2552  *	driver specific fixups are also applied.
2553  *
2554  *	LOCKING:
2555  *	Kernel thread context (may sleep)
2556  *
2557  *	RETURNS:
2558  *	0 on success, -errno otherwise
2559  */
2560 int ata_dev_configure(struct ata_device *dev)
2561 {
2562 	struct ata_port *ap = dev->link->ap;
2563 	bool print_info = ata_dev_print_info(dev);
2564 	const u16 *id = dev->id;
2565 	unsigned int xfer_mask;
2566 	unsigned int err_mask;
2567 	char revbuf[7];		/* XYZ-99\0 */
2568 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2569 	char modelbuf[ATA_ID_PROD_LEN+1];
2570 	int rc;
2571 
2572 	if (!ata_dev_enabled(dev)) {
2573 		ata_dev_dbg(dev, "no device\n");
2574 		return 0;
2575 	}
2576 
2577 	/* set horkage */
2578 	dev->horkage |= ata_dev_blacklisted(dev);
2579 	ata_force_horkage(dev);
2580 
2581 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2582 		ata_dev_info(dev, "unsupported device, disabling\n");
2583 		ata_dev_disable(dev);
2584 		return 0;
2585 	}
2586 
2587 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2588 	    dev->class == ATA_DEV_ATAPI) {
2589 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2590 			     atapi_enabled ? "not supported with this driver"
2591 			     : "disabled");
2592 		ata_dev_disable(dev);
2593 		return 0;
2594 	}
2595 
2596 	rc = ata_do_link_spd_horkage(dev);
2597 	if (rc)
2598 		return rc;
2599 
2600 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2601 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2602 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2603 		dev->horkage |= ATA_HORKAGE_NOLPM;
2604 
2605 	if (ap->flags & ATA_FLAG_NO_LPM)
2606 		dev->horkage |= ATA_HORKAGE_NOLPM;
2607 
2608 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2609 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2610 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2611 	}
2612 
2613 	/* let ACPI work its magic */
2614 	rc = ata_acpi_on_devcfg(dev);
2615 	if (rc)
2616 		return rc;
2617 
2618 	/* massage HPA, do it early as it might change IDENTIFY data */
2619 	rc = ata_hpa_resize(dev);
2620 	if (rc)
2621 		return rc;
2622 
2623 	/* print device capabilities */
2624 	ata_dev_dbg(dev,
2625 		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2626 		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2627 		    __func__,
2628 		    id[49], id[82], id[83], id[84],
2629 		    id[85], id[86], id[87], id[88]);
2630 
2631 	/* initialize to-be-configured parameters */
2632 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2633 	dev->max_sectors = 0;
2634 	dev->cdb_len = 0;
2635 	dev->n_sectors = 0;
2636 	dev->cylinders = 0;
2637 	dev->heads = 0;
2638 	dev->sectors = 0;
2639 	dev->multi_count = 0;
2640 
2641 	/*
2642 	 * common ATA, ATAPI feature tests
2643 	 */
2644 
2645 	/* find max transfer mode; for printk only */
2646 	xfer_mask = ata_id_xfermask(id);
2647 
2648 	ata_dump_id(dev, id);
2649 
2650 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2651 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2652 			sizeof(fwrevbuf));
2653 
2654 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2655 			sizeof(modelbuf));
2656 
2657 	/* ATA-specific feature tests */
2658 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2659 		if (ata_id_is_cfa(id)) {
2660 			/* CPRM may make this media unusable */
2661 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2662 				ata_dev_warn(dev,
2663 	"supports DRM functions and may not be fully accessible\n");
2664 			snprintf(revbuf, 7, "CFA");
2665 		} else {
2666 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2667 			/* Warn the user if the device has TPM extensions */
2668 			if (ata_id_has_tpm(id))
2669 				ata_dev_warn(dev,
2670 	"supports DRM functions and may not be fully accessible\n");
2671 		}
2672 
2673 		dev->n_sectors = ata_id_n_sectors(id);
2674 
2675 		/* get current R/W Multiple count setting */
2676 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2677 			unsigned int max = dev->id[47] & 0xff;
2678 			unsigned int cnt = dev->id[59] & 0xff;
2679 			/* only recognize/allow powers of two here */
2680 			if (is_power_of_2(max) && is_power_of_2(cnt))
2681 				if (cnt <= max)
2682 					dev->multi_count = cnt;
2683 		}
2684 
2685 		/* print device info to dmesg */
2686 		if (print_info)
2687 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2688 				     revbuf, modelbuf, fwrevbuf,
2689 				     ata_mode_string(xfer_mask));
2690 
2691 		if (ata_id_has_lba(id)) {
2692 			rc = ata_dev_config_lba(dev);
2693 			if (rc)
2694 				return rc;
2695 		} else {
2696 			ata_dev_config_chs(dev);
2697 		}
2698 
2699 		ata_dev_config_fua(dev);
2700 		ata_dev_config_devslp(dev);
2701 		ata_dev_config_sense_reporting(dev);
2702 		ata_dev_config_zac(dev);
2703 		ata_dev_config_trusted(dev);
2704 		ata_dev_config_cpr(dev);
2705 		dev->cdb_len = 32;
2706 
2707 		if (print_info)
2708 			ata_dev_print_features(dev);
2709 	}
2710 
2711 	/* ATAPI-specific feature tests */
2712 	else if (dev->class == ATA_DEV_ATAPI) {
2713 		const char *cdb_intr_string = "";
2714 		const char *atapi_an_string = "";
2715 		const char *dma_dir_string = "";
2716 		u32 sntf;
2717 
2718 		rc = atapi_cdb_len(id);
2719 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2720 			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2721 			rc = -EINVAL;
2722 			goto err_out_nosup;
2723 		}
2724 		dev->cdb_len = (unsigned int) rc;
2725 
2726 		/* Enable ATAPI AN if both the host and device have
2727 		 * the support.  If PMP is attached, SNTF is required
2728 		 * to enable ATAPI AN to discern between PHY status
2729 		 * changed notifications and ATAPI ANs.
2730 		 */
2731 		if (atapi_an &&
2732 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2733 		    (!sata_pmp_attached(ap) ||
2734 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2735 			/* issue SET feature command to turn this on */
2736 			err_mask = ata_dev_set_feature(dev,
2737 					SETFEATURES_SATA_ENABLE, SATA_AN);
2738 			if (err_mask)
2739 				ata_dev_err(dev,
2740 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2741 					    err_mask);
2742 			else {
2743 				dev->flags |= ATA_DFLAG_AN;
2744 				atapi_an_string = ", ATAPI AN";
2745 			}
2746 		}
2747 
2748 		if (ata_id_cdb_intr(dev->id)) {
2749 			dev->flags |= ATA_DFLAG_CDB_INTR;
2750 			cdb_intr_string = ", CDB intr";
2751 		}
2752 
2753 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2754 			dev->flags |= ATA_DFLAG_DMADIR;
2755 			dma_dir_string = ", DMADIR";
2756 		}
2757 
2758 		if (ata_id_has_da(dev->id)) {
2759 			dev->flags |= ATA_DFLAG_DA;
2760 			zpodd_init(dev);
2761 		}
2762 
2763 		/* print device info to dmesg */
2764 		if (print_info)
2765 			ata_dev_info(dev,
2766 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2767 				     modelbuf, fwrevbuf,
2768 				     ata_mode_string(xfer_mask),
2769 				     cdb_intr_string, atapi_an_string,
2770 				     dma_dir_string);
2771 	}
2772 
2773 	/* determine max_sectors */
2774 	dev->max_sectors = ATA_MAX_SECTORS;
2775 	if (dev->flags & ATA_DFLAG_LBA48)
2776 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2777 
2778 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2779 	   200 sectors */
2780 	if (ata_dev_knobble(dev)) {
2781 		if (print_info)
2782 			ata_dev_info(dev, "applying bridge limits\n");
2783 		dev->udma_mask &= ATA_UDMA5;
2784 		dev->max_sectors = ATA_MAX_SECTORS;
2785 	}
2786 
2787 	if ((dev->class == ATA_DEV_ATAPI) &&
2788 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2789 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2790 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2791 	}
2792 
2793 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2794 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2795 					 dev->max_sectors);
2796 
2797 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2798 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2799 					 dev->max_sectors);
2800 
2801 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2802 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2803 
2804 	if (ap->ops->dev_config)
2805 		ap->ops->dev_config(dev);
2806 
2807 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2808 		/* Let the user know. We don't want to disallow opens for
2809 		   rescue purposes, or in case the vendor is just a blithering
2810 		   idiot. Do this after the dev_config call as some controllers
2811 		   with buggy firmware may want to avoid reporting false device
2812 		   bugs */
2813 
2814 		if (print_info) {
2815 			ata_dev_warn(dev,
2816 "Drive reports diagnostics failure. This may indicate a drive\n");
2817 			ata_dev_warn(dev,
2818 "fault or invalid emulation. Contact drive vendor for information.\n");
2819 		}
2820 	}
2821 
2822 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2823 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2824 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2825 	}
2826 
2827 	return 0;
2828 
2829 err_out_nosup:
2830 	return rc;
2831 }
2832 
2833 /**
2834  *	ata_cable_40wire	-	return 40 wire cable type
2835  *	@ap: port
2836  *
2837  *	Helper method for drivers which want to hardwire 40 wire cable
2838  *	detection.
2839  */
2840 
2841 int ata_cable_40wire(struct ata_port *ap)
2842 {
2843 	return ATA_CBL_PATA40;
2844 }
2845 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2846 
2847 /**
2848  *	ata_cable_80wire	-	return 80 wire cable type
2849  *	@ap: port
2850  *
2851  *	Helper method for drivers which want to hardwire 80 wire cable
2852  *	detection.
2853  */
2854 
2855 int ata_cable_80wire(struct ata_port *ap)
2856 {
2857 	return ATA_CBL_PATA80;
2858 }
2859 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2860 
2861 /**
2862  *	ata_cable_unknown	-	return unknown PATA cable.
2863  *	@ap: port
2864  *
2865  *	Helper method for drivers which have no PATA cable detection.
2866  */
2867 
2868 int ata_cable_unknown(struct ata_port *ap)
2869 {
2870 	return ATA_CBL_PATA_UNK;
2871 }
2872 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2873 
2874 /**
2875  *	ata_cable_ignore	-	return ignored PATA cable.
2876  *	@ap: port
2877  *
2878  *	Helper method for drivers which don't use cable type to limit
2879  *	transfer mode.
2880  */
2881 int ata_cable_ignore(struct ata_port *ap)
2882 {
2883 	return ATA_CBL_PATA_IGN;
2884 }
2885 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2886 
2887 /**
2888  *	ata_cable_sata	-	return SATA cable type
2889  *	@ap: port
2890  *
2891  *	Helper method for drivers which have SATA cables
2892  */
2893 
2894 int ata_cable_sata(struct ata_port *ap)
2895 {
2896 	return ATA_CBL_SATA;
2897 }
2898 EXPORT_SYMBOL_GPL(ata_cable_sata);
2899 
2900 /**
2901  *	ata_bus_probe - Reset and probe ATA bus
2902  *	@ap: Bus to probe
2903  *
2904  *	Master ATA bus probing function.  Initiates a hardware-dependent
2905  *	bus reset, then attempts to identify any devices found on
2906  *	the bus.
2907  *
2908  *	LOCKING:
2909  *	PCI/etc. bus probe sem.
2910  *
2911  *	RETURNS:
2912  *	Zero on success, negative errno otherwise.
2913  */
2914 
2915 int ata_bus_probe(struct ata_port *ap)
2916 {
2917 	unsigned int classes[ATA_MAX_DEVICES];
2918 	int tries[ATA_MAX_DEVICES];
2919 	int rc;
2920 	struct ata_device *dev;
2921 
2922 	ata_for_each_dev(dev, &ap->link, ALL)
2923 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2924 
2925  retry:
2926 	ata_for_each_dev(dev, &ap->link, ALL) {
2927 		/* If we issue an SRST then an ATA drive (not ATAPI)
2928 		 * may change configuration and be in PIO0 timing. If
2929 		 * we do a hard reset (or are coming from power on)
2930 		 * this is true for ATA or ATAPI. Until we've set a
2931 		 * suitable controller mode we should not touch the
2932 		 * bus as we may be talking too fast.
2933 		 */
2934 		dev->pio_mode = XFER_PIO_0;
2935 		dev->dma_mode = 0xff;
2936 
2937 		/* If the controller has a pio mode setup function
2938 		 * then use it to set the chipset to rights. Don't
2939 		 * touch the DMA setup as that will be dealt with when
2940 		 * configuring devices.
2941 		 */
2942 		if (ap->ops->set_piomode)
2943 			ap->ops->set_piomode(ap, dev);
2944 	}
2945 
2946 	/* reset and determine device classes */
2947 	ap->ops->phy_reset(ap);
2948 
2949 	ata_for_each_dev(dev, &ap->link, ALL) {
2950 		if (dev->class != ATA_DEV_UNKNOWN)
2951 			classes[dev->devno] = dev->class;
2952 		else
2953 			classes[dev->devno] = ATA_DEV_NONE;
2954 
2955 		dev->class = ATA_DEV_UNKNOWN;
2956 	}
2957 
2958 	/* read IDENTIFY page and configure devices. We have to do the identify
2959 	   specific sequence bass-ackwards so that PDIAG- is released by
2960 	   the slave device */
2961 
2962 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2963 		if (tries[dev->devno])
2964 			dev->class = classes[dev->devno];
2965 
2966 		if (!ata_dev_enabled(dev))
2967 			continue;
2968 
2969 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2970 				     dev->id);
2971 		if (rc)
2972 			goto fail;
2973 	}
2974 
2975 	/* Now ask for the cable type as PDIAG- should have been released */
2976 	if (ap->ops->cable_detect)
2977 		ap->cbl = ap->ops->cable_detect(ap);
2978 
2979 	/* We may have SATA bridge glue hiding here irrespective of
2980 	 * the reported cable types and sensed types.  When SATA
2981 	 * drives indicate we have a bridge, we don't know which end
2982 	 * of the link the bridge is which is a problem.
2983 	 */
2984 	ata_for_each_dev(dev, &ap->link, ENABLED)
2985 		if (ata_id_is_sata(dev->id))
2986 			ap->cbl = ATA_CBL_SATA;
2987 
2988 	/* After the identify sequence we can now set up the devices. We do
2989 	   this in the normal order so that the user doesn't get confused */
2990 
2991 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2992 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2993 		rc = ata_dev_configure(dev);
2994 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2995 		if (rc)
2996 			goto fail;
2997 	}
2998 
2999 	/* configure transfer mode */
3000 	rc = ata_set_mode(&ap->link, &dev);
3001 	if (rc)
3002 		goto fail;
3003 
3004 	ata_for_each_dev(dev, &ap->link, ENABLED)
3005 		return 0;
3006 
3007 	return -ENODEV;
3008 
3009  fail:
3010 	tries[dev->devno]--;
3011 
3012 	switch (rc) {
3013 	case -EINVAL:
3014 		/* eeek, something went very wrong, give up */
3015 		tries[dev->devno] = 0;
3016 		break;
3017 
3018 	case -ENODEV:
3019 		/* give it just one more chance */
3020 		tries[dev->devno] = min(tries[dev->devno], 1);
3021 		fallthrough;
3022 	case -EIO:
3023 		if (tries[dev->devno] == 1) {
3024 			/* This is the last chance, better to slow
3025 			 * down than lose it.
3026 			 */
3027 			sata_down_spd_limit(&ap->link, 0);
3028 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
3029 		}
3030 	}
3031 
3032 	if (!tries[dev->devno])
3033 		ata_dev_disable(dev);
3034 
3035 	goto retry;
3036 }
3037 
3038 /**
3039  *	sata_print_link_status - Print SATA link status
3040  *	@link: SATA link to printk link status about
3041  *
3042  *	This function prints link speed and status of a SATA link.
3043  *
3044  *	LOCKING:
3045  *	None.
3046  */
3047 static void sata_print_link_status(struct ata_link *link)
3048 {
3049 	u32 sstatus, scontrol, tmp;
3050 
3051 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3052 		return;
3053 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3054 		return;
3055 
3056 	if (ata_phys_link_online(link)) {
3057 		tmp = (sstatus >> 4) & 0xf;
3058 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3059 			      sata_spd_string(tmp), sstatus, scontrol);
3060 	} else {
3061 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3062 			      sstatus, scontrol);
3063 	}
3064 }
3065 
3066 /**
3067  *	ata_dev_pair		-	return other device on cable
3068  *	@adev: device
3069  *
3070  *	Obtain the other device on the same cable, or if none is
3071  *	present NULL is returned
3072  */
3073 
3074 struct ata_device *ata_dev_pair(struct ata_device *adev)
3075 {
3076 	struct ata_link *link = adev->link;
3077 	struct ata_device *pair = &link->device[1 - adev->devno];
3078 	if (!ata_dev_enabled(pair))
3079 		return NULL;
3080 	return pair;
3081 }
3082 EXPORT_SYMBOL_GPL(ata_dev_pair);
3083 
3084 /**
3085  *	sata_down_spd_limit - adjust SATA spd limit downward
3086  *	@link: Link to adjust SATA spd limit for
3087  *	@spd_limit: Additional limit
3088  *
3089  *	Adjust SATA spd limit of @link downward.  Note that this
3090  *	function only adjusts the limit.  The change must be applied
3091  *	using sata_set_spd().
3092  *
3093  *	If @spd_limit is non-zero, the speed is limited to equal to or
3094  *	lower than @spd_limit if such speed is supported.  If
3095  *	@spd_limit is slower than any supported speed, only the lowest
3096  *	supported speed is allowed.
3097  *
3098  *	LOCKING:
3099  *	Inherited from caller.
3100  *
3101  *	RETURNS:
3102  *	0 on success, negative errno on failure
3103  */
3104 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3105 {
3106 	u32 sstatus, spd, mask;
3107 	int rc, bit;
3108 
3109 	if (!sata_scr_valid(link))
3110 		return -EOPNOTSUPP;
3111 
3112 	/* If SCR can be read, use it to determine the current SPD.
3113 	 * If not, use cached value in link->sata_spd.
3114 	 */
3115 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3116 	if (rc == 0 && ata_sstatus_online(sstatus))
3117 		spd = (sstatus >> 4) & 0xf;
3118 	else
3119 		spd = link->sata_spd;
3120 
3121 	mask = link->sata_spd_limit;
3122 	if (mask <= 1)
3123 		return -EINVAL;
3124 
3125 	/* unconditionally mask off the highest bit */
3126 	bit = fls(mask) - 1;
3127 	mask &= ~(1 << bit);
3128 
3129 	/*
3130 	 * Mask off all speeds higher than or equal to the current one.  At
3131 	 * this point, if current SPD is not available and we previously
3132 	 * recorded the link speed from SStatus, the driver has already
3133 	 * masked off the highest bit so mask should already be 1 or 0.
3134 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3135 	 * not previously recorded speed from SStatus.  Just return in this
3136 	 * case.
3137 	 */
3138 	if (spd > 1)
3139 		mask &= (1 << (spd - 1)) - 1;
3140 	else if (link->sata_spd)
3141 		return -EINVAL;
3142 
3143 	/* were we already at the bottom? */
3144 	if (!mask)
3145 		return -EINVAL;
3146 
3147 	if (spd_limit) {
3148 		if (mask & ((1 << spd_limit) - 1))
3149 			mask &= (1 << spd_limit) - 1;
3150 		else {
3151 			bit = ffs(mask) - 1;
3152 			mask = 1 << bit;
3153 		}
3154 	}
3155 
3156 	link->sata_spd_limit = mask;
3157 
3158 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3159 		      sata_spd_string(fls(mask)));
3160 
3161 	return 0;
3162 }
3163 
3164 #ifdef CONFIG_ATA_ACPI
3165 /**
3166  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3167  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3168  *	@cycle: cycle duration in ns
3169  *
3170  *	Return matching xfer mode for @cycle.  The returned mode is of
3171  *	the transfer type specified by @xfer_shift.  If @cycle is too
3172  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3173  *	than the fastest known mode, the fasted mode is returned.
3174  *
3175  *	LOCKING:
3176  *	None.
3177  *
3178  *	RETURNS:
3179  *	Matching xfer_mode, 0xff if no match found.
3180  */
3181 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3182 {
3183 	u8 base_mode = 0xff, last_mode = 0xff;
3184 	const struct ata_xfer_ent *ent;
3185 	const struct ata_timing *t;
3186 
3187 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3188 		if (ent->shift == xfer_shift)
3189 			base_mode = ent->base;
3190 
3191 	for (t = ata_timing_find_mode(base_mode);
3192 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3193 		unsigned short this_cycle;
3194 
3195 		switch (xfer_shift) {
3196 		case ATA_SHIFT_PIO:
3197 		case ATA_SHIFT_MWDMA:
3198 			this_cycle = t->cycle;
3199 			break;
3200 		case ATA_SHIFT_UDMA:
3201 			this_cycle = t->udma;
3202 			break;
3203 		default:
3204 			return 0xff;
3205 		}
3206 
3207 		if (cycle > this_cycle)
3208 			break;
3209 
3210 		last_mode = t->mode;
3211 	}
3212 
3213 	return last_mode;
3214 }
3215 #endif
3216 
3217 /**
3218  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3219  *	@dev: Device to adjust xfer masks
3220  *	@sel: ATA_DNXFER_* selector
3221  *
3222  *	Adjust xfer masks of @dev downward.  Note that this function
3223  *	does not apply the change.  Invoking ata_set_mode() afterwards
3224  *	will apply the limit.
3225  *
3226  *	LOCKING:
3227  *	Inherited from caller.
3228  *
3229  *	RETURNS:
3230  *	0 on success, negative errno on failure
3231  */
3232 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3233 {
3234 	char buf[32];
3235 	unsigned int orig_mask, xfer_mask;
3236 	unsigned int pio_mask, mwdma_mask, udma_mask;
3237 	int quiet, highbit;
3238 
3239 	quiet = !!(sel & ATA_DNXFER_QUIET);
3240 	sel &= ~ATA_DNXFER_QUIET;
3241 
3242 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3243 						  dev->mwdma_mask,
3244 						  dev->udma_mask);
3245 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3246 
3247 	switch (sel) {
3248 	case ATA_DNXFER_PIO:
3249 		highbit = fls(pio_mask) - 1;
3250 		pio_mask &= ~(1 << highbit);
3251 		break;
3252 
3253 	case ATA_DNXFER_DMA:
3254 		if (udma_mask) {
3255 			highbit = fls(udma_mask) - 1;
3256 			udma_mask &= ~(1 << highbit);
3257 			if (!udma_mask)
3258 				return -ENOENT;
3259 		} else if (mwdma_mask) {
3260 			highbit = fls(mwdma_mask) - 1;
3261 			mwdma_mask &= ~(1 << highbit);
3262 			if (!mwdma_mask)
3263 				return -ENOENT;
3264 		}
3265 		break;
3266 
3267 	case ATA_DNXFER_40C:
3268 		udma_mask &= ATA_UDMA_MASK_40C;
3269 		break;
3270 
3271 	case ATA_DNXFER_FORCE_PIO0:
3272 		pio_mask &= 1;
3273 		fallthrough;
3274 	case ATA_DNXFER_FORCE_PIO:
3275 		mwdma_mask = 0;
3276 		udma_mask = 0;
3277 		break;
3278 
3279 	default:
3280 		BUG();
3281 	}
3282 
3283 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3284 
3285 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3286 		return -ENOENT;
3287 
3288 	if (!quiet) {
3289 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3290 			snprintf(buf, sizeof(buf), "%s:%s",
3291 				 ata_mode_string(xfer_mask),
3292 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3293 		else
3294 			snprintf(buf, sizeof(buf), "%s",
3295 				 ata_mode_string(xfer_mask));
3296 
3297 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3298 	}
3299 
3300 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3301 			    &dev->udma_mask);
3302 
3303 	return 0;
3304 }
3305 
3306 static int ata_dev_set_mode(struct ata_device *dev)
3307 {
3308 	struct ata_port *ap = dev->link->ap;
3309 	struct ata_eh_context *ehc = &dev->link->eh_context;
3310 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3311 	const char *dev_err_whine = "";
3312 	int ign_dev_err = 0;
3313 	unsigned int err_mask = 0;
3314 	int rc;
3315 
3316 	dev->flags &= ~ATA_DFLAG_PIO;
3317 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3318 		dev->flags |= ATA_DFLAG_PIO;
3319 
3320 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3321 		dev_err_whine = " (SET_XFERMODE skipped)";
3322 	else {
3323 		if (nosetxfer)
3324 			ata_dev_warn(dev,
3325 				     "NOSETXFER but PATA detected - can't "
3326 				     "skip SETXFER, might malfunction\n");
3327 		err_mask = ata_dev_set_xfermode(dev);
3328 	}
3329 
3330 	if (err_mask & ~AC_ERR_DEV)
3331 		goto fail;
3332 
3333 	/* revalidate */
3334 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3335 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3336 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3337 	if (rc)
3338 		return rc;
3339 
3340 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3341 		/* Old CFA may refuse this command, which is just fine */
3342 		if (ata_id_is_cfa(dev->id))
3343 			ign_dev_err = 1;
3344 		/* Catch several broken garbage emulations plus some pre
3345 		   ATA devices */
3346 		if (ata_id_major_version(dev->id) == 0 &&
3347 					dev->pio_mode <= XFER_PIO_2)
3348 			ign_dev_err = 1;
3349 		/* Some very old devices and some bad newer ones fail
3350 		   any kind of SET_XFERMODE request but support PIO0-2
3351 		   timings and no IORDY */
3352 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3353 			ign_dev_err = 1;
3354 	}
3355 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3356 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3357 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3358 	    dev->dma_mode == XFER_MW_DMA_0 &&
3359 	    (dev->id[63] >> 8) & 1)
3360 		ign_dev_err = 1;
3361 
3362 	/* if the device is actually configured correctly, ignore dev err */
3363 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3364 		ign_dev_err = 1;
3365 
3366 	if (err_mask & AC_ERR_DEV) {
3367 		if (!ign_dev_err)
3368 			goto fail;
3369 		else
3370 			dev_err_whine = " (device error ignored)";
3371 	}
3372 
3373 	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3374 		    dev->xfer_shift, (int)dev->xfer_mode);
3375 
3376 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3377 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3378 		ata_dev_info(dev, "configured for %s%s\n",
3379 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3380 			     dev_err_whine);
3381 
3382 	return 0;
3383 
3384  fail:
3385 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3386 	return -EIO;
3387 }
3388 
3389 /**
3390  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3391  *	@link: link on which timings will be programmed
3392  *	@r_failed_dev: out parameter for failed device
3393  *
3394  *	Standard implementation of the function used to tune and set
3395  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3396  *	ata_dev_set_mode() fails, pointer to the failing device is
3397  *	returned in @r_failed_dev.
3398  *
3399  *	LOCKING:
3400  *	PCI/etc. bus probe sem.
3401  *
3402  *	RETURNS:
3403  *	0 on success, negative errno otherwise
3404  */
3405 
3406 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3407 {
3408 	struct ata_port *ap = link->ap;
3409 	struct ata_device *dev;
3410 	int rc = 0, used_dma = 0, found = 0;
3411 
3412 	/* step 1: calculate xfer_mask */
3413 	ata_for_each_dev(dev, link, ENABLED) {
3414 		unsigned int pio_mask, dma_mask;
3415 		unsigned int mode_mask;
3416 
3417 		mode_mask = ATA_DMA_MASK_ATA;
3418 		if (dev->class == ATA_DEV_ATAPI)
3419 			mode_mask = ATA_DMA_MASK_ATAPI;
3420 		else if (ata_id_is_cfa(dev->id))
3421 			mode_mask = ATA_DMA_MASK_CFA;
3422 
3423 		ata_dev_xfermask(dev);
3424 		ata_force_xfermask(dev);
3425 
3426 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3427 
3428 		if (libata_dma_mask & mode_mask)
3429 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3430 						     dev->udma_mask);
3431 		else
3432 			dma_mask = 0;
3433 
3434 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3435 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3436 
3437 		found = 1;
3438 		if (ata_dma_enabled(dev))
3439 			used_dma = 1;
3440 	}
3441 	if (!found)
3442 		goto out;
3443 
3444 	/* step 2: always set host PIO timings */
3445 	ata_for_each_dev(dev, link, ENABLED) {
3446 		if (dev->pio_mode == 0xff) {
3447 			ata_dev_warn(dev, "no PIO support\n");
3448 			rc = -EINVAL;
3449 			goto out;
3450 		}
3451 
3452 		dev->xfer_mode = dev->pio_mode;
3453 		dev->xfer_shift = ATA_SHIFT_PIO;
3454 		if (ap->ops->set_piomode)
3455 			ap->ops->set_piomode(ap, dev);
3456 	}
3457 
3458 	/* step 3: set host DMA timings */
3459 	ata_for_each_dev(dev, link, ENABLED) {
3460 		if (!ata_dma_enabled(dev))
3461 			continue;
3462 
3463 		dev->xfer_mode = dev->dma_mode;
3464 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3465 		if (ap->ops->set_dmamode)
3466 			ap->ops->set_dmamode(ap, dev);
3467 	}
3468 
3469 	/* step 4: update devices' xfer mode */
3470 	ata_for_each_dev(dev, link, ENABLED) {
3471 		rc = ata_dev_set_mode(dev);
3472 		if (rc)
3473 			goto out;
3474 	}
3475 
3476 	/* Record simplex status. If we selected DMA then the other
3477 	 * host channels are not permitted to do so.
3478 	 */
3479 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3480 		ap->host->simplex_claimed = ap;
3481 
3482  out:
3483 	if (rc)
3484 		*r_failed_dev = dev;
3485 	return rc;
3486 }
3487 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3488 
3489 /**
3490  *	ata_wait_ready - wait for link to become ready
3491  *	@link: link to be waited on
3492  *	@deadline: deadline jiffies for the operation
3493  *	@check_ready: callback to check link readiness
3494  *
3495  *	Wait for @link to become ready.  @check_ready should return
3496  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3497  *	link doesn't seem to be occupied, other errno for other error
3498  *	conditions.
3499  *
3500  *	Transient -ENODEV conditions are allowed for
3501  *	ATA_TMOUT_FF_WAIT.
3502  *
3503  *	LOCKING:
3504  *	EH context.
3505  *
3506  *	RETURNS:
3507  *	0 if @link is ready before @deadline; otherwise, -errno.
3508  */
3509 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3510 		   int (*check_ready)(struct ata_link *link))
3511 {
3512 	unsigned long start = jiffies;
3513 	unsigned long nodev_deadline;
3514 	int warned = 0;
3515 
3516 	/* choose which 0xff timeout to use, read comment in libata.h */
3517 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3518 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3519 	else
3520 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3521 
3522 	/* Slave readiness can't be tested separately from master.  On
3523 	 * M/S emulation configuration, this function should be called
3524 	 * only on the master and it will handle both master and slave.
3525 	 */
3526 	WARN_ON(link == link->ap->slave_link);
3527 
3528 	if (time_after(nodev_deadline, deadline))
3529 		nodev_deadline = deadline;
3530 
3531 	while (1) {
3532 		unsigned long now = jiffies;
3533 		int ready, tmp;
3534 
3535 		ready = tmp = check_ready(link);
3536 		if (ready > 0)
3537 			return 0;
3538 
3539 		/*
3540 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3541 		 * is online.  Also, some SATA devices take a long
3542 		 * time to clear 0xff after reset.  Wait for
3543 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3544 		 * offline.
3545 		 *
3546 		 * Note that some PATA controllers (pata_ali) explode
3547 		 * if status register is read more than once when
3548 		 * there's no device attached.
3549 		 */
3550 		if (ready == -ENODEV) {
3551 			if (ata_link_online(link))
3552 				ready = 0;
3553 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3554 				 !ata_link_offline(link) &&
3555 				 time_before(now, nodev_deadline))
3556 				ready = 0;
3557 		}
3558 
3559 		if (ready)
3560 			return ready;
3561 		if (time_after(now, deadline))
3562 			return -EBUSY;
3563 
3564 		if (!warned && time_after(now, start + 5 * HZ) &&
3565 		    (deadline - now > 3 * HZ)) {
3566 			ata_link_warn(link,
3567 				"link is slow to respond, please be patient "
3568 				"(ready=%d)\n", tmp);
3569 			warned = 1;
3570 		}
3571 
3572 		ata_msleep(link->ap, 50);
3573 	}
3574 }
3575 
3576 /**
3577  *	ata_wait_after_reset - wait for link to become ready after reset
3578  *	@link: link to be waited on
3579  *	@deadline: deadline jiffies for the operation
3580  *	@check_ready: callback to check link readiness
3581  *
3582  *	Wait for @link to become ready after reset.
3583  *
3584  *	LOCKING:
3585  *	EH context.
3586  *
3587  *	RETURNS:
3588  *	0 if @link is ready before @deadline; otherwise, -errno.
3589  */
3590 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3591 				int (*check_ready)(struct ata_link *link))
3592 {
3593 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3594 
3595 	return ata_wait_ready(link, deadline, check_ready);
3596 }
3597 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3598 
3599 /**
3600  *	ata_std_prereset - prepare for reset
3601  *	@link: ATA link to be reset
3602  *	@deadline: deadline jiffies for the operation
3603  *
3604  *	@link is about to be reset.  Initialize it.  Failure from
3605  *	prereset makes libata abort whole reset sequence and give up
3606  *	that port, so prereset should be best-effort.  It does its
3607  *	best to prepare for reset sequence but if things go wrong, it
3608  *	should just whine, not fail.
3609  *
3610  *	LOCKING:
3611  *	Kernel thread context (may sleep)
3612  *
3613  *	RETURNS:
3614  *	Always 0.
3615  */
3616 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3617 {
3618 	struct ata_port *ap = link->ap;
3619 	struct ata_eh_context *ehc = &link->eh_context;
3620 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3621 	int rc;
3622 
3623 	/* if we're about to do hardreset, nothing more to do */
3624 	if (ehc->i.action & ATA_EH_HARDRESET)
3625 		return 0;
3626 
3627 	/* if SATA, resume link */
3628 	if (ap->flags & ATA_FLAG_SATA) {
3629 		rc = sata_link_resume(link, timing, deadline);
3630 		/* whine about phy resume failure but proceed */
3631 		if (rc && rc != -EOPNOTSUPP)
3632 			ata_link_warn(link,
3633 				      "failed to resume link for reset (errno=%d)\n",
3634 				      rc);
3635 	}
3636 
3637 	/* no point in trying softreset on offline link */
3638 	if (ata_phys_link_offline(link))
3639 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3640 
3641 	return 0;
3642 }
3643 EXPORT_SYMBOL_GPL(ata_std_prereset);
3644 
3645 /**
3646  *	sata_std_hardreset - COMRESET w/o waiting or classification
3647  *	@link: link to reset
3648  *	@class: resulting class of attached device
3649  *	@deadline: deadline jiffies for the operation
3650  *
3651  *	Standard SATA COMRESET w/o waiting or classification.
3652  *
3653  *	LOCKING:
3654  *	Kernel thread context (may sleep)
3655  *
3656  *	RETURNS:
3657  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3658  */
3659 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3660 		       unsigned long deadline)
3661 {
3662 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3663 	bool online;
3664 	int rc;
3665 
3666 	/* do hardreset */
3667 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3668 	return online ? -EAGAIN : rc;
3669 }
3670 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3671 
3672 /**
3673  *	ata_std_postreset - standard postreset callback
3674  *	@link: the target ata_link
3675  *	@classes: classes of attached devices
3676  *
3677  *	This function is invoked after a successful reset.  Note that
3678  *	the device might have been reset more than once using
3679  *	different reset methods before postreset is invoked.
3680  *
3681  *	LOCKING:
3682  *	Kernel thread context (may sleep)
3683  */
3684 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3685 {
3686 	u32 serror;
3687 
3688 	/* reset complete, clear SError */
3689 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3690 		sata_scr_write(link, SCR_ERROR, serror);
3691 
3692 	/* print link status */
3693 	sata_print_link_status(link);
3694 }
3695 EXPORT_SYMBOL_GPL(ata_std_postreset);
3696 
3697 /**
3698  *	ata_dev_same_device - Determine whether new ID matches configured device
3699  *	@dev: device to compare against
3700  *	@new_class: class of the new device
3701  *	@new_id: IDENTIFY page of the new device
3702  *
3703  *	Compare @new_class and @new_id against @dev and determine
3704  *	whether @dev is the device indicated by @new_class and
3705  *	@new_id.
3706  *
3707  *	LOCKING:
3708  *	None.
3709  *
3710  *	RETURNS:
3711  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3712  */
3713 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3714 			       const u16 *new_id)
3715 {
3716 	const u16 *old_id = dev->id;
3717 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3718 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3719 
3720 	if (dev->class != new_class) {
3721 		ata_dev_info(dev, "class mismatch %d != %d\n",
3722 			     dev->class, new_class);
3723 		return 0;
3724 	}
3725 
3726 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3727 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3728 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3729 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3730 
3731 	if (strcmp(model[0], model[1])) {
3732 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3733 			     model[0], model[1]);
3734 		return 0;
3735 	}
3736 
3737 	if (strcmp(serial[0], serial[1])) {
3738 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3739 			     serial[0], serial[1]);
3740 		return 0;
3741 	}
3742 
3743 	return 1;
3744 }
3745 
3746 /**
3747  *	ata_dev_reread_id - Re-read IDENTIFY data
3748  *	@dev: target ATA device
3749  *	@readid_flags: read ID flags
3750  *
3751  *	Re-read IDENTIFY page and make sure @dev is still attached to
3752  *	the port.
3753  *
3754  *	LOCKING:
3755  *	Kernel thread context (may sleep)
3756  *
3757  *	RETURNS:
3758  *	0 on success, negative errno otherwise
3759  */
3760 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3761 {
3762 	unsigned int class = dev->class;
3763 	u16 *id = (void *)dev->link->ap->sector_buf;
3764 	int rc;
3765 
3766 	/* read ID data */
3767 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3768 	if (rc)
3769 		return rc;
3770 
3771 	/* is the device still there? */
3772 	if (!ata_dev_same_device(dev, class, id))
3773 		return -ENODEV;
3774 
3775 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3776 	return 0;
3777 }
3778 
3779 /**
3780  *	ata_dev_revalidate - Revalidate ATA device
3781  *	@dev: device to revalidate
3782  *	@new_class: new class code
3783  *	@readid_flags: read ID flags
3784  *
3785  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3786  *	port and reconfigure it according to the new IDENTIFY page.
3787  *
3788  *	LOCKING:
3789  *	Kernel thread context (may sleep)
3790  *
3791  *	RETURNS:
3792  *	0 on success, negative errno otherwise
3793  */
3794 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3795 		       unsigned int readid_flags)
3796 {
3797 	u64 n_sectors = dev->n_sectors;
3798 	u64 n_native_sectors = dev->n_native_sectors;
3799 	int rc;
3800 
3801 	if (!ata_dev_enabled(dev))
3802 		return -ENODEV;
3803 
3804 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3805 	if (ata_class_enabled(new_class) &&
3806 	    new_class != ATA_DEV_ATA &&
3807 	    new_class != ATA_DEV_ATAPI &&
3808 	    new_class != ATA_DEV_ZAC &&
3809 	    new_class != ATA_DEV_SEMB) {
3810 		ata_dev_info(dev, "class mismatch %u != %u\n",
3811 			     dev->class, new_class);
3812 		rc = -ENODEV;
3813 		goto fail;
3814 	}
3815 
3816 	/* re-read ID */
3817 	rc = ata_dev_reread_id(dev, readid_flags);
3818 	if (rc)
3819 		goto fail;
3820 
3821 	/* configure device according to the new ID */
3822 	rc = ata_dev_configure(dev);
3823 	if (rc)
3824 		goto fail;
3825 
3826 	/* verify n_sectors hasn't changed */
3827 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3828 	    dev->n_sectors == n_sectors)
3829 		return 0;
3830 
3831 	/* n_sectors has changed */
3832 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3833 		     (unsigned long long)n_sectors,
3834 		     (unsigned long long)dev->n_sectors);
3835 
3836 	/*
3837 	 * Something could have caused HPA to be unlocked
3838 	 * involuntarily.  If n_native_sectors hasn't changed and the
3839 	 * new size matches it, keep the device.
3840 	 */
3841 	if (dev->n_native_sectors == n_native_sectors &&
3842 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3843 		ata_dev_warn(dev,
3844 			     "new n_sectors matches native, probably "
3845 			     "late HPA unlock, n_sectors updated\n");
3846 		/* use the larger n_sectors */
3847 		return 0;
3848 	}
3849 
3850 	/*
3851 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3852 	 * unlocking HPA in those cases.
3853 	 *
3854 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3855 	 */
3856 	if (dev->n_native_sectors == n_native_sectors &&
3857 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3858 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3859 		ata_dev_warn(dev,
3860 			     "old n_sectors matches native, probably "
3861 			     "late HPA lock, will try to unlock HPA\n");
3862 		/* try unlocking HPA */
3863 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3864 		rc = -EIO;
3865 	} else
3866 		rc = -ENODEV;
3867 
3868 	/* restore original n_[native_]sectors and fail */
3869 	dev->n_native_sectors = n_native_sectors;
3870 	dev->n_sectors = n_sectors;
3871  fail:
3872 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3873 	return rc;
3874 }
3875 
3876 struct ata_blacklist_entry {
3877 	const char *model_num;
3878 	const char *model_rev;
3879 	unsigned long horkage;
3880 };
3881 
3882 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3883 	/* Devices with DMA related problems under Linux */
3884 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3885 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3886 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3887 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3888 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3889 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3890 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3891 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3892 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3893 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3894 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3895 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3896 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3897 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3898 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3899 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3900 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3901 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3902 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3903 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3904 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3905 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3906 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3907 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3908 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3909 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3910 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3911 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3912 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3913 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3914 	/* Odd clown on sil3726/4726 PMPs */
3915 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3916 	/* Similar story with ASMedia 1092 */
3917 	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
3918 
3919 	/* Weird ATAPI devices */
3920 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3921 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3922 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3923 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3924 
3925 	/*
3926 	 * Causes silent data corruption with higher max sects.
3927 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3928 	 */
3929 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3930 
3931 	/*
3932 	 * These devices time out with higher max sects.
3933 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3934 	 */
3935 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3936 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3937 
3938 	/* Devices we expect to fail diagnostics */
3939 
3940 	/* Devices where NCQ should be avoided */
3941 	/* NCQ is slow */
3942 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3943 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ },
3944 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3945 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3946 	/* NCQ is broken */
3947 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3948 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3949 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3950 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3951 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3952 
3953 	/* Seagate NCQ + FLUSH CACHE firmware bug */
3954 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3955 						ATA_HORKAGE_FIRMWARE_WARN },
3956 
3957 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3958 						ATA_HORKAGE_FIRMWARE_WARN },
3959 
3960 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3961 						ATA_HORKAGE_FIRMWARE_WARN },
3962 
3963 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3964 						ATA_HORKAGE_FIRMWARE_WARN },
3965 
3966 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3967 	   the ST disks also have LPM issues */
3968 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3969 						ATA_HORKAGE_NOLPM },
3970 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3971 
3972 	/* Blacklist entries taken from Silicon Image 3124/3132
3973 	   Windows driver .inf file - also several Linux problem reports */
3974 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ },
3975 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ },
3976 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ },
3977 
3978 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3979 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ },
3980 
3981 	/* Sandisk SD7/8/9s lock up hard on large trims */
3982 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M },
3983 
3984 	/* devices which puke on READ_NATIVE_MAX */
3985 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA },
3986 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3987 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3988 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3989 
3990 	/* this one allows HPA unlocking but fails IOs on the area */
3991 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3992 
3993 	/* Devices which report 1 sector over size HPA */
3994 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE },
3995 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE },
3996 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE },
3997 
3998 	/* Devices which get the IVB wrong */
3999 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4000 	/* Maybe we should just blacklist TSSTcorp... */
4001 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB },
4002 
4003 	/* Devices that do not need bridging limits applied */
4004 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4005 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4006 
4007 	/* Devices which aren't very happy with higher link speeds */
4008 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS },
4009 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS },
4010 
4011 	/*
4012 	 * Devices which choke on SETXFER.  Applies only if both the
4013 	 * device and controller are SATA.
4014 	 */
4015 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4016 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4017 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4018 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4019 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4020 
4021 	/* These specific Pioneer models have LPM issues */
4022 	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_HORKAGE_NOLPM },
4023 	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_HORKAGE_NOLPM },
4024 
4025 	/* Crucial BX100 SSD 500GB has broken LPM support */
4026 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4027 
4028 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4029 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4030 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4031 						ATA_HORKAGE_NOLPM },
4032 	/* 512GB MX100 with newer firmware has only LPM issues */
4033 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4034 						ATA_HORKAGE_NOLPM },
4035 
4036 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4037 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4038 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4039 						ATA_HORKAGE_NOLPM },
4040 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4041 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4042 						ATA_HORKAGE_NOLPM },
4043 
4044 	/* These specific Samsung models/firmware-revs do not handle LPM well */
4045 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4046 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM },
4047 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM },
4048 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4049 
4050 	/* devices that don't properly handle queued TRIM commands */
4051 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4052 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4053 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4054 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4055 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4056 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4057 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4058 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4059 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4060 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4061 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4062 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4063 	{ "Samsung SSD 840 EVO*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4064 						ATA_HORKAGE_NO_DMA_LOG |
4065 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4066 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4067 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4068 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4069 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4070 	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4071 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4072 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4073 	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4074 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4075 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4076 	{ "SAMSUNG*MZ7LH*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4077 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4078 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4079 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4080 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4081 
4082 	/* devices that don't properly handle TRIM commands */
4083 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM },
4084 	{ "M88V29*",			NULL,	ATA_HORKAGE_NOTRIM },
4085 
4086 	/*
4087 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4088 	 * (Return Zero After Trim) flags in the ATA Command Set are
4089 	 * unreliable in the sense that they only define what happens if
4090 	 * the device successfully executed the DSM TRIM command. TRIM
4091 	 * is only advisory, however, and the device is free to silently
4092 	 * ignore all or parts of the request.
4093 	 *
4094 	 * Whitelist drives that are known to reliably return zeroes
4095 	 * after TRIM.
4096 	 */
4097 
4098 	/*
4099 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4100 	 * that model before whitelisting all other intel SSDs.
4101 	 */
4102 	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4103 
4104 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4105 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4106 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4107 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4108 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4109 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4110 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4111 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4112 
4113 	/*
4114 	 * Some WD SATA-I drives spin up and down erratically when the link
4115 	 * is put into the slumber mode.  We don't have full list of the
4116 	 * affected devices.  Disable LPM if the device matches one of the
4117 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4118 	 * lost too.
4119 	 *
4120 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4121 	 */
4122 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4123 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4124 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4125 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4126 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4127 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4128 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4129 
4130 	/*
4131 	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4132 	 * log page is accessed. Ensure we never ask for this log page with
4133 	 * these devices.
4134 	 */
4135 	{ "SATADOM-ML 3ME",		NULL,	ATA_HORKAGE_NO_LOG_DIR },
4136 
4137 	/* Buggy FUA */
4138 	{ "Maxtor",		"BANC1G10",	ATA_HORKAGE_NO_FUA },
4139 	{ "WDC*WD2500J*",	NULL,		ATA_HORKAGE_NO_FUA },
4140 	{ "OCZ-VERTEX*",	NULL,		ATA_HORKAGE_NO_FUA },
4141 	{ "INTEL*SSDSC2CT*",	NULL,		ATA_HORKAGE_NO_FUA },
4142 
4143 	/* End Marker */
4144 	{ }
4145 };
4146 
4147 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4148 {
4149 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4150 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4151 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4152 
4153 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4154 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4155 
4156 	while (ad->model_num) {
4157 		if (glob_match(ad->model_num, model_num)) {
4158 			if (ad->model_rev == NULL)
4159 				return ad->horkage;
4160 			if (glob_match(ad->model_rev, model_rev))
4161 				return ad->horkage;
4162 		}
4163 		ad++;
4164 	}
4165 	return 0;
4166 }
4167 
4168 static int ata_dma_blacklisted(const struct ata_device *dev)
4169 {
4170 	/* We don't support polling DMA.
4171 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4172 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4173 	 */
4174 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4175 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4176 		return 1;
4177 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4178 }
4179 
4180 /**
4181  *	ata_is_40wire		-	check drive side detection
4182  *	@dev: device
4183  *
4184  *	Perform drive side detection decoding, allowing for device vendors
4185  *	who can't follow the documentation.
4186  */
4187 
4188 static int ata_is_40wire(struct ata_device *dev)
4189 {
4190 	if (dev->horkage & ATA_HORKAGE_IVB)
4191 		return ata_drive_40wire_relaxed(dev->id);
4192 	return ata_drive_40wire(dev->id);
4193 }
4194 
4195 /**
4196  *	cable_is_40wire		-	40/80/SATA decider
4197  *	@ap: port to consider
4198  *
4199  *	This function encapsulates the policy for speed management
4200  *	in one place. At the moment we don't cache the result but
4201  *	there is a good case for setting ap->cbl to the result when
4202  *	we are called with unknown cables (and figuring out if it
4203  *	impacts hotplug at all).
4204  *
4205  *	Return 1 if the cable appears to be 40 wire.
4206  */
4207 
4208 static int cable_is_40wire(struct ata_port *ap)
4209 {
4210 	struct ata_link *link;
4211 	struct ata_device *dev;
4212 
4213 	/* If the controller thinks we are 40 wire, we are. */
4214 	if (ap->cbl == ATA_CBL_PATA40)
4215 		return 1;
4216 
4217 	/* If the controller thinks we are 80 wire, we are. */
4218 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4219 		return 0;
4220 
4221 	/* If the system is known to be 40 wire short cable (eg
4222 	 * laptop), then we allow 80 wire modes even if the drive
4223 	 * isn't sure.
4224 	 */
4225 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4226 		return 0;
4227 
4228 	/* If the controller doesn't know, we scan.
4229 	 *
4230 	 * Note: We look for all 40 wire detects at this point.  Any
4231 	 *       80 wire detect is taken to be 80 wire cable because
4232 	 * - in many setups only the one drive (slave if present) will
4233 	 *   give a valid detect
4234 	 * - if you have a non detect capable drive you don't want it
4235 	 *   to colour the choice
4236 	 */
4237 	ata_for_each_link(link, ap, EDGE) {
4238 		ata_for_each_dev(dev, link, ENABLED) {
4239 			if (!ata_is_40wire(dev))
4240 				return 0;
4241 		}
4242 	}
4243 	return 1;
4244 }
4245 
4246 /**
4247  *	ata_dev_xfermask - Compute supported xfermask of the given device
4248  *	@dev: Device to compute xfermask for
4249  *
4250  *	Compute supported xfermask of @dev and store it in
4251  *	dev->*_mask.  This function is responsible for applying all
4252  *	known limits including host controller limits, device
4253  *	blacklist, etc...
4254  *
4255  *	LOCKING:
4256  *	None.
4257  */
4258 static void ata_dev_xfermask(struct ata_device *dev)
4259 {
4260 	struct ata_link *link = dev->link;
4261 	struct ata_port *ap = link->ap;
4262 	struct ata_host *host = ap->host;
4263 	unsigned int xfer_mask;
4264 
4265 	/* controller modes available */
4266 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4267 				      ap->mwdma_mask, ap->udma_mask);
4268 
4269 	/* drive modes available */
4270 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4271 				       dev->mwdma_mask, dev->udma_mask);
4272 	xfer_mask &= ata_id_xfermask(dev->id);
4273 
4274 	/*
4275 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4276 	 *	cable
4277 	 */
4278 	if (ata_dev_pair(dev)) {
4279 		/* No PIO5 or PIO6 */
4280 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4281 		/* No MWDMA3 or MWDMA 4 */
4282 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4283 	}
4284 
4285 	if (ata_dma_blacklisted(dev)) {
4286 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4287 		ata_dev_warn(dev,
4288 			     "device is on DMA blacklist, disabling DMA\n");
4289 	}
4290 
4291 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4292 	    host->simplex_claimed && host->simplex_claimed != ap) {
4293 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4294 		ata_dev_warn(dev,
4295 			     "simplex DMA is claimed by other device, disabling DMA\n");
4296 	}
4297 
4298 	if (ap->flags & ATA_FLAG_NO_IORDY)
4299 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4300 
4301 	if (ap->ops->mode_filter)
4302 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4303 
4304 	/* Apply cable rule here.  Don't apply it early because when
4305 	 * we handle hot plug the cable type can itself change.
4306 	 * Check this last so that we know if the transfer rate was
4307 	 * solely limited by the cable.
4308 	 * Unknown or 80 wire cables reported host side are checked
4309 	 * drive side as well. Cases where we know a 40wire cable
4310 	 * is used safely for 80 are not checked here.
4311 	 */
4312 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4313 		/* UDMA/44 or higher would be available */
4314 		if (cable_is_40wire(ap)) {
4315 			ata_dev_warn(dev,
4316 				     "limited to UDMA/33 due to 40-wire cable\n");
4317 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4318 		}
4319 
4320 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4321 			    &dev->mwdma_mask, &dev->udma_mask);
4322 }
4323 
4324 /**
4325  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4326  *	@dev: Device to which command will be sent
4327  *
4328  *	Issue SET FEATURES - XFER MODE command to device @dev
4329  *	on port @ap.
4330  *
4331  *	LOCKING:
4332  *	PCI/etc. bus probe sem.
4333  *
4334  *	RETURNS:
4335  *	0 on success, AC_ERR_* mask otherwise.
4336  */
4337 
4338 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4339 {
4340 	struct ata_taskfile tf;
4341 
4342 	/* set up set-features taskfile */
4343 	ata_dev_dbg(dev, "set features - xfer mode\n");
4344 
4345 	/* Some controllers and ATAPI devices show flaky interrupt
4346 	 * behavior after setting xfer mode.  Use polling instead.
4347 	 */
4348 	ata_tf_init(dev, &tf);
4349 	tf.command = ATA_CMD_SET_FEATURES;
4350 	tf.feature = SETFEATURES_XFER;
4351 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4352 	tf.protocol = ATA_PROT_NODATA;
4353 	/* If we are using IORDY we must send the mode setting command */
4354 	if (ata_pio_need_iordy(dev))
4355 		tf.nsect = dev->xfer_mode;
4356 	/* If the device has IORDY and the controller does not - turn it off */
4357  	else if (ata_id_has_iordy(dev->id))
4358 		tf.nsect = 0x01;
4359 	else /* In the ancient relic department - skip all of this */
4360 		return 0;
4361 
4362 	/*
4363 	 * On some disks, this command causes spin-up, so we need longer
4364 	 * timeout.
4365 	 */
4366 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4367 }
4368 
4369 /**
4370  *	ata_dev_set_feature - Issue SET FEATURES
4371  *	@dev: Device to which command will be sent
4372  *	@subcmd: The SET FEATURES subcommand to be sent
4373  *	@action: The sector count represents a subcommand specific action
4374  *
4375  *	Issue SET FEATURES command to device @dev on port @ap with sector count
4376  *
4377  *	LOCKING:
4378  *	PCI/etc. bus probe sem.
4379  *
4380  *	RETURNS:
4381  *	0 on success, AC_ERR_* mask otherwise.
4382  */
4383 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4384 {
4385 	struct ata_taskfile tf;
4386 	unsigned int timeout = 0;
4387 
4388 	/* set up set-features taskfile */
4389 	ata_dev_dbg(dev, "set features\n");
4390 
4391 	ata_tf_init(dev, &tf);
4392 	tf.command = ATA_CMD_SET_FEATURES;
4393 	tf.feature = subcmd;
4394 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4395 	tf.protocol = ATA_PROT_NODATA;
4396 	tf.nsect = action;
4397 
4398 	if (subcmd == SETFEATURES_SPINUP)
4399 		timeout = ata_probe_timeout ?
4400 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4401 
4402 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4403 }
4404 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4405 
4406 /**
4407  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4408  *	@dev: Device to which command will be sent
4409  *	@heads: Number of heads (taskfile parameter)
4410  *	@sectors: Number of sectors (taskfile parameter)
4411  *
4412  *	LOCKING:
4413  *	Kernel thread context (may sleep)
4414  *
4415  *	RETURNS:
4416  *	0 on success, AC_ERR_* mask otherwise.
4417  */
4418 static unsigned int ata_dev_init_params(struct ata_device *dev,
4419 					u16 heads, u16 sectors)
4420 {
4421 	struct ata_taskfile tf;
4422 	unsigned int err_mask;
4423 
4424 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4425 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4426 		return AC_ERR_INVALID;
4427 
4428 	/* set up init dev params taskfile */
4429 	ata_dev_dbg(dev, "init dev params \n");
4430 
4431 	ata_tf_init(dev, &tf);
4432 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4433 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4434 	tf.protocol = ATA_PROT_NODATA;
4435 	tf.nsect = sectors;
4436 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4437 
4438 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4439 	/* A clean abort indicates an original or just out of spec drive
4440 	   and we should continue as we issue the setup based on the
4441 	   drive reported working geometry */
4442 	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4443 		err_mask = 0;
4444 
4445 	return err_mask;
4446 }
4447 
4448 /**
4449  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4450  *	@qc: Metadata associated with taskfile to check
4451  *
4452  *	Allow low-level driver to filter ATA PACKET commands, returning
4453  *	a status indicating whether or not it is OK to use DMA for the
4454  *	supplied PACKET command.
4455  *
4456  *	LOCKING:
4457  *	spin_lock_irqsave(host lock)
4458  *
4459  *	RETURNS: 0 when ATAPI DMA can be used
4460  *               nonzero otherwise
4461  */
4462 int atapi_check_dma(struct ata_queued_cmd *qc)
4463 {
4464 	struct ata_port *ap = qc->ap;
4465 
4466 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4467 	 * few ATAPI devices choke on such DMA requests.
4468 	 */
4469 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4470 	    unlikely(qc->nbytes & 15))
4471 		return 1;
4472 
4473 	if (ap->ops->check_atapi_dma)
4474 		return ap->ops->check_atapi_dma(qc);
4475 
4476 	return 0;
4477 }
4478 
4479 /**
4480  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4481  *	@qc: ATA command in question
4482  *
4483  *	Non-NCQ commands cannot run with any other command, NCQ or
4484  *	not.  As upper layer only knows the queue depth, we are
4485  *	responsible for maintaining exclusion.  This function checks
4486  *	whether a new command @qc can be issued.
4487  *
4488  *	LOCKING:
4489  *	spin_lock_irqsave(host lock)
4490  *
4491  *	RETURNS:
4492  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4493  */
4494 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4495 {
4496 	struct ata_link *link = qc->dev->link;
4497 
4498 	if (ata_is_ncq(qc->tf.protocol)) {
4499 		if (!ata_tag_valid(link->active_tag))
4500 			return 0;
4501 	} else {
4502 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4503 			return 0;
4504 	}
4505 
4506 	return ATA_DEFER_LINK;
4507 }
4508 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4509 
4510 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4511 {
4512 	return AC_ERR_OK;
4513 }
4514 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4515 
4516 /**
4517  *	ata_sg_init - Associate command with scatter-gather table.
4518  *	@qc: Command to be associated
4519  *	@sg: Scatter-gather table.
4520  *	@n_elem: Number of elements in s/g table.
4521  *
4522  *	Initialize the data-related elements of queued_cmd @qc
4523  *	to point to a scatter-gather table @sg, containing @n_elem
4524  *	elements.
4525  *
4526  *	LOCKING:
4527  *	spin_lock_irqsave(host lock)
4528  */
4529 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4530 		 unsigned int n_elem)
4531 {
4532 	qc->sg = sg;
4533 	qc->n_elem = n_elem;
4534 	qc->cursg = qc->sg;
4535 }
4536 
4537 #ifdef CONFIG_HAS_DMA
4538 
4539 /**
4540  *	ata_sg_clean - Unmap DMA memory associated with command
4541  *	@qc: Command containing DMA memory to be released
4542  *
4543  *	Unmap all mapped DMA memory associated with this command.
4544  *
4545  *	LOCKING:
4546  *	spin_lock_irqsave(host lock)
4547  */
4548 static void ata_sg_clean(struct ata_queued_cmd *qc)
4549 {
4550 	struct ata_port *ap = qc->ap;
4551 	struct scatterlist *sg = qc->sg;
4552 	int dir = qc->dma_dir;
4553 
4554 	WARN_ON_ONCE(sg == NULL);
4555 
4556 	if (qc->n_elem)
4557 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4558 
4559 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4560 	qc->sg = NULL;
4561 }
4562 
4563 /**
4564  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4565  *	@qc: Command with scatter-gather table to be mapped.
4566  *
4567  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4568  *
4569  *	LOCKING:
4570  *	spin_lock_irqsave(host lock)
4571  *
4572  *	RETURNS:
4573  *	Zero on success, negative on error.
4574  *
4575  */
4576 static int ata_sg_setup(struct ata_queued_cmd *qc)
4577 {
4578 	struct ata_port *ap = qc->ap;
4579 	unsigned int n_elem;
4580 
4581 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4582 	if (n_elem < 1)
4583 		return -1;
4584 
4585 	qc->orig_n_elem = qc->n_elem;
4586 	qc->n_elem = n_elem;
4587 	qc->flags |= ATA_QCFLAG_DMAMAP;
4588 
4589 	return 0;
4590 }
4591 
4592 #else /* !CONFIG_HAS_DMA */
4593 
4594 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4595 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4596 
4597 #endif /* !CONFIG_HAS_DMA */
4598 
4599 /**
4600  *	swap_buf_le16 - swap halves of 16-bit words in place
4601  *	@buf:  Buffer to swap
4602  *	@buf_words:  Number of 16-bit words in buffer.
4603  *
4604  *	Swap halves of 16-bit words if needed to convert from
4605  *	little-endian byte order to native cpu byte order, or
4606  *	vice-versa.
4607  *
4608  *	LOCKING:
4609  *	Inherited from caller.
4610  */
4611 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4612 {
4613 #ifdef __BIG_ENDIAN
4614 	unsigned int i;
4615 
4616 	for (i = 0; i < buf_words; i++)
4617 		buf[i] = le16_to_cpu(buf[i]);
4618 #endif /* __BIG_ENDIAN */
4619 }
4620 
4621 /**
4622  *	ata_qc_free - free unused ata_queued_cmd
4623  *	@qc: Command to complete
4624  *
4625  *	Designed to free unused ata_queued_cmd object
4626  *	in case something prevents using it.
4627  *
4628  *	LOCKING:
4629  *	spin_lock_irqsave(host lock)
4630  */
4631 void ata_qc_free(struct ata_queued_cmd *qc)
4632 {
4633 	qc->flags = 0;
4634 	if (ata_tag_valid(qc->tag))
4635 		qc->tag = ATA_TAG_POISON;
4636 }
4637 
4638 void __ata_qc_complete(struct ata_queued_cmd *qc)
4639 {
4640 	struct ata_port *ap;
4641 	struct ata_link *link;
4642 
4643 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4644 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4645 	ap = qc->ap;
4646 	link = qc->dev->link;
4647 
4648 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4649 		ata_sg_clean(qc);
4650 
4651 	/* command should be marked inactive atomically with qc completion */
4652 	if (ata_is_ncq(qc->tf.protocol)) {
4653 		link->sactive &= ~(1 << qc->hw_tag);
4654 		if (!link->sactive)
4655 			ap->nr_active_links--;
4656 	} else {
4657 		link->active_tag = ATA_TAG_POISON;
4658 		ap->nr_active_links--;
4659 	}
4660 
4661 	/* clear exclusive status */
4662 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4663 		     ap->excl_link == link))
4664 		ap->excl_link = NULL;
4665 
4666 	/* atapi: mark qc as inactive to prevent the interrupt handler
4667 	 * from completing the command twice later, before the error handler
4668 	 * is called. (when rc != 0 and atapi request sense is needed)
4669 	 */
4670 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4671 	ap->qc_active &= ~(1ULL << qc->tag);
4672 
4673 	/* call completion callback */
4674 	qc->complete_fn(qc);
4675 }
4676 
4677 static void fill_result_tf(struct ata_queued_cmd *qc)
4678 {
4679 	struct ata_port *ap = qc->ap;
4680 
4681 	qc->result_tf.flags = qc->tf.flags;
4682 	ap->ops->qc_fill_rtf(qc);
4683 }
4684 
4685 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4686 {
4687 	struct ata_device *dev = qc->dev;
4688 
4689 	if (!ata_is_data(qc->tf.protocol))
4690 		return;
4691 
4692 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4693 		return;
4694 
4695 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4696 }
4697 
4698 /**
4699  *	ata_qc_complete - Complete an active ATA command
4700  *	@qc: Command to complete
4701  *
4702  *	Indicate to the mid and upper layers that an ATA command has
4703  *	completed, with either an ok or not-ok status.
4704  *
4705  *	Refrain from calling this function multiple times when
4706  *	successfully completing multiple NCQ commands.
4707  *	ata_qc_complete_multiple() should be used instead, which will
4708  *	properly update IRQ expect state.
4709  *
4710  *	LOCKING:
4711  *	spin_lock_irqsave(host lock)
4712  */
4713 void ata_qc_complete(struct ata_queued_cmd *qc)
4714 {
4715 	struct ata_port *ap = qc->ap;
4716 
4717 	/* Trigger the LED (if available) */
4718 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4719 
4720 	/* XXX: New EH and old EH use different mechanisms to
4721 	 * synchronize EH with regular execution path.
4722 	 *
4723 	 * In new EH, a qc owned by EH is marked with ATA_QCFLAG_EH.
4724 	 * Normal execution path is responsible for not accessing a
4725 	 * qc owned by EH.  libata core enforces the rule by returning NULL
4726 	 * from ata_qc_from_tag() for qcs owned by EH.
4727 	 *
4728 	 * Old EH depends on ata_qc_complete() nullifying completion
4729 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4730 	 * not synchronize with interrupt handler.  Only PIO task is
4731 	 * taken care of.
4732 	 */
4733 	if (ap->ops->error_handler) {
4734 		struct ata_device *dev = qc->dev;
4735 		struct ata_eh_info *ehi = &dev->link->eh_info;
4736 
4737 		if (unlikely(qc->err_mask))
4738 			qc->flags |= ATA_QCFLAG_EH;
4739 
4740 		/*
4741 		 * Finish internal commands without any further processing
4742 		 * and always with the result TF filled.
4743 		 */
4744 		if (unlikely(ata_tag_internal(qc->tag))) {
4745 			fill_result_tf(qc);
4746 			trace_ata_qc_complete_internal(qc);
4747 			__ata_qc_complete(qc);
4748 			return;
4749 		}
4750 
4751 		/*
4752 		 * Non-internal qc has failed.  Fill the result TF and
4753 		 * summon EH.
4754 		 */
4755 		if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4756 			fill_result_tf(qc);
4757 			trace_ata_qc_complete_failed(qc);
4758 			ata_qc_schedule_eh(qc);
4759 			return;
4760 		}
4761 
4762 		WARN_ON_ONCE(ata_port_is_frozen(ap));
4763 
4764 		/* read result TF if requested */
4765 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4766 			fill_result_tf(qc);
4767 
4768 		trace_ata_qc_complete_done(qc);
4769 		/* Some commands need post-processing after successful
4770 		 * completion.
4771 		 */
4772 		switch (qc->tf.command) {
4773 		case ATA_CMD_SET_FEATURES:
4774 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4775 			    qc->tf.feature != SETFEATURES_WC_OFF &&
4776 			    qc->tf.feature != SETFEATURES_RA_ON &&
4777 			    qc->tf.feature != SETFEATURES_RA_OFF)
4778 				break;
4779 			fallthrough;
4780 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4781 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4782 			/* revalidate device */
4783 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4784 			ata_port_schedule_eh(ap);
4785 			break;
4786 
4787 		case ATA_CMD_SLEEP:
4788 			dev->flags |= ATA_DFLAG_SLEEPING;
4789 			break;
4790 		}
4791 
4792 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4793 			ata_verify_xfer(qc);
4794 
4795 		__ata_qc_complete(qc);
4796 	} else {
4797 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4798 			return;
4799 
4800 		/* read result TF if failed or requested */
4801 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4802 			fill_result_tf(qc);
4803 
4804 		__ata_qc_complete(qc);
4805 	}
4806 }
4807 EXPORT_SYMBOL_GPL(ata_qc_complete);
4808 
4809 /**
4810  *	ata_qc_get_active - get bitmask of active qcs
4811  *	@ap: port in question
4812  *
4813  *	LOCKING:
4814  *	spin_lock_irqsave(host lock)
4815  *
4816  *	RETURNS:
4817  *	Bitmask of active qcs
4818  */
4819 u64 ata_qc_get_active(struct ata_port *ap)
4820 {
4821 	u64 qc_active = ap->qc_active;
4822 
4823 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4824 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4825 		qc_active |= (1 << 0);
4826 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4827 	}
4828 
4829 	return qc_active;
4830 }
4831 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4832 
4833 /**
4834  *	ata_qc_issue - issue taskfile to device
4835  *	@qc: command to issue to device
4836  *
4837  *	Prepare an ATA command to submission to device.
4838  *	This includes mapping the data into a DMA-able
4839  *	area, filling in the S/G table, and finally
4840  *	writing the taskfile to hardware, starting the command.
4841  *
4842  *	LOCKING:
4843  *	spin_lock_irqsave(host lock)
4844  */
4845 void ata_qc_issue(struct ata_queued_cmd *qc)
4846 {
4847 	struct ata_port *ap = qc->ap;
4848 	struct ata_link *link = qc->dev->link;
4849 	u8 prot = qc->tf.protocol;
4850 
4851 	/* Make sure only one non-NCQ command is outstanding.  The
4852 	 * check is skipped for old EH because it reuses active qc to
4853 	 * request ATAPI sense.
4854 	 */
4855 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4856 
4857 	if (ata_is_ncq(prot)) {
4858 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4859 
4860 		if (!link->sactive)
4861 			ap->nr_active_links++;
4862 		link->sactive |= 1 << qc->hw_tag;
4863 	} else {
4864 		WARN_ON_ONCE(link->sactive);
4865 
4866 		ap->nr_active_links++;
4867 		link->active_tag = qc->tag;
4868 	}
4869 
4870 	qc->flags |= ATA_QCFLAG_ACTIVE;
4871 	ap->qc_active |= 1ULL << qc->tag;
4872 
4873 	/*
4874 	 * We guarantee to LLDs that they will have at least one
4875 	 * non-zero sg if the command is a data command.
4876 	 */
4877 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4878 		goto sys_err;
4879 
4880 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4881 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4882 		if (ata_sg_setup(qc))
4883 			goto sys_err;
4884 
4885 	/* if device is sleeping, schedule reset and abort the link */
4886 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4887 		link->eh_info.action |= ATA_EH_RESET;
4888 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4889 		ata_link_abort(link);
4890 		return;
4891 	}
4892 
4893 	trace_ata_qc_prep(qc);
4894 	qc->err_mask |= ap->ops->qc_prep(qc);
4895 	if (unlikely(qc->err_mask))
4896 		goto err;
4897 	trace_ata_qc_issue(qc);
4898 	qc->err_mask |= ap->ops->qc_issue(qc);
4899 	if (unlikely(qc->err_mask))
4900 		goto err;
4901 	return;
4902 
4903 sys_err:
4904 	qc->err_mask |= AC_ERR_SYSTEM;
4905 err:
4906 	ata_qc_complete(qc);
4907 }
4908 
4909 /**
4910  *	ata_phys_link_online - test whether the given link is online
4911  *	@link: ATA link to test
4912  *
4913  *	Test whether @link is online.  Note that this function returns
4914  *	0 if online status of @link cannot be obtained, so
4915  *	ata_link_online(link) != !ata_link_offline(link).
4916  *
4917  *	LOCKING:
4918  *	None.
4919  *
4920  *	RETURNS:
4921  *	True if the port online status is available and online.
4922  */
4923 bool ata_phys_link_online(struct ata_link *link)
4924 {
4925 	u32 sstatus;
4926 
4927 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4928 	    ata_sstatus_online(sstatus))
4929 		return true;
4930 	return false;
4931 }
4932 
4933 /**
4934  *	ata_phys_link_offline - test whether the given link is offline
4935  *	@link: ATA link to test
4936  *
4937  *	Test whether @link is offline.  Note that this function
4938  *	returns 0 if offline status of @link cannot be obtained, so
4939  *	ata_link_online(link) != !ata_link_offline(link).
4940  *
4941  *	LOCKING:
4942  *	None.
4943  *
4944  *	RETURNS:
4945  *	True if the port offline status is available and offline.
4946  */
4947 bool ata_phys_link_offline(struct ata_link *link)
4948 {
4949 	u32 sstatus;
4950 
4951 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4952 	    !ata_sstatus_online(sstatus))
4953 		return true;
4954 	return false;
4955 }
4956 
4957 /**
4958  *	ata_link_online - test whether the given link is online
4959  *	@link: ATA link to test
4960  *
4961  *	Test whether @link is online.  This is identical to
4962  *	ata_phys_link_online() when there's no slave link.  When
4963  *	there's a slave link, this function should only be called on
4964  *	the master link and will return true if any of M/S links is
4965  *	online.
4966  *
4967  *	LOCKING:
4968  *	None.
4969  *
4970  *	RETURNS:
4971  *	True if the port online status is available and online.
4972  */
4973 bool ata_link_online(struct ata_link *link)
4974 {
4975 	struct ata_link *slave = link->ap->slave_link;
4976 
4977 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4978 
4979 	return ata_phys_link_online(link) ||
4980 		(slave && ata_phys_link_online(slave));
4981 }
4982 EXPORT_SYMBOL_GPL(ata_link_online);
4983 
4984 /**
4985  *	ata_link_offline - test whether the given link is offline
4986  *	@link: ATA link to test
4987  *
4988  *	Test whether @link is offline.  This is identical to
4989  *	ata_phys_link_offline() when there's no slave link.  When
4990  *	there's a slave link, this function should only be called on
4991  *	the master link and will return true if both M/S links are
4992  *	offline.
4993  *
4994  *	LOCKING:
4995  *	None.
4996  *
4997  *	RETURNS:
4998  *	True if the port offline status is available and offline.
4999  */
5000 bool ata_link_offline(struct ata_link *link)
5001 {
5002 	struct ata_link *slave = link->ap->slave_link;
5003 
5004 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5005 
5006 	return ata_phys_link_offline(link) &&
5007 		(!slave || ata_phys_link_offline(slave));
5008 }
5009 EXPORT_SYMBOL_GPL(ata_link_offline);
5010 
5011 #ifdef CONFIG_PM
5012 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5013 				unsigned int action, unsigned int ehi_flags,
5014 				bool async)
5015 {
5016 	struct ata_link *link;
5017 	unsigned long flags;
5018 
5019 	/* Previous resume operation might still be in
5020 	 * progress.  Wait for PM_PENDING to clear.
5021 	 */
5022 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5023 		ata_port_wait_eh(ap);
5024 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5025 	}
5026 
5027 	/* request PM ops to EH */
5028 	spin_lock_irqsave(ap->lock, flags);
5029 
5030 	ap->pm_mesg = mesg;
5031 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5032 	ata_for_each_link(link, ap, HOST_FIRST) {
5033 		link->eh_info.action |= action;
5034 		link->eh_info.flags |= ehi_flags;
5035 	}
5036 
5037 	ata_port_schedule_eh(ap);
5038 
5039 	spin_unlock_irqrestore(ap->lock, flags);
5040 
5041 	if (!async) {
5042 		ata_port_wait_eh(ap);
5043 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5044 	}
5045 }
5046 
5047 /*
5048  * On some hardware, device fails to respond after spun down for suspend.  As
5049  * the device won't be used before being resumed, we don't need to touch the
5050  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5051  *
5052  * http://thread.gmane.org/gmane.linux.ide/46764
5053  */
5054 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5055 						 | ATA_EHI_NO_AUTOPSY
5056 						 | ATA_EHI_NO_RECOVERY;
5057 
5058 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5059 {
5060 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5061 }
5062 
5063 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5064 {
5065 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5066 }
5067 
5068 static int ata_port_pm_suspend(struct device *dev)
5069 {
5070 	struct ata_port *ap = to_ata_port(dev);
5071 
5072 	if (pm_runtime_suspended(dev))
5073 		return 0;
5074 
5075 	ata_port_suspend(ap, PMSG_SUSPEND);
5076 	return 0;
5077 }
5078 
5079 static int ata_port_pm_freeze(struct device *dev)
5080 {
5081 	struct ata_port *ap = to_ata_port(dev);
5082 
5083 	if (pm_runtime_suspended(dev))
5084 		return 0;
5085 
5086 	ata_port_suspend(ap, PMSG_FREEZE);
5087 	return 0;
5088 }
5089 
5090 static int ata_port_pm_poweroff(struct device *dev)
5091 {
5092 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5093 	return 0;
5094 }
5095 
5096 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5097 						| ATA_EHI_QUIET;
5098 
5099 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5100 {
5101 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5102 }
5103 
5104 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5105 {
5106 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5107 }
5108 
5109 static int ata_port_pm_resume(struct device *dev)
5110 {
5111 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5112 	pm_runtime_disable(dev);
5113 	pm_runtime_set_active(dev);
5114 	pm_runtime_enable(dev);
5115 	return 0;
5116 }
5117 
5118 /*
5119  * For ODDs, the upper layer will poll for media change every few seconds,
5120  * which will make it enter and leave suspend state every few seconds. And
5121  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5122  * is very little and the ODD may malfunction after constantly being reset.
5123  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5124  * ODD is attached to the port.
5125  */
5126 static int ata_port_runtime_idle(struct device *dev)
5127 {
5128 	struct ata_port *ap = to_ata_port(dev);
5129 	struct ata_link *link;
5130 	struct ata_device *adev;
5131 
5132 	ata_for_each_link(link, ap, HOST_FIRST) {
5133 		ata_for_each_dev(adev, link, ENABLED)
5134 			if (adev->class == ATA_DEV_ATAPI &&
5135 			    !zpodd_dev_enabled(adev))
5136 				return -EBUSY;
5137 	}
5138 
5139 	return 0;
5140 }
5141 
5142 static int ata_port_runtime_suspend(struct device *dev)
5143 {
5144 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5145 	return 0;
5146 }
5147 
5148 static int ata_port_runtime_resume(struct device *dev)
5149 {
5150 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5151 	return 0;
5152 }
5153 
5154 static const struct dev_pm_ops ata_port_pm_ops = {
5155 	.suspend = ata_port_pm_suspend,
5156 	.resume = ata_port_pm_resume,
5157 	.freeze = ata_port_pm_freeze,
5158 	.thaw = ata_port_pm_resume,
5159 	.poweroff = ata_port_pm_poweroff,
5160 	.restore = ata_port_pm_resume,
5161 
5162 	.runtime_suspend = ata_port_runtime_suspend,
5163 	.runtime_resume = ata_port_runtime_resume,
5164 	.runtime_idle = ata_port_runtime_idle,
5165 };
5166 
5167 /* sas ports don't participate in pm runtime management of ata_ports,
5168  * and need to resume ata devices at the domain level, not the per-port
5169  * level. sas suspend/resume is async to allow parallel port recovery
5170  * since sas has multiple ata_port instances per Scsi_Host.
5171  */
5172 void ata_sas_port_suspend(struct ata_port *ap)
5173 {
5174 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5175 }
5176 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5177 
5178 void ata_sas_port_resume(struct ata_port *ap)
5179 {
5180 	ata_port_resume_async(ap, PMSG_RESUME);
5181 }
5182 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5183 
5184 /**
5185  *	ata_host_suspend - suspend host
5186  *	@host: host to suspend
5187  *	@mesg: PM message
5188  *
5189  *	Suspend @host.  Actual operation is performed by port suspend.
5190  */
5191 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5192 {
5193 	host->dev->power.power_state = mesg;
5194 }
5195 EXPORT_SYMBOL_GPL(ata_host_suspend);
5196 
5197 /**
5198  *	ata_host_resume - resume host
5199  *	@host: host to resume
5200  *
5201  *	Resume @host.  Actual operation is performed by port resume.
5202  */
5203 void ata_host_resume(struct ata_host *host)
5204 {
5205 	host->dev->power.power_state = PMSG_ON;
5206 }
5207 EXPORT_SYMBOL_GPL(ata_host_resume);
5208 #endif
5209 
5210 const struct device_type ata_port_type = {
5211 	.name = "ata_port",
5212 #ifdef CONFIG_PM
5213 	.pm = &ata_port_pm_ops,
5214 #endif
5215 };
5216 
5217 /**
5218  *	ata_dev_init - Initialize an ata_device structure
5219  *	@dev: Device structure to initialize
5220  *
5221  *	Initialize @dev in preparation for probing.
5222  *
5223  *	LOCKING:
5224  *	Inherited from caller.
5225  */
5226 void ata_dev_init(struct ata_device *dev)
5227 {
5228 	struct ata_link *link = ata_dev_phys_link(dev);
5229 	struct ata_port *ap = link->ap;
5230 	unsigned long flags;
5231 
5232 	/* SATA spd limit is bound to the attached device, reset together */
5233 	link->sata_spd_limit = link->hw_sata_spd_limit;
5234 	link->sata_spd = 0;
5235 
5236 	/* High bits of dev->flags are used to record warm plug
5237 	 * requests which occur asynchronously.  Synchronize using
5238 	 * host lock.
5239 	 */
5240 	spin_lock_irqsave(ap->lock, flags);
5241 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5242 	dev->horkage = 0;
5243 	spin_unlock_irqrestore(ap->lock, flags);
5244 
5245 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5246 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5247 	dev->pio_mask = UINT_MAX;
5248 	dev->mwdma_mask = UINT_MAX;
5249 	dev->udma_mask = UINT_MAX;
5250 }
5251 
5252 /**
5253  *	ata_link_init - Initialize an ata_link structure
5254  *	@ap: ATA port link is attached to
5255  *	@link: Link structure to initialize
5256  *	@pmp: Port multiplier port number
5257  *
5258  *	Initialize @link.
5259  *
5260  *	LOCKING:
5261  *	Kernel thread context (may sleep)
5262  */
5263 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5264 {
5265 	int i;
5266 
5267 	/* clear everything except for devices */
5268 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5269 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5270 
5271 	link->ap = ap;
5272 	link->pmp = pmp;
5273 	link->active_tag = ATA_TAG_POISON;
5274 	link->hw_sata_spd_limit = UINT_MAX;
5275 
5276 	/* can't use iterator, ap isn't initialized yet */
5277 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5278 		struct ata_device *dev = &link->device[i];
5279 
5280 		dev->link = link;
5281 		dev->devno = dev - link->device;
5282 #ifdef CONFIG_ATA_ACPI
5283 		dev->gtf_filter = ata_acpi_gtf_filter;
5284 #endif
5285 		ata_dev_init(dev);
5286 	}
5287 }
5288 
5289 /**
5290  *	sata_link_init_spd - Initialize link->sata_spd_limit
5291  *	@link: Link to configure sata_spd_limit for
5292  *
5293  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5294  *	configured value.
5295  *
5296  *	LOCKING:
5297  *	Kernel thread context (may sleep).
5298  *
5299  *	RETURNS:
5300  *	0 on success, -errno on failure.
5301  */
5302 int sata_link_init_spd(struct ata_link *link)
5303 {
5304 	u8 spd;
5305 	int rc;
5306 
5307 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5308 	if (rc)
5309 		return rc;
5310 
5311 	spd = (link->saved_scontrol >> 4) & 0xf;
5312 	if (spd)
5313 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5314 
5315 	ata_force_link_limits(link);
5316 
5317 	link->sata_spd_limit = link->hw_sata_spd_limit;
5318 
5319 	return 0;
5320 }
5321 
5322 /**
5323  *	ata_port_alloc - allocate and initialize basic ATA port resources
5324  *	@host: ATA host this allocated port belongs to
5325  *
5326  *	Allocate and initialize basic ATA port resources.
5327  *
5328  *	RETURNS:
5329  *	Allocate ATA port on success, NULL on failure.
5330  *
5331  *	LOCKING:
5332  *	Inherited from calling layer (may sleep).
5333  */
5334 struct ata_port *ata_port_alloc(struct ata_host *host)
5335 {
5336 	struct ata_port *ap;
5337 
5338 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5339 	if (!ap)
5340 		return NULL;
5341 
5342 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5343 	ap->lock = &host->lock;
5344 	ap->print_id = -1;
5345 	ap->local_port_no = -1;
5346 	ap->host = host;
5347 	ap->dev = host->dev;
5348 
5349 	mutex_init(&ap->scsi_scan_mutex);
5350 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5351 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5352 	INIT_LIST_HEAD(&ap->eh_done_q);
5353 	init_waitqueue_head(&ap->eh_wait_q);
5354 	init_completion(&ap->park_req_pending);
5355 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5356 		    TIMER_DEFERRABLE);
5357 
5358 	ap->cbl = ATA_CBL_NONE;
5359 
5360 	ata_link_init(ap, &ap->link, 0);
5361 
5362 #ifdef ATA_IRQ_TRAP
5363 	ap->stats.unhandled_irq = 1;
5364 	ap->stats.idle_irq = 1;
5365 #endif
5366 	ata_sff_port_init(ap);
5367 
5368 	return ap;
5369 }
5370 
5371 static void ata_devres_release(struct device *gendev, void *res)
5372 {
5373 	struct ata_host *host = dev_get_drvdata(gendev);
5374 	int i;
5375 
5376 	for (i = 0; i < host->n_ports; i++) {
5377 		struct ata_port *ap = host->ports[i];
5378 
5379 		if (!ap)
5380 			continue;
5381 
5382 		if (ap->scsi_host)
5383 			scsi_host_put(ap->scsi_host);
5384 
5385 	}
5386 
5387 	dev_set_drvdata(gendev, NULL);
5388 	ata_host_put(host);
5389 }
5390 
5391 static void ata_host_release(struct kref *kref)
5392 {
5393 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5394 	int i;
5395 
5396 	for (i = 0; i < host->n_ports; i++) {
5397 		struct ata_port *ap = host->ports[i];
5398 
5399 		kfree(ap->pmp_link);
5400 		kfree(ap->slave_link);
5401 		kfree(ap);
5402 		host->ports[i] = NULL;
5403 	}
5404 	kfree(host);
5405 }
5406 
5407 void ata_host_get(struct ata_host *host)
5408 {
5409 	kref_get(&host->kref);
5410 }
5411 
5412 void ata_host_put(struct ata_host *host)
5413 {
5414 	kref_put(&host->kref, ata_host_release);
5415 }
5416 EXPORT_SYMBOL_GPL(ata_host_put);
5417 
5418 /**
5419  *	ata_host_alloc - allocate and init basic ATA host resources
5420  *	@dev: generic device this host is associated with
5421  *	@max_ports: maximum number of ATA ports associated with this host
5422  *
5423  *	Allocate and initialize basic ATA host resources.  LLD calls
5424  *	this function to allocate a host, initializes it fully and
5425  *	attaches it using ata_host_register().
5426  *
5427  *	@max_ports ports are allocated and host->n_ports is
5428  *	initialized to @max_ports.  The caller is allowed to decrease
5429  *	host->n_ports before calling ata_host_register().  The unused
5430  *	ports will be automatically freed on registration.
5431  *
5432  *	RETURNS:
5433  *	Allocate ATA host on success, NULL on failure.
5434  *
5435  *	LOCKING:
5436  *	Inherited from calling layer (may sleep).
5437  */
5438 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5439 {
5440 	struct ata_host *host;
5441 	size_t sz;
5442 	int i;
5443 	void *dr;
5444 
5445 	/* alloc a container for our list of ATA ports (buses) */
5446 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5447 	host = kzalloc(sz, GFP_KERNEL);
5448 	if (!host)
5449 		return NULL;
5450 
5451 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5452 		goto err_free;
5453 
5454 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5455 	if (!dr)
5456 		goto err_out;
5457 
5458 	devres_add(dev, dr);
5459 	dev_set_drvdata(dev, host);
5460 
5461 	spin_lock_init(&host->lock);
5462 	mutex_init(&host->eh_mutex);
5463 	host->dev = dev;
5464 	host->n_ports = max_ports;
5465 	kref_init(&host->kref);
5466 
5467 	/* allocate ports bound to this host */
5468 	for (i = 0; i < max_ports; i++) {
5469 		struct ata_port *ap;
5470 
5471 		ap = ata_port_alloc(host);
5472 		if (!ap)
5473 			goto err_out;
5474 
5475 		ap->port_no = i;
5476 		host->ports[i] = ap;
5477 	}
5478 
5479 	devres_remove_group(dev, NULL);
5480 	return host;
5481 
5482  err_out:
5483 	devres_release_group(dev, NULL);
5484  err_free:
5485 	kfree(host);
5486 	return NULL;
5487 }
5488 EXPORT_SYMBOL_GPL(ata_host_alloc);
5489 
5490 /**
5491  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5492  *	@dev: generic device this host is associated with
5493  *	@ppi: array of ATA port_info to initialize host with
5494  *	@n_ports: number of ATA ports attached to this host
5495  *
5496  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5497  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5498  *	last entry will be used for the remaining ports.
5499  *
5500  *	RETURNS:
5501  *	Allocate ATA host on success, NULL on failure.
5502  *
5503  *	LOCKING:
5504  *	Inherited from calling layer (may sleep).
5505  */
5506 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5507 				      const struct ata_port_info * const * ppi,
5508 				      int n_ports)
5509 {
5510 	const struct ata_port_info *pi = &ata_dummy_port_info;
5511 	struct ata_host *host;
5512 	int i, j;
5513 
5514 	host = ata_host_alloc(dev, n_ports);
5515 	if (!host)
5516 		return NULL;
5517 
5518 	for (i = 0, j = 0; i < host->n_ports; i++) {
5519 		struct ata_port *ap = host->ports[i];
5520 
5521 		if (ppi[j])
5522 			pi = ppi[j++];
5523 
5524 		ap->pio_mask = pi->pio_mask;
5525 		ap->mwdma_mask = pi->mwdma_mask;
5526 		ap->udma_mask = pi->udma_mask;
5527 		ap->flags |= pi->flags;
5528 		ap->link.flags |= pi->link_flags;
5529 		ap->ops = pi->port_ops;
5530 
5531 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5532 			host->ops = pi->port_ops;
5533 	}
5534 
5535 	return host;
5536 }
5537 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5538 
5539 static void ata_host_stop(struct device *gendev, void *res)
5540 {
5541 	struct ata_host *host = dev_get_drvdata(gendev);
5542 	int i;
5543 
5544 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5545 
5546 	for (i = 0; i < host->n_ports; i++) {
5547 		struct ata_port *ap = host->ports[i];
5548 
5549 		if (ap->ops->port_stop)
5550 			ap->ops->port_stop(ap);
5551 	}
5552 
5553 	if (host->ops->host_stop)
5554 		host->ops->host_stop(host);
5555 }
5556 
5557 /**
5558  *	ata_finalize_port_ops - finalize ata_port_operations
5559  *	@ops: ata_port_operations to finalize
5560  *
5561  *	An ata_port_operations can inherit from another ops and that
5562  *	ops can again inherit from another.  This can go on as many
5563  *	times as necessary as long as there is no loop in the
5564  *	inheritance chain.
5565  *
5566  *	Ops tables are finalized when the host is started.  NULL or
5567  *	unspecified entries are inherited from the closet ancestor
5568  *	which has the method and the entry is populated with it.
5569  *	After finalization, the ops table directly points to all the
5570  *	methods and ->inherits is no longer necessary and cleared.
5571  *
5572  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5573  *
5574  *	LOCKING:
5575  *	None.
5576  */
5577 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5578 {
5579 	static DEFINE_SPINLOCK(lock);
5580 	const struct ata_port_operations *cur;
5581 	void **begin = (void **)ops;
5582 	void **end = (void **)&ops->inherits;
5583 	void **pp;
5584 
5585 	if (!ops || !ops->inherits)
5586 		return;
5587 
5588 	spin_lock(&lock);
5589 
5590 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5591 		void **inherit = (void **)cur;
5592 
5593 		for (pp = begin; pp < end; pp++, inherit++)
5594 			if (!*pp)
5595 				*pp = *inherit;
5596 	}
5597 
5598 	for (pp = begin; pp < end; pp++)
5599 		if (IS_ERR(*pp))
5600 			*pp = NULL;
5601 
5602 	ops->inherits = NULL;
5603 
5604 	spin_unlock(&lock);
5605 }
5606 
5607 /**
5608  *	ata_host_start - start and freeze ports of an ATA host
5609  *	@host: ATA host to start ports for
5610  *
5611  *	Start and then freeze ports of @host.  Started status is
5612  *	recorded in host->flags, so this function can be called
5613  *	multiple times.  Ports are guaranteed to get started only
5614  *	once.  If host->ops is not initialized yet, it is set to the
5615  *	first non-dummy port ops.
5616  *
5617  *	LOCKING:
5618  *	Inherited from calling layer (may sleep).
5619  *
5620  *	RETURNS:
5621  *	0 if all ports are started successfully, -errno otherwise.
5622  */
5623 int ata_host_start(struct ata_host *host)
5624 {
5625 	int have_stop = 0;
5626 	void *start_dr = NULL;
5627 	int i, rc;
5628 
5629 	if (host->flags & ATA_HOST_STARTED)
5630 		return 0;
5631 
5632 	ata_finalize_port_ops(host->ops);
5633 
5634 	for (i = 0; i < host->n_ports; i++) {
5635 		struct ata_port *ap = host->ports[i];
5636 
5637 		ata_finalize_port_ops(ap->ops);
5638 
5639 		if (!host->ops && !ata_port_is_dummy(ap))
5640 			host->ops = ap->ops;
5641 
5642 		if (ap->ops->port_stop)
5643 			have_stop = 1;
5644 	}
5645 
5646 	if (host->ops && host->ops->host_stop)
5647 		have_stop = 1;
5648 
5649 	if (have_stop) {
5650 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5651 		if (!start_dr)
5652 			return -ENOMEM;
5653 	}
5654 
5655 	for (i = 0; i < host->n_ports; i++) {
5656 		struct ata_port *ap = host->ports[i];
5657 
5658 		if (ap->ops->port_start) {
5659 			rc = ap->ops->port_start(ap);
5660 			if (rc) {
5661 				if (rc != -ENODEV)
5662 					dev_err(host->dev,
5663 						"failed to start port %d (errno=%d)\n",
5664 						i, rc);
5665 				goto err_out;
5666 			}
5667 		}
5668 		ata_eh_freeze_port(ap);
5669 	}
5670 
5671 	if (start_dr)
5672 		devres_add(host->dev, start_dr);
5673 	host->flags |= ATA_HOST_STARTED;
5674 	return 0;
5675 
5676  err_out:
5677 	while (--i >= 0) {
5678 		struct ata_port *ap = host->ports[i];
5679 
5680 		if (ap->ops->port_stop)
5681 			ap->ops->port_stop(ap);
5682 	}
5683 	devres_free(start_dr);
5684 	return rc;
5685 }
5686 EXPORT_SYMBOL_GPL(ata_host_start);
5687 
5688 /**
5689  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5690  *	@host:	host to initialize
5691  *	@dev:	device host is attached to
5692  *	@ops:	port_ops
5693  *
5694  */
5695 void ata_host_init(struct ata_host *host, struct device *dev,
5696 		   struct ata_port_operations *ops)
5697 {
5698 	spin_lock_init(&host->lock);
5699 	mutex_init(&host->eh_mutex);
5700 	host->n_tags = ATA_MAX_QUEUE;
5701 	host->dev = dev;
5702 	host->ops = ops;
5703 	kref_init(&host->kref);
5704 }
5705 EXPORT_SYMBOL_GPL(ata_host_init);
5706 
5707 void __ata_port_probe(struct ata_port *ap)
5708 {
5709 	struct ata_eh_info *ehi = &ap->link.eh_info;
5710 	unsigned long flags;
5711 
5712 	/* kick EH for boot probing */
5713 	spin_lock_irqsave(ap->lock, flags);
5714 
5715 	ehi->probe_mask |= ATA_ALL_DEVICES;
5716 	ehi->action |= ATA_EH_RESET;
5717 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5718 
5719 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5720 	ap->pflags |= ATA_PFLAG_LOADING;
5721 	ata_port_schedule_eh(ap);
5722 
5723 	spin_unlock_irqrestore(ap->lock, flags);
5724 }
5725 
5726 int ata_port_probe(struct ata_port *ap)
5727 {
5728 	int rc = 0;
5729 
5730 	if (ap->ops->error_handler) {
5731 		__ata_port_probe(ap);
5732 		ata_port_wait_eh(ap);
5733 	} else {
5734 		rc = ata_bus_probe(ap);
5735 	}
5736 	return rc;
5737 }
5738 
5739 
5740 static void async_port_probe(void *data, async_cookie_t cookie)
5741 {
5742 	struct ata_port *ap = data;
5743 
5744 	/*
5745 	 * If we're not allowed to scan this host in parallel,
5746 	 * we need to wait until all previous scans have completed
5747 	 * before going further.
5748 	 * Jeff Garzik says this is only within a controller, so we
5749 	 * don't need to wait for port 0, only for later ports.
5750 	 */
5751 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5752 		async_synchronize_cookie(cookie);
5753 
5754 	(void)ata_port_probe(ap);
5755 
5756 	/* in order to keep device order, we need to synchronize at this point */
5757 	async_synchronize_cookie(cookie);
5758 
5759 	ata_scsi_scan_host(ap, 1);
5760 }
5761 
5762 /**
5763  *	ata_host_register - register initialized ATA host
5764  *	@host: ATA host to register
5765  *	@sht: template for SCSI host
5766  *
5767  *	Register initialized ATA host.  @host is allocated using
5768  *	ata_host_alloc() and fully initialized by LLD.  This function
5769  *	starts ports, registers @host with ATA and SCSI layers and
5770  *	probe registered devices.
5771  *
5772  *	LOCKING:
5773  *	Inherited from calling layer (may sleep).
5774  *
5775  *	RETURNS:
5776  *	0 on success, -errno otherwise.
5777  */
5778 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5779 {
5780 	int i, rc;
5781 
5782 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5783 
5784 	/* host must have been started */
5785 	if (!(host->flags & ATA_HOST_STARTED)) {
5786 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5787 		WARN_ON(1);
5788 		return -EINVAL;
5789 	}
5790 
5791 	/* Blow away unused ports.  This happens when LLD can't
5792 	 * determine the exact number of ports to allocate at
5793 	 * allocation time.
5794 	 */
5795 	for (i = host->n_ports; host->ports[i]; i++)
5796 		kfree(host->ports[i]);
5797 
5798 	/* give ports names and add SCSI hosts */
5799 	for (i = 0; i < host->n_ports; i++) {
5800 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5801 		host->ports[i]->local_port_no = i + 1;
5802 	}
5803 
5804 	/* Create associated sysfs transport objects  */
5805 	for (i = 0; i < host->n_ports; i++) {
5806 		rc = ata_tport_add(host->dev,host->ports[i]);
5807 		if (rc) {
5808 			goto err_tadd;
5809 		}
5810 	}
5811 
5812 	rc = ata_scsi_add_hosts(host, sht);
5813 	if (rc)
5814 		goto err_tadd;
5815 
5816 	/* set cable, sata_spd_limit and report */
5817 	for (i = 0; i < host->n_ports; i++) {
5818 		struct ata_port *ap = host->ports[i];
5819 		unsigned int xfer_mask;
5820 
5821 		/* set SATA cable type if still unset */
5822 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5823 			ap->cbl = ATA_CBL_SATA;
5824 
5825 		/* init sata_spd_limit to the current value */
5826 		sata_link_init_spd(&ap->link);
5827 		if (ap->slave_link)
5828 			sata_link_init_spd(ap->slave_link);
5829 
5830 		/* print per-port info to dmesg */
5831 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5832 					      ap->udma_mask);
5833 
5834 		if (!ata_port_is_dummy(ap)) {
5835 			ata_port_info(ap, "%cATA max %s %s\n",
5836 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5837 				      ata_mode_string(xfer_mask),
5838 				      ap->link.eh_info.desc);
5839 			ata_ehi_clear_desc(&ap->link.eh_info);
5840 		} else
5841 			ata_port_info(ap, "DUMMY\n");
5842 	}
5843 
5844 	/* perform each probe asynchronously */
5845 	for (i = 0; i < host->n_ports; i++) {
5846 		struct ata_port *ap = host->ports[i];
5847 		ap->cookie = async_schedule(async_port_probe, ap);
5848 	}
5849 
5850 	return 0;
5851 
5852  err_tadd:
5853 	while (--i >= 0) {
5854 		ata_tport_delete(host->ports[i]);
5855 	}
5856 	return rc;
5857 
5858 }
5859 EXPORT_SYMBOL_GPL(ata_host_register);
5860 
5861 /**
5862  *	ata_host_activate - start host, request IRQ and register it
5863  *	@host: target ATA host
5864  *	@irq: IRQ to request
5865  *	@irq_handler: irq_handler used when requesting IRQ
5866  *	@irq_flags: irq_flags used when requesting IRQ
5867  *	@sht: scsi_host_template to use when registering the host
5868  *
5869  *	After allocating an ATA host and initializing it, most libata
5870  *	LLDs perform three steps to activate the host - start host,
5871  *	request IRQ and register it.  This helper takes necessary
5872  *	arguments and performs the three steps in one go.
5873  *
5874  *	An invalid IRQ skips the IRQ registration and expects the host to
5875  *	have set polling mode on the port. In this case, @irq_handler
5876  *	should be NULL.
5877  *
5878  *	LOCKING:
5879  *	Inherited from calling layer (may sleep).
5880  *
5881  *	RETURNS:
5882  *	0 on success, -errno otherwise.
5883  */
5884 int ata_host_activate(struct ata_host *host, int irq,
5885 		      irq_handler_t irq_handler, unsigned long irq_flags,
5886 		      const struct scsi_host_template *sht)
5887 {
5888 	int i, rc;
5889 	char *irq_desc;
5890 
5891 	rc = ata_host_start(host);
5892 	if (rc)
5893 		return rc;
5894 
5895 	/* Special case for polling mode */
5896 	if (!irq) {
5897 		WARN_ON(irq_handler);
5898 		return ata_host_register(host, sht);
5899 	}
5900 
5901 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5902 				  dev_driver_string(host->dev),
5903 				  dev_name(host->dev));
5904 	if (!irq_desc)
5905 		return -ENOMEM;
5906 
5907 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5908 			      irq_desc, host);
5909 	if (rc)
5910 		return rc;
5911 
5912 	for (i = 0; i < host->n_ports; i++)
5913 		ata_port_desc(host->ports[i], "irq %d", irq);
5914 
5915 	rc = ata_host_register(host, sht);
5916 	/* if failed, just free the IRQ and leave ports alone */
5917 	if (rc)
5918 		devm_free_irq(host->dev, irq, host);
5919 
5920 	return rc;
5921 }
5922 EXPORT_SYMBOL_GPL(ata_host_activate);
5923 
5924 /**
5925  *	ata_port_detach - Detach ATA port in preparation of device removal
5926  *	@ap: ATA port to be detached
5927  *
5928  *	Detach all ATA devices and the associated SCSI devices of @ap;
5929  *	then, remove the associated SCSI host.  @ap is guaranteed to
5930  *	be quiescent on return from this function.
5931  *
5932  *	LOCKING:
5933  *	Kernel thread context (may sleep).
5934  */
5935 static void ata_port_detach(struct ata_port *ap)
5936 {
5937 	unsigned long flags;
5938 	struct ata_link *link;
5939 	struct ata_device *dev;
5940 
5941 	if (!ap->ops->error_handler)
5942 		goto skip_eh;
5943 
5944 	/* tell EH we're leaving & flush EH */
5945 	spin_lock_irqsave(ap->lock, flags);
5946 	ap->pflags |= ATA_PFLAG_UNLOADING;
5947 	ata_port_schedule_eh(ap);
5948 	spin_unlock_irqrestore(ap->lock, flags);
5949 
5950 	/* wait till EH commits suicide */
5951 	ata_port_wait_eh(ap);
5952 
5953 	/* it better be dead now */
5954 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5955 
5956 	cancel_delayed_work_sync(&ap->hotplug_task);
5957 
5958  skip_eh:
5959 	/* clean up zpodd on port removal */
5960 	ata_for_each_link(link, ap, HOST_FIRST) {
5961 		ata_for_each_dev(dev, link, ALL) {
5962 			if (zpodd_dev_enabled(dev))
5963 				zpodd_exit(dev);
5964 		}
5965 	}
5966 	if (ap->pmp_link) {
5967 		int i;
5968 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5969 			ata_tlink_delete(&ap->pmp_link[i]);
5970 	}
5971 	/* remove the associated SCSI host */
5972 	scsi_remove_host(ap->scsi_host);
5973 	ata_tport_delete(ap);
5974 }
5975 
5976 /**
5977  *	ata_host_detach - Detach all ports of an ATA host
5978  *	@host: Host to detach
5979  *
5980  *	Detach all ports of @host.
5981  *
5982  *	LOCKING:
5983  *	Kernel thread context (may sleep).
5984  */
5985 void ata_host_detach(struct ata_host *host)
5986 {
5987 	int i;
5988 
5989 	for (i = 0; i < host->n_ports; i++) {
5990 		/* Ensure ata_port probe has completed */
5991 		async_synchronize_cookie(host->ports[i]->cookie + 1);
5992 		ata_port_detach(host->ports[i]);
5993 	}
5994 
5995 	/* the host is dead now, dissociate ACPI */
5996 	ata_acpi_dissociate(host);
5997 }
5998 EXPORT_SYMBOL_GPL(ata_host_detach);
5999 
6000 #ifdef CONFIG_PCI
6001 
6002 /**
6003  *	ata_pci_remove_one - PCI layer callback for device removal
6004  *	@pdev: PCI device that was removed
6005  *
6006  *	PCI layer indicates to libata via this hook that hot-unplug or
6007  *	module unload event has occurred.  Detach all ports.  Resource
6008  *	release is handled via devres.
6009  *
6010  *	LOCKING:
6011  *	Inherited from PCI layer (may sleep).
6012  */
6013 void ata_pci_remove_one(struct pci_dev *pdev)
6014 {
6015 	struct ata_host *host = pci_get_drvdata(pdev);
6016 
6017 	ata_host_detach(host);
6018 }
6019 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6020 
6021 void ata_pci_shutdown_one(struct pci_dev *pdev)
6022 {
6023 	struct ata_host *host = pci_get_drvdata(pdev);
6024 	int i;
6025 
6026 	for (i = 0; i < host->n_ports; i++) {
6027 		struct ata_port *ap = host->ports[i];
6028 
6029 		ap->pflags |= ATA_PFLAG_FROZEN;
6030 
6031 		/* Disable port interrupts */
6032 		if (ap->ops->freeze)
6033 			ap->ops->freeze(ap);
6034 
6035 		/* Stop the port DMA engines */
6036 		if (ap->ops->port_stop)
6037 			ap->ops->port_stop(ap);
6038 	}
6039 }
6040 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6041 
6042 /* move to PCI subsystem */
6043 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6044 {
6045 	unsigned long tmp = 0;
6046 
6047 	switch (bits->width) {
6048 	case 1: {
6049 		u8 tmp8 = 0;
6050 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6051 		tmp = tmp8;
6052 		break;
6053 	}
6054 	case 2: {
6055 		u16 tmp16 = 0;
6056 		pci_read_config_word(pdev, bits->reg, &tmp16);
6057 		tmp = tmp16;
6058 		break;
6059 	}
6060 	case 4: {
6061 		u32 tmp32 = 0;
6062 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6063 		tmp = tmp32;
6064 		break;
6065 	}
6066 
6067 	default:
6068 		return -EINVAL;
6069 	}
6070 
6071 	tmp &= bits->mask;
6072 
6073 	return (tmp == bits->val) ? 1 : 0;
6074 }
6075 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6076 
6077 #ifdef CONFIG_PM
6078 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6079 {
6080 	pci_save_state(pdev);
6081 	pci_disable_device(pdev);
6082 
6083 	if (mesg.event & PM_EVENT_SLEEP)
6084 		pci_set_power_state(pdev, PCI_D3hot);
6085 }
6086 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6087 
6088 int ata_pci_device_do_resume(struct pci_dev *pdev)
6089 {
6090 	int rc;
6091 
6092 	pci_set_power_state(pdev, PCI_D0);
6093 	pci_restore_state(pdev);
6094 
6095 	rc = pcim_enable_device(pdev);
6096 	if (rc) {
6097 		dev_err(&pdev->dev,
6098 			"failed to enable device after resume (%d)\n", rc);
6099 		return rc;
6100 	}
6101 
6102 	pci_set_master(pdev);
6103 	return 0;
6104 }
6105 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6106 
6107 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6108 {
6109 	struct ata_host *host = pci_get_drvdata(pdev);
6110 
6111 	ata_host_suspend(host, mesg);
6112 
6113 	ata_pci_device_do_suspend(pdev, mesg);
6114 
6115 	return 0;
6116 }
6117 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6118 
6119 int ata_pci_device_resume(struct pci_dev *pdev)
6120 {
6121 	struct ata_host *host = pci_get_drvdata(pdev);
6122 	int rc;
6123 
6124 	rc = ata_pci_device_do_resume(pdev);
6125 	if (rc == 0)
6126 		ata_host_resume(host);
6127 	return rc;
6128 }
6129 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6130 #endif /* CONFIG_PM */
6131 #endif /* CONFIG_PCI */
6132 
6133 /**
6134  *	ata_platform_remove_one - Platform layer callback for device removal
6135  *	@pdev: Platform device that was removed
6136  *
6137  *	Platform layer indicates to libata via this hook that hot-unplug or
6138  *	module unload event has occurred.  Detach all ports.  Resource
6139  *	release is handled via devres.
6140  *
6141  *	LOCKING:
6142  *	Inherited from platform layer (may sleep).
6143  */
6144 int ata_platform_remove_one(struct platform_device *pdev)
6145 {
6146 	struct ata_host *host = platform_get_drvdata(pdev);
6147 
6148 	ata_host_detach(host);
6149 
6150 	return 0;
6151 }
6152 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6153 
6154 #ifdef CONFIG_ATA_FORCE
6155 
6156 #define force_cbl(name, flag)				\
6157 	{ #name,	.cbl		= (flag) }
6158 
6159 #define force_spd_limit(spd, val)			\
6160 	{ #spd,	.spd_limit		= (val) }
6161 
6162 #define force_xfer(mode, shift)				\
6163 	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6164 
6165 #define force_lflag_on(name, flags)			\
6166 	{ #name,	.lflags_on	= (flags) }
6167 
6168 #define force_lflag_onoff(name, flags)			\
6169 	{ "no" #name,	.lflags_on	= (flags) },	\
6170 	{ #name,	.lflags_off	= (flags) }
6171 
6172 #define force_horkage_on(name, flag)			\
6173 	{ #name,	.horkage_on	= (flag) }
6174 
6175 #define force_horkage_onoff(name, flag)			\
6176 	{ "no" #name,	.horkage_on	= (flag) },	\
6177 	{ #name,	.horkage_off	= (flag) }
6178 
6179 static const struct ata_force_param force_tbl[] __initconst = {
6180 	force_cbl(40c,			ATA_CBL_PATA40),
6181 	force_cbl(80c,			ATA_CBL_PATA80),
6182 	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6183 	force_cbl(unk,			ATA_CBL_PATA_UNK),
6184 	force_cbl(ign,			ATA_CBL_PATA_IGN),
6185 	force_cbl(sata,			ATA_CBL_SATA),
6186 
6187 	force_spd_limit(1.5Gbps,	1),
6188 	force_spd_limit(3.0Gbps,	2),
6189 
6190 	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6191 	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6192 	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6193 	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6194 	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6195 	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6196 	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6197 	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6198 	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6199 	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6200 	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6201 	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6202 	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6203 	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6204 	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6205 	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6206 	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6207 	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6208 	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6209 	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6210 	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6211 	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6212 	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6213 	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6214 	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6215 	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6216 	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6217 	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6218 	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6219 	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6220 	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6221 	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6222 	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6223 	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6224 
6225 	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6226 	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6227 	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6228 	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6229 	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6230 
6231 	force_horkage_onoff(ncq,	ATA_HORKAGE_NONCQ),
6232 	force_horkage_onoff(ncqtrim,	ATA_HORKAGE_NO_NCQ_TRIM),
6233 	force_horkage_onoff(ncqati,	ATA_HORKAGE_NO_NCQ_ON_ATI),
6234 
6235 	force_horkage_onoff(trim,	ATA_HORKAGE_NOTRIM),
6236 	force_horkage_on(trim_zero,	ATA_HORKAGE_ZERO_AFTER_TRIM),
6237 	force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6238 
6239 	force_horkage_onoff(dma,	ATA_HORKAGE_NODMA),
6240 	force_horkage_on(atapi_dmadir,	ATA_HORKAGE_ATAPI_DMADIR),
6241 	force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6242 
6243 	force_horkage_onoff(dmalog,	ATA_HORKAGE_NO_DMA_LOG),
6244 	force_horkage_onoff(iddevlog,	ATA_HORKAGE_NO_ID_DEV_LOG),
6245 	force_horkage_onoff(logdir,	ATA_HORKAGE_NO_LOG_DIR),
6246 
6247 	force_horkage_on(max_sec_128,	ATA_HORKAGE_MAX_SEC_128),
6248 	force_horkage_on(max_sec_1024,	ATA_HORKAGE_MAX_SEC_1024),
6249 	force_horkage_on(max_sec_lba48,	ATA_HORKAGE_MAX_SEC_LBA48),
6250 
6251 	force_horkage_onoff(lpm,	ATA_HORKAGE_NOLPM),
6252 	force_horkage_onoff(setxfer,	ATA_HORKAGE_NOSETXFER),
6253 	force_horkage_on(dump_id,	ATA_HORKAGE_DUMP_ID),
6254 	force_horkage_onoff(fua,	ATA_HORKAGE_NO_FUA),
6255 
6256 	force_horkage_on(disable,	ATA_HORKAGE_DISABLE),
6257 };
6258 
6259 static int __init ata_parse_force_one(char **cur,
6260 				      struct ata_force_ent *force_ent,
6261 				      const char **reason)
6262 {
6263 	char *start = *cur, *p = *cur;
6264 	char *id, *val, *endp;
6265 	const struct ata_force_param *match_fp = NULL;
6266 	int nr_matches = 0, i;
6267 
6268 	/* find where this param ends and update *cur */
6269 	while (*p != '\0' && *p != ',')
6270 		p++;
6271 
6272 	if (*p == '\0')
6273 		*cur = p;
6274 	else
6275 		*cur = p + 1;
6276 
6277 	*p = '\0';
6278 
6279 	/* parse */
6280 	p = strchr(start, ':');
6281 	if (!p) {
6282 		val = strstrip(start);
6283 		goto parse_val;
6284 	}
6285 	*p = '\0';
6286 
6287 	id = strstrip(start);
6288 	val = strstrip(p + 1);
6289 
6290 	/* parse id */
6291 	p = strchr(id, '.');
6292 	if (p) {
6293 		*p++ = '\0';
6294 		force_ent->device = simple_strtoul(p, &endp, 10);
6295 		if (p == endp || *endp != '\0') {
6296 			*reason = "invalid device";
6297 			return -EINVAL;
6298 		}
6299 	}
6300 
6301 	force_ent->port = simple_strtoul(id, &endp, 10);
6302 	if (id == endp || *endp != '\0') {
6303 		*reason = "invalid port/link";
6304 		return -EINVAL;
6305 	}
6306 
6307  parse_val:
6308 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6309 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6310 		const struct ata_force_param *fp = &force_tbl[i];
6311 
6312 		if (strncasecmp(val, fp->name, strlen(val)))
6313 			continue;
6314 
6315 		nr_matches++;
6316 		match_fp = fp;
6317 
6318 		if (strcasecmp(val, fp->name) == 0) {
6319 			nr_matches = 1;
6320 			break;
6321 		}
6322 	}
6323 
6324 	if (!nr_matches) {
6325 		*reason = "unknown value";
6326 		return -EINVAL;
6327 	}
6328 	if (nr_matches > 1) {
6329 		*reason = "ambiguous value";
6330 		return -EINVAL;
6331 	}
6332 
6333 	force_ent->param = *match_fp;
6334 
6335 	return 0;
6336 }
6337 
6338 static void __init ata_parse_force_param(void)
6339 {
6340 	int idx = 0, size = 1;
6341 	int last_port = -1, last_device = -1;
6342 	char *p, *cur, *next;
6343 
6344 	/* Calculate maximum number of params and allocate ata_force_tbl */
6345 	for (p = ata_force_param_buf; *p; p++)
6346 		if (*p == ',')
6347 			size++;
6348 
6349 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6350 	if (!ata_force_tbl) {
6351 		printk(KERN_WARNING "ata: failed to extend force table, "
6352 		       "libata.force ignored\n");
6353 		return;
6354 	}
6355 
6356 	/* parse and populate the table */
6357 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6358 		const char *reason = "";
6359 		struct ata_force_ent te = { .port = -1, .device = -1 };
6360 
6361 		next = cur;
6362 		if (ata_parse_force_one(&next, &te, &reason)) {
6363 			printk(KERN_WARNING "ata: failed to parse force "
6364 			       "parameter \"%s\" (%s)\n",
6365 			       cur, reason);
6366 			continue;
6367 		}
6368 
6369 		if (te.port == -1) {
6370 			te.port = last_port;
6371 			te.device = last_device;
6372 		}
6373 
6374 		ata_force_tbl[idx++] = te;
6375 
6376 		last_port = te.port;
6377 		last_device = te.device;
6378 	}
6379 
6380 	ata_force_tbl_size = idx;
6381 }
6382 
6383 static void ata_free_force_param(void)
6384 {
6385 	kfree(ata_force_tbl);
6386 }
6387 #else
6388 static inline void ata_parse_force_param(void) { }
6389 static inline void ata_free_force_param(void) { }
6390 #endif
6391 
6392 static int __init ata_init(void)
6393 {
6394 	int rc;
6395 
6396 	ata_parse_force_param();
6397 
6398 	rc = ata_sff_init();
6399 	if (rc) {
6400 		ata_free_force_param();
6401 		return rc;
6402 	}
6403 
6404 	libata_transport_init();
6405 	ata_scsi_transport_template = ata_attach_transport();
6406 	if (!ata_scsi_transport_template) {
6407 		ata_sff_exit();
6408 		rc = -ENOMEM;
6409 		goto err_out;
6410 	}
6411 
6412 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6413 	return 0;
6414 
6415 err_out:
6416 	return rc;
6417 }
6418 
6419 static void __exit ata_exit(void)
6420 {
6421 	ata_release_transport(ata_scsi_transport_template);
6422 	libata_transport_exit();
6423 	ata_sff_exit();
6424 	ata_free_force_param();
6425 }
6426 
6427 subsys_initcall(ata_init);
6428 module_exit(ata_exit);
6429 
6430 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6431 
6432 int ata_ratelimit(void)
6433 {
6434 	return __ratelimit(&ratelimit);
6435 }
6436 EXPORT_SYMBOL_GPL(ata_ratelimit);
6437 
6438 /**
6439  *	ata_msleep - ATA EH owner aware msleep
6440  *	@ap: ATA port to attribute the sleep to
6441  *	@msecs: duration to sleep in milliseconds
6442  *
6443  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6444  *	ownership is released before going to sleep and reacquired
6445  *	after the sleep is complete.  IOW, other ports sharing the
6446  *	@ap->host will be allowed to own the EH while this task is
6447  *	sleeping.
6448  *
6449  *	LOCKING:
6450  *	Might sleep.
6451  */
6452 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6453 {
6454 	bool owns_eh = ap && ap->host->eh_owner == current;
6455 
6456 	if (owns_eh)
6457 		ata_eh_release(ap);
6458 
6459 	if (msecs < 20) {
6460 		unsigned long usecs = msecs * USEC_PER_MSEC;
6461 		usleep_range(usecs, usecs + 50);
6462 	} else {
6463 		msleep(msecs);
6464 	}
6465 
6466 	if (owns_eh)
6467 		ata_eh_acquire(ap);
6468 }
6469 EXPORT_SYMBOL_GPL(ata_msleep);
6470 
6471 /**
6472  *	ata_wait_register - wait until register value changes
6473  *	@ap: ATA port to wait register for, can be NULL
6474  *	@reg: IO-mapped register
6475  *	@mask: Mask to apply to read register value
6476  *	@val: Wait condition
6477  *	@interval: polling interval in milliseconds
6478  *	@timeout: timeout in milliseconds
6479  *
6480  *	Waiting for some bits of register to change is a common
6481  *	operation for ATA controllers.  This function reads 32bit LE
6482  *	IO-mapped register @reg and tests for the following condition.
6483  *
6484  *	(*@reg & mask) != val
6485  *
6486  *	If the condition is met, it returns; otherwise, the process is
6487  *	repeated after @interval_msec until timeout.
6488  *
6489  *	LOCKING:
6490  *	Kernel thread context (may sleep)
6491  *
6492  *	RETURNS:
6493  *	The final register value.
6494  */
6495 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6496 		      unsigned long interval, unsigned long timeout)
6497 {
6498 	unsigned long deadline;
6499 	u32 tmp;
6500 
6501 	tmp = ioread32(reg);
6502 
6503 	/* Calculate timeout _after_ the first read to make sure
6504 	 * preceding writes reach the controller before starting to
6505 	 * eat away the timeout.
6506 	 */
6507 	deadline = ata_deadline(jiffies, timeout);
6508 
6509 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6510 		ata_msleep(ap, interval);
6511 		tmp = ioread32(reg);
6512 	}
6513 
6514 	return tmp;
6515 }
6516 EXPORT_SYMBOL_GPL(ata_wait_register);
6517 
6518 /*
6519  * Dummy port_ops
6520  */
6521 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6522 {
6523 	return AC_ERR_SYSTEM;
6524 }
6525 
6526 static void ata_dummy_error_handler(struct ata_port *ap)
6527 {
6528 	/* truly dummy */
6529 }
6530 
6531 struct ata_port_operations ata_dummy_port_ops = {
6532 	.qc_prep		= ata_noop_qc_prep,
6533 	.qc_issue		= ata_dummy_qc_issue,
6534 	.error_handler		= ata_dummy_error_handler,
6535 	.sched_eh		= ata_std_sched_eh,
6536 	.end_eh			= ata_std_end_eh,
6537 };
6538 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6539 
6540 const struct ata_port_info ata_dummy_port_info = {
6541 	.port_ops		= &ata_dummy_port_ops,
6542 };
6543 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6544 
6545 void ata_print_version(const struct device *dev, const char *version)
6546 {
6547 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6548 }
6549 EXPORT_SYMBOL(ata_print_version);
6550 
6551 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6552 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6553 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6554 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6555 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6556